— ECTURE NOTEs IN COMPUTATIONAL 69
e SCIENCE»END ENGINEERING

Alan F. Hegarty - Natalia Kopteva
Eugene O° Riordan - Martin Stynes Editors

BAIL 2008 —
Boundary
and Interior Layers

Editorial Board
T.J.Barth

M. Griebel
D.E.Keyes
R.M.Nieminen
D.Roose

@ Springer T.Schlick



Lecture Notes
in Computational Science
and Engineering

69

Editors

Timothy J. Barth
Michael Griebel
David E. Keyes
Risto M. Nieminen
Dirk Roose

Tamar Schlick



Alan F. Hegarty . Natalia Kopteva
Eugene O’Riordan . Martin Stynes
Editors

BAIL 2008 - Boundary
and Interior Layers

Proceedings of the International Conference
on Boundary and Interior Layers - Computational
and Asymptotic Methods, Limerick, July 2008

@ Springer



Alan F. Hegarty Natalia Kopteva

Department of Mathematics and Statistics Department of Mathematics and Statistics
University of Limerick University of Limerick
Limerick Limerick

Ireland Ireland

alan.hegarty @ul.ie natalia.kopteva@ul.ie

Eugene O’Riordan Martin Stynes

School of Mathematical Sciences Department of Mathematics
Dublin City University National University of Ireland
Glasnevin Cork

Dublin 9 Ireland

Ireland m.stynes@ucc.ie

eugene.oriordan@dcu.ie

ISSN 1439-7358

ISBN 978-3-642-00604-3 e-ISBN 978-3-642-00605-0
DOI: 10.1007/978-3-642-00605-0

Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2009926245
Mathematics Subject Classification Numbers (2000): 34, 35, 65, 76

© Springer-Verlag Berlin Heidelberg 2009

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permissions for use must always be obtained from Springer-Verlag. Violations
are liable for prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: deblik, Heidelberg

The front cover photograph of the Poulnabrone dolmen (a megalithic monument located in the west of
Ireland) was taken by Kathy Coyle.

Printed on acid-free paper

Springer is part of Springer Science + Business Media (www.springer.com)



Preface

These Proceedings contain a selection of the lectures given at the conference BAIL
2008: Boundary and Interior Layers — Computational and Asymptotic Methods,
which was held from 28th July to 1st August 2008 at the University of Limerick,
Ireland. The first three BAIL conferences (1980, 1982, 1984) were organised by
Professor John Miller in Trinity College Dublin, Ireland. The next seven were held
in Novosibirsk (1986), Shanghai (1988), Colorado (1992), Beijing (1994), Perth
(2002), Toulouse (2004), and Gottingen (2006). With BAIL 2008 the series returned
to Ireland. BAIL 2010 is planned for Zaragoza.

The BAIL conferences strive to bring together mathematicians and engineers
whose research involves layer phenomena, as these two groups often pursue largely
independent paths. BAIL 2008, at which both communities were well represented,
succeeded in this regard. The lectures given were evenly divided between appli-
cations and theory, exposing all conference participants to a broad spectrum of
research into problems exhibiting solutions with layers.

The Proceedings give a good overview of current research into the theory, appli-
cation and solution (by both numerical and asymptotic methods) of problems that
involve boundary and interior layers. In addition to invited and contributed lectures,
the conference included four mini-symposia devoted to stabilized finite element
methods, asymptotic scaling of wall-bounded flows, systems of singularly per-
turbed differential equations, and problems with industrial applications (supported
by MACSI, the Mathematics Applications Consortium for Science and Industry).
These titles exemplify the mix of interests among the participants.

All papers in the Proceedings were subject to a standard refereeing process.
We are grateful to the authors and to the unnamed referees for their valuable
contributions, without which this volume would not exist.

Thanks are also due to the organizers of the mini-symposia at BAIL 2008,
to the judges of the Hemker prize, and to all the attendees for their enthusiastic
participation in the conference.

January 2009 Alan F. Hegarty (Limerick)
Natalia Kopteva (Limerick)

Eugene O’Riordan (Dublin)

Martin Stynes (Cork)
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High-Reynolds-Number Asymptotics
of Turbulent Boundary Layers: From Fully
Attached to Marginally Separated Flows

Dedicated to Professor Klaus Gersten on the occasion of his 80th birthday

Alfred Kluwick and Bernhard Scheichl

Abstract This paper reports on recent efforts with the ultimate goal to obtain a
fully self-consistent picture of turbulent boundary layer separation. To this end, it is
shown first how the classical theory of turbulent small-defect boundary layers can
be generalised rigorously to boundary layers with a slightly larger, i.e. moderately
large, velocity defect and, finally, to situations where the velocity defect is of O(1).
In the latter case, the formation of short recirculation zones describing marginally
separated flows is found possible, as described in a rational manner.

1 Introduction

Despite the rapid increase of computer power in the recent past, the calculation of
turbulent wall-bounded flows still represents an extremely challenging and some-
times insolvable task. Direct-Numerical-Simulation computations based on the full
Navier—Stokes equations are feasible for moderately large Reynolds numbers only.
Flows characterised by much higher Reynolds numbers can be investigated if one
resorts to turbulence models for the small scales, as accomplished by the method
of Large Eddy Simulation, or for all scales, as in computer codes designed to solve
the Reynolds-averaged Navier—Stokes equations. Even then, however, the numerical
efforts rapidly increase with increasing Reynolds number. This strongly contrasts
the use of asymptotic theories, the performance of which improves as the val-
ues of the Reynolds number become larger and, therefore, may be considered to
complement purely numerically based work.

With a few exceptions (e.g. [7, 21]), studies dealing with the high-
Reynolds-number properties of turbulent boundary layers start from the time- or,
equivalently, Reynolds-averaged equations. By defining non-dimensional variables

B. Scheichl (<)
Institute of Fluid Mechanics and Heat Transfer, Vienna University of Technology, Resselgasse
3/E322, A-1040 Vienna, Austria, E-mail: bernhard.scheichl @tuwien.ac.at

A.F. Hegarty et al. (eds.), BAIL 2008 - Boundary and Interior Layers. 3
Lecture Notes in Computational Science and Engineering,
DOI: 10.1007/978-3-642-00605-0, (© Springer-Verlag Berlin Heidelberg 2009



4 A. Kluwick and B. Scheichl

in terms of a representative length L and flow speed U and assuming incompressible
nominally steady two-dimensional flow they take on the form

ou  dv
4 L= 1
o T 3y 0, (la)
ou ou op 1 _, w? v
R Ve T £ - 1
"ox + U8y ox " Re "7 Tox ay (10)
1 Iay/ 7
ua_v v dp 142 _ouv du (10)

dx v@__ay Re' U7 Tox ay

Herein V? = 9%/0x2 + 9%2/dy2, and (x, y), (u,v), (u'v'), —u’2, —u'v’, —v'2, and
p are Cartesian coordinates measuring the distance along and perpendicular to the
wall, the corresponding time mean velocity components, the corresponding velocity
fluctuations, the components of the Reynolds stress tensor, and the pressure, respec-
tively. The Reynolds number is defined by Re := U L/, where ¥ is the (constant)
kinematic viscosity. Equation (1) describe flows past flat walls. Effects of wall cur-
vature can be incorporated without difficulty but are beyond the scope of the present
analysis.

When it comes down to the solution of the simplified version of these equa-
tions provided by asymptotic theory in the limit Re — oo, one is, of course, again
faced with the closure problem. The point, however, is that these equations and the
underlying structure represent closure independent basic physical mechanisms char-
acterising various flow regions identified by asymptotic reasoning. This has been
shown first in the outstanding papers [5, 8, 10, 31], and more recently and in con-
siderable more depth and breath, in [24,30] for the case of small-defect boundary
layers, which will be considered in Sect.2. Boundary layers exhibiting a slightly
larger, i.e. a moderately large, velocity defect are treated in Sect. 3. Finally, Sect. 4
deals with situations where the velocity defect is of O(1) rather than small.

2 Classical Theory of Turbulent Small-Defect Turbulent
Boundary Layers

We first outline the basic ideas underlying an asymptotic description of turbulent
boundary layers.
2.1 Preliminaries

Based on dimensional reasoning put forward by L. Prandtl and Th. von Kdrman,
a self-consistent time-mean description of firmly attached fully developed turbulent
boundary layers holding in the limit of large Reynolds numbers Re, i.e. for Re — oo,
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has been proposed first in the aforementioned studies [5, 8, 10,31]. One of the main
goals of the present investigation is to show that this rational formulation can be
derived from a minimum of assumptions:

(a) All the velocity fluctuations are of the same order of magnitude in the limit
Re — o0, so that all Reynolds stress components are equally scaled by a
single velocity scale u.f, non-dimensional with a global reference velocity
(hypothesis of locally isotropic turbulence);

(b) The pressure gradient does not enter the flow description of the viscous wall
layer to leading order (assumption of firmly attached flow);

(c) The results for the outer predominantly inviscid flow region can be matched
directly with those obtained for the viscous wall layer (assumption of “simplest
possible” flow structure).

In the seminal studies [5,8,10,31], uy is taken to be of the same order of magnitude
in the fully turbulent main portion of the boundary layer and in the viscous wall layer
and, hence, equal to the skin-friction velocity

Up 1= [Re_l(au/ay)y=o]l/2. (2)

This in turn leads to the classical picture, according to which (i) the stream-
wise velocity defect with respect to the external impressed flow is small and
of O(u,) across most of the boundary layer, while (ii) the streamwise veloc-
ity is itself small and of O(u.) inside the (exponentially thin) wall layer, and
(iii) u¢ /U, = O(1/ In Re). Furthermore, then (iv) the celebrated universal logarith-
mic velocity distribution

ufur ~k tInyt +C*, y* = yuRe — co. 3)

is found to hold in the overlap of the outer (small-defect) and inner (viscous wall)
layer. Here « denotes the von Kdrman constant; in this connection we note the cur-
rently accepted empirical values k ~ 0.384, C* ~ 4.1, which refer to the case of
a perfectly smooth surface, see [16] and have been obtained for a zero pressure
gradient.

This might be considered to yield a stringent derivation of the logarithmic law
of the wall (3), anticipating the existence of an asymptotic state and universality of
the wall layer flow as Re — o0; a view which, however, has been increasingly chal-
lenged in more recent publications (e.g. [2—4]). It thus appears that — as expressed
by Walker, see [30] — “...although many arguments have been put forward over
the years to justify the logarithmic behaviour, non are entirely satisfactory as a
proof, ...”. As a result, one has to accept that matching (of inner and outer expan-
sions), while ensuring self-consistency, is not sufficient to uniquely determine (3).
In the following, from the viewpoint of the time-averaged flow description the
logarithmic behaviour (3), therefore, will be taken to represent an experimentally
rather than strictly theoretically based result holding in situations where the assump-
tion (b) applies. The description of the boundary layer in the limit Re — oo can
then readily be formalised. In passing, we mention that in the classical derivations,
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see [5, 8, 10,31], the assumption (b) is not adopted and (3) results from matching,
rather than in the present study where it is imposed.

2.2 Leading-Order Approximation

Inside the wall layer where y+ = y u,Re = O(1) the streamwise velocity compo-

nent u, the Reynolds shear stress 7 := —u’v’ and the pressure p are expanded in the
form
U~ ur(x;R)uT(yF) 41, (4a)
T ~u%(x;Re)t+(y+)+--- , (4b)
P~ po(x)+---, (4c)

where 1™ exhibits the limiting behaviour implied by (3):
ut(H) ~c iyt +Cct, yT 5 . (5)

Assumption (c), quoted in Sect. 2.1, then uniquely determines the asymptotic expan-
sions of, respectively, u, 7, and p further away from the wall where the Reynolds
stress 7 is predominant. Let 8y(x; Re) characterise the thickness of this outer main
layer, i.e. of the overall boundary layer. In turn, one obtains

u ~ Up(x) —uc(x;Re) Fi(x,n) +---, (6a)
T~ u%(x;Re) Ty(x,n) +---, (6b)
P~ pe(x) + -+, (6¢)

where 7 := y/§p. Here and in the following primes denote differentiation with
respect to 7). Furthermore, U, and p, stand for the velocity and the pressure, respec-
tively, at the outer edge n = 1 of the boundary layer (here taken as a sharp line with
sufficient asymptotic accuracy) imposed by the external irrotational flow.

Matching of the expansions (4) and (6) by taking into account (5) forces a
logarithmic behaviour of F;,

F| ~ —« tInn + Co(x), n—0, @)

yields po(x) = pe(x), and is achieved provided y := u./ U, satisfies the skin-
friction relationship

k/y ~ In(Rey8oU,) + k(CT + Co) + O(y). (8)

From substituting (4) into the x-component (1b) of the Reynolds equations (1) one
obtains the well-known result that the total stress inside the wall layer is constant to
leading order,
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du®/dyT +1T =1. 9)

Moreover, the expansions (6) lead to a linearisation of the convective terms in the
outer layer, so that there Bernoulli’s law holds to leading order,

dpe/dx = —U, dU, /dx. (10)

The necessary balance with the gradient of the Reynolds shear stress then deter-
mines the magnitude of the thickness of the outer layer, i.e. §o = O(u;). As a
consequence, the expansions (6) are supplemented with

So~y Ar(x)+---, Y

which in turn gives rise to the leading-order outer-layer streamwise momentum
equation. After integration with respect to n and and employing the matching
condition 77 (x,0) = 1, the latter is conveniently written as

(E+2ﬂ0)7’}F1/—EF1—A1F1,e le = Fl,e(Tl—l), (12&)
dF, U,

Fie:=Fi(x,1), E:=1-A; Le By = —AFp 2=, (12b)
dx U,

e

From here on, the subscript x means differentiation with respect to x. The bound-
ary layer equation (12a) is unclosed, and in order to complete the flow description,
turbulence models for 1+ and T} have to be adopted. Integration of (12) then pro-
vides the velocity distribution in the outer layer and determines the yet unknown
function Cy(x) entering (7) and the skin-friction relationship (8), which completes
the leading-order analysis.

As a main result, inversion of (8) with the aid of (11) yields

¥y ~ko[l =20 Ino + O(c)], o:=1/InRe, 3y/dx = O(y?). (13)

The skin-friction law (13) implies the scaling law (iii), already mentioned in
Sect. 2.1, which is characteristic of classical small-defect flows.

2.3 Second-Order Outer Problem

Similar to the description of the leading-order boundary layer behaviour, the inves-
tigation of higher-order effects is started by considering the wall layer first. Substi-
tution of (4a), (4b), (8) into (1b) yields upon integration (cf. [30]),

yt

wtldyt 4. (14)

— 2~ ytez . UeUex y+ + YUeUex /
0

yRe Re

Here the second and third terms on the right-hand side account, respectively, for the
effects of the (imposed) pressure gradient, c.f. (10), and convective terms, which
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have been neglected so far. By using (5) and (12), the asymptotic behaviour of ¢ as
yT — oo can easily be obtained (e.g. [30]). Rewritten in terms of the outer-layer
variable 7, it is found to be described by

AoUsy AoUey 2
— ~ 21+ 2— ] ] e (15
g [ + Ue “ning + - ]+7/[ 20, n(nn)® + + (15)

as n — 0, which immediately suggests the appropriate generalisation of the small-
defect expansions (6a), (6b), (11):

u/Up ~ 1 — yF| —y*Fy 4 -+, (16a)
T/UZ ~y*Ti+ > To+ -, (16b)
S0~y AL(x) + y2As(x) + - (16¢)

Here matching with the wall layer is achieved if
F| ~ = 'Inn+ Co(x), Fj~Ci(x), (17a)

A U AOUex 2
Ty~ 14+2=——nlny, T»~——Sp(nn)?, 17b
1 + U, “nliny 2~ oy, n(Inn) (17b)

as 71 — 0, provided that the skin-friction relationship (8) is modified to explicitly
include an additional term of O(y),

k/y ~In(Rey8oUe) + k(CT + Co + yCr) + -+~ (18)

Similar to Co(x), the function C;j(x) depends on the specific turbulence model
adopted, as well as the upstream history of the boundary layer.

2.4 Can Classical Small-Defect Theory Describe Boundary
Layer Separation?

An estimate of the thickness dy, of the viscous wall layer is readily obtained from
the definition of yT, see (3), and the (inverted) skin-friction relationship (13):
8w = Oy~ ' exp(—k/y)]. In the limit Re — oo, therefore, the low-momentum
region close to the wall is exponentially thin as compared to the outer layer, where
Reynolds stresses cause a small O(y)-reduction of the fluid velocity with respect
to the mainstream velocity U, (x). This theoretical picture of a fully attached tur-
bulent small-defect boundary layer has been confirmed by numerous comparisons
with experimental data for flows of this type (e.g. [1, 14, 30]). However, it also
indicates that attempts based on this picture to describe the phenomenon of bound-
ary layer separation, frequently encountered in engineering applications, will face
serious difficulties. Since the momentum flux in the outer layer, which comprises
most of the boundary layer, differs only slightly from that in the external flow
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region, an O(1)-pressure rise almost large enough to cause flow reversal even there
appears to be required to generate negative wall shear, which hardly can be con-
sidered as flow separation. This crude estimate is confirmed by a more detailed
analysis dealing with the response of a turbulent small-defect boundary layer to a
surface-mounted obstacle, carried out, among others, in [28]. Moreover, to date no
self-consistent theory of flow separation compatible with the classical concept of a
turbulent small-defect boundary layer has been formulated.

The above considerations strikingly contrast the case of laminar boundary layer
separation, where the velocity defect is of O(1) across the whole boundary layer and
the associated pressure increase tends to zero as Re — oo. It, however, also indicates
that a turbulent boundary layer may become more prone to separation by increasing
the velocity defect. That this is indeed a realistic scenario can be inferred by seeking
self-preserving solutions of (12), i.e. by investigating equilibrium boundary layers.
Such solutions, where the functions F;, T;, characterising the velocity deficit and
the Reynolds shear stress in the outer layer, respectively, solely depend on 7, exist
if the parameter f¢ in the outer-layer momentum equation (12a) is constant, i.e.
independent of x. Equation (12a) then assumes the form

(14 2Bo)nF{ — F1 = F1o(T1 — 1), (19)
where
U, x (X —)Cv)m , m= —/30/(1 =+ 3/30) s AlFl,e = (1 =+ 3,3())()6 —XV). (20)

Herein x = x, denotes the virtual origin of the boundary layer flow. In the present
context flows associated with large values of By are of most interest. By intro-
ducing suitably (re)scaled quantities in the form F; = /33/ 2F®#), Ty = BoT (7).
n= ,3(1,/ zﬁ, the momentum equation (19) reduces to

2WF' = F,T, F,:= F(1) (21)

in the limit 8¢9 — oo. Solutions of (21) describing turbulent boundary layers having
a velocity deficit measured by s : = /33/ zuf > u, have been obtained firstin [11].
Unfortunately, however, it was not realised that this increase of the velocity defect
no longer allows for a direct match of the flow quantities in the outer and inner layer,
which has significant consequences, to be elucidated below.

We note that in general 8o (x) can be regarded as the leading-order contribution
to the so-called Rotta—Clauser pressure-gradient parameter (e.g. [24]),

o0
B = —UcU, 8 Ju?, §*:= 80/ (1 —u/U,)dn. (22)
0

As already mentioned in [11], this quantity allows for the appealing physical
interpretation that u..¢ is independent of the wall shear stress u% for Bo > 1.
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3 Moderately Large Velocity Defect

Following the considerations summarised in the preceding section, we now seek
solutions of (1) describing a relative velocity defect of O(g), where the newly intro-
duced perturbation parameter ¢ is large compared to y but still small compared
to one: y K ¢ K 1. From assumption (a), see Sect. 2.1, we then have —u'v ~ g2,
and the linearised x-momentum equation immediately yields the estimate §o = €A,
where A = O(1), for the boundary layer thickness. However, since —u/v’ ~ g2 with
€2 > u?2, the solution describing the flow behaviour in the outer velocity defect
region no longer matches with the solution for the universal wall layer as in the
classical case. As a consequence, the leading-order approximation to the Reynolds
shear stress must vanish in the limit n = y /8y — 0. This indicates that the flow hav-
ing a velocity defect of O(¢) in the outer main part of the boundary layer exhibits a
wake-type behaviour, leading to a finite wall slip velocity at its base and, therefore,
forces the emergence of a sublayer, termed intermediate layer, where the magnitude
of —u'v’ reduces to O(u?), being compatible with the wall layer scaling.

3.1 Intermediate Layer

Here the streamwise velocity component u is expanded about its value at the base
n = 0 of the outer defect region: u/U, ~ 1 —eW — yU; + - - -, so that the quanti-
ties W, U;, assumed to be of O(1), account, respectively, for the wall slip velocity,
given by u = U,(1 —eW) with W > 0, and the dominant contribution to u that
varies with distance y from the wall. Integration of the x-momentum balance
then shows that the Reynolds shear stress increases linearly with distance y for
y/80 < 1t

T~ 1y —e(UIW)xy . y/6 = 0(1). (23)

Herein §; denotes the thickness of the intermediate layer and 7 assumes its near-wall
value 7y, as y/8 — 0. Matching with the wall layer then requires that 7, ~ u2,
which, by taking into account (22), yields the estimate §;/8p = O(B™'). Also,
since Ty ~ u%, we infer that §; = O(u% /€) and, in turn, recover the relationship
&~ ufﬂl/ 2. already suggested by the final considerations of Sect.2.4. Formal
expansions of ¥ and —u/v’ in the intermediate layer, therefore, are written as

u/Ue ~1—eW(x;e,y) — yUi(x, ), (24a)
—u'v/(yUe)? ~ Ti(x. {16, y) ~ 1+ AL, (24b)

where { := y/8 = ye/(Ay?) and A := —A(UZW),/UZ.
To close the problem for U;, we adopt the common mixing length concept,
u

—u =2 =
u'v 7y

ou

dy

. (25)
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by assuming that the mixing length £ behaves as £ ~ «y for y = O(§;), which is the
simplest form allowing for a match with the adjacent layers. Integration of (24b),
supplemented with (25), then yields

kUi = —In¢ +2In[(1 + A2 + 1] = 2(1 + 192, (26)
from which the limiting forms

KU ~ 2002 + Q)72 + 0. ¢ — 0, @7a)
kUi ~ —In(A/4) —2—At/2+ 0(%). (-0, (27b)

can readily be inferred. The behaviour (27a) holding at the base of the outer
defect layer is recognised as the square-root law deduced first by Townsend in
his study [29] of turbulent boundary layers exhibiting vanishingly small wall shear
stress; the outermost layer so to speak “anticipates” the approach to separation as
the velocity defect increases to a level larger than u,. We remark that Townsend
in [29] identified the intermediate region as the so-called “equilibrium layer”, where
convective terms in (1b) are (erroneously within the framework of asymptotic
high-Reynolds-number theory) considered to be negligibly small. Equation (27b)
provides the logarithmic variation of U; as { — 0, required by the match with the
wall layer, which gives rise to the generalised skin-friction relationship

Rey?U?
Ewln( eVI/ze
Bo

) ) + BokW + O(yBo) ~ (1 + eW)InRe. (28)

Note that (28) reduces to (8) when o = O(1).

Having demonstrated that classical theory of turbulent boundary layers in the
limit of large Reynolds number can — in a self-consistent manner — be extended to
situations where the velocity defect is asymptotically large as compared to u, but
still 0(1), we now consider the flow behaviour in the outer wake-type region in more
detail.

3.2 Outer Defect Region

Following the arguments put forward at the beginning of Sect.3, we write, by
making use of the stream function v, the flow quantities in the outer layer in the
form

P~ pe(x) + & P(x,m;e.y). (29a)
Y/ Ue ~y—edoF(x,m58,7), (29b)

- [u_’z V2, W] ~ U2e[R, 8. T)(x. 6, 7). (29¢)
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As before, here n = y /8y and we accordingly expand

O0~014+¢eQs+--, Q:=F, PR,STW, (30a)
§~eA; + %Ay + -, (30b)
B/By ~ Bo(x) +eBi(x) +---, By — o0, (30c¢)

where we require (without any loss of generality) that 8, equals B¢ at x = xy, so
that B9 = ByBo and Bo(xy) =1, Bi(xy) = 0,i = 1,2,.... In analogy to (12), the
first-order problem then reads

1 dUeAy) P 1 AUZALFy)

=T 31
U. dx 1T U3 ax 2 Gl
Fi(x,0) = Fl(x,1) = F{(x,1) = Ty(x.1) =0, (31b)
n—0: T~ knF/)2, F| ~Wx)—(@2/k)An'/2. (3lc)

In the following we concentrate on solutions which are self-similar up to second
order, i.e. 0F1/dx = 0T1/dx =0 and dF,/dx = 972/0x = 0. By again adopt-
ing the notations F; = F(n) T, = T(n) and setting A; = A(x) U, = U(x)
we recover the requirements (20), (21) for self-similarity at first order resulting
from classical small-defect theory in the limit of large values of §,, in agreement
with (30b) and the definition of B provided by (22):

Bo=1, AF,=3(x-x,), U=(C/3)"*(x—x,)""3, (32)
with a constant C, and
mF' =FT, FO=T0)=F0)=F01)=T~1)=0 (33

If, as in the di§cussi0n ofA the flow behaviour in the intermediate layer, a mixing
length model 7 = [¢(n) F”(n)]* in accordance with (25) is chosen to close the
problem, integration of (33) yields the analytical expressions

[ 2 I e R
F'(n) = /—dz , Fe= —/ /—dz d . (34
V=58 ), 1@ ““N2J |/, @ 1
Equations (34) have been evaluated numerically by using a slightly generalised
version of the mixing length closure originally suggested in [13],

€ =ceI(n)?tanh(kn/c). 1 =1/1+551°, c¢=0.085  (35)

Herein /(n) represents the well-known Klebanoff’s intermittency factor proposed
in [9]. One then obtains W; = F’(0) = 13.868, F, = 5.682, and dA /dx = 0.528,
cf. (32). As seen in Fig. 1a, both F’ and T vanish quadratically as n — 1 as a result
of the boundary conditions 7'(1) = 77(1) = 0, cf. (33). Also, note that £/ exhibits
the square-root behaviour required from the match with the intermediate layer as
n— 0.
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Fig. 1 Quasi-equilibrium flows: (a) ﬁ"(n), f(n), dashed: asymptotes found from (31b), (31c¢);
(b) canonical representation (37), dashed: asymptotes (see last paragraph of Sect. 3) and parabola
approximating the curve in the apex to leading order

Turning now to the second-order problem, we consider the most general case
that the wall shear enters the description of the flow in the outer layer at this level of
approximation (principle of least degeneracy). Therefore, we require £375(0) ~ y2,
which finally determines the yet unknown magnitude of ¢ relative to y, namely
that & ~ y2/3. Since, as pointed out before, & ~ yﬁé/z, this implies that g8y =
I' = O(1). Inspection of the resulting second-order problem indicates that self simi-
lar solutions exist only if the external velocity distribution (32) predicted by classical
theory is slightly modified in the form

Ux) = (C/3)V3(x —x)7 V3 ey By e (36)

where the O(1)-parameter 1 satisfies a solvability condition that represents the in-
tegral momentum balance obtained from integrating the second-order x-momentum
equation from n = 0 to n = 1. It can be cast into the canonical form

9D%p =1+ D°. (37)
Herein D = r1/311/3, = r_2/3u1, and
r= / (F?2—R+ S)dn. (38)

A graph of the relationship (37) which represents the key result of the analysis
dealing with quasi-equilibrium boundary layers having a moderately large velocity
defect is shown in Fig. 1b. Most interesting, it is found that solutions describ-
ing flows of this type exist for i > i* = 2'/3/6 only and form two branches,
associated with non-uniqueness of the quantity D, which serves as a measure of
velocity defect, for a specific value of the pressure gradlent Along the lower branch,
D < D* = 2'/3 and decreases with i increasing values of [i f 1, so that classical small-
defect theory is recovered in the limit i — oo, where D~ ~ (9)~"/2. In contrast,
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this limit leads to an unbounded growth of values D > D* associated with the upper
branch: D ~ 91 as I — oo. This immediately raises the question if it is possible to
formulate a general necessarily nonlinear theory which describes turbulent bound-
ary layers having a finite velocity defect in the limit of infinite Reynolds number. We
also note that the early experimental observations made by Clauser, see [6], seem to
strongly point to this type of non-uniqueness.

4 Large Velocity Deficit

As in the cases of small and moderately small velocity defect we require the bound-
ary layer to be slender. However, in contrast to the considerations of Sects. 2 and 3,
the validity of this requirement can no longer be inferred from assumption (a) and
the balance between convective and Reynolds stress gradient terms in the outer pre-
dominately inviscid region of the boundary layer which now yields dz/dy = O(1),
rather than dt/dy <« 1 as earlier. A hint how this difficulty can be overcome is
provided by the observation that the transition from a small to a moderately large
velocity defect is accompanied with the emergence of a wake-type flow in this
outer layer. One expects that this effect will become more pronounced as the veloc-
ity defect increases further, suggesting in turn that the outer part of the boundary
layer, having a velocity defect of O(1), essentially behaves as a turbulent free
shear layer. An attractive strategy then is to combine the asymptotic treatment of
such flows (e.g. [25]) in which the experimentally observed slenderness is enforced
through the introduction of a Reynolds-number-independent parameter o < 1 with
the asymptotic theory of turbulent wall bounded flows.

4.1 Outer Wake Region

Let the parameter o < 1 measure the lateral extent of the outer wake region, so that
y := y/a = O(1). Appropriate expansions of the various field quantities then are

P~ Pe(x) + O(a), (39a)
g ~aqo(x,y) +o(a), (39b)
where ¢ stands for A, ¥, 7 := v, O(x) := —ﬁ, O(y) = —v’2, From substitu-
tion into (1b—1c) the leading order outer wake problem is found to be
Yo Yo Yo Yo 70
— - =-U.U, —, 40
35 apox  ax 072 eVex + 55 (40a)
y=0: yo=1=0, (40b)

)7 = Ao(x) . 81//0/3)_1 = Ue, T = 0. (400)
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As in the case of a moderately large velocity defect, we expect a finite wall slip
Us(x) := 0vYp/0y at the base y = 0 of this outer layer, which yields the limiting
behaviour

Io/35 ~ Ug(x) + O(5¥?) . 19~ Aoj + O(F°/?), (41)

with Ag := UsUsy — UeUe, > 0.

It is easily verified that the various layers introduced so far in the description
of turbulent boundary layers share the property that their lateral extent is of the
order of the mixing length £ characteristic for the respective layer. In contrast, the
scalings given by (39) imply that £ is much smaller than the thickness of the outer
wake region: £ ~ a*? « «. This is a characteristic feature of free shear layers, of
course, but also indicates that the outer wake region “starts to feel” the presence of
the confining wall at distances y ~ «>/2, which in turn causes the emergence of an
inner wake region.

4.2 Inner Wake Region

By introducing the stretched wall distance ¥ = y/a3/2 = O(1), inspection of (41)
suggests the expansions

Y ~ @0y (0) + @0 Y) 4 (422
T~ PP Y) e LY (42b)

which leads to )
T = AyY. (43)

Furthermore, T and 1 are subject to the boundary conditions

T(x,0) = ¥(x,0) =0, (44a)
1/2

7 %Ao 3/2 T 7

Yy ~ 37 Y°<, Y >o00, Lo=limy_L. (44b)
0

The solution of the inner wake problem posed by (43), (4f1) can be obtained in closed
form. It exhibits the expected square-root behaviour of ¥y,

1/2
%, L~ yx)Y, Y —0. (45)

Here Uy (x) denotes the correction of the slip velocity Us(x) caused by the inner
wake region,

&Y ~ Us(x) +2

ug ~ Us(x) + o *Ug(x) + -+, (46a)
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o
Us(x) = —/ (i - _i) (AoY)'/2ay. (46b)
o \L Lo

At this point it is important to recall the basic assumption made at the begin-
ning of this section, namely, that the slenderness parameter « is independent of
Re, or more generally, asymptotes to a small but finite value as Re — 0o. As a
consequence, the outer and inner wake regions provide a complete description of
the boundary layer flow in the formal limit Re™! = 0. If, however, 0 < 1/Re < 1
an additional sublayer forms at the base of the inner wake region. This sublayer
plays a similar role as the intermediate layer discussed in Sect. 3.1: there the mag-
nitude of the Reynolds shear stress, still varying linearly with distance from the
wall, is reduced to O(u2), which is necessary to provide the square-root behaviour
expressed in (45) and, finally, to allow for the match with the universal wall layer,

see [19].

4.3 Numerical Solution of the Leading-Order
Outer-Wake Problem

As earlier, a slightly modified version of the mixing length model proposed in [13]
will be adopted to close the outer wake problem posed by (40). Numerical calcu-
lations were carried out for a family of retarded external flows controlled by two
parameters my, k, withmg < 0,0 <k < I:

Ue(x;mg, k) = (1 + x)m(x;ms,k), (47a)
m k 3

— =1+ —02-x[1-0-x2T. 4
- + - OQ2-x)[1-(1-x)7] (47b)

Herein ® denotes the Heaviside step function. Self-similar solutions of the form
Yo = AoF (&), £E:=Y/Ao, Ao = b(1 4+ x), where b = const and the position
x = —1 defines the virtual origin of the flow, exist for k = 0 if my > —1/3 and are
used to provide initial conditions at x = 0 for the downstream integration of (40)
with U, given by (47). As a specific example, we consider the case F’(0) = 0.95
of a relatively small velocity defect, imposed at x = 0, for which the require-
ment of self-similarity for —1 < x < 0 yields b = 0.3656 and my; = —0.3292. The
key results which are representative for the responding boundary layer and, most
important, indicate that the present theory is capable of describing the approach to
separation are displayed in Fig.2. If k is sufficiently small, the distribution of the
wall slip velocity Us is smooth and Us > 0 throughout. However, when k reaches
a critical value kps = 0.84258, the slip velocity Uy is found to vanish at a sin-
gle location x = xpy, but is positive elsewhere. A further increase of k provokes
a breakdown of the calculations, accompanied with the formation of a weak sin-
gularity slightly upstream of x5/ at x = xg. A similar behaviour is observed for
the boundary layer thickness A, which is smooth in the subcritical case k < kg,
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Fig. 2 Solutions of (40) for |x —xas| K 1, |k —kps| < 1, dashed: asymptotes expressed
by (48b), (49)

exhibits a rather sharp peak Aoy for k = ks at x = xpy, and approaches a finite
limit Ao, in an apparently singular manner in the supercritical case k > k.

Following the qualitatively similar behaviour of the wall shear stress that replaces
U in the case of laminar boundary layers, see [17, 18,27], the critical solution with
k = ks is termed a marginally separating boundary layer solution. However, in
vivid contrast to its laminar counterpart, is is clearly seen to be locally asymmetric
with respect to x = xjs where it is singular. This numerical finding is supported by
a local analysis of the flow behaviour near x = x4, carried out in [20]: it indicates
that U decreases linearly with x upstream of x = xs but exhibits a square-root
singularity as x — xpr — O,

Us/Poy” ~—B(x —xm).  x—xm —0_, (482)
Us/Po® ~ Us(x —xa)V?, x —xp = 04, (48b)

where Poo = (dpe/dx)(xpr). Itis found that Uy = 1.1835, whereas the constant B
remains arbitrary in the local investigation and has to be determined by comparison
with the numerical results for x < xpy.

This local analysis also shows that a square-root singularity forms at a position
X =xg < xp fork >k,

Us/Pog? ~ U-(xg —)"/?, x —xg — 0_, (49)

with some U_ to be determined numerically, and that the solution cannot be
extended further downstream. This behaviour, which has been described first in [12],
is reminiscent of the Goldstein singularity well-known from the theory of laminar
boundary layers and, therefore, will be termed the turbulent Goldstein singular-
ity. As shown in the next section, the bifurcating behaviour of the solutions for
k — kp — 0 is associated with the occurrence of marginally separating flow.
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4.4 Marginal Separation

According to the original boundary layer concept, pressure disturbances caused by
the displacement of the external inviscid flow due to the momentum deficit, which
is associated with the reduced velocities close to the wall, represent a higher order
effect. Accordingly, higher-order corrections to the leading-oder approximation of
the flow quantities inside and outside the boundary layer can be calculated in sub-
sequent steps. However, as found first for laminar flows, this so-called hierarchical
structure of the perturbation scheme breaks down in regions where the displacement
thickness changes so rapidly that the resulting pressure response is large enough to
affect the lowest-order boundary layer approximation (e.g. [26]). A similar situation
is encountered for the type of turbulent flows discussed in the preceding section.
Indeed, the slope discontinuity of Ay and, in turn, of the displacement thickness
forces a singularity in the response pressure, indicating a breakdown of the hier-
archical approach to boundary layer theory. As for laminar flows, see [17, 18, 27],
this deficiency can be overcome by adopting a local interaction strategy, so that the
induced pressure disturbances enter the description of the flow in leading rather than
higher order.

Again, similar to laminar flows, three layers (decks) characterising regions of
different flow behaviour have to be distinguished inside the local interaction region,
see Fig. 3. Effects of Reynolds stresses are found to be confined to the lower deck
region (LD), having a streamwise and lateral extent of O(a?/®) and O(a®/%),
respectively. Here the flow is governed by equations of the form (40). The major-
ity of the boundary layer, i.e. the main deck (MD), behaves passively in the sense
that it transfers displacement effects caused by the lower deck region unchanged to
the external flow region taking part in the interaction process, the so-called upper
deck (UD), and transfers the resulting pressure response unchanged to the lower
deck. Solutions to the leading-order main and upper deck problems can be obtained
in closed form which finally leads to the fundamental lower deck problem. By using
suitably stretched variables, it can be written in terms of a stream function 1&()2 , Y )
as (see [20])

UD
Y~0Ay(x) Y 0(?)
—~—_|
ow MD._ MD o (ao/s) MD,
0(0{3/2)
MWt W T .
! v
O((XS/S)

“__»

Fig. 3 Triple-deck structure, for captions see text, subscripts and “+” refer to the continuation
of flow regions up- and downstream of the local interaction zone, dashed line indicates inner wake
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The first and second term on the right-hand side of (50a) account for the imposed
and induced pressure, respectively. The latter is given by the Hilbert integral (50c),
where A characterises the displacement effect exerted by the lower deck region. The
far-field condition (50e) expresses the passive character of the main deck mentioned
before, whereas the conditions (50f), (50g) follow from the match with regions LD_,
LD, immediately upstream and downstream of the local interaction zone. The
analysis of region LD determines the function F4 (7). Finally, the parameter "
measures the intensity of the interaction process as the monotonically increasing but
otherwise arbitrary function A(I") expresses the magnitude of the induced pressure
gradient.

As a representative example of flows encountering separation, the distributions
of A, P, and the wall slip Uy := (34 /dY)(X, Y = 0), obtained by numerical solu-
tion of the triple-deck problem (50) for I' = 0.019, A = 3, are depicted in Fig. 4a.
Here the dot-and-dash lines indicate the upstream and downstream asymptotes,
obtained from the analysis of the flow behaviour in the pre- and post-interaction
regions (subscripts “— and “+” in Fig. 3), while Xp and Xy denote the positions
of, respectively, detachment and reattachment. It is interesting to note that the pas-

—40 -20 XP
4| LT
A, L
3F
Us -
2+
1L
Ga
R
-0.35 M n L L L 0 N L L
20 -2 -4 4 4 12 S18N -16 -14 12 10 -8R/‘f-6
(@) (b)

Fig. 4 Specific solution of (50), separation in S, reattachment in R: (a) key quantities, dashed:
asymptotes found analytically; (b) streamlines
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sage of Uy into the reverse-flow region where U, < 0 causes the interaction pressure
P to drop initially before it rises sharply, overshoots and finally tends to zero in the
limit X — oo. This is in striking contrast to laminar flows, where flow separation
always is triggered by an initial pressure rise, and reflects the fact that — in the case
of turbulent flows considered here — the streamwise velocity component at the base
Y = 0 of the lower deck region is allowed to take on finite values, whereas the
no-slip condition is enforced in its laminar counterpart.

Streamlines inside the lower-deck region are displayed in Fig. 4b which clearly
shows the formation of a recirculating eddy. Also, we draw attention to the increas-
ing density of streamlines further away from the wall and downstream of reattach-
ment, associated with the strong acceleration of the fluid there as evident from the
rapid increase of Us.

The interaction process outlined so far describes the behaviour or marginally
separated turbulent flows in the limit 1/Re = 0. As in the case of conventional,
i.e. hierarchical, boundary layers having a velocity of defect of O(1), additional
sublayers form closer to the wall if 1/Re < 1 but finite. Their analysis, outlined
in [19], provides the skin-friction relationship in generalised form to include the
effects of vanishing and negative wall shear — treated first in a systematic way in
[24] — but also shows that these layers behave passively insofar as the lower deck
problem (50) remains intact.

5 Conclusions and Outlook

In this study an attempt has been made to derive the classical two-layer structure
of a turbulent small-defect boundary layer from a minimum of assumptions. As
in [30], but in contrast to earlier investigations (e.g. [10]), the (logarithmic) law of
the wall is taken basically as an empirical observation rather than a consequence
of matching inner and outer layers, as the latter is not felt rich enough to provide
a stringent foundation of this important relationship reflecting the dynamics of the
flow close to the wall, which is not understood in full at present. Probably the first
successful model that describes essential aspects of this dynamics is provided by
Prandtl’s mixing length concept, proposed more than 50 years before the advent of
asymptotic theories in fluid mechanics. Significant progress has been achieved in
more recent years and, in particular, by the pioneering work of Walker (e.g. [30]),
whose untimely death ended a line of thought which certainly ought to be taken up
again.

Following the brief outline of the classical small-defect theory, it is shown how
a description of turbulent boundary layers having a slightly larger (i.e. moderately
large) velocity defect, where the outer predominately inviscid layer starts to develop
a wake-type behaviour, can be formulated. Further increase of the velocity defect
to values of O(1) causes the wake region to become even more pronounced and is
seen to allow for the occurrence of reverse-flow regions close to the wall, resulting
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in what we believe to be the first fully self-consistent theory of marginally separated
turbulent flows.

Unfortunately, however, this success seemingly does not shed light on the phe-
nomenon of global or gross separation associated with flows past (more-or-less)
blunt bodies or, to put it more precisely, flows which start at a stagnation point rather
than a sharp leading edge. Indeed, a recent careful numerical investigation for the
canonical case of a circular cylinder, presented, among others, in [22,23], undoubt-
edly indicates that the boundary layer approaching separation exhibits a small rather
than a large velocity defect, leading in turn to the dilemma addressed in Sect.2.4.
The accompanying asymptotic analysis based on the turbulence intensity gauge
model introduced in [15], however, strongly suggests that a boundary layer forming
on a body of finite extent and originating in a front stagnation point does not reach
a fully developed turbulent state, even in the limit Re — oo. Specifically, it is found
that the boundary layer thickness and the Reynolds shear stress are slightly smaller
than predicted by classical small-defect theory, while the velocity defect in the outer
region, and, most important, the thickness of the wall layer are slightly larger. As
a consequence, the outer large-momentum region does not penetrate to distances
from the wall which are transcendentally small. In turn, this situation opens the pos-
sibility to formulate a local interaction mechanism that describes the detachment
of the boundary layer from the solid wall within the framework of free-streamline
theory at pressure levels which are compatible with experimental observation. This
is a topic of intense current investigations.
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A Deterministic Multiscale Approach
for Simulating Dilute Polymeric Fluids

David J. Knezevic and Endre Siili

Abstract We introduce a numerical method for solving the coupled Navier—Stokes—
Fokker—Planck model (i.e. a micro—macro model) for dilute polymeric fluids where
polymer molecules are modelled as FENE dumbbells. The Fokker—Planck equa-
tion is posed on a high-dimensional domain and is therefore challenging from
a computational point of view. We summarise analytical results for a Galerkin
spectral method for the Fokker—Planck equation in configuration space, before
combining this method with a finite element scheme in physical space to obtain
an alternating-direction method for the high-dimensional Fokker—Planck equation.
Alternating-direction methods have been considered previously in the literature for
this problem (e.g. by Chauviere & Lozinski); we present an alternative frame-
work here that is underpinned by rigorous numerical analysis, and numerical results
demonstrating the effectiveness of our approach. The algorithm is well suited to
implementation on a parallel computer, and we exploit this fact to make large-scale
computations feasible.

1 Introduction

In this paper we introduce a computational framework for solving the Navier—
Stokes—Fokker—Planck system of partial differential equations (also known as the
micro—macro model) that governs the evolution of a dilute suspension of dumb-
bells in a Newtonian solvent, which is a well-studied model of dilute polymeric
fluids [3, 23]. We refer to the approach of directly solving the coupled Navier—
Stokes—Fokker—Planck system as the deterministic multiscale method; this approach
has recently been used successfully in a number of papers by Lozinski, Chauviere
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and collaborators (see [4, 5, 19]), although those authors did not consider rigorous
numerical analysis of their algorithm — such analysis is a major emphasis in the
present paper as well as in [14, 15]. It is worth highlighting at the outset that there
is an extensive literature on numerical methods for this problem, but most of the
previous work on the subject addresses either fully macroscopic models (such as
the Olroyd-B model) in order to circumvent the multiscale nature of the Navier—
Stokes—Fokker—Planck system (see the text [23] for an overview of this field)
or uses a stochastic approach in which the micro—macro system is treated using
Monte—Carlo-type methods (cf. [22]). Compared to a fully macroscopic approach,
the primary advantage of the deterministic multiscale method is that it does not
involve “closure approximations”; the shortcomings of such approximations are
well documented [11, 17,26]. Also, a possible drawback of the stochastic approach
is the presence of slowly decaying stochastic error terms. Variance reduction tech-
niques have been developed to minimise the impact of this stochastic error in
Monte—Carlo-type methods; nevertheless, circumventing this error completely is an
important motivation for moving to fully deterministic micro—macro methods. The
drawback of the deterministic multiscale approach, however, is that (as we shall
see below) the Fokker—Planck equation is posed on a high-dimensional domain,
and therefore solving it using deterministic methods is an imposing challenge from
the computational point of view. Following Chauviere & Lozinski, our approach is
to use an alternating-direction scheme to ameliorate the “curse of dimensionality”,
and we also use parallel computation to make large-scale simulations feasible in
practice.

As indicated above, we are considering a dilute solution of microscopic dumb-
bells, i.e. two beads of small mass connected by a spring. The spring force law F
has a corresponding potential, U : R>o — R, such that F'(g) = U’(% |£1|2)g, where
q € D is the configuration vector (or end-to-end vector) of a dumbbell. Here we
consider the FENE force law [25], which, in non-dimensional form is:

b lq|?

Uil = -2m(1-2), Fg = ———
2T [ B A S PN

ey
where D = B(0,v/b) C R?, d = 2 or 3. We assume that b € (2, 00) (cf. [10]
or Example 1.2 in [2]), and in practice b is typically chosen in the range [10, 100].
The theoretical results presented in this paper can be generalised to a broader class
of FENE-like potentials that satisfy Hypotheses A and B from [15]. For simplicity
of exposition, we restrict our attention to the FENE potential here.

Suppose the fluid is confined to a macroscopic physical domain €2, assumed to
be a bounded open set in R?. Let u:(x,t) € 2x[0,T] — u(x,t) € R? denote
the macroscopic velocity field, and let p : (x,7) € Q x[0,T] — p(x.t) € R
denote the pressure. It is typical in this problem to let k¢ denote the macroscopic
velocity gradient, i.e. k := Vxu. Also, suppose the function (x,q,1) = ¥ (x,q,1)
represents the probability, at time 7, of finding a dumbbell with center of mass in the
volume element x 4+ dx and orientation vector in the element ¢ 4+ dg. Then, for a



A Deterministic Multiscale Approach 25

suspension of FENE dumbbells, we have the following system (in non-dimensional
form):

ou y b+d+21—y

—4u-V Vip = —A — 'V, 2
or THNAUA VP = g At T T R L @
Vi-u=0, (3
T(x.1) =/l)f®g1ﬂ(§,g],t)dg1, 4)

for (x,1) € Q x (0, T], where ¥ satisfies the Fokker—Planck equation:

oy 1 14
E “rvx (1“//) +Vq (va/) 2W N : (Mytl (M))’ &)

or (x,q,t) € Qx D x (0, T]. The system (2)—(5) is subject to the initial conditions:

u(x.0) =uo(x), x€Q,  VY(x.9.0) = vo(x.q), (x.q) €QxD. (6)

In (2), Re is the Reynolds number, Wi is the Weissenberg number, which is the
ratio of microscopic to macroscopic time-scales, and y € (0, 1) is the ratio of sol-
vent viscosity to total viscosity. In (5), M is the (normalised) FENE Maxwellian
defined by

g~ M) = %exp (—U(%|£]|2)) eLY(D), Z := /;) exp (—U(%|£]|2)> dg,

which, in the case of the FENE model, is M(q) := % (1 — |¢|?/b)*/. In fact, the
form of the Fokker—Planck equation given in (5) uses a Kolmogorov symmetrisation
[16]; it is equivalent to the ‘standard’ form of the equation:

9
—l'//+Vx (uy) +Vy- (vaf—— (q)llf) Ag, (7)

at 2Wi~ 2Wi

but from our point of view the advantage of (5) is that the unbounded convection
coefficient (F in (7)) is absorbed into a weighted diffusion term, which is conve-
nient from the point of view of analysis. It should be noted, however, that in [5]
Lozinski & Chauviere proposed a numerical method based on (7) in which the
substitution ¥ := ¥/M?25/% was used'; it was shown in Sect.3.2 of [15] that
with b > 452/(2s — 1) and s > 1/2, this also leads to a well-posed problem
and a stable semidiscretisation in any number of space dimensions, and hence all
of the analytical results developed in this paper could also be developed based
on the Lozinski—Chauviere substitution. Nevertheless, the symmetry of (5) sim-
plifies analysis of the numerical methods we consider, and therefore we focus on

! Based on computational experience, Lozinski & Chauvigre recommended s = 2 and s = 2.5
ford = 2 and d = 3, respectively.
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the Maxwellian-transformed form of the Fokker—Planck equation in (5) for the
remainder of this paper.

Since ¥ is a probability density function (pdf) for each x € €2, the initial datum
should be non-negative:

V(x.9.0) = v¥o(x.q) =0, forae. (x,q) € 2 x D, 8)

and should also satisfy the following normalisation property:

/ Yo(x,q)dg =1, forae. x € Q. C))
D 17

It is crucial to note that (5) is posed in 2d spatial dimensions, plus time. Since
the computational complexity of standard numerical methods for PDEs grows expo-
nentially with the dimension of the spatial domain, the high-dimensionality of (5)
represents a significant computational challenge. Therefore, in a coupled algorithm
for (2)-(6), solving the Fokker—Planck equation is generally the bottleneck step and
as a result the focus of this paper is on the analysis and implementation of efficient
numerical methods for (5).

In the papers of Lozinski, Chauviere et al. [4,5, 18-20] and Helzel & Otto [9],
the authors decomposed the differential operator L from (5) by defining L and L,
acting in the x- and g-direction, respectively. They then used an alternating-direction
numerical method élso referred to as an operator-splitting or dimension-splitting
approach) based on these operators.”> We pursue the same approach in this paper
and we shall survey a number of stability and convergence results that we proved
for our computational framework in the papers [14, 15].

Note that the splitting introduced above leads to a sequence of d-dimensional
solves at each time step rather than a single 2d-dimensional solve. Also, this splitting
of L allows different numerical methods to be used in 2 and D (resulting in, what
we call, a heterogeneous alternating-direction scheme). In Sect. 3 we consider het-
erogeneous alternating-direction numerical methods for the FENE Fokker—Planck
equation on £ x D based on a finite element method in 2 and a single-domain
Galerkin spectral method in D. These are appropriate choices because a finite ele-
ment method is flexible enough to deal with the general domain 2, whereas D is
always a ball in R, and therefore the L, operator is well suited to a spectral dis-
cretisation via a polar or spherical coordinate transformation to a cartesian product
domain.

The structure of this paper is as follows. We begin in Sect. 2 with an overview of
the analysis and implementation of a Galerkin spectral method for the Maxwellian-
transformed Fokker—Planck equation in configuration space. This spectral method is
then integrated into an alternating-direction scheme for the full Fokker—Planck equa-
tion on 2 x D in Sect. 3. Finally, we demonstrate the use of this alternating-direction
scheme in an algorithm for the coupled Navier—Stokes—Fokker—Planck system for a
channel flow problem of physical interest. We make concluding remarks in Sect. 5.

2 These authors used (7), but the idea applies to (5) in the same way.
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2 The Fokker-Planck Equation in Configuration Space

This section is concerned with the numerical approximation of the d-dimensional
Fokker—Planck equation posed in configuration space:

Y 1 14

— +V,- =—V, - \MV,— |, ,1) € D x (0,71, 10

o T Ya (kqV) Wi V4 ( NqM) (g.1) 0,7], (10)
where the d x d tensor k is assumed to belong to (CJ0, T1)?*4 (i.e. it is independent
of x) and is such that tr(x)(¢) = 0 for all # € [0, T']. It will be assumed throughout
that (10) is supplemented with the following initial and boundary conditions:

¥(q.0) = vo(g), forallg € D, (11)
¥ig.n) = o( /M(g)), as dist(q, D) — 04, forall 7 € (0,T]. (12)

As in (8) and (9), the initial datum Vg is such that Y9 > 0 and [, ¥o(q) dg = 1.

The motivation for studying this subproblem is that, as indicated in Sect. 1, an
efficient approach to the numerical solution of (5) in 2d + 1 variables is based
on operator-splitting with respect to (¢, ¢) and (x,?). Thereby, the resulting time-
dependent transport equation with respect to (x,?) is completely standard, y¥; +
Vi - (u(x,1)y) = 0, while the transport-diffusion equation with respect to (¢, )
is (10).

2.1 Weak Formulation and Backward Euler Semidiscretisation

Following [15], let ¢ := JLM andVyo :=vMYV, (ﬁ) and define the function

space H} (D; M) to be the closure of C3°(D) in the norm of H!(D; M), and
2
HU(DiM) = € L20) Wy = [, (168 + V) dg < oof.

Then, (10) has the following weak formulation. Given 1/}0 = Yo/~M € L?(D),
find ¥ € L>®(0,7;L2(D)) NL?(0, T; HY(D; M)) such that

d A, N . 1 N R
—/wwdq—/fng-YMq)qur—. Vuy -Vmpdg =0, (13)
dr Jp ~ Jp©~ ~ 0 2Wi Jp 1
forall ¢ € H)(D; M) in the sense of distributions on (0, T'), and V(- 0) = Po(-).
Notice that we solve for 1&; Y is recovered by setting V¥ := v M 1/Af The Lozinski—

Chauviere substitution introduced in Sect. 1 is identical to the substitution ¢ :=
~/ M in the case that s = b /4.



28 D.J. Knezevic, E. Siili

It is shown in Sect.2 of [15] that H'(D; M) = H{(D; M) and H}(D) C
H}(D; M).? The connection between Hj(D; M) and H{(D) will prove helpful
in the development of Galerkin methods for (13), since the construction of finite-
dimensional subspaces of H(l)(D) and the analysis of their approximation properties
are well understood.

In [15], the following backward-Euler semidiscretisation of (13) was studied
in detail: Let N7 > 1 be an integer, At = T/Nr, and " = nAt, forn =
0,1,..., N7. Discretising (13) in time using the backward Euler method yields the
following semi-discrete numerical scheme.

Given ¥° = Yy = Yo/vM € L2(D), find y"*! € HY{(D: M), n =
0,..., N7y — 1, such that

&n%—l_&n L ra
/I)deg—/D(g” qyv") - Vu¢ dq

Vuy" V¢ dg=0,
Wi / MV M@ dg=
forall € HY(D; M).

The following stability lemma for (14) was proved in Sect. 3 of [15].
Lemma 1. Let At = T/Nz, Ny > 1, & € (C[0, T))?*?, §/° € L?(D), and define
co:=1+ 4Wib||/£||%oo(0 - If At is such that 0 < coAr < 1/2, then we have, for
all m such that1 <m < Nrp,

m—1

l/}n—H I//n 12 2 A 2
—— +—j{j-———nv PP < eoman R,

T

Also, the existence and uniqueness of a weak solution of (13) was established
in Theorem 3.2 of [15]. The proof makes use of the stability result in Lemma 1 in
order to use compactness results for the bounded sequence of solutions to (14) as
At — 0+.

m—1
9712+ 3" At
n=0

2.2 Fully-Discrete Spectral Method

Let Py (D) be a finite-dimensional subspace of H(l)(D; M), to be chosen below,
and let Yy, € Py (D) be the solution at time level n of our fully-discrete Galerkin
method:

n+1
/w Vi, ¢ dg — /(K”“qw”“) Vum$ dg

+2—wl/ MUNT - Vupdg =0 Vg e Py(D), n=0,....Nr — 1, (14)

1%3, (-) := the L?(D) orthogonal projection of 1/}0(-) = 1&( 0) onto Py (D). (15)

3 In fact, these results hold for all FENE-like potentials, cf. Sect. 1.
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The case D C R? was considered in detail in [15]. Suppose we transform D into the
rectangle (r,0) € R := (0, 1) x (0, 27) using the polar coordinate transformation
g = (q1.92) = (Vbrcos8,v/brsinb). Also, suppose that i € H} (D) and let

V(. 0) = @(ql, ¢2). It was proved in Lemma 5.2 of [15] that ¥ can be written in
polar coordinates as follows:

V(r.0) = Ui (r) + rina(r, 0), (r.0) € R = (0,1) x (0,27).  (16)

Using the structure in (16), we defined in [15] the spectral basis A as A :=
A1 U A, where:

Ay ={(1—=r)Pr(r):k=0,...,N, — 1},
Az = {r(L= ) Pe(r) iy (0) 1k =0,... Ny = 1; i =0,1; [ =1,.... No}.

Py is a polynomial of degree k in r € [0,1] and ®;;(0) = (1 —i)cos(2/6) +
i sin(210), 8 € [0, x]. Notice that the polynomials in both .A; and A, contain the
factor (1 — r) in order to impose the homogeneous Dirichlet boundary condition
on dD. Basis A is defined in order to mimic the decomposition (16) of the weak
solution 1/~f in polar coordinates: the role of span(A;) is to approximate 1/71 while
span(Ay) is meant to approximate ;.

Now, let Px (D) be span(.A) mapped from R to D. Approximation results were
derived for this discrete space in Sect. 5 of [15], which enabled the derivation of the
following optimal order spectral convergence estimate for the fully-discrete spectral
method (14)—(15): for € HXTLI+1(D) with k, 1 > 1 we have,

1V = ¥w o020y + ||YM(1/Af —UM)lleo.r12m)
3y

ot

—k ~ A
=an (”w”em(o’T;Hé(D)) i ||1//||62(0’T;H1’(+1(D))+‘ L2(0 T'Hk(D)))

. . v
+ NG (10 oorenst com 4 1 o i +H—
0.7;1, (D)) 2OHE OV B | 2 100 oy
924
v osar |2V , (17)
ot2
L2(0.T:L2(D))

(see Sect. 5 of [15] for definitions of the non-standard Sobolev spaces H¥+1./+1(D),
H¥ (D) and H., (D).

Note that we also considered a second basis, 53, in [15], proposed by Matsushima
& Marcus [21] and Verkley [24], which satisfies the full pole condition on D
(cf. [7]), and therefore the space defined by B is contained in C®(D) N Co(D).
The numerical method based on 3 was found to be more efficient in practice than
the one based on A for the FENE Fokker—Planck equation on D since 1/A/ is typically
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very smooth. Finally, we considered a basis in [14] in the case of d = 3, referred to
as basis C, which, following [4], was defined as follows:

Co={YjF:0<k<N,—1,i€{0,1},1€{0,2,4,...,Ny}andi <m <1},

where Yll;ﬁ(r, 0,¢):=(1-— r)Qk(r)Sli,m (0, ¢), and the Sli,m are spherical harmon-
ics: Sli,m(@, @) := C(l,m) P["(cos ¢)((1 — i) cos(mb) + i sin(m0)). Note that we
showed in [14] that a splitting of the form (16) is not required in the case of d = 3.

A range of numerical results for spectral methods based on .4 and B in the case
of d = 2 were presented in Sect.7 of [15], and the convergence behaviour we
obtained in practice was consistent with (17). The numerical method based on C is
completely analogous, and it was shown in Sect. 2.6.3 of [13] that the convergence
behaviour of this method in three dimensions is essentially the same as for methods

A and B in two dimensions.

3 An Alternating-Direction Scheme for the Full Fokker—Planck
Equation

In this section, we describe numerical methods for the Maxwellian-transformed
Fokker—Planck equation posed on € x D x (0,7]. Here we assume that u is
an a priori defined velocity field. Once the numerical scheme for the Fokker—
Planck equation with a given u is understood, it is straightforward to couple to
the Navier—Stokes equations. These methods build upon the g-direction spectral
method introduced in Sect. 2. In this case, the weak formulation is as follows: Given
Vo € L2(Q x D), find ¥ € L%°(0, T; L2(2 x D)) N L2(0, T; X) such that

¥ (x.4,0) = Yo(x.q), (x.9) € 2 x D,

L@ 0+ (w Vi, €)= (ca, Yut) + 5 (Yad, Yug) =0 Ve,

in the sense of distributions on (0, 7'), and again ¥ is recovered by multiplying 1,/A/ by
VM . Following Sect. 2, we impose a zero Dirichlet boundary condition on € x 9D
fort € (0, T]. See [14] for the hypotheses on u and for the definition of the space X
The alternating-direction method under consideration here is nonstandard in the
sense that we consider d-dimensional cross-sections (rather than one-dimensional
cross-sections) of  x D. This leads to a formidable computational challenge
because we typically need to solve a large number of problems posed in d spa-
tial dimensions in each time-step. However, the method is extremely well suited
to implementation on a parallel architecture since the g-direction solves are com-
pletely independent from one another, and similarly the x-direction solves are
decoupled also. Our computational results in Sect.4 were obtained using a parallel
implementation of the alternating-direction methods described here.
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3.1 The Alternating-Direction Methods

We now introduce the alternating-direction Galerkin methods for the weak formu-
lation given above. These algorithms combine a classical Douglas—Dupont-type
alternating-direction scheme [6] in the x-direction, with a new quadrature-based
scheme in the g-direction.

First of all, define the bases

(Y e Py(D): 1<k <Np} and {XieV,:1<i<Ng}, (18)

such that span({Yx }1<k<n,) = Pwn (D) and span({X;}1<i<ng) = Vi, where V},
is an H! (Q)-conforming finite element space based on a mesh 7, of Q. Let 1,/Af;,, N
denote our discrete solution, such that 1/A/h, N €V, ® Pn(D).

Also, we need to specify a quadrature rule on Q. Let {(Xn, Wn), Wm > 0, Xm €
Qm=1,..., Qq} define an element-based quadrature rule on 7, where the x,,
are the quadrature points and the wy, are the corresponding weights. Therefore, for
functions f, g € C°(Q), the quadrature sum is evaluated element-wise as follows,

oo Ok
D wn fmgm) = Y Y wf Fx)eGf). (19)
m=1 KeTy, =1

where Q g is the number of quadrature points in element K. In [14], we introduced
hypotheses on this quadrature rule that are necessary for our numerical analysis;
we refer the reader to that paper for more details. The idea of using this quadra-
ture rule in the context of the alternating-direction scheme is that by performing
the g-direction solves at quadrature points x,, we are able to recover a Galerkin
formulation for the numerical method on  x D.

Noting that 1,/Af;,, N can be written in terms of the coefficients {1,7/1- k) as 1/};,, N =

ZNQ ,I(VZDI @ikXiYk € Vi, ® Pn(D), we define the line functions, &k, for

i=1
k = 1,...,Np, by ¥ = Zlel VikXi € Vu. Then we have 1/};,,1\/(%,21) =
Z]](V:Dl &k(g)Yk(g). These formulas shall be useful in the discussion of the
alternating-direction methods below.

We now define two alternating-direction methods, referred to as method I and
method II. The distinction between these schemes is that method I uses a semi-
implicit spectral method in the g-direction (i.e. the term containing k is treated
explicitly in time) whereas method 1T uses a fully-implicit temporal discretisation.

Method I: Semi-implicit scheme. Method I is initialised by computing the
L*(2 x D) projection of the initial datum /o € L*( x D) onto V}, ® Py (D), so
that W}? ~ € Vi ® Py (D) satisfies

(1&0, g) - (&;;N, g) forall ¢ € Vi, ® Py (D). (20)
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Then, the alternating-direction method consists of two stages at each time-step:
the q- -direction stage and the x-direction stage. We begin with the q- -direction stage,
which essentially uses the Galerkin spectral method in D from Sect. 2.

Suppose wh N € Vi ® Py(D). Then, in the q- -direction stage we compute

1// v &m,) € Py(D) foreachm = 1,..., Qg satisfying

/ U Em @) = Uity (Xm. q)
D

Yi(q) d
AL 1(g) dgq

1 N
+m/;)YM1//}7;v(§m»g)'YMYl(Q) dg
= /L)(Ig”(&m)g%w(gm,g)) -VmYi(q) dg, 21
for/ = 1,..., Np. In order to separate out the x- and g-direction dependencies

more clearly, we rewrite this equation in terms of line functions, i.e.:

Np A A
D Ut (xm) (/ Yi(q) Yi(q) dg + ﬁ VmYe(q)-VuYi(q) dg)
k=1

Np
= % (Xm) ([ Yi(q) Yi(q) dg +AI/D(/< (xm) q Yi(q)) VMYz(q)dq)
k=1
(22)
for / = 1,...,Np. This system is solved at each quadrature point x,,, m =
1,...,Qgq, and the linear solves are completely independent from one another.

This independence enables parallel computation to be used very effectively in this
context.

The g—direction stage is complete once the values W,L’*(zm), k=1,...,Np,
m = 1,...,Qq, have been computed, and then we can begin solving in the
x-direction. In the x-direction stage, we use a finite element discretisation of
the transport equation, ¥ + Vi - (u(x, 1)¥) = 0, to update the output data from the

Tn+1

q- -direction stage. That is, for a given k, we find ¥}/ € V}, satisfying:

2¢
[orrixias e an [ (V) X = 3w 0 (o) XiC)
m=1

(23)
fori =1,..., Ng, and, just as in the g-direction, these computations are decoupled
from one another. -

Once the x-direction computations are complete, we have the numerical solution
at time level n + 1: 1,//"Jrl = P Yt Yy € Vy ® Py (D). Hence method I
is defined by the 1n1t1allsat10n (20) the q- -direction spectral method (22) and the
x-direction finite element method (23). In Lemma 3.2 of [14] we show that method I
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is equivalent to a one-step Galerkin formulation on 2 x D. This equivalent one-step
formulation allows standard tools of numerical analysis to be applied to explore the
stability and convergence properties of this method.

Method II: Fully-implicit scheme. Method 11 is very similar to method I, the sole
difference being that the term containing k is now treated implicitly in time.
Using the line function notation of (22), the g-direction numerical method is

defined as follows: Given the line functions 1@,’6’ € Vp,k =1,..., Np, determine
the values 1/},?*(%,,,) satisfying

Np A A
DRZAETD ( [ @@ g+ 55 [ Vuti@ - Yarti@ ag
k=1

Np
- an [ @ g Teta) - Vartica) dg) = vt [ n@mi@ ag
24)

foralll =1,..., Np, and for each quadrature point x,,,m = 1,..., Qq.

The initialisation and x-direction stages for method II are identical to those given
for method I, hence we omit them here.

Clearly methods I and II are closely related to one another. Note, however,
that from a practical point of view there is a trade-off in computational efficiency
between the two methods because, on the one hand, method I requires less com-
putation per time-step, since the matrix for the g-direction linear systems can be
pre-assembled and LU-factorised only once since it is independent of , whereas the
g-direction matrix for method II must be reassembled at each quadrature point. On
the other hand, however, the fully implicit temporal discretisation used by method II
tends to be more tolerant of large time-step sizes and coarse spatial discretisations
than the semi-implicit scheme of method I, especially for larger flow rates and
Weissenberg numbers (e.g. see Sect. 2.6.2 of [13]).

An important difference between methods I and II from the analytical point of
view is that there is no equivalent one-step formulation available for method II.
In [14], we proved stability and convergence results for method I based on its
equivalent one-step formulation. That is, with some assumptions on the x-direction
quadrature rule, we established stability results of the form of Lemma 1 for method I
and, supposing that the set of shape functions for each element in 7 contains all
polynomials of degree less than s + 1, we then proved the following error estimate
for method I:

1V — YN o0, 712250y T IV (W — Y, N)le200,7:12(2x DY)
oy

ot

< Cih* (|| Vllgoe 0,7;15 (@:12(D))) T
L2(0,T;H5 (Q;L2(D)))

~ ~

£2(0,T;HS (2;H) (D M))) £2(0,T;Hs+1 (9;L2<D)))>
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a0

—k N
+ CoNF (Il 0,72 smek oo + Y

L2(0.7:L2(Q:HE (D))
+ 1Yl 0.7 @74k (py)) T ”‘/’||22<0.T:L2(Q:H¢’+‘(D>)>)

a0

—/ 2
+C3N, (”‘/’”eoo(o.T:LZ(Q:Hg(D)))+ 9

L2(0.7:L2(Q2:HL (D))

V0. 7m0 @1 0y T H‘/’ Zz(O.T:Lz(Q:Hé+1(D))))

+ C4At(||1/}||€2(O,T;L2(QXD)) + H‘JIHHZ(O,T;LZ(QXD)) + ”nyVMl/}”Zz(O.T:LZ(QXD))

—k ) —1.7
+ Ny ”‘/’”e2(o.T:Hl(Q:H¢’+‘(D))) + Ny ||‘/’||£2<0.T:H1<Q:Hg+‘(D))))' (25)

This error bound assumes that basis A is used for the g-direction spectral method; it
would be straightforward (but laborious) to extend (23) to bases BB or C introduced
in Sect. 2.

We could not apply the same convergence argument to method II due to the
absence of an equivalent one-step formulation; nevertheless, in Lemma 3.4 of [14],
we proved the unconditional stability of method II.

4 The Micro-Macro Model

We now present some numerical results for a channel flow problem using a cou-
pled algorithm for the Navier—Stokes—Fokker—Planck system (2)—(6) (see [14] for
other computational results using the same approach, including a computation in the
d = 3 case). We implemented the Navier—Stokes solver using a Taylor-Hood mixed
finite element method [8] in the free C++ finite element library 1ibMesh [12].
We used a finite element space of continuous piecewise quadratic functions for Vj,
and 1}, was also used as the velocity space in the Taylor—Hood method, hence uy,
the finite element approximation to u, belongs to (V,)¢. The alternating-direction
method was implemented for parallel computation; the g-direction spectral method
was implemented in PETSc [1] and 1ibMesh was used for the x-direction finite
element method (see [14] for more details of the implementation).

We considered a planar flow around a cylindrical obstacle in a channel. This is
a standard benchmark problem in the polymer fluids literature (cf. Chap. 9 of [23])
and was also considered using deterministic multiscale methods by Chauviere &
Lozinski in [4, 5, 19]. In the computation presented here, 7}, contained 1505 trian-
gular finite elements and Qg = 9030. For the g-direction spectral method we used
basis .4. We imposed a parabolic inflow Velocit§7 profile for ¥ on the left boundary of
Q2 with Upax = 1, a Neumann condition on the right boundary, a no-slip condition
(u = 0) for the obstacle and top boundary, and a symmetry condition on the bottom
boundary. We used the parameters b = 12, y = 0.59, Re = 1 and we considered
two choices of the Weissenberg number, (1) Wi = 1 and (2) Wi = 3.
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Computational experimentation indicated that for both of these problems
method II is significantly more efficient than method I (to the point where the semi-
implicit method is computationally impractical), because, for the sake of stability,
method I requires tighter restrictions on Az and on the resolution of the discrete
space Py (D) (cf. Sect.2.6.2 of [13]). Thus, we only present numerical results for
the fully-implicit scheme here; for a detailed comparison of the two methods for a
model problem with a milder velocity field, see Sect. 5.1 of [14].

We solved case (1) using method II with (N, Ng) = (14, 14), so that Np = 406
(recall that Qg g-direction solves and Np x-direction solves are performed in each
time-step of the glternating-direction algorithm). More spectral modes were required
to resolve the solution in case (2) due to the larger Weissenberg number and hence
we used (N,, Ng) = (30, 30),i.e. Np = 1830, in that case. We took 500 time-steps
of size At = 0.01 and Figs. 1 and 2 show the components of T at 7 = 5 in cases
(1) and (2), respectively. These computations were performed on 80 processors of
the Lonestar supercomputer at the Texas Advanced Computing Center (TACC), and
took approximately 1.0 s per time-step in case (1) and 4.4 s per time-step in case (2)
to perform.

5 Conclusions

We have summarised a range of results obtained in [14] and [15] for the analysis and
implementation of numerical methods for solving the multiscale Navier—Stokes—
Fokker—Planck system, which models the flow of dilute polymeric fluids. Most of
our attention has been focused on the high-dimensional Fokker—Planck equation
posed on the domain 2 x D in 2d spatial dimensions. We developed an alternating-
direction method for this equation that is efficient in practice and is also underpinned
by rigorous numerical analysis.

We coupled this alternating-direction method to a mixed finite element method
for the Navier—Stokes equations to obtain an algorithm for the coupled system
(2)-(6). This algorithm was used to obtain computational results for a channel
flow problem of physical interest. Parallel computation is particularly effective
in the context of this problem because our alternating-direction solver for the
high-dimensional Fokker—Planck equation is “embarrassingly parallel.”
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Temperature Factor Effect on Separated Flow
Features in Supersonic Gas Flow

V. Ya. Neyland, L.A. Sokolov, and V.V. Shvedchenko

Abstract The effect of the temperature factor (body temperature ratio to the stag-
nation temperature of external flow) on the separated flow features has been inves-
tigated in the supersonic gas flow near the concave angle. The strong effect of the
temperature factor on the separated zone length and on the corresponding aerody-
namic performances was revealed. It was shown that, if the angle is big enough,
such flow cannot be described by free interaction theory, i.e. by triple deck theory.

Nomenclature

Velocity

Pressure

Density

Temperature

Total enthalpy

Mach number
Reynolds number
Prandtl number
Boundary layer thickness
Boundary layer length
Coefficient of viscosity
Power in viscosity law
8w Temperature factor

y Specific heat ratio

X Longitudinal coordinate
y Normal coordinate

Ax Separation zone length
0 Flare angle
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1 Introduction

The investigation of separated flow in viscous supersonic flow near a flat plate
caused by the rear part of the flat plate deviating by an angle 6 is an important
task in the development of separated flow theory. It is also significant for the appli-
cations when temperature factor becomes small in the flight with high supersonic
speed. It is important that, when testing models in the wind tunnel, the temperature
factor may considerably differ from its flight value (Table 1). It can lead to the con-
siderable deviations of the aerodynamic performances and heat fluxes in the wind
tunnel from those in the actual flight. So far, the flow over the flat plate with deviated
rear part was investigated in many theoretical and experimental works. A review of
the results is given in [1-4].

During the first decades, theoretical investigations of these flows were divided
into two directions. For the developed separated flows included the pressure
“plateau” zone method with the criteria of Chapman—Korst [5, 6] was used. Later it
was shown [7] that the criteria method of Chapman (for laminar flows) corresponds
to the first approach of the strict asymptotic theory for Navier-Stokes equation. For
small separated zones and zones of incipient separation without developed pressure
“plateau” area, another approach based on the integral equations of the boundary
layer was more appropriate.

After the development of free interaction theory [8—11] (usually called “triple
deck” outside of Russia) the other multilayer solutions were obtained [7, 12].

Within asymptotic theory, the calculation of the flow near “compression corner”
with an angle of & ~ Re™/* was performed by many authors [11-14]. Recently
the author of [13] assumed that solution of this task within free interaction theory
only exists up to some critical value of 6/ Re™!/*. Later similar calculations were
performed in [14] more carefully and the authors showed that the conclusions of [13]
were caused by a wrong calculation method. But they referred to the asymptotic
reattachment theory developed in [7] which does not contain singularities. It should
be noted that the applicability of the free interaction theory is a complicated matter,
although the criticism of the numerical results of [13] by authors of [14] is, may be,
correct.

Table 1 Temperature factor in flight (73, ~ 1,000 K) as compared with that in wind tunnel

Hkm M=10 15 20 25
40 0.193 0.0858  0.048 -
50 0.182 0.0807  0.046 -
60 0.196 0.0807  0.045 -
70 0.227 0.101 0.057 0.036
M To Ew
3-5 750 0.4
6-10 1,075  0.279

10, 12, 14, 18 2,600 0.115
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The present article is based on two methods: qualitative analytical investiga-
tion of flow physical features and numerical investigation of the Navier—Stokes
equations. The investigations assume that the flow is laminar everywhere.

2 Analytical Investigation

Let us consider supersonic flow over a flat plate at zero angle of attack. The rear part
of the plate is deflected by an angle 6 (Fig. 1). The angle 6, Mach number M and
Reynolds number Re are so that the separated zone appears upstream of the angle.

Let us first consider the small separated zones and zones of arising separation.
For this purposes it is convenient to use the method described in the monographs
[15,16]. This approach was used in [8,9] for the free interaction theory development
which later was proposed in [10] under the name of triple deck and using a slightly
different way.

Thus, let us consider flow in a small vicinity of the separation point of the bound-
ary layer (Fig. 1). Let a small pressure difference Ap/p < 1 be applied to the flow.
In the major part of the boundary layer, where the longitudinal component of the
velocity U is of the same order as the outer flow velocity Ue, we can use equation
of the longitudinal momentum, state equation and relation p.u2 ~ p to obtain

Ap Ap

pUUx ~ px, peU.AU ~ Ap, .
P p

Then, in this part of the boundary layer (area 2 in Fig. 1), because of the continuity
equation, the disturbed streamline thickness assessment has the following form

where 8 is the typical value of boundary layer thickness upstream of the interaction
area.

Near the wall, because of the boundary condition, in the undisturbed boundary
layer there is always area 3 where the dynamic pressure will be of order Ap. It is

y /
; s
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— 4
- -.-./
] 0
0 TTTTTTT77 T7T777777 73

Fig. 1 Flow scheme
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only true near the separation point, because far from it the A p can be balanced by
viscous forces and the task becomes linear.
Thus, for area 3 we obtain the assessment

p3U3 ~ Ap. (1)

In area 3, using the relationship for the velocity profile in the undisturbed boundary
layer, we can obtain assessment

Us 03
Us 05 2
0. 5 (2)

In area 3 the flow upstream of the separation point is performed against inadvertent

pressure difference Ap > 0 by viscous forces, i.e.
pUZ . Us

Ax } 83

3)

Due to (1) the thickness of area 3 varies as the undisturbed value, then (1) and (2)

result in
8 U A A AS
o Us  [Ap Ap A%
So U p p o

Thus, in the first approach, the total variation of the boundary layer momentum
thickness is produced by area 3.

This fact together with linear theory of supersonic flows (Ackeret formula) leads
to the last estimate 5

3
M2 —1)2Ap ~peU3A—x. (4)

To determine scales of the disturbed values Ax, Ap, U3, §3 we get four equations
(1)—(4). They give us estimates of all the required values
U. 3 53

~Re V4 20 2 L ReTVS, (5)
e 0

Ax ~ (Re-¥8, 2P

The angle 6 which produces the separation of the boundary layer has the order of
the value Re™"/# (£ is the boundary layer length upstream of the separation point).
Using the estimates (5) we can develop asymptotic theory of Navier—Stokes
solution for the small separation zones at Re — oo.
Let us consider this task for the flows with high supersonic speeds and small
temperature factor using limit

Hy
Re - 00, M — o0, gw=?—>0,

e

where H is total enthalpy, indexes e and w correspond to the parameter values at
the outer boundary of the boundary layer and the wall respectively.
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Let us assume, that the interaction of the non-viscous flow with the boundary
layer is small up to the separation point. Then

o 1/2
80/ ~ (POUJ) , Mo/l < 1.
In the major part of the boundary layer (area 2 in Fig. 1) the gas temperature will be
of the order of the total temperature 7o [17], p2 ~ po ~ pe/M, ez U2 ~ o, Where
Po, o are the density and viscosity at T = Ty.

Friction and heat flux to the wall maintain their orders of the value in the whole
boundary layer, i.e.

( dU) Ue ( dg) N 1
MdY o #080, Mdy . M080~

Then the velocity and enthalpy profiles near the body surface will be (neglecting the
inessential constants):

1/(w+1) 1/(w+1)
o+l | Y U o+l |, Y
~ + = , =~ + = —guw. 6
g (gw 50) U, (gw 50) gw (6)

Depending on the relationship of g,, and the disturbed pressure amplitude Ap/ p,
using (6) we can get profiles in the area 3

53 U3 1 53
w+1
= ~ =~ — = 7
8w > 5 g3~ 8w TR (7
55 83 1/(w+1) Us 83 1/(w+1)
w+1
g ~ = ,— ~ = . 8
Sw' < 8o &3 (50) U. 8o ®)

Let us consider regime (7). Near the separation point

5 ApNY2 U Ap\ /2
s .. gl(ul+2w)/2 . (_P) . AN gl/2 (_p) ()

Ap ~ psU2,
PP 8o V4 U, v V4

The thickness of the area with non-linear disturbances (area 3, Ad3 ~ §3) will be of
a greater order than that of the area 2 A§, if the following condition is valid

A A A
g](vl“rzw)/z _p > _p — _p < ggv-‘rza)‘ (10)
p p p

Then, using Ackeret formula (4) for the area 1 (the disturbed part of the external
non-viscous flow) we get an estimate for the length of the disturbed flow Ax

Ax Mo [gut?

14 14 Ap/p’

It shows that as gy, decreases, Ax/{ decreases also.

(1)
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Let us obtain an assessment for the critical pressure differential assuming, as
usual, that the viscous and inertial members are of the same order in the Navier—
Stokes equations.

1/2
p3U32 U3 Ap 30
Ll By —: — ~[M,— . 12

Ax l’L3 85 e g ( )

Thus, when decreasing g, at fixed deflection angle of the plate rear part, the
separation zone length decreases (11).
Further decrease of g, violates conditions (7) and (10). Now, let us assume that

83 A82 Ap
8_~8_~_~g110+2w, (13)
0 0 p
Then, using Ackeret formula in the form of Ap/p ~ M.82/Ax we get assessment
for the action Ax
Ax ~ M,6p. (14)

The relations (9) are true as long as area 3 remains almost isothermal (gg“ >
83/80).

Having assessment (13), let us estimate the critical pressure differential at this
regime, using the first estimate of (12)

A 80\ 2/

P . —2((1)-‘1-1)/3‘ (15)

w

The estimate shows that at fixed length of the disturbed area (14) decrease of gy,
leads to the increase of the critical pressure difference (15). It means that at fixed
angle of deflection of plate rear part the separated area length will also decrease.

And finally, if the isothermal condition of area 3 (7) is violated, estimate (14) for
Ax will remain because Ad, > §3. The estimate for g3, Us/U,, and 83/8¢ will
have the form of (8). Then for the critical value of the pressure difference which
produces separation initiation in the area 3 the following assessment is obtained,
using equations (1) and (3)

g ~ (Mego/e)l/(2w+l).
p

This estimate is true for all small g,, when equation (8) is valid.

Now, let us investigate the effect of gy, on the separation zone length at a slightly
higher value of 6 when the zone appears with almost constant pressure but mix-
ing layer at the outer boundary of the separated zone is still much thinner than
the boundary layer separated from the body surface. To get the necessary assess-
ment let us assume that the Korst—Chapman condition [5] or asymptotic attachment
theory [7] is true.
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In this case the following relationship must be valid 6;,, < 6 < 1. The upper
limitation provides fulfilment of the condition §4 < &g, where 0;,. is the angle at
which mixing layer 4 leaves the body after separation.

At 0ine ~ 0 we come back to the free interaction theory considered above (for
example, at 6 ~ Re™/* and gy, ~ 1 the separation zone length Ax is determined
by (5) according to free interaction theory (triple deck)).

At 6 > 0;,, friction forces acting on the gas along dividing streamline lead to
the dynamic pressure increase thus providing the possibility to counteract pressure
rise in the attachment area. The Korst—Chapman condition [5, 6] may be written as

A
psU2 ~ Ap, 7” ~ M,6. (16)

Here, index 4 designates parameters value at dividing streamline in the mixing layer.
As 84 <K § i.e. the separated zone is short, Ax/L < 1,80 pg ~ py. Further, we
must estimate the rate of U4(AX) increase.

In the mixing layer 4 the acceleration occurs due to longitudinal momentum
transfer when friction forces act on streamlines of the separated boundary layer.
Thus, we can write down the following conditions

Us _ Ue . psli  Us
5. g8 Ax Mg

a7)

In (17) the first condition corresponds to the conservation of friction stress value in
area 4 to its value in the separated boundary layer, where U ~ Uk, thickness 8¢, and
a4/ o ~ g% . The second condition in (17) is balance of orders of value of viscous
and inertial members in the longitudinal momentum equation.

Resolving (17) we obtain the estimates

1/3 1/3
5_4 ~ g(+20)/3 Ax Ua ~ gl+20)/3 Ax . (18)
8o v 14 T U v ¢

Here, £ is boundary layer length up to the separation point, while Ax is the mixing
zone length from the separation point to the attachment point. At g,, ~ 1 (18) cor-
responds to the known selfsimilar solution of Prandtl equation for the mixing layer
between external flow with shear profile and stagnation zone. Now, using condition
in the attachment zone (16) we get dependence of the separation zone length on 6

and gy,

A
TX ~ (M0)3/? . gl+20)/2,

Thus, the separation zone length decreases with g,, decreasing in this regime also.
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3 Numerical Investigation

Numerical investigation was performed with the use of computer codes packet
of numerical integration of Navier—Stokes equations by time-dependent method
developed in TSAGI [18-20].

The initial boundary-value problem was solved by the integro-interpolation
method (finite volume method). Implicit monotonic scheme of the type of Godunov
[21] scheme and the approximate method of Roe [22] of solving the Riemann prob-
lem on break-up of arbitrary discontinuity were used in the approximation of the
convection component of flow vectors in half-integer nodes. The principle of min-
imal derivates [23] was used for raising the order of approximation to second one
in the case of interpolation of dependent variables to the face of elementary cell. A
difference scheme of the type of central differences of the second order of accuracy
was used in the approximation of the diffusion component of flow vectors on the
face of elementary cell. The modified Newton—Raphson method was used for solv-
ing the nonlinear finite-difference equations. The set of linear algebraic equations
was solved using the GMRES(k) method of minimal residuals [24].

The flow field near the two-dimensional compression corner protruding into the
supersonic flow (Fig. 1) has been calculated at following parameters: Reynolds num-
ber based on a plate length up to the corner point Re = 10°, Mach number M = 5,
Prandtl number Pr = 2/3, temperature factor g, = 1073/1, specific heat ratio
y = 5/3, viscosity law u ~ T®(w = 0.5).

In the investigated area the coordinate origin coincides with the beginning of the
non-deflected part of the plate, deviation point is located at x = 1, the end of the
investigated area is located at x = 5.

At the left boundary the undisturbed flow was chosen. Upper boundary of the
computed area was chosen so that the boundary conditions were also undisturbed
external flow. Right boundary of the computed area was chosen so that error in soft
boundary conditions did not effect on the solution in the vicinity of the separation
zone. The condition of no-slip were chosen at the body surface. The special grid
thickening at the plate beginning was performed to correctly follow the abrupt pres-
sure gradient at the leading edge. It should be noted that errors at the leading edge
does not effect on the solution downstream and dissipate quickly with distance from
leading edge if the separation zone is not located near the leading edge.

Following the method of analytical grid development [20] the grid thickening
near the body surface was performed with line number about 20-40% of the total
number in the direction of the boundary layer thickness. It allowed one ensure high
resolution of boundary layer near the body surface. This method of analytical grid
is appropriate for small 6 < 10° when the separation zone dimensions are small. It
allows one cover the separation zone with a grid of necessary density and to simulate
actual flow pattern.

The grid resolution in the area of abrupt pressure gradient in the attachment zone
also strongly effects the quantity of the obtained results. The additional grid thick-
ening in this area both in longitudinal and transversal coordinates is required. In the
rest of the computation area the grid is quasi-uniform. The grid resolution in the
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separation area does not strongly effect the flow pattern if separation does not start
from the leading edge.

For angles # = 10°, 20° the separation zone dimensions are much more than the
boundary layer and the mixing layer thickness. In this case the method of analytical
grid is not working. The issue may be in development of adaptive grids [25]. This
method allows not only to get correct flow pattern but also to considerably decrease
the required number of lines (for 6 = 10°). Sometimes (§ = 20°) it is the only
possible method to get solution.

With the task features in mind, the grids were used having one-dimension adapta-
tion in the direction normal to the surface constructed by “equidistribution” method
[26]. It allows one to fine solve the mixing layer and to check the solution on grids
with different number of nodes. If the resolution and adaptation were correctly cho-
sen the mixing layer position practically does not change when the number of grid
nodes varies by 2—4 times. To get a final solution the adaptive iterations on the
grids with small number of nodes were repeated many times until convergence was
obtained. Then the solution was checked with number of grid nodes variation by
2-4 times. The solutions obtained with the use of analytical grids were unstable
when the number of nodes increased. The maximum dimensions of the grids were
1,600 x 200 for & = 10° 20° and 800 x 200 for & < 10°. At this, the solutions
were checked for convergence on different grids.

For big angles 6 = 10°, 20° the grid resolution does not effect the mixing layer
position but considerably changes flow pattern inside the separated zone.

4 Results

Figure 2 shows the pressure distribution along the x-axis on the corner surface.
Pressure is normalized t0 pooUZ2 (Poo/pocUZ = 1/yM? = 0.024). On the plate
surface (0 = 0) at x ~ 1 the pressure becomes constant increasing as the tem-
perature factor increases. For § = 2.5° full attached flow occurs. For larger angles
the separated flow occurs with the separated zone length increasing as both 6 and
temperature factor increase. When temperature factor increases the separation point
moves to the left while the attachment point moves to the right. Temperature fac-
tor increase causes small pressure rise in the separated zone and increases pressure
steps smoothness.

At 8 = 2.5° separation starts near the leading edge, where the flow parame-
ters vary considerably along the x-axis. The pressure steps smoothness decreases.
Each value of the temperature factor corresponds to a certain value of pressure in
the separation zone and to a certain x-coordinate of reaching maximum pressure.
Inside the separation zone there were observed pressure oscillations caused by the
development of vortices.

Figure 3 gives x-coordinates of the separation and attachment points where fric-
tion becomes zero. For small angles variation of full separation length Lx is caused
(in equal proportions) by variation of its components Lx; and Lx, (upstream and
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Fig. 2 Pressure distribution along x-coordinate of the corner 8° = 5, 10, 20 (a, b, ¢) at temperature
factor g,, = 0.001, 0.1, 0.3, 1 (curves 1-4)

downstream of the corner correspondingly). For an angle 8 = 20° Lx; ~ 1 and
major variation of Lx is caused by Lx, component, i.e. by considerable displace-
ment of the attachment point. For 6 values increase of temperature factor leads to
the separation zone length increase.

For angles 6 = 10, 15, 20° the vortices were observed inside the separation zone
(Fig. 4b—d) similar as to “bubble” in the work [27]. For angles 6 = 5°, 7.5° (Fig.4a)
vortices were not discovered.
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Fig. 3 Variation x-coordinates of separation (dash line) and attachment points (solid line)
depending on angle @ and temperature factor g,, = 1073,0.1, 0.3, 1
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Fig. 4 Streamlines field for flow near the corner 8° = 7.5, 10, 15, 20 (a, b, ¢, d) and pressure (e)
field 0° = 20 with temperature factor g, = 0.1 (solid line corresponds to the zero streamline)

Investigation showed that, when the grid resolution was high enough, the large
vortices sizes did not change. We should remark, that for g, = 1 separation zone
is large, thus, the grid step in the x-direction is 1.5-2 times greater than that for
gw = 1073-1071. That is why for g, = 1 the vortices were only specified in
details at a grid of 1,600 x 200 nodes. The grid of 800 x 200 did not give vortices
details while at g, = 1073...107! vortices were seen quite clearly.
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Fig. 5 Heat flux distribution along corner coordinate S for & = 10, 20 (a, b) at temperature factor
gw = 0.001, 0.1, 0.3, 1 (curves 1-4)

It is possible, that vortices development is caused by the separation of a viscous
sublayer at the bottom of locally inviscid jet that flows out of the attachment zone of
the main separation zone. In this case pressure across the separation zone becomes
variable, i.e. dp/dy # 0 (Fig. 4b).

It is very interesting to investigate the effect of the temperature factor on the heat
flux in the attachment zone (Fig. 5). The heat flux is normalized by peoU2,. For all
angles, when the temperature factor decreases maximum heat flux reaches its limit
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Fig. 6 Variation of maximum heat flux in the attachment zone depending on temperature factor
gw forangles 0° = 0,2.5,5, 7.5, 10, 20 (curves 1-6). Solid line corresponds to the adaptive grid,
dash line —to the analytical grid

value (Fig. 6). For angles 6 = 5°, 8 = 7.5° results are shown obtained both on
analytical and adaptive grids, while for angles 6 = 10, 20 - obtained on the adaptive
grids only. For angles 6 = 10, 20° (Fig.5) there are heat flux splashes inside the
separation zone (up to 40% of its maximum value at the attachment point) caused by
vortices. For @ = 5° at gy, ~ 1072 and for § = 7.5° at g, ~ 3 x 1073 there is weak
maximum. It may be caused by calculation accuracy at small temperature factor
when additional grid thickening is required because of the big density gradient near
the surface. Such thickening, being small, does not effect on the global flow pattern
in the separation zone, but is important for local heat flux modeling.

Big practical interest is the temperature factor effect on the effectiveness of flight
controls of “ramp” type. Figure 7 gives the difference Ax between the pressure
center locations in two cases: with g,, simulation and with pressure “step” obtained
from inviscid corner flow. If there is a separation, we can specify two regions that
effect the pressure center location: increased pressure zone inside the separation
zone and increased pressure zone at the attachment point. For 8 < 7.5° the input of
the increased pressure zone inside the separation zone is practically balanced by the
displacement to the right of the increased pressure zone at the attachment point.

So, there are two counteracting tendencies that determine the pressure center
location depending on the temperature factor: (1) displacement to the left on the
plate and (2) displacement of the attachment zone to the right. For small angles
(0 < 17.5°) displacement to the left on the plate overrides the displacement of the
attachment zone to the right. For big angles (6 > 7.5°) the input of high pressure
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Fig. 7 Pressure center displacement AX as compared with position for inviscid flow near angle
0° =0,2.5,5,7.5, 10, 20 (curves 1-6) depending on temperature factor g,

in the attachment zone on the pressure center position becomes significant and the
pressure center moves to the right.

These results are given for the calculation area x = [0, 5]. For the ramp of actual
geometry with small sizes similar effects may be observed, but it is a quite different
task with different geometry.

5 Conclusion

The qualitative analytical investigation was carried out related to the temperature
factor effect on separation flow physical features caused by a compression corner in
the supersonic viscous flow. The numerical results of simulation the same flow based
on the Navier—Stokes equations are also presented. It is shown that the separation
zone length decreases as the temperature factor decreases. For high values of the
compression corner in numerical investigations there were discovered vortices in the
separation zone that were not observed before. These vortices effect considerably on
heat exchange in the separation zones. The temperature factor effect on the pressure
center position was investigated. It is shown that at small corner angles a temperature
factor increase may deteriorate static stability of the vehicle, while at big angles it
may improve static stability of the vehicle.
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Recent Results on Local Projection Stabilization
for Convection-Diffusion and Flow Problems

Lutz Tobiska

Abstract A survey of stabilization methods based on local projection is given. The
class of steady problems considered covers scalar convection-diffusion equations,
the Stokes problem and the linearized Navier—Stokes equations.

1 Introduction

It is well known that standard finite element discretizations applied to convection-
diffusion or incompressible flow problems show spurious oscillations in the case
of higher Reynolds numbers, owing to dominating convection. A first proposal to
handle this instability for low-order finite element discretization has been the use of
upwind finite elements [1]. Another idea, suitable also for higher-order finite ele-
ments, is the streamline upwind Petrov-Galerkin (SUPG) stabilization proposed in
[2] and analyzed for a scalar convection-diffusion equation in [3]. The method is
based on adding weighted residuals to the standard Galerkin method to enhance
stability without losing consistency. The same idea is useful in circumventing the
Babuska—Brezzi condition which restricts the set of possible finite element spaces
that approximate velocity and pressure for incompressible flows. Such a pressure-
stabilized Petrov—Galerkin (PSPG) method has been studied for low equal-order
interpolations of the Stokes problem in [4]. A detailed error analysis of these
SUPG/PSPG-type stabilizations applied to the incompressible Navier—Stokes equa-
tions, including both the case of inf—sup stable and equal-order interpolations, can
be found in [5]. Recently, local projection stabilization (LPS) [6—8] methods have
become quite popular, in particular because of their commutative properties in opti-
mization problems [9] and stabilization properties similar to those of the SUPG
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method [10]. In the following we give an overview of recent developments for this
class of stabilizations applied to various problems.

2 Convection-Diffusion Problem

2.1 Standard Galerkin and SUPG

We start with the convection-diffusion equation
—eAu+b-Vu+ou=f inQQ, u=0 onTl (D

in a bounded domain € C R¥ with Lipschitz continuous boundary I' = 9S2. For
simplicity we assume V- b = 0 and 0 > 0 which guarantees a unique weak solution
u € HO1 (£2). Note that in the interesting case 0 < ¢ < 1, the solution exhibits
boundary and interior layers whose positions depend on the convection field b. Let
Vi, C Hg (S2) be a finite element space with mesh size /. Then the discrete problem
for the standard Galerkin approach is:

Find uj € V}, such that for all vy, € Vj,
a(up,vp) = e(Vup, Vop) + (b - Vuy + oup, vp) = (f,vn)

where (-,-) denotes the inner product in L? and its vector-valued analogues. Sta-
bility and convergence for piecewise polynomials of degree r > 1 follow from the
coercivity of the bilinear form a(-, -) and the Lemma of Cea:

a(v,v) > ||v||f8 = ¢|v]2 + o|v|2 Yv eV,
||u_uh||l,a§Chr|u|r+lv MEH()I(Q)er+1(Q)-

Nevertheless it is well-known that spurious oscillations appear if ¢ < h. This
observation shows that the norm || - ||1.¢ is too weak to suppress global oscillations.

The SUPG [2, 3] modifies the Galerkin method by adding weighted residuals of
the strong form of the differential equations, resulting in:

Find uj € V}, such that for all vy, € Vj,

e(Vuy, Vop) + (b - Vuy + ouy, vp)

+ Y tk(—eAuy +b - Vuy + oup — fib - Vop)k = (f.vp)
KeT),

where 73 denotes a decomposition of 2 into cells K € 7y, (-,-)x is the inner
product in L2(K), and tx is a user-chosen stabilization parameter. For tx ~ hg,
stability follows again from coercivity of the associated bilinear form, but now with
respect to the stronger norm



Recent Results on Local Projection Stabilization 57
1/2

Illlsure == [ IR+ D wllb-Vollg g |
KETh

which suppresses global oscillations. A clever estimation of the convection term
uses integration by parts and the stability with respect to ||| - |||suvpa:

(b9 (e~ i), va)| < | — ipu. b - Vop)| + [t = e, vV - )|

—1/2 . 1/2
< 3 Pl —inullo.x b Vonllo.x + CH ulrgt vl
KeTy,
1/2

=C Z e Wy Pl + W ulrgr | lvalllsvpe
KETh

resulting in the improved error estimate
lu —unlllsupa < C ("2 + A2 h" [ul, 14

for P, finite elements. Note that in boundary layers we usually have |u|,4+1 ~
e~("+1/2) "which means that the above error estimate becomes useless. Neverthe-
less local error estimates have been derived that support theoretically the good
approximation properties away from layers observed in numerical computations;
see, e.g., [11].

Thus the SUPG is a consistent method with improved stability and convergence
properties compared to the standard Galerkin approach. However, consistency is
obtained at the cost of computing several additional terms to assemble the coefficient
matrix of the discrete system.

2.2 Local Projection Stabilization (LPS)

A detailed study of the stability and convergence analysis of the SUPG shows that
in the discrete problem only the term

> k(b Vup.b-Vop)g
KGTh

is responsible for improved stability properties. However, skipping all other terms
in the SUPG leads to an inconsistent method for which the consistency error
scales with 7. A remedy is to add a term that controls only the fluctuations of
the derivatives in the streamline direction b - Vuy. Let My denote a decompo-
sition of € into ‘macro’ cells M € My of diameter hys with hg ~ hp for
K N'M # @, Dy, adiscontinuous projection space associated with the decomposi-
tion My, mrj, : L?(Q) — Dy, the L? projection, and kj, := id — mj, the fluctuation
operator. Then our modified discrete problem is:
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Find uj € V}, such that for all vy, € Vj,

e(Vuy, Vop) + (b - Vuy + ouy, vy)

+ Z M (kp(b - Vup),kp(b - Vup))m = (f,vp).
MeMy

The modified bilinear form associated with the left-hand side is coercive with
respect to the mesh-dependent norm

1/2

Nvlllzes = [ I+ D walin(d-Vo)lg a
MeMy

Now the consistency error depends on 73 and the projection space Dy,. If the dis-
continuous space of piecewise polynomials of degree at most r —1 is selected, which
we write as D, = P3¢ (My,), then for tar ~ has we get

‘ > ta (kn(b - Vu). k(b - Vop))

MEM},
1/2 1/2
< S0 0Phhlb - Vulrar 2 lin(b - You) o
MEMh
1/2
=C Z Rt b - Vul? [llvalllps-
MeMy

Using the L? stability of the fluctuation operator we see that

llvalllLps < C |l|vnlllsupc  Yvn € Vp

which means that the SUPG is at least as stable as the LPS. Having in mind only
the coercivity of the bilinear forms with respect to ||| - |||supg and ||| - |||zps,
respectively, one might think that the LPS is less stable compared to the SUPG. But
in [10] an inf-sup condition for the LPS bilinear form in a stronger norm (which
turns out to be equivalent to the SUPG norm) has been shown, i.e., the stability
properties of LPS and SUPG are in fact comparable.

2.3 Basics in the Error Analysis of LPS

We assume that ¥}, ~ H1(Q) is a finite element space associated with a decompo-
sition of € into cells K € 7; and V;, = Y, N H{} () denotes the approximation
space. Let the discontinuous projection space Dy, = @y Dy (M) live on a decom-
position into macro cells M € My, where the case 7, = Mj, is assumed to be
included. We will see that the key idea of the LPS lies in the existence of a special
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interpolant j; : H?(R2) — Y}, that displays the usual interpolation properties and
satisfies in addition the orthogonality property

(w—jaw,qp) =0  Ywe H*(RQ), Yqi € Dy,.

This orthogonality enables an estimation of the critical part of the convection term
after integrating by parts for tas ~ hps as follows:

|(u — jpu,b-Vop)| = |(u — jpu), kp(b - Vug))|

—-1/2 s 1/2
< 3 0Pl — juullons T4 licn(® - Vo) o
MeMy
1/2
2 1 2
<c| X w2l | Hvallizes:

MeMy
Dealing with all other terms in the usual way, we end up with the error estimate
llu —unlllLps < C (7 + R B [l 2

for tpr ~ hpr [6,7,12,13]. Now the question arises: under which conditions does
an interpolation j; with additional orthogonality properties exist? Examples have
been given for the transport equation (¢ = 0) in [12] and the Oseen equation in [6],
where the two-level variant has been studied in which the decomposition into cells
is generated from a macro mesh by certain refinement rules. We indicate this by
writing 7, = Mp/». In the general case we have

Theorem 1 ([7]). Let the local inf-sup condition

. (Uh 5 Qh)M
inf

U
an€Dp(M) v, ey, (M) [Vallonr lIgnllo,n

>B1 >0, VYMeM, (3

with Y,(M) := {wp|pm : wy € Yy, wy = 0 on Q\M } be satisfied. Then there is an
interpolation jj, : H*(Q) — Y}, with the usual interpolation error estimates and
the additional orthogonality property

(w— jpw,qn) =0, Yqu € Dy, Yw € H*(Q).

In order to fulfil all assumptions of the convergence analysis, two different
requirements for the pair (V3, Dj) of approximation and projection space have to
be reconciled:

e Dy has to be rich enough to guarantee a certain order of consistency
e Dy should be small enough w.r.t. V}, to guarantee jou —u L Dy

Two main approaches have been considered in the literature:

one—level(Vh+,Dh) & two-level (Vy, Dyp).
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In the one-level approach, a standard finite element space is chosen as the projec-
tion space Dj to guarantee the consistency order. Then, the approximation space
Vi =Y, N HOl (R2) is (if necessary) enriched to Vh+ such that the assumptions of
Theorem 1 are fulfilled. In the two-level approach, a standard finite element space
is chosen as the approximation space 1}, and the projection space Dy, is thinned out
to a space D,p on the next coarser mesh level.

In the following we give explicit examples satisfying all assumptions needed for
the above error estimation, see [7] for details. Let bx and bx denote the (mapped)
bubble functions of lowest polynomial degree that vanish on the boundary 0K of
a simplex and hexahedron respectively. We introduce the enriched approximation
spaces on triangles and quadrilaterals respectively:

P =P+ P bk - Pra(K)
KGTh

Q:r:z 0, + @ span(ng-xl-'_l,iz 1,....d).
KGTh

An overview of different variants is given in Table 1 and illustrated in the two-
dimensional case d = 2 forr = 1 and r = 2 in Figs. 1-4.

One disadvantage of the one-level approach is the increasing number of degrees
of freedom owing to the enrichments in particular in the case of simplices. However,
this can be overcome by static condensation. In the two-level approach the stencil
of the stabilizing term increases due to the larger support of k(b - Vg;) compared
with that of b - V; (for each basis function ¢; in V). This might not fit into the data
structure of an available code.

So far we have only considered the case of boundary conditions of Dirichlet
type. Mixed boundary conditions lead often to a limited regularity of the solution
of a convection-diffusion problem. In [13], it is shown how the error analysis of the

Table 1 Possible space pairs in the LPS

one-level two-level
v,k Dy Vi Do

P PSP, P
Q;+ Pdisc Qr disc

r— r—1

v;F Dy, v, Dy,

Fig. 1 Approximation and projection spaces on triangles (one-level approach)
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AL An

Fig. 2 Approximation and projection spaces on triangles (two-level approach)

v,F

Dy,

v,F

Dy,

Fig. 3 Approximation and projection spaces on quadrilaterals (one-level approach)

Vi

Doy

Vi

Doy

Fig. 4 Approximation and projection spaces on quadrilaterals (two-level approach)

one-level LPS can be extended to the case of boundary conditions of mixed Dirichlet
and Neumann type.

2.4 Relationship to Other Stabilization Methods

The LPS is akin to but not exactly equal to the subgrid scale stabilization introduced
by Guermond [14], who considered gradients of fluctuations instead of fluctuations
of gradients. Thus the stabilizing term has the form

Y wk(V(id = Pr)up. V(id = Pu)va)k
KeK),

where Py : v, — Vg is a projection onto the (resolvable) coarse scales. This can
be also interpreted as adding artificial viscosity only for the fine scales of the finite
element space Vj,. For certain scale separations of Vj, = Vg & Vﬁ both methods
give spectrally equivalent stabilization terms (simplices) or even coincide (lowest
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order case on simplices). However, in the general case the stabilizing terms are not
spectrally equivalent. For more details see [7].

We mention that a special variant of the LPS has been already introduced by
Layton [15] as a mixed method combined with scale separation of the finite element
space V. The projection space has been chosen as Dy = VVg, where Vg denotes
the approximation space on a coarser mesh level. The analysis given in [15] does
not use orthogonality of the interpolation and leads to the suboptimal convergence
rate of 4 /3 instead of 3/2 for the scaling 7 ~ h*/3, H ~ h?/3_In order to gain the
full 3/2-power of &, the orthogonality of the interpolation has been used in [12] for
solving the transport equation (¢ = 0) discretized by the two-level (Q1, Q¢)-LPS.

There is also a close relation to the stabilization method using orthogonal sub-
scales (OSS) proposed by Codina in [16, 17]. In the OSS the projection 1y, is chosen
as the L? projection into the finite element ansatz space without forcing boundary
conditions, i.e., D, = Y. Since this projection is no longer local, the stencil of the
stabilizing term increases as in the two-level LPS approach or one has to solve a
global system in V}, x Y}, to approximate u and b - Vu. For details we refer to [16].

2.5 Choice of the Stabilization Parameter

A general strategy to select appropriate stabilization parameters tx is to equilibrate
different terms in the a priori error estimates. In this way, the asymptotic behaviour
of Tk with respect to the meshsize and the polynomial degree of the finite element
spaces can be fixed. For convection-diffusion equations in one space dimension, it is
known that in the constant coefficient case with ¢ = 0 and piecewise linear elements
the stabilization parameter in the SUPG method can be chosen in such a way that
the discrete solution becomes nodally exact.

It has been shown in [18] that in the one-dimensional, constant coefficient case
(with ¢ = 0), the one-level version of the (P;", PY5¢)-LPS is equal to the P41-
differentiated residual method (DRM). Note that in 1D one has P,Jr = Pri1.
Moreover, a successive elimination of the higher modes in the P, ;-DRM by static
condensation leads to the P,.-DRM, where the P1-DRM coincides with the SUPG.
These observations allow the derivation of explicit formulas for the stabilization
parameter in the LPS and DRM such that the P; part of the corresponding discrete
solutions is nodally exact. For more details, see [18]. The convergence properties of
the DRM on arbitrary and on layer-adapted meshes are investigated in [19]. Finally,
we mention that the DRM is also closely related to the variational multiscale method
(VMS) studied in [20].

2.6 LPS on Layer Adapted Meshes

It has been mentioned already in Sect.2.1 that |u|,41 ~ & “+1/2) in boundary
layers and error estimates like (2) lose their value as ¢ — 0. For the model problem
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(1) in the unit square Q = (0, 1), two different types of layers can appear: for
b = (b1, by) with by, by > 0 we observe only exponential layers along the outflow
part (x = 1 or y = 1) of the domain whereas for b = (by,0) with by > 0 an
exponential layer along x = 1 and two characteristic layers along y = Oand y = 1
are present. The idea is to use special layer-adapted (so-called S-type) meshes and
suitable enriched approximation spaces. Consider the following enrichment of the
usual Q, space of continuous, piecewise (mapped) polynomials of degree r in each
variable

=0+ P 0x(K).
KeTy,
0% (K) = span {(1 =) (1 = )57, (1 £ 2i40)(1 = ) Lra ()

where i € {0, 1} modulo 2 and L,_; denotes the Legendre polynomial of order
r — 1. The projection space is set to be Dy = P%¢. Note that P41 C Q8. The
number of subintervals in each coordinate direction of the tensor product mesh on
2 will be denoted by N.

Theorem 2 ([21,22]). Let by, by > 0, (Yy, Dy) = (QS, PA5¢), and the stabiliza-
tion parameter be given by tg ~ N2 on the coarse mesh and tx = 0 on the fine
mesh. Then, there is an interpolant ul such that
llu —uN[l[ps < € (N og N)™* 1 Jlu —uM 10 < C (N~ log N)"!

on a Shishkin mesh. For the characteristic layers case (by > 0, b, = 0) an appro-
priate choice of the stabilization parameter in the characteristic layer region leads
to the same estimate. Moreover, for r = 1 we have the supercloseness result for the
spaces (Viy, Dy)) = (Q1, P)

! —u|||Lps < C (N log N)?, |lu —u™ |1 < C N~ 'log .

Apart from the lowest-order case, we have to handle a considerable set of additional
degrees of freedom because of the large enrichment of Q,. Next, we consider a
moderate enrichment of Q, such that P,1; ¢ Q; and give a supercloseness result.

Theorem 3 ([23]). Let the approximation space Y}, be enriched only on the coarse
mesh part so that Y, = Q on the coarse and Y, = Q, on the fine mesh
part. Then on Shishkin and Bakhvalov—Shishkin type meshes the interpolant u' is
superclose, i.e.,

|||MI _ MN|||LPS < C N—(r+l/2)

whereas for the solution u one has only

C (N~Y1og N)™" for a Shishkin mesh,

N
e =2 le = CNTT for a Bakhvalov-Shishkin mesh.
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Note that the enrichments in Theorem 3 consists of only two additional degrees
of freedom per coarse mesh cell. Thus, compared to Theorem 2, a considerable
reduction in the number of degrees of freedom has been achieved.

3 Stokes Problem

3.1 Standard Galerkin and PSPG

Now we consider the Stokes Problem
—Au+Vp=f inQ,divu=0 inQ,u=0 onl “4)

in a bounded domain @ C R with Lipschitz continuous boundary I' = 9. There
is a unique weak solution (u, p) € HOI(SZ)d x Lo(2). Let Vj, C H{ ()% and
QOn C L%(S2) be finite element spaces with a mesh size h, approximating veloc-
ity and pressure respectively. Then the discrete problem of the standard Galerkin
approach is:

Find (up, pn) € Vi x Qp such that for all (vy, qp) € Vi X Op,

(Vup, Vup) = (pp, div vg) + (gp. div up) = (f, vp).
It is well-known [24] that the BabuSka—Brezzi condition

,di
380 >0, Vh: inf  sup (@h. div vh) > Bo (5)

a1€Qn vyevy, lgnllo vali —

guarantees stability and convergence of a unique solution (uy,, py) € Vi x Qj, of the
Galerkin method. The condition (5) restricts the possible choices of approximation
spaces V, and Qj; in particular, equal-order interpolations for velocity and pres-
sure are excluded. One way to circumvent the inf—sup condition is to add weighted
residuals of the strong form of the differential equation resulting in the stabilized
formulation

Find (uy, pp) € Vi x Qp such that for all (v, gp) € Vi X Qp

Apsp6 (n, p); ((nqn) = (frow) + Y ax(f,Van)k (6)
KETh

with the discrete bilinear form Aj, given by

Apspc((u, p)i(v.q)) : = (Vu,Vv) — (p.divv) + (¢.div u)

+ Y ax(—Au+Vp, Vo)x. (7
KETh
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For continuous pressure approximations @, C H (), the form A psp is coercive
on the product space Vj, x Qy, with respect to the norm

1/2

. @lllpspe = | v} + > exlqli ¢
KGTh

provided that the stabilization parameter has been chosen as «x = ozoh§< where the
positive constant o satisfies an certain upper bound. This residual-based stabiliza-
tion technique proposed and analyzed in [4] is also known as the pressure stabilized
Petrov—Galerkin (PSPG) approach [25]. Over the years it has been extended and
combined with the SUPG for solving the (linearized) Navier—Stokes equations.

3.2 Local Projection Stabilization

Beside the residual-based approach, projection-based stabilization techniques have
also been developed for the Stokes problem. A method based on the projection of the
pressure gradient onto a continuous finite element space has been proposed in [26].
Although the method is consistent (in a certain sense) it is expensive due to the
nonlocality of the projection. Becker and Braack proposed in [27] to project the
pressure gradient onto a discontinuous finite element space living on a coarser mesh.
This method is not consistent, but it is cheaper owing to the locality of the projection.
Nevertheless, as a two-level approach the stabilizing term leads to an larger stencil
which might not fit into the data structure of an available code.

A revision of the residual-based PSPG approach shows that the improved stabil-
ity properties rely on adding the term

> ax(Vp.Vg)k insteadof Y ax(—Au+Vp— f.Vq)k
KeTy, KeT,

to the Galerkin method. The other terms are only needed to preserve consistency.
Now, replacing in the first term the pressure gradients by the fluctuations, we obtain
the LPS for equal-order interpolations [28].

Let the approximation spaces for velocity and pressure be generated by a scalar
finite element space ¥, ~ H'(Q), such that ¥, = (¥, N H} ()% and
On=7Y, ﬂL%(Q). We will consider for simplicity only the one-level approach, thus
the discontinuous projection space Dy, lives on the same decomposition My, = 7,
as the approximation space Y. As above we introduce the fluctuation operator
kp = id — m, with the L? projection 7, : L?(2) — Dj. Now the stabilized
discrete problem reads:

Find (up, pn) € Vi x Qy such that for all (vy, qp) € Vi X Op,
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Ap((un. pn): n.qn)) := (Vup, Vo) — (pr. div vp) + (gp. divig) — (8)

+ Y ak (ki V puknVan) g = (f.vn)-
KeTy,

As in the Galerkin method the bilinear form is not coercive on the product space
Vi x Qp; indeed we have only

An(n.qn): On.qn) = loal} + > exllkn(Van) 3 x
KeTy

and the right-hand side vanishes for all (vy, g) = (0, qp) with Vg € Dy,. There-
fore, it is essential that an inf—sup condition can be proven in the mesh-dependent
norm
1/2
@ ol = [ 105+ llgls + Y exlea(Vo)lF x
KGTh

Lemma 1 ([28]). Let (Y, Dy,) satisfy the local inf-sup condition in Theorem 1 and
let h%(/ozK < C. Then there is a positive constant B > 0 independent of h such that

. Ap((vn.qn): (wh. 1))
inf sup > B.
©ran)€VinxQn (wp,ri)eVux 0, 1 ns g 1w, rp)ll|

Let us briefly discuss the different properties of PSPG and LPS. In the PSPG
method A pspg is coercive on the product space Vj, x Qj, for a restricted range of
the stabilization parameter, more precisely ax = aoh%( with an upper bound for o
depending on the polynomial degree used in the definition of Y. In contrast to that
the bilinear form Aj, of the LPS satisfies an inf—sup condition on the product space
Vi x Qp for ag = agh% and any ap € RT. The theoretically larger range for g
can be also seen in computations [28].

3.3 Error Estimates

As in the case of a scalar convection-diffusion equation one has to balance two
requirements: Dy, has to be rich enough to guarantee a certain order of consis-
tency and Dy has to be sparse enough to allow the existence of an interpolant
jn H(Q)4 — Yhd (needed to prove Lemma 1) such that the interpolation error is
perpendicular to D;‘f. The larger domain of definition (H ' (R2) instead of H?(R)) is
not a problem since interpolants of Scott—Zhang type can be used [29].

We briefly discuss the essential points in the error analysis. For the consistency
error we get from the L? stability of «j, the estimate (agx ~ h%)
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|An (@ —un), (p = pu)swi, )| = | Y ax (ca(Vp),kn(Van)
KGTh
1/2

<c| S rZIvpl | s rmlll
KETh

provided Dy comprises piecewise polynomials of degree r — 2. Using Lemma 1
and the estimation of the consistency error it remains to estimate the approximation
error. The most difficult part of it is the estimate

|(rp, div (u — juu))| = |(Vrg,u — jpu)| = |(kn(Vrn),u — jpu)|
1/2

<Chulrpr | D axlikaVrald g
KETh

in which we used the orthogonality property of the interpolant. Putting all pieces
together we get the main theorem for the Stokes problem.

Theorem 4 ([28]). Let the solution of (4) be smooth enough such that (u, p) €
(V N H’+1(Q)d) X (Q N H’(Q)) and Prdfg C Dy,. Then, under the assumptions
of Lemma I and ag ~ ozoh%(, there exists a positive constant C independent of h
such that

@ —un, p— p)lll = C h"(Jullr+1 + lIpllr)-
Moreover, if the Stokes problem is H*(2)% x H'(Q) regular, there exists a positive
constant C independent of h such that

e —upllo < € K™ (llully+1 + 1)

Note that in contrast to the PSPG approach for the LPS scheme considered we did
not require higher regularity of the pressure when using equal-order interpolations.

3.4 Examples

In the following we list approximation and projection spaces from [28] satisfying
all assumptions needed for the error estimate in Theorem 4. It turns out that some
known stabilization methods in the literature can be recovered as special cases of
the one-level LPS.

3.4.1 Simplicial Elements, First-Order Methods

Let the solution and projection spaces be given by (Vj,, Qp) = (P&, P;) and
Dy = {0}, respectively. Then the fluctuation operator becomes the identity and
we get the method proposed by Brezzi and Pitkaranta in [30]. Now, let as above
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by denote the (mapped) bubble function that belongs to P;y; and vanishes at
the boundary 0K. We enrich the space of continuous, piecewise linear function by
adding the bubble functions on each cell, i.e.,

P1+ =P+ @ span bg.
KeT),

If we enrich only the velocity space so that (Vy, Oy, Dy) = ((P1+)d, Py, {0}), no
stabilization is needed since the pair (Vy, Q) = ((P1+)d, Py), the so called ‘Mini’-
element [31], satisfies the inf-sup condition (5). However, enriching the spaces for
approximating velocity and pressure, we get an equal-order interpolation and the
LPS becomes necessary. A possible choice with optimal first-order convergence is
(Va. Qs Di) = (P4, P, Po) [28].

3.4.2 Simplicial Elements, Higher-Order Methods
Unlike Subsect. 2.3 we consider the (less) enriched approximation space

P =P+ @ bk Pra(K)
KeT),

which fits the projection space Dj = P,di_sg and the choice g ~ aoh%(. Then an
LPS method with optimal convergence order r > 2 is generated by (Vi,, Op, D) =
(PF)4, P}, PYsS) [28].

3.4.3 Hexahedral Elements, First-Order Methods

We consider first the case where the approximation and projection spaces are given
by (Vi, Op) = (Q‘li, Q1) and Dj, = {0}, respectively. The fluctuation operator
is the identity and we end up again with the stabilization proposed by Brezzi and
Pitkaranta in [30]. Now, by enriching only the velocity space, we can derive pairs
of finite elements (1}, Q) satisfying the inf-sup condition (5) such that no stabi-
lization is needed. Although similar to the case of triangular elements, where two
additional degrees of freedom per cell have been added, in the quadrilateral case
(d = 2) we have to add at least three additional degrees of freedom in the con-
forming and non-conforming case [32,33]. Further examples of enrichments of the
velocity space leading to inf—sup stable element pair (Vh+, Q1) have been studied
in [34,35]. Enriching both the velocity and the pressure space, we get an equal-order
interpolation and the LPS becomes needed. Let us enrich the space of continuous,
piecewise multi-linear functions by adding the bubble functions on each cell, i.e.,

er =0+ @ span bk.

KETh
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Now a possible choice of spaces with a first-order convergence property is

(Vi On.Di) = ((Q1)4, 07, Qo) [28].

3.4.4 Hexahedral Elements, Higher-Order Methods

It turns out that for hexahedral elements and r > 2 the standard spaces Q, are
already rich enough that the pair (Y5, Dp) = (Q,, Q9%) satisfies the local inf-
sup condition of Theorem 1. Thus an LPS method with optimal convergence order
r > 2 is generated by (Vi,, Qp, D) = (0%, 0, 09%) [28]. Note that the ‘small-
est’ projection space that guarantees the consistency order r > 2 is the mapped or
unmapped space P475¢. Since in both cases the inclusion P3¢ ¢ Q%3¢ holds
true, the local inf-—sup condition of Theorem 1 is still satisfied and we obtain the
optimal convergence order also for the choice (V, Qn, Dp) = (Qf, 0r, PI%S).
For details and other pairs of finite element spaces we refer to [28].

3.5 Elimination of Enrichments

It has been shown by Bank and Welfert in [36] that the bubble part of the veloc-
ity components for the Mini element discretization of the Stokes problem, i.e.,
Vn, On) = ((P1+ )2, Py), can be locally eliminated and lead to a formulation equiv-
alent to the stabilized method proposed by Hughes, Franca, and Balestra in [4].
Furthermore, in [37] special enrichments of both the velocity space Vj, = Pld and
the pressure space QO = P; have been introduced and shown to lead by static con-
densation to a Galerkin least squares stabilized formulation of the Stokes problem.
For this, on each cell of the triangulation the velocity components are enriched by
two bubble functions and the pressure by a function that does not vanish at the cell
boundaries.

Of course, the additional degrees of freedom introduced by the enrichments
of the (Vi,, Qpn, Di) = ((P;")?, P;F, Py)-LPS can also be eliminated locally by
static condensation. The resulting scheme corresponds to the stabilized method of
Hughes, Franca, and Balestra [4] with an additional grad/div stabilization which can
be written as

Find (up,pr) € Vo x Qp = Pld x Pq such that for all (vy,qr) € VL x O

(VML, VUL) — (pL,diV UL) + Z )/K(div ur,div UL)K = (f, UL),
KETh

(qr.divur) + Y (=Aup + Vpr.tkVar) g = Y (ftkVqr)g.
KGTh KGTh

Here the parameters yx and g behave like [28]

2
Yk ~ & ~ 1, Tk (x) ~ hxbg(x)
(074
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which is in agreement with the suggested choice in the literature. The result in
[28,37] demonstrates that pressure bubbles play a role in explaining the addition
of the least-squares form of the continuity equation in stabilized methods for the
Stokes problem.

4 Oseen Problem

4.1 Standard Galerkin and LPS

We consider finally the Oseen problem
—eAu+b-Vu+ou+Vp=finQ, V.-u=0 inQ, u=0 onl,

which can be understood as a testbed for developing stable and accurate approxima-
tions of the incompressible Navier—Stokes equations. The reason for that is that this
simpler problem (a unique solution exists for all ¢ > 0) already includes the two
sources of instabilities: the instability due to dominant convection (¢ < 1) and the
instability caused by pairs of finite elements that are not inf-sup stable. The weak
formulation of the Oseen problem reads

Find (u, p) € V x Q such that for all (v,q) € V x Q

A((u, p); (v.q)) = = e(Vu, Vv) + ((b - VIu,v) + o (u, v)
—(p.divv) + (¢g.divu) = (f,v)

where V = HOI(SZ)d, 0= L%(SZ), £>0,0>0beWh®(Q),divh = 0 have
been assumed. Now, let us consider the case of equal order interpolation in which
the velocity and the pressure space are generated by the same scalar finite element
space Y, ~ H'(RQ), namely V}, := Yhd NV and Qp := Y, N Q [6,7,38]. Then the
stabilized discrete problem is:

Find (up, pn) € Vi x Qp such that

(A + S)((un. pn): (V. qn)) = (f.vp) V(Vn.qn) € Vi x Qp

where the stabilization term is given by

S((un. pn): (. qn)) == Z [ta (n (0 - VIup). k(b - VIvp))
MeMy

+ g (ki (div up) . kn (div vp)) 4 ot (K (Y p) . kn(Van)) o |

with user-chosen parameters s, (s, and aps. Here My, denotes a decomposition
of Q2 into macro cells needed to define the projection spaces Dj while the approxi-
mation spaces live on a decomposition 7} not necessary equal to Mj,. Furthermore,
kp = id — my, is the fluctuation operator and 7, the (vector-valued) L? projection
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Table 2 Possible (mapped) spaces in the LPS for the Oseen problem

one-level two-level
v,k o Dy, Vi On D>y,
(P’I )¢ P’I Pl (P)? P PN
onH o Pl (@)Y 0O dee

into the discontinuous projection space Dj. An interesting option is an additional
projection space for controlling the fluctuations of the divergence since that term is
fully consistent [38]. Under reasonable assumptions the bilinear form A+ S satisfies
an inf-sup condition on the spaces Y} and Dj with respect to the mesh-dependent
norm

1/2
. Dlllose = (elof + ol + pllgll3 + S (0. 9); (v.)))

with p > 0 [7]. Moreover, the following error estimate holds true.

Theorem 5 ([7]). Let apg, pipr, Ty ~ hpr, b piecewise smooth, P,d’_‘i C Dy, and
(Yn, Dy) satisfies the local inf-sup condition (3). Then there is a positive constant
C independent of h such that

1@t = un, p = p)lllose < C&"> + R ™ ([ullr+1 + [Plr+1)-

We show in Table 2 examples of spaces that satisfy all assumptions which guarantee
the stated error estimate. Note that in the two-level approach we divide a macro
simplex M into d + 1 simplices K by connecting the barycenter with the vertices.
A macro hexahedron is subdivided into 2¢ hexahedrons in the usual way. For more
details we refer to [7].

4.2 LPS for Inf-Sup Stable Elements

The local projection stabilization has been also applied to inf—sup stable discretiza-
tions of the Oseen equation in [8,39]. An interesting point is that for inf—sup stable
finite element pairs one does not need an H !(Q) stable interpolation operator with
additional orthogonality properties to prove stability of the discrete problem, unlike
the case of equal-order interpolation. Consequently, one has much more flexibility
in choosing the approximation and projection spaces [39]. We replace the stabilizing
term above by
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S(n pn). vnan)) = Y (eklich (b - Vun). k(b - Vor)x
KGTh

+ i (R (div wp), 7 (div o) k)
+ Y velpale. anlE)E

Eegy

in order to handle both continuous (yg = 0) and discontinuous (yg > 0) pres-
sure spaces Q. Note that a pressure p € H () does not cause any consistency
error and that we have introduced two projection spaces resulting in two fluctua-
tion operators. Most of the known inf—sup stable elements approximate the velocity
components by elements of order r and the pressure by elements of order r — 1,
which yields error estimates of order r, cf. [8], which in the convection-dominated
case (¢ < h) is half an order less than the LPS with equal-order interpolation. How-
ever, the same convergence order can be achieved in the one-level case by standard
finite element spaces without any enrichments [39]; a possible variant is

(Va, O, D}, D2) = ((Q,)%, PIss (Qdiseyd, plise

with the parameter choice tx ~ hg, ug ~ 1, and yg ~ hg. Furthermore, there
are inf-sup stable elements approximating both the velocity components and the
pressure by elements of order r, which yield error estimates of order r + 1/2 in the
convection-dominated case. For details see [11,39].

4.3 LPS as an hp-Method

The a priori error analysis and the parameter design of the LPS have been extended
to study the dependence of the error not only on the mesh size but also on the
polynomial degree [8, 38]. As an example we give a result for the two-level variant
of equal order interpolation, i.e., we assume (Yj, D2jp) = (P, Pr—1) with r > 1.

Theorem 6 ([38]). Let v < hy/ 2 and let the stabilization parameters be chosen
as ty ~ hy/r% uym ~ hy /v and opyy ~ hag/r?. Then there is a constant
C = C(B1) > O independent of h such that forl <r

1+1/2

I —un. p— pw)lllose = C(B1) (hellzer + Npllz40)-

rl

Compared with the interpolation error, this estimate is optimal with respect to / but
in general not with respect to r.
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4.4 LPS on Anisotropic Meshes

In Sect.2.6 we discussed the convergence properties of the LPS on layer-adapted
meshes. Unfortunately, no precise information is known regarding how the deriva-
tives of the solution of the Oseen problem behave in different parts of the domain.
Thus, an important ingredient for the construction of layer-adapted meshes is
missing. Nevertheless, highly anisotropic meshes are often used to resolve layers.
In [40] an extension of the LPS has been proposed which uses different scalings for
the fluctuations of the derivatives in x and y direction. For the two-level approach
with equal-order interpolation, i.e., (Vi, O, Dan) = ((Q1)%. 01, (Q0)?), optimal
anisotropic error estimates have been established.
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Numerical Simulation of the Towing Tank
Problem Using High Order Schemes

L. Benes, J. Fiirst, and Ph. Fraunié

Abstract The article deals with the numerical simulation of 2D and 3D unsteady
incompressible flows with stratifications. The mathematical model is based on the
Boussinesq approximation of the Navier—Stokes equations. The flow field in the
towing tank with a moving sphere is modelled for a wide range of Richardson
numbers. The obstacle is modeled via appropriate source terms. The resulting set
of partial differential equations is then solved by the fifth-order finite difference
WENO scheme, or by the second-order finite volume AUSM MUSCL scheme. For
the time integration, the second-order BDF method was used. Both schemes are
combined with the artificial compressibility method in dual time.

1 Introduction

Modelling of Atmospheric Boundary Layer (ABL) flows plays a significant role
in many industrial applications. It is well known that the influence of the stratifi-
cation is significant in many processes in ABL flows (e.g., it affects the transport
of pollutants, plays a significant role in determining the environmental and human
consequences of accidents). Stratified flows in environmental applications are char-
acterized by a variation of fluid density in the vertical direction that can result in
qualitative and quantitative changes of the flow by buoyancy. Stable stratification
generally suppresses any vertical mixing of mass and momentum. The present work
was motivated by a desire to obtain a better understanding of these effects.
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2 Mathematical Model

The flow in ABL can be usually assumed to be incompressible. Nevertheless,
the density is not constant owing to temperature changes, gravity, etc. Thus an
equation for the density must be considered. This type of flow is described by
the Navier—Stokes equations for viscous incompressible flow with variable den-
sity; these equations are simplified by the Boussinesq approximation. Density and
pressure are divided into two parts: a background part (with subscript o) plus a
perturbation (with superscript /). The background component is chosen to fulfill
the hydrostatic balance equation dpg(z)/dz = — po(z)g. The system of equa-
tions obtained is partly linearized around the average state p.. The resulting set
of equations can be written in the form

Dy’ dpo
= —wW— N
Dt dz
D 1 ! 1
—u+—Vp’=vAu+ ig—i-—f, (1)
Dt p« Px Px
Vu =0,

where p is the density, u = (u, v, w) is the velocity, p is the pressure, v is the
viscosity, g = (0,0, —g) is the gravity and f represents other forces (e.g., Coriolis
force, source terms). We assume that p, = 1 and we shall omit the primes above
the density and pressure disturbances.

Equations (1) are rewritten in the vector conservative form

PW, + F(W)y + GW)y + HW), = S(W).

Here W = [p,u,v,w, p]T,F = F"—yF", G = G'"—vG’and H = H'"—vH"
contain the inviscid fluxes Fi”, G, Hi" and viscous fluxes F?, GV, H?, while S
is the gravity and source term and P = diag(1,1,1,1,0). These fluxes and source
term are

F"(W) = [pu,u® + p.uv,uw,u]”, G (W) = [pv, uv, v + p,vw,v]7,
H™(W) = [pw, uw, vw, w? + p,w]7, S(W) = [-vdpy/dz,0,0,—pg,0]"

(2)
FY(W) = [0, ux, vy, wy, 0], G (W) = [0,uy, vy, wy, 0],
H*(W) = [0,uz,v;,w,0]".
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3 Numerical Schemes

3.1 Spatial Discretization

Two different numerical schemes were used for the spatial discretization. We dis-
cretize only terms containing spatial derivatives. The system of ordinary differential
equations (with respect to the time derivative) that is generated is solved by an
appropriate ODE method; see [BlaO1].

The first scheme is based on a flux-splitting method for incompressible flow
and WENO-interpolation. The second method is the finite volume AUSM MUSCL
scheme with the Hemker—Koren limiter.

3.1.1 Flux Splitting for Incompressible Flows

The discretization in space is achieved by standard fourth-order differences for vis-
cous terms and by the following high-order flux-splitting method [Issa85]. Divide
the inviscid flux F"(W) into two parts, the convective flux F¢(W) =
[ou, u?, uv, uw,0]T and the pressure flux F? (W) = [0, p,0,0, B2u]”, then appro-
ximate the flux derivative by

- 1 1
Fln(W)x|l- ~ E [Flcli-l/2 - F'lc_l/2i| + E I:F‘ll-]‘rl/Z - F;IJ_I/Z] . (3)
Here each subscript denotes the value at the corresponding point on the Cartesian
grid (or, in the AUSM case, the mean value over the corresponding finite volume).
For simplification of the next text, only the spatial index i in the x— direction is
preserved; the remaining two indexes are omitted. The high-order weighted ENO
scheme [Jiang96] is chosen as the interpolation method. The original WENO inter-
polation uses an upwind bias and it can be formally written in the following form
(function weno5 is described in [Jiang96]):

¢Ir1/2 = weno5(gi—2, ¢i—1.Pi. Pi+1, Pi+2) ifujy1/2 >0,

_ . 4
b i1/ = wenob5(¢i+3. di+2, Piv1, P, di—1) ifuj112 0. @

bit12 =

It is still necessary to determine the velocity u; 41/5.

This interpolation is applied to the incompressible case separately for the convec-
tive and pressure terms. In agreement with mathematical analysis the convective part
is discretized by simple upwinding, the third component of the pressure is approxi-
mated by backward differencing and the fourth component by a forward difference.
The final scheme takes the form
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Uit1)2 = (u;:_l/z + u[_+1/2)/2! Pi+1/2 = (P,'—:_l/2 + p[_+]/2)/2s (5)

(pu)lﬁj’_l/z 0 e
(u ),+1/2 Pi+1/2 + B H_l/z L2
FC(W)i+l/2 = (uv)lﬁ-:‘rl/2 P Fp(W) = 0 s
@w)i ) pg -
0 Ui + Zin /22/3 it+1/2 |

(6)

where + or — is taken in the convective flux according to the sign of u; 4 1/>.

A similar algorithm is applied in other directions for the fluxes G, H. The
resulting scheme has high-order accuracy in space. It was validated for the case
of compressible inviscid flows by a computation of shock-vortex interaction; see
[Furst96].

3.1.2 AUSM Scheme

The finite volume AUSM scheme was used for spatial discretization of the inviscid
fluxes in our second scheme. Until now we have applied it only in the 2D case but
an extension to 3D is being prepared.

/ (FI" + GidS = m(Ff"nx + G'"ny)dl
4 e 0
SPOIIET B Bl sl )
LB e \o

where 7 is the normal vector, u,, the normal velocity vector, and (¢)r/r are quan-
tities on the left/right hand side of the face. These quantities are computed using
MUSCL reconstruction with the Hemker—Koren limiter:

1 1
4R = qi+1 — 531{, qrL = ¢qi + ESL,

aL/R(b%/R + 2) + bL/R(Za]%/R + 1)

L/R =

Za%/R + Zbi/R —ar/rbrjr +3

AR =(qi+2 —qi+1, AaL =¢i+1—¢qi» br=¢qiv1—qi. bL=qi —qi-1.

Since the pressure is discretized using central differences, the scheme is stabilized
following [Vier99] by a pressure diffusion of the form

2v

T
Pi+1,j — Pi,j
Faiv12,; = (0, 0, 0, ﬂ%) , Bx = w, + Ax
pe
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where 7" denotes transpose and w;, is a reference velocity (in our case the maximum
velocity in the flow field). Viscous fluxes are discretized using central differences
on the dual mesh. This scheme is second-order accurate in space.

3.2 Time Integration
The spatial discretization yields a system of ODE in the physical time ¢ variable,
which is solved by the second-order BDF formula

3wn+l — AW Wn—l 5 B B B
P + + Fx(Wn+1) + Gy(Wn+1) + Hz(Wn+1) — Sn+l.

2At
(8)
Here each tilde denotes a discrete approximation of Fx, Gy, H;, S. Set
Res(W™tt wn w1y = P(—3 Wt~ 2y LW”“) +
Y 2At At 2At

+ Fx(W’H—l) + GNy(Wn+l) + I_iz(Wn-i-l) _§n+1.

The above formula (8) is Res(W, W™ W"~1) = 0. It is solved by an artificial
compressibility method in the dual time t. The system of equations

PW; + Res(W,W" W" 1) =0

where P = diag(1,1,1,1, 51—2), is solved by an explicit 3-stage second-order
Runge—Kutta method.

4 Obstacle Modelling

We are interested in the solution of the stratified flows past a moving body. The
obstacle is modelled very simply as a source term emulating a porous media with
small permeability. This volume penalization technique was originally proposed by
Arquis and Caltagirone [Cal84]. The source term S(W) in this case is given by

T
] + 7)‘()6’2’2’[) 0.0 v v e —w.o]
©))
where K corresponds to small permeability and y(x, y,z,t) is the characteristic
function of the obstacle, which moves with velocity (U ob yob pyob ).
To estimate the influence of the permeability K, a very simple analytical model
was developed. We suppose a 1D case, with the obstacle at rest and Uy the velocity

d
[—vﬂ,0,0, —pg,0
dz
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of the incoming flow. The flow at the obstacle is decelerated only by the resistance
of the body; other terms are omitted. This situation leads to

u=-u/K, u(0) = Uy

Integrating the velocity as ¢ — oo, we obtain an estimate of the depth of penetration
of fluid into the body:

u(t) = Uge™ ¥ u(t)dt =
e

If we prescribe the depth of penetration (this may be interpreted as the effective
diameter of the obstacle), we can estimate the permeability K. For instance, in the
case of a sphere of radius r = 0.1 m, a velocity Uy = 1ms~! and a penetration
depth of 10% of r lead to K = s/ Uy = 1/100.

5 Numerical Results

&m

4m

Towing tank

The obstacle is a sphere of radius 0.1 m, located 1 m from the left wall and at
the midpoints of height and width see [BenesO8]. At time ¢ = 0 the obsta-
cle starts moving to the right (in the positive x direction) with constant velocity
U = 1ms™!. The flow field is initially at rest with stable density gradient
dpo/dz = —0.1kgm~*. The average density is p» = 1kgm™3 and the kinematic
viscosity is v = 107*m? s~!. Homogeneous Dirichlet boundary conditions for the
velocity and Neumann conditions for the density and pressure disturbances were
used in 2D. In 3D, these boundary conditions were extended by periodic boundary
conditions in the y-direction.

The problem was solved on Cartesian grids. In 3D, a mesh with 320 x 40 x 160
cells was used. In 2D, a mesh with 320 x 160 nodes and, for testing of the mesh
independence, a fine grid with 640 x 320 nodes were used.

Various stratification levels were modelled. To describe the stratification, the
following bulk Richardson number is used:

dpo
. 8dz
Rl — dz

Q*Uob
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For the numerical tests, the towing tank problem was used. The towing tank is a
channel with the obstacle inside. Motion of this obstacle generates disturbances in
the flow field. In the cases we solved, the towing tank has dimensions 8 m x 4 m in
2D or8m x4m x 1 min3D.

The degree of stratification is unaffected by changes in the density gradient, but
by modifying the gravity constant in the range g €< 0, 1000 >. The corresponding
Richardson numbers satisfy Ri €< 0,100 >. The influence of permeability was
also tested for selected values in range K ~1 €< 10,1000 > s~!. The two numerical
methods were compared.

Figures 1 and 2 compare the schemes in 2D. In the first figure we can see the
comparison of density isolines at the time # = 5s. The second figure displays
the distribution of selected quantities in the transversal direction. These figures
exhibit good agreement between both methods, especially further from the obstacle,
while small differences occur behind the sphere. The maximal values predicted by
WENO 5 scheme at the height midpoint are somewhat lower. Next, Fig. 3 examines

RO: -1.0E-02 -7.1E-03 -4.3E-03 -1.4E-03 1.4E-03 4.3E-03 7.1E-03 1.0E-02

Fig. 1 Comparison of isolines of the density disturbances for towing tank problem at the time
t =5s,g =100, Ri = 10. AUSM MUSCL scheme (top) and WENOS (bottom)
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Fig. 2 Comparison of both schemes, Ri = 10, time ¢ = 5. Transversal distribution of the
u-velocity component (fop) and density disturbances (bottom), y = 2.25

the dependence of the solution on the mesh and shows that the solution is relatively
mesh independent. Only the maxima of quantities at the height midpoint behind the
obstacle are lower and they are probably not resolved correctly on this coarse mesh.

Figure 4 shows the dependence of the solution on the permeability K for the three
different values 1/K = 10, 100, 1000. For the values 100 and 1,000 the solutions
are very similar and the dependence on K is low. The obstacle can be considered
as impermeable for 1/K > 100. The results are also in good agreement with the
predictions given by our simple analytical model.
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Fig. 3 Dependence on the mesh, Ri = 10, time ¢ = 5s. Transversal distribution of the u-
velocity component (fop) and density disturbances (bottom), x = 1

Figure 5 displays the dependence of the flow on the Richardson number. A
comparison of the isolines of density perturbation for four different Richardson
numbers (Ri = 0.1,1,10, 100) is presented at the time f = 6s. At a lower
level of stratification behind the obstacle, a Karman vortex street forms. When the
level of stratification increases, the character of the flow changes; wake instabilities
are damped by stratification and internal gravity waves are clearly visible. Beyond
this level, the obstacle generates a strip with constant density. The changes in the
character of the flow are clearly visible in Fig. 6, where transversal distribution of
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Fig. 4 Dependence on the permeability parameter K, Ri = 10, time ¢ = 5s. Transversal
distribution of the u-velocity component (fop) and density disturbances (bottom), x = 1

computed quantities for different Richardson numbers are shown. For comparison
see [BerO1].

The isosurfaces of the vorticity in 3D for the Richardson numbers Ri = 1 and
Ri = 10 are shown in Fig. 7. The marked influence of stratification can be seen at
the x—z cross-section. In the case Ri = 1, the influence of stratification is small
and the shape of vorticity in the cross-section is close to a circle. On the other hand,
for the higher level of stratification Ri = 10 the vortices are damped differently in
different directions, which leads to an asymmetry in the vorticity isosurface.



Numerical Simulation of the Towing Tank Problem Using High Order Schemes

Rhe: AEEE-OE -15E-02 -23E-03 -14E-02 54E-03 12E-02 19E-02 28E02

0 1 2 3

(a) Ri = 0.1

Rho: -18E-02 -11E-02 -59E03 -88E-04 45E-03 37E-03 15E-02 20E02
4

4
X

() Ri =10

(d) Ri =100

Fig. 5 Tsolines of density perturbations for different values of Ri. Timet = 65
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Fig. 6 Transversal distribution of density disturbances (fop) and u-velocity component (bottom)

for different Richardson

numbers, X = 1,time? = 65

The isosurfaces of the density perturbations in 3D for the same Richardson num-
bers are shown in Fig. 8. The internal gravity waves with Brunt—Vaisala frequency

are clearly visible.
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Fig. 7 Vorticity distribution for the Richardson numbers Ri = 1 (top) and Ri = 10 (bottom),
timet = 5s

6 Conclusion

Two numerical methods for simulation of 2D and 3D stratified flows have been
developed. Such simulations are necessary for more complicated situations, where
experimental data or other information about solution is no longer available. Since
the solution can depend on the numerical scheme, a comparison of solutions
obtained using different methods eliminates this dependence. Both methods have
been used successfully for the towing tank problem. The numerical results obtained
are in good mutual agreement and also match physical expectations.

Numerical results were obtained for Richardson numbers Ri € < 0, 100 > and
permeability K € < 1, 1000 >. From this, according to our simple analytical model,
it follows that the minimal value of permeability is K > 100. The dependence of
the solution on the mesh was also tested. The computations performed demonstrate
the applicability of our methods to the simulations of stratified flows.
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An open question is the choice of appropriate boundary conditions; those used in
the current approach are suitable for the simulation of flows in a domain bounded
with walls. Alternative conditions should be considered for free atmosphere flows.
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Nonlinear Singular Kelvin Modes
in a Columnar Vortex

Philippe Caillol and Sherwin A. Maslowe

Abstract This paper considers the propagation of helical neutral modes within a
cylindrical vortex and the subsequent formation of nonlinear critical layers around
the radius where the mean-flow angular velocity and the mode frequency are com-
parable. Analogy can be done with the stratified critical layers. We formulate a
steady-state theory valid when the analogous Richardson number is small at the
critical radius. The apparent singularity is removed by retaining nonlinear terms in
the critical-layer equations of motion. The result from the interaction is the emer-
gence of multipolar vortices whose poles are located around the critical radius, spiral
along the basic vortex axis and are embedded in a distorted mean flow caused by a
slow diffusion of the three-dimensional vorticity field from the critical layer.

1 Introduction

The propagation of helical perturbations to a columnar and bounded vortex has
been studied first by Lord Kelvin. In cylindrical coordinates (r, 0, z), the problem
involves the investigation of infinitesimal perturbations (i, ug, u;) superimposed
on a flow with azimuthal velocity profile V (r). In this paper, we are interested in
waves propagating in an unbounded vortex. A model that has often been employed
is the discontinuous Rankine vortex, a constant-vorticity cylinder embedded in a
zero-vorticity space. The related modes are called Kelvin modes. The motivation
stems with the study of the stability of interacting vortices. For instance, we can cite
the aircraft trailing vortices: a pair of counter-rotating vortex filaments shed from the
wingtips of aircraft. A prevailing instability in such problems is the elliptic instabil-
ity that involves resonantly interacting Kelvin waves. Tsai and Widnall [11] found
that the most unstable perturbations of the Rankine vortex corresponded to a pair of
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Kelvin modes having zero frequency and azimuthal wavenumbers m = =+1. Real
vortices, however, have continuous profiles and it is important to ask what effect the
use of a continuous-vorticity profile might have on this instability mechanism. Sipp
and Jacquin [9] have recently done so in a linear study and they concluded that the
“Widnall instabilities” would not occur because of the presence of a critical layer.
The neutral Kelvin modes required for the resonant interaction would be damped in
the continuous case. In this paper, we reexamine the question by emphasizing the
effect of nonlinearity rather than viscosity in the critical layer.

Due to the similarity between both critical-layer singularities, it is possible to
anticipate certain results based on those that have been demonstrated for stratified
shear flows in [5] which is a companion paper. For Kelvin modes on vortices, we
will extract an equivalent Richardson number and will show that when the latter
is small at the critical level, inviscid nonlinear modes exist while they would be
damped if viscosity were used to deal with the critical layer.

The reason of the nonlinear neutral mode existence is the absence of any phase
change across the critical point. We will show in Sect.4 by means of an inviscid
analysis valid when the vorticity is small at the critical level that the only solution
compatible with a nonlinear critical layer has no phase jump. Section 5 yields the
same result when the axial wavelength is large. This result was found by Caillol
and Grimshaw (2004) in the two-dimensional-motion assumption with the same
small-vorticity approximation and for a Bessel function J; azimuthal-velocity basic
profile [3]. In that particular case, neutral modes have an analytical expression.

2 Outer Flow

We consider small-amplitude helical perturbations to a swirling flow V (r) corre-
sponding to a pressure distribution p(r), of phase £ = kz + m60 — wt, k and m
being respectively the axial and azimuthal wavenumbers, and w the frequency. Deal-
ing with neutral modes, £ can be used as an independent variable. The momentum
and continuity equations can then be written

Du, _“5 ap 1 10 (rau,>’

7 9  Rerar\ or

= 1
Dt r ar Re r or M

Dug Urug map 1 10 8u9)
i A Z -0 F,
Dt r r8§+Rer8r(r b

Du, kap 11 8( 8u2>

Dr = Y% TRerorV o )
D m d d
where Dr =(7u6+kuz_w>£+ur8_r
and a(ruy) dug +kr8uz —0.

or M D€
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Our analysis being primarily inviscid, we have retained in the momentum equations
only those viscous terms that will be the largest in the critical layer and, conse-
quently, required in the analysis to follow. The basic-vortex small viscous damping
is balanced by a body force Fj, whose expression will be given later on. The equa-
tions have been nondimensionalized by using the angular velocity of the vortex at
its center and a vortex characteristic radius.

2.1 The Singular Mode

O(e) disturbances are superimposed to a mean flow V and W:
u, =¢eU,, u9=7+8U9, u, =W +¢U,, p=p+eP. (2

¢ is a small dimensionless parameter. The mean shear flow induces axial and
azimuthal mean vorticities O, = D[V] and Q9 = —D[W] where D = d/dr
and Dy = D + 1/r. The angular rotation of the vortex is denoted 2 = V/r. We
study the asymptotic steady régime following the critical layer formation induced
by the wave/vortex interaction. Mean axial and azimuthal motions are generated
while the critical layer is forming as results from this interaction. To have an ana-
lytically tractable problem, W will be of smaller amplitude than the basic-vortex
azimuthal velocity V. In the same way, V contains additional smaller contribu-
tions to V. Such a mean flow is produced by viscous diffusion of momentum
through the critical layer over a very long time due to small viscosity [4]. Away
from the critical layer, the perturbations are taken sinusoidal: U, = wu sin§,
Ug = vcosé, U, = wsin€ and P, = p, cos&. Introducing these into (1),
the linearized system can be reduced to the Howard—Gupta equation [7]

D[S(r)Dyu] +[ o I (25()0:(1) = rDIS() 0= (]) + KS (R )Qz((r))
+ s (rDISIQ0(] = S(1)00() + 2k DS (1) Qlr) — 1] = 0
G

where y = mQ + kW —w and S = r2/(m? + k?r?). This equation admits a
singularity at the critical radius r. where y(r.) = 0. Following [8], we expand all
terms in (3) around 7, to obtain a solution valid locally having the form

u(m) = Auy () + Bu_(n), us() =2 Fagm), andn=r—r.. @

The functions 7i+ (1)) are regular in 0. We define v as v = (1 — 4 J,)!/2, and the
equivalent local Richardson number as

2k%Q m
Jo=—"——"— (Qz,c + k—Qa,c> . (@)
(M, + kW,)? re
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3 Critical Layer Analysis

The critical-layer scaling is determined by balancing the perturbation with the
swirling flow in a frame moving with the wave angular speed w/m = Q.. Let us
concentrate on the case J. < 1/4 corresponding to (4). The most singular Frobenius
solution is characterized by the exponent§ = (1—v)/2. Consideration of the system
(1) leads to the conclusion that the inner cross-stream coordinateis R = (r —r¢)/ &P
where B = (2 — §)~!. The azimuthal velocity V in the new frame is defined by

ug—Ve~Ve'(r—re) +ev(r) cos € = P[V(R,E) + Qe R].

The remaining dependent variables are scaled as

up = 2PUR.€), u, =PW(R,E) and  p-— % Q22 = P(R,§).
The Reynolds number scales as 1/Re = A &3#. Substituting these new variables
into (1) leads to the critical-layer equations. The latter are highly nonlinear and
the solution even at lowest order involves all the harmonics. For that reason, we
consider the case of small Richardson number because a simple closed form solution
is possible. This number is small for different régimes according to the value of
the shear, ratio of the vorticity over the inertial frequency at the critical radius: (1)
Sz, 80 < 1,(2) kre, S¢ < 1 where Sz9 = Qz/0,/(282¢). (1) may apply to a
rapidly rotating vortex or a critical layer occurring far away from the core of the
vortex. Numerical solutions of the eigenvalue problem reveal that it is indeed often
the case. (2) corresponds to a long axial wavelength mode. Assuming J, small, the
expansions (4) become

o0 o0
$a =0+ Y _ aonn". ¢p =1+ Y bonn" + boda(n)Inn*. (6)

n=2 n=2

n* is a normalized cross-stream coordinate: n* = 7n/no where 1o is determined

while matching the outer flow with the critical-layer flow. So, u becomes

u(m) = (Ore g + ¢p) siné + bore © P, cosé. 7

The logarithmic term in (6) is expressed by writing In|r — r.| for r > r. and
In|r—rq| +i®whenr < r.; ®(1) is defined as the phase change. On either side
of the critical level, © takes different values denoted ©®=. u must be continuous at
r = r¢, so the integration constant in front of ¢ is unique and chosen without loss
of generality equal to 1.
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4 The Small-Vorticity Limit

Mean fields are expanded in the outer flow in this way

V=Vo+e?Vi4+eVod ... W=e2W,+eWp+... (8)

with the related vorticities

1 1
0:=Q0+¢20:1+ ..., Q9 =¢20¢1 +6Qg2+ ...

and similar expressions for Uy, U, and P,. We omit the subscript z to the zero-order
axial mean vorticity. The first-order Richardson number is then since Qo = 0

2.2
k*rg

Jie=—"5—
e 2m2 Qo,c

(Qz,l,c + km_chG,I,c) . )

The additional mean flow is likely to be distorted, that is the velocity and its succes-
sive derivatives may be different at either side of the critical radius. Similar velocity
and temperature distortions were shown by [10] to be necessary for the stratified
critical layer. Distortions enable one to match the three components of vorticity and
the normal velocity on the separatrices bounding open and closed-streamline flows
within the critical layer.

4.1 Critical-Layer Flow Outside of the Separatrices

The critical-layer equations are in the small-vorticity limit (8 = 1/2)

(LA T
oR cr=e Te
m dP v W LUV PV eIV Fp
=2 Lu(2e. V4 kW) — 42 (== 4+ 22
3§+ ( +8R> ( + )3§+ Te <3R2+rc 3R)+8
oW oW PW &3 oW
kg U—+(VV+"W)¥ *(aRﬁ;a—R)
and aU—i-maV—i-ka—W:O. (10)

oR  r 0f o
The body force is Fp, = —de3 AV ~ P (Vo + Vo/re). Writing the outer
expansion in inner coordinate determines how the inner variables are to be expanded

in the critical layer. For example, for U,

U ~ U(O)+81/2logsU(l)+8l/2U(2)+---, U(J) — UI(J)+AU§J)+O(A2), (ll)



100 P. Caillol, S.A. Maslowe

with similar expansions for V, W and P. Each field at each order j, as A — 0,
can be expanded in an inviscid and a viscous parts. Injecting such a decomposition
in (10) leads to secularity conditions on the viscous velocity and pressure compo-
nents. Requiring them to match with the secular terms in the outer flow will fix the
arbitrary functions that arise from integrating the governing PDEs [2]. In contrast
with the O(1) vorticity case, it is straightforward to find a leading-order solution of
the system (10). It consists simply of a radial oscillation superimposed on the mean
flow, specifically,

U® =sing, VO =V, -2Q0 . RWO =W, PO
=2Q0,R(Vie—QocR).

The O(¢'/2 log £) solution is also obtained from the outer flow. The non trivial equa-

tions are obtained at the order 0(8% .) Eliminating the pressure and replacing V ® by
a streamfunction-like variable v (?) lead to two coupled PDEs that can be integrated
once with respect to R. Before displaying these, we accomplish a transformation in
order to have the streamwise-motion equation written in a standard way [6].

T Q A Ro ~
§=X—Z[1+5] R=sRoR" y@ =520k, U@ = 20O,

¢ I'e

y@ — 5 po e k’c WO PO Z 25,07 op(z)

2m

1/2
v — 1//;2) +R?, s =sgn(R), s; =sgn(m,),and Ry = _Te
? 2m Qo,c
We then get
@) x 2 (2) ~2) @ re Qoc\  reF(X)
SlnXl//R*R*+R l//XR*_l// (WR*R*R*_ 2 >_ ) (12)
Qo,c RoQ0,c
~ ~ F(X
and  sinX WQ + R*WR = §@ _TW@,. - = W ay
RoQ0,¢

where A = A/Ry. In the following analysis, we drop the hats with the understand-
ing that it is the new variables with which we are dealing. The radial-momentum
equation integrated with respect to R determines P . Finally, the continuity equa-
tion provides an expression for U®). F(X) is an arbitrary function arising from the
integration. Matching to the outer solution leads to the expression of F(X) and then

to
kr.
Q91C=—— Qzlc and Jl,c =0. (14)

In order to relate the mean-vorticity jumps to the phase change, we integrate (12)
and (13) over one wavelength in X and then over R. The obtained relations are valid
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as R — 00, 50 ¥ and W® are replaced by their asymptotic expansions. Clearly,
when there is a phase change ® # 0, the only way is if 01, and Qg are
discontinuous across the critical layer. Finally, the relations of the vorticity jumps to
the phase change are given by

d(A
[Qz,l,c]i_ = _g[QG,l,c]i_ =S = Qo CRO i ) (15)

where ®(1) must be determined by solving (12) and (13) numerically. When we
consider the limit A < 1, as in other critical-layer problems, there are regions of
closed flow in the cartesian frame (X, R) and the solutions within such regions must
be matched to those outside across separatrices. W(Z) and W® can be then deter-
mined by solving (12) and (13). Each streamline can be defined univoquely by the
variable: Z = 1/2R? + cos X, Fig. 1 for a picture of the current lines projected on
the plane z = Cst in the case of the nonlinear neutral Kelvin mode m = 2.

4.2 Flow Within the Separatrices

First, the three vorticity components are matched across the separatrices. In
Appendix, we have extended the Prandtl-Batchelor theorem and shown that
1//(2 ©) — const. = Q@ within a region of closed flow according to (A4). ©
defines the flow within the separatrices. Matching the axial vorticities along the
upper and lower separatrices Z = 1 give

1 sir
Q(ZQ) 291; (Qzlc+Qzlc) and
[0z1.c]F = =251 Q. Ro[K(1) + V2] (16)
The second equation in (16) shows that a jump in axial vorticity takes place across

the critical layer even in the inviscid limit. Equating now the two expressions for
[Q2.1.c]F derived in (15) and in (16), we obtain

%«4[1{(1”«/5] as A —0. (17)

This is exactly the result obtained in [6] but with the opposite sign. Numerical
evaluation of the integral below defining K yields K (1) 4+ +/2 ~ 1.3788,

/ 2 1
\/— f (Z1 - cosX)ZdX Z2

] dZ,.

There are two conditions that should be satisfied along the separatrix, namely, a
kinematic condition and, secondly, continuity of pressure. The kinematic condition
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Fig. 1 Nonlinear neutral mode (¢ = 0.2)m =2,k = 2,r. = l and r, Q/Z.O.c = Qj_.l.c =
Q0.¢; view taken at a height z = Cst. The dotted circleisr = r.

requires the normal velocity to the separatrix Z = 1 to be continuous. At the order
e? , the kinematic condition plus the azimuthal-vorticity matching yield jointly with
the PB theorem the determination of W (2-®), Radial-vorticity matching is equiva-
lent to azimuthal-vorticity matching. Moreover, if we require continuities of ¥ (2:©)
across R = 0 and V® across the separatrix, then ®1 = ©; as aresult, there is no
phase change across the nonlinear critical layer in the inviscid limit.

5 The Long-Wave Nonlinear Critical Layer

In this section, the Richardson number J, is still taken to be O(¢!/2). How-
ever, J. is small because k < 1. Specifically, (5) shows that we must scale
kre =k '/, u, then possesses a new scaling; u; = &'/*k W(R, £). As in Sect. 4,
a simple leading-order solution of the system (10) can readily be found and consists
of a radial oscillation superimposed on the mean flow with an additional oscil-
latory component to the pressure. The axial-vorticity jump and the interior axial
vorticity turn out to be the same as in (15) and (16), where R, is now defined as
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1/2
Ro = |re/[m (2Q0,c — Qo.0)]|"/? and J1  as

2 2
Tie = K Q Qo,c +mQy.1,c

—_— —_ = 18
' m? o (Qo,c —2 90,0)2 (18)

Matching of the azimuthal vorticity across the separatrix Z = 1 leads to
mQgic=—0oc, of Jio=0, and [Qg1.T =0 or [W,]f=0.

(19)
Matching of the normal velocity across the separatrix determines W 2-®). Continu-
ities of V(>®) at R = 0 and Z = 1 respectively give ®F = ©®~ and [W’llc]lL =
To conclude this section, we say a few words about the mean-flow distortions that
are present even in the limit A — 0. Caillol and Grimshaw [4] have used the method
of strained coordinates to parametrize the streamlines in the critical layer in order
to have the velocity at the cat’s eye core and at the stagnation points obeying certain
topological conditions. We have done this here as well, but omit the details; these
points belong to helices, so all the velocity components are linked.

6 Concluding Remarks

We have analytically investigated the critical-layer like interaction of a neutral
Kelvin mode with a swirling shear flow. The linear theory is similar to this of
a stratified shear flow. The nonlinear study is made possible due to the small-
Richardson-number assumption relevant for instance, to rapidly rotating vortices
and yields a classic Kelvin cat’s eye pattern within the critical layer. The result
of this interaction is an additional and distorted mean flow of higher magnitude
than the mode amplitude. Axial and azimuthal mean vorticities may be distorted.
The vorticity jump is then proportional to the gradient of the basic axial vorticity.
The equivalent Richardson number J,. reveals to be smaller than expected, of order
the mode amplitude, which implies that the streamlines within the critical layer need

. . . 1 -
to be even more distorted, in order to describe an O(e2) J, critical-layer flow.

Appendix: Generalized Prandtl-Batchelor Theorem

Batchelor proved that for a steady, inviscid and plane flow the vorticity inside a
bounded region is constant. We follow that basic procedure, but the three dimen-
sionality of the present problem naturally adds complications. Our starting point is
the momentum equation

1
3,u+QXu+VH=R—Au+Fb, (1)
e
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H = p/p + |u|?/2, Q is the vorticity and F is a body force to enable a viscous,
parallel flow. We decompose the motion into an inviscid and a viscous components.
The development by Batchelor, at this point, involved a curvilinear integration along
a streamline, whereas in our case the integration is on a surface Z = const (recall
that Z = R?/2 + cos X). This surface is a cylinder that spirals with respect to the
axis of the vortex. The integration will be done either in a plane z = const, in which
case 0 varies over a 27t/ m range or in a plane 6 = const, in which case z varies over
a 27/ k range. In that way, we obtain two conditions that are sufficient to determine
the flow inside the separatrices. Performing the integration now, we obtain at the
leading orders

¢(Qi X uy) -dl—i—gg(Qv xu;) -dl+ &3/? Sﬁ[v x Q; + AVoegl-dl=0.
(2)

In the two dimensional case, the first two integrals vanish, but that does not happen
here because u is three dimensional. First, we carry out an integration with respect
to 0 in a plane z = const. The integration is along a “streamline” Z = Z,, say,
where Z is constant. At the lowest order, we obtain

o
¢[RW§22R®Z) _ Q0c] 46 = 0.
0,c

where the integration is in the clockwise sense. The body force vanishes because of
symmetry which permits us to write the integral as

27w/ m
/ [ngoZH fng@Z) 1v/Zo — cos[mB] d6 = 0. (3)
0

Given that 1//221’36) depends only on Z, (A3) leads us to conclude that

%2@) = const. 4)
A second condition is determined by integrating in a plane 8 = const with z travers-
ing a 27/ k path. At leading order, this leads to a condition that helps determine the
axial velocity, namely,

gﬁsR[(RWf’@’)z + W dz =o. (5)

The governing equations for ¥ > and W2®) used in the foregoing development
were those appropriate to the small-vorticity case O, . < 1. A similar analysis can
be carried out in the long-wavelength problem. Again, we begin with an integration
with respect to 0 in a plane z = const. At the lowest order, we obtain (A3). A
second condition will now be determined by integrating in a plane 6 = const. The
leading-order equation is the following:
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2,0
Sﬁstéz’dz:o. (6)

Writing W3 = «Q¢ ./m R+ V¢, further differentiations with respect to R and
Z followed by a substitution into (6) leads to

2n/k
/ [Wg&?} + ‘IJESQ)}],/ZO —coslkz]dz =0. (7)
0

That leads to the conclusion that \I’;o) = 0, the reason being that the general solu-

tion involves /2 Z and when substituted into (7), a singularity at Z = 0 would
result from differentiating with respect to Z.
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High Order Schemes for Reaction—-Diffusion
Singularly Perturbed Systems

C. Clavero, J.L. Gracia, and F.]J. Lisbona

Abstract In this paper we are interested in solving efficiently a singularly perturbed
linear system of differential equations of reaction—diffusion type. Firstly, a non-
monotone finite difference scheme of HODIE type is constructed on a Shishkin
mesh. The previous method is modified at the transition points such that an inverse
monotone scheme is obtained. We prove that if the diffusion parameters are equal it
is a third order uniformly convergent method. If the diffusion parameters are differ-
ent some numerical evidence is presented to suggest that an uniformly convergent
scheme of order greater than two is obtained. Nevertheless, the uniform errors are
bigger and the orders of uniform convergence are less than in the case corresponding
to equal diffusion parameters.

1 Introduction

In this work we consider the singularly perturbed boundary value problem given by
the linear reaction—diffusion system

Lou=f, xe€Q=1(0,1), u(0)=up, u(l) =uy, (1)

where the differential operator L, is defined by

L d? d? ari(x) arz(x)
L =g o1 soengay +a A= (GU0GR0)

We will assume that the diffusion parameters 0 <e&; <&, <1, can take arbitrary
small values having, in general, different order of magnitude, that the data of
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problem (1) are sufficiently smooth functions and also that the coefficients of the
coupling reaction term satisfy

2
daipza>0 ;>0 i =12 a; <0if i # ] )
j=1

i.e., the reaction matrix is an M -matrix.

First order uniform convergence of the central finite difference scheme con-
structed on a Shishkin mesh was proved in [7] and in [4] this was improved to almost
second order. Linf3 and Madden [6] extended this result to the case of an arbitrary
number of equations, when the reaction coefficient matrix A satisfy another type
of conditions, which include these ones given in (2) for the case that the coupled
system has only two equations as problem (1) here considered. Also, in [3] precise
information of the asymptotic nature of the solution and its derivatives, for a prob-
lem having n equations with n diffusion parameters, has been recently established
by means of an appropriate decomposition of the solution, revealing that the solu-
tion exhibits overlapping boundary layers with a width (9(81._1/ %), i=1,2,....nat
both endpoints x =0 and x = 1. It was also proved that the central finite difference
scheme constructed on a piecewise uniform mesh of Shishkin type, is first order
uniformly convergent in the maximum norm.

High order convergence schemes are very interesting in practice because they
provide accurate numerical approximations with a low computational cost. Never-
theless, at the moment, in the literature there are not numerical methods for problem
(1) with this desirable property. The aim of this work is to see how the HODIE tech-
nique permits to obtain a uniformly convergent method having order bigger than
two. In some cases the proof of the uniform convergence of the method is fulfilled,
but in general we only dispose of numerical evidences showing the efficiency of the
HODIE method.

Henceforth, C denotes a generic positive constant independent of the diffusion
parameters, and also of the discretization parameter.

2 The Numerical Method

To construct the numerical method we first define a piecewise uniform Shishkin
mesh. Following [7] the mesh points are

Jhe,, 0,...,N/8,

xn/s + (j —N/8)hg,, j=N/8+1,...,N/4,
xj=9xya+(—N/4&H, j=N/4+1,...,.3N/4,

X3n/a + (j —3N/dhe,, j =3N/d+1,...,TN/8,

x7n/8 + (j —TN/8)he,, j = TN/8 +1,..., N,

-~
I
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where hg, =87, /N, he, =8(ts, —T¢,)/ N, H =2(1—21,,)/N, and the transition
parameters are given by

Te, =min{1/4,00\/51nN}, Te, =min{r€2/2,00\/alnN},

and 09 > 4. If 7,, # 1/8 and 7., = 1/4, we modify slightly the mesh points; now
they are given by

jhe,. =0, N8,
X;=1xns+(G —N/8)H. j=N/8+1.....,7N/8,
x7n/8 + (j —TN/8)he,, j = TN/8+1,....N,

where H =4(1 — 21,,)/3N. Below we denote the local step sizes by h; = x,; —
Xxj—1, j=1,..., N.On this mesh we impose that the local error be zero on the set
of vector polynomials of the form

1 2 3 .
a0(1)+a1(§)+a2(§2)+a3(i3), o, €R, i =0,...,3.

Following the construction made in [1] for the scalar case, we write the finite
difference scheme LY = (LY, LY)T in the form

LNU(XJ) =r;;Ui(xj—1) +rf ;Ui(x)) +r Ui(xj41) +
+ 4} jai (DU (xj—1) + q7 jai () U (x)) +
+ 47 jai g (xj 1)Uk (xj11) =
=i fiCej-1) + 47 fi () + 47 fi ), 3)

forj_l ,N—1,i=1,2, where k = Zifi—l k =11if i =2 and the coeffi-
cients ¢’s satlsfy the normalization condition ql j —i—ql J +‘11 ;= 1,1 =1,2.Then,
it is not difficult to prove that for j =1,--- ,N — 1,i =1, 2 the coefﬁc1ents r's of
the scheme are given, in function of the coefﬁ01ents q’s, by

Cr=ajaii(xj-0) + a7 jaii(x)) + ¢} jaii () = =,
it = =2/ (hjr1(hj + hjt1) + ¢ jaii(xj1), “)
i ==2ei/(hj(hj +hjt1) + 4} jaii(xj-1),
and also that it holds
qi ;= (hj —hjt1)/GBhj) + ¢ hj1/h;. )]

The value of the free parameter ‘11 - is taken equal to the one obtained for the scalar
case in [1] and we will see that this ch01ce is also appropriate for the case of systems.
This value depends on the location of the mesh points and also on the ratio between
the step sizes of the Shishkin mesh and the diffusion parameters. Concretely, for
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j=1,---,N/8—=1,7N/8+ 1,--- ,N —1,ie, x;j € (0,7,) J(I — 7¢,, 1) and
i = 1,2, the coefficients ¢’s are

2 2
qlzl 1_L q3=l 1— hj
b6 hjthj +hje1) ] 76 hjti(hj +hje1) ) (6)

2 _ 4 1 _ 3
;=1 =4, ~ 4,

For j =N/4,--- ,3N/4,ie., x; € [ts,,1 — 15,], and i = 1,2 we distinguish two
cases: first, if 2H?||a;;||oo/3 < &i, then the coefficients are defined again by (6); in
the other case, when 2H?||a;;||0/3 > €, they are given by

gi; =47y =0 47; = 1. )
corresponding to the classical discretization of central differences. Note that in this
case (5) does not hold.

Last case is when j =N/8,--- ,N/4 — 1,3N/4 + 1,---|IN/8, ie, x; €

[te,. 182) U — 1,,.1 — 74, ]. Now, for the second equation, i =2, the coefficients
are again given by (6). Nevertheless for the first equation, i = 1, again we must dis-
tinguish two cases; first, when 2h§2 lla11lloo/3 < €1, the coefficients are given by
(6); in the other case, 2h§2 la11lloo/3 > €1, they are given by (7).

Note that, in general, the coefficients defined in (6) are not positive and then the
associated matrix to the numerical scheme is not an M-matrix. Nevertheless, we will
see the efficiency of this scheme. As an example, we solve the particular problem
(see [7]) setting by

_ 2x+ 1?2 —(x3+1) . 2e*
A= (—Zcos(nx/4) 2271 )° /= 10x+1)° ®)
with ug =u; = 0. For this problem the exact solution is unknown and therefore to
approximate the pointwise errors |(U —u)(x;)|, j =0,---, N, we use a variant of

the double mesh principle. So, we calculate a numerical approximation Utou given
by the scheme (3) on the mesh {X;} that contains the mesh points of the original
piecewise Shishkin mesh and their midpoints, i.e., the mesh points are defined by
Xoj=xj, j=0,....N, X2j4+1=(x; +x;41)/2, j=0,..., N — 1. Then, at the
original mesh points x;, j =0,1,---, N, the maximum errors and the uniform
errors are approximated by

d.v = o max |U(x/) [’j(.)%zj)|, dy = mgxdg,N,

where, in order to permit the stabilization of the errors, we take S as the set
S ={(e1,62) | €2 =2%272,...,273% g1 =£5,27%,,...,27°%.  (9)

From these estimates of the pointwise errors we obtain the corresponding orders of
convergence and the uniform orders of convergence in a standard way, by using

p = log, (da,N/ds,zN)’ Puni = log,(dy/dan).
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Table 1 Uniform errors and orders of convergence for the scheme given by (3)—~(7)

N =32 N=64 N=128 N=256 N=512 N =1,024 N =2,048 N =4,096

di.N 9.018E-02 4.755E-02 2.452E-02 7.073E-03 1.091E-03  1.037E-04 1.007E-05 1.096E-06

Pluni 0.923 0.956 1.793 2.696 3.395 3.364 3.200
da N 3.609E-01 1.613E-01 4.026E-02 5.665E-03 5.723E-04  5.593E-05 5.111E-06 ~ 4.545E-07
D2.uni 1.162 2.002 2.829 3.307 3.355 3.452 3.491

In all cases we take the constant og = 4; in practice if this constant is smaller, the
desired order of uniform convergence is not achieved. On the other hand, if it is
greater than 4 the numerical errors are bigger but the order of uniform convergence
is preserved.

Table 1 displays the results obtained with the HODIE scheme; from these results
we observe that the order of uniform convergence is four except by a logarith-
mic factor, as it is usual on Shishkin meshes. Nevertheless, the discrete operator
of this scheme is not of positive type and we do not have the proof of the uni-
form (/oo, [0 )-stability. In [6] this uniform stability was proved without using the
inverse monotonicity of the discrete operator, but unfortunately so far we have not
been able to apply this technique to the HODIE operator. In [4] a non-monotone
FEM scheme was used to solve a scalar reaction—diffusion problem, proving also its
uniform stability in the maximum norm.

Therefore we propose a slight modification of scheme (3) to have a new scheme
satisfying the discrete maximum principle. We clearly see that only the discretiza-
tion associated with the transition points does not give the correct coefficients
sign pattern to have an M-matrix. Then, we change the discretization correspond-

ing to the indexes j = N/8, N/4,3N/4,7N/8, such that i <O,rifj <0,r;; +
rl.'f'j +r{; <0and ql.l’j , ql.z,j, qi ; be positive. It is straightforward to obtain that the

coefficients ¢'s are given by
ai; =47, =q7;=1/3. j=N/8.N/4.3N/4IN/8,i=12. (10)

It is easy to proof that the discrete operator is of positive type and therefore it
satisfies the discrete maximum principle.

3 The Case of Equal Diffusion Parameters

To find a theoretical proof of the uniform convergence of the method, we begin with
the case where both diffusion parameters take the same value, £; =¢; = €. Note
that in this case really there are only two transition points in the Shishkin mesh and
the transition parameter is defined by v = min {1/4, 69./g; In N }. Following the
idea of extending the domain introduced by Shishkin in [8], which was also used
in [2] to find a decomposition of the exact solution of a two dimensional scalar
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equation of reaction—diffusion type, it can be proved the following result showing
the asymptotic behavior of the exact solution.

Lemma 1. Let assume a;j, f € C4(§), i,j =1,2. Then, for ey = g2 = ¢, the exact

solution of (1) can be decomposed as w = v +w, where for x € [0,1], 0 <k <6 and
i =1,2itholds

1o (oo = € (14 £47072), (1)
and
”wi(k)(x)”oo < Cg—k/z (e—x«/a/a + e—(l—x)«/a/a)_ (12)

Note that we have appropriate bounds of the regular and singular components
and their derivatives up to sixth order, which we will need in the analysis of the
truncation error.

Theorem 1. Let u be the solution of continuous problems (1) and U the solution of
the discrete operator (3)—(7) and (10) defined on the previous Shishkin mesh, when
&1 =& = &. Then, the error satisfies

|U=ulleo <C(N3 4+ N*In* N).

Proof. Inthe case T = 1/4, using that e~1/2 < C In N and the crude bounds ||u® ]|

<Ce/2, i =0,---,6,a classical analysis proves that |U — u||e < CN~#In* N.

When 7 < 1/4, first we study the error for the regular component. Then, if ¢ <2 H?

min ||@;; ||eo/3, taking Taylor expansions the local error can be bounded as in [1] for
1

a single equation, and therefore we have

CN2¢|v®| o <CN2e <CN7*, x; € (r,1—1),
CN_18||V(3)||OO <CNle <CN73, x; ef{r,1—1},
Ce(N ' 2In N)*|[v® o <

< CN™, x; €0, 1)Ul —r11).

ILY (V= v)(x))| <

Then, the discrete maximum principle proves that
IV—vlloo < CN7>. (13)

On the other hand, if & > 2H? min ||a;;||0/3, We can obtain
1

CN_48||V(6)||OO < CN™, x;e(r,1—1),
ILN(V=v)(x;)| < { Ce(N1e2In N)* v || <
< CN™, x; €0, 0)U(l—r1).

At the transition points, using that for any z € C*(Q) it holds

20zj+1—zj)  2(zj-1—z))
hjy1(hj +hjv1)  hjth; +hjyr)

4

1
+ 5(2j+1 +zi+ 2| =

<C max{hz,h§+l}||z<4>||oo,
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we deduce
ILY (V= v)(x;)| < CN2e|[v® oo < CN2¢, x; € {1,171}

Defining the barrier function Z(x;) = C(N 3&"/2In N + N™*)(0(x;) + 1), where
0 is the piecewise linear function

f, if x € [0, 7],
T
O(x) =1 1. ifx elr,1—1],
1—x .
Jifx e[l —1,1],

using the maximum principle, it can be proven that
V="l < C(N3c/2InN + N7*%),
and taking into account that £1/2In N < 1, it follows
IV—v[oo <CN>. (14)

For the singular component we distinguish two cases depending on the location
of the mesh point. For x; € [r,]1 — 7], using the exponential character of this
component, it is not difficult to deduce

(W = w)(x))] < W)+ [wee)l < CN 7, xj € [r1— 1],
In the second case, x; € (0,7) U (1 — 7, 1), the local error is bounded by
ILY (W —w)(x,)] < Ce(N 12 In N)*|w® oo < C(N "' In N)*.
Applying again the maximum principle, now on [0, 7] U [1 — 7, 1], we deduce
W =Wl < CN N, x; €. 7]UL -7 1. (15)
From (13)—(15) the result follows.

For the same example as before, with e =2°,272, ... 2750 Table 2 displays the
results obtained; from it we clearly observe that the order of uniform convergence
is similar to that for the unmodified HODIE scheme. Note that the numerical results
indicate an order of uniform convergence higher than this one proven in Theorem 1.

Table 2 Uniform errors and orders of convergence for the modified scheme given by (3)—(7)
and (10)

N =32 N=64 N=128 N =256 N =512 N =1,024 N =2,048 N =4,096

din 4.519E-02 1.330E-02 2.589E-03 3.307E-04 3.372E-05 3.241E-06 2.980E-07 2.641E-08
Pluni 1.765 2.361 2.969 3.294 3.379 3.443 3.497
da N 9.864E-02 2.132E-02 2.666E-03 2.960E-04 2.994E-05 2.856E-06 2.615E-07 2.315E-08
D2.uni 2.210 2.999 3.171 3.305 3.390 3.449 3.498
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Table 3 Uniform errors and orders of convergence for the modified scheme given by (3)—(7)
and (10)

N =32 N=64 N=128 N=256 N=512 N =1,024 N =2,048 N =4,096

din 1.722E-01 8.145E-02 3.028E-02 8.314E-03 1.830E-03  3.500E-04 6.161E-05 1.049E-05
Pluni 1.080 1.428 1.865 2.184 2.386 2.506 2.554
da N 6.890E-01 3.258E-01 1.211E-01 3.324E-02 7.306E-03  1.392E-03 2.418E-04  4.087E-05
D2.uni 1.081 1.428 1.865 2.186 2.392 2.525 2.565

4 The General Case: 1 <é&,

In the general case, when the diffusion parameters can be different, the theoretical
question is more complicated. An important question is related with the decompo-
sition of the exact solution. In this case it is possible to find a decomposition into
a regular and singular part (see [5—7] for instance), but it is not clear how it is pos-
sible to obtain the bounds (11) for the regular component of the solution; note that
we need the bounds of the derivatives up to sixth order, to find appropriate bounds
for the local error associate to the scheme. Nevertheless, for us it is interesting to
confirm in practice that this scheme gives an order of uniform convergence bigger
than two.

Table 3 displays the results obtained with the new scheme when the diffusion
parameters are not equal. From this table we observe that the method gives an almost
third order uniformly convergent method, which is less than the order obtained in
the case of equal diffusion parameters.

Nevertheless, this method improves both the maximum errors and the numeri-
cal order of uniform convergence with respect to central finite difference scheme.
Because the modified finite difference scheme satisfies the maximum principle, hav-
ing appropriate bounds for the derivatives of the regular and singular part of the
solution, would allow us carry out the analysis of the local error, and therefore prove
the desired uniform convergence.
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References

1. Clavero, C., Gracia, J.L.: High order methods for elliptic and time dependent reaction—diffusion
singularly perturbed problems. Appl. Math. Comp., 168, 1109-1127 (2005).

2. Clavero, C., Gracia, J.L., O’Riordan, E.: A parameter robust numerical method for a two
dimensional reaction—diffusion problem. Math. Comp., 74, 1743-1758 (2005).

3. Gracia, J.L, Lisbona, F.J., O’Riordan, E.: A coupled system of singularly perturbed parabolic
reaction—diffusion equations. Adv. Comput. Math. Published online: 24 June 2008.

4. LinB, T.: Maximum-norm error analysis of a non-monotone FEM for a singularly perturbed
reaction—diffusion problem . BIT Numer. Math., 47, 379-391 (2007).



High Order Schemes for Reaction—Diffusion Systems 115

5. LinB, T., Madden, N.: Accurate solution of a system of coupled singularly perturbed reaction—
diffusion equations. Computing, 73, 121-133 (2004).

6. LinB, T., Madden, N.: Layer-adapted meshes for a system of coupled singularly
perturbed reaction—diffusion problems. IMA J. Numer. Anal., 29, 109-125 (2009).
doi:10.1093/imanum/drm053.

7. Madden, N., Stynes, M.: A uniformly convergent numerical method for a coupled system of
two singularly perturbed linear reaction—diffusion problems. IMA J. Numer. Anal., 23, 627-644
(2003).

8. Shishkin, G.L.: Discrete aproximation of singularly perturbed elliptic and parabolic equations,
Russian Academy of Sciences, Ural section, Ekaterinburg, 1992. (In Russian).



A Patched Mesh Method for Singularly
Perturbed Reaction-Diffusion Equations

C. de Falco and E. O’Riordan

Abstract A singularly perturbed elliptic problem of reaction—diffusion type is
examined. The solution is decomposed into a sum of a regular component, boundary
layer components and corner layer components. Numerical approximations are gen-
erated separately for each of these components. These approximations are patched
together to form a global approximation to the solution of the continuous problem.
An asymptotic error bound in the pointwise maximum norm is established; whose
dependence on the values of the singular perturbation parameter is explicitly identi-
fied. Numerical results are presented to illustrate the performance of the numerical
method.

1 Introduction

Consider the singularly perturbed diffusion reaction problem
—e Au(x) + b(x) u(x) = f(x), xe Q C R, ulyq = g(x), (1

with 0 <& << 1 and b(x) > B > 0 for x € Q. The solution displays boundary lay-
ers whose width depends on the parameter ¢. For d =1 a very simple yet effective
strategy to construct parameter uniform numerical methods is the use of piecewise
uniform Shishkin meshes [1], i.e. meshes with a refinement region near the bound-
ary whose width is selected a priori to match the length-scale of the layer. In the
case of d =2 and when the domain €2 is a rectangle, it is well established [1, 3] that
the natural extension of this approach to a tensor product of two one dimensional
piecewise uniform Shishkin meshes yields a parameter uniform [1] second order
(ignoring logarithmic factors) rate of convergence. The extension of this approach to
other geometries is non-trivial. Curvilinear tensor product meshes [8] can deal with

C. de Falco (X))
School of Mathematical Sciences, Dublin City University, Dublin 9, Ireland,
E-mail: carlo.defalco@dcu.ie

A.F. Hegarty et al. (eds.), BAIL 2008 - Boundary and Interior Layers. 117
Lecture Notes in Computational Science and Engineering,
DOI: 10.1007/978-3-642-00605-0, (© Springer-Verlag Berlin Heidelberg 2009



118 C. de Falco, E. O’Riordan

a limited set of geometries, while creating a single globally conforming unstructured
triangulation with a uniform refinement in the layer region can produce inefficient
or pathologically deformed meshes when ¢ is small. Although such inconveniences
might be overcome by discretisation methods allowing for non conforming meshes
(see, e.g. [9, Chap.2, Sect.2.5]) at the interface between the interior and bound-
ary layer region, this would still involve producing a different triangulation for the
whole domain 2 for each value of e. This may require a significant computational
effort which, for general domains, may outweigh that required for the solution of the
discrete problem itself. To cope with these issues we investigate a method inspired
by Chimera Overset Grid Methods [2] and by the method of Patches of Finite Ele-
ments of [6]. Note that one cannot expect this general approach to be parameter
uniform without some modification that would resolve all layers within the solu-
tion. In contrast to the methods in [2, 6], which can be viewed as variants of the
Schwartz iterative technique, our approach makes use of an a priori expansion to
decompose the solution u of (1) into a sum of a regular component v, a set of
boundary layer components wy, q=1,...ny and a set of corner layer compo-
nents z,, p=1,...n;. Each component is implicitly defined as the solution of
a boundary value problem. In this paper, we consider the case of ¢ < CN™!,
where N9 is the dimension of the discrete problem. Hence, quantities of order &
are considered negligible compared to the discretisation errors. In Sect. 3, the point-
wise bounds established on the layer components allow us identify subdomains or
patches Q4,2, C 2, g=1,...ny, p=ny + 1,...ny + n; outside of which a
component is negligible. This decomposition also allows one to compute a discrete
approximation to u by solving ny, + n, + 1 problems once without any further iter-
ation. Furthermore, as the decomposition is performed at the continuous level, this
approach does not pose restrictions on the method used to discretise each boundary
value problem. For example, in the case of the regular component defined in (4), one
could use the results in [10] to analyze the error (in the case of a sufficiently smooth
regular component) if one employed a finite element method on an unstructured
quasi-uniform mesh instead of the numerical method analyzed in Sects.4 and 5,
which is based on a standard finite difference operator on a tensor product mesh. We
finally point out that, although in the sections below we present theoretical results
for a problem posed on the simple geometry of the unit square, the encouraging
numerical results presented in [4] and Sect. 6.2 indicate the practical viability of the
same approach for singularly perturbed problems on more complicated geometries.
Throughout the paper || - || denotes the global pointwise maximum norm over the
domain Q and C is a constant independent of & and N .

2 Continuous Problem

Consider the singularly perturbed elliptic problem
Leu = —eAu +b(x, y)u = f(x,y), (x,y) € 2 = (0,1), (2a)
u=g, (x,y) €09, (2b)
fibeCh(Q), g€ COQ), b(x,y)=p >0, (x,y) € Q, (2¢)
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where 0 < ¢ < 1 is a singular perturbation parameter. We adopt the following
notation for the edges and the boundary conditions:

Q2 = {(x,0)]0 < x <1}, = {(1,»)|0 <y <1},
0Q3 = {(x, 1|0 < x < 1},0Q4 = {(0,y)|0 < y < 1},
glx,y) =gi(x),(x,y) €0Q;,i =1,3; g(x,y) =gi(y), (x,y) €0Q;,i =2,4.

Assume further that gg € C** ([0,1]), s =1,2, 3, 4. From Han and Kellogg [7] and
Andreev [1] we note the following levels of compatibility conditions: for the corner
(0,0),

£1(0) = g4(0), (3a)
—eg7(0) — £g4(0) + 5(0,0)g1(0) = £(0,0), (3b)

and similarly for the other corners. If (3a) is assumed at all four corners thn u e
C () and if (3a) and (3b) are assumed at all four corners then u € C3%(Q). The
reduced solution u is defined via the reduced problem

b(x, y)uo(x,y) = f(x,y). (x,y) € Q.
The regular component v of u is the solution of the elliptic problem
Lev= f(x,y).(x,y) € 2, v=up, (x,y) € 0Q. 4)
Note that the regular component can be written as v =ugy + ¢R, where
LeR = Aug, (x,y) €Q, R=0, (x,y) € 0Q2.

Hence R € C%%(Q) N C%%(Q) and by the maximum principle || R|| < C.

Remark 1. Note that at the corner (0,0) the necessary compatibility condition for
u € C3*(Q) is that b(0, 0)u(0,0) = f(0,0) + &(g4(0) + g/ (0)) which is that

u(0,0) —up(0,0) = Of(e). (5)

3 Solution Decomposition

The solution is decomposed into a sum of a regular component v, boundary layer
components w;(x, y),i =1,2,3, 4 and corner layer components z; (x, y),i =1, 2,
3,4

4 4
uzv—i—Zwi—Zzi.

i=1 i=1
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Similar but different decompositions are given in [1, 3]. Note that v is defined in (4)
and the boundary layer function w; associated with the edge y = 0 is defined as the
solution of the problem

Lewy = —e(1 = y)s{(x), (x,y) € Q, (6a)

w1(0,y) =qa(y), wi(l,y) =qa2(y), 0=<y=1, (6b)
wi(x,0) =s1(x) := (u—v)(x,0), wi(x,1)=0,0<x <1, (6¢)
—eqy +b(0,y)qa =0, y € (0.1),  q4(0) = 51(0), ga(1) =0 (6d)
—eq5 +b(1,y)g2 =0, y € (0.1), ¢2(0) = 51(1), g2(1) =0.  (6e)

Lemma 1. The solution of (6) satisfies the bounds

lwi(x, y)| < Ce™ VP 4 Ce(1 - y), (7a)
o+ (+))/2

—(@
Haxlayj |=ce ™2 <ivj<3

Y
|51 =c =12 (7b)

Proof. Note that
l9a)| = Cls1@le ™Y, 1g2(0)] < Clsa(D]e VP,

Consider the following interpolant of the boundary data

h(x,y) =(s1(x) = s1(0)(1 = x))(1 = y) + (qa(y) — qa(1)y)(1 — x)
+ (q2(y) — q2(0)(1 — y))x.

Then
Leh= —e(1—y)s{(x) + T(x,y),

where T'(x, y) : =bh—(1—x)b(0, y)q4(y)—xb(1, y)g2(y). Note that T'(x, y) =0
at each of the four corners. Then since Lg(w; — ) = T (x, y), we have sufficiently
compatibility (3b) for w; € C3*(Q) and

|(wy —h)(x, y)] = Cx(1—x).

Using the maximum principle and classical bounds on the derivatives [3] we have
that

lwi (x, y)| < Ce™@VP/E 4 Ce(1 - ),

L < C 4 23

Also |T(x, y)| < Cx(1 — x), which implies that

d
|50 <

| =c.
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and using the differential equation (6a), we conclude that

%w . %w .
|5 O] = CA=PISTO. |51y < CA=pIs{D]:
. dw; )
Since, Laa— =—e(1—y)s;" (x) —bywy,
X
02 0
and Lgi =—e(1— y)s§4)(x) —byxwy — 2bxﬂ,
dx2 ox

we can use the maximum principle to establish the bounds || aé;;”i‘ “ <C,i=1,2
on the derivatives orthogonal to the layer.

Define the corner layer function z; associated with the corner (0, 0) as follows:

L.z =0,(x,y) € Q, (8a)
z1(0,y) = w1(0,y) = qa(y), z1(1,y) =0, 0=y <1, (8b)
z1(x,0) = wq(x,0) = g1(x), z1(x,1) =0,0 <x <1, (8c)

—eqy +b(x,0)g1 =0, x € (0, 1), q1(0) = 51(0), q1(1) = 0. (8d)
Then z; € C1%(2) and we have that
|z1(x, y)| < Ce ¥VP/eg=yVBle, (9a)

Analogous bounds hold for the other boundary (corner) layer functions associated
with the other three edges (corners).

4 Discrete Algorithm

We employ the standard central finite difference operator
LNUN = —e(82 + 82)UN +bUN = f.

which can also be generated from a standard finite element formulation on a struc-
tured tensor product grid with lumping as a quadrature rule. Here §2 denotes the
classical three-point finite difference approximation to u, on a non-uniform mesh.
We initially solve for an approximation V to the regular component v on a uniform
coarse grid QN ={(x;,y;)|x; =i/N,y; = j/N,0 <i,j < N}. That is, the mesh
function V'V is the solution of

LNVsz, (xi,yj)EQuN; VN =, (xi,yj)eaﬂﬂﬁftv.

A global approximation to v is a simple interpolant of the form
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V=" VN y )i )Y, (),
i,j

where ¢;(x) and ¥;(y) are the standard hat functions associated with x; and
v, respectively. Define the following subdomains: 2; = (0,1) x (0,0), Q, =
(1—-0,1)x(0,1), 3 = (0,1) x (1 —0,1),24 = (0,0) x (0,1). On each
of these subdomains we define a tensor product of two uniform meshes. That is,
QN = {(x;,y))|xi = i/N,y; = jo/N,0 < i,j < N}, where the Shishkin
transition parameter o is taken to be

a::min{l,Z\/%lnN}. (10)

The nodal values of an approximation W; (defined solely on the layer region Q) to
the boundary layer function w; are computed by solving

W (0.y,) = 510/ VPO WN (1L y ) = 510 (0~ y)).0=y; <o
WIN(xi,O) = s1(x;), WIN()C,',U) = WIN(O,U)(I —Xx;i)+ WIN(l,O'))Cj,0<X,' <1.

The nodal values of an approximation 71 (defined solely on the corner layer region
Qs = Q) N Qy) to the corner layer function z; are computed by solving

LNZN =0, (xi,y) e @V nal,
ZV0.y) = WM.y, ZV(0.y) =o' WN(0.0)(c —y)). 0<y; <o,
Z{V(xi,O) = W4N(x,~,0), Z{V(xi,o) = O'_IWIN(O,U)(O' —xi), 0<x; <o.

The approximations to the other six layer functions are defined analogously. The
approximation U to the solution is patched together using the sum

4 4
UZV—FZVT/Z'—ZZ[.
i=1 i=1

5 Error Analysis

Theorem 1. For the solution of (2a) and the approximation defined in Sect. 4
lu—U| <CN 'InN + C /.

Proof. Note that on the coarse uniform mesh Q%
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|LYN (o — VV)(xi, yj)| = [(LN = Lo)uo(xi, yj)| + Ce. (xi,y;) € QF
<CN 2+Ce<CN 2+ Cs.

Then . )
lv=VI < lv—uol + luo— V|| <CN e+ Ce+ CN 2. (11)

Within the boundary layer region Q¥, by (6) and the bounds in Lemma 1, we have
that

|LN (wy = W) (xi, yj)| = |(LY = Lo)wi(xiy;)| + Ce <CN"'InN + Ce.
Note that, if W(y) := 5 (0)e > V2(0.0/¢ then (W — 44)(0) = 0,

—e(WU(y) —qa(»))" + b0, »)(¥(y) — g4(y)) = (b(0.y) — b(0.0)¥(y).
and |(b(0, y) — b(0,0))|¥(y) < C 4/e. From this, on the boundary BSZIIV we have
(WY —w)(0.3)] = CVe | —w)(L.y)l = CVe.0<y; <o,
WY —wi)(x;,0) =0, (WY —w)(x;,0)] SCN 2+ Ce,0<x; < 1.
Then we can conclude that over the entire domain 2
lwy — Wi < C(N"'InN + V). (12)

Within the corner region, we follow closely the approach of Andreev [1]. We first
further decompose the corner layer function z1. Let z1 = g1 (x)q4(y) +Zo0 + /€ R2,
where

[LeR2| = [(b(0,0) — Lg)q1(x)qa(y)] < Cv/q1(x)ga(y). Ro =0,(x,y) € 0Q
Lezoo = b(0,0)q1(x)qa(y). (x,y) € 2, zo0 = 0, (x,y) € 9R2.

Note that |zgo(x,y)] < Cgqi1(x)qa(y). The discrete version of this secondary
decomposition is
ZYV = qi(xi)qa(y)) + Z8& + eRY
LY Zgy = b(0.0)q1(xi)qa(y) + (Le = L¥)q1(x1)qa(y)). (xi. yj) € QY N QY.
Z36 =0.(xi.y;) € QY nQy).

Hence |Rév | < C and on the boundary of the corner patch we have that
|RY (i yp)l < CNTHIn N + V), (xi.y)) € (2 N Qf).

It remains to estimate the error in |Z(),0—Z(1)\,’0|. Sett: = Z(xi,yj)eQ{VﬂQﬁV [(LN —
L¢)zo0(x;, j;)|. We decompose zgg as in [1, Theorem 2.1], (y1,1 = — 5(0,0),
x1,2=0) and from [1, p.962], we have that t < CInN. In the corner layer
region, we then bound the nodal error using the discrete stability bound given in [1,
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Theorem 3.1], as follows
|00 — Z{ol < CN2(InN)* + CN > InN
Z ILN (20,0 — Z§o) (xi, ¥))]
(xp,y ey nel
<CN 3 InN)*+CN 2N
> [(Le = LY)q1(xi)qa(y))]
(xi,y ey ney
<CN7?(InN)*+CN 2N
2
Z h_e—xi—n/ﬂ/se—yj'—n/m
(xi,y ey ney

< CN(nN)* + CN I N (5 p —)?. p=hyB/e.h =0/N
—e

<CN7?(InN)*.

By explicitly differentiating the leading term in the representation given in [1,
Theorem 2.1], we can deduce the following bound on the first derivatives:

8i+jZO 0
— X <ce V2 i+ =1.
|G = J
Use of the interpolation bound in [11, Lemma 4.1] completes the proof. ]

Remark 2. Tt is worth noting that if the additional compatibility conditions (3b) are
assumed to hold at all four corners, then |s;(0)] < Ce and |s;(1)| < Ce. It follows
that is not necessary to patch in the corners (i.e. it is not required to compute Z) in
order to derive the following error bound

|lu—U||<CN~'InN + Ce.

6 Numerical Results

6.1 Test Example 1

We consider a particular example of problem (2a) with the following coefficients:
b(x.y) =1+x%y% f(x.y) =1+ 2xy (13)
and boundary data

gix) =g =1, g=1-x% g =1-y% (14)
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Table 1 Parameter-uniform global two-mesh differences D*V and rates p” on a patched mesh for
test example 1 over the range R, = [2740,277 ]

N 25 26 27 28 29

DN 1.16x1072 292x1073 7.32x107* 1.83x107* 4.57x107°
o 1.99 2.00 2.00 2.00

Note that in this particular example the zero level compatibility conditions (3a) are
satisfied at all four corners, but the compatibility condition at the first level (corre-
sponding to (3b)) is not satisfied at the corner (1, 1). Tensor product meshes with N
steps in each direction are used both for the boundary and corner patches, while a
triangular mesh with N2 degrees of freedom is used in computing an approximation
to the regular component over the entire domain. The convergence behaviour of the
numerical method is reported in Table 1 where the global two mesh differences DV
and the approximate uniform rates of convergence p" were computed over a certain
range R of values for ¢, using
N TN 72N N DN
DY = ;IEI%): |UN — 02N Qlon, P 1= log, DN

Here SZ}SVON is a tensor product piecewise-uniform Shishkin mesh [3] with 10N ele-
ments in each coordinate direction. We choose to measure the difference between
the two interpolants on this finer mesh Q}QON , as the maximum difference between
the two interpolants may not occur over the set of mesh points QY U Q2. The
computed uniform rate of convergence for this example is greater than what is
established theoretically in Theorem 1.

6.2 Test Example 2

To assess the applicability of the patched mesh method to a problem posed on a
non-rectangular domain, we consider a problem of the form (1) set in a domain
Q= QUQpwithQy = (—1,1) x (—1,0) and 25 = {(x, y)|x* + y* < 1}. For
this test example, the coefficients b, f and g are given by

flx.y)=bx,y) =1, (x.y)eQ
g(x’y) — 2—tanh(12);)—tanh(12)’ (x’y) c 89

For this choice of data no boundary layer occurs near the side y = — 1. Let 02y, :
=092\ {(x,—1),0 < x < 1} be the remainder of the boundary. The patch for this
problem is taken to be 2, : ={x € Q|dist(x,d2z) < o}, where o is as given in
(10).

The solution to this second test example is shown in Fig. 1b, while Tables 2
and 3 show the performance of the patched mesh method and of a standard finite
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Fig. 1 Computed solutions to the two test examples using a patched mesh method with N = 64

Table 2 Parameter-uniform global two-mesh differences D”V and rates p™V on a patched mesh for
test example 2 over the range R, = 1074[2729,1]

N 24 2° 20 27 28

DN 1.47x1072 561x1073 1.99x1073 6.77x107% 2.22x107%
oN 0.91 1.26 1.67 2.12

Table 3 Parameter-uniform global two-mesh differences D™V and rates p of a standard finite
element method on a quasi-uniform mesh for test example 2 over the range R, = 10742720, 1]

N 24 2° 20 27 28

DN 0.257 0.684 0.58 0.437 0471
oN 1.58 0.00 —0.04 0.44

element method on a quasi uniform mesh respectively. The rates in Table 2 suggest
that the patched method is parameter uniform for this problem, which contrasts with
the apparent lack of uniform convergence displayed in Table 3 for a standard finite
element method on a quasi-uniform mesh.

Acknowledgement This research was supported by the Mathematics Applications Consortium for
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Singularly Perturbed Reaction-Diffusion
Problem with a Boundary Turning Point

C. de Falco and E. O’Riordan

Abstract Parameter uniform numerical methods for singularly perturbed reaction
diffusion problems have been examined extensively in the literature. By using layer
adapted meshes of Bakhvalov or Shishkin type, it is now well established that one
can achieve second order (or almost second order in the case of the simpler Shishkin
meshes) parameter uniform convergence globally in the pointwise maximum norm.
Note that, in proving such results, it is often assumed that the coefficient of the
reactive term is strictly positive throughout the domain. In this paper, we examine a
problem where the reaction coefficient is zero on parts of the boundary.

1 Introduction

Parameter-uniform [6] numerical methods for singularly perturbed reaction diffu-
sion problems of the form

—eAu+bu= f,xeQ,u=g, xec i, (1)

have been examined extensively [1-3, 10]. By using layer adapted meshes of
Bakhvalov [2] or Shishkin [10] type, it is well established that one obtains second
order (or almost second order in the case of the simpler Shishkin meshes) uniform
convergence globally in the pointwise maximum norm. Note that, normally one
assumes that

b(x) > B >0, Vx € Q. 2)

In this paper, we examine a problem where b is zero on parts of the boundary €2 and
also depends on ¢. We are interested in the necessary modifications required when
using a piecewise-uniform Shishkin mesh and in the subsequent error analysis.
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As for a possible application of the results presented here, in [5] a method was
presented for computing the differential capacitance of Metal Oxide Semiconductor
(MOS) structure and the advantage of using a layer-adapted mesh was shown to be
non negligible for values of the coefficients within a physically reasonable range.
The simple example presented in the numerical experiments of Sect. 4 demonstrates
that similar benefits are to be expected if the model of [5] is extended to take into
account quantization effects [4, 7].

Notation: Throughout this paper C (sometimes subscripted) denotes a generic
constant that is independent of € and N. We also use the following notation

k

d f
= 7 d = .
| fle = xlen(%?(l)| 1k () and [ f]:= xlell[g,xl] | /()]

2 Continuous Problem

Consider the following two point boundary value problem

Lu = —eu" + b(x;eu = f(x), x € Q = (0,1), (38)
b(x;e) =0, x € Q, u(0) = uo, u(l) = uy, (30)

where f, b are sufficiently smooth and the coefficient b satisfies the following

b(0:6) = 0; |blx < Ce*/2 k <2, (3¢)
(1—p)b(xie) + Ve ¥(Vb) (x1e) =m > 0,0 <y < 1, (3d)
b(x:e) — b(x:0) < MeVE, 6> ybl, (3e)
b(x:0) := lirr(l)b(x;s), Vx e Q. (3f)

e—>

For any specific b, we will need to identify the parameters m, M, 6, y. We note in
passing that we do not assume that f(0) = 0. We adopt the following notation for
the following particular ordering of the two limits

b(0;0) := hm (hm b(x; 8))

£—>0

From the above assumptions on b, the function y := /b satisfies the following
singularly perturbed nonlinear Riccati equation

VYVEY + (1—y)y* =g> x>0, y(0) =0.

We construct a lower solution y for y of the form y = Cq(1 —e‘xﬁ), Cr < gl
where C; > 0 is such that
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VYVey + (1 —y)y* = Ciye™ + Ki(1—e™")?) < m,

and t :=x\/z, yKi = Ci(1 —vy).
e

FOI‘ the funCtiOIl h([) e Kl (1 e ) ’ t >_ 07 we note that
min N — max N .
1 K, —= 1

Hence,
VYVey' + (1 —y)y* < Crmax{y, Ci(1-y)}.

Thus, the choice of
C(m m
Cy:= mln{—, —} 4
y Vi—y

suffices for y to be a lower solution. It follows that, from (3¢) and (3d) that

Vb(xie) = Ci(1 —e*VE), x e[0,1], (52)
b(x;e) > p:= C12(1 —eH2>0, x> \/g (5b)

Note that (5a) implies that b(x;0) > 0, x € [0, 1].

The standard maximum principle [9] is still valid for the linear differential oper-
ator L. That is, if w € C%Q) N C2(Q),w(©) > 0,w(l) > 0, and for all
xeQ, Lw>0,thenw > 0forall x € Q.

Lemma 1. Forallk, 0 <k <4, [ulx <C (1 + e_k/z), where u is the solution of
problem (3).

Proof. Consider the following barrier function
d(x) = A* + B*(1 — e V%) > 4%,

where A*, B* and 7 are positive constants specified below. Note that, outside the
layer region, if BA* > || f||, then

£
L) = Bp() = If ]l x = \E
In the layer region, where x < \/% , we have that
_ * —xa/L * —xﬁ * —\/z
L¢(x) =bp + B ne ¢ > B*(n—>b)e™*~vVe =>B*"(n—|ble V¥ = | fI.

n
if n > ||b|| and B*(n — ||b])) > ||f||e\/:. We can choose n = y + ||b||, then by an
appropriate choice of A* and B* we deduce the stability bound
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ot = maxt L0, oty 4 Lo+ 5 — ome P28

Recall that (3c) allows the derivatives of the coefficient b to depend adversely on
¢. Hence, as we derive parameter explicit bounds on the derivatives of u below,
we need to identify how the error constants in these bounds depend on b and its
derivatives explicitly. To bound the first derivative of ¥ we use an argument from [2].
Let x €  and construct a neighbourhood Ny = (a,a + +/¢) such that x € Ny and
N, C 2. Then, by the mean value theorem, for some y € ]\_lx,

u(a + /¢) —u(a)
Je

It follows that |1/ (y)| < 2672 |u||y, < 2|lule~"/2. Now

=u'(y).

u'(x) =u'(y) +/ w'(€dé =u'(y) +e7 | (f —bu)(§)d§
y y

and so
< (1F1L+ @+ bl

The bounds on the higher derivatives are obtained using the differential equation
(3a) and (3c). Note that

e Pl < £+ @+ 1Dl elulz < £+ 1611l;
e uls < b1 F1l + Vel f 1+ UbI + [1b]) + Velbl o) lull;
e2[ula < (| f12 + bl lul2 + 21b]1[ulr + llull|b]2)

<elflz + lIbllelulz +2velbliVeluly + llullelbl2.

Define the associated operator
Lio(x) := (—ew” + b(x;0)w), x € Q, b(x;0) > B > 0.
Decompose the solution into three components of the form

u(x) = v(x) + wr(x) + wr(x),

where
0 1
Liv=fx eQ, v(0) = bfo(.()))’ v(l) = b{f‘g))’
Lwp = (L1 —L)v,x € Q, wz (0) = u(0) = v(0), wr(1) =0,

Lwg =0,x € Q, wr(0) =0, wr(l) =u(l) —v(l).
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The boundary conditions for the regular component v have been selected [8] so that

ok < C”“;?”(l + &7k k<4, (6)

Lemma 2. The layer components wy, Wr in the solution of problem (3) satisfy the
following bounds

yb(t:e)
s dt

lwr(x)] < Ce™ o0  wr(x)| < Ce Vi), (7a)
lwi |k < Ce™ /2, Jwrle < Ce™2,1 <k < 4. (7b)

Proof. To obtain the pointwise bound on wr (x), use the barrier function

WL () = Koe VRO = a2 () — w001,
which satisfies
LY = (b(x:e)(1 —y) + VVe(Vb(x:8) )WL = m¥y
= Mlplle™V® = (L - L.
To obtain the pointwise bound on wg(x) use the barrier function

B1_ _/B _ [ 141Ibll
\IJR(x)=K3e_\/:(1 ¥ 4 Kae ‘/z(l—e E)

Outside the left layer, we have that

B
LUR(x) = Ks(b— peVEOD =0 x> [E
Y

and within the left layer, for x < \/% ,

B 1+1b1l B
LUR(x) > Kae™VE (1 + b — eV — gy pey/F0
B _ [TIDI 5 /B
+ PV 1, 2

[IEIbl /B
when we choose K4 such that K4 > K3feV ™ 7 e‘/: and K3 > |u(l) — v(1)|.
The bounds on the derivatives are derived as in the proof of Lemma 1. (]

3 Discrete Problem

On the domain €2 a piecewise-uniform Shishkin mesh [1] of N' mesh intervals is
constructed in the usual way. The domain €2 is subdivided into the three subintervals
[0,01], [01,1 —02] and [1 — 02, 1]. On [0, 01] and [1 — 05, 1] a uniform mesh with
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% mesh-intervals is placed, while [01, 1 — 03] has a uniform mesh with % mesh-

intervals. The interior mesh points are denoted by SZf:V and h; := x; — x;_1 is the

mesh step. Let
= min | | —mind L2 [N (82)
Op:=minj o, Tp, Oz i=ming o, 5 nhN;. a

Our transition point t in our Shishkin mesh will be chosen such that
T
/ Vyb(t;e)dt > 2/eInN.
0

For example, based on the lower bound on Vb in (5) we take,

Je 2 . m m
T= ﬁ(l-{-c—llnN), Ci _mln{‘/:,?} : (8b)

The discrete problem is: Find U such that

LYU(xi) i= —e82U(xi) + b(xize)U(xi) = f(x0). xi €Y. ()
U(0) = u(0), Ug(1) = ue(1), (9b)
Z(Xiv1) = Z(xi) Z(Xi)—Z(xi—l)) 2

hit1 hi hi +hig1
The finite difference operator LY satisfies a discrete comparison principle. That is
for any mesh function Z, if LNZ(xi) > 0 for all x; € Qév Z0)>0,Z(1) >0
then Z(x;) > 0 forall x; € 52\’

where §%2Z(x;) := (

Lemma 3. For any mesh function Z then
1ZIl = CALY Z| +1Z©O)] + 1ZD)D.
Proof. Consider the following barrier function

ILN Z||
B

®(x;) = By (1 — W(x;)) + max{ Suol, lurly,  Wix) = Hi-zl(l +hj \/g)_l,

. /&
where B, ¢ are specified below. Note that W(x;) > e~ ‘/: and

% zéhi+1

LN ®(x;) = b®(x;) + B
(xl) (xl) lhi +hi+l

W(xit1).

We note that outside the layer, LY ®(x;) > |[LN Z|, x; > /ey~!. In the layer
region, where x; < +/ey~!, we have that h;+; = h; =: h and for sufficiently
large N
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‘[ N7 'InN + MN—1 <1In2.
V7

Cl
Hence, we have that
LNO() 2 bo + Bf S W(xis) 2 BEEW(xis0) ~ [DIW )

> Bf(¢(1+1m2)~"' - ||b||)e—xf\/§
> B+ w2 — [be V5 > LV 7],

3
if we choose £ = (1 +1n2)||p|| + y and yBf = (1 +In 2)||LNZ||e‘/;. O
The discrete solution is decomposed analogously to the continuous solution. That is
U(xi) = V(xi) + WL(xi) + Wr(xi),

where V(0) = v(0), V(1) = v(l), Wr(0) = wr(0), Wr(1) = 0, Wr(0) = 0,
Wgr(1) = wg(1) and

LYV = £ LYWy = (LY — LNy, LNWg = 0,x; € QV.

From the bounds on the derivatives of the components and Lemma 3, we can follow
the argument in [8] to deduce that

|U—ul| < C(N"'InN)?, (10)

where U is the piecewise linear interpolant of the discrete solution U of the discrete
problem (9) and u is the solution of the continuous problem (3).

4 Numerical Experiments

As mentioned in the introduction, a physical problem whose numerical approxima-
tion requires relaxing the hypothesis (2) is that of computing the capacitance of an
MOS structure where energy quantization in the inversion layer is to be taken into
account. By choosing to model such quantization effects following the approach
of [7] and performing the scaling and linearization procedure presented in [5], this
problem leads to an equation of the form

—eu” + A (1 — oAy = f(x),

where A(x) is the scaled electric potential, A is the scaled electron wavelength and
the semiconductor insulator interface is placed at x = 0. Rescaling we get

—ee M+ (1= ey = e A f(x), b d) =1 —e 1= x2/A%. (11a)



136 C. de Falco, E. O’Riordan
We set A to be constant and below we will see that it is necessary that
A2 =Ce. (11b)

Let us check that finite values m™*, M *, 6*, y* exist for the parameters m, M, 0, y so
that the constraints (3¢)—(3e) on the coefficient of the zero order term are satisfied,
which are required by the theory in the preceding sections. Introduce the additional
parameter oy defined by e41? =: ape. Observe that

b(0:e) = 0 [blx < CA*)F2 k <2, ||b]| < 1,

(1=1)b + \Jyee=4(Vb) = (1 —y)(1 —e™") + ”e Aﬁe—’a—e—f)—”z

_ \/Z(K(l —e )+ Ve (1—e)?), K= (1-y) \/OZO
(o) Y

Note that K(1 —e™") + /te 7' (1 —e*)~Y/2 > min{1, K}. We then have that

(1 —y)b + /yee=A(¥b) > min{l —y, ﬁ} = m*.

NG

For all g > 0, we can choose 0 < y* < 1 so that

I y* = vy*

NG

Hence,
2./

* = and m*:=1-—yp*. 12
VS T a1 ’ (12

Let us examine condition (3e)
b(x:e) —b(x;0) = ¢! < Me V0% g >y

Then, we choose M * and 6* so that, * := y* and M * := ¢%257"®_ Under these
constraints, we take the transition point in (8) to be

ed A2 2 In(N)
T=4— |1+ —/—————~ (13)

* 1 —y* ’
@oy min%l, *}/ }
Y

where

2./

Aq2

e A =:ape and Jy*F = ———n—.
0 v V1 +4ap+ 1
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o8l ----/- R Rt T

osf -/ -- SRR ALARREEE R REEEEE

0.002 0.004 0.006 0.008 0.01

(a) Computed U (x) of 14

0 0002 0004 0006 0008 001
(b) Coefficient b(x;€) of 14

Fig. 1 The computed approximations U (x) of (14), using N = 4,096, and the coefficient
b(x; g) for several different values of & over the interval [0,0.01]

Note that if A2 is not bounded above by Ce then M* — oo as ¢ — 0 and so the
above error bounds are not uniformly bounded. Hence we require that A2 = O(e).
Below we present numerical results for the particular problem

—eu” +(1— e—xz/kz)u =1, A2 = 0.09, (14a)
w(0) = 0, u(l) = (I _e—l/Az)—l‘ (14b)

The boundary condition at x = 1 means that there will be no layer in the vicinity
of x = 1 and so it suffices to have 0, = 0.25, 07 = min {0.5, t} and to place N/2
mesh points in the intervals [0, 01], [01, 1], in this case. In Fig. 1, plots of the layer
and of the coefficient b(x; ¢) are displayed for several values of €.

In Table 1, both the global and the nodal orders of convergence are estimated over
the parameter range ¢ = 2°,27!, ..., 2729 using the double mesh principle [6]. The
computed e-uniform orders of convergence displayed are in line with the theoretical
e-uniform global convergence rate stated in the error bound (10).
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Examination of the Performance of Robust
Numerical Methods for Singularly Perturbed
Quasilinear Problems with Interior Layers

P.A. Farrell and E. O’Riordan

Abstract Parameter-robust numerical methods for a particular class of singularly
perturbed quasilinear boundary value problems were constructed and analysed in
Farrell et al. (Math Comp 78:103-127, 2009). Certain constraints were imposed
in Farrell et al. (Math Comp 78:103-127, 2009) on the data to establish the final
theoretical error bound. In this companion paper to Farrell et al. (Math Comp
78:103-127, 2009), the parameter-uniform performance of the numerical method
is examined (via numerical experiments) when one or more of these constraints are
violated. The numerical results in this paper suggest that the numerical approxi-
mations converge for a wider class of problems to that covered by the theoretical
convergence analysis in Farrell et al. (Math Comp 78:103-127, 2009).

1 Continuous Problem Class

Convection—diffusion equations of the form (—euy)y + (g(u))x = f(x), with a
nonlinearity of the type g(u) = u?, arise in numerous applications involving fluid
dynamics. In this paper we examine the numerical performance of parameter-robust
numerical methods [1] for the following class of quasilinear singularly perturbed
boundary value problems: Let Q™ := (0,d), Q% := (d, 1) and find u, € C'(Q)N
C2(Q~ U Q) such that

eul +b(x,u)u, = f, forall xeQ UQT, (1a)
us.(0) = A, us(1) = B, (1b)
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bi(u) =—14cu, x <d 61, x <d
b(x,u) = . S = (lc)
bo(u) =14 cu, x >d 82, x > d
—1<u,(00<0,0<u,(l)y<1, <c<l, (1d)

where ¢ is a positive constant and &1, §, are non-negative constants. Note the strict
inequalities in (1d), which are imposed in order to ensure that the solution exhibits a
standard convex—concave (or S-type) shock layer, as opposed to a concave—convex
(or Z-type) layer (cf. [3, pp. 15-16]).

This paper is a companion paper to [2], where asymptotic error bounds for the
numerical method examined in this paper were established. In order to guarantee
existence and uniqueness of the solution of the continuous problem, additional con-
ditions on the magnitudes of || f|| and the boundary values |ug(0)|, |us(1)| were
imposed in [2]. Further restrictions are required in the theoretical analysis in [2] to
prove uniform in & convergence of the numerical method described below. These
conditions are stated in (4) and (10).

The reduced solution vy : [0, 1] — (=1, 1) is defined to be the solution of the
following nonlinear first order problem

b(vo, X)vy = f, x € Q- UQT, v9(0) = uz(0), vo(1) = ug(1). 2)

A unique reduced solution vy with the additional sign-pattern property of vg(x)
<0, x€Q7; vo(x) >0, x € QT exists if the conditions [2]

§1d < —ug(0) + 0.5c¢u2(0), 82(1 —d) < ue(1) + 0.5cu(1), 3)

are satisfied by the data. For a unique solution of the full continuous problem to
exist it suffices [2] that

81d < —ug(0), 52(1 —d) < us(1), (4a)
Sid  S2(1—d)
cug(0)’ 1+ cug(l)}' (4b)

ue(1) = us(0) < 1/¢ + min{-—

Let C; be the class of problems defined by (1), (3); C, be the class of prob-
lems defined by (1), (4) and C; be the class of problems defined by (1), (4)
and (10). Note that (4a) implies (3) and hence C3 C C, C Cj. The proof of
parameter uniform convergence of the numerical approximations given in [2, The-
orem 6.2] restricts the problem to the smallest of these three classes C3. Figure 1
displays some typical solutions for two problems in Csz, with ¢ = 0.000001,d =
0.25,8, = 0.13,u,(0) = —0.09 and u.(1) = 0.098. The left one is for a prob-
lem with 6; = 0.1 and the right one for a problem with §; = 0.35. In this
paper, we examine (via numerical experiments) the parameter-uniform performance
of the numerical method when one or more of the conditions (3), (4) or (10) are
violated.
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

Fig. 1 Solution of (1) for sample problems in C3

Furthermore, we deduce in [2] that for the solution to a problem in C, we have
that

|b1(ue)| > 01 := max{—cu,(0), 1 —cus(1)}, x <d; (5a)
ba(ug) > 0 := max{cus(1),1 + cugs(0)}, x > d. (5b)

Lemma 1 ([2]). Assume the problem is in C,. The solution can be written as a linear
sum of the form u, = ve + w,, where for each integer k, satisfying 1 < k < 3, these
components satisfy the following bounds,

lvsll < C, v g-ug+ = €A+ 275,

[[vel(@)] = C.[[v](d)] = C.[[v](d)] = C.

Cehe=d=2)01/e  c Q~,

(k)
|w (x)| < Ceke=x=d)b2/e . c O+,

where C is a constant independent of e.

2 Numerical Method

The domain Q is subdivided into the four subintervals
[0,d —01]U[d —o01,d|U[d,d + 03] U [d + 02, 1], (6a)

for some 01,0, that satisfy 0 < 07 < %, 0 <oy < %. On each of the four
subintervals a uniform mesh with % mesh-intervals is placed. The interior mesh
points are denoted by

QN ={x;:1<i<N-—1,i#N/2}. (6b)
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Clearly x N = d, 55 = {xi}év and o1, 07 are taken to be the following

il 2%y w1294 58w (6¢)
o1 ;(=min{ —, 2—In , 0p:=min{ ——, 2—1In , c
! 2" 76, 2 2 0,

whose choice can be motivated from (5) and the earlier bounds on wék). Then the
fitted mesh method for problem (1) is: Find a mesh function U, such that

82U (x;) + b(xi, Us(xi) DUc(x;) = f(x;) forall x; € QY. (7a)
Ue(0) = ue(0),  Ue(l) =ue(l),  (7b)
D7 Us(xy) = D+Ua(x%), (7¢)

where

DYZ, —D"Z; D~ Z;, i<N/2,
—— DZ;, = + .

(Xit1 = Xi—1)/2 DT Z;, i>N/2,

D% and D~ are the standard forward and backward finite difference operators,

respectively. In order to solve this nonlinear finite difference scheme we use a variant
of the continuation method from [1, Sect. 10.3].

§Z; =

(682 4 b(x;, Ug(xi. 1j-1)) D—D ) Us(xi, tj)=f(x;). x; #d,j=1, ... K, (8a)

D;Ua(d,tj)zD;rUa(d,tj),j=1,...K, (8b)
Us(0,27) = ug(0), Ug(1,2;) = ug(1) forall j, (8¢)
Ue(x,0) = u(0) + (u(1) —u(0))x, (8d)

and D, is the standard backward finite difference operator in time. The choices
of the uniform time-like step k = #; — ¢;_; and the number of iterations K are
determined as follows. Defining

e(j):= max |Ug(x;,t;) —Us(xi, tj—1)|/k, for j =12,---,K (9a)
1<i<N

the time-like step k is chosen sufficiently small so that
e(j) <e(j—1), forall;  satisfyingl < j < K. (9b)
Then the number of iterations K is chosen such that
e(K) < TOL :=10"". (9¢)

The numerical solution is computed using the following algorithm. Start from zg
with the initial timestep k = 1.0. If, at some value of j, (9b) is not satisfied, then
discard the timestep from#;_ to ¢; and restart from ¢, with half the time step, that
is k*¢Y = k /2, and continue halving the timestep until one finds a k& for which (9b)
is satisfied. Assuming that (9b) is satisfied at each timestep, continue until either
(9c) is satisfied or ¢; = 1,000. If (9¢c) is not satisfied, we repeat the entire process
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again from ¢¢, halving the initial timestep k to k = 0.5. If the process still stalls,
we restart from 7o again halving the initial timestep. If (9c) is satisfied the resulting
values of U, (x, K) are taken as the approximations to the solution of the continuous
problem.

The same conditions required for existence of the solution of the full continuous
problem are also sufficient for the existence (but not uniqueness) of the solution of
the discrete nonlinear problem.

In [2], it is established that, providing N is sufficiently large and ¢ is sufficiently
small, independently of each other, under the further implicit restriction that

b*(xi, Ug) — decul, >0, x; #d, (10)
we can prove a uniform in ¢ error bound at all the mesh points of the form
IUe —uclle < CN~H(In N)?, (1n

where u, is the continuous solution, U, is a discrete solution of (7), and C is a
constant independent of N and ¢. The condition (10) is implicit as the exact solution
U, 18, in general, unknown.

3 Robustness of the Solution Method

Example 1. For the uniform convergence result (11) to be valid, [2] requires that (4)
and (10) must be satisfied. For example, if

c=1, §d<—-ug0)<0.1 and 6&(1—d) <u.(l) <0.1
then the data constraints (4) and (10) in C3 are both satisfied. Thus a problem with
d =0.25, §, =0.13, §; < 0.4, 0.0975 < ue(1) < 0.1, —0.1 <u(0) < —5;/4

satisfies these constraints. We consider a problem with u(0) = —0.09, u(1) = 0.098,
8> = 0.13 and §; varying from 0.1 to 0.35. This choice for the data satisfies all three
assumptions including the implicit one (10). We verify this assertion numerically by
computing
b*(x;,UN)—4eD"UN, x; <d
TN (x;) = (12)
b*(x;, UN) —4eDTUN, x; >d

and observing that TSN = min; TBN (x;) > 0 for all values of ¢ and N used. The
computed uniform rates of convergence py, using the double mesh principle and
the uniform fine mesh errors Ex (see [1, pp. 104, 190] for details on how these
quantities are calculated) are computed over the range ¢ = 27/, = 1,2,...25
and are presented in Table 1. These results confirm uniform convergence in this
range of the data.
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Table 1 Maximum errors Ex and computed rates of convergence py for the numerical method
(6), (7) for problems within C3 in the case of Example 1

N 32 64 128 256 512 1,024

81 =0.1
En 0.004962 0.003227 0.002017 0.001175 0.000637 0.000313
DN 0.46 0.75 0.63 0.72 0.68 0.84

81 =02
Ey 0.003583 0.002245 0.001346 0.000771 0.000413 0.000201
DN 0.57 0.76 0.72 0.72 0.72 0.85

81 =03
Eyn 0.002549 0.001403 0.000809 0.000457 0.000243 0.000117
DN 0.70 0.90 0.79 0.76 0.73 0.86

81 =035
En 0.002205 0.001151 0.000584 0.000295 0.000155 0.000075
DN 0.90 0.94 0.96 0.93 0.72 0.88

Table 2 Maximum errors Ex and computed rates of convergence py for a problem outside Cy,
but satisfying (10), in the case of Example 1

81 =0.39
N 32 64 128 256 512 1,024
En 0.002282 0.001154 0.000578 0.000283 0.000133 0.000057
DN 0.98 0.96 0.98 0.99 0.99 1.00

Now consider the same problem with u(0) = —0.09, u(1) = 0.098, §, = 0.13
and 6; = 0.39. This does not satisfy (3) and hence is not in C;. However, this
scheme does numerically satisfy the implicit condition (10).

The results presented in Table 2 imply that the scheme is still convergent
uniformly in e.

Example 2. For the existence of a continuous solution we have the sufficient
conditions (4). As an example, take

c=1, ug(l) =0.7, ug(0) = -0.5d = 0.25.

Then (3) is satisfied when §; < 2.5 and §, < 1.26. Also (4a) is satisfied when
2.8
81 <2and dy < Y ~ 0.933333
and (4b) is satisfied when

1.36
61 > 1.2and 6, > -5 ~ 0.453333.
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Fig. 2 Solution of (1) for problems which do not satisfy Cs. In all these figures, §, =
0.7, u(0) = —0.5, u(1) = 0.7, N = 64 and & = 0.000001. From top left to bottom right: §;
=0.2,2.4999,25,3.5,3.55,3.9

We fix §, = 0.7 and consider various values of §;, in particular ones which violate
one or more of the conditions (3), (4a) or (4b). For the problems examined in this
example, it has been observed numerically, using condition (12), that the implicit
condition (10) is not satisfied for any of the values of §; considered. That is, these
problems lie outside the class C3. Problems are in the class C,\C3 if 1.2 < 61 < 2,
in the class C{\C, if 2 < §; < 2.5 orif §; < 1.2 and finally the problem lies outside
C,ifé; > 2.5.

Ilustrations of the corresponding solutions are given in Fig.2, and the conver-
gence results are given in Tables 3-5. They show that provided the reduced solution
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Table 3 Maximum errors Ex and computed rates of convergence py for the numerical method
(6), (7) applied to problems in C,, where (10) is violated, that is within C;\C3 in the case of
Example 2 with §, = 0.7

N 32 64 128 256 512 1,024

81 =13
Ey 0.067928 0.053165 0.033076 0.020709 0.011692 0.005732
PN 0.09 0.65 0.71 0.57 0.74 0.71

81 =138
Ey 0.058642 0.047114 0.029970 0.018685 0.010404 0.005133
PN 0.13 0.66 0.73 0.56 0.70 0.71

Table 4 Maximum errors Ex and computed rates of convergence py for the numerical method
(6), (7) applied to problems in Cy, where (4) and (10) are violated, that is within C;\C3 in the case
of Example 2 with §, = 0.7

N 32 64 128 256 512 1,024

81 =02
Eyn 0.085977 0.070653 0.045129 0.028786 0.016281 0.008038
DN 0.01 0.62 0.70 0.55 0.70 0.70

61 =05
Ey 0.081286 0.063318 0.039899 0.025084 0.014299 0.007035
DN 0.00 0.62 0.70 0.56 0.74 0.70

5 =11
Eyn 0.071339 0.055289 0.034691 0.021476 0.012067 0.005918
DN 0.08 0.65 0.71 0.57 0.76 0.71

51 =2.1
Ey 0.052495 0.042713 0.027518 0.016995 0.009474 0.004675
DN 0.16 0.68 0.73 0.57 0.69 0.71

5 =24
Eyn 0.045858 0.037679 0.024406 0.014925 0.008380 0.004132
DN 0.21 0.68 0.74 0.59 0.67 0.72

81 = 2.4999

Ey 0.043529 0.035851 0.023213 0.014147 0.007960 0.003927
DN 0.23 0.67 0.74 0.60 0.68 0.72

of the problem remains monotonic increasing, the method is robust in the sense that
the numerical method remains uniformly in € convergent. When the problem ceases
to be monotonic the layer type changes from a standard shock layer to a Z-layer. As
the Z-layer grows in amplitude the nonlinear solver does not converge and thus the
method ceases to be robust.
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Table 5 Maximum errors Ex and computed rates of convergence py for the numerical method
(6), (7) applied to problems outside Cy, that is where (3), (4) and (10) are violated, in the case of
Example 2 with §, = 0.7

N 32 64 128 256 512 1,024

81 =28
En 0.041487 0.029870 0.019123 0.011529 0.006529 0.003246
DN 0.39 0.64 0.77 0.65 0.68 0.71

81 =30
En 0.043328 0.025441 0.015947 0.009703 0.005490 0.002714
DN 0.83 0.63 0.79 0.69 0.68 0.71

81 =35
Eyn 0.075558 0.032340 0.015213 0.007286 0.003408 0.001470
DN 1.32 1.12 1.04 1.00 0.99 0.98

8 =38
Ey 0.168256 0.056174 0.024782 0.011446 0.005227 0.002217
DN 1.84 1.24 1.10 1.05 1.02 1.01

4 Sensitivity to the Position of the Transition Points

We examine the effect of varying the fine mesh width by incorporating a constant
C in a revised formula for o; and o, given by

d

01 = min{ —, C*ilnN , O =min{ ——, C*ilnN , (13)
2 91 92

where Cy is a parameter and 6y, 6, are specified in (5).

Table 6 give the results for Example 2 with §; = 1.20010. For the range of C.
tested, it was observed that the number of iterations varied by at most a factor of
two.

Thus the method is not particularly sensitive to the fine mesh width and, in fact,
a choice of a value of Cy less than that of C, = 2 used in [2] seems to give better
performance. In the example considered here, the errors are smallest and the rate of
convergence best for Cy = 0.5.

Remark 1. The theoretical rate of convergence given in (11) can be compared to the
observed rates of convergence given in Tables 1-6, by using Table 7. For example,
Table 1 exhibits rates close to N ' In N and Tables 3-6 mainly exhibit rates close
to N~'(In N)?2.
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Table 6 Maximum errors Ex and computed rates of convergence pp for various choices of the

transition point in the case of Example 2 with §; = 1.20010, §> = 0.7

N 32 64 128 256 512 1,024
C,. =0.125
Eyn 0.077109 0.063909 0.052342 0.040499 0.028576 0.017859
DN 0.37 0.34 0.27 0.24 0.26 0.27
Cy. =025
Eyn 0.055713 0.034658 0.020660 0.011906 0.006556 0.003274
DN 0.70 0.68 0.71 0.71 0.71 0.70
Cy, =05
En 0.039241 0.021406 0.012181 0.006681 0.003483 0.001645
DN 0.81 0.89 0.79 0.80 0.82 0.78
C. =10
Eyn 0.052324 0.033291 0.020706 0.011990 0.006454 0.003099
DN 0.23 0.79 0.68 0.73 0.77 0.76
Cy =20
N 32 64 128 256 512 1,024
Eyn 0.069652 0.054194 0.033899 0.021033 0.011889 0.005824
DN 0.08 0.65 0.71 0.57 0.75 0.71

Table 7 Orders of local convergence p”v corresponding to different theoretical error bounds for
various values of N

N 32 64 128 256 512 1,024

N—'lnN 068 074 078 081 083 085
N '(nN)2 028 044 053 060 065 0.69

5 Conclusions

The numerical results in this paper indicate a possible gap between the theory in [2]
and what is observed in practice. As was proven in [2] the scheme (6), (7) is a
parameter-uniform scheme under the conditions (4) and (10). However these suf-
ficient conditions appear to be overly restrictive, since, in practice, the numerical
approximations appear to converge for a wider range of data. In any attempt to
extend the theory in [2] to a wider class of problems, a reasonable constraint on the
data to aim for (in place of (4)) would be that the reduced solution is monotonic
increasing, which is a necessary condition to exclude Z-layers from appearing in
the solution of (1).

The implicit condition (10) is not satisfied for some of the examples presented
here, while the numerical approximations still converge uniformly in &. When the
constraint (10) is violated it appears that TSN (x;) < 0in a particular neighbor-
hood of the point d and not at the transition points between the fine and coarse
mesh. Proving convergence without (10) being satisfied would require a method of
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proof other than the maximum principle arguments used in [2]. These numerical
results also suggest that a different finite difference equation (other than continuity
of the discrete first derivative) at the point of the discontinuity d may ensure that
TSN > 0, which in turn might improve the performance of the scheme and also assist
in extending the scope of the current theory.
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Glycolysis as a Source of “External Osmoles”:
The Vasa Recta Transient Model

M. Gonzalez, A.F. Hegarty, and S.R. Thomas

Abstract The kidney is one of the most important organs in our body, responsi-
ble for regulating the volume and composition of the extracellular fluid; excreting
metabolic waste (as urine) and foreign substances; and also producing some hor-
mones.

The mechanisms that contribute to the urine concentrating mechanism are not
completely understood. Some ideas have been proposed over the last years and this
paper is based on the hypothesis of Thomas (Am J Physiol Renal Physiol 279:468—
481, 2000), that glycolysis as a source of external osmoles could contribute to the
urine concentrating mechanism. Based on the steady state model developed by
Thomas and also on the model developed by Zhang and Edwards (Am J Physiol
Renal Physiol 290:87-102, 2005) (a model focused on microcirculation), we have
developed a time-dependent model where, besides verifying some of the steady state
results of Thomas (Am J Physiol Renal Physiol 279:468-481, 2000), we can also
study some time dependent issues, such as the time that it will take to wash out the
gradient created by glycolysis if an increase in blood inflow occurs.

1 The Kidney

In a normal human adult (Fig. 1), each kidney is about 11 cm long and about 5 cm
thick, weighing 150 g. If the kidney is bisected from top to bottom, the two major
regions that can be visualized are the outer corfex and the inner region referred as
the medulla, where we can also distinguish two regions, the outer medulla (OM)
and the inner medulla(IM).

The nephron (Fig.2) is the functional unit of the kidney. There are more than
a million in each normal adult human kidney. Each nephron contains a tuft of
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Fig. 1 Urinary system and the kidney [1]
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Fig. 2 Parts of the nephron [1]

capillaries called the glomerulus, through which large amounts of fluid are filtered
from the blood, and a long fubule in which the filtered fluid is converted into urine
on its way to the pelvis of the kidney.

Depending on how deep they lie into the medulla we can distinguish two types
of nephrons: Cortical nephrons and Juxtamedullary nephrons (Fig. 4).
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Fig. 3 Process of glycolysis in the IM cells

2 The Urine Concentrating Mechanism

Looking at urine osmolalities, mammals can produce urine that has a much higher
osmolality than that of blood plasma (270-300mOsm). This capability to concen-
trate their urine allows them to excrete metabolic and other waste products without
compromising their water balance.

Since the 1950s, in renal physiology, the explanation for the capability of pro-
ducing hypertonic urine has been a major open question. The following model was
developed to study the possibility that the process of glycolysis, taking place in the
IM cells (see Fig.3) to obtain a large fraction of the energy for cell metabolism,
could contribute significantly to the build-up of this gradient. During glycolysis one
molecule of glucose is converted into two lactates.

3 Model Description

In the present work, a transient version of the previous paper published by Thomas
[6] is developed. We consider this time the vasa recta (see Vasa Recta location
in Fig.4) and also the interstitium, where only solute movement by diffusion is
considered.
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Fig. 4 Nephron blood supply showing cortical and juxtamedullary nephrons

As in previous models of the kidney we will consider a population of vasa recta
represented by a single composite structure, where a fraction of the descending limb
flow is shunted directly into the ascending limb at every node in the discretization
where a single vasa recta turns in the inner medulla (see Fig.3). The variable x
denotes distance along the medulla, x = 0 at the OM/IM border and x = L (L =
4 mm) at the papillary tip. The numbers of DVR (descending vasa recta) and AVR
(ascending vasa recta) are assumed to diminish exponentially in number along the
IM toward the tip of the papilla according to the same relation as in earlier models
and in conformity with reported rat anatomy:

N(x) = N(0)e Ksn¥ (1)

where N(0) is the number of VR at the OM/IM border. We let N(0) = 128 and the
species dependent factor kg, = 1.213mm™! which gives us a system with a single
vasa recta at the papillary tip.

4 Equations

4.1 Volume Flow Equations

As in [5] we will consider the renal parenchyma indistensible, so all fluid reabsorbed
flows immediately into the AVR. With such an assumptionthe equations describing
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water movement are the following:

dF¢
o= ~J& — Fopume 2)

dF?%
== Fon + JABS 3)

where Fy represents volume flow in descending (d) and ascending (a) vasa recta and
Jy represents transmural flux of volume. As J;, depends on forces not represented
in this model, we will take this as an explicit fraction (v) of the entering flow.

_F2(0)

d _ v

1@ =g NG )
T ) = =1 (x) )

Fpyne 1s shunt transfer of volume (or solute for the equations in the next section)
from DVR to AVR and is calculated as follows [10]:

Fy(x)dN(x)
N(x) dx

Also included in the above equations is net volume reabsorption into the AVR
from LDL (long descending limb) and CD (collecting duct), designated as JUAB S,

Fspunt (x) = (6)

4.2 Solute Equations

For solute flow equations we will consider the following assumptions:

1. Axial movement of solutes is by convection in the VR.

2. In the interstitium solute movement occurs by diffusion only.

3. Glucose consumed by cellular glycolysis is supplied from AVR and the resulting
lactate is recovered into interstitium.

4. Interstitial cross-sectional area is taken as 40% of the total tubular luminal cross-
sectional area.

Considering this we will write a PDE coupled system where we have three equa-
tions for each solute considered (glucose =g, lactate =1). As before we will use the
superindexes d for DVR, a for AVR and i for interstitium equations.

acd 1 [ a(FicY
g:_(_#_Jd_Fshunt (7)

ot A 0x &

aca 1 [ d(FECEH)
= 4 (_T —Jg + Fshunt — ngy) (8)
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8C" _p 02C} 1 i 0
g 8 * Aint o ( )

acd 8(Fd ct)
8—; = ( — I — Fohumt (10)
aCe 8(F”C”)
at’ = ( —Jf+ Fshum) (11)
8Cli i 32Cli i
5 = Dige T Uit 2a) (12)

where C is concentration of solute in each tube and A represents the cross-sectional
area of each tube.
The relation between axial solute and axial volume flow is given by (see [9])

0Cik

Fix = FiyCix — Dg o

(13)

4.2.1 Membrane Flux Equations

C/ (x,1) + Cl(x,1)

T/ (x.1) = 217 Pe(CL (x, 1) = CL (x, )N (x) + (1= 03) S (x)
(14)

Hexon= > J (15)
j=DVR,AVR
In (14) the first term refers to membrane diffusion (where Py are permeabilities
to glucose and lactate). The second term refers to solvent drag (where a piecewise
lineralization of the Kedem—Katchalscky equation is taken [7]) and oy are reflection
coefficients.

4.2.2 Glycolysis

Glycolytic rate is described simply with a first degree Michaelis—Menten equation
saturable as a function of AVR glucose consumption

Vmaxca(x’ t)

ngy(x,t) :N(X)Wga(x[) (16)
m g ’
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4.2.3 Initial and Boundary Conditions

Flows and concentrations in the descending structures and interstitium are known at
the OM/IM boundary (x = 0), continuity conditions are applied at the papillary tip
from the ascending structures and also (dC’ /dx)(L) = 0. The initial concentrations
throughout the tubes are set to their known values at x = 0.

4.3 Numerical Method

Since transmural flux of volume depends on forces not included in the model, the
volume flow equations were solved analytically. The solute flow equations were
solved numerically using the Method of Lines (MOL) (previously applied by Moore
and Marsh [4,5]). Finite difference approximations for each of the partial derivatives
with respect to the distance along the corticopapillary axis were used for the first
order partial derivatives in space:
Ci —Ci

CX =~ %, (17)
while the second order partial derivatives were approximated with a three-point
centred difference expression

Ci-1 —2Ci + Cip1
2

Cyx &

(18)

It might be more efficient to solve the PDE by a method specially constructed
to suit the problem [2, 3], but the MOL usually enables us to solve quite general
and complicated PDEs relatively easily and with acceptable efficiency. It is also
attractive since powerful ODE solvers are readily available, as in our case, the ODE
Matlab solver odel5s.

4.4 Simulations

During all simulations parameters not indicated were set as their baseline values.
Twenty per cent consumption was adopted as the baseline value for glycolysis in all
simulations when this is not tested. JA2S and J, baseline values were set at 30%.

It has been shown in previous studies [8] that 20-100mOsm/kgH,O of an
unspecified external interstitial osmolytes could improve the concentration abil-
ity. Figure 5 shows different glycolysis consumptions; note that for the highest
values (as was shown by Thomas [6]) the lower bound of the interval above is
reached, which suggests that glycolysis should be considered in models of the urine
concentrating mechanism.
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Fig. 5 The graph shows the time that it takes the lactate gradient to build up at the papillary tip for
different glycolysis consumptions
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Fig. 6 Left: Accumulation of lactate for different volume reabsorption from nephrons at the pap-
illary tip. Right: Lactate concentration when IMBF is reduced from its baseline value (absolute
glucose consumption was held constant)

The effect of varying JfBS is shown in Fig. 6. Absorption rates of 10% , 50%

and 90% of DVR inflow are shown here. Increasing volume reabsorption affect
significantly lactate accumulation. Also this figure shows that lactate accumulation
increases dramatically as IMBF falls to one-half its baseline value, as may occur in
antidiuresis. The predicted lactate profiles clearly suggest that IMBF may play an
important role in the extent of lactate accumulation.
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Fig. 7 Different situations of the lactate gradient being washed out after increasing IMBF at the
papillary tip

Finally Fig.7 shows different situations of the gradient being washed out after

increasing the inner medullary blood flow. It can be seen that the time it takes the
gradient to disappear is considerably less than the time it takes to be built up.
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A System of Singularly Perturbed Semilinear
Equations

J.L. Gracia, F.]J. Lisbona, M. Madaune-Tort, and E. O’Riordan

Abstract In this paper systems of singularly perturbed semilinear reaction-diffusion
equations are examined. A numerical method is constructed for these systems which
involves an appropriate layer—adapted piecewise-uniform mesh. The numerical
approximations generated from this method are shown to be uniformly convergent
with respect to the singular perturbation parameters.

1 Introduction

In this paper we consider semilinear systems of the form

Tu:=—FEu’ +b(x,u) =0, x € Q=(0,1), u(0) =a,u(l) =b, (la)
b(x,u) = (b1(x.0),...,bp(x,u)T € CHQ xR™), (1b)

and V(x,y) € Q x R” we assume that the nonlinear terms satisfy

m
%(x,y) <0.Yi#j and %(x,y) >p2>0,8>0,Vi=1,...,m,
81/!/ = Buj

(Ic)
where £ = diag{e%, .. .,E,Zn} is a diagonal matrix, 0 < &1 < ... < &, < 1 and
u= (up,...,.um)7.

In [1, 3], information about the layer structure for linear singularly perturbed
reaction—diffusion systems was obtained via linear decompositions of the solution
into regular and singular components. Here we show that these techniques are appli-
cable to a semilinear system. The preprint [2] is available to the reader to supplement

this paper with some additional details.
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For any v,w € R™, we write v < wif v; < w;, Vi and |v| := (Jv1], |v2l,. ..,
[vmDT 3 [|.f lloo = maxy | £(x)] and [[flo := max; || filloo; C := C(1,1,..., DT
is a constant vector and C denotes a generic positive constant independent of
(¢1,€2,..., &) and the discretization parameter.

2 Singularly Perturbed Semilinear Systems

Conditions (1b), (1c) and the implicit function theorem ensure that there exists a
unique solution u € (C*#(2))™ to (1a), and that the corresponding reduced problem
b(x,r) = 0, x € Q, also has a unique solution in r € (C*(£2))”. Note that the
conditions (1c¢) on the Jacobian matrix J where

ob;
J(xy) = (—) (x.¥).

8uj

are the natural extension of the linear case [6] for the coupling matrix. These
conditions guarantee that J is an M—matrix for all (x,y) € Q x R™.

To deduce the asymptotic behaviour of the solution, we consider the following
decomposition u = v + w + wg, where the regular component v is the solution of
the problem

—Ev’' +b(x,v) =0, x € Q, v(0) = r(0), v(1) = r(1), (2)
and the singular components w, wg are the solutions of

—Ew” + (b(x,v+w) —b(x,v)) =0, x € Q,

w(0) = (u—v)(0), w(l) =0, (3
—Ewg + (b(x,v+w+wg) —b(x,v+w) =0, x € Q,
wWr(0) =0, wg(l) = (u—v)(1). 4)

Note (1c) guarantees existence and uniqueness of v, w, wg and it will also be used
below to establish existence and uniqueness for several further decompositions of
these components. Below we state bounds on the derivatives of the left layer com-
ponent w. The corresponding bounds on the right layer component wg are obtained
by simply replacing x with 1 — x.

Lemma 1. The regular component v satisfies

oo oo
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m
Proof. Consider the secondary decomposition of v = Z q[i], where
i=1

d>q™ [m] [m] [m]
—Em——5— 2 +b(x,q") =0, (@")n(0) = rm(0), (@")m(1) = rm(l), (6)
g 42 [ o2 0]
Ej— 5 +b(x, Zq‘)—b(x Z g =e > ()¢ xeQ.
i=j+1 i=j+1
MUM®=MUMD=QJSISM1§j<m (7

with the matrix E; is the zero matrix except that on the main diagonal (E;);; =
e?, Jj > 1, (note that in this notation £1 = E) and e; is the i th vector of the canonical
basis. Conditions (1c) imply that q"1(0) = r(0), q!(1) = r(1), and qV/1(0) =
qUI(1) =0, for1 < j <m.

To obtain estimates for the component g, we introduce the functionz = g
r, which is the solution of the problem

m] _

1
—Enz’ + [ J(x,r +sz)dsz = Epx’, z(0) =2z(1) = 0.
s=0

The conditions (1c¢) ensure that a maximum principle holds for this system. Thus
|zllo < Ce2, and ||z}, ]loc < C and follows that ||z}, [|cc < C. We conclude that

dk [m]
@k =0.1.2. and ”q['”]” <C
dxk [ee]
o0
In addition, from the nonlinear system b (x,q™) = -+ = b,y (x,q™) = 0,
we have that
d* g™y,
T@i k=12 1<i<m,
dxk .

Differentiating the mth equation of (6) twice and using the above bound we conclude

that ||d*(q"),n/dx*||eo < Ce2. Hence [|d3(q")m/dx>||s0 < Ce,;! and, using
the first m — 1 equations of (6), we have that

d* (q™);

e <Ce¥* k=34, 1<i<m.
X

oo
Now consider the component g1 with 1 < j < m. It is the solution of

d2q[j] 1
0 i=+1 i=j+1

@i = @i =0.j <i <m.
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The maximum principle yields ||q/! [0 < Cs?, and then ||d2(q); /dx?| s <
C(ej/ei)®> <C, j <i < m. Then, Ild(ql/1); /dx|leo < C, j <i < m, and hence
(if j > 1) wehave |d(qV));/dx]|oo < C. [[d*(@V))i/dx]loc < C. 1 <i < j—1.

Differentiating the differential equation (7) twice, using the bounds for q'/! and
its derivatives, we deduce that [|d*(q!/)); /dx*||ec < Ce72,i = 1,...,m. Hence
ld3(@U);/dx3 oo < Ceit i = 1,....m. O

To establish first order error bounds in the case of an arbitrary number of equa-
tions, we consider a further decomposition of the singular component w, which is
similar to that used in [1] for linear systems. For simplicity, we present the main
ideas for the particular case of two equations and these decompositions can be
extended to the general case of m semilinear equations using the arguments in [1,3].

In the case of m = 2, consider the following decomposition of the left singular
component w

w=wtl ¢ w[z], (8a)

where wi2(1) = witl(1) = 0, and

d2w!

B+ (b(x.v + w2 —b(x,v)) =0, xeQ, (8b)
b1(0. v(0) +w(0)) = b1 (0, ¥(0)) = 0, wH(0) = wx(0),  (8c)
_Ed; >+ (b(x,v+w) —b(x.v+w?) =0, x e, (8d)
10) = wi(0) - w?(0). w©0) =o. (8e)

Below we see that the components w2l depend weakly on &; and the appearance of

wltl requires that wy (0) — wy ](O) # 0. Moreover, if €1 = &3, it is not necessary
to decompose w into these subcomponents to perform the numerical analysis. We
introduce the following notation

Be(x) := e /¢ where B is defined by (1c¢).
Lemma 2. For any x € §, the component w2, satisfies the bounds

dk [2]
dwk (x)] < C&5¥ B, (x). k =0,1,2,

d3
I~ <x>|_ (612.65%)" 65" Bey ().

Proof. Note that

d2wl2 1
—E—+/ J xv+sw ds wl = 0,
dx? =0 ( )
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from which it follows that [w!?!(x)| < CB,, (x). Then, from the second equation in
(8b) we deduce that

dk

- 2 < Ce;*Be,(x), k =0,1,2. )

(X)

To obtain bounds for the first component, consider the decomposition w2l = p[z] +
rl2l, r£2] = 0, where

by (x,v+p[2]> —bi(x,v) =0, (102)
dzr[ 1 dzp[2]
—&3 I 12 + by (x v+p?+ r2]> by (x,v + p[Z]) = S%d—x;.(lOb)
As pm = wg] this is simply a decomposition of the first component w?]. Note that

the condition on the Coefﬁcients (1c) means that plz] 0) = w12] (0), and pgz](l) =
wgz](l). Therefore r{z] 0) = r1 (O) = 0. Writing (10a) in the form

SRR @21\ 2l
Z[o i (x,v+sp )pl ds =0,
i=1

and using (1b) and (9), we deduce that |p£2] (x)| < CBg,(x) forany x € Q.
Differentiating (10a) and grouping terms, we have

d dv
2] _ L) _
- (bl(x,v—i—p ) bl(x,v)>+(Vub1(x,V+p ) Vubl(x,v)) -

dp?
dx

aby dby \T
=0, where Vub;:= (—l 1)

+ Vuby (x,v + P[Z]) o M

Note if b1 (x,u 4+ v) — by (x,u) = Q(x), then

%[bl(x,u—l—v)—b](x,u)] = — [Z/ 8bl(x u+ 1) dti|

vy
which implies that | — + Clvi| + Clvz|.

dp[2]
_l(x)
X

<c|2|+c|?

From these expressions, (1b) and (9), we have that < Csz_l B, (x). Use

[2]
1
dx?

the same argument to prove < Ce3?Be, (x).

(x)
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The remainder is the solution of the following problem

(/ —(x V+p[ sr1 )ds)

o) =Py =o.

_gzd PE
ld2

The maximum principle proves that |r£2] (x)| < Ce3e5%Bs, (x). Hence,

drg]
dxk

(x) <C82 Be,(x), k =1,2.

To obtain the bound on the third derivatives, differentiate (8b) and use the bounds
on the lower derivatives. (]

Lemma 3. Forany x € Q and fori = 1,2, the component w satisfies the bounds

82 82
W) = C(Bey (1) + S Bey (). [wh0)] = €5 Bey (),
2 2
dw!
d; ()] = Cler" Bey (¥) + &3 Bey (),
2 |d%w £1
7|~ )< C(Bay () + 3 Bex ().
3,1
&? dxé ()| < C(e7" Be, (x) + &5 Be, (x)).

Proof. Decompose wi!l further into the following sum witl = z1 4 s1l where
2l10) = w1 (0), 21 (1) = wltl(1) = st(0) = sl!(1) = 0, and for x € Q

dzzlll

b
—g2 e (/ a—l(x,v + w4 s(zEI],O)T)ds) M=o,
d2 [1]
&3 dzzz (/ —(x v + w2l 4 7201 )dt)

ab
:—( —2(x v + wil 4 21 )dt) zy,
0 ouy

sl

—-E
dx?

1
+ [ J(e,v 4+ w2 sl gy s
0

T
= (bl(x, v+ w2l (251], O)T) —bi(x,v+ w2l z[l]), O)
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k1]
From the maximum principle, we have |d—’1‘| < Cel_kBa1 (x), k =0,1,2. 1If
X

2¢2, then the maximum principle proves |221](x)| < CBs,(x). For the case

281, to obtain appropriate bounds of Z£ ], we observe that

b
/ —2 (x v+ w2 4 tzm) dtzgl]
o duy

2
&5 =
2
& =

= Cl BE] ()C)

Consider the barrier function Z [1], which is the solution of the problem
—e37" + B*Z = C1 B¢, (x), Z(0) = Z(1) = 0.
This allows one to prove that |z£1](x)| < Z(x) < Celey?B,,(x), if 267 < 3.

Thus, for all &1 < &5, we have |z£1](x)| < Ce%sz_zB,;z (x). Hence,

2 [1]

d
g2

(X)| < C(Be, (x) + e365% Bs, (%))

dz [1]
=< CBez(x) | =2 (x)| = C82 Bez(x)

To obtain bounds for the remainder s{!], note that the first component of the right—
hand-side can be written as

bi(x,v + wi2l (251], 0)7) — by (x, v + w2l 4 z[11)

1 9b
= _ | a_:(x v+ wh —i—(z1 ,t22 ) )dtz

Then, the maximum principle proves that [s{!l(x)| < Ce?e52 Be, (x). Hence,

d*sl!] —k\T € 1
| — ()] < Cle7*.65) T L Be, (x), k =0.1.2.
&
Differentiate (8d) and use above arguments to bound the third derivatives. [l

3 Discrete Problem and Analysis of Uniform Convergence

The domain is divided into the subintervals [0, tg, ], [Te, , Tey)s - - - [Tope 1= Tep)s - - - »
[1 — 7¢,. 1]. Distribute half the mesh points uniformly within (zg,,,, 1 — 7¢,,] and the
other half in the remaining intervals, distributing N /(4m)+ 1 mesh points uniformly
in each (7, , 7¢; ., ]. The transition points are defined as

= min {0.25, 2¢,,/BIn N}, 7o, =min{0.51€i+l,28,~//31nN}, 1 <i<m.
(1D

Tem

On the mesh QV = {x,-}lN= o» consider the following finite difference scheme
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(TyU)(x;) := —(ES?U)(x;) + b(x;,U(x;) =0, x; e Q¥ = Q¥ nQ, (12)

with U(0) = u(0), U(1) = u(1) and 82 is the classical three—point finite difference
approximation of the second derivative on a non—uniform mesh.

From (1c), the Frechet—derivative T/N is an M —matrix and then for any two mesh
functions Y and Z with Y(0) = Z(0) and Y(1) = Z(1), we have that

1
Y = Zlloo < I(Th) Moo ITNY = TN Z|oo < —————TNY — TN Z]|0o.
I¥ = Zlow < IT) ™ ool WY = Ty Zloo < ot ITNY ~ T Z
This implies the uniqueness of the solution to problem (12). In bounding the
truncation error, we must bound the same terms

ITyu(x)| = [Tyu(x) —Tu(x)| < E[(8*v —v")(x)| + E[(6*w — w") (x)],

as in the linear problem [1]. The derivatives of both the regular and singular compo-
nents have a similar behaviour to their linear counterparts, and thus we can deduce
that | Tyuljec < CN™L.

Theorem 1. Let u be the solution of the problem (1) and U the solution of problem
(12) on the Shishkin mesh QN . Then,

[U—-ufo < CNL.

Remark 1. In the particular case of equal diffusion parameters ¢; = ¢,i = 1,...m,
it is possible [2] to prove essentially second order uniform convergence. In the lin-
ear case of m = 2, Linss and Madden [4] have established second order (up to
logarithmic factors). To achieve this higher order, Linss and Madden [4] employ a
decomposition (based on the decomposition in Madden and Stynes [6]) of the solu-
tions, which is different to the decomposition presented in this paper. In the linear
case of m > 2 Linf3 and Madden [5] have established second order convergence for
arbitrary &;, under the assumption that the elements in the coefficient matrix B(x)
of the zero order terms satisfy

m
bii(x) > 0, D bk (x)/bii ()] <1, 1 <i <m.
k#i

For variable coefficients and m > 2, these conditions will only be satisfied by
a subset of problems from the class (1). Hence, the question of proving second
order convergence for the class of problems in (1) for m > 2 and arbitrary ¢;
remains open.

4 Numerical Experiments

Example 1. Consider a nonlinear problem of type (1) where m = 2, u(0) = u(l) =
0,0)T, and
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bi(x,u) = u;—1—(1—up)>+e*1 72, by(x,u) = Uy —0.5—(0.5—un)> +e¥2741,

The corresponding nonlinear systems of equations associated with the discrete prob-
lem are solved using Newton’s method with zero as an initial guess. We iteratively
compute Uk(xj), fork =1,2,...,K,until

UK (/) = UK () [loo < N2

To estimate the pointwise errors |[UX (x j)—u(x ;)| we calculate a new approximation
{ﬁK (x;)} on the mesh {X;} that contains the mesh points of the original mesh
and its midpoints. At the coarse mesh points we calculate the uniform two-mesh
differences and the orders of convergence

N.K A N,K N.K ; ;2N.K\ .
d; " = max max |Ul-K(xj)—Ul-K(x2j)|, Pi i = 10g,(d; /dl.2 ), i =1,2,

Se 0<j<N
where the singular perturbation parameters take values in the set
Se = {(e1,€2) | 8% =20 2"l 2730 8% = 8%,2_183, ... ,2_59,2_60}.

In Table 1 we display the uniform two-mesh differences and the approximate orders
of convergence for both components u; and u>. Finally, we report that K' < 4 for
all (e1,62) € Seandall N =277, j =5,...,12.

Example 2. Consider a linear problem of the type (1) where m = 3, u(0) = u(l) =
(1,1,1)7, and

bi(x,u) = 2.1u; — (1 = x)upz — (1 + x)usz — x,
by(x,u) = —xu; + (1.1 + x)upy — xus + x,
bz(x,u) = -2+ x)u; — (1 —x)uz + 3.1 + x)uz — 1.

This linear problem is not covered by the theory in [5], but is covered by the theory in
this paper. In Table 2 the uniform two-mesh differences and the approximate orders
of uniform convergence are displayed, where the values of the singular perturbation
parameters vary over the range

0 ~—2 —-30 -2 —40 -2 —60
8322,2 ,...,2 ,82283,2 83,...,2 ,81282,2 82,...,2 .

dN,K

Table 1 Uniform two-mesh differences and orders of convergence p;\;lK for Example 1

(e1,62) €S, N=32 N=64 N=128 N=256 N=512 N=1,024 N=2,048 N =4,09

le’K 6.861E—3 6.222E—3 3.568E—3 1.313E—3 4.486E—4 1.423E—4 4.327E—5 1.291E—5

p{\";/;f 0.141 0.802 1.443 1.549 1.656 1.718 1.745

dzN’K 8.130E—3 3.915E—3 1.523E—3 5.343E—4 1.736E—4 5.375E—5 1.644E-5  4.943E—6
N.K

D> uni 1.054 1.362 1.511 1.622 1.691 1.709 1.733
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Table 2 Uniform two-mesh differences d”V and approximate uniform orders of convergence pivm-
for Example 2

N=16 N=32 N=54 N=128 N=256 N=512 N=1,024 N=2,048

[dV]1  0.151E+00 0.135E+00 0.113E+00 0.747E—01 0.378E—01 0.145E—01 0.484E—02 0.154E—02

[pflv”i]l 0.159 0.256 0.599 0.982 1.381 1.586 1.655
[dV]2  0.159E+00 0.147E+00 0.119E+00 0.778E—01 0.381E—01 0.145E—01 0.472E—02 0.150E—02
[pflvni]z 0.115 0.303 0.613 1.030 1.391 1.620 1.656
[dV]3  0.158E+00 0.142E+00 0.119E+00 0.784E—01 0.397E—01 0.152E—01 0.508E—02 0.161E-02
[pflvni]3 0.157 0.256 0.598 0.982 1.381 1.586 1.655

For both examples, we observe uniform convergence of the finite difference approx-
imations, which is in agreement with Theorem 1. However, orders greater than one
are observed in both Tables.
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On Finite Element Methods for 3D
Time-Dependent
Convection-Diffusion—Reaction Equations
with Small Diffusion

Volker John and Ellen Schmeyer

Abstract The paper studies finite element methods for the simulation of time-
dependent convection-diffusion-reaction equations with small diffusion: the SUPG
method, a SOLD method and two types of FEM—FCT methods. The methods are
assessed, in particular with respect to the size of the spurious oscillations in the
computed solutions, at a 3D example with nonhomogeneous Dirichlet boundary
conditions and homogeneous Neumann boundary conditions.

1 Introduction

The simulation of various applications requires the numerical solution of time-
dependent convection—diffusion-reaction equations. Processes which involve a
chemical reaction in a flow field are a typical example [5]. Such a reaction can be
modeled with a coupled system of time-dependent nonlinear convection—diffusion—
reaction equations for the concentrations of the reactants and the products.

Typically, the solution of these equations possesses layers. A numerical method
for the simulation of these equations, whose results can be considered to be useful,
should meet the following requirements:

e The layers should be correctly localized,
e Sharp layers (with respect to the used mesh size) should be computed,
e Spurious oscillations in the solution must not occur.

The third requirement means in particular that the computed solution should not
have negative values if, for instance, the behavior of concentrations is simulated.
A number of finite element methods have been developed for the simulation of
convection—diffusion—reaction equations with small diffusion. One of the most pop-
ular ones is the Streamline Upwind Petrov—Galerkin (SUPG) method from [1, 2].
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This method leads to solutions with correctly located and sharp layers, however also
with sometimes considerable spurious oscillations. To reduce these oscillations, a
number of so-called Spurious Oscillations at Layers Diminishing (SOLD) schemes
have been proposed, see the reviews [3,4]. SOLD schemes add additional, in general
nonlinear, stabilization terms to the SUPG method. A completely different finite ele-
ment approach for treating equations with small diffusion is used in Finite Element
Method Flux—Corrected—Transport (FEM—FCT) schemes [8, 10]. These methods do
not modify the bilinear form but manipulate the matrix and the right-hand side of a
Galerkin finite element method.

A first comparison of finite element methods for time-dependent convection-
diffusion-reaction equations was presented in [6]. The numerical examples of [6]
studied problems in 2D with homogeneous Dirichlet boundary conditions. The
present paper extends the studies of [6] to 3D problems with inhomogeneous Dirich-
let and homogeneous Neumann boundary conditions. This is a realistic situation in
applications.

2 Finite Element Methods for Time-Dependent
Convection-Diffusion—-Reaction Equations

We consider a linear time-dependent convection—diffusion—reaction equation
ur—eAu+b-Vu+cu= fin (0,T] x Q, (1)

where ¢ > 0 is the diffusion coefficient, b € L>®(0,T; (W1®(Q))3) is the
convection field, ¢ € L*(0,T; L*°(L2)) is the non-negative reaction coefficient,
f € L*(0,T; L*(R)) describes sources, T > 0 is the final time and @ C R3
is a bounded domain. This equation has to be equipped with an initial condition
uo = u(0,x) and with appropriate boundary conditions. Since the isothermal reac-
tion considered in [5] leads to equations with non-negative reaction rates, we are
particularly interested in the case c¢(¢,x) > 01in [0, T'] x .

In the numerical studies, (1) is discretized in time with the Crank—Nicolson
scheme using equidistant time steps Ar. This leads at the discrete time #; to the
equation

ur + 0.5A1 (—eAug + by - Vug + crug)
= Ujf—1 — 0.5At (—EAMk_l + bk—l . Vuk_l + Ck_luk_l)
+ 0.5A1fr—1 + 0.5At fi. 2)

Equation (2) can be considered as a steady-state convection—diffusion—reaction
equation, with the diffusion, convection and reaction, respectively, given by

D =0.5Ate, Cp =0.5Atbg, Rr =14 0.5Atc.
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The Galerkin finite element method for (2) reads as follows: Find ”Z € V! such
that

(”Z V") +0.5A1 ((8VMZ, Vol + (by - Vuz + Ckuz, vh)>
= (ut_,,v") —0.5A1 ((SVuZ_l, Vo) 4 (bg—y - Vul' | +epqutt_,, vh)>
+ 0.5A1(fim1,0") + 0.5A1(fi, ") (3)

for all v € V!, where V! and V. are appropriate finite element spaces. Here,
(-, ) denotes the inner product in L2().

The SUPG method adds a consistent diffusion term in streamline direction

Z K (Rh(uZ), Cy - Vvh>K

KeTh

to the left-hand side of (3), where 7" is the given triangulation of €2, {tx} is a set
of parameters depending on the mesh cells {K} and (-, )k is the inner product in
L?(K). The residual R"(u}') is defined by the difference of the left-hand side and
the right-hand side of (2). Different proposals for the choice of the parameters {tx }
can be found in the literature. In the numerical studies of [6], the choice from [7]

h 1 2h2
Tk = min K , K “4)
Atl|bgll2 1 4+ 0.5Atck Ate
has been proven to be the best one. In (4), || - ||2 denotes the Euclidean norm of a

vector and kg is an appropriate measure of the size of the mesh cell K. For time-
dependent problems which are discretized with small time steps, the second term in
(4) dominates and the actual choice g is of minor importance. In the computations
presented below, the diameter of the mesh cell K was chosen. It is well known
that numerical solutions which are computed with the SUPG method often possess
non-negligible spurious oscillations at the layers.

SOLD methods try to reduce the spurious oscillations of the SUPG method by
adding another stabilization term to this method. This stabilization term is in general
nonlinear. There are several classes of SOLD methods, see [3,4]. It was found in
the numerical studies of [6] that the best results among the SOLD methods were
obtained with a method that adds an anisotropic diffusion term

Cr ® Cr .
~ . ————if C 0,
(E(COS,kVuZ,Vvh) with Cyx = ||Ck||§ € #
0 else,
and the parameter
diam(K)|R" (u”
glxk = max{0,C &) (k)|—D , &)

2(Vug |2
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where diam(K) is the diameter of a mesh cell K. This type of parameter was pro-
posed in [7] and modified to the form (5) in [3]. The SOLD parameter (5) contains
a free parameter C which has to be chosen by the user. In analogy to [6], this SOLD
method will be called KLRO2.

The last approaches which will be studied in our numerical tests are FEM—-FCT
schemes. They start with the algebraic equation corresponding to the Galerkin finite
element method (3)

(Mc +05AtA U = (Mc —0.5At Ag—_1)uy_q + O'SA’ik_l + O.SAtik, (6)

where {¢; } is the basis of the finite element space and (Mc);; = (mi;) = (¢}, ¢i)

is the consistent mass matrix. The matrix representation of the second term of the
left-hand side of (3) is denoted by (Ag);; = (a;;). Vectors are indicated by an
underline. The first idea of FEM—FCT schemes is to manipulate (6) so that a stable
but low order scheme is represented. To this end, define Ly = A + Dy with

N
Dk = (d,j), dij = —max{O,aij,aj[} fori # j, d,’,’ = — Z dij,
J=1j#i
and M; = diag(m;) with m; = Z;V:l my;, where N is the number of degrees of

freedom. M is called lumped mass matrix. The low order scheme reads
(ML +05A1L)uy, = (ML —05A1Lk—uy_y +0.5A1f,  +05A1f, . (7)

The second idea of FEM-FCT schemes is to modify the right-hand side of (7) in
such a way that diffusion is removed where it is not needed but spurious oscillations
are still suppressed

(Mp 4+ 0.5AtLi)uy, = (Mg —O05AtLg—y)u;_; + O.SAIik_l + O.SAIik
+ i*(lk»lk—l)' ®)

The computation of the anti-diffusive flux vector f™(uy,u;_;) is somewhat
involved and we refer to [6,8—10] for details. Its computation relies on a predictor
step which uses an explicit and stable low order scheme. Thus, a stability issue arises
in FEM-FCT schemes which leads to the CFL-like condition At < 2min; m; / ;.
This condition was fulfilled in the numerical tests presented in Sect.3. We will
consider a nonlinear approach for computing f™*(u,u;_;) [9,10] and a linear

approach [8] (in the form which is presented in [6]).

3 Numerical Studies

We consider a situation which has some typical features of a chemical reaction in
applications. First, the domain is three dimensional, @ = (0, 1)3. There is an inlet
at {0} x (5/8,6/8) x (5/8,6/8) and an outlet at {1} x (3/8,4/8) x (4/8,5/8).
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The convection is givenby b = (1, —1/4,—1/8)T, which corresponds to the vector
pointing from the center of the inlet to the center of the outlet. Thus, the convec-
tion will not be aligned to the mesh. The diffusion is given by ¢ = 107® and the
reaction by

Lif [x —g[l2 = 0.1,

0 else,

c(x) =

where g is the line through the center of the inlet and the center of the outlet. That
means, a reaction takes place only where the solution (concentration) is expected to
be transported. The inlet boundary condition is

sin(rrt/2) ifr e[o0,1],
unm(@) = { 1 ifre(1,2],
sin(z(t — 1)/2) if t € (2,3].

At the outlet, homogeneous Neumann boundary conditions are prescribed. Apart
from inlet and outlet, the solution should obey homogeneous Dirichlet conditions on
the boundary. The right-hand side was setto be f = 01in 2 for all times and the final
time in our numerical studies was 7" = 3. The initial condition was set to be 1y =
0. The orders of magnitude for diffusion, convection, reaction and concentration
correspond to the situation of [5].

Results will be presented for the P; finite element on a tetrahedral mesh and
the Q; finite element on a hexahedral mesh. The number of degrees of freedom
on both meshes is 35 937, including Dirichlet nodes. The diameter of the mesh
cells is about 0.054 for the hexahedral mesh and between 0.054 and 0.076 for the
tetrahedral mesh. The Crank—Nicolson scheme was applied with Az = 0.001.

From the construction of the problem, it is expected that the solution is trans-
ported from the inlet to the outlet with a little smearing due to the diffusion. It
should take values in [0, 1]. The size of the spurious oscillations in the numeri-
cal schemes will be illustrated with the size of the undershoots uf’nin(t), see Fig. 1.
The undershoots are particularly dangerous in applications since they represent non-
physical situations, like negative concentrations. Figure 2 shows the distribution of

0.1 0.1
0 A = 0 o =
-0.1 =01
-n.2 -0.2
-0.3 -0.3
0.4 S -0.4
~4-SUPG ~4-SUPG
~0.5 || -~ FEM-FCT-lin -0.5 || 4= FEM-FCT-lin
- FEM-FCT-nonlin —& FEM-FCT-nonlin
-0.6 || -9 KLR0O2 C=0.2 -0.6 ||-9~KLR0O2 C=0.2
-8-KLR02 C=0.4 -8-KLR02 C=0.4
0 0.5 1 15 2 25 3 0 0.5 1 1.5 2 2.5 3

Fig. 1 Minimal value of the finite element solutions u”’; (), left Q1, right P
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Fig. 2 Distribution of negative oscillations .. (¢) < 0.01 for the SUPG method at ¢ = 2, left
0, right Py

Fig. 4 Cut of the solution, SOLD method (5), C = 0.2 att = 2, left Q 1, right P,

the undershoots with uﬁu-n (t) < 0.01 for the SUPG method at 1 = 2. Cut planes of
the solutions at # = 2 are given in Figs. 3—7. These cut planes contain the centers
of the inlet and the outlet and they are parallel to the z-axis. Note, some wiggles
which can be seen in the contour lines might be due to the rather coarse meshes. For
illustrating the spurious oscillations, a color bar is given for each cut plane.
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Fig. 7 Cut of the solution, nonlinear FEM-FCT method at ¢ = 2, left Q1, right P

The numerical results show the large amount of spurious oscillations in the solu-
tions computed with the SUPG method. Figure 2 demonstrates that the solutions
are globally polluted with spurious oscillations. The oscillations were considerably
reduced and localized (not shown here) with the SOLD method KLRO2. Increasing
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Table 1 Computing times in seconds

Method 01 Py
SUPG 5,989 9,473
SOLD (5),C =0.2 24,832 25,050
SOLD (5),C = 0.4 33,688 30,932
FEM-FCT linear 5,920 6,509
FEM-FCT nonlinear 9,768 10,398

the constant in (5) leads to a decrease of the spurious oscillations, Fig. 1. From the
numerical studies of [3, 4] it is known that an increase of the constant in (5) results
to somewhat more smearing of the solutions. However, this is rather tolerable in
applications compared with spurious oscillations. The solutions obtained with the
FEM-FCT methods are almost free of spurious oscillations. The smoother solutions
of the linear FEM-FCT scheme, compared with the nonlinear FEM-FCT scheme,
reflect that the linear scheme introduces more diffusion. This leads generally to a
stronger smearing of the layers, see [6]. Altogether, the FEM-FCT schemes gave
the best results in the numerical studies.

Computing times for the methods are given in Table 1. For solving the algebraic
systems corresponding to the nonlinear schemes, the same fixed point iteration as
described in [4, 6] was used. The iterations were stopped when the Euclidean norm
of the residual was less than 108, The computations were performed on a com-
puter with Intel Xeon CPU with 2.66 GHz. It can be observed that the nonlinear
schemes are considerably more expensive than the linear methods. For KLLR02, the
computing times increase with increasing size of the user-chosen parameter. All
observations correspond to the results obtained in [6] for 2D problems.

4 Summary and Conclusions

The paper studied several finite element methods for solving time-dependent
convection—diffusion-reaction equations in a 3D domain with inhomogeneous
Dirichlet and homogeneous Neumann boundary conditions. The SUPG method led
to solutions globally polluted with large spurious oscillations. These oscillations
were reduced considerably with a SOLD method, but at the expense of much larger
computing times. FEM-FCT methods led to almost oscillation-free solutions. From
the aspects of solution quality and computing time, the linear FEM—FCT scheme
seems to be, among the methods studied, the most appropriate method to be used in
applications.
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On the Application of Local Projection Methods
to Convection-Diffusion—Reaction Problems

Petr Knobloch

Abstract We apply the local projection stabilization to finite element discretizations
of scalar convection—diffusion—reaction equations with mixed boundary conditions.
We derive general error estimates and discuss the choice of the stabilization parame-
ter. Numerical results illustrate some drawbacks of the local projection stabilization
in comparison to the SUPG method.

1 Introduction

Local projection stabilizations of finite element discretizations have become very
popular during the last decade. First they were introduced by Becker and Braack
[BBO1] for the Stokes problem and later they have been applied to many other prob-
lems including transport problems, convection—diffusion—reaction equations, Oseen
equations and Navier—Stokes equations, see, e.g., [BB06, BR0O6, MST(07, MSTO08,
RLLOS]. In this paper we shall consider the convection—diffusion—reaction problem

d
—eAu+b-Vu+cu= finQ, u:ubonFD, sa—uzgonFN, (D)
n

where Q C Rd, d = 2,3, is a bounded domain with a polyhedral Lipschitz-
continuous boundary Q2 and I'?, TN C 9 are two relatively open disjoint sets
satisfying T2 U TN = 9Q and measy_(I'P) > 0. We denote by n the outer unit
normal vector to d2. We assume that ¢ is a positive constant and b € W1°(Q)4,
c € L®Q), f € LX), up € HY>('P) and g € H~V>(T'N) are given
functions satisfying

0:=c—%divb20020,
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where o0 is a constant. Moreover, we assume that the inflow boundary is a part of
the Dirichlet boundary, i.e.,

{(xedQ: (b-n)(x) <0} cTP.

The plan of the paper is as follows. In Sect. 2, we introduce a local projection
discretization of (1) and formulate assumptions which will be needed for the error
analysis carried out in Sect. 3. Here, in contrast to, e.g., [MST07, MST08, RLLOS],
we do not construct any special interpolation operator but derive a general error
estimate of the type of Strang’s lemmas. Then, in Sect.4, we discuss the choice
of the local projection stabilization parameter with respect to the data of (1) based
on the data dependence of the estimate from Sect. 3. This discussion reveals that
a choice of a stabilization parameter possessing reasonable scaling properties does
not allow to obtain optimal convergence results in some cases. Finally, in Sect. 5, we
present numerical results illustrating this deterioration of the convergence order and
demonstrating some drawbacks of the local projection stabilization in comparison
to the SUPG method. Throughout the paper we use standard notation which can be
found, e.g., in [Cia91]. Moreover, we use the notationa < b ifa < C b withC > 0
independent of all relevant parameters like mesh size, finite element spaces and the
parameter €.

2 Discrete Problem

The discrete problem we will introduce in this section is based on the standard weak
formulation of (1) which reads: Find u € H'(Q) such that u = uj on I'? and

a(u,v) = (f,v) + (g, v)r~ VoeV:={ve H(Q); v=0 on I'’},

where
a(u,v) :=e(Vu,Vv) + (b-Vu,v) + (cu,v),

(-,-) denotes the inner product in L2() or L2(Q)? and (-, -)p~ is the duality pair-
ing between H~'/2(T'V) and H'/2(I'V). Since a(v,v) > ¢|v|? , forany v € V,
the weak formulation has a unique solution. ’

Let 7; be a triangulation of 2 consisting of closed shape-regular cells K pos-
sessing the usual compatibility properties. We assume that all cells of 7}, are of the
same type (simplices, quadrilaterals or hexahedra) and are images of a reference cell
under a (multi)linear regular mapping. We set hx = diam(K) for any K € 73 and
assume that hg < h for all K € 7. We introduce a coarse triangulation M}, con-
structed by coarsening the triangulation 7}, such that each macro-element M € My,
is the union of one or more neighboring cells K € 7. The diameter of M € My
is denoted by /7. We assume that the decomposition My, of 2 is non-overlapping
and shape-regular. Additionally, each cell is supposed to be of the same size as the
macro-cell it belongs to:
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A1C >0: hy <Chg VKeTy, Me MywithK C M.

Using the triangulation 7, we define a finite element space W), C H L(Q), see,
e.g., [Cia91], and we set V, = W), N V. In addition, we introduce a discontin-
uous finite element space D, C L?(R) on the macro-partition My,. We denote
by 7, a projection operator which maps L2(2) onto Dy, resp. L2(22)? onto D;‘f,
and we define the fluctuation operator xj, = id — 7;, where id denotes the identity
operator on L2(2), resp. L2(Q)%. For any M € M,,, we define the local projection
stabilization term

sp (u,v) = (kp(b-Vu), k(b - Vo)) 2

or
sm(u,v) = (kpVu, kp Vo) u 3)

and we denote

snv) = Y s v),

MeMy

where 7j7 is a nonnegative stabilization parameter. Finally, we introduce a function
Upp, € Wy, such that its trace approximates the boundary condition uy.

Now the local projection discretization of (1) reads: Find u, € W), such that
up —FLTbh € 1y and

ap(up,vp) = (f,vn) + (g vn)rw Yoy € Vi,

where ay, (u, v) = a(u,v) + sp(u, v).
If we introduce the local projection norm

1/2
1
I1olllzp = (s|v|’ig ot vlo + 5 1w vlg +sh(v,v)> ,

then ap (v, v) = |||v]||7 p forany v € V and hence the discrete problem is uniquely
solvable. To estimate the error of the discrete solution, we have to make several
assumptions on the finite element spaces. First, we assume that, for some positive
integer k and 2 </ < k + 1, we have

h h
inf dv—vnllox + —v—val, xt S -El, ¢ YVveVNH(Q). K €T
vpeEVy ’ k ’ kl ’
Moreover, we assume that the space W}, satisfies the inverse inequality

Wl < tiching lonllopy Y vn € Wa, M € M, “4)

If W}, consists of piecewise polynomial functions of degree k, then this inequality
holds with px ~ k? [Geo08]. For simplicity, we assume that 15 > k. Approximation
properties of the space Dy, are expressed by the assumption that, for 0 </ < k,
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Wt
bendllon S lala ¥ a0 €L2R), gly € H (M), M € My (5)

Furthermore, we assume that the spaces W, and Dy, satisfy the inf—sup conditions

Up,
3I>0: inf su (0. 4h) e
an€DnM) vyey, () 1Vallo ar 190110, a1

>p YM e My, (6)

where Dy, (M) := {qn|p, : qn € Dp}and Yy (M) := Hy (M) N\ {vp|y,: v € Wi}
For suitable pairs of finite element spaces Dj,, W}, satisfying the above assumptions
we refer to [MSTO7].

Finally, we assume that

0o >0 or divb=0in< if sps are given by (2),

o9 >0 if sps are given by (3).
To enable a simultaneous analysis for both definitions of 5,7, we set (with [ € Ny)

Ve = ks Yui(b) = ||b||12,oo,M if sp7 are given by (2),
ve =1, ym,i(b) =1 if sp7 are given by (3).

3 Error Analysis

Let u € H'(Q) be the weak solution of (1). The local projection discretization is
not consistent and we have ap (v — uy, vy) = s, (u, vy,) for any vy, € V3. Denoting
th = {wy € Wy, ; wy —upy, € Vi), we obtain similarly as in the proof of the first
Strang lemma (see, e.g., [Cia91])

. ap(U — Wh, UV
Mt —walllp = inf dlllw—wnlllp + sup 2H0=Wh:V)
wyeWp v eV valllyp

+ sup sn (. vp)
onevy nlllpp
Lemma 1. Let D,Jl‘ be the orthogonal complement of Dy, in L*(2). Then for any
we HY(Q)N D,Jl‘ and any vy, € Vy, we have

1/2

1/2 2 2
ap(w,vp) S [ 102 wls v + Y Curlwlias | lvalllze,
MeMy

where Wl ar, = Wy pr + 1 hpg 1wl 5y and
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Cyv = Am+hy vk_z + ||b||§,oo,M h, u,:z Aaf s Ay = max{e, ty Yuo(b)}.
Proof. Consider any w € H'(Q) N DhL and vy, € V. Then

(b-Vw,vp) + (cw,vy) = —(w,b- V) + (0 w,vp) — %((divb) w, vp)
+ ((b-n)w,vh)r/v.

Furthermore, for any M € M}, we derive

(w.b-Vup)m < [Ibllg,o,ar lwllo,ar [VRl1 s
If sps are defined by (2), we may also estimate
(w,b- Vo) = (w,kp(b- Vo)) u < [wlloar lcn(d-Vop)llo ar-
If 557 are defined by (3), we define byy = (1,b)ps/|M | and obtain
(w,b-Vuop)pu = (w,(b—by) - Vop)u + (w,kp(by - Vor))m
S Mk |b|1,oo,M ||w||0,M ||Uh||0,M + ||b||o,oo,M ||w||0,M ||’<hVUh||o,M-

Therefore, for both definitions of s34, we have

W, b-Vo)u S sk wlopr llo"vnllo

—1/2

1/2
+ Ibllo.conr Ans’~ Iwlloar (€10nlT ar + Toa S1 (Vi, v1))

(the first term on the right-hand side can be dropped for sjps defined by (2)).
Furthermore, we have

(0w, vp)m — 5 (@dvD)w,vi)m S [wllo ar llo" > vnllg ar-

1/2
e (Vw, Vup)y + i sy (w,vp) < /111‘42 lwly ar (e |Uh|%,M + v sm (v, vp)) 2.
Thus, in all the above inequalities, the right-hand sides can be estimated by

_ _ 1/2
(At 1wl pp + W vie® + 1013 conr A w112 40)

1/2
x (& 10nl3 g + 020135y + 7ar a0 o om))
which leads to the desired estimate. O

It is easy to show that, for any w € H!1 (),
1/2

Nwllle S (1002 wd ox + Y Car + g i) wl ar
MeMy
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Therefore, denoting th(u) = {wy € Wby — wy € D}Jl‘} it follows from
Lemma 1 and the estimate before Lemma 1 that

1/2
. 2 2
M =unlllyp < inf | flu—wallg pr + > " Cu [l — wall} pr0
whEWh(u) MeMm,
sp(u, vy
+ sup 7) (7)

vV |||Uh|||Lp .

Lemma 2. For any w € H(Q) there exists z, € Wy, N H} () such that w — zj, €
D}Jl- and ||lw = zplly pp 0 = (L +2/B) Wl pp 4 forany M € M.

Proof. Consider any w € H'(Q) and M € M;,. The inf-sup conditions (6) imply
that there exists zys € Y5 (M) such that (w — zpr,.qn)m = 0V g, € Dyp(M) and

Blizmllopr = llwllg pr- Since [zarl; 3y < 1k haf lzm llg, a7 We obtain the lemma.
O

In view of Lemma 2, the estimate (7) can be replaced by

1/2
. 1)\?
e —unlllp < mﬁvb(nu—whng,rw(wg) )3 cMnu—whn%,M,*)

WhEW, MeM,,
sp(u,v
+ sup (. vp)
vy €V |||Uh|||LP

It remains to estimate the consistency error.

Lemma 3. Let u € H' TV (M) for some 1 € {0, ..., k} and for all M € My, If sy
are defined by (2), letb|,, € Whoo (M) for all M € Mj,. Then
1/2
Moo
snon) S| D2 Cartm vari(b) ot 1l llvalllp  Yon € Va
MeMy

with
t ymo(b) 1}

C3, =min{ 1,
M % O'()hjzu

Proof. Consider any M € My, and vy, € V},. Then the Cauchy—Schwarz inequality
. _ 1/2

and (5) yield spr(u,vy) S b, k™! leelly oy pr [vaga(D) sas Vi, vr)] /2. Further-

more, we deduce using the L? stability of «j, in (5) and the inverse inequality (4)

that s (v, vi) S vm,0(b) 1 hyf [vall§ pg- Thus,
™ sm (U, vp)
1/2

I
172 h
S [Cor tar yara(b)] k_Af el 41,00 (llffl/2 illo.ar + Tar sm (v, Uh)) :

which proves the lemma. O
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The above estimates lead to the following result:

Theorem 1. Let all assumptions made in Sects. 1 and 2 be satisfied and let the
approximation Upy, of the Dirichlet boundary condition be sufficiently accurate,
u € H'TYQ) for some | € {1,...,k} and, in case of sy given by (2), let
bl,, € WL (MY for all M € My, Then the solution of the local projection
discretization satisfies the error estimate

1/2
plt+1/2 1 w2 h2
e =wnlllzp < =l 0 + (1 + g) > Cmgor Il
MeMy

1/2
W2
+ Z Car tm Va1 (b) w2l (3 ey .
MeMy

4 Choice of the Parameter 7

The estimate from Theorem 1 considerably depends on the choice of the parameter
Ty. Some authors simply set tpr ~ hps, which leads to an optimal error estimate
with respect to . However, such definition of 77 is not reasonable from the prac-
tical point of view since the parameter 73, should possess certain scaling properties
with respect to the solved problem. For example, if the data ¢, b, ¢, f and g are
multiplied by a positive number «, the solution of (1) does not change. This prop-
erty should be preserved by the discrete problem but this requires that 7js changes
to T /o if sp7 is given by (2) and to tpr« if 57 is given by (3).

A possible way to derive a formula for ty is to balance the influence of the two
terms depending on tps in the definition of Cps. Let us denote £xr = tar Yar.0(b)
and Ny = [llg oo pr Par/ Mk Then Cyr = Anr + Wy vi> + nyp Ay with
Ay = max{e, £y} If € < £y, we have Car = Epr + hy, v + 03, /Em, which
suggests to set £y ~ nu. If & > &y, we have Cyp = e + hi vi> + 13, /e <
e 4+ h3;vi* + n3,/Em, which suggests to set £y ~ 73,/¢. Thus, we may set
Ev = min{nas. n3,/€}. Thenreally ¢ < &y if and only if £y = npr, and & > €y
if and only if 4 = 3, /e. Therefore, Cpr < &+ h3, vk_2 + 2 1. Returning to the
previous notation, we come to the formula

ha 2,

’ 2
Pic IPllg oo nr & i

(LI,
Ym,0(b) .

®)

TyM ~ min

If sps are given by (3), Theorem 1 and relation (8) imply that

1+1/2 1/2

h hou 1 h
Hu —uplll p < il lull; 4.0+ o Tk (1 + E) (81/2 +h+ F) lull; 41,0
k
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Thus, if ¢ < h, we have the optimal convergence order [ + % with respect to /2. On
the other hand, if 537 are given by (2), the consistency error with 7as from (8) may
significantly deteriorate the convergence order. More precisely, we obtain

plt1/2 R 1 hl/2
e =wnlllp S —7— e + 75 (”E) e+ =5 | Il
M
) ) 1/2
It 101 o pr P07 000 | 135
+ Z min . o7 Nl ae - O
i, L #elosn ™ o0 fk

The convergence order with respect to 4 of the last term on the right-hand side of
(9) may be significantly smaller than for the other two terms. Let us demonstrate
this for @ = (0, 1)d, oo =0, b, = x{ and b; = 0 fori # 2. We shall assume
thatu € C'1(Q) and )", ;41 |D%u| > 0 in Q. Moreover, we confine ourselves
to meshes M, consisting of N¢ equal d-cubes, set H = 1/N and assume that
H 2 h. Then the last term on the right-hand side of (9) can be estimated from
below by

1/2 1/2
h21+1 |b|1200 v

2 Pl e ) o M
o TR bl pr I o Wk 2l o a

hl+l/2 1 1/2 h1+l/2
Z 3, / — dx R~z forl=2. (10)
w "kt \JH X k!

A general estimate from above has not been established yet so that, for suitable data,
the convergence might be even slower. Note, however, that (9) implies an optimal
error estimate with respect to /2 if b # 0 in Q. If this is not the case but oy > 0, then
in general we obtain only the suboptimal convergence order [ with respect to . The
discussed theoretical results have been also confirmed by numerical experiments.

The derivation of the formula (8) for 7y was based on balancing the terms in the
definition of Cyy. If we take into account the consistency error as well and s, are
given by (2), we may come to the formula

o h, }

, (11)
Pi Bl oo pr € 1R

Ty ~ min

This leads to the error estimate
plt1/2 R 1 hl/2
e =unlllp S =7 lliyre + 57 7 (1+g) elf? 172 ) Ml
k

Although this estimate is optimal with respect to 4, we do not think that the for-
mula (11) is a good choice. First, the norm [|b||, . ,, is not convenient from the
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implementational point of view and second, which is more important, the various
derivatives in the definition of this norm scale in different ways if the size of the
computational domain is changed. Consequently, if the problem (1) is transformed
into dimensionless variables before assembling the discrete problem, the discrete
solution transformed back to €2 depends on the definition of the characteristic length.
In other words, if a definition of 73 based on (11) is optimal for a given problem,
a rescaling of the space variable will generally cause a loss of this optimality. This
unacceptable behaviour does not occur if the formula (8) is considered.

5 Numerical Results

Let us first consider the following example illustrating the deterioration of the
convergence order discussed at the end of the previous section.

Example 1. We consider the problem (1) with @ = (0,1)2, T'? = 9Q, TN = ¢,
e = 10712, b(x,y) = (0,x?) and ¢ = 0. The functions f and u; are such that the
solution of (1) is u(x, y) = sin(x + y).

The triangulations 7 are constructed by dividing €2 into equal squares and by
cutting each square along the diagonals into four triangles. The space Dy, consists
of discontinuous piecewise linear functions on My, = 7}, and the space W}, of con-
tinuous piecewise quadratic functions enriched elementwise by three quartic bubble
functions, see [MSTO7] for details. The projection operator 7 defining the fluc-
tuation operator in (2) and (3) is the orthogonal L? projection. The stabilization
parameter is defined simply by the right-hand side of (8) with ux = 1.

Tables 1 and 2 show errors of the discrete solutions computed using the local
projection method defined by (2) and (3), respectively, for various values of /. The
errors are measured in the (semi)norms [|[ - [[[zp, | - llg.qs | - ;.o and | - ||0,oo,h
where the discrete L norm | - || . is defined as the maximum absolute value at
vertices of the triangulation. The convergence orders are computed from the errors
for the two finest meshes. The notation r—n used in the tables means r - 107".
We observe that, if sps are given by (2), all convergence orders are suboptimal and
the convergence order in the local projection norm is in agreement with the estimate
(10). If sps are given by (3), the accuracy is much higher and the convergence orders
are nearly optimal although the assumption oy > 0 is not satisfied. Nevertheless,
our numerical tests show that, in most cases, both variants (2) and (3) of the local
projection stabilization lead to comparable results, see [KLO08].

Example 2. We consider the problem (1) with @ = (0,1)2, T'? = 9Q, TN = ¢,
e=10"%b=(1,0),c =0, f =landu; =0.

The solution u(x, y) possesses an exponential boundary layer at x = 1 and
parabolic boundary layers at y = 0 and y = 1. Away from the layers, the solu-
tion u(x, y) is very close to x. The triangulation 7, consists of 32 x 32 equal
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Table 1 Example 1, errors for the local projection method defined by (2)
h -1l p |

||()Q ||1Q ||||Oooh

6.25—2 6.68—5 7.08—4 8.57-2 6.06—3
3.13-2 1.65—5 2.57—4 6.27—2 3.11-3
1.56—2 4.12—6 9.18—=5 4.49-2 1.57-3
7.81-3 1.04—6 3.24-5 3.18—2 7.85—4
conv. order 1.99 1.50 0.50 1.00

Table 2 Example 1, errors for the local projection method defined by (3)
h -1, p |

‘||0.Q |'|1.Q ||'||0,oo,h

6.25—2 1.19—=5 5.59-5 6.73—3 3.27—4
3.13—2 2.06—6 6.20—6 1.45-3 4.28—5
1.56—2 3.63—7 7.42—17 3.33—4 5.59—6
7.81-3 6.47—8 9.36—8 8.09—5 7.21-7
conv. order 2.49 2.99 2.04 2.96
1e2 T T T 1e4 T T T T
TV(uh)-2MAX(uh) —@—— TV(uh)-2MAX(uh) —@——
ERR(uh) —— 1e3 k= ERR(uh) —@— 7]

1e2 (~

1l [

1e0 (~

1 1 Te-1 1 1 1 1
1e-2 1e-1 1e0 1el 1e2 1e-5 1e-4 1e-3 1e-2 1e-1 1e0

Fig. 1 Dependence of the total variation and error on the stabilization parameter for the SUPG
method (/eft) and a local projection method (right)

squares and we set My, = 7. The space Dy, consists of discontinuous piecewise
linear functions and the space W}, of continuous piecewise biquadratic functions
enriched elementwise by two bicubic bubble functions, see [MSTO07] for details. We
shall also consider the SUPG method [BH82] with a space of continuous piecewise
biquadratic functions.

We shall investigate the capability of the methods to remove spurious oscillations
along the exponential boundary layer. For this we shall compute the discrete total
variation TV (uy) of uy along y = 0.5 using the values at vertices and midpoints
of edges. Further, we compute the discrete maximum value M AX (1) of uy using
the same values of uj, as before. Then uj possesses no spurious oscillations along
y = 0.5 if and only if TV (up) = 2 MAX(up). We shall also compute the error
ERR(up) of uy as the I, norm of errors u — uy, at vertices and midpoints of edges
along y = 0.5.

In the left part of Fig. 1, we see the dependence of 7'V (uy) — 2 MAX (uy) and
ERR(up) on the stabilization parameter for the SUPG method. The values on the
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horizontal axis represent the ratio of the parameter and a theoretical ‘optimal” value
which is 1/128 in the present case. We observe that the spurious oscillations are not
present for sufficiently large parameters. In the region without oscillations the error
increases with increasing parameter since the discrete solution is more smeared.
The left part of Fig. 1 is typical for SUPG approximations of exponential boundary
layers whereas, for characteristic layers, large values of the stabilization parameter
generally do not lead to a suppression of spurious oscillations in SUPG solutions.

In the right part of Fig. 1, results for the local projection method with s, defined
by (3) are depicted. The horizontal axis shows the ratio tps / hps. Very similar results
are obtained also for sps defined by (2) and for any finite element spaces Wy, Dy,
of second order accuracy discussed in [MSTO07]. We see that the local projection
method is not able to suppress the spurious oscillations sufficiently. Moreover, it is
not easy to assure the highest possible suppression of spurious oscillations since the
oscillations increase for tps both smaller and larger than the optimal value.

Thus, we can conclude that the local projection stabilization (which acts only on
the fine scales of the discrete solution) assures stability and (optimal) convergence,
even with respect to the SUPG norm [KTOS8], but the stabilization is too weak to
suppress spurious oscillations sufficiently. Nevertheless, the oscillations are much
smaller than in the Galerkin solution and they are localized in layer regions, which
is a common feature with the SUPG method. A possible improvement of the local
projection method could be achieved by introducing additional stabilization of the
coarse scales of the discrete solution.
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MSMT and it was partly supported by the Grant Agency of the Academy of Sciences of the Czech
Republic under the grant No. JAA100190804.
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A Locally Adapting Parameter Design
for the Divergence Stabilization of FEM
Discretizations of the Navier-Stokes
Equations

J. Lowe

Abstract We will first briefly summarize the previous efforts in constructing a
parameter design for local projection and grad-div stabilization based on a-priori
convergence analysis for the linearized problem given in [LRLOS] and [MTO7].
Especially for Taylor-Hood type elements this leads to a grad-div stabilization
parameter 1 ~ 1. While this design works well for some academic testproblems
it does not give satisfactory results for others. A review of the convergence esti-
mate suggests an a-posteriori parameter design including local norms of velocity
and pressure. Some first numerical results based on this parameter design will be
presented.

1 Introduction

Consider the non-dimensional, unsteady, incompressible Navier—Stokes equations:

8,u—Re_1Au+(u-V)u+Vp=f' inQ x(0,7) 0
V.u=0 in Q2 x(0,7)

in the primitive variables velocity u and pressure p in a bounded, polyhedral domain

Q CcR?,d = 2,3 and with given source term f. The dimensionless Reynolds num-

ber is given by Re = % with U and L being a characteristic velocity and length,
respectively, and v the kinematic viscosity.

A standard approach for solving (1) is to apply a semi-discretization in time with

an implicit A-stable scheme first and then to linearize the problem with a fixed point
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or Newton-type method. The fixed point iteration leads to a series of Oseen-type
problems:

—Re 'Au+(b-Vyu+ou+Vp=f in

V.u=0 in Q.
We consider o to be constant and proportional to the inverse of the chosen timestep
size and b € Hy;,(2) NL°(R2) with o — %V -b > 0, > 0 almost everywhere. For

simplicity we impose homogeneous Dirichlet boundary conditions u = 0 on 9€2.
The appropriate solution space for the continuous problem is

W.p) eVxQ:=[HNQ] x L2(Q).

The weak formulation for the Oseen problem then reads

FindU = (u, p) € Vx Q s.t.
AU, V)= (fv) VV =(v,q) e VxQ

with the bilinear form
AU, V) := Re Y (Vu, Vv) + ((b- VYu+ ou,v) — (V-v,p) + (V-u,q),

where (, ) denotes the inner product on L2(2) or [L2(2)]4.

As a spatial discretization we consider quadrilateral (d = 2) and hexahedral ele-
ments (d = 3) and require a shape-regular triangulation 7,,. Let F be the mapping
from the reference cell K to real cell K and let Q, be the space of tensor polyno-
mials, i.e. polynomials of maximum degree r in each coordinate direction. Then we
can define the mapped finite element space

Y, ={veC@)|v|koFx e Q. (K) VK eT,}.

We choose the discrete ansatz spaces V,, = [Y, h]d NVand Q, = Q,, N QO for
velocity and pressure with polynomial degrees s and ¢, respectively.

2 The Local Projection Stabilization Framework

The standard Galerkin approximation with finite elements suffers from two prob-
lems. On the one hand the case Re >> 1 gives raise to spurious oscillations in
the velocity component of the solution due to dominating advection and poor mass
conservation; on the other hand, a pressure instability occurs for spaces that do not
satisfy the discrete inf-sup condition.
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A widespread framework to deal with all these problems is the residual based
stabilization. Especially the combination of Streamline-Upwind/Petrov-Galerkin
(SUPG) and Pressure-Stabilization/Petrov-Galerkin (PSPG) is often used, some-
times supplemented with Grad-Div stabilization, see [BBJLO7] and references
therein.

The class of residual based methods has several drawbacks. For example the
SUPG and PSPG methods are non-symmetric and introduce additional coupling
terms between velocity and pressure. These create some difficulties in the analy-
sis and lead to upper bounds on the stabilization parameters in order to prove the
stability of the method.

As a remedy for the drawbacks of the class of residual based methods several
symmetric stabilization methods have been proposed. They all have in common that
they add a symmetric, positive semi-definite bilinear form S, to the original weak
formulation of the problem.

The stabilized variational formulation is then given by:

Find U, = (u,, p;,) € V,, X O, s.t.
A+ S, V) = (£, vy) YV, = (v,.q;,) €V, X Oy

There are several ways to define the penalty term S, see [BBJLO7]. Here we will
focus on the local projection stabilization (LPS) following the framework introduced
in [MSTO7]. The idea of LPS is to penalize only the small scales of the quantities
of interest defined by some fluctuation operator.

Let Vg /Qp be a pair of scalar and discontinuous coarse spaces on a suit-
able macro triangulation M, and let 7’4 . L2(Q) — Vg /Opn be the local
L?-projections into the coarse spaces. Then we can define the fluctuation operators

KV = id — 7V L2(Q) —> L*(Q).

We will use boldface notation «V if we apply the operator component-wise. The
stabilizing bilinear form S}, can then be defined as

SU. V)= > (k"((V-bu). (V-b)v),,

MeMy
+ Z pa (k?(V ), V-v),, + Z am (' (Vp).Vq),,
MeMy MeMy

It contains penalty terms for the fluctuations of the streamline derivative and diver-
gence of the velocity and the pressure gradients, weighted element-wise by user
chosen parameters 7,,, j1,, and a,,. Other variants that stabilize fluctuations of the
full gradient of the velocity are possible.
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3 Parameter Design

Two typically used conforming spatial discretizations are the family of Taylor-Hood
elements (TH, s = ¢ + 1) and approximations with equal order for velocity and
pressure (EO, s = t). The coarse spaces are chosen in a so called two-level manner,
where 7, is a suitable global refinement of M, := 7,, . The full a-priori analysis on
stability and error estimates for this method can be found in [LRLO8] and [MTO7].

Under the assumptions given there one can derive the following estimate for
the error between the continuous solution U = (u, p) and the discrete solution
U, = (u,, p,) in the stabilized energy norm:

U =UllEp =€ Y (euhdilo-Vyul,
Mth

2 2 p 2t 2
+ Cyhprlulsyi o, +CMhM|p|t+l,a)M) 2
where w;, denotes a certain neighborhood of the macro element and

Cip = Re™" + hiyy(o + 13 + apf) + g + TaglIbll2 ar-

Cly = oy + sl .
The energy norm itself is given by:
IV @IlIzp = Re™' IV} + 0ollvII5 + 8llg 1§ + S,(v.4: V. q).

In order to get asymptotically optimal rates of convergence, the stabilization
parameters must satisfy a certain scaling with respect to /1, given in Table 1. These
parameter designs are based on the assumption [u|; ;1 5y ~ |Plg p and obtained by
balancing the parameter dependent terms in the a-priori error estimate (2) in order
to minimize the upper bound on the error.

For the Taylor-Hood element the divergence parameter i, is notably conspicu-
ous because it is of order 1 and might dominate the whole PDE. In [OR04], where
the grad-div stabilization for the Stokes problem is analyzed, it is remarked, that
the larger the norm of the pressure is compared to the norm of the velocity, the
more important the divergence stabilization is. We propose that balancing the 1 ,,—
dependent terms should include the local norms of u and p because there may be
large differences in the scaling of both. Following this approach gives:

Table 1 Selected space combinations with parameter scaling (Re™! < k)

vV, 0, Vi Oy Tos Woas o, error

TH Y, Yo YISiCI,Zh 0y ~hy  ~1 0 o (i)
EO Y., Y, Y 5, {0} ~hy o~y ~hy, O(hﬁfl/z)
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|p

|u|k+1,w/\/[ .

2 1,2 k.o
12374 |u|k+1,a)M ~ Kyp |P|k,a)M = KM~ =

Since the solution (u, p) is generally unknown, these norms must be replaced by
norms of the discrete solution (u,,, p, ). This leads to a local and nonlinear parameter
design. We should further note, that it may be difficult to recover approximations
of the high order derivatives from the discrete solution to evaluate the norms for
large k.

4 Numerical Results

As test cases we considered two stationary Navier—Stokes problems with special
properties.

Problem 1. On the unit square Q = (0, 1)?> we define

cos(2x — 1)e?r~1 Z_e2 W2

u(x,y) = (sin(2x _ 1)e2y—1) ’ p(x,y) = ¢ 3 - b

and right hand side f = 0. Then the Laplacian vanishes, Au = 0. The sole contri-
bution from the velocity field to the PDE is the nonlinear term that cancels out with
the pressure gradient.

Problem 2. Again on the unit square Q = (0, 1)? we prescribe a fixed velocity
profile and a channel-like linear pressure

ate) = (M) ) = ke b

and get a non-vanishing right-hand side. This time the convective term (u - V)u is
zero and the pressure is scaled with the inverse of the Reynolds number. A vector
plot of the velocity field for both examples is given in Fig. 1.

Remark. We did not use the quadratic Poiseuille profile for the second example
because it is contained in the ansatz spaces for k > 2.

The following numerical tests were carried out on an unstructured, quasi uniform
mesh with 7 &~ % and the Taylor-Hood element with k = 2. The nonlinearity was
resolved by a damped defect correction iteration and the norm of the residual was
reduced below 10712,

Figure 2 shows how the various errors of the discrete solution depend on the
Reynolds number without stabilization. For the first problem we see almost a linear
increase of the errors in the velocity with the Reynolds number, while the pressure
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Fig. 1 Vector plot of velocity for problems 1 (fop) and 2 (bottom)



A Locally Adapting Parameter Design for Divergence Stabilization 201
100 T T T
R
1071 f E
102 | E
g D
g 10-357»( =] g = i
5
1074 F —— ||div up [[o
—O— [lu-tnllo
105 | —o—lu-uply |4
q —+&—[IP ~Pxllo
10_6 1 1 1
100 10’ 102 108 104
Reynolds number (log)
10_2 - T T T
——x——|[div uplo
103 | —O—|lu-ullo o o o 4
O |u-uply
1074 F| —&— 1P —Pllo m
5)
S 05k |
® 10
o o o o o D
qh_) A A A A A A
1078 E
107 F 3
Il
10_8 1 1 1
10° 10! 102 103 10*

Reynolds number (log)

Fig. 2 Errors vs. Reynolds number Re for problems 1 (top) and 2 (bottom)

error remains constant. The error of the velocity in the H '-seminorm is dominated
by the divergence error. For the second problem we can observe a linear decrease
of the pressure error that is caused by the scaling of the pressure with Re™!. The
velocity errors are not affected by the Reynolds number and the divergence error is
smaller than the H !-seminorm error.
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Fig. 3 Stabilization with the old parameter design, problems 1 (fop) and 2 (bottom)

The effect of divergence stabilization on the errors for the original parameter
design and both examples with Re = 10* is shown in Fig. 3. For the first prob-
lem the divergence stabilization improves the velocity errors by several orders of
magnitude and decouples the divergence error from the H !-seminorm error. The
optimal parameter pps =~ 1 reduces the divergence error to the level it had for
Re = 1. However, the behavior is different for the second problem. At some point
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Fig. 4 Stabilization with the new parameter design, Example 1

the pressure error starts to increase linearly with the stabilization parameter. The
previously optimal value now increases the pressure error by more than one order of
magnitude. Over the whole range of tested parameters only a marginal improvement
of the error can be observed. The errors without stabilization are almost optimal.

To get some first results for the new parameter design we used the reference
solution and inserted it into the new parameter design. Due to vanishing second
derivatives of the pressure for the second problem the parameter design reduces to
1y, = 0and reproduces what we could see in the previous numerical result: for this
problem the divergence stabilization is superfluous. For the first problem the original
assumption on the norms is valid and the new parameter design gives results (shown
in Fig. 4) comparable to the old parameter design.

More realistic flows, like the flow around a cylinder used in benchmark com-
putations [TS96], show locally varying properties. Close to the cylinder nonlinear
effects are stronger, while far behind the cylinder channel like flow can be observed.
The proposed parameter is an indicator for the flow type and varies by two orders
of magnitude for the flow around the cylinder.

5 Conclusion

Parameter designs for the divergence stabilization did not take into account the local
norms of velocity and pressure so far. This leads to parameters far from being
optimal for some types of flow (e.g. channel type flow) that actually increase the
errors. By a careful look into existing a-priori analysis and error estimates we were
able to derive a new parameter design for the divergence stabilization that includes
local norms of velocity and pressure in order to minimize the upper bound of the
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error. The rate of convergence is not affected by the new choice. Unfortunately the
new parameter design has several drawbacks that are an obstacle to an efficient
implementation.

We should note, that similar observations can be made for the pressure stabi-
lization parameter, because it appears in front of velocity and pressure norms in
the error estimate. In practice the effect of badly chosen parameters is less visible
there, because the parameter typically is proportional to /,, or h%w for pressure
stabilization.

We have not yet implemented the proposed nonlinear parameter design, because
we belive that balancing the parameter using the asymptotic a-priori error esti-
mate is still not optimal. What we finally want to do is to determine the load on
the divergence constraint, for example by using a Helmholtz-decomposition of the
convective and external forcing terms in the momentum equation.

The question whether it is possible to construct a reliable and robust parameter
design, that works over a broad range of problems without case by case parameter
tuning and can be efficiently implemented, is still open.
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Distributed and Boundary Control
of Singularly Perturbed
Advection-Diffusion—Reaction Problems

G. Lube and B. Tews

Abstract We consider the numerical analysis of quadratic optimal control problems
with distributed and Robin boundary control governed by an elliptic problem. The
Galerkin discretization is stabilized via the local projection approach which leads to
a symmetric discrete optimality system. In the singularly perturbed case, the Robin
control at parts of the boundary can be seen as regularized Dirichlet control.

1 Introduction

Let @ € RY,d € {2, 3} be a bounded polyhedral domain with Lipschitz boundary
Q2 =TrUTIp, I'p NT'g = @ and outer normal unit vector n. We address some
aspects of the numerical analysis of the quadratic optimal control problem

L 1 . 1 .
Minimize J(u,qq,qr) := E/\szllu — uQIIiz(Q) + Ekr”“ - 141“||2Lz(1~R)

1 2 1 2
+ EaQHQSZ”LZ(Q) + Eal_‘”qr||L2(FR) M

where (1, g, qr) € VxQaxQr = {ve HY(Q) : u|r, = 0}xL>(Q)xL*(T'g)
solves the mixed boundary value problem of advection-diffusion-reaction type

—eAu+b-Vu+ou=f+qgq inQ, 2)
u=0 onlp, eVu-n+pu=g+gqr onlg.
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We assume that ¢ > 0 and o > 0 are constants and that the advective field b is
divergence-free. In (1), the desired states are /g and tir. The constants Ag, Ap > 0
with /\?2 + )t% > 0 describe the weights of the distributed and boundary control in
(1) whereas aq, ar > 0 with ozsz2 + ozl% > 0 serve as regularisation parameters. The
state equation (2) describes the dependence of the state u on the control (¢q, gr)-

Problem (1)-(2) with I'g = @ has been considered in [3, 10] for the singularly
perturbed case 0 < € < 1, see also the references therein. Here one goal is to con-
sider problem (1)—(2) simultaneously for distributed and (Robin) boundary control.
Notably, for 0 < € < 1, the Robin control can be seen as regularized Dirichlet
control.

The Galerkin discretization is stabilized as in [3] via the local projection approach
(LPS for short below) which leads to a symmetric optimality system. This implies
that discretization and optimization commute as opposed to residual-based stabiliza-
tion techniques. Another aim of the present paper is a more general LPS approach,
including a two-level variant (as in [3]) and a one-level variant introduced in [9].
Let us emphasize two aspects of the analysis: (1) The regularity of the solution of
problem (2) is taken into account by using Sobolev—Slobodeckij spaces and adapt-
ing the analysis of the LPS method. (2) The analysis is performed for shape regular
meshes (as opposed to quasi-uniform meshes in [3]) which allows for (isotropic)
mesh refinement at corners or edges of the domain and in boundary layers.

An outline of the paper is as follows: In Sect.2, we address the solvability of
problem (1)—(2). Then, in Sect. 3, we consider the finite element (FE) discretiza-
tion of the optimality system whereas Sect. 4 presents its convergence properties. In
Sects. 5 and 6, we address a numerical experiment and the interpretation of Robin
control as regularized Dirichlet control. For full proofs we refer to [8].

Standard notations for Lebesgue and Sobolev spaces are used, e.g., the L2-inner
product and the L2-norm in G C 2 are denoted by (-,-)g and || - [|o.G-

2 Continuous Optimal Control Problem

Here we consider the optimality system for the continuous optimal control problem
(1)=(2). To this goal, we first consider the solvability of the state equation (2) with
f:=f +4+qqand g := g + gr. The variational form of problem (2) reads:

Findu € V suchthat a(u,v) = f(v) Vv eV, 3)
a(u,v) :=e(Vu,Vv)g + (b- Vu + ou, v)oHpBu, v)ry,
f@) = (f.v)a + (E g
Lemma 1. There exists a unique solution u € H'(Q) of problem (3) under the
assumptions:

i)be[L®Q)]4, feL*Q), §eL*TR). B e L®(TR),
ii)e>0,0>0and V-b=0 a.e.in 2,
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iii)/g:= B+ %(b-n) >Po>0, B>0ae onlg,
iv) There holds: (iv); pg—1(Tp) >0, and/or (iv), >0 or By >0.

Moreover, the optimal control problem (1)—(2) has a unique solution (U, qq, qr).

The proof can be found in [8], Lemma 2.1. Please note that the assumption § > 0
is not needed for this result, but it will be used later on in the analysis in Sect. 4.

In general, the solution of (3) is not in W22(Q). Let S be the set of points
(for d = 2) or edges (for d = 3) which subdivide the polyhedral boundary 92
into smooth disjoint connected components. The weighted Sobolev space Vsk’z(Q)
denotes the closure of C°°(2) w.r.t.

1
_ 2(6—k+lal) o, 12 2
ol = (3 /Qr ID%ul? dx)

lo|<k

where r = r(x) = dist(x,S), § € R, and k € N. The parameter § is defined via
eigenvalues of eigenvalue problems (in local coordinate systems at parts of the set S)
associated with problem (3). As it is not the goal here to give sufficient conditions
for the solution of problem (3) to belong to Vak’z(Q), we refer to [6]. Moreover,
we do not intend to consider graded FE meshes in the neighborhood of the set S
although the forthcoming numerical analysis allows such kind of refinement. For
such approach to optimal control problems, see [1].
Here we consider on a subdomain G € 2 the Sobolev—Slobodeckij spaces

Wk+/1,2(G) — {U c Wk’z(G) : ||u||k+l,2,G < OO}, k e NO’ A€ [0, 1)

. |Du(x) - DU\
u = |ju + dxdy)".
llenzg = (o + 2 [ [ 20— )

loe|=k

The spaces W**#2(I'g) are defined in a similar way.

Remark 1. The embeddings V82’2(52) C W%+"’2(SZ) C C(Q) are valid for § <
2 — % + k with k > 0, cf. [6]. In particular, for the case Q2 = I'p in polyhedral
domains, the conditions § < % + K,k > 0 are sufficient.

As problem (3) is uniquely solvable, we define the affine linear solution operator
S:L*(Q)x L*(Tr) = V, u = S(ga + f.qr + g). Due to the linearity of (2) we
can split S in its linear and affine linear part. Inserting u = S(gq + f.qr + &) =
S(ga.qr) + S(f. g) in (1), we obtain (with trace operator y) and the definitions
ug :=ug — S(f,g)and ur := ur — y o S(f, g) the reduced cost functional:

. 1
Jj(@g.qr) = J (9a.4qr. S(ga.qr)) = EAQHS(CIQ,QF) —uglg g
1 1
+ EKFH)/ o S(qe.qr) —urlgr, + E‘XQHQQH%,Q )

1
+ EUFHQI‘Hg,FR'
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Now the reduced optimization problem reads

Minimize j(¢q.qr), (ga.qr) € Qq x Or. %)

The reduced cost functional j is continuously differentiable. In order to formu-
late the optimality conditions for problem (5), we define the associated adjoint state
P € Vto(qq,qr) as the solution of

Find p eV :  auqj(p,v) =Ao@ —uq,v)g + Ar(U —ur,v)r, Vv € V(6)
daqj(p.v) := €(Vp.Vv)g —(b-Vp,v)a +0(p.v)a + (B +b-n)p,v)rg.

The necessary (and sufficient) optimality conditions read

Dye j(Gq.qr) - (ko —qq) = (@aqq + P.ka —qg)e =0, Vkq € Qq, (7)
Dy j(@gq.qr) - (kr —qr) = (arqr + vy o p,kr —qr)ry=0, Ykr € Or.(8)

leading to
aQdq+p =0, inQ argr +yop =20 on T'g. )

The optimality system (KKT-system) for problem (1)—(2) is formed by (9)
together with the state problem (3) and the adjoint state problem (6). The second
order derivatives of j(¢q, qr) do not depend on (¢q, ¢gr) and are positive definite.

As already said, the solution of (1)—(2) is in general not arbitrarily smooth.

Assumption 1: The optimal solution (¥, p,¢gq, qr) of the optimal control problem
(1)~(2) belongs to [W 1 +42(Q)]? x W342(T'g) with 1 + A > 4.

Assume that ag,ar > 0. Then Assumption 1 is valid if the solution u of
(3) belongs to WItA2(Q), 1 + A > d/2, eventually for sufficiently smooth data
f. &, B. For sufficient conditions, see Remark 1. Then the same statement is valid
for the solution p of (6) for sufficiently smooth data ug, ur. Moreover, the regular-
ity of g and g follows via (9). Finally, we remark that Assumption 1 allows later
on Lagrangian interpolation of the solution.

3 Stabilized Discrete Optimality System

Here we introduce the discretized optimal control problem to (1)—(2). A more gen-
eral approach to the discretization as in [3] is applied by considering shape-regular
FE meshes and a more flexible stabilization concept.

Consider a family of shape-regular, admissible decompositions 7, of 2 into d -
dimensional simplices, quadrilaterals (d = 2) or hexahedra (d = 3). Let hr be the
diameter of a cell T € 7, and h = maxre7;, hr. Assume that, for each T" € 7y,
there exists an affine mapping Fr : T — T which maps the reference element T
onto 7. This quite restrictive assumption for quadrilaterals/ hexahedra can be weak-
ened to asymptotically affine linear mappings [2]. Let e, denote the set of element
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faces (for d = 3) or element edges (for d = 2) induced by 7, on 2. Moreover,
we assume that the Robin part I'g of the boundary is exactly triangulated by ey,.

Set Pz, = {vp € L*(Q) : vyo Fr € Py (T),T € T;} within Py(T), the
space of complete linear polynomlals on T, and Ry, = {v; € LZ(Q) vy,o Fr e
Qu(T).T € Ty} within Q(T), the space of all polynomials on T with maximal
first degree in each coordinate direction. The state space V is approximated by a FE
space V D Pz, NV or Vj D Ry, NV. Similarly, let Q5. q C H'(Q2) be a FE space
for the control variable and O, r = Op q|ry, its restriction to I'g.

The basic Galerkin discretization of the state problem (3) reads:

find u, € Vj, suchthat a(up,vy) = f(vp), Yv, € V. (10)

The solution uy, of (10) may suffer from spurious oscillations. As a remedy, we
consider the local projection stabilization (LPS) approach which results in a sym-
metric discrete optimality system. LPS methods split the discrete function spaces
into small and large scales and add stabilization terms of diffusion-type acting only
on the small scales. There are basically a two- and a one-level variant (indicated by
My, = Ty and My, = T, respectively).

The two-level variant starts from the given space Vj, = Py, NV or V = Ry, NV
for simplicial or hexahedral elements. The large scales are determined by means
of a coarse, non-overlapping and shape-regular mesh M; = {M,;};c; which is
constructed by coarsening 7y s.t. each M € My, with diameter /s is the union of
neighboring cells 7' € 7. (A more practical approach is to start from the coarse grid
My, and to construct 7, by an appropriate refinement, see [4], Sect. 4.) Moreover,
we assume:

3C>0: hy <Chp, VT e€Th, M e MuwithT c M. (11)

We introduce a discontinuous FE space D;, C L?() of piecewise constant func-
tions on My, and its restriction Dy (M) = {vy|p ; vy € Dp}to M € My,
The next ingredient is the local L2-projection wps : L*(M) — Dy(M) which
defines the global projection m;, : L?(Q) — Dy by (mpv)|p = mar(v|pr) for
all M € M;,. The fluctuation operator kj, : L?*(RQ) — L?*(RQ) is defined by
Kp = 1id — my,.

The one-level variant starts from the given discontinuous FE space Dy, of piece-
wise constant functions on Mj, = 7 and uses an appropriate FE space 1, on 7j,.
For simplicial elements, define

PP (T) = Py(T) + b+ Po(T), b(%):=(d+ DT A(®)-...- hgp1(®)
with the barycentric coordinates /A\l, e, id.}rl. The enriched space is defined as
Vi ={ve H(Q)NV : v|r o Fr € PP*(T)VT € Tp,}.

A similar construction is given in Sect.4 of [9] for hexahedral elements. Then the
same framework as in the two-level approach can be used by setting My, = 7p,.
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For both variants, the stabilized discrete formulation reads: find u;, € V} such
that

arps(Up, vp) = a(up, vp) + sp(up, vp) = f(vp), Yo, € Vg, (12)

sn@un,vn) = Y i (kn (b Vup) ki (b Vo)) ar. (13)
MeMy

The stabilization s;, with parameters tps > 0 acts solely on the small scales. Another
variant uses S (up, vp) = Y pr T (Kn(Vuy), €p(Vop)) s instead of sp(-, ). Here
kp denotes a vector-valued version of the fluctuation operator «j,.

For a discussion of “pro’s and con’s” of the two variants, we refer to [4].

The discretized control problem associated with (1)—(2) reads as follows:

min J(up, gh.Q.9n,r) Un.gh.-gnr) € Vi X Opa X Oprs (14)
apps(up,vp) = (f +qne.ve)e + (& + qnr. vp)rg, Yop € Vi (15)

Problem (14)—(15) has a unique solution (¥, .4y, r) Which allows us to define
the discrete solution operator S, : Qg x Qr — Vj, by

a1ps(Sn(qn.@.qnr).vn) = (f +qn.e.vn)e + (& +gnr.Vi)rg Yor € Vi

and the discrete reduced cost functional as j;(gn..qn,r) = J(Sh(qn.Q.qn,1). qh.Q-
qn,r)- The necessary (and here also sufficient) optimality conditions read

aedpe+pPyp = 0.  arqur+yop, = 0.
Here the discrete adjoint state pj, € V}, solves the discrete adjoint state problem
aips(vp. pp) = Aoy —uq.vp)e + Ar(Up —ur, vp)rg. (16)
where u, = Sj,(gq, gr) is the discrete state according to (15).

Remark 2. The symmetry of the LPS term implies that the operations “optimize”
and “discretize” commute, see [3].

4 A-Priori Error Analysis

Here we provide the error analysis for the optimal control problem (1)—(2). It turns
out that additional assumptions for the LPS method are required.

Assumption 2: The fluctuation operator k;, = id — 7, has the property:

ACe >0 : |knqllom < Cehdylglsm, Vg € WHA(M), s € [0,1], VM € M.
(17)

Remark 3. The original version of (17) in [9] only considers s € {0, 1}.
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Following [9], we construct an interpolation jo : V — V}, such that the error
v — Iv is L2-orthogonal to Dy, for all v € V. The following assumption is valid
for the discrete spaces discussed in the previous section and allows us to conserve
standard approximation properties.

Assumption 3: There exists a constant 85 > 0 such that, for any M € My,

. (Uh 5 Qh)M
inf

up ————— > fs > 0. (18)
an€Dp(M) v, ey, (M) [Vrllone | gnllo,m

where Y, (M) := {vp|p @ vy € Vi, v =00n Q\ M.

Condition (18) implies that Dj, must not be too rich. On the other hand, Dj must
be rich enough to fulfil (17) .

The following result extends the proof in [9] to A € {0, 1}, see [8], Lemma 4.1.

Lemma 2. Under Assumption 3 there exists an operator jo : V — Vj, such that
(v—Jjov.qn)a =0, Vgn € Dp, Vv €V, (19)

and for all M € My, forall E € ey, and forv e VW' T42(Q) with 1 + A > %

1
lv—jovllo.a +halv—jovlim+hi lv=jovlee < hif vl 2w (20)

The next goal is to derive error estimates for the state problems (15) and (16).
First, the stability of the scheme will be given in the mesh-dependent norm

1
~1 2
ol = (elvl g + ol0l3q + 1B 0l e + 500 0)) ", Vo eV,

Lemma 3. The LPS schemes (15) and (16) have unique solutions.

Proof. We consider, e.g., problem (15) with v, = wuy. The application of the
Cauchy-Schwarz inequality and the definition of the triple norm yields the a priori
estimate

unlll < Call f + gnallo,.e + Crllg + gn.rllo,rx

. P 1 . p—% 1 .
with Cq = min{o~2;Cpe~ 2}, Cr := min{f, >; Cpe~ 2} and Poincare constant
Cp.

The following a priori estimates are based on the standard technique of combin-
ing stability and consistency results based on the previous auxiliary results. Here,
and in the following Lemma, we fix some controls (pq, pr) € Qo x Qr which
will be later on, for the main theorem, chosen as the Lagrangian interpolants of the
optimal controls (¢, qr)-

Lemma 4. For (qq,qr) € Qo X Or, letu = S(qq,qr) € V be the solution of (2).
For some (pg, pr) € Oq X Or, let wy, = Sp(pg, pr) € Vi be the solution of

ajps(Wp,vp) = (f + pa.vr)e + (g + pr.vn)rg Vv, eV, (2D
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with
t ~ hat /bl oo arya- (22)

Then, under the assumptions of Lemma I, there holds the a-priori error estimate
l[lu —walll = Callge — pallo.2 + Crllgr — prilo,rg (23)

[b- Vu|?
2A+1 A2,M
+C( >y { -

Mo, [Ibl;z00 (a1

Nl—

+Cu ||u||%+,1,2,M})

with constants Cpy and Cr as in the proof of Lemma 3 and
Cwm = ehyf + ohm + [bllisoane + 1Bl @mnrg) + b0l Leo@anry)-

For a full proof of Lemma 4, see [8], Lemma 4.3. Similarly, we obtain an a-priori
error estimate for the adjoint problem (16) where |||u — wy,]|| in (23) can be further
estimated via Lemma 4. A full proof of Lemma 5 is given in [8], Lemma 4.4.

Lemma 5. For (qq,qr) € Qq X Or, let p € V be the solution of the adjoint state
problem (6) and for some (pg, pr) € Qq % QOr, let y, € Vj, be the adjoint discrete
solution. Then, there holds the a-priori error estimate

p—yulll < (CEdra + CEAD)||u — whll]

|b'VP|,212M 2
N C(Zhﬁfrl{bi” + CM||P||%+A,2,M}>
-~ Ibll{00 a1

with tpr as in (22) and constants Cyy, Cq and Cr as in the previous Lemma.

We can now give the main result for the optimal control problem. For a full proof
of Theorem 1, we refer to [8], Theorem 4.5.

Theorem 1. Let the assumptions of Lemma 1 and Assumption 2 be valid. More-
over, let (U,qq,qr) be the solution of the optimal control problem (1)—(2) and
(U, qn.q-9n.r) the solution of the discretized problem (14)—(15). Finally, let ag,
ar > 0. Then there exists a constant C > 0 depending on Aq, Ar,aq,ar, Cq, Cr
such that the following error estimate holds:

7e —qnallo.e + Igr —Gnrllorg

1
14245 |2 2 1424 1= (2
SC{( Z hay |QQ|1+A,2,M> +( Z hg |qF|1+A,2,E>
MeMy Eee,NI'g

+(§h}‘;”(

1
_ _ 2
+ CM(||”||%+A,2,M + ”P”%+A,2,M))) }

(Sl

b Vmi,z,M b Vﬂi,z,M

[Ibllizeoaryie — IIDlliroe(arye

with Tty as in (22), hg = diam(E), E € ej, and Cpy, Cq, Cr as in Lemma 4.
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3
Remark 4. In the limit case A = 1, we obtain the optimal convergence rate O(h ;).

5 Numerical Experiment
Consider the following numerical example:

. 1 . 1
min J(qq, u) 1= 5”” - u52||i2(g) + EC‘QHQQHiZ(Q)’
—Au+b-Vu+ou = f+qq in 2, u=0 on 9N

with gg € L?(Q),e = 107>, b = (-1,-2), 0 =1, f =1, iig = 1| and
aq = 0.1. The numerical solution in [3] (for box-constraints of control) with the
two-level LPS method and ¢ = 102 gave strong oscillations in the boundary layer
regions.

Table 1 gives the convergence history and the numerical convergence rate of the
cost functional J. Figure 1 shows the discrete control and state on the coarse grid
for the two-level approach with Q;-elements and h = llﬁ. Spurious oscillations
in the boundary layer regions are significantly reduced as compared to the results
in [3].

There is an ongoing scientific discussion on the strength of the LPS-method
vs. classical residual-based stabilization techniques (like the streamline diffusion
method). In [5] it is shown for the one-level LPS method that the LPS-norm gives
additional control of the streamline derivative, i.e., on (3_,, Sar||b - V(-)||(2), M)%
with 8pr ~ min(hpr/|[bllo,co,n; h3,/€). A further reduction of remaining spuri-
ous oscillations in boundary layers is possible with adaptive mesh refinement based
on a posteriori error estimators. For the streamline diffusion method applied to
optimization problems for advection-diffusion problems, we refer to [10].

Table 1 A-convergence of the cost functional

h=2"! J(@Gp,upn) J(@n,un) — J(Gop>U2n) num. conv. rate

2 3.082E—01 — —
3 2.767E—01 3.152E—02 -
4 2.639E—01 1.277E—02 1.303
5 2.602E—01 3.748E—03 1.769
6 2.592E—01 9.138E—04 2.036
7 2.591E—01 1.743E—04 2.390
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Fig. 1 Optimal discrete control and state for Example 2 withe = 10™> and T = 0.1 A

6 Further Application: Regularized Dirichlet Control

In applications, a Dirichlet boundary control ¥ = ¢ is desirable. A review of some
variants is given in [7]. One possibility is to approximate the Dirichlet control by a
Robin control

éVu-n+pBu—q)=0, p=0(1) (24)

for &€ — 40, but the choice of & is delicate. For the singularly perturbed problem (2)
with &€ = ¢, one can interpret the Robin control as regularized Dirichlet control.

Define the subsets I'_, 'y and '} of the boundary 92, depending on the sign
of (b - n)(x). The solution u of problem (2) has boundary layers at the outflow part
'y with gradient |eVu - n| ~ 1 and at characteristic boundaries I'g with (at most)
|eVu-n| ~ /e. At the inflow part I'_, one has only |[¢Vu-n| ~ ¢. This motivates us
to exclude a Dirichlet control at the outflow boundary I';.. On I'_ U I'y, the Robin
regularization (24) with € = ¢ and § + %b -n > By > 01is a good approximation of
the Dirichlet control u = gq.

A typical situation is the flow in a domain of channel type Q = (0, L) x(—ZL 5 7
with the flow field b(x) = ((g — |[x2])%,0)T with k > 0. The solution u of (2) can
be seen as a temperature field or as the density of some chemical reactant. Let us
describe potential applications of Dirichlet control: A Dirichlet condltlon U =gqis

givenat ¥ C I'_ = {0} x —7, 7) whereas a Robin condition 8 —i—,B (u— g) =0
with g + 1b n > By > 0is prescribed on I'_ \ . A Neumann cond1t1on 8 =0
might be prescribed on Ty = {1} x (—& 5 5 ) An “insulation” condition 8 =0
is given at the channel walls I'g = (0, L) x {—7, 7} Similarly, one can assume

a Dirichlet condition ¥ = ¢ at ¥ C I'p of the channel walls. Finally, replacing
the Dirichlet control on ¥ C I'_ U Iy by Robin boundary control leads to the
problem considered within this report. An analytical justification of this approach
and numerical results will be given elsewhere.
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Antisymmetric Aspects of a Perturbed
Channel Flow

J. Mauss, P. Cathalifaud, and J. Cousteix

Abstract This paper aims at studying steady laminar flows of incompressible new-
tonian fluids in channels at high Reynolds numbers when wall deformations can
lead to separation. Thanks to the use of generalized asymptotic expansions, cases
are examined for which linearized Euler equations are a good approximation in
the core flow. The extraction of the antisymmetric part of the problem leads to a
new and promising approach of the flow structure understanding. Comparisons with
Navier—Stokes solutions demonstrate the relevance of the proposed approach.

1 Introduction

We consider a steady, two-dimensional, incompressible, laminar flow in a channel
at high Reynolds numbers. When the walls are parallel the fully developed flow,
Poiseuille’s flow, constitutes the reference flow. The channel geometry is perturbed
by wall deformations, troughs or bumps, which can be sufficiently severe to induce
flow separation.

Here, the flow is analyzed by using the Successive Complementary Expansion
Method [1], SCEM, in which we seek a Uniformly Valid Approximation, UVA,
based on generalized asymptotic expansions.

In the study of high Reynolds number flows, the first idea is to consider Euler
equations formally obtained from Navier—Stokes equations when the Reynolds
number tends to infinity. Then, an asymptotic analysis can be applied and it is tempt-
ing to call for a hierarchical process. The first step is to solve the Euler equations.
In the vicinity of singular zones, near the walls or in the wakes, the second step
consists in trying to correct the first approximation by a boundary layer analysis.
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However, in many problems involving a strong coupling, this type of hierar-
chical approach is known not to be possible. Excluding a multi-layer approach of
triple deck type [4, 5], which introduces very restrictive hypotheses on the scales, a
possibility is to use generalized asymptotic expansions. According to this method,
the small parameters of the problem can be included in the functions which form
the expansions. This idea is very different because the small parameters are not
considered as tending towards zero but are only small. Thanks to the generalized
expansions, the effects of the eulerian region on the boundary layer region and
the reciprocal effects are considered simultaneously and not hierarchically. More-
over, the construction of a UVA does not require any matching principle, only the
boundary conditions of the problem are used.

After the formulation of the problem (Sect.?2), a direct analysis (Sect.3) with
small wall deformations shows that the Navier—Stokes equations reduce to a coupled
system consisting of generalized boundary layer equations uniformly valid in the
whole flow — the so-called field equations — and linearized Euler equations — the
so-called core equations. A deeper study is performed by separating geometrically
the symmetric and antisymmetric parts (Sect. 4). The analysis of the flow enables us
to improve the usual asymptotic hypotheses and to consider original configurations.
Comparisons of the evolution of the skin-friction coefficient with Navier—Stokes
solutions show the relevance of the proposed approach (Sect. 5).

2 Formulation of the Problem

The Navier—Stokes equations are written in nondimensional form in an orthogonal
axis-system (x, y)

wu 9V
— 4 = 1
ax t 7 0, (1a)
o au P 1 [0°U  o°U
Moy m (220 1
u8x+V8y 8x+R(8x2+8y2)’ (10)

oV Y P 1 (32V 82V)
. (1c)

U=+ V =+ = | =5 +

8x+ dy 8y+R 8x2+8y2

with R denoting the Reynolds number based on the width of the non-perturbed
channel and a reference velocity such that the basic plane Poiseuille flow is

Ly 0 i @)
u = - — s Vo = s = —— .
0=73 y 0 Po R Pe

where p. is an arbitrary constant. The channel is perturbed by indentations of the
lower and upper walls

1 1
yr = _5 + F(X,S), Yu = E _G(X»‘?)» (3)
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B it
i

\

Fig. 1 Flow in a two-dimensional channel with deformed walls. In this figure, all quantities are
dimensionless

where ¢ is a parameter (Fig. 1). At high Reynolds number, the reduced equations
obtained formally by taking their limit when the Reynolds number goes to infinity
are of first order. A singular perturbation problem arises.

3 Direct Analysis

To go further, it is usual [4, 5] to consider small wall perturbations leading to
assumption (H1)
(H1): F =¢f, G = eg. 4)

A perturbation is said to be significant when flow separation is possible. To trans-
late this, it is required that, in boundary layers of thickness &, the perturbation of the
longitudinal velocity is of the same order as uy, i.e. of order O(¢). Thus, according
to SCEM, we are seeking a UVA of the form

U=uo(y) +ei(x,y,e)+--=u(x,ye)+--, (52)
YV =cei(x,y,8) + - =v(x,y,8) +--, (5b)
P = po(x) +ep(x,y,e) +---=p(x,y,8) +---. (5¢)

It must be noted that #, 0, p are functions not only of x and y but also of . Expan-
sions (5a—5c) are said to be generalized to underline the difference with regular
expansions in which #, 0, p would not depend on &. An asymptotic expansion is
not necessarily based on regular expansions and it has been shown that generalized
expansions are more powerful for certain boundary layer problems [1].

In the whole flow field, Navier—Stokes equations reduce to [1]

ou  dv
S 6
o T 5 (6a)
812 Adu() ,\872 ,\872 8131 1 8212
=_2h, o 6b
e( ) o (6b)
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where the index “1” denotes the characteristics of the flow perturbation in the core.

A

As shown in [1], it must be noted that in the streamwise momentum equation, a—p is
X

0
replaced by % Equations (6a—6b) have the same form as the standard boundary
X

layer equations but p1(x, y) is a solution of core flow equations given below. In the
core, (6a—6b) reduce to the core flow equations up to negligible terms and therefore
(6a—6b) are valid in the whole field.

The global interactive boundary layer model described by (6a—6b) and the core
flow equations is the best approximation of Navier—Stokes model we can propose
but it is not easy to solve. Fortunately, it can be shown that the core flow (Euler)
equations can be linearized and the solution of the resulting model is much eas-
ier [2]. Thus, the field equations are structurally non-linear whereas the core flow
equations are linear. With notations defined by (5a—5c), the field and core flow
equations can now be written

ou  Jv
P + 5 =0, (7a)
u ou ap1 1 %u
ou 0w _ opr, 1o 7b
u8x+U8y ox +R8y2 (70)
8u1 37)1
W + @ =0, (8a)
8141 duo _ ad
UOW‘FUIE = "o0x (p1—po). (8b)
v d
uo— = —— (p1 — po). (8¢)
dy dy

In the above equations index “1” refers to quantities satisfying the core flow
equations. From (8a—8c¢), it is found that vy is solution of Poisson’s equation

827)1 T 827)1 d2u0 (9)
u =v ,
O\ 9x2 dy? ! dy?

and the x-component of the pressure gradient required to solve the generalized
boundary layer equations is given by (8b) in which the continuity equation (8a)
is taken into account

ov du 0
—uo - Vi =~ (P = po). (10)
y ax

dy
It can be shown that (9) associated to (10) gives the y-momentum equation (8c)

if the perturbations vanish at upstream infinity. This establishes the equivalence
between (8a—8c) and (9-10).
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To sum up, the problem to solve comprises (7a—7b), (9) and (10). At the walls,
the boundary conditions are

y=yandy =y, :u=0,v=0, (11)

and the coupling between the core flow equations and the generalized boundary
layer equations is expressed by identifying u, v and u, v; in the core

(u,v) = (uy,vy). (12)

The model presented above belongs to a class of strong coupling method since
there is no hierarchy between the boundary layer equations and the core flow equa-
tions. The triple deck theory, or more precisely its equivalent for channel flows as
developed by Smith [4, 5], belongs also to this class of strong coupling models. In
fact, Smith’s model is included in the present model since the expansions are regular
whereas in the present model the expansions are generalized. It is interesting to note
that the first approximation of Smith’s model for v; is symmetric with respect to
y and corresponds to a geometrically antisymmetric problem. In the core, Smith’s
model gives
dA(x)

dx ’
where A is defined as the displacement function. It must be noted that (13) is an
eigensolution of (10) but not of (9). This remark leads us to try to separate as far
as possible the symmetric and antisymmetric problems which leads, as we will see,
to a new approach of the asymptotic problem. The issue of asymmetry has been
approached earlier by Lagrée et al. [3].

vy = —uo(y) 13)

4 Influence of Asymmetry

The analysis starts from (l1a—1c) in which we introduce the transformation

dH
X:x,Y:y—vH(p,x,e),U:Z/I,V=V—Z/1vd—,P=73, (14)
X

where v and u are order functions such that v < 1 and & < 1. We have

n

d
H = Og(1) and 3

= 0" (15)
X

where Og means “is of strict order of” whereas O means “is at most of order of” [1].
With these hypotheses, Navier—Stokes equations become
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v _ (6a)
ax 3y ‘
g2 U _ 0P LU PUN G, (eb)
ox T oy T Tax Tw\axz T oy2 Vi
WV oP 1 [PV PV
v . v op 1oV oV , 1
vl v aY+R(aX2+aY2)+O(W) (160)
If we set FiG F_G
p=L7 JH=——, (17)
2 2

the problem is geometrically symmetrized. Note that the channel is deformed
symmetrically when H = 0. The wall conditions then become

1 1
Y=Y,=-+EadY =Y, =5-E:U=0V=0 (18)

Moreover, for small u, the basic flow corresponding to £ = 0 is

U—1 Y2V—0P—2X+P (19)
0—4 s VYo — Y, 0 — R Cs

where P, is an arbitrary constant. We introduce assumption (H?2)
(H2): E =¢ge, vu® <. (20)

With (H2), the complete system to solve comprises the field equations

W W _y (21a)
ox "oy T a

U U 9P, 10U
vy v = 21b)

ax T ay T Tax T Rare

where P is replaced by P; and the core flow equations which can be linearized

00 L (22a)
ox oy :
UaﬂvLV%——i(P—P) (22b)
Yox T ey T ax T8
W, &EH , 9
UOW—FVWUO = _W (P] —Po) (220)

This system is solved with (18) and the coupling condition in the core

V — V. (23)
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Fig. 2 Flow produced by a trough in the lower wall and different upper wall deformations. R =
1,000. NS-Navier—Stokes results, IBL-Interactive Boundary Layer results

5 Results and Conclusions

To assess the validity of the Interactive Boundary Layer method, IBL, it is chosen
to examine the evolution of the skin-friction coefficient which is a very sensitive

flow feature, Cy = ﬁrw where 1y, is the reduced wall shear stress. Details on the



224 J. Mauss et al.

25+ _CLR r ELR
2 2
h,=0.5
B h;=0.5
/IBL
1,5|F
IBL \
10 / NS I
o =
05| NS
Lower Wall Upper Wall
L 1 1 1 1 bo 1 1 1 1 1 J 1 1 1 1 1 J
6 5 -4-32-1012 3 45 6 1 23 4 5 6
x/L x/L

Fig. 3 Flow produced by a channel bend. R = 1,000. NS-Navier—Stokes results; IBL =
Interactive Boundary Layer results

numerical procedure can be found elsewhere [2]. The Navier—Stokes equations are
solved with the commercial code FLUENT. Different cases are calculated in which
the walls are deformed in a domain x; < x < x5

F="(1cos 7)o =" (14 cos 25 )L =0, 4
=3 cos —— )16 = —— cos—— )L =4

For all cases, the Reynolds number is R = 1,000.
At first, comparisons between IBL and Navier—Stokes results are given in Fig. 2.
The lower wall is deformed by a trough located in the domain —2 < x < 2 with

h; = —0.3. The upper wall is deformed in the same domain —2 < x < 2 but
different upper wall shapes have been investigated between the symmetric case
(hy = 0.3) and the antisymmetric case (h,, = —0.3). Even though the amplitude

of the wall deformation is not really small as required by the theory, an excellent
agreement with Navier—Stokes results is observed.

The IBL model enables us also to treat original problems. In the case of a bend,
when the channel does not recover its initial position at the downstream end, the
usual techniques of small perturbations do not work any longer. As an example, the
walls are deformed in the domain —2 < x < 0 with 4; = 0.5 and h,, = 0.5;
for x > 0, we have y; = 0, y,, = 1 so that the channel axis is displaced from
y = O upstream to y = 0.5 downstream. In this case again, a good agreement with

Navier—Stokes results is observed (Fig. 3). This shows that — which characterizes

the influence of the antisymmetric part of the wall deformati)g)n plays an important
role in the definition of what could be the small parameter of the problem.

Other non usual cases can be treated by this method, for example dilated or
constricted channels, ... The IBL calculations are much faster than Navier—Stokes
calculations and, in addition, the new asymptotic analysis helps us to understand the
flow structure. Moreover, this step is necessary to approach the important problem
of separation control.
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Turbulence Receptivity of Longitudinal
Vortex-Dominated Flows

C. Moldoveanu, A. Giovannini, and H.C. Boisson

Abstract The transient effect of turbulence forcing on an isolated vortex has been
investigated by means of Large Eddy Simulation. A dynamic mixed model is used to
relate resolved and subgrid scale fluctuations in an incompressible CFD code. The
initial condition is an Oseen vortex developing in a periodic box and subsequently
forced by a superimposed turbulence. Turbulence is imposed in three different
situations, separately outside or inside the initial vortex core and in the whole com-
putational domain. The instantaneous flow field is observed for an outside forcing
and it exhibits a wandering motion of the vortex as a whole. The velocity fluctua-
tions grow near the vortex axis while they decrease for an inside forcing. The whole
domain forcing is close to the external forcing, implying that most of the turbu-
lence interaction is induced by the outer zone. An analytical investigation of the
wandering effect shows that the near-axis fluctuations are mainly produced by this
effect.

1 Introduction

Longitudinal vortices are known as permanent low decay structures that preserve
vorticity in a quasi-2D situation. In aircraft traffic, trailing vortices are known to
create a serious hazard and this produces a severe limitation in distance and time
spacing for aeroplanes following each other in take-off and landing. During the last
decade, an important research effort has been conducted at the European level on
the problem of vortex wake decay [1]. However this is not the only situation in
which longitudinal vortices are involved. Many atmospheric phenomena or many
industrial situations are due to vortices in isolated, counter-rotating or co-rotating
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vortex systems. Melander and Hussain [2] consider these as the basic form of a
coherent structure in turbulent flow including wall elongated structures.

The present work is devoted to the influence of turbulence on a single iso-
lated vortex in order to determine its intrinsic behaviour while excluding mutual
interactions that exist in vortex systems.

Turbulence can be entrained by rolling up during the vortex core formation
or transferred during the exchanges between the vortex core fluid and the free
stream. In experiments, vortices are generated by wings [3,4] and grid turbulence is
imposed. The point measurements made lead to the conclusion that the fluctuating
motion can penetrate the vortex core and that an annular distribution is observed
for the longitudinal velocity fluctuation intensity. All these measurements are made
at fixed positions and it should be pointed out that they cannot directly distinguish
between instantaneous block motion of the vortex and local turbulence.

However some observations lead one to propose that the vortex core can remain
unperturbed and that the apparent turbulence level measured by a fixed probe is
mainly due to the effect of wandering — that is to say, the displacement of the whole
vortex in space. This effect was pointed out by Devenport et al. [5], who have pro-
posed a correction to Laser Doppler Anemometer measurements in order to obtain
the actual turbulence level inside the core. Numerical simulation seems to confirm
this view and some authors have noticed the appearance of bending modes of the
centreline of the longitudinal vortex, but they [2, 6, 7] attribute the enhanced decay
of the vortex structure to an increased dissipation rate of turbulence by secondary
coherent structures in the outer layer of the vortex.

The objective of the present numerical contribution is to understand the underly-
ing mechanisms and to address the following questions: (1) what mechanism excites
the perturbations inside the vortex core? (2) what contribution comes from the wan-
dering oscillation of the vortex tubes centreline? To answer both these questions,
Large Eddy Simulation is used. The subgrid scale model, which was proved to
respect the physics of boundary layer transition in the work of Péneau et al. [8]
and was adapted for wake trailing vortices by Moldoveanu et al. [9], has been used
to study the present case of an isolated vortex. Forcing is applied separately first in
the domain external to the core then inside the core and finally in the whole domain.
Simulation allows such experiments.

The paper is divided into three main sections: Mathematical model and strat-
egy (Sect. 2), Results of the forcing (Sect. 3), Analytical development of wandering
(Sect. 4).

2 Mathematical Model and Strategy

The numerical simulations are carried out using the JADIM code. The Navier—
Stokes equations (1) are discretized using a second-order centred scheme on a
staggered grid. The resulting terms are integrated in space on finite volumes and
the solution is advanced in time by means of a three-step Runge—Kutta procedure.
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The nonlinear terms are computed explicitly while the diffusive terms are calculated
using the semi-implicit Crank—Nicholson algorithm. To satisfy the incompressibil-
ity condition, a Poisson equation is solved by combining a direct inversion in the
(x, y) plane with a spectral Fourier method in the z direction.

The Dynamic Mix Model (DMM) was proposed by Zang et al. [10] and modified
by Calmet and Magnaudet [11]. The implicit spatial filtering of the Navier—Stokes
equations is imposed by the finite volume numerical method, namely the box filter
on A;, the local mesh spacing in the ith direction. Decomposing the velocity field
into a resolved part V; (field computed by the code), and a subgrid part V’; (field to
model) leads to V; (x,1) = V;(x,t) + V’;(x,t) and to
av; _o, av; N v, V;,  10P N (2 Sij +rf,’”)’
0x; ot 0x; p 0x; 0x

ey

where S; = %(gxlj + %—Zj) denotes the resolved strain rate tensor, p the density and
v the kinematic viscosity.

In the DMM used for this study, the Leonard term (resolved velocity correlations)
is obtained using a double filtering operation and calculated explicitly while the
cross term and the Reynolds stress term are modelled. The final expression for the
double filtered stress tensor 773" is

~ —F
TS = (v + CHAY(S|-1Si1) — CHA" (IST]-ISE)). )

This stress tensor is deduced from the subgrid scale tensor rfj’” by expressing the

explicit space filtering operation. All tensors denoted by (-)f" are double filtered
contributions. The first right-hand side term represents viscous and subgrid contri-
butions, and the second term the exchanges between the resolved and unresolved
parts of the flow. The coefficient C é"’ is calculated by an optimizing process for
each grid point. See Calmet and Magnaudet [11] for more elaborate details.

The computational domain comprises a cubic box with a periodic boundary con-
dition in two directions (including the axis Oz of the vortex tube) and a symmetry
condition in the last direction. The box dimensions and grid size are given in Table 1.
The grid is refined in the plane x Oy perpendicular to the vortex tube in order to have
a good resolution (37 grid points) of the vortex core.

The vortex profile is defined as the so-called Oseen vortex with the following
distributions of vorticity and tangential velocity:

Table 1 Dimensions and grid size of the computational domain

Direction L, L, L,

Size 3 3 3
Grid points 128 128 64
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2 2
1“ _r- F _r-
o) =% B () =5>(1-e 1), 3)
wry 2nr
where I'g = — 1 is the circulation of the vortex, (r,0) are the radial and azimuthal

coordinates, ro is the radius (ro =0.1), and the Reynolds number of the flow is
Re, =Ty /v =20.000. The reference velocity Vo = I'g/ (27 rg) is equal to 1.59.

The first objective is to run an extensive LES simulation in order to calibrate the
ability of the code to handle vortex dynamics without any excessive numerical dis-
sipation. Introducing the viscous reference time ¢, = rg /(4v) and the reduced time
T =t/ty, in Fig. 1 we compare the numerical evolution in time of the kinetic energy
E. (a) and the enstrophy Z (b) with their theoretical expressions. The conclusion is
that the agreement is acceptable and the numerical diffusivity low.

In order to investigate the influence of the turbulence, perturbations are supple-
mented to the vortex system. This is achieved by superposition of a uniform random
perturbation on each velocity component with, in this case, the amplitude maximum
of 0.03 Vp. After a few time steps the turbulence field is established.

3 Results of the Forcing

3.1 External Forcing

In the first stage of the numerical experiment, white noise perturbation is introduced
only outside the vortex core. In Fig. 2 the effect of rotation is visible as it stretches
the large scale structures in the outer mixing layer. At 7 =0.04 the flow is just
becoming established after the initial perturbation but at 7" = 0.24 the system has
undergone revolutions and vorticity has diffused considerably in the wrapped shear
layer.

1.00 - -
1004 —k— simulation —¥— simulation
| —— theory 0.98 —— theory

0.98 WSK
0.96 0.96 \K
2 0.94 & 0.94 K,\k
w
£ 092 Ky 0.92

K
0.90 &X 0.90 \%K‘

7z,

0.88 Kg& 0.88 Ry
0.86
088, 10 20 30 40 50 0 10 20 30 40 50
time [s] time [s]
(a) (b)

Fig. 1 Numerical evolutions: (a) kinetic energy (b) enstrophy
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Fig. 2 Isovorticity contours: (a) T =0.04 (b) 7 =0.24
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Fig. 3 Close-up of isovorticity contours: (a) T =0.00 (b) 7' =0.24

A close-up of the vorticity lines is provided in Fig. 3. This shows a very sig-
nificant pattern of the processing motion of the vortex centre. It is obvious that a
wandering effect is observed and that one must consider the block displacement of
the vortex around its initial position.

The apparent turbulent velocity components have been recorded after a space
averaging operation along the Z-direction on the line x = 1.5 (which is the position
of the axis crossing the centre of the vortex) before introducing the forcing effect of
imposed turbulence in the outer region; (see Fig.4). No attempt has been made to
correct for any wandering effect. A large amplification of the fluctuations of the u
and v components is observed. This leads to a quasi-isotropic level for both direc-
tions in the plane, a situation which is also observed in physical experiments. The
case of the longitudinal w-fluctuation is different: the level obtained is not generally
of the same order as the other components. The guess is that the observed inner
fluctuation level is mainly due to the wandering effect and it seems obvious that this
effect is not the same in the in-plane components as in the off-plane component.
This latter exhibits a double peak in the shear layer that develops around the initial
vortex core.
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Fig. 4 Eulerian space-averaged velocity fluctuations at x =1.5: (a) 7 =0.00 (b) 7 =0.07
(external forcing)

3.2 Internal Forcing

Under the same conditions as the previous case, the perturbations were introduced
only in the core of the vortex and the fluctuation level (rms) is displayed in Fig. 5. A
quasi-constant fluctuation level is obtained in the inner part of the core and this level
rapidly decreases in the outer flow and remains at zero in almost all the external
domain. The fluctuation in the inner part decreases also as shown for 7= 0.084.
This inner level continues to decrease up to the time 7" = 0.18. At this value of T,
the 1’ and v’ levels are still more than twice the w’ levels. However it does not seems
that this difference can be attributed to wandering as for the case of forcing the outer
layer of the vortex.
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Fig. 5 Eulerian space averaged velocity fluctuations at x =1.5: (a) T =0.00 (b) 7" =0.084
(internal forcing)

3.3 Whole Domain Forcing

The case that should probably be the more usual is where turbulence is introduced
both in the core by rolling up of an initially turbulent layer and outside the core by
external turbulence. Of course both turbulent layers would probably have different
properties. In this simulation a uniform level of fluctuation is introduced inside and
outside the vortex core without any discontinuity in the initial turbulence levels or
length-scales.

In Fig. 6 the results of the forcing are presented in the axis of the vortex on the
line x = 1.5. Roughly speaking, the pattern observed is closer to the case with outer
forcing than the one with inner forcing. The levels obtained in the core for the u’ and
v’ levels are almost identical to the ones observed for the first situation. However
some differences can be noticed. First, the u’ level in the outer zone shows an ampli-
fication with respect to the initially-imposed turbulence level. Second, the peaks for
the w’ component seems to develop inside the initial vortex core. One can infer that
the shear layers are modified by turbulence in the inner core.
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Fig. 6 Eulerian space averaged velocity fluctuations at x =1.5: (a) T =0.03 (b) T =0.16
(whole domain forcing)

A comparison of the three different cases is provided in Fig. 7, which displays the
u’ velocity fluctuations with respect to time at the axis position of the initial vortex. It
can be noticed that the external forcing effect is close to the one of the whole domain
forcing on a large part of the development but is amplified in a pseudo-periodic
oscillating motion and reaches larger amplitudes.

4 Vortex Wandering: A Simple Analytical Development

In the theoretical frame of Devenport [5] with Gaussian random fluctuations of the
centre of the vortex tube for Lamb-Oseen vortex distributions (Uz—p and Vi_p),
and an amplitude o0 << ry, the statistics upon U and V components on the plane
x0y are written as
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<U(x,y)> =Ur—o, <V(x,y)> =Vi-o

for the averaged values with <.> denoting a statistical average. Then

- Wr_0\> (Ur_o0)\>
“u2 > — 0_2 L-0 + L-0 ’
ax dy
5 4
Vo VL—0\2
2 S — 52
<Vv°>=0 (( ox ) + ( 3 )
- oUr—0 dVi—o dUr—0 Vo
< > = 5
uv o ( P . + 9y PR ) 5
After some analytical development, this leads to:
o2 2.2 2
2> =122 o (1 PR e B (44 1)) o
ro § Ty Ty
o2 1 2.2 2
<=5 (1= @+ ax/r) + e (114 +455)) ()
ry §* ”0 0
- 2 _£2 _ &2
<uv>—4V2—2§—4< Exy(l+ &% E)—1) (8)

for the fluctuations expressed with & =r/rg, and r = /(x — xc)2 + (¥ — yc)2.
(x¢, yc) is the center of the intitial vortex.

This analytical distribution defines peaks for the rms of the fluctuations at
the centre of the initial vortex similar to the ones observed in the profiles at a value
Uepns = Vlms = Vo0 /ro. It can be noticed that the <u?> and <v?> decrease
with a power law £#. The cross correlation <uv > has the shape of a quadripole
with alternated maxima away from the central position for which it is equal to
zero. These distributions are also similar to the one of the simulation confirming
the necessity of taking this effect into account.
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5 Conclusions

We have run numerical simulations in order to separate the effect of external
and internal turbulence. The external turbulence organizes itself by wrapping and
stretching around the vortex tube in such a way that both organized azimuthal struc-
tures around the core location and bending of the centreline of the tube occur. The
external turbulence produces fluctuations inside the core but the internal turbulence
does not propagate outside and is damped. These effects compete in the real life of
a vortex tube during the roll-up process. These results are compared qualitatively to
an analytical model for wandering that shows the same behaviour as the simulations.

References

1. Far wake Program final report (2008), http://www.far-wake.org/

2. Melander, M.V., Hussain, F.: Coupling between a coherent structure and fine-scale turbulence,
Physical Review E 48, 2669-2689 (1993)

3. Beninati, M.L., Marshall, J.S.: An experimental study of the effect of free-stream turbulence
on a trailing vortex, Experiments in Fluids 38, 244-257 (2005)

4. Bailey, S.C.C., Tavoularis, S.: Measurements of the velocity field of a wing-tip vortex,
wandering in grid turbulence, Journal of Fluid Mechanics 601, 281-315 (2008)

5. Devenport, W.J., Rife, M.C., Liapis, S.I., Follin, G.S.: The structure and development of a
wing-tip vortex, Journal of Fluid Mechanics, 312, 67-106 (1996)

6. Holzpfel, E, Hofbauer, T., Darracq, D., Moet, H., et al.: Analysis of wake vortex decay
mechanisms in the atmosphere, Aerospace Science and Technology 7, 263-275 (2003)

7. Takahashi, N., Ishii, H., Miyazaki, T.: The influence of turbulence on a columnar vortex,
Physics of Fluids 17, 035105 (2005); DOI:10.1063/1.1858532

8. Péneau, F., Boisson, H.C., Kondjoyan, A., Uranga, A.: Bypass transition of a boundary layer
subjected to free-stream turbulence, In: International Conference on Boundary and Internal
Layers BAIL 2004, Toulouse, July 5-9, (2004)

9. Moldoveanu, C., Boisson, H.C., Giovannini, A.: Receptivity of a longitudinal contra-rotating
vortex pair in an external flow: a numerical experimentation, In: International Conference on
Boundary and Internal Layers BAIL 2004, Toulouse, July 5-9, (2004)

10. Zang, Y., Streer, R.L., Koseff, J.R.: A dynamic mixed subgrid-scale model and its application
to turbulent recirculating flows, Physics of Fluids A 5(12), 3186-3196 (1993)

11. Calmet, I., Magnaudet, J.: Large eddy simulation of high-Schmidt number mass transfer in a
turbulent channel flow, Physics of Fluids 9(2), 438-455 (1996)



A Thermally Induced Singularity in a Wake

Herbert Steinriick and Bernhard Kotesovec

Abstract The two-dimensional laminar flow past a heated horizontal plate is studied
in a distinguished limit of large Reynolds and Grashof numbers. The limiting prob-
lem constitutes an interaction between the potential flow and the wake flow. It turns
out that solutions exist only if the interaction parameter k = Gr/Re%/* is below a
critical value. When approaching this critical value a singularity in the wake forms.
The nature of this singularity will be analyzed.

1 Introduction

We consider the wake behind a heated horizontal plate of length L and tempera-
ture 7', in a parallel free stream of velocity Us, temperature 7, and angle ¢ with
respect to the horizontal direction in a distinguished limit of large Reynolds num-
ber Re = Uy L /v and Grashof number Gr = gBATL3/v?, where v, B, g and
AT = T, — T are the kinematic viscosity, the isobaric expansion coefficient
of the fluid, which is assumed to be positive, the gravity acceleration, and the dif-
ference of the plate temperature and the free stream temperature, respectively. We
consider a two-dimensional incompressible flow where buoyancy effects are taken
into account using the Boussinesq approximation, see Fig. 1.

Due to the large Reynolds number the flow field can be decomposed into the outer
inviscid potential flow, the boundary-layer flow along the plate and the wake behind
the plate. However, temperature perturbations are limited to boundary-layers and
the wake. The temperature perturbation in the wake causes a vertical hydro-static
pressure gradient in the wake. Thus there is a pressure difference across the wake
which induces a perturbation of the potential flow [1].
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Fig. 1 Mixed convection flow past a horizontal plate

From the viewpoint of the outer (potential) flow the wake is located around the
stream line starting from the trailing edge of the plate. Due to the (small) inclination
of the wake there is a component of the hydro-static pressure gradient in the main
flow direction of the wake flow. Thus the velocity profile and the temperature profile
depend on the potential flow, namely on the inclination of the streamline emanating
from the trailing edge.

As a consequence the wake flow problem and the potential flow problem form an
interaction problem and thus both problems have to be solved simultaneously. This
problem has been first formulated in [2] and solved numerically. It turned out that
solutions exist only when the interaction parameter «, which will be introduced in
Sect. 2, is below a critical value k.. However, this critical value and the behavior of
the wake when approaching the critical value has not been discussed. In this paper
we focus on the nature of the singularity in the wake when « approaches its critical
value «..

In Sect. 2 we introduce the governing equations in dimensionless form and intro-
duce a suitable interaction parameter x. Numerical solutions of the interaction
problem are discussed in Sect. 3. The nature of this singularity will be discussed
in Sect. 4.

2 Governing Equations

To identify the interaction parameter we estimate the magnitudes of the physical
quantities involved in the interaction mechanism, see Table 1.

Here p denotes the density of the fluid. The interaction parameter « 2 can be inter-
preted as the hydro-static pressure gradient acting on the wake flow referred to the
double stagnation pressure of the oncoming parallel flow. The parameter K which
is here a scale of the inclination of the wake centerline has been introduced first by
Schneider and Wasel [3] as buoyancy parameter which describes the influence of
buoyancy effects onto the mixed convection boundary-layer flow past a horizontal
plate.

An inclination of the wake can be induced by an additional obstacle or an
angle of inclination of the parallel oncoming flow. Let us assume that ¢ is a mea-
sure for corresponding contribution to the inclination of the wake. Thus the scaled
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Table 1 Magnitudes of physical quantities involved in the interaction mechanism

Thickness of the wake L Re™1/2
Hydro-static pressure gradient in the wake pgBAT
Hydro-static pressure jump across the wake Ap, = pgBATLRe /2
A
Velocity perturbation induced by Apy, P ; h
o0
A
Inclination of the wake centerline induced by Apy, K = plf; = Gr Re™>/?
o0
Hydro-static pressure gradient in the direction of the pgBATK
wake centerline
ATL
Interaction parameter k% = gﬂTK = Gr2Re "2
o0

corresponding pressure gradient along the centerline of the wake is of the order
A = pKRe'/?.

2.1 The Potential Flow

We introduce a Cartesian coordinate system such that its x-axis is horizontal and its
origin is at the trailing edge of the plate. In the following we will use dimensionless
variables. All lengths (if not stated otherwise) are scaled with the plate length L.
Scaling the velocity with the velocity Uy, of the parallel free stream and using the
notation of complex valued functions of a complex variable z = x +iy the potential
flow can be written as

u—wzl—wJ;%T+Kwr4ua 1)

The first two terms on the right side of (1) describe the potential flow past a hori-
zontal plate of a free stream with an angle ¢ to the horizontal axis. The third term
on the right side of (1) takes the buoyancy effects into account. Along the plate the
vertical velocity component v; has to vanish.

From the viewpoint of the potential flow the scaled pressure has a jump dis-
continuity of size y,, across the wake. Using the linearized Bernoulli equation we
have

—up(x,04) +ui(x,0—-) = yyp(x), x>0, 2)

where y,, is the dimensionless pressure jump across the wake. If y(x) is given,
following [2], we obtain for the dimensionless inclination of the wake

v, (X)) =¢ XLH-FKUI(X,O), 3)
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is the vertical velocity component vy (x, 0) at the center line of the wake.

where

2.2 The Wake Flow

If the wake is inclined the hydro-static pressure gradient has a non-vanishing com-
ponent in the main flow direction. Thus the fluid in the wake is accelerated in
case of positive inclination and decelerated in case of negative inclination. Thus
the equations for the flow and temperature field are

ux + vy =0, 5

uuy +vuy =Y, 0 +uzy, uj(x,0)=0, wu(x,00) =1, (6)
1

uby +v5; = —055, 05(x,0) =0, 6(x,00) =0, (7

Pr

where 0 = (T — Too)/(Tp — To) denotes the dimensionless temperature perturba-
tion and Pr = v/a is the Prandtl number, where a denotes the thermal diffusivity of
the fluid. Note that in the wake equations j = (y — yu (x))v/Re denotes the verti-
cal wake coordinate referred to the centerline of the wake. With Y, = y,, K VRe
we denote the appropriately scaled centerline of the wake.

At the trailing edge, x = 0, the velocity and temperature profiles are given
by the Blasius velocity profile and the corresponding temperature profile for the
case of forced convection. The hydro-static pressure difference across the wake is
given by

Yoo (x) = 2[0 6(x. 7) dy. ®)

From the viewpoint of the potential flow y,, can be interpreted as a vortex distribu-
tion along the wake centerline, see [1].

3 Numerical Solution

A necessary condition for the existence of the integral in (4), such that v; exists, is
that yy, (x) decays to zero for x — oo. Since the total enthalpy flux fooo u6 dy in the
wake is constant, y,, can only vanish, if the velocity u in the wake tends to infinity.
This is case when A > 0. Then in the far field similarity solutions of the form

) _
2/5,1/5 g/ D _q1/5_Y
u~A"77x (m. 0~ A1/5x3/5 m. n=2 x2/5 ®
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exist, see [2], where F and D are the solutions of the similarity equations

3 1 1 3
F///+§FF//_§F’F’+D:O, ED/-i-gFD:O, (10)

with the boundary conditions

F(0) = F"(0) = F'(c0) = 0, /oo F'Ddy= [oo ugfpdy.  (11)
0 0

Thus in the far field the velocity and temperature profiles of the wake flow tend
to the velocity and temperature profiles of a two-dimensional laminar plume. Since
the flow and temperature profile of the wake flow is symmetric with respect to the
centerline, it is sufficient to integrate the enthalpy flux only over one half of the
wake. For the numerical solution an iterative method is proposed.

©)
(1) First a suitable wake centerline d);% =2 xL+1 is chosen
(2) The wake equations are integrated for a velocity u?) and temperature field 6@

(i—1)
by a marching technique for a prescribed inclination dY’g—x of the wake.
()

(3) Then the pressure jump yy,~ = 2 fooo 6@ dj across the wake is determined

(4) Evaluating (4) a new centerline Yu(,i) of the wake is determined and steps (2)—(4)
are repeated until convergence is obtained.

We note that for k = 0 no iterations are necessary. In the following we keep
the inclination parameter A = 1 and the Prandtl number Pr = 0.71 fixed. The
interaction parameter k will be increased starting from zero.

In Figs. 2—4 the velocity at the centerline of the wake, the pressure jump across
the wake and the vertical velocity at the centerline of the wake are shown. For k = 0
the shape of the wake is given by the well known 2D potential flow solution of the
flow past an inclined plate [4]. The centerline velocity increases from u = 0 at
the trailing edge due to viscosity. Then buoyancy leads to further acceleration and a
velocity overshoot forms. Accordingly the vortex distribution y, (x) (or the pressure
jump across the wake) decreases.

Evaluating the integral (4) shows that the induced vertical velocity component
v1 is negative. Thus for k sufficiently large the wake turns downwards about a plate
length behind the trailing edge. After attaining a minimum the wake turns upwards
again. Accordingly the graph of centerline velocity first becomes flat. Increasing «
further a minimum forms. When « attains a critical value x = k. this minimum
becomes zero. Since this solution is singular at the zero of the centerline veloc-
ity a further increase of « is not possible. The physical mechanism which causes
the singularity is the following: In the parts of the wake with downward inclina-
tion the wake flow is decelerated. The deceleration of the wake causes the wake to
broaden there. The increase of the wake thickness causes finally an increase of the
hydro-static pressure jump across the wake. In the limiting case, k = k., the wake
thickness becomes infinite in wake coordinates and thus y,, also tends to infinity.
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In order to compute solutions with « close to the critical value . a different strat-

egy has to be employed. First a value uy;, for the minimum of the centerline velocity

is prescribed. We chose a suitable vertical velocity perturbation UY’) and determine

k such that the minimum of centerline velocity has the prescribed value. This has to
be done iteratively. Then a new vorticity distribution is computed and a new vertical

velocity v§"+l) is determined. The process is repeated until convergence is obtained.

Fig. 2 Centerline velocity in the wake, A = 1, Pr = 0.71

Fig. 3 Induced vertical velocity at the centerline of the wake, A = 1, Pr = 0.71
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Fig. 4 Pressure jump across the wake, A = 1, Pr = 0.71

4 Analysis of the Singularity

In order to study the singularity it is convenient to transform the wake equations to
the von Mises coordinates and use W = u? as dependent variable. We define

u(x.7) = VWGP 5. 0x.5) = O(s. ¥ (x. 7)) (12)
with B
y

S=x—xo Pr.F) = / u(x.y") dy, (13)
0

where xg is the location of the singularity for k = «, and y is the stream function
of the wake flow. Thus we obtain

Wy =2Y.0 + VWWyy, O = (\/W(a],,)w (14)

with the boundary conditions Wy (s,0) = ®y(s,0) = 0 and W(s,00) = 1,
O(s,00) = 0. The pressure jump across the wake is given by

(s, Y)
w =2 — "7 dy.
g o VWG y) v

Ats = 0 for |k — k.| < 1 we have W(0,v¥) ~ & + Wp(y¥) with Wy(0) =
W;(0) = 0. The parameter ¢ represents the value of the minimum of W. In the limit
K = K. it vanishes.

We expand W asymptotically for |s] < 1, & < 1:

15)

Wo~e+Wod Yu)Wi +sWat .., O =0¢+s0;+... (16)



244 H. Steinrtick, B. Kotesovec

with Yy (s) = Yy (x)—Yy (x0). The local behavior of the centerline Yy is not known
a priorily and thus a corresponding term in the expansion of W is added. Inserting
into the differential equation (14) we obtain

Wi =200, Wy = VWoW/. ©;=(/W0)). (17)

However, W;, W, and ®; do not satisfy the boundary condition at { = 0. Thus
a sub-layer has to be introduced. It turns out that the sub-layer does not influence the
leading order equations and thus it will not be discussed here. Note that W, (0) = 0.

Using the local asymptotic expansion we can determine the local behavior of yy,.
We choose some value ¥* > 0 and approximate W ~ ¢ + Wy'y/2 + Yo (5)W;(0)
and ® ~ Oy (0) for ¥ < ¥* and obtain

o] ®0(0)
r(@ =2 —=dy~2 Y

(18)

B V20,(0)
VW' 0)
It can be shown that the singular part of the yy, (s) is independent of the choice of
v
Considering that u; — i v; is a potential flow, using the complex valued function
theory and u; = —yy, /2 we conclude

In|e + Yy (s) W]

U —1iv; = G)07@)1n F(z,¢), (19)

V2Wi0)

where F(z;¢) is a complex valued function of z with

N ®o(0 N
|F(s)| = |& + Yy (s) Wi, —LargF(s) =Y, forsreal, (20)

K2 \/2W](0)

and Y, (0,6) = 0, I?/ (0) = 0. This constitutes a problem for finding F(z,¢)
and Yu (s,€) simultaneously. We can express the solution F(z,¢) = eF (z/e),

Yw (s.€) = €Yy (s/€) of (20) for arbitrary values of & by the solution F and Yy, of
(20) for ¢ = 1. In the limiting case ¢ = 0 we can guess the solution F(z,0) = z.
Thus in that case the centerline of the wake has a corner of size

@()JT
] =K———. (21)
Vo] A
As a consequence the centerline velocity behaves in the limiting case vy, = 0

locally like u ~ 4/|s| (Fig. 2) and the hydro-static pressure difference y,, has a
logarithmic singularity (Fig.4). For ¢ > 0 the corner is smoothed, see Fig. 3.
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5 Conclusions

The laminar two-dimensional wake behind a horizontal wake has been discussed.
It turned out that increasing the scaled buoyancy parameter a dip in the near wake
forms. Due to the negative inclination of the wake the fluid in the wake decelerates
and the wake thickness increases. A limiting case, where the centerline velocity of
the wake vanishes at one point has been identified. Due to the interaction with the
outer flow field in that case the centerline of the wake has a corner. If the buoyancy
parameter is increased beyond this limiting value no stationary two dimensional
laminar flows exist.
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A Schwarz Technique for a System
of Reaction Diffusion Equations with
Differing Parameters

Meghan Stephens and Niall Madden

Abstract We describe an overlapping Schwarz method for a coupled system of two
singularly perturbed reaction-diffusion equations which may have differing pertur-
bation parameters. We give an outline of the analysis that shows that the algorithm
is parameter-uniform. Supporting numerical results are presented.

1 Introduction

We consider the implementation and analysis of a standard finite difference method
applied using an overlapping Schwarz domain decomposition algorithm for a sin-
gularly perturbed problem. In particular we are interested in a system of two
linear, one-dimensional, singularly perturbed reaction-diffusion equations which
may have distinct singular perturbation parameters. Our model problem is: Find
u € [C*(0,1)]? such that

. 8% 0 " :
Lu:=— 02 )Y + Au=f in (0,1), (1)
€3
u(0) = by, u(l) = by. 2)

The perturbation parameters may be small and of different magnitudes: 0 < g7 <
&2 < 1. We assume that the coefficients of A satisfy the conditions

aij

>0 if Q=]
<0 if i#),

2
and > ai; > e? > 0. 3)
i=1
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This ensures that the differential operator L satisfies a maximum principle, as does
its associated finite difference analog.

The solution to (1)—(2) typically exhibits two overlapping boundary layers, see,
e.g., [5]. That study shows that the standard finite difference method applied on
a Shishkin mesh is almost first order accurate, improved in [2] to show the rate
of convergence of the method is actually almost second order. In [3], analysis is
provided for a system of M > 2 equations, and for more general meshes.

This study is concerned with the application of a Schwarz domain decomposition
technique for coupled systems. Such methods are used to construct a sequence of
discrete approximations {U%, Ul .} to the true solution u for which it can be
shown that there is a constant C such that

lu— UM o on < C((N"InN)? + pF),

for some p € (0, 1). At each iteration, Ul is formed by combining the solution to
certain discrete sub-problems posed on different but overlapping subregions. These
sub-problems are smaller and so, for example, demand less memory resources than
the corresponding direct algorithm.

The algorithm we present here is based on that of [4] for a single (uncoupled)
singularly perturbed reaction-diffusion equation, where it is proved that

lu — UM ov < C((N"'InN)? +275).

This result is analogous to that one would obtain for a classical problem. However,
numerical results in that paper suggest that, for small values of the perturbation
parameter, far less iterations are required than is suggested by this estimate.

In [8], the algorithm is extended to a coupled system of M > 2 equations with
identical singular perturbation parameters and it is proved that, in practice, only one
iteration is required. An analogous result for a single semilinear reaction-diffusion
equation is given in [1].

The purpose of this report is to describe how the Schwarz algorithm can be
extended to a system of two equations with differing parameters, and to investigate
the number of iterations required in the case 0 < ¢; K &, K 1.

This paper is structured as follows. We outline the algorithm in Sect. 2. An anal-
ysis of the algorithm is outlined in Sect.3. The results of supporting numerical
experiments are given in Sect. 4.

Notation

We denote C, with or without a subscript, to be a constant independent of €1, g2, N
and k. Similarly C = C(1,1,..., )T,

A mesh of N intervals on the domain Q = [a, b] is denoted as oV = {a =
Xo < X] < --- < xy = b}. The mesh on the open interval Q@ = (a,b) is QY =
{x1 <o < xN_l}.
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We define the usual max-norm on vectors y € R™, thatis, ||y|| = max,=1,. m
|yp|. For a real-valued function y € C(£2), and vectors of real-valued functions
z € [C(RQ)]? we have

I¥llg =max|y()l. llzllg = max {lzollg. lz1llg.- - lzmlo}-

For a vector of mesh functions Z(x;) = (Zo(x;), Z1(xi), ... Zm(x;))T define
Z =max | max |Z;(x;)]|].
1l = max ( max 17,0001

Given a mesh function Z, its piecewise linear interpolant is denoted Z.

2 Schwarz Algorithm

The domain = (0, 1) is split into the five overlapping subdomains, as shown in
Fig. 1,
Qrr = (0,411), QL= (11,42), Qc =(n2,1—1n),

Qr=(0—-41,1—11), Qrr=(1-41,1),

where we choose the Shishkin transition points as in [2],

. (1 _e,InN . (7 & InN
T, = min §,2 , Ty =min Z,Z— .

o o

On a given subdomain, 27 = (a, b), we construct a uniform mesh 521 = {a =
Xo < X1 <..<xy=b},withhy =x; —xi—y =(b—a)/N.
On each subdomain 4 = (a, b) the discrete problem is

e2 0
- ( 01 82) §2Ua(x;) + A(x;))Ua(x;) = f(x;). forx; € Q) , “4)
2
Q2 2r
P f_/ﬁ

0 Il 47\—1 7—\2 Il Il 1\_7—21_\4 \1%
‘Q,J 41y 1—4r, -1,
2L e 2grr

Fig. 1 Overlapping subdomains of
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where :
§%z4(x;) = h_z(zd(xi—l) —224(x;) + za(xi41)).
d
We use the initial approximation

Ux;) =000 Q5, UPN0) =1, UL(1)=h,.

Then for k > 1, define ULL[k], UL[k], Uc[k], UR[k] and URR[k] to be the solutions to
the appropriate version of (4) subject to the boundary conditions

UL (0) = by, U ¥ 4r)) = UF-Y(4r));
UreM(1 — 47y) = U1 (1 — 41y, Ure¥(1) = by;
UL (1)) = U¥ (1), UMl (41y) = U (4q,);
UrM(1 = 40) = U1 —4zy). U1 - 1) = Ure™ (1 = 10):
UcH(1y) = UM (2), Uk (1 - ) = Trl¥(1 - ).

The approximation U] is taken to be

U¥(x), x € §ZL\§L,
ULM(xi),  xie 55\50,
UM = JucM(x), e 5?

UrM(x;),  xi € §g\§c,
Ure¥(x1).  x7 € Tng\Qx.

Remark I. The iterate U¥] is a mesh function defined on the mesh
—N | — —N, — —N —N, — —N | =
QS = (QLL\QL> U (QL \QC) e U (QR\QC> U (QRR\QR> .

That is, it is the piecewise uniform mesh with N/4 intervals on each of [0, 7],
[t1, 2], [1 — 72, 1 — 71], [1 — 71, 1] and N intervals on the region [t2, 1 — 12].

The algorithm terminates when
Iu¥ — Ut Yjgs <ANT2, )

where A is chosen so that the relative error is O(N ~! In N)2. Typically, one takes A
to be O(||lu||g), estimated by noting that,

lullg < max{|[boll, [ball} + o~ ||fllg-
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3 Analysis of the Schwarz Algorithm

A detailed analysis of the iterative scheme is contained in [7]. Here we present the
key result, and give a brief outline of how it is proved. The analysis makes use of
standard maximum principle arguments, and bounds on derivatives of u similar to
those in [3].

Theorem 3.1 Let U be the k'™ iterate of the discrete Schwarz method of Sect. 2.
Then, there is a constant C, such that

U —y|lgs < C (2—k 4+ (N 'In N)2>.
Outline of proof. Here we give only a flavour of the analysis, with emphasis of the
region Q.
Clearly there exists C such that
[0 —ulgs = [lullgs < C (2°+ (N"'InN)?).
Assume that for an arbitrary integer k > 0 there exists C such that

UK —y||gs < C (2"‘ +(N"'In N)2>. 6)

The proof proceeds by induction. Define Erp* 1 := Uy k+1 — u. Using
Taylor expansions we can show that [LNVE T (x;)| < C(N"1InN)2. Also
ELL[k+1](O) = 0 and using standard interpolation error bounds along with (6) we
can show that

ELL[k+ll(4n)‘ - ((EL["“] - u)(4rl)‘ <C (2—k +(N"'In N)2) .
On the subdomain €277, we can construct a barrier function ®(x;) which satisfies
LY (o) + B ) = 0,
(20 B ©) 20, (@@n) B @) 2 0,
and (x;) < C (2_(k+2) + (N7 'InN )2). Using a discrete maximum principle
‘(ULL[kH] — u)(xi)‘ <C (2_(k+2) + (N7 'In N)2> , for x; € ﬁfL\ﬁL-

If follows directly that UL+ —u)(z;)| < € (27*+2 + (N~'InN)?). Then a
similar style of analysis (see [7] for details) gives that

‘(ULU“H] - u)(xi)‘ <C (2_(k+1) + (N 'ln N)Z) , for x; € §f\§c
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The analysis for URR[k +11 and UR[k 1 s very similar, and can then be extended to
Uc**+1 to complete the proof.

4 Numerical Results

In this section we present numerical results for the Schwarz algorithm, which sup-
port the analysis in Sect. 3. The exact solution to the test problem is unknown so we
use the two-mesh difference approach [6, Theorem 8.6] to estimate the errors.

Let UY = Ul where k is such that condition (5) is satisfied, and similarly
let U?V be the computed solution obtained using the Schwarz algorithm where the
subdomains are defined as in Sect.2, but with 2/N intervals on each subdomain.
Then the estimate of the error, for a particular £; and &5, is given by

DN =  max UY (x;) — ﬁZN X2;)]|.
£1:85 i=1.... N—1| ( 1) ( 21)|
For e; = 107¢, for £ = 0,1,2. .., we denote the &o-uniform error estimate, and

corresponding rate of convergence as

For our test problem we take

C(2x+ 1) —(1+x?) _ 2e*
A_(—2COS”T"(1+\/§)€1_X)’ f_(10x+1)’ @)

and bo = 0, bl =6.

For these experiments, « = 1 and the user-chosen parameter in (5) is taken to be
A=6.

Table 1 lists Dé\]’ s pé\: for various values of N and £;. We can see that the errors
are independent of the singular perturbation parameters € and ¢, and are decreasing
as N increases. The computed rates of convergence are second order, with the usual
logarithmic factor which is expected when using the Shishkin transition points for
Schwarz algorithms.

Table 2 displays &, , the maximum number of iterations recorded when comput-
ingUfore, =1, 1071, 1072, ... &1, for various values of N and &;. In [7], analysis
shows that the difference between successive iterations can be bounded as

[UB — R g5 < [[UH — ullgs + [UF — ullgs

—k+1 —1 2 (8)
< Co2 ¥ 4+ Ci(N""InN)2.
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Table 1 Error estimates and computed rates of convergence

N =64 N=128 N =256 N =512 N =1,024 N =2,048

g1 = 10° 6.16e—04 5.80e—05 1.89e—05 8.67e—06 7.81e—07 2.71e—07

3.41 1.62 1.12 3.47 1.53 o
g1 =10"1 844e—04 242¢—04 5.34e—05 1.50e—05 3.35e—06  9.41e—07

1.80 2.18 1.83 2.17 1.83 o
g1 =10"2 130e—02 3.32¢e—03 8.39%—04 2.10e—04 526e—05  1.31e—05

1.96 1.98 2.00 2.00 2.00 o
g1 =10"3 731e—02 3.00e—02 1.05e—02 3.36e—03 1.05e—03  3.18e—04

1.28 1.52 1.64 1.68 1.72 pg

g1 =10710 73le-02 3.00e-02 1.05¢-02 3.36e-03  1.05e-03 3.18e-04
1.28 1.52 L.64 1.68 1.72 o

Table 2 Number of iterations required by the Schwarz algorithm

N = N=64 N=128 N =256 N =512 N =1,024 N =2,048
g1 =1 7 9 10 11 13 14
g1 =1071! 7 8 10 11 12 13
g1 =102 7 8 10 11 12 13
g =103 7 8 9 10 11 13
g1 = 10710 7 8 9 10 11 12

The algorithm will terminate when UK — UlF=1|| o5 < AN~2. Together, these
inequalities suggest that, at worst, the number of iterations required is proportional
to 2log, N. In fact, as can be seen from Table 2, in practise log, N + 1 iterations
are required.

Finally, we investigate numerically how the accuracy of the method, and the
number of iterations required, depends on the relative magnitude of the perturba-
tion parameters. Therefore we fix &1 = 107> and present the estimated errors for
e € {1, 10711072, ..., 10_10}. These are shown in Table 3, and are computed by
comparing UV with the piecewise linear interpolant to the solution obtained on a
standard Shishkin mesh [2] with 2!® mesh points. The rates of convergence, pg , are
computed as above. Clearly the error estimates are bounded independently of the
singular perturbation parameters and are minimised when ¢; and &, are of the same
magnitude.

In Table 4 we show the number of iterations required to obtain the results of
Table 3. When the singular perturbation parameters are of the same magnitude the
algorithm terminates after only one iteration, as shown in [8].
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Table 3 Error estimates and computed rates of convergence for £; = 107>

N =64 N=128 N =256 N =512 N =1,024 N =2,048

£2=100 5.71e—02 2.28e—02 7.85e—03 2.51e—03 7.78e—04 2.35e—04

1.33 1.54 1.65 1.69 1.73 oN
e, =10"" 571e—02 2.28e—02 7.85e—03 2.51e—03 7.78e—04  2.35e—04

1.33 1.54 1.65 1.69 1.73 oN
e, =1072 12le—01 5.36e—02 231e—02 1.00e—02 2.57e—03  9.67e—04

1.17 1.22 1.21 1.96 1.41 o
e, =103 1.38e—01 3.75e—02 1.27e—02 4.09e—03 1.29e—03  3.74e—04

1.88 1.56 1.64 1.66 1.79 o
e, =10"% 570e—02 2.28e—02 7.85e—03 2.51e—03 7.78e—04  2.35¢—04

1.33 1.54 1.65 1.69 1.73 oN
£, =107 9.83e—03 3.37e—03 1.10e—03 3.49e—04 1.08e—04  3.24e—05

1.54 1.61 1.66 1.70 1.73 oN
e, =107% 133e—01 4.97e—02 1.72¢e—02 5.55e—03 1.72e—03  5.17e—04

1.42 1.53 1.63 1.69 1.73 o
e, =10710 1.33e—01 4.97e—02 1.72¢e—02 5.55e—03 1.72e—03  5.17e—04

1.42 1.53 1.63 1.69 1.73 o
Table 4 Number of iterations required for £y = 107>

N=64 N=128 N=256 N=512 N=1,024 N =2,048

g, = 10° 7 8 9 10 11 12
e, =10"" 6 7 8 9 10 11
g, = 1072 6 7 8 9 10 11
e, = 1073 5 6 6 7 7 8
e, =10"% 2 2 2 2 2 2
e, =107° 1 1 1 1 1 1
g, =107° 2 2 2 2 2 2
e, = 1077 5 5 5 6 6 7
e, = 1078 6 7 8 9 10 10
e, =107° 6 7 8 9 10 11
e, =10710 6 7 8 9 10 11

Most important, however, is that Table 4 demonstrates that Theorem 3.1 is sharp
when the magnitudes of &1 and ¢, are different, i.e., one does not obtain the rapid
convergence of the iterative algorithm that is observed when ¢; = &;,. The design of
a fast converging overlapping Schwarz algorithm for the case £; < &3 is the subject
of on-going research.
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On Numerical Simulation of an Aeroelastic
Problem Nearby the Flutter Boundary

P. Svacek

Abstract This paper is devoted to the numerical approximation of fluid-structure
interaction problems. To take into account the turbulence effects typically present in
the technical applications, the flow is modelled with the aid of the Reynolds Aver-
aged Navier—Stokes (RANS) equations. The numerical approximation of RANS and
the turbulence model by the finite element method is described. In order to avoid
spurious oscillations stabilization procedures are applied and the robust suitable lin-
earization of the Spalart—Allmaras turbulence model is described. The numerical
method developed is applied to a problem of a channel flow over a double circular
airfoil profile. The nonlinear post-flutter behaviour is numerically approximated.

1 Introduction

The interaction of fluid flow with an elastic structure is important in many technical
disciplines such as aeroelasticity/hydroelasticity; see [1]. Engineering applications
frequently use linearized models. Recently, problems of nonlinear aeroelasticity
have begun to be important in an increasing number of situations under investi-
gation. In technical applications the use of a suitable model for turbulence effects
is necessary. In most cases models based on Reynolds Averaged Navier—Stokes
(RANS) equations are used together with the Boussinesq approximation of the
Reynolds stresses (see [2]). The turbulence viscosity is then approximated by the
solution of a partial differential equation. The approximation of the turbulence
model with the aid of the finite element method is complicated owing to the

P. Svacek
Czech Technical University Prague, Faculty of Mechanical Engineering, Karlovo nam. 13, 121 35
Praha 2, Czech Republic, E-mail: Petr.Svacek @fs.cvut.cz

A.F. Hegarty et al. (eds.), BAIL 2008 - Boundary and Interior Layers. 257
Lecture Notes in Computational Science and Engineering,
DOI: 10.1007/978-3-642-00605-0, (© Springer-Verlag Berlin Heidelberg 2009



258 P. Svacek

dominating convection. Moreover, the use of the standard SUPG/GLS method for
stabilization of the convective term does not eliminate local undershoots/overshoots.
In order to minimize this phenomenon crosswind diffusion must be applied. In the
ALE formulation the stabilization terms then needs to be modified with respect
to the moving frame. The robustness of this approach is demonstrated by several
numerical results for the vibrating double circular airfoil (DCA). The numerical
results are compared to the experimental data. Furthermore, the aeroelastic model
previously studied in [3] is solved with the aid of the turbulence model for the far
field velocity in the post-critical region. Nonlinear effects are shown.

2 Mathematical Model

2.1 Fluid Model

For the mathematical description of turbulent flow we use the Reynolds equations,
written in the ALE form

DAy
Dt

_v. (ugﬁ(vV+ (Vv)T)) F(W-V)V+Vp =0, 1)
divv = 0in g,

where the vector v is the mean part of the velocity, p denotes the mean kinematic
pressure, w denotes the convection velocity in the ALE frame, i.e., W = v — wp
with wp the domain velocity, while v, = (v + vr) where v and v denote the
kinematic and turbulent viscosity respectively. The ALE derivative is denoted by
DA/Dt, where A; is an ALE mapping from the reference domain 2y onto the
computational domain €2, at time 7. More details about the ALE method can be
found in, e.g., [3,4].

The system has boundary conditions prescribed on the mutually disjoint parts of
the boundary 0€2; (see Fig. 1):

(a) v(x,t) =vp(x), xeTlp, b)v(x,t) =wp(x,t), x €Ty,

(©) —veﬁ(Vv—i—(Vv)T) ‘n+ (p— prr)n=00nTop. 2)

Here I'w; denotes the only moving part of the boundary, i.e., the instantaneous posi-
tion of the airfoil surface at time 7. Finally, the system (1) has the initial condition
v(x,0) = vo(x) for x € Q¢. In practical computations vp, Wp, Vo are continuous
functions. Moreover, the function v should satisfy V - v = 0.
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asaaas

m(t) L(v

Fig. 1 The elastic support of the airfoil on translational and rotational springs (leff) and the
computational domain for the channel flow over DCA profile (right)

2.2 Turbulence Model

In the system of equations (1) the turbulent viscosity vz needs further modelling.
We consider the Spalart—Allmaras turbulence model [2]. The turbulence viscosity is
vr = 9x3/(x® + ¢2), where y = ¥ /v and the additional equation for ¥ is

A~ ~
D=V (V) + B 60 Y0, O

- ~. ¥ 5 - 52
where G(V)=c¢p, SV, S= (S + #ﬁ;z) Jo,=1— 1+xf Y@ =cw 3>

1
6 s
1+c, g =7+ Cu(r®—1), 1 = S =.,/2Y.  w?,y denotes the
1+chy /g% ) 7 w2 ’ SK2y2’ b

distance from the wall and w;; = %(8 jvi —0;v;). The following constants are used:
, = 0.1355,¢p, = 0.622, 8 = % cv =711, cp, = 0.3, ¢y, = 2.0,k = 041,
Cwy; = Cbl/K2 + (1 + Cbz)/IB'

2.3 Structure Model

The structure is considered to be a flexibly supported airfoil that can be vertically
displaced and rotated. Figure 1 shows the elastic support of the airfoil on trans-
lational and rotational springs and its placement in the channel. The governing
nonlinear equations are written in the form (see [1,3])

mh + Sq & cosa — Sy62 sina + kpph = —L(1), "
.. (
Sqohcosa + 1,0 + kg = M(2).

where m is the mass of the airfoil, Sy is the static moment of the airfoil around the
elastic axis, I is the inertia moment of the airfoil around the elastic axis, and ky,,
and kg are the bending stiffness and torsional stiffness, respectively. The pressure



260 P. Svacek

and viscous forces acting on the vibrating airfoil immersed in fluid result in the lift
force L(¢) and the torsional moment M (¢) defined by

2 2
L= —l[ Z‘L’zjnj dS, M =l[ Z ‘L’ijnjrlprtdS, (5)
r r

Wi j=1 Wi j=1

where

av; dv;
Tij = P |:_P8ij +v (Bx; + B_Xj)] s rim = —(x2 — XgA2), Vém = X1 — XEAl-

Here 7;; denotes the components of the fluid stress tensor, §;; is the Kronecker sym-
bol, n = (n1,n2) is the unit outer normal to the domain occupied by surrounding
fluid 2, on instantaneous airfoil boundary 'y, (i.e., pointing into the airfoil) and
Xga = (XEa1,XBA2) is the position of the elastic axis (lying in the interior of the
airfoil). Relations (5) and (6) define the coupling of the fluid dynamical model with
the structural model.

3 Numerical Approximation

3.1 Fluid Model

To discretize the flow model we consider an equidistant partition of the time interval
[0, T] and approximate the solution v(-,#,) and p(-,1,) (defined in Q;,) at time
t, by v* and p”", respectively. A second-order two-step implicit scheme is used
for the time discretization. For each fixed time ¢ = 1,4 define the spaces W =

H' (Q2p11), Q = L2(Qp11) and X = {z €W :z=00onTp Uy, }

The ALE velocity Wp (t,+1) is approximated by wp”*! and the notation vV =

vio Ay o A;L , is employed, where o denotes the composition of functions. Then
on each time level ¢, 1, the ALE time discretized flow model is: Find v = v**!

and p = p"*! defined in Q2,1 such that

3v— 4y 4yl

F Wt Yy V. (ueﬁ-(vV n (Vv)T)) +Vp=o0,

2t
divv =0, (6)
hold in Q,41 and v satisfies the boundary conditions (2a-b). Here w"*! denotes
the convection velocity in the ALE frame at time #,4, i.e., witl = v —wp"tl,

The problem (6) is weakly formulated: Find U = (v, p) satisfying

aU; U, V)= f(V) forall V =(z,q) € X x Q, (7
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with v satisfying the conditions (2a—b). The forms used in (7) are defined by

3v

*. — = ant1
a(U* U, V) = (2T’Z)Q,,+1 + (W VV’Z)Qn+1

+ (e (V¥ + (W) ). VZ)Q

+ (V v, CI)SZ,,_H

1 - (p’ V. Z)Q,,+1

4An _<on—1
fv) =[ ¥-zdx—/ DrefZ - 1 dS,
Qnt1 2t To

where U = (v, p), V = (z,q), U* = (v*, p), W' T1 = v* —wp"T1L

3.1.1 Spatial Discretization

To apply the Galerkin FEM, we approximate the spaces W, X', Q of the weak
formulation by finite dimensional subspaces W,, Xa, Qa, A € (0, Ag), Ao >
0, Xo» = {va € Wy;Valrpnry, = 0}, where the spaces Wy, X, and Q, are
formed by piecewise linear functions defined over an admissible triangulation 7, ;
see [5]. To overcome the instability caused by the incompatibility of the pressure
and velocity pairs, the pressure stabilizing/Petrov—Galerkin method [6] is applied
together with the Galerkin Least Squares (GLS) method [7].
First, the local element residual terms R%, Ré are defined on K € 7, by

_ 3 _
R (" v, p) = v =V (vgﬁ (vv + (Vv)T)) + (W V) v+ Vp (8)

and 4 ]
fon gn—1y _ on on—1
Re(V' V177 = ZAIV —ZAIV . 9)

The GLS stabilizing terms are taken with respect to the transport velocity
w'tl e,

LW UL Va) = 30 8 (R v p). (W51 V) 2.+ V)

e
KeT,
FW) =Y 6x(REGM D, (W41 V) 2+ Vg) . (10)
KeT, K
with §x = h% /7k, and grad-div stabilization is used:
PaU.V)= Y tk(V-v.V-2)g (11)

KeT,
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h2 ~n+1
where Tx = vk (1 + Reloc 4 TKAz)’ Reloc = W, v = v+ vrlok
is the maximal element viscosity, | - |o.x is the L?(K) norm and hg the local

element size.

The GLS stabilized discrete problem is then: Find Uy = (v, p) € Wy x Q,
such that v satisfies approximately the Dirichlet boundary conditions (2a—b) and the
equation

a(Up;Up, Vp) + LU Up V) +PaUs, Vo) = f(Va) + F(Va), (12)

holds for all V, = (z,g9) € Xa x Q.

3.2 Numerical Discretization of the Turbulence Model

The equation (3) is discretized in time at each fixed time level ¢t = 14| with the aid
of a second-order backward difference formula, i.e.,

o~ —_—
DAY 3pntl _4pn 4 pn—l

Dt 2At

inQ,41, where i/ = hi oAy O.A;ll+ e The numerical solution of the time-discretized
Spalart—Allmaras turbulence problem is obtained from the finite element method

applied to the linearized problem. Here we use

n+1)2 n \~}n+1 —s (\~)n)2, (Vf)n-i-l)Z ~ V. V\NJ'H_I.

s(v ~ 28D
The linearized problem is then weakly formulated. Furthermore, a finite element
subspace V, C V of the piecewise linear continuous functions over 7, is con-
structed and the SUPG stabilization is applied. The SUPG terms and parameters are
modified with respect to the ALE moving frame, which means that the stabiliza-
tion terms and parameters need to be taken with respect to the modified transport
velocity w"t! = v*T1 — wp"+1 Furthermore the transport velocity is affected
by the linearization procedure. The SUPG-stabilized linearized problem reads: Find

Va € V, such that B(V,, @) = L(g) forall ¢ € V,, where

3‘*}n+1

2At

B(is. ) :( +b- VT 425 5" ﬁ”“,q;) + (e V"t V),

n+1
Qn-H

3 o i ~ ~
+ 2 ax((Gg; + 25 VDT D Vi V(e V). (b-V)g)
KeT,

"
4in — g1

_ ~n ~n
L(p) = (sv v+ TAT

+Cb1517",§0)

+ ) (~"”"+45§_@+ 5.(b-9)9))
ak(sdt v —2 2 4¢.S.(b- :
= K\PPs Pa 2At by 9))

Q41
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here the transport velocity b := v**1 —wp" 1 — £2V§% is the fluid velocity v*+!
modified by the velocity coming from the mesh motion and the linearization of the

-1
quadratic term (V1)?2. We choose the parameter o g = 4'2'# + % +slo, K) )
K

The SUPG/GLS stabilization does not exclude local oscillations near sharp lay-
ers. Such oscillations are suppressed by the application of an additional crosswind
diffusion; cf. [8].

4 Numerical Results

4.1 Computational Meshes

To obtain physically admissible solutions one should use meshes that are refined in
the boundary layer and wake regions. The computational meshes used in this paper
are generated with the aid of our code, which refines the boundary layer region a
priori and uses anisotropic mesh refinement [9] elsewhere. Different meshes are
used for the DCA profile (where the leading edge is sharp and the so-called H-mesh
can be used) and the NACA 0012 profile (where the so-called C-mesh needs to be
employed). In the latter case we follow the procedure described in [10]. The H-
mesh details generated around the DCA profile are shown in Fig. 2. The distance of
the first point “perpendicular’ to the airfoil boundary is chosen to satisfy ¥ ™ ~ 1,
where Y1 = % and Y is the distance to the wall and u; is the friction velocity
on the wall.

4.1.1 Flow Over Vibrating DCA Profile

First, the numerical method was applied to a problem of channel flow over a mov-
ing DCA profile with prescribed vibrations: see Fig. 1. The harmonic vibrations of
the airfoil are prescribed with frequency of fg = 20.4 Hz around the elastic axis
positioned at one third of the airfoil. The position of the airfoil is then given by its
angle of rotation «(¢) and vertical displacement %(¢); in this case we considered
a(t) = —1.5°—4.5°sin(2nfyt) and h(t) = —1.5 — 4.5sin(27 fr¢) mm. The far

.

Fig. 2 Computational mesh around the DCA profile
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[ o—

Fig. 3 The fluid velocity isolines (left), pressure isolines (middle) and the turbulent viscosity
(right) distributions around vibrating DCA airfoil

DCA $p$ distribution
0.94 DCA airfoil (Lift coef)
o experiment 20
0.93 ——FEM (channel) —FEM
10 --- Experiment
0.92 0
0.91 =
= -10
0.9 -20
0.89 -30 A
v V 3 v v
0.88 —40
0 0.2 0.4 0.6 0.8 1 0 0.05 0.1 0.15 0.2 0.25

Fig. 4 Comparison of the pressure distribution over the DCA airfoil (left) and the lift coefficient
(right)

field velocity Us, = 120ms~! and the reference length ¢ = 0.12m were used.
This model description corresponds to the experimental measurement of nonlinear
aeroelastic instability — Limit Cycle Oscillations (LCO). Numerical results for this
model problem are shown in Figs.3 and 4. The numerical results were computed
on a triangular mesh with 19,205 nodes and 38,012 elements (76,820 unknowns).
The results were compared to the experimental data: Fig. 4 on the left shows the dis-
tribution of the mean pressure coefficient ¢, = £ ;53 on the surface of the airfoil
from experimental measurement and from the nurilerical simulation. These data are
in very good agreement. Figure 4 on the right then shows the dependence of the lift
coefficient on the time from experimental data and from numerical experiment. Fig-
ure 3 then shows the instantaneous distribution of velocity magnitude, pressure and
turbulent viscosity around the vibrating DCA airfoil at time instants corresponding
to the positions « = 0°,3°, —3°.
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Fig. 5 The aeroelastic response a(t) (left) and h(t) (right) for the post-flutter velocity Uso =
40ms~! and initial conditions £(0) = 0 and @(0) = ag: ap = 0.03° (up, solid line) oty =
0.3° (up, dashed line), and 3° (down, solid), 6° (down, dashdot)

4.1.2 Flow Induced Airfoil Vibrations

This section presents the results of the numerical simulation of flow-induced vibra-
tions obtained for the NACA 0012 airfoil. The following quantities are considered:
m = 8.6622 x 1072 kg, S = 7.79673 x 10™* kgm, I, = 4.87291 x 10~* kg m?,
knp = 105109 Nm™!, kgo = 3.695582 Nm rad™!,/ = 0.05m, ¢ = 0.3 m,
p=1225kgm™ 3, v =1.5.10"° ms~2. Linear theory predicts the critical veloc-
ity Ueriy = 37.7 ms~!; see [3]. Numerical results were computed for different far
field velocities Uy, and were in agreement with NASTRAN computations [3, 11].
Here, the numerical approximation of a problem after the loss of stability is com-
puted on an anisotropically refined mesh with 19,430 nodes and 38,428 elements.
Figure 5 shows the aeroelastic response of the system for the far field velocity
Uss = 40ms~!, where different initial conditions «(0) were applied; one sees
typical divergence instability behaviour for low values of the initial condition «(0)
but for the value «(0) = 6° a combination of divergence and flutter-type behaviour
can be observed.

Acknowledgement This research was supported under the Research Plan MSM 6840770003 of
the Ministry of Education of the Czech Republic.
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A Parameter—Uniform Finite Difference
Method for a Singularly Perturbed Initial
Value Problem: A Special Case

S. Valarmathi and J.J.H. Miller

Abstract A system of singularly perturbed ordinary differential equations of first
order with given initial conditions is considered. The leading term of each equa-
tion is multiplied by a small positive parameter. These parameters are assumed to
be distinct. The components of the solution exhibit overlapping layers. A Shishkin
piecewise—uniform mesh is constructed, which is used, in conjunction with a clas-
sical finite difference discretisation, to form a new numerical method for solving
this problem. It is proved, in a special case, that the numerical approximations
obtained from this method are essentially first order convergent uniformly in all
of the parameters. Numerical results are presented in support of the theory.

1 Introduction

We consider the initial value problem for the singularly perturbed system of linear
first order differential equations

EW'(t) + A(t)u(t) = £(t), t € (0,T], u(0) given. (1)

Here u is a column n-vector, £ and A(t) are n X n matrices, E =diag(e),
e = (&1, ..., &) with g; distinctand 0 < ¢&; <1 foralli =1...n. For convenience
we assume the ordering

g1 < -- < &y.
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Cases with some of the parameters coincident are not considered here. We write the
problem in the operator form

Lu=f, u(0) given,
where the operator L is defined by

d
L=ED+ A(t) and D = —.
dt
We assume that, for all + € [0, 7], the components a;;(t) of A(t) satisfy the
inequalities

n

a;(t) > Z|a,~j(t)| for i =1, ..., n, and a;;(t) <0 when i # j.
i
j=1

We take o to be any number such that

1e(0.1]
i=1....n

n
0<a< min Zaij(t)

=1
We also assume that 7 > 2 max;(¢;)/c«, which ensures that we are solving over
a domain that includes all of the layers. For this it suffices to take 7 >2/a.
We introduce the norms || V || = max; <x <n |Vk| for any n-vector V, || y ||
= supy <; <7 | ()| for any scalar-valued function y and || y || = max;<g<n
| v& || for any vector-valued function y. Throughout the paper C denotes a generic
positive constant, which is independent of ¢ and of all singular perturbation and
discretisation parameters.

The initial value problems considered here arise in many areas of applied math-
ematics; see for example [1]. Parameter uniform numerical methods for simpler
problems of this kind, when all the singular perturbation parameters are equal, were
considered in [2]. For a reaction-diffusion boundary value problem in the case n =2
a parameter uniform numerical method was constructed in [3] and in the case of
general n in [4]. A general introduction to parameter uniform numerical methods is
given in [5] and [6].

2 Analytical Results

The operator L satisfies the following maximum principle

Lemma 1. Let the above assumptions on the matrix A(t) hold. Let v (t) be any
Sfunction in the domain of L such that ¥ (0) > 0. Then Ly (t) > 0 for all t € (0, T]
implies that ¥ (t) > 0 forall t € [0, T].
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We remark that the maximum principle is not necessary for the results that follow,
but it is a convenient tool in the proof of the following stability result.

Lemma 2. Let the above assumptions on the matrix A(t) hold. If ¥ (t) is any
function in the domain of L, then

1o I mas v o) 1 Ty 1l relo7)

The Shishkin decomposition of the solution u of (1) is given by u = v+w where v
is the solution of Lv=f on (0, T'] with v(0) = A~ (0)f(0) and w is the solution
of Lw=0 on (0,7] with w(0) =u(0) — v(0). Here v, w are, respectively, the
smooth and singular components of u.

Bounds on the smooth component and its derivatives are contained in

Lemma 3. There exists a constant C, such that for eachi =1, ..., n, | vi(k) I
<C fork=0,1and]| v/ | <C.
We define the layer functions B;,i =1, ..., n, associated with the solution u by

Bi(t)=e % 1 € [0, 00).
Some elementary properties of the layer functions are given in
Lemmad4. Let 1 <i < j<nand0<s <t <oo. Then
Bi(t) < Bj(t), forall t>0,
Bi(s)> Bi(t), forall 0<s<t<T,
Bi(0)=1 and 0<Bi(t)<1 forall t>0.
Bounds on the singular component and its derivatives are contained in

Lemma 5. There exists a constant C such that, for eacht € [0, T andi =1,2,3

lwi()] < CB3(t). |wj@®)|] = Cle;'Bi(t) + -+ &5 B3(1)].
leiw/(1)| < C[e7"Bi(t) + &5 Ba(r) + &5 Ba(1)] .

Proof. The bounds on the w; are obtained by applying Lemma 1 to the functions
Y = CBze £+ w. The bound on wj follows from the third equation of the system
satisfied by w. The first two equations of this system form an inhomogeneous sys-
tem for the components w;, w>. The required bounds on w’l, w’2 are obtained by
a Shishkin decomposition of w;, w, followed by the application of Lemmas 2.3
and 2.4 in [7]. Finally, the bounds on the w;’ follow immediately from the system
satisfied by w. g

For each i # j we now define the point ¢; ; by

Bi(ti,;)  Bj(ti;)
Ei Ej '
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It is easy to see that this point exists and is unique for each i and j, since for i < j
we have g; <¢; and the ratio of the two sides of this equation, namely

B (1) g &j ( ( 1 1 ))
= —exp|—ar|{—— — ,
& Bj (l) & & &j
is monotonically decreasing from - > 1to 0 as ¢ increases from 0 to co.
Also, the following inequalities hold foralli, j with1 <i <j<n

e 'Bi(t) > e;'Bj(t)  on[0.5), Q)
Si_lBi(l) < S;IBJ'(Z) on (t;,j,00) 3)

andife; <e;/2thent; ; € (0,T].

Lemma 6. The points t; ; satisfy the following inequalities
tij <tiy1,,, fi+1<j

and
ti,j <tij+1, if i <]J

Proof . It is not hard to see that the point #; ; is given by

1 1

in () -1 ()

ti,j = ; ; .
¢ (5 B 5)

We can write g, = exp(—py) for some pg > 0 for all k. Then

Pi—Dj
a(exp p;i —expp;)

lij =

The inequality #;,; <t; 41, is equivalent to

Pi—Dj < Pi+1—PDj
exXp pi —€Xpp;  eXp pi+1 —€xXpp;

which can be written in the form

(pi+1—pj)exp(pi — pj) + (pi — pi+1) — (pi — pj)exp(pi+1 — p;) > 0.

Writinga = p; —pjandb = p;41 — p; wehavea>b>0anda —b=p; — p;i 1.
Moreover, the previous inequality is then equivalent to

expa—1>epr—1’
a b

which is true because a > b.
The second part of the lemma is proved by a similar argument. U



Uniform Finite Difference Method for a Singularly Perturbed IVP 271

3 The Discrete Problem

We construct a piecewise uniform mesh with N mesh-intervals and mesh-points
{ ti}f\; o by dividing the interval [0, T'] into n + 1 sub-intervals as follows

[0,T] =1[0,01] U (o1,02] U ... (0n—1,04] U (on, T].

On the sub-interval [0, o1] a uniform mesh with zln mesh-intervals is placed, simi-
larly on (07,07+1],1 <i <n — 1, a uniform mesh of zniv—lH mesh-intervals and on

(04, T] a uniform mesh of % mesh-intervals. The n transition points between the
uniform meshes are defined by

0; = min {ﬂ, ilnN}
2 o
fori=1,...,n—1and
. T ¢
o, =min{ —, —InN; .
2 «
Clearly
T
O<o1<--<o0op, <—.
2
This construction leads to a class of 2" possible Shishkin piecewise uniform meshes
M,,, where b denotes an n—vector with b; =0 if o; = ZEL and b; = 1 otherwise.

2
Writing §; =¢; —t;_; we remark that, on any such mesh, we have

§; <CN™', 1<j<N
and
0 <CgInN, 1<i<n.

On these meshes we now consider the discrete solutions defined by the backward
Euler finite difference scheme

ED U+ A()U =f, U(0) = u(0),
or in operator form
LNU =T, U(0) = u(0),
where
LY = ED™ + A(1)
and D~ is the backward difference operator

UG ~U(tj-1).

D~U(@)) = 5
J
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We have the following discrete maximum principle analogous to the continuous case

Lemma 7. Let the above assumptions on the matrix A(t) hold. Then, for any mesh
function ¥, the inequalities W (0) >0 and LN W (t;) >0 for | < j <N, imply that
W(tj)>0for0<j<N.

An immediate consequence of this is the following discrete stability result.

Lemma 8. Let the above assumptions on the matrix A(t) hold. Then, for any mesh
function ¥,

1 .
9@ Il = max{ | w©) | | LV |t .0<j <N

4 The Local Truncation Error

From Lemma 8, we see that in order to bound the error || U—u || it suffices to bound
LY (U — u). But this expression satisfies

LYU—-uw=LYU)-LYw) =f—L"(u) = L) —-L"(u)
=L-LYYu=—-E(D” - D)u,
which is the local truncation of the first derivative. We have
E(D”—D)u=EMD™ —D)v+ E(D” —D)w
and so, by the triangle inequality,
ILY(U—w) || E(D”=D)v | + || E(D” = D)w .

Thus, we can treat the smooth and singular components of the local truncation error
separately We note first that, for any smooth function ¥, we have the following two
distinct estimates of the local truncation error of the first derivative

8.
(D™ =D))< max [y (s)| = “4)
SG[tj_l,tj] 2
and
(D™ =Dyl <2 _max V(o)) )

5 Error Estimate: The Special Case n=3

Here we establish the error estimate when n = 3. The same approach suffices for
n =1 and n =2 and is similar to that used in [3] for the reaction-diffusion problem.
For general n additional techniques are required and will be the topic of future
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work. The technique applied in [4] for the general reaction-diffusion problem uses
discrete Green’s functions instead of the Shishkin decompositons used in this paper.
We estimate the smooth component of the local truncation error in the following
lemma.

Lemma 9. Foreachi =1, ..., nand j =1, ..., N we have

lei(D™ = D)vi(t;)] < CN~".
For the singular component we obtain a similar estimate, but we must distinguish
between the different types of mesh. We need the following preliminary lemmas.

Lemma 10. On each mesh My, fori =1,2,3 we have the estimate
. 5
lei (D™ — D)w;(t;)] < CE—.
1

In what follows we make use of second degree polynomials of the form

2
t—19)*
pio = — 2w (g)

k!
k=0

where 6 denotes a pair of integers separated by a comma.

Lemma 11. On each mesh of the form Mp,p,, fori =1,2,3 there exists a decom-
position
w; = Wi,1 + W2,

for which we have the estimates

leiw] ()| < CBy(2),

Bi(t B (t Bs(t
leiwi’ ()] = 20 lesw] (1) < C (A) + 3—()) :

€1 &2 €3
Furthermore

lei (D™ = Dyw;(t;)| < C (Bl(’f'“) * i_;) '

Proof. Since by =1 we have ¢1 <¢&3/2, s0 t12 € (0,7] and we can define the
components of the decomposition by

_ | pis12on [0,712)
w,',z = .
w; otherwise

wi,1 = w; —w; 2 on [0,T]

The proof is completed using the ideas in Lemma 2.6 in [7]. [
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Lemma 12. On each mesh of the form My, 1p,, fori =1,2,3 there exists a decom-
position
w; = Wi 1+ Wiz + w3,

for which we have the estimates

leiw; ; ()| < CBj(t) for j = 1,2,

Bi(t
|8iwl{’j(t)| < CL for j =1,2,3.
, e/

Furthermore 3
e1(D™ — Dywi(1))] < C (Bzaj_l) + 8—’) .
3

Proof. Since by =1 we have g3 <e3/2, 50 13 € (0,T] and we can define the
components of the decomposition by

_ | pinson [0,123)
w,',3 = .
w;  otherwise

Wiy — ) Pis12 on [0,t;)
02 w; — w;,3 otherwise

w1 =w; —w;»—w;3 on [0,T]

The proof is completed by a simple generalisation of the proof of the previous
lemma. (]

Lemma 13. On each mesh My, fori =1,2,3 we have the estimate
le: (D™ — D)w;(tj)| < CB3(tj-1)-

Using the above preliminary lemmas on appropriate subintervals we obtain the
desired estimate of the singular component of the local truncation error in the
following.

Lemma 14. Fori =1,2,3 and j =1, ..., N, we have the estimate
le;(D™ — D)w;(t;)] < CN~'InN.

Proof. On any subinterval [0, ] we have i—j <CN! ﬁ It follows at once from
Lemma 10 that the desired estimate holds on the mesh Myg in [0, 7] because
% <C InN; on the mesh Moo, in [0, 03] because o7 = 52 hence ‘;—? <ClInN;on
the meshes My19, Mo11 in [0, 02] because o1 = ‘72—2 hence Z—f < C In N; on any mesh
in [0, o1] because ‘a’—: <ClInN.

On any mesh of the form My,,, we have 01 = % In N and so in any subinter-
val of the form (o7,7] we have By (t;—1) < Bi(01) =N~! and i—; <CN™! % It
follows at once from Lemma 11 that the desired estimate holds on the mesh Mg
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in the subinterval (o1, 7], on the mesh Mo in the subinterval (o1, 03] and on the
meshes M119, M111 in the subinterval (o1, 02].

Similarly, on any mesh of the form Mj, 15, we have 03 = %2 InN and so
in any subinterval of the form (o02,t] we have B (tj—1) < Bx(02) = N~ and
8’ <CN 1L 02 . It follows at once from Lemma 12 that the desired estimate holds
on the meshes M010, M0 in the subinterval (03, T'] and on the meshes My11, M111
in the subinterval (03, 03].

On any mesh of the form Mp,;,1 we have 03 = %* In N and so in the subinterval
(03, T] we have B3(tj—1) < B3(03) = N~ 1. It follows at once from Lemma 13 that
the desired estimate holds. O

Let u denote the exact solution of (1) and U the discrete solution. Then, using
Lemmas 9 and 14, we have the following e-uniform error estimate

Theorem 1. There exists a constant C such that
[U—u|[<CN'InN

forall N > 1

Table 1 Values of Dév, DN, pN, p*, and Clj,\i for various &; and N with fixed &, = 279,
g3 = 2—4

Number of mesh points N

€1 128 256 512 1024 2048 4096 8192 16384 32768

277 0.135-2 0.832-3 0.485-3 0.276-3 0.154-3 0.853-4 0.466-4 0.253-4 0.136-4
271101952 0.1182 0.688-3 0.391-3 0.215-3 0.117-3 0.625-4 0.332-4 0.175-4
2715 0230-2 0.136-2 0.808-3 0.469-3 0.262-3 0.145-3 0.792-4 0.430-4 0.232-4
2719 02322 0.138-2 0.810-3 0476-3 0.266-3 0.147-3 0.805-4 0.436-4 0.235-4
272302322 0.138-2 0.810-3 0.477-3 0.266-3 0.147-3 0.806-4 0.437-4 0.236-4
2727 0.232-2 0.138-2 0.810-3 0.477-3 0.266-3 0.147-3 0.806-4 0.437-4 0.236-4
273102322 0.138-2 0.810-3 0477-3 0.266-3 0.147-3 0.806-4 0.437-4 0.236-4
2735 02322 0.1382 0.810-3 0.477-3 0.266-3 0.147-3 0.806-4 0.437-4 0.236-4
2739 0.232-2 0.1382 0.810-3 0.477-3 0.266-3 0.147-3 0.806-4 0.437-4 0.236-4
2743 02322 0.1382 0.810-3 0.477-3 0.266-3 0.147-3 0.806-4 0.437-4 0.236-4
DV 02322 0.1382 0.810-3 0.477-3 0.266-3 0.147-3 0.806-4 0.437-4 0.236-4
pYN  0.753+40 0.76740 0.765+0 0.842-+0 0.85540 0.867+0 0.882+0 0.891+40

CéY753 0.221+0 0.22140 0.219+0 0.2174+0 0.204+0 0.190+0 0.176+0 0.161+0 0.146+0

Computed order of &;—uniform convergence = 0.753
Computed &1 —uniform error constant = 0.221
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6 Numerical Results

The above numerical method is applied to the following singularly perturbed initial
value problem

81U1’(l)+4M1(l)—u2(l)—u3(l‘) =1 (6)
eaun’ (1) —up (1) + 4ux(t) —us(t) = 1 (7
e3us’ () —uy (1) —ua(t) + 4us(t) = 1+ 2 (8)

fort € (0, 1] and u(0) = 0. For various values of &1, fixed values e, = 276 g5 =274
and N=2",r=7, ... 15, the computed order of ¢;—uniform convergence and
the computed e;—uniform error constant are found using the general methodol-
ogy from [5], [6]. The results, presented in Table 1 below, exhibit the behaviour
expected from an &;—uniform method.

Similar numerical experiments illustrate separate £,— and £3— uniform behaviour.

Acknowledgement The first author acknowledges the support of the UGC, New Delhi, India
under the Minor Research Project-X Plan period. Both authors acknowledge partial conference
travel support from INCA, Dublin.

References

1. A. C. Athanasios, Approximation of Large-Scale Dynamical Systems. SIAM, Philadelphia
(2005).

2. S. Hemavathi, S. Valarmathi, A parameter uniform numerical method for a system of singu-
larly perturbed ordinary differential equations. Proceedings of the International Conference on
Boundary and Interior Layers, BAIL 2006, Goettingen (2006).

3. N. Madden, M. Stynes, A uniformly convergent numerical method for a coupled system of two
singularly perturbed reaction-diffusion problems. IMA J. Num. Anal., 23, 627-644 (2003).

4. T.Linss, N. Madden, Layer-adapted meshes for a linear system of coupled singularly perturbed
reaction-diffusion problems. IMA J. Num. Anal., 29, 109-125 (2009).

5. P. A. Farrell, A. Hegarty, J. J. H. Miller, E. O’Riordan, G. L. Shishkin, Robust Computational
Techniques for Boundary Layers, Applied Mathematics and Mathematical Computation. (Eds.
R. J. Knops and K. W. Morton), Chapman & Hall/CRC, Boca Raton (2000).

6. J.J. H. Miller, E. O’Riordan, G. 1. Shishkin, Fitted Numerical Methods for Singular Perturba-
tion Problems, World Scientific, Singapore (1996).

7. P. Maragatha Meenakshi, T. Bhuvaneswari, S. Valarmathi, J. J. H. Miller, Parameter-uniform
finite difference method for a singularly perturbed linear dynamical system Report Series,
Mathematics Department, Trinity College Dublin TCDMATH 07-11 (2007).



Boundary Shock Problems and Singularly
Perturbed Riccati Equations

Relja Vulanovié

Abstract A quasilinear singularly perturbed boundary-value problem is considered
under conditions which guarantee that the solution has a boundary shock. The prob-
lem is initially transformed to a Riccati initial-value problem which is then solved
numerically using the backward Euler scheme on a Shishkin-type mesh. For this
method, a robust error estimate is proved and illustrated by numerical experiments.

1 Introduction

Consider the problem of finding a C2[0, 1]-function ¥ = u(x) such that
Tu:=—eu’ —W?) +k(x,u) =0, x e X =[0,1], u(0) =0, u(l) =B, (1)

where” = d/dx, 0 < ¢ << 1, B is a positive constant, and k is a function of the
form k(x,u) = 2uc(x,u). It is assumed that ¢ is a sufficiently smooth function on
X x U, where U = [0, B], and that

c(x,u) >0, cy(x,u) >0, xe X, uel. )

Section 2 shows that this problem has a unique solution which, under additional
assumptions, exhibits a boundary layer at x = 0.

Problems similar to (1) are considered in [Vul90] and [ZI90]. In [Vul90], a some-
what more general problem is solved numerically by applying a layer-resolving
transformation which renders the derivatives of the transformed solution bounded
uniformly in ¢. The transformed problem is then solved using finite-difference
schemes on a uniform mesh. The layer-resolving transformation corresponds to
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mesh-generating functions used to create special meshes, dense in the bound-
ary layer, for discretizing the problem (1) directly, cf. [Vul07]. Numerical results
obtained by this method show pointwise e-uniform convergence of first order. How-
ever, only L! first-order e-uniform convergence is proved in the paper. The same
is proved in [ZI90], but for an exponentially-fitted equidistant finite-difference
scheme.

A different method is considered in the present paper and a robust error esti-
mate in the maximum norm is derived. This is achieved by applying the approach
from [LS89], in which the differential equation in (1) is integrated from x to 1
and the resulting integral is approximated using the solution of the corresponding
reduced problem. The same method is used in [Vul91] for a quasilinear problem
without turning points and in [Lin91] for a quasilinear turning-point problem. After
the described transformation, the problem (1) becomes an initial-value problem for a
Riccati equation. Parameter-uniform numerical methods for such problems are read-
ily available, see [OR87] and [ORO05]. An equidistant exponentially-fitted scheme
is analyzed in [OR87], whereas the method in [OROS5] uses the simple backward
scheme on a Shishkin-type mesh. I present here numerical results for the latter,
finding this approach more useful because it has mesh points inside the layer and
because it guarantees global uniform convergence and not simply nodal uniform
convergence.

The error of the approximate solution obtained this way can be estimated at each
point of interval X as M [e+N ~!(In N)?], where N is the number of mesh steps and
M is used throughout the paper to denote a generic positive constant independent
of both ¢ and N.

The problem (1) can be referred to as a boundary shock problem in contrast to
the interior shock problems for which the boundary condition at x = 0 looks like
u(0) = A < 0, see [KC80] and [Lor84] for instance. The difficulty in trying to
obtain e-uniform pointwise accuracy for interior shock problems lies in the fact that
the interior shock of the numerical solution is shifted from the original location. The
method of the present paper can be applied to interior shock problems only if the
position of the shock is known; then the interior shock problem can be broken down
to two problems of type (1).

The rest of the paper is organized as follows. The problem (1) and its reduced
solution are analyzed in Sect. 2. The transformation to the Riccati equation is pre-
sented in Sect. 3. Finally, the numerical method is given in Sect.4 together with
numerical results which confirm the theoretical ones.

2 The Boundary Shock Problem

Since
Tu=0=T0 onX and u(t) >0 fort =0,1,
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0 is a lower solution of problem (1). Also, the first inequality in (2) implies that B
is an upper solution of (1):

TB>0=Tu onX and B > u(t) fort =0,1.

Then Nagumo’s result [Nag37] (see also [CH84, pp. 6-7]) guarantees that prob-
lem (1) has a solution u € C?(X) satisfying u(x) € U = [0, B] for x € X.
Condition (2) implies that k,(x,u) > 0 for x € X and u € U, and therefore
inverse-monotonicity arguments [Lor82] give that the solution u is unique.
Let
c*>c(x,u) >cx >0, xeX, uel.

Like in [Vul90], another assumption is

B > c* 4+ Jc*(c* —cy). (3)

The conditions (2) and (3) are assumed throughout the paper.
The reduced problem corresponding to (1) is the terminal-value problem

—uy + c(x,up) =0, x € X, up(1) = B. 4)

The upper and lower solutions of (4) are respectively ¢« (x—1)+ B and ¢* (x—1)+ B.
Because of (3), B > ¢*, which implies that both the upper and lower solutions have
values in U when x € X. Therefore, the reduced problem (4) has a solution ug
which satisfies

c*(x—1)+ B <up(x) <cxi(x—1)+ B, x € X. (5)

This solution is unique because of the second inequality in (2). Since u(x) > 0 for
x € X, it follows that

ug(x) > up(0) >a:=B—c* >0, x € X, (6)

and this is why u has a boundary layer at x = 0.

The condition (3) may seem technical, but in the constant-coefficient case ¢ =
¢* = ¢y, itreducesto B > ¢, which is essential for the existence of a layer at x = 0.
In this case, the reduced solution is #g(x) = B 4+ c¢(x — 1) and B > c¢ is equivalent
to ug(0) > 0. If B < ¢, there is no layer. When B = ¢, u = ug and when B < c,
the so-called interior crossing phenomenon occurs, cf. [CH84, Sect. 4.3 and p. 138].

Estimates of the derivatives of u are proved in [Vul90]. In particular, it holds that

0<u'(x)<M (1 + e—le—’"x/*f)  xeX, 7

where m is some positive constant independent of e. Here, like in [Vul90], it is
sufficient to know that the constant m exists. However, it is also interesting to see
how m relates to B, ¢*, and c«. A closer inspection of the proof of (7) in [Vul90]
gives that m can be determined as
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m =2Be 2B with p = B%—2¢*B + c*cs. (8)

Note that 8 > 0 because of (3).
Here, the proof of the following estimate is given,

[u(x) —uo(x)| <M (e + e_"‘x/a), xeX, 9)

with o defined in (6).

Theorem 1. The solutions u and uo of problems (1) and (4), respectively, satisfy
(9).

Proof. For an arbitrary C?(X)-function v, define the linear operator
Lv:= —gv” — p(x)v' + q(x)v
with p(x) = u(x) 4+ uo(x) and
1
1) = [ .00 + ) = o)) ds = () = ).

Because of (6) and u(x) > 0, it follows that p(x) > « > 0, x € X. The inequality
q(x) + p'(x) = 0 also holds true for x € X. Then the conditions for case 1T
of [Lor82] are fulfilled. This implies that

1
lv(x)| < M |:|v(0)|e_°‘x/€ +/0 |Lv(r)| dt] , X €X,

provided v(1) = 0. Inequality (9) now follows if v is replaced with u — uq. This is
because L(v —ug) = Tu —Tug = eug. 0O

3 The Riccati Equation

In this section, the problem (1) is transformed to a singularly perturbed Riccati
initial-value problem. Integrate from x to 1 the differential equation in (1) to get
the following problem:

1
eu' +u? = f(x) = eu'(1) + B> —/ k(t,u(t)) dt, x € X, u(0) =0. (10)

This Riccati problem is then approximated by

1
ey’ + y? = g(x) := B? —[ k(t,uo(t))dt, x € X, y(0)=0. (1)

X

The main result of this section is
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lu(x) —y(x)| < Me, x € X. (12)
The proof of (12) requires several lemmas.
Lemma 1. The function g defined in (11) satisfies
gx)=pB>0, x € X,
where B is defined in (8).
Proof. 1t holds true that
k(x,ug(x)) <2c*ug(x) <2c*[ce(x — 1)+ B], x € X,

where the second inequality in (5) is used. Therefore, when x € X, it follows that

1
g(x) > B? —2c*/ [cx(r — 1) + Bdt
X
> B2 —c*[cut> +2(B—cu)tlp =p. O
Lemma 2. The Riccati problem (11) has a C'(X)-solution y which satisfies

2@ =y (1-e7) = y@) < B x € X,

where y = \/B This solution y is unique.

Proof. According to [O’Reg97, p. 19], as cited in [OR05], it should be proved that
B and z(x) are respectively upper and lower solutions of (11) (note that z(x) < B
for x € X because of (3)). The upper solution is easy to verify. As for z, it holds
that

ez + 2% = y2 (1 —ev¥le e_zyx/8> < y2 <gx), xeX.

Like for problem (1), the uniqueness of the solution is a consequence of inverse
monotonicity. O

Lemma 3. Functions f and g defined in (10) and (11) satisfy
| f(x) —g(xX)] < Mye, x € X,

where My is some positive constant independent of ¢.

Proof. This follows because of (7) and (9) 0O.

Theorem 2. The solutions u and y of the Riccati problems (10) and (11), respec-
tively, satisfy (12).

Proof. Define the linear operator

Av = ev’ + [u(x) + y(x)]v,
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so that

Alu(x) —y(0)] = f(x) — g(x).

Let I; denote the operator [,v = v({) for any £ € X. Since u(x) + y(x) > 0 on
X, operator (A, I;) is inverse monotone on any interval [£,r], r < 1.
Consider now x € [0, ¢]. Because of Lemma 3,

AMyx = eMy + [u(x) + y(x)|Myxx > eMy > £[f(x) — g(x)].
Then inverse monotonicity of (A, I) on [0, g] implies that
[u(x) — y(x)| < Myx < Mye, x €0, ¢].
It remains to prove
[u(x) —y(x)| < Me, x € e 1]. (13)
To this end, let M * be a sufficiently large constant independent of ¢ and define
w(x) = M*e (1 - e_ZBx/€> )
It follows that
Aw(x) = M*e [[ZB —u(x) — y(x)]e 2B¥e L y(x) + y(x)] > M*ey(x).
However, because of Lemma 2, y(x) > z(x), which on interval [, 1] gives
Aw(x) > M*ey (1 —e77).

Then by choosing
—1
M* = M,ymax{[y(1—e")]", (1 —e_ZB) } ,

we get
Aw(x) = £[f(x) — g(x)],
using Lemma 3, and also

w(e) = £[ule) — y(e)].

Then (13) follows from inverse monotonicity of (A, I;) on[e, 1]. O
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4 The Numerical Method

Because of Lemma 2, the result from [OR05] applies immediately to the problem
(11). The numerical method used in [OR05] is now described. A piecewise equidis-
tant Shishkin-type mesh is used to discretize (11). Interval X is divided into N
subintervals with J equidistant subintervals in the fine part of the mesh covering the
boundary layer. It is assumed that Q := J/N is a fixed constant (Q = 1/2, used
in [ORO05], is a frequent choice). The transition point between the fine and coarse
parts of the mesh is

T =min{Q,£lnN} ,
4
where y is the constant from Lemma 2. Therefore, the mesh points are defined by

T, .
x;i=—i, 1=0,1,...J,
J

and
1—1

N—-J
Leth; = x; —xj—1,i = 1,2,..., N. The problem (11) is discretized on this mesh
using the backward difference scheme,

Xi =1+ G—J), i=J+1,J+2,...,N.

Yi—Yi
87

Y=g, i=1.2....N. Yo =0.
i

This discrete problem can be solved directly,

—& + V6 + 4hi(sYio1 + hig(x))

Y =
! 2h;

i=1,2,....,N, Yo=0. (14)

Theorem 3. Let N be sufficiently large but independent of €, let u be the solution
of the continuous problem (1) and let Y be the piecewise linear interpolant of the
numerical solution given in (14). Then the following error estimate holds true:

lu(x) =Y (x)] < M[e + N"'(InN)?], x € X.
Proof. Theorem 8 in [OR0S5] proves that
y(x) =Y (x)| < MN'(InN)*, x € X, (15)

where y is the solution of (11). The assertion then follows from Theorem 2. O

The result of Theorem 3 is now illustrated by some numerical experiments. For
the test problem

—su” —W?) +u=0onX, u0 =0, u(l)=1, (16)

an asymptotic solution can be given in the form
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—x/e
ua(x) =uop(x) — m,
where ug(x) = %(x 4+ 1) is the solution of the reduced problem corresponding to
(16). For u 4 and the solution u of problem (16), it holds true that

[u(x) —uq(x)| < Me, x € X,

see [Z190], or, more generally, [VB73] and [KC80]. Therefore, when ¢ << N -1
the numerical solution (14) can be compared to u 4. The function g, given in (11)
and used in (14), can be evaluated exactly (otherwise, a quadrature formula may be
used): g(x) = L(x + 1)?and y = 1.
Let
EN = max [us(x;)— YN,
0<i<N

where the superscript indicates that N mesh steps are used. The numerical order of
convergence is estimated by

EN
N
p =log; 055

The results are presented in Table 1 for two different values of Q. The density of
the mesh in the layer is greater if Q is greater. This is why the results for 0 = %
are somewhat better.

The three considered values of ¢ are all very small and produce identical errors.
It can be expected that (15) is the dominant term in the error estimate of Theorem
3. In fact, the reported numerical orders of convergence are better and correspond
more closely to M N~ 1In N. This is shown in Table 2. If it is assumed that the error
is of the form

EN ~ MN Y (InN)®,

for some positive constant s, then s can be found from

sV InQRE*N) —In EN

" In(In2N) —In(InN)’

Table 1 Results fore = 107°, 1072, 10712

0=1/2 0 =3/4
N EN pN EN pN
16 2.89E—2 .63 1.98E—2 .64
32 1.87E—2 71 1.26E—2 71
64 1.15SE—2 15 7.74E-3 .76
128 6.80E—3 79 4.57E-3 .80
256 3.93E-3 .82 2.63E—3 .82

512 2.22E—-3 — 1.49E—3 —
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Table 2 Values of sV fore = 107°, 1072, 10712

N sN forQ =1/2 sN for Q = 3/4

16 1.16 1.08
32 1.14 1.13
64 1.09 1.07
128 1.08 1.05
256 1.04 1.06

As reported in Table 2, the values of 5%V are well below 2 in this numerical example.
They indicate that s ~ 1.
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Electrochemical Pickling: Asymptotics
and Numerics

M. Vynnycky and N. Ipek

Abstract Electrochemical pickling in the manufacture of stainless steel strips is
characterized by simultaneous multi-ionic transport, driven by diffusion, migration
and convection, heterogeneous electrochemical and homogeneous chemical reac-
tions. In this contribution, we summarize recent numerical and asymptotic results in
the development of a 8-ion model for the process. In addition, a preliminary asymp-
totic analysis for the inclusion of homogeneous chemical reactions in the model,
which had been omitted hitherto in analytical work for simplicity, is carried out and
is found to agree qualitatively with earlier numerics.

1 Introduction

Electrochemical pickling is an important example of an industrial process that
involves electrochemical cells in which an electrolyte and an electric current are
used to drive reactions so as to yield desired products; furthermore, it exemplifies
a complex system in which ionic transport, by diffusion, migration and convec-
tion, heterogeneous electrochemical reactions and homogeneous chemical reactions
occur simultaneously. In the process, a steel strip having an undesired surface
oxide layer is passed between pairs of anodic and cathodic electrodes in an elec-
trochemically neutral electrolyte, usually sodium sulphate (Na;SO4); a schematic
for the process can be found in [ICV07]. When a current is passed through the
cell, the ‘pickling’ reaction, i.e. the removal of the oxide layer, thought to consist
predominantly of chromium oxide (Cr,O3), occurs according to [Bra80]

Cr03 + 4H,0 — Cr,037 + 8HT + 6e™, (1)
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as do other electrochemical reactions that result in the evolution of oxygen and
hydrogen,

2H,0 — O, + 4H' +4¢~, 2H,0 +2¢~ — H, + 20H ™, (2)

respectively. In addition to these heterogeneous reactions, the following homoge-
neous chemical reactions are thought to be important:

1. Water protolysis:
H,0 = H* + OH™ 3)

2. The dissociation of sulphuric acid, according to
H,SO, = H' + HSO;, HSO; = H' +S0;~ 4)
3. Chromium buffering, described by
CrO7” + H" = HCrO;, 2HCrO; = Cr,03~ +H,0 6))

Further information on many aspects of the pickling of austenitic stainless steels can
be found in a recent survey by Li and Celis [LCO3] and the thesis by Ipek [Ipe06].
In the modelling of this electrochemical system, a convenient first approximation
is to assume that the electrolyte solution is dilute; in this case (see e.g. [NTA04]),
the molar flux, N;, of the ionic species i can be expressed via the Nernst—Planck

equation as

ziFei D
N; = ciu—%VdD(e) — D;Ve;, (6)

where u is the hydrodynamic velocity of the electrolyte, c; is the concentration of
species i, ®(© is the electric potential, D; is the diffusion coefficient for species
i in the solvent and z; the charge number for ionic species i. The quantities
F(=96485Cmol™!), R(=8.314 J mol s~!) and T are the Faraday constant, the
universal gas constant and the absolute temperature, respectively. In steady state,
the differential material balance for species i is given by

V-Ni=R;, i=1,.,N, (7

where N is the number of ionic species present and R; describes the homogeneous
chemical reactions. In addition, the solution is assumed to be electrically neutral,
which is expressed by

N
ZZ,'CZ' =0. (8)

i=1
If u is assumed to be known, equations (7) and (8) then provide a consistent descrip-
tion of transport processes in the dilute electrolyte, since there are N + 1 equations
for N 4+ 1 unknowns. An important quantity which can be calculated from the flux
of charged species a posteriori is the current density, i; this is given by Faraday’s
law as
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N
i= FZZ,'N,'. 9)
i=1
Boundary conditions are then necessary to close the problem. Such systems usu-
ally consist of three types of boundary: an inlet through which an electrolyte is
pumped; electrodes at which electrochemical reactions occur, and an outlet through
which products and unused electrolyte can exit. At an inlet, it is reasonable to
prescribe the incoming composition, so we take
ci=c, i=1,.,N, (10)
where cf 7 denote the concentrations’ equilibrium values at the inlet. The consid-
eration of heterogeneous electrochemical reactions at reacting surfaces will lead to
relations of the form

Ni-n=Jf (cl,..,cN,cb(e),cbs), i=1...N, (11)

where @ is the electric potential of the reacting surface and (f;); =y are gener-
ally taken to be Butler—Volmer (or Tafel laws); an insulated surface can be thought
of as a special case of this, where f; = 0 foralli = 1, .., N. At an outlet, the molar
flux is usually dominated by convection, so that

(Z,'FCI'DI'

T vq>(e>+D,-vCi).n=o, i=1,.,N. (12)

At each boundary, the electroneutrality condition is also required, giving a total of
N + 1 boundary conditions. In (11) and (12), n denotes the unit normal vector at
the domain boundary.

In the rest of this contribution, we review specific numerical and asymptotic
developments in our earlier modelling of electrochemical pickling, as well as includ-
ing new analytical considerations for the inclusion of hitherto-omitted homogeneous
chemical reactions.

2 Summary of Earlier Work

The original formulation of a model for the process [Ipe06] was for N = 8, although
subsequent numerical solutions, implemented using the finite-element solver Com-
sol Multiphysics for the canonical geometry shown in Fig.1, were for at most
N = 6. In [ICVO07], three variants were explored:

e Reduced model (1), where N = 5,i = HT,OH™,SO;,Cr,03~,Na®, with
R, =0

e Reduced model (2), where N = 5, i
Ry+, Ron— # 0, R; = 0 otherwise

H*,OH™,S03",Cr,027,Na™, with



290 M. Vynnycky, N. Ipek

Fig. 1 A cross section of the b
v(®)
model geometry for the verti-
. . . Deb
cal pickling process, showing -2 5

the anode, the cathode and

the steel strip in the chan-

nel. The electrodes to the left L
are separated by an electri-

cally insulated, impermeable

boundary of vertical extent

D,

cathode

Dy electrolyte

anode

e A so-called full model, where N = 6, i = H",OH™,SO; ,Cr,02",Na™,
HSO, , with Ry+, Ron—, Rsoﬁ—’ Ruso; # 0, R; = 0 otherwise

in fact, the case originally formulated in [Ipe06] with
N =38, i=H" 0H,S02,Cr,03 ,Nat HSO,, HCrO,,CrO3™ R; # 0,

was never actually solved numerically; the basic logic in this development was that it
was more important to include electrochemical reactions than bulk reactions. How-
ever, there are potentially other ions present also [LCO03], e.g. Fe31, Ni2t, which
may in future require further expansion of the model.

The solely numerical approach did, however, have drawbacks: computation times
were lengthy already for N = 5 and it was cumbersome to attempt the parameter
studies for the process that one would have desired; it was not possible to understand
the physical and mathematical reasons for the simplicity of the profile obtained for
i at the steel strip, which was essentially piecewise constant along the surface of the
strip. Subsequently, an asymptotic approach was adopted for reduced model (1) in
[VIO8]. Nondimensionalization of the governing equations led to five dimensionless
parameters: §, &, Pe, I1, €. The first two are geometrical: § is the aspect width:height
ratio of the electrolyte region (D,;/L®?), whereas ¢ is the width:length ratio of the
section of steel strip (d/L(b)). Pe (:: V(b)L(b)SZ/DNa+) is the reduced Peclet
number, whereas [1 = FU/RT, with U denoting the potential difference between
the anode and cathode electrodes. € (~10_7) is the ratio of the bulk concentra-
tion of the ions involved in electrochemical reactions and those which are not; for
reduced model (1), these were (HT, OH™, Crzog_) and (Na+, SOZ_) , respectively.
For pickling, 8, ¢, ¢ < 1, whereas F:z, IT > 1.In particular, the fact that ¢ < 1 nor-
mally gives rise to supporting electrolyte theory: it can be shown [Lev42, NTA04]
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that, at leading order in e, ®© is constant, and all dependent variables can be
expressed as regular perturbation expansions in €. For a recent application of this,
see [BVO8].

However, Vynnycky and Ipek [VIO8] demonstrate that, whilst electrochemical
pickling occurs in the presence of a supporting electrolyte, the classical theory
cannot hold; this is already evident from [ICVO07], where the electric field in
the electrolyte is not constant. A re-working of the theory indicates that whilst
(H*,OH™,Cr,02%7) and (Nat,SO3™) can be thought of, respectively, as minor-
ity and majority ions in the bulk, as is done in the classical theory, a minority ion
can become a majority ion near an electrode at which it is produced; furthermore, as
it is advected downstream with the flow, it can even be a majority ion elsewhere.
In mathematical terms, whereas the asymptotic expansions for Na™, SOZ_ and
®© are regular, singular perturbation expansions are necessary for HT, OH™ and
Cr,07~. An additional quirk of the pickling model is that (f;);—; .y in equation
(11) does not depend on any of the ionic concentrations; consequently, for this
particular case, the potential problem for the electric fields in the electrolyte and
in the strip decouples completely from the boundary-layer equations valid adja-
cent to the vertical boundaries in the geometry. Work on the numerical solution
of this system of equations, which is analogous to the potential flow/momentum
boundary layer system in fluid mechanics, is currently ongoing. Thus, although the
model has turned out to have a remarkably simple asymptotic structure due to the
formof (fi);=y, n ,itis still the case that, evenif (f;);—; _y were concentration-
dependent, this approach would lead to considerably shorter computing times and
smaller memory requirements than the numerical solution of the originally specified
system.

The next consideration is whether the inclusion of reaction terms affects the
asymptotic structure given in [VI08]. On the one hand, whilst electrochemical prob-
lems involving convection, diffusion and migration give rise to boundary layers

1
3

whose thicknesses can be easily classified, i.e. Pe 3 fora stationary electrode or

1
Pe 2 fora moving one, it is clear that the inclusion of reaction terms necessitates
a case-by-case approach; it is notable that whilst authors commonly refer to a thin
reaction layer adjacent to an electrode, a qualitative estimate for its thickness is
never given [NBCLO7,ICV07, YYWO1].

3 Inclusion of Homogeneous Chemical Reactions

To guide us in how to proceed, we show in Fig.2 the profiles for Cpy+
(:: cu+ /C§Z+> and Coy— (:: COH— /C;er) at Y = 0.25, as computed for reduced
model (2) in [ICVO7]. First, we nondimensionalize the x- and y-coordinates shown

in Fig. 1 through
X =x/Dgy, Y =y/L?.
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Fig. 2 Cy+ and Coy— at Y = 0.25 (reduced model 2)

Near X = 0, we see that whilst Cy+ is O(1), as in reduced model (1), Cop— is
plausibly O(€?); now, we try to reconcile this with the asymptotics. The material
balance equations for HT and OH™ ions are, in dimensionless form and removing
the second derivatives in Y,

aC; Dy d s 9C; .
X—="|z—=(C—= R; 1
Y P (Zl 0X (Cl ox ) Tax2 ) TR (13)

~ ~ 2
where Ry = Rou- = L (kézocﬂzo — kityo (C;Z+) Curr COH_) fegar Vs

and ¢ is related to ®© by ®© = & (0,Y) + IT~'¢. If there is now to be a
balance at leading order between reaction and diffusion terms, then we should have,
forHT,

1 L(b)k{[rzocHZO

PelXus]® V@

where [ X+ ] denotes the thickness of the proposed reaction layer for HT, and where
we have assumed that Cy+~O(1). Hence,

1

1 D +Ceq 2

[Xu+] ~ 5 (% ~0.04,
eb kHzoCHzO
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which is numerically of the same order of magnitude as the thickness of a boundary

—__1
layer based on a diffusive-convective balance, i.e. Pe 3. For OH™, on the other

hand, we have
1
D +Ceq 2
€ N +
[Xou-] ~ — (ﬂ ,

Den \ kom0

where [Xog—] denotes the thickness of the proposed reaction layer for OH™, and
where we have assumed that Cop— ~ O(€?). Clearly, [Xon—] < [Xy+]. which
means that we would need Rop— = 0 when X ~ [Xy+] . Hence, f(’H+ = 0, which
then gives that

2
Cou—Cy+ = kﬁ[zocHzo/kgzo (C§Z+> "

when X > [Xou—]; there will then need to be an additional boundary layer for
Con—, of thickness [Xog—], in which Cog— will have to be solved for using the
material balance equation, but this will not be of importance for the leading order
behaviour of the cell. Nonetheless, this analysis is consistent with the numerical
results.

Near X = 1, the roles of HT and OH™ are reversed, with now

1 1
Dy,+c%? 2 1 Dy.+c? 2
€ N + N +
[Xp+] ~ (ﬂ . [Xow—] ~ Nt )

Deb ké[zoCHzo Deb kéocHzo

which will once again lead to (14). A slight difference in the analysis, although
ultimately of no consequence for the asymptotic structure, is that since [Xop—] >

1

Pe 2, the actual leading order balance is convective-diffusive. In summary, the
inclusion of a homogeneous reaction in the model has affected the results in a some-
what surprising way: in both layers considered, the reaction terms have vanished
at leading order in €, although their inclusion has ensured that the concentration
of minority ion that is not being produced in the electrochemical reaction at the
adjacent electrode has a much smaller magnitude than in the corresponding case,
i.e. reduced model (1), when the reaction terms are excluded. Note also that this
analysis in no way affects the conclusions in our earlier work on reduced model
(1) concerning ®©; we would therefore expect the current density obtained from
reduced model (2) to be the same as that for reduced model (1), and this was indeed
shown to be the case in [ICV07].

4 Conclusions

In this paper, we have summarized recent numerical and analytical developments
in our modelling of electrochemical pickling. Whilst our earlier work had begun to
reconcile earlier numerical and asymptotic trends for a reduced model which did
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not include homogeneous chemical reaction terms, here we considered preliminary
steps in including them. The analysis here was for the lower part of the cell (see
Fig. 1); however, it will be radically different in the upper part, since the ions pro-
duced in the lower part will be advected there. A further open issue is how the
analysis changes when homogeneous chemical reactions involving ions that do not
participate in the electrochemical reactions are included in the model, i.e. reduced
model (3) and the full model; the numerical results from [ICVO07] suggest that the
leading order current density is unaffected, although it is not clear at present how
this can be shown asymptotically.

More generally, this contribution has shown a practical example of how the
underlying structure of an apparently complex electrochemical system with sev-
eral transport and reaction mechanisms can be unravelled using a combination of
asymptotics and numerics.
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Energy Norm A-Posteriori Error Estimates
for a Discontinuous Galerkin Scheme Applied
to Elliptic Problems with an Interface

Paolo Zunino

Abstract It is well known that the solution of second order elliptic problems with
interfaces may feature internal layers and/or singularities. We present an adaptive
discontinuous Galerkin (DG) method to suitably approximate such problems. First,
we introduce the weighted interior penalty method, which generalizes the classi-
cal interior penalty DG schemes by replacing the arithmetic means with suitably
weighted averages where the weights depend on the coefficients of the problem.
Then, we discuss the construction of a family of residual based local error indicators
for the energy norm, applied to advection—diffusion-reaction equations featuring a
diffusivity parameter that may be discontinuous along an interface. In particular,
we demonstrate how the weights can incorporate into the scheme some a-priori
knowledge of the exact solution that improves the efficacy of the estimator and of
the corresponding adapted mesh. The theoretical results are confirmed by means of
numerical experiments.

1 Introduction and Problem Setting

We aim to approximate u, solution of the following boundary value problem,
—Au+B-Vu+puu=finQcR?® u=00n0Q, (1)

where 2 is a convex polygonal domain, u© € L° (L) is a positive function and
B € [W1>(Q)]? is a vector function such that V - 8 =0. Let I" be a single planar
interface subdividing €2 in two subregions €2;, i = 1, 2. By consequence, each sub-
region still is a convex polygon. For simplicity, the coefficient € is defined on each
subregion by a positive, possibly small, constant. Given V : = H_(S2), the weak
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formulation of problem (1) corresponds to find u € V' such that

a(u,v):=/;2(€Vu-Vv—ﬂu-Vv+uuv)=F(v):=/;2fv, YveV. (2)

A transmission problem for Poisson equation has already been addressed by
means of Nitsche type mortaring in [1] and [2] encompassing more general domains
than in the present case. Here, following [3-5], we introduce a discontinuous
Galerkin method that automatically accounts for the presence of an interface, pro-
vided that it is conforming with the computational mesh. A similar technique, has
also been recently adopted in [6] for the discretization of symmetric Friedrichs sys-
tems. In this setting, we develop an a-posteriori local error indicator for the energy
norm. In particular, we focus on the derivation of an estimator that is robust with
respect to the jump of the coefficient € at the interface. The seek of robust a-
posteriori error estimators for singularly perturbed problems is an active field of
research. In the framework of conforming finite element methods, we mention the
seminal work by Verfirth [7] . For the specific case of discontinuous coefficients,
we refer to [8] for Crouzeix—Raviart elements and to [9] for fully discontinuous ele-
ments. A vivid literature also concerns finite difference methods. We refer to [10]
for a recent contribution.

2 Numerical Approximation

For the numerical approximation of problem (2) we consider a shape regular family
of triangulations, Ty, of €2 that are conforming with the interface I'. Let e be an edge
of the element K € T}, which is a triangle in 2. Let /4, be the size of an edge and hg
be the one of an element. We denote with Fj, the collection of all edges of 7}, with
F ;l and F| }?Q the collections of all the internal edges and of all the boundary edges
respectively. For any interior edge of the mesh we denote with 1, its unit normal
vector, and with n the unit normal vector with respect to d€2. Then, we introduce a
totally discontinuous approximation space, Vhp ={v, € L>(Q); vp|x € PP, VK €
Ty}, with p > 0. For any function v that is discontinuous on the inter-element inter-
face e, we define v(x)|ei = limg_, o+ v(x £ dn,) fora.e. x € e and we will use
the abridged notation v®. The jump over edges is defined as [v]e :=v™ — v,
while we denote with {v} the arithmetic mean of v~ and v*. We also introduce
the weighted averages, {v}y :=w, v~ + wlvt, {v}¥ :=wlfv™ + w;vT, forall
eeF }l; where the weights are positive and necessarily satisfy w, + w} = 1. Set-
ting v|F=0, w;=1, wS=0and n,=n for all e € F/?, we define jumps and
averages also on F}‘?Q. As a result of that [v]e=v~, {v}y=v", and {v}*”=0 on
092. The idea of exploiting a tilted average instead of the standard arithmetic mean
is not completely new. Indeed, it has already been proposed by Heinrich for mortar
methods, see for instance [2] and references therein. Here, we aim to apply a weigh-
ing technique to obtain a robust scheme for problems featuring a discontinuous and
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locally vanishing diffusivity. To this purpose, it is convenient to choose the weights
depending on the coefficients of the problem, as in [3-5]. First, we introduce the het-
erogeneity factor, which quantifies the variation of € on each inter-element interface,
A()|og : 0K\ 02 — (—1,1) such that A(x)|px = [e(x)]ax /2{e(x)}. Sec-
ond, to construct tilted weights starting from the heterogeneity factor, we define
a suitable weighing function ¢. Observing that A € (—1,1), we propose ¢(¢)
= %(1 + sign(t)|t|"‘), where o € R plays the role of tilting factor and we define
wei := ¢ (£A). Then, we introduce the following bilinear form,

ay (up,vp) = / [(eVuh - ﬂuh) -V, + uuhvh]

Ty

4 [ 1Bt nelon] = eV -nelon] = Vb -]
Fp
+ (318 nel = 3B new; —wl) + ylehuh ) ullval |.

where y is a positive constant and where we have applied the abridged notation
fTh = KeT, /, x €tc. The weighted interior penalty method reads as follows: find

uy € Vhp such that,
ajy (up,vp) = F(vp), Yop € V2. 3)

We observe that (3) represents a family of numerical methods, depending on the
parameter «. The weighing function ¢ (¢) has been explicitly designed to make sure
that for small values of «, the tilting effect is very pronounced, while for ¢ — oo
the method coincides with the standard symmetric interior penalty method, based
on arithmetic averages. Another significant value is & = 1. In this case, {€}, coin-
cides with the harmonic average and it corresponds to the stiffness of two sequential
springs of modulus €~ and €. This seems to be a more natural choice than the stan-
dard average. For further details on the weighing technique, we refer to [5]. Owing
to the restrictions on the shape of Q and I', we assert thatu € W :=V N H%(T},).
By consequence, the analysis of the consistency of (3) with respect to (2) is straight-
forward, as well as the proof of the well posedness of the scheme, which relies on
the positivity of the bilinear form aj (-, ), provided that y is large enough, see [5].
The choice of y is independent on the diameter of the elements K € T, but may
depend on their stretching and on the finite element polynomial order, p. For linear
elements on a shape regular triangulation, an estimate of the optimal value of y is
provided in [11], and accordingly we set y = 2 for the tests of Sect. 4.

3 Residual Based A-Posteriori Error Analysis

We develop a residual based a-posteriori error estimate for the energy norm, aim-
ing to extend the technique proposed by Karakashian and Pascal for the Poisson
problem, see [12], to advection-diffusion-reaction equations. A similar study is also
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pursued in [9], with a different approach. Given ||v ||g T, = /- T, v2, we define the
energy norm associated with (3), where the subscripts /2, « remind the influence of
the mesh size and the tilting factor,

2 |3 vyl2 L2 lig. h—l% 2
10l =1€2Voll5 7, + l2vlig 7, + 1318 - nel + vietwhy ") * [v]lG, F, -

Let us denote with n}? the L? projection operator from W(h) : =W @ Vhp into
Vho, that is the space of piecewise constant functions on 7},. For any v € H'(K) it
satisfies the following error estimates,

_1
hg'llv = mpvllox < CxlVolox, ke llv —mpvlloe < CelVollo.x,

where Cx and C, are positive constants only dependent on the shape regularity
of the computational mesh. For simplicity, we apply the following notation, Cr,, :=
maxger, Ck, CF, := maxeef, Ce. Furthermore, let [, be a HO1 -conformal
(Oswald type) quasi-interpolation operator from Vhp to Hy N Vhp . From now on, let
e :=u — uy be the error of the method, where u is the solution of (2) and uj, € Vhp
the one of (3). A representation of the error suitable to our purpose is addressed in
the following lemma.

Lemma 1. Given { :=e — e and § :=uj, — Iy, gup we have,
lell13. = rff(un. §) + s (€. ) where,

ry(up. §) :=—[T (—€Aup + B - Vup + pup — )¢

= ], (19— netgy

— (418 el = 3B me(wy —wl) + v {eho) unlE] ],
o= [ [(eve 4 pe) Ve + ue]

+ [ {188 nelel + eV - nele

— (318 nel = 3B - ne(wy —wd) + yichuhy )N

Clearly, rjf (up, {) accounts for the residuals of the problem, while 57 (¢, ¢) depends
on the nonconformity of the approximation, quantified by &.

Proof. First, because the numerical scheme is consistent, namely aj (e, v,) = 0 for
all v, € V2, and because the advective part of the bilinear form ay (up,vp) is
skew-symmetric, we assert that

2feVelu nelel = af(e.t 6 + [ 2eVe nelel

Fy

llell2,, = a2 e.e) +[

Fy
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Owing to the identities V¢ = Ve onany K € Ty, [] = [un] = —[e] onany e € Fj,
the symmetry terms of aj (e, {) can be combined with the consistency terms of
a;"l(e, &) as follows,

[ Vet nelel + / (Ve nele] = —2 [ {eVelw - nelel.
Fy Fy Fy

Let az’i (un, vp) be the bilinear form aj (uy, vy) deprived of the term {eVup}y, -
nefun], which corresponds to the so called incomplete version of the interior penalty
method. Combining the previous equalities we obtain,

llell2., =a:”<e,c>—/

Th

[(eVe —pe) - Ve + uet] - [ [tBeb-nele]
—{eVEh nelel + (BB mel — 1B metwy —w) + ylehwhy D]

Finally, the result follows from the previous identity after integration by parts of
Jr, Be - VEand [, (eVe — Be) - V¢ over each element K € Tj,. O

We notice that the right hand side of the error representation formula of lemma 1
is not directly computable, because both 7 (u, §) and s, (&, ¢) depend on the error,
through ¢ and e. Conversely, the quantity £ is computable on a post-processing
phase, after the solution of the discrete problem. Then, to obtain a computable upper
bound for the energy norm, we derive suitable estimates for rj (up, §) and s}/ (€, ),
aiming to separate the contribution of uj; and & from ¢ and e, respectively. Since
we address problems with discontinuous coefficients, we will pay attention on how
to distribute the error generated at the interface on the neighboring elements. As
shown in [5], suitably exploiting the weighted interior penalty technique it is pos-
sible to obtain a tilted distribution. By this way, we develop a family of estimators
depending on the tilting factor, v, which feature different behavior with respect to
the heterogeneity of €. To set up such estimators, without lack of generality we adopt
a local reference system for any element K € Tj and we assume that 7, coincides
with the outer unit normal vector with respect to K. Let KT be the elements of 7},
that share an edge with K. Accordingly, we denote with €~ and €™ the inner and
outer values of € with respect to K, with the simplified notation €~ = ¢ when clear
from the context. Furthermore, we define a local Péclét number relative to each edge
of the computational mesh, Pe, := || - nelloo,e /e / (2{€ }w). Then, we introduce the
following upper bounds for r (1, §) and 53/ (£, e), where we highlight the influence
of the heterogeneity of ¢~ and €t on the multiplicative constants of the residuals.

Lemma 2. For any § >0 we have,

1 1
i un. ) < 8(CF, +9CE,) D llexVelgx + 75 D (1 @n)®. @
KGTh KGTh

2
2 h
(n;’(a(uh)) = TK” —eAup + B - Vuy + puy — f”%K
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+ Y Lol a3,
ecdK
Pl (318 el = 38 - meCwy —u)? il
S {e}w - ({6}8 )( >|||[€Vuh—,3uh]| nellg.e-

ecdK\0Q2

Proof. First, we rearrange the terms of r (1, {) in order to highlight the contribu-
tion on each element of the terms living on the mesh skeleton, F, ,i . The discussion
presented in [5] shows that, among all the possible splitting strategies, the most
effective is the following,

r(up, §) = — Z [/;((—eAuh+ﬁ-Vuh+uuh—f)§

KETh

= 3 [ Q1B el = 3 ety — )+ b k)l
eciK

+ Z |[6Vuh—ﬁuh]]-newe_§+].
ecdK\IQ * ¢

Second, we provide an upper bound for each row on the right hand side,
/ (—€Aup + B-Vuy + pup — f)¢
K

h2
<3C1<||€2Vt?||01(+ 5 < L) —eAup + B Vup + pun — £13 &

4

_ 1
Y | [eVun — Bunl - new; £ < 38C7||(e1)2 Ve[5

ecdK\Q * ¢
1 (w_)zhe 2
tos 2 o MV = fuad-neli,
ecdK\0Q2

Z / LB el — L1 - no(wy —wi)lunle™ < 36C2 b Vel ¢

ecdK

= 3 b (318 nel — 18 neCwg —w ) Bunll3

eeaK

> [ vt teulle < 38214 Vel &

ecdK

1 €
T SR e [r T P =
eeaK
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Lemma 3. For any § >0 we have,

1 1
s =8 ) [2let Vel + lnteli

KeTy,
11 1 2
+ Y Blteihe el + 75 Yo (k). )
ecdK KeTy,

2 1 1 1
(m” un))” = ll€2 VEIG & + 12 €5 & + 1Bl €5 &
2 1 1 1 _1
+ Z [({ , ) {e}ahi VE - nellg o + v2Ie}nhe *Ell5
w

1
+ Pecl|(1B el = 1 -ne) 613, |

Proof. First, we split the error components on the edges over the neighboring
elements,

sp(Ee) = — Z [/;{ ((eVE + BE) - Ve + Mée)

KGTh

+ 2 [ (18-l = 35 ne)lels™ + vtk els™ —wye Ve -nelel) |

ecdK

where we have exploited the identity,
(B} nelel + Swy DNl = [ (B8} nlel
Fy Fp

We notice that the last two rows in the definition of s/ (£, €) are already fully com-
putable, because [uy] = — [e] and & = uj, — I oup, but we will anyway provide an
upper bound for them, in order to obtain a more usual expression for the estimator.
Conversely, in the first row we have to split the contribution of £ and e by means of
the following estimate,

1 1
[ (€96 +B) - Ve + nge < 8(20el Vel i + Indell x)

1 1 1 _1
+ 15 (12 VI3 & + Iudeld x + 1Bl H613  )-

For the remaining terms, we propose the following upper bound, that together with
the previous estimate gives (5),

3 / LB - nel = 1B -ne)[elE + ytehuhy el — wy e VE -nele])

eeaK

=% Z [({ o ) IHetw héVS-nellﬁ,e + yzll{e}éh;%gug,e

1 1 Te2 33,112
+Pecl| (318 nel = 38-1e) €13, | + 38 3 Ieyihe el O

ecoK
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Combining the error representation formula of lemma 1, with (4) and (5) of
lemmas 2 and 3 respectively, we immediately obtain the following result.

Theorem 1. Provided that § (C%h + 9CI%h + 3) < 1 there exists a positive constant
C independent of h and of the coefficients €,B,u, such that

llelllna <C, /ZTh n% (un)?, where the local error estimators 0% (up) are defined
as % (un) = =\ Qua)? + i ).

We finally define 75, 9, a H,-conformal quasi-interpolation operator from Vhp
to HOl N Vhp . Several options are discussed in [8] and references therein. The
simplest one is the so called Oswald operator, which involves the arithmetic aver-
age of the multiple values of u;, € Vhp at each node. However, this definition
is not effective when the considered node belongs to the interface of discontinu-
ity of €. In this case, a weighted average seems to be more suited. First, for any
node x; belonging to F,?Q, we immediately set [ oup(x;) :=0. Let now x; be
any node on the interior of the skeleton, namely x; € F,’;. We denote with F;
the collection of faces that share x;, more precisely F; :={e, € F,i 1X; € e}
being | F;| its cardinal. Then, we average the multiple values of u; on each inter-
face, namely we consider u; := {up(x;)}"|e;. Let A; be the heterogeneity factor
associated to e; € F;. The nodal values of the H,-conformal quasi-interpolator
I ouyp are then defined by means of the following multiple weighted average,
Inoup(xi) = lim " leFQl Sjuj/ Z'féll 8j-

8j—>|lj

4 Numerical Results and Conclusions

We consider a one dimensional problem where we split the domain € = (0, 1)
into two subregions, 21 = (0, %), Q= (%, 1). The diffusivity €(x) is a discon-
tinuous function across the interface x = % precisely €; = 271 withi =1,5,10 in
Q; and €3 =1 in Q5. In the case B =1, =0, f =0 with the boundary condi-
tions u1(x =0) =1, u(x = 1) =0, the exact solution of the problem can be easily
computed. We refer to [3] for an explicit formula of u(x).

We preform numerical experiments exploiting linear finite elements, p = 1, and
we compare in table 1 the true error and its estimator for different values of the
tilting factor. We notice that the tilted weights strongly influence the estimator and
allow us to tune its sensitivity with respect to the jump of € across the interface.
Let /> x(k)?/|llell|n be the effectivity of the estimator, denoted with eff. in
table 1. In the case of standard interior penalties, we notice that the indicator eff.
considerably increases when € becomes heterogeneous, namely when €; decreases.
Both terms n;’(a, n;a behave similarly, but the former dominates because it is not
robust with respect to the ratio €* /™. As shown in table 1, the magnitude of n”
is sensibly reduced with the introduction of the tilted weights, o < oo, improving
the effectivity of the estimator. This behavior can be related to the expression of
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Table 1 Comparison of the error and its estimator for different values of the tilting factor «. In
particular, &« — oo corresponds to standard interior penalties and the tilting effect increases for
smaller values of &

o« i oa=27 Y@ X0 JTx@0? lllellle

1 5.0e—01 3.886e—02 9.697e—03 4.005e—02  3.223e—03 124
00 5 3.1e—02 4.252e—01 5.689e—02 4.290e—01  2.583e—02 16.6
10 9.8e—04 6.703e+00 1.421e+-00 6.852e+00  2.689¢e—01 25.5
1 5.0e—01 3.892e—02 9.907e—03 4.016e—02  3.322e—03 12.1
1 5 3.1e—02 3.892e—01 1.331e—01 4.113e—01  4.879¢e—02 84
10 9.8e—04 7.834e—01 1.582e+00 1.765e+00  2.804e—01 6.3
1 5.0e—01 4.097e—02 1.601e—02 4.399e—02  4.805e—03 9.2
1072 5 3.1e—02 3.517e—01 2.792e—01 4.490e—01  9.040e—02 5.0
10 9.8e—04 3.251e—01 1.661e+00 1.693e+00 2911e—01 5.8

ff.

]

n;’(a, where the multiplicative coefficients of the residuals on F ;’ are robust with
respect to €t /e~ for any value of @ when e~ — 0, except for the limit case o — 00.
Conversely, because of the term ||| 8 |e_%§| 0, » the contribution of 7%* is not sensi-
tive with respect to the tilted weights. This suggests that the advantage of the tilted
weights is maximum for a given range of €;, as confirmed by the last three rows of
table 1. Although this brief discussion is not exhaustive, table 1 confirms that the
weighted interior penalties turn out to be more effective than the standard scheme
in all cases. For additional experiments on the influence of the tilting factor for a
model problem in two space dimensions, we refer to [5].
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