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Abstract. A nonconservative stability theory for switched linear sys-
tems is applied to the convergence analysis of consensus algorithms in the
discrete-time domain. It is shown that the uniform-joint-connectedness
condition for asymptotic consensus in distributed asynchronous algo-
rithms and multi-particle models is in fact necessary and sufficient for
uniform exponential consensus.

1 Introduction

We consider teams of mobile agents working together towards the common goal
of reaching consensus asymptotically [1,2]. These agents are often modeled as
spatially distributed self-driven particles whose states (e.g., positions and veloc-
ities) evolve according to the information received from their neighbors. Each
agent has its own neighbor set, and the collection of such neighbor sets over all
agents determines a communication topology of a team. As the agents’ states
evolve, their neighbor sets are updated over time, and the team’s communica-
tion topology undergoes changes as well. Since the number of agents is finite,
the number of all possible communication topologies is finite. Therefore, as ar-
gued in [3], the behavior of these mobile agents can be described by a switched,
or hybrid, dynamical system whose mode of operation jumps from one to an-
other within a finite set according to the underlying, possibly nondeterministic,
switching structure [4,5,6,7].

The purpose of this paper is to use switched system stability theory and estab-
lish a condition for teams of mobile agents to reach consensus in the discrete-time
domain. Existing work in the literature [8,3,9,10] builds on Markov chain and
Lyapunov stability theories. However, despite the apparent connection between
the area of switched systems and that of multi-agent teams, not much work has
been done at the intersection of the two areas. This is partly because seeking a
common quadratic Lyapunov function does not work for the latter [3], which is
discouraging, and because a relevant nonconservative stability analysis for the
former was discovered only very recently [11,12,13]. This paper presents a con-
vergence analysis that fully exploits the connection between switched systems
and multi-agent models.

One of the nice things that comes from the use of switched system theory is
that the notion of uniform exponential consensus arises as a natural notion of
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convergence. Uniform exponential consensus requires the existence of a single
rate at which the agents’ states converge to a common value regardless of the
initial time. This uniformity requirement guarantees that asymptotic consen-
sus will occur against a disturbance that causes a sudden change in the agents’
states at an arbitrary time instant. This robustness property against disturbance
is not guaranteed under the notion of mere asymptotic consensus. Moreover,
our convergence condition is equivalent to a well-known sufficient condition for
asymptotic consensus (i.e., the uniform-joint-connectedness condition in [3, The-
orem 2]), which turns out to be not only sufficient but also necessary for uniform
exponential consensus.

In summary, the novelty of this work lies in the following aspects:

– The connection between switched systems and multi-agent models is fully
exploited;

– The common notion of asymptotic consensus is replaced with the stronger
but more useful notion of uniform exponential consensus;

– The condition that the communication topology be uniformly jointly con-
nected is shown to be an exact condition for uniform exponential consensus.

The main result is presented in Section 2, and its proof is given in Section 3.
Concluding remarks are made in Section 4.

Notation

The n-dimensional real Euclidean space is denoted by R
n. The Euclidean vector

norm ‖ · ‖ on R
n is defined by ‖x‖ =

√
xTx for x ∈ R

n. The spectral norm on
R

n×n is denoted by ‖ · ‖ as well, and is defined by

‖X‖ = sup
{√

λ : λ is an eigenvalue of XTX
}

for X ∈ R
n×n. If X, Y ∈ R

n×n are symmetric (i.e., X = XT and Y = YT) and
X − Y is negative definite (i.e., xT(X − Y)x < 0 whenever x �= 0), we write
either X < Y or X − Y < 0.

2 Main Result

Let S be the set of all symmetric stochastic matrices in R
n×n with positive

diagonal entries. (That is, F = (fij) ∈ S if and only if fij = fji, fij ≥ 0, fii > 0,
and

∑n
k=1 fik = 1 for all i, j ∈ {1, . . . , n}.) Associated with each F = (fij) ∈ S

is a graph G ⊂ {1, . . . , n} × {1, . . . , n} such that (i, j) ∈ G if and only if fij > 0
and i �= j. (Note that these graphs are identified with sets of edges as they share
the common set of vertices given by {1, . . . , n}.)
Definition 1. A graph G ⊂ {1, . . . , n} × {1, . . . , n} is said to be connected
if between every pair of distinct vertices i, j ∈ {1, . . . , n} there exists a path
(i0, i1, . . . , iL) ∈ {1, . . . , n}L+1 such that i0 = i, iL = j, and (ik, ik+1) ∈ G for
k = 0, . . . , L − 1. A set of graphs {Gj : j ∈ J} is said to be jointly connected if
its union

⋃
j∈J Gj is connected.
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A finite set
F = {F1, . . . ,FN} ⊂ S (1)

defines a discrete linear inclusion (i.e., a discrete-time switched linear system
under arbitrary switching) whose state-space representation is of the form

x(t + 1) = Fθ(t)x(t) (2)

for each switching sequence θ = (θ(0), θ(1), . . . ) ∈ {1, . . . , N}∞. For each i ∈
{1, . . . , N}, let Gi be the graph associated with Fi.

Definition 2. Let F be as in (1). Let Gi be the graph associated with Fi for
i = 1, . . . , N . A switching sequence θ ∈ {1, . . . , N}∞ is said to yield uniformly
jointly connected graphs if there exists an integer T ≥ 0 such that the set of
graphs {Gθ(t), . . . , Gθ(t+T )} is jointly connected for all t = 0, 1, . . . .

Associated with each Fi ∈ F is a unique matrix Ai ∈ R
(n−1)×(n−1) such that

⎡

⎢
⎣

1 · · · 0 −1
...

. . .
...

...
0 · · · 1 −1

⎤

⎥
⎦Fi = Ai

⎡

⎢
⎣

1 · · · 0 −1
...

. . .
...

...
0 · · · 1 −1

⎤

⎥
⎦ , i = 1, . . . , N.

Then
A = {A1, . . . ,AN}

defines a discrete linear inclusion whose state-space description is given by

x̂(t + 1) = Aθ(t)x̂(t) (3)

for all switching sequences θ ∈ {1, . . . , N}∞. As argued in [3], the state equa-
tion (2) satisfies

lim
t→∞ x(t) = x0

⎡

⎢
⎣

1
...
1

⎤

⎥
⎦ (4)

for each x(0) ∈ R
n, where x0 ∈ R is a constant that depends on x(0) (i.e.,

θ achieves asymptotic consensus for F), if and only if the state equation (3)
satisfies

lim
t→∞ x̂(t) = 0 (5)

for all x̂(0) ∈ R
n−1 (i.e., θ is asymptotically stabilizing for A).

Definition 3. Let F be as in (1). A switching sequence θ ∈ {1, . . . , N}∞ is said
to achieve uniform exponential consensus for F if there exist c > 0 and λ ∈ (0, 1)
such that the state-space equation (3) satisfies

‖x̂(t)‖ ≤ cλt−t0‖x̂(t0)‖ (6)

for all t0 ≥ 0, t ≥ t0, and x̂(t0) ∈ R
n−1.
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The following is the main result that establishes an exact condition under which
a given switching sequence θ achieves uniform exponential consensus for F .

Theorem 4. Let F be as in (1). A switching sequence θ ∈ {1, . . . , N}∞ achieves
uniform exponential consensus for F if and only if it yields uniformly jointly
connected graphs.

The proof of this theorem is deferred to Section 3. The result is applicable to
a large class of distributed algorithms and multi-agent networks; e.g., some of
the linear discrete-time consensus algorithms studied in [8,3,9,10]. In particular,
Vicsek et al.’s multi-particle model [14] employs a nearest neighbor rule with
parameter r > 0 for n agents moving at a common speed. Here, a real-valued
state xi(t) of the i-th agent (i.e., the heading of the i-th agent) is updated
according to

xi(t + 1) =
1

|Ni(t)|
∑

j∈Ni(t)

xj(t), i = 1, . . . , N, t = 0, 1, . . . , (7)

where

Ni(t) = {j ∈ {1, . . . , n} : position of agent j at time t is
within radius r from position of agent i at time t, j = 1, . . . , n}

is the set of nearest neighbors of agent i (including agent i itself), and where
|Ni(t)| is the cardinality of Ni(t). This update rule gives rise to a state equation
of the form

x(t + 1) = F(t)x(t)

with x(t) = [x1(t) · · · xn(t)]T and F(t) ∈ S for all t. Since the number N
of distinct network topologies {N1(t), . . . , Nn(t)} that can occur over all ini-
tial states x(0) ∈ R

n and over all time instants t is finite, we can label these
topologies from 1 to N and obtain the state equation (2) with F(t) = Fθ(t),
θ(t) ∈ {1, . . . , N}. Jadbabaie et al.’s sufficient condition [3] for asymptotic con-
sensus states that, if there exists a τ and time instants 0 < t1 < t2 < · · · such
that tk+1 − tk ≤ τ for all k and such that the sets of graphs

{Gθ(0), . . . , Gθ(t1−1)}, {Gθ(t1), . . . , Gθ(t2−1)}, . . .

are all jointly connected, then the nearest neighbor rule (7) is guaranteed to yield
asymptotic consensus; that is, all headings xi(t) approach a common value x0 as
t → ∞. Putting T = 2τ , this condition implies that the set {Gθ(t), . . . , Gθ(t+T )}
is jointly connected for all t = 0, 1, . . . . Thus Theorem 4 asserts this sufficient
condition for asymptotic consensus is in fact necessary and sufficient for uniform
exponential consensus.

3 Proof of Main Result

3.1 Lemmas

There are a few lemmas required to prove Theorem 4. This subsection is devoted
to summarizing them.
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In the contexts of distributed asynchronous algorithms and multi-particle
models, where each initial state leads to a deterministic switching sequence,
it is known that asymptotic convergence of the state variables to a common
value is guaranteed if the switching sequence yields uniformly jointly connected
graphs [8,14,3,15].

Lemma 5. If the switching sequence θ yields uniformly jointly connected graphs,
then the state equation (2) satisfies (4) for each x(0) ∈ R

n, where x0 ∈ R is a
constant that depends on x(0).

Proof. The result is due to F being a finite subset of S. See, e.g., [3, Theorem 2].

On the other hand, in the context of discrete inclusions and switched systems
under nondeterministic switching, it is known that the discrete linear inclu-
sion A is asymptotically stable under arbitrary switching if and only if the
generalized spectral radius of A is less than one, or equivalently, there exists
a sub-multiplicative norm ‖ · ‖A such that ‖Ai‖A < 1 for all i ∈ {1, . . . , N}
[16,17,18,19]. The following lemma is a simple consequence of this, and says that
asymptotically stable discrete linear inclusions are in fact uniformly exponen-
tially stable.

Lemma 6. The state equation (3) satisfies (5) for all x̂(0) ∈ R
n−1 and θ ∈

{1, . . . , N}∞ if and only if there exist c > 0 and λ ∈ (0, 1) such that (3) satis-
fies (6) for all t0 ≥ 0, t ≥ t0, x̂(t0) ∈ R

n−1, and θ ∈ {1, . . . , N}∞.

Proof. In fact, the result holds for any finite subset A of R
(n−1)×(n−1). See, e.g.,

[11, Proposition 8].

Recent advances in the stability analysis of discrete-time switched linear sys-
tems give a characterization of uniformly exponentially stabilizing switching se-
quences. This characterization plays a crucial role in establishing our result,
and hence is described here. For each integer L ≥ 0, tuples of integers of
the form (i0, . . . , iL) ∈ {1, . . . , N}L+1 are called L-paths. Following the ter-
minology used in [13], a finite set N of L-paths shall be said to be admis-
sible if for each (i0, . . . , iL) ∈ N there exists an integer M > 0 such that
(i0, . . . , iL) = (iM−L, . . . , iM ) and such that (it, . . . , it+L) ∈ N for all t = 0, . . . ,
M − L. Likewise, an admissible set N of L-paths shall be called A-admissible
if there exist symmetric positive definite matrices X(j1,...,jL) ∈ R

(n−1)×(n−1)

satisfying the coupled Lyapunov inequalities

AT
iL

X(i1,...,iL)AiL − X(i0,...,iL−1) < 0

for all L-paths (i0, . . . , iL) ∈ N . Given a switching sequence θ ∈ {1, . . . , N}∞
and an integer L ≥ 0, let NL(θ) be the largest admissible subset of

{(θ(0), . . . , θ(L)), (θ(1), . . . , θ(L + 1)), . . . }.
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Then we have the following result:
Lemma 7. There exist c > 0 and λ ∈ (0, 1) such that the state equation (3)
satisfies (6) for all t0 ≥ 0, t ≥ t0, and x̂(t0) ∈ R

n−1, if and only if there exists
an integer L ≥ 0 such that NL(θ) is A-admissible.

Proof. As in the proof of Lemma 6, the result holds for any finite subset A of
R

(n−1)×(n−1). See [12, Corollary 3.4].

Suppose N is an A-admissible set of L-paths. If the smallest A-admissible subset
of N is N itself, then N is called A-minimal. As argued in [13], associated with
each A-minimal set of L-paths is a periodic uniformly exponentially stabilizing
switching sequence for A; moreover, each A-admissible set is a finite union of
A-minimal sets. For switching sequences θ ∈ {1, . . . , N}∞ and integers L ≥ 0,
define N∞

L (θ) as the set of L-paths (i0, . . . , iL) such that for any t0 ≥ 0 there
exists a t > t0 satisfying (θ(t), . . . , θ(t+L)) = (i0, . . . , iL). Then N∞

L (θ) contains
the L-paths that occur infinitely many times in θ; it is nonempty because the set
{1, . . . , N}L+1 of all L-paths is finite. In summary, we have the following lemma:

Lemma 8. Suppose that there exists an integer L ≥ 0 such that NL(θ) is A-
admissible. Then the following hold:

(a) The set N∞
L (θ) is A-admissible and is identical to NL((θ(t0), θ(t0 +1), . . . ))

for some integer t0 ≥ 0.
(b) The set N∞

L (θ) is a finite union of A-minimal sets of L-paths.

Proof. Part (b) is an immediate consequence of part (a), so it suffices to show
part (a) holds true. Suppose N∞

L (θ) is not admissible. Then, there exists an
L-path (i0, . . . , iL) ∈ N∞

L (θ) such that, whenever M > 0 and iL+1, . . . , iM ∈
{1, . . . , N} satisfy (iM−L, . . . , iM ) = (i0, . . . , iL), there exists a t ∈ {0, . . . , M −
L} such that (it, . . . , it+L) does not belong to N∞

L (θ). That is, whenever we form
a cycle of L-paths that contains (i0, . . . , iL), the cycle contains an L-path that
does not occur infinitely many times in θ. Therefore, (i0, . . . , iL) cannot occur
infinitely many times in θ. This contradicts the fact that (i0, . . . , iL) ∈ N∞

L (θ).
Thus N∞

L (θ) is admissible. Moreover, N∞
L (θ) is A-admissible because N∞

L (θ) is
an admissible subset of NL(θ), which is A-admissible. To complete the proof, it
remains to show that N∞

L (θ) = NL((θ(t0), θ(t0 + 1), . . . )) for some t0 ≥ 0. Since
NL(θ) is finite, the set difference NL(θ)\N∞

L (θ) is finite. For each (i0, . . . , iL) in
NL(θ)\N∞

L (θ), let τ be the largest integer such that (θ(τ−1), . . . , θ(τ +L−1)) =
(i0, . . . , iL). Then letting t0 be the maximum of such τ ’s over all L-paths in the
finite set NL(θ) \ N∞

L (θ) yields the desired result.

3.2 Sufficiency

To prove sufficiency of Theorem 4, suppose a switching sequence θ yields uni-
formly jointly connected graphs. If Gi are the graphs associated with Fi for
i = 1, . . . , N , then there exists a T ≥ 0 such that {Gθ(t), . . . , Gθ(t+T )} is jointly
connected for all t = 0, 1, . . . . Given such a T , define

S =
{

(i0, . . . , iT ) ∈ {1, . . . , N}T+1 :
⋃T

t=0
Git is connected

}
,
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so that S is the set of all T -paths over which the associated graphs are jointly
connected. Define

F̃(i0,...,iT ) = FiT · · ·Fi0 and Ã(i0,...,iT ) = AiT · · ·Ai0

for (i0, . . . , iT ) ∈ S, and let

F̃ = {F̃(i0,...,iT ) : (i0, . . . , iT ) ∈ S},
Ã = {Ã(i0,...,iT ) : (i0, . . . , iT ) ∈ S}.

By construction, F̃ forms a discrete linear inclusion whose elements F̃(i0,...,iT )

are associated with connected graphs

G̃(i0,...,iT ) =
⋃T

t=0
Git , (i0, . . . , iT ) ∈ S.

By Lemma 5 we have that, for every sequence of T -paths θ̃ = (θ̃(0), θ̃(1), . . . )
such that θ̃(t) ∈ S, t = 0, 1, . . . , the state equation

x̄(t + 1) = F̃θ̃(t)x̄(t)

satisfies limt→∞ x̄(t) = x̄0 [1 · · · 1]T for each x̄(0) ∈ R
n, with some constant x̄0

depending on x̄(0). That is, the state equation

x̃(t + 1) = Ãθ̃(t)x̃(t) (8)

satisfies limt→∞ x̃(t) = 0 for all x̃(0) ∈ R
n−1 and for all θ̃ = (θ̃(0), θ̃(1), . . . )

with θ̃(t) ∈ S, t = 0, 1, . . . . Then, by Lemma 6, there exist c̃ > 0 and λ̃ ∈ (0, 1)
such that the state equation (8) satisfies ‖x̃(t)‖ ≤ c̃λ̃t−t0‖x̃(t0)‖ for all t0 ≥ 0,
t ≥ t0, x̃(t0) ∈ R

n−1, and θ̃ = (θ̃(0), θ̃(1), . . . ) with θ̃(s) ∈ S, s = 0, 1, . . . . In
particular, the given switching sequence θ = (θ(0), θ(1), . . . ) can be identified
with a sequence of T -paths θ̃ = (θ̃(0), θ̃(1), . . . ) via

θ̃(t) =
(
θ(t(T + 1)), . . . , θ(t(T + 1) + T )

)
, t = 0, 1, . . . ,

and it yields a state equation of the form (3) that satisfies

‖x̂(τ(T + 1))‖ ≤ c̃λ̃τ−τ0‖x̂(τ0(T + 1))‖ (9)

whenever τ ≥ τ0 ≥ 0 and x̂(τ0(T + 1)) ∈ R
n−1.

It remains to convert (9) to an inequality of the form (6). Let λ ∈ (0, 1) be
such that λ̃ = λT+1, and let M = max1≤i≤N ‖Ai‖/λ. Whenever t ≥ t0 ≥ 0, let
τ be the largest integer such that t ≥ τ(T +1), and let τ0 be the smallest integer
such that τ0(T + 1) ≥ t0. Then it follows from (9) that

‖x̂(t)‖ ≤
{

M t−t0λt−t0‖x̂(t0)‖ if τ0 > τ ;
c̃M (t−τ(T+1))+(τ0(T+1)−t0)λt−t0‖x̂(t0)‖ if τ0 ≤ τ.
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If τ0 > τ , then t − t0 ≤ T . Similarly, if τ0 ≤ τ , then t − τ(T + 1) ≤ T and
τ0(T + 1) − t0 ≤ T . Thus

‖x̂(t)‖ ≤
{

max{1, M}Tλt−t0‖x̂(t0)‖ if τ0 > τ ;
c̃ max{1, M}2T λt−t0‖x̂(t0)‖ if τ0 ≤ τ .

Now, letting c = max{1, c̃}max{1, M}2T yields that (6) holds for all t0 ≥ 0,
t ≥ t0, and x̂(t0) ∈ R

n−1. Therefore, θ achieves uniform exponential consensus
for F . This completes the proof of the sufficiency part of Theorem 4.

3.3 Necessity

To prove necessity of Theorem 4, suppose a switching sequence θ achieves
uniform exponential consensus for F . Then the state equation (3) satisfies (6)
whenever t ≥ t0 ≥ 0 and x̂(t0) ∈ R

n−1. By Lemma 7 there exists a nonnega-
tive integer L such that NL(θ) is A-admissible, and hence by Lemma 8 the set
N∞

L (θ) is A-admissible and is a finite union of A-minimal sets of L-paths.
Choose an A-minimal set Nmin of L-paths and the associated periodic switch-

ing sequence
θmin = (i0, . . . , iM , i0, . . . , iM , . . . ),

where the period M +1 equals the cardinality ofNmin. We will first show that θmin

yields uniformly jointly connected graphs. Since Nmin is an A-admissible set of L-
paths, by Lemma 7 there exist c > 0 and λ ∈ (0, 1) such that the state equation
(3), with θ replaced by θmin, satisfies (6) whenever t ≥ t0 ≥ 0 and x̂(t0) ∈ R

n−1.
That is, θmin achieves uniform exponential consensus for F . Suppose θmin does not
yield uniformly jointly connected graphs. Then, since θmin is periodic with period
M + 1, we have that the union G =

⋃M
t=0 Git , where Gi is the graph of Fi, is not

connected. That is, we can partition the set of vertices {1, . . . , n} into two disjoint
sets V1, V2 ⊂ {1, . . . , n} such that (i, j) /∈ G whenever (i, j) ∈ V1×V2. Now, choose
two distinct x1, x2 ∈ R, and let x(0) = (x1(0), . . . , xn(0)) ∈ R

n be such that

xi(0) =

{
x1 if i ∈ V1;
x2 if i ∈ V2.

Because V1 and V2 remain disconnected under θmin, and because the matri-
ces Fi are stochastic, the state equation (2) will have that x(t) = x(0) for all t
under θmin. This contradicts θmin achieving uniform exponential consensus for F ,
and hence proves that θmin indeed yields uniformly jointly connected graphs.

Now that we have shown each A-minimal set leads to a periodic switching
sequence that yields uniformly jointly connected graphs, we are ready to show
that the given θ, which achieves uniform exponential consensus for F , yields uni-
formly jointly connected graphs. Let τ be the cardinality of N∞

L (θ). By Lemma 8,
there exists a t0 such that, for each t ≥ t0, there exists an L-path (i0, . . . , iL)
that occur more than once in the switching path (θ(t), . . . , θ(t+ τ +L)); that is,
for some t1, t2 ∈ {t, . . . , t + τ} such that t1 < t2, we have

(θ(t1), . . . , θ(t1 + L)) = (θ(t2), . . . , θ(t2 + L)) = (i0, . . . , iL).
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Then it is clear that the set

N = {(θ(t1), . . . , θ(t1 + L)), . . . , (θ(t2 − 1), . . . , θ(t2 + L − 1))} (10)

forms an A-admissible set of L-paths. Since N contains an A-minimal set of
L-paths, we have that the union

⋃t2−1
t=t1

Gθ(t) is connected. This is true for each
t ≥ t0, and so the union

⋃t+τ−1
s=t Gθ(s) is connected for all t ≥ t0. Therefore,

putting T = t0 + τ gives that the set of graphs {Gθ(t), . . . , Gθ(t+T )} is jointly
connected for all t = 0, 1, . . . . This concludes the proof of the necessity part of
Theorem 4.

4 Conclusions

Multi-agent consensus algorithms were studied via a nonconservative stability
theory for switched systems, and a well-known sufficient condition for asymp-
totic consensus was shown to be necessary and sufficient for uniform exponential
consensus. Possible extensions of this work include consideration of more gen-
eral classes of consensus algorithms and incorporation of the state-dependent
switching structure.
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