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Abstract. We develop several generalized Skorokhod pseudo-metrics for hybrid
path spaces, cast in a quite general setting, where the basic open sets are epsilon-
tubes around paths that, intuitively, allow for some “wiggle room” in both time
and space via set-valued retiming maps between the time domains of paths. We
then determine necessary and sufficient conditions under which these topologies
are Hausdorff and their distance functions are metrics. On spaces of paths with
closed time domains, our metric topology of generalized Skorokhod uniform con-
vergence on finite prefixes is equivalent to the implicit topology of graphical con-
vergence of hybrid paths, currently used extensively by Teel and co-workers.

1 Introduction

A basic problem in the foundations of hybrid systems is that of giving useful quantita-
tive measures of closeness between trajectories that may differ in their time domains,
in virtue of variations in timing of discrete transition events, or in their way of let-
ting time “run to infinity”; for example, how do we compare a Zeno trajectory with
one that exhibits finite-escape time after finitely-many discrete transitions? Topologi-
cal – and preferably metric – structure on spaces of hybrid trajectories, and on spaces
of paths discretely simulating or approximating hybrid trajectories, is a necessary pre-
lude to addressing questions of robustness, or of the accuracy of discrete simulations or
approximations.

One approach addressing several of these issues (proposed independently by Teel
and co-workers in [1] and by Collins in [2], and employed in [3,4,5,6]) is to model
the time domain of a hybrid path as a linearly-ordered subset of the partially-ordered
structure R × Z; the coordinate in R gives the “normal” time and the coordinate in Z
is incremented with each discrete transition.1 In developing topological structure on
hybrid path spaces, the papers [1,3,4,6], and also [2,5], take an indirect route: the con-
vergence of a sequence of hybrid paths is formulated in terms of the set-convergence of
the graphs of those paths as subsets of R × Z × Rn, with set-convergence as in [16]. A
more direct approach is taken in [17,18] and also in [19], which use variants of the Sko-
rokhod metric (originally from stochastic processes with right-continuous sample paths

1 This approach is equivalent to the so-called “hybrid time trajectories” used in [7,8]. Two-
dimensional time structures linearly-ordered by the lexicographic order are also used in earlier
work on hybrid trajectories in the context of logics and formal methods for hybrid systems in
[9,10,11,12,13], and in behavioural systems approaches to hybrid systems, in [14,15].
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[20]) to structure the space of infinite non-Zeno hybrid trajectories modeled as func-
tions with real-time domain R+ = [0,∞). These Skorokhod-type metrics accommodate
trajectories with different transition times by using retiming maps which are strictly
order-preserving, bijective functions from one time domain to the other. Intuitively,
Skorokhod-type metrics allow us to “wiggle space and time a bit” – in contrast with
the topology of uniform convergence of continuous functions over a common time do-
main, which only allows us to “wiggle space a bit”. However, a significant limitation of
the original Skorokhod-type metrics (discussed in [19]) is that strictly order-preserving,
single-valued retiming maps are too inflexible and restrictive in a hybrid setting.

The first contribution of the present paper is to develop generalized Skorokhod
pseudo-metrics for hybrid path spaces in a quite general setting, and to determine nec-
essary and sufficient conditions under which these topologies are Hausdorff and their
distance functions are metrics. We start with spaces of finite-length paths (including
those with finite-escape time), where the key notion is that of ε-tolerance relations
which pair finite-length paths that can be viewed as ε-close via a set-valued retiming
map between their domains; the generalized Skorokhod distance between two paths is
then the infimum of all such ε for that pair of paths. We then extend up to spaces of
arbitrary-length paths by considering the ε-closeness of longer and longer finite pre-
fixes. The generalized Skorokhod distance between two arbitrary-length paths is given
as an infinite sum weighted by 2−n of the distances between length-n finite prefixes.
For arbitrary-length paths, we identify two distinct topologies, that of generalized Sko-
rokhod uniform convergence, and that of generalized Skorokhod uniform convergence
on finite prefixes, and determine distinct metrics for them. For the Hausdorff property,
we give an easy-to-satisfy sufficient condition, as well as a more technical necessary
and sufficient condition to mark the limits of metrizability. We also show that, restricted
to spaces of arbitrary-length paths with closed time domains, the implicit topology of
graph-convergence for hybrid paths from [1,3,4] is equivalent to the weaker of the
two generalized Skorokhod metrics. The metric and convergence notions developed
here are illustrated on spaces of solution paths of hybrid systems, under the stand-
ing assumptions used by Teel and co. in [1,3,4] in addressing questions of asymptotic
stability.

The paper is a substantial advance on [21], which introduces set-valued retiming
maps in order to accommodate various hybrid phenomena, and uses them in developing
several (2- and 3-parameter) uniform topologies on hybrid path spaces, but without
developing a pseudo-metric or characterizing the Hausdorff property, as is done here.

On notation: we write R : X � Y to mean R is a set-valued map, with (possibly
empty) values R(x) ⊆ Y; domain dom(R) := {x ∈ X | R(x) � ∅}; inverse R−1 : Y � X
with x ∈ R−1(y) iff y ∈ R(x); and range ran(R) := dom(R−1). We do not distinguish
between a set-valued map and a relation/set of ordered pairs R ⊆ X × Y. For any set
A ⊆ X, the direct or post-image is the set R(A) := {y ∈ Y | R−1(y) ∩ A � ∅}. If a map
R is a partial function, we write R : X � Y to mean R is single-valued on its domain,
with values R(x) = y (rather than R(x) = {y}). As usual, R : X → Y means R is single-
valued with dom(R) = X and ran(R) ⊆ Y. We write R+ for [0,∞), R>0 for (0,∞), R+∞

for R+ ∪ {∞}, and N>0 for {n ∈ N | n > 0}.
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2 Time Structures and Their Topologies

A structure (S ,�, 0,+,−) is an partially-ordered abelian group [22] if (S ,�) is a partial
order, (S , 0,+,−) is an abelian group, and the strict ordering < is shift-invariant: s < t
implies s + r < t + r , for all s, t, r ∈ S . An element u > 0 is called an order-unit for the
partially-ordered group S if for every s ∈ S , there exists an m ∈ N+ (depending on s)
such that s � m u, where integer multiplication is just iterated addition. An order-unit
uniquely determines a pseudo-norm || · || : S → R+ that assigns || u || = 1 and is such that
for all s, t ∈ S , if t ≥ 0 and −t � s � t then || s || ≤ || t ||. As first identified by Stone [23],
the order-unit pseudo-norm || · || from u has the explicit description:

(∀s ∈ S ) || s || := inf
{ m

n
∈ Q+ | m, n ∈ N+ ∧ −m u � n s � m u

}
. (1)

The pseudo-norm || · || is a norm (satisfying || s || = 0 iff s = 0, for all s ∈ S ) when S is
archimedean, which means that if ks � t for all k ∈ N, then s � 0.

Definition 1. [Time structures [21]]
A time structure (S ,�, 0,+,−, u) is an archimedean partially-ordered abelian group
with a distinguished order-unit u > 0 that determines an order-unit norm || · ||. A future
time structure T is the positive cone of a time structure, so T = S+ := {s ∈ S | 0 � s}
for some S . A time structure S is finite-dimensional iff for some integer n ≥ 1, S
is isomorphic with a partially-ordered abelian sub-group of (Rn, 1n) with order-unit
1n = (1, 1, . . . , 1) (hence S is lattice-ordered), where the embedding is a strictly order-
preserving group isomorphism that is a continuous function w.r.t. the norm topologies
and maps order-unit to order-unit and positive elements to positive elements.

The continuous time structure R and the discrete time structure Z are both linearly-
ordered abelian groups, and both are Dedekind-complete and archimedean; taking 1 as
the order-unit gives the usual absolute-value ||s|| = |s| = max{s,−s}. The basic hybrid
time structure Z×R is a 2-dimensional abelian group with pair-wise addition and group
identity (0, 0), partially-ordered by the product order, (i, t) � (i′, t′) iff i ≤ i′ and t ≤ t′;
it is also Dedekind-complete and archimedean. The basic hybrid future time structure
H := N × R+ is the positive cone (and positive quadrant) of Z × R. For the order-
unit, we can take u = (1, 1), and the Stone order-unit-norm is ||(i, t)|| = max{ |i|, |t| }.
An equivalent norm, implicitly used in [3,4], is || (i, t) ||′ := 1

2 ( |i| + |t| ), which satisfies
1
2 || (i, t) || ≤ || (i, t) ||

′ ≤ || (i, t) ||. For modeling and analysis of discrete-time simulations
of hybrid systems, one uses Z × Z, with future cone N × N.

For each r ∈ S in a time structure, the r-shift function σr : S → S is strictly order-
preserving, where σr(s) := s + r for all s ∈ S . In partial orders (as in linear orders)
the basic sets are the intervals between points: sets [a, b] := {s ∈ S | a � s � b} and
(a, b) := {s ∈ S | a < s < b}; the up-sets above a given point: [a ↑) := {s ∈ S | a � s}
and (a ↑) := {s ∈ S | a < s}; symmetrically, the down-sets (↓ a] and (↓ a); and the
incomparability set: (a⊥) := S � ( [a↑) ∪ (a↓] ), which is empty for all a ∈ S iff the
ordering is linear. In general, intervals, up-sets and down-sets are only partially-ordered.

In a time structure S with order-unit u, the unit interval is [0, u], and the granularity
of the norm || · || is defined by gr(S ) := inf{ ||s|| ∈ R+ | s ∈ (0, u] }. A time structure S
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is discrete iff gr(S ) > 0, and is dense iff gr(S ) = 0. For example, R, Z ×R, and QB ×R
all have granularity 0, while Z and Z × Z have granularity 1.

On a time structure S , let T� be the order topology on S which has as a basis the
family B� of all strict up-sets and down-sets, and their intersections, the strict open
intervals. Let Tnorm be the norm topology on S determined by || · || which has as a basis
the family Bnorm of all norm-balls Bδ(s) := {t ∈ S | ||t − s|| < δ}, for s ∈ S and real δ > 0;
Tnorm is also the coarsest topology on S w.r.t. which || · || : S → R+ is continuous. From
[21], some key properties of finite-dimensional time structures S are as follows:
(1) The norm topology is refined by the order topology; that is: Tnorm ⊆ T�, with
Tnorm = T� if � is a linear-ordering.

(2) For all s, t ∈ S , intervals [s, t], up-sets [s↑), and down-sets (s↓], are closed in Tnorm;
if s � t, then [s, t] is compact in Tnorm.

(3) For any subset A ⊆ S , A is norm-bounded iff A is order-bounded; if S is also
Dedekind-complete, then A is compact in Tnorm iff A is closed and bounded in Tnorm.

3 Compact Paths and Their Maximal Extensions

Definition 2. [Compact time domains [21]]
Given a time structure S with future time T , let Lin(T ) be the set of all non-empty
linearly-ordered subsets L of T; i.e. the partial-order � restricted to L is a linear-order.
A compact time domain in T is any set L ∈ Lin(T ) such that 0 ∈ L and L is compact in
Tnorm. Let CD(T ) be the set of all compact time domains in T .

If S is finite-dimensional and Dedekind-complete and L ∈ Lin(T ), then L ∈ CD(T ) iff
L contains 0, L ⊂ [0, t] for some t ∈ T and L is closed Tnorm. As a special case, all finite
sample-time sets L = {0, t1, . . . , tN−1} are compact time domains. For any L in CD(T ),
either L is a single linearly-ordered and densely-ordered subset of T (including the one-
point set {0} = [0, 0] ), or else there exist one or more pairs of discrete-successor points
ti, t′i ∈ L such that ti < t′i and (ti, t′i ) ∩ L = ∅.

Definition 3. [Compact continuous paths [21]]
Given a time structure S with future time T , let the signal value-space be a non-empty
metric space (X, dX). Define the set CP(T, X) of compact continuous T-paths in X by:

CP(T, X) := { γ : T � X | dom(γ) ∈ CD(T ) ∧ γ is continuous on dom(γ) } .
For γ ∈ CP(T, X), define the end-time of γ by bγ := max(dom(γ)), and the length of γ
by len(γ) := || bγ ||T . Define a partial-ordering on CP(T, X) using subset-inclusion (on
sets of ordered pairs) and the partial-ordering on T: γ < γ′ iff γ ⊂ γ′ and t < t′ for all
t ∈ dom(γ) and all t′ ∈ dom(γ′)�dom(γ), in which case the path γ′ is a strict extension
of γ, and γ is a strict prefix of γ′; as usual, γ � γ′ iff γ < γ′ or γ = γ′.

Being continuous on compact domains, all paths γ ∈ CP(T, X) are uniformly contin-
uous. From [21] (differing slightly from [12,13]), the following three operations on
paths are well-defined partial functions on CP(T, X): for γ ∈ CP(T, X), t ∈ T and
bγ = max(dom(γ)):
• the t-prefix γ|t, with dom(γ|t) := [0, t]∩dom(γ) and γ|t(s) := γ(s) for all s ∈ dom(γ|t);
• the t-suffix t|γ, which is defined only when t ∈ dom(γ),

with dom(t|γ) := [0, bγ− t]∩σ−t(dom(γ)) where t |γ(s) := γ(s+ t) for all s ∈ dom(t|γ);
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• the t-fusion γ ∗t γ
′, which is defined only when t ∈ dom(γ)

and γ(t) = γ′(0), and which has dom(γ ∗t γ
′) := dom(γ|t) ∪ σ+t(dom(γ′)) and

(γ ∗t γ
′)(s) := γ(s) if s ∈ dom(γ| t) and (γ ∗t γ

′)(s) := γ′(s − t) if s ∈ σ+t(dom(γ′)).
This prefix operation is well-defined for all times t ∈ T , not just t ∈ dom(γ), and
γ|t � γ for all t ∈ T ; in particular, γ|t < γ if t � bγ, while γ|t = γ if t � bγ. More-
over, for any t ∈ T , if || t ||T > len(γ), then γ|t = γ. For all t ∈ T and compact γ,
the set [0, t] ∩ dom(γ) = dom(γ|t) is compact and linearly-ordered, with maximum
t0 = max { s ∈ dom(γ) | s � t }. A set P ⊆ CP(T, X) is prefix-closed iff for all γ ∈ P
and all t ∈ T , the path γ|t ∈ P. A set P ⊆ CP(T, X) is deadlock-free iff for all γ ∈ P,
there exists γ′ ∈ P such that γ < γ′. From [12,13], a general flow system is a set-
valued map Φ : X � CP(T, X) such that for all x ∈ dom(Φ), for all γ ∈ Φ(x), and all
t ∈ dom(γ): (GF0) x = γ(0); (GF1) suffix-closure t|γ ∈ Φ(γ(t)); and (GF2) fusion-
closure (γ ∗t γ

′) ∈ Φ(x) for all γ′ ∈ Φ(γ(t)).
We take finite-length compact paths as the basic objects precisely because in multi-

dimensional time structures, there are multiple ways of “letting time go to infinity”.
However, for the asymptotic analysis of dynamics, as well as for the semantics of tem-
poral logics of such systems [12,13] we do need to determine the maximal extensions
of compact paths. When S is finite-dimensional, any L ∈ Lin(T ) will have cardinality
at most that of the reals, so we only need to consider extending sequences of paths
of ordinal length at most ω1, the first uncountable ordinal. Let CLO be the set of all
countable limit ordinals ν with ω ≤ ν < ω1, where ω is the ordinal length of N. Given
any set P ⊆ CP(T, X), and a ν ∈ CLO, a ν-length sequence {γm}m<ν is a P-chain if
γm < γm′ for all m < m′ < ν. The asymptotic limit of a P-chain is the partial function
η : T � X such that η =

⋃
m<ν γm (considered as sets of ordered-pairs), with the length

len(η) := supm<ν len(γm), possibly infinite.

Definition 4. [Limit extension and maximal extension of path sets [12,13]]
Let T be the future of a finite-dimensional time structure. For any set P ⊆ CP(T, X) of
compact paths, define the limit extension L(P), the maximal extension M(P) ⊆ L(P),
and the maximal infinite-length extension M∞(P) ⊆ M(P), as follows:

L(P) := { η ∈ [T � X] | (∃ν ∈ CLO)
(
∃γ ∈ [ν→ CP(T, X)]

)
(∀m < ν)

γm := γ(m) ∈ P ∧ (∀m′ < ν) (m < m′ ⇒ γm < γm′) ∧ η =
⋃

m<ν γm };
M(P) := { η ∈ L(P) | (∀γ ∈ P ) η ≮ γ } and M∞(P) := { η ∈ M(P) | len(η) = ∞} .

A set of compact paths P is called maximally-extendible iff for all γ ∈ P, there exists
η ∈ M(P) such that γ < η, and P is forward-complete iff P is maximally-extendible and
M(P) = M∞(P). Set LCP(T, X) := L(CP(T, X)).

The extension partial order on compact paths readily extends to limit paths: η < η′ iff
η ⊂ η′ and t < t′ for all t ∈ dom(η) and t′ ∈ dom(η′) � dom(η). The prefix, suffix and
fusion operations also extend to limit paths in the straight-forward way, with the strict
prefix of a limit path always a compact path. It is also readily established that every
limit path η ∈ LCP(T, X) is continuous (but may fail to be uniformly continuous).

Given a general flow system Φ : X � CP(T, X), the maximal extension of Φ is the
set-valued map MΦ : X � LCP(T, X) given by MΦ(x) := M(Φ(x)) for all x ∈ X,
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with MΦ(x) = ∅ if x � dom(Φ). A general flow Φ is maximally-extendible (forward-
complete) iff for all x ∈ dom(Φ), the path set Φ(x) is maximally-extendible (forward-
complete). From [12,13], a core result (using the Axiom of Choice/Zorn’s Lemma)
is that a set of paths P ⊆ CP(T, X) is maximally-extendible iff P is deadlock-free,
and hence, for general flow Φ : X � CP(T, X), Φ is maximally-extendible iff Φ is
deadlock-free.

We will subsequently be interested in: CP
(T, X) := CP(T, X) ∪ LCP(T, X), the
combined path set of both compact and limit continuous paths under the path-extension
ordering, of finite or infinite length, and also the distinguished subsets:

CP
cl(T, X) := CP(T, X) ∪ { η ∈ LCP(T, X) | dom(η) is norm-closed in T }
CP
fin(T, X) := { η ∈ CP
(T, X) | len(η) < ∞}

= CP(T, X) ∪ (CP
(T, X) � CP
cl(T, X)) .

The basic fact being used here is that a path η ∈ CP
(T, X) � CP
cl(T, X) exactly when
η is a limit path with dom(η) failing to be norm-closed, which is the case if and only if
dom(η) is norm-bounded with finite length. Given a set of compact paths P ⊆ CP(T, X),
we say a limit path η ∈ L(P) has finite-escape time w.r.t. P iff η ∈ M(P) and len(η) < ∞,
and so η � M∞(P), and dom(η) will be norm-bounded but not norm-closed in T .

Fig. 1. Three finite-length real-time paths, with differing time domains

Example 1. Consider three finite-length paths γ, γ′, γ′′ ∈ Z ⊆ CP
fin(T, X) in Figure 1
where T = R+ and X = R, and P the set of all γ ∈ CP(T, X) with either dom(γ) = [0, b],
or dom(γ) = {0, s1, s2, . . . , sN }, and Z = (P∪M(P))∩ CP
fin(T, X). Here, γ is a compact
path with dom(γ) = [0, 5], while γ′ is a limit path in M(P) having dom(γ′) = [0, 5)
and γ′(t) = 5

5−t for all t ∈ [0, 5), with escape to infinity at time 5. The third path γ′′ is
also compact (and uniformly continuous!), with dom(γ′′) = { k

4 | 0 ≤ k ≤ 20 }, giving a
time-sampling of the interval [0, 5] with a (rather coarse) sampling period d = 1

4 .

4 Path Spaces and General Flows of Hybrid Systems

For a fixed metric space X, let Phyb(X) ⊂ CP(H, X) be the set of regular compact hy-
brid paths γ whose time domains within H = N × R+ are finite unions of the form
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dom(γ) =
⋃

i<m { i } × [si, si+1] ∪ {m } × [sm, bγ], where m ∈ N in the number of dis-
crete transitions, s0 := 0 and for each i < m, si+1 ∈ R+ is the real time at the (i + 1)st

switching or discrete transition, with si+1 ≥ si. For maximal paths η ∈ M(Phyb(X)), we
have len(η) < ∞ iff dom(η) fails to be norm-closed and dom(η) ⊂ [(0, 0), (i, c)) for
some (i, c) ∈ H, which will be the case exactly when the last continuous time evolu-
tion has finite-escape time. A hybrid limit path η ∈ M∞(Phyb(X)) is Zeno iff len(η) = ∞
and dom(η) ⊂ N × [0, c) for some c < ∞, in which case the length of η is infinite but
the total real-time duration is finite and bounded by c. The non-Zeno infinite-length
hybrid paths are those of infinite real-time duration, and such paths η ∈ M∞(Phyb(X))
may have either an infinite or a finite number of discrete transitions; in the latter case,
dom(η) =

⋃
i<m{i}× [si, si+1]∪{m}× [sm,∞) for some m ∈ N>0, while in the former case,

dom(η) =
⋃

i∈N{i} × [si, si+1].
Formulated within the framework of differential and difference inclusions [3,7], a

hybrid system is a structure H = (X, F,G,C,D) where:
− X ⊆ Rn is the state space, with (C ∪ D) ⊆ X;
− F : X � Rn describes the continuous dynamics ẋ ∈ F(x);
− G : X � X describes the discrete dynamics x′ ∈ G(x);
− C ⊆ (X ∩ dom(F)) is the region of continuous flow; and
− D ⊆ (X ∩ dom(G)) is the discrete switching, jump or transition guard region.

The trajectories of H determine a prefix-closed general flow ΦH : X � CP(H, X) such
that a compact-domain hybrid path γ ∈ ΦH(x) exactly when: (i) x ∈ dom(ΦH) := C ∪D,
and x = γ(0, 0) ; (ii) γ ∈ Phyb(X) is a regular hybrid path, with end-time (m, bγ) :=
max(dom(γ)), and switching times {si+1}i≤m with s0 = 0; (iii) for each (i, t) ∈ dom(γ),
(a) if t = si+1, a switching time, then γ(i, t) ∈ D, and γ(i + 1, t) ∈ G(γ(i, t)), and
(b) if i < m and t ∈ [si, si+1], or if i = m and t ∈ [sm, bγ], then γ(i, t) ∈ C and
d
dτγ(i, τ) ∈ F(γ(i, τ)) for almost all τ ∈ [si, si+1], taking sm+1 := bγ when i = m,
where the real-time curve segment ξi : [si, si+1] → X given by ξi(τ) := η(i, τ) for all
τ ∈ [si, si+1], is absolutely continuous on the interval [si, si+1].

If any of the vector coordinates, say x1 of x ∈ X, is designated discrete, as is the
case for the locations in hybrid automata, then the first component F1 : X � R has
F1(x) = {0} for all x ∈ C, and x1 ∈ Q for all x ∈ C ∪ D, with Q a finite subset of R, so
that x1 only changes value under G. If x j is an (accurate) clock, then Fj(x) = {1}.

5 Generalized Skorokhod Topologies and Metrics on Path Spaces

When two paths η and η′ in CP(T, X) or LCP(T, X) have the same time domain, we can
use the metric dX on X to determine if they spatially ε-close for their whole length by
taking d∞(η, η′) := supt ∈L dX(η(t), η′(t)) for L = dom(η) = dom(η′). The infinity-metric
d∞ intuitively allows for some “wiggle in space” between the paths η and η′. In order to
compare paths with different time domains, we need a notion of retimings between the
time domains of paths, that allow for some “wiggle in time” as well as in space.

The Skorokhod metric allows for the comparison of real-time piecewise-continuous
signals with differing points of discontinuity by using retimings that are strictly order-
preserving functions between the time domains. Let SRet(R+) be the set of all strictly
order-preserving and surjective ρ : [0, b] → [0, b′], for b, b′ ∈ R+, and for each ρ ∈
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SRet(R+), the temporal deviation is dev(ρ) := supt∈dom(ρ) | t − ρ(t) |, possibly infinite,
and applied to two signals with dom(η) = [0, b] and dom(η′) = [0, b′], the spatial
variation is var(η, η′, ρ) := supt∈dom(ρ) dX(η(t), η′(ρ(t))), possibly infinite. For two finite-
length interval-domain paths η, η′ : R+ � X (one of several variants of) the Skorokhod
distance between them is:

dSkor(η, η′) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∞ if there does not exist ε ∈ R>0 and ρ ∈ SRet(R+)
such that dev(ρ) < ε ∧ var(η, η′, ρ) < ε ,

inf { ε > 0 | (∃ ρ ∈ SRet(R+)) dev(ρ) < ε ∧ var(η, η′, ρ) < ε }
otherwise.

(2)

The limitation of the Skorokhod metric when time T is hybrid is that too often, there
will not be any strictly order-preserving functions between the domains of “close” paths.
Non-strictly order-preserving single-valued maps are not invertible, so symmetry is lost.
This motivates our relaxation to retiming maps that are order-preserving in a set-valued
sense, are readily invertible and composable (like bijections), and include all order-
preserving single-valued maps, strict and non-strict (the latter with set-valued inverses).

Definition 5. [The earlier-than relation on linearly-ordered sets, and retimings [21]]
Given a time structure S with future time T , the earlier-than relation � on the set Lin(T )
of non-empty linearly-ordered subsets of T , is defined by:

L � L′ ⇔ (∀t ∈ (L � L′))(∀t′ ∈ L′) t < t′ ∧ (∀t ∈ L)(∀t′ ∈ (L′ � L)) t < t′ .

for all L, L′ ∈ Lin(T ). A set-valued map ρ : T � T will be called order-preserving iff
t1 < t2 implies ρ(t1) � ρ(t2), for all t1, t2 ∈ dom(ρ). Given sets L, L′ ∈ Lin(T ), a
set-valued map ρ : T � T will be called a retiming from L to L′ iff the following hold:

(i) dom(ρ) = L and ran(ρ) = L′;
(ii) for all t ∈ L, ρ(t) ∈ Lin(T ), and for all t′ ∈ L′, ρ−1(t′) ∈ Lin(T ); and

(iii) ρ and ρ−1 are both order-preserving.
For a retiming ρ : L� L′, define the deviation dev(ρ) ∈ R+∞ as follows:

dev(ρ) := sup { || t − s || ∈ R+ | t ∈ dom(ρ) ∧ s ∈ ρ(t) } .
Let Ret(L, L′) denote the set of all retimings ρ : L � L′ together with all retimings
ρ′ : L′ � L, so that Ret(L, L′) = Ret(L′, L).

The key facts from [21] are: � is a partial-order on Lin(T ); Ret(T ) is closed under
relational inverses and compositions of retimings, with dev(ρ−1) = dev(ρ) and dev(ρ ◦
ρ′) ≤ dev(ρ) + dev(ρ′). In [21], we worked with a finer 2-parameter uniform structure
on the space CP(T, X), with one parameter δ ∈ R>0 bounding the temporal deviation
dev(ρ) and the second ε ∈ R>0 bounding the spatial variation var(γ, γ′, ρ). Here, we
work on the larger space CP
fin(T, X) of all finite-length continuous paths, and with a
view to developing a pseudo-metric and metric, we combine those two parameters into
one by effectively taking their maximum. For the rest of the paper, we assume the time
structure S is finite-dimensional, and (X, dX) is a metric space.

Definition 6. [Uniform relations and generalized Skorokhod distance: finite-length]
Let Z ⊆ CP
fin(T, X) be any set of finite-length paths. For each pair (γ, γ′) ∈ Z × Z, let
Ret(γ, γ′) := Ret(dom(γ), dom(γ′)), and let Ret(Z) be the union of all Ret(γ, γ′) for
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γ, γ′ ∈ Z. Then define the variation function var : ( Z × Z × Ret(Z) ) → R+∞ such that
var(γ, γ′, ρ) := ∞ if ρ � Ret(γ, γ′), and otherwise, var(γ′, γ, ρ−1) = var(γ, γ′, ρ), and
assuming that dom(ρ) = dom(γ) and ran(ρ) = dom(γ′), we have:

var(γ, γ′, ρ) := sup { dX( γ(t), γ′(t′) ) | t ∈ dom(γ) ∧ t′ ∈ dom(γ′) ∧ (t, t′) ∈ ρ } .
For each strictly positive real ε ∈ R>0, define the relation Vε : Z � Z as follows:

Vε := { (γ, γ′) ∈ Z × Z | (∃ ρ ∈ Ret(γ, γ′) ) dev(ρ) < ε ∧ var(γ, γ′, ρ) < ε } .
The finite-length-paths generalized Skorokhod distance function dfgS : Z × Z → R+∞ is
defined for all γ, γ′ ∈ Z by:

dfgS(γ, γ′) :=

{
inf { ε ∈ R>0 | (γ, γ′) ∈ Vε } if (∃ε ∈ R>0) (γ, γ′) ∈ Vε
∞ otherwise.

(3)

As with the original Skorokhod metric var(γ, γ′, ρ) bounds the “wiggle in space” vari-
ation between γ and γ′ under a retiming ρ, while dev(ρ) bounds the “wiggle in time”
allowed by ρ. The (reflexive, symmetric) relation Vε is one of ε-tolerance between paths
γ and γ′, and the ε-tube Vε(γ) around γ is the set of all paths γ′ ∈ Z that are ε-close, and
contains only paths of length within ε of that of γ. For brevity, we will usually write
“gS-” for the adjectival phrase “generalized Skorokhod”, and “fgS-” for “finite-length-
paths generalized Skorokhod”.

Proposition 1. [Generalized Skorokhod uniform topology on finite-length paths]
Let Z ⊆ CP
fin(T, X) be any set of finite-length continuous paths. For all ε, ε1, ε2 ∈ R>0:

Vε1 ⊆ Vε2 when ε1 ≤ ε2 Vε ⊆ Vε1 ∩ Vε2 when ε ≤ min{ε1, ε2}
Vε1 ◦ Vε2 ⊆ Vε when ε1 + ε2 ≤ ε Vε ◦ Vε ⊆ Vε1 when ε ≤ 1

2ε1 ,

and for all γ, γ′ ∈ Z, dfgS(γ, γ′) < ε iff (γ, γ′) ∈ Vε .
Hence the family VfgS := {Vε : Z � Z | ε ∈ R>0 } constitutes a basis for a uniformity
on the path set Z, and the fgS-uniform topology TfgS generated byVfgS has as its basic
open sets the ε-tubes Vε(γ) around paths γ ∈ Z. Furthermore, the fgS-distance function
dfgS : Z × Z → R+∞ is a pseudo-metric, and the topology generated by dfgS is the same
as the uniform topology TfgS.

Example 1 revisited. (See Fig. 1) For the example of the compact path γ with
dom(γ) = [0, 5] and the spatially-unbounded limit path γ′ with dom(γ′) = [0, 5), the
fgS-distance dfgS comes out as dfgS(γ, γ′) = ∞ because the distance dX(γ(5), γ′(t′)) be-
comes arbitrarily large as t′ → 5, so no retiming of finite variation exists. However,
from Fig. 1, the prefixes γ|4 and γ′|4 are quite close, with dfgS(γ|4, γ′|4) < ε1 witnessed
by the identity retiming; to be concrete, take ε1 ≤ 0.65. To determine the fgS-distance
between the (coarsely) sampled+quantized path γ′′, and the original γ, three quantities
come into play: (a) the sampling period, here d = 0.25; (b) the quantization error, here
bounded by 0.2; and (c) the quantity labeled ε2 in Fig. 1 from the uniform continu-
ity of γ, such that for all t, s ∈ dom(γ), if | t − s | ≤ 0.25 then dR(γ(t), γ(s)) ≤ ε2. Say
ε2 ≤ 0.75. The sampling retiming map ρd : dom(γ)� dom(γ′′) is given by ρd(0) := {0}
and ρd(t) := { k+1

4 } for all t ∈ ( k
4 ,

k+1
4 ] and k < 20, so that dev(ρd) = d = 0.25. Via the

triangle inequality, the retiming ρd gives dfgS(γ, γ′′) ≤ ε2 + 0.2 ≤ 0.95.
Having established we have a uniform topology generated by ε-tubes, the further,

more substantial task, is to identify sets Z ⊆ CP
fin(T, X) of finite-length paths for which
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this uniform topology is Hausdorff, as in this case, the fgS-pseudo-metric dfgS is actually
a metric. For a set Z ⊆ CP
(T, X) of arbitrary-length paths, we call Z highly discerning
iff Z ⊆ (P∪M(P)) for some set P ⊆ CP(T, X) of compact paths. In particular, Z contains
no limit paths γ ∈ L(P)�M(P) that are not maximal w.r.t. P. We will show that the highly
discerning property is sufficient for the Hausdorff property. In seeking a necessary and
sufficient characterization of the Hausdorff property, we weaken the condition on path
sets Z ⊆ CP
(T, X) to isolate the problem cases. Call a set Z discerning iff for all paths
γ, γ′ ∈ Z, if γ < γ′ and γ � CP(T, X), then the set difference dom(γ′) � dom(γ) is not a
singleton set. The fact that, for a set Z of finite-length paths, highly discerning implies
discerning, will be a corollary of the following main result. Note that both properties
are trivially satisfied by all sets Z ⊆ CP
(T, X) = CP(T, X) ∪ M∞(CP(T, X)) if T is
discrete, and by all sets Z ⊆ CP
cl(T, X), for arbitrary T .

Proposition 2. [Properties of fgS-uniform topology and pseudo-metric]
Let Z ⊆ CP
fin(T, X) be equipped with the uniform topology TfgS.
1. The topology TfgS on Z has a countable sub-basis for its uniformity.
2. The topology TfgS on Z is Hausdorff if Z is highly discerning.
3. The topology TfgS on Z is Hausdorff if and only if Z is discerning.
4. The topology TfgS on Z is Hausdorff if and only if the fgS-pseudo-metric dfgS is a

an extended-valued metric on Z.
5. If the topology TfgS on Z is Hausdorff, then for all sequences {γk}k∈N in Z and all

paths γ ∈ Z, γ = limk→∞ γk iff limk→∞ dfgS(η, ηk) = 0 .
6. Restricted to the subset P := Z ∩ CP(T, X) of compact paths, the uniform topology
TfgS on P is always Hausdorff, and the fgS-metric is always finite-valued.

The difficult part of the proof of Proposition 2 is Part 3, in establishing that the discern-
ing property is sufficient for the topology to be Hausdorff. Most parts of the proof make
essential use of the paths being continuous on their domains.

In “lifting up” the uniform structure of the Vε relations on finite-length paths, in order
to use it on spaces Z ⊆ CP
(T, X) = CP(T, X)∪ LCP(T, X) of paths of arbitrary length,
the key idea is that since a limit path is just the union of a chain of longer and longer
compact prexes, we should look at closeness of longer and longer compact prexes. This
motivates the introduction of a second parameter v ∈ R+ which references the length
up to which two paths are ε-close. (In [21], we used a time position parameter t ∈ T ,
which turned out to be sub-optimal when looking for a metric). As parameter sets, let
A2 := R>0 × R+ and A∞2 = R

>0 × R+∞ = A2 ∪ {(ε,∞) | ε ∈ R>0}. We need the following
key technical result.

Proposition 3. [Path operations within fgS-uniform topology]
For any paths γ, γ′ ∈ CP
fin(T, X) and for any parameter ε ∈ R>0,
if dfgS(γ, γ′) < ε with witness ρ ∈ Ret(γ, γ′) with dev(ρ) < ε and var(γ, γ′, ρ) < ε,
then for all pairs of time points (t, t′) ∈ ρ related by ρ, we have dfgS(γ|t, γ′|t′ ) < ε ,
dfgS(t|γ, t′ |γ′) < ε , and for all η, η′ ∈ CP
fin(T, X), dfgS(γ ∗t η, γ

′ ∗t′ η
′) < ε if γ(t) = η(0),

γ′(t′) = η′(0) and dfgS(η, η′) < ε .

Definition 7. [Uniform relations and gS-distances: arbitrary-length]
Let Z ⊆ CP
(T, X) be any set of continuous paths of arbitrary length, and for
each pair (ε, v) ∈ A2 , let Uε,v : Z � Z be the relation defined as follows:
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Uε,v := { (η, η′) ∈ Z × Z |
(
max{ len(η), len(η′) } ≤ v + ε ∧ dfgS(η, η′) < ε

)
∨ ((∃ t ∈ dom(η))(∃ t′ ∈ dom(η′))

min{ || t ||T , || t′ ||T } ≥ v ∧ dfgS(η|t, η′|t′ ) < ε
) }

and for each ε ∈ R>0, let Uε,∞ : Z � Z be the relation defined by:

Uε,∞ :=
⋂

v∈R+ Uε,v =
{

(η, η′) ∈ Z × Z | (∀v ∈ R+) (η, η′) ∈ Uε,v
}
.

For each v ∈ R+∞, define the length-v gS-distance function d v
gS : (Z × Z)→ R+∞ by:

d v
gS(η, η′) :=

{
∞ if (∀ε ∈ R>0) (η, η′) � Uε,v
inf{ ε ∈ R>0 | (η, η′) ∈ Uε,v } otherwise .

(4)

Define the weak gS-distance dwgS : Z × Z → [0, 1], for all η, η′ ∈ Z, by:

dwgS(η, η′) :=
∞∑

n=1
2−n min{ 1, d n

gS(η, η′) } , (5)

and the gS-distance dgS : Z × Z → [0, 1], for all η, η′ ∈ Z, by:

dgS(η, η′) := 1
2

(
min{ 1, d∞gS(η, η′) } + dwgS(η, η′)

)
(6)

In defining the length-v tolerance relation Uε,v and, from that, the length-v gS-distance
d v

gS in equation (4), either the paths η and η′ are both of length less than v+ε, and they are
ε-close in the fgS metric, or else there is a pair of time points (t, t′) ∈ dom(η)× dom(η′)
with both of at least length v and the compact prefixes η|t and η′|t′ are ε-close in the
fgS metric; the latter entails that || t − t′ || < ε from the witnessing retiming, without
requiring the overly-strong condition that t′ = t.

Proposition 4. [gS-uniform topologies and pseudo-metrics on arbitrary-length paths]
Let Z ⊆ CP
(T, X) be any set of continuous paths. Then for all ε ∈ R>0 and for all paths
η, η′ ∈ Z, and all v ∈ R+∞,

d v
gS(η, η′) < ε iff (η, η′) ∈ Uε,v ;

and
Uε,∞(η) = Vε(η) iff len(η) < ∞ ; and Uε,v(η) = Vε(η) if len(η) < v .

Each of the length-v distance functions d v
gS are pseudo-metrics on Z, as are both the

gS-distance dgS and the weak gS-distance dwgS, and both families:
UgS := {Uε,v : Z � Z | (ε, v) ∈ A∞2 } and UwgS := {Uε,v : Z � Z | (ε, v) ∈ A2 }

constitute bases for uniformities on the path set Z. The uniform topology TwgS on Z
generated by UwgS has as its basic opens the (ε, v)-tubes Uε,v(η) for all finite pairs
(ε, v) ∈ A2, and is equivalently described by the family { d v

gS | v ∈ R
+} of pseudo-metrics.

The uniform topology TgS on Z generated byUgS has as its basic opens the (ε, v)-tubes
Uε,v(η) around η ∈ Z, for all (ε, v) ∈ A∞2 ; it is equivalently described by the family
{ d v

gS | v ∈ R
+∞} of pseudo-metrics; and it contains TfgS and TwgS as sub-topologies.

We call TwgS the topology of weak gS-uniform convergence, and TgS the topology of gS-
uniform convergence. For the Hausdorff property and metricizability, we can re-use the
same notions developed for finite-length paths: the discerning and highly discerning
properties. As for Proposition 2, by far the hardest part of Proposition 5 is that the
discerning property implies the topology is Hausdorff. Verifying the equivalence of
metric convergence and convergence in the uniform structures also takes some effort.
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Proposition 5. [Properties of the 2-parameter gS-uniform topologies]
Let Z ⊆ CP
(T, X) be any set of continuous paths, of finite or infinite length.

1. The uniform topologies TgS and TwgS on Z both have countable sub-bases.
2. The topologies TgS and TwgS on Z are both Hausdorff if Z is highly discerning.
3. The following five conditions are equivalent:

− the path set Z is discerning;
− the topology TgS on Z is Hausdorff;
− the generalized Skorokhod pseudo-metric dgS is a metric on Z;
− the topology TwgS on Z is Hausdorff;
− the weak generalized Skorokhod pseudo-metric dwgS is a metric on Z.

4. If the path set Z is discerning, then for all sequences {ηk}k∈N in Z and η ∈ Z:
(a) {ηk}k∈N converges gS-uniformly to η iff lim

k→∞
dgS(η, ηk) = lim

k→∞
d∞gS(η, ηk) = 0;

(b) {ηk}k∈N converges wgS-uniformly to η iff lim
k→∞

dwgS(η, ηk) = 0;

(c) if all but finitely-many of the paths ηk, for k ∈ N, as well as the path η, have
finite length, then the following conditions on {ηk}k∈N are equivalent:
− it converges to η in the finite-length paths topology TfgS ;
− it converges gS-uniformly to η ; and
− it converges wgS-uniformly to η .

Hence when the path set Z is discerning, the topology TgS is metricized by dgS, and
the topology TwgS is metricized by dwgS .

For T = R+ and T = H, it is easy to find examples of sequences of paths {ηk}k∈N that
converge wgS-uniformly to an infinite-length path η, but do not converge in the stronger
metrics dgS and d∞gS. So the metrics and topologies are quite distinct, with TwgS � TgS.

Example 1 revisited. Taking ε1 ≤ 0.65, we can compute rough numerical bounds of
dgS(γ, γ′) < 0.84 and dwgS(γ, γ′) < 0.61 for gS-distances between the compact path
γ and the spatially-unbounded path γ′ with finite-escape time. Compare these with
bounds of dwgS(η, η′′) ≤ dgS(γ, γ′′) ≤ dfgS(γ, γ′′) ≤ 0.95 for the sampling+quantization,
with all three distances about the same. As depicted in Fig. 1, this makes sense: the path
γ′ is closer to γ than the coarsely sampled+quantized path γ′′.

6 Relationship with Graphical Set-Convergence of Paths

Goebel and Teel in [3] develop a notion of convergence for sequences of hybrid paths
(compact or limit) for the case of Euclidean space X ⊆ Rn and T = H ⊂ R2 by employ-
ing the machinery of set-convergence for sequences of subsets Euclidean space, applied
to paths η ∈ CP
(T, X) considered via their graphs as subsets of T × X ⊂ Rn+2; the text
[16] is a standard reference on set-convergence. For any sequence {Ak}k∈N of non-empty
subsets of a metric space, in general, lim infk→∞ Ak ⊆ lim supk→∞ Ak, and the sequence
{Ak}k∈N set-converges to a set A if lim supk→∞ Ak = A = lim infk→∞ Ak , in which
case A must be closed in the metric, and we write A = setlimk→∞ Ak.

Proposition 6. [Equivalence of concepts of convergence]
Let S be a finite-dimensional time structure with future T , let (X, dX) be a metric space,
and let Z ⊆ CP
cl(T, X) be any set of paths with norm-closed time domains. Then for all
paths η ∈ Z and for all sequences of paths {ηk}k∈N within Z, the following are equivalent:
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(1) the sequence {ηk}k∈N converges wgS-uniformly to η ;

(2) lim
k→∞

dwgS(η, ηk) = 0 ;

(3) η = setlim
k→∞

ηk as graphs in the product topology on T × X ; and

(4) ∀ open sets O in T × X, if η ∩O � ∅ then (∃m1 ∈ N)(∀k ≥ m1) ηk ∩O � ∅, and
∀ compact sets K in T × X, if η ∩ K = ∅ then (∃m2 ∈ N)(∀k ≥ m2) ηk ∩ K = ∅.

7 Application: Completeness and Semi-continuity of Hybrid Flows

A key result of [3] (subsequently used in [4,6] and elsewhere) is their Theorem 4.4 on a
type of sequential compactness; it identifies conditions on the components of a hybrid
system H = (X, F,G,C,D) such that for P := ran(ΦH), the path set Z := P ∪ M(P)
is such that for every locally eventually bounded sequence {ηk}k∈N in Z, there exists a
path η ∈ Z and a sub-sequence {ηkm }m∈N with η = setlimm→∞ ηkm . A sequence {ηk}k∈N is
locally eventually bounded iff for all length-bounds b ∈ R>0, there exists mb ∈ N and a
compact set Kb ⊆ X such that for all k ≥ mb and all (i, t) ∈ dom(ηk), if || (i, t) ||H ≤ b then
ηk(i, t) ∈ Kb. In the result below, we take the same conditions as identified in [3,4,6],
and derive stronger conclusions cast in terms of the metrics dfgS, dgS and dwgS on the
spaces spaces Zfin and Z.

For metric spaces X and Y, a set-valued map R : X � Y is locally-bounded iff for
every compact set K ⊆ X, the set-image R(K) is bounded in Y. If Y ⊆ Rn, then R : X �
Y is locally-bounded and outer semi-continuous iff R is upper semi-continuous and has
compact values R(x) ⊆ Y. For x ∈ Rn and a set C ⊂ Rn, the tangent cone to C at x is the
set TCC(x) of all vectors v ∈ Rn for which there exists a sequence {αk}k∈N of positive
reals converging monotonically to 0, together with a sequence {vk}k∈N in Rn converging
to v, such that v + αkvk ∈ C for all k ∈ N; see [7,16].

Proposition 7. [Cauchy-completeness, and semi-continuity of hybrid trajectories]
Let H = (X, F,G,C,D) be a hybrid system as described in Section 4, with general flow
map ΦH : X � Phyb(X) giving the compact-domain trajectories of H from any initial
state x ∈ dom(ΦH) = (C ∪ D) ⊆ X. From [3,4,6], assume:
(A0) X ⊆ Rn is an open set;
(A1) C and D are relatively closed sets in X;
(A2) F : Rn � Rn is outer semi-continuous and locally-bounded, and F(x) is convex

and compact in Rn for each x ∈ C;
(A3) G : Rn � Rn is outer semi-continuous;
(VC) for all x ∈ C � D, there exists an ε > 0 such that TCC(x′) ∩ F(x′) � ∅ for every

ε-close state x′ ∈ Bε(x) ∩ C ; and
(VD) G(x) ⊆ (C ∪ D) for all x ∈ D.
Then let P := ran(ΦH) = { γ ∈ ΦH(x) | x ∈ C ∪D }, let Z := P∪M(P), let Zinf := M∞(P),
let Zfe := M(P)�M∞(P), and let Zfin := P∪ Zfe, so Z = P∪ Zfe ∪ Zinf = Zfin ∪ Zinf , with
the unions disjoint. Further partition Zinf as Zinf = Z0 ∪ Z1 ∪ Z∞, where η ∈ Z0 iff η is
Zeno; η ∈ Z1 iff η has finitely-many discrete transitions and len(η) = ∞; and η ∈ Z∞ iff
η has infinitely-many discrete transitions and len(η) = ∞. Then:

1. P is prefix-closed and maximally-extendible, and for all η ∈ M(P), either η has
infinite length or η is spatially-unbounded in X.
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2. Both the sets P and Zfe, as well as the space Zfin, are both open and closed, and
Cauchy-complete, in the metric dfgS on Zfin.

3. Each of the five path sets P, Zfe, Z0, Z1 and Z∞, as well as the whole space Z, are
both open and closed, and Cauchy-complete, in the metrics dgS and d∞gS on Z.

4. Each of the sets Zinf , P ∪ Zinf , and M(P), as well as the whole space Z, are closed
and Cauchy-complete in the metric dwgS on Z, while P and Zfe are both open.

5. Additionally assume (A4) : the map G : X � X is locally-bounded. Then:
(a) The flow map ΦH : X � Phyb(X) is (globally) outer semi-continuous w.r.t. the

metric dX on X and the metric dfgS on Phyb(X), and the map MΦH : X � Z is
(globally) outer semi-continuous w.r.t. each of dwgS, dgS and d∞gS on Z.

(b) For each x ∈ dom(ΦH) = C ∪ D, the set ΦH(x) of compact paths is closed and
Cauchy-complete in the metric dfgS on P.

(c) For each x ∈ C ∪ D, the set MΦH(x) of maximal paths is closed and Cauchy-
complete w.r.t. each of the metrics dgS, d∞gS and dwgS on Z.

(d) For each x ∈ C ∪ D, if MΦH(x) ⊂ Zinf , then for every (ε, v) ∈ A2, there exists a
real δ ∈ (0, ε] such that MΦH(Bδ(x)) ⊆ Uε,v(MΦH(x)), hence MΦH : X � Z is
locally upper semi-continuous at x w.r.t. the metric dwgS on Z.

(e) If K ⊆ (C ∪ D) is compact and MΦH(K) ⊆ Zinf , then for every (ε, v) ∈ A2, there
exists a real δ ∈ (0, ε] such that MΦH(Bδ(K)) ⊆ Uε,v(MΦH(K)) .

Theorem 4.4 of [3] can be used in proving part of Part 4, while Part 5(e) is an equiv-
alent reformulation of Corollary 4.8 from that paper. From the viewpoint of stability,
the upper semi-continuity of the map MΦH : X � Z is highly desirable. The slightly
stronger assumptions on the components of H used in [7] are sufficient to ensure that
MΦH is globally upper semi-continuous w.r.t. each of the metrics dwgS, dgS and d∞gS.

8 Conclusion

This paper develops several generalized Skorokhod pseudo-metrics for hybrid path
spaces, cast in a quite general setting, where paths are continuous functions from a
normed and partially-ordered time structure into a metric space, with the domains of
paths linearly-ordered. The topologies generalize the original Skorokhod metric by al-
lowing set-valued order-preserving retiming maps that are readily invertible and com-
posable, are in practice quite easy to work with, and they include single-valued order-
preserving maps as special cases. We determine necessary and sufficient conditions
under which these topologies are Hausdorff and the distances are metrics. One of these
metrics on arbitrary-length paths, that of weak gS-uniform convergence, is shown to
be equivalent to the implicit topology of graphical convergence of hybrid paths, cur-
rently used extensively by Teel and co-workers. We apply the framework to investigate
topological properties of hybrid general flows in the metrics dfgS, dwgS and dgS.

The original motivation for this work was to develop topological and metric foun-
dations as a prequel to giving a robust semantics for the temporal logic GFL
 [12,13],
which generalizes computational tree logic CTL
 to semantics over general flow sys-
tems, uniformly for arbitrary time structures – discrete, continuous or hybrid. The key
idea is that if a system satisfies a performance specification robustly, with the specifica-
tion given by a logic formula, then a path η satisfies the specification only when all the
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paths in some ε-tube around η also satisfy the specification. With those foundations in
place, that research project is under way.
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