
Optimal Boundary Control of

Convention-Reaction Transport Systems with
Binary Control Functions

Falk M. Hante and Günter Leugering

Department Mathematik, Lehrstuhl für Angewandte Mathematik II, Universität
Erlangen-Nürnberg, Martensstr. 3, 91058 Erlangen, Germany

{hante,leugering}@am.uni-erlangen.de

Abstract. We investigate a new approach for solving boundary control
problems for dynamical systems that are governed by transport equa-
tions, when the control function is restricted to binary values. We con-
sider these problems as hybrid dynamical systems embedded with partial
differential equations and present an optimality condition based on sen-
sitivity analysis for the objective when the dynamics are governed by
semilinear convection-reaction equations. These results make the hybrid
problem accessible for continuous non-linear optimization techniques. For
the computation of optimal solution approximations, we propose using
meshfree solvers to overcome essential difficulties with numerical dissipa-
tion for these distributed hybrid systems. We compare results obtained
by the proposed method with solutions taken from a mixed inter pro-
gramming formulation of the control problem.

1 Introduction

Dynamical transport processes governed by first order hyperbolic partial differ-
ential equations (PDEs), in particular on metric graphs, model a wide variety of
complex problems in civil engineering such as gas or traffic flow, but also many
problems in chemical engineering as well as communication, information and
logistic areas [14]. Often these problems involve decisions for controlling these
dynamical processes at the boundaries, for instance turning on/off compressors,
switching valves or toggle traffic lights [10].

We consider these multiscale problems as hybrid dynamical systems embedded
with PDEs in which the implementation of switching is merely on a faster time
scale than the transportation. With very few exceptions, noting [4,13,1,12], these
problems have not been considered in the context of hybrid systems, though they
represent a potentially rich field of study [3].

In context of PDE constraint optimization, mixed integer programming is used
for solving such control problems, e. g. for gas network optimization [15,11], not
least because of their obvious capability to consider the decision variables. The
drawback of mixed integer models is certainly their computational complexity
when the problems become large. Continuous non-linear optimization techniques
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provide an alternative, though the treatment of discrete variables therein is not
straightforward. Relaxation of the decision variables together with a penalty
term homotopy provides a heuristic approach for solving such problems with
non-linear optimization. It has for instance been applied for ramp metering of
traffic flow [4], but in general this heuristic lacks convergence to the integer op-
timal solution [17]. We therefore investigate alternative methods for solving this
hybrid control problem using continuous non-linear optimization that converge
to (locally) optimal solutions.

Similar approaches are well-known for certain lumped parameter models that
usually consist of switching among ordinary differential equations (ODEs) in a
predefined sequence of active subsystems. Optimality conditions for piecewise de-
fined solutions of ODEs were already developed in the 1960s in the context of ODE
optimal control theory [7]. These optimality conditions were later considered for
optimal control of hybrid dynamical systems governed by ODEs in [2,8].

The approach investigated here is based on a new optimality condition for
switching boundary data when the system dynamics are governed by the semi-
linear transport partial differential equation. For the computation of optimal
switching signals we propose to use meshfree solvers in order to overcome es-
sential difficulties with numerical dissipation when the distributed system is
discretized in space using standard fixed Eulerian grids. To demonstrate the
feasibility of our approach, we compare numerical results of our method with
solutions obtained from a mixed integer programming formulation of this hybrid
optimal control problem.

The paper is organized as follows. In Section 2, we give a detailed formulation
of the problem we consider. In Section 3, we present a first order optimality
condition based on sensitivity analysis. In Section 4, we sketch the main ideas of
an appropriate numerical method to compute optimal solution approximations.
In Section 5, we present numerical results for two model problems. In Section 6,
we conclude with final remarks and directions for future work.

2 Problem Formulation

Consider material flow governed by the well-known convection-reaction transport
equation

∂

∂t
u(t, s) +

∂

∂s
[a(t, s)u(t, s)] = f(t, s, u(t, s)), s ∈ [0, 1], t > 0 (1)

for the unknown scalar function u(t, s). Assuming that a > 0, the material inflow
at s = 0 shall be given by boundary data

u(t, 0) = û(t; μ(t)), t ≥ 0, (2)

where the inflow û is controlled by a parameter μ(t). The material distribution
at t = 0 shall be given by initial data

u(0, s) = ū(s), 0 < s < 1. (3)
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We introduce hybridness into the problem in that the control μ(·) of the material
inflow û is a decision variable taking values in a discrete set. We will here assume
for simplicity μ(t) ∈ {0, 1}, t ≥ 0. An admissible control is a switching signal
μ(·) which has only finitely many switches μ � μ′ (μ �= μ′ ∈ {0, 1}) with
corresponding switching time τk in each finite time interval.

Embedding (1)–(3) into a graph setting, these equations model a variety of
realistic network flow problems. For a given graph (E, N) with edges ei ∈ E and
nodes nj ∈ N , one can identify each edge with an interval [0, 1] and consider a
PDE (1) along each of those edges. At multiple nodes nj the boundary condi-
tion (2) is then to be replaced by a nodal condition, e. g. the sum of all in- and
outflows equals a given nodal control û(t; μ(t)). See, e. g. [18] for details on such
a network flow model applied to air traffic flow.

As performance index of the system over a finite time horizon [0, T ], we con-
sider the integral of any continuous functional g(·)[·, ·], e. g.

∫ T

0

∫ 1

0

g(u)[t, s]ds dt =
∫ T

0

∫ 1

0

|u(t, s) − ud(t, s)|2ds dt, (4)

measuring the L2-distance of the solution u to a desired solution ud, together
with costs γ(τk) for switching μ � μ′ at τk. As the optimal boundary control
of the system (1)–(3) with continuous variables is well-understood, we consider
here the discrete control μ as the only control variable. Thus the control task is
to minimize

J =
∫ T

0

∫ 1

0

g(u)[t, s]ds dt +
∑
τk

γ(τk). (5)

by specifying the switching function μ(·) on [0, T ], where u(·, ·) solves the con-
tinuous transport equation (1)–(3).

It is easy to see that (1) together with possibly discontinuous boundary data
(2) does not possess a classical, continuously differentiable solution. As common
for conservation laws, we will therefore consider solutions in a broad sense hav-
ing bounded variation as given by the method of characteristics. For any point
(τ, σ) ∈ Ω := {(t, s) : t ≥ 0, 0 ≤ s ≤ 1}, we denote by t �→ s(t; τ, σ) the charac-
teristic curve passing through (τ, σ), i. e. the solution of the ODE initial value
problem

d

dt
s(t) = a(t, s(t)), s(τ) = σ. (6)

If s(t) solves (6) at any time t, one has

d

dt
u(t, s(t)) =

∂

∂t
u +

d

dt
s(t)

∂

∂s
u =

∂

∂t
u + a(t, s)

∂

∂s
u = f̃(t, s(t), u), (7)

where
f̃(t, s, u) = f(t, s, u) − ∂

∂s
a(t, s). (8)

The value of the broad solution u of (1)–(3) at any point (τ, σ) ∈ Ω is then
defined [5] as the value at time τ of the ODE initial value problem

d

dt
u = f̃(t, s(t; τ, σ), u), u(t∗) = data (9)
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where t∗ denotes the time when the curve s(·; τ, σ) intersects the boundary of Ω
and data is the prescribed initial/boundary data there.

We consider this hybrid control problem under the following hypotheses:

(H1) The initial data ū(·) and, for all modes μ fixed, the boundary data û(·; μ)
is continuous.

(H2) The convection term a(·, ·) is continuous in t and twice continuously differ-
entiable in s, positive, bounded and bounded away from 0. Moreover, a(·, ·)
satisfies a bound of the form |a(t, s)| ≤ C1(1 + |s|) uniformely in t.

(H3) The reaction term f(·, ·, ·) is continuous in t,s and is Lipschitz continuous
in u. Additionally, f(·, ·, ·) satisfies a bound of the form |f(t, s, u)| ≤ C2(1 +
|u|) uniformely in t and s.

(H4) The functional g(·) is continuous in u.

(H5) The switching cost γ(·) is continuously differentiable, positive and bounded
below by a constant γ.

(H6) For some reference control μ̄, the cost J is finite.

For details on wellposedness of the problem, in particular in the case of a
network setting, we refer to [12]. We just note that standard results in the theory
of ODEs imply that the solutions (in the sense of Carathéodory) of (6) and (9)
exist, are bounded for bounded initial/boundary data and depend on the point
(τ, σ) in a continuously differentiable way. Moreover, hypothesis (H5) and (H6)
bound the number of switches for the optimal control by

K =
⌈

J(μ̄)
γ

⌉
. (10)

Latter can be easily seen by assuming that there exists an optimal control μ∗ with
more than K switches. The optimal value then satisfies J(μ∗) > Kγ because γ is
a lower bound of the positive switching cost. On the other hand, from the bound
(10) we have J(μ̄) = Kγ, contradicting the optimality of μ∗. A compactness
argument then yields the following result.

Theorem 1 ([12]). There exists an optimal switching signal μ∗ minimizing (5)
subject to (1), (2) and (3). �	
Our goal is to use gradient based optimization methods to compute (locally)
optimal μ∗. The key idea is to fix μ(0) by μ0 ∈ {0, 1} and thus all subsequent
modes and, using the bound K given in (10), to obtain μ∗ by considering τk as
the new (continuous) optimization variables subject to appropriate inequality
constaints, i. e. μ∗ is obtained solving

min
0≤τ1≤···≤τK≤T

J [u, τ1, . . . , τK ]

s. t. u solves (1), (2), (3).
(11)



Optimal Boundary Control of Convention-Reaction Transport Systems 213

Note that in problem (11) the continuous control û(t, μk) for fixed μk on the
interswitching intervals [τk, τk+1] is not subject to optimization, but the switch-
ing times τk are. We present a first order optimality condition for this problem
in the next section, noting that this is an essential subproblem of the two stage
problem involving in addition the optimization of û(t, μk).

3 Optimality Condition

The optimality condition for optimal τk in (11) is mainly based on the following
sensitivity result.

Theorem 2. Consider the problem (11) under the hypotheses (H1)–(H6) and
let 0 < τ1 < · · · < τK < T . Then, for all k = 1, . . . , K,

∂

∂τk
J =

∫ t∗(τk)

τk

(
g(uτk+)[t, s∗(t, τk)] − g(uτk−)[t, s∗(t, τk)]

) ∂

∂τk
s∗(t, τk) dt+

d

dτk
γ(τk),

where s∗(·, τk) solves the characteristic equation (6) with τ = τk and σ = 0,
t∗(τk) = max{t ∈ [0, T ] : s∗(t, τk) ≤ 1} and where uτk+, uτk− denote the so-
lutions of (1), (2), (3) with u(τk, 0) = û(τk; μ(τk+)), u(τk, 0) = û(τk; μ(τk−)),
respectively.

Proof. Fix k ∈ {1, . . . , K} and let τ1, . . . , τK , s∗(·, τk) and t∗(τk) be given as
stated in Theorem 2. The cost function can be split up as follows

J =
K∑

k=1

γ(τk) +
∫ τk

0

∫ 1

0

g(uτk−)[t, s] ds dt +
∫ T

t∗(τk)

∫ 1

0

g(uτk+)[t, s] ds dt+

+
∫ t∗(τk)

τk

∫ s∗(t,τk)

0

g(uτk+)[t, s] ds dt +
∫ t∗(τk)

τk

∫ 1

s∗(t,τk)

g(uτk−)[t, s] ds dt.

Thus, under hypotheses (H1)–(H6), we have

∂

∂τk
J =

d

dτk
γ(τk) +

∫ 1

0

g(uτk−)[τk, s] ds −
∫ 1

0

g(uτk+)[t∗(τk), s] ds
∂

∂τk
t∗(τk)+

+
∫ t∗(τk)

τk

g(uτk+)[t, s∗(t, τk)]
∂

∂τk
s∗(t, τk) dt+

−
∫ s∗(τk,τk)

0

g(uτk+)[τk, s] ds +
∫ s∗(t∗(τk),τk)

0

g(uτk+)[t∗(τk), s] ds
∂

∂τk
t∗(τk)+

−
∫ t∗(τk)

τk

g(uτk−)[t, s∗(t, τk)]
∂

∂τk
s∗(t, τk) dt+

−
∫ 1

s∗(τk,τk)

g(uτk−)[τk, s] ds +
∫ 1

s∗(t∗(τk),τk)

g(uτk−)[t∗(τk), s] ds
∂

∂τk
t∗(τk)

=
∫ t∗(τk)

τk

(
g(uτk+)[t, s∗(t, τk)] − g(uτk−)[t, s∗(t, τk)]

) ∂

∂τk
s∗(t, τk) dt+

d

dτk
γ(τk),
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where the sum of all integrals in s vanish, using that s∗(τk, τk) = 0 and that
s∗(t∗(τk), τk) = 1. �	
Remark 1. From the equation for ∂

∂τk
J in Theorem 2, it is easy to see that

the mapping τ �→ ∑K
k=1

∂
∂τk

J is continuous for all switching times τk satisfying
0 < τ1 < · · · < τK < T using (H4) and that τk �→ ∂

∂τk
s∗(t, τk) is continuous due

to (H2). But in the case that τk = τk+1 for some k, the derivative ∂
∂τk

J is not
defined. However, the mapping τk �→ ∂

∂τk
J can be continuated in such points

continuously by resticting the domain of g(uτk−)[t, s∗(t, ·)] to the single point
τk = τk+1.

Based on Theorem 2 and Remark 1 the Karush-Kuhn-Tucker first order nec-
essary optimality conditions taking into account the special structure of the
constraints 0 ≤ τ1 ≤ · · · ≤ τK ≤ T can be stated as follows.

Proposition 1. Let τ∗ = (τ∗
1 , . . . , τ∗

K) be a local minimum of (11) under the
hypotheses (H1)–(H6). Then, for all k = 1, . . . , K,

k∑
i=κ(k)

∂J(τ∗)
∂τ∗

i

≤ 0 unless τ∗
k = 0, and

η(k)∑
i=k

∂J(τ∗)
∂τ∗

i

≥ 0 unless τ∗
k = T, (12)

where κ(k) = min{0 ≤ κ ≤ k : τ∗
κ = τ∗

k }, η(k) = max{K + 1 ≥ η ≥ k : τ∗
η = τ∗

k }
with τ∗

0 := 0 and τ∗
K+1 := T .

Proof. See [8]. �	

4 Computational Remarks

A major difficulty of this problem comes with the fact that, in order to evaluate
the cost function J , one needs to discretize and solve the PDE constraint in space
and time. In order to apply non-linear optimization techniques, it is necessary
to ensure that the discretized solution ũ(·, ·) depends continuously on the opti-
mization variables τ1, . . . , τK . Careless re-meshing in every step of the optimizer
may easily destroy this property. For the problem (11) continuous dependence of
the mapping (τ1, . . . , τK) �→ ũ(·, ·) can be achieved by using adaptive time steps
Δt. However, for time steps Δt much smaller than the discretization step size h
of any fixed Eulerian grid in space, the numerical dissipation, e. g.

1
2
(a(t, s)Δt − h)a(t, s)

∂2

∂s2
u(t, s) (13)

for upwind finite differencing discretization schemes, becomes large and causes
inaccurate solution approximations.

We overcome this difficulty by using meshfree numerical solvers for such a
hybrid transport problem. Points representing the solution are moved accord-
ing to their characteristic velocity. These schemes are capable of propagating
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discontinuities in the solution with correct speed and they are free of numerical
dissipation. In case of a semilinear equation (1), the method is easy to implement
but rarely used. We will briefly sketch the method here, noting that similar par-
ticle management for the case of non-linear conservation laws has been proposed
recently [9].

Sketch of the meshfree solver

1. The initial solution is the approximation of the initial data (3) by a finite
number of points s1 < · · · < sm ∈ (0, 1) with function values u1, . . . , um for
some m ∈ N.

2. The solution over time is found by
(a) Moving each point si with speed a(t, s) as suggested by (6).
(b) Updating the function values ui by solving an integral formulation of

u̇ = f(t, s, u), compare (7).
(c) Inserting points where the distance between two points or their distance

to s = 0 becomes unsatisfyingly large. When points are inserted at s = 0,
their function value is taken from an approximation of the boundary data
(2).

(d) Dropping all points that are no longer needed, i. e. those with si > 1.
�	

Many efficient adaptive sampling strategies for the initial and boundary data
can be used because there is no requirement on the point distribution si. In
particular, one may approximate the boundary data û at the switching times
τk and at a fixed number of equidistant time instances during interswitching
intervals [τk, τk+1]. This strategy ensures that the discretized solution depends
continuously on the switching times as desired. The method is as accurate as the
movement of si and the updates of ui are realized. In particular, using explicit
Euler methods makes the piecewise constant solution approximation ũ(·, ·) first
order accurate everywhere and the solver in pseudo-code reads as follows.

Algorithm 1 (Meshfree solver)
Require: a, f̃ , ū, ũ, τ1, . . . , τK .
Initialize: τ0 := 0, τK+1 := 1, Δh := 1

m
[s] := [s1, . . . , sm] with si = i ∗ Δh
[u] := [u1, . . . , um] with ui = ū(si)

for k = 0, . . . , K + 1 do
Δt := (τk+1 − τk)/N
for j = 1, . . . , N do

t := τk + j ∗ Δt
Memorize: ũ(t, [s]) := [u]
Move: [s] := [s] + Δt ∗ a(t, [s])
Update: [u] := [u] + Δt ∗ f̃(t, [s], [u])
for all i such that si+1 − si > Δh do

Insert: [s] := [[s]≤i,
si+si+1

2 , [s]≥i+1], [u] := [[u]≤i,
ui+ui+1

2 , [u]≥i+1]
end for
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if s1 > Δh then
Insert: [s] := [0, [s]], [u] := [û(t; μ(t)), [u]]

end if
Drop: [s] := [s]I\J with I = {1, . . . , length([s])}, J = {i ∈ I : si > 1}

end for
end for

With the solution approximation ũ(·, ·) obtained from the meshfree solver not
all information is readily available to evaluate ∂

∂τk
J as given in Theorem 2 for

applying a gradient based optimization method solving the optimality system
given in Proposition 1. Additionally, the solutions of s∗(t, τk) and ∂

∂τk
s∗(t, τk)

are needed. While the former can be directly computed using (6), the latter can
be obtained using the following Lemma.

Lemma 1. Let s∗(t, τk) solve the characteristic equation (6) with τ = τk and
σ = 0. Then, ∂

∂τk
s∗(t, τk) = Φ(t, τk), where Φ(θ, τk) is the state transition matrix

of the following linear time varying dynamical system

d

dθ
z(θ) =

∂

∂s
a(θ, s)

∣∣
s=s∗(θ,τk)

z(θ) (14)

Proof. Let z(θ) = ∂
∂τk

s∗(θ, τk). Then, the statement of the Lemma follows from
the derivation

d

dθ
z(θ) =

d

dθ

∂

∂τk
s∗(θ, τk) =

∂

∂τk

d

dθ
s∗(θ, τk) =

∂

∂τk
a(θ, s∗(θ, τk))

=
∂

∂s
a(θ, s)

∣∣
s=s∗(θ,τk)

∂

∂τk
s∗(θ, τk) =

∂

∂s
a(θ, s)

∣∣
s=s∗(θ,τk)

z(θ). �	

In the following section, we compare numerical results for a gradient based op-
timization method established on the results presented in this section.

5 Numerical Results

We present numerical results for two model problems. For both we compare the
following two methods to compute approximations of (locally) optimal binary
control functions μ∗(·) that minimize (5).

COPT. This methods applies continuous non-linear optimization techniques for
the reformulated problem (11) using the results presented in Section 3 and Sec-
tion 4. The system (1) is solved using a meshfree solver, which realizes the
movement of si and the updates of ui in our implementation by explicit Euler
methods, see Algorithm 1. The cost function is approximated by the trapezoidal
rule. The search for locally optimal τk (specifying μ(·)) is carried out by the
MATLAB sequential quadratic programming solver fmincon [19]. The gradients
for the BFGS updates are computed using the formula given in Theorem 2.
Termination criterion is the first order optimality measure or the norm of the
directional derivative falling below tolerance.
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(a) µ̄(t).
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(b) µ∗
COPT(t), µ∗

MIQP(t).
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(c) ūCOPT(1, s).
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(d) u∗
COPT(1, s), u∗

MIQP(1, s).

Fig. 1. Initial and optimal bang-bang type solution of the traveling sine wave in Ex-
ample 1. Fig. (a) and (c) show the initial switching signal with a final time plot of the
corresponding solution. Fig. (b) and (d) show the computed optimal switching signals
with corresponding solutions at t = T = 1 (COPT solutions solid, MIQP solutions
dash-dotted). The dashed curve in Fig. (c) and (d) show the desired wave ud plotted
at final time T = 1.

MIQP. This method uses mixed integer programming on the original problem.
The system dynamics (1) are transformed into a linear system constructed by
upwind finite difference discretization on a fixed, equidistant Eulerian grid. For
each timestep tk, a binary variable represents μ(tk). The cost function is approx-
imated by the trapezoidal rule. We included the details on the MIQP reformula-
tion in Appendix A, noting that more sophisticated MIQP reformulations of this
problem are possible. The reformulation choosen here shall primarily serve as a
verification of the proposed method above. The search for the obtained equality
constraint mixed integer quadratic program is carried out by ILOG CPLEX [6].
The solver terminates when the gap between the best integer objective and the
objective of the best node remaining in the branch-and-bound tree falls below
tolerance.

The first very simple example serves as a verification of the proposed method
COPT for computing approximations of optimal switching control functions.

Example 1. (Bang-bang type approximation of a traveling sine wave.) The con-
trol task consists of approximating a traveling sine wave ud by switching û be-
tween the two extremal values of the wave û1 = 0, û2 = 1. We assume that
the wave speed equals the transportation velocity, here taken for simplicity as
a(t, s) = 1. We also assume constant switching costs γ(·) = 0.0075 to avoid
chattering. It should be clear that for this problem, we cannot expect exact
controllability, but we are seeking for a binary control μ∗(·) minimizing the L2-
distance (4) between u and ud over the finite time horizon [0, T ] with T = 1. Also
observe that the optimal control of the relaxed problem with û ∈ [0, 1] is not
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(a) Two mode inlet control.
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(b) Inflow data in mode 1
(solid) and mode 2 (dashed).

Fig. 2. Control task in Example 2

of bang-bang type. Thus, alternative methods like COPT or MIQP are required
for the computation of optimal controls. For initialization of the continuous op-
timizer, we use μ̄(·) given by τ̄1, . . . , τ̄K with K = 25 equidistantly placed in
[0, T ] as depicted in Figure 1 (a). The cost of the initial solution that is shown
in Figure 1 (c) is J(μ̄) = 0.1869.

COPT terminates after 11 iterations with an optimal value of J(μ∗
COPT) =

0.0299 and first order optimality measure of 0.0092, where 20 of the 25 ini-
tial switching times coalesce in the optimal solution approximation. The integer
optimal solution μ∗

MIQP for the upwind-discretized problem obtained by MIQP
on a fixed grid with 2500 discretization points is qualitatively the same with
J(μ∗

MIQP) = 0.0298.
Plots of μ∗

COPT (solid line) and μ∗
MIQP (dashed line) are shown in Figure 1 (b)

while the corresponding final time plots of the solution u at t = T = 1 are
shown in Figure 1 (d). Note that the example is chosen such that at time T the
complete history of the boundary control action μ(·) is visible in u(T, s).

The second example demonstrates that the method COPT may even outperform
our mixed integer optimal programming implementation due to its inferiority in
the discretization of the dynamical system.

Example 2. (2-mode plug flow regulation.) Consider a pipe that can be con-
trolled at the inlet by choosing the inflow of material concentration either from
û1 or from û2, compare Figure 2 (a). The plug flow in the pipe is assumed to
satisfy the conservation law

∂

∂t
u(t, s) +

∂

∂s
[a(s)u(t, s)] = 0 (15)

with a(s) = 4
3 (s− 1)2 + 1

2 . The desired material distribution in the pipe is given
by ud(t, s) = 1

2 (s+1)2. As in Example 1, we cannot expect exact controllability,
but we are again seeking for a binary control μ∗(·) minimizing the L2-distance (4)
between u and ud over the finite time horizon [0, 1] and include switching costs
γ(·) = 0.0075 to avoid chattering. For initialization of the continuous optimizer,
we use μ̄(·) with 35 equidistantly placed switching times τk with a corresponding
cost of J(μ̄) = 0.1693.
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Fig. 3. Optimal control approximations for Example 2. Fig. (a) and (c) show the
optimal switching signal computed with COPT and the final time plot of the corre-
sponding solution u with J(µ∗

COPT) = 0.0914. Fig. (b) and (d) show the MIQP result
with J(µ∗

MIQP) = 0.2694. The dashed line in Fig. (c) and (d) is the desired material
distribution ud.

COPT terminates after 17 iterations with an optimal value of J(μ∗
COPT) =

0.0914 and first order optimality measure of 0.01. The integer optimal solution
μ∗

MIQP for the upwind-discretized problem obtained by MIQP on a fixed grid
with 12800 discretization points has on optimal value of J(μ∗

MIQP) = 0.2694.
The optimal control approximations μ∗

COPT and μ∗
MIQP with corresponding final

time plots of the solutions at t = T = 1 are depicted in Figure 3.

We finally remark that the choice of the initial condition μ̄(·) is crucial for the
proposed method since it searches for locally optimal controls only. A direct com-
parison with mixed integer programming, searching for globally optimal solutions
on the discretized problem but at exponential cost, therefore is not feasible.

6 Conclusion

We presented a new approach for solving optimal boundary control problems for
dynamical systems that are governed by semilinear transport equations when
the control function is restricted to binary values. By considering this problem
as a hybrid dynamical system embedded with partial differential equations, we
derived an optimality condition similar to results known for hybrid systems gov-
erned by ordinary differential equations. This result makes the problem accessible
for gradient based non-linear optimization methods.

For the computation of optimal solution approximations, we used meshfree
solvers to overcome essential difficulties with numerical dissipation for these
distributed hybrid systems. Our numerical results for model problems show that
the proposed approach is a promising alternative compared to mixed integer
programming.
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Future work will be devoted to extend this approach to control problems that
are governed by non-linear transport equations and multi-dimensional systems
of equations.
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A Appendix: MIQP Formulation

For the sake of completeness we add the mixed integer formulation of the control
problem (5) that was used for comparison in Example 1 and Example 2. In order
to discretize a mixed initial boundary value problem of the type

∂

∂t
u(t, s) + a(t, s)

∂

∂s
u(t, s) = f(t, s)u(t, s) s ∈ [0, 1], t > 0

u(t, 0) = û(t; μ(t)), t ≥ 0
u(0, s) = ū(s), s ∈ (0, 1)

(16)

we use an explicit upwind finite difference scheme (see e. g. [16], Sec. 14.2),
coupled with integer programming. The space-time domain is discretized by
choosing a time step Δt = 1/N and a mesh-width Δs = 1/M . The grid-points
(tj , si) are defined by

tj = (j − 1)Δt, j = 1, . . . , N, si = (i − 1)Δs, i = 1, . . . , M. (17)

We replace the derivatives in the system (16) by upwind finite differences (using
that a(·, ·) > 0)

Ui(tj+1) − Ui(tj)
Δt

+ a(tj , si)
Ui(tj) − Ui−1(tj)

Δs
= f(tj , si)Ui(tj) (18)

for i = 2, . . . , M and j = 2, . . . , N and the initial condition becomes

Ui(t1) = ū(si), i = 2, . . . , M. (19)

On the time grid the discrete control μ(·) can be represented by N binary values
μj ∈ {0, 1} and thus the boundary conditions can be written as

U1(tj) = μj û(t; 1) + (1 − μj)û(t; 0), j = 1, . . . , N. (20)

With N M new continuous variables xn given by

x(j−1)M+i = Ui(tj), i = 1, . . . , M and j = 1, . . . , N (21)

and N additional binary variables
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xNM+j = μj , j = 1, . . . , N (22)

the equations (18), (19) and (20) can be written as a mixed integer linear equa-
tion system Ax = b in x1, . . . , x(N+1)M with sparse coefficient matrix A. The
integral part of the cost function (4) as used in the examples is approximated by

NM∑
i=1

(xi − zi)2 = (x − z)�(x − z) = x�x − 2z�x + z�z, (23)

where zi is a discretization of ud. Using that z�z is constant, these costs can
be written as x�Qx − c�x with Q = 1 and c = 2z. Moreover, the switching
costs

∑
τk

γ(τk) for constant γ can be encoded in Q = (qi,j) by setting κ = γ/N ,
qi,i = κ, qi+1,i = − 1

2κ and qi,i+1 = − 1
2κ for i = 1 = NM +1, . . . , (N +1)M . We

remark that for stability of the applied methods the above discretization scheme
requires N and M choosen such that the CFL-condition holds.
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