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Preface

This volume contains the proceedings of the 12th International Conference on
Hybrid Systems Computation and Control (HSCC 2009) held in San Francisco,
California during April 13-15, 2009. The annual conference on hybrid systems fo-
cuses on research in embedded, reactive systems involving the interplay between
discrete switching and continuous dynamics. HSCC is a forum for academic and
industrial researchers and practitioners to exchange information on the latest
advancements, both practical and theoretical, in the design, analysis, control,
optimization, and implementation of hybrid systems.

HSCC 2009 was the 12th in a series of successful meetings. Previous versions
were held in Berkeley (1998), Nijmegen (1999), Pittsburgh (2000), Rome (2001),
Palo Alto (2002), Prague (2003), Philadelphia (2004), Zurich (2005), Santa Bar-
bara (2006), Pisa (2007), and St. Louis (2008).

HSCC 2009 was part of the 2nd Cyber-Physical Systems Week (CPSWeek),
which consisted of the co-location of HSCC with the International Conference on
Information Processing in Sensor Networks (IPSN) and the Real-Time and Em-
bedded Technology and Applications Symposium (RTAS). Through CPSWeek,
the three conferences had joint invited speakers, poster sessions, and joint so-
cial events. In addition to the workshops sponsored by CPSWeek, HSCC 2009
sponsored two workshops:

– NSV II: Second International Workshop on Numerical Software Verification
– HSCB 2009: Hybrid Systems Approaches to Computational Biology

We would like to thank the authors of submitted papers, the Program Com-
mittee members, the additional reviewers, the workshop organizers, and the
HSCC Steering Committee members for their help in composing a strong pro-
gram. We also thank the CPSWeek Organizing Committee, in particular Rajesh
Gupta, for their strenuous work in handling the local arrangements. Finally, we
would also like to thank Springer for having agreed to publish these proceedings
as a volume in the Lecture Notes in Computer Science series and to EasyChair
for hosting the management service for paper submissions, reviewing, and final
generation of proceedings.

April 2009 Rupak Majumdar
Paulo Tabuada
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Alexandre Donzé, Bruce Krogh, and Akshay Rajhans

Convergence of Distributed WSN Algorithms: The Wake-Up Scattering
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Daniele Fontanelli, Luigi Palopoli, and Roberto Passerone

Finite Automata as Time-Inv Linear Systems Observability,
Reachability and More . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Radu Grosu

Optimal Boundary Control of Convention-Reaction Transport Systems
with Binary Control Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Falk M. Hante and Günter Leugering

Trajectory Based Verification Using Local Finite-Time Invariance . . . . . . 223
A. Agung Julius and George J. Pappas

Synthesis of Trajectory-Dependent Control Lyapunov Functions by a
Single Linear Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Mircea Lazar and Andrej Jokic

Uniform Consensus among Self-driven Particles . . . . . . . . . . . . . . . . . . . . . . 252
Ji-Woong Lee

Optimization of Multi-agent Motion Programs with Applications to
Robotic Marionettes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

Patrick Martin and Magnus Egerstedt

Decompositional Construction of Lyapunov Functions for Hybrid
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

Jens Oehlerking and Oliver Theel

Existence of Periodic Orbits with Zeno Behavior in Completed
Lagrangian Hybrid Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Yizhar Or and Aaron D. Ames

Computation of Discrete Abstractions of Arbitrary Memory Span for
Nonlinear Sampled Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

Gunther Reißig



Table of Contents XIII

Hybrid Modeling, Identification, and Predictive Control: An Application
to Hybrid Electric Vehicle Energy Management . . . . . . . . . . . . . . . . . . . . . . 321

G. Ripaccioli, A. Bemporad, F. Assadian, C. Dextreit,
S. Di Cairano, and I.V. Kolmanovsky

On Event Based State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
Joris Sijs and Mircea Lazar

Discrete-State Abstractions of Nonlinear Systems Using Multi-resolution
Quantizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

Yuichi Tazaki and Jun-ichi Imura

Event-Triggering in Distributed Networked Systems with Data
Dropouts and Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

Xiaofeng Wang and Michael D. Lemmon

Specification and Analysis of Network Resource Requirements of
Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

Gera Weiss, Sebastian Fischmeister, Madhukar Anand, and
Rajeev Alur

Periodically Controlled Hybrid Systems: Verifying a Controller for an
Autonomous Vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

Tichakorn Wongpiromsarn, Sayan Mitra, Richard M. Murray, and
Andrew Lamperski

Stabilization of Discrete-Time Switched Linear Systems:
A Control-Lyapunov Function Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

Wei Zhang, Alessandro Abate, and Jianghai Hu

Bounded and Unbounded Safety Verification Using Bisimulation
Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

Gang Zheng and Antoine Girard

Short Papers

The Optimal Boundary and Regulator Design Problem for Event-Driven
Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

Pau Mart́ı, Manel Velasco, and Enrico Bini

Morphisms for Non-trivial Non-linear Invariant Generation for
Algebraic Hybrid Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

Nadir Matringe, Arnaldo Vieira Moura, and Rachid Rebiha

An Analysis of the Fuller Phenomenon on Transfinite Hybrid
Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

Katsunori Nakamura and Akira Fusaoka



XIV Table of Contents

Stochastic Optimal Tracking with Preview for Linear Discrete-Time
Markovian Jump Systems (Extended Abstract) . . . . . . . . . . . . . . . . . . . . . . 455

Gou Nakura

Reachability Analysis for Stochastic Hybrid Systems Using Multilevel
Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

Derek Riley, Xenofon Koutsoukos, and Kasandra Riley

Orbital Control for a Class of Planar Impulsive Hybrid Systems with
Controllable Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

Axel Schild, Magnus Egerstedt, and Jan Lunze

Distributed Tree Rearrangements for Reachability and Robust
Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

Michael Schuresko and Jorge Cortés

The Sensitivity of Hybrid Systems Optimal Cost Functions with
Respect to Switching Manifold Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 475

Farzin Taringoo and Peter E. Caines

STORMED Hybrid Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
Vladimeros Vladimerou, Pavithra Prabhakar,
Mahesh Viswanathan, and Geir Dullerud

Symbolic Branching Bisimulation-Checking of Dense-Time Systems in
an Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

Farn Wang

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491



Applications of MetiTarski in the Verification of
Control and Hybrid Systems

Behzad Akbarpour1 and Lawrence C. Paulson2

1 Concordia University, Montreal, Quebec, H3G 1M8, Canada
behzad@ece.concordia.ca

2 Computer Laboratory, University of Cambridge, England
lp15@cam.ac.uk

Abstract. MetiTarski, an automatic proof procedure for inequalities
on elementary functions, can be used to verify control and hybrid sys-
tems. We perform a stability analysis of control systems using Nichols
plots, presenting an inverted pendulum and a magnetic disk drive reader
system. Given a hybrid systems specified by a system of differential equa-
tions, we use Maple to obtain a problem involving the exponential and
trigonometric functions, which MetiTarski can prove automatically.

1 Introduction

Most research into the verification of hybrid systems involves model checking and
constraint solving. In this paper, we present preliminary results involving the use
of automated theorem proving. Our approach delivers proofs of its claims, which
can be checked by other tools or even examined by humans. These proofs are
low-level and can be very long; for example, the proof of the collision avoidance
problem (see Sect. 4.1) consists of nearly 2600 text lines and 162 logical infer-
ences, some of which refer to decision procedures. Formal verification is typically
used in applications that demand high assurance. Our methodology can produce
documentation of every phase of the formal analysis of the design, from differ-
ential equations to proof.

MetiTarski [1,2,3] is a new automatic theorem prover for special functions over
the real numbers. It consists of a resolution theorem prover (Metis) combined
with a decision procedure (QEPCAD) for the theory of real closed fields. It can
prove logical statements involving the functions ln, exp, sin, cos, arctan, sqrt,
etc. We have applied it to hundreds of problems mainly of mathematical origin.
In this paper, we report recent experiments in which we have applied MetiTarski
to standard benchmark problems about hybrid and control systems.

Our workflow typically involves using a computer algebra system (Maple)
to solve a differential equation. The result is a formula over the real numbers,
which we supply to MetiTarski. For most problems that we have investigated,
MetiTarski returns a proof in seconds. The entry of problems is currently man-
ual, though it is not difficult, because the output of Maple can be pasted into
MetiTarski, with modest further editing to put the problem into the right form.
These tasks are routine and could be automated.

R. Majumdar and P. Tabuada (Eds.): HSCC 2009, LNCS 5469, pp. 1–15, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 B. Akbarpour and L.C. Paulson

Paper outline. Section (§2) reviews some related work. Section (§3) describes the
verification of control systems. Section (§4) describes the details of our approach
for the verification of hybrid systems using illustrative case studies. Section (§5)
concludes the paper and provides hints for future work directions.

2 Related Work

Control systems are traditionally analysed using numerical techniques, often in-
volving the visual inspection of plots for a number of sample inputs and different
values of parameters. Then we must assume that the results of this analysis also
hold for any values of the input and the parameters. This assumption can lead to
incorrect conclusions. Hardy [10] proposed a formal and symbolic technique to
increase the reliability of the results, removing the possibility of erroneous results
due to plotting errors and uncertain parameters. She examined the underlying
mathematical representation of a particular form of control system requirements:
Nichols plot requirements. These requirements were reduced to their most basic
form and a decision procedure was developed for use in the analysis which can
be used to decide the positivity or negativity of finitely inflective functions. The
resulting tool, called Nichols plot Requirements Verifier (NRV), was developed
in the Maple-PVS-QEPCAD system which exploits the symbolic computation
provided by the computer algebra system Maple, the formal techniques provided
by the theorem prover PVS and the quantifier elimination routines provided by
QEPCAD. Hardy presented two case studies to demonstrate the practical appli-
cation of the NRV system. In this paper, we achieve similar results by replacing
the PVS-QEPCAD combination with MetiTarski. We still use Maple for ini-
tial calculations but we replace the semi-automatic proofs by PVS with fully
automatic proofs of MetiTarski.

Several techniques for model checking of hybrid systems have been proposed.
The most widely investigated is bounded model checking (BMC), which computes
a set of reachable states that corresponds to an over-approximation of the solu-
tion of the system equations obtained for a bounded period of time. This approach
provides the algorithmic foundations for the tools that are available for computer-
aided verification of hybrid systems such as Checkmate [6], d/dt [5], PHaver [9],
and HyTech [11]. On the other hand, there are some hybrid system verification
tools such as Stefan Ratschan’s HSolver [14], which are based on constraint solving
techniques. The basic idea is to decompose the state space into hyperboxes accord-
ing to a rectangular grid and then use interval constraint-propagation techniques
to check the flow on the boundary between neighboring grid elements. This is done
via an abstraction refinement framework in order to achieve precise results.

In this paper, we present a novel approach based on automatic theorem prov-
ing for hybrid system verification. We show how our tool MetiTarski assisted with
Maple can be used to prove safety properties about hybrid systems. We have
selected a set of case studies in real world applications collected from standard
benchmarks [15] for evaluating and comparing tools for hybrid system design
and verification. Our current examples are restricted to linear systems for which
we can solve the systems of ordinary differential equations (ODE) using methods
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like the Laplace transform to find the closed form solutions based on elementary
functions. We have been able to prove safety properties of the systems such as
Room Heating and Navigation, which cannot be verified by HSolver.1 We are
planning to extend our case studies to cover nonlinear cases by finding methods
of solving systems of polynomial nonlinear ordinary differential equations analyt-
ically in terms of elementary and special functions. An example of such method
is the Prelle-Singer procedure [12], extensions of which are also implemented
in computer algebra systems such as REDUCE (the PSODE package [13]) and
Maple (the PSsolver package [8]).

3 Control Systems Verification

This section presents our methodology for using MetiTarski in the verification
of control systems. Our approach can be briefly described as follows. We start
from the open loop transfer function of the feedback control system in Laplace
domain as a function of s (G (s)). Then we replace s with jw and switch to fre-
quency domain. Then we calculate the gain and phase shift of G(jw) according
to Equation 1, as real valued functions over w, and plot them in the x/y plane
and call it the Nichols plot. For stability, the Nichols plot of the system should
lie outside an exclusion region which will be explained later. We describe this
obligation as inequalities on special functions such as arctan and log over w, and
prove them using MetiTarski. We use Maple to plot the Nichols plots, and also
for some preliminary investigations about the intermediate expressions.

We illustrate our methodology using two moderately sized case studies, both
based on examples that appear regularly in control engineering texts. In Sec-
tion 3.2, an inverted pendulum system is analysed. The stability criteria are
specified in terms of three intervals in which the Nichols plot of the system must
not enter a given bounded region on the graph. We use MetiTarski to verify this
system. We then alter the system and use MetiTarski to show that the system
is now unstable. In both cases, the Nichols plot for the system lies too close to
the exclusion region to be confirmed by visual inspection. In Section 3.3, a disk
drive reader system is analysed with respect to stability. This system has an
‘uncertain’ parameter, whose value is known to lie within an interval. This type
of problem is difficult to analyse using classical Nichols plot techniques as it is a
three dimensional rather than two dimensional problem. The classical solution
is to plot a suite of Nichols plots showing the system response for various values
of the parameter. If the system meets its requirements in all of these plots the
assumption is made that the system meets its requirements for all permissible
values of the parameter. In this case study we provide symbolic analysis of the
system for all permissible values of the parameter, generating a formal proof.

3.1 Nichols Plot Requirements

There are three main graphical analysis techniques used in the analysis of control
systems in frequency or the complex plane: the Nyquist plot (complex plane),
1 See http://hsolver.sourceforge.net/benchmarks/

http://hsolver.sourceforge.net/benchmarks/
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Fig. 1. Exclusion Region

Bode diagrams (frequency domain), and Nichols plots (frequency domain). We
will discuss in particular analysis using Nichols plots. The Nichols plot [7] (also
known as Nichols chart) plots the gain (in decibels) against the phase-shift of
the output sinusoid as the frequency varies. The gain and phase-shift of a system
with transfer function G can be calculated explicitly using the following formulas:

y = gain = 20 log10(|G(jw)|)
x = phase-shift = argument(G(jw))

=

{
arctan(�(G(jw))

�(G(jw)) ) + kπ if �(G(jw)) �= 0
π
2 + kπ if �(G(jw)) = 0

(1)

where � (�) denotes the real (imaginary) part of a complex number, and k is an
integer. When using arctan to calculate the value of phase-shift, we may have to
adjust the range of arctan, which normally is restricted to (−π

2 , π
2 ) in radians. If

the shift in phase at w is greater than π
2 then arctan(�(G(jw))

�(G(jw)) ) must be adjusted
by an appropriate multiple k of π to give the phase-shift as in equation 1.

Nichols plots often show exclusion regions that must be avoided to achieve
stability and performance. In general, a system is considered stable if its Nichols
plot does not enter a certain hexagonal region about the point (−π, 0) as shown
in Fig. 1. This requirement can be expressed in terms of the lines bounding the
region in three intervals.

1. The Nichols plot for the system must lie below the line y = − 12
π x−18 between

the points (− 5
4π,−3) and (−π,−6), or above the line (y = 12

π x+18) between
the points (− 5

4π, 3) and (−π, 6).
2. It must lie below the line y = − 12

π x − 6 between the points (−π,−6) and
(− 3

4π,−3), or above the line y = 12
π x + 6 between (−π, 6) and (− 3

4π, 3).
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3. It must lie to the left of line x = − 5
4π between the points (− 5

4π,−3) and
(− 5

4π, 3), or to the right of line x = −3
4 π between (− 3

4π,−3) and (− 3
4π, 3).

These conditions can be expressed as inequalities in arctan, ln, and square root.
Several different cases of curves can be identified depending on whether y =

f(x) is monotonic decreasing, or monotonic increasing and concave, or monotonic
increasing and convex. These properties help to reduce the proofs to specific
points instead of a whole range. A real-valued function f defined on an interval
is convex if for any two points x and y in its domain and any t in [0, 1], we have

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y).

A function f is said to be concave if −f is convex. A twice differentiable function
of one variable is convex on an interval if and only if its second derivative is non-
negative there; this gives a practical test for convexity. A point of inflection is a
point on a curve at which the curvature changes sign; at this point, the graph of
the function makes a smooth transition between convexity and strict concavity.
These conditions can be easily checked using Maple.

3.2 Inverted Pendulum

This section focuses on the modeling and analysis of an inverted pendulum
system. An inverted pendulum is a pendulum that has its mass above its pivot
point, which is mounted on a cart that can move horizontally (Fig. 2). Whereas
a normal pendulum is stable when hanging downwards, an inverted pendulum
is inherently unstable, and must be actively balanced in order to remain upright
by applying a horizontal force to the cart. The inverted pendulum is a classic
problem in dynamics and control theory and is widely used as benchmark for
testing control algorithms.

There are two outputs of interest: the displacement of the cart x and the angle
of the pendulum θ. When concerned only with the angle of the pendulum, the
behaviour of the system can be represented using the following transfer function

G(s) =
ml(Kds

2 + Kps + Ki)
(MI + Mml2 + mI)s3 + (bI + bml2)s2 − (Mmgl + m2gl)s − bmgl

Table 1 shows the values for the parameters of the system chosen for this
example. The value of the mass of the pendulum m is left undecided.

Analysis of an Inverted Pendulum that Meets its Requirements. As-
suming that the mass of the pendulum is 0.2 kg, the open loop transfer function
for the inverted pendulum system is

G(s) =
−25(2s2 − 7s + 2)

11s3 + 2s2 − 343s − 49
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Fig. 2. Inverted Pendulum

Table 1. Values for parameters in an inverted pendulum system

Mass of cart M 0.5 kg
Friction of the cart b 0.1
Length to the pendulum’s center of mass l 0.3 m
Inertia of the pendulum I 0.006 kgm2

Gravitational acceleration g 9.8 m/sec2

Proportional coefficient Kp 3.5
Integral coefficient Ki -1
Derivative coefficient Kd -1

and the gain and phase-shift can be calculated as follows:

y = 20 log10

⎛⎜⎜⎝25

√
484w10 + 35161w8 + 781414w6

+ 4871449w4 + 569821w2 + 9604
121w6 + 7550w4 + 117845w2 + 2401

⎞⎟⎟⎠

x =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− arctan(

650w3 − 1029w + 22w5

81w4 + 24595w2 − 98
) if 0 ≤ w < 0.198

−π if w = 0.198

− arctan(
650w3 − 1029w + 22w5

81w4 + 24595w2 − 98
) − π if 0.198 < w

Next we use Maple and MetiTarski to analyse this system with respect to the
exclusion region criteria and prove that it meets its requirements as follows:

1. We first calculate using Maple that the interval [− 5
4π,−π], in terms of x,

corresponds to the interval [157128 , 129
32 ] in terms of w and then use MetiTarski

to show that

∀w.
157
128

≥ w ∨ w ≥ 129
32

=⇒ −5
4
π ≥ x ∨ x ≥ −π.

Analysis using Maple shows that within this interval there is one point
of inflection, which lies in the interval [ 569256 , 1139

512 ]. The curve is convex for
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w ∈ [ 157128 , 569
256 ] and concave for w ∈ [1139512 , 129

32 ]. Then MetiTarski proves that
the curve lies below − 12

π x − 18 at 157
128 , 569

256 and 1139
512 , and thus that it lies

outside the exclusion region for x ∈ [− 5
4π,−π].

y < −12
π

x − 18 at
157
128

,
569
256

, and
1139
512

2. Maple calculates that the interval [−π,− 3
4π], in terms of x, corresponds to

the interval [ 57
128 , 629

512 ] in terms of w and then MetiTarski proves that

∀w.
57
128

≥ w ∨ w ≥ 629
512

=⇒ −π ≥ x ∨ x ≥ −3
4
π

Within this interval there are no points of inflection. The curve is convex for
w ∈ [ 57

128 , 629
512 ]. MetiTarski proves that the curve lies below 12

π x + 6 at 57
128

and 629
512 , and thus it lies outside the exclusion region for x ∈ [−π,− 3

4π].

y <
12
π

x + 6 at
57
128

and
629
512

3. Maple calculates that the interval [−3, 3], in terms of y, corresponds to the
interval [0, 101

512 ] in terms of w and then MetiTarski proves that

∀w. w ≥ 101
512

=⇒ −3 ≥ y ∨ y ≥ 3

Within this interval there are no points of inflection. The curve is convex
for w ∈ [0, 101

512 ]. MetiTarski proves that the curve lies above − 3
4π at 101

512 and
thus that it lies outside the exclusion region for y ∈ [−3, 3].

−3
4
π < x at

101
512

Analysis of an Inverted Pendulum that Fails to Meet its Require-
ments. Next a parameter of the inverted pendulum system is altered slightly
and the system is re-analysed with respect to the same criteria. Given that the
mass of the pendulum in the inverted pendulum system has the value 0.17, the
open loop transfer function for the system is

G(s) =
−4250(2s2 − 7s + 2)

1945s3 + 355s2 − 55811s − 8330

and the gain and phase-shift can be calculated as follows:

y=20 log10

(
425

√
0.1w10 + 10.2w8 + 214.0w6 + 1290.9w4 + 153.2w2 + 2.7

37.8w6 + 2172.3w4 + 31207.8w2 + 693.8

)

x=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− arctan(

105247w3 + 3890w5 − 169932w

14325w4 + 406627w2 − 16660
) if 0 ≤ w < 0.202

−π if w = 0.202

− arctan(
105247w3 + 3890w5 − 169932w

14325w4 + 406627w2 − 16660
) − π if 0.202 < w
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We use Maple and MetiTarski to analyse this system with respect to the
exclusion region criteria and prove that it fails to meet its requirements by
providing a counter example as follows:

1. We first calculate using Maple that the interval [− 5
4π,−π], in terms of x,

corresponds to the interval [7964 , 517
128 ] in terms of w and then use MetiTarski

to show that

∀w.
79
64

≥ w ∨ w ≥ 517
128

=⇒ −5
4
π ≥ x ∨ x ≥ −π

Within this interval there is one point of inflection, which lies in the in-
terval [1059512 , 265

128 ]. The curve is convex for w ∈ [7964 , 1059
512 ] and concave for

w ∈ [256128 , 517
128 ]. MetiTarski proves that the curve lies below the line − 12

π x−18
at 79

64 and 1059
512 .

y < −12
π

x − 18 at
79
64

and
1059
512

MetiTarski then proves that at 265
128 the curve lies within the exclusion region

and thus the Nichols plot fails to meet its requirements for x ∈ [− 5
4π,−π].

y ≥ −12
π

x − 18 ∧ y ≤ 12
π

x + 18 at
256
128

2. Maple calculates that the interval [−π,− 3
4π], in terms of x, corresponds to

the interval [231512 , 633
512 ] in terms of w and then MetiTarski proves that

∀w.
231
512

≥ w ∨ w ≥ 633
512

=⇒ −π ≥ x ∨ x ≥ −3
4
π

Within this interval there are no points of inflection. The curve is convex
for w ∈ [231512 , 633

512 ]. MetiTarski proves that at 57
128 the curve lies within the

exclusion region and thus the Nichols plot fails to meet its requirements for
x ∈ [−π,− 3

4π].

y ≥ 12
π

x + 6 ∧ y ≤ −12
π

x − 6 at
57
128

3. Maple calculates that the interval [−3, 3], in terms of y, corresponds to the
interval [0, 55

256 ] in terms of w and then MetiTarski proves that

∀w. w ≥ 55
256

=⇒ −3 ≥ y ∨ y ≥ 3

Within this interval there are no points of inflection. The curve is convex for
w ∈ [0, 103

512 ] and concave for w ∈ [1364 , 55
256 ]. MetiTarski proves that the curve

lies above − 3
4π at 103

512 , 13
64 , and 55

256 , and thus that it lies outside the exclusion
region for y ∈ [−3, 3].

−3
4
π < x at

103
512

,
13
64

, and
55
256
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3.3 Magnetic Disk Drive Reader System

This section focuses on the modeling and analysis of a magnetic disk drive sys-
tem [7] with respect to stability. Modern computers use magnetic disks to store
data. A disk drive reader reads the data by positioning a reader head over a
track on the disk. It consists of a controller (or amplifier), a motor, an arm and
a read head. A metal spring (or flexure) holds the read head slightly above the
disk. For a given set of parameter values, the open loop transfer function of the
disk drive system is

G(s) =
2.8 × 1011Km

(s + 1000)s(s + 20)(3s2 + 30000 + 100000000).

This system has an ‘uncertain’ parameter, namely the motor constant which is
represented by the constant Km and its value is known to lie within the interval
[120, 130]. The gain and phase-shift of the system can be calculated as follows:

y=20 log10

(
2.8 × 1011Km√

9w10 + 3.09 × 108w8 + 1.03 × 1016w6 + 1022w4 + 4 × 1024w2

)

x=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− arctan(

−130660000w2 + 3w4 + 2 × 1012

1140w(29w2 − 90000000)
) − π if 0 ≤ w < 1761.6

−π if w = 1761.6

− arctan(
−130660000w2 + 3w4 + 2 × 1012

1140w(29w2 − 90000000)
) − 2π if 1761.6 < w

Following a similar approach to the inverted pendulum, we have used Maple
and MetiTarski to provide a symbolic analysis and formal proof. The system
meets its requirements for all permissible parameter values. The three Nichols
plot exclusion zones (recall Sect. 3.1) give rise to the following proof obligations:

∀w.
15839
128

≥ w ∨ w ≥ 354991
512

=⇒ −5
4
π ≥ x ∨ x ≥ −π

y < −12
π

x − 18 at
15839
128

and
354991

512
for Km = 120 and Km = 130

∀w.
9745
512

≥ w ∨ w ≥ 63357
512

=⇒ −π ≥ x ∨ x ≥ −3
4
π

y <
12
π

x + 6 at
9745
512

and
63357
512

for Km = 120 and Km = 130

∀w.
1347
128

≥ w ∨ w ≥ 9601
512

=⇒ −3 ≥ y ∨ y ≥ 3

−3
4
π < x at

1347
128

for Km = 120 and Km = 130
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4 Hybrid Systems Verification

In order to examine the feasibility of verifying hybrid systems using MetiTarski,
we developed the following procedure. It involves a number of manual steps, but
they are essentially mechanical and could be automated.

1. Derive the hybrid automaton model of the system under investigation as an
state diagram, including the number of locations with the corresponding pa-
rameters, the transition relation between different locations, and the system
of differential equations governing the system in each location.

2. Starting from any particular location, we supply its system of ODEs and ini-
tial condition to Maple, and apply a Laplace transform to find an expression
for the state variables of the system as an output function of time.

3. Using the transition relations, we use Maple to find the switching time from
the first location to the next location. At this calculated time, we deter-
mine the values of all state variables using the time-dependent analytical
expressions determined in the previous step, to find the final values of the
state variables in location 1, and use them as the initial condition for the
next state. We continue this procedure until we cover all reachable locations
taking non-singleton initial sets of states into account.

4. Formulate the verification question as a safety property involving inequalities
over the real-valued special functions.

5. Supply this first-order formula in TPTP format, including the corresponding
axioms, as an input file to MetiTarski.

If MetiTarski is successful, it delivers a proof. Otherwise, it will probably run
until terminated.

4.1 Collision Avoidance

We consider a cruise control system with automatic collision avoidance [16]. Let
gap, vf , v and a respectively represent the gap between the two cars, the velocity
of the leading car, and the velocity and acceleration of the rear car. Then, the
set of differential equations governing the system is

v̇ = a, ȧ = −3a − 3(v − vf ) + (gap − (v + 10)), ˙gap = vf − v

Assuming the variable vf is a parameter (unchanging symbolic constant), the
dynamics of the system can be written as ẋ = Ax + B, where

x =

⎡⎢⎢⎣
v
vf

a
gap

⎤⎥⎥⎦ A =

⎡⎢⎢⎣
0 0 1 0
0 0 0 0

−4 3 −3 1
−1 1 0 0

⎤⎥⎥⎦ B =

⎡⎢⎢⎣
0
0

−10
0

⎤⎥⎥⎦
For the given set of initial states as x0 = (2, 2,−0.5, 1)T , the problem is to verify
that rear car would never collide with the car in front, that is, always gap > 0.
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Let X denote the Laplace transform of x (X = L x), then sX−x0 = AX + B
s ,

and solving for X we have X = (sI − A)−1(x0 + B
s ). Using Maple we have

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2s3 + 5.5s2 − 3s + 2
s(s3 + 3s2 + 4s + 1.0)

2s−1

−0.5s(22 + s)
s3 + 3s2 + 4s + 1

3s2 + 4.5s + 12 + s3

s(s3 + 3s2 + 4s + 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Therefore, gap = L−1 3s2 + 4.5s + 12 + s3

s (s3 + 3s2 + 4s + 1)
, and using Maple for the inverse

Laplace transform we have

gap = 12 − 14.2e−0.318t + 3.24e−1.34t cos(1.16t) − 0.154e−1.34t sin(1.16t).

MetiTarski proves that this expression is always greater than zero, and therefore
the system is safe for the given initial conditions.

4.2 Navigation

This benchmark deals with an object (perhaps a vehicle, though the dynamics
are not exactly vehicle dynamics) that moves in the R2 plane [9]. The desired
velocity vd is determined by the position of the object in an n×m grid, and the
desired velocities may take values as follows:

vd = (vd1(i), vd2(i)) = (sin(i × π

4
), cos(i × π

4
)), for i = 0, . . . , 7

We assume that the length and the width of a cell is 1, and that the lower left
corner of the grid is the origin. An example of a 3×3 grid is depicted in Fig. 3.a,
where the label i in each cell refers to the desired velocity. In addition, the grid
contains cells labelled A that have to be reached and cells labelled B that ought
to be avoided.

Given vd the behavior of the actual velocity v is determined by the differential
equation v̇ = C(v − vd), where C ∈ R2×2 is assumed to have eigenvalues with
strictly negative real part. This guarantees that the velocity will converge to

the desired velocity. Figure 3.b shows two trajectories, with C =
(

−1.2 0.1
0.1 −1.2

)
.

Both satisfy the property that A should be reached, and B avoided.
An instance of this benchmark is characterized by the initial condition on x

and v, by matrix C in the differential equation for v and by the map of the grid,
which can be represented as n×m matrix with elements from {0, . . . , 7}∪{A,B}.

For the example in Fig. 3 this matrix is

⎛⎝B 2 4
4 3 4
2 2 A

⎞⎠.
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2 4B

4 3 4

2 2 A

2 4B

4 3 4

2 2 A

a b

3

2

1

0
0 1 2 3 0 3

0

1

2

3

1 2

Fig. 3. a. The map determines the desired velocity of the moving object, depending
on the position of the object. b. Two trajectories of objects moving in the plane. Both
objects eventually reach cell A while avoiding B.

The dynamics of the 4-dimensional state vector (x1, x2, v1, v2)T are given by⎛⎜⎜⎝
ẋ1
ẋ2
v̇1
v̇2

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
0 0 −1.2 0.1
0 0 0.1 −1.2

⎞⎟⎟⎠
⎛⎜⎜⎝

x1
x2
v1
v2

⎞⎟⎟⎠−

⎛⎜⎜⎝
0 0
0 0

−1.2 0.1
0.1 −1.2

⎞⎟⎟⎠(
vd1(i)
vd2(i)

)

The resulting time-deterministic hybrid system [4] is shown in Figure 4. The
system has five locations.

1. Location �0, corresponds to cells labelled B that ought to be avoided.
2. Location �1, corresponds to i = 2 or vd = (1, 0). Therefore, the differential

equations of the system in this mode are

ẋ1 = v1, ẋ2 = v2, v̇1 = −1.2v1 + 0.1v2 + 1.2, v̇2 = 0.1v1 − 1.2v2 − 0.1. (2)

3. Location �2, corresponds to i = 3 or vd = (+0.707,−0.707). Therefore, the
differential equations of the system in this mode are

ẋ1 = v1, ẋ2 = v2, v̇1 = −1.2v1+0.1v2+0.919, v̇2 = 0.1v1−1.2v2−0.919. (3)

x1 ≥ 2

x2 ≤ 1 & x1 ≥ 2

i = 2B

�3

x2 ≤ 1

A

i = 3 i = 4

x1 ≤ 1 & x2 ≤ 1

x1 ≥ 2 & x2 ≥ 2

x1 ≥ 2 & x2 ≤ 1
�4

�0 �1 �2

Fig. 4. The hybrid automaton model of the Navigation system
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4. Location �3, corresponds to i = 4 or vd = (0,−1). Therefore, the differential
equations of the system in this mode are

ẋ1 = v1, ẋ2 = v2, v̇1 = −1.2v1 + 0.1v2 + 0.1, v̇2 = 0.1v1 − 1.2v2 − 1.2. (4)

5. Location �4, corresponds to cells labelled A that have to be reached.

The transition relations between different locations are specified by logical
formulas in Fig. 4. Now, suppose we start from the initial states defined by
(0.5, 1.5, 0.1, 0)T , which means we are initially in location �3, and the differential
equations governing the system are those described in equation (4). Using the
Laplace transform method as described before, we can solve this system of ODEs
using Maple to get the following closed form formulas for x1 and x2

x1 = −0.5e−1.1t + 0.654 + 0.346e−1.3t

x2 = −0.5e−1.1t + 2.35 − 0.346e−1.3t − t

More analysis with Maple shows that at t = 1.12, x1 = 1. At this point we
switch to location �1 with i = 2. We also use Maple to calculate the value of the
other state variables at this time as x2 = 0.588, v1 = 0.057, and v2 = −0.735.
Therefore, the new initial states can be defined by (1, 0.588, 0.057,−0.735)T ,
and the differential equations governing the system are those described in equa-
tion (2). Using the Laplace transform method as described before, we can solve
this system of ODEs using Maple to derive formulas for x1 and x2:

x1 = 0.742e−1.1t − 0.252 + 0.0974e−1.3t + t

x2 = 0.736e−1.1t + 0.317 − 0.0538e−1.3t

We used MetiTarski to prove that in the first mode, for all values of time in the
range 0 ≤ t ≤ 1, we have x2 ≤ 2, and in the second mode, for all values of time
in the range 0 ≤ t, we have x2 ≤ 1, and therefore, we verified that B cannot be
reachable.

We have similarly verified safety properties of other hybrid system case studies
such as the Room Heating and Mutant systems.

5 Conclusions

Our experiments demonstrate that problems arising in real-world applications
can be tackled using a suitable automatic theorem prover. Table 2 shows the
problems and runtimes for three categories of case studies: inverted pendulum,
disk drive reader, and hybrid systems. The runtimes were measured on a 2.66
GHz Mac Pro running Poly/ML.

As can be seen from Table 2, there are different versions of the IPM and
DDR problems which are related to the three intervals specifying the stability
criteria of the Nichols plot of the systems. In each interval, we have proved
several problems to guarantee that it meets or fails to meet its requirements.
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Table 2. Problems with Runtimes in Seconds

IPM-1-1 8.4
IPM-1-2 0.2
IPM-1-3 0.4
IPM-1-5-w 0.4
IPM-2-1 0.1
IPM-2-2 5.3
IPM-2-3 0.4
IPM-2-5-w 0.4
IPM-3-1 0.1
IPM-3-2 0.2
IPF-1-1 29.4
IPF-1-2 0.2
IPF-1-3 0.6
IPF-1-5-w 2.7
IPF-2-1 0.2
IPF-2-2 23.3
IPF-2-3 0.6
IPF-3-1 0.1
IPF-3-2 0.2
Inverted Pendulum

DDR-1-1 0.8
DDR-1-2 6.8
DDR-1-3 0.2
DDR-1-5 0.8
DDR-1-6-w 0.3
DDR-1-7-w 0.4
DDR-1-8-w 0.3
DDR-2-1 1.0
DDR-2-2 0.2
DDR-2-5-w 0.4
DDR-2-6-w 0.4
DDR-2-7-w 0.4
DDR-2-8-w 0.4
DDR-3-1 0.1
DDR-3-2 0.1
Disk Drive Reader

Collision Avoidance 5.1
Room Heating 0.8
Navigation-1 0.2
Navigation-2 0.4
Mutant-1 0.1
Mutant-2 12.9
Mutant-3 67.9

Hybrid Systems

Different versions of a hybrid systems problem correspond to different modes of
operation for the corresponding system.

The formulas to be proved are complicated, containing many occurrences of
special functions. On the other hand, and in contrast to our earlier problems from
the world of mathematics, they often have great margins of error. Therefore, they
can be tackled even if we use fairly crude approximations, which in turn makes
proofs less taxing than they would be otherwise.

We still need to investigate how well our work scales to larger and nonlin-
ear problems. There will clearly still be a place for the competitive approaches
based on model checking and constraint solving. Nevertheless, a theorem proving
approach is a suitable alternative, particularly when we require proofs and not
merely claims of correctness.
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Abstract. A 3D biped with knees and a hip is naturally modeled as
a nontrivial hybrid system; impacts occur when the knee strikes and
when the foot impacts the ground causing a switch in the dynamics gov-
erning the system. Through a variant of geometric reduction—termed
functional Routhian reduction—we can reduce the dynamics on each do-
main of this hybrid system to obtain a planar equivalent biped. Using
preexisting techniques for obtaining walking gaits for 2D bipeds, and uti-
lizing the decoupling effect afforded by the reduction process, we design
control strategies that result in stable walking gaits for the 3D biped.
That is, the main result of this paper is a control law that results in 3D
bipedal walking obtained through stable walking gaits for the equivalent
2D biped.

1 Introduction

Adding knees to a bipedal robot is important from both a practical and theo-
retical perspective: knees allow for an increase in energy efficiency and for the
ability to navigate rough terrain more robustly. Yet adding knees significantly
adds to the complexity of analyzing and controlling the biped [4], [13]. To see
this, note that bipedal robots are naturally modeled as hybrid systems; when
the foot impacts the ground, there is an instantaneous change in the velocity of
the system. Adding locking knees to the robot results in an even more complex
hybrid model since at knee lock there is another instantaneous change in the
velocity of the system. Moreover, this necessarily results in two sets of dynami-
cal equations: one where the knee is unlocked and one where the knee is locked.
Kneed walking, therefore, provides significant novel challenges, especially when
coupled with the desire for three-dimensional bipedal walking.

Three-dimensional (3D) bipedal walking provides interesting challenges not
found in its two-dimensional (2D) counterpart. In this case one must not only
achieve stable forward motion, but simultaneously stabilize the walker upright
during this motion. In addition, while 2D bipedal walking has been well-studied
(see [6], [7], [12], [18] and [14] to name a few), the results in 3D bipedal walking
are relatively limited (see [5], [9] and [8] for some results in 3D walking) and
there have yet to be results on obtaining walking for 3D bipedal robots with
knee locking. Coupling the study of 3D bipeds with the study of locking knees,
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therefore, forms a challenge that will test our understanding of the underlying
mechanisms of walking.

Fundamental to understanding 3D walking—with or without knees—is un-
derstanding the interplay between the lateral and sagittal dynamics. That is, we
must mathematically quantify how to “decouple” the dynamics of a 3D biped
into its sagittal and lateral components; this is done by exploiting inherent sym-
metries in walkers through the use of geometric reduction. Specifically, we con-
sider a form of geometric reduction termed functional Routhian reduction (first
introduced in [3] and generalized in [2]). As with classical reduction, this form
of reduction utilizes symmetries in a system, in the form of “cyclic” variables,
to reduce the dimensionality of the system. Unlike classical reduction, this is
done by setting the conserved quantities equal to an arbitrary function of the
“cyclic” variables rather than a constant, i.e., there is a functional conserved
quantity. This allows us to “control” the decoupling effect of geometric reduction
through this function, a fact that will be instrumental in the construction of our
control law.

The main result of this paper is a control law that results in stable walking for
a 3D biped with knees and a hip, which is achieved by combining three control
laws. The first control law affects the sagittal dynamics of the biped by shaping
the potential energy so that the 2D biped, obtained by constraining the 3D biped
to the sagittal plane, has stable walking gaits. The second control law shapes
the total energy of the 3D biped so that functional Routhian reduction can be
applied—the reduced system is exactly the 2D system after applying the first
control law—thus decoupling the sagittal and lateral dynamics, while allowing
us to affect the lateral dynamics through our specific choice of the functional
conserved quantity, for certain initial conditions. Finally, the third control law
stabilizes to the surface of initial conditions for which the decoupling afforded by
the second control law is valid. We verify numerically that the combined control
law results in stable walking, i.e., a locally exponentially stable periodic orbit.

2 Bipedal Model

Hybrid systems are systems that display both continuous and discrete behavior
and so bipedal walkers are naturally modeled by systems of this form; the con-
tinuous component consists of the dynamics dictated by Lagrangians modeling
mechanical systems in different domains, and the discrete component consists
of the impact equations which instantaneously change the velocity of the sys-
tem when the knees lock or when the foot contacts the ground. This section,
therefore, introduces the basic terminology of hybrid systems and introduces
the hybrid model of the biped considered in this paper.

Definition 1. A hybrid control system is a tuple

H C = (Γ, D, U, G, R, FG),

where
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Fig. 1. A graphical representation of the domains of the hybrid control system H C 3D

– Γ = (V, E) is an oriented graph, i.e., V and E are a set of vertices and
edges, respectively, and there exists a source function sor : E → V and a
target function tar : E → V which associates to an edge its source and
target, respectively.

– D = {Dv}v∈V is a set of domains, where Dv ⊆ Rnv is a smooth submanifold
of Rnv ,

– U = {Uv}v∈V , where Uv ⊂ Rkv is a set of admissible controls,
– G = {Ge}e∈E is a set of guards, where Ge ⊆ Dsor(e),
– R = {Re}e∈E is a set of reset maps, where Re : Ge → Dtar(e) is a smooth

map,
– FG = {(fv, gv)}v∈E, where (fv, gv) is a control system on Dv, i.e., ẋ =

fv(x) + gv(x)u for x ∈ Dv and u ∈ Uv.

A hybrid system H = (Γ, D, G, R, F ) is a hybrid control system with U = {0},
in which case F = {fv}v∈E.

Solutions to hybrid systems, or hybrid flows or hybrid executions, are defined in
the traditional manner (see [10]). A solution to a hybrid system is k-periodic
if it returns to the same point after passing through the domain in which it is
contained k times (in the process it may pass through an arbitrary number of
other domains of the hybrid system). One can consider the local exponential
stability of k-periodic solutions in the obvious way (see [2] for this definition in
the case of a hybrid system with one domain). One can associate to a k-periodic
solution of a hybrid system a Poincare map, and the stability of the k-periodic
solution can be determined by considering the stability of the Poincare map.
Finally, the stability can be determined numerically using approximations of the
Jacobian of the Poincare map (see [14] and [15]). This is how we will determine
that the periodic orbit for the 3D biped produced in this paper is stable.

3D biped model. The model of interest is a controlled bipedal robot with a
hip, knees and splayed legs that walks on flat ground in three dimensions (see
Figure 2), from which we will explicitly construct the hybrid control system:

H C 3D = (Γ3D, D3D, U3D, G3D, R3D, FG3D).
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Fig. 2. The sagittal and lateral planes of a three-dimensional bipedal robot

In particular, Γ3D = ({u, l}, {eu = (u, l), el = (l, u)}). That is, there are two
domains u, l and two edges eu, el (see Figure 1). In the first domain the biped’s
non-stance knee is unlocked and in the second domain the biped’s knee is locked.
Transitions occur from domain u to domain l when the knee locks, and from l to
u when the foot strikes the ground. Note that the discrete structure of this model
enforces temporal ordering to events (kneelock and footstrike) as motivated by
the two-dimensional biped with knees considered in [4]. We will now construct
the rest of the hybrid system H C 3D beginning on the level of Lagrangians and
constraint functions (see [1,2,3]).

Associated with each domain, there is a configuration space Q3D
u = T3×S1 and

Q3D
l = T2 × S1 associated with the knee being unlocked and locked, respectively.

The coordinates on Q3D
u are given by qu = (θT

u , ϕ)T , with θu = (θs, θns, θk)T the
vector of sagittal-plane variables with the knee unlocked, where θs is the angle of
the stance leg from vertical, θns is the angle of the non-stance leg from vertical and
θk is the angle of the knee from vertical (see Figure 2), and ϕ is the lean (or roll)
from vertical. Similarly, the coordinates on Q3D

l are given by ql = (θT
l , ϕ)T , where

θl = (θs, θns)T is again the vector of sagittal-plane variables with the knee locked.
Note that the hip width w, leg length �, and leg splay angle ρ are held constant.

Each domain and guard are constructed from constraint functions. For the
knee unlocked domain, the unilateral constraint is given by:

H3D
u (qu) = θk − θns,

which is positive when the knee is unlocked and zero at kneestrike. For the knee
locked domain, the unilateral constraint is given by:

H3D
l (ql) = � cos(ρ) (cos(θs) − cos(θns)) cos(ϕ) + (w − 2 sin(ρ)) sin(ϕ),

which gives the height of the non-stance foot above the ground. Thus the domains
for the hybrid system D3D = {D3D

u , D3D
l } are obtained by requiring that the

constraint functions be positive, i.e., for i ∈ {u, l},
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D3D
i =

{(
qi

q̇i

)
∈ TQ3D

i : H3D
i (qi) ≥ 0

}
.

We put no restrictions on the set of admissible controls except that they can
only directly affect the angular accelerations. Therefore, U3D = {U3D

u , U3D
l } with

U3D
u = R4 and U3D

l = R3.
The set of guards is given by G3D = {G3D

eu
, G3D

el
} where G3D

eu
is the set of

states where the leg is locking and G3D
el

is the set of states in which the height
of the swing foot is zero and infinitesimally decreasing. That is, for i ∈ {u, l},

G3D
ei

=
{(

qi

q̇i

)
∈ TQ3D

i : H3D
i (qi) = 0, dH3D

i (qi)q̇i < 0
}

,

with dH3D
i (qi) =

(
∂H3D

i

∂qi
(qi)

)T

.

The set of reset maps is given by R3D = {R3D
eu

, R3D
el

}. The reset map R3D
eu

is
given by

R3D
eu

(qu, q̇u) =

⎛⎜⎜⎝
ql

P (qu, q̇u)1
P (qu, q̇u)2
P (qu, q̇u)4

⎞⎟⎟⎠
where

P (qu, q̇u) = q̇u − dH3D
u (qu)q̇u

dH3D
u (qu)M3D

u (qu)−1dH3D
u (qu)T M3D

u (qu)−1dH3D
u (qu)T

with M3D
u (qu) the inertia matrix given in (1). This reset map models a perfectly

plastic impact at the knee.
The reset map R3D

el
similarly models a perfectly plastic impact at the foot.

This is obtained through the same process outlined in [3] and [7] (see [4] for
a nice explanation of the computation of the impact equations for a 2D kneed
walker) but space constraints prevent the inclusion of this equation. Also, note
that the signs of w and ρ are flipped during impact to model the change in
stance leg.

Finally, the dynamics for H C 3D are obtained from the Euler-Lagrange equa-
tions for the two mechanical systems in each domain. Specifically, the Lagrangian
describing each system is given by, for i ∈ {u, l},

L3D
i (qi, q̇i) =

1
2
q̇T
i M3D

i (qi)q̇i − V 3D
i (qi),

where M3D
i (qi) is the inertial matrix and V 3D

i (qi) is the potential energy (these
are large matrices and so space constraints prevent the inclusion of them in this
paper), where M3D

i (qi) can be expressed in block matrix form as follows:

M3D
i (qi) =

(
Mθ

i (θi) Mϕ,θ
i (θi)T

Mϕ,θ
i (θi) mϕ

i (θi)

)
, (1)
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where M3D
i (qi) ∈ Rni×ni , Mθ

i (θi) ∈ R(ni−1)×(ni−1), Mϕ,θ
i (θi) ∈ R1×(ni−1) and

mϕ
i (θi) ∈ R where nu = 4 and nl = 3. The reason for this block matrix repre-

sentation will become clear when the control laws are introduced.
Using the controlled Euler-Lagrange equations, the dynamics for the walker

are given by:

M3D
i (qi)q̈i + C3D

i (qi, q̇i)q̇i + N3D
i (qi) = B3D

i vi,

where vi ∈ U3D
i , C3D

i (qi, q̇i) is the Coriolis matrix, N3D
i = ∂V 3D

i

∂qi
(qi), and

B3D
l =

⎛⎝1 −1 0
0 1 0
0 0 1

⎞⎠ , B3D
u =

⎛⎜⎜⎝
1 −1 0 0
0 1 −1 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ ,

which converts the torque from relative coordinates to absolute.
Thus for FG3D = {FG3D

u , FG3D
l }, we have for i ∈ {u, l}

f3D
i (qi, q̇i) =

(
q̇i

M3D
i (q)−1

(
−C3D

i (qi, q̇i)q̇i − N3D
i (qi)

)) ,

g3D
i (qi, q̇i) =

(
0ni×ni

M3D
i (qi)−1B3D

i

)
,

where 0ni×ni is a ni × ni matrix of zeros.

3 Control Law Construction

This section presents the control law for the 3D biped with a knee and hip, the
construction of which is motivated by the control law for the 3D biped (without
a knee) successfully utilized in [2]. In particular, the control law is obtained by
combining three control laws on each domain, u and l, of the hybrid system. The
first control law acts on the sagittal dynamics of the walker on each domain in
a way analogous to the controlled symmetries control law used for 2D walkers,
the second control law transforms the Lagrangians of the 3D walker into almost-
cyclic Lagrangians so that we can utilize functional Routhian reduction (see [2]),
and the third control law utilizes zero dynamics techniques to stabilize to the set
of initial conditions where the decoupling effect afforded by functional Routhian
reduction is in effect. The result of combining these control laws is a control law
on each domain of the hybrid system that results in stable walking; the specific
attributes of this walking will be discussed in the next section.

Reduced dynamics controller. The first control law affects the dynamics of
the 3D biped’s sagittal plane by shaping the potential energy of the Lagrangian
describing these dynamics on each domain of the hybrid system as motivated
by the controlled symmetries method of [17]. The end result is a hybrid system
modeling the 2D dynamics of the biped that walks on flat ground.
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We can view the 2D sagittal restriction of the 3D biped as a hybrid control
system:

H C 2D = (Γ3D, D2D, U2D, G2D, R2D, FG2D)

where Γ2D = Γ3D. To obtain this hybrid system we consider two configuration
spaces Q2D

u = T3 and Q2D
l = T2 with coordinates θu = (θs, θns, θk)T and θl =

(θs, θns)T and let

D2D
i =

{(
θi

θ̇i

)
∈ TQ2D

i : H2D
i (θi) ≥ 0

}
,

G2D
ei

=
{(

θi

θ̇i

)
∈ TQ2D

i : H2D
i (θi) = 0, dH2D

i (θi)θ̇i < 0
}

,

for i ∈ {u, l}, with H2D
i (θi) = H3D

i (θi, 0). We obtain the reset maps R2D
eu

and
R2D

el
by similarly projecting the reset maps to the ϕ = 0 subspace. For the set

of admissible controls, we take U2D
u = R3 and U2D

l = R2. Finally, the dynamics
(f2D

i , g2D
i ), i ∈ {u, l}, are obtained from the Lagrangians given by:

L2D
i (θi, θ̇i) =

1
2
θ̇T

i M2D
i (θi)θ̇i − V θ

i (θi),

where M2D
i = Mθ

i as in (1) and V 2D
i (θi) = V 3D

i (θi, 0), through the Euler La-
grange equations as was done in the 3D model, where in this case B2D

u and B2D
l

are the 3 × 3 and 2 × 2 upper-left submatrices of B3D
u and B3D

l , respectively.
The hybrid control system H C 2D is similar, but not equivalent, to the typical

2D kneed walker (cf. [4]) (since the splayed legs affects the height of the planar
robot) which motivates the control law to be introduced. That is, we utilize
controlled symmetries of [17] by “rotating the world” via a group action in order
to shape the potential energy of both L2D

u and L2D
l to obtain stable walking gaits

on flat ground for H C 2D.
Consider the group action Ψi : S1 × Q2D

i → Q2D
i , i ∈ {u, l}, given by:

Ψγ
l (θl) :=

(
θs + γ
θns + γ

)
, Ψγ

u (θu) :=

⎛⎝ θs + γ
θns + γ
θk + γ

⎞⎠
for slope angle γ ∈ S1. Using this, define the following two feedback control laws:

KRγ
i (θi) := (B2D

i )−1
(

∂V 2D
i

∂θi
(θi) − ∂V 2D

i

∂θi
(Ψγ

i (θi))
)

, (2)

for i ∈ {u, l}. Applying these control laws to the control systems (f2D
i , g2D

i )
yields the dynamical systems:

fγ
i (θi, θ̇i) := f2D

i (θi, θ̇i) + g2D
i (θi, θ̇i)KRγ

i (θi),

which are just the vector fields associated to the Lagrangians

Lγ
i (θi, θ̇i) =

1
2
θ̇T

i M2D
i (θi)θ̇i − V 2D

i (Ψγ
i (θi)). (3)
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Fig. 3. A walking gait of the 2D biped obtained by restricting the 3D biped

We have thus defined a hybrid control system:

H γ
2D := (Γ2D, D2D, G2D, R2D, F γ),

where F γ = {fγ
u , fγ

l }.
As with the typical kneed 2D biped, it can be verified that for certain γ, this

hybrid system has a stable periodic orbit. An example of the 2D walking that is
obtained for this 2D biped under this control law can be seen in Figure 3. Note
that for this simulation, γ = 0.0504 (and the same model constants as used in
Section 4) motivated by [4].

Lagrangian shaping controllers. The fundamental tool used in the con-
struction of the second control law is functional Routhian reduction (see [2] for
a complete discussion of this type of reduction). This is a variant of standard
Routhian reduction [11], and allows one to reduce the dimensionality of dynami-
cal systems obtained from “almost-cyclic” Lagrangians. Moreover, it differs from
standard reduction techniques in that one can set the cyclic variables equal to a
function, rather than a constant, thus affecting the behavior of these cyclic vari-
ables. This type of reduction is fundamental in the construction of our control
law since the cyclic variable is the lean angle, so applying this reduction allows
for the decomposition of the walker into its sagittal and lateral components.

More concretely, we introduce controllers to shape both the kinetic and poten-
tial energy of L3D

i , i ∈ {u, l} so as to render them “almost-cyclic.” This shaping
is done so that the functional Routhians (the Lagrangians for the reduced sys-
tems) associated with these almost-cyclic Lagrangians are just the Lagrangians
for the 2D kneed walker considered in the construction of the first control laws.

Consider the following almost-cyclic Lagrangians for i ∈ {u, l}:

L
(α,γ)
i (θi, ϕ, θ̇i, ϕ̇) =

1
2
(
θ̇T

i ϕ̇
)
Mα

i (θi)
(

θ̇i

ϕ̇

)
− Wα

i (θi, ϕ, θ̇i) − V
(α,γ)
i (θi, ϕ),

where

Mα
i (θi) =

(
M2D

i (θi) + Mϕ,θ
i (θi)T Mϕ,θ

i (θi)
mϕ

i (θi)
Mϕ,θ

i (θi)T

Mϕ,θ
i (θi) mϕ

i (θi)

)
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Wα
i (θi, ϕ, θ̇i) = − αϕ

mϕ
i (θi)

Mϕ,θ
i (θi)θ̇i

V
(α,γ)
i (θi, ϕ) = V 2D

i (Ψγ
i (θi)) − 1

2
α2ϕ2

mϕ
i (θi)

with Mϕ,θ
i (θi), M2D

i (θi) = Mθ
i (θi), and mϕ

i (θi) as defined in (1)—the last two
are positive definite since M3D

i (qi) > 0. Referring to [2], for these almost-cyclic
Lagrangians, we have taken λ(ϕ) = −αϕ. It follows that the functional Routhi-
ans associated with these cyclic Lagrangians are Lγ

i as given in (3).
Now we can define two feedback control laws that transform L3D

i to L
(α,γ)
i .

In particular, for i ∈ {u, l}, let

KS
(α,γ)
i (qi, q̇i) := (B3D

i )−1(C3D
i (qi, q̇i)q̇i + N3D

i (qi) (4)

+M3D
i (qi)Mα

i (qi)−1(−Cα
i (qi, q̇i)q̇i − N

(α,γ)
i (qi))),

where Cα
i is the shaped Coriolis matrix and N

(α,γ)
i = ∂V

(α,γ)
i

∂qi
. Note that these

control laws implicitly use the two first control laws. Applying these to the
control systems (f3D

i , g3D
i ) yields the dynamic systems:

f
(α,γ)
i (qi, q̇i) := f3D

i (qi, q̇i) + g3D
i (qi, q̇i)KS

(α,γ)
i (qi, q̇i), (5)

which are just the vector fields associated to the Lagrangians L
(α,γ)
i . Moreover

we have the following relationship between the behavior of fα,γ
i and fγ

i on each
domain of the hybrid system; this result follows directly from Theorem 1 in [2].

Theorem 1. Let i ∈ {u, l}, then (θi(t), ϕ(t), θ̇i(t), ϕ̇(t)) is a solution to the
vector field f

(α,γ)
i on [t0, tF ] with

ϕ̇(t0) =
−1

mϕ
i (θi(t0))

(αϕ(t0) + Mϕ,θ
i (θi(t0))θ̇i(t0)), (6)

if and only if (θi(t), θ̇i(t)) is a solution to the vector field fγ
i and (ϕ(t), ϕ̇(t))

satisfies:

ϕ̇(t) =
−1

mϕ
i (θi(t))

(αϕ(t) + Mϕ,θ
i (θi(t))θ̇i(t)). (7)

This result implies that on each domain, for certain initial conditions, i.e., those
satisfying (6), the dynamics of the biped can effectively be decoupled into the
sagittal and lateral dynamics. Moreover, according to (7), the lateral dynamics
must evolve in a very specific fashion. These fundamental points will allow us
to use the walking gait for the 2D biped obtained by restricting the biped to
obtain walking gaits for the 3D biped. But first, we must address how to handle
situations where (6) is not satisfied.
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Zero dynamics controller. The decoupling effect of Theorem 1 can only be
enjoyed when (6) is satisfied; this set of initial conditions forms a hypersurface
in each domain. Since most initial conditions will not satisfy this constraint, i.e.,
lie on this surface, we will use the classical method of output linearization in
non-linear systems to stabilize to this hypersurface (see [16] for the continuous
case and [7], [14] for the hybrid analogue).

Before introducing the third control law, we define a new hybrid control system
that implicitly utilizes the first two control laws. Specifically, let

H C
(α,γ)
3D = (Γ3D, D3D, R, G3D, R3D, FG(α,γ))

where Γ3D, D3D, G3D and R3D are defined as for H C 3D and

FG(α,γ) = {(f (α,γ)
i , g

(α,γ)
i )}i∈{u,l}.

Each control system (f (α,γ)
i , g

(α,γ)
i ) is given by:

f
(α,γ)
i (qi, q̇i) + g

(α,γ)
i (qi, q̇i)vi = f

(α,γ)
i (qi, q̇i) + g3D

i (qi, q̇i)bnivi,

where vi ∈ R and bni is the nth
i basis vector in Rni with nu = 4 and nl = 3 and

f
(α,γ)
i as given in (5).
Motivated by our desire to satisfy (6), we define the following two functions

for i ∈ {u, l},

hi(qi, q̇i) := ϕ̇ +
1

mϕ
i (θi)

(αϕ + Mϕ,θ
i (θi)θ̇i).

The main idea in the construction of the third control law is that we would like
to drive hi(qi, q̇i) to zero, i.e., we would like to drive the system to the surface

Zi =
{(

qi

q̇i

)
∈ TQ3D

i : hi(qi, q̇i) = 0
}

.

With this in mind, and motivated by the standard method for driving an output
function to zero in a nonlinear control system, we define the following feedback
control laws:

vi = KZ
(ε,α,γ)
i (qi, q̇i) :=

−1
L

g
(α,γ)
i

hi(qi, q̇i)

(
L

f
(α,γ)
i

hi(qi, q̇i) +
1
ε
hi(qi, q̇i)

)
,

where L
g
(α,γ)
i

hi is the Lie derivative of hi with respect to g
(α,γ)
i , L

f
(α,γ)
i

hi is the

Lie derivative of hi with respect to f
(α,γ)
i and KZ

(ε,α,γ)
i is well-defined since

L
g
(α,γ)
i

hi(qi, q̇i) �= 0. Note that under these control laws, each hi will decay
exponentially when the solution is in domain i since its evolution will be governed
by the differential equation:

ḣi = −1
ε
hi.
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Fig. 4. A walking gait for the 3D biped

Utilizing the feedback control law KZ
(ε,α,γ)
i , we obtain a new hybrid system:

H
(ε,α,γ)

3D := (Γ3D, D3D, G3D, R3D, F (ε,α,γ)),

where F (ε,α,γ) = {f (ε,α,γ)
i }i∈{u,l} with

f
(ε,α,γ)
i (qi, q̇i) := f

(α,γ)
i (qi, q̇i) + g

(α,γ)
i (qi, q̇i)KZ

(ε,α,γ)
i (qi, q̇i).

Note that ε, α and γ can be thought of as control gains, as long as they are
chosen so that ε > 0, α > 0, and γ such that H γ

2D has a stable periodic orbit.
We now proceed to examine the behavior of H

(ε,α,γ)
3D .

4 Simulation Results

In this section we present simulation results supporting our claim that H
(ε,α,γ)

3D
has a stable periodic orbit, i.e., that we obtain stable walking for the 3D biped.

We first choose model parameters mc = 0.05kg, mt = 0.5kg, Mh = 0.5kg,
ρ = 0.0188rad, w = 10cm, � = 1m, rc = 0.372m, rt = 0.175m, γ = 0.0504rad,
ε = 1

5 , and α = 10. The walking gait and stable limit cycle for our model with
initial condition

x0 =
(
0.000628 0.236309 0.236309 −0.238929 −0.238929

0.016716 1.513716 1.513716 1.590103 1.590103
)T

and these parameters is shown in Figure 4, 5 and 6, respectively. Note that each
jump in the phase portraits shown corresponds to a jump from one vertex in
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Fig. 5. A stable limit cycle of the 3D biped (top)

the graph Γ3D to another and that, by inspection, the system appears to have a
stable 2-periodic limit cycle.

We show that this limit cycle is (locally) exponentially stable by verifying
that the eigenvalues of the linearized Poincare map at a fixed point of the limit
cycle all have magnitude less than one [15]. Since our hybrid system consists of
multiple domains we choose a fixed point right before footstrike, run the model
forward two strides, and obtain five stable eigenvalues from the Jacobian of the
Poincare map. The linearized Poincare map will always yield n − 1 eigenvalues,
where n is the dimension of the configuration space where the Poincare section of
the Poincare map is located, since the Poincare section is by definition taken to
be an n−1 dimensional hypersurface. Since our fixed point is in the knee-locked
domain, our configuration space is Q3D

l , of dimension 6. Thus, the 5 eigenvalues
are 0.060149 ± 0.593669ı, 0.000010, 0.004772 and 0.029407. The fact that these
eigenvalues have magnitude much less than 1 suggests that the periodic orbit is
both stable and that our third control law is effective at rejecting perturbations
that might prevent the system from reaching a stable limit cycle.

The zero dynamics controller ensures that during the continuous evolution
of the biped, solutions will converge exponentially to the surface Zi where the
sagittal and lateral dynamics are decoupled. What is interesting is that after
each kneestrike or footstrike, the dynamics are thrown off the surface Zi where-
after the zero dynamics controller again drives the system to the surface (this
behavior can be seen in Figure 7). This could theoretically destroy the stability
of walking in the sagittal plane, but fortunately does not due to two main facts:
the perturbations away from the surface Zi are not large, and the zero dynamics
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over time for the walking gait of the 3D biped (bottom)
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brings the system close to the surface very quickly (exponentially fast) where
again the decoupling effects are enjoyed. As a final note, the functions hu and
hl will only decay exponentially when the solution is in domain u and l, respec-
tively. This can be seen in the plot of hl, where this function does not decay
exponentially when the knee is unlocked, but does after kneestrike which occurs
at the smaller jumps in the function.

The results of our simulation also indicate that we are able to obtain very
natural walking using our three control laws. Looking at the time evolution of
the knee angle θk in Figure 7, we see that in the knee-unlocked domain the
leg swings naturally due to the passive dynamics, and then locks briefly before
footstrike. It was shown in [2] that the natural side-to-side swaying, evident in the
phase portrait of ϕ in Figure 6, is induced by the functional Routhian reduction
used in the second control law. When the third control law brings the system
close to the surface Zi, the phase portraits of the sagittal dynamics appear very
similar to those of the 2D biped. As a result the stance and non-stance angles
evolve like the 2D biped. In other words we have obtained stable, energy-efficient
and natural walking gaits by virtue of the decoupling of the sagittal and lateral
dynamics.

5 Conclusion

This paper presented a hybrid control law yielding stable walking for a three-
dimensional biped with a hip and knees; while the result of this control law
was natural-looking walking, indicating that it captures the natural dynamics
of walking, there are numerous future research questions that result from this
work. First, while the stability of the walking gait was verified numerically, the
question is: can similar results be proven analytically? More importantly, in or-
der to obtain these results, it was necessary to assume full actuation; since more
complex walking involves phases of underactuation, dealing with underactua-
tion in the context of the control scheme outlined here presents very interesting
challenges. Finally, considering more complex bipedal robots is of fundamental
importance, e.g., bipeds with feet. In considering these models, the correspond-
ing hybrid systems will become increasingly complex with many more discrete
domains and transitions between them. The final goal is to apply the general
control strategy presented here to these more complex models in order to design
bipedal walkers that display human looking walking.
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Abstract. We consider the problem of security constrained optimal con-
trol for discrete-time, linear dynamical systems in which control and mea-
surement packets are transmitted over a communication network. The
packets may be jammed or compromised by a malicious adversary. For a
class of denial-of-service (DoS) attack models, the goal is to find an (op-
timal) causal feedback controller that minimizes a given objective func-
tion subject to safety and power constraints. We present a semi-definite
programming based solution for solving this problem. Our analysis also
presents insights on the effect of attack models on solution of the optimal
control problem.

1 Introduction

Attacks to computer networks have become prevalent over the last decade. While
most control networks have been safe in the past, they are currently more vul-
nerable to malicious attacks [7, 18]. The consequences of a successful attack on
control networks can be more damaging than attacks on other networks be-
cause control systems are at the core of many critical infrastructures. Therefore,
analyzing the security of control systems is a growing concern [4,7,12,13,15,18].

In the control and verification community there is a significant body of work
on networked control [16], stochastic system verification [6,1], robust control [2,
11, 3, 10], and fault-tolerant control [21]. We argue that several major security
concerns for control systems are not addressed by the current literature. For
example, fault analysis of control systems usually assumes independent modes
of failure, while during an attack, the modes of failure will be highly correlated.
On the other hand, most networked control work assumes that the failure modes
follow a given class of probability distributions; however, a real attacker has
no incentives to follow this assumed distribution, and may attack in a non-
deterministic manner. Finally, the work in stochastic system verification has
addressed safety and reachability problems for fairly general systems; however,
the potential applicability of these results for securing control systems has not
been studied.

In this article, we formulate and analyze the problem of secure control for
discrete-time linear dynamical systems. Our work is based on two ideas: (1) the
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introduction of safety-constraints as one of the top security requirements of a
control system, and (2) the introduction of new adversary models—we generalize
traditional uncertainty classes for control systems to incorporate more realistic
attacks. The goal in our model is to minimize a performance function such that
a safety specification is satisfied with high probability and power limitations are
obeyed in expectation when the sensor and control packets can be dropped by a
random or a resource-constrained attacker. Our analysis uses tools from optimal
control theory such as dynamic and convex programming.

1.1 Attacks on Control Systems

Malicious cyber attacks to control systems can be classified as either deception
attacks or denial-of-service DoS attacks.

In the context of control systems, integrity refers to the trustworthiness of
sensor and control data packets. A lack of integrity results in deception: when a
component receives false data and believes it to be true. In Figure 1, A1 and A3
represent deception attacks, where the adversary sends false information ỹ �= y
or ũ �= u from (one or more) sensors or controllers. The false information can
include: an incorrect measurement, the incorrect time stamp, or the incorrect
sender identity. The adversary can launch these attacks by compromising some
sensors (A1) or controllers (A3).

On the other hand, availability of a control system refers to the ability of
all components of being accessible. Lack of availability results in a DoS of sen-
sor and control data. A2 and A4 represent DoS attacks in Figure 1, where the
adversary prevents two entities from communicating. To launch a DoS the ad-
versary can jam the communication channels, compromise devices and prevent
them from sending data, attack the routing protocols, flood with network traffic
some devices, etc.

Lastly, A5 represents a direct attack against the actuators or the plant. Solu-
tions to these attacks, fall in the realm of detecting such attacks and improving
the physical security of the system.

As shown by the analysis of a database that tracked cyber-incidents affecting
industrial control systems from 1982 to 2003 [4], DoS is the most likely threat
to control systems; therefore in this article we focus on DoS attacks, leaving
deception attacks for future work.

2 Problem Setting

2.1 System Model

We consider a linear time invariant stochastic system over a time horizon k =
0, . . . , N−1with measurement and controlpackets subject toDoS attacks (γk, νk):

xk+1 = Axk + Bua
k + wk k = 0, . . . , N − 1, (1)

ua
k = νkuk νk ∈ {0, 1}, (2)

xa
k = γkxk γk ∈ {0, 1}, (3)
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Fig. 1. Attacks on a control system: A1 and A3 indicate integrity attacks, A2 and A4
indicate DoS attacks, and A5 indicate direct physical attacks to the process

where xk ∈ Rn and uk ∈ Rm denote the state and the control input respectively,
wk ∈ Rn is independent, Gaussian distributed noise with mean 0 and covariance
W (denoted as wk ∼ N (0, W )), x0 ∼ N (x̄, P0) is the initial state, and {γk}
(resp. {νk}) is the sensor (resp. actuator) attack sequence. Also, x0 and wk are
uncorrelated. The available state (resp. available control input) is denoted by
xa

k (resp. ua
k) after a DoS attack on the measurement (resp. control) packet.

Following [16], for an acknowledgment based communication protocol such as
TCP, the information set available at time k is Ik = {xa

0 , . . . , x
a
k, γk

0 , νk−1
0 } where

γj
i = (γi, . . . , γj) and νj

i = (νi, . . . , νj). Define uN−1
0 = (u0, . . . , uN−1).

We note that due to (3), the controller receives perfect state information xk

when γk = 1 and 0 when γk = 0. However, our analysis presented can also be
extended for the case of measurement equation ya

k = γkCsxk + vk.

2.2 Goals and Requirements

At this stage, we have not specified any restrictions on the DoS attack actions
except that (γk, νk) ∈ {0, 1}2 for k = 0, . . . , N − 1. We will impose constraints
on the attacker actions in Section 3.1. Given such constraints, our goal is to
synthesize a causal feedback control law uk = µk(Ik) such that for the system (1),
(2), and (3), the following finite-horizon objective function is minimized

JN (x̄, P0, u
N−1
0 ) = E

[
x�

NQxxxN +
N−1∑
k=0

(
xk

uk

)� (
In 0
0 νkIm

)
Q

(
xk

uk

) ∣∣∣uN−1
0 , x̄, P0

]
(4)

where Qxx � 0, and Q � 0 is partitioned as

Q =
(

Qxx 0
0 Quu

)
∈ R(n+m)×(n+m),

and constraints on both the state and the input in an expected sense

E

[(
xk

uk

)� (
In 0
0 νkIm

)
Hi

(
xk

uk

)]
≤ βi for i = 1, . . . , L, and k = 0, . . . , N − 1 (5)
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with Hi � 0 and scalar constraints on the state and the input in a probabilistic
sense

P

[
t�i

(
In 0
0 νkIm

)(
xk

uk

)
≤ αi

]
≥ (1 − ε) for i = 1, . . . , T, and k = 0, . . . , N − 1 (6)

with ti ∈ Rn+m are satisfied. The constraints (5) can be viewed as power con-
straints that limit the energy of state and control inputs at each time step. The
constraint (6) can be interpreted as a safety specification stipulating that the
state and the input remain within the hyperplanes specified by ti and αi with a
sufficiently high probability, (1 − ε), for k = 0, . . . , N − 1. Equations (5) and (6)
are to be interpreted as conditioned on the initial state, i.e., E[·] := E[·|x0] and
P[·] := P[·|x0].

3 Optimal Control with Constraints and Random Attacks

3.1 A Random DoS Attack Model

Networked control formulations have previously considered the loss of sensor or
control packets and their impact on the system. While previous results model
packet drops caused by random events (and not by an attacker) we believe these
packet drop models can be used as a first-step towards understanding the impact
of DoS attacks to our objective and constraints.

One of these models is the Bernoulli packet drop model, in which at each time,
the attacker randomly jams a measurement (resp. control) packet according to
independent Bernoulli trials with success probability γ̄ (resp. ν̄). This attack
model, referred as the Ber(γ̄, ν̄) adversary, has the following admissible attack
actions

ABer(γ̄,ν̄)
= {(γN−1

0 , νN−1
0 )|P(γk = 1) = γ̄,P(νk = 1) = ν̄, k = 0, . . . , N − 1}. (7)

For the ABer(γ̄,ν̄) model, we can write the Kalman filter equations for the state
estimate x̂k|k := E[xk|Ik] and the state estimation error ek|k := (xk − x̂k|k). For
the update step we have

x̂k+1|k = Ax̂k|k + νkBuk and, ek+1|k = Aek|k + wk

and for the correction step

x̂k+1|k+1 = γk+1xk+1 + (1 − γk+1)x̂k+1|k and, ek+1|k+1 = (1 − γk+1)ek+1|k,

starting with x̂0|−1 = x̄ and e0|−1 ∼ N (0, P0). It follows that the error covari-
ance matrices Σk+1|k := E[ek+1|ke�k+1|k|Ik] and Σk|k := E[ek|ke�k|k|Ik] do not
depend on the control input uk. Thus, the separation principle holds for TCP-like
communication [16]. Furthermore, it is easy to see that

E[ek|kx�
k|k] = 0. (8)
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Taking expectations w.r.t. {γk}, the expected error covariances follow

Eγ [Σk+1|k] = AEγ [Σk|k]A� + W and, Eγ [Σk+1|k+1] = (1 − γ̄)Eγ [Σk+1|k],

for k = 0, . . . , N − 1 starting with the initial condition Σ0|−1 = P0. For the ease
of notation, we denote x̂k+1 := x̂k+1|k, ek+1 := ek+1|k, and Σk+1 := Σk+1|k.
Using the Kalman filter equations we obtain for k = 0, . . . , N − 1

x̂k+1 = Ax̂k + νkBuk + γkAek (9)
ek+1 = (1 − γk)Aek + wk (10)

Eγ [Σk+1] = (1 − γ̄)AEγ [Σk]A� + W. (11)

Definition 1. For Bernoulli attacks, (γN−1
0 , νN−1

0 ) ∈ ABer(γ̄,ν̄) over systems
controlled over TCP-like communication protocols, the safety-constrained robust
optimal control problem is equivalent to minimizing (4) subject to (9), (11), (5)
and (6).

3.2 Controller Parameterization

In this section, we deal with the safety-constrained optimal control problem as
defined in Definition 1. Naive implementation of the control law u∗

k = −Lkx̂k|k
may not guarantee constraint satisfaction for any initial state. Recent research
has shown that for the optimal control problems involving state and input con-
straints, more general causal feedback controllers can guarantee a larger set of
initial states for which the constrained optimal control problem admits a feasible
solution [3, 10, 17, 14, 19]. Specifically, these approaches consider the problem of
designing causal controllers that are affine in all previous measurements such
that a convex objective function is minimized subject to constraints imposed by
the system dynamics, and the state and inputs constraints are satisfied.

When considering a system under DoS attacks, (1), (2), and (3), the class of
causal feedback controllers can be defined as an affine function of the available
measurements, i.e.,

uk = ūk +
k∑

j=0

γjMk,jxj , k = 0, . . . , N − 1 (12)

where ūk ∈ Rm is the open-loop part of the control, and Mk,j ∈ Rm×n is
the feedback gain or the recourse at time k from sensor measurement xj . For
a lost measurement packet, say xj′ for γj′ = 0, the corresponding feedback
gain Mk,j′ has no contribution toward the control policy. We note that the
above parameterization can be re-expressed as an affine function of innova-
tions vk|k−1 := γk(xk − x̂k|k−1) = γkek as

uk = u◦
k +

k∑
j=0

γjMk,jej , k = 0, . . . , N − 1 (13)

where u◦
k := ūk +

∑k
j=0 γjMi,j x̂j|j−1.



36 S. Amin, A.A. Cárdenas, and S.S. Sastry

Remark 1. When only the current available measurement is used for computing
the feedback policy, the mapping µk can be expressed as

uk = ūk + γkMk,kxk = u◦
k + γkMkek, k = 0, . . . , N − 1, (14)

where Mk := Mk,k for ease of notation and u◦
k := ūk + γkMkx̂k|k−1. ��

3.3 Convex Characterization

In this section, we will show that unlike (12), the use of control parameter-
ization (13) yields an affine representation of state and control trajectories
in terms of the control parameters ūk (or u◦

k) and Mk,j . We use x, x̂, u, e
and w to denote the respective trajectories over the time horizon 0, . . . , N .
That is, x = (x�

0 , . . . , x�
N )� ∈ Rn(N+1) and similarly for x̂ ∈ Rn(N+1) and

e ∈ Rn(N+1); u = (u�
0 , . . . , u�

N−1)
� ∈ RmN and similarly for w ∈ RnN . Using

this representation, the system (1) and the control parameterization (12) can be
written as

x = Aw + BNu + x0, (15)
u = ū + MΓx, (16)

where x0, A, B, Γ, N are given in the Appendix and

M =

⎛⎜⎜⎜⎝
M0,0 0 . . . 0
M1,0 M1,1 . . . 0

...
. . .

. . .
...

MN−1,0 . . . MN−1,N−1 0

⎞⎟⎟⎟⎠ ∈ RmN×n(N+1), ū =

⎛⎜⎝ ū0

...
ūN−1

⎞⎟⎠ ∈ RmN (17)

Using (15) and (16), we can show that the closed-loop system response can be
written as (

x
u

)
=
(
G̃xw

G̃uw

)
w +

(
x̃
ũ

)
(18)

where

G̃xw =
(
A + BNMΓ(I − BNMΓ)−1A

)
G̃uw =

(
MΓ(I − BNMΓ)−1A

)
x̃ = x0 + BNū + BNMΓ(I − BNMΓ)−1(x0 + BNū)

ũ = MΓ(I − BNMΓ)−1(x0 + BNū) + ū

Equation (18) is nonlinear in the control parameters (ū,M) and hence, pa-
rameterization (12) cannot be directly used for solving constrained stochastic
optimal control problems. On the other hand, using (10), the error trajectory
can be written as

e = e0 + Hw (19)
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where e0 and H are also given in the Appendix. Using (19), (15) and the control
parameterization (13) we can re-express the closed-loop system response as(

x
u

)
=
(
Ĝxw

Ĝuw

)
w +

(
x̂
û

)
(20)

where

Ĝxw = (A + BNMΓH), Ĝuw = MΓH

x̂ = BNMΓe0 + x0 + BNu◦, û = MΓe0 + u◦

Thus, we arrive at the following result

Theorem 1. Under the error feedback parameterization (13), the closed loop
system response (20) is affine in the control parameters (u◦,M). ��

We will now use the error feedback parameterization (13) for our analysis. Al-
ternatively, we also note the following result:

Remark 2. Using the transformation

Q := MΓ(I − BNMΓ)−1, r := (I + QBN)ū (21)

where Q ∈ RmN×n(N+1) and r ∈ Rmn, the terms in equation (18) can be writ-
ten as: Gxw = (I + BNQ)A, Guw = QA, x̃ = (I + BNQ) x̄ + BNr, and
ũ = Qx̄+r. Using simple matrix operations, the relations in (21) can be inverted
as MΓ = (I + QBN)−1Q and ū = (I − MΓHN)r. Thus, under parameteri-
zation (21), the closed-loop system response also becomes affine in the control
parameters (r,Q). ��

3.4 Safety-Constrained Optimal Control for Bernoulli Attacks

For the control parameterization (12), and for the Bernoulli attack model,
ABer(γ̄,ν̄) we will now solve the safety-constrained optimal control problem as
stated in Lemma 1, i.e., minimize (4) subject to (9), (11), (5), and (6). We state
the following useful lemma

Lemma 1 (Schur Complements). For all X ∈ Sn, Y ∈ Rm×n, Z ∈ Sm, the
following statements are equivalent:

a)Z � 0, X − Y �Z−1Y � 0,

b)Z � 0,
(

X Y �

Y Z

)
� 0

For the sake of simplicity we will consider the parameterization (14). However,
our results can be re-derived for the parameterization (12). First, we will derive
the expression for

Vk = E

[(
x̂k

u◦
k

)(
x̂k

u◦
k

)�]
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Using (14), the update equation for the state estimate (9) becomes

x̂k+1 = Ax̂k + νkBu◦
k + γk(A + νkBMk)ek, (22)

and further defining F = [In, 0] ∈ Rn×(n+m) we have,

FVk+1F
� = V x̂x̂

k+1 = E
[
x̂k+1x̂

�
k+1

]
= E

[
(Ax̂k + νkBu◦

k + γk(A + νkBMk)ek)(Ax̂k + νkBu◦
k + γk(A + νkBMk)ek)�

]
=
[
A
∣∣√ν̄B

]
E

[(
x̂k

u◦
k

)(
x̂k

u◦
k

)�] [
A
∣∣√ν̄B

]�
+

√
γ̄(A +

√
ν̄BMk)Eγ [Σk](A +

√
ν̄BMk)�

√
γ̄

=
[
AVk

∣∣√ν̄BVk

]
(Vk)−1 [AVk

∣∣√ν̄BVk

]�
+

√
γ̄(AEγ [Σk] +

√
ν̄BUk)(Eγ [Σk])−1(AEγ [Σk] +

√
ν̄BUk)�

√
γ̄

where we have used Uk = MkEγ [Σk]. An upper bound on V can be obtained in
the form of the following LMI by replacing the equality by � and using Schur
complements for k = 0, . . . , N − 1:⎡⎣ (FVk+1F

�) ∗ ∗ ∗[
AVk

√
ν̄BVk

]�
0 Vk ∗√

γ̄(AEγ [Σk] +
√

ν̄BUk)� 0 0 Eγ [Σk]

⎤⎦ � 0 (23)

The objective function (4) can be expressed as

E
[
Tr

{
QxxxNx�

N

}]
+

N−1∑
k=0

E

[
Tr

{(
Qxx 0
0 νkQuu

)}(
xk

uk

)(
xk

uk

)�]

= Tr
{

QxxE
[
xNx�

N

]}
+

N−1∑
k=0

Tr

{(
Qxx 0
0 E[νk]Quu

)
E

[(
xk

uk

)(
xk

uk

)�]}

= Tr
{

QxxE
[
x̂N x̂�

N

]}
+

N−1∑
k=0

Tr

{(
Qxx 0
0 ν̄Quu

)
E

[(
x̂k

uk

)(
x̂k

uk

)�]}

+
N∑

k=0

Tr {QxxEγ [Σk]}

Since Σk does not depend on the control input (refer to eq. (11)),∑N
k=0 Tr {QxxEγ [Σk]} is a constant and minimizing JN (x̄, P0, u

N−1
0 ) is the same

as minimizing

Tr
{
QxxV x̂x̂

N

}
+

N−1∑
k=0

Tr
{(

Qxx 0
0 ν̄Quu

)
Pk

}
(24)
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where V x̂x̂
N is equal to E

[
x̂N x̂�

N

]
and the upper bound Pk is defined as

Pk � E

[(
x̂k

uk

)(
x̂k

uk

)�]
= E

[(
x̂k

u◦
k + γkMkek

)(
x̂k

u◦
k + γkMkek

)�]

= E

[(
x̂k

u◦
k

)(
x̂k

u◦
k

)�]
+
[
0 0
0 γ̄Uk(Eγ [Σk])−1U�

k

]
Again using Schur complement, we obtain for k = 0, . . . , N − 1⎡⎢⎢⎣

Pk ∗ ∗
Vk Vk ∗[
0√
γ̄Uk

]�
0 Eγ [Σk]

⎤⎥⎥⎦ � 0 (25)

The power constraints (5) can be written as

Tr

{
Hi

[
In 0
0 E[νk]Im

]
E

[(
xk

uk

)(
xk

uk

)�]}

= Tr

{
Hi

[
In 0
0 ν̄Im

]
E

[(
x̂k

uk

)(
x̂k

uk

)�]}
+ Tr {Hxx

i Eγ [Σk]}

Therefore the power constraints (5) become for i = 1, . . . , L, k = 0, . . . , N − 1

Tr
{

Hi

[
In 0
0 ν̄Im

]
Pk

}
≤ βi − Tr {Hxx

i Eγ [Σk]} . (26)

Thus, we can now state the following theorem

Theorem 2. For the (γN−1
0 , νN−1

0 ) ∈ ABer(γ̄,ν̄) attack model the optimal causal
controller of the form (14) for the system (1), (2), (3) that minimizes the ob-
jective function (4) subject to power constraints (5) is equivalent to solving the
following semidefinite program (SDP):

P(x̄, P0, N) :

{
minVi,Pi,Ui (24)
subject to (23), (25), (26).

(27)

��

In order to handle the safety specification (6), we refer to Theorem 3.1 in [5]
which says that for any ε ∈ (0, 1), the chance constraint of the form

inf
d∼D

P
[
d�x̃ ≤ 0

]
≥ 1 − ε

is equivalent to the second order cone constraint (SOCP)√
1 − ε

ε
x̃�Γ x̃ + d̂�x̃ ≤ 0
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where D is the set of all probability distributions with mean d̂ and covariance
Γ , d is the uncertain data with distributions in the set of distributions D, and
x̃ is the decision variable. We claim without proof that safety specifications of
type (6) can be converted to SOCP constraints following [5], [19].

4 Modeling General DoS Attacks

From the security viewpoint, it might be difficult to justify the incentive for the
attacker to follow a ABer(γ̄,ν̄) model. Therefore, in this section we introduce more
general attack models that impose constraints on the DoS attack actions (γk, νk).

First, note that if we know in advance the strategy of the attacker—for any
arbitrary sequence (γN−1

0 , νN−1
0 )—we can use the results from the previous the-

orem.

Corollary 1. The results of Theorem 2 be specialized to any given attack sig-
nature (γN−1

0 , νN−1
0 ) ∈ {0, 1}2N . ��

However, in practice we do not know the strategy of the attacker, thus we need
to prepare for all possible attacks. Our model constrains the attacker action in
time by restricting the DoS attacks on the measurement (resp. control) packet
for at most p < N (resp. q < N) time steps anywhere in the time interval i =
0, . . . , N − 1. This attack model is motivated by limitations on the resources of
the adversary—such as its battery power, or the response time of the defenders—
which in turn limits the number of times it can block a transmission. We refer
this attack model as the (p, q) adversary and it has the following admissible
attack actions

Apq = {(γN−1
0 , νN−1

0 ) ∈ {0, 1}2N
∣∣ ‖ γN−1

0 ‖1≥ N − p, ‖ νN−1
0 ‖1≥ N − q}, (28)

where ‖ · ‖1 denotes the 1−norm. The size of Apq is
∑p

i=0

(
N

N−i

)
·
∑q

j=0

(
N

N−j

)
.

An interesting sub-class of Apq attack actions is the class of block attack
strategies

Aτxτu
pq = {(γN−1

0 , νN−1
0 ) ∈ {0, 1}2N |γτx+p−1

τx
= 0, ντu+q−1

τu
= 0} (29)

where τx ∈ {0, . . . , N − p} and τu ∈ {0, . . . , N − q} are the times at which the
attacker starts jamming the measurement and control packets respectively. The
size of Aτxτu

pq is (N − p + 1) · (N − q + 1). The intuition behind this attack sub-
class is that an attacker will consume all of its resources continuously in order
to maximize the damage done to the system. In this attack sub-class, p and q
can represent the response time of defensive mechanisms. For example, a packet-
flooding attack may be useful until network administrators implement filters or
replicate the node under attack; similarly a jamming attack may be useful only
until the control operators find the jamming source and neutralize it.

We note that Apq and Aτxτu
pq are non-deterministic attack models in that the

attacker can choose its action non-deterministically as long as the constraints
defined by the attack model are satisfied.
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4.1 DoS Attacks against the Safety Constraint

One possible objective of the attacker can be to violate safety constraints:

Definition 2. [Most unsafe attack] For a given attack model A and control
strategy µk(Ik), the best attack plan to violate safety specification that a output
vector zk := (Cxk + νkDuk) remains within safe set S is

max
A

P[(Cxk + νkDµ(Ik)) ∈ Sc] for k = 0, . . . , N − 1 (30)

where Sc denotes the unsafe set.

We will now show that for control parameterization (12), the block pq attacks,
Aτxτu

pq can be viewed as the best attack plan for violating the safety constraint (re-
fer to Definition 2). We can write the system equation (1) as

xk+1 = Axk + νkBūk + νk

k∑
j=0

γjMk,jxj + wk

and for the attack strategy Aτxτu
pq :

xk+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Axk + wk for k = τu, . . . , τu + q − 1
Axk + Būk + B

∑min(τx−1,k)
j=0 Mk,jxj

+1(k ≥ τx + p)B
∑k

j=0 Mk,jxj + wk for k =

{
0, . . . , τu − 1
τu + q, . . . , N − 1.

(31)

Now, if we ignore ūk and substitute τx = 0, τu = p in (31) we obtain

xk+1 =

{
Axk + wk for k = 0, . . . , p + q − 1
Axk + B

∑k
j=p Mk,jxj for k = p + q, . . . , N − 1

(32)

Thus, using the attack strategy A0p
pq , the first p+q−1 time steps evolve as open-

loop and beyond time step p + q, the system evolves as closed using available
measurements since time p. With this strategy output vector zk is expected to
violate the safety constraint in the shortest time.

5 Formulation of New Challenges

From the controller’s viewpoint, it is of interest to design control laws that are
robust against all attacker actions, i.e.:

Definition 3. [Minimax (robust) control] For a given attack model A, the secu-
rity constrained robust optimal control problem is to synthesize a control law that
minimizes the maximum cost over all (γN−1

0 , νN−1
0 ) ∈ A, subject to the power

and safety constraints. This can be written as the minimax problem

min
µk(Ik)

max
A

[(4) subject to (1), (2), (3), (5) and, (6)] . (33)
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In general, we note that the problem (33) may not always be feasible. When A is
probabilistic, Definition 3 can be treated in sense of expectation or almost-surely.

On the other hand, from the attacker’s viewpoint, it is of interest to determine
the optimal attack plan that degrades performance, i.e.,

Definition 4. [Maximin (worst-case) attack] For a given attack model A, the
optimal attack plan is the attacker action that maximizes the minimum operating
costs. This can be written as the maximin problem

max
A

min
µk(Ik)

[(4) subject to (1), (2), (3)] . (34)

As a first effort to analyze these goals we first consider the classical linear
quadratic control problem, and analyze the cost function for the case of (1)
no attacks, (2) ABer(γ̄,ν̄)attacks, and (3) Apq attacks.

The problem is to find the optimal control policy uk = µk(Ik) that minimizes
the objective (4) for the system (1), (2), and (3). The solution of this problem can
be obtained in closed form using dynamic programming (DP) recursions [9, 16].

We recall that for the case of no-attack, i.e., (γk, νk) = (1, 1) for all k,
the optimal control law is given by u∗

k = −Lkxk where Lk := (B�Sk+1B +
Quu)−1B�Sk+1A and the matrices Sk are chosen such that SN = Qxx and for
k = N − 1, . . . , 0,

Sk = A�Sk+1 + Qxx − Rk

with Rk = L�
k (B�Sk+1B + Quu)Lk. The optimal cost is given by

J∗
N = x̄�S0x̄ + Tr{S0P0} +

N−1∑
k=0

Tr{Sk+1W}. (35)

Following [16], the optimal control law for the case of ABer(γ̄,ν̄) attack model is
given by u∗

k = −Lkx̂k|k where x̂k|k is given by the Kalman filter equations; the
expressions for Lk, Rk, SN are same as those for the no-attack case, and for
k = N − 1, . . . , 0,

Sk = A�Sk+1A + Qxx − ν̄Rk.

The optimal cost in this case is given by

J∗
N,ABer(γ̄,ν̄)

= x̄�S0x̄ + Tr{S0P0} +
N−1∑
k=0

Tr{Sk+1W} +
N−1∑
k=0

Tr{ν̄RkEγ [Σk|k]} (36)

Lemma 2. J∗
N,ABer(γ̄,ν̄)

≥ J∗
N for all (γ̄, ν̄) ∈ [0, 1]. ��

We now consider the case of Apq attacks. We can solve the problem of optimal
attack plan for the Apq attack class (refer to Definition 4):

For any given attack signature, (γN−1
0 , νN−1

0 ) ∈ {0, 1}2N , the update equa-
tions of error covariance are Σk+1|k = AΣk|kA� + W and Σk+1|k+1 = (1 −
γk+1)Σk+1|k and the optimal cost is given by
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JN,Apq =x̄�S0x̄ + Tr{S0P0}

+
N−1∑
k=0

Tr{Sk+1Q} +
N−1∑
k=0

Tr{(A�Sk+1A + Qxx − Sk)Σk|k} (37)

where SN = Qxx and for k = N − 1, . . . , 0,

Sk = A�Sk+1A + Qxx − νkA�Sk+1B(B�Sk+1B + Quu)−1B�Sk+1A. (38)

and for k = 1, . . . , N − 1,

Σk|k =
k∏

j=1

(1 − γj)AkP0A
k�

+
k−1∑
i=0

k∏
j=(k−i)

(1 − γj)AiWAi�. (39)

Proposition 1 An optimal attack plan for Apq attack model is a solution of the
following optimization problem:

max
Apq

(37) subject to (38), (39),

‖ γN−1
0 ‖1≥ (N − p), and ‖ νN−1

0 ‖1≥ (N − q).

We note that while Σk|k is affected by the past measurement attack se-
quence {γk

0}, Sk is affected by the future control attack sequence {νN−1
k }.

Remark 3. We can use dynamic programming or convex duality theory to solve
the problem without the �1 constraints on γN−1

0 and νN−1
0 , see [9]. In this case,

it is well-known that the optimal control policy is given by the linear feedback
law that depends only on the current state. To solve the constrained problem as
posed in Proposition 1, we propose to use suitable convex relaxations for the �1
constraints and solve the relaxed problem using semidefinite programming. ��

In future work we intend to address these problems and extend our results to
deception attacks.
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Appendix

x0 :=

⎛⎜⎜⎜⎜⎜⎝
In

A
A2

...
AN

⎞⎟⎟⎟⎟⎟⎠ x0 ∈ Rn(N+1), A :=

⎛⎜⎜⎜⎜⎜⎝
0 0 0 . . . 0
In 0 0 . . . 0
A In 0 . . . 0
...

...
...

. . . 0
AN−1 AN−2 AN−3 . . . In

⎞⎟⎟⎟⎟⎟⎠ ∈ Rn(N+1)×nN ,

B := A(IN ⊗ B) =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 . . . 0
B 0 0 . . . 0

AB B 0 . . . 0
...

...
...

. . . 0
AN−1B AN−2B AN−3B . . . B

⎞⎟⎟⎟⎟⎟⎠ ∈ Rn(N+1)×mN ,

Γ = diag(γN−1
0 ) ⊗ In =

⎛⎜⎝γ0In

. . .
γN−1In

⎞⎟⎠ ∈ RnN×nN ,

N = diag(νN−1
0 ) ⊗ Im =

⎛⎜⎝ν0Im

. . .
νN−1Im

⎞⎟⎠ ∈ RmN×mN ,

and

e0 =

⎛⎜⎜⎜⎜⎜⎝
In

(1 − γ0)A
(1 − γ0)(1 − γ1)A2

...∏N−1
j=0 (1 − γj)AN

⎞⎟⎟⎟⎟⎟⎠ e0 ∈ Rn(N+1)

H =

⎛⎜⎜⎜⎜⎜⎝
0 0 . . . 0
In 0 . . . 0

(1 − γ1)A In . . . 0
...

...
...

. . .
...∏N−1

j=1 (1 − γj)AN−1 ∏N−1
j=2 (1 − γj)AN−2 . . . In

⎞⎟⎟⎟⎟⎟⎠ ∈ Rn(N+1)×nN
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Abstract. This paper aims to simplify recent efforts proposed by the
Berkeley school in giving a formal semantics to the Ptolemy toolbox. We
achieve this by developing a simple and elegant functional theory of de-
terministic tag systems that is a generalisation of Kahn Process Network
theory (KPN). Our theory extends KPN by encompassing networks of
processes labelled by tags from partially ordered sets and makes deeper
use of Scott theory of Complete Partial Orders (CPO). Since CPO com-
pose well under direct sums, heterogeneous systems are simply captured
by direct sums of homogeneous systems, which are in turn constructed
by connecting systems over different tag sets by means of tag conver-
sion processes. For the (large) class of tag systems of “stream” type,
we show how to define tag conversion processes and how to implement
process communication. The resulting architecture is fully decentralised
and does not require Ptolemy’s directors. Last but not least, it provides
distribution for free.

1 Introduction

The semantics of heterogeneity. The need for heterogeneity in modelling and
development tools has been increasing while applications are becoming more
and more complex. In view of this state of matters, pioneering frameworks like
Ptolemy [11,13] which have started addressing the issue of heterogeneity a long
time ago are becoming always more popular and raising an ever growing interest.
Thus, concepts of this framework like models of computation and communication
(MoCC), actors, directors, and so on, have been getting an increasingly larger
acceptance.

Among the problems raised by this subject, the semantic question is impor-
tant. While homogeneous applications are in general well-mastered, problems
start at their interfaces, when several subsystems are composed to form a larger
application. Ambiguities, semantic inconsistencies, etc., are likely to produce
undesired behaviours which can badly impair the overall functioning of the com-
posed application. To this end, Lee & Sangiovanni have introduced their cele-
brated tagged signal model [10] which was meant to provide a precise semantics
to such frameworks as Ptolemy.
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Yet, there was still a large gap between this denotational formalism and the
behaviour of Ptolemy which is still largely bound to the operational semantics of
the simulation engine. Efforts have been devoted to filling this gap: for instance
BIP which is based on operational semantics [2] and 42 [14] which provides
building blocks for designing MoCCs in a comprehensive way.

The application of Scott theory to tag systems. A comprehensive step toward
closing this gap has recently been taken in [11], so as to make things simpler by
getting rid of non-determinism, that is, by restricting from relations to functions.
After all, determinism is something designers are fond of, most simulators like
Ptolemy are deterministic and, when non-determinism is needed, in most cases it
can be emulated by adding extra inputs to functions, aiming at choosing between
several possible futures.1

Yet, this was not sufficient: when composing functions, inputs of one function
can become outputs of another one and conversely, creating feedback loops and
resulting in the functional aspect being lost: we get systems of equations which
can have no solution as well as several solutions.

But this is a well-known issue of denotational semantics and well-known solu-
tions exist. The most widely adopted one is Scott’s semantics [15]: if the domain
of interest is a complete partial order (CPO) and we restrict ourselves to contin-
uous functions, then we know that every system of equations has a least solution
and it is sensible to decide that this is the semantics of the system. Moreover,
the least solution is itself a continuous function of its free inputs and thus can
in turn be composed at will. The framework is thus closed by composition (and
even by lifting to higher orders) and works perfectly well.

But there was another problem. The basic objects of the tagged signal model
are signals which in a deterministic point of view can be seen as functions from
tags to values. Scott approaches turn these signals into CPOs by turning the
value set into a CPO. In this way, the CPO property gets automatically lifted
from the image set to the function set. Thus, in this Scott theory applied to
tag systems, the tag set does not need to have any order property. But, in tag
system theory, tag sets are partially ordered and have a strong time flavour: in
Ptolemy, computations go from past to future, while in the Scott framework, it
does not matter (tags may not have any order and there may be neither past
nor future!).

Towards Kahn semantics. Thus [13] had to modify Scott’s order by requiring a
prefix ordering principle in the spirit of the Kahn order [9]: a signal is larger than
another one not only if it is more defined but also if both signals are defined
on some initial segment of the tag set. In this way, a signal s1 is larger than
another signal s2 if the initial segment over which s1 is defined is larger than
the initial segment over which s2 is defined. In this way, computations can only
extend the initial segments on which signals are defined and naturally flow from
past to future.
1 This is the way probability theory works: by adding input spaces about which the

only knowledge we can have is their probability measure.
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There was still a problem due to the fact that some tag sets, for instance
associated with the discrete event (DE) domain, are infinite in several dimen-
sions: in this case, initial segments are infinite and thus a signal defined over an
initial segment has to have an infinity of values. In some sense, time may not
progress, as in the so-called Zeno phenomenon of timed systems. But it is not
possible to compute an infinite number of values in a simulator. In [13,11] the
problem is solved using the idea of absent value from the French synchronous
language school [3]: thus a signal defined on an initial segment may have only a
finite number of computed non-absent values (while absent values need not be
computed).

Paper’s objectives and organisation. In this paper we develop a simple and el-
egant functional theory of deterministic tag systems that is a generalisation of
Kahn’s theory of Process Networks (KPN); KPN theory is recalled in section 2.
As developed in section 3, our theory extends KPN by encompassing networks
of processes labelled by tags from partially ordered sets and makes deeper use
of Scott theory of Complete Partial Orders (CPO); since CPO compose well
under direct sums, heterogeneous systems are simply captured by direct sums
of homogeneous systems, which are in turn constructed by connecting systems
over different tag sets by means of tag conversion processes. For the (large) class
of tag systems of stream type introduced in section 4, we show how to imple-
ment process communication and how to define tag conversion processes (see
section 6). Examples of tag systems are provided in section 5. Finally, we show
in section 6 that the resulting architecture: 1) is fully decentralised; 2) does not
require Ptolemy’s directors, and 3) provides distribution for free. An extended
presentation of this work can be found in [1].

2 Background on Deterministic Tag Systems and Kahn
Theory

Signals, Deterministic Signals, and Processes. The basic idea of the Tagged
Signal Model [10] is to consider a signal x ∈ S as a set of events, consisting of a
pair “(tag, value)”. Signals can thus be formalised as: S = {s | s ⊆ T×V }, where
V is a set of values, and (T,≤) is a partially ordered set of tags. These signals
are non-deterministic ones: several values can be associated with the same tag.
As we aim at considering deterministic tag systems, we first need to consider
deterministic signals. This amounts to saying that we only consider signals that
are partial functions from tags to values which we denote as: S = T ↪→ V .

In the deterministic setting, processes (or actors, following the Ptolemy ter-
minology) are just functions transforming input signals into output signals. For
the sake of simplicity, we do not consider the types of signal values and assume
an “universal” type V . Thus, the set of processes, P , is just the set of total
functions from Sm to Sn: P = Sm �→ Sn, where m, n are the input and output
arities.
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Functional Composition and Feedback Loops. In this deterministic setting, things
are very simple. Processes are composed by functional composition and a com-
posed process is just a system of equations, e.g.,

x3 = p1(x1, x2) x4 = p2(x1, x3)

which can define another process p3 such that (x3, x4) = p3(x1, x2). However,
this raises the question of feedback loops: for instance consider the system:

x3 = p1(x1, x2) x2 = p2(x1, x3)

What does it compute? This system of equations may have no solution or it may
have several solutions. Then determinism can be lost.

Scott Semantics. Scott semantics [15] provides a well-known solution to this
issue. It consists of the following changes to the previous framework:
1. Add to V an undefined element ⊥ and a partial order relation ≤ such that:

– V ⊥ = V ∪ {⊥}
– ≤ is the least order relation over V ⊥ generated by: ∀v ∈ V,⊥ ≤ v.

This makes (V ⊥,≤,⊥) a (flat) CPO. ⊥ is the least element of V ⊥ and any
sequence of ordered elements (a chain) has a least upper bound (

∨
) which

is ⊥ if the chain contains only ⊥’s, or some v1 if the chain contains this v1:
note that in the latter case the chain cannot contain another v2 distinct from
v1 as the two are incomparable.

2. Redefine S as the set of total functions from T to V ⊥:2 S = T �→ V ⊥. Then
S inherits the CPO property of V ⊥ by defining:
– x ≤ x′ if for all t ∈ T, x(t) ≤ x′(t) which amounts to saying that x is

smaller than x′ if it is less defined,
– the bottom element of S, also denoted ⊥, as the signal which is undefined

everywhere: ⊥(t) = ⊥.
Given a chain of signals x0, . . . xn, . . . , and given any tag t, x0(t), . . . xn(t), . . .
is chain of values and∨

{x0, . . . xn, . . . }(t) =
∨

{x0(t), . . . xn(t), . . . }
3. Restrict processes to continuous functions from input to output signals,

which means that, given a chain of inputs, that is to say a sequence of
more and more defined signals, the outputs should form a chain and∨

{p(x0), . . . p(xn), . . . } = p(
∨

{x0, . . . xn, . . . }) (1)

Note that continuity implies order preservation: s ≤ s′ ⇒ p(s) ≤ p(s′)
and note that this definition for single-input/single-output processes can be
extended naturally to processes of different arities because products of CPOs
inherit the CPO structure of their components. In particular, the order on
the product is the component-wise order.

2 A partial function can be made total by giving it the value ⊥ whenever it is not
defined.
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4. Then the Kleene theorem says that any system of equations has a (unique)
least solution, which is in turn a continuous function of its free input sig-
nals. Thus composition preserves determinism and confluence of unscheduled
distributed executions is guaranteed.

Kahn Theory. But this solution is still unsatisfactory because it does not take
advantage of the ordering over tags which have a flavour of time. In particular, a
process may as well compute from future to past—we can easily design a process
that is continuous in the Scott sense but not causal. This issue of causality is
properly addressed by Kahn theory.

Kahn’s world is a special case of Scott’s world. In Kahn’s world, the tag
domain is N, which is a totally-ordered and enumerable set. Signals are partial
functions from N to a set of values V . In addition, all signals are assumed to
be prefix-closed, meaning that if they are undefined at some time n then they
remain undefined for all n′ > n.

Note that in Kahn’s original paper [9] signals are elements of V ∞ = V ∗ ∪ V ω

where V ∗ is the set of all finite sequences over V and V ω is the set of all infinite
sequences over V . The set of all prefix-closed signals from N to V is isomorphic to
V ∞: partially-defined signals correspond to finite sequences and totally-defined
signals to infinite sequences.

Looking at signals x and y as sequences, x ≤ y means that x is a prefix
of y (there exists a sequence x′ such that y = x · x′, where x · x′ denotes the
concatenation of x and x′). With this order, the set of all signals becomes a
poset. It is in fact a CPO: (1) ⊥ is the empty sequence ε; (2) the least upper
bound of a chain of increasingly defined signals is either: (2.1) the most defined
one if the chain is finite or: (2.2) the infinite sequence defined by the chain,
because an infinite sequence is a maximal element of the CPO (concatenating a
sequence to an infinite sequence does not change this sequence).

Processes are assumed to be continuous functions from Sm to Sn. Again we
can define the semantics as the least solution of systems of equations. Thus the
Kahn theory solves the feedback loop problem. But it also solves the causality
problem: a continuous process is order preserving and, in terms of Kahn order,
this means that if x is a prefix of y, it is also the case that f(x) is a prefix of f(y).
This means that the future of x cannot influence the present of x. Computations
are guaranteed to flow from past to future.

3 Kahn Generalisation to Partially Ordered Tag Sets

Kahn network over a Partially Ordered Tag set. Kahn signals can be
seen as tagged signals over the particular tag set N. In order to address het-
erogeneity, we would like to generalise Kahn’s approach to other tag sets. The
technical difficulty here is that in general, tag signals cannot be prefix-closed
because prefixes can be infinite. While in [13,11] this problem is solved by intro-
ducing a special “absent” value, we propose here an alternative, more general
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approach, that does not require absent values and is still compatible with infinite
prefixes.

Let S be the set of all total functions

S = T �→ V ⊥, (2)

where T is a poset. Following Kahn, we endow S with the following partial order:

Definition 1 (Prefix order over signals). A signal x is a prefix of a signal
y, if for all t, y(t) �= x(t) implies for all t′ ≥ t, x(t′) = ⊥.

It is easy to see that this is indeed an order relation. Please note also that this
definition allows “holes” in the defined values; for instance we could have:

x : 1,⊥, 2,⊥,⊥,⊥ . . . y : 1,⊥, 2,⊥, 3,⊥ . . .

In the above example we have indeed x ≤ y. Note that in this example T = N.

Proposition 1 (CPO). S endowed with the prefix order is a CPO.

Proof. First, take ⊥(t) = ⊥. Then we notice that given x ≤ y in S, for any t,
x(t) ≤ y(t) according to the CPO V ⊥. Thus, if {xn} is a chain, then, for any t,
{xn(t)} is a chain and we can take:

∨
{xn}(t) =

∨
{xn(t)}.

Definition 2. A process p is order-preserving if, for any two signals, x, y if x
is a prefix of y, then p(x) is a prefix of p(y); p is continuous if it satisfies (1).

This means that only the past can influence the present value of a process.
The mathematical framework of this section is both simple and very power-
ful. Restricting to order-preserving processes allows us to preserve determinism,
causality, and confluence of unscheduled distributed executions.

Capturing Heterogeneity via Sum of CPOs. The next problem is to ex-
tend the previous generalised Kahn theory to encompass heterogeneity, that is,
systems involving different tag sets. But this in our framework comes for free:
The sum of two CPOs S1 and S2 is a CPO S1 + S2, defined as

S1 + S2 = (S1 − {⊥S1}) ∪ (S2 − {⊥S2}) ∪ {⊥}

where ⊥,⊥S1 , and ⊥S2 are the corresponding bottom elements. The order on
each of S1, S2 is maintained in the sum, but two elements from two different sets
are not comparable. Therefore, chains can only be formed of elements of a single
set and the least upper bounds are preserved.

Heterogenous architectures. At this point, suppose that we know how to
construct tag conversion functions, i.e., continuous functions

f : S1 → S2. (3)
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Let us see now how such a function can be seen as operating on the sum CPO
S1 +S2. Indeed, f : S1 → S2 can be seen as a function f ′ : (S1 +S2) → (S1 +S2)
by setting:

f ′(⊥) = ⊥, f ′(in1(x)) = f(x), f ′(in2(x)) = ⊥

where in1, in2 are the canonical injection of each CPO into the sum. Next,
consider the following toolkit of functions, consisting of:
– homogeneous functions, mapping input signals to output signals belonging

to a domain S of signals over a same partially ordered tag set T;
– tag conversion functions, mapping an input signal over T1 to an output signal

over T2.
By using the previous reasoning, a finite network of such functions can be seen
as a network of homogeneous functions acting on the direct sum

∑
i∈I Si, where

finite set I indexes the set of homogeneous functions of the considered network.
By proposition 1, the network itself is an homogeneous function acting on the
direct sum

∑
i∈I Si. Thus this network itself can be encapsulated as a function

acting on S =def
∑

i∈I Si, so the same construction can be reused, hierarchically.
Observe that we can also encapsulate tuples of signals over different tag sets as
a single signal defined over the sum of the considered tag sets. In other words,
hierarchy can be used for both boxes (functions) and wires (signals). Having this
architecture model addresses the main objective of this paper.

The remaining problems. From the previous analysis, the following two cen-
tral issues remain to be addressed:

Problem 1. How to construct tag conversion functions?

Having a solution to problem 1 provides us immediately with a framework of
heterogeneous Kahn-like architectures, as explained just above.

Problem 2. How to implement wires carrying signals defined over a partially
ordered tag set T?

This problem also remains to be solved in order to make our approach effective—
recall that such an implementation exists for basic Kahn networks since the
latter rely on a communication medium of unbounded FIFOs. Other media may
be needed for other partially ordered tag sets. We address Problem 1 in Section
4 and Problem 2 in Section 6 and show how to solve them in the restricted case
of “streams”.

4 Streams: From Generalised to Ordinary Kahn Theory

In the generalised Kahn theory developed in section 3, signals are total functions
from a partially ordered tag set T to a set of values V ⊥, or, equivalently, partial
functions from T to V . These signals can thus be seen as “labelled partial orders”
and are fairly general. Yet, in many practical cases, for instance those which
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correspond to what is considered in Ptolemy [13] and which are addressed in
section 5, this generality is not needed and the approach can be simplified. This
simplification is based on two assumptions. When these assumptions are in force,
signals can be seen as streams and the theory boils down to an ordinary Kahn
theory. While this reduction is unnecessary from a mathematical standpoint, it
has practical applicability, since we know that Kahn networks (unlike general
tag systems of section 3) are implementable on networks of processors related by
FIFO links, cf. our problem 2.

Assumption 1 (DTOS). In the considered set S of signals:
1. The tag set is a total order.
2. The defined values of any signal can be indexed in non-decreasing order,

meaning that there is an order preserving isomorphism from the domain of
any signal, dom(x) = {t | x(t) �= ⊥}, to (an initial segment of) N.

Call Discrete over Totally Ordered tag Set (DTOS) such a set S of signals.

This means that there is an order preserving isomorphism from the domain
of a signal (dom(x) = {t | x(t) �= ⊥}) to (an initial segment of) N. We call
this a discrete signal. Assumption 1 yields signals whose defined tags are order
isomorphic to (an initial segment of) N.3 In this case we speak of a discrete total
order.

An important question arising from Assumption 1 is whether the restriction
of signals based on these assumptions still preserves the CPO structure defined
in proposition 1. This is by no means a trivial issue. The following proposition
provides a positive answer.

Proposition 2 (DTOS). The set of Discrete signals over a Totally Ordered
tag set (DTOS) endowed with the prefix order is indeed a CPO.

The proof can be found in [1].

DTOS signals as streams. When dealing with DTOS signals, tags associated
to defined values can be indexed in increasing order and signals can be seen
as streams of pairs (value, tag). In other words, to a DTOS signal x we can
associate its stream St(x) : (V × T)∞ where there is no more need to consider
an undefined value.4 The tag ordering constraint is then for any s ∈ DTOS such
that s = (v1, t1).(v2, t2).s′,
1. t1 < t2
2. s′ ∈ DTOS

It is then clear that the stream view of DTOS signals enjoys the same properties
as the functional one. Formally the DTOS-to-stream transformation is as follows:

St(⊥) = ε, the empty sequence
St(x) = (x(t1), t1).St(x[t1 → ⊥]) (4)

where:
3 Note the importance of requiring an order-preserving isomorphism in Assumption 1.

Rationals are both totally ordered and countable but not order isomorphic to N.
4 This view is inspired by our previous work [4].
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– t1 is the least tag yielding a defined value in x
– x[t1 → ⊥] is the function x where the value at t1 has been changed to ⊥.

To conclude this section, we formally state the following property:

Proposition 3. St defined in (4) is a CPO isomorphism between DTOS signals
and streams. Moreover, it preserves parallel composition. (This solves problem 2.)

Thus, DTOS systems can be brought back to streams, i.e., ordinary Kahn net-
works.

5 Examples

Kahn Process Networks. Kahn Process Networks (KPN) naturally fit into
that landscape. N is the tag set and there are no “holes” between defined values.
Thus signals are just streams of defined values. An operator like the sum operator
over numbers can be lifted to streams according to the following Haskell-like
definition:

sumK ε y = sumK x ε; = ε
sumK v.x v′.y = (v + v′).sumK x y

where ε denotes the empty stream and “.” denotes concatenation. Basically, the
Kahn actor sumK waits until both its input queues are non-empty. Then, it re-
moves their heads, adds them, puts the result into its output queue and starts
again. Note that waiting until both queues are non-empty can be implemented
using Kahn’s blocking read operator, without having to test both queues simul-
taneously: sumK simply blocks on one queue, then on the other. The order in
which queues are read can be arbitrary.

Discrete Event. We begin with a tagged view of Discrete Event Signals and
then present a streamed view for them.

A Tagged View of Discrete Event (DE) Signals. Discrete event (DE) signals are
discrete signals (according to assumption 1) with real-time stamps. A tag set for
DE is:

T = R+ × N

where τ = (t, n), t denotes a time stamp, and n is the index of events sharing
the same time stamp.5 This tag set is ordered with the lexicographic order:

(t, n) ≤ (t′, n′) iff either t < t′ or t = t′ and n ≤ n′

which is a total order. Then a discrete event signal x is a total function x : T �→ V ⊥

satisfying the following constraint: for any two tags τ, τ ′ ∈ T, with τ = (t, n),
τ ′ = (t, n′), and n ≤ n′, if x(τ ′) �= ⊥ then x(τ) �= ⊥. Figure 1 shows an example
of such a signal. In this example the following table provides the correspondence
between tags and values:
5 This approach, which has been called super-dense time by some authors [13], could

be easily extended to tag sets T = R+ × NN to account for so-called “nested over-
samplings”. For the sake of simplicity, we do not address such an extension here.
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v7

R+t1 t2 t3 t4

v1 v2

v3

v4 v5

v6

�

Fig. 1. A discrete-event signal

tag : (t1, 1) (t2, 1) (t2, 2) (t3, 1) (t4, 1) (t4, 2) (t4, 3)
value : v1 v2 v3 v4 v5 v6 v7

We can remark that in this definition, there are many undefined (or absent)
values namely between two consecutive time stamps holding defined values and
after the last defined value sharing a given time stamp.

A Streamed View of Discrete Event Signals. DE signals are DTOS, so we can
apply the results of section 4, thus providing a streamed view of them:

sx : (V × (R+ × N))∞

where R+ is the set of non-negative reals modelling the physical (or real) time.
Furthermore we observe that in this definition, the second component N of the
tag set is not necessary because we can always rebuild it by applying the following
index rebuilding mapping Ir : (V × R+)∞ → (V × (R+ × N))∞:

Ir1(t′, n, ε) = ε
Ir1(t′, n, (v, t).sx) = if t == t′

then (v, (t, n + 1)).Ir1(t, n + 1, sx)
else (v, (t, 1)).Ir1(t, 1, sx)

Ir(ε) = ε
Ir((v, t).sx) = (v, (t, 1)).Ir1(t, 1, sx)

An Actor Example. It is interesting to see how to define some primitive actors
in DE. Let us start by defining the sum of two signals. There are several ways
of defining it, each having, perhaps surprisingly, very different properties [1].
Here we present only one possibility, which states that, when both input signals
appear with the same tag, we output the sum, otherwise we just output the
defined signal:

sumDE2 x ε = sumDE2 ε y = ε
sumDE2 (v, τ ).x (v′, τ ′).y = if τ < τ ′

then (v, τ ).sumDE2 x (v′, τ ′).y
else if τ = τ ′

then (v + v′, τ ).sumDE2 x y
else (v′, τ ′)′.sumDE2 (v, τ ).x y

Figure 2 illustrates this definition which can be proved to be continuous ([1])
though it uses, unlike in KPN, the infamous6 operation that tests values in input
queues without removing (consuming) them.
6 Because its undisciplined usage may result in non-continuous processes.
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Fig. 2. Sum (DE2) of two discrete-event signals

Other operators can be found in [1].

Continuous Time. In general, the continuous time (CT) case is more involved,
and its study is part of our on-going work. Some preliminary ideas can be found
in [1]. We summarise these here.

First, note that there are different CT domains, depending on whether we
want to define signals with exact (i.e., ideal) CT semantics, or approximate CT
semantics, as computed using a numerical solver. Exact semantics is linked to
the theory of ordinary differential equations (ODEs) (see also [12] and [6]). Yet
it seems to us that exact CT does not fit into the Kahn landscape: in order to
exactly solve a differential equation, this equation has to be considered globally as
a whole and it cannot be decomposed into its components. For instance we cannot
define the exact behaviour of an integrator, independently from the network of
operators which feeds it. Indeed, in theory we would need to check whether this
network computes a Lipschitz function or not.

Regarding approximate semantics, observe that ODEs, when discretised using
explicit schemes with fixed step size, are simply DE systems, thus can be handled
in the DE domain. However, this no longer holds if more sophisticated schemes
are used, e.g. implicit schemes and/or variable step size.

Synchronous Reactive. Synchronous Reactive systems have been addressed
among others in [5,7]. It is in this domain that absent values have been first
introduced. Here also, we begin with a Tagged view of Synchronous Reactive
(SR) systems. These are very similar to discrete event ones, but real-time is
replaced with a logical integer time. Thus the tag set is7 N × N where the first
component gives the reaction logical time and the second one the multiplicity
index in that reaction. The reason we need both components is to model easily
multi-clock systems: in such systems, a signal may be “absent” in some reactions
(captured by ⊥) and occur several times in other reactions. In some sense, the
reaction logical time acts as a replacement of absent values.

7 The same remark on a possible extension to nested oversamplings as stated at sec-
tion 5 applies here.
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For the Streamed view of Synchronous Reactive, we can proceed as with DE
signals: St(x) : (V × N)∞. In this interpretation St(x)(n) = (v, r) means the
n-th occurrence of x has value v and takes place within the r-th reaction.

An example that is not DTOS. So far all examples we have presented
are DTOS. It will not be the case for the following one, however. The MoCC we
present here is that of signals that are themselves streams of events, however with
causality relations between events belonging to different signals. To formalise this
example we need an underlying set X of signal names. The set T of tags has the
following form, where N∞ = N ∪ {−∞}:

T = X × (X → N∞)

In other words, t ∈ T has the form t = (x, τ), where τ is a vector clock, i.e., a
total function mapping X to N∞. The interpretation of t = (x, τ) is as follows:
– tag t belongs to a signal with name x;
– signal x is indexed by the set of positive integers N and its rank is given by

n = τ(x), which must therefore be > −∞;
– a positive value for τ(y) = m > −∞, where y ∈ X \{x} indicates a causality

constraint of the nth event of signal x with respect to the mth event of signal
y; having τ(y) = −∞ indicates lack of causality constraint of the nth event
of signal x with respect to any event of y.

We may (but do not need to) restrict T to tags whose vector clock τ takes a
value τ(y) �= −∞ for only finitely many y’s. T is equipped with the following
order relation, making it a partial order:

t ≥ t′ iff ∀y ∈ X s.t. τ ′(y) > −∞ ⇒ τ (y) ≥ τ ′(y)

6 Actors without Directors

6.1 Tag Conversion Actors in Lieu of Directors

When dealing with heterogeneity, there is generally no “golden rule” saying
what the meaning of composing actors with different tag sets should be. This
information must instead be provided by the designer.

In Ptolemy this problem is solved using the concept of directors. Roughly
speaking, a director schedules the operation of a set of concurrent actors in
time, thus in essence defining the concurrency (and time) semantics of the model.
There are many types of directors in Ptolemy, each implementing a given MoCC:
discrete-event, synchronous-reactive, etc.

Here, we take a different approach: we define tag-conversion actors, i.e., het-
erogeneous actors operating on different tag sets and transforming signals on
one tag set to signals on another tag set. Compared to directors, our approach
has two main advantages. First, we do not need to introduce an additional
concept in our modelling framework, actors is all we need. Second, our ap-
proach allows to separate the issue of semantic compatibility from that of using
different MoCCs.
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We give now some standard conversion actors to allow the interconnection of
signals of different tags. These are only a few examples and other tag-conversion
actors can obviously be defined.

From DE and SR to KPN. Going from DE and SR to KPN can be done by
“forgetting” the tag:

forget ε = ε
forget (x, t).xs = x.forget xs

From KPN to DE and SR. In the opposite direction, a “timestamping” actor
can be used. This actor uses a clock that specifies the timestamps:

timestamp ε cl = ε
timestamp xs ε = ε
timestamp (x.xs) (t.ts) = (x, t).(timestamp xs ts)

6.2 Distribution

A stated at the end of section 3, restricting to order-preserving processes in the
sense of definition 2 allows us to preserve determinism, causality, and conflu-
ence of unscheduled distributed executions. Thus, distribution comes for free and
does not need coordination. This holds in particular for heterogeneous models
mentioned at the end of section 6.1.

Still, the following issue remains, namely: which type of communication link is
needed in such distributed implementations? Since tag conversion is performed
by actors, links involve only homogeneous tag sets. So, in general, our (directed)
links only need to preserve the prefix order of definition 1 for a given (homoge-
neous) tag set T, from source node to sink node. This holds in particular for
heterogeneous models mentioned at the end of section 6.1. In particular, standard
FIFO links can be used to implement communications for such architectures.

Take for instance the definition of the discrete event sum illustrated in figure 2
of section 5. The actor has two input FIFO queues x and y and an output FIFO
queue z. The queues contain pairs (v : V, t : R+). Indeed the N component of the
DE tag set is useless because the FIFO queues preserve the order of production.
Thus an operational version of the sum actor can be defined in C-like syntax as:

void sum(input queue x, input queue y, output queue z) {

if (x.empty() OR y.empty()) return;

if (x.head().tag() < y.head().tag()) {

z.append(x.head()); x.erase_head(); return; }

if (x.head().tag() == y.head().tag()) {

z.append(x.head().tag(), x.head().val() + y.head().val());

x.erase_head(); y.erase_head(); return; }

// it must be that: x.head().tag() > y.head().tag()

z.append(y.head()); y.erase_head(); return;

}

Basically, the sum process needs that its two input files be non-empty to exe-
cute. Otherwise it waits. If it can execute, it takes the two tagged heads and



Actors without Directors: A Kahnian View of Heterogeneous Systems 59

compares their tags. If they are equal, it sums up the two values, tags the result
with the common tag, puts it in the output queue and erases the two heads from
the input queues. If the two tags are different, the earlier tagged value is erased
from its input queue (as a matter of fact we know that, since the input queue
values are produced in an orderly manner, it will not be possible that the other
queue will later contain an item matching this earlier tag) and the other queue
is left unchanged. Nothing is produced and the process waits.

Indeed, we could say, adopting the Ptolemy terminology that such networks
do not need directors, i.e., some deus ex machina able to schedule the executions
of each actor. In a simulation engine, the only need is that execution is fairly
distributed between actors in such a way that no actor is infinitely excluded from
execution. Also note that there is no “event queue” like what is found in most
simulation engines like Ptolemy and this feature avoids the burden of building
a distributed event queue. Distributed actors are truly autonomous, they only
know of the heads of their input queues.

6.3 Hierarchy

It has been advocated that the use of directors enforces a clean separation be-
tween several MoCCs in a hierarchical way: in order to get a communication
between two different MoCCs these have to be encapsulated within a “larger”
MoCC which encompasses the former ones. It is true that this is a good design
practice but the “flat” directorless approach we present here is fully compatible
with hierarchy: Kahn actors can be gathered so as to form compound actors and
this hierarchical composition can be extended at will.

7 Conclusion

This paper has intended to simplify recent efforts proposed by the Berkeley
school in giving a formal semantics to the Ptolemy toolbox. We have proposed a
simple and elegant functional theory of deterministic tag systems that is a gen-
eralisation Kahn’s theory of Process Networks (KPN). Our theory encompasses
networks of processes labelled by tags from partially ordered sets and makes
deeper use of Scott theory of Complete Partial Orders (CPO). Since CPO com-
pose well under direct sums, heterogeneous systems are simply captured by direct
sums of homogeneous systems, which are in turn constructed by connecting sys-
tems over different tag sets by means of tag conversion processes. For the (large)
class of tag systems of stream or DTOS type, we have shown how to define tag
conversion processes and how to implement process communication. The result-
ing architecture is fully decentralised and does not require Ptolemy’s directors.
Last but not least, it provides distribution for free.

A natural question is to find broader frameworks than just DTOS in which
problems 1 and 2 can be properly solved. This is left for future work.

An important issue not addressed in the paper is the issue of liveness (also
called productivity in the co-algebraic framework). This issue has already been



60 P. Caspi et al.

partially addressed in [13] and its adaptation to our stream approach will be a
subject for future work.

Another semantic theory for stream-based systems, alternative to Kahn, is
the co-algebraic theory of streams (see for instance [8]). Basically, moving to co-
algebraic streams would consist, in the stream programs shown in the paper, to
remove the ε cases. Indeed, this is what has been done in the Haskell prototype
we have implemented of our framework. Examining the consequences of such an
alternative choice is also a subject for future work.
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davidmps@cartuja.us.es

3 Massachusetts Institute of Technology, MA, USA
frazzoli@mit.edu

Abstract. In this paper we present the problem of combining optimal
control with efficient information gathering in an uncertain environment.
We assume that the decision maker has the ability to choose among a
discrete set of sources of information, where the outcome of each source
is stochastic. Different sources and outcomes determine a reduction of
uncertainty, expressed in terms of constraints on system variables and
set-points, in different directions. This paper proposes an optimization-
based decision making algorithm that simultaneously determines the best
source to query and the optimal sequence of control moves, according to
the minimization of the expected value of an index that weights both
dynamic performance and the cost of querying. The problem is formu-
lated using stochastic programming ideas with decision-dependent sce-
nario trees, and a solution based on mixed-integer linear programming is
presented. The results are demonstrated on a simple supply-chain man-
agement example with uncertain market demand.

1 Introduction

A large number of problems in production planning and scheduling, location,
transportation, finance, and engineering design require taking optimal decisions
in the presence of uncertainty. Uncertainty, for instance, governs the prices of fu-
els, the availability of electricity, and the demand for chemicals. In general, these
uncertainties affect the constraints of the corresponding optimization problem. A
standard approach to deal with uncertain constraints is to guarantee constraint
satisfaction for all possible cases. In order to reduce the conservativeness of this
solution, additional information about the uncertainties may be gathered, for
example by carrying a demand field study to better estimate the value of future
demand of a certain product in a production planning problem. With this ad-
ditional information, the optimization problem is updated in a less conservative
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way and an improved solution is obtained. In addition, with the current de-
velopments in networked control systems (NCS) [18,7,12], efficient information
gathering has become a very relevant problem in modern industrial automation.
Possible examples of this framework are given by control over wireless networks,
where communication is subject to strong energy constraints, and more in gen-
eral by any kind of NCS in which measurement acquisition is expensive. For such
process control problems a selection criterion for the kind of information that is
convenient to retrieve is recommended.

In general, however, the outcome of these information queries is not known a
priori. Moreover, queries have fixed costs that do not depend on the quantitative
outcome of the information gathered, i.e., costs associated with the querying
process per se. This poses a difficult problem of whether a query would be
profitable or not. The difficulty increases when there are several possible queries
at hand and, even more difficult, when a whole sequence of queries must be
planned. There are different ways of approaching the problem. It can be cast as
a Markov decision problem (MDP) [13], but the cardinality of the state space
of this representation grows exponentially with the number of events, due to
the number of possible combinations of events which could take place. Hence,
the exact solution of such a problem becomes computationally intractable very
quickly, even for relatively small problems. The approach taken in [6] for a similar
problem (the bridge problem) is based on reinforcement learning, which is a set
of techniques aimed at approximating the MDP value function. We refer the
reader to the literature on the subject for further details [4,17].

In this paper we take a different route and propose a stochastic recursive
optimization scheme in which we have to decide not only an optimal sequence
of future control actions, but also which measurements/queries are worth to be
carried out. Each query is defined by its own fixed cost and a series of possible
outcomes described by a discrete probability function. The constraints on the
sequence of future actions and performance indices depend on such outcomes.
Consequently, the optimal control problem becomes stochastic as well, for which
we employ a stochastic programming formulation to minimize expected values
under stochastic constraint sets. Stochastic programming is a special class of
mathematical programming that involves optimization under uncertainty (see
[5,9,14]). The first applications of stochastic programming date back to the 50’s
and nowadays it is becoming a mature theory that is successfully applied in
several domains [15]. A stochastic programming problem is defined by a sequence
of random events and recourse decisions. Each decision is a different stage and
stages are divided by random events. In the proposed formulation, there are two
stages, that is, two sets of decision variables separated by a random event: First
the query has to be chosen without knowing the outcome of the response, then
the outcome of the query is obtained (the random event takes place) and the
second stage decision (the dynamic optimization variables) is made based on
this information.

For long optimization horizons, we advocate the use of recursive shorter-
horizon optimization to obtain suboptimal solutions within a manageable



Simultaneous Optimal Control and Discrete Stochastic Sensor Selection 63

computational burden (see for example [3] for the application of recursive stochas-
tic hybrid optimal control in the management of power distribution networks).
The proposed scheme is demonstrated on a supply-chain management example in
which the future demand is uncertain, but additional information can be obtained
from market studies.

2 Stochastic Querying Model

Consider the generic problem of linear programming (LP)

min
z

c′z (1)

s.t. z ∈ Z,

in which Z is a polyhedron that defines the region of feasibility. As in general
by expanding Z one improves the optimum achieved in (1), we consider the case
in which we can perform a query Q in order to obtain additional information
that allows us to enlarge the size of Z. The main idea is that in the presence of
uncertainty, if a robust approach is taken, the feasible set takes into account all
possible values of uncertain parameters. Hence, by obtaining additional infor-
mation that reduces the set of possible values of the uncertain parameters, the
size of Z increases, and hence the optimal cost is improved. We define a query
Q as follows:

Definition 1. A query Q(q) ∈ Q is defined as

Q(q) = {C(q),Vq}, q ∈ {0, 1, . . . , nq}, (2)

where q is the query index, C(q) ≥ 0 is the querying cost, and Vq = {V q
1 , V q

2 , . . . ,
V q

mq
} is the set of the mq possible outcomes.

Definition 2. A query outcome V q
v for the query q is defined as

V q
v = {Z(q, v)}, (3)

where v ∈ {1, 2, . . . , mq} is the outcome index, and Z(q, v) is the updated fea-
sibility set.

Note that, in general, the number mq of possible outcomes depends on the query
q. For compactness of notation, in the sequel we will often refer to a “query” Q(q)
directly by its corresponding query index q, and to an “outcome” V q

v directly
by its corresponding outcome index v. To model the case where the source of
information is not queried at all, we introduce the null query, indexed by q = 0
and defined below.

Definition 3. The null query is defined as

Q(0) = {0,V0}, V0 =
{
V 0

1 = {Z}
}

, (4)
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The query Q(q) can be chosen among the finite set Q of different queries, however
the information obtained from each query is stochastic. Each query is defined
by a cost C(q) and a set of possible outcomes Vq with a given probability, which
we assume to be available.

Definition 4. For every query q ∈ {0, 1, . . . , nq}, the outcome probability dis-
tribution is a discrete distribution given by

Pi =

⎧⎨⎩pij : pij = Pr[v = V i
j |q = i], j = 1, 2, . . . , mi,

mi∑
j=1

pij = 1

⎫⎬⎭ . (5)

The objective is to choose the query Q(q) ∈ Q such that Jq is minimized, where
Jq is the expected value of the cost function with respect to the possible outcomes
of the query plus the cost of the query itself

min
q∈Q

Ev [Jqv|q] + C(q), (6)

with Jqv the optimal cost corresponding to the outcome v of the query q
defined as

Jqv = min
z

c′z (7a)

s.t. z ∈ Z(q, v). (7b)

Problem 7 can be posed as a two-stage stochastic optimization prob-
lem [5,9,14]. As observed earlier, here the query q is the first-stage variable,
and z is the second-stage variable which is decided after the random outcome
event v takes place. In the following section we propose to apply this general
framework to the the problem of combining optimal control with efficient infor-
mation gathering in an uncertain environment.

3 Simultaneous Optimal Control and Sensor Selection
Problem

Consider the discrete-time linear model of the process

x(t + 1) = Ax(t) + Bu(t), (8)

where the input u ∈ Rnu and the input rate ∆u(t) = u(t) − u(t − 1) are subject
to known component-wise constraints1 umin ≤ u ≤ umax, and ∆umin ≤ ∆u ≤
∆umax. The state x ∈ Rnx is subject to uncertain constraints. The only available
a priori information on the admissible state set is given by the set-membership
relation x ∈ X , where X is a conservative estimate of the admissible state set
that guarantees robust constraint satisfaction for all possible values of queries
1 Here component-wise constraints are considered for simplicity, but it is straightfor-

ward to extend the approach to the more general case of polytopic constraints.
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and outcomes. The goal of the control action is to make the state x(t) and the
input u(t) track an uncertain reference value rx(t), ru(t), respectively, where
r(t) =

[
rx(t)
ru(t)

]
∈ R. The set R is a conservative estimate of all the possible

values that the reference can take2.
Without additional information, a recursive optimal control problem formu-

lation based on model (8), the conservative estimates X and R, and a min-max
cost function can be formulated using standard min-max model predictive con-
trol ideas [16,1,11]. We refer to this problem as the standard min-max problem.
However, in this paper, we assume that every T time steps the decision maker is
allowed to reduce the conservativeness by querying additional sources of infor-
mation at a certain cost. This additional information in general may provide a
reduced conservativeness on the admissible state sets (i.e., a larger domain X ),
and/or a better estimate of the reference r(t) (i.e., a smaller domain R). In both
cases, the obtained solution is less conservative, with consequent improvement
of the overall performance of the process. By following the problem formulation
of Section 2, the outcome v related to the query q is denoted by

V q
v = {X (q, v|t),R(q, v|t)}, (9)

where X (q, v|t), R(q, v|t) are the updated state constraints and reference sets,
such that X (q, v|t) ⊇ X (t), R(q, v|t) ⊆ R(t). Moreover, the outcome set for the
null query is

V 0
1 = {X (t),R(t)}, (10)

where X (t), R(t) is the available information at time t on state constraints and
reference set. Note that we consider here problems in which the estimates of the
uncertain sets are time varying. This may be the case for instance in which the
outcomes obtained after each query accumulate.

The querying mechanism can be modeled in different ways, for example by
introducing delays between the query transmission and the availability of the
outcome. For simplicity, in the following sections we restrict ourselves to the
following assumption.

Assumption 1. The outcome V q
v of a query Q(q) performed at time step t is

immediately available, and the provided information is supposed to be significant
only for time step t + 1.

We aim at defining a stochastic optimal control setup that, at each time step t,
provides at the same time a sequence of optimal input values u(t), u(t + 1), . . .,
u(t + N − 1), N ≥ 1, and the most profitable query q(t), by taking into account
model (8), the set of possible outcomes (9), and the corresponding probability
distributions (5). As mentioned before, we assume that a query can be done
every T time steps, where T is constant and such that T ≥ 1. We also assume
that a query is done at time step t = 0. This implies that a query will be done
2 Note that this setup can be easily extended to the case of bounded additive dis-

turbances, as they can be modeled without loss of generality by means of more
conservative state or input constraints.
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at time steps t = kT , k ∈ Z, k ≥ 0. Given a generic time t, the next query will
be henceforth carried out at time t + H , where

H =
⌈

t

T

⌉
T − t, (11)

and where �a� denotes the smallest integer greater than or equal to a. When H
is smaller than the optimal control horizon N , the future query has to be decided
by the optimal decision mechanism, otherwise a standard min-max problem (no
query) is solved.

Note that in general, instead of choosing off-line a constant value for T , any
time-varying, state-dependent interval T (t) could be considered, as long as the
condition 0 < H(t) < N ⇒ H(t + 1) ≤ H(t) − 1 is enforced to preserve the
consistency of the receding horizon control.

Based on the above description, at time step t ∈ N the simultaneous optimal
control and sensor selection problem is defined as

min
q

Ev [Jqv|q] + cC(q) (12a)

s.t.
{

q ∈ {0, 1, 2, . . . , nq} if H < N,
q = 0 otherwise, (12b)

with

Jij = min
∆u

{
max

r

N−1∑
k=0

�(x(t + k, i, j|t) − rx(t + k, i, j|t),

u(t + k, i, j|t) − ru(t + k, i, j|t), ∆u(t + k, i, j|t))}
(13a)

s.t. x(t + k + 1, i, j|t) = Ax(t + k, i, j|t) + Bu(t + k, i, j|t), (13b)
u(t + k, i, j|t) = u(t + k − 1, i, j|t) + ∆u(t + k, i, j|t), (13c)
umin ≤ u(t + k, i, j|t) ≤ umax, (13d)
∆umin ≤ ∆u(t + k, i, j|t) ≤ ∆umax, (13e)

x(t + k, i, j|t) ∈
{

X (i, j|t) if k = H + 1,
X (t) otherwise, (13f)

r(t + k, i, j|t) ∈
{

R(i, j|t) if k = H + 1,
R(t) otherwise, (13g)

x(t, i, j|t) = x(t|t), (13h)
∆u(t + h, i, j|t) = ∆u(t + h, w, z|t), ∀w �= i, ∀z �= j, (13i)
h = 0, 1, . . . , min(H, N) − 1,

k = 0, 1, . . . , N − 1,

for i = 0, 1, . . . , nq, j = 1, 2, . . . , mi, where x(t|t) = x(t) is the current state,
used as the initial condition for the optimal control problem, x(t + k, i, j|t),
r(t+k, i, j|t), u(t+k, i, j|t), ∆u(t+k, i, j|t) are the predicted state, the input, the
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Fig. 1. Optimization tree structure for different time steps t, where to enforce causality
the inputs are not branched until the query is performed (N = T = 3, circled dots
denote decisions taken on q)

input rate and uncertain reference at time step t + k corresponding to making a
query i with the outcome j at time t+H , r = [ rx

ru
], c ≥ 0 is the tradeoff coefficient

between performance and querying costs, N is the prediction horizon, T is the
time period between two consecutive queries, and the stage cost � : Rnx+2nu → R
is a nonnegative function.

The positive scalar H defined in (11) represents the time step at which a query
decision will take place. Until that time, the causality constraint (13i) enforces
the same input sequence for all the possible sequences of states, regardless of the
dependence on future decision on q. Note that the optimization problem has the
time-varying structure depicted in Figure 1, as the imposed constraints at time
t depend on the current value of H =

⌈
t
T

⌉
T − t.

In principle, Problem 13 is an infinite dimensional optimization problem, due
to the maximization part that involves an infinite number of realizations of the
reference r. However, it is well known that when the process is linear and the
constraints and the cost function are convex, the max problem can be solved by
considering only the “extreme” realizations, namely the vertices of the reference
set R (see, e.g., [16]). In the next section we will exploit this property to refor-
mulate Problem 13 as a stochastic mixed-integer linear programming (MILP)
problem.

According to the aforementioned stochastic optimization nomenclature [5],
Problem 12 is a two-stage optimization problem in which the second-stage
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variables are ∆u’s. Since only one decision on q is modeled in the problem,
the proposed formulation is exact with respect to the system behavior only
for N ≤ T . For N > T a more complex multi-stage stochastic programming
formulation would be necessary. By using the two-stage formulation (12) also
when N > T , i.e., by modeling just the first decision on q, one gets a conservative
solution which does not exploit all the available information, but nonetheless is
computationally more viable.

The following Algorithm 1 summarizes the proposed recursive stochastic si-
multaneous optimal control and sensor selection decision mechanism.

Algorithm 1. Recursive stochastic simultaneous optimal control and sensor
selection.

For all t ≥ 0:
1. get x(t) and compute H as in (11);
2. solve Problem 12 and get the optimal solution q∗(t), u∗(t, i, j|t), ∀i, j;
3. if H = 0

3.1. perform the query q∗(t) and get the query outcome v∗(t);
3.2. set u(t) = u(t, q∗, v∗|t) in (8);

4. else
4.1. set u(t) = u(t, 0, 1|t) in (8);

5. end.

Next section focuses on computational methods for solving Problem 12. A
closed-loop stability analysis of the receding horizon control scheme proposed by
Algorithm 1 is beyond the scope of this paper and will addressed in future works,
based on an adaptation of convergence properties existing for deterministic min-
max model predictive control schemes [16] to the present stochastic min-max
setting.

4 Solution Methods

Let the stage cost � be based on infinity norms

� (x − rx, u − ru, ∆u) = ||Qx(x − rx)||∞ + ||Qu(u − ru)||∞ + ||Q∆u∆u||∞, (14)

and, for the sake of generality, assume that a terminal cost

� (x(t + N, i, j|t) − rx) = ‖QN (x(t + N, i, j|t) − rx)‖∞ (15)

is added in the cost function (13a), where Qx, Qu, Q∆u, QN are full row-rank
matrices, and ‖Qx‖∞ = maxi=1,...,nx |Qix| with Qi the ith row of Q3. In this
case Problem 12 can be solved using an MILP problem by following the so-called
“scenario enumeration” approach of stochastic programming [5], as detailed be-
low, where we exploit the convexity of (14), (15), to get rid of the max problem
3 The results of this paper extend to any convex piecewise affine function 
.
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in (12) through enumeration of vertices, introduce slack variables that upper
bound each stage term of the stage cost [1], and use big-M techniques to trans-
form a multiplication between a binary variable and a continuous variable into a
set of linear constraints [19]. The case of quadratic cost in (14) can also be han-
dled similarly, by using mixed-integer quadratic programming (MIQP). Then,
Problem 12 can be formulated as the following MILP

min
δ,∆u,F,γ

nq∑
i=0

Fi (16a)

s.t. x(t + k + 1, i, j|t) = Ax(t + k, i, j|t) + Bu(t + k, i, j|t),
u(t + k, i, j|t) = u(t + k − 1, i, j|t) + ∆u(t + k, i, j|t),
umin ≤ u(t + k, i, j|t) ≤ umax,

∆umin ≤ ∆u(t + k, i, j|t) ≤ ∆umax,

x(t + k, i, j|t) ∈
{

X (i, j|t) if k = H + 1,
X (t) otherwise,

x(t, i, j|t) = x(t|t),
∆u(t + h, i, j|t) = ∆u(t + h, w, z|t), ∀w �= i, ∀z �= j,

γkx
ij ≥ ‖Qx(x(t + k, i, j|t) − rx(t + k, i, j|t))‖∞,
k = 0, . . . , N − 1,

γku
ij ≥ ‖Qu(u(t + k, i, j|t) − ru(t + k, i, j|t))‖∞,
k = 0, . . . , N − 1,

γk∆u
ij ≥ ‖Q∆u∆u(t + k, i, j|t)‖∞,
k = 0, . . . , N − 1,

γNx
ij ≥ ‖QN(x(t + N, i, j|t) − rx(t + N, i, j|t))||∞,︸ ︷︷ ︸

∀r(t + k, i, j|t) ∈
{

Rv(i, j|t) if k = H + 1,
Rv(t) otherwise,

(16b)

−Mδi ≤ Fi ≤
mi∑
j=1

pij(t)

(
γNx

ij +
N−1∑
k=0

γkx
ij + γku

ij + γk∆u
ij

)
+ cC(i) + M(1 − δi), (16c)

Mδi ≥ Fi ≥
mi∑
j=1

pij(t)

(
γNx

ij +
N−1∑
k=0

γkx
ij + γku

ij + γk∆u
ij

)
+ cC(i) − M(1 − δi), (16d)

nq∑
i=0

δi = 1, δi ∈ {0, 1}, i = 0, . . . , nq,

h = 0, 1, . . . , min(H, N) − 1,

i = 0, 1, . . . , nq, j = 1, 2, . . . , mi, k = 0, . . . , N − 1.

where the array of binary variables δ = {δ0, δ1, . . . , δnq}, δi ∈ {0, 1}, i =
0, . . . , nq, one for every possible query choice, is used to choose the query to
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be done among all possibilities; that is, if query i is chosen, then δi = 1 and the
rest are equal to zero. The slack variables γkx

ij , γku
ij , γk∆u

ij , γNx
ij in (16b) define the

value of the min-max problem (13) for every couple (i, j), where Rv(t), Rv(i, j|t)
are the sets of the vertices of R(t) and R(i, j|t), respectively. Note that (16b)
are linear constraints, since in general γ ≥ ‖z‖∞ can be rewritten as γ ≥ ±zi,
∀i. By means of the big-M constraints (16c)-(16d), all the continuous variables
Fi take zero value, except for the one referred to the chosen query. Then, the
cost function (16a) is equivalent to (12a). M is a large enough positive scalar,
satisfying the condition

M ≥
∑mi

j=1 pij(t)
(
‖QN(x(t + N, i, j|t) − rx(t + N, i, j|t))||∞

+
N−1∑
k=1

‖Qx(x(t + k, i, j|t) − rx(t + k, i, j|t))‖∞ + ‖Qu(u(t + k, i, j|t)

− ru(t + k, i, j|t))‖∞ + ‖Q∆u∆u(t + k, i, j|t)‖∞
)

+ cC(i),

for all i = 0, 1, . . . , nq. Note that it is not strictly necessary to model the in-
put sequences for all the possible pairs (q, v), since only maxq (mq) scenarios
are evaluated simultaneously. However, in this case a number of additional con-
straints would be needed, resulting in a higher computational burden. Reducing
the number of the inputs can be desirable if some or all of them are integer
variables.

5 Illustrative Example

The use of receding horizon control policies in supply chain management have
been investigated in [10,8], and approached by hybrid techniques in [2]. In this
paper we consider the supply chain shown in Figure 2, where a single product
is processed through a network of four nodes. A product is distributed, stored,
and sold to the customer. The goal of the control problem is to minimize a
performance index, mainly given by the satisfaction of customer demand and
production costs, while fulfilling constraints on production, storage and transport
capacities. The process is modeled as

F1(t + 1) = F1(t) + P1(t) − T11(t) − T12(t), (17a)
F2(t + 1) = F2(t) + P2(t) − T21(t) − T22(t), (17b)
R1(t + 1) = R1(t) + T11(t) + T21(t) − D1(t), (17c)
R2(t + 1) = R2(t) + T12(t) + T22(t) − D2(t), (17d)

where, at time t, Pi(t) is the number of products which enter the supply chain
and are stored in Factory i, Tij(t) is the number of transported products from
Factory i to Retailer j, and Dj(t) is the number of products sold by Retailer j.

We define the state vector x = [ F1 F2 R1 R2 ]′ ∈ R4 and the input vector
u = [ P1 P2 T11 T12 T21 T22 D̄1 D̄2 ]′ ∈ R8, where D̄i is the nominal value for the
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Fig. 2. Supply chain scheme

demand Di. Then, the dynamics (8) of the supply chain model is described by
the matrices

A =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
1 0 −1 −1 0 0 0 0
0 1 0 0 −1 −1 0 0
0 0 1 0 1 0 −1 0
0 0 0 1 0 1 0 −1

⎤⎥⎥⎦ . (18)

The bounds on states and inputs are

xmax =
[
100 100 100 100

]′
, umax =

[
100 100 50 50 50 50 100 100

]′
,(19a)

xmin =
[
0 0 20 20

]′
, umin =

[
0 0 0 0 0 0 0 0

]′
, (19b)

respectively, and input increments are considered unbounded. In addition, the
model is subject to the following constraints on product availability:

T11(t) + T12(t) ≤ F1(t), (20a)
T21(t) + T22(t) ≤ F2(t), (20b)

D1(t) ≤ R1(t), (20c)
D2(t) ≤ R2(t). (20d)

In this example the state constraints are fully known, but customer demand is
uncertain. In particular, we assume that at every time step t customer demand
can be described by two probability distributions, called low mode and high
mode, respectively. They are essentially modeled as a mixture of Gaussians,
normalized in the demand space:

[
D1(t)
D2(t)

]
∼

⎧⎪⎨⎪⎩
N (µ0,Σ0)∫ 80

0

∫ 80
0 N (µ0,Σ0)dD1dD2

with 70% prob. (low mode)

N (µ0,Σ0)+0.75N (µ1,Σ1)∫ 80
0

∫ 80
0 (N (µ0,Σ0)+0.75N (µ1,Σ1))dD1dD2

with 30% prob. (high mode)

(21)
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Fig. 3. Probabilistic models for customer demand in low mode (a) and high mode (b)

where µ0 = [ 20
20 ], µ1 = [ 60

60 ], Σ0 = [ 400 200
200 400 ], Σ1 = [ 100 50

50 100 ]. The probability
distributions of the customer demand associated to each of the two modes are
shown in Figure 3. The decision maker is supposed to know the current demand
mode at each time step by freely available market polls, but to ignore the ex-
act value of the demand. Henceforth the reference values are time-varying and
uncertain. Let RD denote the subset of the reference set related to the demand
D1, D2. We assume to be able to perform two different queries to get an ap-
proximated description of the actual demand probability distribution: The first
is simpler and cheaper, the second is more accurate but more expensive. The
numerical values for available queries and their outcomes are given in Table 1.
Note that by Assumption 1 we consider a query outcome to be reliable only for
the time step following the time at which the query was sent.

We consider four different decision-making policies:

(1) A deterministic policy obtained by setting q(t) = 0, ∀t, corresponding to a
standard min-max problem where no additional information is retrieved by
the querying mechanism (LP);

(2) A stochastic random policy in which q(t) is picked up randomly in
{1, . . . , nq}, ∀t, and, therefore, q(t) does not depend on the current state
x(t) of the model (LP);

(3) A stochastic heuristics-based policy in which q(t) is selected according to
deterministic conditions on the market state (LP). The following rule is
applied: at time t, if the market is in high mode, select q(t) = 2, else select
q(t) = 1;

(4) The stochastic optimized policy of Problem 12 (MILP).
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Table 1. Queries and outcomes definition

(q, v) C(q) pqv in Low Mode pqv in High Mode RD(q, v|t)
(0, 1) 0 p01,L = 1 p01,H = 1 rmin = [ 0 0], rmax = [80 80]
(1, 1) 1 p11,L = 0.804 p11,H = 0.423 r11

min = [ 0 0], r11
max = [40 80]

(1, 2) 1 p12,L = 0.196 p12,H = 0.577 r12
min = [40 0], r12

max = [80 80]
(2, 1) 15 p21,L = 0.684 p21,H = 0.351 r21

min = [ 0 0], r21
max = [40 40]

(2, 2) 15 p22,L = 0.120 p22,H = 0.072 r22
min = [ 0 40], r22

max = [40 80]
(2, 3) 15 p23,L = 0.120 p23,H = 0.072 r23

min = [40 0], r23
max = [80 40]

(2, 4) 15 p24,L = 0.076 p24,H = 0.505 r24
min = [40 40], r24

max = [80 80]

Table 2. Simulation results

Control policy Performance Jexp Avg. CPU time
Deterministic min-max with null query 401.90 16.0 ms
Stochastic min-max with random query selection 360.84 16.9 ms
Stochastic min-max with heuristic query selection 345.76 16.7 ms
Stochastic min-max with optimized query selection 319.74 36.3 ms

We run Ns = 10 simulations of Tsim = 10 time steps each, using parameters
T = 1, N = 4, c = 1, Q∆u = 0, Qx = QN = Diag([0.1, 0.1, 0.2, 0.2]),
Qu = Diag([10, 10, 0.1, 0.2, 0.2, 0.1, 10, 10]). The initial state is x(0) =
[40 40 60 60]′. Table 2 shows the obtained results in terms of the achieved
average performance evaluated as

Jexp =
1

NsTsim

Ns∑
i=1

Tsim∑
t=1

(
‖Qx(xi(t) − ri

x(t))‖∞

+‖Qu(ui(t) − ri
u(t))‖∞ + ‖Q∆uui(t)‖∞ + cC(qi(t))

)
,

(22)

where i = 1, . . . , Ns indexes the state, input, references, and query values related
to the i-th simulation. The table also reports the average CPU time for solving
Problem 12 on a Macbook 2.4GHz running Matlab 7.6 and Cplex 9.0.

As one can see from the results reported in Table 2, the proposed stochastic
min-max policy achieves the best average performance, with an improvement
of 20.4% with respect to the deterministic min-max policy, an additional 11.4%
with respect to the stochastic min-max policy with random query, and a further
7.5% with respect to the stochastic min-max policy with heuristics-based query.
Moreover, the computation times for all the policies are of the same order of
magnitude for this particular application, which demonstrates the viability of
the methodology from a computational viewpoint.

6 Conclusions

In this paper we proposed a stochastic programming approach to the prob-
lem of simultaneous optimal information gathering and decision making in an



74 D. Bernardini et al.

uncertain environment. In particular, we dealt with linear optimization prob-
lems in which the feasibility set can be enlarged via a set of possible queries
with stochastic outcomes. This class of problems was posed as a two-stage mixed
integer stochastic optimization problems with endogenous uncertainty, that can
be solved recursively in time for optimal performance of systems subject to
uncertain constraints and uncertain references, where it is possible to reduce un-
certainty bounds through queries. The proposed scheme minimizes the expected
optimal cost with respect to the chosen query, while still guaranteeing robust
constraint satisfaction. The results are demonstrated using a supply-chain ex-
ample, which also shows the viability of the methodology from a computational
viewpoint.
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Abstract. In this paper, we deal with hybrid modelling, optimal con-
trol and stability in cognitive radio networks. Networks that are based
on cognitive radio communications are intelligent wireless communica-
tion systems. They are conscious about changes in the environment and
are able to react in order to achieve an optimal utilization of the ra-
dio resources. We provide a general hybrid model of a network of nodes
operating under the cognitive radio paradigm. The model abstracts from
the physical transmission parameters of the network and focuses on the
operation of the control module. The control problem consists in mini-
mizing the consumption of the network, in terms of average transmitted
power or total energy spent by the whole network. A hybrid optimal con-
trol problem is solved and the power-optimal control law is computed.
We introduce the notion of network configuration stability and derive a
control law achieving the best compromise between stability and opti-
mal power consumption. Finally, we apply our results to the case of a
cognitive network based on UWB technology.

1 Introduction

In recent years, much interest has arisen in cognitive networks and their ap-
plications. The cognitive terminology was coined by Joseph Mitola III [1] and
refers to radio devices that are able to sense the external environment, learn
from history and make intelligent decisions in order to adjust their transmission
parameters according to the current state of the environment [2]. The main fea-
tures of cognitive networks have been mostly studied from the radio perspective
(see, for example, [3], [4] and [5]). Some of the topics that have been investi-
gated are spectrum management, cognitive architecture, power control, security
issues. A successful approach is given by the game theory [6]. The power control
problem, in wireless (not necessarily cognitive) contexts, has been addressed in
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many works, mainly as a noncooperative game [7], [8], in partially hybrid con-
texts [9] or in UWB networks with cognitive features [10].

In [13] and [14], we introduced hybrid modelling of self-organizing communi-
cation networks, and more specifically of overlay UWB networks. In this paper,
we expand the above model by applying the concepts to any network of nodes
operating under the cognitive radio paradigm. In particular, we provide a model
that abstracts from the physical transmission parameters of the network and
focuses on the operation of the control module. The control problem consists
in minimizing the consumption of the network, in terms of average transmit-
ted power or total energy spent by the whole network. For simplicity, the focus
is on the uplink communications and the network topology is a star, that is,
the control action is centralized in a Central Node (usually referred to as CN-
ode). The CNode selects at each time t one out of several sets of transmission
parameters that must be used by the other nodes for their transmissions. In
particular, the selection is made on the basis of power minimization. We pro-
vide an optimal solution to the power minimization problem for a generally
defined cognitive network. Based on the observation that the optimal solution
lacks providing stability guarantees, we further refine the model by introducing
an energetic cost that weighs the energy loss provoked by switching from one set
of transmission parameters to another. We then derive the solution to the power
minimization problem under stability constraints, and compare it to the original
optimal solution.

The paper is organized as follows. In Section 2, we review some definitions
of hybrid systems and provide a complete description of the cognitive network
model. In Section 3, we introduce the energy minimization problem for the hy-
brid system and compute the hybrid power-optimal control strategy. Then, we
introduce the notion of configuration stability, and use this concept to find a
sub-optimal configuration-stabilizing solution of the optimum problem. Section
4 addresses the case study of a cognitive network based on UWB technology.
Section 5 offers some concluding remarks.

2 Hybrid Modelling

2.1 Basic Definitions

We define the class of hybrid systems we consider in this paper, following the
framework introduced by [11]. Our definition includes continuous control input,
continuous disturbance and continuous output. Moreover, both discrete control
inputs and discrete disturbances act on the system.

Definition 1 (Hybrid System). A hybrid system H is a collection

H = (Q × X, Q0 × X0, U, D, Y, Inv, S, Σ, E, R) (1)

where
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– Q×X is the hybrid state space, where Q ⊂ N is a finite set of discrete states
and X is the continuous state space. Q0 × X0 ⊆ Q × X is the set of initial
discrete and continuous conditions.

– U , D, Y are subsets of finite dimensional vector spaces and are respectively
the continuous input, disturbance and output space. We denote by Uc the
set of piecewise continuous control functions u : R −→ U and by Ud the set
of disturbance functions d : R −→ D.

– Inv : Q −→ 2X is a map associating to each discrete state q ∈ Q a domain
of acceptable continuous states.

– S = {Sq}q∈Q associates to each discrete state q ∈ Q the nonlinear time-
variant continuous system

Sq :
{

ẋ (t) = fq (t, x (t) , u (t))
y (t) = hq (t, x (t) , u (t) , d (t))

where t ∈ R, x (t) ∈ X , u (t) ∈ U , d (t) ∈ D. Given q ∈ Q, fq (·) is a
function such that, ∀u (·) ∈ Uc, the solution x (t) exists and is unique for
all t ∈ R. Given q ∈ Q, t ∈ R, x (t) ∈ X , u (t) ∈ U , d (t) ∈ D, y (t) =
hq (t, x (t) , u (t) , d (t)) ∈ Y , where hq : T × X × U × D −→ Y .

– Σ is the finite set of discrete inputs, collecting discrete control inputs and
discrete disturbances. Each input is associated to one or more edges e ∈ E.

– E = Ec ∪ Ed ⊂ Q × Σ × Q is a collection of edges, including the set of
the controlled transitions Ec, determined by discrete control inputs, and the
set of the switching transitions Ed, determined by discrete disturbances. We
assign higher priority to switching transitions with respect to controlled ones:
if a switching transition and a controlled transition occur at the same time,
only the switching one is considered, while the controlled one is ignored.

– R : E × X → X is a deterministic map called reset.

Definition 2 (Execution). An execution of the hybrid system H is a collection
χ = (τ, q, σ, x, y, u, d), consisting of a set of switching times τ = {ti}L

i=0 and the
functions q (·) : [t0, tL) −→ Q, σ (·) : [t0, tL) −→ Σ, x (·) : [t0, tL) −→ X,
y (·) : [t0, tL) −→ Y , u (·) : [t0, tL) −→ U , d (·) : [t0, tL) −→ D, satisfying the
following conditions:

– Initial condition: (q (t0) , x (t0)) ∈ Q0 × X0.
– Discrete evolution: for all i = 1, ..., L − 1

1. q (·) and σ (·) are constant over the intervals [ti, ti+1);
2. (q− (ti) , σ (ti) , q (ti)) ∈ E;
3. x (ti) = R (q− (ti) , σ (ti) , q (ti) , x− (ti))

where q− (ti) = lim
t−→t−i

q (t) and x− (ti) = lim
t−→t−i

x (t).

– Continuous evolution: for all i = 1, ..., L − 1, at time t ∈ [ti, ti+1)
1. x (t) is the (unique) state trajectory of the dynamical system Sq(ti) with

initial time ti, initial state x (ti) and control law u;
2. x (t) ∈ Inv (q (ti));
3. y (t) = hq(ti) (t, x (t) , u (t) , d (t)).
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2.2 Hybrid Modelling of Cognitive Networks

We model the set of wireless nodes as a social network, forming one single entity
[13]. We consider a self-organizing network of nodes that adopt a multiple access
scheme in which coexistence is foreseen, that is signals originating from different
users share in principle a same resource in terms of time and frequency. Users
separation is obtained by appropriate coding.

An important hypothesis, that is fundamental in our model, is the possibility
of selecting among different sets of transmission parameters, which can range
from coding, to modulation formats, to pulse shaping. We therefore assume W
different configurations, that is W different sets of transmission parameters wq,
with q = 1, ..., W . We associate an energetic cost c ≥ 0 to the operation of
switching from one set to another.

We assume that system performance is described by a specification on the
system behavior, for example the level of signal to noise ratio or the transmission
delay.

The topology of the network is a star, that is, nodes communicate through
the CNode, and implement the cognitive radio paradigm. If a new node asks
for admission, the CNode evaluates the possibility of admitting it, by checking
whether constraints for admission are compatible with network specifications.

At each time t, the CNode communicates to the other nodes the set of trans-
mission parameters q ∈ {1, ..., W}, the number of active nodes N and the average
power level PRX that it wants to receive. We suppose the signal containing the
above information is sent by the controller at a fixed power level that is prede-
termined and known by all nodes. Each active node j receives this signal and,
on the basis of received power level, can estimate the attenuation aj (t) charac-
terizing its path to the coordinator and can determine the power to be used in
its transmissions, namely pTX,j (t) = aj (t) pRX (t). In this work, we disregard
w.l.o.g. any assumption about the maximum transmission power of each node
[13], in order to decouple completely the power-minimization problem (object
of the present paper) and the problem of nodes leaving the network for lack of
available power.

Since a node can enter/leave the network several times, one has j ∈
{1, ..., Nmax}, where Nmax is the maximum number of nodes which can be admit-
ted to the network. We define a time-varying attenuation vector A (t) ∈ RNmax ,
that includes the attenuations aj (t) for each node j, and an activity vector
S (t) ∈ RNmax , whose generic element sj (t) equals 1 if node j is transmitting at
time t, and 0 otherwise.

The instantaneous transmission power consumption of the network can ex-
pressed as:

PTX (t) =
Nmax∑
j=1

sj (t) pTX,j (t) =

⎛⎝Nmax∑
j=1

sj (t) aj (t)

⎞⎠ pRX (t) = A
′
(t)S (t)u (t) .

Following the assumptions, the network can be modeled as a hybrid system
as follows:



80 A. Borri, M.D. Di Benedetto, and M.-G. Di Benedetto

– The set of discrete states is Q = {1, 2, ..., W}. Each discrete state q ∈ Q is
associated to a configuration wq, that is a set of transmission parameters that
are used for communication. The continuous state x ∈ X = R2 represents
the number N of active nodes and the energy spent by the network from the
beginning of its life, which includes the energy spent for transmission and
for switching among different configurations but does not include the energy
spent by nodes to stay in state of idle/receiving.

– The set of initial states is Q0 × X0 = Q × {n ∈ N, n ≥ 2} × {0} : the net-
work begins its life when there are at least 2 nodes, the minimum for a
communication. At the beginning, the energy consumption is zero.

– The domains are
Inv (q) = N × R+ ∀q ∈ Q.

– The continuous dynamics associated to a discrete state q ∈ Q is

Sq :

⎧⎪⎪⎨⎪⎪⎩
[
ẋ1 (t)
ẋ2 (t)

]
= f (t, u (t)) =

[
0

A
′
(t)S (t)u (t)

]
y (t) =

[
hq (x (t) , u (t))

d (t)

]
f (t, u) includes a trivial dynamics (the number of nodes may change only
as a consequence of a discrete transition) and the instantaneous transmis-
sion power consumption of the network A′ (t) S (t)u. The continuous con-
trol input u (t) ∈ U = R+ represents the power level pRX (t) that the
CNode wants to receive from each transmitting node. The output vector
y (t) ∈ Y = Q × N × U × D includes the set of variables sent to each node
by the CNode

hq (x, u) =
[
q x1 u

]T
and the measurable continuous disturbance vector d (t) ∈ D ⊆ RW (d (t) is
not sent to all active nodes).

– The discrete inputs are Σ = Σc ∪ {σd}, where σd is the discrete disturbance
representing the uncontrollable event that a node leaves the network, while
Σc = {σq, q ∈ Q} ∪ {σa} is the set of discrete controls:
• σq is the control action occurring when the coordinator decides to com-

mute from the current set of parameters to the set wq, q ∈ Q;
• σa models the decision to accept a new candidate node in the network;

we assume here that the decision procedure, after an admission request,
requires a negligible time to be performed.

– The edges are E = Ec ∪Ed, where Ec is the set of the controlled transitions :

Ec = Ec,W ∪ Ec,a

Ec,W = {(p, σq, q) , p, q ∈ Q, p �= q, σq ∈ Σc}
Ec,a = {(q, σa, q) , q ∈ Q, σa ∈ Σc}

and Ed = {(q, σd, q) , q ∈ Q} is the set of the switching transitions.
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Fig. 1. Hybrid Model

– Reset map: ∀x ∈ X

R (e, x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[
x1

x2 + c

]
e ∈ Ec,W[

x1 + 1
x2

]
e ∈ Ec,a[

x1 − 1
x2

]
e ∈ Ed

Note that the x2 dynamics is reset only when a change in the transmission
parameters occurs, modelling the energetic switching cost c for the network.

The network model is a non-deterministic hybrid system because of the
presence of the discrete disturbance σd and of the continuous disturbance d (t).

3 Energy Minimization as a Hybrid Optimal Control
Problem

Since the admission of a candidate node is allowed only if constraints for admis-
sion are compatible with network specifications and none of the current active
nodes is forced to leave the network as a result of its admission [13], we focus
here on the choice of a discrete control σq (a set of transmission parameters) and
of a continuous control u (t) that minimize the energy consumption of the net-
work. In this section, we define the energy minimization problem on the hybrid
system representing the cognitive network and solve it by defining the discrete
and continuous control action.
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3.1 Energy Minimization

In the following definitions, we refer to the hybrid system (1). Let χT,(q0,x0)
denote the set of all executions χ = (τ, q, σ, x, y, u, d) defined on the same
time horizon T = [t0, tL) ⊂ R with initial condition (q0, x0) ∈ Q0 × X0, i.e.
(q (t0) , x (t0)) = (q0, x0) . Given an execution χ ∈ χT,(q0,x0), we define its value
at time t, and we abuse notation by writing χ (t), as

χ (t) := (q (t) , σ (t) , x (t) , y (t) , u (t) , d (t))

We partition the set of the switching times τ = τc ∪ τnc, where τc := {tc,i}Lc

i=1
includes all the switching times due to configuration transitions (elements of
Ec,W ) and τnc is its complement τ \ τc. Hence τnc includes switching times due
to switching transitions and to admission transitions.

Problem 1 (Energy minimization). Given the hybrid system H, a set
χT,(q0,x0) including all the executions χ = (τ, q, σ, x, y, u, d) defined on a time
horizon T = [t0, tfin) ⊂ R with (q0, x0) ∈ Q0×X0, where d ∈ Ud is a given distur-
bance function and τ ⊇ τnc, where τnc is given. Let Ξ be the space of all discrete
strategies σ : T −→ Σ compatible with τnc, i.e. such that σ (tnc,i) ∈ {σa, σd}
∀tnc,i ∈ τnc, and Ubound the space of all continuous functions u that satisfy a con-
straint u (t) ≥ uLB (q, t) for all t ∈ T . The energy minimization control problem
consists in minimizing the functional

Je (u, σ, τc, c) =
∫
T

A′ (t)S (t)u(t)dt + c ∗ card (τc) = x2 (tfin)

over all σ ∈ Ξ and u ∈ Ubound.

Solution 1 (case c = 0). We solve the energy minimization problem for the case
c = 0 and refer to the corresponding optimal strategy as (σ∗

0 , u∗
0). With this

assumption, we can also write

min
(σ,u)

x2 (tfin) = min
(σ,u)

Je (u, σ, τc, 0) = min
(σ,u)

∫
T

A′ (t)S (t)u(t)dt

so the discrete optimal trajectory and the continuous optimal control action are
clearly

q∗0 (t) := argmin
q∈Q

uLB (q, t)

u∗
0 (t) = uLB (q∗0 (t) , t) ∀t ∈ T

The function q∗0 : T −→ Q “induces” the set of switching times τ∗
0 = τ∗

c ∪ τnc,
where τ∗

c is the set of controlled switching times with cardinality L∗
c , namely such

that for all i = 1, ..., L∗
c , q∗0

(
t∗c,i

)
�= lim

t−→(t∗c,i)
− (q∗0 (t)). Finally the discrete

control function σ∗
0 : T −→ Σ is a piecewise constant function, in which the

control-dependent part is defined by the relation

σ∗
0
(
t∗c,i

)
= σq∗

0 (t∗c,i) ∈ Σc i = 1, ..., L∗
c
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Remark 1. For c = 0, the solution to the energy minimization problem (σ∗
0 , u∗

0)
is obtained by minimizing the power at each time t. Hence, it is computable in
real-time and the control (σ∗

0 , u∗
0) is indeed achievable. We refer to it as hybrid

power-optimal strategy.
For c > 0, the solution (σ∗, u∗) to the energy minimization problem depends

on the values of the time-varying constraint uLB (q, t) over the whole interval
[t0, tfin), which may not be known a priori. For example, if the constraint corre-
sponds to a minimum signal-to-noise ratio requirement, uLB (q, t) would depend
on disturbances such as external noise and interference. Those disturbances are
supposed to be measurable in real-time but cannot be known a priori. Hence,
in general, the control strategy (σ∗, u∗) is not computable in real-time and is
therefore not achievable. The power-optimal strategy (σ∗

0 , u∗
0) is not optimal for

c > 0, but is a sub-optimal solution of the energy minimization problem as it
will be precisely described in the next subsection, where we look for a strategy
achieving the best compromise between computability, power consumption and
stability of the configuration of the network.

Remark 2. Note that since the dynamic equation in each discrete state and the
reset maps are deterministic, an optimal strategy (σ∗, u∗) leads to a unique max-
imal hybrid execution (τ∗, σ∗, q∗, x∗, y∗, u∗, d) ∈ χT,(q0,x0). The discrete optimal
trajectory q∗ is well-defined if there are no multiple optimal configurations at
the same time. If this situation occurs, the optimal configuration can be either
chosen arbitrarily among the optimal ones, or chosen according to additional
constraints or specifications.

3.2 Configuration Stability

In the previous subsection, we showed that the hybrid strategy (σ∗
0 , u∗

0) mini-
mizes both power and energy consumption if the cost of configuration switchings
is negligible. However, the discrete control strategy σ∗

0 does not assure stability
of the network, in the sense that too many switchings may occur in a finite
amount of time. Switchings may also be due to switching transitions or admis-
sion requests, but since those are uncontrollable transitions, we focus here on
ensuring stability at least from the controlled switchings point of view. In this
subsection, we propose a sub-optimal hybrid strategy (σ∗

δ , u∗
δ) that guarentees

good performance and stable behavior.
The sub-optimal continuous control u corresponding to any sub-optimal dis-

crete state q̃ (t) �= q∗ (t) is ũ (t) := uLB (q̃ (t) , t), that is the lowest value of
continuous control satisfying the constraint. This simple consideration allows
us, in the following, to focus only on the discrete control of the system.

Definition 3 (Configuration stability). Let Hc be the hybrid system H con-
trolled by a hybrid strategy (σ, u). If there exists δ > 0 such that, for any execution
(τ, q, σ, x, y, u, d), the inequality 0 < δ ≤ tc,i+1 − tc,i holds ∀i ∈ {1, ..., Lc − 1},
then Hc is said to be δ-configuration stable and σ is said to be a δ-configuration
stabilizing strategy.
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Configuration stability is related to the existence of a dwell-time, but with
reference only to controlled switching times. The system Hc controlled by the
power-optimal control strategy (σ∗

0 , u∗
0) is not necessarily δ-configuration stable,

for some δ > 0, since consecutive configuration switchings can be arbitrarily
close in time. We propose here to modify the optimal strategy in order to achieve
configuration stability.

In the space Ξ of all discrete strategies σ : T −→ Σ compatible with τnc, we
consider a pseudometric d : Ξ × Ξ −→ R+:

d (x, y) := λ ({t ∈ T : x (t) − y (t) �= 0}) ∀x, y ∈ Ξ

where λ (·) is the Lebesgue measure. The chosen pseudometric compares how
different two discrete-valued functions are in terms of the duration of the time
intervals where they assume different values. In the following, we propose a
strategy σ∗

δ that is achieved by deferring any controlled switching so that it
occurs not before a time δ from the previous one. If one or more than a switching
occur within a time δ, only the last one is taken into account.

Algorithm. Given the collection of optimal switching times τ∗
c =

{
t∗c,i

}L∗
c

i=1
, we

build a sequence τ̃c =
{
t̃c,j

}L̃c

j=1 , depending on τ∗
c , as follows:

Initialization: t̃c,1 = t∗c,1; flag=FALSE; i = 2; k = 2.
Iteration: while (i ≤ L∗

c)
{ if (t∗c,i < t̃c,k−1 + δ) then {flag=TRUE; i + +;}
else {if (flag==TRUE) then {t̃c,k = t̃c,k−1 + δ; flag=FALSE;}

else {t̃c,k = t∗c,i; i + +;}
k + +;}

}
Conclusion: if ((flag==TRUE) and (t̃c,k−1+δ < tfin)) then t̃c,k = t̃c,k−1+δ;

else k − −;
L̃c = k;

define the collection τ̃c =
{
t̃c,j

}L̃c

j=1;

set σ∗
δ

(
t̃c,j

)
= σq∗(t̃c,j) for all j = 1, ..., L̃c.

Theorem 1. Given a hybrid system H, a time horizon T = [t0, tf ) ⊆ R, an
initial condition (q0, x0) ∈ Q0 ×X0 and the pseudometric space Ξ of all discrete
strategies σ : T −→ Σ compatible with τnc. If σ∗

0 ∈ Ξ is the power-optimal
discrete control strategy, the sub-optimal strategy σ∗

δ , with controlled switching
times τ̃c, has the following properties:

1. σ∗
δ is a δ-configuration stabilizing strategy;

2. σ∗
δ does not anticipate σ∗

0(causality principle), i.e. “jumps” in σ∗
δ cannot

occur earlier than corresponding “jumps” in σ∗
0 ;

3. if σ̃ is any other δ-configuration stabilizing strategy, then d (σ∗
δ , σ∗

0)
< d (σ̃, σ∗

0) , i.e. σ∗
δ is at minimum distance from the power-optimal

strategy σ∗
0 .
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Proof. The algorithm builds the sequence τ̃c such that 0 < δ ≤ t̃c,j+1 − t̃j

∀j ∈
{
0, 1, ..., L̃c − 1

}
. Hence, property 1 is fulfilled by construction. Moreover,

the final step of the algorithm shows that σ∗
δ is built causally starting from σ∗

0 , so
that property 2 holds. Property 3 is also satisfied because it is not possible to find
another discrete strategy σ̃, not anticipating σ∗

0 , such that d (σ̃, σ∗
0) < d (σ∗

δ , σ∗
0);

in fact σ∗
δ equals σ∗

0 except for time intervals in which the dwell-time constraint
is not fulfilled. In such cases, it guarantees the controlled system to have exactly
a dwell time equal to δ. Any other function σ̃ such that d (σ̃, σ∗

0) < d (σ∗
δ , σ∗

0)
equals σ∗

0 in at least one of the time intervals in which the dwell-time constraint
is not fulfilled, so it itself cannot fulfill the constraint. So we can finally deduce
that, given the optimal strategy σ∗

0 , the strategy σ∗
δ is the “nearest” function

satisfying the dwell-time constraint.

Call Tδ ⊂ T the subset of the time horizon in which σ∗
δ and σ∗

0 are different.
Notice that λ (Tδ) ≤ L∗

c δ. Then consider the transmission energy consump-
tion Je (u, σ, τc, 0) already defined. The δ-configuration stabilizing strategy σ∗

δ

uniquely defines the discrete evolution q∗δ and the continuous sub-optimal con-
trol u∗

δ

σ∗
δ

(
t̃c,j

)
= σq∗

δ (t̃c,j) ∈ Σc i = 1, ..., L̃c

u∗
δ (t) = uLB (q∗δ (t) , t) .

The energy loss between power-optimal and sub-optimal strategy is

∆Jδ := Je (u∗
δ, σ

∗
δ , τ̃c, 0) − Je (u∗

0, σ
∗
0 , τ∗

c , 0) =

=
∫
Tδ

A′ (t) S (t) [uLB (q∗δ (t) , t) − uLB (q∗0 (t) , t)] dt.

Notice that the integrand is not null in Tδ. Moreover the integration domain is
continuous with respect to the variable δ, and limδ−→0 λ (Tδ) = 0. Hence we can
conclude that

Theorem 2. For any ε > 0, there exists δ := δ (ε) and a δ-configuration stabi-
lizing strategy σ∗

δ such that ∆Jδ := Je (u∗
δ , σ

∗
δ , τ̃c, 0) − Je (u∗

0, σ
∗
0 , τ∗

c , 0) < ε.

The previous theorem is a continuity result stating that any energy requirement
can be approached with as much precision as desired, by tuning the duration of
the dwell-time δ.

Remark 3. Since the functional Je (u, σ, τc, c) is unbounded if the switching cost
c grows, then ∀δ > 0, ∃c̄ > 0 such that for all costs c ≥ c̄, the sub-optimal control
strategy (σ∗

δ , u∗
δ), with a lower number of switchings than the power-optimal one

(σ∗
0 , u∗

0), results to be even better than (σ∗
0 , u∗

0) in terms of energy consumption:

Je (u∗
δ , σ

∗
δ , τ̃c, c) ≤ Je (u∗

0, σ
∗
0 , τ∗

c , c) ∀c ≥ c̄.



86 A. Borri, M.D. Di Benedetto, and M.-G. Di Benedetto

4 Case Study: Cognitive Networks Based on UWB
Technology

Refer, for example, to [10], [13], [14] for the assumptions about UWB Commu-
nication.

We consider as set of transmission parameters a set of W waveforms that are
used for the pulse shaping. The system specification is expressed in terms of
signal-to-noise ratio on a pulse at the correlator output, that has the following
expression

SNRp (u, q, d, N) =
TS u

dq + σ2
m (q) (N − 1)u

where TS is the chip duration, N is the number of nodes, σ2
m (q) is the MUI

weight for the waveform q and dq is the external noise power for the waveform
q, i.e. the q − th component of the disturbance vector d.

The specification is SNRp (u, q, d, N) ≥ SNR0 where SNR0 > 0 is given. It
leads to the lower-bound constraint on the minimum received power

u (t) ≥ uLB (q (t) , t) =
SNR0dq(t) (t)

TS − SNR0σ2
m (q (t)) (N (t) − 1)

∀t ∈ T

Notice that such a lower bound, corresponding to the minimum signal-to-
noise ratio requirement, increases with external noise power and MUI weight.
The power-optimal solution is given by the following expressions⎧⎪⎪⎪⎨⎪⎪⎪⎩

q∗0 (t) = arg min
q∈Q

(
SNR0dq(t)

TS−SNR0σ2
m(q)(N(t)−1)

)
u∗

0 (t) =
SNR0dq∗0 (t)(t)

TS−SNR0σ2
m(q∗

0 (t))(N(t)−1)

σ∗
0
(
t∗c,i

)
= σq∗

0 (t∗c,i) i = 1, ..., L∗
c

∀t ∈ T

where τ∗
c is the set of the “induced” controlled switching times, with cardinality

L∗
c (see subsection 3.1). Note that the power-optimal hybrid strategy (σ∗

0 , u∗
0)

can be regarded as an output-feedback hybrid optimal control law.

4.1 Simulations

In order to evaluate the impact of cognition, the cognitive UWB network coexists
with several narrowband interferers. The CNode is located at the centre of a cir-
cular area with radius R = 10 m. The area contains N = 10 active nodes, not
changing during the simulation time. The active users are continuously trans-
mitting data towards the CNode during the whole duration of the simulation.
At time t, the N active nodes adopt a generic waveform wq(t), that can be se-
lected within a set of 6 different waveforms w1(t), . . . , w6(t), represented by
the first six odd derivatives of the Gaussian pulse. Specifically, we assume that
the CNode may order a change in the adopted waveform only at multiples of a
given interval.
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The synchronization threshold SNR0 is set to 3 dB, the emitted power of
the interfering devices is equal to 10−3 W , the simulation is over 20 cognitive
intervals, each of 10−5 seconds. The minimum dwell-time is set to 2 cognitive
intervals and the switching cost is 10−19 Joule.
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We assume that several narrowband interferers are present in the area, not
transmitting continuously. In order to highlight the effect of cognition on network
coexistence, we consider, for each simulation, four different CNodes that will be
compared in terms of performance:

1. The Adaptive CNode (no cognition) initially selects a waveform and does
not perform any further selection of the pulse shape during network lifetime.

2. The Amateur CNode (limited cognition) is capable to select the waveform
in correspondence of a sub-set of the 6 available waveforms, consisting of
the last used waveform and the two adjacent ones. Within this subset, it is
capable of selecting the pulse shape minimizing the transmission power.

3. The Smart CNode (optimal cognition) is always capable of selecting the
pulse shape that minimizes the transmission power for the active nodes of
the network, i.e. it performs the power-optimal hybrid strategy (σ∗

0 , u∗
0).

4. The Stabilizing CNode (stabilizing or sub-optimal cognition) guarantees the
best trade-off between optimality and stability, performing the sub-optimal
control strategy (σ∗

δ , u∗
δ).

Figures 2 and 3 show the simulation results. The Adaptive CNode (not re-
ported on the plot) chooses the waveform w2 (t) and its network keeps trans-
mitting using this pulse-shaper over the whole simulation. The result is totally
unefficient because this choice leads to a power consumption that is about 7
times higher than in the optimal cognitive case. Limited and stabilizing cogni-
tions are much better, requiring between 15% and 20% more power than the
optimal CNode. The plots concerning power are not reported due to limited
space.

Figure 2 shows that the stabilizing CNode makes only 4 waveform transitions,
while the Amateur and the Smart one perform 6 jumps. This leads to a large
saving of energy for the stabilizing CNode, such that its final energy consumption
x2 (tfin) is 2.7 % lower than the one performed by the power-optimal strategy
(see Figure 3). This is an example in which Remark (3) holds, and the stabilizing
strategy (σ∗

δ , u∗
δ) is better than the power-optimal one (σ∗

0 , u∗
0) in terms of total

energy consumption.

5 Conclusions and Open Issues

In this paper, we focused on the hybrid modelling and optimal control of cog-
nitive radio networks. At first, we provided a model of a general network of
nodes operating under the cognitive radio paradigm, which abstracts from the
physical transmission parameters of the network and focuses on the operation
of the control module. Then, we proposed an optimal solution to the power
minimization problem. We also introduced the notion of configuration stability
and showed that this property is not ensured when the power-optimal control
is applied. A control strategy achieving the best compromise between stability
and optimality was then derived. Finally, we applied our results to the case of a
cognitive network based on UWB technology.
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The architecture we analyzed in this paper was centered on the Cognitive
Node. An extension of this architecture would be one of multiple CNodes, with
each CNode that is responsible for a cluster of nodes. The hierarchical distributed
case will be the object of future investigations.
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Abstract. In this paper, we show how to apply recent tools for the automatic syn-
thesis of robust and near-optimal controllers for a real industrial case study. We
show how to use three different classes of models and their supporting existing
tools, UPPAAL-TIGA for synthesis, PHAVER for verification, and SIMULINK

for simulation, in a complementary way. We believe that this case study shows
that our tools have reached a level of maturity that allows us to tackle interesting
and relevant industrial control problems.

1 Introduction

The design of controllers for embedded systems is a difficult engineering task. Con-
trollers have to enforce properties like safety properties (e.g. “nothing bad will hap-
pen”), or reachability properties (e.g. “something good will happen”), and ideally they
should do that in an efficient way, e.g. consume the least possible amount of energy. In
this paper, we show how to use (in a systematic way) models and a chain of automatic
tools for the synthesis, verification and simulation of a provably correct and near opti-
mal controller for a real industrial equipment. This case study was provided to us by the
HYDAC company in the context of a European research project Quasimodo�.

The system to be controlled is depicted in Fig. 1 and is composed of: (1) a machine
which consumes oil, (2) a reservoir containing oil, (3) an accumulator containing oil and
a fixed amount of gas in order to put the oil under pressure, and (4) a pump. When the
system is operating, the machine consumes oil under pressure out of the accumulator.
The level of the oil, and so the pressure within the accumulator (the amount of gas
being constant), can be controlled using the pump to introduce additional oil in the
accumulator (increasing the gas pressure). The control objective is twofold: first the
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level of oil into the accumulator (and so the gas pressure) can be controlled using the
pump and must be maintained into a safe interval; second the controller should try to
minimize the level of oil such that the accumulated energy in the system is kept minimal.

In a recent work [7], we have presented an approach for the synthesis of a correct
controller for a timed system. It was based on the tool UPPAAL-TIGA [1] applied on
a very abstract untimed game model for synthesis and on SIMULINK [8] for simula-
tion. To solve the HYDAC control problem, we use three complementary tools for three
different purposes: UPPAAL-TIGA for synthesis, PHAVER [5,4] for verification, and
SIMULINK for simulation. For the synthesis phase, we show how to construct a (game)
model of the case study which has the following properties:

– it is simple enough to be solved automatically using algorithmic methods imple-
mented into UPPAAL-TIGA;

– it ensures that the synthesized controllers can be easily implemented.

To meet those two requirements, we consider an

Pump

Reservoir

Accumulator

Machine/Consumer

Vmax

Vmin

+2.2 litres/second

Fig. 1. Overview of the System

idealized version of the environment in which the
controller is embedded, but we put additional con-
straints into the winning objective of the controller
that ensure the robustness of winning strategies. As
the winning strategies are obtained in a simplified
model of the system, we show how to embed au-
tomatically the synthesized strategies into a more
detailed model of the environment, and how to au-
tomatically prove their correctness using the tool
PHAVER for analyzing hybrid systems. While the
verification model allows us to establish correct-
ness of the controller that is obtained automatically
using UPPAAL-TIGA, it does not allow us to learn its expected performance in an envi-
ronment where noise is not completely antagonist but follows some probabilistic rules.
For this kind of analysis, we consider a third model of the environment and we analyze
the performance of our synthesized controller using SIMULINK.

To show the advantages of our approach, we compare the performances of the con-
troller we have automatically synthesized with two other control strategies. The first
control strategy is a simple two-point control strategy where the pump is turned on
when the volume of oil reaches a floor value and turned off when the volume of oil
reaches a ceiling value. The second control strategy is a strategy designed by the engi-
neers at HYDAC with the help of SIMULINK.

Structure of the paper. In section 2, we present the HYDAC control problem. In sec-
tion 3, we present our construction of a suitable abstract model of the system, and
the strategy we have obtained using the synthesis algorithm of UPPAAL-TIGA. In sec-
tion 4, we embed the controllers into a continuous hybrid model of the environment and
use the tool PHAVER to verify their correctness and robustness: we prove that strategies
obtained using UPPAAL-TIGA are indeed correct and robust. In section 5, we analyze
and compare the performances in term of mean volume of the three controllers using
SIMULINK.



92 F. Cassez et al.

2 The Oil Pump Control Problem

In this section, we describe the components of the HYDAC case study using hybrid
automata notations. Then we explain the control objectives for the system to design.

The Machine. The oil consumption of the machine is cyclic. One cycle of consump-
tions, as given by HYDAC, is depicted in Fig. 2(d). Each period of consumption is
characterized by a rate of consumption mr (expressed as a number of litres per sec-
ond), a date of beginning, and a duration. We assume that the cycle is known a priori:
we do not consider the problem of identifying the cycle (which can be performed as a
pre-processing step). At time 2, the rate of the machine goes to 1.2l/s for two seconds.
From 8 to 10 it is 1.2 again and from 10 to 12 it goes up to 2.5 (which is more than the
maximal output of the pump). From 14 to 16 it is 1.7 and from 16 to 18 it is 0.5. Even
if the consumption is cyclic and known in advance, the rate is subject to noise: if the
mean consumption for a period is c l/s (with c > 0), in reality it always lies within that
period in the interval [c − ε, c + ε], where ε is fixed to 0.1 l/s. This property is noted F.

To model the machine, we use a timed automaton with 2 variables. The discrete vari-
able mr models the consumption rate of the machine, and the clock t is used to measure
time within a cycle. The variable mr is shared with the model of the accumulator. The
timed automaton is given in Fig. 2(a). The noise on the rate of consumption is modeled
in the model for the accumulator.

The Pump. The pump is either On or Off, and we assume it is initially Off. The operation
of the pump must respect the following latency constraint: there must always be two
seconds between any change of state of the pump, i.e. if it is turned On (respectively
Off) at time t, it must stay On (respectively Off) at least until time t + 2: we note P1
this property. When it is On, its output is equal to 2.2l/s. We model the pump with a
two states timed automaton given in Fig. 2(c) with two variables. The discrete variable
pr models the pumping rate of oil of the pump, and is shared with the accumulator. The
clock z ensures that 2 t.u. have elapsed between two switches.

The Accumulator. To model the behavior of the accumulator, we use a one state hybrid
automaton given in Fig. 2(b) that uses four variables. The variable v models the volume
of oil within the accumulator, its evolution depends on the value of the variables mr (the
rate of consumption depending of the machine) and pr (the rate of incoming oil from
the pump). To model the imprecision on the rate of the consumption of the machine,
the dynamics of the volume also depends on the parameter ε and is naturally given by
the differential inclusion dv/dt ∈ [pr − m−

r (ε), pr − m+
r (ε)] with m
�

r (x) = mr �� x
if mr > 0 and mr otherwise. The variable Vacc models the accumulated volume of
oil along time in the accumulator. It is initially equal to 0 and its dynamic is naturally
defined by the equation dVacc/dt = v.

The Control Problem. The controller must operate the pump (switch it on and off,
respecting the latency constraint) to ensure the following two main requirements:

– (R1): the level of oil v(t) at time t (measured in litres) into the accumulator must
always stay within two safety bounds [Vmin; Vmax], in the sequel Vmin = 4.9l and
Vmax = 25.1l;
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Fig. 2. Hybrid Automaton Model of the System

– (R2): a large amount of oil in the accumulator implies a high pressure of gas in the
accumulator. This requires more energy from the pump to fill in the accumulator
and also speeds up the wear of the machine. This is why the level of oil should be
kept minimal during operation, in the sense that

∫ t=T

t=0 v(t)dt, that is Vacc(T ), is
minimal for a given operation period T .

While (R1) is a safety requirement and so must never be violated by any controller, (R2)
is an optimality requirement and will be used to compare different controllers.

Note that as the power of the pump is not always larger than the demand of the ma-
chine during one period of consumption (see Fig. 2(d) between 10 and 12), some extra
amount of oil must be present in the accumulator before that period of consumption to
ensure that the minimal amount of oil constraint (requirement R1) is not violated1.

Additional Requirements on the Controller. When designing a controller, we must de-
cide what are the possible actions that the controller can take. Here are some consid-
erations about that. First, as the consumptions are subject to noise, it is necessary to
allow the controller to check periodically the level of oil in the accumulator (as it is not
predictable in the long run). Second, as the consumption of the machine has a cyclic
behavior, the controller should use this information to optimize the level of oil. So, it is
natural to allow the controller to take control decisions at predefined instants during the
cycle. Finally, we want a robust solution in the sense that if the controller has to turn
on (or off) the pump at time t, it can do it a little before or after, that is at time t ± ∆

1 It might be too late to switch the pump on when the volume reaches Vmin.
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for a small ∆ without impairing safety. This robustness requirement will be taken into
account in the synthesis and verification phases described later.

Two existing solutions. In the next sections, we will show how to use synthesis algo-
rithms implemented in UPPAAL-TIGA to obtain a simple but still efficient controller
for the oil pump. This controller will be compared to two other solutions that have been
previously considered by the HYDAC company.

The first one is called the Bang-Bang controller. Using the sensor for oil volume
in the accumulator, the Bang-Bang controller turns on the pump when a floor volume
value V1 is reached and turns off the pump when a ceiling volume value V2 is reached.
The Bang-Bang controller is thus a simple two-point controller, but it does not exploits
the timing information about the consumption periods within a cycle.

To obtain better performances in term of energy consumption, engineers at HYDAC

have designed a controller that exploit this timing. This second controller is called the
Smart controller. This controller was designed by HYDAC, and works as follows [6]:
in the first cycle the Bang-Bang controller is used and the volume v(t) is measured
and recorded every 10ms. According to the sampled values v(t) computed in the initial
cycle, an optimization procedure computes the points at which to start/stop the pump
on the new cycle (this optimization procedure was given to us in the form of a C code
executable into SIMULINK; unfortunately we do not have a mathematical specification
of it). On this next cycle the values v(t) are again recorded every 10ms which is the
basis for the computation of the start/stop commands for the next cycle. If the volume
leaves a predefined safety interval, the Bang-Bang controller is launched again. Though
simulations of SIMULINK models developed by HYDAC reveal no unsafe behaviour,
the engineers have not been able to verify its correctness and robustness. As we will see
later, this strategy (we use the switching points in time obtained with SIMULINK when
the C code is run) is not safe in the long run in presence of noise.

3 The UPPAAL-TIGA Model for Controller Synthesis

The hybrid automaton model presented in the previous section can be interpreted as a
game in which the controller only supervises the pump. In this section, we show how to
synthesize automatically, from a game model of the system and using UPPAAL-TIGA,
an efficient controller for the Hydac case study. UPPAAL-TIGA is a recent extension of
the tool UPPAAL which is able to solve timed games.

Game Models of Control Problems. While modeling control problems with games is
very natural and appealing, we must keep in mind several important aspects. First,
solving timed games is computationally hard, so we should aim at game models that
are sufficiently abstract. Second, when modeling a system with a game model, we must
also be careful about the information that is available to each player in the model. The
current version of UPPAAL-TIGA offers games of perfect information (see [3] for steps
towards games for imperfect information into UPPAAL-TIGA.) In games of perfect
information, the two players have access to the full description of the state of the sys-
tem. For simple objectives like safety or reachability, the strategies of the players are
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functions from states to actions. To follow such strategies, the implementation of the
controller must have access to the information contained in the states of the model. In
practice, this information is acquired using sensors, timers, etc.

The UPPAAL-TIGA Model. We describe in the next paragraphs how we have obtained
our game model for the hybrid automaton of the HYDAC case study. First, to keep the
game model simple enough and to remain in a decidable framework2, we have designed
a model which: (a) considers one cycle of consumption; (b) uses an abstract model of
the fluctuations of the rate; (c) uses a discretization of the dynamics within the system.
Note that since the discretization impacts both the controller and the environment, it is
neither an over- nor an under-approximation of the hybrid game model and thus we can
not deduce directly the correctness of our controllers. However, our methodology in-
cludes a verification step based on PHAVER which allows us to prove this correctness.
Second, to make sure that the winning strategies that will be computed by UPPAAL-
TIGA are implementable, the states of our game model only contain the following
information, which can be made available to an implementation:

– the volume of oil at the beginning of the cycle; we thus only measure the oil once
per cycle, leading to more simple controllers.

– the ideal volume as predicted by the consumption period in the cycle;
– the current time within the cycle;
– the state of the pump (on or off).

Third, to ensure robustness of our strategies, i.e. that their implementations are correct
under imprecisions on measures of volume or time, we consider some margin param-
eter m which roughly represents how much the volume can deviate because of these
imprecisions. We will consider values in range [0.1; 0.4]l.

Global Variables. First, we discretize the time w.r.t. ratio stored in variable D, such that
D time units represent one second. Second, we represent the current volume of oil by
the variable V. We consider a precision of 0.1l and thus multiply the value of the volume
by 10 to use integers. This volume evolves according to a rate stored in variable V rate
and the accumulated volume is stored in the variable V acc3. Finally, we also use an
integer variable time which measures the global time since the beginning of the cycle.

The Model of the Machine. The model for the behaviour of the machine is represented
on Fig. 3(a). Note that all the transitions are uncontrollable (represented by dashed
arrows). The construction of the nodes (except the middle one labelled bad) follows
easily from the cyclic definition of the consumption of the machine. When a time at
which the rate of consumption changes is reached, we simply update the value of the
variable V rate. The additional central node called bad is used to model the uncer-
tainty on the value of V due to the fluctuations of the consumption. The function Noise
(Fig. 4) checks whether the value of V, if modified by these fluctuations, may be outside
the interval [Vmin + 0.1, Vmax − 0.1] 4. The function final Noise (Fig. 4) checks the

2 The existence of winning strategies for timed games with costs in undecidable, see [2].
3 To avoid integers divisions, we multiply all these values by D.
4 For robustness, we restrain safety constraints of 0.1 l.
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Fig. 3. UPPAAL-TIGA models

same but for the volume obtained at the end of cycle and against the interval represented
by V1F and V2F. Note that this modelling allows in some sense to perform partial ob-
servation using a tool for games of perfect information. Indeed, the natural modelling
would modify at each step the actual value of the variable V and the strategies would
then be aware of the amount of fluctuations. In our model the ideal value of V is pre-
dictable because it directly depends on the current time and from the point of view of
the controller it does not give any information about the fluctuation.

The Model of the Pump. The model for the pump is represented on Fig. 3(b) and is
very similar to the timed automaton given on Fig. 2(c). Note that the transitions are all
controllable (plain arrows) and that we impose a bit more than P1 as we require that
2 seconds have elapsed at the beginning of the cycle before switching on the pump.
Moreover, an additional integer variable i is used to count how many times the pump
has been started on. We use parameter N to bound this number of activations, which is
set to 2 in the following. Note also that the time points of activation/deactivation of the
pump are stored in two vectors start and stop.
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bool Noise(int s){
// s is the number of t.u. of consumption
return (V-s<(Vmin+1)*D|V+s>(Vmax-1)*D);}

bool final_Noise(){
// 10*D t.u. of consumption in 1 cycle
return (V-10*D<V1F*D|V+10*D>V2F*D);}

void update_val(){
int V_pred = V;
time++;
V+=V_rate;
V_acc+=V+V_pred;

}

Fig. 4. Functions embedded in UppAal Tiga models

The Model of the Scheduler. We use a third automaton represented on Fig. 3(c) to sched-
ule the composition. Initially it sets the value of the volume to V0 and then it repeats the
following actions: it first updates the global variables V, V acc and time through func-
tion update val. Then the scheduling is performed using the two channels update cy5

and update pump. When the end of the cycle of the machine is reached, the corre-
sponding automaton sets the boolean variable done to true, which forces the scheduler
to go to location END.

Composition. We denote by A the automaton obtained by the composition of the three
automata described before. We consider as parameters the initial value of the volume,
say V0, and the target interval I2, corresponding to V1F and V2F, and write A(V0, I2)
the composed system.

Global Approach for Synthesis. Even if the game model that we consider is abstract
and restricted to one cycle, note that our modelling enforces the constraints expressed
in section 2. Indeed, R1 is enforced through function Noise, F is handled through the
two functions Noise and final Noise, and P1 is expressed explicitly in the model of the
pump. To extend our analysis from one cycle to any number of cycles, and to optimize
objective R2, we formulate the following control objective (for some fixed margin m ∈
Q>0) :

Find some interval I1 = [V1, V2] ⊆ [4.9; 25.1] such that (Property (∗)):

(i) I1 is m-stable: from all initial volume V0 ∈ I1, there exists a strategy for the
controller to ensure that, whatever the fluctuations on the consumption, the value
of the volume is always between 5 l and 25 l and the volume at the end of the
cycle is within interval I2 = [V1 + m, V2 − m],

(ii) I1 is optimal among m-stable intervals: the supremum, over V0 ∈ I1 and over the
strategies satisfying (i), of the accumulated volume is minimal.

The strategies that fulfill that control objective have a nice inductive property: as the
value of the volume of oil at the end of the cycle is ensured to be within I2, and I2 ⊂ I1
if m > 0, the strategies computed on our one cycle model can be safely repeated
as many times as desired. Moreover, the choice of the margin parameter m will be
done so as to ensure robustness. We will verify in PHAVER that even in presence of
imprecisions, the final volume, if it does not belong to I2, belongs to I1: this is the
reason why we fix a strict-subinterval of I1 as a target in the synthesis phase.

5 We did not represent this synchronization on Fig. 3(a) to ease the reading.
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We now describe a procedure to compute an interval verifying Property (∗), and the
associated strategies. We proceed as follows6:
1. For each V0 ∈ [4.9; 25.1], and target final interval J ⊆ [4.9; 25.1], compute (by a

binary search) the minimal accumulated volume Score(V0, J) that can be guaran-
teed. This value Score(V0, J) is

min{K ∈ N | A(V0, J) |= control: A<> Sched.END and V acc<=K}
2. Compute an interval I1 ⊆ [4.9; 25.1] such that, for I2 = [V1 + m, V2 − m]:

(a) ∀V0 ∈ I1, A(V0, I2) |= control: A<> Sched.END
(b) the value Score(I1) = max{Score(V0, I2) | V0 ∈ I1} is minimal.

3. For each V0 ∈ I1, compute a control strategy S(V0) for the control objective A<>
Sched.END and V acc<=K with K set to Score(V0, I2). This strategy is de-
fined by four dates of start/stop of the pump 7 and, by definition of Score(V0, I2),
minimizes the accumulated volume.

It is worth noticing that the value Score is computed using the variable V acc which
is deduced from intermediary values of variable V. Since V corresponds to the value of
the volume with no noise, V acc represents the mean value of the accumulated volume
for a given execution.
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Fig. 5. Strategy for D = 1 and m = 0.4 l

Results. For a margin m = 0.4l and
a granularity of 1 (D=1 in the UPPAAL-
TIGA model), we obtain as optimal sta-
ble interval the interval I1 = [5.1, 10].
The set of corresponding optimal strate-
gies are represented on Fig. 5. For each
value of the initial volume in the inter-
val I1, the corresponding period of activa-
tion of the pump is represented. We have
represented volumes which share the same
strategy in the same color. For the 50 ini-
tial possible values of volume, we obtain
10 different strategies (first row of Table 1). The overall strategy we synthesize thus
measures the volume just once at the beginning of each cycle and play the correspond-
ing “local strategy” until the beginning of next cycle.

Table 1 represents the results obtained for different granularities and margins. It gives
the optimal stable interval I that is computed, (note that it is smaller if we allow a
smaller margin or a finer granularity), the number of different local strategies, and the
value of worst case mean volume which is obtained as Score(I)/20. These strategies
are evaluated in sections 4 and 5.

4 Checking Correctness and Robustness of Controllers

In this section, we report on the results concerning the verification of the correctness
robustness of the three solutions mentioned in the previous sections. To analyze the

6 Control objectives are formulated as “control: P” following UPPAAL-TIGA syntax, where P
is a TCTL formula specifying either a safety property A[]φ or a liveness property A<>φ.

7 This is easy to obtain these times using the vectors start and stop of the pump.
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Table 1. Main Characteristics of the Strategies Synthesized with UPPAAL-TIGA

Granularity Margin Stable interval Number of strategies Mean volume

1 4 [5.1, 10] 10 8.45
1 3 [5.1, 9.8] 10 8.35
1 2 [5.1, 9.6] 9 8.25
1 1 [5.1, 9.4] 9 8.2
2 4 [5.1, 8.9] 14 8.05
2 3 [5.1, 8.7] 14 7.95
2 2 [5.1, 8.5] 11 7.95
2 1 [5.1, 8.3] 11 7.95

correctness and the robustness of the three controllers, we use the tool PHAVER [4,5]
for analysing hybrid systems. Robustness is checked according to the type of controller
we use: for the Bang-Bang controller, it amounts to saying that the volume cannot be
measured accurately and also that the rate fluctuates (±0.1l/s); for the Smart controller,
robustness against rate fluctuation cannot be checked; for our synthesized controller, we
take into account the rate fluctuation, the imprecision on the measure of the volume and
the imprecision on the measure of time.

PHAVER allows us to consider a rich
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Fig. 6. Cyclic Behavior of the Bang-Bang con-
troller with Noise

continuous time model of the system where
we can take into account the fluctuations
of consumption of the machine as well as
adequate models of imprecisions inherent
to any real implementation. The PHAVER

models used in this paper are available in
the extended version of this paper on the
authors’ webpages. This model takes into
account the fluctuations in the consump-
tion rate of the machine as well the im-
precision on the measure of the volume. We now summarize the results for the three
controllers.

The Bang-Bang controller. To ensure robustness and implementability of this control
strategy, we introduce imprecision in the measure of the oil volume: when the volume is
read it may differ at most by ε = 0.06 l from the actual value (precision of the sensor).
Tuning this controller amounts to choose the tightest values for this floor and ceiling.
In our experiment we found that 5.76 and 25.04 are the best margins we can expect.

With this PHAVER model and the previous margins8, we are able to show that: (1)
this control strategy enforces the safety requirement R1, i.e. the volume of oil stays
within the bounds [4.9; 25.1]; (2) the set of reachable states for initial volume equal to
10 l can be computed and it is depicted in Fig. 6; this means that this controlled system
is “cyclic” from the end of the first cycle on, and the same interval [10.16; 14] (for the

8 And another suitable piece of PHAVER program for the computations.
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volume) repeats every other cycle. It is thus possible to compute (with PHAVER) the
interval of the accumulated volume over the two cycles: for this controller, the upper
bound (worst case) is 307 and the mean volume is 307/20 = 15.35.

The Smart Controller. The Smart Controller designed by HYDAC is specified by a
400 line C program and computes the start/stop dates for the next cycle according to
what was observed in the previous cycle (see end of section 2). This controller requires
to sample the plant every 10ms in order to compute the strategy to apply in the next
cycle: although it is theoretically possible to specify this controller in PHAVER, this
would require at least 100 × 20 discrete locations to store the sampled data in the pre-
vious cycle. It is thus not realistic to do this as PHAVER would not be able to complete
an analysis of this model in a reasonable amount of time. Instead we have built the
PHAVER controller that corresponds to the behaviour of the smart controller in a sta-
tionary regime, and in the absence of noise. It turns on and off so that the pump is
active exactly during the three intervals [2.16; 4.16], [9.05; 11.42] and [13.96; 16.04]
during each cycle. Indeed using simulation, the engineers of HYDAC had discovered
that the behavior of their controllers in the absence of noise was cyclic (stable on sev-
eral cycles) if they started with an amount of oil equal to 10.3 l. This is confirmed by the
simulations we report on at the end in Fig. 10 and by Fig. 7(a), obtained with PHAVER

showing that the smart controller stabilizes with no fluctuations in the rate. However,
our simplified version of the Smart controller (without imprecision on the dates of start
and stop of the pump), is not robust against the fluctuations of the rate: the behavior of
the system in the presence of noise is depicted in Fig. 7(b) and it can be shown with
our PHAVER models that after four cycles, the safety requirement R1 can be violated.
Unfortunately, there is no way of proving the correctness of the full Smart controller
with PHAVER, and SIMULINK only gives an average case. In this sense we cannot trust
the Smart controller for ensuring the safety property.

The ideal Smart Controller (no noise on the rate) produces an average accumulated
volume of around 221 per cycle i.e. an average volume of 11.05.

Controller Computed with UPPAAL-TIGA. We now study the correctness and ro-
bustness of the controller synthesized with UPPAAL-TIGA. This verification phase is
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Fig. 7. Behavior of the HYDAC Smart Controller
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necessary because during the synthesis phase we have used a very abstract model of the
system and also discrete time. To force robustness and correctness, we have imposed
additional requirements on the winning strategies (our inductive property together with
the margin). But instead of proving by hand that the model and the objective are giv-
ing by construction robust and correct controller, it is more adequate to formally verify
this. We summarize here the results of this verification phase. In the sequel we use the
controller for granularity 2 and margin 4: this controller can be seen as 14 different
local controllers, each one managing one of the 14 intervals in which the initial volume
can be at the beginning of a cycle. We will focus on those strategies here but we have
automated the process and the others may be treated along the same lines.

To make sure that our strategies are implementable, we have verified them in pres-
ence of fluctuations of the rate consumption and two types of imprecisions: on the date
of start/stop of the pump (we use ∆ = 0.01 second), and on the measure of the initial
volume, the imprecision being 0.06 l. Fig. 8 shows how the volume is controlled over
3 cycles: after the first one at t = 20, we measure the real volume with uncertainty
(0.06 l) and use the corresponding controller from 20 to 40 and for 40 we again switch
to another one.

Volume/Time
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Fig. 8. The Pump Controlled over 3 Cycles with the UPPAAL-TIGA Controller

5 Simulation and Performances of the Controllers

In this section, we report on results obtained by simulating the three controller types in
SIMULINK, with the purpose of evaluating their performance in terms of the accumu-
lated volume of oil.

SIMULINK models of the Bang-Bang controller as well as of the Smart controller of
HYDAC have been generously provided by the company. As for the eight controllers –
differing in granularity and margin – synthesized by UPPAAL-TIGA, we have made a
RUBY script which takes UPPAAL-TIGA strategies as input and transforms them into
SIMULINK’s m-format.

Fig. 9 shows the SIMULINK block diagram for simulation of the strategies synthe-
sized by UPPAAL-TIGA. The diagram consist of built-in functions and four
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Fig. 10. The three controller types with SIMULINK

subsystems: Consumer, Accumulator, Cycle timer and Pump activation (we omit
the details of the subsystems). The Consumer subsystem defines the flow rates used
by the machine with the addition of noise: here the choice of a uniform distribution
on the interval [−ε, +ε] with ε = 0.1l/s has been made. The Accumulator subsystem
implements the continuous dynamics of the accumulator with a specified initial volume
(8.3l for the simulations). In order to use the synthesized strategies the volume is scaled
with a factor 10, then rounded and feed into a zero-order hold function with a sample
time of 20s. This ensures that the volume is kept constant during each cycle, which is
feed into the strategy function. The Pump activation subsystem takes as input the on/off
dates from the strategy (for the given input volume of the current cycle) and a Cycle
timer, that holds the current time for each cycle.

Now, the plots in Fig. 10 are the result of SIMULINK simulations of the controllers,
illustrating the volume of the accumulator as well as the state of the pump (on or off) for
a duration of 200 s, i.e. 10 cycles. Though the simulations do not reveal the known vio-
lation of the safety requirement R1 in the HYDAC Smart controller case, the simulations
yield useful information concerning the performance of the controllers. In particular, the
simulations indicate that the accumulated oil volume for all controllers grow linearly
with time. Also, there is clear evidence that the strategies synthesized by UPPAAL-
TIGA outperform the Smart controller of HYDAC – which is not robust – and also the
Bang-Bang controller – which is robust but very non-optimal.

This is highlighted in Table 2, giving – for each of the ten strategies – the simulation
results for the accumulated volume of oil , the corresponding mean volume as well as
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Table 2. Performance characteristics based on SIMULINK simulations

Controller Acc. volume Mean volume Mean volume (TIGA)

Bang-Bang 2689 13.45 -
HYDAC 2232 11.16 -

G1M4 1511 7.56 8.45
G1M3 1511 7.56 8.35
G1M2 1518 7.59 8.25
G1M1 1518 7.59 8, 2
G2M4 1527 7.64 8.05
G2M3 1513 7.57 7.95
G2M2 1500 7.5 7.95
G2M1 1489 7.44 7.95

the worst case mean volume according to synthesis of UPPAAL-TIGA. The table shows
– as could be expected – that UPPAAL-TIGA’s worst case mean volumes consistently
are slightly more pessimistic that their simulation counter-parts. More interestingly, the
simulation reveals that the performances of the synthesized controllers (e.g. G2M1)
provide a vast improvement both of the Smart Controller of HYDAC (33%) and of the
Bang-Bang Controller (45%).

6 Conclusion

In this paper we have presented a model-based methodology for the systematic de-
velopment of robust and near-optimal controllers. The methodology applies a chain
of tools for automatic synthesis (UPPAAL-TIGA), verification (PHAVER) and simula-
tion (SIMULINK). Initially, sufficiently simple and abstract game models are used for
synthesis. The correctness and robustness of the strategies are then verified using con-
tinuous hybrid models and – finally – the performance of the strategies are evaluated
using simulation models.

Applied to the industrial case study provided by HYDAC, our method provides con-
trol strategies which outperforms the Smart controller as well as the simple Bang-Bang
controller considered by the company. More important – whereas correctness and ro-
bustness of the Smart controller is unsettled – the strategies synthesized by our method
are provably correct and robust. We believe that the case study demonstrates the matu-
rity and industrial relevance of our tools.

Directions for further work include:

– Improve the performance of our controller further by optimizing over several cy-
cles, and/or

– Improve the performance of our controller further by adding some predefined points
when we can measure the volume (even with imprecision).

– Consideration of other imprecisions, e.g. with respect to the timing of consumer
demands.
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– Consideration of other optimization criteria. An interesting feature of the Smart
controller of HYDAC seems to be that the oil volume is kept in a rather narrow
interval, a feature which could possibly be beneficial for increasing the life-time of
the Accumulator.

– Use the emerging version of UPPAAL-TIGA supporting synthesis under partial
observability in order to allow more accurate initial game models.
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Abstract. We address the identification of genetic networks under sta-
tionary conditions. A stochastic hybrid description of the genetic interac-
tions is considered and an approximation of it in stationary conditions is
derived. Contrary to traditional structure identification methods based
on fitting deterministic models to several perturbed equilibria of the sys-
tem, we set up an identification strategy which exploits randomness as
an inherent perturbation of the system. Estimation of the dynamics of
the system from sampled data under stability constraints is then formu-
lated as a convex optimization problem. Numerical results are shown on
an artificial genetic network model. While our methods are conceived
for the identification of interaction networks, they can as well be applied
in the study of general piecewise deterministic systems with randomly
switching inputs.

Keywords: Piecewise deterministic systems, state-space identification,
Markov processes, sampled systems, convex optimization.

1 Introduction

Genetic regulatory networks govern the synthesis of proteins in the living cell,
and are thus responsible for fundamental cell functions such as metabolism, de-
velopment and replication. Different approaches to genetic network modelling
have been proposed in the literature and are conventionally classified into mod-
els with purely continuous dynamics and discrete event models [1]. However,
it appears that certain systems are more naturally described by hybrid mod-
els that explicitly account for both continuous and discrete phenomena. This is
witnessed by the number of researchers ([2,3,4,5,6], among others) who recently
applied hybrid systems tools in this context. In addition, mounting experimental
evidence suggests that gene expression, both in prokaryotes and eukaryotes, is
an inherently stochastic process. Stochasticity can be attributed to the random-
ness of the transcription and translation processes (intrinsic noise), as well as to
fluctuations in the amounts of molecular components that affect the expression
of a certain gene (extrinsic noise), see [7,8,9,10]. In [11], stochastic modelling of
genetic regulatory networks is reviewed along with numerical simulation meth-
ods and is compared to deterministic modelling. The authors have addressed
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stochastic hybrid modelling of genetic networks in [12]. A similar approach is
taken in [13] for the analysis and numerical simulation of basic transcriptional
network modules.

Recent works — [4,14,15,16,17] — have started to address the problem of
learning genetic network models from experimental data. In particular, the lit-
erature on identification of stochastic regulatory network models is quite new
[18,19,20,12]. A central problem in genetic network modelling is the identifica-
tion of the network of interactions. Traditional approaches based on dynamic
modelling rely on matching deterministic models to different equilibria corre-
sponding to known perturbations of the system, see e.g. [21,22,23]. That is,
one assumes that protein concentrations x evolve according to a kinetic model
ẋ = f(x, u), where u is a known perturbation input acting on the system. Then,
a linearized model ẋ = Ax + Bu is identified around several equilibrium points
of the system corresponding to different constant values of u. This turns identifi-
cation into a regression problem 0 = AX +BU , where X is a matrix of observed
equilibria and U is the matrix of the corresponding inputs. Matrix A carries
information about the structure of the interaction network, hence the interest
in its estimation. The main drawback of this approach is due to the assumption
that A is the same at all equilibria. This implies that perturbations must be
small. At the same time, several equilibria must be explored for the solution of
the regression to be unique. The inherent random perturbations of the dynam-
ics are not exploited in this case, in that the choice of deterministic modelling
simply ignores this contribution.

In this paper we address identification of the structure of the network in
a stochastic hybrid modelling framework. We start from the model described
in [12] and consider a stochastic approximation of it around a stationary point
of the system. Based on this, we borrow tools from the theory of identification
of linear stochastic processes [24] to estimate the structure of the system. The
conceptual difference with respect to traditional methods is that we make use of
the randomness driving the system as a natural perturbation of the dynamics,
with no further assumptions on the invariance of the dynamics. Artificial pertur-
bations corresponding to several stationary conditions may be used to improve
the estimation results and to separate different contributions, e.g. spontaneous
degradation from regulatory effects. The identification procedure we propose re-
lies on a local approximation of the stochastic hybrid model with a continuous
stochastic model. This simplifies the identification problem but certain details
of the network structure are lost in the approximation. The identification meth-
ods presented in [17,12], which build on the stochastic hybrid structure of the
system, may then be used to recover the model in full detail.

The contribution of the paper is twofold. First, we introduce an approach to
genetic network structure identification that accounts for and takes advantage
of the inherent stochasticity of the systems. Of course, the approach requires
that this randomness be reflected in the data. In view of the rapid progress
of the protein level measurement techniques and of the advent of single-cell
experiments [25,26], we believe that this approach is going to be applicable to
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experimental data in the near future. Second, on a more theoretical level, we
provide methods for the approximation and the identification of a family of
stochastic hybrid models (namely the class of piecewise deterministic processes
with switching inputs) that is relevant to a number of application scenarios.

The paper is organized as follows. In Section 2, we describe our stochastic
hybrid framework for genetic network modelling. An approximate model of the
stochastic hybrid dynamics under stationary conditions is derived in Section 3.
Section 4 states the structure identification problem of our concern and describes
a solution based on convex numerical optimization. A discussion of the method
and of its possible extensions is developed in Section 5. The performance of our
method is discussed in Section 6 by way of numerical experiments. Conclusions
on and perspectives of our work are drawn in Section 7. Mathematical proofs
are included in the appendix.

2 Piecewise Deterministic Models of Genetic Networks

A genetic network may be thought of as a collection of n proteins and of n cor-
responding genes along with their regulatory interactions. New molecules of a
protein are synthesized when the gene that encodes it is expressed. The expres-
sion of a gene is regulated by one or more transcription factors (TFs). These are
themselves proteins encoded by the genes of the network. In the simplest case,
if a transcription factor is an activator (inhibitor), its binding to the promoter
of the gene will activate (inhibit) a cascade of reactions that ultimately leads
to the synthesis of new molecules of the protein encoded by that gene. In more
generality, the simultaneous presence/absence of several transcription factors at
the promoter site determines the status of the gene expression. We assume that
changes in protein concentration due to synthesis and spontaneous degradation
are well approximated by deterministic (kinetic) equations. On the other hand,
the inherent randomness driving the binding/unbinding events and the presence
of a limited number of binding sites leads us to model initiation and termination
of gene expression as a stochastic process.

For a fixed T ∈ R+, let T = T · N = {T, 2T, 3T, . . .} be a sequence of time
instants. For t ∈ T , let x(t) ∈ Rn

+ be a continuous state vector of protein
concentrations. Let �(i) ⊂ {1, . . . , n} denote the set of proteins acting as TFs
on gene i. For each k ∈ �(i) and t ∈ T , let ui,k(t) ∈ {0, 1} be a discrete state
variable that encodes the presence (ui,k(t) = 1) or absence (ui,k(t) = 0) of TF k
at the promoter site of gene i. Therefore the activity of gene i is governed by a
discrete state taking values in {0, 1}|(i)|, where | · | denotes set cardinality. Let
u(t) ∈ {0, 1}m, with m = |�(1)| + . . . + |�(n)|, be a vector collecting all discrete
variables ui,k(t), with i = 1, . . . , n and k ∈ �(i). We model the evolution in
time of the protein concentrations due to regulated synthesis and spontaneous
degradation by the discrete-time dynamical equation

x(t + T ) = Ax(t) + g
(
u(t + T )

)
, (1)

where A ∈ Rn×n
+ is a diagonal matrix of spontaneous degradation rates and

g : Rm → Rn
+ is a smooth function that quantifies the rate of synthesis of new
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proteins in terms of the discrete state u. Typically, each component gi of g takes
the form

gi(u) =
∑

j

bj
i

∏
k∈(i,j)

ui,k, (2)

where bj
i ∈ R and the �(i, j) ⊆ {1, . . . , n} are such that ∪j�(i, j) = �(i). To fix

the ideas, each term of the summation corresponds to a different gene activation
path, and bj

i is the corresponding synthesis rate for protein i.
Stochasticity comes in the model by the description of the binding events, i.e.

of the discrete transitions of u. Let (Ω, E , P) be a probability space. For t ∈ T , we
describe the transitions of every ui,k as discrete random events with probabilities
P[ui,k(t+T )|ui,k(t), xk(t)] depending on the current protein concentrations xk(t)
(e.g. the larger the concentration xk, the larger the probability that a molecule
of protein k binds to the promoter site of gene i). In light of this and Eq. (1),
u : T ×Ω → {0, 1}m and x : T ×Ω → Rn

+ are two random processes defined on
(Ω, E , P). For simplicity we shall keep writing x(t) and u(t) in place of x(t, ω)
and u(t, ω), where ω ∈ Ω. We impose the following two assumptions:

Assumption 1. For every t ∈ T , u(t + T ) and x(t + T ) are conditionally
independent from the past history x−(t) = {x(0), x(T ), . . . , x(t−T )} and u−(t) =
{u(0), u(T ), . . . , u(t − T )} given x(t) and u(t).

Assumption 2. For all t ∈ T , the transition probability law

pv,v′(z) = P[u(t + T ) = v′|u(t) = v, x(t) = z], v, v′ ∈ {0, 1}m, z ∈ Rn
+, (3)

is independent of t.

For a fixed initial condition x(0) = x0 and an initial probability distribution
p0

v = P[u(0) = v], the above completely specifies the probability laws of the joint
process (x, u). A straightforward consequence of Assumptions 1 and 2 is

Proposition 1. The joint process
(
x(t), u(t)

)
is Markovian. For t ∈ T ,

P[x(t + T ) = z′, u(t + T ) = v′|x(t) = z, u(t) = v, x−(t), u−(t)] =

= P[x(t + T ) = z′|x(t) = z, u(t + T ) = v′]P[u(t + T ) = v′|x(t) = z, u(t) = v]

=

{
0, if z′ �= Az + g(v′),
pv,v′(z), otherwise.

For a given value of u(t + T ), Eq. (1) describes the transition of the continuous-
valued process x from x(t) to x(t + T ). We call x(t) a piecewise deterministic
process in that, as long as the value of u remains unchanged, the evolution of
x is deterministic. On the other hand, for fixed values of x(t) and u(t), Eq. (3)
determines the random outcome of the discrete-valued process u(t + T ). The
joint process (x, u) resulting from the interconnection of the two processes is
thus stochastic and hybrid. It is easy to recognize the class of processes defined
above as a discrete-time variant of the Piecewise Deterministic Markov Processes
introduced by [27].

To keep the analysis tractable we shall make a further assumption.
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Assumption 3. For every t ∈ T , u(t + T ) is independent of u(t) given x(t).

Biologically relevant conditions under which this assumption holds are discussed
in [12,17]. Since pv,v′(z) is independent of v, we shall replace pv,v′(z) by pv′(z) =
P[u(t + T ) = v′|x(t) = z].

3 Stochastic Approximation under Stationary Conditions

The stochastic hybrid structure of the genetic network model makes analysis
and identification quite challenging. In [17] and [12] we proposed global methods
for the identification of unknown model parameters that build on the stochastic
hybrid model structure. The identification results are very good in that context
since the full knowledge of the system structure was exploited. Yet, the asso-
ciated optimization problems are nonconvex and generally hard to solve. Here
we address the more difficult problem of structure identification and take an
alternative approach to solve it. We approximate the stochastic hybrid dynam-
ics locally by a continuous stochastic system and match the latter to the data.
The resulting optimization problem is tractable, but the structure of the original
stochastic hybrid model is partly obscured. In principle, the methods presented
in [17,12] allow one to re-introduce the details of the network structure. This
may be achieved via a series of heuristics which are currently being developed.

Assume that the joint process
(
x(t), u(t)

)
has reached stationarity. Define

x̄ = limt→∞ E[x(t)] and ū = limt→∞ E[u(t)], where E[·] denotes expectation.
Using the first-order expansion

g(u) = g
(
ū
)

+ Gū(u − ū) + o(u − ū) � g(ū) + Gū · (u − ū),

where Gū is the Jacobian of g evaluated at ū, one may write

x(t + T ) = Ax(t) + g
(
u(t + T )

)
� Ax(t) + g(ū) + Gū ·

(
u(t + T ) − ū

)
, (4)

the approximation being most accurate for small variance of g
(
u(t)

)
. Define

x̃(t) = x(t) − x̄ and ũ(t) = u(t) − ū.

Proposition 2. Assume that (4) holds as an equality. Then x̄ = Ax̄+ g(ū) and

x̃(t + T ) = Ax̃(t) + Gūũ(t + T ). (5)

We shall call (5) the approximate linear model for x̃. Of course, the model is not
truly linear due to the dependence of ũ on x̃. For any ṽ = v−ū, with v ∈ {0, 1}m,
and z̃ = z − x̄, with z ∈ Rn

+, define p̃ṽ(z̃) = P[ũ(t + T ) = ṽ|x̃(t) = z̃].

Proposition 3. p̃ṽ(z̃) = pv(z).

Along with Eq. (5), this straightforward result provides locally an approximate
model for the stochastic hybrid process

(
x̃, ũ

)
.

We are interested in the (approximate) second-order moments of the piecewise
deterministic process x̃(t). By definition, E[x̃(t)] = 0. For � ∈ Z, define the co-
variance function Σx(�) = E[x̃(t + �T )x̃(t)T ]. By stationarity Σx(�) = Σx(−�)T ,
and we may restrict our attention to � ∈ N. Note that Σx(0) is the covariance
matrix of x̃.
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Assumption 4. There exists Fx̄ ∈ Rn×n such that, for all t ∈ Z,

E[ũ(t + T )|x(t)] = Fx̄x̃(t). (6)

Proposition 4. For every � ∈ N it holds that

Σx(� + 1) = (A + GūFx̄)Σx(�), (7)

where Σx(0) is the solution of

Σx(0) = (A + GūFx̄)Σx(0)(A + GūFx̄)T + GūQGT
ū . (8)

In turn, Q = E
[
Var

(
u(t+T )|x(t)

)]
, where Var(·|·) denotes conditional variance.

Assumption 4 is met if f(x) = E[u(t+T )|x(t) = x] is linear. In practice, we shall
assume that this is a valid approximation in a neighborhood of x̄, i.e.

f(x) = f(x̄) + Fx̄x̃ + o(x̃) � f(x̄) + Fx̄x̃.

In this case, ū = E[u(t + T )] = E
[
E[u(t + T )|x(t)]

]
� E[f(x̄) + Fx̄x̃(t)] = f(x̄).

Therefore, Assumption 4 is just a consequence of

E[ũ(t + T )|x(t)] = E[u(t + T )|x(t)] − ū �
(
f(x̄) + Fx̄x̃(t)

)
− f(x̄) = Fx̄x̃(t).

Proposition 4 implies that the approximate second-order moments of the piece-
wise deterministic process x̃ are equal to those of a process described by the
linear stationary state-space model

x̃(t + T ) = Ax̄,ūx̃(t) + Gūw(t), (9)

where Ax̄,ū = A+GūFx̄ and w(·) is an i.i.d. process uncorrelated with x−(t) with
mean zero and covariance matrix Q. Interestingly, this corresponds to replacing
ũ(t + T ) in (5) with

ũ(t + T ) = Fx̄x̃(t) + w(t), (10)

i.e. the gene regulation encoded by ũ(t+T ) may locally be thought of as a static
linear state feedback with matrix gain Fx̄ and additive noise w.

4 Constrained Identification of the Linearized Model

The approximation of the second-order moments of x̃ with those of (9) allows
us to use concepts from the theory of linear stationary processes for the analysis
and identification of piecewise deterministic systems. In view of the application
to genetic network modelling, we are primarily interested in the estimation of
the matrix Ax̄,ū. This matrix combines spontaneous protein degradation (diag-
onal matrix A) with the effects of the regulatory interactions (matrix GūFx̄).
In particular, Gū reflects the topology of the network, whereas Fx̄ reflects the
probability of each individual regulatory event near the stationary point (x̄, ū).
Note that the off-diagonal elements of Ax̄,ū only depend on the product GūFx̄.
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As a result, the sign of each element
[
Ax̄,ū

]
i,k

, with i �= k, reveals the average
(positive or negative) regulatory effect of protein k on the expression of gene i.
A zero element, on the other hand, suggests that protein k is not involved in
the regulation of gene i, at least around the stationary point (x̄, ū). Therefore,
the identification of Ax̄,ū provides information on the structure of the regulation
network. A priori knowledge on the system (existing or non-existing interactions,
for instance) should be accounted for at this stage. In this section we shall only
constrain matrix Ax̄,ū to be stable. Local stability is a fundamental property of
genetic regulatory networks near equilibria and is also central for the derivation
of (5). If A were unstable, process (9), that is (5), would not be second-order
stationary. From now on, we assume that (x̃, ũ) satisfies (5) and (6).

Assume that measurements y of (the protein concentrations) x are collected
every N > 0 samples. This is captured by the following model:

y(τ) = x(τ) + n(τ), τ ∈ NT · Z,

where n is a white noise process (not necessarily Gaussian), uncorrelated with x,
with mean zero and covariance matrix R = E[nnT ]. The identification problem
is formulated as follows.

Problem 1. Given M + 1 data points Y =
{
y(t), y(t + NT ), . . . , y

(
t + MNT

)}
,

compute an estimate Â of A such that Â is stable.

The case where N > 1 is especially relevant to genetic network identification.
In this context, the discrete network events occur at a time scale T which is
usually smaller than the time period that separates subsequent experimental
measurements. Let ȳ = E[y(t)] = E[x(t)] = x̄ be the mean of y and let ỹ = y− ȳ.
In practice, ȳ can be estimated and removed from the data. For � ∈ Z, define the
covariance function Λ(�N) � E[ỹ(t + �NT )ỹ(t)T ]. Note that Λ(−�N) = Λ(�N)T

and that Λ(0) is the covariance matrix of y.

Proposition 5. Λ(N) = AN
(
Λ(0)−R

)
and, for � > 0, Λ(�N +N) = ANΛ(�N).

For � = 0, 1, . . . , L with L << M , one may compute empirical estimates Λ̂(�N)
of Λ(�N) as follows:

Λ̂(�N) =
1

M − �

M−∑
h=0

ỹ(t + �NT + hNT )ỹ(t + hNT )T .

The approximation Λ̂(�N) � Λ(�N) is most accurate as M → ∞. Assume for
the time being that R is known. Define the Rn×nL matrices

Λ̂+ =
[
Λ̂(N) Λ̂(2N) · · · Λ̂(LN)

]
, Λ̂−=

[(
Λ̂(0) − R

)
Λ̂(N) · · · Λ̂

(
(L − 1)N

)]
.

In the light of Proposition 5, we address the identification Problem 1 by seeking
a solution to the following optimization problem in the unknown matrix A:

minimize ||Λ̂+ − AN Λ̂−|| subject to A stable,
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where ||·|| denotes the matrix spectral norm. In general, this problem is noncovex
due to matrix exponentiation. To circumvent this issue, we use the fact that A is
stable if and only if AN is stable. We propose to solve the problem in two steps:

1. minimize ||Λ̂+ − XΛ̂−|| subject to X stable. Denote the solution by X̂;
2. compute the matrix N -th root X̂1/N .

Step 1. This amounts to matching the matrix X = AN to the available co-
variance data in accordance with Proposition 5. By the Lyapunov theorem, the
stability constraint on X is equivalent to the existence of a positive definite ma-
trix P such that XPXT − P < 0. Using Schur complement, this can be turned
into the equivalent LMI [

P AP
PAT P

]
> 0,

with unknowns A and P . Define Z = PA. Using a series of standard transfor-
mations [28,29] based on the properties of the spectral norm, the problem can
be reformulated in terms of the convex optimization

minimize ||PΛ̂+ − ZΛ̂−|| subject to
[
P − εI ZT

Z P

]
≥ 0, P ≥ I,

with unknowns Z and P . Here ε ∈ R+ is a small design constant used to make
the constraint set closed and to ensure the strict stability of the solution. This
problem has a unique solution whenever the matrix Λ̂− has full row rank. Denote
the solution with Ẑ and P̂ . Then, setting X̂ = P̂−1Ẑ provides an approximate
solution to the original problem.

Step 2. This requires the computation of the N -th root of a square matrix. The
choice of the N -th matrix root is nonunique, see [30] for a detailed characteri-
zation of the solutions. However, provided the sampling time T is small enough,
we expect that A is close to the identity, that is, all its eigenvalues should be lo-
cated in a neighborhood of 1. Based on this consideration, we choose to compute
the principal N -th root. By definition, this is the unique root matrix having all
eigenvalues λ such that arg(λ) ∈ [−π/2N, π/2N ], i.e. having all eigenvalues in
the sector of the complex plain containing 1. Several algorithms for computing
the principal root exist [30,31].

If R is unknown, we modify the problem by removing the leftmost Rn×n

element from Λ̂+ and Λ̂−. That is, we define the Rn×(L−1)n matrices

Λ̂+ =
[
Λ̂(2N) Λ̂(3N) · · · Λ̂(LN)

]
, Λ̂− =

[(
Λ̂(N) Λ̂(2N) · · · Λ̂

(
(L − 1)N

)]
and perform Steps 1 and 2 with these new matrices to get the estimate X̂ .
Provided X̂ is invertible, an estimate R̂ of R may be computed by solving Λ̂(N) =
X̂(Λ̂(0) − R̂).
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5 Discussion and Extensions

We mentioned above that the stability constraint can be equally imposed on
A or on AN . To simplify the identification procedure, we decided to enforce
this constraint on matrix AN in the first identification step. In general, different
information on the matrix A, i.e. the sign of certain elements or the sparsity of
the matrix, does not carry over to the matrix AN . If such prior knowledge on A
is available, it is convenient to turn the identification scheme into a three-step
procedure:

1′. minimize ||Λ̂+ − XΛ̂−|| with respect to X , and name the solution X̂;
2′. compute the matrix N -th root X̂1/N ;
3′. minimize ||X̂1/N − A|| subject to (stability and other) constraints on A.

Step 1′ is an easy convex problem and serves the purpose of matching X = AN

to the data without constraints. If the spectral norm is replaced by the Frobenius
norm, then the solution can be computed explicitly as X̂ = Λ̂+Λ̂R−, where Λ̂R− =
Λ̂T−

(
Λ̂−Λ̂T−

)−1 is the Moore-Pennrose pseudo-inverse of Λ̂−. Step 2′ is the same
as the former Step 2 but yields an unconstrained root matrix X̂1/N . Finally,
Step 3 seeks a constrained approximation of X̂1/N using the prior information
on A. Effective heuristics to solve this problem by convex optimization exist for
many constraints of interest, see e.g. [21], and will not be further discussed here.

Given an estimate Âx̄,ū, one cannot separate (the diagonal matrix) A from
(the diagonal elements of) GūFx̄ and, in turn, Gū from Fx̄. This is the same
limitation of traditional methods. In these methods, however, perturbations of
the system such as gene enhancement or knock-out are used to infer the overall
system dynamics. In our setting, the overall dynamics Ax̄,ū are estimated based
on a fixed experimental scenario, while system perturbations (i.e. estimates cor-
responding to different stationary points (x̄, ū)) may be exploited to discern the
individual contributions of A, Gū and Fx̄.

In addition to the estimation of matrix Ax̄,ū, our local approximation of the
stochastic hybrid model can be used to learn the dimension of the system from
the data. Consider for simplicity N = 1. It is well known that the rank of the
block Hankel matrix

H =

⎡⎢⎢⎢⎣
Λ(1) Λ(2) Λ(3) · · ·
Λ(2) Λ(3) Λ(4) · · ·
Λ(3) Λ(4) Λ(5) · · ·

...
...

...
. . .

⎤⎥⎥⎥⎦
associated with the linear system (9) is equal to the dimension of the state
of a minimal realization of the system. Since the dimension of the state-space
model (9) and of the piecewise deterministic model (1) are the same, the rank
of H is indication of the dimension of the continuous state of (1). In the context
of genetic network modelling, this type of analysis and other tools from the
theory of realization/identification of linear stochastic processes [24] may help
to develop methods for the estimation of the number of genes involved in the
regulation of the observed proteins of the network.
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6 Numerical Experiments

We consider an interaction network with four genes. The system is described by
the stochastic hybrid model

x+
1 = λ1x1 + b1u

−
1,1(1 − u+

1,2u
−
1,3), x+

3 = λ3x3 + b1
3u

+
3,1u

+
3,2u

−
3,3,

x+
2 = λ2x2 + b2u

−
2,1(1 − u+

2,2u
−
2,3), x+

4 = λ4x4 + b1
4u

+
4,1 + b2

4.
(11)

It is easy to verify that the protein synthesis rates are in the form (2). Processes
u±

i,k(t + T ) are independent given the current continuous state x(t). The super-
script + or − indicates whether the probability of ui,k(t+T ) being equal to one
is given by the sigmoidal function σ+

i,k(xk) = xd
k/(xd

k +θd) or by the complemen-
tary sigmoid σ−

i,k(xk) = 1 − σ+
i,k(xk). Parameters d ∈ R+ and θ ∈ R+ generally

also depend on i, k. This model is in fact part of a larger model model for the
nutrients stress response of bacterium Escherichia coli. The interested reader is
deferred to [12] and references therein for a more detailed discussion.

Using biologically plausible parameter values and initial conditions [12], it
can be observed by simulation that system (11) eventually reaches a stationary
regime. Sample trajectories from the stationary regime are plotted in Fig. 1. We
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Fig. 1. Simulated trajectories of model (11) in stationary regime

perform local identification of the above model from simulated data. Estimation
of the matrix Ax̄,ū is performed on the basis of a single trajectory y(t), with
1 ≤ t ≤ 1000. We considered four different experimental scenarios:

A. No measurement noise, no undersampling (N = 1)
B. With measurement noise, no undersampling (N = 1)
C. No measurement noise, with undersampling (N = 10)
D. With measurement noise, with undersampling (N = 10)

When N = 1, all 1000 data points y(1), y(2), . . . , y(1000) are used. When N =
10, only the 100 data points y(10), y(20), . . . , y(1000) are used. This simulates
two biological experiments of the same duration but with different sampling
rates. Such small size of the data sets reflects the typical experimental practice
where a limited number of protein concentration measurements are
collected sparsely in time by a single biological experiment. Noise, when applica-
ble, is drawn from a normal distribution with mean zero and covariance matrix
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R = diag(r2
1 , r2

2 , r
2
3, r

2
4), with ri = 0.01 · x̄i. In the identification process, the

stationary mean value ȳ is computed empirically and removed from the data y.
Then, the two-step identification procedure (with L = 2 and R known) is applied
to the data. For each of the four scenarios above, 100 estimates of the matrix
Ax̄,ū are drawn from 100 random simulations on the model. For comparison, the
true value of Ax̄,ū is computed from Eqn. (11), where the mean values x̄ and ū are
computed empirically from the simulated trajectories. The mean value and the
variance of the estimates of all elements of Ax̄,ū are reported in Fig. 2 along with
the true values. In all cases, estimates are affected by very little or no bias which
appears to be independent of the experimental conditions. The estimation vari-
ance is acceptable in almost all cases if one considers that a very limited data set
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Fig. 2. For r, c = 1, . . . , 4, the plot in the r-row and c-th column reports the esti-
mation results for the (r, c)-th entry of Ax̄,ū. In each plot, dots indicate the mean of
the estimates and vertical bars correspond to 3 times the standard deviation of the
estimates for the identification scenarios A (blue, left), B (green, second-left), C (red,
second-right), D (cyan, right). Horizontal lines indicate the true entry values (dashed
black lines for zeros, solid blue lines otherwise).
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is used. As expected, the estimation variance generally increases with noise and
is larger with larger values with N . Yet a 10-fold value of N is not detrimental
for the estimation performance. For some elements of Ax̄,ū, the estimates drawn
in presence of measurement noise but with all data points available (scenario
B) are by far the most uncertain. This exception is rather counterintuitive and
deserves more investigation. Finally, unreported results comparing constrained
and unconstrained estimation show that the stability constraint becomes active
in roughly 10% of the estimation runs, the latter rate being larger in the presence
of noise and undersampling.

7 Conclusions and Perspectives

We investigated the problem of genetic network structure identification in a
stochastic hybrid modelling framework. We considered a piecewise deterministic
model of genetic networks where protein synthesis is triggered by discrete ran-
dom binding events and follows simple deterministic kinetics. We showed how to
approximate the stochastic hybrid system locally via a linear stochastic system
by considering the second order moments in stationarity. Using this approxima-
tion, we introduced an identification procedure that is based on matching the
covariance function of the model to the data and provides an estimate of the av-
erage effect of each transcription factor on every gene. Extensions of the method
were also discussed and include the estimation of the number of the genes in
the network. Numerical results on simulated data witness the validity of the ap-
proach even in the presence of noisy and undersampled measurements. We are
currently investigating on how to relax some of the assumptions mentioned in
the paper and how to exploit system perturbations and experimental design to
gain a more detailed insight into the structure of the network. In addition, we
believe that our previous results on parameter estimation in stochastic hybrid
models with known structure can be combined with the local structure identifi-
cation procedure described in this paper to devise a full-blown stochastic hybrid
model identification methodology. Heuristics for achieving this integration are
currently under study.
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A Proofs

Proof of Proposition 2. The equation for x̄ = E[x(t)] = E[x(t + T )] follows
from E[x(t + T )] = E

[
Ax(t) + g(ū) + Gū

(
u(t + T ) − ū

)]
= AE[x(t)] + g(ū).

Using this equation and Eq. (4), x̃(t + T ) = Ax(t) + g(ū) + Gūũ(t + T ) − x̄ =
Ax(t) + Gūũ(t) − Ax̄(t), which is (5).

Proof of Proposition 4. Without loss of generality, we shall prove the result
for T = 1. From Assumption 3, E[ũ(t + 1)|x(t), x(t − �)] = E[ũ(t + 1)|x(t)]
for all � > 0, where E[·|·] denotes conditional expectation. Eq. (7) is given by
E[x̃(t + � + 1)x̃(t)T ] = AE[x̃(t + �)x̃(t)T ] + GūE[ũ(t + � + 1)x̃(t)T ] where

E[ũ(t + � + 1)x̃(t)T ] = E
[
E[ũ(t + � + 1)x̃(t)T |x(t + �), x(t)]

]
=

= E
[
E[ũ(t + � + 1)|x(t + �)]x̃(t)T ] = Fx̄E[x̃(t + �)x̃(t)T

]
.

To get Eq. (8), note that Σx(0) = E[x̃(t)x̃(t)T ] = E[x̃(t + 1)x̃(t + 1)T ]. Using (5)
to expand the product in the latter expectation yields

Σx(0) = AΣx(0)AT + GūE[ũ(t + 1)x̃(t)T ]AT + AE[x̃(t)ũ(t + 1)T ]GT
ū +

+ GūE[ũ(t + 1)ũ(t + 1)T ]GT
ū . (12)
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In turn, E[ũ(t+1)x̃(t)T ] = E
[
E[ũ(t+1)x̃(t)T |x(t)]

]
= Fx̄E[x̃(t)x̃(t)T ] = Fx̄Σx(0)

and (writing ũ for ũ(t + T ) and x̃ for x̃(t))

E[ũũT ]= E
[(

u − E[u|x] + E[u|x] − ū
)(

u − E[u|x] + E[u|x] − ū
)T
]

= E
{

E
[(

u − E[u|x] + E[u|x] − ū
)(

u − E[u|x] + E[u|x] − ū
)T ∣∣x]}

∗= E
{

E
[(

u − E[u|x]
)(

u − E[u|x]
)T ∣∣x]+ E

[(
E[u|x] − ū

)(
E[u|x] − ū

)T ∣∣x]}
= E

[
Var(u|x)

]
+ E

[
E
[
(Fx̄x̃)(Fx̄x̃)T |x

]]
= Q + Fx̄Σx(0)FT

x̄ .

(To verify “∗”, expand the product in the LHS and note that, since E[u|x] −
ū is constant for given x and E

[
u − E[u|x]|x

]
= 0, the cross-product E

[(
u −

E[u|x]
)(

E[u|x] − ū
)T ∣∣x] vanishes and so does its transpose.) Substituting these

equations into (12) and rearranging the terms yields the result.

Proof of Proposition 5. The result can be deduced from the representa-
tion (9). Without loss of generality, we may restrict to the case N = 1. For the
sake of simplicity let us also drop linearization points x̄ and ū from the notation.
For t ∈ T and every � ≥ 1,

E
[
x̃(t + �T + T )ỹ(t)T

]
= E

[(
Ax̃(t + �T ) + Gw(t + �T )

)
ỹ(t)T

]
= AE

[
x̃(t + �T )ỹ(t)T

]
.

On the other hand, E
[
ỹ(t + �T )ỹ(t)T

]
= E

[
x̃(t + �T )ỹ(t)T

]
because n(t + �T ) is

uncorrelated with ỹ(t). Therefore Λ(� + 1) = AΛ(�). For � = 0,

E
[
x̃(t + T )ỹ(t)T

]
= E

[(
Ax̃(t) + Gw(t)

)
ỹ(t)T

]
= AE

[
x̃(t)ỹ(t)T

]
,

where E
[
x̃(t)ỹ(t)T

]
= E

[(
ỹ(t)−n(t)

)
ỹ(t)T

]
= E

[
ỹ(t)ỹ(t)T

]
−E

[
n(t)n(t)T

]
, hence

Λ(1) = A(Λ(0) − R).
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Abstract. This paper proposes a distributed coordination algorithm
for robotic sensor networks to detect boundaries that separate areas of
abrupt change of spatial phenomena. We consider an aggregate objec-
tive function, termed wombliness, that measures the change of the spa-
tial field along the closed polygonal curve defined by the location of the
sensors in the environment. We encode the network task as the opti-
mization of the wombliness and characterize the smoothness properties
of the objective function. In general, the complexity of the spatial phe-
nomena makes the gradient flow cause self-intersections in the polygonal
curve described by the network. Therefore, we design a distributed coor-
dination algorithm that allows for network splitting and merging while
guaranteeing the monotonic evolution of wombliness. The technical ap-
proach combines ideas from statistical estimation, dynamical systems,
and hybrid modeling and design.

1 Introduction

Consider a network of mobile sensors moving in an environment with the ob-
jective of finding regions where large changes occur in a spatial phenomena of
interest. Our aim is to design a distributed coordination algorithm that allows
the group of sensors to determine boundaries that separate the areas with large
differences in the spatial phenomena. The determination of such boundaries is
relevant in multiple applications of robotic networks, including oceanographic
surveys and weather forecasting. As an example, scientists are interested in de-
termining regions of abrupt change in temperature fields over regions of the
ocean, as they are related to upwelling and the food habits of fish.

The present work has connections with several scientific domains. In statisti-
cal estimation [1,2], wombling boundaries are curves that delimit areas of rapid
change of some scientific phenomena of interest. Algorithms for detecting these
boundaries based on point-referenced data are widely used for various appli-
cations, including biology [3], computational ecology [1], and medicine [4]. In
computer vision [5,6], image segmentation and edge detection problems are en-
coded as optimization problems for a variety of objective functionals such as
alignment, contrast, and geodesic active contour. These optimization problems
are typically solved using PDE-based approaches that build on the variational
information about the functionals. Finally, this work uses classical modeling and
stabilization tools from hybrid systems theory [7,8,9,10] in the algorithm design.

R. Majumdar and P. Tabuada (Eds.): HSCC 2009, LNCS 5469, pp. 120–134, 2009.
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The contributions of the paper are the following. We model the spatial phe-
nomena as a deterministic spatial field. The wombliness of a non self-intersecting,
closed curve is a measure of the alignment of the gradient of the spatial field
along the normal direction to the curve. We use the notion of wombliness as-
sociated to a closed polygonal curve to formulate the network objective as a
distributed optimization problem. We study the smoothness properties of the
wombliness measure and provide an explicit expression for its gradient and a
characterization of its critical points. If the network were to follow a gradient
ascent law to optimize wombliness, then situations may arise where the polyg-
onal curve described by the group of sensors becomes self-intersecting and the
ensuing flow ill-posed. To prevent this from happening, we combine our analysis
results with ideas from hybrid control design to synthesize a coordination al-
gorithm for distributed wombliness optimization. The algorithm introduces the
possibility of splitting and merging curves, and is guaranteed to monotonically
optimize the wombliness measure associated to the network. Several simulations
illustrate the results. For reasons of space, all proofs are omitted.

2 Preliminaries

Here, we gather some basic notions that will be frequently used along the paper.
Let us start with some notation. We let unit : R2 → R2 denote the map defined
by unit(x) = x/‖x‖ for x �= 0 and unit(0) = 0. Given n ∈ Z>0 and i, j ≤ n, let
〈i, . . . , j〉 be the set defined by 〈i, . . . , j〉 = {i, . . . , j} if i ≤ j and 〈i, . . . , j〉 =
{i, . . . , n, 1, . . . , j} if i > j. Next, we introduce some useful geometric concepts.

2.1 Planar Geometric Notions

Given a vector v = (v1, v2) ∈ R2, we denote by v⊥ = (v2,−v1) ∈ R2 the vector
perpendicular to v to the right, i.e., the 90 degree clockwise rotation of v. Given
p �= q ∈ R2, let ]p, q[ and [p, q] denote, respectively, the open and closed segments
with end points p and q. We let [p, q[ denote the closed segment between p and q
with the end point q excluded. We let u[p,q] = unit(q − p) denote the unit vector
in the direction from p to q and n[p,q] = u⊥

[p,q] the unit normal vector to the
right. In coordinates, if p = (p1, p2) and q = (q1, q2), then

u[p,q] =
1

‖q − p‖(q1 − p1, q2 − p2), n[p,q] =
1

‖q − p‖(q2 − p2, p1 − q1).

We denote by Hout
[p,q] = {z ∈ R2 | (z − p)T n[p,q] ≥ 0} the halfplane of points in

the positive direction of the normal vector with respect to the closed segment
[p, q]. Likewise, we denote H in

[p,q] = {z ∈ R2 | (z − p)T n[p,q] ≤ 0}.
Given p ∈ R2 and v ∈ R2, we use the notation ray(p, v) = {z ∈ R2 | z =

p+ tv, t ∈ R≥0}. The wedge wedge(p, (v1, n1), (v2, n2)) is the cone with vertex p
and axes ray(p, v1) and ray(p, v2). The interior of wedge(p, (v1, n1), (v2, n2)) is
the set of points towards which n1 points along ray(p, v1) and n2 points along
ray(p, v2), see Figure 1 for an illustration. For the wedge to be well-defined, the
normal vectors n1 and n2 need to specify the interior uniquely.
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v1

v2

p

n1

n2

(a)

v1

v2

p n1

n2

(b)

Fig. 1. Wedge determined by
the point p and the pairs of
vectors (v1.n1) and (v2, n2)

A domain D ⊂ R2 is an open and simply con-
nected set. Given q ∈ D, let TqD denote the set
of all vectors tangent to D with origin at q. For
q ∈ int (D), TqD is 2-dimensional and can be iden-
tified with R2. However, for q ∈ ∂D, TqD is one-
dimensional and can be identified with R. Let TD
denote the collection ∪{TqD | q ∈ D} of all tan-
gent vectors to D. We let prTD : TDR2 → TD
assign to each vector in R2 with origin at q ∈ D
the orthogonal projection onto TqD. Any vector
v ∈ R2 with origin in D has prTD(v) = v.

2.2 Curve Parameterizations

A curve C in R2 is the image of a map γ : [a, b] →
R2. The map γ is called a parametrization of C.
We often identify a curve with its parametrization.
A curve C is self-intersecting if γ is not injective
on (a, b). A curve C is closed if γ(a) = γ(b). For a
closed curve C, we let nC = unit(γ̇)⊥ denote the
unit normal vector to C. A closed, not self-intersecting curve C partitions R2 into
two disjoint open and connected sets, InsideC and OutsideC , such that nC along
C points outside InsideC and inside OutsideC , respectively. The orientation of C
affects the definition of nC and InsideC , OutsideC , see Figure 2 for an illustration.

InsideC

OutsideC
nC

(a)

OutsideC

InsideC

nC

(b)

Fig. 2. Closed curve oriented in a (a) counterclockwise and (b) clockwise fashion

Given a curve C parametrized by a piecewise smooth map γ : [a, b] → C, the
line integral of a function f : C ⊂ R2 → R over C is defined by∫

C

f =
∫

C

f(q)dq =
∫ b

a

f(γ(t)) ‖γ̇(t)‖ dt, (1)

and it is independent of the selected parametrization.

3 Problem Statement

Let Y : R2 → R be a twice continuously differentiable function modeling a planar
spatial field. Consider a network of n mobile agents moving in a compact domain
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D ⊂ R2 with positions p1, . . . , pn. Our objective is to find regions in D where
large changes occur in the spatial field Y by determining their boundaries.

Let us start by defining a measure of how fast the field changes along a given
curve. Let C be a non self-intersecting curve in R2 and define the wombliness or
alignment of C by

H(C) =
∫

C

〈∇Y, nC〉, (2)

see e.g., [11,2]. The interpretation of the wombliness measure is as follows. At
each point of the curve, we look at how much Y is changing along the normal
direction to C (i.e., how much Y is “flowing through C”). The integral sums this
change throughout the curve. We are interested in using the robotic network to
find curves whose corresponding value of H is large.

For a closed non-self-intersecting curve, the wombling measure H can be
rewritten, using the Gauss Divergence Theorem [12], as

H(C) =
∫

C

〈∇Y, nC〉 =
∫

D

div∇Y =
∫

D

∆Y, (3)

where D is the set in R2 whose boundary is C, and ∆Y = ∂2Y
∂x2 + ∂2Y

∂y2 denotes
the Laplacian of Y . It is interesting to observe that, in general, that the level
curves of the spatial field are not optimizers of H.

In general, the optimization of (2) is an infinite-dimensional problem. Our
approach here is to order counterclockwise the agents according to their unique
identifier, and consider the closed polygonal curve that result from joining the
positions of consecutive robots. In general, such curves may be self-intersecting.
Therefore, we restrict our attention to the subset Sc of Dn defined as follows. For
(p1, . . . , pn) ∈ Dn, let γcpc be the closed polygonal curve that results from the
concatenation of the straight segments [pi, pi+1], i ∈ {1, . . . , n − 1} and [pn, p1].
Then, we define the following open subset of Dn,

Sc = {(p1, . . . , pn) ∈ Dn | γcpc is non-self-intersecting}.

Define the function Hc : Sc → R by

Hc(p1, . . . , pn) = H(γcpc) =
n∑

i=1

∫
[pi,pi+1]

〈∇Y, n[pi,pi+1]〉. (4)

The optimization of (4) is now a finite-dimensional problem. Note that Hc can
be expressed in terms of the polygon determined by the concatenated straight
segments. If P(p1, . . . , pn) denotes this polygon, then we have

Hc(p1, . . . , pn) =
∫
P(p1,...,pn)

∆Y. (5)

For reasons that will become clear in the following sections, we assume that, at
each network configuration, agent i ∈ {1, . . . , n} can measure the gradient ∇Y
and the Laplacian ∆Y along the segments [pi−1, pi] and [pi, pi+1].
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4 Smoothness Analysis of the Wombliness Measure

In this section, we analyze the smoothness properties of the wombliness measure,
provide explicit expressions for the gradient, and characterize the critical points.
We start by stating the expression of the partial derivative of Hc.

Proposition 1 (Gradient of Hc). The function Hc : Sc → R is continuously
differentiable. For each i ∈ {1, . . . , n}, the partial derivative of Hc with respect
to pi at (p1, . . . , pn) ∈ Sc is

∂Hc

∂pi
=
( ∫

[pi,pi+1]

‖pi+1 − q‖
‖pi+1 − pi‖∆Y

)
n[pi,pi+1] +

( ∫
[pi−1,pi]

‖q − pi−1‖
‖pi − pi−1‖∆Y

)
n[pi−1,pi].

The proposition above implies in particular that the gradient of Hc is distributed
over the ring graph: in other words, an agent i only needs to know about the
location of its neighbors in the ring graph (agents i− 1 and i + 1) in order to be
able to compute ∂Hcpi.

Using Proposition 1, we can characterize the critical configurations of Hc.

Corollary 2 (Critical points of Hc). With a slight abuse of notation, let
Hc : Sc → R denote the extension by continuity of Hc to Sc. Let (p1, . . . , pn) ∈ Sc

be a critical configuration of Hc. Then, for i ∈ {1, . . . , n},

prTD
(∂Hc

∂pi

)
= 0.

Moreover, if (p1, . . . , pn) ∈ int (Dn) and no three consecutive agents are aligned,
this characterization can be alternatively described by, for i ∈ {1, . . . , n},∫

[pi,pi+1]
‖pi+1 − q‖∆Y = 0,

∫
[pi,pi+1]

‖q − pi‖∆Y = 0. (6)

Remark 3 (Characterization of critical points of Hc). The characterization (6)
of the critical configurations of Hc in the interior of D has the following inter-
pretation. For each i ∈ {1, . . . , n}, define the map Gi : [pi, pi+1] → R by

z �→ Gi(z) =
∫

[pi,z]
∆Y.

Note that G(pi) = 0 by definition. Moreover, after some manipulations, one can
show that equations (6) are equivalent to

Gi(pi+1) = 0,

∫
[pi,pi+1]

Gi(z)dz = 0. (7)

Using the fact that ∆Y = div(∇Y ), we can interpret the first equation in (7) as
follows: on a critical configuration, there is no net average change of the gradient
∇Y along the segment [pi, pi+1]. However, even if this condition holds true, ∇Y
might exhibit a preferred orientation with respect to [pi, pi+1]. It is precisely the
second equation in (7) that takes care of ensuring that there is no bias in the
orientation of ∇Y with respect to [pi, pi+1]. •
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5 Distributed Hybrid Design for Wombliness
Optimization

Our approach to find boundaries that delimit areas where the spatial field
changes abruptly consists of starting with an initial network configuration and
optimizing the magnitude of the wombliness of the closed polygonal boundary
defined by the network. To maximize Hc, we implement the distributed gradient
flow of this function, cf. Proposition 1, that is,

ṗi = sgn(Hc(P0))prTD
(∂Hc

∂pi

)
, i ∈ {1, . . . , n}. (8)

However, in general, the set Sc is not invariant under (8). In other words,
evolutions under (8) of the closed polygonal curve γcpc defined by the points
p1, . . . , pn become self-intersecting. To address this problem, we propose the fol-
lowing switching design, which is inspired on the interplay between the geometry
of the polygonal curve γcpc and the value of the wombliness function Hc.

5.1 Curve Self-intersection

Let γcpc be the closed polygonal curve defined by the segments {[pi, pi+1] | i ∈
{1, . . . , n − 1}} ∪ [pn, p1]. Assume (p1, . . . , pn) ∈ Sc, i.e., the curve γcpc is self-
intersecting. Note that when a self-intersection occurs, either Insideγcpc

becomes
disconnected or Outsideγcpc

becomes disconnected. We refer to these two cases
as inside and outside self-intersections, respectively. Figure 3 presents an illus-
tration. We further distinguish between whether the self-intersection occurs at
an open segment or at a point’s location.

Self-intersection at an open segment. For each i �= j ∈ {1, . . . , n} such that
pi ∈]pj , pj+1[, define λ ∈ [0, 1) by pi = (1 − λ)pj + λpj+1 and consider

vi = (1 − λ)uj + λuj+1, uk = sgn(Hc(P ))prTD
(∂Hc

∂pk

)
,

where k ∈ {i, j, j + 1}. The guards depend upon the type of self-intersection.

Inside self-intersection. If the self-intersection is of inside type, it is because
the segment [pi, pi+1] belongs to H in

[pj ,pj+1] and there exists the possibility of pi

crossing from H in
[pj ,pj+1] to Hout

[pj ,pj+1], see Figure 3(a). The criterium to identify
if a transition is needed in the network configuration is as follows. If

(ui − vi)T n[pj,pj+1] ≤ 0,

then pi does not cross, and the curve stays in Sc. If

(ui − vi)T n[pj,pj+1] > 0,

then the curve will move into Dn \ Sc unless the self-intersection is resolved.
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pj

pi

pj+1

pi+1

pi−1

γ1
cpc

γ2
cpc

(a) inside

pj

pi

pj+1

pi+1

pi−1

γ1
cpc

γ2
cpc

(b) outside

Fig. 3. The curve γcpc defined by p1, . . . , pn is self-
intersecting at an open segment. (a) shows an in-
side self-intersection and (b) shows an outside self-
intersection. In both cases, γcpc can be decomposed
into two non-self-intersecting curves γ1

cpc and γ2
cpc.

Outside self-intersection. If
the self-intersection is of out-
side type, it is because the
segment [pi, pi+1] belongs to
Hout

[pj ,pj+1] and there exists the
possibility of pi crossing from
Hout

[pj ,pj+1] to H in
[pj ,pj+1], see

Figure 3(b). The criterium
to identify if a transition is
needed in the network config-
uration is as follows. If

(ui − vi)T n[pj ,pj+1] ≥ 0,

then pi does not cross, and the
curve stays in Sc. If

(ui − vi)T n[pj ,pj+1] < 0,

the curve will move into Dn \ Sc unless the self-intersection is resolved.
pj pi

pj+1

pj−1

pi+1

pi−1

γ1
cpc

γ2
cpc

(a) inside

pj−1

pi

pj pj+1

pi+1

pi−1

γ1
cpc

γ2
cpc

(b) outside

Fig. 4. The curve γcpc defined by p1, . . . , pn is self-
intersecting at a point’s location. (a) shows an in-
side self-intersection and (b) shows an outside self-
intersection. In both cases, γcpc can be decomposed
into two non-self-intersecting curves γ1

cpc and γ2
cpc.

Self-intersection at a point.
For each i �= j ∈ {1, . . . , n}
such that pi = pj, consider
the vectors

ui = sgn(Hc(P ))
∂Hc

∂pi
,

uj = sgn(Hc(P ))prTD
(∂Hc

∂pj

)
.

The guards depend upon the
type of self-intersection.

Inside self-intersection. If the
self-intersection is of inside
type, see Figure 4(a), define
the vectors

v1 =

{
u[pi−1,pi] if [pj−1, pj ] ⊂ H in

[pi−1,pi],

u[pj ,pj−1] if [pj−1, pj ] �⊂ H in
[pi−1,pi],

v2 =

{
u[pi+1,pi] if [pj , pj+1] ⊂ H in

[pi,pi+1],

u[pj ,pj+1] if [pj , pj+1] �⊂ H in
[pi,pi+1].

The criterium to identify if a transition is needed in the network configuration
is as follows. If

ui − uj ∈ wedge(pj , (v1, v
⊥
1 ), (v2,−v⊥2 )),
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then the relative motion of pi and pj is such that the curve stays in Sc. If

ui − uj �∈ wedge(pj , (v1, v
⊥
1 ), (v2,−v⊥2 )),

then the curve will move into Dn \ Sc unless the self-intersection is resolved.

Outside self-intersection : If the self-intersection is of outside type, see Fig-
ure 4(b), define the vectors

v1 =

{
u[pj ,pj−1] if [pj−1, pj ] ⊂ H in

[pi−1,pi],

u[pi−1,pi] if [pj−1, pj ] �⊂ H in
[pi−1,pi],

v2 =

{
u[pj ,pj+1] if [pj , pj+1] ⊂ H in

[pi,pi+1],

u[pi+1,pi] if [pj , pj+1] �⊂ H in
[pi,pi+1].

The criterium to identify if a transition is needed in the network configuration
is as follows. If

ui − uj ∈ wedge(pj , (v1,−v⊥1 ), (v2, v
⊥
2 )),

then the relative motion of pi and pj is such that the curve stays in Sc. If

ui − uj �∈ wedge(pj , (v1,−v⊥1 ), (v2, v
⊥
2 )),

then the curve will move into Dn \ Sc unless the self-intersection is resolved.

State transition. We have encountered above the need to deal with self-
intersections in γcpc to prevent it from stepping into Dn \ Sc. Next, we deal
with these situations. For simplicity, we begin by considering the case where
there is only one agent causing the self-intersection. If this is the case, then γcpc
can be decomposed into two polygonal curves γ1

cpc and γ2
cpc, see Figures 3 and 4.

The curve γ1
cpc is defined by the concatenation of the segments {[pk, pk+1] | k ∈

〈i, . . . , j − 1〉} ∪ [pj , pi], if pi ∈]pj , pj+1[, and {[pk, pk+1] | k ∈ 〈i + 1, . . . , j −
1〉} ∪ [pj, pi+1], if pi = pj . The curve γ2

cpc is defined in an analogous way as the
concatenation of the segments {[pk, pk+1] | k ∈ 〈j + 1, . . . , i − 1〉} ∪ [pi, pj+1],
if pi ∈]pj , pj+1[, and {[pk, pk+1] | k ∈ 〈j + 1, . . . , i − 1〉} ∪ [pi, pj+1], if pi =
pj . Observe that γ2

cpc might not be oriented in a counterclockwise fashion.

pj pi

pj+1

pj−1

pi+1

pi−1

γ1
cpc

γ2
cpc

pj

pi

pj+1

pi−1

γ2
cpc

Fig. 5. Agent re-positioning. Agents in the curve
γ1
cpc get re-positioned onto the curve γ2

cpc.

Moreover, if we are dealing
with a self-intersection at an
open segment, i.e., pi belongs
to ]pj , pj+1[, note that pi ap-
pears in the definition of both
γ1
cpc and γ2

cpc. The wombliness
of γcpc is split between γ1

cpc

and γ2
cpc according to

H(γcpc) = H(γ1
cpc) + H(γ2

cpc).

We are now ready to detail
the two possible outcomes if a
self-intersection occurs:
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Agent re-positioning. If H(γ1
cpc) and H(γ2

cpc) have different signs, we only keep
the curve whose wombliness has the same sign as γcpc. Without loss of generality,
assume the curve we keep is γ2

cpc. Then, we re-position the agents in γ1
cpc along

the boundary of γ2
cpc. This process does not affect the value of the wombliness

of γ2
cpc, and can be made in an arbitrary way. Note that the absolute value

of the wombliness of the resulting non-self-intersecting curve is strictly larger
than the value of the wombliness of the original self-intersecting curve γcpc. This
transition is illustrated in Figure 5.

Curve splitting. If H(γ1
cpc) and H(γ2

cpc) have the same sign as H(γcpc), then
choosing only one curve would lead to a decrease in the value of the wombliness.
Therefore, we consider both. If the self-intersection occurs on an open segment,
we need to add one more agent to the network at the intersection location,
according to the definition of γ1

cpc and γ2
cpc above. After the split, each curve

evolves independently according to (8). This transition is illustrated in Figure 6.

Fig. 6. Curve splitting. The curve γcpc is split into
γ1
cpc and γ2

cpc, and these curves evolve independently
afterwards.

If multiple self-intersections
occur at different locations,
then the state transitions cor-
responding to each one of
them can be executed si-
multaneously. If multiple self-
intersections occur at the
same location, then the curve
γcpc can be decomposed into 3
or more non self-intersecting
curves, and the state transi-
tion as described above can
be conveniently modified to
jointly consider the wombli-
ness of each individual curve.

5.2 Intersection between Curves

As a result of the curve splitting transition described in Section 5.1, there might
be more than one curve moving in D. It is therefore conceivable that along
the ensuing evolution two of these curves intersect each other. Let us consider
this situation. For simplicity, we only treat the case where there are two curves
evolving in D. The case with more than two curves can be treated in an analogous
way. Let γα

cpc be a closed polygonal curve determined by n1 agents at positions
Pα = (pα

1 , . . . , pα
n1

) and wombliness Hα
c (Pα) = H(γα

cpc), and let γβ
cpc be a closed

polygonal curve determined by n2 agents at positions P β = (pβ
1 , . . . , pβ

n2
) and

wombliness Hβ
c (P β) = H(γβ

cpc). Note that the orientation of the curves is not
necessarily counterclockwise. When a intersection occurs between the two curves,
either Insideγα

cpc
∩ Insideγβ

cpc
is connected or Outsideγα

cpc
∩Outsideγβ

cpc
is connected.

We refer to these two cases as inside and outside intersections, respectively.
Figure 7 presents an illustration of these notions.
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We further distinguish between whether the intersection occurs at an open
segment or at a point’s location.

Intersection at an open segment. For each i ∈ {1, . . . , n1} such that pα
i ∈

]pβ
j , pβ

j+1[ for some j ∈ {1, . . . , n2}, define λ ∈ [0, 1) by pα
i = (1 − λ)pβ

j + λpβ
j+1

and consider the vectors

vi = (1 − λ)uj + λuj+1,

ui = sgn(Hα
c (Pα))prTD

(∂Hα
c

∂pα
i

)
, uk = sgn(Hβ

c (P β))prTD
(∂Hβ

c

∂pβ
k

)
,

where k ∈ {j, j + 1}. The guards depend upon the type of self-intersection.

pi−1

pi+1

pj+1

pi

pj

γ1
cpc

γ2
cpc

(a) inside

pi

pj

pj+1

pi−1

pi+1 γ1
cpc

γ2
cpc

(b) outside

Fig. 7. The curves γα
cpc and γβ

cpc intersect at an open
segment. (a) shows an inside intersection and (b)
shows an outside intersection. In both cases, the
curves γα

cpc and γβ
cpc can be merged into a new self-

intersecting curve γcpc.

Inside intersection. If the in-
tersection is of inside type,
it is because the segment
[pα

i , pα
i+1] belongs to H in

[pβ
j ,pβ

j+1]

and there exists the possi-
bility of pα

i crossing from
H in

[pβ
j ,pβ

j+1]
to Hout

[pβ
j ,pβ

j+1]
, see

Figure 7(a). The criterium
to identify if a transition is
needed in the network config-
uration is as follows. If

(ui − vi)T n[pβ
j ,pβ

j+1] ≤ 0,

then pα
i does not cross. If

(ui − vi)T n[pβ
j ,pβ

j+1] > 0,

then pα
i will cross unless the intersection is resolved.

Outside intersection. If the intersection is of outside type, it is because the
segment [pα

i , pα
i+1] belongs to Hout

[pβ
j ,pβ

j+1]
and there exists the possibility of pα

i

crossing from Hout
[pβ

j ,pβ
j+1]

to H in
[pβ

j ,pβ
j+1]

, see Figure 7(b). The criterium to identify

if a transition is needed in the network configuration is as follows. If

(ui − vi)T n[pβ
j ,pβ

j+1] ≥ 0,

then pα
i does not cross. If

(ui − vi)T n[pβ
j ,pβ

j+1] < 0,

then pα
i will cross unless the intersection is resolved.
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Intersection at a point. For each i ∈ {1, . . . , n1} and j ∈ {1, . . . , n2} such
that pα

i = pβ
j , consider the vectors

ui = sgn(Hc(Pα)) prTD
(∂Hα

c

∂pα
i

)
, uj = sgn(Hc(P β)) prTD

(∂Hβ
c

∂pβ
j

)
.

The guards depend upon the type of intersection.

Inside intersection. If the intersection is of inside type, see Figure 8(a), define

v1 =

{
u[pα

i−1,pα
i ] if [pβ

j−1, p
β
j ] ⊂ H in

[pα
i−1,pα

i ],

u[pβ
j ,pβ

j−1] if [pβ
j−1, p

β
j ] �⊂ H in

[pα
i−1,pα

i ],

v2 =

{
u[pα

i+1,pα
i ] if [pβ

j , pβ
j+1] ⊂ H in

[pα
i ,pα

i+1],

u[pβ
j ,pβ

j+1] if [pβ
j , pβ

j+1] �⊂ H in
[pα

i ,pα
i+1].

pi−1

pi+1

pj

pi

pj−1

pj+1

γ1
cpc

γ2
cpc

(a) inside

pj

pj−1

pj+1

pi

pi−1

pi+1 γ1
cpc

γ2
cpc

(b) outside

Fig. 8. The curves γα
cpc and γβ

cpc intersect at a point’s
location. (a) shows an inside intersection and (b)
shows an outside intersection. In both cases, the
curves γα

cpc and γβ
cpc can be merged into a new self-

intersecting curve γcpc.

The criterium to identify if a
transition is needed is as fol-
lows. If

ui − uj ∈
wedge(pβ

j , (v1, v
⊥
1 ), (v2,−v⊥2 )),

then the relative motion of pα
i

and pβ
j is such that the curves

γα
cpc and γβ

cpc evolve without
“crossing each other.” If

ui − uj �∈
wedge(pβ

j , (v1, v
⊥
1 ), (v2,−v⊥2 )),

then the intersection needs to
be resolved.

Outside intersection. If the intersection is of outside type, see Figure 8(b), define

v1 =

{
u[pβ

j ,pβ
j−1] if [pβ

j−1, p
β
j ] ⊂ H in

[pα
i−1,pα

i ],

u[pα
i−1,pα

i ] if [pβ
j−1, p

β
j ] �⊂ H in

[pα
i−1,pα

i ],

v2 =

{
u[pβ

j ,pβ
j+1] if [pβ

j , pβ
j+1] ⊂ H in

[pα
i ,pα

i+1],

u[pα
i+1,pα

i ] if [pβ
j , pβ

j+1] �⊂ H in
[pα

i ,pα
i+1].

The criterium to identify if a transition is needed is as follows. If

ui − uj ∈ wedge(pβ
j , (v1,−v⊥1 ), (v2, v

⊥
2 )),
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(a) (b) (c)

Fig. 9. Robotic network of 10 agents evolving under the wombling coordination al-
gorithm. (a) shows the initial configuration, (b) shows the robot trajectories, and (c)
shows the final configuration. The spatial field is Y (x1, x2) = 1.25e−(x1+.75)2−(x2−.2)2 +
1.75e−(x1−.75)2−(x2+.2)2 . The gradient flow (8) first triggers 1 outside self-intersection
and then 2 inside self-intersections. All transitions result in agent re-positionings.

then the relative motion of pα
i and pβ

j is such that the curves γα
cpc and γβ

cpc evolve
without “crossing each other.” If

ui − uj �∈ wedge(pβ
j , (v1,−v⊥1 ), (v2, v

⊥
2 )),

then the intersection needs to be resolved.

State transition. We have encountered above the necessity to deal with inter-
sections between the curves γ1

cpc and γ2
cpc. For simplicity, we begin by considering

the case where there is only one agent causing the intersection. If this is the case,
then the two curves can be merged into a single one, see Figures 7 and 8. The
closed polygonal curve γcpc is defined by the concatenation of the segments

{[pα
k , pα

k+1] | k ∈ 〈i, . . . , i − 1〉} ∪ [pα
i , pβ

j+1]

∪ {[pβ
k , pβ

k+1] | k ∈ 〈j + 1, . . . , j − 1〉} ∪ [pβ
j , pα

i ],

if pα
i ∈]pβ

j , pβ
j+1[, and {[pα

k , pα
k+1] | k ∈ 〈i, . . . , i−1〉}∪{[pβ

k, pβ
k+1] | k ∈ 〈j, . . . , j−

1〉}, if pα
i = pβ

j . Observe that if we are dealing with a curve intersection at
an open segment, i.e., pα

i belongs to ]pβ
j , pβ

j+1[, then pα
i appears twice in the

definition of γcpc. The wombliness of γα
cpc and γβ

cpc is summed up according to

H(γcpc) = H(γα
cpc) + H(γβ

cpc).

We are now ready to detail the two possible outcomes of a curve intersection:

Agent re-positioning. If H(γα
cpc) and H(γβ

cpc) have different signs, we only keep
the curve whose wombliness is larger in absolute value. Without loss of generality,
assume the curve we keep is γ2

cpc. Then, we re-position the agents in γ1
cpc along

the boundary of γ2
cpc. This process does not affect the value of the wombliness
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(a) (b) (c)

Fig. 10. Robotic network of 10 agents evolving under the wombling coordination al-
gorithm. (a) shows the initial configuration, (b) shows the robot trajectories, and
(c) shows the final configuration. The spatial field is Y (x1, x2) = e−(x1+2)2−x2

2 +
1.25e−(x1−2)2−x2

2 . The gradient flow (8) first triggers an inside self-intersection that
results in a curve splitting. After this, each of the new curves undergoes an inside
self-intersection that result in agent re-positionings.

of γ2
cpc, and can be made in an arbitrary way. Note that the absolute value of

the wombliness of the resulting non-self-intersecting curve is strictly larger than
the value of the wombliness of γcpc.

Curve merging. If H(γα
cpc) and H(γβ

cpc) have the same sign, then choosing only
one curve would lead to a decrease in the value of the wombliness. Therefore,
we consider their merge into the curve γcpc. If the intersection occurs on an
open segment, we need to add one more agent to the network at the intersection
location, according to the definition of γcpc above. After the merge, the curve
γcpc evolves according to (8).

The case when multiple intersections occur at the same time can be dealt with
in a similar fashion to the discussion in Section 5.1.

5.3 Convergence Analysis

We refer to the distributed hybrid control design described in Sections 5.1 and 5.2
as the wombling coordination algorithm. The next result follows from a simple
application of LaSalle’s Invariance principle [13].

Proposition 4. Any network trajectory evolving under the wombling coordina-
tion algorithm that does not undergo curve-splitting or curve-merging transitions
converges to a critical configuration of Hc while monotonically optimizing the to-
tal wombliness.

From Proposition 4, we can deduce the following result for network trajectories
that undergo curve-splitting and curve-merging transitions.

Corollary 5. A network trajectory that undergoes a finite number of curve-
splitting and curve-merging transitions monotonically optimizes the total wombli-
ness. Moreover, the subnetworks that result after these transitions have taken
place each converge to a critical configuration of Hc.
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Remark 6. Note that no conditions are imposed in Corollary 5 on the number of
agent re-positioning transitions. A similar result could be established for network
trajectories that undergo an infinite number of curve-splitting and curve-merging
transitions but are non-Zeno executions of the hybrid system [7,14]. •

Figures 9 and 10 present illustrations of the execution of the wombling coordi-
nation algorithm. The domain in all plots is D = [−4, 4] × [−4, 4].

6 Conclusions

We have proposed a distributed coordination algorithm for robotic sensor net-
works that seek to detect areas of abrupt change of a spatial phenomena of
interest. Our algorithm design has combined notions borrowed from statistical
estimation and computer vision with tools from hybrid systems theory. The pro-
posed algorithm allows for network splitting and re-grouping, and is guaranteed
to monotonically increase the wombliness of the overall ensemble.

In order to make the proposed hybrid control design more amenable to im-
plementation in practical scenarios, future work will address two limitations of
the present approach. We need to move beyond the assumption that individual
agents have gradient and Laplacian information on the spatial field along their
immediate counterclockwise and clockwise boundary. When a curve merging or
splitting occurs, the addition of an agent to the network can be done in a number
of ways - e.g., individual agents might carry several smaller, lighter agents that
can be deployed if needed. However, we need to better understand the number of
switchings that can occur along the evolution, and provide conditions for their
finiteness. We also plan to extend the present approach to open polygonal curves
to detect “fronts” of abrupt change in the spatial phenomena.
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Abstract. We develop several generalized Skorokhod pseudo-metrics for hybrid
path spaces, cast in a quite general setting, where the basic open sets are epsilon-
tubes around paths that, intuitively, allow for some “wiggle room” in both time
and space via set-valued retiming maps between the time domains of paths. We
then determine necessary and sufficient conditions under which these topologies
are Hausdorff and their distance functions are metrics. On spaces of paths with
closed time domains, our metric topology of generalized Skorokhod uniform con-
vergence on finite prefixes is equivalent to the implicit topology of graphical con-
vergence of hybrid paths, currently used extensively by Teel and co-workers.

1 Introduction

A basic problem in the foundations of hybrid systems is that of giving useful quantita-
tive measures of closeness between trajectories that may differ in their time domains,
in virtue of variations in timing of discrete transition events, or in their way of let-
ting time “run to infinity”; for example, how do we compare a Zeno trajectory with
one that exhibits finite-escape time after finitely-many discrete transitions? Topologi-
cal – and preferably metric – structure on spaces of hybrid trajectories, and on spaces
of paths discretely simulating or approximating hybrid trajectories, is a necessary pre-
lude to addressing questions of robustness, or of the accuracy of discrete simulations or
approximations.

One approach addressing several of these issues (proposed independently by Teel
and co-workers in [1] and by Collins in [2], and employed in [3,4,5,6]) is to model
the time domain of a hybrid path as a linearly-ordered subset of the partially-ordered
structure R × Z; the coordinate in R gives the “normal” time and the coordinate in Z
is incremented with each discrete transition.1 In developing topological structure on
hybrid path spaces, the papers [1,3,4,6], and also [2,5], take an indirect route: the con-
vergence of a sequence of hybrid paths is formulated in terms of the set-convergence of
the graphs of those paths as subsets of R × Z × Rn, with set-convergence as in [16]. A
more direct approach is taken in [17,18] and also in [19], which use variants of the Sko-
rokhod metric (originally from stochastic processes with right-continuous sample paths

1 This approach is equivalent to the so-called “hybrid time trajectories” used in [7,8]. Two-
dimensional time structures linearly-ordered by the lexicographic order are also used in earlier
work on hybrid trajectories in the context of logics and formal methods for hybrid systems in
[9,10,11,12,13], and in behavioural systems approaches to hybrid systems, in [14,15].

R. Majumdar and P. Tabuada (Eds.): HSCC 2009, LNCS 5469, pp. 135–149, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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[20]) to structure the space of infinite non-Zeno hybrid trajectories modeled as func-
tions with real-time domain R+ = [0,∞). These Skorokhod-type metrics accommodate
trajectories with different transition times by using retiming maps which are strictly
order-preserving, bijective functions from one time domain to the other. Intuitively,
Skorokhod-type metrics allow us to “wiggle space and time a bit” – in contrast with
the topology of uniform convergence of continuous functions over a common time do-
main, which only allows us to “wiggle space a bit”. However, a significant limitation of
the original Skorokhod-type metrics (discussed in [19]) is that strictly order-preserving,
single-valued retiming maps are too inflexible and restrictive in a hybrid setting.

The first contribution of the present paper is to develop generalized Skorokhod
pseudo-metrics for hybrid path spaces in a quite general setting, and to determine nec-
essary and sufficient conditions under which these topologies are Hausdorff and their
distance functions are metrics. We start with spaces of finite-length paths (including
those with finite-escape time), where the key notion is that of ε-tolerance relations
which pair finite-length paths that can be viewed as ε-close via a set-valued retiming
map between their domains; the generalized Skorokhod distance between two paths is
then the infimum of all such ε for that pair of paths. We then extend up to spaces of
arbitrary-length paths by considering the ε-closeness of longer and longer finite pre-
fixes. The generalized Skorokhod distance between two arbitrary-length paths is given
as an infinite sum weighted by 2−n of the distances between length-n finite prefixes.
For arbitrary-length paths, we identify two distinct topologies, that of generalized Sko-
rokhod uniform convergence, and that of generalized Skorokhod uniform convergence
on finite prefixes, and determine distinct metrics for them. For the Hausdorff property,
we give an easy-to-satisfy sufficient condition, as well as a more technical necessary
and sufficient condition to mark the limits of metrizability. We also show that, restricted
to spaces of arbitrary-length paths with closed time domains, the implicit topology of
graph-convergence for hybrid paths from [1,3,4] is equivalent to the weaker of the
two generalized Skorokhod metrics. The metric and convergence notions developed
here are illustrated on spaces of solution paths of hybrid systems, under the stand-
ing assumptions used by Teel and co. in [1,3,4] in addressing questions of asymptotic
stability.

The paper is a substantial advance on [21], which introduces set-valued retiming
maps in order to accommodate various hybrid phenomena, and uses them in developing
several (2- and 3-parameter) uniform topologies on hybrid path spaces, but without
developing a pseudo-metric or characterizing the Hausdorff property, as is done here.

On notation: we write R : X � Y to mean R is a set-valued map, with (possibly
empty) values R(x) ⊆ Y; domain dom(R) := {x ∈ X | R(x) � ∅}; inverse R−1 : Y � X
with x ∈ R−1(y) iff y ∈ R(x); and range ran(R) := dom(R−1). We do not distinguish
between a set-valued map and a relation/set of ordered pairs R ⊆ X × Y. For any set
A ⊆ X, the direct or post-image is the set R(A) := {y ∈ Y | R−1(y) ∩ A � ∅}. If a map
R is a partial function, we write R : X � Y to mean R is single-valued on its domain,
with values R(x) = y (rather than R(x) = {y}). As usual, R : X → Y means R is single-
valued with dom(R) = X and ran(R) ⊆ Y. We write R+ for [0,∞), R>0 for (0,∞), R+∞

for R+ ∪ {∞}, and N>0 for {n ∈ N | n > 0}.
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2 Time Structures and Their Topologies

A structure (S ,�, 0,+,−) is an partially-ordered abelian group [22] if (S ,�) is a partial
order, (S , 0,+,−) is an abelian group, and the strict ordering < is shift-invariant: s < t
implies s + r < t + r , for all s, t, r ∈ S . An element u > 0 is called an order-unit for the
partially-ordered group S if for every s ∈ S , there exists an m ∈ N+ (depending on s)
such that s � m u, where integer multiplication is just iterated addition. An order-unit
uniquely determines a pseudo-norm || · || : S → R+ that assigns || u || = 1 and is such that
for all s, t ∈ S , if t ≥ 0 and −t � s � t then || s || ≤ || t ||. As first identified by Stone [23],
the order-unit pseudo-norm || · || from u has the explicit description:

(∀s ∈ S ) || s || := inf
{ m

n
∈ Q+ | m, n ∈ N+ ∧ −m u � n s � m u

}
. (1)

The pseudo-norm || · || is a norm (satisfying || s || = 0 iff s = 0, for all s ∈ S ) when S is
archimedean, which means that if ks � t for all k ∈ N, then s � 0.

Definition 1. [Time structures [21]]
A time structure (S ,�, 0,+,−, u) is an archimedean partially-ordered abelian group
with a distinguished order-unit u > 0 that determines an order-unit norm || · ||. A future
time structure T is the positive cone of a time structure, so T = S+ := {s ∈ S | 0 � s}
for some S . A time structure S is finite-dimensional iff for some integer n ≥ 1, S
is isomorphic with a partially-ordered abelian sub-group of (Rn, 1n) with order-unit
1n = (1, 1, . . . , 1) (hence S is lattice-ordered), where the embedding is a strictly order-
preserving group isomorphism that is a continuous function w.r.t. the norm topologies
and maps order-unit to order-unit and positive elements to positive elements.

The continuous time structure R and the discrete time structure Z are both linearly-
ordered abelian groups, and both are Dedekind-complete and archimedean; taking 1 as
the order-unit gives the usual absolute-value ||s|| = |s| = max{s,−s}. The basic hybrid
time structure Z×R is a 2-dimensional abelian group with pair-wise addition and group
identity (0, 0), partially-ordered by the product order, (i, t) � (i′, t′) iff i ≤ i′ and t ≤ t′;
it is also Dedekind-complete and archimedean. The basic hybrid future time structure
H := N × R+ is the positive cone (and positive quadrant) of Z × R. For the order-
unit, we can take u = (1, 1), and the Stone order-unit-norm is ||(i, t)|| = max{ |i|, |t| }.
An equivalent norm, implicitly used in [3,4], is || (i, t) ||′ := 1

2 ( |i| + |t| ), which satisfies
1
2 || (i, t) || ≤ || (i, t) ||

′ ≤ || (i, t) ||. For modeling and analysis of discrete-time simulations
of hybrid systems, one uses Z × Z, with future cone N × N.

For each r ∈ S in a time structure, the r-shift function σr : S → S is strictly order-
preserving, where σr(s) := s + r for all s ∈ S . In partial orders (as in linear orders)
the basic sets are the intervals between points: sets [a, b] := {s ∈ S | a � s � b} and
(a, b) := {s ∈ S | a < s < b}; the up-sets above a given point: [a ↑) := {s ∈ S | a � s}
and (a ↑) := {s ∈ S | a < s}; symmetrically, the down-sets (↓ a] and (↓ a); and the
incomparability set: (a⊥) := S � ( [a↑) ∪ (a↓] ), which is empty for all a ∈ S iff the
ordering is linear. In general, intervals, up-sets and down-sets are only partially-ordered.

In a time structure S with order-unit u, the unit interval is [0, u], and the granularity
of the norm || · || is defined by gr(S ) := inf{ ||s|| ∈ R+ | s ∈ (0, u] }. A time structure S
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is discrete iff gr(S ) > 0, and is dense iff gr(S ) = 0. For example, R, Z ×R, and QB ×R
all have granularity 0, while Z and Z × Z have granularity 1.

On a time structure S , let T� be the order topology on S which has as a basis the
family B� of all strict up-sets and down-sets, and their intersections, the strict open
intervals. Let Tnorm be the norm topology on S determined by || · || which has as a basis
the family Bnorm of all norm-balls Bδ(s) := {t ∈ S | ||t − s|| < δ}, for s ∈ S and real δ > 0;
Tnorm is also the coarsest topology on S w.r.t. which || · || : S → R+ is continuous. From
[21], some key properties of finite-dimensional time structures S are as follows:
(1) The norm topology is refined by the order topology; that is: Tnorm ⊆ T�, with
Tnorm = T� if � is a linear-ordering.

(2) For all s, t ∈ S , intervals [s, t], up-sets [s↑), and down-sets (s↓], are closed in Tnorm;
if s � t, then [s, t] is compact in Tnorm.

(3) For any subset A ⊆ S , A is norm-bounded iff A is order-bounded; if S is also
Dedekind-complete, then A is compact in Tnorm iff A is closed and bounded in Tnorm.

3 Compact Paths and Their Maximal Extensions

Definition 2. [Compact time domains [21]]
Given a time structure S with future time T , let Lin(T ) be the set of all non-empty
linearly-ordered subsets L of T; i.e. the partial-order � restricted to L is a linear-order.
A compact time domain in T is any set L ∈ Lin(T ) such that 0 ∈ L and L is compact in
Tnorm. Let CD(T ) be the set of all compact time domains in T .

If S is finite-dimensional and Dedekind-complete and L ∈ Lin(T ), then L ∈ CD(T ) iff
L contains 0, L ⊂ [0, t] for some t ∈ T and L is closed Tnorm. As a special case, all finite
sample-time sets L = {0, t1, . . . , tN−1} are compact time domains. For any L in CD(T ),
either L is a single linearly-ordered and densely-ordered subset of T (including the one-
point set {0} = [0, 0] ), or else there exist one or more pairs of discrete-successor points
ti, t′i ∈ L such that ti < t′i and (ti, t′i ) ∩ L = ∅.

Definition 3. [Compact continuous paths [21]]
Given a time structure S with future time T , let the signal value-space be a non-empty
metric space (X, dX). Define the set CP(T, X) of compact continuous T-paths in X by:

CP(T, X) := { γ : T � X | dom(γ) ∈ CD(T ) ∧ γ is continuous on dom(γ) } .
For γ ∈ CP(T, X), define the end-time of γ by bγ := max(dom(γ)), and the length of γ
by len(γ) := || bγ ||T . Define a partial-ordering on CP(T, X) using subset-inclusion (on
sets of ordered pairs) and the partial-ordering on T: γ < γ′ iff γ ⊂ γ′ and t < t′ for all
t ∈ dom(γ) and all t′ ∈ dom(γ′)�dom(γ), in which case the path γ′ is a strict extension
of γ, and γ is a strict prefix of γ′; as usual, γ � γ′ iff γ < γ′ or γ = γ′.

Being continuous on compact domains, all paths γ ∈ CP(T, X) are uniformly contin-
uous. From [21] (differing slightly from [12,13]), the following three operations on
paths are well-defined partial functions on CP(T, X): for γ ∈ CP(T, X), t ∈ T and
bγ = max(dom(γ)):
• the t-prefix γ|t, with dom(γ|t) := [0, t]∩dom(γ) and γ|t(s) := γ(s) for all s ∈ dom(γ|t);
• the t-suffix t|γ, which is defined only when t ∈ dom(γ),

with dom(t|γ) := [0, bγ− t]∩σ−t(dom(γ)) where t |γ(s) := γ(s+ t) for all s ∈ dom(t|γ);
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• the t-fusion γ ∗t γ
′, which is defined only when t ∈ dom(γ)

and γ(t) = γ′(0), and which has dom(γ ∗t γ
′) := dom(γ|t) ∪ σ+t(dom(γ′)) and

(γ ∗t γ
′)(s) := γ(s) if s ∈ dom(γ| t) and (γ ∗t γ

′)(s) := γ′(s − t) if s ∈ σ+t(dom(γ′)).
This prefix operation is well-defined for all times t ∈ T , not just t ∈ dom(γ), and
γ|t � γ for all t ∈ T ; in particular, γ|t < γ if t � bγ, while γ|t = γ if t � bγ. More-
over, for any t ∈ T , if || t ||T > len(γ), then γ|t = γ. For all t ∈ T and compact γ,
the set [0, t] ∩ dom(γ) = dom(γ|t) is compact and linearly-ordered, with maximum
t0 = max { s ∈ dom(γ) | s � t }. A set P ⊆ CP(T, X) is prefix-closed iff for all γ ∈ P
and all t ∈ T , the path γ|t ∈ P. A set P ⊆ CP(T, X) is deadlock-free iff for all γ ∈ P,
there exists γ′ ∈ P such that γ < γ′. From [12,13], a general flow system is a set-
valued map Φ : X � CP(T, X) such that for all x ∈ dom(Φ), for all γ ∈ Φ(x), and all
t ∈ dom(γ): (GF0) x = γ(0); (GF1) suffix-closure t|γ ∈ Φ(γ(t)); and (GF2) fusion-
closure (γ ∗t γ

′) ∈ Φ(x) for all γ′ ∈ Φ(γ(t)).
We take finite-length compact paths as the basic objects precisely because in multi-

dimensional time structures, there are multiple ways of “letting time go to infinity”.
However, for the asymptotic analysis of dynamics, as well as for the semantics of tem-
poral logics of such systems [12,13] we do need to determine the maximal extensions
of compact paths. When S is finite-dimensional, any L ∈ Lin(T ) will have cardinality
at most that of the reals, so we only need to consider extending sequences of paths
of ordinal length at most ω1, the first uncountable ordinal. Let CLO be the set of all
countable limit ordinals ν with ω ≤ ν < ω1, where ω is the ordinal length of N. Given
any set P ⊆ CP(T, X), and a ν ∈ CLO, a ν-length sequence {γm}m<ν is a P-chain if
γm < γm′ for all m < m′ < ν. The asymptotic limit of a P-chain is the partial function
η : T � X such that η =

⋃
m<ν γm (considered as sets of ordered-pairs), with the length

len(η) := supm<ν len(γm), possibly infinite.

Definition 4. [Limit extension and maximal extension of path sets [12,13]]
Let T be the future of a finite-dimensional time structure. For any set P ⊆ CP(T, X) of
compact paths, define the limit extension L(P), the maximal extension M(P) ⊆ L(P),
and the maximal infinite-length extension M∞(P) ⊆ M(P), as follows:

L(P) := { η ∈ [T � X] | (∃ν ∈ CLO)
(
∃γ ∈ [ν→ CP(T, X)]

)
(∀m < ν)

γm := γ(m) ∈ P ∧ (∀m′ < ν) (m < m′ ⇒ γm < γm′) ∧ η =
⋃

m<ν γm };
M(P) := { η ∈ L(P) | (∀γ ∈ P ) η ≮ γ } and M∞(P) := { η ∈ M(P) | len(η) = ∞} .

A set of compact paths P is called maximally-extendible iff for all γ ∈ P, there exists
η ∈ M(P) such that γ < η, and P is forward-complete iff P is maximally-extendible and
M(P) = M∞(P). Set LCP(T, X) := L(CP(T, X)).

The extension partial order on compact paths readily extends to limit paths: η < η′ iff
η ⊂ η′ and t < t′ for all t ∈ dom(η) and t′ ∈ dom(η′) � dom(η). The prefix, suffix and
fusion operations also extend to limit paths in the straight-forward way, with the strict
prefix of a limit path always a compact path. It is also readily established that every
limit path η ∈ LCP(T, X) is continuous (but may fail to be uniformly continuous).

Given a general flow system Φ : X � CP(T, X), the maximal extension of Φ is the
set-valued map MΦ : X � LCP(T, X) given by MΦ(x) := M(Φ(x)) for all x ∈ X,
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with MΦ(x) = ∅ if x � dom(Φ). A general flow Φ is maximally-extendible (forward-
complete) iff for all x ∈ dom(Φ), the path set Φ(x) is maximally-extendible (forward-
complete). From [12,13], a core result (using the Axiom of Choice/Zorn’s Lemma)
is that a set of paths P ⊆ CP(T, X) is maximally-extendible iff P is deadlock-free,
and hence, for general flow Φ : X � CP(T, X), Φ is maximally-extendible iff Φ is
deadlock-free.

We will subsequently be interested in: CP	(T, X) := CP(T, X) ∪ LCP(T, X), the
combined path set of both compact and limit continuous paths under the path-extension
ordering, of finite or infinite length, and also the distinguished subsets:

CP	cl(T, X) := CP(T, X) ∪ { η ∈ LCP(T, X) | dom(η) is norm-closed in T }
CP	fin(T, X) := { η ∈ CP	(T, X) | len(η) < ∞}

= CP(T, X) ∪ (CP	(T, X) � CP	cl(T, X)) .

The basic fact being used here is that a path η ∈ CP	(T, X) � CP	cl(T, X) exactly when
η is a limit path with dom(η) failing to be norm-closed, which is the case if and only if
dom(η) is norm-bounded with finite length. Given a set of compact paths P ⊆ CP(T, X),
we say a limit path η ∈ L(P) has finite-escape time w.r.t. P iff η ∈ M(P) and len(η) < ∞,
and so η � M∞(P), and dom(η) will be norm-bounded but not norm-closed in T .

Fig. 1. Three finite-length real-time paths, with differing time domains

Example 1. Consider three finite-length paths γ, γ′, γ′′ ∈ Z ⊆ CP	fin(T, X) in Figure 1
where T = R+ and X = R, and P the set of all γ ∈ CP(T, X) with either dom(γ) = [0, b],
or dom(γ) = {0, s1, s2, . . . , sN }, and Z = (P∪M(P))∩ CP	fin(T, X). Here, γ is a compact
path with dom(γ) = [0, 5], while γ′ is a limit path in M(P) having dom(γ′) = [0, 5)
and γ′(t) = 5

5−t for all t ∈ [0, 5), with escape to infinity at time 5. The third path γ′′ is
also compact (and uniformly continuous!), with dom(γ′′) = { k

4 | 0 ≤ k ≤ 20 }, giving a
time-sampling of the interval [0, 5] with a (rather coarse) sampling period d = 1

4 .

4 Path Spaces and General Flows of Hybrid Systems

For a fixed metric space X, let Phyb(X) ⊂ CP(H, X) be the set of regular compact hy-
brid paths γ whose time domains within H = N × R+ are finite unions of the form
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dom(γ) =
⋃

i<m { i } × [si, si+1] ∪ {m } × [sm, bγ], where m ∈ N in the number of dis-
crete transitions, s0 := 0 and for each i < m, si+1 ∈ R+ is the real time at the (i + 1)st

switching or discrete transition, with si+1 ≥ si. For maximal paths η ∈ M(Phyb(X)), we
have len(η) < ∞ iff dom(η) fails to be norm-closed and dom(η) ⊂ [(0, 0), (i, c)) for
some (i, c) ∈ H, which will be the case exactly when the last continuous time evolu-
tion has finite-escape time. A hybrid limit path η ∈ M∞(Phyb(X)) is Zeno iff len(η) = ∞
and dom(η) ⊂ N × [0, c) for some c < ∞, in which case the length of η is infinite but
the total real-time duration is finite and bounded by c. The non-Zeno infinite-length
hybrid paths are those of infinite real-time duration, and such paths η ∈ M∞(Phyb(X))
may have either an infinite or a finite number of discrete transitions; in the latter case,
dom(η) =

⋃
i<m{i}× [si, si+1]∪{m}× [sm,∞) for some m ∈ N>0, while in the former case,

dom(η) =
⋃

i∈N{i} × [si, si+1].
Formulated within the framework of differential and difference inclusions [3,7], a

hybrid system is a structure H = (X, F,G,C,D) where:
− X ⊆ Rn is the state space, with (C ∪ D) ⊆ X;
− F : X � Rn describes the continuous dynamics ẋ ∈ F(x);
− G : X � X describes the discrete dynamics x′ ∈ G(x);
− C ⊆ (X ∩ dom(F)) is the region of continuous flow; and
− D ⊆ (X ∩ dom(G)) is the discrete switching, jump or transition guard region.

The trajectories of H determine a prefix-closed general flow ΦH : X � CP(H, X) such
that a compact-domain hybrid path γ ∈ ΦH(x) exactly when: (i) x ∈ dom(ΦH) := C ∪D,
and x = γ(0, 0) ; (ii) γ ∈ Phyb(X) is a regular hybrid path, with end-time (m, bγ) :=
max(dom(γ)), and switching times {si+1}i≤m with s0 = 0; (iii) for each (i, t) ∈ dom(γ),
(a) if t = si+1, a switching time, then γ(i, t) ∈ D, and γ(i + 1, t) ∈ G(γ(i, t)), and
(b) if i < m and t ∈ [si, si+1], or if i = m and t ∈ [sm, bγ], then γ(i, t) ∈ C and
d
dτγ(i, τ) ∈ F(γ(i, τ)) for almost all τ ∈ [si, si+1], taking sm+1 := bγ when i = m,
where the real-time curve segment ξi : [si, si+1] → X given by ξi(τ) := η(i, τ) for all
τ ∈ [si, si+1], is absolutely continuous on the interval [si, si+1].

If any of the vector coordinates, say x1 of x ∈ X, is designated discrete, as is the
case for the locations in hybrid automata, then the first component F1 : X � R has
F1(x) = {0} for all x ∈ C, and x1 ∈ Q for all x ∈ C ∪ D, with Q a finite subset of R, so
that x1 only changes value under G. If x j is an (accurate) clock, then Fj(x) = {1}.

5 Generalized Skorokhod Topologies and Metrics on Path Spaces

When two paths η and η′ in CP(T, X) or LCP(T, X) have the same time domain, we can
use the metric dX on X to determine if they spatially ε-close for their whole length by
taking d∞(η, η′) := supt ∈L dX(η(t), η′(t)) for L = dom(η) = dom(η′). The infinity-metric
d∞ intuitively allows for some “wiggle in space” between the paths η and η′. In order to
compare paths with different time domains, we need a notion of retimings between the
time domains of paths, that allow for some “wiggle in time” as well as in space.

The Skorokhod metric allows for the comparison of real-time piecewise-continuous
signals with differing points of discontinuity by using retimings that are strictly order-
preserving functions between the time domains. Let SRet(R+) be the set of all strictly
order-preserving and surjective ρ : [0, b] → [0, b′], for b, b′ ∈ R+, and for each ρ ∈
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SRet(R+), the temporal deviation is dev(ρ) := supt∈dom(ρ) | t − ρ(t) |, possibly infinite,
and applied to two signals with dom(η) = [0, b] and dom(η′) = [0, b′], the spatial
variation is var(η, η′, ρ) := supt∈dom(ρ) dX(η(t), η′(ρ(t))), possibly infinite. For two finite-
length interval-domain paths η, η′ : R+ � X (one of several variants of) the Skorokhod
distance between them is:

dSkor(η, η′) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∞ if there does not exist ε ∈ R>0 and ρ ∈ SRet(R+)
such that dev(ρ) < ε ∧ var(η, η′, ρ) < ε ,

inf { ε > 0 | (∃ ρ ∈ SRet(R+)) dev(ρ) < ε ∧ var(η, η′, ρ) < ε }
otherwise.

(2)

The limitation of the Skorokhod metric when time T is hybrid is that too often, there
will not be any strictly order-preserving functions between the domains of “close” paths.
Non-strictly order-preserving single-valued maps are not invertible, so symmetry is lost.
This motivates our relaxation to retiming maps that are order-preserving in a set-valued
sense, are readily invertible and composable (like bijections), and include all order-
preserving single-valued maps, strict and non-strict (the latter with set-valued inverses).

Definition 5. [The earlier-than relation on linearly-ordered sets, and retimings [21]]
Given a time structure S with future time T , the earlier-than relation � on the set Lin(T )
of non-empty linearly-ordered subsets of T , is defined by:

L � L′ ⇔ (∀t ∈ (L � L′))(∀t′ ∈ L′) t < t′ ∧ (∀t ∈ L)(∀t′ ∈ (L′ � L)) t < t′ .

for all L, L′ ∈ Lin(T ). A set-valued map ρ : T � T will be called order-preserving iff
t1 < t2 implies ρ(t1) � ρ(t2), for all t1, t2 ∈ dom(ρ). Given sets L, L′ ∈ Lin(T ), a
set-valued map ρ : T � T will be called a retiming from L to L′ iff the following hold:

(i) dom(ρ) = L and ran(ρ) = L′;
(ii) for all t ∈ L, ρ(t) ∈ Lin(T ), and for all t′ ∈ L′, ρ−1(t′) ∈ Lin(T ); and

(iii) ρ and ρ−1 are both order-preserving.
For a retiming ρ : L� L′, define the deviation dev(ρ) ∈ R+∞ as follows:

dev(ρ) := sup { || t − s || ∈ R+ | t ∈ dom(ρ) ∧ s ∈ ρ(t) } .
Let Ret(L, L′) denote the set of all retimings ρ : L � L′ together with all retimings
ρ′ : L′ � L, so that Ret(L, L′) = Ret(L′, L).

The key facts from [21] are: � is a partial-order on Lin(T ); Ret(T ) is closed under
relational inverses and compositions of retimings, with dev(ρ−1) = dev(ρ) and dev(ρ ◦
ρ′) ≤ dev(ρ) + dev(ρ′). In [21], we worked with a finer 2-parameter uniform structure
on the space CP(T, X), with one parameter δ ∈ R>0 bounding the temporal deviation
dev(ρ) and the second ε ∈ R>0 bounding the spatial variation var(γ, γ′, ρ). Here, we
work on the larger space CP	fin(T, X) of all finite-length continuous paths, and with a
view to developing a pseudo-metric and metric, we combine those two parameters into
one by effectively taking their maximum. For the rest of the paper, we assume the time
structure S is finite-dimensional, and (X, dX) is a metric space.

Definition 6. [Uniform relations and generalized Skorokhod distance: finite-length]
Let Z ⊆ CP	fin(T, X) be any set of finite-length paths. For each pair (γ, γ′) ∈ Z × Z, let
Ret(γ, γ′) := Ret(dom(γ), dom(γ′)), and let Ret(Z) be the union of all Ret(γ, γ′) for
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γ, γ′ ∈ Z. Then define the variation function var : ( Z × Z × Ret(Z) ) → R+∞ such that
var(γ, γ′, ρ) := ∞ if ρ � Ret(γ, γ′), and otherwise, var(γ′, γ, ρ−1) = var(γ, γ′, ρ), and
assuming that dom(ρ) = dom(γ) and ran(ρ) = dom(γ′), we have:

var(γ, γ′, ρ) := sup { dX( γ(t), γ′(t′) ) | t ∈ dom(γ) ∧ t′ ∈ dom(γ′) ∧ (t, t′) ∈ ρ } .
For each strictly positive real ε ∈ R>0, define the relation Vε : Z � Z as follows:

Vε := { (γ, γ′) ∈ Z × Z | (∃ ρ ∈ Ret(γ, γ′) ) dev(ρ) < ε ∧ var(γ, γ′, ρ) < ε } .
The finite-length-paths generalized Skorokhod distance function dfgS : Z × Z → R+∞ is
defined for all γ, γ′ ∈ Z by:

dfgS(γ, γ′) :=

{
inf { ε ∈ R>0 | (γ, γ′) ∈ Vε } if (∃ε ∈ R>0) (γ, γ′) ∈ Vε
∞ otherwise.

(3)

As with the original Skorokhod metric var(γ, γ′, ρ) bounds the “wiggle in space” vari-
ation between γ and γ′ under a retiming ρ, while dev(ρ) bounds the “wiggle in time”
allowed by ρ. The (reflexive, symmetric) relation Vε is one of ε-tolerance between paths
γ and γ′, and the ε-tube Vε(γ) around γ is the set of all paths γ′ ∈ Z that are ε-close, and
contains only paths of length within ε of that of γ. For brevity, we will usually write
“gS-” for the adjectival phrase “generalized Skorokhod”, and “fgS-” for “finite-length-
paths generalized Skorokhod”.

Proposition 1. [Generalized Skorokhod uniform topology on finite-length paths]
Let Z ⊆ CP	fin(T, X) be any set of finite-length continuous paths. For all ε, ε1, ε2 ∈ R>0:

Vε1 ⊆ Vε2 when ε1 ≤ ε2 Vε ⊆ Vε1 ∩ Vε2 when ε ≤ min{ε1, ε2}
Vε1 ◦ Vε2 ⊆ Vε when ε1 + ε2 ≤ ε Vε ◦ Vε ⊆ Vε1 when ε ≤ 1

2ε1 ,

and for all γ, γ′ ∈ Z, dfgS(γ, γ′) < ε iff (γ, γ′) ∈ Vε .
Hence the family VfgS := {Vε : Z � Z | ε ∈ R>0 } constitutes a basis for a uniformity
on the path set Z, and the fgS-uniform topology TfgS generated byVfgS has as its basic
open sets the ε-tubes Vε(γ) around paths γ ∈ Z. Furthermore, the fgS-distance function
dfgS : Z × Z → R+∞ is a pseudo-metric, and the topology generated by dfgS is the same
as the uniform topology TfgS.

Example 1 revisited. (See Fig. 1) For the example of the compact path γ with
dom(γ) = [0, 5] and the spatially-unbounded limit path γ′ with dom(γ′) = [0, 5), the
fgS-distance dfgS comes out as dfgS(γ, γ′) = ∞ because the distance dX(γ(5), γ′(t′)) be-
comes arbitrarily large as t′ → 5, so no retiming of finite variation exists. However,
from Fig. 1, the prefixes γ|4 and γ′|4 are quite close, with dfgS(γ|4, γ′|4) < ε1 witnessed
by the identity retiming; to be concrete, take ε1 ≤ 0.65. To determine the fgS-distance
between the (coarsely) sampled+quantized path γ′′, and the original γ, three quantities
come into play: (a) the sampling period, here d = 0.25; (b) the quantization error, here
bounded by 0.2; and (c) the quantity labeled ε2 in Fig. 1 from the uniform continu-
ity of γ, such that for all t, s ∈ dom(γ), if | t − s | ≤ 0.25 then dR(γ(t), γ(s)) ≤ ε2. Say
ε2 ≤ 0.75. The sampling retiming map ρd : dom(γ)� dom(γ′′) is given by ρd(0) := {0}
and ρd(t) := { k+1

4 } for all t ∈ ( k
4 ,

k+1
4 ] and k < 20, so that dev(ρd) = d = 0.25. Via the

triangle inequality, the retiming ρd gives dfgS(γ, γ′′) ≤ ε2 + 0.2 ≤ 0.95.
Having established we have a uniform topology generated by ε-tubes, the further,

more substantial task, is to identify sets Z ⊆ CP	fin(T, X) of finite-length paths for which
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this uniform topology is Hausdorff, as in this case, the fgS-pseudo-metric dfgS is actually
a metric. For a set Z ⊆ CP	(T, X) of arbitrary-length paths, we call Z highly discerning
iff Z ⊆ (P∪M(P)) for some set P ⊆ CP(T, X) of compact paths. In particular, Z contains
no limit paths γ ∈ L(P)�M(P) that are not maximal w.r.t. P. We will show that the highly
discerning property is sufficient for the Hausdorff property. In seeking a necessary and
sufficient characterization of the Hausdorff property, we weaken the condition on path
sets Z ⊆ CP	(T, X) to isolate the problem cases. Call a set Z discerning iff for all paths
γ, γ′ ∈ Z, if γ < γ′ and γ � CP(T, X), then the set difference dom(γ′) � dom(γ) is not a
singleton set. The fact that, for a set Z of finite-length paths, highly discerning implies
discerning, will be a corollary of the following main result. Note that both properties
are trivially satisfied by all sets Z ⊆ CP	(T, X) = CP(T, X) ∪ M∞(CP(T, X)) if T is
discrete, and by all sets Z ⊆ CP	cl(T, X), for arbitrary T .

Proposition 2. [Properties of fgS-uniform topology and pseudo-metric]
Let Z ⊆ CP	fin(T, X) be equipped with the uniform topology TfgS.
1. The topology TfgS on Z has a countable sub-basis for its uniformity.
2. The topology TfgS on Z is Hausdorff if Z is highly discerning.
3. The topology TfgS on Z is Hausdorff if and only if Z is discerning.
4. The topology TfgS on Z is Hausdorff if and only if the fgS-pseudo-metric dfgS is a

an extended-valued metric on Z.
5. If the topology TfgS on Z is Hausdorff, then for all sequences {γk}k∈N in Z and all

paths γ ∈ Z, γ = limk→∞ γk iff limk→∞ dfgS(η, ηk) = 0 .
6. Restricted to the subset P := Z ∩ CP(T, X) of compact paths, the uniform topology
TfgS on P is always Hausdorff, and the fgS-metric is always finite-valued.

The difficult part of the proof of Proposition 2 is Part 3, in establishing that the discern-
ing property is sufficient for the topology to be Hausdorff. Most parts of the proof make
essential use of the paths being continuous on their domains.

In “lifting up” the uniform structure of the Vε relations on finite-length paths, in order
to use it on spaces Z ⊆ CP	(T, X) = CP(T, X)∪ LCP(T, X) of paths of arbitrary length,
the key idea is that since a limit path is just the union of a chain of longer and longer
compact prexes, we should look at closeness of longer and longer compact prexes. This
motivates the introduction of a second parameter v ∈ R+ which references the length
up to which two paths are ε-close. (In [21], we used a time position parameter t ∈ T ,
which turned out to be sub-optimal when looking for a metric). As parameter sets, let
A2 := R>0 × R+ and A∞2 = R

>0 × R+∞ = A2 ∪ {(ε,∞) | ε ∈ R>0}. We need the following
key technical result.

Proposition 3. [Path operations within fgS-uniform topology]
For any paths γ, γ′ ∈ CP	fin(T, X) and for any parameter ε ∈ R>0,
if dfgS(γ, γ′) < ε with witness ρ ∈ Ret(γ, γ′) with dev(ρ) < ε and var(γ, γ′, ρ) < ε,
then for all pairs of time points (t, t′) ∈ ρ related by ρ, we have dfgS(γ|t, γ′|t′ ) < ε ,
dfgS(t|γ, t′ |γ′) < ε , and for all η, η′ ∈ CP	fin(T, X), dfgS(γ ∗t η, γ

′ ∗t′ η
′) < ε if γ(t) = η(0),

γ′(t′) = η′(0) and dfgS(η, η′) < ε .

Definition 7. [Uniform relations and gS-distances: arbitrary-length]
Let Z ⊆ CP	(T, X) be any set of continuous paths of arbitrary length, and for
each pair (ε, v) ∈ A2 , let Uε,v : Z � Z be the relation defined as follows:
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Uε,v := { (η, η′) ∈ Z × Z |
(
max{ len(η), len(η′) } ≤ v + ε ∧ dfgS(η, η′) < ε

)
∨ ((∃ t ∈ dom(η))(∃ t′ ∈ dom(η′))

min{ || t ||T , || t′ ||T } ≥ v ∧ dfgS(η|t, η′|t′ ) < ε
) }

and for each ε ∈ R>0, let Uε,∞ : Z � Z be the relation defined by:

Uε,∞ :=
⋂

v∈R+ Uε,v =
{

(η, η′) ∈ Z × Z | (∀v ∈ R+) (η, η′) ∈ Uε,v
}
.

For each v ∈ R+∞, define the length-v gS-distance function d v
gS : (Z × Z)→ R+∞ by:

d v
gS(η, η′) :=

{
∞ if (∀ε ∈ R>0) (η, η′) � Uε,v
inf{ ε ∈ R>0 | (η, η′) ∈ Uε,v } otherwise .

(4)

Define the weak gS-distance dwgS : Z × Z → [0, 1], for all η, η′ ∈ Z, by:

dwgS(η, η′) :=
∞∑

n=1
2−n min{ 1, d n

gS(η, η′) } , (5)

and the gS-distance dgS : Z × Z → [0, 1], for all η, η′ ∈ Z, by:

dgS(η, η′) := 1
2

(
min{ 1, d∞gS(η, η′) } + dwgS(η, η′)

)
(6)

In defining the length-v tolerance relation Uε,v and, from that, the length-v gS-distance
d v

gS in equation (4), either the paths η and η′ are both of length less than v+ε, and they are
ε-close in the fgS metric, or else there is a pair of time points (t, t′) ∈ dom(η)× dom(η′)
with both of at least length v and the compact prefixes η|t and η′|t′ are ε-close in the
fgS metric; the latter entails that || t − t′ || < ε from the witnessing retiming, without
requiring the overly-strong condition that t′ = t.

Proposition 4. [gS-uniform topologies and pseudo-metrics on arbitrary-length paths]
Let Z ⊆ CP	(T, X) be any set of continuous paths. Then for all ε ∈ R>0 and for all paths
η, η′ ∈ Z, and all v ∈ R+∞,

d v
gS(η, η′) < ε iff (η, η′) ∈ Uε,v ;

and
Uε,∞(η) = Vε(η) iff len(η) < ∞ ; and Uε,v(η) = Vε(η) if len(η) < v .

Each of the length-v distance functions d v
gS are pseudo-metrics on Z, as are both the

gS-distance dgS and the weak gS-distance dwgS, and both families:
UgS := {Uε,v : Z � Z | (ε, v) ∈ A∞2 } and UwgS := {Uε,v : Z � Z | (ε, v) ∈ A2 }

constitute bases for uniformities on the path set Z. The uniform topology TwgS on Z
generated by UwgS has as its basic opens the (ε, v)-tubes Uε,v(η) for all finite pairs
(ε, v) ∈ A2, and is equivalently described by the family { d v

gS | v ∈ R
+} of pseudo-metrics.

The uniform topology TgS on Z generated byUgS has as its basic opens the (ε, v)-tubes
Uε,v(η) around η ∈ Z, for all (ε, v) ∈ A∞2 ; it is equivalently described by the family
{ d v

gS | v ∈ R
+∞} of pseudo-metrics; and it contains TfgS and TwgS as sub-topologies.

We call TwgS the topology of weak gS-uniform convergence, and TgS the topology of gS-
uniform convergence. For the Hausdorff property and metricizability, we can re-use the
same notions developed for finite-length paths: the discerning and highly discerning
properties. As for Proposition 2, by far the hardest part of Proposition 5 is that the
discerning property implies the topology is Hausdorff. Verifying the equivalence of
metric convergence and convergence in the uniform structures also takes some effort.
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Proposition 5. [Properties of the 2-parameter gS-uniform topologies]
Let Z ⊆ CP	(T, X) be any set of continuous paths, of finite or infinite length.

1. The uniform topologies TgS and TwgS on Z both have countable sub-bases.
2. The topologies TgS and TwgS on Z are both Hausdorff if Z is highly discerning.
3. The following five conditions are equivalent:

− the path set Z is discerning;
− the topology TgS on Z is Hausdorff;
− the generalized Skorokhod pseudo-metric dgS is a metric on Z;
− the topology TwgS on Z is Hausdorff;
− the weak generalized Skorokhod pseudo-metric dwgS is a metric on Z.

4. If the path set Z is discerning, then for all sequences {ηk}k∈N in Z and η ∈ Z:
(a) {ηk}k∈N converges gS-uniformly to η iff lim

k→∞
dgS(η, ηk) = lim

k→∞
d∞gS(η, ηk) = 0;

(b) {ηk}k∈N converges wgS-uniformly to η iff lim
k→∞

dwgS(η, ηk) = 0;

(c) if all but finitely-many of the paths ηk, for k ∈ N, as well as the path η, have
finite length, then the following conditions on {ηk}k∈N are equivalent:
− it converges to η in the finite-length paths topology TfgS ;
− it converges gS-uniformly to η ; and
− it converges wgS-uniformly to η .

Hence when the path set Z is discerning, the topology TgS is metricized by dgS, and
the topology TwgS is metricized by dwgS .

For T = R+ and T = H, it is easy to find examples of sequences of paths {ηk}k∈N that
converge wgS-uniformly to an infinite-length path η, but do not converge in the stronger
metrics dgS and d∞gS. So the metrics and topologies are quite distinct, with TwgS � TgS.

Example 1 revisited. Taking ε1 ≤ 0.65, we can compute rough numerical bounds of
dgS(γ, γ′) < 0.84 and dwgS(γ, γ′) < 0.61 for gS-distances between the compact path
γ and the spatially-unbounded path γ′ with finite-escape time. Compare these with
bounds of dwgS(η, η′′) ≤ dgS(γ, γ′′) ≤ dfgS(γ, γ′′) ≤ 0.95 for the sampling+quantization,
with all three distances about the same. As depicted in Fig. 1, this makes sense: the path
γ′ is closer to γ than the coarsely sampled+quantized path γ′′.

6 Relationship with Graphical Set-Convergence of Paths

Goebel and Teel in [3] develop a notion of convergence for sequences of hybrid paths
(compact or limit) for the case of Euclidean space X ⊆ Rn and T = H ⊂ R2 by employ-
ing the machinery of set-convergence for sequences of subsets Euclidean space, applied
to paths η ∈ CP	(T, X) considered via their graphs as subsets of T × X ⊂ Rn+2; the text
[16] is a standard reference on set-convergence. For any sequence {Ak}k∈N of non-empty
subsets of a metric space, in general, lim infk→∞ Ak ⊆ lim supk→∞ Ak, and the sequence
{Ak}k∈N set-converges to a set A if lim supk→∞ Ak = A = lim infk→∞ Ak , in which
case A must be closed in the metric, and we write A = setlimk→∞ Ak.

Proposition 6. [Equivalence of concepts of convergence]
Let S be a finite-dimensional time structure with future T , let (X, dX) be a metric space,
and let Z ⊆ CP	cl(T, X) be any set of paths with norm-closed time domains. Then for all
paths η ∈ Z and for all sequences of paths {ηk}k∈N within Z, the following are equivalent:
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(1) the sequence {ηk}k∈N converges wgS-uniformly to η ;

(2) lim
k→∞

dwgS(η, ηk) = 0 ;

(3) η = setlim
k→∞

ηk as graphs in the product topology on T × X ; and

(4) ∀ open sets O in T × X, if η ∩O � ∅ then (∃m1 ∈ N)(∀k ≥ m1) ηk ∩O � ∅, and
∀ compact sets K in T × X, if η ∩ K = ∅ then (∃m2 ∈ N)(∀k ≥ m2) ηk ∩ K = ∅.

7 Application: Completeness and Semi-continuity of Hybrid Flows

A key result of [3] (subsequently used in [4,6] and elsewhere) is their Theorem 4.4 on a
type of sequential compactness; it identifies conditions on the components of a hybrid
system H = (X, F,G,C,D) such that for P := ran(ΦH), the path set Z := P ∪ M(P)
is such that for every locally eventually bounded sequence {ηk}k∈N in Z, there exists a
path η ∈ Z and a sub-sequence {ηkm }m∈N with η = setlimm→∞ ηkm . A sequence {ηk}k∈N is
locally eventually bounded iff for all length-bounds b ∈ R>0, there exists mb ∈ N and a
compact set Kb ⊆ X such that for all k ≥ mb and all (i, t) ∈ dom(ηk), if || (i, t) ||H ≤ b then
ηk(i, t) ∈ Kb. In the result below, we take the same conditions as identified in [3,4,6],
and derive stronger conclusions cast in terms of the metrics dfgS, dgS and dwgS on the
spaces spaces Zfin and Z.

For metric spaces X and Y, a set-valued map R : X � Y is locally-bounded iff for
every compact set K ⊆ X, the set-image R(K) is bounded in Y. If Y ⊆ Rn, then R : X �
Y is locally-bounded and outer semi-continuous iff R is upper semi-continuous and has
compact values R(x) ⊆ Y. For x ∈ Rn and a set C ⊂ Rn, the tangent cone to C at x is the
set TCC(x) of all vectors v ∈ Rn for which there exists a sequence {αk}k∈N of positive
reals converging monotonically to 0, together with a sequence {vk}k∈N in Rn converging
to v, such that v + αkvk ∈ C for all k ∈ N; see [7,16].

Proposition 7. [Cauchy-completeness, and semi-continuity of hybrid trajectories]
Let H = (X, F,G,C,D) be a hybrid system as described in Section 4, with general flow
map ΦH : X � Phyb(X) giving the compact-domain trajectories of H from any initial
state x ∈ dom(ΦH) = (C ∪ D) ⊆ X. From [3,4,6], assume:
(A0) X ⊆ Rn is an open set;
(A1) C and D are relatively closed sets in X;
(A2) F : Rn � Rn is outer semi-continuous and locally-bounded, and F(x) is convex

and compact in Rn for each x ∈ C;
(A3) G : Rn � Rn is outer semi-continuous;
(VC) for all x ∈ C � D, there exists an ε > 0 such that TCC(x′) ∩ F(x′) � ∅ for every

ε-close state x′ ∈ Bε(x) ∩ C ; and
(VD) G(x) ⊆ (C ∪ D) for all x ∈ D.
Then let P := ran(ΦH) = { γ ∈ ΦH(x) | x ∈ C ∪D }, let Z := P∪M(P), let Zinf := M∞(P),
let Zfe := M(P)�M∞(P), and let Zfin := P∪ Zfe, so Z = P∪ Zfe ∪ Zinf = Zfin ∪ Zinf , with
the unions disjoint. Further partition Zinf as Zinf = Z0 ∪ Z1 ∪ Z∞, where η ∈ Z0 iff η is
Zeno; η ∈ Z1 iff η has finitely-many discrete transitions and len(η) = ∞; and η ∈ Z∞ iff
η has infinitely-many discrete transitions and len(η) = ∞. Then:

1. P is prefix-closed and maximally-extendible, and for all η ∈ M(P), either η has
infinite length or η is spatially-unbounded in X.



148 J.M. Davoren

2. Both the sets P and Zfe, as well as the space Zfin, are both open and closed, and
Cauchy-complete, in the metric dfgS on Zfin.

3. Each of the five path sets P, Zfe, Z0, Z1 and Z∞, as well as the whole space Z, are
both open and closed, and Cauchy-complete, in the metrics dgS and d∞gS on Z.

4. Each of the sets Zinf , P ∪ Zinf , and M(P), as well as the whole space Z, are closed
and Cauchy-complete in the metric dwgS on Z, while P and Zfe are both open.

5. Additionally assume (A4) : the map G : X � X is locally-bounded. Then:
(a) The flow map ΦH : X � Phyb(X) is (globally) outer semi-continuous w.r.t. the

metric dX on X and the metric dfgS on Phyb(X), and the map MΦH : X � Z is
(globally) outer semi-continuous w.r.t. each of dwgS, dgS and d∞gS on Z.

(b) For each x ∈ dom(ΦH) = C ∪ D, the set ΦH(x) of compact paths is closed and
Cauchy-complete in the metric dfgS on P.

(c) For each x ∈ C ∪ D, the set MΦH(x) of maximal paths is closed and Cauchy-
complete w.r.t. each of the metrics dgS, d∞gS and dwgS on Z.

(d) For each x ∈ C ∪ D, if MΦH(x) ⊂ Zinf , then for every (ε, v) ∈ A2, there exists a
real δ ∈ (0, ε] such that MΦH(Bδ(x)) ⊆ Uε,v(MΦH(x)), hence MΦH : X � Z is
locally upper semi-continuous at x w.r.t. the metric dwgS on Z.

(e) If K ⊆ (C ∪ D) is compact and MΦH(K) ⊆ Zinf , then for every (ε, v) ∈ A2, there
exists a real δ ∈ (0, ε] such that MΦH(Bδ(K)) ⊆ Uε,v(MΦH(K)) .

Theorem 4.4 of [3] can be used in proving part of Part 4, while Part 5(e) is an equiv-
alent reformulation of Corollary 4.8 from that paper. From the viewpoint of stability,
the upper semi-continuity of the map MΦH : X � Z is highly desirable. The slightly
stronger assumptions on the components of H used in [7] are sufficient to ensure that
MΦH is globally upper semi-continuous w.r.t. each of the metrics dwgS, dgS and d∞gS.

8 Conclusion

This paper develops several generalized Skorokhod pseudo-metrics for hybrid path
spaces, cast in a quite general setting, where paths are continuous functions from a
normed and partially-ordered time structure into a metric space, with the domains of
paths linearly-ordered. The topologies generalize the original Skorokhod metric by al-
lowing set-valued order-preserving retiming maps that are readily invertible and com-
posable, are in practice quite easy to work with, and they include single-valued order-
preserving maps as special cases. We determine necessary and sufficient conditions
under which these topologies are Hausdorff and the distances are metrics. One of these
metrics on arbitrary-length paths, that of weak gS-uniform convergence, is shown to
be equivalent to the implicit topology of graphical convergence of hybrid paths, cur-
rently used extensively by Teel and co-workers. We apply the framework to investigate
topological properties of hybrid general flows in the metrics dfgS, dwgS and dgS.

The original motivation for this work was to develop topological and metric foun-
dations as a prequel to giving a robust semantics for the temporal logic GFL	 [12,13],
which generalizes computational tree logic CTL	 to semantics over general flow sys-
tems, uniformly for arbitrary time structures – discrete, continuous or hybrid. The key
idea is that if a system satisfies a performance specification robustly, with the specifica-
tion given by a logic formula, then a path η satisfies the specification only when all the
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paths in some ε-tube around η also satisfy the specification. With those foundations in
place, that research project is under way.
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Abstract. In this paper, we study the stability of Networked Control
Systems (NCSs) that are subject to time-varying transmission intervals
and communication constraints in the sense that, per transmission, only
one node can access the network and send its information. The order
in which nodes send their information is dictated by a network proto-
col, such as the well-known Round Robin (RR) or Try-Once-Discard
(TOD) protocol. Focussing on linear plants and linear continuous-time
or discrete-time controllers, we model the NCS with time-varying trans-
mission intervals as a discrete-time switched linear uncertain system. We
obtain bounds for the allowable range of transmission intervals in terms
of both minimal and maximal allowable transmission intervals. Hereto, a
new convex overapproximation of the uncertain switched system is pro-
posed, using a polytopic system with norm-bounded uncertainty, and
new stability results for this class of hybrid systems are developed. On
the benchmark example of a batch reactor, we explicitly exploit the lin-
earity of the system, leading to a significant reduction in conservatism
with respect to the existing approaches.

1 Introduction

In many control applications nowadays, controllers are implemented on a sys-
tem having spatially distributed sensors and actuators that are closed over a
shared real-time network. These Networked Control Systems (NCSs) offer sev-
eral advantages such as less wiring and cost, increased system’s flexibility and
ease of installation and maintenance. To harvest the advantages that NCSs can
offer, control algorithms are needed that can deal with communication imper-
fections and constraints. This latter aspect is recognised widely as is evidenced
by the broad attention received by NCSs recently, see, e.g., the overview papers
[1,2,3,4].

One source of communication imperfections is the fact that sensors/con-
trollers/actuators do not operate synchronously anymore causing variations in
sampling/transmission intervals. Also the presence of the network results in de-
lays between the transmittal and the arrival of the data packets. The finite word
length of the packets causes quantisation errors in the transmitted interval. More-
over, communication constraints are induced by restrictions of the network in

R. Majumdar and P. Tabuada (Eds.): HSCC 2009, LNCS 5469, pp. 150–164, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Stability Analysis of Networked Control Systems 151

the sense that not all sensor and control values can be transmitted at the same
time. Typically, at each transmission time only a selected set of sensors and
actuators (called a node) has access to the shared network to communicate its
data. The effects of quantisation and communication delays in NCSs are studied
in, e.g., [5,6] and [7,8,9], respectively. In this paper, we will focus on the stability
of NCSs with time-varying transmission intervals and the presence of communi-
cation constraints in the sense that, per transmission, only one node can access
the network.

The communication constraints in NCSs give rise to the problem of how to
schedule which nodes are given access to the network and when. The algorithms
that dictate the scheduling of tasks are often referred to as protocols. Some well-
known and often used protocols are, the Round Robin (RR) protocol and the
Try-Once-Discard (TOD) protocol [10,11,12,13,14]. The stability assessment of
NCSs with communication constraints and time-varying transmission intervals
has already been considered in [10,14,15,16,17]. These papers provide criteria
for computing the so-called Maximal Allowable Transmission Interval (MATI).
Stability is guaranteed as long as the transmission interval is smaller than the
MATI. These results apply for general nonlinear plants and controllers and a
wide class of protocols (including the RR and TOD protocols) and are based on a
continuous-time modelling paradigm related to hybrid inclusions [18]. However,
these results do not include the possibility that the controller is formulated
in a discrete-time form, which is of interest in many practical situations due
to digital implementations. Only recently, the case of discrete-time controllers
has been considered in [19], however, assuming a fixed transmission interval.
Another difference is that in [10,14,15,16,17] always a zero lower-bound on the
transmission intervals (i.e., hk ∈ (0, MATI]) is considered, while we also allow for
non-zero lower bounds, which is often more realistic in many situations. Although
the work in [10,14,15,16,17] presents a research line that is very general and can
accommodate for many nonlinear NCSs, their results might become conservative
when more structure is present in the NCS such as, e.g., linearity of the controller
and plant.

In this paper, we will focus on linear plants and linear controllers and study the
stability of the corresponding NCS in the presence of communication constraints
and time-varying transmission intervals, possibly having a non-zero lower bound.
Moreover, we allow that the controller can be either continuous-time or discrete-
time, which requires a different approach than in [10,14,15,16,17]. To be more
precise, for the RR protocol, the TOD protocol and the newly introduced class
of quadratic protocols we will provide techniques for assessing stability of the
NCS with time-varying transmission intervals hk ∈ [h, h̄] using Linear Matrix
Inequalities (LMIs). In contrast with [10,14,15,16,17], we will apply a discrete-
time modelling framework that leads to a switched linear uncertain system.
Hybrid stability methods will be used to determine the stability of this NCS
model based on a polytopic overapproximation. To obtain this overapproxima-
tion, we will present a novel technique that combines ideas from gridding as
in [20] and norm-bounding as in [21]. We will show the effectiveness of the
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presented approach on the benchmark example of the batch reactor as used
also in [10,14,15,16,17]. Moreover, we will show that the linearity of plant and
controller can indeed be exploited and leads to a significant reduction of conser-
vatism with respect to the existing approaches.

The following notational conventions will be used: diag(A1, . . . , An) denotes a
block-diagonal matrix with the entries A1, . . . , An on the diagonal, ‖x‖ :=

√
x�x

the Euclidean norm of a vector x ∈ Rn, and ‖A‖ :=
√

λmax(A�A) the spectral
norm, which is the square-root of the maximum eigenvalue of the matrix A�A.

2 The Networked Control System and
Problem Formulation

In this section, we introduce the Networked Control System (NCS) under study,
a discrete-time model describing it and give the problem formulation.

2.1 Description of the NCS

Both the plant and the controller are linear time-invariant systems, where the
plant is given in continuous-time by{

ẋ(t) = Ax(t) + Bû(t), û(t) = û(tk) ∀t ∈ [tk, tk+1)
y(t) = Cx(t)

(1)

and the controller is given in discrete-time, i.e.,{
ξk+1 = Acξk + Bcŷk

uk = Ccξk + Dcŷk−1.
(2)

In these descriptions, x ∈ Rnx and ξ ∈ Rnξ denote the states of the plant and
controller, respectively, y ∈ Rny denotes the measured plant output, u ∈ Rnu the
controller output. The description given by (1) and (2) can cover the situation
of a single plant having multiple inputs and outputs, as well as separate plants
with separate controllers that share a common network. In the latter case, both
(1) and (2) typically have a diagonal structure. Furthermore, tk, k ∈ N, denote
the transmission times at which the controller is updated. Since the plant and
controller are communicating through a network, the actual input of the plant
û ∈ Rnu is not equal to u and the actual input of the controller ŷ ∈ Rny is not
equal to y. Instead, û and ŷ are ‘networked versions’ of u and y, respectively.

To introduce these networked versions û and ŷ properly, we have to explain
the functioning of the network. The plant is equipped with ny sensors and with
nu actuators. These sensors and actuators are grouped into N ≤ ny +nu nodes,
where we assume that actuators and sensors are not in the same nodes. At each
transmission time tk, k ∈ N, one node obtains access to the network and its
corresponding values in u or y are transmitted. In this work, as in [10,14,16,19],
we assume that the data is not delayed and packet loss does not occur. Only the
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transmitted values will be updated in û and ŷ, while the other values in û and
ŷ remain the same. Such constrained data exchange can be expressed as{

ŷk = Γ y
σk

yk + (I − Γ y
σk

)ŷk−1

ûk = Γ u
σk

uk + (I − Γ u
σk

)ûk−1,
(3)

where Γσk
= diag

(
Γ y

σk
, Γ u

σk

)
is a diagonal matrix taken from the set G =

{Γ1, . . . , ΓN}, with
Γi = diag (γi,1I1, . . . , γi,NIN ) . (4)

In (4), Ij denotes the identity matrix with dimensions corresponding to the
number of sensors or actuators in node j. The elements γi,j , with j ∈ {1, . . . , N},
of the each matrix Γi is given by γi,j = 1, when j = i, and γi,j = 0, when j �= i.
Note that Γσk

∈ G also formalises the assumption that actuators and sensors
cannot be in the same node, since for each i only one γi,j can be equal to one.

The value of σk lies in {1, . . . , N} and its value indicates which node is given
access to the network at transmission time tk. Indeed, (3) reflects that the val-
ues in û and ŷ corresponding to node σk are updated with the corresponding
transmitted values, while the others stay the same. A protocol determines the
values of (σ0, σ1, . . .), which are made explicit later. Note that because of the
functioning of the network, the direct feed-through of the controller is based on
yk−1, instead of yk, as in [19].

The transmission times tk, k ∈ N, are not necessarily distributed equidistantly
in time. Hence, the transmission intervals hk = tk+1 − tk are time-varying.
We assume that these variations are bounded and lie in the set [h, h]. Hence,
hk ∈ [h, h] for all k ∈ N. Note that in [10,14,16], only h = 0 was allowed, while
here h > 0 is considered. This latter situation is more natural when using a
discrete-time controller, since such a controller is implicitly designed for some
nominal transmission interval larger than zero.

2.2 Discrete-Time NCS and Problem Formulation

To arrive at a discrete-time model for the NCS, we have to obtain a discrete-
time equivalent of (1). Since the inputs of the controller are constant between
subsequent transmissions due to the zero-order hold, we can exactly discretise
the plant (1) at the transmission times tk resulting in{

xk+1 = eAhkxk +
∫ hk

0 eAsdsBûk

yk = Cxk,
(5)

where xk := x(tk) and uk := u(tk), k ∈ N. If we define the network-induced
error ek = [(ey

k)�(eu
k)�]�, by {

ey
k := ŷk−1 − yk

eu
k := ûk−1 − uk,

(6)
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we can obtain the complete NCS model by combining (2), (3), (5), and (6). This
results in

x̄k+1 :=

⎡⎢⎢⎣
xk+1
ξk+1
ey

k+1
eu

k+1

⎤⎥⎥⎦ = Ãσk,hk

⎡⎢⎢⎣
xk

ξk

ey
k

eu
k

⎤⎥⎥⎦ , (7)

where Ãσk,hk
∈ Rn×n, with n = nx + nξ + ny + nu, is given by

Ãσk,hk
=

⎡⎣ eAhk + Ehk
BDcC Ehk

BCc Ehk
BDc Ehk

B(I − Γ u
σk

)
BcC Ac Bc(I − Γ y

σk
) 0

C(I−eAhk −Ehk
BDcC) −CEhk

BCc I−Γ y
σk

−CEhk
BDc −CEhk

B(I − Γ u
σk

)
−CcBcC Cc(I − Ac) DcΓ y

σk
−CcBc(I−Γ y

σk
) I − Γ u

σk

⎤⎦ (8)

and Ehk
=
∫ hk

0 eAsds.
In this paper, we focus on two commonly used protocols, see [10,14,15,16,17],

namely the Try-Once-Discard (TOD) and the Round-Robin (RR) protocol. In
the TOD protocol, the node that has the largest network-induced error, i.e., the
difference between the most recently received value and the current value of the
node, is granted access to the network. To make this more precise, assume that
ek is partitioned as ek = [(e1

k)�, . . . , (eN
k )�]�, according to the nodes. Hence,

ei
k is the networked induced error for the signals corresponding to node i. For

the TOD protocol, the switching function is now given by

σk = argmax
{
‖e1

k‖, . . . , ‖eN
k ‖

}
. (9)

In the case that two nodes have the same values, one of them is chosen arbitrarily.
For the RR protocol, each node is granted access periodically and the switching
function is given by

σk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if k = 1 + jN, for some j ∈ N

2, if k = 2 + jN, for some j ∈ N
...

N, if k = N, for some j ∈ N.

(10)

The above modelling approach now provides a description of the NCS system
in the form of an uncertain switched linear system given by (7) and one of
the protocols (9) and (10). The system switches between N linear uncertain
systems and the switching is due to the fact that only one node accesses the
network at each transmission time. The uncertainty is caused by the fact that
the transmission interval hk ∈ [h, h] is time-varying. Let us now formally define
stability for the NCS.

Definition 1 (Uniform Global Exponential Stability). System (7) with
(9) or (10), is said to be uniformly globally exponentially stable (UGES) if
there exist c > 0 and 0 ≤ λ < 1, such that for any initial condition x̄0 ∈ Rn,
and any sequence of transmission intervals (h0, h1, . . .), with hk ∈ [h, h], for all
k ∈ N, it holds that

‖x̄k‖ ≤ c‖x̄0‖λk. (11)
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The problem studied in this paper is to determine the UGES of the NCS model
(7) with (9) or (10) given the bounds hk ∈ [h, h], or to find these bounds.

Remark 1. In Definition 1, we defined UGES of the uncertain discrete-time NCS
model (7), whereas the states of the plant (1) actually evolve in continuous-time.
In [22], it is shown that the intersample behaviour is bounded as a function of the
states on the transmission times, and consequently, stability of the discrete-time
NCS model also implies stability of the continuous-time NCS. �

Remark 2. Although, we mainly focus on the case of a discrete-time controller
(2), we can also incorporate continuous-time controllers in our framework. In-
deed, in case of the continuous-time controller{

ξ̇ = Ãcξ + B̃cŷ

u = Ccξ + Dcŷ
(12)

the Ac and Bc-matrices in (8) for the NCS model (7) have to be modified to

Ac = eÃchk and Bc =
∫ hk

0
eÃcsdsB̃c, (13)

which then also become uncertain and time-varying. �

2.3 Overapproximation of the NCS Model by a Polytopic System

The form (7) is not really convenient to obtain efficient techniques for stability
analysis due to the nonlinear appearance of the uncertain parameter hk in (8).
Therefore, we will provide a procedure that overapproximates system (7) with a
polytopic system with a norm-bounded additive uncertainty of the form

x̄k+1 =
M∑
l=1

(
αk,lĀσk,l + αk,lB̄l∆kC̄σk

)
x̄k, (14)

where B̄l ∈ Rn×m, C̄σk
∈ Rm×n, and αk = [αk,1 . . . αk,M ]� ∈ A denotes an

unknown time-varying vector with

A =

{
α ∈ RM |

M∑
l=1

αl = 1, αl ≥ 0

}
. (15)

Moreover ∆k ∈ ∆, where ∆ is a set of matrices in Rm×m, describing the additive
uncertainty, which possibly has some structure, as we will see below. Equation
(14) should be an overapproximation of (7) in the sense that

{
Ãσk,hk

| hk ∈ [h, h]
}

⊆
{

M∑
l=1

αk,l

(
Āσk,l + B̄l∆kC̄σk

)
| αk ∈ A, ∆k ∈ ∆

}
.

(16)
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In this paper, we use the idea of [20] to obtain Āσk,l by gridding (8) at a
collection of selected transmission intervals. However, we choose to allow for
convex combinations of the vertices corresponding to the grid points, whereas in
[20], the system switches between these vertices. For that reason, we can grid at a
priori chosen points h̃1, . . . , h̃M ∈ [h, h], and construct a norm-bounded additive
uncertainty ∆ ∈ ∆ to capture the remaining approximation error, as done in,
e.g., [21]. Hence, Āσk,l := Ãσk,h̃l

in (14), with l ∈ {1, . . . , N}. In contrast with
[20], this procedure prevents the problem of an iterative procedure in which the
number of grid points can become large, resulting in intractability. Furthermore,
we obtain smaller bounds on the additive uncertainty than in [21]. This explains
that the newly proposed method performs better with respect to both complexity
and approximation accuracy.

By specifying the grid points, and thereby determining Āσk ,l, it only remains
to show how to specify B̄l∆kCσk

in (14) and ∆ as this should be used to sat-
isfy (16). This additive uncertainty is used to capture the approximation error
between the original system (7) and the polytopic system

x̄k+1 =
M∑
l=1

αk,lĀσk,lx̄k, (17)

which consists of the convex combination of the gridded matrices. In order for
(16) to hold, for each h and each σ, these should exist some α ∈ A and ∆ ∈ ∆,
such that

M∑
l=1

αlB̄l∆C̄σ = Ãσ,h −
M∑
l=1

αlĀσ,l. (18)

Hence, we should determine the worst-case distance between the real system (7)
and the polytopic system (17), leading to an upper bound of the approximation
error, see Fig. 1. To obtain a tight bound, we construct different uncertainty
bounds between each two grid points. Indeed, for each two grid points h̃l, h̃l+1,
we compare for h ∈ [h̃l, h̃l+1], Ãσk,h with {α̃Āσk,l + (1 − α̃)Āσk,l+1 | α ∈ [0, 1]}
and compute the worst-case bound between them for all h ∈ [h̃l, h̃l+1]. Finally,
we will scale all these bound to get a common additive uncertainty set ∆.

This procedure is formalised in the theorem below. For ease of exposition, we
will focus on the case where A is diagonalisable with real eigenvalues only. The
procedure above also applies for general A, using the real Jordan form, although,
in these cases, the structure of ∆ is different than indicated below in (23).

Theorem 1. Let the NCS model (7) be given with h ∈ [h, h] and A := TΛT−1

for some invertible matrix T ∈ Rnx×nx and Λ = diag (λ1, . . . , λnx) with λi ∈ R,
i ∈ {1, . . . , nx}. Furthermore, consider the system (14) in which Āσ,l := Ãσ,h̃l

,
l ∈ {1, . . . , M}, is obtained by evaluating (8) at M distinct transmission intervals
{h̃1, . . . , h̃M}, with h =: h̃0 ≤ h̃1 < . . . < h̃M ≤ h̃M+1 := h. Moreover,

C̄σ :=
[

T−1 0 0 0
T−1BDcC T−1BCc T−1BDc T−1B(I − Γ u

σ )

]
(19)
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h
hlhl—1 hl+1

Approximation error:

A ,h — ?A ,h — (1— ?)A ,h

Original nonlinear uncertainty

Constructed norm-bounded uncertainty

˜˜˜

A ,h

?hl+(1— ?)hl+1
˜ ˜

˜
k

k kl l k
˜ — —

l l

l l+1˜ ˜

Fig. 1. The procedure of obtaining the overapproximation

and

B̄l :=

⎡⎢⎢⎣
T T
0 0

−CT −CT
0 0

⎤⎥⎥⎦ · diag
(
max{δ�

1,l, δ
�
1,l+1}, . . . , max{δ�

2nx,l, δ
�
2nx,l+1}

)
(20)

in which

δ�
i,l =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sup

h∈[h̃l−1,h̃l]
|eλih − α�

heλih̃l−1 + (α�
h − 1)eλih̃l |, if 1 ≤ i ≤ nx

sup
h∈[h̃l−1,h̃l]

|
∫ h

h̃l

eλi−nxsds + α�
h

∫ h̃l

h̃l−1

eλi−nxsds|, if nx + 1 ≤ i ≤ 2nx,

(21)
for each l ∈ {1, . . . , M + 1} and α�

h is given for h ∈ [h̃l−1, h̃l] by

α�
h = arg inf

α̃∈[0,1]
‖
[
eΛh − α̃eΛh̃l−1 + (α̃ − 1)eΛh̃l 0

0
∫ h

h̃l
eΛsds + α̃

∫ h̃l

h̃l−1
eΛsds

]
‖.

(22)

The additive uncertainty set is given by

∆ :=
{
diag (δ1, . . . , δ2nx) ∈ R2nx×2nx | δi ∈ [−1, 1]

}
. (23)

Then, (7) holds meaning that (14) is an overapproximation of (7).

Proof. The proof is omitted for the sake of brevity, but can be found in the
technical report [23]. �
The stability of (7) with (9) or (10), where hk ∈ [h, h], can now be guaran-
teed by proving stability of (14) with αk ∈ A, ∆k ∈ ∆, k ∈ N, as (14) is an
overapproximation of (7).

Remark 3. In case of a continuous-time controller as in Remark 2, a similar
procedure applies. �
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3 Stability of Switched Systems with Parametric
Uncertainty

In the previous section, we discussed the NCS model and introduced an effective
way to overapproximate it by a switched polytopic system with a norm-bounded
uncertainty. Given this uncertain switched system, we can analyse whether a
switching sequence, as induced by a protocol, renders the switched system UGES.

We will start with so-called quadratic protocols that include the well-known
TOD protocol as a particular case. The analysis is based on extensions of ideas
in [24], in which only switched linear systems without any form of uncertainty
is considered. Hence, extensions are needed to include switched polytopic sys-
tems with norm-bounded uncertainties as in (14). After the stability analysis for
quadratic and the TOD protocols, we show how we can analyse stability for the
RR protocol.

For proving stability of system (14), we will employ the so-called full block
S-procedure [25], which is presented in the following lemma.

Lemma 1 (Full block S-procedure). Let P̄ be given and let

∆̄ :=

{
∆ |

[
∆
I

]� [
Q S
S� R

] [
∆
I

]
� 0

}
(24)

for some matrices Q = Q�, S, and R = R� � 0 of appropriate dimensions.
Then, the following statements are equivalent:

1. [
I 0
Ā B̄

]�
P̄

[
I 0
Ā B̄

]
+
[

0 I
C̄ 0

]� [
Q S
S� R

] [
0 I
C̄ 0

]
≺ 0. (25)

2. For all ∆̄ ∈ ∆̄, it holds that[
I

Ā + B̄∆̄C̄

]�
P̄

[
I

Ā + B̄∆̄C̄

]
≺ 0. (26)

By choosing a suitable P̄ , (26) can lead to a sufficient condition for stability
of (14), as we will show later. To use this result we aim at constructing the
matrices Q, S, and R such that the actual additive uncertainty set given by ∆
as in (23) is equal to ∆̄ as in (24).

Lemma 2. Consider ∆ as in (23). If[
Q S
S� R

]
=
[
−R 0
0 R

]
with R ∈ R = {diag (r1, . . . , rm) | ri > 0} , (27)

then ∆̄ as in (24) is equal to ∆ i.e., ∆ = ∆̄.

Proof. It follows by direct calculation, exploiting the diagonal structure of (23). �
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3.1 Quadratic Protocols

In this section, we assume that the switching function is given by

σk = arg min
i=1,...,N

x̄�
k Pix̄k, (28)

where Pi with i ∈ {1, . . . , N} are certain given positive definite matrices. We call
protocols of the form (28) quadratic protocols. We will show later that the TOD
protocol is actually a special case of this type of protocols. To analyse stability
of (14) having switching law (28), we introduce the non-quadratic Lyapunov
function

V (x̄k) = min
i=1,...,N

x̄�
k Pix̄k = min

ν∈N
x̄�

k

N∑
i=1

νiPix̄k, (29)

where

N :=

{
ν ∈ RN |

N∑
i=1

νi = 1, νi ≥ 0

}
. (30)

Furthermore, we introduce the class of so-called Metzler matrices given by

M :=

⎧⎨⎩Π ∈ RN×N |
N∑

j=1

πji = 1, πji ≥ 0

⎫⎬⎭ . (31)

The main result of this section is presented in the following theorem.

Theorem 2. Assume that there exist a matrix Π ∈ M, a set of positive def-
inite matrices {P1, . . . , PN}, and a set of positive definite diagonal matrices
{R1,1, . . . , RN,1, . . . , R1,M , . . . , RN,M}, with Ri,l ∈ R, with R the set of diag-
onal matrices as in (27), satisfying[

Ā�
i,l

∑N
j=1 πjiPjĀi,l − Pi + C̄�

i Ri,lC̄i Ā�
i,l

∑N
j=1 πjiPjB̄l

B̄�
l

∑N
j=1 πjiPjĀi,l B̄�

l

∑N
j=1 πjiPjB̄l − Ri,l

]
≺ 0, (32)

for all i ∈ {1, . . . , N} and l ∈ {1, . . . , M}. Then, the switching law (28) renders
the system (14) UGES. Consequently, the NCS (7) is also UGES if the switching
law (28) is employed as the protocol.

Proof. The proof is based on showing that V (x̄k) as in (29) is a Lyapunov
function for the switched uncertain system (14) with switching law (28). Note
that V (x̄k) = x̄�

k Pix̄k, with σk = i, due to (28). Now, we obtain using (29) and
(14) that

V (x̄k+1) = min
ν∈N

x̄�
k+1

N∑
j=1

νjPj x̄k+1 ≤ x̄�
k+1

N∑
j=1

πjiPj x̄k+1 =

M∑
l1=1

αk,l1 x̄
�
k

(
Āi,l1 + B̄l1∆kC̄i

)� N∑
j=1

πjiPj

M∑
l2=1

αk,l2

(
Āi,l2 + B̄l2∆kC̄i

)
x̄k. (33)
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UGES is now implied by requiring that the Lyapunov function is strictly de-
creasing in the sense that (due to (33))

M∑
l1=1

αk,l1

(
Āi,l1 + B̄l1∆C̄i

)� N∑
j=1

πjiPj

M∑
l2=1

αk,l2

(
Āi,l2 + B̄l2∆C̄i

)
− Pi ≺ 0. (34)

for all i ∈ {1, . . . , N}. By taking a Schur complement, and realising that∑N
j=1 πjiPj � 0, we obtain that (34) is equivalent to

M∑
l=1

αl

[
Pi

(
Āi,l + B̄l∆C̄i

)�∑N
j=1 πjiPj∑N

j=1 πjiPj

(
Āi,l + B̄l∆C̄i

) ∑N
j=1 πjiPj

]
︸ ︷︷ ︸

Gi,l

� 0 (35)

for all i ∈ {1, . . . , N}. A sufficient condition for the satisfaction of (35) is that
Gi,l � 0 for all i ∈ {1, . . . , N} and l ∈ {1, . . . , M}. Using again a Schur comple-
ment, we can rewrite the condition Gi,l � 0 as follows:

Pi −
(
Āi,l + B̄l∆C̄i

)� N∑
j=1

πjiPj

(
Āi,l + B̄l∆C̄i

)
� 0 (36)

or equivalently,[
I

Āi,l + B̄l∆C̄i

]� [−Pi 0
0

∑N
j=1 πjiPj

] [
I

Āi,l + B̄l∆C̄i

]
≺ 0, (37)

for all i ∈ {1, . . . , N} and l ∈ {1, . . . , M}. As (37) has the form of (26) of Lemma
1, it can, therefore, be rewritten in a form equivalent to (25) in which we use
(27). This yields (32) for all i ∈ {1, . . . , N} and all l ∈ {1, . . . , M}. Hence,
we can conclude that V (x̄k) is strictly decreasing in spite of the presence of
the uncertainty if the inequalities (32) are feasible. Standard Lyapunov-based
stability arguments now prove that (14) with (28) is UGES. �
Remark 4. The results of Theorem 2 can be exploited in two ways: (i) For the
design of a stabilising protocol. Then the conditions in (32) are not LMIs, but
Bilinear Matrix Inequalities (BMIs) due to the presence of the product of πji

and Pj . Although literature on solving BMIs is available, see, e.g., [26,27,28],
solving BMIs is considered to be of a high numerical complexity. If the number
of nodes is relatively small, one way to proceed is gridding the possible solutions
in Π ∈ M, and subsequently solving the resulting LMIs. (ii) Stability analysis
for a given protocol. In the situation that the set of matrices {P1, . . . , PN} is
completely dictated by a particular quadratic protocol, the conditions (32) are
LMIs. �

3.2 The TOD Protocol

In this section, we will show that the TOD protocol is a special case of the class
of quadratic protocols and thus that the Lyapunov-Metzler inequalities can be
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employed to determine the allowable range of transmission intervals of the NCS
using the TOD protocol as well. Since the switching sequence is given by (28),
we can arrive at the TOD protocol by adopting the following structure in the Pi

matrices:

Pi = P̄ +
[
0 0
0 P̃i

]
. (38)

Each P̃i ∈ R(ny+nu)×(ny+nu) is partitioned according to the partitioning of the
nodes in the sense that

P̃i ∈ {diag (−I1, 02, . . . , 0N ) , . . . , diag (01, . . . , 0N−1,−IN )} , (39)

where Ii, i = 1, . . . , N , are identity matrices and 0i, i = 1, . . . , N , are null
matrices, both having dimensions Rni×ni with ni corresponding to the number
of actuators or sensors in node i. Indeed, this structure implies that (28) becomes

σk = argmin
{
−‖e1

k‖2, . . . ,−‖eN
k ‖2} = argmax

{
‖e1

k‖, . . . , ‖eN
k ‖

}
(40)

which is exactly the TOD protocol as described by (9). This proves that the TOD
protocol can be regarded as a special case of the class of quadratic protocols.
Therefore, stability of the NCS with the TOD protocol can be analysed using
Theorem 2.

3.3 The RR Protocol

We will analyse an other well-known communication protocol, namely the RR
protocol. Therefore, we need to analyse stability of the system (14) with a switch-
ing sequence induced by (10). This system is essentially a periodic uncertain
system with period N . For this system, we introduce a set of positive defi-
nite matrices {P1, . . . , PN} and a mode-dependent Lyapunov function given by
Vσk

(x̄k) = x̄�
k Pσk

x̄k. We can now present the main result of this section.

Theorem 3. Assume that there exist a set of positive definite matrices {P1,
. . . , PN} and a set of positive definite diagonal matrices {R1,1, . . . , RN,1, . . .
R1,M , . . . , RN,M}, with Ri,l ∈ R with R as in (27), satisfying[

Ā�
i,lPi+1Āi,l − Pi + C̄�

i Ri,lC̄i Ā�
i,lPi+1B̄l

B̄�
l Pi+1Āi,l B̄�

l Pi+1B̄l − Ri,l

]
≺ 0, (41)

where PN+1 := P1, for all i ∈ {1, . . . , N} and l ∈ {1, . . . , M}. Then, the system
(14) with (10) is UGES and consequently, the NCS (7) with (10) is UGES.

Proof. The proof follows the same lines as the proof of Theorem 2. �

4 Illustrative Example

In this section, we illustrate the usefulness of the presented theory using a well-
known benchmark example in the NCS literature [10,14,19], consisting of a model
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Table 1. Allowable Range of Transmission Intervals

Method Range

Simulation based, obtained in [10] hk ∈ (ε, 0.06]

Theoretical, obtained in [10] hk ∈ (ε, 10−5]

Theoretical, obtained in [14] hk ∈ (ε, 0.01]

Theoretical, obtained in [16] hk ∈ (ε, 0.0108]

Newly obtained theoretical bound hk ∈ [0.001, 0.032]

of a batch reactor. First, we will analyse the continuous-time controller as also
used in [10,14]. This will show that our results provide less conservative bounds
on the uncertain transmission intervals than earlier results in the literature. Sec-
ondly, we show that our framework can also deal with discrete-time controllers.
For both examples, we consider the TOD protocol.

The details of the linearised model of the batch reactor model used in this
example and the continuous-time controller can be found in [10,14,19]. As in
these references, we assume here that the controller is directly connected to the
actuator and that only the two outputs are transmitted via the network. Hence,
we have N = 2 nodes. Therefore, we have G = {diag(1, 0), diag(0, 1)}, as defined
in Section 2.1.

4.1 Continuous-Time Controller

In order to assess the bounds on the allowable transmission intervals, we first ob-
tain the uncertain polytopic system (14) that overapproximates the NCS model
(7). In this example we choose to grid at h̃l ∈ {0.001, 0.004, 0.015, 0.032} and
determine an upper bound on the approximation error as in Theorem 1. Now
we check the matrix inequalities (32) in Theorem 2, using the structure of the
Pi-matrices as in (38).

Using this procedure we obtain a feasible solution to (32) on the basis of which
we conclude that the TOD protocol stabilises the NCS for any transmission
interval between h ∈ [10−3, 0.032]. In Table 1, we compare our results with the
existing results in [10,14,16]. The results in [10,14,16] can guarantee UGES for
the given ranges of Table 1, where ε > 0 can be arbitrary small. We can conclude
that taking h = 10−3 as a lower bound on the transmission intervals leads to a
guaranteed MATI h = 0.032, which is much larger than the recently obtained
results. The real MATI was estimated to be 0.06 in [10], hence, we are getting
closer to this estimate.

4.2 Discrete-Time Controller

Next, we compute [h, h] for the NCS given a discrete-time controller. The discrete-
time controller is obtained by discretising the continuous-time controller (12) with
the matrices given in [10,14,19] by using a zero order hold, assuming a fixed sample
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time of 0.003. Following the procedure presented in this paper, we conclude that
this controller stabilises the NCS using the TOD protocol if hk ∈ [0.001, 0.032].
Hence, the bound h = 0.032 of the continuous-time controller can also be guar-
anteed by a discrete-time equivalent of the controller. Of course, a discrete-time
controller has the advantage over the continuous-time controller that it is much
easier to implement.

5 Conclusions

In this paper, we studied the stability of Networked Control Systems (NCSs) that
are subject to communication constraints and time-varying transmission inter-
vals. These communications constraints impose that per transmission, only one
node can access the network and send its information. We analysed the stability
of the NCS when the communication sequence is determined by the Round Robin
(RR), the Try-Once-Discard (TOD) or a quadratic protocol. This analysis was
based on a discrete-time switched uncertain linear system to describe the NCS.
A new and efficient convex overapproximation was proposed that allowed us to
analyse stability using a finite number of matrix inequalities. On a benchmark
example, we illustrated the effectiveness of the theory. In particular, we showed
that if the minimum allowable transmission interval is not infinitesimally small,
stability can be guaranteed for a much larger maximum allowable transmission
interval, when compared to the existing results in the literature. Interestingly,
our results can be applied to both continuous-time and discrete-time controllers.
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14. Nešić, D., Teel, A.: Input-output stability properties of networked control systems.
IEEE Trans. on Autom. Control 49(10), 1650–1667 (2004)

15. Walsh, G., Belidman, O., Bushnell, L.: Asymptotic behavior of nonlinear networked
control systems. IEEE Trans. on Autom. Control 46, 1093–1097 (2001)
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Abstract. This paper addresses a parameter synthesis problem for non-
linear hybrid systems. Considering a set of uncertain parameters and a
safety property, we give an algorithm that returns a partition of the set of
parameters into subsets classified as safe, unsafe, or uncertain, depending
on whether respectively all, none, or some of their behaviors satisfy the
safety property. We make use of sensitivity analysis to compute approx-
imations of reachable sets and an error control mechanism to determine
the size of the partition elements in order to obtain the desired precision.
We apply the technique to Simulink models by combining generated code
with a numerical solver that can compute sensitivities to parameter vari-
ations. We present experimental results on a non-trivial Simulink model
of a quadrotor helicopter.

1 Introduction

A standard problem in model-based analysis and design is to find the ranges
of parameters (including initial states) for which the system behavior will be
acceptable [HWT96, FJK08]. We call this the parameter synthesis problem. One
approach to this problem is to run simulations of the system for a set of parame-
ter values that covers the range of values of interest. This approach is attractive
because of its generality: one can simulate almost any system. It can take a very
large number of simulations to cover the parameter space at a sufficient level of
granularity, however.

Reachability analysis offers an alternative to simulation [ADF+06]. By com-
puting reachable sets rather than simulating single trajectories, it may be pos-
sible to explore the design space more efficiently. Although this is the case for
low-dimensional systems, the ability to perform reachability computations for
higher-dimensional systems remains an elusive goal, even for so-called linear hy-
brid automata [HHWT97, Fre05]. The parameter synthesis problem for nonlinear
and higher-dimensional systems remains intractable using reachability tools.

This paper proposes an approach to the parameter synthesis problem that
offers the strength of reachability analysis while using only numerical simula-
tions. This approach is in the spirit of other work on methods for obtaining
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reachable set information from single simulation runs [GP06, DM07, LKCK08].
Most of this work has focused on using simulations to propagate representa-
tions of reachable sets that are guaranteed to be conservative [GP06, LKCK08].
We use a different approach that leverages the simplicity of sensitivity analysis
to generate approximations to reachable sets very efficiently [DM07]. Speed is
achieved with a slight sacrifice in accuracy–the reachable set approximations are
not guaranteed to be conservative. We are able to estimate the error in the ap-
proximations, however, providing a mechanism for gaining some assurance that
the final estimation of the set of good parameters is reasonable.

The paper is organized as follows. The following section introduces notation
and the basic algorithm for simulating hybrid dynamic systems. Section 3 recalls
the method for generating sensitivity matrices with only a slight increase in com-
putation during the simulation run. Section 4 presents the formulation and solu-
tion of the parameter synthesis problem using sensitivity-based reachability. We
describe an implementation of the approach in Section 5 that solves the param-
eter synthesis problem for hybrid systems modeled in MATLAB Simulink and
illustrate its application to the design of a supervisory safety control algorithm
for a quadrotor helicopter. The concluding section summarizes the contributions
of the paper and identifies directions for future research.

2 Hybrid Model and Simulation

The set Rn is equipped with the infinity norm, noted ‖x‖ = maxi |xi|. It is
extended to n × n matrices as usual. We define the diameter of a compact set
P to be ‖P‖ = sup

(p,p′)∈P2
‖p − p′‖. The distance from x to a set R is d(x,R) =

inf
y∈R

‖x − y‖. The Hausdorff distance between two sets R1 and R2 is

dH(R1,R2) = max( sup
x1∈R1

d(x1,R2), sup
x2∈R2

d(x2,R1)).

Given a matrix S and a set P , SP represents the set {Sp,p ∈ P}. Given two
sets R1 and R2, R1 ⊕ R2 is the Minkowski sum of R1 and R2, i.e., R1 ⊕ R2 =
{x1 + x2,x1 ∈ R1,x2 ∈ R2}.

2.1 Dynamics

We consider a dynamical system S = (Q, f, e, g) with evolutions described by⎧⎨⎩
ẋ = f(q,x,p), x(0) = x0

q+ = e(q−, λ), q(0) = q0
λ = sign(g(x))

(1)

where

– x ∈ Rn is the continuous state, p is the parameter vector lying in a compact
set P ⊂ Rnp , q ∈ Q is the discrete state,
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– λ is a vector in {−1, 0, +1}ng,
– g is the guard function mapping Rn to Rng ,
– sign is the usual sign function extended to vectors, i.e., if λ = sign(g(x)),

then λi = 1 if gi(x) > 0, λi = −1 if gi(x) < 0 and λi = 0 if gi(x) = 0.
– e is the event function which updates the discrete state when a component

of the guard function g changes its sign. At each time t, q+ (respectively q−)
represents the value of q immediatly after t (respectively immediatly before
t). It is assumed that q+ = e(q−, λ) = q− if λi �= 0 for all i. In words, q+

may differ from q− only when one component of the guard function g is zero.

Let T = R+ be the time set. Given p ∈ P , a trajectory ξp is a function from
T to Rn which satisfies (1), i.e., for all t in T , we have

ξ̇p(t) = f(q(t), ξp(t),p), q(t+) = e(q(t−), λ(t)) and λ(t) = sign(g(ξp(t)))

For convenience, the initial state x0 is included in the parameter vector p.
The dimension ng of P is thus greater than n and we have ξp(0) = x0 =
(x01 , x02 , . . . , x0n), where for all i ≤ n, x0i = pi.

In this work, we assume that a trajectory can always be computed by append-
ing solutions of (1) on successive time intervals of the form [tk, tk+1]. This is pos-
sible if for all i, there is a neighborhood of (tk, ξp(tk)) where (t,x) �→ f(q,x,p)
is continuously differentiable (C1). In this case, we know by the Cauchy-Lipshitz
theorem that there exists hk > 0 such that a solution of the ẋ = f(q,x,p) can
be uniquely continued on the interval (tk, tk + hk]. Thus tk+1 can be defined as
tk+1 = tk + hk and the process can be repeated indefinitely to form a unique
trajectory on the whole time set T given a parameter vector p.

2.2 Event Detection

In the model (1) above, the event function triggered by the guard function makes
it possible to introduce discontinuities in the evolution. The function f can be
discontinuous in a state x where some component of g is zero. Assume that
gi(ξp(τ)) = 0 for some i and τ > tk. It can thus be that

f(q(τ−), t−, ξp(τ−),p) �= f(q(τ+), t+, ξp(τ+),p)

This means that at time τ , the system switches from one continuous dynamics
to another continuous dynamics, which is called a switching event. In such a
situation, the Cauchy-Lipshtz theorem does not apply in (τ, ξp(τ)) and standard
numerical schemes may have problem to provide an accurate result. A solution is
to integrate the dynamics until the time event τ , set tk+1 = τ and then continue
from tk+1 with the new dynamics. Thus τ needs to be detected as precisely
as possible, which can be done through discontinuity locking and zero-crossing
detection [EKP01]. The idea is to fix (or lock) the value of q to q(tk) in order
to prevent the occurrence of a switching event, and to integrate the equation
ẋ = fk(x,p), where fk(x,p) = f(q(tk),x,p), on an interval [tk, tk + hk[. Then
check whether there is a time t ∈]tk, tk + hk[ such that the sign of g changed,
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i.e., sign(g(x(tk))) �= sign(g(x(t))), in which case, by continuity, it is guaranteed
that g has at least one zero on the interval ]tk, t[. A bisection procedure can be
applied to determine the first time τ when a component of g is zero.

This is summarized in the following algorithm to compute ξp(tk+1) knowing
ξp(tk).

1: Compute ξp solution of ẋ = fk(x,p) on [tk, tk + hk]
2: if ∀t ∈ [tk, tk + hk], sign(g(ξp(t)) = sign(g(ξp(tk)) then
3: Return tk+1 = tk + hk and ξp(tk+1)
4: else
5: Find the minimum time τ > tk such that gi(τ ) = 0 for some i
6: Return tk+1 = τ and ξp(tk+1) = ξp(τ )
7: end if

For the above algorithm to be correct, we make the following assumption: at
the time τ of an event,

〈∇gi(x(τ)), f(q−,x(τ−),p)〉 〈∇gi(x(τ)), f(q+,x(τ+),p)〉 > 0. (2)

This assumption, illustrated in the figure above, guarantees that when a tran-
sition occurs, the dynamics of the systems leans strictly toward the guard before
the switch and strictly away from it after the transition. Thus we do not allow
sliding, i.e., when a trajectory remains on the transition surface, nor grazing, i.e.,
when a trajectory hits the surface tangentially. This assumption holds for many
real physical systems. Condition (2) can often be checked for all possible states
in the model.

3 Sensitivity Analysis

The concept of sensitivity to parameters is a classical topic in the theory of dy-
namical systems. It is concerned with the question of the influence of a parameter
change δp on a trajectory ξp. A first order approximation of this influence can
be obtained by a Taylor expansion of ξp(t) with respect to p. For δp ∈ Rnp , we
have:

ξp+δp(t) = ξp(t) +
∂ξp
∂p

(t) δp + ϕ(t, δp) where ϕ(t, δp) = O
(
‖δp‖2) (3)
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The second term in the right hand side of (3) is the derivative of the trajectory
with respect to the parameter p. Since p is a vector, this derivative is a matrix
called the sensitivity matrix, denoted as Sp(t) = ∂ξp

∂p (t). By applying the chain

rule to the time derivative of ∂ξp
∂p (t) we get

Ṡp(t) =
∂f

∂x
(q, ξp(t),p) Sp(t) +

∂f

∂p
(q, ξp(t),p) (4)

Here ∂f
∂x (q, ξp(t),p) is the Jacobian matrix of f at the trajectory point at time

t. This equation is thus an affine, time-varying ODE that, in the absence of
discontinuity, can be solved in parallel with the ODE defining the dynamics (1).

When a trajectory switches from a mode q1 to a mode q2 due to the crossing
of a surface given by gi(x) = 0, the dynamics of the system changes from ẋ =
f1(x,p) � f(q1,x,p) to ẋ = f2(x,p) � f(q2,x,p). It follows that the evolution
of the sensitivity matrix also changes from Ṡp = ∂f1

∂x Sp+ ∂f1
∂p to Ṡp = ∂f2

∂x Sp+ ∂f2
∂p .

Even though we do not consider resets in our models, i.e., the continuous state
remains unaffected by the switching (x(τ−) = x(τ+)), the sensitivity matrix Sp
can be discontinuous in τ . It can be shown that the jump condition, i.e. the
difference between τ− and τ+ is given by [HP00]

Sp(τ+) − Sp(τ−) =
dτ

dp
(
f2(τ,x∗,p) − f1(τ,x∗,p)

)
, (5)

where
dτ

dp
=

〈∇xgi(x∗), Sp(τ)〉
〈∇xgi(x∗), f1(τ,x∗,p)〉 . (6)

In [HP00], conditions for the computation of sensitivity matrices are given
for hybrid models more general than ours. They include evolutions given by
differential algebraic equations, state resets, etc. Since our technique relies on
the ability to compute numerical simulations and sensitivity matrices, it means
that it can be straigthfowardly extended to handle these systems.

4 Parameter Synthesis Algorithm

In this section, we consider an hybrid system S = (Q, f, e, g), a compact set
of parameters P and a set of so-called “bad” states, B ∈ Rn. Our goal is to
partition P into safe, unsafe and uncertain subsets, defined as follows.

Definition 1 (Parameter Synthesis Problem)

– A parameter synthesis problem is a 4-uple (S ,P ,B, T ) where S is an hybrid
system, P a compact set, B a set and T a non-negative real number;

– A solution of the parameter synthesis problem (S ,P ,B, T ) is a partition of
P into three sets (Psaf,Punc,Pbad) such that: for all p ∈ Pbad, ξp(t) ∈ B
for some 0 ≤ t ≤ T ; for all p ∈ Psaf, ξp(t) /∈ B for all 0 ≤ t ≤ T ; and
Punc = P − Psaf ∪ Pbad.
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Solutions to the parameter synthesis problem can be defined in terms of reachable
sets, which we define next.

Definition 2 (Reachable Set). The reachable set induced by a set of param-
eters P at time t is Rt(P) =

⋃
p∈P ξp(t)

It is clear that (Psaf,Punc,Pbad) is a solution of (S ,P ,B, T ) if and only if
Rt(Psaf) ∩ B = ∅ ∀0 ≤ t ≤ T and Pbad = ∪lPl where for each l, Rt(Pl) ⊂ B for
some 0 ≤ t ≤ T . To characterize the precision of a solution, we use the following
definition:

Definition 3 (δp-precise solution). A solution (Psaf,Punc,Pbad) is said to be
δp-precise either if Punc is empty or if it can be decomposed into a finite number
of sets Punc = S1 ∪ S2 ∪ . . . ∪ Sl such that for all j,

– The diameter of Sj is smaller than δp, i.e., ‖Sj‖ ≤ δp,
– The reachable set induced by Sj intersects with B for some 0 ≤ t ≤ T , i.e.,

Rt(Sj) ∩ B �= ∅,
– The reachable set induced by Sj is not a subset of B for any 0 ≤ t ≤ T , i.e.,

Rt(Sj) � B.

Intuitively a δp-precise solution covers the boundary between safe and unsafe
parameters with a finite number of sets whose sizes are at most δp. Also, by
this definition, a solution for which the uncertain set is empty is δp-precise for
any δp. In the remainder of this section, we present an algorithm that aims at
computing a δp-precise solution. The method is based on an iterative partition-
ing of the parameter space, the computation of reachable set estimates and their
intersections with the bad set.

4.1 Reachable Set Estimation Using Sensitivity

For some subset S of P , set Rt(S) can be approximated by using sensitivity
analysis. Let p and p′ be two parameter vectors in S and assume that we com-
puted the trajectory ξp and the sensitivity matrix Sp at time t. Then we can
use ξp(t) and Sp(t) to estimate ξp′(t). We denote this estimate by ξ̂p

p′(t). The
idea is to drop higher order terms in the Taylor expansion (3), which gives

ξ̂p
p′(t) = ξp(t) + Sp(t)(p′ − p). (7)

If we extend this estimate to all parameters p′ in S, we get the following estimate
for the reachable set Rt(S):

R̂p
t (S) =

⋃
p′∈S

ξ̂p′(t) = {ξp − Sp(t)p} ⊕ Sp(t)S (8)

Note that this is an affine transformation of the initial set S (see Fig. 1). As a
particular situation, if the dynamics of the system is affine, the estimate is exact
as there are no higher order terms in the Taylor expansion.

When the dynamics is nonlinear, R̂p
t (S) is different from Rt(S). For instance,

we have the following lemma.
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Fig. 1. Approximation of the reachable set using one trajectory and the corresponding
sensitivity matrix

Lemma 1. There exists a real number K > 0 such that
dH(R̂p

t (S),Rt(S)) ≤ K ‖S‖2.

Proof. Let y be in R̂p
t (S), py ∈ S be such that y = ξ̂p

py
(t) and x = ξpy(t) ∈

Rt(S). From (3) we have x − y = ξpy(t) − ξ̂p
py

(t) = ϕ(t,py − p) where ϕ is
a function such that ϕ(t,py − p) = O

(
‖p − py‖2

)
, meaning that we can find

K > 0 such that ‖y − x‖ = ‖ξpy(t) − ξ̂p
py

(t)‖ ≤ K‖py − p‖2 ≤ K‖S‖2. Since
this is true for any y in R̂p

t (S), supy∈R̂p
t (S) d(y,Rt(S)) ≤ K‖S‖2. Similarly we

can prove that supx∈Rt(S) d(x, R̂p
t (S)) ≤ K‖S‖2 which implies the result. ��

Thus, the error depends on the diameter of S. In order to improve the estimation,
we can partition S into smaller subsets S1,S2, . . . ,Sl and introduce new param-
eters, p1,p2, . . . ,pl to compute more precise local estimates. Then we need to
be able to estimate the benefit of such a refinement. To do so, we can compare
for each Sj the estimate R̂p

t (Sj) that we get using the “global” center p with
the estimate R̂pj

t (Sj) that we get when using the “local” center pj . We have the
following result:

Proposition 1. Let Sj be a subset of a parameter set S. Let p ∈ S and pj ∈ Sj.
Then

dH(R̂p
t (Sj), R̂pj

t (Sj)) ≤ Err(S,Sj) (9)

where Err(S,Sj) = ‖ξpj (t) − ξ̂p
pj

(t)‖ + ‖Spj (t) − Sp(t)‖‖Sj‖.

Proof. Let y be in R̂p
t (Sj), py in Sj such that y = ξ̂p

py
(t) and x = ξ̂

pj
py(t). We

need to compare

y = ξp(t) + Sp(t)(py − p) with x = ξpj (t) + Spj (t)(py − pj). (10)

We introduce the quantity ξ̂p
pj

(t) = ξpj (t) + Spj (t)(p′
j − pj) and with some

algebraic manipulations of (10), we get

ξ̂p
p′

j
(t) − ξ̂

pj

p′
j
(t) = ξpj (t) − ξ̂p

pj
(t) + (Spj (t) − Sp(t))(p′

j − pj)

which implies that ‖y − x‖ ≤ Err(S,Sj). The end of the proof is then similar
to that of Lemma 1. ��
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As illustrated in Fig. 2, the difference between the global and the local estimate
can thus be decomposed into the error in the estimate ξ̂p

pj
(t) of the state reached

at time t using pj and another term involving the difference between the local and
the global sensitivity matrices and the distance from local center. The quantity
Err(S,Sj) can be easily computed knowing the trajectory states ξp(t) and ξpj (t)
and their corresponding sensitivity matrices and from the diameter of Sj .1 Err
has the following interesting properties:

– If the dynamics is affine, then Err(S,Sj) = 0. Indeed, in this case, ξ̂p
pj

= ξpj ,
so the first term vanishes and Sp = Spj so the second term vanishes as well;

– If limit ‖S‖ is 0 then limit Err(S,Sj) is also 0. Indeed, as ‖S‖ decreases, so
does ‖p− pj‖ and thus ‖ξpj (t) − ξ̂p

pj
(t)‖ and ‖Sj‖ since Sj is a subset of S.

Moreover, Err(S,Sj) = O
(
‖S‖2

)
.

Thus we can compute a reachable set Rt(S) at a given time instant t and
estimate the approximation error. To get an estimate R[0,T ](S) on the interval
[0, T ], one can do the computation for t0 = 0, t1, ... and tN = T and use some
form of interpolation between tk and tk+1. This introduces additional error which
depends on |tk+1 − tk| and the order of the interpolation method used.

Fig. 2. “global” and “local” estimate of the reachable set Rt(Sj)

4.2 Algorithm

The key ideas of the algorithm presented below are the following:

– use the estimate R̂p
t and its intersection with B to classify sets as safe,

uncertain or unsafe;
– use Err to testify whether R̂p

t is a reliable estimate: if it is more than a
given tolerance Tol > 0 for a set S, we classify S as uncertain;

– iteratively apply a refining operator on uncertain subsets to produce a finer
partitioning from which we deduce more safe or unsafe subsets;

– stop when there are no uncertain subsets left or when all uncertain subsets
are smaller in diameter than δp.

1 Note that the value of Err actually depends not only on S and Sj but also on the
choice of p and pj . We leave it implicit to simplify the notation.
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To guarantee that the algorithm always terminates in a finite number of steps,
we partition uncertain sets into a set of subsets that are at least γ times smaller.
We define these γ-Refining partitions as follows.

Definition 1 (γ-Refining partition). A γ-refining partition, where 0 < γ <
1, of a set S is a finite set of sets {S1, S2, . . . ,Sl} such that

S =
l⋃

j=1

Sj and max
j∈{1,...,l}

‖Sj‖ ≤ γ‖S‖

We assume the existence of a function Refineγ that maps a set to one of his
γ-refining partitions for some 0 < γ < 1 and give the complete algorithm below.

Algorithm 1. Parameter Synthesis Algorithm
procedure ParamSynthesis(P , B, T, δp, Tol)

Psaf = Pbad = ∅, Punc = {P}
repeat

Pick and remove S from Punc

for each Sj ∈ Refineγ(S) do
if Err(S ,Sj) ≤ Tol then � Reach set estimate is reliable

if R̂q
[0,T ]

(Sj) ∩ B = ∅ then � Reach set away from B
Psaf = Psaf ∪ Sj

else if R̂q
[0,T ](Sj) ⊂ B then � Reach set inside B

Pbad = Pbad ∪ Sj

else
Punc = Punc ∪ {Sj} � Some intersection with the bad set

end if
else

Punc = Punc ∪ {Sj} � Reach set estimate not enough precise
end if

end for
until Punc �= ∅ and maxPj∈Punc ‖Pj‖ ≤ δp
return Psaf, Punc, Pbad

end procedure

5 Implementation and Experimentations

We implemented Algorithm 1 within the toolbox Breach described in [Don07].
Parameter sets are specified as symmetrical rectangular sets S(p, ε) where p and
ε are in Rnp and such that S(p, ε) = {p′ : p − ε ≤ p′ ≤ p + ε}. The procedure
uses a simple refinement operator Refine 1

2
such that

Refine 1
2
(S(p, ε)) = {S(p1, ε1),S(p2, ε2), . . . ,S(pl, εl)}

with εk = ε/2 and pk = p + (νk
1

ε1
2 , νk

2
ε2
2 , . . . , νk

n
εn

2 ) where νk
i ∈ {−1, +1} so

that when k ranges over {1, . . . , l} all possible sign combinations are met2. The
2 The use of alternative refinement operators is a direction for further investigation.
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toolbox interfaces MATLAB with CVODES [SH05], a numerical solver designed
to solve efficiently and accurately ODEs and sensitivity equations of the form
Eq. (4).

5.1 Sensitivity Analysis for Simulink Models

A Simulink block diagram model is a graphical representation of a mathemati-
cal model of an hybrid dynamic system [Mat]. It is composed of interconnected
time-based blocks of the form shown below

State
(x, q or none)

Input Output

where the state contained in the block (if present) can be either discrete or
discontinuous. At each time step, the Simulink engine:

1. Computes each block output;
2. Updates the discrete states;
3. Computes the time derivatives f(x) of continuous states;
4. Updates the continuous states by integrating ẋ = f(x) for one step;
5. Optionally checks for zero-crossing;
6. Updates the time for the next time step.

Thus the simulation scheme of Simulink is similar to the simulation algorithm
presented in Section 2. To apply our algorithm to a Simulink model we need
to extract from it the function f defining the continuous dynamics, the event
function e and the guard function g, and to make them available for Breach to
compute trajectories and sensitivity matrices. This is done using code genera-
tion provided by the Real-Time Workshop Toolbox [Mat]. The generated code
implements routines for each of the above steps. For instance f can be obtained
from step 3, e can be obtained from the discrete states update in step 2 and g is
obtained from step 5. The overall procedure is shown in Fig. 3. A script generates
C routines compatible with CVODES from the code generated by the Real-Time
Workshop. Then f() calls the routines MdlOutputs() and MdlDerivative() for
integration, e() calls MdlUpdate() to update discrete states and g() is used for
zero-crossing detection (which is a CVODES built-in feature). Eq. (6) and (7)
are used to update the sensitivity matrices at switching times.

5.2 Starmac Model with Navigation Supervisor

We consider a simplified model of a quad-rotor helicopter [HHWT07] where only
the altitude z and the axis x are considered. The equations of motions for the
quadrotor illustrated below are given by:
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ẍ = − b

m
ẋ +

1
m

(u1 + u2 + u3 + u4)sin(θ)

z̈ = − b

m
ż +

1
m

(u1 + u2 + u3 + u4)cos(θ) − g

θ̈ =
L

Iy
(u1 − u3) − c

L
θ̇

where m = 0.5184, c = 0.15, L = 0.236,
Iy = 0.04774. The state vector is then
x = (ẋ, x, ż, z, θ̇, θ).
Given a goal state x∗, a standard linear quadratic regulator (LQR) of the form
u = K (x − x∗) + mg

4 1 (where 1 is the vector (1, 1, 1, 1)) was designed to
drive the system to x∗ from any state x0. While doing so, the Starmac needs to
avoid collisions with obstacles and maintain a pre-specified minimum safe flying
altitude above an unknown terrain. This is monitored using two on-board prox-
imity sensors, one in the horizontal (x) and the other in vertical (z) directions.
Using the sensors and the value of the current state, a supervisor implements
the following navigation strategy: in absence of proximity warnings, use the
LQR control and move towards the target (‘GoToTarget’ mode); if either of the
proximity warnings is active, switch to a constant control u = (ū, ū, ū, ū), for
some ū > 0, in order to go up until being safe (‘GoUp’ Mode) then resume to
GoToTarget mode (see Figure 4).

While crashing of the Starmac into an obstacle is certainly undesirable, it may
be desirable for it to be able to hover close to an obstacle. Hence the horizontal
proximity warning was made velocity-dependent in the GoToTarget state, i.e.,
the more the velocity the farther away the system needs to be from the obstacle.
The critical distance is set to be the product ẋ tsafe, for some tsafe > 0. In GoUp
mode, the supervisor checks for a fixed horizontal distance hsafe from the obsta-
cle. In both GoToTarget and GoUp modes, the vertical proximity from ground is
a fixed desired vertical distance vsafe. This switching of control strategies leads

Simulink
Model

void mdlOutputs()
void mdlDerivative()
void mdlUpdate() Trajectories

+ Sensitivities

Initial  states
and parameters MATLAB

Code Generation
(RTW toolbox)

C code

}

CVODES Solver

int f( ... ) {}

Matlab C Mexfile

int e( ... ) {}
int g( ... ) {} +

BREACH

Fig. 3. Implementing sensitivity analysis for Simulink models in Breach
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Fig. 4. Simulink diagram of the model (top left) and the supervisor (top right) and a
sample (safe) trajectory

to hybrid dynamics with two discrete states, namely ‘GoToTarget’ and ‘GoUp’.
The proximity warning conditions in the two directions serve as the guards for
discrete jumps between the two states.

5.3 Experimental Results

The Starmac dynamics, the LQR control and the supervisor were modeled in
Simulink (Fig. 4). Proximity detection was modeled using relay blocks. The
difference between desired distance from the obstacles and the current distance
from obstacles can be fed as the input to these relays. These input signals to the
relays are in turn extracted from the generated C code and fed to our sensitivity
analysis machinery as the zero-crossing detection function g().

We applied our parameter synthesis to the Starmac and the supervisor for
different sets of parameters and a given terrain. The parameters that can vary
in this model include the initial state variables (x0, z0, θ0, ẋ0, ż0 and θ̇0), the
supervisor parameters (hsafe, vsafe, tsafe, ū), the Starmac characteristics (m, Iy ,
b), etc. We present the results we obtained for a situation where an initial position
was set on one side of a hill (described by a simple sinusoid) and a goal state on
the other side. The varying parameters where chosen to be the initial horizontal
speed ẋ0 and the constant control input ū in GoUp mode, so that if we omit
other parameters with a fixed value, P = {(ẋ0, ū) : 10 ≤ ẋ0 ≤ 20, 1.6 ≤ ū ≤ 2}.
The ground was set to be the bad set, given by B = {z ≤ Terrain(x)} where
Terrain is a sinusoidal function. The results are presented in Figure 5.

The algorithm performed 3642 simulations for a computational time of 55
seconds on a laptop with a Dual Core 1.8GHz processor. Most simulations stem
from the neighborhood of a curve delimiting values of (ẋ0, ū) for which trajec-
tories cannot avoid the ground from values for which the avoidance maneuver
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Fig. 5. Results varying the initial horizontal speed ẋ0 and the GoUp constant input ū.
(a) Parameters used for the simulation. Crosses represent values for which trajectories
hit the ground while circles represent values for which the goal state is safely reached.
(b) Resulting trajectories in the (x, z) plane.

works and the Starmac safely reaches the goal state. The algorithm refined the
parameter set until a precision of δẋ0 = 0.001 and δū = 0.0004. Note that per-
forming simulations from parameters on a complete grid of this resolution would
have required 262,144 simulations, more than 70 times the number of simulations
executed by the sensitivity-based algorithm.

6 Conclusion

This paper presents a parameter synthesis algorithm for nonlinear hybrid sys-
tems based on numerical simulation and sensitivity analysis. The algorithm is
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scalable in terms of number of state variables and is implemented in a MAT-
LAB toolbox, Breach, that can handle Simulink models directly. The proposed
approach is illustrated for a six-dimensional nonlinear Simulink model of the
STARMAC quadrotor helicopter with a non-trivial hybrid supervisor.

The primary limitation of the algorithm is that the complexity of the re-
finement procedure is exponential in the number parameters. We are currently
investigating methods for scaling the approach to large numbers of parameters.
We are also extending the prototype implementation, which currently handles
zero crossing detection for relay blocks, to a larger set of Simulink and Stateflow
blocks. Directions for future research include the ability to handle models with
uncertain inputs, i.e., dynamics of the form ẋ = f(q,x(t), u(t),p), and extensions
to stochastic systems.
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Convergence of Distributed WSN Algorithms:
The Wake-Up Scattering Problem

Daniele Fontanelli, Luigi Palopoli, and Roberto Passerone�

Dipartimento di Ingegneria e Scienza dell’Informazione
University of Trento - Trento, Italy

Abstract. In this paper, we analyze the problem of finding a periodic
schedule for the wake-up times of a set of nodes in a Wireless Sensor
Network that optimizes the coverage of the region the nodes are deployed
on. An exact solution of the problem entails the solution of an Integer
Linear Program and is hardly viable on low power nodes. Giusti et.
al. [6] have recently proposed an efficient decentralized approach that
produces a generally good suboptimal solution. In this paper, we study
the convergence of this algorithm by casting the problem into one of
asymptotic stability for a particular class of linear switching systems.
For general topologies of the WSN, we offer local stability results. In
some specific special cases, we are also able to prove global stability
properties.

1 Introduction

In the past few years, Wireless Sensor Networks (WSN) have emerged as one
of the most interesting innovations introduced by the ICT industry. Their po-
tential fields of application cover a wide spectrum, including security, disaster
management, agricultural monitoring and building automation.

The most relevant feature of a WSN is that it is a dynamic distributed sys-
tem, in which complex tasks are performed through the coordinated action of
a large number of small devices (nodes). The integrity of the network, however,
can be affected if nodes become suddenly unoperational, especially when the
system is deployed in a remote environment. Therefore, a prominent issue is the
ability of the WSN to robustly fulfill its goals, countering possible changes in the
environment and/or in the network. The same level of importance is commonly
attached to the system lifetime. Since replacing batteries may be too expensive
and since even modern scavenging mechanisms cannot drain large quantities of
energy from the environment, a WSN is required to minimize energy dissipation.
Therefore, the main stay of the research on WSN are distributed algorithms for
data processing and resource management that attain an optimal trade-off be-
tween functionality, robustness and lifetime.

A popular way for pursuing this result is the application of “duty-cycling”.
The idea is to keep a node inactive for a long period of time when its operation is
� This work was supported by the EC under contract IST-2008-224428 ”CHAT -

Control of Heterogeneous Automation Systems”.
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not needed, and then to awake it for a short interval to perform its duties (e.g.,
to sense the surrounding environment). The performance of the WSN heavily
depends on the application and on how this duty-cycling is scheduled. The de-
termination of an optimal duty-cycle schedule has been the subject of intense
research. In this paper we focus on the problem of determining a schedule that
maximizes the average area “sensed” by the network, given a desired value for
the lifetime. While an optimal solution can be found using a centralized formu-
lation [17, 4, 9, 1], we are interested in this paper in analyzing strategies where
the schedule is computed online by the nodes themselves.

A very simple and effective heuristic to obtain a suboptimal solution is the
wake-up scattering algorithm presented in [6], which we describe in Section 2.
The idea is to “scatter” the execution of neighboring nodes, under the assump-
tion that two nodes communicating with each other also share large portions of
the covered area, and should therefore operate at distinct times. Experimental
evidence suggests that the solution thus found is frequently very close to the op-
timal one (its distance ranging from 15% to 5%). The schedule is computed from
a random solution by iteratively adjusting the wake-up times using information
from the neighbors. In this paper, we offer a theoretical study of the algorithm
by formally proving its convergence.

Our first contribution is to model the evolution of the system by a state-
space description, in which state variables represent the distance between the
wake-up times of an appropriate subset of the nodes. The model is generally
a switching linear system, in which the dynamic matrix can change depending
on the ordering of the distances between the node wake-up times. The problem
of convergence of the wake-up scattering algorithm can be cast into a stability
problem for this system. For each and every of the linear dynamics composing the
switching system, we prove the existence of a subspace composed of equilibrium
points for the system. We also show that this equilibrium set is asymptotically
stable under the hypothesis that it does not coincide with a switching surface.

This local stability can be strengthened if additional hypotheses are made
on the topology of the network. In the particular case in which each node can
communicate with the ones whose wake-up times are the closest to its own (the
nearest neighbors), we show a particular coordinate transformation, whereby the
dynamics of the autonomous linear system are governed by a doubly stochastic
dynamic matrix. The stability of this type of systems is well studied [14], and it
recently found an interesting application in the consensus problem (see [15,12,13,
5] and references therein). In particular, under the restrictive assumptions stated
above (visibility of the nearest neighbors), the wake-up scattering problem can
be viewed as a deployment task, solved with respect to time, over a cyclic set of
possible configurations [10,8,11]. However, as shown below, there are reasonable
situations under which switches in the linear dynamics can happen and the
classical analysis on consensus problems cannot be applied to the convergence of
the wake-up scattering. Intuitively, the reason of this divergence is the fact that
while agents moving on a line are “physically” prevented from overtaking each
other, this limitations does not apply to the wake-up times of the nodes. Indeed,
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as shown below, nodes can change their relative time positions if they do not
see each other. As a final result for the paper, we prove global convergence for
some particular topologies for which the visibility of the nearest neighbor does
not hold. In our view, this is the first step toward more general global stability
results for the wake-up scattering problem.

The paper is organized as follows. In Section 2, we provide some background
information about the wake-up scattering algorithm. In Section 3, we construct
a state-space model for the evolution of the system. In Section 4, we describe
the stability results, which constitute the trunk of the paper. In Section 5, we
show some simple numerical examples that clarify the results of the paper and
the potential of the algorithm. Finally, in Section 6, we state our conclusions
and outline future developments.

2 Background

In this paper we analyze the problem of reducing the power consumption (and
therefore extend the lifetime) of a sensor network while providing continuous
node coverage over a monitored area. To save power, we switch nodes off for a
period of time if another node covering the same area is guaranteed to be active.
This technique results in a (typically periodic) schedule of the wake-up intervals
of the nodes.

An optimal schedule may be computed either centrally, before deployment, or
online by the network itself, in a distributed fashion. Online techniques are prefer-
able in those cases in which the network topology may change, or is not known
a priori, and access to a central server is expensive or not available. These tech-
niques typically use information from neighboring nodes to iteratively refine the
local schedule [6, 19, 18, 7, 3, 2]. Of particular interest, in this case, is determining
whether the distributed algorithm converges to a solution, how far the solution is
from optimal, and how long the transient of the computation lasts.

Here, we consider the scheme proposed by Giusti et al. [6], and focus on the
problem of convergence. The considered algorithm computes a periodic schedule
over an epoch E, where each node wakes up for only a defined interval of time
W to save power. The procedure optimizes the coverage by scattering the wake-
up times of neighboring nodes (nodes that can communicate directly over the
radio channel), i.e., nodes are scheduled so that they wake up as far in time
as possible from neighboring nodes. The rationale behind this approach is the
assumption that neighboring nodes are more likely to cover the same area. This
is true when the sensing range and the radio range are comparable in length.
Scattering, in this case, results in a schedule where the wake-up intervals of nodes
covering the same area do not overlap, thus achieving a better coverage. While
this assumption is clearly an approximation, the technique is extremely simple
and relies solely on connectivity, instead of requiring exact position information.

More in detail, the wake-up scattering algorithm proposed in [6] starts from a
random schedule and then proceeds in rounds. At every round, nodes broadcast
their current wake-up time to all their neighbors. With this information, a node
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may construct a local copy of the current schedule, limited to information related
to its neighboring nodes. By inspecting this schedule, nodes update their wake-
up time to fall exactly in the middle between the closest neighboring nodes that
wake up immediately before and immediately after their current position in the
schedule. This way, a node tries to maximize its distance in time from the closest
(in time) neighboring node.

To formalize this procedure, consider N nodes n1, . . . , nN and let E be the
duration of the epoch. We denote by wi ∈ [0, E] the wake-up time of node ni.
Let also Vi be the set of nodes visible from node ni (i �∈ Vi). The wake-up time
of node ni at step k is then updated as follows:

wk+1
i = (1 − α) wk

i +
α

2

(
min
j∈Vi

{wk
j : wk

j ≥ wk
i } + max

j∈Vi

{wk
j : wk

j ≤ wk
i }
)

mod E,

(1)
where α ∈ [0, 1] controls the speed at which the position of the node in the
scheduled is updated during an iteration. The formula is ill-defined if the set
{wk

j : wk
j ≥ wk

i } is empty (because ni is the last node to wake up in the schedule
among its neighbors). In that case, according to the proposed algorithm, the
empty set is replaced with the set {wk

j : wk
j +E ≥ wk

i }, i.e., we wrap around the
schedule to consider the next nodes to wake up, which will be in the following
epoch. A similar wrap around is required when {wk

j : wk
j ≤ wk

i } is empty. Taking
this and the remainder operation into account makes the analysis of the model
difficult. In the next section we describe how to simplify the formulation by
switching our attention from the wake-up time to the distance in the schedule
between the nodes.

3 System Model

To study the convergence of the algorithm in Equation (1), it is convenient to
reason about the distance between the nodes (their relative position), rather
than about their absolute position in time (with the additional advantage of
abstracting away the exact position, which is irrelevant). The distance between
two nodes is always positive and between 0 and E. For each pair of nodes (ni, nj)
we define two distances: one, denoted

−→
d i,j that goes forward in time, the other,

denoted
←−
d i,j that goes backward. Since distances are always positive, we have

−→
d i,j =

{
wj − wi if wi ≤ wj ,
wj − wi + E otherwise.

←−
d i,j =

{
wi − wj if wj ≤ wi,
wi − wj + E otherwise.

From the definition above it follows that
←−
d i,j = E − −→

d i,j , (2)

and hence
max
j∈Vi

(
−→
d i,j) = max

j∈Vi

(E − ←−
d i,j) = E − min

j∈Vi

(
←−
d i,j).
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We are interested in computing the new distance between every pair of nodes
after an update. To do so, we first compute the amount ∆ by which each node
moves after the update. This is given by

∆k
i = wk

i − wk−1
i =

α

2

(
min
l∈Vi

(
−→
d k

i,l) − min
l∈Vi

(
←−
d k

i,l)
)

.

The distance between two nodes at iteration k + 1 can be computed as the
distance at iteration k corrected by the displacement. Hence,

−→
d k+1

i,j =
−→
d k

i,j − ∆k
i + ∆k

j , (3)
←−
d k+1

i,j =
←−
d k

i,j + ∆k
i − ∆k

j . (4)

The distance between two nodes remains bounded by 0 and E during the iter-
ations, i.e., the distances always belong to the set SE = {x ∈ R|0 ≤ x ≤ E}.

Theorem 1. Let ni and nj be nodes that see each other (i.e., nj ∈ Vi and
ni ∈ Vj). Let

−→
d 0

i,j ,
←−
d 0

i,j ∈ SE. Then, for all k > 0,
−→
d k

i,j ,
←−
d k

i,j ∈ SE.

Proof. By adding (3) and (4) we have
−→
d k+1

i,j +
←−
d k+1

i,j =
−→
d k

i,j +
←−
d k

i,j . From (2)

we have
−→
d 0

i,j +
←−
d 0

i,j = E, therefore, by induction,
−→
d k

i,j +
←−
d k

i,j = E. We will now
bound the displacement of the nodes at each iteration.

∆k
i =

α

2

(
min
l∈Vi

(
−→
d k

i,l) − min
l∈Vi

(
←−
d k

i,l)
)

≤ α

2
−→
d k

i,j

Also, since
−→
d i,j =

←−
d j,i (proof left to the reader),

∆k
j =

α

2

(
min
l∈Vj

(
−→
d k

j,l) − min
l∈Vj

(
←−
d k

j,l)
)

=
α

2

(
min
l∈Vj

(
←−
d k

l,j) − min
l∈Vj

(
−→
d k

l,j)
)

≥ −α

2
−→
d k

i,j

Therefore ∆k
i − ∆k

j ≤ α
2
−→
d k

i,j + α
2
−→
d k

i,j = α
−→
d k

i,j ≤ −→
d k

i,j . Hence, from (3),

−→
d k+1

i,j ≥ 0. (5)

Similarly, one shows that
←−
d k+1

i,j ≥ 0. Therefore, since their sum is E and they
are positive, we obtain the result.

The theorem above shows that nodes that see each other do not overtake each
other after an update, since their distance remains positive and bounded by E.

To prove the stability of the update rule, i.e., that the wake-up intervals
converges to a periodic schedule preserving the WSN power while ensuring the
area coverage, a state space description is needed. At this point, a straightforward
choice for the state vector is to contain all the possible N(N − 1) wake–up
distances among all the N nodes of the WSN. However, since in the update



Convergence of Distributed WSN Algorithms 185

equations (3) and (4) only the distances between nodes that see each other are
involved, a more interesting choice is to select the state variables among such
node distances.

Therefore, without loss of generality, consider Vi �= ∅, ∀i = 1, . . . , N , i.e. each
node sees at least another node1. Consider a state vector x whose entries are
the distances

−→
d i,l, ∀l ∈ Vi and for i = 1, . . . , N . Similarly, let y be the vector of

distances
←−
d i,l, ∀l ∈ Vi and for i = 1, . . . , N . Trivially, the number of elements

Nx in the state vector x depends on the visibility graph.
Introducing the notation ∆̄k−→

d
= α

2

(
minl∈Vj (

−→
d k

j,l) − minl∈Vi(
−→
d k

i,l)
)
, ∆̄k←−

d
=

α
2

(
minl∈Vj (

←−
d k

j,l) − minl∈Vi(
←−
d k

i,l)
)
, we can rewrite (3) and (4) as:

−→
d k+1

i,j =
−→
d k

i,j + ∆̄k−→
d

− ∆̄k←−
d
, (6)

←−
d k+1

i,j =
←−
d k

i,j − ∆̄k−→
d

+ ∆̄k←−
d
. (7)

With the proposed choice of the state variables, the update displacement ∆̄k−→
d

only depends on the distances in x, and ∆̄k←−
d

only on the distances in y. Rewrit-
ing (6) and (7) in matrix notation, yields[

x
y

]k+1

=
[
xk + Γ ′

xx
k + Γ ′′

x yk

yk − Γ ′
xx

k − Γ ′′
x yk

]
, (8)

where matrices Γ ′
x, Γ ′′

x collects the ±α/2 factors.
Observing that the invariance property (2) can be written as y = E1 − x,

where 1 ∈ RNx is the column vector with all entries equal to 1, the discrete time
evolution of system (8) is simplified as:

xk+1 = (INx + Γ ′
x − Γ ′′

x )xk + EΓ ′′
x 1 = Axk + bE. (9)

Therefore the stability of the system is related to the eigenvalues of A and to
the time response to the constant input E.

Since Γ ′
x in (8) is related only to ∆̄k−→

d
, it contains two entries in each row that

are equal to α/2 and −α/2 respectively. Similar considerations apply to Γ ′′
x , as

summarized in the following theorem.

Theorem 2. The rows of the system matrices Γ ′
x and Γ ′′

x have exactly two en-
tries that are not equal to zero. Furthermore, the sum of the elements of each
rows is zero.

A consequence of Theorem 2 is that the discrete time system (9) is autonomous

xk+1 = (INx + Γ ′
x − Γ ′′

x )xk = Axk, (10)

and it has, at least, one eigenvalue equals to one. Hence, x contains the number
of elements that are sufficient for the whole system dynamic description. Never-
theless, it may contain redundant variables, as the following example highlights.

1 Blind nodes have no dynamics and do not participate to the dynamic of the other
nodes.
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Example 1. Let us consider a network with N = 3, where n1 sees only n2 and
n3 sees only n2. Without loss of generality, assume w1 < w2 < w3. The pro-
posed choice of state variables yields x = [

−→
d 1,2,

−→
d 2,3,

−→
d 3,2,

−→
d 2,1]T . Notice that

−→
d 2,1 = E − −→

d 1,2. Hence it can be erased without loss of information. Nonethe-
less, erasing

−→
d 2,1 (and, hence, substituting the term

−→
d 2,1 =

←−
d 1,2 in ∆̄k←−

d
of

equation (6)) yields to an input vector b̂ = [α/2, 0, 0]T that makes the stability
analysis more complex in the general case.

As shown in Section 5, if two nodes do not see each other, they can overtake
each other. This behavior, together with the fact that the updating equations (6)
and (7) are nonlinear, makes the matrices Γ ′

x and Γ ′′
x time variant. Therefore,

the overall system dynamics is switching. Defining σ(k) as the switching signal,
that takes values 1, . . . , S, the switching system xk+1 = Aσ(k)xk is thus derived,
with system matrices {A1, A2, . . . , AS}. The region of the state space in which
the system evolves using a dynamic Ai is a convex polyhedron delimited by a
set of subspaces of the type xi < xj , for appropriate choices of i and j.

On the other hand, in view of Theorem 1, a node cannot overtake any other
node that it sees. Therefore, if all nodes see their nearest neighbors, the appli-
cation of Equation (6) and (7) always produces the same dynamic A1 and the
system evolves with a linear and time–invariant dynamics. In the general case,
the number S of linear dynamics is upper bounded by the number of pairs of
nodes that do not see each other.

In the rest of the section, we will first study the stability properties of each
linear dynamic system Ai. Then we will extend our analysis to the global stability
properties for some specific topologies. For the sake of brevity, we will not focus
on the case N > 2, since for N = 2 the study of the behavior of the system is
straightforward.

4 Stability Analysis

4.1 Local Analysis

As discussed above, the evolution of the system is generally described by a linear
switching system. Our first task is to study the evolution of the system in each
of its linear dynamics.

Consider the set SNx

E = {x ∈ RNx |0 ≤ xi ≤ E}. The stability of each of the
linear dynamics of the system is showed in the subsequent Lemma.

Lemma 1. Given the system xk+1 = Axk and x0 ∈ SNx

E the following state-
ments hold true:

– xk ∈ SNx

E ∀k > 0;
– the system is stable;
– the equilibrium points x̄ belong to a linear subspace defined by the m ≥ 1

eigenvectors vi associated to the m eigenvalues λi = 1.
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Proof. By construction, each element of the state vector x is a distance between
two nodes that see each other, therefore, by Theorem 1, the nodes do not overtake
each other during an update – i.e. the set SNx

E is invariant for A. Since the
distances x0 are positive by hypothesis, the first statement holds.

The diagonal elements of the matrix A are equal to 1 − lα/2, where l is an
integer number in the set {0, . . . , 4}. Indeed, each element

−→
d i,j ∈ x may appear

up to four times in the update equations (6) and (7). Applying the Gerschgorin
principle to each row and recalling that 0 < α < 1, it follows that the eigenvalues
associated to l = 4 and l = 3 are inside the unit circle, while for l = 2 we have
at most an eigenvalue λ = 1. The case of l = 1 is more challenging, since the
Gerschgorin principle cannot be applied to demonstrate convergence, although
it states that Re(λi) > −1. However, since each element of the state vector x
is a distance between two nodes that see each other, Theorem 1 holds, so it
is not possible to have expansive dynamics, i.e. maxi |λi| = 1. Finally, since
cancellations are not possible, the presence of 1 on the diagonal of A (l = 0)
means that the associated distance does not contribute to its dynamic and to
any other dynamic, i.e. if the distance is

−→
d i,j , there is a node closer to i than

j and vice-versa. Therefore, applying the Gerschgorin principle to the column
results, again, in an eigenvalue λi = 1. Notice that if m eigenvalues λi = 1,
they must be simple, i.e. associated to distinct eigenvectors vi, since, again, no
expansive dynamics are allowed.

To show the stability of the system to a point x̄ =
∑m

i=1 βivi, it is sufficient
to prove that there is not a persistent oscillation in the system. Trivially, os-
cillating modes exists if there will be one or more simple eigenvalues λi = −1,
excluded by the aforementioned Gerschgorin analysis, or in the presence of com-
plex eigenvalues. Since complex eigenvalues do not exist (indeed xk ≥ 0 ∀k > 0),
the Lemma is proved.

As an immediate consequence of the above, if we perturb the system state from
an equilibrium point that is not on a switching surface, i.e., a surface delimited
by constraints of the type

−→
d i,j =

−→
d i,l, l, j ∈ Vi and ∀i = 1, . . . , N , the system

will recover its equilibrium. In plain words, the wake-up scattering algorithm
converges if we initialize the vector of wake-up times with an initial value close
to a fixed point and far enough from a switching surface. Unfortunately, since
the property is local, we are not able to easily quantify the maximum amount
of the allowed perturbation.

4.2 Global Analyis

The result described above does not per se ensure convergence starting from
a general initial condition. However, there are some interesting topologies for
which such global “provisions” can indeed be given.

Visibility of the nearest neighbors. In case of visibility of the nearest neigh-
bors, the topology of the system structurally prevents any switch. Therefore the
local stability results that we stated above for each linear dynamic have, in this
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case, global validity. In other words, the wake-up scattering converges from any
positive initial assignment for the wake-up times.

The complete visibility topology, i.e., Vi = j, ∀i, j = 1, . . . , N, ∀j �= i, and the
cyclic topology have been explicitly considered in the literature on the consensus
problem ( [8,11]). Indeed, choosing only the entries of x equal to minl∈Vi(

−→
d i,l) for

i = 1, . . . , N , hence x ∈ RN , the discrete time system (10) is again autonomous
and its dynamic matrix A turns out to be doubly stochastic and circulant ( [12]).
Therefore, it is possible to determine the closed form of its eigenvalues and the
equilibrium point ( [11]), the rate of convergence with respect to the number
of nodes ( [15]) and the network communication constraints to accomplish the
desired task ( [5]). We will not consider this case any further (a numeric example
is presented below).

Removing one link to the nearest neighbor. For this case, we start from a
complete graph and remove one link to the nearest neighbor. In this case, we end
up with two nodes, say j and p, that do not see each other and are the nearest
ones to each other. This situation is depicted in Figure 1.(A). Consider the two
update laws with respect to node i (nearest neighbor to j):

−→
d k+1

i,p =
−→
d k

i,p +
α

2
(
−→
d k

p,f − −→
d k

i,j) − α

2
(
−→
d k

i,p − −→
d k

z,i)
−→
d k+1

i,j =
−→
d k

i,j +
α

2
(
−→
d k

j,f − −→
d k

i,j) − α

2
(
−→
d k

i,j − −→
d k

z,i)

The update law of the distance
−→
d k

j,p =
−→
d k

i,p − −→
d k

i,j is

−→
d k+1

j,p =
−→
d k+1

i,p − −→
d k+1

i,j =
(
1 − α

2

)−→
d k

j,p +
α

2
(
−→
d k

p,f − −→
d k

j,f ) = (1 − α)
−→
d k

j,p.

Thereby, even though the nodes do not see each other, they do not overtake each
other and will, eventually, occupy the same time position. Hence, the switching
never happens and the system will converge as in the complete visibility topology
with N − 1 nodes.

Removing four links to the nearest neighbor. Consider a more involved
condition, in which two pairs of nodes do not see their nearest neighbor, as
in Figure 1.(B). Consider the distances of

−→
d k

j,p =
−→
d k

i,p − −→
d k

i,j and
−→
d k

l,f =
−→
d k

l,w − −→
d k

f,w. Noticing that
−→
d k

p,f − −→
d k

j,l =
−→
d k

l,f − −→
d k

j,p, one gets

−→
d k+1

j,p = (1 − α)
−→
d k

j,p +
α

2
−→
d k

l,f

−→
d k+1

l,f = (1 − α)
−→
d k

l,f +
α

2
−→
d k

j,p,

that is a linear system with a pair of real eigenvalues: λ1 = 1 − α/2 and λ2 =
1 − 3α/2. We can distinguish two case: 1) λ1 > 0, λ2 > 0, 2) λ1 > 0 or λ2 < 0.
In the first case (corresponding to 0 < α ≤ 2/3), we can easily see that for each
initial condition there is a maximum time beyond which switchings no longer
occur. Then, recalling Lemma 1, global stability is ensured. In the second case,
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(A) (B)

Fig. 1. Visibility and proximity of the partial visibility topology. Nearest neighbors are
the closest nodes in clockwise and counter–clockwise direction, i.e. the nearest neighbor
to l are p and j. Visibility is depicted with squares and circles respectively. (A) p �∈ Vj

and j �∈ Vp. (B) p, f �∈ Vj , p, f �∈ Vl, j, l �∈ Vp, j, l �∈ Vf .

we cannot rule out an infinite number of switchings determined by the oscillating
behavior of the power of the negative real eigenvalue. Even so, we get

−→
d k

j,p → 0

and
−→
d k

l,f → 0. As a result the two pair of nodes will eventually behave as a single
node with complete visibility and the network will stabilize on the equilibrium
point a network with complete visibility would have with N − 2 nodes.

The same approach can also be used if, for example, node f is removed from
the network, which implies that the symmetry among the nodes with partial
neighbor visibility is no longer valid. From the previous analysis it follows that

−→
d k+1

j,p = (1 − α)
−→
d k

j,p +
α

2
−→
d k

l,w.

Since
−→
d k

l,w > 0 for k > 0,
−→
d j,p → −→

d l,w/2 > 0. The same statement holds

also for
−→
d k

p,l, hence node p will converge to the midpoint between j and l. The
number of switching is then limited in time also in this case.

5 Numerical Examples

In this section, we provide some numerical evidence of the effectiveness of the
approach. The section is composed of two parts. In the first part, we show the
convergence properties of the algorithm in a simple example. In the second one,
we show how the algorithm converges to a schedule achieving a good coverage
of the area the WSN is deployed on.
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Fig. 2. Visibility Graph for the first scenario considered in Section 5.1

5.1 Convergence Properties

For this set of simulations, we consider a set of 6 nodes in two different scenarios:
complete visibility and partial visibility. In the latter case, we assume the visibility
graph shown in Figure 2. In both cases we consider a duration for the epoch (i.e.,
the period used for the schedule) equal to 5 and we set initial wake-up times to
the value w(0) = [1, 1.15, 1.1, 0.9, 3.5, 3.1] and the parameter α = 0.3.

For partial visibility, the application of the wake-up scattering algorithm yields
the evolution of the wake-up times depicted in Figure 3.(A). As it is possible to
see, some of the nodes “overtake” each other. However, as we discussed above, if
we study the dynamics of the distances between the wake-up times of the nodes
that see each other (which can be considered as state variables), we deal with a
convergent linear dynamic as shown in Figure 3.(B).

In the case of complete visibility, as discussed above we can make much
stronger claims than simple convergence. Indeed, not only are we able to con-
clude that the wake-up times of the nodes will be evenly spaced out (in the
steady state), but we can also compute the rate of convergence. In Figure 4.(A),
we report the evolution of the wake-up times. As we discussed in Section 4, to
properly describe the dynamics of the system, it is appropriate to rename the
nodes so that their initial wake-up times are ordered in increasing order. After
this renaming a convenient choice of state variables is:
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Fig. 3. Convergence in the case of partial visibility. (A) wake-up times, (B) state vari-
ables.
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X =

⎡⎢⎢⎢⎢⎣
−→
d 1, 2 −−→

d 2, 3−→
d 2, 3 −−→

d 3, 4

. . .−→
d 5, 6 −−→

d 6, 1−→
d 1, 2 +

−→
d 2, 3 +

−→
d 3, 4 +

−→
d 4, 5 +

−→
d 5, 6 +

−→
d 6, 1

⎤⎥⎥⎥⎥⎦
As discussed above, this vector provably converges to [0, 0, . . . , E] with a rate
dictated by the second eigenvalue. Its dynamic matrix is a circulant matrix
and its eigenvalues can be computed in closed form. The largest eigenvalue is 1
and the second one is 0.85 (see [11]) . Therefore, the convergence decay rate is
≈ 0.85k, as shown in Figure 4.(B).

5.2 Coverage Properties

In order to show the performance of the wake-up scattering algorithm for the
coverage problem, we consider a very simple deployment consisting of 10 nodes.
For the sake of simplicity and without loss of generality, we consider a rectangular
sensing range for the nodes. The nodes are randomly distributed over a 500×500
bi-dimensional area. The resulting deployment is shown in Figure 5.(A). We
consider a period for the schedule equal to 5 time units and a wake-up interval
for the nodes equal to 1. Therefore, each node is awake for 20% of the total time.

Several regions of the considered arena are covered by multiple nodes. There-
fore, a good schedule is one where the wake-up times of nodes sharing “large” areas
are far apart. Using the algorithm presented in [16], we come up with an optimal
schedule, where an average of 52.94% of the “coverable” area (i.e., the area actu-
ally within the sensing range of the nodes) is actually covered. The application of
the wake-up scattering algorithm over 100 iterations, assuming complete visibility
between the nodes, produces the result shown in Figure 5.(B). The attained rela-
tive coverage is 47.3%. The deviation from the optimal solution is in this case lower
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Fig. 4. Convergence in the case of total visibility. (A) wake-up times, (B) state variables
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Fig. 5. The coverage scenario. (A) Spatial distribution of the nodes, (B) Evolution of
the ratio between covered area and coverable area.

than 10% of the optimal coverage. The result is particularly interesting because
the coverage problem is known to be exponential, while the wake-up scattering
algorithm operates in polynomial time and is entirely distributed.

6 Conclusions

In this paper, we have presented convergence results of a distributed algorithm
used for maximizing the lifetime of a WSN. We have focused our attention on an
algorithm recently proposed in the literature, showing how its convergence can
be cast into a stability problem for a linear switching system. We have found
local stability results in the general case, and global stability results for specific
topologies of the WSN.

Several issues have been left open and will offer interesting opportunities for
future research. The first obvious point to address is to study global stability for
general topologies. Another point is to study conditions under which the wake-
up scattering algorithm produces a good coverage, developing improvements for
the cases in which the result is not satisfactory. From a practical view–point,
the scattering algorithm here presented reduces its performance if node clock
synchronization is not guaranteed or in the presence of communication delays.
Future analysis will consider algorithm convergence also in the presence of such
random nuisances.
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Abstract. We show that regarding finite automata (FA) as discrete,
time-invariant linear systems over semimodules, allows to: (1) express
FA minimization and FA determinization as particular observability and
reachability transformations of FA, respectively; (2) express FA pumping
as a property of the FA’s reachability matrix; (3) derive canonical forms
for FAs. These results are to our knowledge new, and they may support a
fresh look into hybrid automata properties, such as minimality. Moreover,
they may allow to derive generalized notions of characteristic polynomials
and associated eigenvalues, in the context of FA.

1 Introduction

The technological developments of the past two decades have nurtured a fas-
cinating and very productive convergence of automata- and control-theory. An
important outcome of this convergence are hybrid automata (HA), a popular
modeling formalism for systems that exhibit both continuous and discrete be-
havior [3,11]. Intuitively, HA are extended finite automata whose discrete states
correspond to the various modes of continuous dynamics a system may exhibit,
and whose transitions express the switching logic between these modes.

HA have been used to model and analyze embedded systems, including auto-
mated highway systems, air traffic management, automotive controllers, robotics
and real-time circuits. They have also been used to model and analyze biologi-
cal systems, such as immune response, bio-molecular networks, gene-regulatory
networks, protein-signaling pathways and metabolic processes.

The analysis of HA typically employs a combination of techniques borrowed
from two seemingly disjoint domains: finite automata (FA) theory and linear
systems (LS) theory. As a consequence, a typical HA course first introduces one
of these domains, next the other, and finally their combination. For example,
it is not unusual to first discuss FA minimization and later on LS observability
reduction, without any formal link between the two techniques.

In this paper we show that FA and LS can be treated in a unified way, as FA
can be conveniently represented as discrete, time-invariant LS (DTLS). Conse-
quently, many techniques carry over from DTLS to FA. One has to be careful
however, because the DTLS associated to FA are not defined over vector spaces,
but over more general semimodules. In semimodules for example, the row rank
of a matrix may differ from its column rank.
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© Springer-Verlag Berlin Heidelberg 2009
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In particular, we show that: (1) deterministic-FA minimization and nondeter-
ministic-FA determinization [2] are particular cases of observability and reach-
ability transformations [5] of FA, respectively; (2) FA pumping [2] is a property
of the reachability matrix [5] associated to an FA; (3) FA admit a canonical FA
in observable or reachable form, related through a standard transformation.

While the connection between LS and FA is not new, especially from a
language-theoretic point of view [2,6,10], our observability and reachability re-
sults for FA are to our knowledge new. Moreover, our treatment of FA as DTLS
has the potential to lead to a knew understanding of HA minimization, and of
other properties common to both FA and LS.

The rest of the paper is organized as follows. Section 2 reviews observability
and reachability of DTLS. Section 3 reviews regular languages, FA and gram-
mars, and introduces the representation of FA as DTLS. Section 4 presents our
new results on the observability of FA. Section 5 shows that these results can
be used to obtain by duality similar results for the reachability of FA. In Sec-
tion 6 we address pumping and minimality of FA. Finally, Section 7 contains our
concluding remarks and directions for future work.

2 Observability and Reachability Reduction of DTLS

Consider a discrete, time-invariant linear system (DTLS) with no input, only
one output, and with no state and measurement noise. Its [I, A, C], state-space
description in left-linear form is then given as below [5]:1

x(0) = I, xT (t + 1) = xT (t)A, y(t) = xT (t)C
where x is the state vector of dimension n, y is the (scalar) output, I is the initial
state vector, A is the state transition matrix of dimension n×n, C is the output
matrix of dimension n×1, and xT is the transposition of x.

Observability. A DTLS is called observable, if its initial state I can be deter-
mined from a sequence of observations y(0), . . . , y(t − 1) [5].

Rewriting the state-space equations in terms of x(0)= I and the given output
up to time t−1 one obtains the following output equation:

[y(0) y(1) . . . y(t − 1)] = IT [C AC . . . At−1C] = IT Ot

Let X be the state space and W = span[C AC. . . AkC. . .] be the A-cyclic subspace
(A-CS) of X generated by C. Since C �=0, the dimension of W is 1≤ k ≤n, and
[C AC. . .Ak−1C] is a basis for W [7].2 As a consequence, for each t≥ k, there
exist scalars a0. . .ak−1 such that AtC = (C)a0 + . . .+ (Ak−1C)ak−1.

If k <n then setting xT Ot =
∑k−1

i=0 (AiC)fi(x1, . . ., xn) to 0 results in k linear
equations fi(x1, . . ., xn)= 0 in n unknowns, as AiC are linearly independent for
i∈ [0, k−1]. Hence, there exist n−k linearly independent vectors x, such that
xT Ot =0, i.e. the dimension of the null space N (Ot)=N (On) is n− k and the
rank ρ(Ot)= ρ(On)= k. If k = n then N (On)= {0}. The set N (On) is called the
unobservable space of the system because y(s)=0 for all s if x(0)∈N (O), and
the matrix O = On is called the observability matrix.
1 The left-linear representation is more convenient in the following sections.
2 This fact is used by the Cayley-Hamilton theorem.
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If ρ(O)= k < n then the system can be reduced to an observable system of
dimension k. The reduction is done as follows. Pick columns C, AC, . . . , Ak−1C
in O and add n− k linearly independent columns, to obtain matrix Q. Then
apply the similarity transformation xT =xT Q, to obtain the following system:

xT (t + 1) = xT (t)AQ = xT (t)Q−1AQ = xT (t)A
y(t) = xT (t)C = xT (t)Q−1C = xT (t)C

The transformation is shown in Figure 1, where ni are the standard basis vectors
for n-tuples (ni is 1 in position i and 0 otherwise), and qi are the column vectors
in Q. Each column i of A is the representation of Aqi in the basis Q, and C is
the representation of C in Q. Since q1, . . . , qk is a basis for W , all Ai,j and Ci

for j ≤ k ≤ i are 0. Hence, the new system has the following form:

[xT
o (t + 1) xT

o (t + 1)] = [xT
o (t) xT

o (t)]
[

Ao A12

0 Ao

]
y(t) = [xT

o (t) xT
o (t)]

[
Co

0

]
where xo has dimension k, xo has dimension n − k, and Ao has dimension k×k.
Instead of working with the unobservable system [A, C] one can therefore work
with the reduced, observable system [Ao, Co] that produces the same output.

Reachability. Dually, the system S = [I, A, C] is called reachable, if its final
state C can be uniquely determined from y(0), . . ., y(t−1). Rewriting the state-
space equation in terms of C, one obtains the following equation:

[y(0) y(1) . . . y(t − 1)]T = [I (IT A)T . . . (IT At−1)T ]T C = RtC

Since RtC =(CT RT
t )T and (IT At−1)T = (AT )t−1I, the reachability problem of

S = [I, A, T ] is the observability problem of the dual system ST = [CT , AT , IT ].
Hence, in order to study the reachability of S, one can study the observability
of ST instead. As for observability, ρ(Rt) = ρ(Rn), where n is the dimension of
the state space X . Matrix R = Rn is called the reachability matrix of S.

Let k = ρ(R). If k =n then the system is reachable. Otherwise, there is an
equivalence transformation xT = xT Q which transforms S into a reachable sys-
tem Sr = [Ir, Ar, Cr] of dimension k. The reachability transformation of S is the
same as the observability transformation of ST .

3 FA as Left-Linear DTLS

Regular expressions. A regular expression (RE) R over a finite set Σ and its
associated semantics L(R) are defined inductively as follows [2]: (1) 0∈RE and
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L(0)= ∅; (2) ε∈RE and L(ε)= {ε}; (3) If a∈Σ then a∈RE and L(a)= {a};
(4) If P, Q∈RE then: P + Q∈RE and L(P + Q)=L(P )∪L(Q); P ·Q∈RE and
L(P ·Q)=L(P )×L(Q); P ∗ ∈RE and L(P ∗)= ∪n∈N L(P )n. The denotations
of regular expressions are called regular sets.3

For example, the denotation L(R1) of the regular expression R1 = aa∗+ bb∗,
is the set of all strings (or words) consisting of more than one repetition of a or
of b, respectively. It is custom to write a+ for aa∗, so R1 = a+ + b+. A language
L is a subset of Σ∗ and consequently any regular set is a (regular) language.

If two regular expressions R1, R2 denote the same set one writes R1 =R2. In
general, one can write equations whose indeterminates and coefficients represent
regular sets. For example, X = Xα+ β. Its least solution is X =βα∗ [2].

The structure S =(Σ∗, +, ·, 0, ε) is a semiring, as it has the following proper-
ties: (1) A = (Σ∗, +, 0) is a commutative monoid; (2) C = (Σ∗, ·, ε) is a monoid;
(3) Concatenation left (and right) distributes over sum; (4) Left (and right)
concatenation with 0 is 0. Matrices Mm×n(S) over a semiring with the usual
matrix sum and multiplication also form a semiring, but note that in a semiring
there is no inverse operation for addition and multiplication, so the inverse of
a square matrix is not defined in a classic sense. If V =Mm×1(A) and scalar
multiplication is concatenation then R= (V ,S, ·) is an S-right semimodule [10].

Finite automata. A finite automaton (FA) M = (Q, Σ, δ, I, F ) is a tuple where
Q is a finite set of states, Σ is a finite set of input symbols, δ : Q×Σ →P(Q) is
the transition function mapping each state and input symbol to a set of states,
I ⊆Q is the set of initial states and F ⊆Q is the set of final states [2]. If I and
δ(q, a) are singletons, the FA is called deterministic (DFA); otherwise it is called
nondeterministic (NFA). Three examples of FAs are shown in Figure 2.

Let δ∗ extend δ to words. A word w ∈Σ∗ is accepted by FA M if for any
q0 ∈ I, the set δ∗(q0, w)∩F �= ∅. The set L(M) of all words accepted by M is
called the language of M . For example, L(M1) = L(a+ + b+).

Grammars. A left-linear grammar (LLG) G = (N, Σ, P, S) is a tuple where N
is a finite set of nonterminal symbols, Σ is a finite set of terminal symbols disjoint
from N , P ⊆N×(N ∪ Σ)∗ is a finite set of productions4 of the form A→Bx or
A→x with A, B ∈N and x∈Σ∪{ε}, and S ∈N is the start symbol [2].

A word a1 . . . an is derived from S if there is a sequence of nonterminals
N1 . . .Nn in N such that S →N1 a1 and Ni−1 →Ni ai for each i∈ [2, n]. The set
L(G) of all words derived from S is called the language of G.

3 The concatenation operator · is usually omitted when writing a regular expression.
4 It is custom to write pairs (x, y) ∈ P as x → y.
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Equivalence. FAs, LLGs and REs are equivalent, i.e. L =L(M) for some FA
M if and only if L =L(G) for some LLG G and if and only if L =L(E) for some
RE E [2]. In particular, given an FA M =(Q, Σ, δ, I, F ) one can construct an
equivalent LLG G=(Q ∪ {y}, Σ, P, y) where P is defined as follows: (1) y → q
for each q ∈F , (2) q → ε, for q ∈ I, and (3) r → q a if r = δ(q, a). Replacing each
set of rules A→α1, . . ., A→αn with one rule A→α1+ . . .+αn leads to a more
concise representation. For example the LLG G1 derived from M1 is:

x1 → ε, y → x2 + x3, x2 → x1a + x2a, x3 → x1b + x3b

Each nonterminal denotes the set of words derivable from that nonterminal.
One can regard G1 as a linear system S over REs. One can also regard G1 as a
discrete, time-invariant linear system (DTLS) S1 defined as below:

xT (t + 1) = xT (t)A, y(t) = xT (t)C

I =

⎡⎣ ε
0
0

⎤⎦ A =

⎡⎣0 a b
0 a 0
0 0 b

⎤⎦ C =

⎡⎣0
ε
ε

⎤⎦
The initial state of S1 is the same as the initial state of DFA M1 and it cor-
responds to the production x1 → ε of LLG G1. The output matrix C sums up
the words in x2 and x3. It corresponds to the final states of DFA M1 and to
the production y →x2+x3 in LLG G1. Matrix A is obtained from DFA M1 by
taking v ∈Aij if δ(xi, v)= xj and Aij = 0 if δ(xi, v) �=xj for all v ∈Σ. The set
of all outputs of S1 over time is ∪t∈N{y(t)} = IT A∗C = L(M1).

Matrix A∗ can be computed in R as described in [6]. This provides one method
for computing L(M). Alternatively, one can use the least solution of an RE
equation, and apply Gaussian elimination. This method is equivalent to the
rip-out-and-repair method for converting an FA to an RE [2].

In the following, all four equivalent representations, RE, FA, LLG and DTLS,
of a finite automaton, are simply referred to as an FA. The observability/reacha-
bility problem for an FA is to determine its initial/final state given y(t) for
t∈ [0, n−1]. In vector spaces, these are unique if the rank of O/R is n. In semi-
modules however, the row rank is generally different from the column rank.

4 Observability Transformations of FA

Lack of finite basis. Let I be a set of indices and R be an S-semimodule. A set
of vectors Q = {qi | i∈ I} in R is called linearly independent if no vector qi ∈Q
can be expressed as a linear combination

∑
j ∈ (I−i) qj aj of the other vectors in

Q, for arbitrary scalars aj ∈S. Otherwise, Q is called linearly dependent. The
independent set Q is called a basis for R if it covers R, i.e. span(Q) = R [4].

E0 E1 E2 C AC A2C

E =

⎡⎣0 1a2+1b3 1a2a2+1b3b3
2 2a2 2a2a2
3 3b3 3b3b3

⎤⎦ O =

⎡⎣0 a+b a2+b2

ε a a2

ε b b2

⎤⎦ x1

x2

x3
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Now consider DFA M1. Its observability matrix O is given above. Each row
i of O consists of the words accepted by M1 starting in state xi sorted by their
length in increasing order. Each column j of O is the vector Aj−1C, consisting of
the accepted words of length j−1 starting in xi. The corresponding executions
E0, E1 and E2 of DFA M1 are also given above.

The columns of O belong to the A-cyclic subspace of X generated by C (A-
CS), which has finite dimension in any vector space. In the S-semimodule R,
where S is the semiring of REs, however, A-CS may not have a finite basis.

For example, for DFA M1 it is not possible to find REs rij and vectors Aij C

such that AiC =
∑k

j=1(A
ij C)rij , for ij < i. Intuitively, abstracting out the states

of an FA from its executions, eliminates linear dependencies.
The state information included in E1 and E2 allows to capture their linear

dependence: E2 is obtained from E1 by substituting the last occurrence of states
2 and 3 with the loops 2a2 and 3a3, respectively. Regarding substitution as a
multiplication with a scalar, one can therefore write E2 = E1(2a2 + 3b3).

Indexed boolean matrices. In the above multiplication we tacitly assumed
that, e.g. (1a2)(3b3) = 0, because a b-transition valid in state 3 cannot be taken
in states 1 and 2. Treating independently the σ-successors/predecessors of an FA
M = (Q, Σ, δ, I, F ), for each input symbol σ ∈Σ, allows to capture this intuition
in a “stateless” way. Formally, this is expressed with indexed boolean matrices
(IBM), defined as follows [12]: (1) Ci = (i∈F ); (2) Ii = (i∈ I); (2) For each
σ ∈Σ, (Aσ)ij = (δ(i, σ)= j); and (3) Aσ1...σn = Aσ1 . . .Aσn . For example, one
obtains the following matrices for the DFA M1:

I =

⎡⎣1
0
0

⎤⎦ Aa =

⎡⎣0 1 0
0 1 0
0 0 0

⎤⎦ Ab =

⎡⎣0 0 1
0 0 0
0 0 1

⎤⎦ C =

⎡⎣0
1
1

⎤⎦
Indexing enforces a word by word analysis of acceptance and ensures, for exam-
ple for M1, that AabC =Aa(AbC)= 0. Consequently, for every word w ∈Σ∗ the
vector AwC has row i equal to 1, if and only if, w is accepted starting in xi.

Ordering all vectors AwiC, for wi ∈Σi, in lexicographic order, results in a
boolean observability matrix O = [Aw0C . . . AwmC]. This matrix has n rows and
|Σ|n−1 columns. Its column rank is the dimension of the A-CS W of the boolean
semimodule B because all Oij ∈ B. Hence it is finite and less than 2n−1.

C AaC AbC AaaC AabC AbaC AbbC

O =

⎡⎣0 1 1 1 0 0 1
1 1 0 1 0 0 0
1 0 1 0 0 0 1

⎤⎦ x1

x2

x3

For example, matrix O for M1 is shown above. It is easy to see that vectors C,
AaC and AbC are independent. Moreover, AaaC =AaC, AbbC = AbC. Hence, all
vectors AwC, for w ∈{a, b}∗, are generated by the basis Q = [C, AaC, AbC].

The structure of O is intimately related to the states and transitions of the
associated FA. Column C is the set of accepting states, and each column AwC
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Fig. 3. (a) FA M4. (b) FA M5. (c) FA M6.

is the set of states that can reach C by reading word w. In other words, AwC is
the set of all w-predecessors of C.

In the following we do not distinguish between an FA and its IBM representa-
tion. The latter is used to find appropriate bases for similarity transformations
and prove important properties about FA. To this end, let us first review and
prove three important properties about the ranks of boolean matrices.

Theorem 1. (Rank independence) If n≥ 3 then the row rank ρr(O) and the
column rank ρc(O) of a boolean matrix O may be different.

Proof. Consider the observability matrices5 of FA M4 and M5 shown in Figure 3:
ρr(O(M4)) = 3, ρc(O(M4)) = 4, and ρr(O(M5)) = 4, ρc(O(M5)) = 3.

C AaC AbC AcC C AaC AbC

O(M4) =

⎡⎣0 0 1 1
0 1 1 0
1 1 0 1

⎤⎦x1

x2

x3

O(M5) =

⎡⎢⎢⎣
0 0 1
0 1 0
1 1 0
1 0 1

⎤⎥⎥⎦
x1

x2

x3

x4

To ensure that an FA is transformed to an equivalent DFA, it is convenient
to introduce two more ranks: ρd

r(O) and ρd
c(O). They represent the number of

distinct rows and columns in O, respectively. Hence, these ranks consider only
linear dependencies in which the sum is identical to its summands.

Theorem 2. (Rank bounds) The various row and column ranks are bounded
and related to each other by the following inequalities:

1≤ ρr(O)≤ ρd
r(O)≤n, 1≤ρc(O)≤ ρd

c(O)≤ 2n−1, 1≤ ρc(O)≤Cn
�n/2� + (n/2)

Proof. First and second inequalities are obvious. For the third observe that:
(1) The set of combinations Cn

i is independent; (2) It covers all Cn
j with j > i;

(3) Only i−1 independent vectors may be added to Cn
i from all Cn

j , with j < i.

The A-CS of B is very similar to the A-CS of a vector space. For example, let
AkC be the set of all vectors AwC with |w|= k. Then the following holds.

Theorem 3. (Rank computation) If all vectors in AkC are linearly dependent
on a basis Q for [C AC . . . Ak−1C], then so are all the ones in AjC, with j ≥ k.

Proof. The proof is identical to the one for vector spaces, except that induction
is on the length of words in AwC, and AkC are sets of vectors.

5 We show only the basis columns of the observability matrix.
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Fig. 4. (a) FA M7. (b) FA M8.

Observability transformations. The four ranks discussed above suggest the
definition of four equivalence transformations xT =xT Q, where Q consists of the
independent (or the distinct), rows (or columns) in O, respectively. Each state
q ∈Q of the resulting FA M , is therefore a subset of the states of M , and each
σ-transition to q in M is computed by representing its σ-predecessor Aσq in Q.

Row-basis transformations. These transformations utilize sets of observably-
equivalent states in M to build the independent states q ∈Q of M . The length
of the observations, necessary to characterize the equivalence, is determined by
Theorem 3. The equivalence among state-observations itself, depends on whether
ρr(O) (linear equivalence) or ρd

r(O) (identity equivalence) is used.
Using ρr(O), one fully exploits linear dependencies to reduce the number of

states in M . For example, suppose that x3 = x1 + x2, and that x1 and x2 are
independent. Then one can replace the states x1, x2 and x3 in M , with states
q1 = {x1, x3} and q2 = {x2, x3} in M . This generalizes to multiple dependencies,
and each new state q ∈Q contains only one independent state x. Consequently,
the language L(q)=L(x). Among the states q ∈Q, the state C is accepting, and
each q that contains an initial state in M is initial in M .

The transitions among states q ∈Q are inferred from the transitions in M .
The general rule is that qi

σ→ qj , if all states in qi are σ-predecessors of the states
in qj . However, as Q is not necessarily a column basis, the σ-predecessor of a
state like q1 above, could be either x1 or x3, which are not in Q. Extending
x1 to q1 does not do any harm, as L(q1)=L(x1). Ignoring state x3 does not
do any harm either, as x3 is covered by x1 and x2, possibly on some other
path. These completion rules are necessary when computing the “inverse” of Q,
i.e. representing AQ in Q to obtain A.

Theorem 4. (Row reduction) Given FA M with ρr(O)= k < n, let R be a row
basis for O. Define Q = [q1, . . ., qk] as follows: for every i∈ [1, k] and j ∈ [1, n], if
row Oj is linearly dependent on Ri then qij =1; otherwise qij =0. Then a change
of basis xT = xT Q obeying above completion rules results in FA M that: (1) has
same output; (2) has states with independent languages.

Proof. (1) States q satisfy L(q)= L(x), where x is the independent state in q.
Transitions Aσ = Q−1[Aσq1. . .Aσqn], have Aσqi as the σ-predecessors of states
in qi. The role of Q−1 is to represent Aσqi in Q. If this fails, it is corrected as
discussed above. (2) Dependent rows have been identified with their summands.

For example, consider FA M7 in Figure 4(a). The observability matrix O of M7
is given below:6

6 We show only part of the columns in O.
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C AaC AbC AaaC AabC AbaC AbbC q1 q2 q3

O(M7) =

⎡⎢⎢⎣
0 0 0 1 0 1 0
0 1 0 1 0 0 0
1 1 0 1 0 1 0
0 1 0 1 0 1 0

⎤⎥⎥⎦
x1

x2

x3

x4

Q(M7) =

⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1
1 1 0

⎤⎥⎥⎦
Row x4 =x1 +x2. This determines the construction of Q as shown above. Using
Q in xT =xT Q, results in FA M8 shown in Figure 4(b). Note that Aaq1 = x4 has
been removed when representing Aaq1 in Q.

Using ρr(O) typically results in an NFA, even when starting with a DFA. This
is because vectors in Q may have overlapping rows, due to linear dependencies
in O. The use of ρd

r(O) ensures a resulting DFA, as columns do not overlap.
Identity equivalence also simplifies the transformation. First, Theorem 3 and

the computation of ρd
r can be performed on-the-fly as a partition-refinement: [C],

partitions states, based on observations of length 0; [C AC], further distinguishes
the states in previous partition, based on observations of length 1; and so on.
Second, no completion is ever necessary, as Aq is always representable in Q.

Theorem 5. (Deterministic row reduction) Given an FA M with ρd
r(O)= k <n

proceed as in Theorem 4 but using ρd
r(O). Then if M is a DFA, then so is M .

Proof. (1) Theorem 4 ensures correctness. (2) States in Q are disjoint. Hence,
no row in A= Q−1AQ has two entries for the same input symbol.

For example, let us apply Theorem 5 to the DFA M2 in Figure 2(b). The corre-
sponding observability matrix is shown below:

C AbC AabC AbbC q1 q2 q3

O(M2) =

⎡⎢⎢⎢⎢⎣
0 0 1 1
0 1 1 1
0 1 1 1
1 1 1 1
1 1 1 1

⎤⎥⎥⎥⎥⎦
x1

x2

x3

x4

x5

Q(M2) =

⎡⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

⎤⎥⎥⎥⎥⎦
Rows x2 = x3 and x4 =x5. This determines the construction of the basis Q as
shown above. Using this basis in the equivalence transformation, results in DFA
M3, which is shown graphically in Figure 2(c).

Corollary 1 (Myhill-Nerode theorem). Theorem 5 is equivalent to the DFA
minimization algorithm of the Myhill-Nerode theorem [2].

Column-basis transformations. These transformations pick Q as a column
basis for O. The definition of basis depends on the notion of linear independence
used, and this also impacts the column rank computation via Theorem 3.

Using ρr(O), one fully exploits linear dependencies, and chooses a minimal
column basis Q as the states of M . The transitions of M are then determined
by representing all the predecessors AQ of the states Q = [q1 . . . qk] of M in Q.
In contrast to the general row transformation, Aqi, for i∈ [1, k], is representable
in Q, as Q is a column basis for O. Hence, no completion is ever necessary. Like
in vector spaces, the resulting matrices A are in companion form.
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Fig. 5. (a) NFA M9. (b) DFA M10. (c) DFA M11. (d) NFA M12.

Theorem 6. (Column reduction) Given an FA M with ρc(O)= k < n. Define
Q as a column basis of O. Then a change of basis xT =xT Q results in FA M
with: (1) same output; (2) states with a distinguishing accepting word.

Proof. (1) Transitions Aσ =Q−1[Aσq1. . .Aσqn], have Aσqi as the σ-predecessors
of states in qi. The role of Q−1 is to represent Aσqi in Q, and this never fails.
(2) Dependent columns in O have been identified with their summands.

For example, consider the FA M5 shown in Figure 3(b) and its associated ob-
servability matrix, shown below of Figure 3(b). No row-rank reduction applies,
as ρr(O)= 4. However, as ρc(O)= 3, one can apply a column-basis reduction,
with Q as the first three columns of O. The resulting FA is shown in Figure 3(c).

The column-basis transformation for ρd
c(O) simplifies, as dependence reduces

to identity. Moreover, in this case M can be constructed on-the-fly, as follows:
Start with Q, Qn = [C]. Then repeatedly remove the first state q ∈Qn, and add
the transition p

σ→ q to A for each p∈Aq. If p �∈Q, then also add p at the end of
Q and Qn. Stop when Qn is empty. The resulting M

T
is deterministic.

Theorem 7. (Deterministic column transformation) Given FA M proceed as
in Theorem 6 but using ρd

c(O). Then M
T

is a DFA with |Q| ≤ 2n−1.

Proof. Each row of A
T

σ has a single 1 for each input symbol σ ∈Σ.

For example, consider the FA M11 shown in Figure 5(c). Construct the basis Q
by selecting all columns in O. Using this basis in the equivalence transformation
xT = xT Q, results in the FA M12 shown in Figure 5(d).

5 Reachability Transformations of FA

The boolean semiring B is commutative, that is ab = ba holds. When viewed
as a semimodule, left linearity is therefore equivalent to right linearity, that is∑

i∈ I xi ai =
∑

i∈ I ai xi. This in turn means that (AB)T =BT AT .
Consequently, in B the reachability of an FA M = [I, A, C] is reducible to the

observability of the FA MT = [CT , AT , IT ], and all the results and transforma-
tions in Section 4, can be directly applied without any further proof!

For illustration, consider the FA M9 shown in Figure 5(a). The reachability
matrix RT (M9) is given below. It is identical to O(MT

9 ).
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I AT
a I AT

b I AT
aaI AT

bbI AT
acI AT

bcI q1 q2 q3 q4

RT (M9) =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 1 1 0 0 0 0
0 0 0 1 1 1 1

⎤⎥⎥⎥⎥⎦
x1

x2

x3

x4

x5

Q(M9) =

⎡⎢⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 1 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎦
Each row i of RT corresponds to state xi. A column AT

wI of RT is 1 in row i iff
xi is reachable from I with wR, or dually, if state xi accepts w in MT .7

Row-basis transformations. These transformations utilize sets of reachability-
equivalent states in M to build the independent states q ∈Q of M . These states
are, as discussed before, the observability equivalent states of MT .

Theorem 8. (Row reduction) Given an FA M , Theorem 4 applied to MT re-
sults in an FA M with: (1) same output; (2) states with independent sets of
reaching words.
For example, in RT (M9) above, row x4 =x2 +x3. This determines the construc-
tion of the basis Q, also shown above. Using this basis in the equivalence trans-
formation, results in the DFA M10 shown in Figure 5(b).

Identifying linearly dependent states with their generators and repairing lone
σ-successors might preclude M

T
to be a DFA, even if MT was a DFA. Identifying

only states with identical reachability however, ensures it.

Theorem 9. (Deterministic row reduction) If MT is a DFA, then Theorem 5
applied to MT ensures that M

T
is also a DFA.

For example, let us apply Theorem 9 to the NFA M13 shown in Figure 6(a),
the dual of the DFA M2 shown in Figure 2(b). Hence, MT

11 = M2 is a DFA. The
reachability matrix RT (M13) is shown below. It is identical to O(M2).

I AT
b I AT

abI AT
bbI q1 q2 q3

RT (M13) =

⎡⎢⎢⎢⎢⎣
0 0 1 1
0 1 1 1
0 1 1 1
1 1 1 1
1 1 1 1

⎤⎥⎥⎥⎥⎦
x1

x2

x3

x4

x5

Q(M13) =

⎡⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

⎤⎥⎥⎥⎥⎦
7 We write wR for the reversed form of w.
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Fig. 7. (a) FA M15. (b) FA M16. (c) FA M17. (d) FA M18.

Rows x2 =x3 and x4 =x5. This determines the construction of the basis Q as
shown above. Using this basis in the equivalence transformation, results in NFA
M14, shown graphically in Figure 6(c). The FA MT

14 is a DFA, and MT
14 =M3.

Column-basis transformations. Given an FA M , these transformations con-
struct FA M by choosing a column basis of RT as the states Q of M .

The general form of the transformations uses the full concept of linear de-
pendency, in order to look for a column basis in RT . Hence, this transformation
computes the smallest possible column basis.

Theorem 10. (Column reduction) Given FA M , Theorem 6 used on MT results
in FA M with: (1) same output; (2) states reached with a distinguishing word.

Consider the NFA M4 shown in Figure 3(a). Neither a row nor a column-basis
observability reduction is applicable to M4. However, one can apply a column-
basis reachability reduction to M4. The matrix RT (M4) is given below.

I AT
a I AT

b I AT
c I q1 q2

RT (M4) =

⎡⎣1 0 0 0
1 0 0 0
0 1 1 1

⎤⎦ x1

x2

x3

Q(M4) =

⎡⎣1 0
1 0
0 1

⎤⎦
Columns 1 and 2 form a basis for RT . This determines the construction of Q as
shown above. Using Q in xT = xT Q results in NFA M15, shown in Figure 7(a).

In this case, the column-basis reachability transformation is identical to a
row-basis reachability transformation. Consequently, the latter transformation
would not require any automatic completion of the σ-successors qT Aσ of q ∈Q.

Given an FA M , the deterministic column-basis transformation, with column
rank ρd

c(R
T ), always constructs a DFA M . This construction is dual to the

deterministic column-basis observability transformation.

Theorem 11. (Deterministic column transformation) Given an FA M , Theo-
rem 7 applied to MT results in the DFA M .

Consider for example the NFA M17 shown in Figure 7(c). Its reachability matrix
RT (M17) is given below, where only the interesting columns are shown.

I AT
a I AT

b I q1 q2 q3

RT (M17) =
[

1 0 1
0 1 1

]
x1

x2
Q(M17) =

[
1 0 1
0 1 1

]
As columns one and two form a basis for RT , the general column-basis trans-
formation is the identity. The deterministic one is not, as it includes all distinct
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columns of RT in Q, as shown above. Using Q in xT =xT Q results in the DFA
M18 shown in Figure 7(d). This DFA has one more state, compared to M17.

Applying a deterministic column-basis transformation to an FA M , does not
necessarily increase the number of states of M . For example, applying such a
transformation to NFA M6 shown in Figure 3(c), results in the DFA M16 shown
in Figure 7(b), which has the same number of states as M6. Moreover, in this
case, the general and the deterministic column-basis transformations coincide.

Corollary 2 (NFA determinization algorithm). Theorem 11 is equivalent
to the NFA determinization algorithm [2].

6 The Pumping Lemma and FA Minimality

In previous sections we have shown that a control-theoretic approach to FA
complements, and also allows to extend the reach of, the graph-theoretic ap-
proach. In this section we give two additional examples: An alternative proof of
the pumping lemma [2]; A alternative approach to FA minimization. Both take
advantage of the observability and reachability matrices.

Theorem 12 (Pumping Lemma). If L is a regular set then there exists a
constant p such that every word w ∈L of length |w| ≥ p can be written as xyz,
where: (1) 0 < |y|, (2) |xz| ≤ p, and (2) xyiz ∈L for all i≥0

Proof. Consider a DFA M accepting L. Since M is deterministic, each column of
RT is a standard basis vector ni, and there are at most n such distinct columns
in RT . Hence, for every word w of length greater than n, there are words xyz =w
satisfying (1) and (2) such that IT Ax = IT Axy. Since IT Axyi = IT AxyAyi−1 , it
follows that IT AxyizC = IT AwC, for all i≥ 0.

Canonical Forms. Row- and column-basis transformations are related to each
other. Let Qc ∈Mi×j(B), Qr ∈Mi×k(B) be the observability column and row
basis for an FA M . Let Ac = Q−1

c AQc and Ar = Q−1
r AQr.

Theorem 13 (Row and column basis). There is a matrix R ∈Mk×j(B) such
that: (1) Qc = QrR; (2) Ac = R−1ArR; (3) Ar = RAcR

−1.

Proof. (1) Let B(m) be the index in O of the independent row of qm ∈Qr

and C(n) be the index in O of the independent column qn ∈Qc, and define
Rmn =OB(m)C(n), for m∈ [1, k], n∈ [1, j]. Then Qc = QrR; (2) As a consequence
Ac =(QrR)−1A(QrR)=R−1ArR; (3) This implies that Ar = RAcR

−1.

Hence, Ar is obtained through a reachability transformation with column basis
R after an observability transformation with column basis Qc. Let O and R
be the column basis observability and reachability transformations, respectively.
We call Mo = O(R(M)) and Mr = R(O(M)) the canonical observable and
reachable FAs of M , respectively.
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Theorem 14 (Canonical FA). For any FA M , R(Mo)=Mr and O(Mr)=Mo.

Minimal FA. Canonical FAs are often minimal wrt. to the number of states.
For example, M11 and M12 in Figure 5 are both minimal FAs. Moreover, FA
M11 is canonical reachable and FA M12 is canonical observable.

For certain FAs however, the canonical FAs are not minimal. A necessary
condition for the lack of minimality, is the existence of a weaker form of linear
dependence among the basis vectors of the observability/reachability matrices:
A set of vectors Q = {qi | i∈ I} in R is called weakly linearly dependent if there
are two disjoint subsets I1, I2 ⊂ I, such that

∑
i∈ I1

qi =
∑

i∈ I2
qi [8].

For example, the DFA M19 in Figure 8(a) has the canonical reachable FA M20
shown in Figure 8(b), which is minimal. The observability matrix of M20 shown
below, has 7 independent columns. The canonical observable FA of M19 and M20
has therefore 7 states! As a consequence, it is not minimal. Note however, that
AbC +AbbC =AabC +AbaC. Hence, the 7 columns are weakly dependent.

C AaC AbC AaaC AabC AbaC AbbC q1 q2 q3 q4 q5 q6

O(M20) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 1 1 0 1
0 1 1 0 1 0 0
0 0 1 0 1 0 0
1 0 0 0 0 0 0
0 0 1 0 0 1 0
1 1 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
x1

x2

x3

x4

x5

x6

Q(M20) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 1 0
1 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
Theorem 15 (Minimal FA). Given the observability matrix O of an FA M ,
choose Q as a set basis [13] of O, such that AQ is representable in Q. Then the
equivalence transformation xT =xT Q results in a minimal automaton.
Alternatively, minimization can be reduced to computing the minimal boolean
relation corresponding to O. For example, the Karnaugh blocks [9] in O(M20)
provide several ways of constructing Q. One such way is Q(M20) shown above,
where one block is the first column in O(M20), and the other blocks correspond
to its rows. The resulting FA is M21. Both alternatives lead to NP-complete
algorithms. Reachability is treated in a dual way, by manipulating R.

Since all equivalent FAs admit an equivalence transformation resulting in the
same DFA, and since from this DFA one can obtain all other FAs through an
equivalence transformation, all FAs are related through an equivalence transfor-
mation! This provides a cleaner way of dealing with the minimal FAs, when
compared to the terminal FA (incorporating all other FA), discussed in [1].
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7 Conclusions

We have shown that regarding finite automata (FA) as discrete, time-invariant
linear systems over semimodules, allows to unify DFA minimization, NFA deter-
minization, DFA pumping and NFA minimality as various properties of observ-
ability and reachability transformations of FA. Our treatment of observability
and reachability may also allow us to generalize the Cayley-Hamilton theorem
to FA and derive a characteristic polynomial. In future work, we would therefore
like to investigate this polynomial and its associated eigenvalues.
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Abstract. We investigate a new approach for solving boundary control
problems for dynamical systems that are governed by transport equa-
tions, when the control function is restricted to binary values. We con-
sider these problems as hybrid dynamical systems embedded with partial
differential equations and present an optimality condition based on sen-
sitivity analysis for the objective when the dynamics are governed by
semilinear convection-reaction equations. These results make the hybrid
problem accessible for continuous non-linear optimization techniques. For
the computation of optimal solution approximations, we propose using
meshfree solvers to overcome essential difficulties with numerical dissipa-
tion for these distributed hybrid systems. We compare results obtained
by the proposed method with solutions taken from a mixed inter pro-
gramming formulation of the control problem.

1 Introduction

Dynamical transport processes governed by first order hyperbolic partial differ-
ential equations (PDEs), in particular on metric graphs, model a wide variety of
complex problems in civil engineering such as gas or traffic flow, but also many
problems in chemical engineering as well as communication, information and
logistic areas [14]. Often these problems involve decisions for controlling these
dynamical processes at the boundaries, for instance turning on/off compressors,
switching valves or toggle traffic lights [10].

We consider these multiscale problems as hybrid dynamical systems embedded
with PDEs in which the implementation of switching is merely on a faster time
scale than the transportation. With very few exceptions, noting [4,13,1,12], these
problems have not been considered in the context of hybrid systems, though they
represent a potentially rich field of study [3].

In context of PDE constraint optimization, mixed integer programming is used
for solving such control problems, e. g. for gas network optimization [15,11], not
least because of their obvious capability to consider the decision variables. The
drawback of mixed integer models is certainly their computational complexity
when the problems become large. Continuous non-linear optimization techniques

R. Majumdar and P. Tabuada (Eds.): HSCC 2009, LNCS 5469, pp. 209–222, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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provide an alternative, though the treatment of discrete variables therein is not
straightforward. Relaxation of the decision variables together with a penalty
term homotopy provides a heuristic approach for solving such problems with
non-linear optimization. It has for instance been applied for ramp metering of
traffic flow [4], but in general this heuristic lacks convergence to the integer op-
timal solution [17]. We therefore investigate alternative methods for solving this
hybrid control problem using continuous non-linear optimization that converge
to (locally) optimal solutions.

Similar approaches are well-known for certain lumped parameter models that
usually consist of switching among ordinary differential equations (ODEs) in a
predefined sequence of active subsystems. Optimality conditions for piecewise de-
fined solutions of ODEs were already developed in the 1960s in the context of ODE
optimal control theory [7]. These optimality conditions were later considered for
optimal control of hybrid dynamical systems governed by ODEs in [2,8].

The approach investigated here is based on a new optimality condition for
switching boundary data when the system dynamics are governed by the semi-
linear transport partial differential equation. For the computation of optimal
switching signals we propose to use meshfree solvers in order to overcome es-
sential difficulties with numerical dissipation when the distributed system is
discretized in space using standard fixed Eulerian grids. To demonstrate the
feasibility of our approach, we compare numerical results of our method with
solutions obtained from a mixed integer programming formulation of this hybrid
optimal control problem.

The paper is organized as follows. In Section 2, we give a detailed formulation
of the problem we consider. In Section 3, we present a first order optimality
condition based on sensitivity analysis. In Section 4, we sketch the main ideas of
an appropriate numerical method to compute optimal solution approximations.
In Section 5, we present numerical results for two model problems. In Section 6,
we conclude with final remarks and directions for future work.

2 Problem Formulation

Consider material flow governed by the well-known convection-reaction transport
equation

∂

∂t
u(t, s) +

∂

∂s
[a(t, s)u(t, s)] = f(t, s, u(t, s)), s ∈ [0, 1], t > 0 (1)

for the unknown scalar function u(t, s). Assuming that a > 0, the material inflow
at s = 0 shall be given by boundary data

u(t, 0) = û(t; µ(t)), t ≥ 0, (2)

where the inflow û is controlled by a parameter µ(t). The material distribution
at t = 0 shall be given by initial data

u(0, s) = ū(s), 0 < s < 1. (3)



Optimal Boundary Control of Convention-Reaction Transport Systems 211

We introduce hybridness into the problem in that the control µ(·) of the material
inflow û is a decision variable taking values in a discrete set. We will here assume
for simplicity µ(t) ∈ {0, 1}, t ≥ 0. An admissible control is a switching signal
µ(·) which has only finitely many switches µ � µ′ (µ �= µ′ ∈ {0, 1}) with
corresponding switching time τk in each finite time interval.

Embedding (1)–(3) into a graph setting, these equations model a variety of
realistic network flow problems. For a given graph (E, N) with edges ei ∈ E and
nodes nj ∈ N , one can identify each edge with an interval [0, 1] and consider a
PDE (1) along each of those edges. At multiple nodes nj the boundary condi-
tion (2) is then to be replaced by a nodal condition, e. g. the sum of all in- and
outflows equals a given nodal control û(t; µ(t)). See, e. g. [18] for details on such
a network flow model applied to air traffic flow.

As performance index of the system over a finite time horizon [0, T ], we con-
sider the integral of any continuous functional g(·)[·, ·], e. g.∫ T

0

∫ 1

0
g(u)[t, s]ds dt =

∫ T

0

∫ 1

0
|u(t, s) − ud(t, s)|2ds dt, (4)

measuring the L2-distance of the solution u to a desired solution ud, together
with costs γ(τk) for switching µ � µ′ at τk. As the optimal boundary control
of the system (1)–(3) with continuous variables is well-understood, we consider
here the discrete control µ as the only control variable. Thus the control task is
to minimize

J =
∫ T

0

∫ 1

0
g(u)[t, s]ds dt +

∑
τk

γ(τk). (5)

by specifying the switching function µ(·) on [0, T ], where u(·, ·) solves the con-
tinuous transport equation (1)–(3).

It is easy to see that (1) together with possibly discontinuous boundary data
(2) does not possess a classical, continuously differentiable solution. As common
for conservation laws, we will therefore consider solutions in a broad sense hav-
ing bounded variation as given by the method of characteristics. For any point
(τ, σ) ∈ Ω := {(t, s) : t ≥ 0, 0 ≤ s ≤ 1}, we denote by t �→ s(t; τ, σ) the charac-
teristic curve passing through (τ, σ), i. e. the solution of the ODE initial value
problem

d

dt
s(t) = a(t, s(t)), s(τ) = σ. (6)

If s(t) solves (6) at any time t, one has

d

dt
u(t, s(t)) =

∂

∂t
u +

d

dt
s(t)

∂

∂s
u =

∂

∂t
u + a(t, s)

∂

∂s
u = f̃(t, s(t), u), (7)

where
f̃(t, s, u) = f(t, s, u) − ∂

∂s
a(t, s). (8)

The value of the broad solution u of (1)–(3) at any point (τ, σ) ∈ Ω is then
defined [5] as the value at time τ of the ODE initial value problem

d

dt
u = f̃(t, s(t; τ, σ), u), u(t∗) = data (9)
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where t∗ denotes the time when the curve s(·; τ, σ) intersects the boundary of Ω
and data is the prescribed initial/boundary data there.

We consider this hybrid control problem under the following hypotheses:

(H1) The initial data ū(·) and, for all modes µ fixed, the boundary data û(·; µ)
is continuous.

(H2) The convection term a(·, ·) is continuous in t and twice continuously differ-
entiable in s, positive, bounded and bounded away from 0. Moreover, a(·, ·)
satisfies a bound of the form |a(t, s)| ≤ C1(1 + |s|) uniformely in t.

(H3) The reaction term f(·, ·, ·) is continuous in t,s and is Lipschitz continuous
in u. Additionally, f(·, ·, ·) satisfies a bound of the form |f(t, s, u)| ≤ C2(1 +
|u|) uniformely in t and s.

(H4) The functional g(·) is continuous in u.

(H5) The switching cost γ(·) is continuously differentiable, positive and bounded
below by a constant γ.

(H6) For some reference control µ̄, the cost J is finite.

For details on wellposedness of the problem, in particular in the case of a
network setting, we refer to [12]. We just note that standard results in the theory
of ODEs imply that the solutions (in the sense of Carathéodory) of (6) and (9)
exist, are bounded for bounded initial/boundary data and depend on the point
(τ, σ) in a continuously differentiable way. Moreover, hypothesis (H5) and (H6)
bound the number of switches for the optimal control by

K =
⌈

J(µ̄)
γ

⌉
. (10)

Latter can be easily seen by assuming that there exists an optimal control µ∗ with
more than K switches. The optimal value then satisfies J(µ∗) > Kγ because γ is
a lower bound of the positive switching cost. On the other hand, from the bound
(10) we have J(µ̄) = Kγ, contradicting the optimality of µ∗. A compactness
argument then yields the following result.

Theorem 1 ([12]). There exists an optimal switching signal µ∗ minimizing (5)
subject to (1), (2) and (3). ��

Our goal is to use gradient based optimization methods to compute (locally)
optimal µ∗. The key idea is to fix µ(0) by µ0 ∈ {0, 1} and thus all subsequent
modes and, using the bound K given in (10), to obtain µ∗ by considering τk as
the new (continuous) optimization variables subject to appropriate inequality
constaints, i. e. µ∗ is obtained solving

min
0≤τ1≤···≤τK≤T

J [u, τ1, . . . , τK ]

s. t. u solves (1), (2), (3).
(11)
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Note that in problem (11) the continuous control û(t, µk) for fixed µk on the
interswitching intervals [τk, τk+1] is not subject to optimization, but the switch-
ing times τk are. We present a first order optimality condition for this problem
in the next section, noting that this is an essential subproblem of the two stage
problem involving in addition the optimization of û(t, µk).

3 Optimality Condition

The optimality condition for optimal τk in (11) is mainly based on the following
sensitivity result.

Theorem 2. Consider the problem (11) under the hypotheses (H1)–(H6) and
let 0 < τ1 < · · · < τK < T . Then, for all k = 1, . . . , K,

∂

∂τk
J =

∫ t∗(τk)

τk

(
g(uτk+)[t, s∗(t, τk)] − g(uτk−)[t, s∗(t, τk)]

) ∂

∂τk
s∗(t, τk) dt+

d

dτk
γ(τk),

where s∗(·, τk) solves the characteristic equation (6) with τ = τk and σ = 0,
t∗(τk) = max{t ∈ [0, T ] : s∗(t, τk) ≤ 1} and where uτk+, uτk− denote the so-
lutions of (1), (2), (3) with u(τk, 0) = û(τk; µ(τk+)), u(τk, 0) = û(τk; µ(τk−)),
respectively.

Proof. Fix k ∈ {1, . . . , K} and let τ1, . . . , τK , s∗(·, τk) and t∗(τk) be given as
stated in Theorem 2. The cost function can be split up as follows

J =
K∑

k=1

γ(τk) +
∫ τk

0

∫ 1

0
g(uτk−)[t, s] ds dt +

∫ T

t∗(τk)

∫ 1

0
g(uτk+)[t, s] ds dt+

+
∫ t∗(τk)

τk

∫ s∗(t,τk)

0
g(uτk+)[t, s] ds dt +

∫ t∗(τk)

τk

∫ 1

s∗(t,τk)
g(uτk−)[t, s] ds dt.

Thus, under hypotheses (H1)–(H6), we have

∂

∂τk
J =

d

dτk
γ(τk) +

∫ 1

0
g(uτk−)[τk, s] ds −

∫ 1

0
g(uτk+)[t∗(τk), s] ds

∂

∂τk
t∗(τk)+

+
∫ t∗(τk)

τk

g(uτk+)[t, s∗(t, τk)]
∂

∂τk
s∗(t, τk) dt+

−
∫ s∗(τk,τk)

0
g(uτk+)[τk, s] ds +

∫ s∗(t∗(τk),τk)

0
g(uτk+)[t∗(τk), s] ds

∂

∂τk
t∗(τk)+

−
∫ t∗(τk)

τk

g(uτk−)[t, s∗(t, τk)]
∂

∂τk
s∗(t, τk) dt+

−
∫ 1

s∗(τk,τk)
g(uτk−)[τk, s] ds +

∫ 1

s∗(t∗(τk),τk)
g(uτk−)[t∗(τk), s] ds

∂

∂τk
t∗(τk)

=
∫ t∗(τk)

τk

(
g(uτk+)[t, s∗(t, τk)] − g(uτk−)[t, s∗(t, τk)]

) ∂

∂τk
s∗(t, τk) dt+

d

dτk
γ(τk),
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where the sum of all integrals in s vanish, using that s∗(τk, τk) = 0 and that
s∗(t∗(τk), τk) = 1. ��

Remark 1. From the equation for ∂
∂τk

J in Theorem 2, it is easy to see that

the mapping τ �→
∑K

k=1
∂

∂τk
J is continuous for all switching times τk satisfying

0 < τ1 < · · · < τK < T using (H4) and that τk �→ ∂
∂τk

s∗(t, τk) is continuous due
to (H2). But in the case that τk = τk+1 for some k, the derivative ∂

∂τk
J is not

defined. However, the mapping τk �→ ∂
∂τk

J can be continuated in such points
continuously by resticting the domain of g(uτk−)[t, s∗(t, ·)] to the single point
τk = τk+1.

Based on Theorem 2 and Remark 1 the Karush-Kuhn-Tucker first order nec-
essary optimality conditions taking into account the special structure of the
constraints 0 ≤ τ1 ≤ · · · ≤ τK ≤ T can be stated as follows.

Proposition 1. Let τ∗ = (τ∗
1 , . . . , τ∗

K) be a local minimum of (11) under the
hypotheses (H1)–(H6). Then, for all k = 1, . . . , K,

k∑
i=κ(k)

∂J(τ∗)
∂τ∗

i

≤ 0 unless τ∗
k = 0, and

η(k)∑
i=k

∂J(τ∗)
∂τ∗

i

≥ 0 unless τ∗
k = T, (12)

where κ(k) = min{0 ≤ κ ≤ k : τ∗
κ = τ∗

k }, η(k) = max{K + 1 ≥ η ≥ k : τ∗
η = τ∗

k }
with τ∗

0 := 0 and τ∗
K+1 := T .

Proof. See [8]. ��

4 Computational Remarks

A major difficulty of this problem comes with the fact that, in order to evaluate
the cost function J , one needs to discretize and solve the PDE constraint in space
and time. In order to apply non-linear optimization techniques, it is necessary
to ensure that the discretized solution ũ(·, ·) depends continuously on the opti-
mization variables τ1, . . . , τK . Careless re-meshing in every step of the optimizer
may easily destroy this property. For the problem (11) continuous dependence of
the mapping (τ1, . . . , τK) �→ ũ(·, ·) can be achieved by using adaptive time steps
∆t. However, for time steps ∆t much smaller than the discretization step size h
of any fixed Eulerian grid in space, the numerical dissipation, e. g.

1
2
(a(t, s)∆t − h)a(t, s)

∂2

∂s2 u(t, s) (13)

for upwind finite differencing discretization schemes, becomes large and causes
inaccurate solution approximations.

We overcome this difficulty by using meshfree numerical solvers for such a
hybrid transport problem. Points representing the solution are moved accord-
ing to their characteristic velocity. These schemes are capable of propagating



Optimal Boundary Control of Convention-Reaction Transport Systems 215

discontinuities in the solution with correct speed and they are free of numerical
dissipation. In case of a semilinear equation (1), the method is easy to implement
but rarely used. We will briefly sketch the method here, noting that similar par-
ticle management for the case of non-linear conservation laws has been proposed
recently [9].

Sketch of the meshfree solver

1. The initial solution is the approximation of the initial data (3) by a finite
number of points s1 < · · · < sm ∈ (0, 1) with function values u1, . . . , um for
some m ∈ N.

2. The solution over time is found by
(a) Moving each point si with speed a(t, s) as suggested by (6).
(b) Updating the function values ui by solving an integral formulation of

u̇ = f(t, s, u), compare (7).
(c) Inserting points where the distance between two points or their distance

to s = 0 becomes unsatisfyingly large. When points are inserted at s = 0,
their function value is taken from an approximation of the boundary data
(2).

(d) Dropping all points that are no longer needed, i. e. those with si > 1.
��

Many efficient adaptive sampling strategies for the initial and boundary data
can be used because there is no requirement on the point distribution si. In
particular, one may approximate the boundary data û at the switching times
τk and at a fixed number of equidistant time instances during interswitching
intervals [τk, τk+1]. This strategy ensures that the discretized solution depends
continuously on the switching times as desired. The method is as accurate as the
movement of si and the updates of ui are realized. In particular, using explicit
Euler methods makes the piecewise constant solution approximation ũ(·, ·) first
order accurate everywhere and the solver in pseudo-code reads as follows.

Algorithm 1 (Meshfree solver)
Require: a, f̃ , ū, ũ, τ1, . . . , τK .
Initialize: τ0 := 0, τK+1 := 1, ∆h := 1

m
[s] := [s1, . . . , sm] with si = i ∗ ∆h
[u] := [u1, . . . , um] with ui = ū(si)

for k = 0, . . . , K + 1 do
∆t := (τk+1 − τk)/N
for j = 1, . . . , N do

t := τk + j ∗ ∆t
Memorize: ũ(t, [s]) := [u]
Move: [s] := [s] + ∆t ∗ a(t, [s])
Update: [u] := [u] + ∆t ∗ f̃(t, [s], [u])
for all i such that si+1 − si > ∆h do

Insert: [s] := [[s]≤i,
si+si+1

2 , [s]≥i+1], [u] := [[u]≤i,
ui+ui+1

2 , [u]≥i+1]
end for
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if s1 > ∆h then
Insert: [s] := [0, [s]], [u] := [û(t; µ(t)), [u]]

end if
Drop: [s] := [s]I\J with I = {1, . . . , length([s])}, J = {i ∈ I : si > 1}

end for
end for

With the solution approximation ũ(·, ·) obtained from the meshfree solver not
all information is readily available to evaluate ∂

∂τk
J as given in Theorem 2 for

applying a gradient based optimization method solving the optimality system
given in Proposition 1. Additionally, the solutions of s∗(t, τk) and ∂

∂τk
s∗(t, τk)

are needed. While the former can be directly computed using (6), the latter can
be obtained using the following Lemma.

Lemma 1. Let s∗(t, τk) solve the characteristic equation (6) with τ = τk and
σ = 0. Then, ∂

∂τk
s∗(t, τk) = Φ(t, τk), where Φ(θ, τk) is the state transition matrix

of the following linear time varying dynamical system

d

dθ
z(θ) =

∂

∂s
a(θ, s)

∣∣
s=s∗(θ,τk)z(θ) (14)

Proof. Let z(θ) = ∂
∂τk

s∗(θ, τk). Then, the statement of the Lemma follows from
the derivation

d

dθ
z(θ) =

d

dθ

∂

∂τk
s∗(θ, τk) =

∂

∂τk

d

dθ
s∗(θ, τk) =

∂

∂τk
a(θ, s∗(θ, τk))

=
∂

∂s
a(θ, s)

∣∣
s=s∗(θ,τk)

∂

∂τk
s∗(θ, τk) =

∂

∂s
a(θ, s)

∣∣
s=s∗(θ,τk)z(θ). ��

In the following section, we compare numerical results for a gradient based op-
timization method established on the results presented in this section.

5 Numerical Results

We present numerical results for two model problems. For both we compare the
following two methods to compute approximations of (locally) optimal binary
control functions µ∗(·) that minimize (5).

COPT. This methods applies continuous non-linear optimization techniques for
the reformulated problem (11) using the results presented in Section 3 and Sec-
tion 4. The system (1) is solved using a meshfree solver, which realizes the
movement of si and the updates of ui in our implementation by explicit Euler
methods, see Algorithm 1. The cost function is approximated by the trapezoidal
rule. The search for locally optimal τk (specifying µ(·)) is carried out by the
MATLAB sequential quadratic programming solver fmincon [19]. The gradients
for the BFGS updates are computed using the formula given in Theorem 2.
Termination criterion is the first order optimality measure or the norm of the
directional derivative falling below tolerance.
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(a) µ̄(t).
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(b) µ∗
COPT(t), µ∗

MIQP(t).
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(c) ūCOPT(1, s).
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(d) u∗
COPT(1, s), u∗

MIQP(1, s).

Fig. 1. Initial and optimal bang-bang type solution of the traveling sine wave in Ex-
ample 1. Fig. (a) and (c) show the initial switching signal with a final time plot of the
corresponding solution. Fig. (b) and (d) show the computed optimal switching signals
with corresponding solutions at t = T = 1 (COPT solutions solid, MIQP solutions
dash-dotted). The dashed curve in Fig. (c) and (d) show the desired wave ud plotted
at final time T = 1.

MIQP. This method uses mixed integer programming on the original problem.
The system dynamics (1) are transformed into a linear system constructed by
upwind finite difference discretization on a fixed, equidistant Eulerian grid. For
each timestep tk, a binary variable represents µ(tk). The cost function is approx-
imated by the trapezoidal rule. We included the details on the MIQP reformula-
tion in Appendix A, noting that more sophisticated MIQP reformulations of this
problem are possible. The reformulation choosen here shall primarily serve as a
verification of the proposed method above. The search for the obtained equality
constraint mixed integer quadratic program is carried out by ILOG CPLEX [6].
The solver terminates when the gap between the best integer objective and the
objective of the best node remaining in the branch-and-bound tree falls below
tolerance.

The first very simple example serves as a verification of the proposed method
COPT for computing approximations of optimal switching control functions.

Example 1. (Bang-bang type approximation of a traveling sine wave.) The con-
trol task consists of approximating a traveling sine wave ud by switching û be-
tween the two extremal values of the wave û1 = 0, û2 = 1. We assume that
the wave speed equals the transportation velocity, here taken for simplicity as
a(t, s) = 1. We also assume constant switching costs γ(·) = 0.0075 to avoid
chattering. It should be clear that for this problem, we cannot expect exact
controllability, but we are seeking for a binary control µ∗(·) minimizing the L2-
distance (4) between u and ud over the finite time horizon [0, T ] with T = 1. Also
observe that the optimal control of the relaxed problem with û ∈ [0, 1] is not
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(a) Two mode inlet control.
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(b) Inflow data in mode 1
(solid) and mode 2 (dashed).

Fig. 2. Control task in Example 2

of bang-bang type. Thus, alternative methods like COPT or MIQP are required
for the computation of optimal controls. For initialization of the continuous op-
timizer, we use µ̄(·) given by τ̄1, . . . , τ̄K with K = 25 equidistantly placed in
[0, T ] as depicted in Figure 1 (a). The cost of the initial solution that is shown
in Figure 1 (c) is J(µ̄) = 0.1869.

COPT terminates after 11 iterations with an optimal value of J(µ∗
COPT) =

0.0299 and first order optimality measure of 0.0092, where 20 of the 25 ini-
tial switching times coalesce in the optimal solution approximation. The integer
optimal solution µ∗

MIQP for the upwind-discretized problem obtained by MIQP
on a fixed grid with 2500 discretization points is qualitatively the same with
J(µ∗

MIQP) = 0.0298.
Plots of µ∗

COPT (solid line) and µ∗
MIQP (dashed line) are shown in Figure 1 (b)

while the corresponding final time plots of the solution u at t = T = 1 are
shown in Figure 1 (d). Note that the example is chosen such that at time T the
complete history of the boundary control action µ(·) is visible in u(T, s).

The second example demonstrates that the method COPT may even outperform
our mixed integer optimal programming implementation due to its inferiority in
the discretization of the dynamical system.

Example 2. (2-mode plug flow regulation.) Consider a pipe that can be con-
trolled at the inlet by choosing the inflow of material concentration either from
û1 or from û2, compare Figure 2 (a). The plug flow in the pipe is assumed to
satisfy the conservation law

∂

∂t
u(t, s) +

∂

∂s
[a(s)u(t, s)] = 0 (15)

with a(s) = 4
3 (s − 1)2 + 1

2 . The desired material distribution in the pipe is given
by ud(t, s) = 1

2 (s+1)2. As in Example 1, we cannot expect exact controllability,
but we are again seeking for a binary control µ∗(·) minimizing the L2-distance (4)
between u and ud over the finite time horizon [0, 1] and include switching costs
γ(·) = 0.0075 to avoid chattering. For initialization of the continuous optimizer,
we use µ̄(·) with 35 equidistantly placed switching times τk with a corresponding
cost of J(µ̄) = 0.1693.
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(a) µ∗
COPT(t).
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(b) µ∗
MIQP(t).
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(c) u∗
COPT(1, s).
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(d) u∗
MIQP(1, s).

Fig. 3. Optimal control approximations for Example 2. Fig. (a) and (c) show the
optimal switching signal computed with COPT and the final time plot of the corre-
sponding solution u with J(µ∗

COPT) = 0.0914. Fig. (b) and (d) show the MIQP result
with J(µ∗

MIQP) = 0.2694. The dashed line in Fig. (c) and (d) is the desired material
distribution ud.

COPT terminates after 17 iterations with an optimal value of J(µ∗
COPT) =

0.0914 and first order optimality measure of 0.01. The integer optimal solution
µ∗

MIQP for the upwind-discretized problem obtained by MIQP on a fixed grid
with 12800 discretization points has on optimal value of J(µ∗

MIQP) = 0.2694.
The optimal control approximations µ∗

COPT and µ∗
MIQP with corresponding final

time plots of the solutions at t = T = 1 are depicted in Figure 3.

We finally remark that the choice of the initial condition µ̄(·) is crucial for the
proposed method since it searches for locally optimal controls only. A direct com-
parison with mixed integer programming, searching for globally optimal solutions
on the discretized problem but at exponential cost, therefore is not feasible.

6 Conclusion

We presented a new approach for solving optimal boundary control problems for
dynamical systems that are governed by semilinear transport equations when
the control function is restricted to binary values. By considering this problem
as a hybrid dynamical system embedded with partial differential equations, we
derived an optimality condition similar to results known for hybrid systems gov-
erned by ordinary differential equations. This result makes the problem accessible
for gradient based non-linear optimization methods.

For the computation of optimal solution approximations, we used meshfree
solvers to overcome essential difficulties with numerical dissipation for these
distributed hybrid systems. Our numerical results for model problems show that
the proposed approach is a promising alternative compared to mixed integer
programming.
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Future work will be devoted to extend this approach to control problems that
are governed by non-linear transport equations and multi-dimensional systems
of equations.
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A Appendix: MIQP Formulation

For the sake of completeness we add the mixed integer formulation of the control
problem (5) that was used for comparison in Example 1 and Example 2. In order
to discretize a mixed initial boundary value problem of the type

∂

∂t
u(t, s) + a(t, s)

∂

∂s
u(t, s) = f(t, s)u(t, s) s ∈ [0, 1], t > 0

u(t, 0) = û(t; µ(t)), t ≥ 0
u(0, s) = ū(s), s ∈ (0, 1)

(16)

we use an explicit upwind finite difference scheme (see e. g. [16], Sec. 14.2),
coupled with integer programming. The space-time domain is discretized by
choosing a time step ∆t = 1/N and a mesh-width ∆s = 1/M . The grid-points
(tj , si) are defined by

tj = (j − 1)∆t, j = 1, . . . , N, si = (i − 1)∆s, i = 1, . . . , M. (17)

We replace the derivatives in the system (16) by upwind finite differences (using
that a(·, ·) > 0)

Ui(tj+1) − Ui(tj)
∆t

+ a(tj , si)
Ui(tj) − Ui−1(tj)

∆s
= f(tj , si)Ui(tj) (18)

for i = 2, . . . , M and j = 2, . . . , N and the initial condition becomes

Ui(t1) = ū(si), i = 2, . . . , M. (19)

On the time grid the discrete control µ(·) can be represented by N binary values
µj ∈ {0, 1} and thus the boundary conditions can be written as

U1(tj) = µj û(t; 1) + (1 − µj)û(t; 0), j = 1, . . . , N. (20)

With N M new continuous variables xn given by

x(j−1)M+i = Ui(tj), i = 1, . . . , M and j = 1, . . . , N (21)

and N additional binary variables
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xNM+j = µj , j = 1, . . . , N (22)

the equations (18), (19) and (20) can be written as a mixed integer linear equa-
tion system Ax = b in x1, . . . , x(N+1)M with sparse coefficient matrix A. The
integral part of the cost function (4) as used in the examples is approximated by

NM∑
i=1

(xi − zi)2 = (x − z)�(x − z) = x�x − 2z�x + z�z, (23)

where zi is a discretization of ud. Using that z�z is constant, these costs can
be written as x�Qx − c�x with Q = 1 and c = 2z. Moreover, the switching
costs

∑
τk

γ(τk) for constant γ can be encoded in Q = (qi,j) by setting κ = γ/N ,
qi,i = κ, qi+1,i = − 1

2κ and qi,i+1 = − 1
2κ for i = 1 = NM +1, . . . , (N +1)M . We

remark that for stability of the applied methods the above discretization scheme
requires N and M choosen such that the CFL-condition holds.
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Abstract. In this paper we propose a trajectory based reachability anal-
ysis by using local finite-time invariance property. Trajectory based anal-
ysis are based on the execution traces of the system or the simulation
thereof. This family of methods is very appealing because of the simplic-
ity of its execution, the possibility of having a partial verification, and
its highly parallel structure.

The key idea in this paper is the construction of local barrier functions
with growth bound in local domains of validity. By using this idea, we
can generalize our previous method that is based on the availability of
global bisimulation functions. We also propose a computational scheme
for constructing the local barrier functions and their domains of validity,
which is based on the S-procedure. We demonstrate that our method
subsumes some other existing methods as special cases, and that for
polynomial systems the computation can be implemented using sum-of-
squares programming.

1 Introduction

One of the main problems in the field of hybrid systems is reachability analy-
sis/safety verification. This type of problems is related to verifying that the state
of a hybrid system does not enter a declared unsafe set in its execution trajectory.
The domain of application of the problem is very wide, ranging from engineering
design [1,2], air traffic management systems [3,4], to systems biology [5,6]. Un-
derstanding the importance of the problem, the hybrid systems community has
put a lot of efforts in the research of reachability analysis and verification. We
refer the reader to [7,8,9,10,11,12,13,14,15,16] for some of the earlier references
in this topic1.
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1 Given the breadth of research in this topic, this list is by no means exhaustive.
However, it does capture a broad spectrum of techniques that have been developed
in the community to answer the safety/reachability problems.
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Among the different approaches to reachability analysis, there is a family of
methods that is based on simulation or trajectory analysis. In some literature,
this type of approach is also called testing based [17], referring to the possibil-
ity of generating the trajectories through actual executions (tests). This type of
approach is very appealing because of several reasons [18]. One of the reasons
is its simplicity. Running or simulating a system is generally much simpler than
performing symbolic analysis on it. This is particularly true for systems with
complex dynamics. Another reason why trajectory based verification is attrac-
tive is that its algorithm is highly parallelizable. Since simulation runs of the
system do not depend one on another, they can be easily assigned to different
processors, resulting in a highly parallel system. Trajectory based verification
is also close to some actual practice in the industry where verification is done
through ”exhaustive” testing and/or simulation. Of course, formal exhaustive
testing for continuous/hybrid systems is not possible, unless they are coupled
with some notion of robustness, which is the central issue in this paper.

Within the family of trajectory based reachability analysis techniques itself
there are different approaches. Some methods, for example, conduct state space
exploration through randomized testing [19] or by using Rapidly exploring Ran-
dom Trees (RRT) or its adaptations [20,21]. Methods based on linearization of
the system’s nonlinear dynamics along the execution trajectory have also been
proposed, for example in [22,23]. Other related methods incorporate the notions
of sensitivity [24], local gain/contraction analysis [25,26] and bisimulation func-
tion [27,17,28] to measure the difference between neighboring trajectories. The
method that we present in this paper belongs to this class. In a sense, these meth-
ods combine two of the most successful analysis techniques for nonlinear dynam-
ics, simulation and stability analysis. The difference between our approach and
other approaches that use, for example, sensitivity analysis [24] and local gain/
contraction analysis [25,26] is in the fact that we are not restricted to use a prespec-
ified metric in the state space. In fact, the bisimulation/barrier functions induce a
pseudometric that can be (locally) customized to best fit the application [17].

In this paper, we extend the approach reported in [17] (and in [18] for stochas-
tic systems). An illustration of the approach proposed in this paper is shown in
Figure 1. Suppose that we have a test trajectory that satisfies the safety con-
dition. In the above mentioned references, we rely on the assumption of the
availability of a bisimulation function for each mode of dynamics, which is valid
globally, to bound the divergence of the trajectories resulting from nearby initial
conditions. The contribution of this paper lies in the relaxation of this global
assumption, allowing for more flexibility in the computation. Effectively, we con-
struct a guarantee on the divergence of execution trajectories by piecing together
multiple local finite-time invariance arguments. The idea is to link the domains
of validity of these local invariance to cover a neighborhood of the test trajectory.
In Figure 1 these domains are shown as Domain-1, 2, and 3. The local invariance
arguments that we construct are similar to the barrier certificate as proposed
in [14], except for the fact that the validity of the invariance property is finite
time. In each of these domains, the shape of the level sets of the barrier function
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Initial set

Unsafe set

Initial set

Unsafe set
Domain 1

Domain 3Domain 2

Fig. 1. The main idea presented in this paper. The test trajectory is shown as the
thick curve. The use of global bisimulation function to bound the divergence of the
trajectories is illustrated on the left side. Local finite-time invariance based analysis is
illustrated on the right side.

and the stability property of the dynamics can be different. This is illustrated
in Figure 1 by the changing of the shape and the size of the level sets.

The rest of the paper is organized as follows. In the next section, we present
some basic results about local finite-time invariance of dynamical systems. The
application of these results in safety verification is discussed in Section 3. In Sec-
tion 4, we also propose a computational scheme to compute the barrier functions
and their domains of validity based on the S-procedure [29]. We show that for
affine systems, the method proposed in this paper coincides with that in [17].
We also show that our result captures, as a special case, the method based on lo-
cal linearization of nonlinear systems. For polynomial systems we show that the
computation can be implemented by using sum-of-squares (SOS) programming
and demonstrate it with an example.

2 Local Finite-Time Invariance

We consider nonlinear dynamical system of the form

ẋ = f(x), x ∈ X , (1)

where X ⊂ Rn is the state space of the system, and a differentiable function φ :
X → R+. We assume that the differential equation posed in (1) admits a unique
solution for any initial condition in X , during the time interval of interest, T .

Notation. We denote the flow of the dynamical system at time t with initial
condition x(t)t=t0 = x0 as ξ(t; x0, t0). That is, ξ(t; x0, t0) satisfies

d

dt
ξ(t; x0, t0) = f(ξ(t; x0, t0)),

ξ(t0; x0, t0) = x0.

We have the natural semigroup property of the flow: ξ(t; x0, t0) = ξ(t; x′, t′),
where x′ := ξ(t′; x0, t0) for any t′ ∈ [t0, t]. We also have the time invariance
property: ξ(t; x0, t0) = ξ(t + ∆; x0, t0 + ∆) for any ∆ ∈ R.
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D

Lφ,α

Lφ,β

x0

ξ(t; x0, 0)

D

Lφ,α

Lφ,β

x0

ξ(t; x0, 0)

k > 0 k < 0

Fig. 2. Illustration for Propositions 1 and 2 for the case when k > 0 (left) and k < 0
(right)

Notation. We denote the level set of a function φ : X → R as

Lφ,α := {x ∈ X | φ(x) ≤ α}. (2)

In the subsequent discussion in this paper we need the following two results
related to local finite-time invariance.

Proposition 1. Suppose that the following relation holds for a subset D ⊂ X
and for some k ∈ R,

∇xφ(x)f(x) ≤ k, ∀x ∈ D. (3)

Take any α, β ∈ R such that β < α and Lφ,α ⊂ D. The following results hold.
(i) If k > 0, then any trajectory of the system (1) that starts in Lφ,β remains in
Lφ,α for at least α−β

k time units, or mathematically

ξ(t; x0, 0) ∈ Lφ,α, ∀x0 ∈ Lφ,β, ∀t ≤ α − β

k
.

(ii) If k < 0, then any trajectory of the system (1) that starts in Lφ,α enters
Lφ,β after at most β−α

k time units, or

ξ(t; x0, 0) ∈ Lφ,β, ∀x0 ∈ Lφ,α, ∀t ≥ β − α

k
.

Proposition 2. Suppose that the following relation holds for a subset D ⊂ X
and for some k ∈ R,

∇xφ(x)f(x) ≤ kφ(x), ∀x ∈ D. (4)

Take any α, β ∈ R such that β < α and Lφ,α ⊂ D. The following results hold.
(i) If k > 0, then any trajectory of the system (1) that starts in Lφ,β remains in
Lφ,α for at least ln α−ln β

k time units, or mathematically
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ξ(t; x0, 0) ∈ Lφ,α, ∀x0 ∈ Lφ,β, ∀t ≤ ln α − ln β

k
.

(ii) If k < 0, then any trajectory of the system (1) that starts in Lφ,α enters
Lφ,β after at most ln β−lnα

k time units, or

ξ(t; x0, 0) ∈ Lφ,β, ∀x0 ∈ Lφ,α, ∀t ≥ ln β − ln α

k
.

Definition 1. Hereafter, we call a function φ : X → R that satisfies (3) or
(4) a barrier function with constant and linear growth bound, respectively. The
corresponding domain D is called the domain of validity of the barrier functions.

Propositions 1 and 2 can be proved by using an argument similar to Lyapunov
stability theory, which is a standard result in nonlinear system analysis (see, for
example [30]). Effectively, the results above can be used to establish a barrier
certificate that is valid for a finite time. Notice that if ∂φ

∂xf(x) is continuous
and D is a compact set, we can always find a finite bound k in (3). In a sense,
this property guarantees that for any continuous function f(x) and a compact
domain D, we can always construct a smooth barrier function with a finite
constant growth bound.

3 Safety Verification

In this section, we extend the results in the previous section to the product of a
dynamical system with itself. The goal is to establish a method for computing the
robustness of test trajectories for systems with nonlinear dynamics. We consider
dynamical systems in the form of (1), and suppose that there is an unsafe subset
of the state space X , which we denote by Unsafe. We want to verify that the
execution trajectories of the system are safe. That is, they do not enter the
unsafe set. The object of robustness computation is to establish a neighborhood
around a test trajectory that is guaranteed to have the same safety property.

Consider a trajectory of the system with initial condition xi ∈ X in the
time interval [0, T ], as illustrated in Figure 3. Suppose that there exists a set
D ⊂ X × X such that the trajectory (ξ (t; xi, 0) , ξ (t; xi, 0)) ∈ D, and that the
trajectory is safe, i.e. ξ (t; xi, 0) /∈ Unsafe, for all t ∈ [0, T ]. Further, for any
function φ : X × X → R, we define a function

d(t) := inf
y∈Avoid(t)

φ(ξ (t; xi, 0) , y), ∀t ∈ [0, T ], (5)

Avoid(t) := {y | y ∈ Unsafe, (ξ (t; xi, 0) , y) ∈ D} ∪ {y | (ξ (t; xi, 0) , y) /∈ D},
(6)

and introduce the following notation.

Notation. We introduce the level set notation

Lx
φ,α := {y | φ(x, y) ≤ α}. (7)
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X

Unsafe

D

xi

xf

Lxi
φ↪β

L
xf

φ↪α

ξ(t; xi↪ 0)

Fig. 3. Illustration for Proposition 3. The circles represent level sets of φ. For β that
satisfies the condition in Proposition 3, any trajectory that starts in Lxi

φ,β is guaranteed
to possess the same safety property as ξ(t; xi, 0).

Proposition 3. Suppose that for all (x, y) ∈ D, there exists a k ∈ R such that

∇xφ(x, y)f(x) + ∇yφ(x, y)f(y) ≤ k.

Let β and k′ be such that

β + k′t ≤ d(t), ∀t ∈ [0, T ], (8)
k′ ≥ k. (9)

For any initial condition x0 ∈ Lxi

φ,β, we have that

ξ(t; x0, 0) /∈ Unsafe, (10)
(ξ(t; xi, 0), ξ(t; x0, 0)) ∈ D, (11)

for all t ∈ [0, T ].

Proof. By applying Proposition 1, we can show that for all t ∈ [0, T ],

φ(ξ(t; xi, 0), ξ(t; x0, 0)) ≤ β + k′t ≤ d(t). (12)

By definition, it implies that for all t ∈ [0, T ],

φ(ξ(t; xi, 0), ξ(t; x0, 0)) ≤ inf
y∈Avoid(t)

φ(ξ (t; xi, 0) , y),

and therefore
ξ(t; x0, 0) /∈ Avoid(t).

By definition of Avoid(t), this immediately implies the validity of (10 - 11).

A result similar to Proposition 3 for barrier functions with linear growth bound
can be constructed as follows (the proof follows a similar construction).
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Fig. 4. Illustration of Theorem 1. The solid trajectory represents the test trajectory,
while the dashed ones represent other trajectories with initial conditions in Lx0

φ1,β1
.

Proposition 4. Suppose that for all (x, y) ∈ D, there exists a k ∈ R such that

∇xφ(x, y)f(x) + ∇yφ(x, y)f(y) ≤ kφ(x, y).

Let β and k′ be such that

ln β + k′t ≤ ln d(t), ∀t ∈ [0, T ], (13)
k′ ≥ k. (14)

For any initial condition x0 ∈ Lxi

φ,β, we have that

ξ(t; x0, 0) /∈ Unsafe, (15)
(ξ(t; xi, 0), ξ(t; x0, 0)) ∈ D, (16)

for all t ∈ [0, T ].

The results above establish a way to perform a local testing-based safety veri-
fication using a local bisimulation function/ Lyapunov function type argument,
which is similar to [17]. Namely, we can guarantee the safety of all trajectories
starting from a neighborhood Lxi

φ,β of the nominal initial state xi. The new con-
tribution in this paper lies in the fact that the domain of validity of the function
can be local. The locality of this analysis can be extended by linking multiple
local analysis to cover a test trajectory. This idea is elucidated in the following
theorem, and illustrated in Figure 4.

Theorem 1. Consider a test trajectory ξ(t; x0, 0), t ∈ [0, T ]. Suppose that for
i = 1, . . . , N, there exists a family of sets Di ⊂ X×X , functions φi : X×X → R+,
positive constants αi and βi, and time intervals 0 = t0 < t1 < · · · < tN = T
such that
(i) (ξ(t; x0, 0), ξ(t; x0, 0)) ∈ Di for all t ∈ [ti−1, ti],
(ii) for all (x, y) ∈ Di, there exists a ki ∈ R such that

∇xφi(x, y)f(x) + ∇yφi(x, y)f(y) ≤ ki, (17)
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(iii) there exists a k′
i ≥ ki such that

βi + k′
it ≤ di(t), ∀t ∈ [0, ti − ti−1],

βi + k′
i (ti − ti−1) ≤ αi,

where

di(t) := inf
y∈Avoidi(t)

φi(ξ (t; xi−1, 0) , y), ∀t ∈ [0, ti − ti−1],

Avoidi(t) :={y | y∈Unsafe, (ξ (t; xi−1, 0) , y)∈Di}∪{y | (ξ (t; xi−1, 0) , y) /∈ Di},
xi−1 := x(ti−1),

(iv) for i = 1, . . . , N − 1,

αi ≤ sup
{
α | Lxi

φi,α
⊂ Lxi

φi+1,βi+1

}
.

For any initial condition x̃0 ∈ Lx0
φ1,β1

, we have that

ξ(t; x̃0, 0) /∈ Unsafe, (18)

(ξ(t; x0, 0), ξ(t; x̃0, 0)) ∈ ∪N
i=1Di, (19)

for all t ∈ [0, T ].

Proof. Consider the last interval of the trajectory, that is t ∈ [tN−1, T ]. By
Proposition 3, we have that for any x̃N−1 ∈ L

xN−1
φN ,βN

,

ξ(t; x̃N−1, tN−1) /∈ Unsafe, (20)

(ξ(t; xN−1, 0), ξ(t; x̃N−1, 0)) ∈ ∪N
i=1Di, (21)

for all t ∈ [tN−1, T ]. Also, for any i = 1, . . . , N − 1, using the same proposition,
we can conclude that for any x̃i−1 ∈ L

xi−1
φi,βi

,

ξ(t; x̃i−1, ti−1) /∈ Unsafe, (22)

(ξ(t; xi−1, ti−1), ξ(t; x̃i−1, ti−1)) ∈ ∪N
i=1Di, (23)

ξ(ti; x̃i−1, ti−1) ∈ Lxi

φi,αi
. (24)

By construction, Lxi

φi,αi
⊂ Lxi

φi+1,βi+1
. Hence, from (24) we can obtain

ξ(ti; x̃i−1, ti−1) ∈ Lxi

φi+1,βi+1
.

Therefore, by repeated application of Proposition 3, we can prove that this the-
orem holds.

The result given in Theorem 1 can be easily extended by replacing the barrier
functions with constant growth bounds with those with linear growth bounds.
In this case, the proof will follow Proposition 4.
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4 Computation of Barrier Functions and the Domains of
Validity

4.1 General Scheme

In the previous sections we have established some results that describe how to
construct a finite-time safety/ reachability type guarantee based on the barrier
function φ and its domain of validity D. In this section, we propose a computa-
tional scheme to construct such barrier function and domain of validity.

Consider the dynamical system in (1).

Proposition 5. Suppose that the functions φ(x) and γ(x) satisfy

∇xφ(x)f(x) − k ≤ ε(x)γ(x), (25)

for some strictly positive function ε(x), and k ∈ R. Then φ(x) is a barrier
function with k as its constant growth bound and D := {x | γ(x) ≤ 0} is its
domain of validity,

Proof. This construction is based on the S-procedure. From (25), it follows that
γ(x) ≤ 0 implies

∇xφ(x)f(x) ≤ k.

The linear growth bound version of this proposition can be found by replacing
k in (25) with kφ(x). We can use this proposition to generate a barrier function
φ for a given domain of validity D.

Given γ(x), find φ(x) and ε(x) satisfying
∇xφ(x)f(x) − ε(x)γ(x) − k ≤ 0, ε(x) ≥ 0. (26)

Extending this scheme for safety verification amounts to finding a barrier
function φ : X ×X → R that is valid in a domain given by γ(x, y) ≤ 0. This can
be done by solving the following problem.

Given γ(x, y), find φ(x, y) and ε(x, y) satisfying
∇xφ(x, y)f(x) + ∇yφ(x, y)f(y) − ε(x, y)γ(x, y) − k ≤ 0, ε(x, y) ≥ 0. (27)

For a special class of systems, we can explicitly outline a computational tech-
nique that implements this general scheme, as described in the next subsection.

4.2 Affine Systems

If f(x) in (1) is a linear function,

f(x) = Ax + b, x ∈ Rn, A ∈ Rn×n, b ∈ Rn×1

we can constrain a barrier function to be a quadratic function

φ(x, y) = (x − y)T
M (x − y) ,
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for some M > 0. If the matrix A is Hurwitz, for barrier function with linear
growth bound the domain of validity of the barrier function can be extended
globally, by choosing γ(x, y) = 0. In this case, (27) becomes

∇xφ(x, y)f(x) + ∇yφ(x, y)f(y) − kφ(x, y) = (x − y)T (MA + AT M − kM) (x − y)

≤ 0 (28)

which is a Lyapunov equation that can be solved for k ≥ 2λ(A), where λ(A) is the
largest eigenvalue of A. Obviously, a similar approach also works for nonpositive
constant growth bound.

If the matrix A is not Hurwitz, then for barrier function with linear growth
bound (28) can still be solved if k ≥ 2λ(A). For barrier functions with positive
constant growth bound, the domain of validity must be bounded. If we choose,
for the domain of validity, an ellipsoidal set given by γ(x, y) ≤ 0, where γ(x, y) =
(x − y)T

Q (x − y)−1, for some Q > 0, then (27) becomes finding M and ε(x, y)
satisfying

(x − y)T (
MA + AT M − ε(x, y)Q

)
(x − y) + ε(x, y) − k ≤ 0, ε(x, y) ≥ 0, (29)

which can be solved by taking ε(x, y) = 1 and M small enough such that MA+
AT M ≤ Q. Once M is determined, we can find the tightest constant growth
bound by solving the following optimization problem

minimize k subject to (29),

with k and ε(x, y) as the optimization variables. In this case, we can bound k as

k ≤ inf
ε∈R

{ε | MA + AT M ≤ εQ}. (30)

4.3 Locally Linearized Systems

For a locally linearized system f(x) in (1) can be written as,

f(x) = Ax + b + ω(x), x ∈ D ⊂ Rn.

Here Ax + b is the linearized model and ω(x) is the residual term. Suppose that
D is bounded and its diameter is given by

ρ(D) := sup
x,y∈D

‖x − y‖ ,

and there exists a δ > 0 such that ‖ω(x)‖ ≤ δ, for all x ∈ D. That is, we assume
that we can bound the magnitude of the linearization residue in D.

We propose to construct a quadratic barrier function in the form of φ(x, y) =
(x − y)T

M (x − y) , M > 0. In this case, we obtain

∇xφ(x, y)f(x) + ∇yφ(x, y)f(y)=(x − y)T (MA + AT M) (x − y)

+ 2(x − y)T M (ρ(x) − ρ(y)) ,

≤(x−y)T (MA+AT M) (x − y) + 4 ‖M‖ δρ(D),

where ‖M‖ is the largest singular value of M .
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Fig. 5. Three trajectories of the system in Example 1 with varying enzyme availabil-
ity. In the right panel we can see that smaller enzyme concentration implies slower
consumption of the substrate.

If A is Hurwitz, then by following the same computation as in the previous
subsection, we can construct a barrier function with constant growth bound
by solving the Lyapunov equation (MA + AT M) ≤ 0 and the growth bound
is 4 ‖M‖ δρ(D). If A is not Hurwitz, for any choice of M we can construct a
positive constant growth bound for the barrier function by adding 4 ‖M‖ δρ(D)
to an upper bound of (x − y)T (MA + AT M) (x − y) for x, y ∈ D. This can be
done by using the technique described in the previous subsection, or by using
the following (possibly conservative) bound

(x − y)T (MA + AT M) (x − y) ≤ ρ(D)2
∥∥MA + AT M

∥∥ . (31)

4.4 Polynomial Systems

If f(x) in (1) is a polynomial, and if we assume that φ(x), ε(x), and γ(x) are
polynomials, the semidefinite constraints in (26) can be recast as sum-of-squares
constraints. Similar situation applies to (27) for safety verification. In this case,
the computation can be implemented by using computational tools for sum-of-
squares programming, such as SOSTOOLS [31].

Example 1. A standard model of the dynamics of an enzymatic reaction

Enzyme + Substrate � Enz.Sub → Enzyme + Product

is given by

d

dt

⎡⎢⎢⎣
x1
x2
x3
x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−kfx1x2 + (kb + km)x3

−kfx1x2 + kbx3
kfx1x2 − (kb + km)x3

kmx3

⎤⎥⎥⎦ ,

where the state variables are the concentrations of the enzyme, substrate, enzyme-
substrate complex, and product, respectively. The constants kf , kb, and km are
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reaction constants that determines the speed of the reactions. Several trajectories
of this system are shown in Figure 5. In this simulation, we take kb = 0.1 and
kf = km = 1. Consider the middle trajectory in Figure 5, which starts at the initial
condition (1, 1, 0, 0). Suppose that we take this trajectory as our test trajectory
and we want to construct a local barrier function for this system for a given domain
of validity. The circular domain of validity is expressed as

γ(x, y) := (x − c)T (x − c) + (x − y)T (x − y) − r2 ≤ 0,

where the vector c = (0.70, 0.51, 0.30.0.19)T defines the center of the circle in
the state space and r = 0.2 is its radius. We assume that the barrier function
can be written as

φ(x, y) :=
1
2
(x − y)T M(x − y),

with M a 4×4 symmetric positive semidefinite matrix. Finding a suitable barrier
function by using sum-of-squares programming can be cast as

minimize 0 subject to
−∇xφ(x, y)f(x) − ∇yφ(x, y)f(x) + ε(x, y)γ(x, y) + k = sos,

φ(x, y) = sos, ε(x, y) = sos.

Solving this problem with SOSTOOLS, we get

M =

⎡⎢⎢⎣
0.28 −0.07 0.21 −0.07
∗ 0.19 0.11 0.19
∗ ∗ 0.16 0.11
∗ ∗ ∗ 0.19

⎤⎥⎥⎦ , k = 0.02.

Notice that we replace nonnegativity of the polynomials with sum-of-squares
property, which is more restrictive and can lead to some conservativeness. How-
ever, through this step, the program can then be solved using available SOS
computational tools.

5 Discussion

In this paper we propose a trajectory based reachability analysis using local
finite-time invariance property. This method is a generalization of our previous
results [17,18], where a global bisimulation is required for each mode of dynamics.
We demonstrate that our method captures some other existing methods as spe-
cial cases, and that for polynomial systems the computation can be implemented
using sum-of-squares.

The extension of the method proposed in this paper to analysis of hybrid sys-
tems is relatively straightforward. The method proposed in [17] for hybrid systems
performs the analysis on a hybrid test trajectory bypiecing together trajectory seg-
ments betweenmode transitions in away analogous toTheorem1.We can therefore
apply the local analysis based method to hybrid systems by extending Theorem 1
to handle transition guards in a way similar to Proposition 2 in [17].
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In order to develop an effective implementation of the result posed in this
paper, we still need to design a comprehensive test algorithm. There are a number
of issues that need to be addressed along this direction. For example, the notion
of test coverage and automatic test generation based on the coverage need to
be developed to get an efficient testing procedure that can quickly cover the
set of initial states. We also need to address the issue of optimal placement of
the local domains of validity of the barrier functions. The goal is to design the
segmentation of trajectories in a way that requires as few segments as possible.
Another issue that we have not investigated is the use of constant and linear
growth bounds. In the case where both bounds are available, we need to design
an algorithm that can optimally choose which bound to use, in order to minimize
the conservativeness of the bound.
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Abstract. Although control Lyapunov functions (CLFs) provide a ma-
ture framework for the synthesis of stabilizing controllers, their applica-
tion in the field of hybrid systems remains scarce. One of the reasons for
this is conservativeness of Lyapunov conditions. This article proposes a
methodology that reduces conservatism of CLF design and is applicable
to a wide class of discrete-time nonlinear hybrid systems. Rather than
searching for global CLFs off-line, we focus on synthesizing CLFs by
solving on-line an optimization problem. This approach makes it possi-
ble to derive a trajectory-dependent CLF, which is allowed to be locally
non-monotone. Besides the theoretical appeal of the proposed idea, we
indicate that for systems affine in control and CLFs based on infinity
norms, the corresponding on-line optimization problem can be formu-
lated as a single linear program.

1 Introduction

Control Lyapunov functions (CLFs) [1, 2] represent perhaps the most popular
tool for synthesizing control laws that achieve stability. The interested reader is
referred to the surveys [3, 4] for a complete historical account. The classical ap-
proach for smooth continuous-time systems is based on the design of an explicit
feedback law off-line, which renders the derivative of a candidate CLF negative.
Conditions under which these results can be extended to sampled-data nonlinear
systems using their approximate discrete-time models can be found in [5]. An
important article on control Lyapunov functions for discrete-time systems is [6].
Therein, classical continuous-time results regarding existence of smooth CLFs
are reproduced for the discrete-time case.

Despite the popularity of CLFs within smooth nonlinear systems theory, there
is still a significant gap in the usage of CLFs in stabilization of hybrid sys-
tems. One of the reasons for this is conservativeness of the sufficient conditions
for Lyapunov asymptotic stability [7, 8], which are employed by most methods
for constructing CLFs. This makes classical CLFs overconservative for discon-
tinuous nonlinear and hybrid systems, as observed in the seminal paper [9].
Ever since, the focus has been on designing less conservative types of Lyapunov
functions for specific relevant classes of hybrid systems. For example, piecewise
quadratic (PWQ) functions were exploited in stability analysis and synthesis
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problems for continuous-time and discrete-time piecewise affine (PWA) systems
in [10], [11], [12]. Further relaxations were proposed in [13] for discrete-time
switched linear systems, using parameter dependent PWQ Lyapunov functions.
More recently, a hybrid CLF (which combines two different CLFs) was employed
in [14] to stabilize hybrid systems with discrete dynamics (e.g., hybrid systems
with discrete states and/or inputs).

To summarize, to some extent, the state-of-the-art methods for stability anal-
ysis of discrete-time hybrid systems (mostly PWA and switched linear systems)
rely on the off-line search for globally defined PWQ Lyapunov functions. One of
the most significant relaxations is that each quadratic function, which is part of
the PWQ global function, is required to be positive definite and/or satisfy de-
creasing conditions only in a subset of the state-space, relaxation often referred
to as the S-procedure [10]. From a numerical point of view, the existing tools
require solving a semidefinite programming problem. However, when it comes
to synthesis of CLFs, which consists of simultaneously searching for a PWQ
Lyapunov function and a state-feedback control law, the S-procedure leads to
a nonlinear matrix inequality that has not been solved systematically so far,
although serious efforts have been put in this direction.

Next, we present a motivating example which suffers from this drawback.

1.1 Motivating Example

Consider the following piecewise linear (PWL) system from [8], Chapter 3:

x(k + 1) = Ajx(k) + Bu(k) if Ejx(k) ≥ 0, k ∈ Z+, (1)

where j = {1, 2, 3, 4},

A1 =
[
0.5 0.61
0.9 1.345

]
, A2 =

[
−0.92 0.644
0.758 −0.71

]
, B =

[
1
0

]
, A3 = A1, A4 = A2.

The partitioning of the state-space is given by

E1 = −E3 =
[
−1 1
−1 −1

]
, E2 = −E4 =

[
−1 1
1 1

]
.

As shown in [8] the synthesis problem1 for this system in closed-loop with a PWL
state-feedback law is not feasible for a common quadratic or a PWQ Lyapunov
function without the S-procedure relaxation. However, a solution to the synthesis
problem for a PWQ Lyapunov function with the S-procedure has been found
in [8] at the expense of a significant computational complexity (i.e. a griding
approach was used to solve a bilinear matrix inequality).

This indicates that there are even very simple classes of discrete-time hybrid
systems for which a systematic and efficient synthesis method based on CLFs is
not available.
1 Notice that the above example is a “flower system” for the synthesis problem, simi-

larly as the example introduced in [10] is a “flower system” for the analysis problem.
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Remark 1. Existing on-line optimization based controllers, such as model pre-
dictive control algorithms, make use of the above-mentioned off-line synthesis
methods to obtain an a priori stability guarantee, see, for example, [15, 16].
Hence, they are also affected by the limitations of these methods. �

Motivated by the above example, in this paper we propose a new methodol-
ogy that reduces significantly the conservatism of CLF design for discrete-time
systems. Rather than searching for global CLFs off-line, we focus on synthe-
sizing time-variant CLFs by solving on-line an optimization problem. As such,
trajectory-dependent CLFs that are allowed to be locally non-monotone can be
derived. This approach offers the “least conservative” relaxation possible, in the
sense that for a CLF with a fixed structure that incorporates some time-variant
parameters, a possibly different value of these parameters is assigned to each
measured state. Furthermore, the stabilization conditions that involve the CLF
are only imposed along the closed-loop trajectory generated on-line. Numeri-
cally, we indicate that for piecewise continuous (PWC) nonlinear systems affine
in control and CLFs based on infinity norms, the on-line optimization problem
can be formulated as a single linear program. The effectiveness of the developed
theory is demonstrated on the motivating example presented above.

2 Preliminaries

In this section we recall preliminary notions and fundamental stability results.

2.1 Basic Notions and Definitions

Let R, R+, Z and Z+ denote the field of real numbers, the set of non-negative
reals, the set of integer numbers and the set of non-negative integers, respectively.
We use the notation Z≥c1 and Z(c1,c2] to denote the sets {k ∈ Z+ | k ≥ c1} and
{k ∈ Z+ | c1 < k ≤ c2}, respectively, for some c1, c2 ∈ Z+. For a set S ⊆ Rn,
we denote by int(S) the interior and by cl(S) the closure of S. A polyhedron (or
a polyhedral set) in Rn is a set obtained as the intersection of a finite number
of open and/or closed half-spaces. For a vector x ∈ Rn, [x]i denotes the i-th
element of x. A vector x ∈ Rn is said to be nonnegative (nonpositive) if [x]i ≥ 0
([x]i ≤ 0) for all i ∈ {1, . . . n}, and in that case we write x ≥ 0 (x ≤ 0). For a
vector x ∈ Rn let ‖·‖ denote an arbitrary p-norm. Let ‖x‖∞ := maxi=1,...,n |[x]i|,
where | · | denotes the absolute value. In the Euclidean space Rn the standard
inner product is denoted by 〈·, ·〉 and the associated norm is denoted by ‖ · ‖2,
i.e. for x ∈ Rn, ‖x‖2 = 〈x, x〉 1

2 = (x�x)
1
2 . For a matrix Z ∈ Rm×n, [Z]ij

denotes the element in the i-th row and j-th column of Z. Given Z ∈ Rm×n and
I ⊆ {1, . . . , m}, we write [Z]I• to denote a submatrix of Z formed by rows I

of Z. For a matrix Z ∈ Rm×n let ‖Z‖ := supx �=0
‖Zx‖
‖x‖ denote its corresponding

induced matrix norm. It is well known that ‖Z‖∞ = max1≤i≤m

∑n
j=1 |[Z]ij |.

A function ϕ : R+ → R+ belongs to class K if it is continuous, strictly increas-
ing and ϕ(0) = 0. A function ϕ : R+ → R+ belongs to class K∞ if ϕ ∈ K and it
is radially unbounded (i.e. lims→∞ ϕ(s) = ∞). A function β : R+ × R+ → R+
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belongs to class KL if for each fixed k ∈ R+, β(·, k) ∈ K and for each fixed
s ∈ R+, β(s, ·) is decreasing and limk→∞ β(s, k) = 0.

2.2 Lyapunov Asymptotic Stability

Consider the discrete-time autonomous nonlinear system

x(k + 1) ∈ Φ(x(k)), k ∈ Z+, (2)

where x(k) ∈ Rn is the state at the discrete-time instant k and the mapping Φ :
Rn ↪→ Rn is an arbitrary nonlinear, possibly discontinuous, set-valued function.
For simplicity, we assume that the origin is an equilibrium of (2), i.e. Φ(0) = {0}.
The following definitions give a strong characterization of invariance and stability
for the difference inclusion (2), in the sense that these properties are required to
hold for all possible trajectories generated by (2), and not just for one of them.

Definition 1. We call a set P ⊆ Rn positively invariant (PI) for system (2) if
for all x ∈ P it holds that Φ(x) ⊆ P.

Definition 2. Let X with 0 ∈ int(X) be a subset of Rn. We call system (2)
AS(X) if there exists a KL-function β(·, ·) such that, for each x(0) ∈ X it holds
that all corresponding state trajectories of (2) satisfy ‖x(k)‖ ≤ β(‖x(0)‖, k),
∀k ∈ Z+. We call system (2) globally asymptotically stable if it is AS(Rn).

Theorem 1. Let X be a PI set for (2) with 0 ∈ int(X). Furthermore, let α1, α2 ∈
K∞, ρ ∈ R[0,1) and let V : Z+ × Rn → R+ be a function such that:

α1(‖x‖) ≤ V (k, x) ≤ α2(‖x‖), ∀x ∈ X, ∀k ∈ Z+, (3a)

∀x(0) ∈ X, V (k + 1, x+) ≤ ρV (k, x(k)) (3b)

for all x+ ∈ Φ(x(k)), k ∈ Z+. Then system (2) is AS(X).

The proof of the above theorem can be obtained mutatis mutandis from the
proofs given in [17, 8] by replacing the difference equation with the difference
inclusion as in (2). It is worth to point out that if V (·) is a continuous and time-
invariant function, the above theorem can be recovered from Theorem 2.8 of [18],
which gives sufficient conditions for robust KL-stability of difference inclusions.
We call a function V (·, ·) that satisfies (3) a time-variant Lyapunov function.

3 Trajectory-Dependent CLFs for Discrete-Time Systems

Consider the discrete-time constrained nonlinear system

x(k + 1) = φ(x(k), u(k)), k ∈ Z+, (4)

where x(k) ∈ X ⊆ Rn is the state and u(k) ∈ U ⊆ Rm is the control input.
φ : Rn × Rm → Rn is an arbitrary nonlinear function, possibly discontinuous,
with φ(0, 0) = 0. We assume that 0 ∈ int(X) and 0 ∈ int(U).
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Remark 2. Since we allow φ(·, ·) to be discontinuous, the following fairly wide
class of hybrid systems is accounted for; Piecewise continuous nonlinear systems :

x(k + 1) = φ(x(k), u(k)) := φj(x(k), u(k)) if x(k) ∈ Ωj , k ∈ Z+, (5)

where each φj : Ωj × U → Rn, j ∈ S, is a continuous, possibly nonlinear
function in x and S := {1, 2, . . . , s} is a finite set of indices. The collection
{Ωj ⊆ Rn | j ∈ S} defines a partition of X, meaning that ∪j∈SΩj = X and
Ωi ∩ Ωj = ∅, with the sets Ωj not necessarily closed. In most sections of the
paper we will omit the explicit reference to the functions φj(·, ·) and the partition
{Ωj}j∈S for brevity. �

Definition 3. Let α1, α2 ∈ K∞ and let ρ ∈ R[0,1). A function V : Z+×Rn → R+
that satisfies

α1(‖x‖) ≤ V (k, x) ≤ α2(‖x‖), ∀x ∈ X, ∀k ∈ Z+ (6)

and for which there exists a control law u : X → U such that for any x(0) ∈ X

V (k + 1, φ(x(k), u(x(k)))) ≤ ρV (k, x(k)) for all k ∈ Z+

is called a time-variant control Lyapunov function (tvCLF) in X for system (4).

Next, based on Definition 3, we formulate the following optimization problem.

Problem 1. Let α1, α2 ∈ K∞, ρ ∈ R[0,1) and the structure of a candidate tvCLF
V (·, ·) be fixed such that (6) holds for all x ∈ X and all k ∈ Z+. At time k ∈ Z+
measure x(k) and calculate V (k, x(k)) and a control action u(k) such that:

u(k) ∈ U, φ(x(k), u(k)) ∈ X, (7a)
V (k, φ(x(k), u(k))) ≤ ρV (k, x(k)), (7b)
V (k, x(k)) ≤ V (k − 1, x(k)) if k ∈ Z≥1. (7c)

�

The reasoning employed to construct the constraints in Problem 1 is graphically
depicted in Figure 1, first plot from left to right. Let π(x(k)) := {u(x(k)) |
∃V (k, ·) s.t. (6) − (7) hold} and let φcl(x, π(x)) := {φ(x, u) | u ∈ π(x)}. No-
tice that for a given x(0) ∈ X, the inequalities (7) generate, besides a se-
quence of sets of feasible control actions {π(x(k))}k∈Z+ , also a sequence of
sets of feasible realizations of a tvCLF, i.e. V(V (k − 1), x(k)) := {V (k, ·) |
∃u(x(k) s.t. (6) − (7) hold)} for any k ∈ Z≥1. Implicitly, π(x(k)) also depends
on V (k−1, ·), but we omitted this dependency for brevity of notation. At k = 0,
both π(x(0)) and V(x(0)) depend on x(0) only and their definition is recovered
by removing (7c) in the definitions given above for k ∈ Z≥1.

Theorem 2. Let α1, α2 ∈ K∞ be given. Suppose that Problem 1 is feasible for
all states x in X. Then the difference inclusion

x(k + 1) ∈ φcl(x(k), π(x(k))), k ∈ Z+, (8)

is AS(X).
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Proof. Let x(k) ∈ X for some k ∈ Z+. Then, feasibility of Problem 1 ensures
that x(k + 1) ∈ φcl(x(k), π(x(k))) ⊆ X due to constraint (7a). Hence, Prob-
lem 1 remains feasible and thus, X is a PI set for system (8). As V (k, x) sat-
isfies (6) for all x ∈ X and all k ∈ Z+ by assumption and hence, it satisfies
(3a), we only need to show that V (k, x(k)) also satisfies inequality (3b) for all
x(0) ∈ X and all k ∈ Z+. At time k = 0, for any x(0) ∈ X we have that
V (0, φ(x(0), u(0))) ≤ ρV (0, x(0)) for all u(0) ∈ π(x(0)). Furthermore, at time
k = 1 it holds that V (1, x(1)) ≤ V (0, x(1)) = V (0, φ(x(0), u(0))) ≤ ρV (0, x(0))
for all u(0) ∈ π(x(0)). Thus, inequality (3b) holds for system (8) for k = 0 and
all x(0) ∈ X. We will show next that inequality (3b) holds for any k ∈ Z≥1.
Due to positive invariance of X, for any x(0) ∈ X we have that inequality (7b) is
feasible at time k and inequality (7c) is feasible at time k + 1 for any k ∈ Z≥1.
Hence,

V (k + 1, x(k + 1)) ≤ V (k, x(k + 1)) = V (k, φ(x(k), u(k))) ≤ ρV (k, x(k)),

for all u(k) ∈ π(x(k)), k ∈ Z≥1 and all x(0) ∈ X. Then, AS(X) of system (8)
follows from Theorem 1. �

Notice that the result of Theorem 2 is of the type “feasibility implies stability”
and as such, we have assumed that Problem 1 is feasible for all x ∈ X. For a given
x(0) ∈ X, by solvingProblem1on-line in a receding horizon fashion (assuming that
it remains feasible at all future instances), one does not obtain a tvCLF in X, but
only a tvCLF valid for the corresponding closed-loop state trajectory {x(k)}k∈Z+ .
Therefore, it makes sense to introduce the following formal definition.

Definition 4. Consider Problem 1. For any x(0) ∈ X such that the sets π(x(0)),
π(x(k)), V(x(0)) and V(V (k − 1, ·), x(k)) are non-empty for all k ∈ Z≥1, we call
a sequence {V (k, ·)}k∈Z+ with V (0, ·) ∈ V(x(0)), V (k, ·) ∈ V(V (k − 1, ·), x(k))
for all k ∈ Z≥1 a trajectory-dependent control Lyapunov function (tdCLF).

It is interesting to point out that a trajectory-dependent CLF can be interpreted
as an approximation along a particular trajectory of a possibly very complex
global time-invariant CLF. The tdCLF concept can also be extended to deal
with a set of trajectories that originate from a particular set of initial conditions
of interest.

Furthermore, observe that the S-procedure relaxation proposed in [10] for
PWA systems is recovered as a particular case of the design presented in this
section, i.e. for V (k, x(k)) time invariant as long as x(k) ∈ Ωj for some j ∈ S.

In the next subsection we will briefly discuss the possibility of enlarging the
feasible domain of Problem 1 considerably.

3.1 Non-monotone tdCLFs

The inequalities (7) can be further significantly relaxed by allowing the candidate
tdCLF to be locally non-monotone. This can be done by replacing the inequalities
(7b) and (7c) with:
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Fig. 1. A graphical illustration of tvCLFs

V (k, φ(x(k), u(k))) ≤ ρV (k, x(k)) + λ(k), (9a)
V (k, x(k)) ≤ V (k − 1, x(k)) + ζ(k) if k ∈ Z≥1, (9b)

respectively, where λ(k) ∈ R+ and ζ(k) ∈ R+ are additional variables. For a
graphical illustration see Figure 1, the second plot from left to right. Whenever
λ(k) → 0 and ζ(k) → 0 as k → ∞ is a priori guaranteed, the closed-loop asymp-
totic stability result of Theorem 2 still holds. An appealing solution to guarantee
this property is to define λ(k) and ζ(k) as outputs of an artificial dynamical
system. Then the behavior of λ(k) and ζ(k) can be kept non-monotone, which
implies non-monotonicity of V (·, ·), while limk→∞ λ(k) = 0 and limk→∞ ζ(k) = 0
can be ensured through partial stability [19] of the artificial system. The con-
struction of such an artificial system is the object of undergoing research. Alter-
natively, λ(k) ∈ R+ and ζ(k) ∈ R+ can be set as optimization variables. Then,
adding a suitably defined2 cost function J(λ(k), ζ(k)) to Problem 1 and mini-
mizing over J(·, ·) for a given x(k) results in optimizing the trade-off between
(i) feasibility of Problem 1 and (ii) stabilization.

Remark 3. The relaxation proposed in (9b) recovers as a particular case the one
proposed in [9], where it is allowed for the Lyapunov function not to decrease
when the system switches from one mode to another, i.e. when x(k − 1) ∈ Ωj

and x(k) ∈ Ωi for some (i, j) ∈ S × S, i �= j. Furthermore, observe that the two
additional variables allow two types of non-monotone behavior of the tdCLF:
λ allows non-monotonicity of the tdCLF for fixed k ∈ Z+, while ζ allows non-
monotonicity of the tdCLF for fixed x(k). The solution based on λ was also used
in [14] to stabilize hybrid systems with discrete dynamics (e.g., with discrete
states and/or inputs) via non-monotone time-invariant CLFs. �

In the remainder of the paper, for simplicity of exposition, we no longer consider
non-monotone tdCLFs. However, all the derivations presented in the next section
for Problem 1 trivially apply also to the case when (7b)-(7c) are replaced by
(9a)-(9b), as λ and ζ, respectively, enter the latter inequalities linearly.
2 J(·, ·) : R+ × R+ → R+ is radially unbounded and J(0, 0) = 0.
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4 Synthesis of tdCLFs by a Single Linear Program

In this section we consider candidate tvCLFs of a fixed structure and with a set
of unknown parameters to be determined on-line, which yields a tdCLF. More
precisely, we restrict our attention to cases where V (k, x(k)) = V (p(k), x(k)),
V (·, ·) is a priori defined and p(k) is a vector of parameters. For example
V (k, x(k)) = ‖P (k)x(k)‖ or V (k, x(k)) = x�(k)P (k)x(k), where in both cases
the elements of P (k) are the unknown parameters which are to be determined
on-line so that (6)-(7) hold. Furthermore, to make solving Problem 1 on-line
tractable, it is desirable that the inequalities (6)-(7) are convex in both the
control input u(k) and the parameters p(k). In this respect we point out to
some features of Problem 1 as follows. For a given x(k), the lower bound in-
equality in (6) imposes convex constraints on the parameters p(k) if and only if
V (p(k), x(k)) is concave in p(k), while the upper bound inequality in (6) imposes
convex constraints on the parameters p(k) if and only if V (p(k), x(k)) is convex
in p(k). Similarly, suppose that φ(x(k), u(k)) and x(k) are fixed. Then inequal-
ity (7b) imposes convex constraints on p(k) if and only if V (p(k), x(k)) is both
convex and concave in p(k), i.e. if it is affine or linear in p(k). To summarize,
the inherent feature of Problem 1 is that, in general, it is a nonconvex problem.

In the remainder of this section we present a complete convexification proce-
dure for the following fairly general case. In terms of the class of systems, we
restrict our attention to PWC nonlinear systems that are affine in the control
input, i.e.:

x(k + 1) = φ(x(k), u(k)) = φj(x(k), u(k)) if x(k) ∈ Ωj

= fj(x(k)) + gj(x(k))u(k) if x(k) ∈ Ωj , k ∈ Z+

where fj(·) and gj(·) denote suitably defined continuous nonlinear functions. For
brevity, let f(x) := fj(x) and g(x) := gj(x) if x ∈ Ωj , respectively. Observe that
PWA systems are a subclass of the above system. Also, we assume that the sets
X and U are polyhedra. In terms of candidate tvCLFs, we restrict our attention
to functions defined using the infinity norm, i.e.:

V (k, x(k)) := ‖P (k)x(k)‖∞,

where P (k) ∈ Rp×n is to be computed on-line so that (6)-(7) hold.

4.1 Construction of the Lower and Upper Bound

For a fixed x(k) ∈ X let

P(x(k)) := { y ∈ Rn | 〈y, x(k)〉 ≥ 0 }, (10)

and let Pi(x(k)) ⊂ Rn for i ∈ {1, . . . , p} =: I, p ≥ n, be compact sets. Further-
more, define

Π(x(k)) := {P ∈ Rp×n | [P ]i• ∈ Pi(x(k)), ∀i ∈ I}, (11)
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and suppose that the collection of sets {Pi(x(k))}i∈I is such that:

Pi(x(k)) ⊂ P(x(k)), ∀i ∈ I, (12a)
P (k) ∈ Π(x(k)) ⇒ rank(P (k)) = n, (12b)
Pi(x(k)) ∩ Br1(k) = ∅, Pi(x(k)) ⊂ Br2(k), ∀i ∈ I, (12c)

where Bri(k) := {z ∈ Rn | ‖z‖2 < ri(k)}, i = 1, 2, for some r1(k), r2(k) ∈ R>0,
r1(k) < r2(k) for all k ∈ Z+.

Lemma 1. Let x(k) ∈ X, k ∈ Z+, be fixed and let {Pi(x(k))}i∈I satisfy (12).
Then
(i) P (k)x(k) ≥ 0 for all P (k) ∈ Π(x(k));
(ii) ∃α1 ∈ K∞ such that ‖P (k)z‖∞ ≥ α1(‖z‖∞), ∀z ∈ Rn, ∀P (k) ∈ Π(x(k));
(iii) ∃α2 ∈ K∞ such that ‖P (k)z‖∞ ≤ α2(‖z‖∞), ∀z ∈ Rn, ∀P (k) ∈ Π(x(k)).

Proof. (i) Follows directly from (12a) and the definitions of P(x(k)) and Π(x(k)).
(ii) Let

c(k) := max
i∈I

min
z �=0

min
y∈Pi(x(k))

|〈y, z〉|
‖y‖2‖z‖2

. (13)

Note that c(k) is well defined, as from (12c) we have that for each i ∈ I, y ∈
Pi(x(k)) ⇒ y �≡ 0. For any z ∈ Rn\{0}, maxi∈I miny∈Pi(x(k))

|〈y,z〉|
‖y‖2‖z‖2

> 0, since
from (12b) it follows that there always exists a j ∈ I such that y ∈ Pj(x(k)) ⇒
〈y, z〉 �= 0. Hence, c(k) �= 0 and thus, c(k) > 0. Now, let P (k) ∈ Π(x(k)) and
for notational convenience let pi(k) := [P (k)]�i•. Then we can write the following
sequence of equalities

‖P (k)z‖∞ = ‖(〈p1(k), z〉, . . . , 〈pp(k), z〉)�‖∞ = max
i∈I

|〈pi(k), z〉|. (14)

Furthermore, for any fixed pi(k) and any z �= 0 we have

max
i∈I

|〈pi(k), z〉|
‖pi(k)‖2‖z‖2

≥ max
i∈I

min
z̃ �=0

min
ỹ∈Pi(x(k))

|〈ỹ, z̃〉|
‖ỹ‖2‖z̃‖2

= c(k). (15)

Therefore, using (12c) and ‖z‖∞ ≤ ‖z‖2, yields:

max
i∈I

|〈pi(k), z〉| ≥ c(k)‖pi(k)‖2‖z‖2 ≥ c(k)r1(k)‖z‖∞,

which together with (14) implies ‖P (k)z‖∞ ≥ c(k)r1(k)‖z‖∞. Since P (k) is an
arbitrary matrix in Π(x(k)), we conclude that the desired inequality holds with
α1(‖z‖∞) := infk∈Z+ c(k)r1(k)‖z‖∞.
(iii) For any P (k) ∈ Π(x(k)) we have that

‖P (k)z‖∞ ≤ ‖P (k)‖∞‖z‖∞ = max
i∈I

‖pi(k)‖1‖z‖∞. (16)

Using the fact that ‖pi(k)‖1 ≤ n‖pi(k)‖2 and the property (12c), inequality (16)
further implies that ‖P (k)z‖∞ ≤ n r2(k) ‖z‖∞. Since P (k) is an arbitrary matrix
in Π(x(k)), we conclude that the desired inequality holds with α2(‖z‖∞) :=
n supk∈Z+

r2(k)‖z‖∞. �
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Notice that the upper and lower bounds established in the proof of Lemma 1
can be derived explicitly as follows. Some tuning parameters R1, R2 ∈ R>0 can
always be a priori chosen such that R1 ≤ r1(k) < r2(k) ≤ R2 for all k ∈ Z+.
This will be illustrated in Section 4.3, where it is also shown how to derive a
number C ∈ R>0 such that c(k) ≥ C for all k ∈ Z+. Furthermore, therein we
present an approach to the derivation of the collection of sets {Pi(x(k))}i∈I such
that (12) holds. Another clarifying point is that the result of Lemma 1-(i) will
be instrumental in the convexification of inequality (7b).

4.2 Convexification of Problem 1

Next, let D(x(k)) and d(x(k)) be a matrix and a vector of appropriate dimen-
sions such that at each time k the inequalities (7a) are equivalently written as
D(x(k))u(k) ≤ d(x(k)). Note that with the hypothesis that X and U are poly-
hedra, this can always be done for PWC nonlinear systems affine in control.

Problem 2. Let C, R1, R2 ∈ R>0 with R1 < R2 be given such that C ≤ c(k)
and R1 ≤ r1(k) < r2(k) ≤ R2 for all k ∈ Z+. At time k ∈ Z+ let x(k) be the
measured state. Determine the partition {Pi(x(k))}i∈I , I = {1, . . . , p}, p ≥ n,
such that (12) holds for some r1(k), r2(k) ∈ R>0, r1(k) < r2(k). Then, compute
P (k) ∈ Rp×n, τ(k) ∈ Rm and ξ(k) ∈ R such that

D(x(k))τ(k) ≤ ξ(k)d(x(k)), (17a)
‖ξ(k)f(x(k)) + g(x(k))τ(k)‖∞ − ρ[P (k)x(k)]i• ≤ 0, ∀i ∈ I, (17b)
‖P (k)‖∞ ≤ ξ(k), (17c)
[P (k)]i• ∈ Pi(x(k)), ∀i ∈ I, (17d)
‖P (k)x(k)‖∞ ≤ ‖P (k − 1)x(k)‖∞, if k ∈ Z≥1. (17e)

��
Lemma 2. Let P (k), τ(k) and ξ(k) denote a feasible solution of Problem 2 for
state x(k) at time k ∈ Z+ and let [u(k)]i := [τ(k)]i

ξ(k) for i = 1, . . . , m. Then
V (k, x) := ‖P (k)x‖∞ and u(k) are a feasible solution of Problem 1 for state
x(k) at time k ∈ Z+.

Proof. Since (17d) implies that P (k) �≡ 0, we obtain ‖P (k)‖∞ �= 0 and thus,
from (17c) it follows that ξ(k) > 0. This implies that u(k) is indeed well-defined,
and that we can pull out ξ(k) from the norm in (17b). By Lemma 1-(i), we have
that (17d) ⇒ P (k)x(k) ≥ 0. Furthermore, from with (17c) and (17b) we obtain:

0 ≥ ξ(k)‖f(x(k)) + g(x(k))
τ(k)
ξ(k)

‖∞ − ρ‖P (k)x(k)‖∞

≥ ‖P (k)‖∞‖f(x(k)) + g(x(k))u(k)‖∞ − ρ‖P (k)x(k)‖∞
≥ ‖P (k)(f(x(k)) + g(x(k))u(k))‖∞ − ρ‖P (k)x(k)‖∞, (18)

i.e. (7b) holds. Furthermore, from (17a) we have that

D(x(k))
τ(k)
ξ(k)

= D(x(k))u(k) ≤ d(x(k)),
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and therefore (7a) is satisfied. Using Lemma 1, the inequality (17d) and R1 ≤
r1(k) < r2(k) ≤ R2 for all k ∈ Z+ we obtain (6) with α1(‖x‖∞) := CR1‖x‖∞
and α2(‖x‖∞) := nR2‖x‖∞. The proof is concluded by observing that (17e) is
just (7c). �

Remark 4. Suppose that each Pi(x(k)) in Problem 2 is a convex set. Then Prob-
lem 2 amounts to finding a feasible solution to a set of convex inequalities, and
it implicitly solves a non-convex optimization problem, i.e. Problem 1. �

4.3 Construction of a Collection of Polyehedral Sets {Pi(x(k))}i∈I

In parallel with the general description of the procedure we will refer to the
following example for illustrative purposes. Suppose that x ∈ R2. For a fixed
x(k), k ∈ Z+, Figure 2 illustrates a possible choice of the collection of sets
{Pi(x(k))}i∈I , where each set is a polyhedron. It is easy to verify that these sets
satisfy the conditions (12). For example, by restricting the 3 non-zero vectors
into the cones indicated by the angles ϕ in Figure 2, it necessarily holds that at
least two of these vectors are linearly independent. Hence, the full column rank
condition (12b) is ensured.

Next we illustrate how to explicitly calculate the value of c(k). Recall that
c(k) := maxi∈I minz �=0 miny∈Pi(x(k))

|〈y,z〉|
‖y‖2‖z‖2

and for any x, y ∈ Rn the value
|〈x,y〉|

‖x‖2‖y‖2
defines the angle β between the two vectors [20]. More precisely β =

cos−1( |〈x,y〉|
‖x‖2‖y‖2

), 0 ≤ β ≤ π
2 . As such, the value c(k) is in fact the maximum of the

smallest possible cos(βi), where βi denotes the angle between z and y ∈ Pi. For
the example of partition in Figure 2, we have that c(k) = cos(ϕ) = cos(π

3 ) = 0.5
for all k ∈ Z+ and thus, C can be taken equal to 0.5.

Next, we briefly describe an algorithm for constructing the sets {Pi(x(k))}i∈I
as polyhedra, which consists of an off-line part and a very simple on-line adjust-
ment procedure.

Off-line part: Construct an initial collection of polyhedral sets {P0
i }i∈I for an

arbitrary fixed x(k) = x0 (for example, in Figure 2 we have chosen x0 := (1, 0)�)
such that (12) holds. Note that this is always possible. In particular observe that
the condition (12b) is satisfied if and only if p ≥ n and there does not exist a
hyperplane in Rn which contains the origin and intersects all the sets {P0

i }i∈I .
Since each P0

i is a polyhedron, there exist matrices H0
i and vectors h0

i such that
y ∈ P0

i ⇔ H0
i y ≤ h0

i for all i ∈ I (for the example of Figure 2, I = {1, 2, 3}).
On-line part: Let x(k) be measured and let α(x(k)) be the angle between x(k)

and x0, see Figure 2 for a graphical illustration. Then construct {Pi(x(k))}i∈I as
follows: Hi(x(k)) := H0

i M(α(x(k))) and hi(x(k)) = h0
i , where y ∈ Pi(x(k)) ⇔

Hi(x(k))y ≤ hi(x(k)) for all i ∈ I and the matrix M(α) is a suitably defined
rotational matrix [20], which can be chosen off-line. For the example of Figure 2,
M =

(
cos(α) sin(α)
− sin(α) cos(α)

)
.

Remark 5. The on-line part mentioned above can be completely removed by
replacing the terms ρ[P (k)x(k)]i•, i ∈ I, in (17b) with the corresponding lower
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Fig. 2. Example of sets {Pi(x(k))}i∈I in the two dimensional case

bound. Also, observe that the derivation of c(k) depends only on the off-line
partition {P0

i }i∈I and therefore, c(k) = C can be fully determined off-line. �

Note that now Problem 2 can be formulated as a single linear program as follows.
Constraint (17a) is linear as X and U are polyhedra and the system is affine in
the control input. Constraint (17d) is now a set of linear constraints as each
set Pi(x(k)) is a polyhedron for the measured state x(k). Furthermore, note
that that for any matrix Z ∈ Rr×l the condition ‖Z‖∞ ≤ c for some c ∈ R>0 is
equivalent to ±[Z]i1± [Z]i2 . . .± [Z]il ≤ c, i = 1, . . . , r. Thus, as x(k) is known at
each k ∈ Z+, (17b), (17c) and (17e) can be specified through a finite number of
linear inequalities in ξ(k), τ(k) and in the elements of P (k) without introducing
any conservatism. Therefore, by Lemma 2, a solution to Problem 1 can be found
by solving a single linear program at each sampling instant k ∈ Z+.

Remark 6. The hybrid nature of the system dynamics is inherently embedded
in inequality (17b), which is equivalent to

‖ξ(k)fj(x(k)) + gj(x(k))τ(k)‖∞ − ρ[P (k)x(k)]i• ≤ 0, ∀i ∈ I, if x(k) ∈ Ωj .

However, as x(k) is known at every time instant k ∈ Z+, it implies that the index
j ∈ S is also known. That is why it is possible to solve Problem 2 by a single
linear program (LP). Moreover, even in the case of mode uncertainty (possibly
due to measurement noise), one can impose the above inequality in a robust way,
i.e. for all dynamics indexed by j ∈ S(x(k)) ⊆ S, where S(x(k)) collects all the
indexes corresponding to the regions Ωj that need to be accounted for in the
case of mode uncertainty. Then, Problem 2 still can be formulated as a single
linear program, while the method presented in Section 3.1 can be employed to
decrease conservativeness considerably. �
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Fig. 3. Closed-loop simulation results: State-trajectory and P (k) history

Fig. 4. Sublevel sets {x | V (k, x) ≤ 4} for k ∈ Z[0,30]

5 Illustrative Example

Consider system (1) with all the numerical details presented in Section 1.1. As
stated therein, the synthesis problem for a PWQ Lyapunov function and a PWL
state-feedback control law is not feasible unless the S-procedure [10] is applied.
This makes the synthesis of a stabilizing control law a challenging problem.
We have followed the procedure described in the previous section to formulate
Problem 2 as a single LP. We have fixed the dimensions of P (k) to R3×2. The
initial partition {P0

i }i∈I has been chosen as illustrated in Figure 2, which yields
c(k) = C = 0.5 for all k ∈ Z+. Furthermore, we have chosen the constants
R1 = 1 and R2 = 2. The rotational matrix M for finding the matrices Hi(x(k)),
i = 1, 2, 3, on-line is also taken as specified in Section 4.3. Finally, the tuning
parameter ρ is taken equal to 0.9. The resulting LP has 8 optimization variables
(the 6 elements of P (k), ξ(k) and τ(k)) and 44 constraints. The time spent to
calculate the matrices Hi(x(k)), which update certain constraints in the LP, is
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negligible compared to the time required to solve the LP. The overall worst-case
time required by the algorithm was less than 5 milliseconds.

Figure 3 shows the closed-loop simulation results for initial state x(0) =
[3 − 1]�. The proposed method successfully stabilizes the PWL system, while
satisfying state and input constraints (X := {x ∈ R2 | ‖x‖∞ ≤ 5} and U :=
{u ∈ R | |u| ≤ 2}). Figure 4 presents a plot of the sublevel sets {x | V (k, x) =
‖P (k)x‖∞ ≤ 4} for k ∈ Z[0,30]. It is worth to point out that the closed-loop
trajectory keeps on switching between two modes even very close to the origin,
which in turn yields a different matrix P (k) at two successive sampling instants.
This can be observed in Figure 3, in the plot showing the history of all the 6
elements of P (k), which still switch between two different values even when the
state is very close to the origin. This demonstrates that the theoretical set-up
proposed in this paper can effectively deal with non-trivial stabilization problems
encountered in hybrid systems.

6 Conclusions

In this article we have proposed a new methodology that reduces significantly
the conservatism of CLF design for discrete-time systems. Rather than searching
for global CLFs off-line, we focused on synthesizing time-variant CLFs by solving
on-line an optimization problem. As such, trajectory-dependent CLFs that are
allowed to be locally non-monotone were derived. This approach offers a less
conservative relaxation when compared to the classical S-procedure approach.
Regarding efficiency, we indicated that for PWC nonlinear systems affine in
control and CLFs based on infinity norms, the on-line optimization problem can
be formulated as a single linear program.
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Science Foundation) and NWO (The Netherlands Organization for Scientific
Research).
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Abstract. A nonconservative stability theory for switched linear sys-
tems is applied to the convergence analysis of consensus algorithms in the
discrete-time domain. It is shown that the uniform-joint-connectedness
condition for asymptotic consensus in distributed asynchronous algo-
rithms and multi-particle models is in fact necessary and sufficient for
uniform exponential consensus.

1 Introduction

We consider teams of mobile agents working together towards the common goal
of reaching consensus asymptotically [1,2]. These agents are often modeled as
spatially distributed self-driven particles whose states (e.g., positions and veloc-
ities) evolve according to the information received from their neighbors. Each
agent has its own neighbor set, and the collection of such neighbor sets over all
agents determines a communication topology of a team. As the agents’ states
evolve, their neighbor sets are updated over time, and the team’s communica-
tion topology undergoes changes as well. Since the number of agents is finite,
the number of all possible communication topologies is finite. Therefore, as ar-
gued in [3], the behavior of these mobile agents can be described by a switched,
or hybrid, dynamical system whose mode of operation jumps from one to an-
other within a finite set according to the underlying, possibly nondeterministic,
switching structure [4,5,6,7].

The purpose of this paper is to use switched system stability theory and estab-
lish a condition for teams of mobile agents to reach consensus in the discrete-time
domain. Existing work in the literature [8,3,9,10] builds on Markov chain and
Lyapunov stability theories. However, despite the apparent connection between
the area of switched systems and that of multi-agent teams, not much work has
been done at the intersection of the two areas. This is partly because seeking a
common quadratic Lyapunov function does not work for the latter [3], which is
discouraging, and because a relevant nonconservative stability analysis for the
former was discovered only very recently [11,12,13]. This paper presents a con-
vergence analysis that fully exploits the connection between switched systems
and multi-agent models.

One of the nice things that comes from the use of switched system theory is
that the notion of uniform exponential consensus arises as a natural notion of
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c© Springer-Verlag Berlin Heidelberg 2009



Uniform Consensus among Self-driven Particles 253

convergence. Uniform exponential consensus requires the existence of a single
rate at which the agents’ states converge to a common value regardless of the
initial time. This uniformity requirement guarantees that asymptotic consen-
sus will occur against a disturbance that causes a sudden change in the agents’
states at an arbitrary time instant. This robustness property against disturbance
is not guaranteed under the notion of mere asymptotic consensus. Moreover,
our convergence condition is equivalent to a well-known sufficient condition for
asymptotic consensus (i.e., the uniform-joint-connectedness condition in [3, The-
orem 2]), which turns out to be not only sufficient but also necessary for uniform
exponential consensus.

In summary, the novelty of this work lies in the following aspects:

– The connection between switched systems and multi-agent models is fully
exploited;

– The common notion of asymptotic consensus is replaced with the stronger
but more useful notion of uniform exponential consensus;

– The condition that the communication topology be uniformly jointly con-
nected is shown to be an exact condition for uniform exponential consensus.

The main result is presented in Section 2, and its proof is given in Section 3.
Concluding remarks are made in Section 4.

Notation

The n-dimensional real Euclidean space is denoted by Rn. The Euclidean vector
norm ‖ · ‖ on Rn is defined by ‖x‖ =

√
xTx for x ∈ Rn. The spectral norm on

Rn×n is denoted by ‖ · ‖ as well, and is defined by

‖X‖ = sup
{√

λ : λ is an eigenvalue of XTX
}

for X ∈ Rn×n. If X, Y ∈ Rn×n are symmetric (i.e., X = XT and Y = YT) and
X − Y is negative definite (i.e., xT(X − Y)x < 0 whenever x �= 0), we write
either X < Y or X − Y < 0.

2 Main Result

Let S be the set of all symmetric stochastic matrices in Rn×n with positive
diagonal entries. (That is, F = (fij) ∈ S if and only if fij = fji, fij ≥ 0, fii > 0,
and

∑n
k=1 fik = 1 for all i, j ∈ {1, . . . , n}.) Associated with each F = (fij) ∈ S

is a graph G ⊂ {1, . . . , n} × {1, . . . , n} such that (i, j) ∈ G if and only if fij > 0
and i �= j. (Note that these graphs are identified with sets of edges as they share
the common set of vertices given by {1, . . . , n}.)

Definition 1. A graph G ⊂ {1, . . . , n} × {1, . . . , n} is said to be connected
if between every pair of distinct vertices i, j ∈ {1, . . . , n} there exists a path
(i0, i1, . . . , iL) ∈ {1, . . . , n}L+1 such that i0 = i, iL = j, and (ik, ik+1) ∈ G for
k = 0, . . . , L − 1. A set of graphs {Gj : j ∈ J} is said to be jointly connected if
its union

⋃
j∈J Gj is connected.
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A finite set
F = {F1, . . . ,FN} ⊂ S (1)

defines a discrete linear inclusion (i.e., a discrete-time switched linear system
under arbitrary switching) whose state-space representation is of the form

x(t + 1) = Fθ(t)x(t) (2)

for each switching sequence θ = (θ(0), θ(1), . . . ) ∈ {1, . . . , N}∞. For each i ∈
{1, . . . , N}, let Gi be the graph associated with Fi.

Definition 2. Let F be as in (1). Let Gi be the graph associated with Fi for
i = 1, . . . , N . A switching sequence θ ∈ {1, . . . , N}∞ is said to yield uniformly
jointly connected graphs if there exists an integer T ≥ 0 such that the set of
graphs {Gθ(t), . . . , Gθ(t+T )} is jointly connected for all t = 0, 1, . . . .

Associated with each Fi ∈ F is a unique matrix Ai ∈ R(n−1)×(n−1) such that⎡⎢⎣1 · · · 0 −1
...

. . .
...

...
0 · · · 1 −1

⎤⎥⎦Fi = Ai

⎡⎢⎣1 · · · 0 −1
...

. . .
...

...
0 · · · 1 −1

⎤⎥⎦ , i = 1, . . . , N.

Then
A = {A1, . . . ,AN}

defines a discrete linear inclusion whose state-space description is given by

x̂(t + 1) = Aθ(t)x̂(t) (3)

for all switching sequences θ ∈ {1, . . . , N}∞. As argued in [3], the state equa-
tion (2) satisfies

lim
t→∞ x(t) = x0

⎡⎢⎣1
...
1

⎤⎥⎦ (4)

for each x(0) ∈ Rn, where x0 ∈ R is a constant that depends on x(0) (i.e.,
θ achieves asymptotic consensus for F), if and only if the state equation (3)
satisfies

lim
t→∞ x̂(t) = 0 (5)

for all x̂(0) ∈ Rn−1 (i.e., θ is asymptotically stabilizing for A).

Definition 3. Let F be as in (1). A switching sequence θ ∈ {1, . . . , N}∞ is said
to achieve uniform exponential consensus for F if there exist c > 0 and λ ∈ (0, 1)
such that the state-space equation (3) satisfies

‖x̂(t)‖ ≤ cλt−t0‖x̂(t0)‖ (6)

for all t0 ≥ 0, t ≥ t0, and x̂(t0) ∈ Rn−1.
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The following is the main result that establishes an exact condition under which
a given switching sequence θ achieves uniform exponential consensus for F .

Theorem 4. Let F be as in (1). A switching sequence θ ∈ {1, . . . , N}∞ achieves
uniform exponential consensus for F if and only if it yields uniformly jointly
connected graphs.

The proof of this theorem is deferred to Section 3. The result is applicable to
a large class of distributed algorithms and multi-agent networks; e.g., some of
the linear discrete-time consensus algorithms studied in [8,3,9,10]. In particular,
Vicsek et al.’s multi-particle model [14] employs a nearest neighbor rule with
parameter r > 0 for n agents moving at a common speed. Here, a real-valued
state xi(t) of the i-th agent (i.e., the heading of the i-th agent) is updated
according to

xi(t + 1) =
1

|Ni(t)|
∑

j∈Ni(t)

xj(t), i = 1, . . . , N, t = 0, 1, . . . , (7)

where

Ni(t) = {j ∈ {1, . . . , n} : position of agent j at time t is
within radius r from position of agent i at time t, j = 1, . . . , n}

is the set of nearest neighbors of agent i (including agent i itself), and where
|Ni(t)| is the cardinality of Ni(t). This update rule gives rise to a state equation
of the form

x(t + 1) = F(t)x(t)

with x(t) = [x1(t) · · · xn(t)]T and F(t) ∈ S for all t. Since the number N
of distinct network topologies {N1(t), . . . , Nn(t)} that can occur over all ini-
tial states x(0) ∈ Rn and over all time instants t is finite, we can label these
topologies from 1 to N and obtain the state equation (2) with F(t) = Fθ(t),
θ(t) ∈ {1, . . . , N}. Jadbabaie et al.’s sufficient condition [3] for asymptotic con-
sensus states that, if there exists a τ and time instants 0 < t1 < t2 < · · · such
that tk+1 − tk ≤ τ for all k and such that the sets of graphs

{Gθ(0), . . . , Gθ(t1−1)}, {Gθ(t1), . . . , Gθ(t2−1)}, . . .

are all jointly connected, then the nearest neighbor rule (7) is guaranteed to yield
asymptotic consensus; that is, all headings xi(t) approach a common value x0 as
t → ∞. Putting T = 2τ , this condition implies that the set {Gθ(t), . . . , Gθ(t+T )}
is jointly connected for all t = 0, 1, . . . . Thus Theorem 4 asserts this sufficient
condition for asymptotic consensus is in fact necessary and sufficient for uniform
exponential consensus.

3 Proof of Main Result

3.1 Lemmas

There are a few lemmas required to prove Theorem 4. This subsection is devoted
to summarizing them.



256 J.-W. Lee

In the contexts of distributed asynchronous algorithms and multi-particle
models, where each initial state leads to a deterministic switching sequence,
it is known that asymptotic convergence of the state variables to a common
value is guaranteed if the switching sequence yields uniformly jointly connected
graphs [8,14,3,15].

Lemma 5. If the switching sequence θ yields uniformly jointly connected graphs,
then the state equation (2) satisfies (4) for each x(0) ∈ Rn, where x0 ∈ R is a
constant that depends on x(0).

Proof. The result is due to F being a finite subset of S. See, e.g., [3, Theorem 2].

On the other hand, in the context of discrete inclusions and switched systems
under nondeterministic switching, it is known that the discrete linear inclu-
sion A is asymptotically stable under arbitrary switching if and only if the
generalized spectral radius of A is less than one, or equivalently, there exists
a sub-multiplicative norm ‖ · ‖A such that ‖Ai‖A < 1 for all i ∈ {1, . . . , N}
[16,17,18,19]. The following lemma is a simple consequence of this, and says that
asymptotically stable discrete linear inclusions are in fact uniformly exponen-
tially stable.

Lemma 6. The state equation (3) satisfies (5) for all x̂(0) ∈ Rn−1 and θ ∈
{1, . . . , N}∞ if and only if there exist c > 0 and λ ∈ (0, 1) such that (3) satis-
fies (6) for all t0 ≥ 0, t ≥ t0, x̂(t0) ∈ Rn−1, and θ ∈ {1, . . . , N}∞.

Proof. In fact, the result holds for any finite subset A of R(n−1)×(n−1). See, e.g.,
[11, Proposition 8].

Recent advances in the stability analysis of discrete-time switched linear sys-
tems give a characterization of uniformly exponentially stabilizing switching se-
quences. This characterization plays a crucial role in establishing our result,
and hence is described here. For each integer L ≥ 0, tuples of integers of
the form (i0, . . . , iL) ∈ {1, . . . , N}L+1 are called L-paths. Following the ter-
minology used in [13], a finite set N of L-paths shall be said to be admis-
sible if for each (i0, . . . , iL) ∈ N there exists an integer M > 0 such that
(i0, . . . , iL) = (iM−L, . . . , iM ) and such that (it, . . . , it+L) ∈ N for all t = 0, . . . ,
M − L. Likewise, an admissible set N of L-paths shall be called A-admissible
if there exist symmetric positive definite matrices X(j1,...,jL) ∈ R(n−1)×(n−1)

satisfying the coupled Lyapunov inequalities

AT
iL

X(i1,...,iL)AiL − X(i0,...,iL−1) < 0

for all L-paths (i0, . . . , iL) ∈ N . Given a switching sequence θ ∈ {1, . . . , N}∞
and an integer L ≥ 0, let NL(θ) be the largest admissible subset of

{(θ(0), . . . , θ(L)), (θ(1), . . . , θ(L + 1)), . . . }.
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Then we have the following result:
Lemma 7. There exist c > 0 and λ ∈ (0, 1) such that the state equation (3)
satisfies (6) for all t0 ≥ 0, t ≥ t0, and x̂(t0) ∈ Rn−1, if and only if there exists
an integer L ≥ 0 such that NL(θ) is A-admissible.

Proof. As in the proof of Lemma 6, the result holds for any finite subset A of
R(n−1)×(n−1). See [12, Corollary 3.4].

Suppose N is an A-admissible set of L-paths. If the smallest A-admissible subset
of N is N itself, then N is called A-minimal. As argued in [13], associated with
each A-minimal set of L-paths is a periodic uniformly exponentially stabilizing
switching sequence for A; moreover, each A-admissible set is a finite union of
A-minimal sets. For switching sequences θ ∈ {1, . . . , N}∞ and integers L ≥ 0,
define N∞

L (θ) as the set of L-paths (i0, . . . , iL) such that for any t0 ≥ 0 there
exists a t > t0 satisfying (θ(t), . . . , θ(t+L)) = (i0, . . . , iL). Then N∞

L (θ) contains
the L-paths that occur infinitely many times in θ; it is nonempty because the set
{1, . . . , N}L+1 of all L-paths is finite. In summary, we have the following lemma:

Lemma 8. Suppose that there exists an integer L ≥ 0 such that NL(θ) is A-
admissible. Then the following hold:

(a) The set N∞
L (θ) is A-admissible and is identical to NL((θ(t0), θ(t0 +1), . . . ))

for some integer t0 ≥ 0.
(b) The set N∞

L (θ) is a finite union of A-minimal sets of L-paths.

Proof. Part (b) is an immediate consequence of part (a), so it suffices to show
part (a) holds true. Suppose N∞

L (θ) is not admissible. Then, there exists an
L-path (i0, . . . , iL) ∈ N∞

L (θ) such that, whenever M > 0 and iL+1, . . . , iM ∈
{1, . . . , N} satisfy (iM−L, . . . , iM ) = (i0, . . . , iL), there exists a t ∈ {0, . . . , M −
L} such that (it, . . . , it+L) does not belong to N∞

L (θ). That is, whenever we form
a cycle of L-paths that contains (i0, . . . , iL), the cycle contains an L-path that
does not occur infinitely many times in θ. Therefore, (i0, . . . , iL) cannot occur
infinitely many times in θ. This contradicts the fact that (i0, . . . , iL) ∈ N∞

L (θ).
Thus N∞

L (θ) is admissible. Moreover, N∞
L (θ) is A-admissible because N∞

L (θ) is
an admissible subset of NL(θ), which is A-admissible. To complete the proof, it
remains to show that N∞

L (θ) = NL((θ(t0), θ(t0 + 1), . . . )) for some t0 ≥ 0. Since
NL(θ) is finite, the set difference NL(θ)\N∞

L (θ) is finite. For each (i0, . . . , iL) in
NL(θ)\N∞

L (θ), let τ be the largest integer such that (θ(τ−1), . . . , θ(τ +L−1)) =
(i0, . . . , iL). Then letting t0 be the maximum of such τ ’s over all L-paths in the
finite set NL(θ) \ N∞

L (θ) yields the desired result.

3.2 Sufficiency

To prove sufficiency of Theorem 4, suppose a switching sequence θ yields uni-
formly jointly connected graphs. If Gi are the graphs associated with Fi for
i = 1, . . . , N , then there exists a T ≥ 0 such that {Gθ(t), . . . , Gθ(t+T )} is jointly
connected for all t = 0, 1, . . . . Given such a T , define

S =
{

(i0, . . . , iT ) ∈ {1, . . . , N}T+1 :
⋃T

t=0
Git is connected

}
,



258 J.-W. Lee

so that S is the set of all T -paths over which the associated graphs are jointly
connected. Define

F̃(i0,...,iT ) = FiT · · ·Fi0 and Ã(i0,...,iT ) = AiT · · ·Ai0

for (i0, . . . , iT ) ∈ S, and let

F̃ = {F̃(i0,...,iT ) : (i0, . . . , iT ) ∈ S},
Ã = {Ã(i0,...,iT ) : (i0, . . . , iT ) ∈ S}.

By construction, F̃ forms a discrete linear inclusion whose elements F̃(i0,...,iT )
are associated with connected graphs

G̃(i0,...,iT ) =
⋃T

t=0
Git , (i0, . . . , iT ) ∈ S.

By Lemma 5 we have that, for every sequence of T -paths θ̃ = (θ̃(0), θ̃(1), . . . )
such that θ̃(t) ∈ S, t = 0, 1, . . . , the state equation

x̄(t + 1) = F̃θ̃(t)x̄(t)

satisfies limt→∞ x̄(t) = x̄0 [1 · · · 1]T for each x̄(0) ∈ Rn, with some constant x̄0
depending on x̄(0). That is, the state equation

x̃(t + 1) = Ãθ̃(t)x̃(t) (8)

satisfies limt→∞ x̃(t) = 0 for all x̃(0) ∈ Rn−1 and for all θ̃ = (θ̃(0), θ̃(1), . . . )
with θ̃(t) ∈ S, t = 0, 1, . . . . Then, by Lemma 6, there exist c̃ > 0 and λ̃ ∈ (0, 1)
such that the state equation (8) satisfies ‖x̃(t)‖ ≤ c̃λ̃t−t0‖x̃(t0)‖ for all t0 ≥ 0,
t ≥ t0, x̃(t0) ∈ Rn−1, and θ̃ = (θ̃(0), θ̃(1), . . . ) with θ̃(s) ∈ S, s = 0, 1, . . . . In
particular, the given switching sequence θ = (θ(0), θ(1), . . . ) can be identified
with a sequence of T -paths θ̃ = (θ̃(0), θ̃(1), . . . ) via

θ̃(t) =
(
θ(t(T + 1)), . . . , θ(t(T + 1) + T )

)
, t = 0, 1, . . . ,

and it yields a state equation of the form (3) that satisfies

‖x̂(τ(T + 1))‖ ≤ c̃λ̃τ−τ0‖x̂(τ0(T + 1))‖ (9)

whenever τ ≥ τ0 ≥ 0 and x̂(τ0(T + 1)) ∈ Rn−1.
It remains to convert (9) to an inequality of the form (6). Let λ ∈ (0, 1) be

such that λ̃ = λT+1, and let M = max1≤i≤N ‖Ai‖/λ. Whenever t ≥ t0 ≥ 0, let
τ be the largest integer such that t ≥ τ(T +1), and let τ0 be the smallest integer
such that τ0(T + 1) ≥ t0. Then it follows from (9) that

‖x̂(t)‖ ≤
{

M t−t0λt−t0‖x̂(t0)‖ if τ0 > τ ;
c̃M (t−τ(T+1))+(τ0(T+1)−t0)λt−t0‖x̂(t0)‖ if τ0 ≤ τ.
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If τ0 > τ , then t − t0 ≤ T . Similarly, if τ0 ≤ τ , then t − τ(T + 1) ≤ T and
τ0(T + 1) − t0 ≤ T . Thus

‖x̂(t)‖ ≤
{

max{1, M}Tλt−t0‖x̂(t0)‖ if τ0 > τ ;
c̃ max{1, M}2T λt−t0‖x̂(t0)‖ if τ0 ≤ τ .

Now, letting c = max{1, c̃}max{1, M}2T yields that (6) holds for all t0 ≥ 0,
t ≥ t0, and x̂(t0) ∈ Rn−1. Therefore, θ achieves uniform exponential consensus
for F . This completes the proof of the sufficiency part of Theorem 4.

3.3 Necessity

To prove necessity of Theorem 4, suppose a switching sequence θ achieves
uniform exponential consensus for F . Then the state equation (3) satisfies (6)
whenever t ≥ t0 ≥ 0 and x̂(t0) ∈ Rn−1. By Lemma 7 there exists a nonnega-
tive integer L such that NL(θ) is A-admissible, and hence by Lemma 8 the set
N∞

L (θ) is A-admissible and is a finite union of A-minimal sets of L-paths.
Choose an A-minimal set Nmin of L-paths and the associated periodic switch-

ing sequence
θmin = (i0, . . . , iM , i0, . . . , iM , . . . ),

where the period M +1 equals the cardinality of Nmin. We will first show that θmin
yields uniformly jointly connected graphs. Since Nmin is an A-admissible set of L-
paths, by Lemma 7 there exist c > 0 and λ ∈ (0, 1) such that the state equation
(3), with θ replaced by θmin, satisfies (6) whenever t ≥ t0 ≥ 0 and x̂(t0) ∈ Rn−1.
That is, θmin achieves uniform exponential consensus for F . Suppose θmin does not
yield uniformly jointly connected graphs. Then, since θmin is periodic with period
M + 1, we have that the union G =

⋃M
t=0 Git , where Gi is the graph of Fi, is not

connected. That is, we can partition the set of vertices {1, . . . , n} into two disjoint
sets V1, V2 ⊂ {1, . . . , n} such that (i, j) /∈ G whenever (i, j) ∈ V1×V2. Now, choose
two distinct x1, x2 ∈ R, and let x(0) = (x1(0), . . . , xn(0)) ∈ Rn be such that

xi(0) =

{
x1 if i ∈ V1;
x2 if i ∈ V2.

Because V1 and V2 remain disconnected under θmin, and because the matri-
ces Fi are stochastic, the state equation (2) will have that x(t) = x(0) for all t
under θmin. This contradicts θmin achieving uniform exponential consensus for F ,
and hence proves that θmin indeed yields uniformly jointly connected graphs.

Now that we have shown each A-minimal set leads to a periodic switching
sequence that yields uniformly jointly connected graphs, we are ready to show
that the given θ, which achieves uniform exponential consensus for F , yields uni-
formly jointly connected graphs. Let τ be the cardinality of N∞

L (θ). By Lemma 8,
there exists a t0 such that, for each t ≥ t0, there exists an L-path (i0, . . . , iL)
that occur more than once in the switching path (θ(t), . . . , θ(t+ τ +L)); that is,
for some t1, t2 ∈ {t, . . . , t + τ} such that t1 < t2, we have

(θ(t1), . . . , θ(t1 + L)) = (θ(t2), . . . , θ(t2 + L)) = (i0, . . . , iL).
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Then it is clear that the set

N = {(θ(t1), . . . , θ(t1 + L)), . . . , (θ(t2 − 1), . . . , θ(t2 + L − 1))} (10)

forms an A-admissible set of L-paths. Since N contains an A-minimal set of
L-paths, we have that the union

⋃t2−1
t=t1

Gθ(t) is connected. This is true for each
t ≥ t0, and so the union

⋃t+τ−1
s=t Gθ(s) is connected for all t ≥ t0. Therefore,

putting T = t0 + τ gives that the set of graphs {Gθ(t), . . . , Gθ(t+T )} is jointly
connected for all t = 0, 1, . . . . This concludes the proof of the necessity part of
Theorem 4.

4 Conclusions

Multi-agent consensus algorithms were studied via a nonconservative stability
theory for switched systems, and a well-known sufficient condition for asymp-
totic consensus was shown to be necessary and sufficient for uniform exponential
consensus. Possible extensions of this work include consideration of more gen-
eral classes of consensus algorithms and incorporation of the state-dependent
switching structure.
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Abstract. In thispaper,we consider theproblemofgeneratingoptimized,
executable control code from high-level, symbolic specifications. In partic-
ular, we construct symbolic control programs using strings from a motion
description languagewith anominal set ofmotion parameters, such as tem-
poral duration and energy, embedded within each mode. These parameters
are then optimized over, using tools from optimal switch-time control and
decentralized optimization of separable network problems. The resulting
methodology is applied to the problem of controlling robotic marionettes,
and we demonstrate its operation on an example scenario involving sym-
bolic puppet plays defined for multiple puppets.

1 Introduction

In order to manage the complexity associated with many emerging controls ap-
plications, various abstraction-based formalisms have been advanced for specify-
ing, modeling, and controlling such systems. Examples include linear temporal
logic specifications (e.g. [13,20]), Maneuver Automata for capturing symmetries
[10,11], and Motion Description Languages (MDL) for symbolic control (e.g.
[6,7,14,16]). These different formalisms have been designed with alternative goals
in mind. As such, they have different strengths, but common to them all is that
they use varying degrees of abstraction to achieve desired levels of control code
granularity [5]. However, there is always a choice to be made when mapping
these high-level programs onto executable code. This mapping is the main ques-
tion under consideration in this paper. In particular, we investigate how to turn
such high-level control descriptions into optimized, executable low-level control
software modules, or control code, for a particular hardware platform.

In this paper we choose the MDL framework, as originally formulated in [6], to
break up the control task into “strings” of individual controller-interrupt pairs.
However, we use a slightly modified MDL structure for the motion programs in
that they support energy parameterized motions as well as novel spatio-temporal
motion constraints. In particular, this work is applied to the problem of robotic
puppetry. Puppeteers script plays that designate a string of motions for each
character within a structured environment; consequently, the use of MDL strings
for specifying plays is natural as observed in [8]. As such we script plays using the
MDL formalism and take the resulting nominal symbolic descriptions of the play
and generate optimized, executable programs based on the system dynamics and
an associated cost criterion.

R. Majumdar and P. Tabuada (Eds.): HSCC 2009, LNCS 5469, pp. 262–275, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The resulting optimization problem is not unique to puppetry, since MDL-
based abstractions of hybrid systems may need to optimize their motion pro-
grams in order to account for system dynamics and constraints in a number of
other applications. We approach the solution to this problem by drawing from
recent results in switched-time optimization [3,9,19,21], focusing on the schedul-
ing of discrete transitions in a hybrid system by adjusting the timing parameters
or mode order of the program.

This paper expands previous work on robotic puppetry [8,15] by fully incor-
porating spatial and temporal constraints into the hybrid optimization engine.
We do so by applying classical results in separable programming to generate an
algorithm for hybrid optimization under networked constraints. The result of
this effort is a tool (the MDL compiler) that is able to accept MDL strings for a
collection of puppets and generate optimal timing and energy parameters under
temporal and spatial constraints. Moreover, we validate this MDL compilation
framework with numerical simulations involving multiple puppets with spatial
and temporal constraints.

The remainder of this paper is organized as follows: In Section 2 we intro-
duce the MDL structure and derive an optimal control-based MDL compiler.
Section 3 showcases the application of this MDL compiler by optimizing motion
programs involving multiple agents and spatial constraints. Section 4 discusses
an application of decentralized nonlinear programming techniques for handling
motion programs with timing constraints between agents. We conclude with a
brief summary in Section 5.

2 Background

In this section we discuss the background work for generating control code from
high-level specifications. Figure 1 illustrates the general flow of this control code
generation process. In particular we modify the “standard” MDL formalism to
enable the specification of motion programs for a collection of agents typically
encountered in puppetry. Furthermore, we derive the necessary optimality con-
ditions for the program’s switch times and scaling parameters, which are then
used in the MDL Compiler block. Finally, we illustrate the application of this
MDL compiler for the special case of specifying puppet motion programs.

2.1 Motion Description Language Compiler

In order to script a motion program we describe a special MDL that accounts
for four important properties of multi-agent motion programs: who should act,

Fig. 1. An illustration of the process of turning high-level MDL programs into exe-
cutable control code
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what motion should they do, where should they operate, and when should the
action occur. We assume that the agents are identified by i ∈ M, where M =
{1, · · · , m}, and each agent has the dynamics,

ẋi = f(xi, ui), xi ∈ Rn, ui ∈ Rp, (1)

where we use the superscript i to denote agent i.
We define the input to this model as one in a collection of possible feedback

laws, i.e. ui = κj(xi, t, αj), with κj , for some j, coming from a finite set of
control laws K = {κ1, · · · , κC}; additionally, αj is an “energy”-scaling parameter
that could affect speed, amplitude, or some other property of the control mode.
When applying a controller of this form, we get the resulting closed-loop system
dynamics ẋi = f(xi, t, κj(xi, t, αj)).

“Standard” MDL combines the controllers from K with a time-driven inter-
rupt, denoted τ , that dictates the time at which the control mode interrupts,
resulting in controller-interrupt pairs of the form (κ, τ). However, to allow for
the specification of multi-agent programs, we add in an element for agent iden-
tification, i, and a spatially defined location, r, where the agent performs its
control κ. These locations in the environment come from a set R = {r1, · · · , rl}.
Using these additional elements, we thus define our multi-agent MDL mode as
the tuple (i, κ, r, τ).

For example, if agent-i is using the two mode MDL string

(i, κ1(α1), r1, τ1)(i, κ2(α2), r1, τ2)

it must complete the motion κ1, scaled by α1, within region r1 until time τ1.
(Note here that even though κj is a function of xi, t, and αj , we specify it
symbolically through the αj dependency alone.) Once this mode terminates, the
second mode will execute κ2 with scaling α2, also in region r1, until τ2, which
in this case signals the end of the play.

Now that we have modified MDL for composing multi-agent motion programs,
we focus on developing a process for tweaking the timing and scaling parameters.
For instance, an undesirable MDL mode would use a control law that potentially
drives the system out of its intended region. It would be better to adjust the tim-
ing and scaling of the mode so that this is prevented. We approach this problem
using calculus of variations to design a MDL compiler that accepts a nominal
motion program and outputs control code based on the system dynamics, under
spatio-temporal constraints.

Say we are given a single-agent (agent i) program with N modes over the
time interval [t0, tf ], and we denote all switch time parameters as the vector
τ̄ i = [τ i

1 · · · τ i
N−1] and the scaling parameters as ᾱi = [αi

1 · · · αi
N ]. Then the

cost functional for optimizing this agent’s program could take the form,

min
τ̄ i,ᾱi

J(τ̄ i, ᾱi) =
∫ tf

t0

L(xi, t)dt +
N∑

j=1

Cj(αi
j) +

N−1∑
k=1

(
Ψk(xi(τ i

k)) + ∆k(τ i
k)
)
. (2)

The interpretation here is that the agent has a trajectory cost, L(xi, t), associated
with the execution of the motion program. Since scaling controller speed or
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amplitude requires more energy, we penalize the energy usage of each mode
with the Cj(αi

j) functions. We also encode the spatial constraint for each mode
through the spatial cost term, Ψk(xi(τ i

k)), that penalizes the distance of the agent
from the location of the specified region. Finally, to prevent large deviations of
a particular switch-time τ i

k, we add the temporal cost function ∆k(τ i
k).

To determine the first order necessary optimality conditions, we perturb all
switch times and energy parameters as τ i

k → τ i
k + εθi

k and αi
k → αi

k + εai
k. In [8],

the derivation for a two mode program was given and we generalize this without
proof since it is a direct generalization of the of the derivation in [8]:

∂J

∂τ i
k

= λi(τ i−
k )fk(x(τ i

k)) − λi(τ i+
k )fk+1(xi(τ i

k)) +
∂∆i

k

∂τi
= 0, k = 1, · · · , N − 1

∂J

∂αi
k

= µi(τ i+
k−1) = 0, k = 1, · · · , N (3)

where we use the short-hand notation fk(xi(t)) to denote f(xi, t, κk(xi, t, αi
k))

and where τ i−
k and τ i+

k are the left and right limits, respectively. Moreover, the
discontinuous costates (λi, µi) satisfy the costate dynamics,

λ̇i = − ∂J

∂xi
− λi ∂fk

∂xi
, t ∈ (τk−1, τk)

µ̇i = λi ∂fk

∂xi

and boundary conditions,

λi(τ i
N ) =

∂ΨN

∂xi
(xi(τ i

N ))

µi(τ i
N ) =

∂CN

∂αi
N

λi(τ i−
k ) = λi(τ i+

k ) +
∂Ψk

∂xi
(xi(τ i

k))

µi(τ i−
k ) =

∂Ck

∂αi
k

for k = 1, · · · , N − 1 and where we let we let τN = tf and τ0 = t0. We can now
use these optimality conditions to implement a gradient descent algorithm for
determining the optimized τ̄ i and ᾱi (initialized at the nominal values) as was
discussed in [15]. This construction is in fact the fundamental tool in the MDL
compilation process shown in the second block of Figure 1.

2.2 Languages for Puppet Plays

We use the MDL compiler developed in Section 2.1 for coordinating multiple
puppets (such as the puppet in Figure 2), with specifications written in a spe-
cial MDL for puppetry, MDLp, that mimics how puppeteers compose puppet
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Fig. 2. An image sequence of the puppet executing a wave followed by a walk mode

plays. In fact, real puppet plays are written in a special script that enables the
specification of puppet motion that must be choreographed with music and other
puppets. Each line in a puppet play combines the agents involved, their motions,
and the timing and spatial requirements [4,8]. For example, this excerpt from
Rainforest Adventures1 describes the motion for three puppets Female (F), Male
1 (1) and Male 2 (2):

4. F 1 2 fly up and stay and drop fast
5. F hops in place, 1 hops 4 SR turns hops 4 SL

The left column of the script displays the count number, which denotes the
timing for motions for the agents listed in the line. In this case, the agents F, 1,
and 2 will perform several actions during the fourth count of this scene. Note that
the drop motion is parameterized by a relative speed: fast. We interpret this
modifier as the energy parameter α, described in Section 2.1. Another important
element of the play specification is the designated regions seen in count 5: SR
(“stage-right”) and SL (“stage-left”). We use these stage descriptions as the
regions in the set R.

Accordingly, for our puppet platform, we can create several motions for the set
K and break up the stage into the same regions used in puppetry. For example,
a MDLp mode for “walking” could be written as (1, walk(α1), r2, 3), which is
interpreted as “puppet 1 walks at speed α1 within region 2 for 3 counts.” These
puppetry specification language details are used when we program example plays
and use the MDL compiler to generate modified control code for multi-puppet
plays with spatial constraints.

3 Spatial MDL Optimization

As mentioned before, we want to specify motion programs for multiple agents,
where each agent must execute the action within some region. For example, if the
1 Courtesy of Jon Ludwig, Artistic Director of the Center for Puppetry Arts, Atlanta,

Georgia, http://www.puppet.org.
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agent is in R2, with its coordinates denoted by (x, y), we could use hard spatial
constraints to keep the x position of the agent within a set interval, i.e. [x1, x2].
However, this approach would lead to increased computational complexity as
the number of agents grows, since each agent’s spatial constraints have to be
enforced. Alternatively, we could use soft spatial constraints by making the costs
L(x, t) and Ψ(x(τ)) in (2) penalize (or, benefit) the spatial location of the agent.
Consequently, these compiler costs are tuned depending on the particular task
that each agent must achieve. In other words, given the same example agent in
R2, we could alter the costs to completely ignore the y position, opting instead
to weight only the agent’s x position. Using these design considerations, we
formulate an example motion program for puppets, developing cost functions
for insertion into (2), and subsequently optimizing a play with respect to this
cost functional.

3.1 Example: Spatial Optimization for Multiple Puppets

In this section we demonstrate the MDL compiler proposed in Section 2.1 by
scripting a play with MDLp. Although the actual puppet dynamics is quite
complex (e.g. [12]), the spatial location of the puppet can be handled without
taking the joint angles into account. Instead we envision a system in which the
gross spatial actuation of the puppet takes on planar unicycle dynamics. We
denote each agent’s planar state with the dynamics,

ż =

⎡⎣ αv sin γ
αv cos γ

uγ

⎤⎦ .

The α in these dynamics is the scaling parameter discussed before and v is a
constant maximum speed. Additionally, γ represents the heading angle of the
puppet and is driven directly by some signal uγ . Also, the joint angles of the
arms and legs are represented by the vector q = [θr φr θl φl ψr ψl]T , where the
r and l subscripts denote right and left, respectively. The motion of these arm
and leg joint angles is modeled kinematically with rigid strings. Thus, the model
for the joint angle motion is of the form q̇ = Iu, where I is the identity matrix
and u is the chosen input signal. We concatenate the z and q states, and denote
the puppet’s state as x̄ = [z q]T . (Note that we choose a simplified model for
this puppet for less intensive algorithm computations. For a deeper examination
of puppet models see [12,22].)

In this example, we want the puppets to stay as close to the center of their
designated regions as possible; therefore, we use a quadratic cost for L(x̄, t) and
Ψ(x̄(τ)) in (2). Additionally, the desired trajectory terms in these costs, denoted
by x̄d, will depend on the regions specified in the MDLp script.

Using these cost design choices, we let L(x̄, t) = (x̄− x̄d)T P (x̄− x̄d), where P
is a 9 × 9 positive definite weight matrix. The other cost function that accounts
for spatial penalties is Ψ(x̄). We define this function as,

Ψk(x(τk)) = (x̄(τk) − x̄d(τk))T Z(x̄(τk) − x̄d(τk)), k = 1, · · · , N − 1,
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Fig. 3. Image of the puppet motions before (gray) and after (black) the MDL compi-
lation process

where Z � 0 is another weight matrix. This function is similar to L(x̄, t); how-
ever, its weight matrix penalizes only the position of the agent, and it is eval-
uated only at the switch times, τk. Finally, we penalize the scaling factors and
time deviations in the same way as in [15]: Cj = ρjα

2
j , for j = 1, · · · , N , and

∆k(τk) = wk(Tk − τk)2 for k = 1, · · · , N − 1.
As an example, we implemented a small collection of controls, K = {κ1 =

waveLeft, κ2 = walk, κ3 = walkInCircles}. Using these controllers, we con-
structed the following MDLp play:

(p1, κ1(1.2), r1, 2.5)(p1, κ2(1.3), r1, 3)(p1, κ3(1), r1, 4)
(p2, κ1(1.2), r3, 2.5)(p2, κ3(1.5), r3, 2)(p2, κ2(1.3), r3, 3)
(p3, κ3(1), r2, 2)(p3, κ2(1.5), r2, 4).

The initial run of this MDLp play is illustrated by the gray lines and shapes in
Figure 3. Note that puppets 1 and 2 (located in r1 and r3 in the figure) behave
relatively well under their nominal plays. However, puppet 3 breaches the bound-
ary between r1 and r2 while its MDLp string requires it to remain in r2.

After running the MDL compiler on these strings, the improved runtime be-
havior is illustrated by the black lines and shapes in Figure 3. Puppet 3’s tra-
jectory is now correctly within r2, as prescribed in the original MDLp string.
Also, all three puppets reduce their cost, as shown in Figure 4. Note that pup-
pet 3 takes the longest, computing 100 iterations before minimizing its cost.
This iteration count shows how bad the nominal program was at satisfying the
cost functional (2). Additionally, our algorithm uses a conservative, fixed-step
gradient descent to limit the amount of numerical error, which will slow down
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Fig. 4. This figure shows the costs as a function of the MDL compiler algorithm it-
eration when compiling a play for three puppets with spatial constraints. Puppet 1
completed in 29 iterations, Puppet 2 completed in 41 iterations, and Puppet 3 took
100 iterations.

convergence as the derivatives (3) get closer to 0. If a dynamic step size were
used (such as Armijo step-size [1]) then convergence would be faster. This work
demonstrates that we can solve the problem of improving the multi-agent mo-
tion program given spatial costs. We now turn to the problem of generating
optimized control code under networked timing constraints.

4 Constrained Timing Optimization

The work in Section 3 dealt with optimizing the MDL strings of multiple agents,
considering each agent’s dynamics and spatial costs. Additionally, many sys-
tems require hard timing constraints, such as terminating one particular mode
before some other agent’s mode completes. In a puppet play, missing these tim-
ing constraints may lead to benign issues, such as awkward character placement,
to serious problems, such as collisions and string tangling. This section consid-
ers generating optimized MDL programs under timing inequality constraints by
distributing the constraint among the agents.

In this problem, we again assume that the motion program has m puppets,
each operating under their own dynamics. Additionally, each puppet switches
between Ci control modes, with the terminal time denoted by tf = τCi , i ∈ M.
In other words, a direct modification to the formulation described in Section 2.1
gives that each puppet be governed by the dynamics,
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ẋi(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f1(xi(t)), t ∈ [0, τ i

1)
f2(xi(t)), t ∈ [τ i

1, τ
i
2)

...
fCi(x

i(t)), t ∈ [τ i
Ci−1

, τ i
Ci

]

for agents i = 1, · · · , m. Let moreover the cost functional be defined as

J(τ̄1, . . . , τ̄m) =
∫ T

0

m∑
i=1

Di(xi, t) dt =
m∑

i=1

J i(τ̄ i) (4)

where Di(xi, t) is the cost associated with operating system i for a particular con-
trol mode’s time duration, without taking the other systems into account. To illus-
trate the way in which the temporal constraints show up, we assume, without loss
of generality, that the temporal constraint only affects the dth switch for systems
j and k, where j, k ∈ M, as τ j

d − τk
d � 0. Note that this minimization formulation

results in a separable optimization problem, since the function to be minimized
(4) and the timing constraint depend additively on their domains [17].

This optimization problem can be solved by augmenting the cost with a La-
grangian term ν(τ j

d −τk
d ), and then jointly solving it across all the switching times

for all the puppets. However, we do not want to use this centralized solution,
since the ultimate goal is to have several autonomous agents (or in this case,
puppets) optimize their plays in a decentralized fashion. Since we have already
noted that the problem is separable we can break up the solution process. We
specifically choose the approach known as team theory, recently explored in [18].
(Note that the details given below are not due to us, but rather that we highlight
their application to the problem of distributed timing control as it pertains to
the robotic marionette application.)

4.1 Distributed Timing Coordination

Puppets j and k (j �= k) are temporally constrained via the dth switch as τ j
d −

τk
d ≤ 0. The constrained problem becomes

L(τ j
d , τk

d , ν) = Jj(τ j
d ) + Jk(τk

d ) + ν(τ j
d − τk

d ) (5)

where we have assumed, without loss of generality, that the only control param-
eters are τ j

d and τk
d , and the other switching times are considered to be fixed.

It should be noted that the cost functionals are decoupled (i.e. cost Jj depends
only on system j’s dynamics). Therefore, taking the derivative of the Lagrangian
with respect to ν results in the expression,

∂L

∂ν
= τ j

d − τk
d ,

in combination with the previously defined gradient expressions for the switching
times.
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ẋj, λ̇j integration ẋk, λ̇k integration
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Fig. 5. This figure shows how information propagates between the two subsystems
(puppets) in order to solve the networked timing problem. The initial values for system
j are denoted τ̄ j(0), ᾱj(0) and similarly for system k.

Now, algorithmically, this formulation is interesting in that the dual problem
becomes g� = maxν g(ν), ν � 0, where

g(ν) = min
τ j

d ,τk
d

{Jj(τ j
d ) + Jk(τk

d ) + ν(τ j
d − τk

d )}. (6)

Note thatwe are looking for a local minimum, since a globalminimum mayactually
lead to behavior that is undesired by the original motion program specification.

An inefficient solution to this max-min problem would apply gradient descent
on the minimization problem (6) and follow with a single gradient ascent step for
maxν g(ν), and repeat until a solution is found. However, since we already know
that this max-min problem is separable, we can solve it using a saddle-point
search algorithm, known as Uzawa’s algorithm [2]. The Uzawa algorithm allows
the descent and the ascent steps to be performed simultaneously. Consequently,
we use a gradient descent for the switch times, and a gradient ascent for the
Lagrange multiplier ν allowing us to decouple the numerical solution process and
let the networking aspect be reflected only through the update of the multiplier,
as was done in [18]. In fact, if we let

τ̇ j
d = −∂Jj

∂τ j
d

− ν

τ̇k
d = −∂Jk

∂τk
d

+ ν

ν̇ = τ j
d − τk

d

all that needs to be propagated between the two systems is the value of the La-
grange multiplier ν. This observation in [18] leads us to a general architecture for
solving networked, switched-time optimization problems, as shown in Figure 5.

This numerical architecture lets us optimize the switch times individually
at each algorithm iteration, denoted by the index i. First, we initialize both
systems with feasible switch times and scaling parameters based on a play of
length p. These values we denote with the arrays, τ̄ j(0) = [τ j

1 (0) · · · τ j
N−1(0)]

and ᾱ = [αj
1(0) · · · αj

N (0)], respectively. Then we perform the forward-backward
integration of the xj and xk systems and their associated co-states (λj , λk). In
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Fig. 6. The cost of both puppets using the distributed switch time constraint archi-
tecture

parallel to those integrations, the ν state is incremented using the current values
for the switch times. These values are then passed to the individual systems so
that they can take their gradient descent steps with the new ν values.

4.2 Example: Time-Switch Constraints for Puppetry

Using the same collection of control laws from Section 3 we define a multi-puppet
play as follows,

(1, κ1(1.2), r1, 2.5) (1, κ2(1.3), r1, 3) (1, κ3(1), r1, 3)
(2, κ1(1.2), r3, 2.5) (2, κ3(1.5), r3, 3) (2, κ2(1.3), r3, 2.5).

This play uses two agents, both executing three modes with various timing re-
quirements and scaling parameters.

Following the discussion of switch-time constraints in Section 4.1 we choose
to constrain the first switch of each puppet, i.e. d = 1. If we denote τ̄ i = [τ i

1 τ i
2]

as the switch times and ᾱi = [αi
1 αi

2 αi
3] as the scaling parameters for puppet i,

then the constrained minimization problem for these two puppets is stated as

min
τ̄1,τ̄2,ᾱ1,ᾱ2

J1(τ̄1, ᾱ1) + J2(τ̄2, ᾱ2)

s.t. τ2
1 � τ1

1 .

We formulate a Lagrangian for this problem in a similar way as equation (5),

L(τ̄1, ᾱ1, τ̄2, ᾱ2, ν) = J1(τ̄1, ᾱ1) + J2(τ̄2, ᾱ2) + ν(τ2
1 − τ1

1 ),

and then apply the proposed algorithm approach visualized in Figure 5.
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Figure 6 displays the cost graphs for the two puppets after the execution of the
distributed algorithm. The cost is indeed reduced for both puppets and, further-
more, Figure 7 shows that the required inequality constraint is satisfied. The op-
timal switch times and scaling parameters for puppet 1 are τ̄1 = [2.9906 3.0463]
and ᾱ1 = [1.1903 1.3249 1.0204], respectively. Additionally, the results for pup-
pet 2’s parameters are τ̄2 = [2.9683 2.9157] and
ᾱ2 = [1.1901 1.5228 1.3124].

5 Conclusion

In this paper we discussed recent results for generating optimized control code
for collections of interacting MDL-based systems, which are, in this case, robotic
puppets. We formulated a special instantiation of the MDL framework that
includes spatial costs and controller energy scaling. An optimal control-based
compiler was developed for these types of MDLs, and applied to a collection
of autonomous puppets. Finally, our work concludes with an examination and
simulation of optimizing the MDL motion program for agents with timing con-
straints.
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Abstract. In this paper, we present an automatable decompositional
method for the computation of Lyapunov functions for hybrid systems
with complex discrete state spaces. We use graph-based reasoning to
decompose hybrid automata into subgraphs, for which we then solve
semidefinite optimization problems to obtain local Lyapunov functions.
These local computations are made in a way that ensures that the family
of local Lyapunov functions forms a global Lyapunov function, proving
asymptotic stability of the system. The main advantages over standard
LMI methods are 1) improved numerical stability due to smaller op-
timization problems, 2) the possibility of incremental construction of
stable hybrid automata and 3) easier diagnosis of unstable parts of the
automaton in case no Lyapunov function can be found.

1 Introduction

Proofs for progress properties of dynamic systems are usually conducted with the
help of functions measuring the desired progress. For control systems and the prop-
erty of asymptotic stability, such functions are called Lyapunov functions. A Lya-
punov function maps each continuous state onto a non-negative real number. The
function is required to decrease along every solution of the system and to have
its only local minimum at the equilibrium point it is supposed to converge to. If
one succeeds in identifying a function with this property, then this completes the
proof of asymptotic stability. Naturally, there has been a strong desire to come up
with algorithmic methods for the construction of such functions for hybrid sys-
tems. An important step in this direction was the development of linear matrix
inequality (LMI) based methods for Lyapunov function computation by Johans-
son and Rantzer [1] and Pettersson and Lennartson [2]. Through the use of LMIs
it is directly possible to employ numerical optimization software for the compu-
tation of piecewise quadratic Lyapunov functions. With the addition of methods
based on the sums-of-squares decomposition [3], LMI methods can also be used
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to identify higher degree piecewise polynomial [4] and piecewise non-polynomial
Lyapunov functions [5] for systems with complex dynamics. However, for hybrid
systems with complex discrete structure, the computation of such piecewise con-
tinuous Lyapunov functions, while theoretically possible, often fails in practice for
numerical reasons, or evenworse, solvers report false Lyapunov functions due to in-
herent inaccuracies in the numerical algorithms. Generally, the more complex the
discrete structures are, the more likely these problems are to occur. In fact, numer-
ical examples in the literature are usually limited to just very few discrete modes.
A different approach of analyzing systems with many discrete states is switched
system analysis [6,7]. Switched systems only make few assumptions on the switch-
ing logic, viewing the discrete state of the hybrid system as an input signal with
relatively mild restrictions (e.g., dwell time). Because of this, stability analysis for
switched systems tends to scale better to systems containing many discrete modes,
but is in itself more conservative and therefore often not sufficient for proving sta-
bility of systems with complex switching logic.

In this paper we propose a decompositional theory of stability proofs for
hybrid systems with possibly complex discrete structure. We decompose hybrid
automata into sub-automata for which small-scale optimization problems are
solved. The results from these computations are then merged in such a way that
a stability proof through a piecewise continuous Lyapunov function is obtained
for the entire system. Not only does this approach reduce the numerical load on
the solvers, it also allows the incremental design of stable hybrid automata by
subsequent addition of new modes and transitions, by examining the Lyapunov
function space for the subautomaton to be added. The compositional property
is independent of the actual parameterization used for the Lyapunov functions
and therefore compatible with the sums-of-squares decomposition or alternative
(non-LMI) methods for Lyapunov function computation. In the scope of this
paper, we will, however, employ LMI-based methods for the computation of
local Lyapunov functions.

The decomposition is split into two major steps. The first step consists of
the decomposition of the graph given by the hybrid automaton into strongly
connected components. As it turns out, these components can be considered
completely independently of one another for Lyapunov function computation
(i.e., the Lyapunov functions of two components need not be interrelated in any
manner). The second step then proceeds to decompose these components into
cyclic substructures, for which, one by one, smaller optimization problems have
to be solved. Whenever the computation for one such cycle is completed, the
cycle is removed from the hybrid automaton and replaced by a constraint on its
intersection nodes with other cycles.

The paper is structured as follows. After defining the stability property and
the Lyapunov function concept used in this paper in Section 2, we introduce the
two steps of decomposition in Section 3 and subsequently apply it to an exam-
ple hybrid automaton representing a cruise controller with various saturations.
Furthermore, we discuss issues related to the implementation of the proposed
method. Finally, Section 4 concludes the paper and outlines future work.
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2 Preliminaries

This section defines the notions of hybrid systems, stability, and Lyapunov func-
tions that are used in the remainder of the paper.

Definition 1 (Hybrid Automaton). Define Dn as the set of all Lipschitz-
continuous differential equations on Rn and P(X) as the power set of X. A
hybrid automaton H is a tuple (M,S, T ,Flow, Inv ), where

– M is a finite set of modes
– S = Rn, n ∈ N is the continuous state space
– T is a set of mode transitions given as tuples (m1,m2, G,Update ), where

• m1 ∈ M is the source mode
• m2 ∈ M is the target mode
• G ⊆ S is the guard set
• Update : T × S → S is the update function for the continuous state

– Flow : M → Dn is the flow function, mapping each mode onto a continuous
evolution given as a differential equation

– Inv : M → P(S) is the invariant function, mapping each mode onto a subset
of the continuous state space.

A trajectory of the hybrid automaton H is an infinite solution (in the classical
sense) and is denoted x(t). Each trajectory is associated with a mode sequence
mi, containing, in order, all modes visited by the trajectory.

We will henceforth use the terms “hybrid system” and “hybrid automaton”
interchangeably.

Definition 2 (Asymptotic Stability). A hybrid system is called globally sta-
ble if ∀ ε > 0 ∃ δ > 0 ∀ t > 0 : ||x(0)|| < δ ⇒ ||x(t)|| < ε, and globally attractive
if for all trajectories x(t) we have x(t) → 0 for t → ∞, where 0 is the origin of
Rn. A hybrid system that is both globally stable and globally attractive is called
globally asymptotically stable (GAS).

Since only infinite solutions are considered, we generally allow the existence of fi-
nite nonextendable trajectory segments (e.g., through Zeno behavior). However,
these segments have no bearing with respect to stability analysis. This notion of
stability is also sometimes called preasymptotic stability [8]. The global attrac-
tivity property can therefore be viewed as the absence of (infinite) trajectories
that do not converge.

To prove asymptotic stability in a decompositional manner, we will employ a
variant of the well-known Lyapunov theorem for hybrid systems and discontin-
uous Lyapunov functions.

Definition 3 (Definiteness). A function f : X → R, X ⊆ Rn is called pos-
itive definite on X, if f(x) > 0 for x �= 0, and f(0) = 0, in case 0 ∈ X. A
function f is called negative definite on X, if −f is positive definite on X.
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Theorem 1 (Discontinuous Lyapunov Functions [2]). Let H be a hybrid
automaton according to Def. 1. If for each m ∈ M there exists a function Vm :
S → R such that

(1) Vm is positive definite on Inv(m),
(2) V̇m := dVm

dx fm is negative definite on Inv(m), where fm is the right hand side
of the differential equation Flow(m)

(3) for each mode transition (m1,m2, G,Update ) ∈ T :
x ∈ G⇒ Vm2(Update(x)) ≤ Vm1(x),

then H is globally asymptotically stable. The function Vm is called the local
Lyapunov function (LLF) of H for mode m. The family of the Vm,m ∈ M is
called the global (discontinuous) Lyapunov function (GLF) of H.

It is well-known that parameterized Lyapunov functions can be computed via
convex optimization with the help of linear matrix inequalities [9]. One begins
by selecting a parameterized Lyapunov function template for each function Vm

and then proceeds to identify suitable parameters through convex optimization.
These templates can come in various forms: quadratic functions can be dealt
with directly [1], higher degree polynomials can be employed with help of the
sums-of-squares decomposition [3], and even some nonlinear functions can be
handled [5]. Each condition (1)-(3) of Theorem 1 is then mapped onto a con-
straint of the optimization problem, and all resulting constraints are then solved
simultaneously. The solution of the optimization problem (if one can be found),
is a valuation of the free parameters in the Vm, such that all conditions of The-
orem 1 are fulfilled. This concluded the stability proof. While this approach is
suitable for hybrid systems with small discrete state space (i.e., few modes), it
becomes increasingly hard to use for larger hybrid automata. With each addi-
tional node, a new LLF with additional free parameters must be added to the
optimization problem, together with additional Lyapunov constraints. This can
cause numerical instability, resulting in finding no solution at all, or leading to
false positives (i.e., the solver returns a solution that, upon closer inspection,
marginally violates the conditions of Theorem 1). Furthermore, a negative an-
swer is not constructive – there is no indication of the part of the system causing
the problem. Therefore, we only use convex optimization locally on the automa-
ton and string these local results together with the help of graph theory. This
decompositional method is discussed next.

3 Graph-Based Decomposition

This section describes a decompositional method that can be used to verify the
existence of a GLF (and thereby show asymptotic stability) for a hybrid system
in a decompositional manner. The decomposition consists of two basic steps.
First, we will give the necessary theorems for the decomposition into strongly
connected components of the underlying graph structure of a hybrid automaton
and discuss their implications. In a nutshell, it is sufficient to prove GAS for
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each strongly connected component in isolation, with no interrelation between
their Lyapunov functions whatsoever. Then, in the second step, stability of the
individual strongly connected components is shown decompositionally. This is
achieved by solving local LMI problems for cyclic sub-automata. For a cyclic
subgraph, a constraint P on its intersection nodes with the remainder of the
graph is computed, such that P implies the existence of a GLF for the entire
cycle. This allow us to remove the cycle, apart from the intersection nodes,
from the graph and replace it by attaching the additional constraint P to the
intersection node.

These local computations can also be combined with the sums-of-squares
decomposition (to deal with non-affine dynamics or non-quadratic Lyapunov
functions) and the S-procedure [10, p.94] (to take into account the guards and
invariants of the hybrid automaton). In general, one is not even restricted to
using LMI based methods, as long as such a constraint P is obtained. The core
results are independent of the actual computation method used.

By repeating such reduction steps, the graph defined by the hybrid automaton
can eventually be reduced to the empty graph, proving stability of the strongly
connected component. As we only consider local LMI problems for cycles (and
not the entire strongly connected component at once), the optimization problems
to be solved are kept relatively small and less prone to numerical problems than
monolithical approaches.

3.1 Decomposition into Strongly Connected Components

A first, computationally simple, step in decomposing a hybrid automaton into
sub-automata for Lyapunov function generation is the identification of strongly
connected components of the graph representing the automaton. Strongly con-
nected components can be computed in linear time through well-known algo-
rithms [11]. Apart from computing the components, this type of decomposition
comes at no additional cost compared to a monolithic approach. As it turns out,
a hybrid automaton is GAS if all of its strongly connected components are GAS.
For this reason, the large semidefinite optimization problem associated with the
hybrid automaton can be broken down into a family of smaller problems as-
sociated with the strongly connected components. These smaller problems can
then be solved completely independently of one another, effectively splitting
the hybrid automaton into several sub-automata. The guards and updates of
transitions connecting several strongly connected components can be ignored
completely for the Lyapunov function computation.

Definition 4 (Strongly Connected Component). A strongly connected
component (SCC) of a directed graph G is a maximal subgraph G′, such that
for each pair of nodes n1 �= n2 in G′, there exists a forward path from n1 to n2.

Each node of a graph is part of exactly one SCC. Each edge is either part of
exactly one SCC, or it connects two SCCs. Two nodes belonging to different
SCCs cannot lie on a common circular path. This implies that there is a relative
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order on the SCCs of a directed graph, defined by the edges connecting them:
for two SCCs C1 and C2, we write C1 ≺ C2 if there exists an edge in the graph
pointing from a node in C1 to a node in C2.

For a hybrid system H and fixed trajectory x(t) of the system, consider the
sequence C1 ≺ C2 ≺ . . . containing the SCCs the associated mode sequence
mi passes through, in the same order. Each SCC can only occur once in this
sequence, and therefore the sequence must have finite length. To prove conver-
gence, it is permissible to ignore finite prefixes of trajectories, so it suffices to just
examine the system behavior in the last SCC in the list – the one that is entered,
but never left again. Consequently, it is sufficient to prove convergence for each
SCC individually. If a SCC is GAS, then this implies for a run of the system
that either (a) the SCC is left eventually, or (b) the trajectory will converge
toward 0 within this particular SCC. If the continuous state 0 does not satisfy
any invariants of this SCC, then only option (a) is possible and the LLF can be
viewed a kind of termination function for the SCC. This kind of decomposition
also maintains global stability. For these reasons, GLFs for different SCCs can be
computed completely independently, and the transitions connecting the SCCs,
along with their guards and update functions, can be discarded.

Theorem 2 (Decomposition into Strongly Connected Components).
Let H be a hybrid automaton. If all sub-automata pertaining to the SCCs of H
are GAS then so is H.

Proof. Global Attractivity: Let x(t) be a fixed trajectory of H, and mi the as-
sociated mode sequence. Let Ck be the sequence of SCCs mi passes through, in
corresponding order. Since no SCC can occur twice in Ck, the total number of
SCCs is finite, therefore Ck must be finite. Let δ be the point in time when x(t)
enters the final SCC of Ck and let x̃(t) = x(t − δ). Since Ci is GAS, we have
x̃(t) → 0 for t→ ∞, which implies x(t) → 0.

Global Stability: Let P be the set of all possible sequences C1 ≺ . . . ≺ Cn

consisting of SCCs of H and let ε > 0. For a fixed p = (C̃1 ≺ . . . ≺ C̃n) ∈ P , by
successively applying the stability properties of the Ci in reverse order, we have
for all trajectories entering the SCCs in the order given by p:

∃ δpn > 0 ∀ tn > 0, t > tn : x(tn) < δpn ⇒ x(t) < ε,

∃ δpn−1 > 0 ∀ tn−1 > 0, tn > tn−1 : x(tn−1) < δ
p
n−1 ⇒ x(tn) < δpn,

and finally, for C1,

∃ δp1 > 0 ∀ t1 > 0, t2 > t1 : x(0) < δp1 ⇒ x(t1) < δ
p
2

By setting δ = min{δp1 | p ∈ P}, we obtain ∀ t > 0 : xi(0) < δ ⇒ xi(t) < ε.

Remark 1. Theorem 2 allows us to consider all SCCs of a complex hybrid au-
tomaton separately, by computing separate Lyapunov functions, and still ob-
taining a proof of GAS with respect to one equilibrium for the entire system. It
is also possible to adapt Theorem 2 to deal with different equilibria for different
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SCCs. In this case, it is possible to guarantee convergence to one of the different
equilibria in the system. This can, for instance, be used for hybrid automata
that are supposed to converge to failsafe states, once certain safety conditions
are violated.

The following lemma implies that this decomposition is not conservative with
respect to Lyapunov functions.

Lemma 1. Let H be a hybrid automaton and let C1, . . . , Cn be the SCCs of H.
If there exists a family of LLFs Vm,m ∈ M, forming a GLF for H, then there
exists a GLF for each Ci.

This follows directly from the fact that a GLF can be split up into several Lya-
punov functions on the subgraphs. If one is interested in proving only global
attractivity, then it suffices to only consider SCCs where trajectories can po-
tentially stay infinitely long, i.e., SCCs that can be the final SCC a trajectory
moves into. This is a consequence of the proof of global attractivity for Theorem
2, which only requires the last SCC in sequence to be GAS.

Lemma 2. Let H be a hybrid automaton and let C1, . . . , Cn be exactly the
strongly connected components of H for which there exists a trajectory enter-
ing but never leaving the component. If all Ci are globally attractive, then so
is H.

Remark 2. Note that there might be different representations of the same system
as a hybrid automata that consist of smaller SCCs and therefore result in easier
Lyapunov function computation. To discover such representations, for instance
replacing one large SCC by two smaller ones exhibiting equivalent continuous
behavior, reachable set computation can be employed.

In the next section, we are further going to decompose the SCCs into cyclic
subgraphs, for which LMI problems can be solved in a way that guarantees
asymptotic stability for the entire SCC.

3.2 Decomposition into Cycles

Since a single SCC can potentially still be a large part of the automaton (or even
the entire automaton), we now proceed by decomposing these SCCs further.
However, since the subgraphs of an SCC generally exhibit interdependencies in
both directions (i.e., as opposed to SCCs there is no partial ordering of subgraphs
that can be exploited), lossless decomposition is not possible. Instead, we will
decompose an SCC into a cover of overlapping cycles. This is possible, since, in-
side each SCC, each node can be reached from every other node. Therefore, each
node lies on at least one (simple) cycle of the graph. This decomposition is always
correct. To limit the conservativeness of the approach, iterative approximation
refinement techniques can be employed. We will now describe an algorithmic
approach to deal with Lyapunov function computation on a per-cycle basis.
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Definition 5 (Cyclic Decomposition). A simple cycle of a directed graph
G = (N,E) with node set N and edge set E is a closed path that visits each node
at most once. A cyclic decomposition of a graph is a family of simple cycles
Ci = (Ni, Ei) such that N =

⋃
iNi and E =

⋃
iEi. A node n ∈ N is a border

node of G, if there exist two different cycles in a cyclic decomposition of G, both
containing n.

To achieve decomposition, we exploit the locality of the Lyapunov constraints in
the hybrid automaton. A useful tool in this context are constraint graphs, which
map Lyapunov constraints of the underlying optimization problem to the parts
of the hybrid automaton’s graph model they are based on.

Definition 6 (Constraint Graphs). The constraint graph C(G) of a hybrid
automaton H is a graph that:

1. contains one node per mode in H, labelled with constraints (1) and (2) from
Theorem 1 for that mode

2. contains one edge per mode transition in H, labelled with constraint (3) from
Theorem 1 for the two Lyapunov functions corresponding to the incident
modes

For a subgraph C of C(G), constr(C) is the conjunction of all constraints in C.

Constraint graphs will be used to visualize the locality of the Lyapunov and non-
increasingness constraints. Whenever we talk about solving an LMI problems for
some sub-automaton, we mean finding a solution that simultaneously fulfills all
constraints on the nodes and edges of the constraint graph corresponding to the
sub-automaton.

The basic idea of the algorithm is as follows. If, instead of solving the convex
optimization problem for the whole SCC in one step, one wants to deal with one
cycle at a time, the border nodes are exactly the nodes where the constraints
associated with different cycles interfere with one another. In other words, each
cycle that a border node b is part of implicitly induces different constraints on
the LLF Vb of b. All these constraints need to be satisfied simultaneously for
a LLF to exist. In contrast, all non-border nodes of a cycle are only relevant
within the cycle and not subject to additional constraints from outside. First,
we focus on cycles with only a single border node. For such a cycle, we compute
a predicate P representing the constraints the cycle imposes on its border node.
If we know that, whenever Vb fulfills P , there exists a GLF for the cycle, then we
can discard all non-border nodes of the cycle and replace the cycle by attaching
P to the border node (see Fig. 1). By successively removing cycles, one finally
ends up with the empty graph, which implies the existence of a GLF for the
entire SCC, and therefore its asymptotic stability. If we can only find cycles
with more than one border node, we restructure the graph as described later in
this section. The computational method can be summed up as follows:

1. check, whether there are cycles with at most one border node
2. if this is not the case, restructure the graph to produce one
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3. select a cycle C with at most one border node
4. if cycle C has no border nodes, compute a Lyapunov function for cycle C
5. if cycle C has one border node b, compute a constraint Pb on Vb that implies

the existence of LLFs for all nodes of the cycle and replace the constraint
for b in the constraint graph by b

6. remove all non-border nodes of the cycle from the graph, together with all
incident edges

7. if the resulting graph is empty, the SCC is GAS, otherwise return to step 1

If, during steps 4 or 5, no suitable Lyapunov function can be found, the
previously computed border node constraints Pb can be refined iteratively. This
is discussed in Section 3.4.

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10c11

c12

c13

c14c15

(a) before reduction

Pb

c5

c6

c7

c12 c13

c14c15

(b) after reduction

Fig. 1. Constraint graphs before and after cycle reduction

Computing Predicates on Border Nodes. Since the set of all Lyapunov
functions in the sense of Theorem 1 of any dynamical system forms a convex
cone, it is possible to represent certain infinite sets of possible solutions by finitely
many points in the parameter space, keeping track of only the corner points of
a solution polytope. Consider a cycle C with only one border node b within a
SCC. By computing an under-approximation of the set of all possible Vb that
are feasible, according to the constraints of the cycle, we can abstract away
all the non-border nodes of C. Such a computation is possible by employing a
technique from multiobjective optimization, normal-boundary intersection [12].
A set of extremal points of the feasible set of Vb’s parameters can be computed
by repeatedly solving the optimization problem corresponding to the cycle with
different objective functions (see Fig. 2). Generally, the number of optimization
directions needed to achieve a sufficiently tight approximation depends on the
system itself. Therefore, it is desirable to refine approximations on-the-fly, if
needed. Techniques for iterative refinement are discussed in Section 3.4.

Theorem 3 (Cyclic Decomposition and Stability). Let H be a hybrid au-
tomaton consisting of two subgraphs C1 and C2 with a single border node b. Let
b, n1, . . . , nj be the nodes ofC1 and b,m1, . . . ,mk be the nodes ofC2. Let Vb1 , . . . Vbm

be LLFs for b such that for each Vbi there exist GLFs Vbi , V
i
n1
, . . . , V i

nj
for the

entire subgraph C1. If there exists a GLF Vb, Vm1 , . . . , Vmk
for subgraph C2 with

∃λ1, . . . , λm > 0 : Vb =
∑

i λiVbi , then H is globally asymptotically stable.

Proof. We need to prove that there exists a GLF for H, i.e., a family of Vm

for all modes m ∈ M, such that constr(H) is fulfilled. Per assumption, there
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is a family of Vb, Vm1 , . . . , Vmk
for subgraph C2 fulfilling constr(C2), and addi-

tionally there exist λ1, . . . , λm > 0 such that Vb =
∑

i λiVbi . For all i, there
exist Vbi , V

i
n1
, . . . , V i

nj
that fulfill constr(C1). Since the set of Lyapunov functions

forms a convex cone, this implies that
∑

i λiVbi ,
∑

i λiV
i
n1
, . . . ,

∑
i λiV

i
nj

also ful-
fill constr(C1). This implies that

∑
i λiVbi , Vm1 , . . . , Vmk

,
∑

i λiV
i
n1
, . . . ,

∑
i λiV

i
nj

is the desired GLF for H.

Remark 3. Since Vb =
∑

i λiVbi already implies that Vb satisfies the Lyapunov
constraints for node b, these constraints can be dropped for cycle C2.

Representing the under-approximation of the solution set by a predicate corre-
sponding to a conic polytope has one additional advantage: it is straightforward
to add this constraint to an LMI problem for a neighboring cycle. Since a func-
tion for the border node b whose paremeters fulfill the conic predicate must
already satisfy the Lyapunov properties for b, the Lyapunov constraints can be
replaced by the polytopic constraint. The λi become the new free parameters
for Vb, with the additional restriction that they must be non-negative. This can
be interpreted as using a different parameterization for Vb, using the functions
Vbi instead of simple monomials. Therefore, the addition of a conic, polytopic
constraint to a cycle does only incur local, simple changes to the LMI.

Splitting Border Nodes. If a cycle has two or more nodes that are also part
of other cycles and have not been eliminated yet, then Theorem 3 is not di-
rectly applicable. In theory, one could produce analogous theorems that allow
the under-approximation of the solution set for several border nodes. Since also
interdependencies between the different solution sets need to be taken into ac-
count to achieve correctness, this would imply additional constraints on at least
some edges of the constraint graph, greatly complicating the reduction.

A more straightforward approach is the application of simple transformations
to eliminate border nodes from the graph: pick a border node with i incoming
and j outgoing edges, where either i > 1 or j > 1. Split this node into i · j
new nodes, each with exactly one incoming and one outgoing edge, such that

a

b

Fig. 2. Normal-boundary intersec-
tion for free Lyapunov function pa-
rameters a and b

c
d1 d2

d3 d4

c c c c

d1

d3

d1

d4

d2

d3

d2

d4

Fig. 3. Splitting a node
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Fig. 4. Eliminating border nodes through node splitting

all combinations of edges are represented. The new nodes and edges inherit the
same constraints that were imposed on the old ones in the original constraint
graph. This transformation will preserve the GAS property (see Fig. 3).

To see this, apply the transformation not only to the constraint graph, but
also to the original hybrid automaton, preserving the differential equation and
invariant of the old node on the new nodes and preserving the guards and update
functions of all edges. The two systems are equivalent with respect to continuous
behavior, i.e., every infinite trajectory of the old hybrid automaton is also a
possible solution for the new automaton, because all combinations of incoming
and outgoing edges are represented. Conversely, all infinite trajectories passing
through one of the new modes can be mapped back on the single old mode. The
transformation can produce additional spurious finite trajectory segments, since
there is a non-determinstic choice between different newly introduced nodes with
the same guard/update on their incoming edges. The outgoing edge that was
taken in the original system might not exist as an outgoing edge for the non-
deterministically chosen new node, resulting in a finite solution segment that
cannot be further extended. However, since we only take infinite trajectories
into account, these sprurious trajectory segments are of no consequence as far
as stability per Definition 2 is concerned.

By repeated application of this transformation, it is possible to reduce the
number of border nodes until obtaining a cycle that only contains a single border
node (see Fig. 4). Clearly, Theorem 3 can then be applied to that cycle.

3.3 A Simple Example

We applied the proposed method to the example system given in Fig. 5(a), which
represents a simple cruise control system. Here, GAS implies convergence of both
the velocity differential v and the acceleration to 0. Engine and brake are both
modelled having a saturation level representing a maximal acceleration and decel-
eration. Furthermore, the braking deceleration grows gradually instead of reach-
ing its full effect immediately. Figure 5(b) shows the order of reduction and node
splitting of the underlying graph, eventually resulting in a single cycle that is then
reduced to the empty graph in a last step. We succeeded in computing a poly-
topic set of Lyapunov functions for the mode on the top left, such that existence
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of a GLF for the whole system is guaranteed. This polytopic set can, for instance,
be used to attach further braking modes to the top left mode, still maintaining
stability. To achieve this, the newly added subgraphs must allow for a Lyapunov
function for the top left mode that is also part of the polytopic set. The LMI for
the bottom loop that is removed during the first step looks as follows:

Vj −
∑
λj

iQ
j
i ≥ 0, j ∈ {1, 2}

−AT
j Vj − VjAj −

∑
µj

iQ
j
i ≥ 0, j ∈ {1, 2}

V1 − V2 −
∑
ν1

iR
1
i ≥ 0

V2 − V1 −
∑
ν2

iR
2
i ≥ 0

λj
i , µ

j
i , ν

j
i ≥ 0

Here, V1 and V2 are the quadratic Lyapunov functions for the two modes of the
loop, and the Qj

i and Rj
i are S-Procedure terms representing the mode invariants

and guards, respectively. Optimization in the directions of the free parameters (six
directions in total) for V2, the Lyapunov function for the border node, give us a
polytopic set of possible Lyapunov functions with the following corner points (one
function occured as the solution of two such optimization problems):

V 1
2 = 7.5982v2 + 12.903vt+ 100t2

V 2
2 = .625v2 + 2vt+ 10.5t2

V 3
2 = 5.995v2 + 19.9vt+ 100t2

V 4
2 = 2.532v2 + 2vt+ 48.641t2

V 5
2 = 7.13v2 + 13.936vt+ 100t2

These candidate functions are then used as the basis for the parameterized
Lyapunov function for V2 for the next loop to be reduced, i.e., the parameterized
form is

∑
aiV

i
2 , ai ≥ 0, where the ai are the new unknown parameters.

3.4 Computational Issues

We now discuss various issues related to the implementation of the method
proposed in this paper and additional decisions that need to be made.

OptimizationDirections for theNormal-Boundary Intersection. Clearly,
the choice of optimization direction for the normal-boundary intersection in the
border nodes is important for the success of the procedure. Since one cannot as-
sume knowledge about the shape of the feasible set at the beginning, it is reason-
able to start with evenly spaced optimization directions. In our experiments, we
found that choosing two optimization directions per parameter, one maximizing
the parameter and one minimizing it, is a decent starting point, only requiring lin-
early many LMI problems to be solved. For systems with few parameters, more
accurate approximations can be used as well, for instance optimizing in diagonal
directions.
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(a) Example automaton (b) Reduction order

Fig. 5. Cruise control example

Dealing with Unbounded Solution Sets. Since non-empty sets of Lyapunov
functions for a system are always unbounded, one needs to bound the original
problem for an extremal point to exist in all directions. This can be done by
imposing an additional equality constraint on the Lyapunov functions or by
adding bounds for each parameter. While the latter is somewhat conservative
(some solutions might be excluded), we found it to be more stable numerically.

Numerical Inaccuracies. Convex optimization methods sometimes produce
slightly infeasible “solutions” to a problem. In conjunction with normal-boundary
intersection this is less of a problem, since one always computes multiple solution
points. If a point is found to be slightly infeasible, it can be made feasible by shift-
ing it slightly toward the polytope’s center point via line search. The polytope’s
center point can be computed as the normed sum of all vertices.

Dealing with Conservativeness by Approximation Refinement. When-
ever the polytopic under-approximation turns out to be too coarse, it is desirable
to iteratively refine the predicate such that an existing solution is actually found.
While it is possible to eventually find all solutions that do not lie on the boundary
of some feasible set, by simply adding uniformly distributed new search directions,
this will take a long time, especially if there are many free parameters for the Lya-
punov function. We believe that heuristics for choosing a suitable optimization
direction will be faster in most cases. For instance, consider two intersecting fea-
sible sets induced on a single border node by two cycles (see Fig. 6). The feasible
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(a) before refinement (b) after refinement

Fig. 6. Approximation refinement

sets (dashed) overlap, but the underapproximation for the left-hand constraint
(solid) is too coarse, so that there is no intersection with the right-hand side feasi-
ble set. One first computes an under-approximation for the right hand cycle (dot-
ted) without taking into account the left-hand side underapproximation.Then, for
the left-hand cycle, one vertex is added to the under-approximation by optimizing
in the direction given by the difference of the two center points of the polytopes.
While there exist degenerate cases where this will not lead to improvement, this
works well if the vertices are evenly spaced to start with. If such heuristics fail then
one can still use a more general refinement scheme.

4 Conclusion

In this paper, we presented a decompositional approach for Lyapunov function
computation of hybrid systems with complex state space. Contrary to the usual
monolithical piecewise continuous Lyapunov function approach, we only solve
local LMI problems. As only a limited number of modes are taken into account
for each LMI problem, the chance of encountering numerical problems is reduced
and the scalability of the method improved. Through a safe reduction scheme
based on simple graph theoretic properties, we arrive at a sound method for
proving the existence of a Lyapunov function for the entire system, thereby
showing the system is GAS. Furthermore, in case of a failure, i.e., nonexistence
of a Lyapunov function of the selected parametric form, it is easy to identify the
part of hybrid automaton that causes the problem.

Apart from an implementation of a tool based on the proposed method, future
work will encompass the exploitation of reachable set computations that allow
further simplification of the resulting LMI problems. Furthermore, an interest-
ing extension is the addition of probabilistic mode transitions, together with
quantitative probabilistic stability properties.
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Abstract. In this paper, we consider hybrid models of mechanical sys-
tems undergoing impacts, Lagrangian hybrid systems, and study their
periodic orbits in the presence of Zeno behavior—an infinite number of
impacts occurring in finite time. The main result of this paper is ex-
plicit conditions under which the existence of stable periodic orbits for
a Lagrangian hybrid system with perfectly plastic impacts implies the
existence of periodic orbits in the same system with non-plastic impacts.
Such periodic orbits contain phases of constrained and unconstrained
motion, and the transition between them necessarily involves Zeno be-
havior. The result is practically useful for a wide range of unilaterally
constrained mechanical systems under cyclic motion, as demonstrated
through the example of a double pendulum with a mechanical stop.

1 Introduction

Periodic orbits play a fundamental role in the design and analysis of hybrid
systems modeling a myriad of applications ranging from biological systems to
chemical processes to robotics [25]. To provide a concrete example, bipedal robots
are naturally modeled by hybrid systems [8,13]. The entire process of obtaining
walking gaits for bipedal robots can be viewed simply as designing control laws
that create stable periodic orbits in a specific hybrid system. This is a theme
that is repeated throughout the various applications of hybrid systems [12].

In order to better understand the role that periodic orbits play in hybrid sys-
tems, we must first restrict our attention to hybrid systems that model a wide
range of physical systems but are simple enough to be amenable to analysis. In
this light, we consider Lagrangian hybrid systems modeling mechanical systems
undergoing impacts; systems of this form have a rich history and are useful in
a wide-variety of applications [5,20,26]. In particular, a hybrid Lagrangian con-
sists of a configuration space, a Lagrangian modeling a mechanical systems, and
a unilateral constraint function that gives the set of admissible configurations
for this system. When the system’s configuration reaches the boundary of its
admissible region, the system undergoes an impact event, resulting in discontin-
uous velocity jump. The benefit of studying systems of this form is that they
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often display Zeno behavior (when an infinite number of impacts occur in a fi-
nite amount of time), so they give an ideal class of systems in which to gain an
intuitive understanding of Zeno behavior and its relationship to periodic orbits
in hybrid systems, which is the main focus of this paper.

Before discussing the type of periodic orbits that will be studied in this paper,
we must first explain how one deals with Zeno behavior in Lagrangian hybrid
systems by completing the hybrid model of these systems. Using the special
structure of Lagrangian hybrid systems, the main observation is that points to
which Zeno executions converge—Zeno points—must satisfy constraints imposed
by the unilateral constraint function. These constraints are holonomic in nature,
which implies that after the Zeno point, the hybrid system should switch to a
holonomically constrained dynamical system evolving on the surface of zero level
set of the constraint function. Moreover, if the force constraining the dynamical
system to that surface becomes zero, there should be a switch back to the original
hybrid system. These observations allow one to formally complete a Lagrangian
hybrid system by adding an additional post-Zeno domain of constrained motion
to the system [2,18].

In this paper, we study periodic orbits for completed Lagrangian hybrid sys-
tems, that pass through both the original and the post-Zeno domains of the
hybrid system. Such periodic orbits are of paramount importance to a wide va-
riety of applications, e.g., this is the type of orbits one obtains in bipedal robots.
In particular, we begin by considering a simple periodic orbit which is an orbit
that contains a single event of perfectly plastic impact. That is, after the im-
pact, the system instantly switches to the post-Zeno domain. The key question
is: what happens to a simple periodic orbit when the impacts are not perfectly
plastic? The main result of this paper guarantees existence of a periodic orbit
for completed Lagrangian hybrid system with non-plastic impacts given a stable
periodic for the same system with plastic impacts; moreover, we give explicit
bounds on the degree of plasticity that ensures the existence of such orbit.

The importance of the main result of this paper lies in the fact that impacts in
mechanical systems are never perfectly plastic, so it is important to understand
what happens to periodic orbits for perfectly plastic impacts in the case of non-
plasticity. Using the example of a bipedal robot with knees [8,13,22], the knee
locking (leg straightening) is modeled as a perfectly plastic impact. If one were
to find a walking gait for this biped under this assumption, the main result of
this paper would ensure that there would also be a walking gait in the case when
the knee locking is not perfectly plastic, as would be true in reality. In light of
this example, we conclude the paper by applying the main result of this paper
to a double pendulum with a mechanical stop, which models a single leg of a
bipedal robot with knees.

Both periodic orbits and Zeno behavior have been well-studied in the litera-
ture although they have yet to be studied simultaneously. With regard to Zeno
behavior, it has been studied in the context of mechanical systems in [14,17]
with results that complement the results of this paper, and studied for other
hybrid models in [6,10,21,23,27]. Periodic orbits have primarily been studied in
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hybrid systems in the context of bipedal locomotion for dynamic walking [8,9,15]
and running [7], assuming perfectly plastic impacts. The pioneering work in [4]
focuses on design of stable tracking control for cyclic tasks with Zeno behavior
in Lagrangian hybrid systems, assuming that the system is fully actuated, i.e., all
degrees-of-freedom are controlled. Note, however, that this assumption generally
does not hold for locomotion systems, which are essentially underactuated.

2 Lagrangian Hybrid Systems

In this section, we introduce the notion of a hybrid Lagrangian and the associated
Lagrangian hybrid system. Hybrid Lagrangians of this form have been studied
in the context of Zeno behavior and reduction; see [1] and [17]. We begin this
section by reviewing the notion of a simple hybrid system.

Definition 1. A simple hybrid system is a tuple H = (D,G,R, f), where

– D is a smooth manifold called the domain,
– G is an embedded submanifold of D called the guard,
– R is a smooth map R : G→ D called the reset map,
– f is a vector field on the manifold D.

Hybrid executions. A hybrid execution of a simple hybrid system H is a
tuple χ = (Λ, I, C), where

– Λ = {0, 1, 2, . . .} ⊆ N is an indexing set.
– I = {Ii}i∈Λ is a hybrid interval where Ii = [ti, ti+1] if i, i + 1 ∈ Λ and
IN−1 = [tN−1, tN ] or [tN−1, tN) or [tN−1,∞) if |Λ| = N , N finite. Here,
ti, ti+1, tN ∈ IR and ti ≤ ti+1.

– C = {ci}i∈Λ is a collection of integral curves of f , i.e., ċi(t) = f(ci(t)) for
t ∈ Ii, i ∈ Λ,

And the following conditions hold for every i, i+ 1 ∈ Λ:

(i) ci(ti+1) ∈ G,
(ii) R(ci(ti+1)) = ci+1(ti+1),
(iii) ti+1 = min{t ∈ Ii : ci(t) ∈ G}.

The initial condition for the hybrid execution is c0(t0).

Lagrangians. Let q ∈ IRn be the configuration of a mechanical system1. In this
paper, we will consider Lagrangians, L : IR2n → IR, describing mechanical, or
robotic, systems, which are Lagrangians of the form L(q, q̇) = 1

2 q̇
TM(q)q̇−V (q),

where M(q) is the (positive definite) inertial matrix, 1
2 q̇

TM(q)q̇ is the kinetic
energy and V (q) is the potential energy. We will also consider a control law
u(q, q̇), which is a given smooth function u : IR2n → IRn. In this case, the Euler-
Lagrange equations yield the (unconstrained, controlled) equations of motion for
the system:
1 For simplicity, we assume that the configuration space is identical to IRn
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M(q)q̈ + C(q, q̇) +N(q) = u(q, q̇), (1)

where C(q, q̇) is the vector of centripetal and Coriolis terms (cf. [16]) and N(q) =
∂V
∂q (q). Defining the state of the system as x = (q, q̇), the Lagrangian vector field,
fL, associated to L takes the familiar form:

ẋ = fL(x) =
(

q̇
M(q)−1(−C(q, q̇) −N(q) + u(q, q̇))

)
. (2)

This process of associating a dynamical system to a Lagrangian will be mirrored
in the setting of hybrid systems. First, we introduce the notion of a hybrid
Lagrangian.

Definition 2. A simple hybrid Lagrangian is defined to be a tuple L = (Q,L, h),
where

– Q is the configuration space (assumed to be identical to IRn),
– L : TQ→ IR is a hyperregular Lagrangian,
– h : Q → IR provides a unilateral constraint on the configuration space; we

assume that the zero level set h−1(0) is a smooth manifold.

Simple Lagrangian hybrid systems. For a given Lagrangian, there is an
associated dynamical system. Similarly, given a hybrid Lagrangian L = (Q,L, h)
the simple Lagrangian hybrid system associated to L is the simple hybrid system
HL = (DL, GL, RL, fL). First, we define

DL = {(q, q̇) ∈ TQ : h(q) ≥ 0},
GL = {(q, q̇) ∈ TQ : h(q) = 0 and dh(q)q̇ ≤ 0},

where dh(q) = [∂h
∂q (q)]T = [ ∂h

∂q1
(q) · · · ∂h

∂qn
(q) ]. In this paper, we adopt the reset

map ([5]) RL(q, q̇) = (q, PL(q, q̇)), which is based on the impact equation

PL(q, q̇)= q̇−(1 + e)
dh(q)q̇

dh(q)M(q)−1dh(q)T
M(q)−1dh(q)T, (3)

where 0 ≤ e ≤ 1 is the coefficient of restitution, which is a measure of the energy
dissipated through impact. This reset map corresponds to rigid-body collision
under the assumption of frictionless impact. Examples of more complicated col-
lision laws that account for friction can be found in [5] and [24]. Finally, fL = fL
is the Lagrangian vector field associated to L in (2).

3 Zeno Behavior and Completed Hybrid Systems

In this section we define Zeno behavior in Lagrangian hybrid systems, introduce
the notion of a completed hybrid system ([2,18]), and define the notions of sim-
ple periodic orbit and Zeno periodic orbit, corresponding to periodic completed
executions under plastic and non-plastic impacts. Then we define the stability
of periodic orbits.
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Zeno behavior. A hybrid execution χ is Zeno if Λ = N and limi→∞ ti = t∞ <
∞. Here t∞ is called the Zeno time. If χ is a Zeno execution of a Lagrangian
hybrid system HL, then its Zeno point is defined to be

x∞ = (q∞, q̇∞) = lim
i→∞

ci(ti) = lim
i→∞

(qi(ti), q̇i(ti)).

These limit points essentially lie on the constraint surface in state space, which
is defined by S = {(q, q̇) ∈ IR2n : h(q) = 0 and dh(q)q̇ = 0}.
Constrained dynamical systems. We now define the holonomically con-
strained dynamical system DL associated with the hybrid Lagrangian L. For
such systems, the constrained equations of motion can be obtained from the
equations of motion for the unconstrained system (1), and are given by (cf. [16])

M(q)q̈ + C(q, q̇)q̇ +N(q) = dh(q)Tλ+ u(q, q̇), (4)

where λ is the Lagrange multiplier which represents the contact force. Differen-
tiating the constraint equation h(q) = 0 twice with respect to time and substi-
tuting the solution for q̈ in (4), the solution for the constraint force λ is obtained
as follows:

λ(q, q̇) =
(
dh(q)M(q)−1dh(q)T

)−1(
dh(q)M(q)−1(C(q, q̇)q̇ +N(q) − u(q, q̇)) − q̇TH(q)q̇

)
.

(5)

From the constrained equations of motion, for x = (q, q̇), we get the vector field

ẋ = f̃L(x) =

(
q̇

M(q)−1(−C(q, q̇)q̇ −N(q) + u(q, q̇) + dh(q)Tλ(q, q̇))

)

Note that f̃L defines a vector field on the manifold TQ|h−1(0), from which we
obtain the dynamical system DL = (TS, f̃L). For this dynamical system, q(t)
slides along the constraint surface S as long as the constraint force λ is positive.

A constrained execution χ̃ of DL is a pair (Ĩ , c̃) where Ĩ = [t̃0, t̃f ] ⊂ IR if t̃f
is finite and Ĩ=[t̃0, t̃f )⊂ IR if t̃f =∞, and c̃ : Ĩ → TQ, with c̃(t)= (q(t), q̇(t)) a
solution to the dynamical system DL satisfying the following properties:

(i) h(q0(t̃0)) = 0,
(ii) dh(q0(t̃0))q̇0(t̃0) = 0,
(iii) λ(q(t̃0), q̇(t̃0)) > 0,
(iv) t̃f = min{t ∈ Ĩ : λ(q(t), q̇(t)) = 0}.

(6)

Using the notation and concepts introduced thus far, we introduce the notion
of a completed hybrid system.

Definition 3. If L is a simple hybrid Lagrangian and HL the corresponding La-
grangian hybrid system, the corresponding completed Lagrangian hybrid system2

is defined to be:
2 As was orginally pointed out in [2], this terminology (and notation) is borrowed from

topology, where a metric space can be completed to ensure that “limits exist.”



296 Y. Or and A.D. Ames

Fig. 1. A graphical representation of a completed hybrid system

H L :=
{

DL if h(q) = 0 , dh(q)q̇ = 0, and λ(q, q̇) > 0
HL otherwise.

Remarks. The system H L can be viewed simply as a hybrid system with two
domains; in this case, the reset maps are the identity, and the guards are given
as in Fig. 1. Also note that the only way for the transition to be made from the
hybrid system HL to the constrained system DL is if a specific Zeno execution
reaches its Zeno point. Second, a transition for DL to HL happens when the
constraint force λ crosses zero. Finally, it is shown in [18] that the constraint
acceleration ḧ(q, q̇) and the constraint force λ(q, q̇) in (5) satisfy complementarity
relation. That is, while sliding along the constraint surface S, either ḧ = 0 and
λ > 0, corresponding to maintaining constrained motion, or ḧ > 0 and λ = 0,
corresponding to leaving the constraint surface and switching back to the hybrid
system. Thus, the definition of the completed hybrid system is consistent.

The completed execution. Having introduced the notion of a completed
hybrid system, we must introduce the semantics of solutions of systems of this
form. That is, we must introduce the notion of a completed execution.

Definition 4. Given a simple hybrid Lagrangian L and the associated completed
system H L, a completed execution χ is a (possibly infinite) ordered sequence of
alternating constrained and hybrid executions χ = {χ̃(1), χ(2), χ̃(3), χ(4), ...},
with χ̃(i) and χ(j) executions of DL and HL, respectively, that satisfy the following
conditions:

(i) For each pair χ̃(i) and χ(i+1),

t̃
(i)
f = t(i+1)

0 and c̃(i)(t̃(i)f ) = c(i+1)
0 (t(i+1)

0 ).

(ii) For each pair χ(i) and χ̃(i+1),

t
(i)
∞ = t̃(i+1)

0 and c(i)∞ = c̃(i+1)(t̃(i+1)
0 ).

where the superscript (i) denotes values corresponding to the ith execution in χ,
and t(i)∞ , c

(i)
∞ denote the Zeno time and Zeno point associated with the ith hybrid

execution χ(i).
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Periodic orbits of completed hybrid systems. In the special case of plastic
impacts e = 0, a simple periodic orbit is a completed execution χ with initial
condition c̃(1)(0) = x∗ that satisfies c̃(3)(t̃(3)0 ) = x∗. The period of χ is T = t̃(3)0 . In
other words, this orbit consists of a constrained execution starting at x∗, followed
by a hybrid (unconstrained) execution which is ended by a single plastic collision
at t = T , that resets the state back to x∗.

For non-plastic impacts e > 0, a Zeno periodic orbit is a completed execution
χ with initial condition c̃(1)(0) = x∗ that satisfies c(2)∞ = c̃(3)(t̃(3)0 ) = x∗. The
period of χ is T = t(2)∞ = t̃(3)0 . In other words, this orbit consists of a constrained
execution starting at x∗, followed by a Zeno execution with infinite number of
non-plastic impacts, which converges in finite time back to x∗.

Stability of hybrid periodic orbits. We now define the stability of hybrid
periodic orbits.

Definition 5. A Zeno (or simple) periodic orbit χ = {χ̃(1), χ(2), χ̃(3), χ(4), ...}
with initial condition x∗ ∈ S is locally exponentially stable if there exist a
neighborhood U ⊂ S of x∗ and a scalar γ ∈ (0, 1) such that for any ini-
tial condition x0 = c̃(1)(0) ∈ U , the resulting completed execution satisfies
‖c̃(2k+1)(t̃(2k+1)

0 ) − x∗‖ ≤ ‖x0 − x∗‖γk for k = 1, 2, . . ..

Choice of coordinates. In the rest of this paper, we assume that the general-
ized coordinates contain the constraint function h as a coordinate, i.e. q = (z, h).
This assumption is quite general, since a transformation to such coordinate set
must exist, at least locally, due to the regularity of h(q). The state of the sys-
tem thus takes the form x = (z, h, ż, ḣ) ∈ IR2n. When the coordinates take this
special form, the reset map (3) simplifies to

PL(q, q̇) =
(
ż − (1 + e)ḣη(z)

−eḣ

)
, where η(z) =

[M−1(q)]1...n−1,n

[M−1(q)]n,n

∣∣∣∣
h=0

. (7)

The instantaneous solution for the accelerations q̈ in (1) is given by

q̈(q, q̇) = (z̈(q, q̇), ḧ(q, q̇)) =M(q)−1 (u(q, q̇) − C(q, q̇) −N(q)) . (8)

4 Main Result

In this section we present the main result of this paper, namely, conditions under
which the existence and stability of a simple periodic orbit imply existence of a
Zeno periodic orbit.

4.1 Statement of Main Result

Before stating this result, some preliminary setup is needed. We can write x∗ =
(z∗, 0, ż∗, 0), and define three types of neighborhoods of x∗ in three different
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subspaces of IR2n. For ε1, ε2, ε3, ε4 > 0, the neighborhoods Ω1(ε1), Ω2(ε1, ε2)
and Ω4(ε1, ε2, ε3, ε4) are defined as follows.

Ω1(ε1) = {(q, q̇) : h = 0, ḣ = 0, and ‖z − z∗‖ < ε1}
Ω2(ε1, ε2) = {(q, q̇) : h = 0, ḣ = 0, ‖z − z∗‖ < ε1, and ‖ż − ż∗‖ < ε2}

Ω4(ε1, ε2, ε3, ε4) = {(q, q̇) : ‖z−z∗‖<ε1, ‖ż−ż∗‖<ε2, 0<h<ε3, and |ḣ|<ε4}

Assume we are given a control law u(q, q̇) and a starting point x∗ ∈ S for which
there exists of a simple periodic periodic orbit χ∗ starting at x∗ which is locally
exponentially stable. Define v∗ =

∣∣∣ḣ(2)
0 (t(2)1 )

∣∣∣, which is the pre-collision velocity
at the single (plastic) collision in the periodic orbit. The following assumption
is a direct implication of the stability of χ∗:

Assumption 1. Assume that there exist ε1, ε2 > 0,κ ≥ 1 and γ∈(0, 1), such that
for any initial condition x0 ∈ Ω2(ε1, ε2), the corresponding completed execution
with e = 0 satisfies the two following requirements:

(a) c̃(3)(t̃(3)0 ) ∈ Ω2(γε1, γε2)

(b)
∣∣∣ḣ0(t

(2)
1 )

∣∣∣ < κv∗. (9)

Setup. To provide the conditions needed for the main result, for the given ε1, ε2
and κ, let the neighborhood Ω be defined as Ω = Ω4(ε1, ε2, ε3, κv∗) for some
ε3 > 0, and define the following scalars:

amin = −max(q,q̇)∈Ω ḧ(q, q̇)

amax = −min(q,q̇)∈Ω ḧ(q, q̇)

δ =
√∣∣∣amax

amin

∣∣∣
żmax = ‖ż∗‖ + ε2

z̈max = max(q,q̇)∈Ω ‖z̈(q, q̇)‖

ηmax = maxz∈Ω1(ε1) ‖η(z)‖.

(10)

The following theorem establishes sufficient conditions for existence of a Zeno
periodic orbit given a simple periodic orbit.

Theorem 1. Consider a simple periodic orbit χ∗ which is locally exponentially
stable, and the given ε1, ε2 > 0, κ ≥ 1, and γ ∈ (0, 1) that satisfy Assumption
1. Then for a given coefficient of restitution e, if the neighborhood Ω and its
associated scalars defined in (10) satisfy the following conditions:
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amax ≥ amin > 0 (11)

eδ < 1 (12)

2eκv∗

amin(1 − δe) żmax ≤ ε1(1 − γ) (13)

(
1 + δ
1 − δeηmax +

2
amin(1 − δe) z̈max

)
eκv∗ ≤ ε2(1 − γ), (14)

(eκv∗)2

2amin
≤ ε3 (15)

then there exists a Zeno periodic orbit with initial condition within Ω2(ε1, ε2).

4.2 Proof of the Main Result

Before proving Theorem 1, we must define some preliminary notation. Consider
the completed execution χ with e = 0, and the execution χ′ with e > 0 under the
same given initial condition x0 ∈Ω2(ε1, ε2). Since we are only interested in the
first hybrid and constrained elements of χ and χ′, we simplify the notation by
defining χ = {χ̃, χ, ...} and χ′ = {χ̃′, χ′, ...}. Since the constrained motion does
not contain any collisions, it is clear that χ̃ = χ̃′. Moreover, the hybrid executions
χ and χ′ are also identical until the first collision time, that is c0(t) = c′0(t) for
t ∈ [t0, t1] and t1 = t′1. Therefore, we will compare the solutions c′i(t) and ci(t)
for i > 1, i.e. after the time t1.

We now give the outline of the proof, which is divided into three steps. The
first step proves that if the hybrid execution χ′ stays within the neighborhood
Ω, then conditions (11) and (12) imply that it is a Zeno execution. Step 2 verifies
that under conditions (13) and (14), the execution χ′ actually stays within Ω.
The results of these two steps are stated as two lemmas, whose detailed proofs
are relegated to [19] due to space constraints. Finally, the third step utilizes the
two previous steps to complete the proof of Theorem 1.

Step 1. Consider a neighborhood Ω that satisfies conditions (11) and (12),
and assume that the trajectory of the hybrid execution χ′ satisfies c′i(t) ∈ Ω
for all t ∈ I ′i, i ∈ Λ′ \ {0}. This assumption implies that the h-component of
c′i(t) = (z′i(t), h

′
i(t), ż

′
i(t), ḣ

′
i(t)) satisfies the second-order differential inclusion

ḧ
′
i(t) ∈ [−amax,−amin], (16)

for all t ∈ I ′i, i ∈ Λ′ \ {0}. At each collision time t′i, i ∈ Λ′ \ {0}, (16) is
re-initialized according to the collision law (7) as

ḣ
′
i+1(t′i) = −eḣ′i(t′i), and h′i+1(t

′
i) = h′i(t

′
i) = 0. (17)

Let τi = t′i+1 − t′i, which is the time difference between consecutive collisions,
and let vi = −ḣ′i−1(t

′
i), which is the pre-collision velocity at time t′i. The follow-

ing lemma summarizes results on the hybrid execution χ′ under the differential
inclusion (16).
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Lemma 1 ([19]). Assume that the hybrid execution χ′ satisfies the differential
inclusion (16) for all t ∈ I ′i, i ∈ Λ′ \ {0}, and that amin, amax, and δ satisfy
conditions (11) and (12). Then χ′ is a Zeno execution with a Zeno time t∞.
Moreover, the solution c′i(t) satisfies the following for all i ≥ 1

vi ≤ v1(eδ)i−1 (18)∣∣∣ḣ′i(t)∣∣∣ ≤ v1 for all t ∈ I ′i (19)

τi ≤ 2ev1
amin

(eδ)i−1 (20)

t′∞ − t′1 ≤ 2ev1
amin(1 − eδ) (21)

h′i(t) ≤ e2v21
2amin

for all t ∈ I ′i. (22)

The key idea in the proof is utilization of optimal control theory to find the
“most unstable” execution under the differential inclusion (16) and the impact
law (17). It is shown in [19] that all possible executions satisfy the bound vi+1 ≤
eδvi. Therefore, condition (12) implies that the vi-s are bounded by the decaying
geometric series (18). All other bounds in (19)-(22) are then implied by (18).

Step 2: We now verify that for any initial condition in Ω2(ε1, ε2), the solution
actually stays within Ω, as summarized in the following lemma.

Lemma 2 ([19]). Consider a neighborhood Ω that satisfies conditions (11)-
(14). Then for any initial condition x0 ∈ Ω2(ε1, ε2), the hybrid execution χ′ is a
Zeno execution that satisfies c′i(t) ∈ Ω for all t ∈ I ′i, i ∈ Λ′ \ {0}.
The main idea of the proof in [19], is to assume that the execution initially stays
within the neighborhood Ω, and use (18)-(22) to find bounds on q(t), q̇(t) during
the execution. Then, conditions (11)-(15) guarantee that the execution does not
leave Ω at all times.
Step 3: We now utilize Lemma 1 and Lemma 2 to prove the main result.

Proof (of Theorem 1). Consider the completed execution χ′ = {χ̃′, χ′, ...} with
e > 0, under initial condition x0 ∈ Ω2(ε1, ε2). Lemma 1 and Lemma 2 imply
that χ′ is a Zeno execution which reaches S in time t∞, and that c′i(t) ∈ Ω for
all i ≥ 1. Define the function Φ : Ω2(ε1, ε2) → S as Φ(x0) = c′∞, under initial
condition c′0(0) = x0. Note that Φ is well-defined, since for any initial condition
within Ω2(ε1, ε2), a Zeno execution is guaranteed. Moreover, since the limit point
satisfies c′∞ ∈Ω ∩ S = Ω2(ε1, ε2), Φ maps Ω2(ε1, ε2) onto itself. The continuity
of the hybrid flow with respect to its initial condition, which is a fundamental
property of a completed hybrid system with a single constraint (cf. [5]) implies
that Φ is continuous. Invoking the fixed point theorem (cf. [11]), we conclude
that there exists a fixed point x̄ ∈ Ω2(ε1, ε2) such that Φ(x̄) = x̄. Finally, the
definition of Φ then implies that x̄ corresponds to the starting point of a Zeno
periodic orbit with period T ′ = t′∞.
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Fig. 2. (a) The constrained double pendulum system (b) Time plots of the solution
θ1(t) and θ2(t) of the double pendulum with no actuation under plastic collisions

5 Simulation Example

This section demonstrates the theoretical results on a constrained double pendu-
lum, which is depicted in Figure 2(a). The double pendulum consists of two rigid
links of masses m1,m2, lengths L1, L2, and uniform mass distribution, which are
attached by revolute joints, while a mechanical stop dictates the range of motion
of the lower link. The upper joint is actuated by a torque u1, while the lower
joint is passive. This example serves as a simplified model of a leg with a passive
knee and a mechanical stop.

The configuration of the double pendulum is q = (θ1, θ2), and the constraint
that represents the mechanical stop is given by h(q) = θ2 ≥ 0. Note that in
that case the coordinates are already in the form q = (z, h), where z = θ1
and h = θ2. The Lagrangian of the system is given by L(q, q̇) = 1

2 q̇
TM(q)q̇ +

(1
2m1L1 +m2L1)g cos θ1 + 1

2m2L2g cos(θ1 + θ2), with the elements of the 2×2
inertia matrixM(q) given byM11 =m1L

2
1/3+m2(L2

1+L
2
2/3+L1L2 cos θ2), M12 =

M21 =m2(3L1L2 cos θ2+2L2
2)/6, M22 =m2L

2
2/3. The values of parameters for

the simulations were chosen as m1 =m2 =L1 =L2 =g=1.
The first running simulation shows the motion of the uncontrolled system i.e.

u1 = 0, under plastic collisions, i.e. e = 0. Fig. 2(b) shows the time plots of θ1(t)
and θ2(t) under initial condition q(0) = (−0.08, 0) and q̇(0) = (0, 0). The parts
of unconstrained motion appear as dashed curves, and the parts of constrained
motion appear as solid curves. The points of collision events are marked with
squares (‘�’) on the curve of θ1(t). The double pendulum exhibits a slightly
decaying periodic-like motion with two plastic collisions per cycle. At each cycle,
after the first plastic collision, the constraint force λ required to maintain the
constraint θ2 = 0 is negative. Thus, the lower link instantaneously detaches to
another phase of unconstrained motion, until a second plastic collision occurs.
After the second collision, the lower link locks at θ2 = 0, and the pendulum
switches to a constrained motion with positive constraint force λ > 0 for some
finite time, until λ crosses zero, and the lower link detaches again.
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Fig. 3. Phase portraits of the periodic orbit in (a)(θ1, θ̇1)-plane and (b)(θ2, θ̇2)- plane
for e = 0 (thin black) and e = 0.5 (thick blue)
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Fig. 4. Time plots of θ1(t) and θ2(t) for the controlled double pendulum with e = 0.5

In order to obtain a non-decaying periodic solution with a single plastic col-
lision per cycle, i.e., a simple periodic orbit, we add a PD control law for the
torque u1 as u1(θ1, θ̇1)=−k1(θ1−θ1e)−c1θ̇1. The control parameters are chosen
as k1 =0.5, θ1e =π/9 and c1 =−0.01. The proportional term associated with k1
was chosen as to increase the positive acceleration θ̈1 and decrease the negative
acceleration θ̈2 for θ1 < 0, and thus increase the constraint force λ that ensures
that after the first collision, the lower link does not detach. The negative dissi-
pation term associated with c1 injects a small amount of energy to the system,
that compensates for the losses due to collisions. In simulation under the control
law with the same initial condition as above, we obtained convergence to a sim-
ple periodic orbit with a single plastic collision per cycle. Figures 3(a) and 3(b)
show the phase portraits of the periodic orbit in (θ1, θ̇1)- and (θ2, θ̇2)- planes,
respectively. (Time plots of θ1 and θ2 appear in [19]).

Next, we apply Theorem 1 to check for existence of a Zeno periodic orbit
with e > 0. One can verify numerically that the assumptions of the theorem
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Fig. 5. Time plots of θ1(t) and θ2(t) for the controlled double pendulum with e=0.9225

are satisfied and that, in particular, the simple periodic orbit obtained through
the control law is locally exponentially stable with γ = 0.9404. Choosing ε1 =
0.017, ε2 = 0.06 and ε3 = 0.005, Theorem 1 implies that the existence of a
Zeno periodic orbit with initial condition within Ω2(ε1, ε2) is guaranteed for any
e ≤ 0.0015. Simulation of the double-pendulum system with e = 0.0015 verifies
the existence of a Zeno periodic orbit. The simulation results were not shown,
since they are not visually distinguishable from the results with e = 0.

In order to illustrate the strong conservatism of Theorem 1, we conducted
another simulation under the same initial condition, with a coefficient of restitu-
tion e = 0.5. The infinite Zeno executions were truncated after a finite number
of collisions at which the collision velocity ḣ is below a threshold of 10−10. The
simulation results, which are shown in the time plots of Figure 4, clearly indicate
the existence of a Zeno periodic orbit, which was verified numerically to be also
locally stable. Figures 3(a) and 3(b) show the phase portraits of the periodic
orbits in (θ1, θ̇1)- and (θ2, θ̇2)- planes, respectively, for coefficients of restitution
e = 0 (plastic impacts) and e = 0.5. The thick (blue) curves correspond to the
case e = 0, and the thin (black) curves correspond to the case e = 0.5. The parts
of unconstrained motion appear as dashed curves, and the parts of constrained
motion appear as solid curves. Note that in Figure 3(b), the constrained motion
collapses to the single point (θ2, θ̇2) = 0. From the figures, one can clearly see
how the simple periodic orbit is perturbed under non-plastic impacts.

Finally, we gradually increased the coefficient of restitution e and numerically
checked for existence of Zeno periodic orbits. The largest value of e for which
we obtained such an orbit was e = 0.9225. For this value of e, the duration of
the constrained motion in the Zeno periodic orbit is very short, as shown in the
simulation results of Figure 5. For larger values of e, the phase of constrained
motion vanishes, and the execution is no longer Zeno. This transition can be
viewed as a new type of bifurcation in Lagrangian hybrid systems, in which a
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Zeno periodic orbit ceases to be Zeno. To our knowledge, this type of bifurcation
was never studied before in the recently emerging literature on bifurcations in
non-smooth mechanical systems, (cf. [3,12]).

6 Conclusion

This paper considered two types of periodic orbits in completed Lagrangian hy-
brid systems: simple and Zeno. The main result presented is sufficient conditions
on when a simple periodic orbit in a Lagrangian hybrid system implies the ex-
istence of a Zeno periodic orbit in the same Lagrangian hybrid system with a
different coefficient of restitution. Moreover, these conditions give an explicit up-
per bound the change in the coefficient of restitution that guarantees existence
of the Zeno periodic orbit.

The results indicate two major future research directions: better bounds on
the allowable change in the coefficient of restitution and conditions on the preser-
vation of stability. For the first direction, as was illustrated by the example, the
obtained bounds are strongly conservative; computing tighter bounds in a rig-
orous fashion will be practically useful and theoretically satisfying. The second
future research direction—studying stability—is even more interesting. The au-
thors have been able to show that under certain simplifying assumptions, stabil-
ity of the simple periodic orbit directly implies the stability of the Zeno periodic
orbit. However, this preliminary result was not included in the paper due to
space constraints. In the future, understanding how stability extends from one
type of orbit to the other with the fewest possible assumptions will provide new
and interesting challenges. Finally, extending the results to Lagrangian hybrid
system with multiple constraints will enable the analysis of full models of bipeds
with knees for designing stable walking and running under non-plastic impacts.
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Abstract. In this paper, we present a new method for computing dis-
crete abstractions of arbitrary memory span for nonlinear sampled sys-
tems with quantized output. In our method, abstractions are represented
by collections of conservative approximations of reachable sets by poly-
hedra, which in turn are represented by collections of half-spaces. Im-
portant features of our approach are that half-spaces are shared among
polyhedra, and that the determination of each half-space requires the
solution of a single initial value problem in an ordinary differential equa-
tion over a single sampling interval only. Apart from these numerical
integrations, the only nontrivial operation to be performed repeatedly
is to decide whether a given polyhedron is empty. In particular, in con-
trast to previous approaches, there are no intermediate bloating steps,
and convex hulls are never computed. Our method heavily relies on con-
vexity of reachable sets and applies to any sufficiently smooth system if
either the sampling period, or the system of level sets of the quantizer
can be chosen freely. In particular, it is not required that the system to
be abstracted have any stability properties.

1 Introduction

A well-known method for the solution of analysis and synthesis problems for
continuous, discrete and hybrid systems consists in first computing a discrete
abstraction of the system’s behavior in the sense of Willems [1,2], and then
solving a corresponding (auxiliary) problem for the abstraction, e.g. [3,4,5,6,7,8].
Here, the term abstraction refers to a conservative approximation, i.e., a superset,
of the system’s behavior, which is called discrete if it can be realized by a finite
(in general non-deterministic) automaton. Auxiliary problems arising in this
way are solvable controller synthesis problems if the original problem is and the
abstraction is sufficiently accurate. Solvability may be verified, and solutions may
be obtained using well-known algorithms from discrete mathematics [9,10,11,8].
In addition, under mild assumptions, it follows from the conservativeness of the
approximation that any solution of the auxiliary problem will also be a solution
to the problem for the original system, e.g. [5,6,7,8]
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One of the most complex steps in the above approach is the computation of
sufficiently accurate discrete abstractions, which is equivalent to conservative ap-
proximation of a large number of reachable sets [6]. Known methods are restricted
to rather limited classes of systems or to abstractions of memory span 1, lead
to overly conservative abstractions, suffer from their prohibitive computational
complexity, or require the solution of non-convex optimization or optimal con-
trol problems, see [12,13,14,15,16,17,18,19,20,21] and the references given there.
In this paper, we present a new method for computing discrete abstractions of
arbitrary memory span for nonlinear sampled systems with quantized output.

In our method, abstractions are represented by collections of conservative ap-
proximations of reachable sets by polyhedra, which in turn are represented by
collections of half-spaces: We start from a collection of conservative polyhedral
approximations of the level sets of the quantizer, which represents a discrete
abstraction of memory span 0, and then iteratively determine conservative poly-
hedral approximations of the reachable sets that define abstractions of greater
memory span. Important features of our approach are that half-spaces are shared
among polyhedra, and that the determination of each half-space requires the so-
lution of a single initial value problem in an ordinary differential equation over a
single sampling interval only. Apart from these numerical integrations, the only
nontrivial operation to be performed repeatedly is to decide whether a given
polyhedron is empty. In particular, in contrast to previous approaches, there
are no intermediate bloating steps, and convex hulls are never computed. Our
method heavily relies on convexity of reachable sets and applies to any suffi-
ciently smooth system if either the sampling period, or the system of level sets
of the quantizer can be chosen freely. In particular, it is not required that the
system to be abstracted have any stability properties.

The remaining of this paper is structured as follows: In section 2 we define
the class of sampled systems with quantized output, for which we shall develop
an efficient algorithm for computing discrete abstractions. In section 3 we char-
acterize the smallest of those abstractions in terms of reachable sets. In section
4, we present an efficient algorithm for computing discrete abstractions for the
class of systems introduced in section 2, under the assumption that all relevant
reachable sets are convex. We also discuss two recent results from [22,23] from
which convexity of reachable sets can be deduced under mild conditions. Finally,
we apply our method to the problem of swinging up the mathematical pendulum
in section 5. Proofs of our results will be published with an extended (journal)
version of this manuscript.

2 Sampled Systems with Quantized Output

Let the control system
ẋ = f(x, u(t)) (1)

with f : Rn ×Rm → Rn, a sampling period T > 0, and a finite set U ⊆ (Rm)[0,T ]

of admissible controls on sampling intervals be given. Hence, elements of U are
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0 T 2T 3T R

Rm

u0

u1(· − T )

u2(· − 2T )

Fig. 1. An admissible control signal for (1)

signals [0, T ] → Rm, and we identify each sequence (uk)k∈Z+
of such signals with

a control signal defined on R+,

(u0, u1, . . . )(t) := u�t/T�(t− (t/T )) for all t ≥ 0,

see Fig. 1. Here, (x) denotes the largest integer not greater than x, R+ and Z+,
the set of nonnegative reals and integers, respectively, and AB, the set of maps
B → A.

The set U of controls u : R+ → Rm admissible for (1) is now defined as the
set of all sequences in U ,

U =
{
u : R+ → Rm

∣∣∀k∈Z+ ∃uk∈U ∀t∈[kT,(k+1)T [ u(t) = uk(t− kT )
}
. (2)

Here, [a, b], ]a, b[, and [a, b[, ]a, b] denote closed, open and half-open intervals,
respectively.

We assume throughout this paper that for any admissible control u ∈ U ,
initial value problems composed of (1) and an initial condition

x(0) = x0 (3)

are uniquely solvable for any x0 ∈ Rn, with all solutions extendable to the entire
time axis R+.

As an extension of the well-known concepts of flow and general solution for
ordinary differential equations [24,25], we define the general solution ϕ of (1) by

ϕ(t, x0, u) := value of the solution of initial value problem (1), (3) at time t,

where x0 ∈ Rn and u ∈ U . Note that it is not necessary to specify all the
components uk of u = (u0, u1, . . . ), and that the values of u at sampling instants
are irrelevant, so we may write

ϕ(t, x0, u0, . . . , uk) := ϕ(t, x0, u) if t ≤ (k + 1)T , u = (u0, . . . , uk, . . . ).

We now consider the sampled version

x(k + 1) = ϕ(T, x(k), uk), k ∈ Z+ (4)

of (1), where ϕ is the general solution of (1). By our assumptions on (1), the right
hand side of the difference equation (4) is defined for all (x(k), uk) ∈ Rn × U .
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u x

Sampled System (4) Quantizer (5)
Ω

Fig. 2. Sampled system with quantized output

We define the quantizer by specifying its level sets: Let C ⊆ P(Rn) be a finite
covering of the state space Rn of (4) that does not contain the empty set, where
P(M) denotes the power set of M . The quantizer Q is defined as the map

Q : Rn → P(C) : x �→ {Ω ∈ C |x ∈ Ω } . (5)

Note that Q(x) �= ∅ for any x ∈ Rn as C is a covering of Rn, and that, in
general, the quantizer is non-deterministic. See [13] for the equivalent concept
of a “measurement map”.

The system composed of the sampled system (4) and the quantizer (5) shown
in Fig. 2 may be described by the following difference equation with set valued
output:

x(k + 1) = ϕ(T, x(k), uk), k ∈ Z+, (6a)
Ωk ∈ Q(x(k)). (6b)

The (external) behavior [1,2] B(6) of the system (6) is the set of all (external)

signals (u,Ω) ∈ UZ+ × CZ+ that are compatible with (6), i.e.,

B(6) =
{

(u,Ω)
∣∣∃x : Z+→Rn ∀k∈Z+ (x(k) ∈ Ωk and x(k + 1)=ϕ(T, x(k), uk))

}
.

(7)

3 Smallest Discrete Abstractions and Reachable Sets

In this section we characterize the smallest N -complete discrete abstraction of
the behavior B(6) given by (7) in terms of reachable sets of the time-continuous
control system (1). We begin with some terminology from behavioral theory [2]:

Let a set I ⊆ Z+, an arbitrary set X and a behavior B ⊆ XZ+ be given. The
restriction of B to I, B|I , is defined by B|I := {x|I |x ∈ B }, where x|I denotes
the restriction of the map x to I.
B is called time-invariant if σB ⊆ B, where σ denotes the shift operator

defined by σ := σ1 and (σkx)(t) := x(t+k) for all x : Z+ → X and all k, t ∈ Z+.
If B is time-invariant, it is called complete if

B =
{
x ∈ XZ+

∣∣∀k1,k2∈Z+,k1≤k2 x|[k1,k2] ∈ B|[k1,k2]
}
,

and it is called complete with memory span N (or N -complete, for short) for
some N ∈ Z+ if

B =
{
x ∈ XZ+

∣∣∀k∈Z+ (σkx)|[0,N ] ∈ B|[0,N ]
}
.

If B is time-invariant, we call the set
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⋂
B⊆B′⊆X

Z+ ,

B′ is N-complete

B′ (8)

the N -complete hull of B. (The map that assigns to B its N -complete hull (8)
is a closure operator [26], which is why we call (8) a hull ; N -complete hulls are
called “strongest N -complete approximations” in [6].)

The behavior B(6) of the sampled system with quantized output is time-
invariant, but in general not complete, which is why we are looking for a discrete
abstraction of it. For any N ∈ Z+, the N -complete hull of B(6) is the smallest
abstraction of the kind we seek to obtain. Unfortunately, that abstraction may
be computed exactly for special classes of systems (1) and quantizers (5) only.
Nevertheless, the following characterizations of that smallest abstraction will be
useful in the next section when we derive an algorithm for effectively computing
another abstraction that conservatively approximates the smallest one.

Theorem 1. Let N ∈ Z+ and BN be the N -complete hull of the behavior B(6)
given by (7), ϕ the general solution of (1), and (u,Ω) ∈ UZ+ × CZ+ . Then the
following are equivalent:

(i) (u,Ω) ∈ BN .
(ii) For all τ ∈ Z+ there exists x0 ∈ Rn such that ϕ(kT, x0, uτ , . . . , uτ+k−1) ∈

Ωτ+k holds for all k ∈ {0, . . . , N}.
(iii) For all τ ∈ Z+ the following holds:

Ωτ+N ∩
N⋂

k=1

ϕ(kT,Ωτ+N−k, uτ+N−k, . . . , uτ+N−1) �= ∅. (9)

(iv) M τ
N �= ∅ for all τ ∈ Z+, where M τ

N is defined by

M τ
0 = Ωτ ,

M τ
k = Ωτ+k ∩ ϕ(T,M τ

k−1, uτ+k−1) (k ∈ {1, . . . , N}).

Characterization (iv) has been given in [6], and a characterization similar to
(iii) has been proposed in [23].

A set of the form ϕ(t, Ω, u) arising in Theorem 1 is called reachable set from
Ω at time t under control u.

4 Computation of Discrete Abstractions and Convexity
of Reachable Sets

We have seen in Section 3 that computing the smallest discrete abstraction of a
particular memory span for the behavior B(6) given by (7) requires the solution
of numerous difficult reachability problems that may be solved exactly for special
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classes of systems (1) and quantizers (5) only. In the present section, we aim at
computing another discrete abstraction which approximates the smallest one.
Our starting point is the following basic idea:

If Ωτ+N and all the reachable sets on the left hand side of condition (9) in
Theorem 1 were convex, these sets could be substituted with approximations
by means of supporting half-spaces. The resulting approximate condition would
then characterize a superset of the N -complete hull of B(6) that is N -complete,
and hence, a discrete abstraction of memory span N of B(6).

In the remaining of this section, we shall derive an algorithm for the computa-
tion of discrete abstractions of arbitrary memory span N for the behavior B(6)
given by (7) which approximates the N -complete hull of B(6). To this end, we
start with the question of how to obtain conservative polyhedral approximations
of reachable sets by means of supporting half-spaces.

Definition 1. Let Ω ⊆ Rn be convex and p ∈ Ω. A vector v ∈ Rn is normal
to Ω at p [27] if 〈v|x− p〉 ≤ 0 for all x ∈ Ω, where 〈·|·〉 denotes the standard
Euclidean inner product.

Proposition 1. Let the right hand side f of (1) be of class C1 w.r.t. its first
argument and continuous, and let ϕ denote the general solution of (1). Let further
u ∈ U be a piecewise continuous control admissible for (1), Ω ⊆ Rn be convex,
p ∈ Ω, v ∈ Rn, and τ ∈ R+. Finally, let v′ be the value at time τ of the solution
of the following initial value problem:

ẋ = −D1f(ϕ(t, p, u), u(t))∗x,
x(0) = v,

where (·)∗ denotes the transpose, and D1, the partial derivative w.r.t. the first
argument.

If the reachable set ϕ(τ,Ω, u) is convex, then v is normal to Ω at p if and
only if v′ is normal to ϕ(τ,Ω, u) at ϕ(τ, p, u).

The above result tells us that conservative polyhedral approximations of all
the reachable sets on the left hand side of condition (9) may be obtained from
analogous approximations of the level sets of the quantizer (5) by solving initial
value problems in the 2n-dimensional ordinary differential equation

ẋ = f(x, u(t)), (10a)
ẏ = −D1f(x, u(t))∗y. (10b)

For further reference, we define a map ϕ∗ that realizes the determination of
a supporting half-space of the reachable set ϕ((k+ 1)T,Ω, u) from a supporting
half-space of Ω (k ∈ Z+):

ϕ∗ : Rn × Rn ×U → Rn × Rn : (p, v, u0, . . . , uk) �→ ψ((k+ 1)T, (p, v), u0, . . . , uk),
(11)

where ψ is the general solution of (10) and T , the sampling period.
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We now formalize the substitution of reachable sets on the left hand side of
condition (9) in Theorem 1 with approximations by means of supporting half-
spaces:

Definition 2. Let P be the map defined by

P : Rn × Rn → P(Rn) : (p, v) �→ {x ∈ Rn | 〈v|x− p〉 ≤ 0 }

and set
P (Σ) =

⋂
(p,v)∈Σ

P (p, v)

for Σ ⊆ Rn × Rn.
Let Σ ⊆ Rn × Rn and Ω ⊆ Rn.
We call Σ a conservative polyhedral approximation of Ω if Ω ⊆ P (Σ), and a
supporting polyhedral approximation of Ω, if p ∈ Ω and v is normal to Ω at p,
for all (p, v) ∈ Σ.

If Σ is a conservative polyhedral approximation of Ω, (p, v) ∈ Σ is called
redundant in Σ if P (Σ) = P (Σ \ {(p, v)}).

Let N ∈ Z+, Ω0, . . . , ΩN ⊆ Rn, and u0, . . . , uN−1 ∈ U and define

M(Ω0, . . . , ΩN , u0, . . . , uN−1) := ΩN ∩
N⋂

k=1

ϕ(kT,ΩN−k, uN−k, . . . , uN−1).

Hence, M(Ωτ , . . . , Ωτ+N , uτ , . . . , uτ+N−1) is just the set on the left hand side
of condition (9). For any convex Ω ⊆ Rn, let Σ(Ω) be a supporting polyhedral
approximation of Ω and define

M̂(Ω0, . . . , ΩN , u0, . . . , uN−1) :=

P (Σ(ΩN )) ∩
N⋂

k=1

P (ϕ∗(Σ(ΩN−k), uN−k, . . . , uN−1)) .

Hence, M̂(Ωτ , . . . , Ωτ+N , uτ , . . . , uτ+N−1) is the left hand side of condition (9)
with all the reachable sets substituted with supporting polyhedral approxima-
tions obtained from application of the map ϕ∗ to supporting polyhedral approx-
imations of level sets of the quantizer.

We now define

S(Ω0) := Σ(Ω0), (12)

S(Ω0, . . . , Ωk, u0, . . . , uk−1) := Σ(Ωk) ∪
k⋃

q=1

ϕ∗(Σ(Ωk−q), uk−q, . . . , uk−1) (13)

for all k ∈ {1, . . . , N} to obtain

M̂(Ω0, . . . , ΩN , u0, . . . , uN−1) = P (S(Ω0, . . . , ΩN , u0, . . . , uN−1)).

Hence, S(Ω0, . . . , ΩN , u0, . . . , uN−1) is a conservative polyhedral approximation
of M̂(Ω0, . . . , ΩN , u0, . . . , uN−1), though not necessarily a supporting one.



Computation of Discrete Abstractions of Arbitrary Memory Span 313

The following result shows that the sets S(. . . ) just defined enjoy a recur-
sive description analogous to the one for the sets M τ

k . (See condition (iv) in
Theorem 1.)

Theorem 2. Let N ∈ Z+, Ω0, . . . , ΩN ⊆ Rn be convex, and u0, . . . , uN−1 ∈
U . Let ϕ be the general solution of (1) and assume that the reachable sets
ϕ(kT,ΩN−k, uN−k, . . . , uN−1) are convex for all k ∈ {1, . . . , N}. For each k ∈
{0, . . . , N}, let Σ(Ωk) be a supporting polyhedral approximation of Ωk, and let
S(Ω0), . . . , S(Ω0, . . . , ΩN , u0, . . . , uN−1) be defined by (12)-(13). Then

S(Ω0, . . . , Ωk, u0, . . . , uk−1) = Σ(Ωk) ∪ ϕ∗(S(Ω0, . . . , Ωk−1, u0, . . . , uk−2), uk−1)

for all k ∈ {1, . . . , N}.
Furthermore, if (p, v) is redundant in S(Ω0, . . . , Ωk−1, u0, . . . , uk−2), then it is
so in S(Ω0, . . . , Ωk, u0, . . . , uk−1).

It follows from the above result that half-spaces are shared among many of the
conservative polyhedral approximations M̂(. . . ) of reachable sets and that the
computational cost per half-space is just a single solution of an initial value
problem in the 2n-dimensional ordinary differential equation (10) over a single
sampling interval.

We now propose an algorithm that, under the assumption that reachable sets
are convex, determines discrete abstractions of the behavior B(6) given by (7).
Input:

(i) N ∈ Z+ (memory span of abstraction to be computed);
(ii) T , U , U (see section 2);
(iii) C: finite covering of Rn by convex polyhedra (level sets of the quantizer (5));
(iv) C′ := {Ω ∈ C |Ω bounded };
(v) a set Ω̂ for each Ω ∈ C′ with Ω ⊆ Ω̂ and reachable sets ϕ(kT, Ω̂, u) convex

for all k ∈ {0, . . . , N}, Ω ∈ C′ and u ∈ U ;
(vi) a supporting polyhedral approximation Σ(Ω̂) of Ω̂ for all Ω ∈ C′.

1: for all Ω ∈ C′ do
2: S̃(Ω) = Σ(Ω̂)
3: end for
4: for all Ω ∈ C \ C′ do
5: S̃(Ω) = ∅
6: end for
7: for k = 1, . . . , N do
8: for all (Ω0, . . . , Ωk, u0, . . . , uk−1) ∈ Ck+1 × Uk do
9: if S̃(Ω0, . . . , Ωk−1, u0, . . . , uk−2) = ∅ then

10: Z := ∅
11: else if Ωk ∩ P (ϕ∗(S̃(Ω0, . . . , Ωk−1, u0, . . . , uk−2), uk−1)) = ∅ then
12: Z := Rn × Rn

13: else if Ωk /∈ C′ then
14: Z := ∅
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15: else
16: Z := Σ(Ω̂k) ∪ ϕ∗(S̃(Ω0, . . . , Ωk−1, u0, . . . , uk−2), uk−1)
17: end if
18: S̃(Ω0, . . . , Ωk, u0, . . . , uk−1) := Z
19: end for
20: end for
Output: S̃(. . . ).

The following result shows that the above algorithm determines a discrete
abstraction of the behavior B(6) of the sampled and quantized system (6).

Theorem 3. Denote by S̃(. . . ) the sets determined by the above algorithm. Un-
der the assumptions made in the list of inputs, the set{

(u,Ω) ∈ UZ+ × CZ+

∣∣∣ ∀τ∈Z+ P (S̃(Ωτ , . . . , Ωτ+N , uτ , . . . , uτ+N−1)) �= ∅
}

is an N -complete conservative approximation of the behavior B(6) given by (7).

Some remarks are in order. First, note that the algorithm contains just two
nontrivial operations which need to be performed repeatedly, namely, the deter-
mination of the set

ϕ∗(S̃(Ω0, . . . , Ωk−1, u0, . . . , uk−2), uk−1), (14)

which appears at lines 11 and 16, and the test for emptiness at line 11. Regard-
ing the former operation, it follows from the definition (11) of the map ϕ∗ that
for each s ∈ S̃(Ω0, . . . , Ωk−1, u0, . . . , uk−2), determination of (14) requires the
solution of an initial value problem in the 2n-dimensional ordinary differential
equation (10) over a single sampling interval. Hence, the set (14) may be de-
termined from at most |S̃(Ω0, . . . , Ωk−1, u0, . . . , uk−2)| such solutions, where | · |
denotes cardinality. As P (ϕ∗(S̃(Ω0, . . . , Ωk−1, u0, . . . , uk−2), uk−1)) is a convex
polyhedron, the test for emptiness at line 11 may also be effectively performed
since Ωk is also a convex polyhedron by hypothesis (iii) in the list of inputs of
the algorithm.

Second, it should be obvious that the sets ∅ and Rn × Rn play a role similar
to zeros in sparse matrices [28,29]. In particular, if the sets S̃(. . . ) are stored
in a tree, sets S̃(. . . ) = ∅ and S̃(. . . ) = Rn × Rn do not need to be stored and
computations on them do not need to actually be performed.

Finally, note that all our arguments so far were based on the assumption that
reachable sets arising in characterizations of N -complete hulls are convex. It
follows from recent results of the author [22,23] that convexity of reachable sets
can be guaranteed under mild smoothness assumptions on the right hand side f
of the continuous control system (1). Let us briefly look at special cases of two
such results from [22].

Theorem 4. Let the right hand side f of (1) be of class C1,1 (C1 with Lipschitz
derivative) with respect to its first argument and continuous, and let u ∈ U be
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piecewise continuous. Let further x0 ∈ Rn, r > 0 and t ≥ 0. Finally, assume
that

M1 ≥ 2µ+ (D1f(x, u(τ))) − µ− (D1f(x, u(τ))) (15)

holds for all (τ, x) ∈ R+ × Rn, and let M2 be a Lipschitz constant for the map
(τ, x) �→ D1f(x, u(τ)) w.r.t. its second argument on R+×Rn. Then the reachable
set ϕ(t, B̄(x0, r), u) is convex if

rM2

∫ t

0
eM1τdτ ≤ 1. (16)

Here, µ+(M) and µ−(M) denote the maximum and minimum, respectively,
eigenvalues of the symmetric part (M +M∗)/2 of M , and B̄(x0, r), the closed
Euclidean ball of radius r centered at x0 w.r.t. the Euclidean norm ‖ · ‖.

Theorem 5. Let u, f , x0, r, and t as in Theorem 4 and assume in addition
that f is of class C2 with respect to its first argument. Then ϕ(t, B̄(x0, r), u) is
convex if and only if∫ t

0

〈
x− x0

∣∣D2ϕ(τ, x, u)−1D2
1f(ϕ(τ, x, u), u(τ))(D2ϕ(τ, x, u)h)2

〉
dτ ≤ 1 (17)

for all x ∈ ∂B̄(x0, r) and all h ⊥ (x − x0) with ‖h‖ = 1. Here, ∂X denotes the
boundary of X, D2

1, the second order partial derivative w.r.t. the first argument,
and D2

1f(x, u)h2 := D2
1f(x, u)(h, h).

The boundsM1 andM2 in Theorem 4 may be directly determined from the right
hand side f of the time-continuous system (1) and the set U of admissible con-
trols, and the bound (16) on the radius is sharp provided n ≥ 2 [22]. Application
of previous results from [30,31,32] would necessarily be based on estimates of
‖D2ϕ(t, ·, u)−1‖ and ‖D2

2ϕ(t, ·, u)‖ and, in general, would yield a smaller bound.
Theorem 4 implies that the reachable set ϕ(t, B̄(x0, r), u) is convex whenever

t or r is sufficiently small. Hence, if either the sampling period T , or the system
of level sets of the quantizer (5) can be chosen freely, convexity of reachable sets
arising in the algorithm proposed in this section, and hence, applicability of the
algorithm, can be guaranteed by either choosing T sufficiently small or choosing
sufficiently small balls as the elements of C′.

While Theorem 4 gives a sufficient condition for the convexity of a reachable
set, Theorem 5 appears to have the form of a criterion. However, condition (17)
contains the general solution ϕ of (1) and therefore, may only rarely be directly
verified. Instead, one usually has to resort to estimating the integrand on the left
hand side of (17). In the twice continuously differentiable case, use of the estimate
obtained from Ważewski’s inequality [22] would yield precisely the bound (16)
in Theorem 4. The advantage of Theorem 5 is that for specific examples of (1)
one is often able to obtain better estimates for the integrand in (17), and hence,
larger bounds on the radius than (16). This has been demonstrated in [22]. In
view of the algorithm proposed in this section, note that larger bounds directly
translate into lower computational complexity.
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As Theorems 4 and 5 extend to right hand sides f defined in arbitrary Hilbert
spaces, convexity of reachable sets from ellipsoids rather than from Euclidean
balls may also be guaranteed [22]. In view of these results, each bounded element
Ω ∈ C of the system C of level sets of the quantizer (5) should be contained in
some ellipsoid Ω̂ whose reachable sets are guaranteed to be convex by Theorems
5 and 4. See items (iv) and (v) of the list of inputs of the algorithm.

5 Example

Consider the pendulum equations

ẋ1 = x2, (18a)
ẋ2 = − sin(x1) − u cos(x1), (18b)

which describe frictionless motion of a pendulum mounted on a cart whose ac-
celeration is u. The motion of the cart is not modeled; u is considered an input.
We seek to design a controller that steers a sampled version of (18) from some
neighborhood of the origin within a finite number of steps into the ellipsoid E
defined by

E = (π, 0) +
{
x ∈ R2

∣∣ 〈x|Hx〉 ≤ 1
}
, H =

1
10

√
2

(
13 3

√
3

3
√

3 7

)
(19)

and shown in Fig. 3(a), such that the closed loop satisfies the constraints

|x2| ≤ π, (20a)
u ∈ {0,−2, 2}, (20b)

with controls being constant on sampling intervals, i.e.,

U = {[0, T ] → R : t �→ 0, [0, T ] → R : t �→ −2, [0, T ] → R : t �→ 2}

in the notation of section 2.
To this end, let U be defined by (2), let ϕ denote the general solution of (18),

and consider the sampled system (4) with sampling period T = 0.35. Define the
quantizer Q of (5) by its system C of level sets (“cells”),

C = C′ ∪ {R × ]π,∞[ ,R × ]−∞,−π[},

where C′ is a set of 238 translated and possibly truncated copies of the hexagon
π

14
√

3
conv{(0,−2), (

√
3,−1), (

√
3, 1), (0, 2), (−

√
3, 1), (−

√
3,−1)}, (21)

see Fig. 3(a). Since the right hand side of (18) is periodic in x with period (2π, 0),
we tacitly consider the system (18) on the cylinder, so that C really is a covering
of the state space of (18) and of (4).

For each Ω ∈ C′, let Ω̂ be a translated copy of the circumcircle of the hexagon
(21), and Σ(Ω̂), a supporting polyhedral approximation of Ω̂ consisting of 8
equally distributed hyperplanes. See Fig. 3(b). The next result shows that the
reachable set ϕ(t, Ω̂, u) is convex for all Ω ∈ C′, all u ∈ U , and all t ∈ {T, 2T }.
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Fig. 3. (a) Covering of the state space by cells which defines the quantizer (5). A
discrete controller obtained from a 2-complete abstraction of the behavior of the the
sampled and quantized system (6) steers (6) from any shaded cell into some of the
(unshaded) cells contained in the ellipsoid (19). The labeled points represent a partic-
ular closed-loop solution on the time interval {0, 1, . . . , 10}. (b) A hexagon Ω ∈ C′, its
circumcircle Ω̂, and a supporting polyhedral approximation Σ(Ω̂) of Ω̂.

Theorem 6. Let x0 ∈ R2, u piecewise continuous with |u(τ)| ≤ û for all τ ∈
R+, ω =

(
1 + û2

)1/4, 0 < t ≤ π
2ω ,

R =
6ω2

(1 + ω2)3/2 sinh(ωt) (5 + cosh(2ωt) − 10 exp(−ω))
. (22)

Then the reachable set ϕ(t, B̄(x0, r), u) is convex whenever 0 < r ≤ R.

Indeed, the circumcircle of the hexagon (21) is of radius π/(7
√

3) < 0.26, while
the bound (22) exceeds 0.26 for û = 2 and t ∈ {T, 2T }, and T < 2T < 1 <
π
2

(
1 + û2

)−1/4. Hence, for memory span N ∈ {0, 1, 2}, all relevant reachable sets
are convex, and Theorem 3 guarantees that the algorithm proposed in section 4
yields a discrete abstraction BN of the behavior of the sampled and quantized
system (6).

We have implemented our algorithm from section 4 in Mathematica 5.2 [33]
and computed BN for N ∈ {0, 1, 2}. Tab. 1 gives some statistics. Note that for
N = 2, the number of half-spaces to be determined is less than the number
of conservative polyhedral approximations of reachable sets to be stored, which
demonstrates an important feature of our method. It took 0.8, 30.2 and 101.6
seconds to compute BN for N = 0, 1, 2, respectively, on an IBM Thinkpad X60
with 1.83 GHz clock rate.

Based on the abstractionB2 and using well-known methods from discrete math-
ematics [11,8], we have obtained a discrete controller which, by construction,
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Table 1. Application of the algorithm proposed in section 4 to the present example
(N : memory span of computed abstraction; s: number of half-spaces to be determined;
q: number of polyhedra tested for emptiness; p: number of conservative polyhedral
approximations of reachable sets to be stored)

N s q p
0 1906 0 240
1 5184 30118 3060
2 21424 70496 22840

steers the sampled and quantized system (6) from any cell shaded in Fig. 3 into
some cell inside the ellipsoid E within at most 16 steps, and in particular, within
10 steps if starting from the origin. See Fig. 3(a). By construction, solutions of the
closed loop remain in C′ before entering E, which guarantees control and state
constraints (20) are satisfied.
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Abstract. Rising fuel prices and tightening emission regulations have
resulted in an increasing need for advanced powertrain systems and sys-
tematic model-based control approaches. Along these lines, this paper
illustrates the use of hybrid modeling and model predictive control for a
vehicle equipped with an advanced hybrid powertrain. Starting from an
existing high fidelity nonlinear simulation model based on experimen-
tal data, the hybrid dynamical model is developed through the use of
linear and piecewise affine identification methods. Based on the result-
ing hybrid dynamical model, a hybrid MPC controller is tuned and its
effectiveness is demonstrated through closed-loop simulations with the
high-fidelity nonlinear model.

Keywords: Hybrid systems, model predictive control, powertrain con-
trol, hybrid electric vehicles, piecewise affine systems, piecewise affine
system identification.

1 Introduction

The complexity of powertrain systems is increasing in response to tightening
fuel economy and emission requirements. In particular, the powertrains have now
more subsystems, components, inputs, outputs, operating modes and constraints
than in the past. Their effective treatment benefits from systematic modeling and
model-based control approaches.

In the paper we demonstrate how a hybrid dynamical model of an advanced
powertrain can be developed using linear and piecewise affine identification
techniques. The resulting hybrid model can be used as a basis for the design
of a hybrid Model Predictive Controller which uses mixed integer quadratic
programming (MIQP) solvers for the on-line optimization to coordinate com-
mands to powertrain subsystems and enforce pointwise-in-time state and control
constraints.
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Fig. 1. Configuration of the 4x4 hybrid electric vehicle

A specific case study based on a parallel Hybrid Electric Vehicle (HEV) in-
troduced in [1] has been chosen to demonstrate the proposed approach. This
vehicle relies on two electric motors (one in the front and one in the rear of the
vehicle), in addition to a turbocharged diesel engine and a high voltage battery.
A realistic simulation model with detailed component representations will be
used as a basis for deriving a hybrid model; the hybrid model will than be used
for prediction in a model predictive control (MPC) strategy. Any upfront man-
ual simplification of the simulation model is avoided to demonstrate how hybrid
modeling and piecewise affine system identification techniques can be directly
and systematically applied to the high fidelity industrial models.

2 Model

Our case study is an advanced 4x4 hybrid electric vehicle configuration discussed
by Dextreit et al., in [1]. This vehicle is equipped with a turbocharged diesel
engine, a high voltage electric battery and two electric motors one acting on
the front axis and one acting on the rear axis. The front electric motor is the
Crankshaft Integrated Starter Generator (CISG), which is directly mounted on
the engine crankshaft and is used for starting and assisting the engine and for
generating electric energy. An Electric Rear Axle Drive (ERAD) motor is located
on the rear differential. The ERAD can operates as a traction motor to drive
the rear wheels or as generator, either during regenerative braking or when the
battery needs to be charged.

Our developments are based on a high fidelity simulation model of the over-
all vehicle. The simulation model is based on the nonlinear maps of the HEV
components, including nonlinear models of battery and vehicle dynamics, and
switching components such as gears. The simulation model can be subdivided
into the following subsystems:

Electrical battery, describes the dynamics of the NiMH high voltage battery
on board of the vehicle. The model equations are

dSoC(t)
dt

=
Pw(t)
Vbatt(t)

· 1
CCh

, Vbatt(t) = OCV (t) − Pw(t)
Vbatt(t)

· R(t), (1)

dOCV (t)
dt

=
Pw(t)
Vbatt(t)

· f1(SoC(t)) −OCV (t), R(t) = f2(SoC(t), T (t)),
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where 0 ≤ SoC ≤ 1 is the State of Charge of the battery, Pw (W) is the electrical
power entering the battery, Vbatt (V) is the output voltage, CCh (F) is the charge
capacity, OCV (V) is the open circuit voltage, R (Ω) is the internal resistance,
and T (◦C) is the temperature. The input of (1) is the power requested (Pw ≤ 0)
or generated (Pw ≥ 0) by the electrical motors and by the auxiliary devices. The
outputs are the actual voltage Vbatt, the delivered current Ibatt = Pw

V , and the
state of charge SoC.

Vehicle longitudinal dynamics model. The model which describes the lon-
gitudinal vehicle dynamics has the form

Mtot(t)v̇veh(t) = F (t), (2)

whereMtot(t) (kg) is the sum of the vehicle massM and the inertial massMi(t).
Here the inertial mass is calculated as the ratio between the overall inertia at
wheels J(t) (kg m2) and the square of the wheel radius rw (m). In (2), F (t) (N)
is the sum of all the equivalent forces acting on the vehicle

F (t) = Fdrl(t) + Fae(t) + Frol(t) + Fbrake(t) + Fgr(t) (3)

The forces involved in (3) are the driving force Fdrl, which is a function of the
total torque at wheels τwheel = τfdrl + τERAD (Nm) applied by the motors, the
aerodynamic force Fae(t), the rolling resistance forces, Frol(t) and the braking
force Fbrake(t) which are functions of the vehicle speed, and the force due to the
gravity on a non-zero road grade, Fgr(t). The inputs in (2), (3) are the torques
applied to the wheels τtot = rw ·F (t) coming from the driveline subsystem. The
output is the vehicle speed vveh (m/s).
Powerplant model models the internal combustion (IC) engine through differ-
ent maps which characterize its instantaneous efficiency, fuel consumption, and
operating limits. The inputs are the torque requested τIC,req (Nm) to an existing
torque controller, and the actual shaft speed ωshaft (rad/s), which is also the
speed of the CISG motor. We denote by JIC (kg m2) the inertia of the engine.
The outputs are the torque τIC (Nm) actually delivered by the engine, and the
fuel flowrate, frate.

Driveline model is composed by front and rear drivelines. The model of the
front driveline includes maps representing the losses along the driveline. The
rear driveline model includes maps for losses, efficiency, and limits in generating
and motoring modes for the ERAD motor. The inputs are the battery states
(1), the torque requested τerad,req (Nm), which is positive during the motoring
and negative during the generating phase, and the torque τgear delivered to the
front driveline. The outputs are the torque to each wheel and the power PERAD
(W) requested or generated by the ERAD.

Transmission model includes the maps of the CISG and of the gearbox, which
characterize the efficiency, the operating limits, and the transmission reductions.
The main inputs are the selected gear, gear� ∈ {N, 1, 2, 3, 4, 5, 6}, the battery
states, and the requested CISG torque τcisg,req . The outputs are the transmission
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Fig. 2. Overall schematics of the HEV hybrid dynamical model

output torque τgear , the rotational speed of the gear shaft ωshaft, and the power
PCISG (W) drained from or supplied to the battery by the CISG.

3 Hybrid Dynamical Model of the HEV

Hybrid dynamical models have been used in recent years to analyze and optimize
a large variety of systems in which physical processes interact with embedded
digital controllers and switching devices. Several modeling formalisms have been
developed to represent hybrid systems [2,3,4], including Mixed Logical Dynami-
cal (MLD) systems [5], which are discrete-time hybrid models useful to formulate
optimization problems involving hybrid dynamics. The language HYSDEL (HY-
brid Systems DEscription Language) was developed in [6] to obtain MLD models
from a high level textual description of the hybrid dynamics. MLD models can
be converted into piecewise affine (PWA) models [7] through automated proce-
dures [8,9]. HYSDEL, MLD and PWA models are used in the Hybrid Toolbox for
MatlabTM [10] for modeling, simulating, and verifying hybrid dynamical systems
and for designing hybrid model predictive controllers.

The complex model described in Section 2 is approximated by a discrete-time
hybrid model with sampling period Ts = 1s that is described in HYSDEL and
automatically converted in MLD form. The procedure to obtain such a model
involves the following operations:

1. Linear identification and time-discretization of the continuous dynamics.
Sections 3.2 and 3.3 below describe the identification of discrete-time lin-
ear models of the battery (1) and of the vehicle longitudinal dynamics (2),
respectively.

2. Piecewise affine identification. The nonlinear model is based on intercon-
nected nonlinear maps in the form of lookup tables. These are identified
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as static piecewise affine maps through the bounded-error approach [11] to
hybrid system identification as detailed below in Section 3.1.

3. Setup of the HYSDEL model. Once each subsystem ismodeled in discrete-time
piecewise affine form, all the submodels are assembled and interconnected in
a single HYSDEL model. This is used to generate the corresponding control-
oriented MLD model and to synthesize MPC algorithms for the energy man-
agement of the HEV under consideration.

The overall hybrid dynamical system is constructed by looking at the energy
distribution among the different components that constitute the HEV, rather
than at the mechanical devices that compose the nonlinear simulation model, in
accordance with the overall scheme depicted in Figure 2. The components of the
hybrid dynamical model are described in the following section.

3.1 Piecewise Affine Identification

In order to apply linear hybrid modeling and optimization techniques, nonlinear
relations between input/output variables of different subsystems must be ap-
proximated by static piecewise affine (PWA) functions. This identification task
(or “hybridization” process of the model) is performed algorithmically from in-
put/output data samples. Such samples can be either measured experimentally
or obtained by evaluation of existing nonlinear models that have been previously
calibrated on measured data. The identification algorithm automatically parti-
tions the input data set into a finite number of polyhedral regions and defines a
linear/affine map in each region.

In this paper we use the bounded-error approach of [11] to hybrid system
identification. Consider a static PWA model in the form

yk = f(uk) + εk, where f(uk) =

⎧⎪⎨⎪⎩
θ′1 [ uk

1 ] if uk ∈ χ1
...

...
θ′s [ uk

1 ] if uk ∈ χs,

(4)

where uk ∈ Rn are the input samples, yk ∈ R are the corresponding output
samples, εk ∈ R are the error terms, k = 1, . . . , N . χi = {x : Hiuk ≤ Ki},
are polyhedral sets defining a partition of the given set of interest χ ⊆ Rn, and
θi ∈ Rn+1, i = 1, ..., s, are the parameter vectors defining the affine submodels.

Given the tolerated bound δ > 0 on the fit error εk, the bounded-error ap-
proach determines a PWA model (4) satisfying the condition |yk − f(uk)| ≤ δ.
The bound δ is the tuning knob of the procedure. It determines the tradeoff
between complexity and accuracy of the model to fit samples. In this paper we
have modified the toolbox of [12] to approximate PWA functions based on a
maximum “relative” error δrel > 0

|yk − f(uk)|
1 + |yk|

≤ δrel , ∀k = 1, . . . , N. (5)

Compared to the original absolute error proposed in [11], we have found that the
criterion (5) leads to a reduced complexity in terms of number s of affine models.
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Fig. 3. Open-loop validation of the linear ARX model of the battery and of the vehicle
chassis model

Given N data points (yk,uk), k = 1, . . . , N and a chosen δrel > 0, the three-step
procedure proposed in [11] is applied to look for the minimum positive integer s,
for a partition χ1, . . ., χs, and for a set of parameter vectors θ1, . . ., θs such that
the corresponding PWA model (4) satisfies the bounded error condition (5).
As detailed in the next sections, different parameters δrel were optimized for
each identified map, depending on the relevance of the fit error on the dynamic
behavior of the overall hybrid system. The N data points for each PWA model
are chosen using the response of the nonlinear model controlled by a rule-based
controller developed in [1] and a collection of points uniformly distributed on the
input range of the nonlinear map. The toolbox of [12] has also been interfaced
to the Hybrid Toolbox [10] by automatically generating the HYSDEL code that
describes the identified PWA function.

3.2 Battery Model

In order to model the battery described by the nonlinear dynamics (1) in a
hybrid form oriented toward the synthesis of MPC controller, the model was
approximated as a piecewise affine autoregressive exogenous (PWARX) model
via the parametric identification procedure [11].

By restricting the safe range of the State of Charge, SoC ∈ [0.2, 0.8], ne-
glecting the dependence on temperature (we assumed T = 25◦C constant) and
assuming that the charging and discharging characteristics are equal, a satisfac-
tory fit has been obtained by a multi-output PWA autoregressive model that
consists of only one partition, that is, by the linear autoregressive model[

SoC(k)
Vbatt(k)

]
= b0Pw(k) + b1Pw(k − 1) + a1sSoC(k − 1) + a2sSoC(k − 2)

+ a1vVbatt(k − 1) + a2vVbatt(k − 2)
(6)

where k denotes the sampling instant for sampling period Ts = 1s, a1s, a2s, b0,
b1, a1v, a2v ∈ R2 are the coefficient matrices. The model was validated against
the response of the nonlinear model using Nv = 1000 samples of a real use of the
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battery during a driving cycle. The results of the comparison, obtained using
open-loop simulation, are reported in Figure 3. The fit on validation data is
� 96% for the SoC and � 77% for Vbatt.

In order to account for modeling errors, the State of Charge constraints en-
forced by the controller are set tighter than real safety and realistic limits

0.3 ≤ SoC(t) ≤ 0.7, ∀t ≥ 0. (7)

Since in fact the real SoC safe range is is wider, this constraint is treated as soft,
i.e., its violations will cause an increased value of the cost, which means that
they are tolerable, but only during short transients.

3.3 Vehicle Model

For the purpose of power management only the force Fdrl delivered by the con-
trolled motors to the driveline, Fdrl ≥ 0, is considered as a manipulated input to
the linear model (2) of the vehicle longitudinal dynamics. The remaining forces
Fae(t), Frol(t), Fgr(t) model resistance effects on the car. The braking force
Fbrake is considered as a disturbance, since it is actuated by the driver. The
full nonlinear model of the vehicle longitudinal dynamics takes into account the
fact that the equivalent inertia of the system is not constant and in particular
it depends on the engaged gear. Nonetheless, the simple mass-damper model

Mv̇veh + βvveh =
1
rw

· τwh (8)

was fit to N simulation data of wheel torque τwh, speed vveh, and acceleration
v̇veh obtaining a good approximation. The parameters M and β were simply
estimated by solving the standard least square estimation problem

[
M
β

]
= (XTX)−1XTY, X =

[
v̇(0) v(0)
...

...
v̇(N−1) v(N−1)

]
, Y =

1
rw

[
τ(0)
...

τ(N−1)

]
. (9)

Figure 3(c) compares the vehicle speed signal generated by the open-loop sim-
ulation of the estimated linear model excited by τwh against the vehicle speed
signal obtained by simulating the full nonlinear model. The open-loop simulation
error over a period of 300 s is bounded and does not tend to diverge; it is smaller
than 2 m/s for the most part of the simulation.

3.4 Internal Combustion Engine

Since the aim of the hybrid dynamical model is to synthesize a control algorithm
for managing power flows within HEV, the engine and its low-level torque regu-
lator are modeled as a subsystem whose inputs are the desired torque τIC,req to
the crankshaft and engine speed ωshaft, and whose outputs are the actual deliv-
ered torque τIC and the fuel flowrate frate, therefore assuming torque generation
dynamics are fast enough to be negligible. This assumption is justified by the
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(a) CISG electrical motor (b) ERAD electrical motor

Fig. 4. PWA maps of the electric motors

fact that energy management is performed at a much slower rate than torque
control. Accordingly, two of the following PWA output maps were identified

τIC,req − τIC = fPWA,τ (τIC,req, ωshaft), (10)

which consists of 4 regions, with a fit error below 10%, and

frate = fPWA,f (τIC,req, ωshaft), (11)

which consists of 5 regions, with a fit below 5%.

3.5 Electric Motors

The electric motors are assumed to have fast dynamics and generate torque
equal to the requested torque unless limits are exceeded by the requested torque,
in which case the actual torque is saturated. The limits are not modeled in
the hybrid model, but rather calculated and imposed by the MPC controller
externally through a piecewise affine bound. The elimination of the limit maps
from the model is justified by the fact that the saturation limits are never reached
in simulation as long as the constraints on the State of Charge SoC of the
battery are enforced, and this reduces the complexity of the hybrid dynamical
model. The mechanical power delivered by the CISG and ERAD motors are
PCISG,mec = τCISG · ωshaft and PERAD,mec = τERAD · ωERAD, respectively. The
following PWA maps represent the actual delivered electrical power PCISG,ele
and PERAD,ele

PCISG,ele = fPWA,c(τCISG, ωshaft), PERAD,ele = fPWA,e(τERAD, ωERAD). (12)

The functional relationships in (12) have been identified from the full nonlinear
model and are reported in Figure 3.4. The maps (12) incorporate the effect of
electro-mechanical losses.
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Table 1. Elecrical Motor PWA maps limits

max speed (rad/s) torque range (Nm) max power loss (kW)
CISG 700 -200 ÷ 200 13
ERAD 1300 -300 ÷ 300 21
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Fig. 5. Open-loop validation of the IC engine model: PWA model (dashed), nonlinear
model (solid)

The ERAD motor operates in a wider range than the CISG motor (see Table 1).
The latter mainly assists the IC engine. A reasonable tradeoff between accuracy
of the maps and model complexity has been reached by setting a relative max-
imum fitting error of 15% in the PWA identification algorithm for both maps.
The number of regions for the ERAD and CISG electrical power maps is 6 and
4, respectively.

3.6 Gear Model

The model of the gearbox is split in two different maps. As sketched in Figure 2
the PWA map of gear torque models the effects of the mechanical reduction on
the torque entering the gearbox, τingear = τIC + τCISG [Nm], as a function of the
selected gear, gear�,

τgear = fPWA(τingear, gear�). (13)

A second one-dimensional map defines the transmission ratio TR� for each gear,
where � denotes gear number. The transmission ratio relates the shaft speed
ωshaft [rad/s] and the actual vehicle speed vveh [m/s]

ωshaft = vveh · TR� · SF, (14)

where SF is the scaling factor due to the front differential.
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3.7 Overall Hybrid Dynamical Model

The overall hybrid dynamical model is constructed according to the structure
depicted in Figure 2, where each component has been approximated through
linear or piecewise affine identification as described in the previous sections.
The model has been validated by running an open-loop simulation on the New
European Driving Cycle (NEDC), which defines a vehicle speed reference profile,
vveh,ref , to be tracked for a duration of 20 minutes, along with the gear to engage.
Figure 5(a) reports the traction force acting on the vehicle, Figure 5(b) the fuel
flowrate consumed by the vehicle. The quality of the fit is considered adequate,
as the mere role of the model is to predict the behavior of the HEV over a short
time horizon as required for model predictive control.

In order to track the vehicle speed with zero steady-state offset the model
is extended by introducing integral action. The sampled desired vehicle speed
vveh,ref and the integral Iv,err of the difference between vveh,ref and vveh are
included as additional states

vveh,ref (k + 1) = vveh,ref (k)
Iv,err(k + 1) = Iv,err(k) + Ts(vveh(k) − vveh,ref (k))

where Ts = 1s is the sampling period. With the aim of reducing the prediction
horizon of the hybrid MPC controller based on the hybrid dynamical model
developed above, rather than considering the tracking error of the state of charge
we consider its one step ahead prediction, obtained by iterating (6) for one step
under the assumption that the electrical power satisfies Pw(k + 1) = Pw(k).

The braking force Fbrake from the driver is also modeled as a constant state
Fbrake(k + 1) = Fbrake(k), although it will be assumed to be unknown in the
following simulations by the controller, and hence set Fbrake = 0.

The overall hybrid dynamical model has been described in HYSDEL and
converted to MLD form using the Hybrid Toolbox for Matlab [10]. The result-
ing MLD model has 9 continuous states (vveh(k), Iv,err(k), vveh,ref (k), SoC(k),
SoC(k−1), Vbatt(k), Vbatt(k−1), Pw(k−1), Fbrake(k)), 7 binary states storing the
current engaged gear (Neutral, 1st, . . . , 6th) and subject to an exclusive-or con-
straint, 3 continuous inputs (τIC,req, τERAD,req, τCISG,req), 32 binary inputs used
to detect the active regions in the 6 PWA maps (for each map the corresponding
group of binary inputs is subject to an exclusive-or constraint), 56 continuous
auxiliary variables, used for representing the PWA maps, engine speed, engine
torque, and other ancillary variables, 1 continuous output, fuel consumption
frate, no binary auxiliary variables, and 490 mixed-integer inequalities.

4 Model Predictive Control Design

MPC was used in many industrial applications [13], and more recently model
predictive control of hybrid dynamical systems has shown potential for appli-
cations in the automotive domain [14,15,16,17,18,19]. In this section we design
an MPC controller for the HEV based on the overall hybrid dynamical model
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described in Section 3. In the MPC approach, at each sampling instant a finite
horizon open-loop optimization problem is solved, using the current state as the
initial condition of the problem. The optimization provides a control sequence,
only the first element of which is applied to the process. This process is itera-
tively repeated at each subsequent time instant, thereby providing a feedback
mechanism for disturbance rejection and reference tracking. The optimal control
problem is defined as:

min
ξ
J(ξ, x(t)) � Qρρ

2 +
N∑

k=1

(Γxxk − xref )TS(Γxxk − xref )+ (15a)

+
N−1∑
k=0

(Γuuk − uref)TR(Γuuk − uref ) + (yk − yref )TQ(yk − yref ),

subj. to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x0 = x(t),
xk+1 = Axk +B1uk +B3zk,
yk = Cxk +D1uk +D3zk,
E3zk ≤ E1uk + E4xk + E5,
0.3 − ρ ≤ SoCk ≤ 0.7 + ρ,

(15b)

where N is the control horizon, x(t) is the state of the MLD system at sampling
time t, ξ � [uT

0 , z
T
0 , . . . , u

T
N−1, z

T
N−1, ρ]

T ∈ R59N+1×{0, 1}32N is the optimization
vector, Q, R and S are weight matrices, Qρ is a large weight used to enforce
the softened version (15b) of constraint (7), and Γu ∈ R3×36, Γx ∈ R3×16 are
matrices that select the subset of vector components to be weighted (Γu, Γx are
formed by rows of identity matrices). In particular we define the reference signals
used in (15) for the output and for the components selected by Γu, Γx as

yref � frate,ref, (16a)

uref � [τIC,req τERAD,req τCISG,req]′, (16b)

xref � [vveh,ref Iv,err SoCref ]′, (16c)

and, accordingly, we set the cost weights in (15b) to be

Q = qfuel, R =
[

rτ,IC 0 0
0 rτ,CISG 0
0 0 rτ,ERAD

]
, S =

[
sv,veh 0 0

0 sSoC 0
0 0 sv,int

]
, Qρ = 105,

where the components of vector uref are all zero in order to minimize the control
action.

Problem (15) can be transformed into a mixed integer quadratic program
(MIQP), i.e., into the minimization of a quadratic cost function subject to linear
constraints,where someof thevariables arebinary.Even if this class ofproblemshas
exponential complexity, efficient numerical tools for its solution are available [20].

5 Simulation Results

The closed-loop behavior of the HEV in closed loop with MPC controller has
been evaluated in simulations by using the high-fidelity nonlinear model de-
scribed in Section 2. The design parameters for the MPC (15) are the prediction
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Table 2. MPC design parameters (rτ,IC = 6·10−2, rτ,CISG = 3·10−2, rτ,ERAD = 3·10−2,
sv,veh = 5·103). The number in the first column represents the MPC design number (0 =
conventional vehicle). The fuel consumption values are normalized to the conventional
vehicle consumption.

qfuel sSoC sv,int fuel cons (norm) max |vveh − vveh,ref | max |SoC − SoCref |
0 ∗ ∗ ∗ 1 ∗ ∗
1 1e-2 2e6 10 0.79 2.105 0.1364
2 1e1 1e6 1 0.76 2.789 0.2484

0 200 400 600 800 1000 1200
−50

0

50

100

150

200

250

(a) IC engine control (dashed: τIC,
solid: IC engine on/off signal)

0 200 400 600 800 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) State of charge dynam-
ics(dashed: SoC bounds, solid:
SoC dynamics)

0 200 400 600 800 1000 1200
−5

0

5

10

15

20

25

30

35

(c) NEDC Reference Vehicle Speed
profile

0 200 400 600 800 1000
−5

−4

−3

−2

−1

0

1

2

3

(d) Vehicle speed tracking error
(vveh − vveh,ref)

Fig. 6. MPC design #1: closed-loop response

horizonN = 1, and weights rτ,IC = 6·10−2, rτ,CISG = 3·10−2, rτ,ERAD = 3·10−2,
sv,veh = 5 · 103. The weights qfuel, sSoC and sv,int are reported in Table 2 for
two different MPC designs. Note that the weight on rτ,IC is much greater than
rτ,CISG, rτ,ERAD to force the use of torque from electric motors rather than from
the IC engine, and that sv,int is used to maintain the speed tracking performance.

For both controllers it took approximately 175.5 s to simulate the closed-loop
system on a PC Intel Centrino Duo 2.0 GHz with 2GB RAM running the Hybrid
Toolbox for Matlab [10] and the MIQP solver of CPLEX 9 [20], of which 156.7 s
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Fig. 7. MPC design #2: closed-loop response

are spent by CPLEX, that is an average of approximately 0.13 s per time step. The
control action is computed in the worst case in approximately 0.29 s. The closed-
loop dynamics obtained from the first MPC design are described in Figure 6.

In this simulation qfuel has a small weight as the fuel consumption is less
important than keeping the battery SoC close to the setpoint. To improve fuel
consumption the internal combustion engine is turned off when the torque re-
quest is lower than a given threshold, see Figure (6(a)). The results of the second
MPC design are shown in Figure 7, where a higher emphasis to fuel consumption
is given, where more freedom to draw power from the battery (lower sSoC) is
allowed to the controller, which also has a lower weight on the speed tracking
integral action (sv,int). The weight on sv,veh allowed to maintain the maximum
error in speed tracking smaller than 3.2 [m/s]. The SoC signal violates the soft
constraint (15b) on minimum charge for a maximum time of 92s. However, it
should be noted that the SoC always remains in the physical battery safety and
reliability range SoC ∈ [0.2, 0.8]. For both MPC designs the fuel consumption
is reduced with respect to a conventional vehicle. In the first simulation the fuel
consumption improvement is 20.7%. In the second simulation the controller is
allowed to use more electric power due to smaller weight on sSoC , and this results
a slight violation of the soft constraint. On the other hand the fuel consumption
improvement is 23.8%. These improvements are similar to the values reported
in [1], but it is interesting to observe that in this paper the MPC controller does
not exploit any knowledge of the driving cycle but only of the vehicle model.

6 Conclusions

In the paper we have exemplified an effective control approach for advanced pow-
ertrain systems which combines hybrid modeling, identification and model pre-
dictive control. In this approach, piecewise affine system identification techniques
serve as a bridge between detailed nonlinear simulation models (or experimental
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powertrain hardware) and hybrid models in such a way that the on-line imple-
mentation of model predictive control becomes feasible using a mixed integer
quadratic programming. In the paper, a realistic (industrial strength) simula-
tion model with high fidelity components representation was used as a basis for
deriving an approximate hybrid model: the latter was used to define the hy-
brid MPC optimization problem. This design approach could have been equally
applied to experimental vehicle data or to a mixture of experimental data and
simulation data.
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Abstract. To reduce the amount of data transfer in networked control systems
and wireless sensor networks, measurements are usually taken only when an
event occurs, rather than at each synchronous sampling instant. However, this
complicates estimation and control problems considerably. The goal of this pa-
per is to develop a state estimation algorithm that can successfully cope with
event based measurements. Firstly, we propose a general methodology for defin-
ing event based sampling. Secondly, we develop a state estimator with a hybrid
update, i.e. when an event occurs the estimated state is updated using measure-
ments; otherwise the update makes use of the knowledge that the monitored vari-
able is within a bounded set that defines the event. A sum of Gaussians approach
is employed to obtain a computationally tractable algorithm.

1 Introduction

Different methods for state estimation have been introduced during the last decades.
Each method is specialized in the type of process, the type of noise or the type of
system architecture. In this paper we focus on the design of a state estimator that can
efficiently cope with event based sampling. By event sampling we mean that measure-
ments are generated only when an a priori defined event occurs in the data monitored
by sensors. Such an estimator is very much needed in networked control systems and
wireless sensor networks (WSNs) [1]. Especially in WSNs, where the limiting resource
is energy, data transfer and processing power must be minimized. Existing estimators
that could be used in this framework are discussed in Section 4. For related research on
event based control, the interested reader is referred to the recent works [2, 3, 4, 5, 6].

The contribution of this paper is twofold. Firstly, using standard probability notions
we set up a general mathematical description of event sampling depending on time and
previous measurements. We assume that the estimator does not have information about
when new measurements are available, which usually results in an unbounded error-
covariance matrix. To prevent this from happening, we develop an estimation algorithm
with hybrid update, which is the second main contribution. The developed event based
estimator is updated both when an event occurs, with a received measurement sample,
as well as at sampling instants synchronous in time, without receiving a measurement
sample. In the latter case the update makes use of the knowledge that the monitored
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variable, i.e. the measurement, is within a bounded set that defines the event. In order
to meet low processing power specifications, the proposed state estimator is based on
the Gaussian sum filter [7, 8], which is known to be computationally tractable.

2 Background Notions and Notation

R defines the set of real numbers whereas the set R+ defines the non-negative real
numbers. The set Z defines the integer numbers and Z+ defines the set of non-negative
integer numbers. The notation 0 is used to denote either the null-vector or the null-
matrix. Its size will become clear from the context.

Suppose a vector x(t) ∈ Rn depends on time t ∈ R and is sampled using some sam-
pling method. Two different sampling methods are discussed. The first one is time sam-
pling in which samples are generated whenever time t equals some predefined value.
This is either synchronous in time or asynchronous. In the synchronous case the time
between two samples is constant and defined as ts ∈ R+. If the time t at sampling instant
ka ∈ Z+ is defined as tka , with t0a := 0, we define:

xka := x(tka) and x0a:ka := (x(t0a),x(t1a), · · · ,x(tka)).

The second sampling method is event sampling, in which samples are taken only
when an event occurs. If t at event instant ke ∈ Z+ is defined as tke , with t0e := 0, we
define:

xke := x(tke) and x0e:ke := (x(t0e),x(t1e), · · · ,x(tke)).

A transition-matrix At2−t1 ∈ Ra×b relates the vector u(t1) ∈ Rb to a vector x(t2) ∈ Ra

as follows: x(t2) = At2−t1u(t1).
The transpose, inverse and determinant of a matrix A ∈ Rn×n are denoted as A,, A−1

and |A| respectively. The ith and maximum eigenvalue of a square matrix A are denoted
as λi(A) and λmax(A) respectively. Given that A ∈ Rn×n and B ∈ Rn×n are positive
definite, denoted with A � 0 and B � 0, then A � B denotes A−B � 0. A � 0 denotes A
is positive semi-definite.

The probability density function (PDF), as defined in [9] section B2, of the vector
x ∈ Rn is denoted with p(x) and the conditional PDF of x given u ∈ Rq is denoted as
p(x|u). The expectation and covariance of x are denoted as E[x] and cov(x) respectively.
The conditional expectation of x given u is denoted as E[x|u]. The definitions of E[x],
E[x|u] and cov(x) can be found in [9] sections B4 and B7.

The Gaussian function (shortly noted as Gaussian) of vectors x ∈ Rn and u ∈ Rn and
matrix P ∈ Rn×n is defined as G(x,u,P) : Rn ×Rn ×Rn×n → R, i.e.:

G(x,u,P) =
1√

(2π)n|P|
e−0.5(x−u),P−1(x−u). (1)

If p(x) = G(x,u,P), then by definition it holds that E[x] = u and cov(x) = P.
The element-wise Dirac-function of a vector x ∈ Rn, denoted as δ (x) : Rn → {0,1},

satisfies:

δ (x) =

{
0 if x �≡ 0,

1 if x ≡ 0,
and

∫ ∞

−∞
δ (x)dx = 1. (2)
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For a vector x ∈ Rn and a bounded Borel set [10] Y ⊂ Rn, the set PDF is defined as
ΛY (x) : Rn → {0,ν} with ν ∈ R defined as the Lebesque measure [11] of the set Y , i.e.:

ΛY (x) =

{
0 if x �∈ Y,

ν−1 if x ∈ Y.
(3)

3 Event Sampling

Many different methods for sampling a vector y(t) ∈ Rq can be found in literature.
The one mostly used is time sampling in which the kth

a sampling instant is defined at
time tka := tka−1 + τka−1 for some τka−1 ∈ R+. Recall that if y(t) is sampled at ta it is
denoted as yka . This method is formalized by defining the observation vector zka−1 :=
(y,

ka−1,tka−1), ∈ Rq+1 at sampling instant ka−1. Let us define the set Hka(zka−1) ⊂ R
containing all the values that t can take between tka−1 and tka−1 + τka−1, i.e.:

Hka(zka−1) := {t ∈ R
∣∣tka−1 ≤ t < tka−1 + τka−1}. (4)

Then time sampling defines that the next sampling instant, i.e. ka, takes place when-
ever present time t exceeds the set Hka(zka−1). Therefore zka is defined as:

zka := (y,
ka
,tka)

, if t �∈ Hka(zka−1). (5)

In the case of synchronous time sampling τka = ts, ∀ka ∈ Z+, which is graphically
depicted in Figure 1(a). Notice that with time sampling, the present time t specifies
when samples of y(t) are taken, but time t itself is independent of y(t). As a result
y(t) in between the two samples can have any value within Rq. Recently, asynchronous
sampling methods have emerged, such as, for example “Send-on-Delta” [12, 13] and
“Integral sampling” [14]. Opposed to time sampling, these sampling methods are not
controlled by time t, but by y(t) itself.

Next, we present a general definition of event based sampling. In this case a sampling
instant is specified by an event of y(t) instead of t. As such, one has to constantly check
whether the measurement y(t) satisfies certain conditions, which depend on time t and

(a) Time sampling (b) Event sampling

Fig. 1. The two different methods for sampling a signal y(t)
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Fig. 2. Event sampling: Send-on-Delta

previous samples of the measurement. This method recovers the above mentioned asyn-
chronous methods, for a particular choice of ingredients. Let us define the observation
vector at sampling instant ke −1 as zke−1 := (y,

ke−1,tke−1), ∈ Rq+1 . With that we define
the following bounded Borel set in time-measurement-space, i.e. Hke(zke−1, t) ⊂ Rq+1,
which depends on both zke−1 and t. In line with time sampling the next event instant,
i.e. ke, takes place whenever y(t) leaves the set Hke(zke−1,t) as shown in Figure 1(b) for
q = 2. Therefore zke is defined as:

zke := (y,
ke
, tke)

, if y(t) �∈ Hke(zke−1,t). (6)

The exact description of the set Hke(zke−1,t) depends on the actual sampling method.
As an example Hke(zke−1,t) is derived for the method “Send-on-Delta”, with y(t) ∈ R.
In this case the event instant ke occurs whenever |y(t)− yke−1| exceeds a predefined
level ∆ , see Figure 2, which results in Hke(zke−1,t) = {y ∈ R|−∆ < y− yke−1 < ∆}.

In event sampling, a well designed Hke(zke−1, t) should contain the set of all pos-
sible values that y(t) can take in between the event instants ke − 1 and ke. Meaning
that if tke−1 ≤ t < tke , then y(t) ∈ Hke(zke−1,t). A sufficient condition is that yke−1 ∈
Hke(zke−1,t), which for “Send-on-Delta” results in y(t) ∈ [yke−1 − ∆ ,ye−1 + ∆ ] for all
tke−1 ≤ t < tke .

Besides the event sampling methods discussed above, it is worth to also point out
the related works [2,4,3], which focus on event based control systems rather than event
based state estimators. Therein event sampling methods are proposed using additional
information from the state of the system, which is assumed to be available.

4 Problem Formulation: State Estimation Based on Event
Sampling

Assume a perturbed, dynamical system with state-vector x(t)∈Rn, process-noise w(t)∈
Rm, measurement-vector y(t) ∈ Rq and measurement-noise v(t) ∈ Rq. This process is
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described by a state-space model with Aτ ∈ Rn×n, Bτ ∈ Rn×m and C ∈ Rq×n. An event
sampling method is used to sample y(t). The model of this process becomes:

x(t + τ) = Aτ x(t)+ Bτw(t), (7a)

y(t) = Cx(t)+ v(t), (7b)

zke = (y,
ke
,tke)

, if y(t) �∈ Hke(zke−1, t), (7c)

with p(w(t)) := G(w(t),0,Q) and p(v(t)) := G(v(t),0,V ). (7d)

The state vector x(t) of this system is to be estimated from the observation vectors
z0e:ke . Notice that the estimated states are usually required at all synchronous time sam-
ples ka, with ts = tka − tka−1, e.g., as input to a discrete monitoring system (or a discrete
controller) that runs synchronously in time. For clarity system (7a) is considered au-
tonomous, i.e. there is no control input. However, the estimation algorithm presented in
this paper can be extended to controlled systems.

The goal is to construct an event-based state-estimator (EBSE) that provides an es-
timate of x(t) not only at the event instants tke , at which measurement data is received,
but also at the sampling instants tka , without receiving any measurement data. There-
fore, we define a new set of sampling instants tn as the combination of sampling instants
due to event sampling, i.e. ke, and time sampling, i.e. ka:

{t0:n−1} := {t0a:ka−1}∪{t0e:ke−1} and tn :=

{
tka if tka < tke ,

tke if tka ≥ tke .
(8a)

and t0 < t1 < · · ·< tn, xn := x(tn), yn := y(tn). (8b)

The estimator calculates the PDF of the state-vector xn given all the observations
until tn. This results in a hybrid state-estimator, for at time tn an event can either occur
or not, which further implies that measurement data is received or not, respectively. In
both cases the estimated state must be updated (not predicted) with all information until
tn. Therefore, depending on tn a different PDF must be calculated, i.e.:

if tn = tka ⇒ p(xn|z0e:ke−1) with tke−1 < tka < tke , (9a)

if tn = tke ⇒ p(xn|z0e:ke). (9b)

The performance of the state-estimator is related to the expectation and error-covariance
matrix of its calculated PDF. Therefore, from (9) we define:

xn|n :=

{
E [xn|z0e:ke−1] if tn = tka

E [xn|z0e:ke ] if tn = tke

and Pn|n := cov
(
xn − xn|n

)
. (10)

The PDFs of (9) are described as the Gaussian G(xn,xn|n,Pn|n). Together with xn|n,

the square root of each eigenvalue of Pn|n, i.e.
√

λi(Pn|n) (or
√

λ (Pn|n) if there is only

one eigenvalue), indicate the bound which surrounds 63% of the possible values for xn.
This is graphically depicted in Figure 3(a) for the 1D case and Figure 3 for the 2D case,
in a top view.
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(a) Full view - 1D (b) Top view - 2D

Fig. 3. Two examples of a Gaussian function

As such, the problem of interest in this paper is to construct a state-estimator suitable
for the general event sampling method introduced in Section 3 and which is computa-
tionally tractable. Also, it is desirable that Pn|n has bounded eigenvalues for all n.

Existing state estimators can be divided into two categories. The first one contains
estimators based on time sampling: the (a)synchronous Kalman filter [15, 16] (linear
process, Gaussian PDF), the Particle filter [17] and the Gaussian sum filter [7, 8] (non-
linear process, non-Gaussian PDF). These estimators cannot be directly employed in
event based sampling as if no new observation vector zke is received, then tn − tke → ∞
and λi(Pn|ke−1)→ ∞. The second category contains estimators based on event sampling.
In fact, to the best of our knowledge, only the method proposed in [18] fits this category.
However, this EBSE is only applicable in the case of “Send-on-Delta” event sampling
and it requires that any PDF is approximated as a single Gaussian function. Moreover,
the asymptotic property of Pn|n is not investigated in [18].

In the next section we propose a novel event-based state-estimator, suitable for any
event sampling method based on the general set-up introduced in Section 3.

5 An Event-Based State Estimator

The EBSE estimates xn given the received observation vectors until time tn. Notice that
due to the definition of event sampling we can extract information of all the measure-
ment vectors y0:n, i.e. also at the instants tn = tka , when the estimator does not receive
yka . For with ti ∈ {t0:n} and t je ∈ {t0e:ke} it follows that:{

yi ∈ Hje(z je−1,ti) if t je−1 ≤ ti < t je ,

yi = y je if ti = t je .
(11)

Therefore, from the observation vectors z0e:ke and (11) the PDF of the hybrid state-
estimation of (9), with the bounded, Borel set Yi ⊂ Rq, results in:

p(xn|y0 ∈ Y0,y1 ∈ Y1, ...,yn ∈ Yn) with (12a)

Yi :=

{
Hje(z je−1,ti) if t je−1 < ti < t je ,

{y je} if ti = t je .
(12b)
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For brevity (12a) is denoted as p(xn|y0:n ∈ Y0:n) and with Bayes-rule [19] yields:

p(xn|y0:n ∈ Y0:n) :=
p(xn|y0:n−1 ∈ Y0:n−1) p(yn ∈ Yn|xn)

p(yn ∈ Yn|y0:n−1 ∈ Y0:n−1)
. (13)

To have an EBSE with low processing demand, multivariate probability theory [20]
is used to make (13) recursive:

p(a|b) :=
∫ ∞

−∞
p(a|c)p(c|b)dc ⇒ (14a)

p(xn|y0:n−1 ∈ Y0:n−1) =
∫ ∞

−∞
p(xn|xn−1)p(xn−1|y0:n−1 ∈ Y0:n−1)dxn−1, (14b)

p(yn ∈ Yn|y0:n−1 ∈ Y0:n−1) =
∫ ∞

−∞
p(xn|y0:n−1 ∈ Y0:n−1) p(yn ∈ Yn|xn)dxn. (14c)

The calculation of p(xn|y0:n ∈ Y0:n) is done in three steps:

1. Assimilate p(yn ∈ Yn|xn) for both tn = tke and tn = tka ;
2. Calculate p(xn|y0:n ∈ Y0:n) as a summation of N Gaussians;
3. Approximate p(xn|y0:n ∈ Y0:n) as a single Gaussian function.

The last step ensures that p(xn|y0:n ∈ Y0:n) is described by a finite set of Gaussians,
which is crucial for attaining computational tractability. Notice that (13) gives a unified
description of the hybrid state-estimator.

5.1 Step 1: Measurement Assimilation

This section gives a unified formula of the PDF p(yn ∈ Yn|xn) valid for both tn = tke and
tn = tka . From multivariate probability theory [20] and (7b) we have:

p(yn ∈ Yn|xn) :=
∫ ∞

−∞
p(yn|xn)p(yn ∈ Yn)dyn and p(yn|xn) = G(yn,Cxn,V ). (15)

The PDF p(yn ∈ Yn) is modeled as a uniform distribution for all yn ∈ Yn. Therefore,
depending on the type of instant, i.e. event or not, we have:

p(yn ∈ Yn) :=

{
ΛHke

(yn) if tke−1 < tn < tke ,

δ (yn − yke) if tn = tke .
(16)

Substitution of (16) into (15) gives that p(yn ∈ Yn) = G(yke ,Cxn,V ) if tn = tke . How-
ever, if tn = tka then p(yn ∈ Yn|xn) equals ΛHke

(yn), which is not necessarily Gaussian.
Moreover, it depends on the set Hke and therefore on the actual event sampling method
that is employed. In order to have a unified expression of p(yn ∈ Yn|xn) for both types
of tn, independent of the event sampling method, ΛHke

(yn) can be approximated as a
summation of N Gaussians, i.e.

ΛHke
(yn) ≈

N

∑
i=1

α i
nG(yn,y

i
n,V

i
n) and

N

∑
i=1

α i
n := 1. (17)
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Fig. 4. Approximation of ΛHke
(yn) as a sum of Gaussian functions

This is graphically depicted in Figure 4 for yn ∈ R2. The interested reader is referred
to [7] for more details.

Substituting (17) into (16) yields the following p(yn ∈ Yn|xn) if tn = tka :

p(yn ∈ Yn|xn) ≈
N

∑
i=1

α i
n

∫ ∞

−∞
G(yn,Cxn,V )G(yn,y

i
n,V

i
n)dyn. (18)

Proposition 1. [15, 17] Let there exist two Gaussians of random vectors x ∈ Rn and
m ∈ Rq, with Γ ∈ Rq×n: G(m,Γ x,M) and G(x,u,U). Then they satisfy:∫ ∞

−∞
G(x,u,U)G(m,Γ x,M)dx = G

(
Γ u,m,ΓUΓ , + M

)
, (19)

G(x,u,U)G(m,Γ x,M) = G(x,d,D)G(m,Γ u,ΓUΓ , + M),

with D :=
(

U−1 +Γ ,M−1Γ
)−1

and d := DU−1u + DΓ ,M−1m.
(20)

Applying Proposition 1 ((19) to be precise) and G(x,y,Z) = G(y,x,Z) on (18) yields:

p(yn ∈ Yn|xn) ≈
N

∑
i=1

α i
nG(yi

n,Cxn,V +V i
n), if tn = tka . (21)

In conclusion we can state that the unified expression of the PDF p(yn ∈ Yn|xn), at both
tn = tke and tn = tka , for any event sampling method results in:

p(yn ∈ Yn|xn) ≈
N

∑
i=1

α i
nG(yi

n,Cxn,R
i
n) with Ri

n := V +V i
n. (22)

If tn = tke the variables of (22) are: N = 1, α1
n = 1, y1

n = yke and V 1
n = 0. If tn = tka the

variables depend on ΛHke
(yn) and its approximation. As an example these variables are

calculated for the method “Send-on-Delta” with y ∈ R.

Example 1. In “Send-on-Delta”, for certain N, the approximation of ΛHke
(yn), as pre-

sented in (17), is obtained with i ∈ {1,2, . . . ,N} and:

yi
n = yke−1 −

(
N −2(i−1)−1

2N

)
2∆ ,

α i
n =

1
N
, V i

n =
(

2∆
N

)2(
0.25−0.05e− 4(N−1)

15 −0.08e− 4(N−1)
180

)
, ∀i.

(23)

With the result of (22), p(xn|y0:n ∈Y0:n) can also be expressed as a sum of N Gaussians.
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5.2 Step 2: State Estimation

First the PDF p(xn|y0:n−1 ∈ Y0:n−1) of (14b) is calculated. From the EBSE we have
p(xn−1|y0:n−1 ∈Y0:n−1) := G(xn−1,xn−1|n−1,Pn−1,n−1) and from (7a) with τn := tn−tn−1

we have p(xn|xn−1) := G(xn,Aτn xn−1,BτnQB,
τn

). Therefore using (19) in (14b) yields:

p(xn|y0:n−1 ∈ Y0:n−1) = G(xn,xn|n−1,Pn,n−1) with

xn|n−1 := Aτnxn−1|n−1 and Pn|n−1 := AτnPn−1|n−1A,
τn

+ BτnQB,
τn
.

(24)

Next p(xn|y0:n ∈ Y0:n), defined in (13), is calculated after multiplying (22) and (24):

p(xn|yn−1 ∈ Y0:n−1)p(yn ∈ Yn|xn) ≈
N

∑
i=1

α i
nG(xn,xn|n−1,Pn|n−1)G(yi

n,Cxn,R
i
n). (25)

Equation (25) is explicitly solved by applying Proposition 1:

p(xn|y0:n−1 ∈ Y0:n−1)p(yn ∈ Yn|xn) ≈
N

∑
i=1

α i
nβ i

nG(xn,x
i
n,P

i
n) with (26a)

xi
n := Pi

n

(
P−1

n|n−1xn|n−1 +C, (Ri
n

)−1
yi

n

)
, Pi

n :=
(

P−1
n|n−1 +C, (Ri

n

)−1
C
)−1

and β i
n := G(yi

n,Cxn|n−1,CPn|n−1C, + Ri
n).

(26b)

The expression of p(xn|y0:n ∈Y0:n) as a sum of N Gaussians is the result of the following
substitutions: (26) into (13), (26) into (14c) to obtain p(yn ∈ Yn | y0:n−1 ∈ Y0:n−1) and
the latter into (13) again. This yields

p(xn|y0:n ∈ Y0:n) ≈
N

∑
i=1

α i
nβ i

n

∑N
i=1 α i

nβ i
n

G(xn,x
i
n,P

i
n). (27)

The third step is to approximate (27) as a single Gaussian, as this facilitates a compu-
tationally tractable algorithm. For if p(xn−1|y0:n−1 ∈ Y0:n−1) is described using Mn−1

Gaussians and p(yn ∈ Yn|xn) is described using N Gaussians, the estimate of xn in (27)
is described with Mn = Mn−1N Gaussians. Meaning that Mn increases after each sample
instant and with it also the processing demand of the EBSE increases.

5.3 Step 3: State Approximation

p(xn|y0:n ∈Y0:n) of (27) is approximated as a single Gaussian with an equal expectation
and covariance matrix, i.e.:

p(xn|y0:n ∈ Y0:n) ≈ G
(
xn,xn|n,Pn|n

)
with (28a)

xn|n :=
N

∑
i=1

α i
nβ i

nxi
n

∑N
i=1 α i

nβ i
n
, Pn|n :=

N

∑
i=1

α i
nβ i

n

∑N
i=1 α i

nβ i
n

(
Pi

n +
(
xn|n − xi

n

)(
xn|n − xi

n

),)
. (28b)

The expectation and covariance of (27), equal to xn|n and Pn|n of (28), can be derived
from the corresponding definitions. Notice that because the designed EBSE is based on
the equations of the Kalman filter, the condition of computational tractability is met.
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5.4 On Asymptotic Analysis of the Error-Covariance Matrix

In this section we present some preliminary results on the asymptotic analysis of the
error-covariance matrix of the developed EBSE, i.e. limn→∞ Pn|n which for convenience
is denoted as P∞. The main result of this section is obtained under the standing assump-
tion that ΛHke

(yn) is approximated using a single Gaussian. Note that the result then
also applies to the estimator presented in [18], as a particular case. Recall that Hke is
assumed to be a bounded set. Therefore, it is reasonable to further assume that ΛHke

(yn)
can be approximated using the formula (17), for N = 1, and that there exists a constant
matrix R such that V +V 1

n - R for all n.
Note that if the classical Kalman filter (KF) [15] is used to perform a state-update

only at the synchronous time instant tn = tka (with a measurement covariance matrix
equal to R), then such an analysis is already available. In [21, 22] it is proven that if the
eigenvalues of Ats are within the unit circle and (Ats ,C) is observable, then the error-
covariance matrix of the synchronous KF, denoted with P(s), converges to PK, with PK

defined as the solution of:

PK =
((

Ats PKA,
ts + BtsQB,

ts

)−1
+C,R−1C

)−1

. (29)

In case that the classical asynchronous Kalman filter (AKF) [16] is used, then the
estimation would occur only at the instants that a measurement is received, i.e. tn = tke .
As it is not known when a new measurement is available, the time between two samples
keeps on growing, as well as the eigenvalues of the AKF’s error-covariance matrix,
denoted with λi(P(a)). Moreover, in [23] (see also [24]) it is proven that P(a) will diverge
if no new measurements are received.

To circumvent this problem, instead of a standard AKF, we consider an artificial AKF
(denoted by CKF for brevity) obtained as the combination of a synchronous KF and a
standard AKF. By this we mean that the CKF performs a state-update at all time instants
tn with a measurement covariance matrix equal to R. Therefore its error-covariance

matrix, denoted with P(c)
n|n , is updated according to:

P(c)
n|n :=

((
AτnP(c)

n−1|n−1A,
τn

+ BτnQB,
τn

)−1
+C,R−1C

)−1

. (30)

Notice that because the CKF is updated at more time instants then the KF, it makes
sense that its error-covariance matrix is “smaller” than the one of the KF, i.e. P(c) - P(s)

holds at the synchronous time instants tn = tka . However, this does not state anything
about P(c) at the event instants. As also at these sample instants the CKF performs an

update rather then just a prediction, the following assumption is needed. Let P(c)
∞ denote

limn→∞ P(c)
n|n .

Assumption 1. There exists ∆λ ∈ R+ such that λmax

(
P(c)

∞

)
< λmax (PK)+ ∆λ .

Next we will employ Assumption 1 to obtain an upper bound on the error-covariance
matrix of the developed EBSE. The following technical Lemma will be of use.
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Lemma 1. Let any square matrices V1 - V2 and W1 - W2 with V1 � 0 and W1 � 0 be

given. Suppose that the matrices U1 and U2 are defined as U1 :=
(
V−1

1 +C,W−1
1 C

)−1

and U2 :=
(
V−1

2 +C,W−1
2 C

)−1
, for any C of suitable size. Then it holds that U1 - U2.

Proof. As shown in [25], it holds that V−1
1 � V−1

2 and C,W−1
1 C � C,W−1

2 C. Hence,
it follows that V−1

1 +C,W−1
1 C � V−1

2 +C,W−1
2 C, which yields U−1

1 � U−1
2 . Thus,

U1 - U2, which concludes the proof. �

Theorem 1. Suppose that the EBSE, as presented in Section 5, approximates ΛHke
(yn)

according to (17) with N = 1. Then λmax(P∞) ≤ λmax
(
P(c)

∞
)
.

The proof of the above theorem, which makes use of Lemma 1, is given in the Ap-
pendix. Obviously, under Assumption 1 the above result further implies that the error-
covariance matrix of the developed EBSE is bounded. Under certain reasonable as-
sumptions, including the standard ones (i.e. the eigenvalues of the Ats -matrix are within
the unit-circle and (Ats ,C) is an observable pair), it is possible to derive an explicit ex-
pression of ∆λ , which validates Assumption 1. However, this is beyond the scope of
this manuscript.

6 Illustrative Example

In this section we illustrate the effectiveness of the developed EBSE in terms of state-
estimation error, sampling efficiency and computational tractability. The case study is
a 1D object-tracking system. The states x(t) of the object are position and speed while
the measurement vector y(t) is position. The process-noise w(t) represents the object’s
acceleration. Then given a maximum acceleration of 0.5[m/s2] its corresponding Q,
according to [26], equals 0.02. Therefore the model as presented in (7) yields A =

(
1 τ
0 1

)
,

B =
(

τ2
2 τ

),
, C =

(
1 0

)
and D = 0, which is in fact a discrete-time double integrator.

The acceleration, i.e. process noise w(t), in time is shown in Figure 5 together with the
object’s position and speed, i.e. the elements of the real state-vector x(t). The sampling
time is ts = 0.1 and the measurement-noise covariance is V = 0.1 ·10−3.

Three different estimators are tested. The first two estimators are the EBSE and the
asynchronous Kalman filter (AKF) of [16]. For simplicity, in both estimators we used
the “Send-on-Delta” method with ∆ = 0.1[m]. For the EBSE we approximated ΛHke

(yn)
using (23) with N = 5. The AKF estimates the states only at the event instants tke . The
states at tka are calculated by applying the prediction-step of (14b). The third estimator
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Fig. 6. The squared estimation error of the two states

is based on the quantized Kalman filter (QKF) introduced in [26] that uses synchronous
time sampling of yka . The QKF can deal with quantized data, which also results in less
data transfer, and therefore can be considered as an alternative to EBSE. In the QKF
ȳka is the quantized version of yka with quantization level 0.1, which corresponds to the
“Send-on-Delta” method. Hence, a comparison can be made.

In Figure 6(a) and Figure 6(b) the squared state estimation-error of the three estima-
tors is plotted. They show that the QKF estimates the position of the object with the
least error. However, its error in speed is worse compared to the EBSE. Further, the
plot of the AKF clearly shows that prediction of the state gives a significant growth in
estimation-error when the time between the event sampling-instants increases (t > 4).

Beside estimation error, sampling efficiency η is also important due to the increased
interest in WSNs. For these systems communication is expensive and one aims to have
the least data transfer. We define η ∈ R+ as

η :=
(xi − xi|i),(xi − xi|i)

(xi − xi|i−1),(xi − xi|i−1)
,

which is a measure of the change in the estimation-error after the measurement update
with either zke or ȳka was done. Notice that if η < 1 the estimation error decreased after
an update, if η > 1 the error increased and if η = 1 the error remained the same. For the
EBSE i = ke with i−1 equal to ke −1 or ka −1. For the AKF i = ke with i−1 = ke −1.
For the QKF i = ka and i− 1 = ka − 1. Figure 7 shows that for the EBSE η < 1 at all
time instants. The AKF has one instant, t = 3.4, at which η > 1. In case of the QKF the
error sometimes decreases but it can also increase considerably after an update. Also
notice that η of the QKF converges to 1. Meaning that for t > 5.6 the estimation error
does not change after an update and new samples are mostly used to bound λi(Pka|ka).
The EBSE has the same property, although for this method the last sample was received
at t = 4.9.

The last comparison criterion is the total amount of processing time that was required
by each of the three estimators. From the equations of the EBSE one can see that for
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every Gaussian (recall that there are N Gaussians employed to obtain an approximation
of ΛHke

(yn)) a state-update is calculated similar to a synchronous Kalman filter. There-
fore, a rule of thumb is that the EBSE will require N times the amount of processing
time of the Kalman filter [15]. Because the QKF is in fact such a Kalman filter, with
a special measurement-estimation, the EBSE of this application example will roughly
cost about 5 times more processing time then the QKF. After running all three algo-
rithms in Matlab on an Intell�Pentium�processor of 1.86 GHz with 504 MB of RAM
we have obtained the following performances. The AKF estimated xke and predicted
xka in a total time of 0.016 seconds while the QKF estimated xka and its total process-
ing time equaled 0.022 seconds. For the EBSE, both xke and xka were estimated and
it took 0.094 seconds, which is less than 0.11 = 5 × 0.022. This means that although
the EBSE results in the most processing time, it is still computationally comparable
to the AKF and QKF. On the overall, it can be concluded that the EBSE provides an
estimation-error similar to the one attained by the QKF, but with significantly less data
transmission. The application case study also indicate that the number of Gaussians be-
comes a tuning factor that can be used to achieve a desired tradeoff between numerical
complexity (which further translates into energy consumption) and estimation error. As
such, the proposed EBSE it is most suited for usage in networks in general and WSNs
in particular.

7 Conclusions

In this paper a general event-based state-estimator was presented. The distinguishing
feature of the proposed EBSE is that estimation of the states is performed at two dif-
ferent type of time instants, i.e. at event instants, when measurement data is used for
update, and at synchronous time sampling, when no measurement is received, but an
update is performed based on the knowledge that the monitored variable lies within a
set used to define the event. As a result, under certain assumptions, it was established
that the error-covariance matrix of the EBSE is bounded, even in the situation when no
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new measurement is received anymore. Its effectiveness for usage in WSNs has been
demonstrated on an application example.

As a final remark we want to indicate that future work, besides a more general proof
of asymptotic stability, is focused on determining specific types of WSNs applications
where the developed EBSE would be most suitable.

Acknowledgements. Research partially supported by the Veni grant “Flexible Lyapunov
Functions for Real-time Control”, grant number 10230, awarded by STW (Dutch Sci-
ence Foundation) and NWO (The Netherlands Organization for Scientific Research).
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A Proof of Theorem 1

Under the hypothesis, for the proposed EBSE, Pn|n of (28), with τn := tn − tn−1 and
Rn := V +V 1

n , becomes:

Pn|n =
((

AτnPn−1|n−1A,
τn

+ BτnQB,
τn

)−1
+C,R−1

n C

)−1

. (31)

The upper bound on λmax(P∞) is proven by induction, considering the asymptotic be-
havior of a CKF that runs in parallel with the EBSE, as follows. The EBSE calculates

Pn|n as (31) and the CKF calculates P(c)
n|n as (30). Note that this implies that Rn - R for

all n. Let the EBSE and the CKF start with the same initial covariance matrix P0.
The first step of induction is to prove that P1|1 - P(c)

1|1 . From (31) and (30) we have
that

P1|1 =
((

Aτ1P0A,
τ1

+ Bτ1QB,
τ1

)−1
+C,R−1

1 C

)−1

,

P(c)
1|1 =

((
Aτ1P0A,

τ1
+ Bτ1QB,

τ1

)−1
+C,R−1C

)−1

.

Suppose we define V1 := Aτ1P0A,
τ1

+Bτ1QB,
τ1

, V2 := Aτ1P0A,
τ1

+Bτ1QB,
τ1

, W1 := R1 and
W2 := R, then W1 - W2 and V1 = V2. Therefore applying Lemma 1, with U1 := P1|1 and

U2 := P(c)
1|1 , yields P1|1 - P(c)

1|1 .

The second and last step of induction is to show that if Pn−1|n−1 - P(c)
n−1|n−1, then

Pn|n - P(c)
n|n . Let V1 := AτnPn−1|n−1A,

τn
+BτnQB,

τn
, V2 := AτnP(c)

n−1|n−1A,
τn

+BτnQB,
τn

, W1 :=

Rn and W2 := R. Notice that this gives W1 - W2 and starting from Pn−1|n−1 - P(c)
n−1|n−1

it follows that V1 - V2 (see, e.g. [25]). Hence, applying Lemma 1, with U1 := Pn|n and

U2 := P(c)
n|n yields Pn|n - P(c)

n|n . This proves that P∞ - P(c)
∞ , which yields (see e.g., [25])

λmax (P∞) - λmax
(
P(c)

∞
)
. �
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Abstract. This paper proposes a design method for discrete abstrac-
tions of nonlinear systems using multi-resolution quantizer, which is ca-
pable of handling state dependent approximation precision requirements.
To this aim, we extend the notion of quantizer embedding, which has
been proposed by the authors’ previous works as a transformation from
continuous-state systems to discrete-state systems, to a multi-resolution
setting. Then, we propose a computational method that analyzes how
a locally generated quantization error is propagated through the state
space. Based on this method, we present an algorithm that generates a
multi-resolution quantizer with a specified error precision by finite refine-
ments. Discrete abstractions produced by the proposed method exhibit
non-uniform distribution of discrete states and inputs.

1 Introduction

The problem of deriving a finite automaton that abstracts a given continuous-
state system is called the discrete abstraction problem. A finite-state system is
suitable for an abstract model since various difficult properties of continuous-
state systems: nonlinearity, discontinuity, and non-convexity, ... can be handled
in a uniform manner in a symbolic space. Until today, various techniques of
discrete abstraction has been developed, and many of them are based on parti-
tioning of state space. In [1][2][7], conditions for partitions that define discrete
abstractions with deterministic transitions are discussed. On the other hand, in
[3][4], instead of considering discrete abstractions of the open-loop behavior of
continuous systems, a hierarchical controller composed of a symbolic transition
system and a feedback controller that moves the continuous state to one region
to another is proposed. There have also been much attention paid on building a
symbolic system whose behavior includes the behavior of a continuous system.
Such symbolic abstractions have been used for verification problems in [6], and
for supervisory control in [8][9].

Recently, discrete abstraction methods based on approximate bisimulation
[10] has gained growing attention. Approximate bisimulation is an extension of
the original bisimulation to metric space. It admits equivalence relation between
two systems if the distance of output signals can be kept within a given threshold.
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Until now, it has been shown that discrete abstraction of a wide range of sys-
tems can be obtained based on approximate bisimulation. In [11], a procedure
for constructing approximately bisimilar finite abstractions of stable discrete-
time linear systems has been derived. In [12] and [13], it has been shown that a
general nonlinear system with the so-called incremental stability property can be
abstracted by a uniform grid. The authors have also investigated the application
of approximate bisimilar discrete abstractions to optimal control of linear sys-
tems with non-convex state constraints in [14], and to interconnected systems in
[15]. Discrete abstraction based on approximate bisimulation is especially suit-
able for control problems with a quantitative performance measure. It also has
an advantage that it does not require expensive geometric computations. To
date, however, it has the following limitations. First, the error condition in the
conventional approximate bisimulation is uniform. From practical perspectives,
it is desirable to support non-uniform error margin (for an example, error mar-
gin proportional to the norm of the signal itself). Second, the distribution of
discrete states is also uniform. This means that the number of discrete states
grows exponentially with respect to the dimension of the state space.

Motivated by the above backgrounds, this paper proposes a method for the
design of discrete abstractions of nonlinear systems using multi-resolution quan-
tizers. By using multi-resolution quantizers, one can design discrete abstract
models with non-uniform distribution of states and inputs that approximate a
given continuous-state system under state-dependent approximation precision
requirements. Moreover, it also enables us to produce less conservative results
compared to other conventional methods based on uniform discretization. To
this end, in Section 2 we define the notion of finite-step abstraction. This notion
admits an equivalence between two systems if any finite-step state trajectories
of two systems generated with the same input signal satisfy a certain error crite-
rion. In Section 3, we extend the notion of quantizer embedding, which has been
presented in [14] and [15], to multi-resolution setting. This reduces the design
of a discrete abstraction to the design of a pair of multi-resolution meshes, one
is defined in the state space and another in the input space. In Section 4, we
first discuss how to verify if a discrete model defined as a quantizer embedding
with a given mesh satisfies the condition of the finite-step abstraction. This is
basically done by computing how a locally generated quantization errors are
propagated over the state space. Next, based on this verification method, we
propose an algorithm that iteratively refines a multi-resolution mesh until the
resultant quantizer-embedding is a finite-step abstraction of the original sys-
tem. In Section 5, some illustrative examples are shown for demonstrating the
effectiveness of the proposed method.

Notation: We write [i1 : i2] to express the sequence of integers i1, i1 + 1, . . . , i2.
For an integer sequence I = [i1 : i2], uI = {ui1 ,ui1+1, . . . ,ui2}. The symbol
R denotes the field of real numbers and the symbol Z+ denotes the set of non-
negative integers. For a vector x ∈ Rn, the symbol ‖x‖∞ denotes the ∞-norm
of x; ‖x‖∞ = maxi∈[1:n] |xi|.
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2 Finite-Step Abstraction of Discrete-Time Systems
2.1 System Description

In this paper, we address the discrete abstraction of discrete-time continuous-
state systems defined below. A discrete-time system is a tuple 〈X,U, f〉, where
X ⊂ Rn is the set of states, U ⊂ Rm is the set of inputs, and f : X × U �→ X
is the state transition function. The state and the input of the system at time
t ∈ Z+ are expressed as xt ∈ X , ut ∈ U , respectively. The state transition at
time t is expressed as

xt+1 = f(xt,ut). (1)

We use the symbol UN to express the set of N -step admissible control input
sequences.

2.2 Finite-Step Abstraction

In the following, we introduce the notion of finite-step abstraction for the class
of systems defined above.

Definition 1. Finite-step abstraction
Let Σ〈X,U, f〉 and Σ̂〈X,U, f̂〉 be discrete-time dynamical systems. Further, let
R̄ ⊂ X ×X be a binary relation between X and X. The system Σ̂ is an N -step
abstraction of Σ with respect to R̄ if and only if for any initial state x0 ∈ X of
Σ, there exists an initial state x̂0 ∈ X of Σ̂ such that the following holds:
for any u[0:N−1] ∈ UN ,

(xt, x̂t) ∈ R̄ (t ∈ [0 : N ]),

xt+1 = f(xt,ut), x̂t+1 = f̂(x̂t,ut) (t ∈ [0 : N − 1])
(2)

holds.

The notion of finite-step abstraction can be seen as a variant of approximate
bisimulation in the sense that:

i) it requires the similarity of trajectories for only a finite steps,
ii) it assumes common control inputs, whereas for approximate bisimulation

two control inputs need not be the same, and
iii) the error condition is given in a more general form of binary relation R̄, com-

pared to the constant error bound of conventional approximate bisimulation.

The finite-step formulation could be a restriction. Nevertheless, it still has a
wide range of potential applications. It can, of course, be used to solve problems
that take place in a finite time interval, such as finite horizon optimal control.
Moreover, it can be combined with model predictive control techniques to form
a feedback-type controller. The relation R̄ encodes an error condition imposed
to two systems. The most simple example of R̄ is a uniform error condition:
R̄ = {(x, x̂) | ‖x− x̂‖ ≤ ε}, where ε is a positive constant. On the other hand, R̄
defined as R̄ = {(x, x̂) | ‖x − x̂‖ ≤ η‖x̂‖ + ε} , where both ε and η are positive
constants, expresses a relative error condition.
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3 Quantizer Embedding

In this section, we introduce the notion of quantizer embedding, which has been
recently proposed by the authors in [15].

First of all, we introduce a mesh defined over a set X ∈ Rn. A mesh M is a
finite collection of pairs denoted by

M = {{ξ0, C0}, {ξ1, C1}, . . . , {ξS , CS}}. (3)

Here, {C0, C1, . . . , CS} forms a partition of X ; that is, Ci ∩ Cj = ∅ (i �=
j),

⋃
iCi = X . Each Cs (s ∈ [0 : S]) is called a cell of the mesh. Moreover,

each ξs ∈ Cs is called a discrete point of the s-th cell. A mesh M defines a
quantization function as shown below.

Q[M] : X �→ {ξ0, ξ1, . . . , ξS},
Q[M](x) = ξs if x ∈ Cs.

(4)

A quantization function Q[M](·) maps an arbitrary point x to a discrete point
whose corresponding cell includes x. We write Q[M](X) = {ξ0, ξ1, . . . , ξS}.
Moreover, for any x ∈ X , we write Q[M]−1(x) = Cs iff Q[M](x) = ξs.

A discrete-time system can be transformed into a finite state system by em-
bedding a pair of quantizers into its state-transition function.

Definition 2. Quantizer embedding of discrete-time systems
Let Σ〈X,U, f〉 be a discrete-time system. Moreover let Qx(·) := Q[Mx](·) be a
quantizer defined in the state space and let Qu(·) := Q[Mu](·) be a quantizer
defined in the input space. The quantizer embedding (QE in short) of Σ, denoted
by QE(Σ,Qx, Qu), is a system Σ̂〈Qx(X), U, f̂〉 whose state transition function
is defined as

f̂(x,u) := Qx(f(x, Qu(u))). (5)

At every transition, the input of Σ̂ is mapped to the discrete point of a cell of
the input mesh Mu in which it is included. Moreover, the state of Σ̂ is reset to
the discrete point of a cell of the state mesh Mx in which the state right after
a transition made by f is included. Therefore, as long as the meshes Mx and
Mu are composed of a finite number of cells, a system with a state-transition of
the form (5) can be viewed as a finite automaton. Once we assume that discrete
models are expressed in terms of the quantizer embedding of the original system,
the problem of discrete abstraction reduces to the design of a state mesh and
an input mesh. From now on, to distinguish the cells and discrete points of the
state mesh and the input mesh, we denote them by Mx = {{ξx

s , C
x
s }}[0:S] and

Mu = {{ξu
a , C

u
a }}[0:A], respectively. The transition of Σ̂ can be rewritten in a

symbolic form as

s
a−→ s′ ⇔ f(ξx

s , ξ
u
a ) ∈ Cx

s′ . (6)

Moreover, for later use, we define the predecessor set of a symbolic state s′ as
pre(s′) = {{s, a} | s a−→ s′}. Based on the above discussion, we formulate discrete
abstraction as the following problem.
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Problem 1. Discrete abstraction
For a discrete-time system Σ〈X,U, f〉, N ∈ Z+ and a binary relation R̄ ⊂ X×X,
find a mesh Mx and Mu such that the quantizer-embedding
QE(Σ,Q[Mx], Q[Mu]) is an N -step abstraction of Σ with respect to R̄.

4 Design of Multi-resolution Quantizer

4.1 Preparations

Throughout this section, we will make frequent use of interval operations. Inter-
val computation technique has been used in reachability analysis problems (see
[16]). It will be shown that this technique can also be utilized for the verification
of discrete abstraction. Let [x] = [x, x] and [y] = [y, y] be closed intervals in R.
Elementary operations are defined as follows:

[x] + [y] = [x+ y, x+ y],

[x] − [y] = [x− y, x− y],
[x][y] = [min{xy, xy, xy, xy}, max{xy, xy, xy, xy}],

[x] ∪ [y] = [min{x, y}, max{x, y}].

Moreover, [x] ⊆ [y] ⇔ x ≥ y, x ≤ y. Interval vectors and interval matrices
are vectors and matrices whose elements are intervals. They obey the arithmetic
rules of conventional matrices and vectors, except that element-wise operations
are interval operations defined as above. We denote the set of all interval vectors
of length n by IRn, and the set of all interval matrices with n rows andm columns
by IRn×m. The i-th element of an interval vector [x] is denoted by [xi] = [xi, xi].
The element that lies in the i-th row and the j-th column of an interval matrix
[A] is denoted by [Aij ] = [Aij , Aij ]. Let [x], [y] ∈ IRn and let a ∈ Rn. We write

a ∈ [x] ⇔ ai ∈ [xi] ∀i ∈ [1 : n],
[x] ⊆ [y] ⇔ [xi] ⊆ [yi] ∀i ∈ [1 : n].

Moreover, for compact sets C ⊂ Rn and D ⊂ Rn, we define

(C,D) = max
a∈C,b∈D

aTb.

For interval vectors, we have

([x], [y]) =
∑

i∈[1:n]

max
ai∈[xi],bi∈[yi]

aibi =
∑

i∈[1:n]

max{xiyi
, xiyi, xiyi

, xiyi}.

Some useful properties of the above operations are listed below for later use.

([x] + [y],v) = ([x],v) + ([y],v) ([x], [y] ∈ IRn,v ∈ Rn),
([x] ∪ [y], [z]) = max{([x], [z]), ([y], [z])} ([x], [y], [z] ∈ IRn),

([A][x], ei) = ([x], [A]Tei) ([x] ∈ IRn, [A] ∈ IRn×n).

Here, ei is a vector whose i-th element is 1 and others are 0.
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Fig. 1. Multi-resolution mesh

4.2 Multi-resolution Quantizer

In this subsection, we introduce a class of quantizer defined by a multi-resolution
mesh. First of all, we assume that the domain X of a quantizer is expressed
as an interval vector of length n. A multi-resolution mesh takes the form of
a binary tree, and each of its leaf nodes is assigned a cell of the mesh. Each
cell is an interval vector of length n. Moreover, we assume that each discrete
point is placed in the middle of the corresponding cell. Initially, the tree is
composed of a single root node, whose cell represents the entire state set X .
The tree can be grown by choosing an arbitrary leaf node, subdividing the
corresponding cell into two sub-cells, and assigning each of them to one of
two new child nodes that are created below the chosen node. A subdivision
can be made in one of the n directions. For an example, in the 2-dimensional
case, a cell can be divided either horizontally or vertically. Let [C]s be a cell
expressed as [C]s = [[Cs,1, Cs,1], [Cs,2, Cs,2], . . . , [Cs,n, Cs,n]]T and let ξs be
the discrete point of [C]s. Here, the i-th element of ξs is given by ξs,i =
(Cs,i + Cs,i)/2. Subdividing [C]s in the i-th direction yields two new sub-cells:
[C]s1 = [[Cs,1, Cs,1], . . . , [Cs,i, (Cs,i + Cs,i)/2], . . . , [Cs,n, Cs,n]]T and [C]s2 =
[[Cs,1, Cs,1], . . . , [(Cs,i + Cs,i)/2, Cs,i], . . . , [Cs,n, Cs,n]]T. The discrete points of
the new cells are placed in the middle of them. Finally, since [C]s is no longer a
leaf node after the subdivision, its cell and discrete point are removed from the
mesh. Fig. 1 illustrates how a multi-resolution mesh is refined.

4.3 Verification of N-Step Abstraction

In this subsection, we discuss how to verify, for a given discrete-time system
Σ〈X,U, f〉 and a given pair of multi-resolution meshes Mx and Mu, whether
Σ̂ defined as Σ̂ = QE(Σ,Qx, Qu) (Qx = Q[Mx], Qu = Q[Mu]) is an N -step
abstraction of Σ. From later on, we will write Mx = {{ξx

s , [C]xs}}[0:S], Mu =
{{ξu

a , [C]ua}}[0:A], since the cells of the meshes are assumed to be interval vectors.
Let us define the following sequence of binary relations:

R0 =
⋃

x∈X

(x, Qx(x)), Rt =
⋃

(x,x̂)∈Rt−1, u∈U

(f(x,u), f̂(x̂, u)). (7)

We will transform this recursive expression of Rt in such a way that the discrete-
state characteristics of Σ̂ is made more explicit. Let us define Rt,s := {x | (x, ξx

s )
∈ Rt}. Then (7) is rewritten using Rt,s as follows:
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R0,s = [C]xs , Rt,s′ =
⋃

{s,a}∈pre(s′)

f(Rt−1,s, [C]ua). (8)

Here, f(Rt−1,s, [C]ua) = {f(x,u) |x ∈ Rt−1,s,u ∈ [C]ua}. The following lemma
provides the simplest way for checking the N -step abstraction.

Lemma 1. Σ̂ is an N -step abstraction of Σ if Rt ⊆ R̄ holds for all t ∈ [0 : N ],
or equivalently, if Rt,s ⊆ R̄s holds for all t ∈ [0 : N ] and s ∈ [0 : S], where
R̄s = {x | (x, ξx

s ) ∈ R̄}.

It is in general difficult to compute the nonlinear set operation f(Rt−1,s, [C]ua).
Moreover, due to the set union operations, Rt,s may become highly non-convex
as t increases. In the following, we derive a practical method that computes
a conservative approximation of (8), taking advantage of interval computation
techniques. The next lemma provides us with a conservative linear approximation
of the nonlinear set operation f(Rt−1,s, [C]ua).

Lemma 2. Let Cx and Cu be convex subsets of X and U , respectively, and let
ξx ∈ Cx, ξu ∈ Cu. Moreover, let [A](Cx, Cu) and [B](Cx, Cu) be functions that
return interval matrices defined as

[Aij ](Cx, Cu) =
[

min
x∈Cx,u∈Cu

∂fi
∂xj

(x,u), max
x∈Cx,u∈Cu

∂fi
∂xj

(x,u)
]
, (9)

[Bij ](Cx, Cu) =
[

min
x∈Cx,u∈Cu

∂fi
∂uj

(x,u), max
x∈Cx,u∈Cu

∂fi
∂uj

(x,u)
]
. (10)

Then, the following inclusion holds:

f(Cx, Cu) ⊆ [A](Cx, Cu)(Cx − ξx) + [B](Cx, Cu)(Cu − ξu) + f(ξx, ξu). (11)

Proof. From the mean value theorem, for any x ∈ Cx, u ∈ Cu and i ∈ [1 : n],
there exists a θ ∈ [0, 1] such that

fi(x,u) = fi(ξx, ξu) +
∂

∂x
fi(x′,u′)(x − ξx) +

∂

∂u
fi(x′,u′)(u − ξu)

where fi(x,u) denotes the i-th element of f(x,u), x′ = ξx + θ(x − ξx) and
u′ = ξu + θ(u − ξu). From the convexity assumption, x′ ∈ Cx, u′ ∈ Cu. This
means (∂/∂x)fi(x′,u′) is included in the i-th row interval vector of [A](Cx, Cu)
and (∂/∂u)fi(x′,u′) is included in the i-th row interval vector of [B](Cx, Cu).
This completes the proof. ��

Now, let [E ]t,s be a sequence of interval vectors defined as

[E ]0,s =[C]xs − ξx
s , (12)

[E ]t,s′ =
⋃

{s,a}∈pre(s′)

[[A]t−1,s,a[E ]t−1,s + [B]t−1,s,a([C]ua − ξu
a ) + (f(ξx

s , ξ
u
a ) − ξx

s′)]

(13)



358 Y. Tazaki and J. Imura

where [A]t,s,a = [A]([E ]t,s + ξx
s , [C]ua) and [B]t,s,a = [B]([E ]t,s + ξx

s , [C]ua). From
Lemma 2, we have [E ]t,s +ξx

s ⊇ Rt,s; thus, [E ]t,s +ξx
s is an over-approximation of

Rt,s. This means that [E ]t,s can be seen as a conservative estimate of the accumu-
lated error between xt and x̂t when x̂t = ξx

s (x̂t denotes the state of Σ̂ at time t).
Furthermore, equation (13) describes how the accumulated error of one symbolic
state is propagated to other symbolic states. The term [A]t−1,s,a[E ]t−1,s expresses
the error of s being propagated to its successor s′, the term [B]t−1,s,a([C]ua −ξu

a)
expresses the input quantization error, and the term (f(ξx

s , ξ
u
a ) − ξx

s′ ) expresses
the state quantization error. For later use, we write equation (12), (13) in the
form of an algorithm.

propagate error
for each s ∈ S do [E ]0,s := [C]xs − ξx

s

for t = 1 to N
for each s′ ∈ S

[E ]t,s′ :=
⋃

{s,a}∈pre(s′)[[A]t−1,s,a[E ]t−1,s + [B]t−1,s,a([C]ua − ξu
a )

+(f(ξx
s , ξ

u
a ) − ξx

s′)]
end

end

The next lemma gives a sufficient condition for the N -step abstraction.

Lemma 3. Σ̂ is an N -step abstraction of Σ if

[E ]t,s ⊆ Ēs (14)

holds for all t ∈ [0 : N ], s ∈ [0 : S], where Ēs = R̄s − ξx
s .

From later on, we focus on cases in which R̄s is expressed as an interval vector.
In such cases, the evaluation of [E ]t,s ⊆ Ēs is done by comparing real values at
most 2n times. The following algorithm checks the N -step abstraction.

max violation
{t, s, µ, i} := argmaxt∈[0:N ],s∈[0:S],µ∈{−1,1},i∈[1:n](([E ]t,s, µei) − (Ēs, µei))
p := ([E ]t,s, µei) − (Ēs, µei)
return {t, s, µ, i, p}

The max violation algorithm returns a tuple {t, s, µ, i, p}, in which t, s and µei

denote the time, the cell index and the direction of the maximum error violation,
respectively, and p denotes the corresponding amount of violation. If p ≤ 0, it
means that condition (14) is satisfied and therefore no further refinement of the
meshes is needed. In the next subsection, we discuss how to refine the meshes if
p returned by max violation has a positive value.

4.4 Iterative Refinement of Meshes

Let us consider how to design a pair of meshes that satisfies (14). We want the
meshes not only to satisfy (14), but also to be as coarse as possible. However,
it is extremely difficult to guarantee that the obtained meshes are optimal in
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terms of the number of cells. Instead, we take an iterative and greedy approach;
starting from a state mesh and an input mesh both composed of a single cell, we
subdivide a cell in a certain direction one by one until the error condition (14)
is satisfied. At each iteration, we first detect a cell and a direction that violate
the error margin most significantly. This is done by calling propagate error
followed by max violation, defined in the last subsection. Let us denote the
return values of max violation by {t, s′, µ, i, p}. Again, if p ≤ 0 then no further
refinement is needed and we can get out of the loop. Otherwise, we identify
a cell-direction pair whose contribution to the error ([E ]t,s′ , µei) is the largest.
From (13), ([E ]t,s′ , µei) is given by the following:

([E ]t,s′ , µei) =⎧⎪⎪⎨⎪⎪⎩
([C]xs′ − ξx

s′ , µei) if t = 0,

max
{s,a}∈pre(s′)

(
([E ]t−1,s, µ[A]Tt−1,s,aei) + ([C]ua − ξu

a , µ[B]Tt−1,s,aei)

+ (f(ξx
s , ξ

u
a ) − ξx

s′ , µei)
)

otherwise.
(15)

For later use, let us denote by pre(t, s′, µ, i) the pair {s, a} that gives the maxi-
mum in the right hand side of (15). We can observe from (15) that for t = 0, the
only way to reduce ([E ]t,s′ , µei) is to reduce ([C]xs′ −ξx

s′ , ei); i.e., to subdivide the
cell [C]xs′ in the i-th direction. On the other hand, for t > 0, ([E ]t,s′ , µei) is given
by the maximum of the sum of three terms, where the maximum is taken among
all the predecessors of s′. Note that those three terms are interpreted as: the ac-
cumulated error propagated from s, the input quantization error, and the state
quantization error. Therefore, we have three options to reduce ([E ]t,s′ , µei): to
reduce the accumulated error ([E ]t−1,s, µ[A]Tt−1,s,aei), to reduce the input quan-
tization error ([C]ua − ξu

a , µ[B]Tt−1,s,aei), and to reduce the state quantization
error (f(ξx

s , ξ
u
a ) − ξx

s′ , µei).
To reduce ([C]ua − ξu

a , µ[B]Tt−1,s,aei), we should subdivide [C]ua . However, a
question arises; in which direction should [C]ua be subdivided? Now, notice that
([C]ua − ξu

a , µ[B]Tt−1,s,aei) can be further decomposed into the following form:

([C]ua − ξu
a , µ[B]Tt−1,s,aei) = ([C], µ[Brow

i ]T) =
∑

j∈[1:m]

([Cj ], µ[Bij ])

=
∑

j∈[1:m]

max{([Cj ], µBij), ([Cj ], µBij)}

=
∑

j∈[1:m]

max{([C], µBijej), ([C], µBijej)}.

(16)

For ease of notation, we temporarily write [C] = [C]ua −ξu
a . Moreover, [Brow

i ] and
[Bij ] = [Bij , Bij ] denote the i-th row vector and the (i, j)-element of [B]t−1,s,a,
respectively. From this equation, we observe that by subdividing [C]ua in the j-th
direction whose corresponding term in the summation is the largest, the overall
input quantization error will be reduced the most. Thus, we choose this j as the
direction of subdivision.
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For reducing (f(ξx
s , ξ

u
a ) − ξx

s′ , µei), it is natural to subdivide [C]xs′ However,
we need an additional care; subdividing [C]xs′ in the i-th direction does not
always reduce (f(ξx

s , ξ
u
a ) − ξx

s′ , µei). If (f(ξx
s , ξ

u
a ) − ξx

s′)Tei > 0 then the change
of (f(ξx

s , ξ
u
a ) − ξx

s′) resulting from the subdivision in the i-th direction is given
by −(([C]xs′ − ξx

s′ , ei)/2)ei. On the other hand, if (f(ξx
s , ξ

u
a ) − ξx

s′ )Tei < 0, the
change of (f(ξx

s , ξ
u
a )− ξx

s′) will be (([C]xs′ − ξx
s′ , ei)/2)ei. This means subdivision

is effective if and only if (f(ξx
s , ξ

u
a ) − ξx

s′)Tei and µ have the same sign.
Finally, let us consider reducing ([E ]t−1,s, µ[A]Tt−1,s,aei). Like (16), we have

([E ]t−1,s, µ[A]Tt−1,s,aei) =
∑

j∈[1:n]

max{([E ]t−1,s, µAijej), ([E ]t−1,s, µAijej)}

(17)

where [Aij , Aij ] denotes the (i, j)-element of [A]t−1,s,a. But in this case, it is
not straightforward to determine which cell (and in which direction) should be
subdivided in order to reduce ([E ]t−1,s, µej) for given µ ∈ R and j ∈ [1 : n]. This
is because [E ]t−1,s is itself an accumulated sum of quantization errors caused by
all the predecessors of s. Hence, we shall repeat the same discussion as above in
order to identify a cell and its direction to be subdivided. This leads us to the
following recursive algorithm, which determines a cell-direction pair that has the
most significant influence on ([E ]t,s′ , µei).

identify bottleneck(t, s′, µ, i)
if t = 0

return {s′, i, ([C]xs′ − ξx
s′ , µei)/2}

else
C1 := ∅, C2 := ∅, C3 := ∅
{s, a} := pre(t, s′, µ, i)
[A] := [A]([E ]t−1,s + ξx

s , [C]ua)
[B] := [B]([E ]t−1,s + ξx

s , [C]ua)
if sgn((f(ξx

s , ξ
u
a ) − ξx

s′ , ei)) = sgn(µ)
C1 := C1 ∪ {s′, i, ([C]xs′ − ξx

s′ , µei)/2}
end
for j ∈ [1 : m]

C2 := C2 ∪ {a, j, ([C]ua − ξu
a , µBijej)/2}

∪ {a, j, ([C]ua − ξu
a , µBijej)/2}

end
for j ∈ [1 : n]

C3 := C3 ∪ identify bottleneck(t− 1, s, µAij , j)
∪ identify bottleneck(t− 1, s, µAij , j)

end
return argmax{c,d,p}∈C1∪C2∪C3

p

end

Let {c∗, d∗, p∗} be the return values of identify bottleneck(t, s′, µ, i). Here,
the variable c∗ could contain either a state symbol or an input symbol. In the
former case, [C]xc∗ is a cell of Mx, and in the latter case, [C]uc∗ is a cell of
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Mu. We may omit the superscript and write [C]c∗ when the distinction is not
necessary. Connecting the above components all together, we obtain the following
algorithm.

refine mesh
Mx := {{0, X}}, Mu := {{0, U}}
loop

propagate error
{t, s′, µ, i, p} := max violation
if p ≤ 0 then terminate
{c∗, d∗, p∗} := identify bottleneck(t, s′, µ, i)
subdivide(c∗, d∗)

end

Here, subdivide is a procedure that divides the cell [C]c∗ in the direction d∗.
In the following, we will show that the algorithm refine mesh actually ter-

minates in finite iterations and produces a pair of meshes that defines an N -step
abstraction of the given original system. First, we introduce the following as-
sumption:

Assumption 1. There exists a positive constant ε that satisfies

{(x, x̂) | ‖x − x̂‖∞ ≤ ε} ⊆ R̄. (18)

This assumption is fairly natural and is satisfied in most cases including uniform
and relative error conditions shown in Section 2. Moreover, let us define

λA = max
x∈X,u∈U,i∈[1:n],j∈[1:n]

∣∣∣∣ ∂fi∂xj
(x,u)

∣∣∣∣ ,
λB = max

x∈X,u∈U,i∈[1:n],j∈[1:m]

∣∣∣∣ ∂fi∂uj
(x,u)

∣∣∣∣ .
The next lemma claims that there exists a lower-bound on the size of cells that
are subdivided at each iteration of refine mesh.

Lemma 4. In refine mesh, a pair (c∗, d∗) passed to subdivide at each itera-
tion satisfies

([C]c∗ − ξc∗ , ed∗) ≥ ε

αNβN
(19)

where α0 = β0 = 1 and αt = max{maxk∈[0:t−1] λ
k
AλB, maxk∈[0:t] λ

k
A}, βt =

(
∑t

k=0 n
k +m

∑t−1
k=0 n

k) for t ≥ 1.

Proof. At first, we will prove by construction that the output of identify
bottleneck(t, s′, µ, i), denoted by {c∗, d∗, p∗}, satisfies

([E ]t,s′ , µei) ≤ 2p∗βt, (20)
([C]c∗ − ξc∗ , ed∗) ≥ 2p∗/(|µ|αt). (21)
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When t=0, identify bottleneck immediately returns {s′, i, ([C]xs′−ξx
s′ , µei)/2}.

Here, ([E ]0,s′ , µei) = ([C]xs′−ξx
s′ , µei) = 2p∗. Moreover, ([C]xs′−ξx

s′ , ei) = 2p∗/|µ|.
Therefore we confirm that (20) and (21) hold for t = 0.

Now, suppose (20) and (21) hold for t = τ − 1 and consider the case of t = τ .
Let us denote {cρ, dρ, pρ} = argmax{c,d,p}∈Cρ

p for each ρ ∈ {1, 2, 3} (recall that
Cρ are temporary variables that appear in identify bottleneck). Then, p∗ is
given by p∗ = max{p1, p2, p3}. Here we have

(f(ξx
s , ξ

u
a ) − ξx

s′ , µei) ≤ 2p1, ([C]ua − ξu
a , µ[B]Tt−1,s,aei) ≤ 2mp2.

Moreover, from (20) with t = τ − 1 we have

([E ]τ−1,s, µ[A]Tτ−1,s,aei) ≤ 2np3βτ−1.

Therefore

([E ]τ,s′ , µei) ≤ 2p1 + 2mp2 + 2np3βτ−1 ≤ 2p∗βτ .

On the other hand, we have

([C]xs′ − ξx
s′ , ed1) ≥ 2p1/|µ|, ([C]ua − ξu

a , ed2) ≥ 2p2/(|µ|λB),
([C]c3 − ξc3 , ed3) ≥ 2p3/(|µ|λAατ−1).

This yields

([C]c∗ − ξc∗ , ed∗) ≥ 2p∗/max{|µ|, |µ|λB , |µ|λAατ−1} ≥ 2p∗/(|µ|ατ ),

and we conclude that (20) and (21) hold for any t ≥ 0.
From Assumption 1, we have (Ēs′ , µei) ≥ ε for µ ∈ {−1, 1}. This means

([E ]t,s′ , µei) ≥ ε holds for a tuple {t, s′, µ, i} passed to identify bottleneck.
From this together with (20) and (21) we obtain ([C]c∗ − ξc∗, ed∗) ≥ ε/(αtβt).
Since the right hand side of this inequality monotonically decreases with respect
to t, ([C]c∗ − ξc∗, ed∗) ≥ ε/(αNβN ) holds for all t ∈ [0 : N ]. ��

Now we come to our main result.

Theorem 1. For a system Σ and a binary relation R̄ satisfying Assumption 1,
the algorithm refine mesh terminates in finite iterations. Moreover, its outputs
Mx and Mu define a quantizer embedding QE(Σ,Q[Mx], Q[Mu]) that is an
N -step abstraction of Σ with respect to R̄.

Proof. refine mesh will not terminate before the error condition (14) is satis-
fied. On the other hand, from Lemma 4, the size of a cell subdivided at each
iteration has a positive lower-bound. Since we subdivide a cell in half, the amount
a cell shrinks at each subdivision also has a positive lower-bound. Moreover, the
state setX and the input set U are both bounded. These facts prove the theorem.
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(a) State mesh for uniform error margin (c) State mesh for relative error margin

(b) Input mesh for uniform error margin (d) Input mesh for relative error margin

Fig. 2. Discrete abstraction of a linear system

Table 1. Growth of the number of cells

N 0 1 2 3 4 5 6 7 8 - 20
state grid 64 149 208 238 264 283 293 295 296 - 296
input grid 1 2 4 4 4 4 4 4 4 - 4

(a) Uniform error margin

N 0 1 2 3 4 5 6 7 - 10 11 12 - 20
state grid 4 6 14 42 73 97 109 118 - 120 121 121 - 121
input grid 1 1 1 2 4 6 6 8 - 8 8 10 - 10

(b) Relative error margin

5 Examples

This section shows some simple examples as graphical demonstrations.
Consider the following 2-dimensional linear system:

xt+1 = Axt +But, A =
[
0.68 −0.14
0.14 0.68

]
, B =

[
0

0.1

]
.

The state set is given as X = [−1, 1] × [−1, 1] and the input set is given as
U = [−1, 1]. For this system, at first we compute a discrete abstraction using
the uniform error condition R̄ = {(x, x̂) | ‖x− x̂‖ ≤ 0.3}. The result is shown in
Fig. 2(a),(b). The discrete abstraction obtained is composed of 296 states and 4
inputs. Next, for the same system we specify a relative error condition given as
R̄ = {(x, x̂) | ‖x−x̂‖ ≤ 0.2+0.7‖x̂‖}. This kind of error condition is particularly
useful when only the systems behavior near the origin is of interest. The result
is shown in Fig. 2(c),(d). In this case, the discrete abstraction is composed of
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(a) Euler stepping (b) Poincaré section

Fig. 3. Discrete abstraction of val der Pol oscillator

120 states and 8 inputs. Table 1(a)(b) show how the number of cells grows with
respect to the step length N . We can observe that the number of cells does not
increase when N becomes larger than a certain value (in these examples, less
than 20). This implies a possibility that these discrete abstractions are valid for
infinite steps. More theoretical study is needed in a future work.

Next, we consider the discrete abstraction of the van der Pol oscillator as an
example of nonlinear periodic systems. The van der Pol oscillator is governed by
the following ordinary differential equation:

ẍ = µ(1 − x2)ẋ− x.

In order to apply our method, this system should be transformed into a discrete-
time system. We investigate two ways of time-discretization; Euler stepping and
Poincaré section. This time, we choose the Poincaré section as x ∈ [0.0, 3.0], ẋ =
0. Fig. 3(a) shows a discrete abstraction of the van der Pol oscillator in the Euler
stepping case. The parameters are set as µ = 0.5, h = 0.1 and N = 6, where
h denotes the step size. The state set is given as X = [−3, 3] × [−3, 3]. The
approximation precision is given as R̄ = {(x, x̂) | ‖x − x̂‖ ≤ 0.5}. In this result,
the discrete abstraction consists of 1294 discrete states. On the other hand,
Fig. 3(b) shows the case of Poincaré section. We can observe that the mesh is
densely subdivided near the origin. This reflects the fact that a small difference
of initial states near the origin could cause a significant difference of the number
of cycles required before converging to the periodic orbit.

6 Conclusion

In this paper, we have presented a computational approach to the discrete ab-
straction of nonlinear systems. The presented approach works well even within
the framework of discrete-state abstractions of interconnected systems developed
in [15]. That is to say, based on the result of [15], we can treat the case in which
our approach is applied to only a complex subsystem of the whole system, which
produces a kind of hybrid abstraction.
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Abstract. This paper studies distributed networked systems with data
dropouts and transmission delays. We propose an event-triggering
scheme, where a subsystem broadcasts its state information to its neigh-
bors only when the subsystem’s local state error exceeds a specified
threshold. This scheme is completely decentralized, which means that
a subsystem’s broadcast decisions are made using its local sampled data,
the maximal allowable transmission delay of a subsystem’s broadcast is
predicted based on the local information, a subsystem locally identifies
the maximal allowable number of its successive data dropouts, and the
designer’s selection of the threshold only requires information about an
individual subsystem and its immediate neighbors. With the assump-
tion that the number of each subsystem’s successive data dropouts is
less than the bound identified by that subsystem, if the bandwidth of
the network is limited so that the transmission delays are always greater
than a positive constant, the resulting system is globally uniformly ul-
timately bounded using our scheme; otherwise, the resulting system is
asymptotically stable.

1 Introduction

A networked control system (NCS) is a system wherein numerous physically cou-
pled subsystems are geographically distributed throughout the system. Control
and feedback signals are exchanged through a real-time network among the sys-
tem’s components. Specific examples of NCS include electrical power grids and
transportation networks. The networking of control effort can be advantageous
in terms of lower system costs due to streamlined installation and maintenance
costs. The introduction of real-time network infrastructure, however, raises new
challenges regarding the impact that communication reliability has on the con-
trol system’s performance. In real-time networks, information is transmitted
in discrete-time rather than continuous-time. Moreover, all real networks have
bandwidth limitation that can cause delays in message delivery that may have
a major impact on overall system stability [1].
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For this reason, some researchers began investigating the timing issue in NCS.
One packet transmission problem was considered in [2], [3], where a supervisor
summarizes all subsystem data into this single packet. As a result such schemes
may be impractical for large-scale systems. Asynchronous transmission was con-
sidered in [4], [5], [6], which derived bounds on the maximum allowable transfer
interval (MATI) between two subsequent message transmissions so that the sys-
tem stability can be guaranteed. All of this prior work confined its attention
to control area network (CAN) buses where centralized computers are used to
coordinate the information transmission.

One thing worth mentioning is that these schemes mentioned above require
extremely detailed models of subsystem interactions and the execution of com-
munication protocols must be done in a highly centralized manner. Both of these
requirements can greatly limit the scalability of centralized approaches to NCS.
On the other hand, the MATI is computed before the system is deployed, which
means it is independent of the system state. So it must ensure adequate behavior
over a wide range of possible system states. As a result, it may be conservative.

To overcome these issues, decentralized event-triggering feedback schemes
were proposed in [7] and [8] for linear and nonlinear systems, respectively. Most
recently, an implementation of event-triggering in sensor-network was introduced
in [11]. By event-triggering, a subsystem broadcasts its state information to its
neighbors only when “needed”. In this case, “needed” means that some measure
of the subsystem’s local state error exceeds a specified threshold [9], [10]. In
this way, event-triggering makes it possible to reduce the frequency with which
subsystems communicate and therefore use network bandwidth in an extremely
frugal manner. An important assumption in [7], [8] is that neither data dropouts
nor delays occur in such systems. In real-time network, however, especially wire-
less network, data dropouts and delays always exist. Therefore, it suggests a
more complete consideration of such systems.

This paper studies the distributed NCS with data dropouts and transmis-
sion delays. Unlike the prior work that modelled data dropouts as stochastic
processes using a centralized approach [12], [13], we propose an event-triggering
scheme that enables a subsystem to locally identify the maximal allowable num-
ber of its successive data dropouts. This scheme is “completely” decentralized.
By “complete”, it means that (1) a subsystem’s broadcast decisions are made
using its local sampled data, (2) the maximal allowable transmission delay (also
called “deadline”) of a subsystem’s broadcast can be predicted based on the lo-
cal information, (3) a subsystem locally identifies the maximal allowable number
of its successive data dropouts, and (4) the designer’s selection of the thresh-
old only requires information about an individual subsystem and its immediate
neighbors.

Our analysis applies to nonlinear continuous systems. With the assumption
that the number of each subsystem’s successive data dropouts is less than the
bound identified by that subsystem, if the bandwidth of the network is limited
so that the transmission delays are always greater than a positive constant,
the resulting NCS is globally uniformly ultimately bounded using our scheme;
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otherwise, the resulting NCS is asymptotically stable. We use an example to
illustrate the design procedure.

The paper is organized as follows: section 2 formulates the problem; the decen-
tralized approach to design the local triggering event is introduced in section 3;
Transmission delays and data dropouts are considered in section 4 and 5, respec-
tively; Simulation results are presented in section 6; In section 7, the conclusions
are drawn.

2 Problem Formulation

Consider a distributed NCS containing N subsystems, denoted as Pi. Let N =
{1, 2, · · · , N}. Zi ∈ N denotes the set of subsystems that Pi can get information
from; Di ⊂ N denotes the set of subsystems that directly drive Pi’s dynamics;
Ui ∈ N denotes the set of subsystems that can receive Pi’s broadcasted infor-
mation; Si ∈ N denotes the set of subsystems who are directly driven by Pi.
For a set Φ ∈ N , we use |Φ| to denote the number of elements in Φ.

The state equation of the ith subsystem is

ẋi(t) = fi(xDi (t), ui)
ui = γi(xZi(t))

xi(t0) = xi0. (1)

Our analysis applies to the case where the states have different dimensions.
However, to outline the main idea, we assume xi ∈ Rn for all i. In equation
(1), xDi = {xj}j∈Di , xZi = {xj}j∈Zi , γi : Rn|Zi| → Rmi is the given feedback
strategy of agent i satisfying γi(0) = 0, and fi : Rn|Di| × Rmi → Rn is a given
continuous function satisfying fi(0, 0) = 0.

This paper considers a real-time implementation of this distributed NCS. The
infrastructure of such an implementation is plotted in figure 1. In such a system,

Detector DetectorDetectorZOHZOH ZOH

P1 P2 PN· · ·

CPU CPUCPU

Communication Channel

Continuous
Time

Discrete
Time

x̂Z1

x1

x̂1 x̂2

x̂Z2 x̂ZN

x̂N

x2 xN
u1 u2 uN

Fig. 1. The infrastructure of the real-time NCS
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Pi can only detect its own state, xi. If the local “error” signal exceeds some
given threshold, which can be detected by hardware detectors, Pi will sample
and broadcast its state information to its neighbors through a real-time network.
Therefore, Pi’s control, ui, at time t is computed based on its neighbors’ latest
broadcast states (also called “measured states”) at time t, denoted as x̂Zi(t). We
assume that the time spent in computing the control and sending the control
back to the plant is zero. The control signal used by Pi is held constant by a
zero-order hold (ZOH) unless one of its neighbors makes another broadcast. This
means that Pi has the following state equation,

ẋi(t) = fi(xDi (t), ui)
ui = γi(x̂Zi(t))

xi(t0) = xi0. (2)

Subsystem i’s broadcast can characterized by two monotone increasing se-
quences of time instants: the broadcast release time sequence {rik}∞k=1 and the
broadcast finishing time {f i

k}∞k=1, where rik ≤ f i
k ≤ rik+1 holds for all k =

1, 2, · · · ,∞. The time rik denotes the time when the kth broadcast is released by
Pi for transmission through the channel. At this time, we assume there is no de-
lay between sampling and broadcast release. The time f i

k denotes the time when
the kth broadcast information by Pi is received by its neighbors. The objec-
tive of this paper is to develop decentralized event-triggering schemes to identify
{rik}∞k=1, {f i

k}∞k=1 such that the NCS defined in equation (2) is asymptotically
stable or globally uniformly ultimately bounded defined as follows.

Definition 1. The system in equation (2) is said to be globally uniformly ulti-
mately bounded with ultimate bound ε, if there exists a positive constant ε ∈ R,
independent of t0, and for any s > 0, there exists T ≥ 0, independent of t0, such
that

‖x(t0)‖2 ≤ s⇒ ‖x(t)‖2 ≤ ε, ∀t ≥ t0 + T (3)

3 Decentralized Broadcast-Triggering Events Design

In this section, we study a decentralized approach to characterize the broadcast
time sequence. Inequality constraints on each subsystem’s broadcast release and
finishing time are provided to ensure asymptotic stability of the overall system.
These constraints can be locally determined by individual subsystems. To obtain
the decentralized method, we first introduce a theorem in [8] that provides a
centralized approach to derive the time constraints on rik and f i

k. For notational
convenience, we define eik : [rik, f

i
k+1) → Rn as eik(t) = xi(t) − xi(rik) for ∀t ∈

[rik, f
i
k+1). Notice that x̂i(t) = xi(rik) for all t ∈ [f i

k, f
i
k+1).

Theorem 1 ([8]). Consider the NCS in equation (2). Assume that there exist
a smooth, positive-definite function V : RnN → R and class K functions ζ, ζ̄,
φi, ψi : R → R for i = 1, · · · , N such that



370 X. Wang and M.D. Lemmon

ζ(‖x‖2) ≤ V (x) ≤ ζ̄(‖x‖2) (4)∑
i∈N

∂V (x)
∂xi

fi (xDi , γi(yZi)) ≤
∑
i∈N

−φi(‖xi‖2) +
∑
i∈N

ψi(‖xi − yi‖2) (5)

holds for all x, y ∈ RnN . If for any i ∈ N , there exists a constant ρi ∈ (0, 1)
such that subsystem i’s broadcast release time sequence, {rik}∞k=1, and finishing
time sequence, {f i

k}∞k=1, satisfy

− ρiφi(‖xi(t)‖2) + ψi(‖eik(t)‖2) ≤ 0 (6)

for all t ∈ [f i
k, f

i
k+1) and all k ∈ N, then the NCS is asymptotically stable.

Theorem 1 shows that the satisfaction of equation (6) guarantees asymptotic
stability of the NCS. Based on this theorem, deriving local time constraints is
equivalent to constructing class K functions φi and ψi. The following theorem
provides a decentralized approach to design such class K functions.

Theorem 2. Consider the NCS defined in equation (2). Assume that there exist
smooth, positive-definite functions Vi : Rn → R, class K functions ζi, ζ̄i : R → R,
positive constants αi, βi, κi ∈ R, and control law γi : Rn|Zi| → Rmi for ∀i ∈ N
satisfying

ζi(‖xi‖2) ≤ Vi(x) ≤ ζ̄i(‖xi‖2) (7)

∂Vi(xi)
∂xi

fi(xDi , γi(yZi)) ≤
∑

j∈Di∪Zi

βj‖xj‖2 +
∑
j∈Zi

κj‖xj − yj‖2 − αi‖xi‖2(8)

αi − |Si ∪ Ui|βi > 0 (9)

Then φi, ψi : R → R, defined by φi(s) = ais and ψi(s) = bis, satisfy equation
(6) in theorem 1, where

ai = αi − |Si ∪ Ui|βi (10)
bi = |Ui|κi. (11)

Proof. It is easy to see that∑
i∈N

∂V (xi)
∂xi

fi(xDi , γi(yZi))

≤
∑
i∈N

−αi‖xi‖2 +
∑

j∈Di∪Zi

βj‖xj‖2 +
∑
j∈Zi

κj‖xj − yj‖2

=
∑
i∈N

(−αi + |Si ∪ Ui|βi) ‖xi‖2 +
∑
i∈N

|Ui|κi‖xi − yi‖2,

where the equality is obtained by resorting the items according to index i. ��

Remark 1. Equation (8) and (9) may have a more general form, where αi‖xi‖2,
βj‖xj‖2, and κj‖xj − yj‖2 are replaced by some class K functions. Using the
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more general form, however, will require additional assumptions on those class
K functions in the later discussion, such as a Lipschitz condition. It will make the
paper hard to read. To outline the main idea of this paper, we just use equation
(8) and (9) as a sufficient condition to construct φi and ψi in theorem 1.

Remark 2. Equation (8) suggests that subsystem i is finite-gain L2 stable from
({xj}j∈Di∪Zi , {xj − yj}j∈Zi) to xi.

We will find that it is convenient in the later work to use a slightly weaker
sufficient condition for asymptotic stability where the state error eik(t) is bounded
by a function of the sampled data xi(rik) as stated in the following corollary.

Corollary 1. Consider the NCS in equation (2). Assume that equation (7),
(8), (9) hold. If for any i ∈ N , subsystem i’s broadcast release time sequence,
{rik}∞k=1, and finishing time sequence, {f i

k}∞k=1, satisfy

‖eik(t)‖2 ≤ ci‖xi(rik)‖2 (12)

for all t ∈ [f i
k, f

i
k+1) and all k ∈ N, where ci ∈ R is defined by

ci =
ρiai

ρiai + bi
, (13)

for some ρi ∈ (0, 1) and ai, bi are defined in equation (10), (11), respectively,
then the NCS is asymptotically stable.

Proof. By the definition of ci in equation (13), equation (12) is equivalent to

bi‖eik(t)‖2 + ρiai‖eik(t)‖2 ≤ ρiai‖xi(rik)‖2 (14)

for all t ∈ [f i
k, f

i
k+1) and all k ∈ N. Therefore, we have

bi‖eik(t)‖2 ≤ ρiai‖xi(rik)‖2 − ρiai‖eik(t)‖2

≤ ρiai‖xi(rik) + eik(t)‖2 = ρiai‖xi(t)‖2

for all t ∈ [f i
k, f

i
k+1) and all k ∈ N. Since the hypotheses of theorem 1 are

satisfied, we can conclude that the NCS is asymptotically stable. ��

Remark 3. The inequalities in equations (6) or (12) can both be used as the
basis for a decentralized event-triggered feedback control system. Note that both
inequalities are trivially satisfied at t = rik. If we let the delay be zero for each
broadcast (rik = f i

k) and assume there are not any data dropouts, then by
triggering the release times {rk}∞k=0 anytime before the inequalities in equations
(6) or (12) are violated, we will ensure the sampled-data system’s stability.

Theorem 2 and corollary 1 provide ways to identify the broadcast release time,
rik. The broadcast release is triggered when the violation of equation (5) or (12)
occurs. However, we still do not know how to predict maximal allowable delays
for each broadcast. In other words, we do not have an explicit constraint on f i

k

yet. In the following section, we will consider the bounds on f i
k.
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4 Event-Triggering with Delays

In this section, we quantify maximal allowable delays for each subsystem that
will not break the stability of the NCS. An upper bound on the kth broadcast
finishing time is derived in a decentralized manner as a function of the previously
sampled local states.

We assume that there always exist pi > 0 such that

‖fi (xDi(t), γi (x̂Zi(t))) ‖2 ≤ pi (15)

holds for any t ≥ 0 and i ∈ N .

Remark 4. The assumption in equation (15) requires the state trajectory of the
NCS falls into some compact set S ⊂ Rn. Such an assumption can also be seen
in [9].

To obtain the upper bound on the delays, we need a lemma to identify the
behavior of eik−1(t) and eik(t) over the time interval [rik, f

i
k). Ideally, we hope that

‖eik−1(f
i
k)‖2 ≤ ci‖xi(rik−1)‖2 holds. In that case, the constraint ‖eik−1(t)‖2 ≤

ci‖xi(rik−1)‖2 will not be violated over [f i
k−1, f

i
k). At the same time, we require

that ‖eik(f i
k)‖2 ≤ δici‖xi(rik)‖2 holds for some δi ∈ (0, 1). This is to ensure

rik+1 ≥ f i
k when we use the violation of ‖eik(t)‖2 ≤ δici‖xi(rik)‖2 to trigger rik+1.

The lemma is stated as follows.

Lemma 1. Consider subsystem i in equation (2). Assume that equation (15)
holds for some pi ∈ R+. For any k ∈ N, if

‖eik−1(r
i
k)‖2 ≤ δici‖xi(rik−1)‖2 (16)

f i
k − rik ≤ min

{
(1 − δi)ci
pi

‖xi(rik−1)‖2,
δici
pi

‖xi(rik)‖2

}
(17)

hold for some δi ∈ (0, 1), then

‖eik−1(t)‖2 ≤ ci‖xi(rik−1)‖2 (18)

‖eik(t)‖2 ≤ δici‖xi(rik)‖2 (19)

hold for all t ∈ [rik, f
i
k).

Proof. Consider the derivative of
∥∥eik−1(t)

∥∥
2 over the time interval [rik, f

i
k).

d

dt

∥∥eik−1(t)
∥∥

2 ≤
∥∥ėik−1(t)

∥∥
2 = ‖ẋi(t)‖2 = ‖fi (xDi , γi (x̂Zi)) ‖2 ≤ pi

holds for all t ∈ [rik, f
i
k).

Solving the preceding inequality with initial condition
∥∥eik−1(r

i
k)
∥∥

2 implies∥∥eik−1(t)
∥∥

2 ≤ pi(t− rik) +
∥∥eik−1(r

i
k)
∥∥

2 ≤ pi(f i
k − rik) +

∥∥eik−1(r
i
k)
∥∥

2 (20)

holds for all t ∈ [rik, f
i
k).
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By equation (17), we know

pi(f i
k − rik) ≤ (1 − δi)ci‖xi(rik−1)‖2 (21)

Applying equation (16) and (21) into (20), we know equation (18) holds. With
a similar analysis, we can show the satisfaction of equation (19). ��

With lemma 1, we can present the following theorem where the upper bounds
on delays of subsystems’ broadcasts are given to guarantee asymptotic stability
of the event-triggered NCS.

Theorem 3. Consider the NCS in equation (2). Assume that equation (7), (8),
(9), (15) hold. If, for any i ∈ N , the broadcast release time rik+1 is triggered by
the violation of the inequality

‖eik(t)‖2 ≤ δici‖xi(rik)‖2 (22)

for some δi ∈ (0, 1) and the broadcast finishing time, f i
k+1, satisfies

f i
k+1 − rik+1 ≤ min

{
(1 − δi)ci
pi

‖xi(rik)‖2,
δici
pi

‖xi(rik+1)‖2

}
, (23)

then the NCS is asymptotically stable.

Proof. Since the hypotheses in lemma 1 hold, we have

‖eik(t)‖2 ≤ ci‖xi(rik)‖2 (24)

hold for all t ∈ [rik+1, f
i
k+1) and all k ∈ N.

We also know by equation (22) that

‖eik(t)‖2 ≤ δici‖xi(rik)‖2 (25)

holds for all t ∈ [rik, r
i
k+1) and all k ∈ N.

Combining equation (24), (25) yields

‖eik(t)‖2 ≤ ci‖xi(rik)‖2 (26)

for all t ∈ [rik, f
i
k+1) and all k ∈ N. Therefore, by corollary 1, the NCS is asymp-

totically stable. ��

Remark 5. Notice that the maximal allowable delay of subsystem i’s k + 1st
broadcast only depend on local information. In other words, subsystem i can
design the deadline prediction law and predict the deadline by itself. The cost
of such decentralized design is that the deadlines will go to zero as the state
converges to the equilibrium. It might be possible to derive deadlines that are
greater than a positive constant with the guarantee of asymptotic stability using
centralized design. This would be an interesting research topic in the future.
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In theorem 3, subsystem i predicts the deadline for its k + 1st broadcast delay
at time rik+1 when the state xi(rik+1) is sampled. It is more reasonable to have
subsystem i predict the deadline for its k + 1st delay ahead of time, such as at
time rik. Corollary 2 provides such a deadline as a function of xi(rik).

Corollary 2. Assume that all hypotheses in theorem 3 are satisfied except that
equation (23) is replaced by

f i
k+1 − rik+1 ≤ min

{
(1 − δi)ci
pi

‖xi(rik)‖2,
δici(1 − δici)

pi
‖xi(rik)‖2

}
, (27)

then the NCS is asymptotically stable.

Proof. By the definition of ci in equation (13), we know ci < 1 and therefore
1−δici > 0 with δi ∈ (0, 1). Based on equation (22), we know (1−δici)‖xi(rik)‖2 ≤
‖xi(rik+1)‖2. So equation (27) implies the satisfaction of equation (23). ��

As we can see from equation (23) in theorem 3, the predicted deadlines for sub-
system i’s broadcast delays go to zero as the state converges to the equilibrium
point. If the channel capacity is not taken into account, this result is acceptable.
However, if the bandwidth of the network is limited, the broadcast delays are
greater than a positive constant. In that case, the overall system will not be
asymptotically stable. Instead, the state will eventually stay in a small neigh-
borhood of the equilibrium, which means that the system is globally uniformly
ultimately bounded. The size of the neighborhood depends on the length of the
maximal delay. The results are formally stated as follows.

Corollary 3. Assume that all hypotheses in theorem 3 are satisfied except that
equation (23) is replaced by

f i
k+1 − rik+1 ≤ min

{
(1 − δi)ciε

pi
,
δiciε

pi

}
(28)

for some positive constant ε ∈ R+, then the NCS is globally uniformly ultimately
bounded with an ultimate bound ε

∑
i∈N (1−δi)ai

mini(1−δi)ai
, where ai is defined in (10).

Proof. Following a similar analysis to the proof of theorem 3, we know that

V̇ ≤
∑
i∈N

(1 − δi)ai(ε− ‖xi(t)‖2)

≤ ε
∑
i∈N

(1 − δi)ai − min
i

(1 − δi)ai

∑
i∈N

‖xi(t)‖2

≤ ε
∑
i∈N

(1 − δi)ai − min
i

(1 − δi)ai‖x(t)‖2

which means that the NCS is globally uniformly ultimately bounded and the
invariant set is

{
x ∈ RnN | ‖x‖2 ≤ ε

∑
i∈N (1−δi)ai

mini(1−δi)ai

}
. ��
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5 Event-Triggering with Data Dropouts

In the previous sections, we did not consider the occurrence of data dropouts.
In other words, whenever a broadcast release is triggered, the local state of the
related subsystem will be sampled and transmitted to its neighbors successfully.
In this section, we take data dropouts into account, which frequently happen in
NCS. We assume that data dropouts only happen when the sampled states are
sent to the controllers through the network. In other words, there is no dropout
when sending controller outputs to the subsystems. This is usually true when
each subsystem and its controller are wired together.

Let us take a look at what happens in the system when a data package is lost.
We first consider those network protocols where the subsystem will be notified
if transmission fails, such as Transmission Control Protocol (TCP). Using such
protocols, when data dropouts happens, the subsystem just needs to keep sending
the newly sampled state unless it is transmitted successfully. Also, the local
triggering event will not be updated until transmission succeeds.

A more interesting thing happens with the network using those protocols
where the subsystem will not be notified when transmission fails, such as User
Datagram Protocol (UDP). In that case, when the hardware detector located
at subsystem i detects the occurrence of the local event, the local state will be
sampled and ready to be transmitted to its neighbors through the channel. At
the same time, the event will be updated from k to k+1 with the newly sampled
state. Once the transmission fails (in other words, the sampled state is lost), the
controllers will not receive the sampled state. So the control inputs will not be
updated. Notice that in this case, the local event will be updated, but the control
inputs will not.

In the following discussion, we intend to address the allowable number of data
dropouts in such NCS (UDP) with the guarantee of stability. In fact, we provide
a decentralized approach that enables each subsystem to locally identify the
largest number of its successive data dropouts that the subsystem can tolerate.
The idea is to have events happen earlier than the violation of the inequality in
equation (22) so that even if some data is lost, equation (22) can still be satisfied.

Before we introduce the results, we need to define two different types of re-
leases: the triggered release, r̂ij , and the successful release, rik. r̂ij is the time
when the jth broadcast of subsystem i is released (but not necessarily transmit-
ted successfully). rik is the time when the kth successful broadcast of subsystem
i is released. Obviously, {rik}∞k=1 is a subsequence of {r̂ij}∞j=1. For notational
convenience, we define êij : R → Rn as êij(t) = xi(t) − xi(r̂ij).

Theorem 4. Consider the NCS in equation (2). Assume that equation (7), (8),
(9), (15) hold. If, for any i ∈ N and some δi ∈ (0, 1), the next broadcast release
time is triggered by the violation of

‖êij(t)‖2 ≤ δ̂ici‖xi(r̂ij)‖2 (29)

for some δ̂i ∈ (0, δi), the kth successful broadcast finishing time, f i
k, satisfies
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f i
k − rik ≤ min

{
(1 − δi)ci
pi

‖xi(rik−1)‖2,
δ̂ici(1 − δici)

pi
‖xi(rik−1)‖2

}
, (30)

and the largest number of successive data dropouts, ni ∈ Z, satisfies

ni ≤ log(1+δ̂ici)(1 + δici) − 1 (31)

then the NCS is still asymptotically stable.

Proof. Consider subsystem i over the time interval [rik, f
i
k+1). For notational

convenience, we assume rik = r̂i0 < r̂
i
1 < · · · < r̂ini

< r̂ini+1 = rik+1. Since the
hypotheses in lemma 1 hold, we have ‖eik(t)‖2 ≤ δ̂ici‖xi(rik)‖2 for all t ∈ [rik, f

i
k)

and all k ∈ N. Since ‖eik(r̂i1)‖2 = δ̂ici‖xi(rik)‖2, we have f i
k ≤ r̂i1, namely that

subsystem i does not release broadcasts during [rik, f
i
k).

Consider ‖eik(t)‖2 for any t ∈ [r̂ij , r̂
i
j+1). We have

‖eik(t)‖2 = ‖xi(t) − xi(rik)‖2 ≤
j−1∑
l=0

‖xi(r̂il+1) − xi(r̂il )‖2 + ‖xi(t) − xi(r̂ij)‖2

for ∀t ∈ [r̂ij , r̂
i
j+1). Applying equation (29) into the preceding equation yields

‖eik(t)‖2 ≤
j∑

l=0

δ̂ici‖xi(r̂ij)‖2 (32)

for all t ∈ [r̂ij , r̂
i
j+1). Therefore,

‖eik(t)‖2 ≤
ni∑
l=0

δ̂ici‖xi(r̂il )‖2 (33)

holds for all t ∈ [rik, r
i
k+1).

Because ‖êij(r̂ij+1)‖2 = ‖xi(r̂ij+1) − xi(r̂ij)‖2 = δ̂ici‖xi(r̂ij)‖2, we have

‖xi(r̂ij+1)‖2 ≤ (1 + δ̂ici)‖xi(r̂ij)‖2

and therefore

‖xi(r̂ij+1)‖2 ≤ (1 + δ̂ici)j+1‖xi(r̂i0)‖2 = (1 + δ̂ici)j+1‖xi(rik)‖2 (34)

for j = 0, 1, 2, · · · , ni. Applying equation (34) into (33) yields

‖eik(t)‖2 ≤
ni∑
l=0

δ̂ici(1 + δ̂ici)l‖xi(rik)‖2 =
(
(1 + δ̂ici)ni+1 − 1

)
‖xi(rik)‖2 (35)

for all t ∈ [rik, r
i
k+1). By equation (31), we know (1 + δ̂ici)ni+1 − 1 ≤ δici.

Therefore, equation (35) implies ‖eik(t)‖2 ≤ δici‖xi(rik)‖2 for all t ∈ [rik, r
i
k+1).

Since the hypotheses in corollary 2 are satisfied, we conclude that the NCS is
asymptotically stable. ��
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Remark 6. By equation (31), we know the maximal allowable number of each
subsystem’s successive data dropouts can be identified locally, depending on the
selection of ci, δi, and δ̂i. If subsystem i wants the maximal allowable number of
data dropouts to be large, δ̂i must be small enough. In general, however, small
δ̂i will result in short broadcast periods. Therefore, there is a tradeoff between
the maximal allowable number of data dropouts and the broadcast periods.

Similar to corollary 3, we have the following result for the case with fixed trans-
mission deadlines.

Corollary 4. Assume that all hypotheses in theorem 4 are satisfied except that
equation (30) is replaced by

f i
k − rik ≤ min

{
(1 − δi)ciε

pi
,
δ̂iciε

pi

}
(36)

for some small positive constant ε > 0, then the NCS is still globally uniformly
ultimately bounded with an ultimate bound ε

∑
i∈N (1−δi)ai

mini(1−δi)ai
, where ai is defined in

equation (10).

Proof. Following a similar analysis to the proof in theorem 4, we have ‖eik(t)‖2 ≤
δici‖xi(rik)‖2 for all t ∈ [rik, r

i
k+1). Since the hypotheses in corollary 3 are satis-

fied, we conclude that the NCS is globally uniformly ultimately bounded. ��

Based on the preceding results, we are able to present the decentralized event-
triggering scheme.

Decentralized Event-Triggering Scheme
1. Select positive constants βi, κi ∈ R+ for i = 1, · · · , N ;
2. For subsystem i,

(1) Find Vi : Rn → R, αi ∈ R+, and γi : Rn|Zi| → Rmi

satisfying equation (8), (9);
(2) Compute pi satisfying equation (15);
(3) Select ρi ∈ (0, 1) and compute ci based on equation (13);
(4) Select δi ∈ (0, 1), δ̂i ∈ (0, δi) and use the violation of the inequality

in equation (29) to trigger the broadcast release;
(5) Predict the deadline for the delay in the kth successful broadcast of

subsystem i (f i
k − rik) at rik−1 by equation (30) or equation (36);

(6) Identify the maximal allowable number of successive data dropouts
by equation (31).

6 An Illustrative Example

This section presents simulation results demonstrating the decentralized event-
triggering scheme. The system under study is a collection of coupled carts (fig-
ure 2), which are coupled together by springs. The ith subsystem state is the
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u1 u2 u3

Fig. 2. Three carts coupled by springs

Table 1. Results on Running a Decentralized Event-Triggered Networked System

Subsystem 1 Subsystem 2 Subsystem 3
Maximal Allowable Number of
Successive Data Dropouts 2 3 2
Predicted Deadline 2.226 × 10−4 1.811 × 10−4 2.226 × 10−4

Number of Broadcasts Release 153 229 155
Number of Successful Broadcasts 50 56 50
Average Period of Broadcasts 0.0523 0.0349 0.0516
Average Period of Successful Broadcasts 0.1600 0.1429 0.1600

vector xi =
[
yi ẏi

]T where yi is the ith cart’s position. We assume that at
the equilibrium of the system, all springs are unstretched. The state equa-
tion for the ith cart is ẋi = Aixi + Biui + Hi,i−1xi−1 + Hi,i+1xi+1 where

Ai =
[

0 1
−µik 0

]
, Bi =

[
0
1

]
, Hij =

[
0 0
νijk 0

]
.

In the preceding equation, we have k = 5 is the spring constant, µ1 = µN = 1
and µi = 2 for i = 2, · · · , N −1. Also νij = 1 for i �∈ {1, N} and j ∈ {i−1, i+1}
and ν12 = νN,N−1 = 1. Otherwise, νij = 0.

The control input of subsystem i is

ui = Kix̂i + Li,i−1x̂i−1 + Li,i+1x̂i+1, (37)

where K1 = KN =
[
−4 −6

]
, Ki =

[
1 −6

]
for i = 2, · · · , N − 1, and Li,i−1 =

Li,i+1 =
[
−5 0

]
except that L10 = LN,N+1 = 0.

We first considered the case with N = 3. According to the decentralized event-
triggering scheme, we obtained c2 = 0.3622 and c1 = c3 = 0.4451. The initial
state xi0 of subsystem i was randomly generated satisfying ‖xi0‖2 ≤ 1. We set
pi = 20, ε = 0.1, δi = 0.9, and δ̂i = 0.2. We ran the event-triggered system
for 8 seconds with the assumption that the number of successive data dropouts
are the same as the maximal allowable number and the delay is equal to the
deadline. The simulation results show that the system is asymptotically stable,
but not globally uniformly ultimately bounded as we stated in corollary 4. This
might be because of the special network topology used in this simulation (linear
and Di = Zi). Another possible explanation is that the decentralization leads
to the conservativeness of the theoretical results. The data of this simulation is
listed in table 1.

We then examine the relationship between the maximal allowable number
of successive data dropouts, ni, and the predicted deadline. In particular, we
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Fig. 3. Maximal allowable number of successive data dropouts versus the deadline

studied subsystem 1. We set δ1 = 0.2, 0.4, 0.6, 0.8 and δ̂1 from 0.01 to δ1. The
other parameters remain the same. The resulting changes in n1 and the deadline
are shown in figure 3, where each pair of n1 and the deadline is associated with
a pair of (δ1, δ̂1). We may see from the plot that as n1 increases, the predicted
deadline decreases. That is because large n1 suggests tiny δ̂1 and large δ1, which
results in short deadline according to equation (36).

7 Conclusions

This paper studies distributed NCS with data dropouts and transmission de-
lays. We propose a decentralized event-triggering scheme for such systems. This
scheme is completely decentralized, which means that a subsystem’s broadcast
decisions are made using its local sampled data, the maximal allowable trans-
mission delay of a subsystem’s broadcast is predicted based on the local in-
formation, a subsystem locally identifies the maximal allowable number of its
successive data dropouts, and the designer’s selection of the threshold only re-
quires information about an individual subsystem and its immediate neighbors.
Our analysis applies to nonlinear continuous systems. With the assumption that
the number of each subsystem’s successive data dropouts is less than the bound
identified by that subsystem, if the bandwidth of the network is limited so that
the transmission delays are always greater than a positive constant, the resulting
system is globally uniformly ultimately bounded using our scheme; otherwise,
the resulting system is asymptotically stable.
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Abstract. We focus on spatially distributed control systems in which measure-
ment and actuation data is sent via a bus shared with other applications. An ap-
proach is proposed for specifying and implementing dynamic scheduling policies
for the bus with performance guarantees. Specifically, we propose an automata-
based scheduler which we automatically generate from a model of the controlled
plant and the controller. We show that, in addition to ensuring performance, our
approach allows adjustments to dynamic conditions such as varying disturbances
and network load. We present a full development path from performance speci-
fications (exponential stability) to a control design and its implementation using
Controller Area Network (CAN).

1 Introduction

As control systems grow in both size and complexity, so does the need to spatially
distribute control equipment such as sensors, actuator and computational devices. In
recent years, implementations of distributed control systems are shifting from tradi-
tional hard-wired architectures, where each device is connected via a dedicated wire,
to networked architectures, where control data is sent via shared communication buses
(e.g., in the automotive [12] and aviation [20] industries, and for process control [24]).
While, shared communication buses reduce costs and allow flexible architectures, they
also introduce the problem of resource contention and require scheduling mechanisms
to resolve them [19, 25].

Existing approaches to bus scheduling in control applications rely on static (periodic)
schedules designed to assure performance in worst-case conditions [10, 18, 23]. The
main disadvantage of static schedules, in our context, is that they lack a mechanism
to adapt to changing conditions. This often leads to trading off average for worst-case
performance.

In this paper, we propose a mechanism for generating schedules for shared buses
such that a specified stability rate is guaranteed. We use guarded automata as a tool
for formalizing the effect of bus scheduling on performance and as a mechanism for
scheduling the network such that stability is guaranteed.

A scheduling approach is proposed that provides good performance both in average
and worst-case conditions. We show that automata based scheduling allows the sched-
ule to react to dynamic conditions such as the output of the plant or the load on the
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network and still guarantee high-level requirements such as stability. In particular, we
demonstrate how, with our approach, the bus is only used when needed and, by that,
good average performance can be obtained together with worst-case guarantees.

While our approach may apply also to other architectures, we concentrate on sys-
tems where one control loop shares a communication bus with background applications
that use it for non–real-time communication. In this architecture, the network sched-
uler needs to assign communication bandwidth to the background applications while
maintaining the specified stability performance. Focusing on this architecture allows us
to present a holistic approach that begins with stability specification and ends with an
implementation. The presented approach can be generalized to multiple control loops
and to a star architecture where spatially distributed plants are controlled with a central
controller.

The remaining of the paper consists of the following parts: in Section 2 we formally
define the technical problem that this paper is about and sections 3-6 detail the steps
towards its solution. Section 7 puts our work in context with related work. And, in
Section 8, we draw conclusions from the results and outline potential next steps.

2 Shared Bus for Control and Background Traffic

Consider the system depicted in Figure 1 below, where the sensor and the actuator of a
control system are spatially distributed and a shared communication bus is used to pass
information from a computer processor near the sensor to a processor near the actuator.

In this system, a communication bus is used both to close a control loop and for non
real-time background applications. We assume TDMA (time division multiple access)
arbitration, where messages are transmitted in separated time slots of fixed length (time-
triggered message generation). The control loop can be modeled by a discrete-time
control system where the sampling interval is the time slot of the network. To simplify
notations and avoid orthogonal complications, we consider a single-input, single-output
linear time-invariant plant.

Assume that the processor near the sensor has priority over the bus, i.e., when it
decides to send data, all other messages are preempted. Suppose a time-varying number

Shared Communication BusPlant
Background
Applications

Processor
near sensor

Processor
near actuator

Sensor

Actuator

Noise

Load Factor, λ ∈ [0, 1]

Fig. 1. A bus shared by a control loop and non real-time traffic
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λ ∈ (0, 1), called the load factor, is fed to the processor near the sensor. This number
is an input parameter that models the fraction of bandwidth that the control system is
asked to leave to background applications. The main problem addressed in this paper is
how should the processor near the sensor decide when to send data, taking both λ and
the output of the plant into account. Since decisions are taken online by devices with
low computational power, we are especially interested in decision procedures with low
online computational demands.

The scheduling problem can be solved by a static, time-triggered cyclic executive
that assigns resources to either the control loop or the background applications [16, 10,
13]. This approach is depicted in Figure 2. Figure 2(a) shows an implementation of
the approach using dispatch tables. The table describes, for specific time slots, which
consumer uses the resource. This particular schedule shows that the background appli-
cations use the resource for the first three steps and the control loop uses the resource
in the fourth step.

Time Consumer
1 background
2 background
3 background
4 control loop

(a) Dispatch table

0 0

01

(b) Automaton

Fig. 2. Two ways for encoding a static schedule

We can also encode such a cyclic executive using automata (see Figure 2(b)). The
language of this automaton is the set of all sequences over {0, 1} with 1 at every fourth
position. The symbol 1 means that the control loop gets the network resource and 0
means that any of the background applications gets it. Note that implementing the
scheduling policy of an automaton or a dispatch table can be done with a lightweight
decision procedure requiring low (constant) time and memory.

This type of static scheduling is a common practice but it is also often wasteful. Static
scheduling via dispatch tables and static automata is useful because of analyzability and
ease of implementation. However, static scheduling often uses more resources than nec-
essary, because many applications do not require a fixed sampling frequency to assure
performance. For example, consider a system with sporadic disturbance bursts. In this
case, a periodic sensor update often provides no additional information to the processor
near the actuator and therefore is a waste of network resources. An improved version
will only send measurements if the plant’s output exceeds some threshold discrepancy,
as we show in the following example.

On the other extreme, bus arbitration could also be decided by a tailored, fully dy-
namic software. The main problem with the latter approach is that it is not clear how to
analyze and systematically design such software. In this paper, we propose a mid-way
between fully dynamic code and dispatch tables. Using guarded automata, we propose
a scheduling mechanism that allows analyzability and lightweight implementation (as
static scheduling) with adaptability and efficiency (as dynamic scheduling).
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.5 ≤ |xsen − xact| ≤ 1

1

1 < |xsen − xact|
1

|xsen − xact| < .5
0

always
0

Fig. 3. A guarded (dynamic) schedule

The following example illustrates how guarded automata can be used for scheduling.
Note that, while the example is an ad hoc (manually designed) automaton, the method-
ology we are proposing is automatic generation of automata using the construction
described in this paper.

For the system depicted in Figure 1, assume that the processor near the sensor main-
tains an estimate of the plant state denoted by xsen, and the processor near the actuator
maintains its own estimate (based on the information available to it) that we denote by
xact. Consider the scheduling scheme depicted in Figure 3. In words: the scheduling
decision is based on the difference |xsen−xact|. If it lies above 1, then data is transmit-
ted. If it lies below .5, then the processor near the sensor will not transmit and leave the
slot for the background applications. If |xsen−xact| lies between .5 and 1, the processor
near the sensor will transmit a reading once and then pause in the next step.

Clearly, this scheduling scheme is more expressive than cyclic scheduling using dis-
patch tables or unguarded automata. Still, unlike general dynamic techniques, the model
is simple enough for formal analysis of system properties such as exponential stability.
In this paper we focus on generating guarded automata of the form depicted in Fig-
ure 1 that guarantee high-level requirements of the control application. Specifically, we
investigate automata generation for exponential stability requirements.

In the following sections we propose steps towards synthesizing a scheduler that
guarantees exponential stability and uses the bus only when needed or when the pa-
rameter λ is small (low background traffic). The proposed methodology is described in
four steps, each described in a separate section and summarized as follows. The first
step, described is Section 3, is a construction of an automaton that specifies unstable
runs of the control loop. The second step, described in Section 4, is to transform the
specification automaton to an executable state machine that identifies when using the
bus is critical for ensuring stability. The third step, described in Section 5, is to imple-
ment the scheduling scheme with a distributed bus arbitration mechanism. The fourth
step, described in Section 6, is to test and validate the mechanism by implementing a
switched control strategy and a scheduling scheme that combines the parameter λ with
the executable state machine.

3 Step I: Specification Automaton

As a first step towards solving the problem presented in Section 2, we propose an au-
tomaton that specifies unstable runs, as follows.
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We use switched systems (see e.g. [14]) to model the system depicted in Figure 1.
The switched system has two modes: (1) a mode that models the transformation of the
state variables when the processor near the sensor is using the bus and (2) a mode that
models the transformation when the bus is not used by the processor near the sensor.
See [1, 2] and the examples given in Section 6 for more details about this modeling
approach.

Formally, let A0, A1 ∈ Rn×n and c0, c1 ∈ R1×n be such that

x(t+ 1) = Aw(t)x(t);
y(t) = cw(t)x(t),

(1)

models the dynamics of the control loop depicted in Figure 1, where x(t) ∈ Rn, y(t) ∈
R are the state and the observation at time t, respectively. The infinite wordw ∈ {0, 1}ω
(called the switching sequence) is such that the processor near the sensor sends data to
the processor near the actuator at time t iff w(t) = 1. A run of the system is a solution
of the equations.

As a performance measure we choose exponential stability. The standard defini-
tion of exponential stability requires that behaviours converge to the origin faster
than a given exponentially decaying function. In [1], a system is defined to be (ρ, l)-
exponentially-stable if in every l time units the distance to the origin (norm) decreases
by a factor of ρ. In this paper we add two more parameters. Specifically, for the param-
eters 0 < ρ ≤ 1, l ∈ N and 0 < ε < δ,

Definition 1. A run of the system (1) is (ρ, l, ε, δ)-exponential-stable if ε < |x(t)| <
δ =⇒ |x(t+ l)| < ρ|x(t)| for every t ∈ N.

Namely, a run is exponentially stable if any state, in the δ-ball and not in the ε-ball
around the origin, gets closer to the origin by a factor ρ, every l steps.

In the following definition, a regular language (over an infinite alphabet) is used to
specify runs of the system that are not exponentially stable.

Definition 2. A language over the alphabetΣ = {0, 1}×R is a (ρ, l, ε, δ)-safe-monitor
for the system (1) if for every run that is not (ρ, l, ε, δ)-exponentially-stable there exists
k ∈ N such that the word 〈w(1), y(1)〉 · · · 〈w(k), y(k)〉 is in the language.

Namely, a safe-monitor is an automaton such that if an accepting state is not reached
(when the outputs and modes of the plants are fed as inputs to the automaton) then
the run is exponentially stable with the required parameters. If the accepting state is
reached then the run may not be safe. The approach that we are proposing in this paper
is to avoid accepting states and, by that, assure, for instance, exponential stability.

In the rest of this section, we give a construction of a non-deterministic automaton
whose accepted language is a (ρ, l, ε, δ)-safe-monitor called (ρ, l, ε, δ)-specification-
automaton (because it specifies (ρ, l, ε, δ)-exponentially-stable runs). Note that, while
we propose a specific construction, it is not the only (ρ, l, ε, δ)-specification-automaton.
However, we are not assuming the specific construction in the rest of the paper (only
the properties given in Definition 2).

Construction 3. Let 0 < ρ ≤ 1, l ∈ N and 0 < ε < δ be the required exponential
stability parameters.
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q0 ql

· · ·{σ1(1)} × R {σ1(2)} × Y 1
σ1(1) {σ1(l)} × Y 1

σ1(l−1)

· · ·{σ1(1)} × R {σ1(2)} × Y p
σ1(1) {σ1(l)} × Y p

σ1(l−1)

· · ·{σm(1)} × R {σm(2)} × Y 1
σm

(1) {σm(l)} × Y 1
σm

(l−1)

· · ·{σm(1)} × R {σm(2)} × Y p
σm

(1) {σm(l)} × Y p
σm

(l−1)

...
...

...

...
...

...

...
...

...

Fig. 4. A non-deterministic automaton over the alphabet {0, 1} × R such that if no prefix of
〈w(1), y(1)〉, 〈w(2), y(2)〉, . . . is accepted then any run of the system (1) with switching signal
w(1), w(2), . . . and outputs y(1), y(2), . . . is exponentially stable

– For each σ = σ(1) · · ·σ(l) ∈ {0, 1}l :
• Let Bσ be the set of all x ∈ Rn such that |Aσ(l) · · ·Aσ(1)x| ≥ ρ|x| and ε ≤
|x| ≤ δ. In words, Bσ is the set of all vectors, in the δ–ball but not in the
ε–ball, whose distance to the origin does not shrink by a factor of ρ when
the transformation Aσ(l) · · ·Aσ(1) is applied. We focus on this set because, to
guarantee exponential stability, we can make sure that whenever the current
state is in Bσ the switching signal for the next l steps is not σ. Let B1

σ, . . . , B
p
σ

be a finite cover of Bσ by compact convex sets.
• Let Y j

σ (k) := {o(k)x : x ∈ Bj
σ} where o(k) := cσ(k)Aσ(k−1) · · ·Aσ(1).

In words, Y j
σ (k) is the set of possible outputs that we may observe at time

t + k − 1 if x(t) is in Bj
σ and w(t) · · ·w(t + l − 1) = σ. Note that Y j

σ (k) is
an interval whose bounds can be effectively computed, because Bj

σ is compact
and convex.

– Let σ1, . . . , σm be the set of words of length l such that |Aσi(l) · · ·Aσi(1)| ≥ ρ, i.e.
the words such that Bσi �= ∅.

– For the switched system (1), we define a non-deterministic automaton (depicted
in Figure 4). The states of the automaton are {qi,j(k) : i = 1, . . . ,m, j =
1, . . . , p and k = 1, . . . , l− 1}∪ {q0, ql}. The transition from q0 to every qi,j(1) is
guarded by the condition w(t) = σi(1). For, k = 2, . . . , l − 1, the transition from
qi,j(k − 1) to qi,j(k) is guarded by the condition w(t) = σi(k) ∧ y(t − 1) ∈
Y j

σi
(k − 1). The transition from every qi,j(l − 1) to ql is guarded by w(t) =

σi(l) ∧ y(t− 1) ∈ Y j
σi

(l − 1). Finally, the self loops on states q0 and ql are uncon-
ditioned. The initial state is q0 and the only accepting state is ql.

– By construction, if no run of the automaton gets to F = {ql} at time t then the
product of the last l matrices takes x(t − l) closer to the origin by a factor of
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at least ρ; assuming that ε < |x(t)| < δ. In particular, since this is true for every t,
we get that the system (1) is exponentially stable.

The only non-constructive step in the above description is covering Bσ by a finite
number of compact convex sets (where σ = σ(1) · · ·σ(l) is an arbitrary word). Let
Aσ = Aσ(l) · · ·Aσ(1). Towards a cover, we explore the geometry of the set Bσ , as
depicted in Figure 5. Consider the sphere Sδ = {x ∈ Rn : |x| = δ}. The linear
transformation Aσ maps this sphere onto an ellipsoid E = {Aσx : x ∈ Sδ}. The
intersection Bσ ∩ Sδ can be visualized as two symmetric arcs on the sphere (the part
of the sphere that is mapped to the part of E that is outside of the ρδ-sphere). By
linearity, Bσ = {λx : λ ∈ [ε/δ, 1), x ∈ Bσ ∩ Sδ} which can be visualized as a pair
of two symmetric trimmed cones. Let a be the largest semi-axes of the ellipsoid E
and h be such that Aσh = a. Then, the cover is B1

σ = {x ∈ Bσ : hTx ≥ γ} and
B2

σ = {x ∈ Bσ : hTx ≤ −γ} where γ is the largest number such that these two sets
cover Bσ. In practice, one can compute h using singular value decomposition of Aσ .

Sδ

Sε
E

h

Fig. 5. A coverage of Bσ by two compact convex sets, B1
σ and B2

σ (grayed)

Example 1. Consider the system (1) where A0 =
(
−1 1/2
0 1

)
, A1 =

(
1/2 −1
1 0

)
and

c0 = c1 =
(
1/2, 1/2

)
. Let ρ = 1, l = 10, ε = 1/10, and δ = 1. Assume that

the switching signal is zero for 10 consecutive steps. A stability monitor that can only
base its decision on the switching signal (as the one considered e.g. in [1]) must accept
the run as potentially unstable because the norm of A0 to the power 10 is bigger than
one (which means that there exists x such that ‖A10

0 x‖ > ‖x‖). However, a closer ex-
amination reveals that we only have a problem if the polar angle α = tan−1(x2/x1)
of the initial state satisfies − cos−1

(
−38/

√
1973

)
≤ α ≤ − cos−1

(
18/
√

2173
)

or
cos−1

(
38/
√

1973
)
≤ α ≤ cos−1

(
−18/

√
2173

)
. The first case, corresponding to the

set B1
σ1

in the construction (considering also ε < ‖x‖ < δ), is depicted in Figure 6.
Figure 6(a) shows an over approximation of the bad set based on the first two obser-
vation, y(1) = c0x(0), y(2) = c0A0x(0). Figure 6(b) shows an over approximation of
the bad set based on the first five observation, y(1) = c0x(0), . . . , y(5) = c0A

4
0x(0).

In the automaton depicted in Figure 4, these are the initial states for which the automa-
ton will get to the third and sixth states on the first horizontal path, respectively. More
generally, the first horizontal path of the automaton corresponds to the “non determin-
istic guess” that the next 10 values of the switching signal are going to be zeroes. The
guards are designed such that the path is abandoned if this guess turns to be wrong or
the observations show that the initial state was not in B1

σ1
.
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B1
σ1

(a) Inequalities over y(1) and y(2)

B1
σ1

(b) Inequalities over y(1), . . . , y(5)

Fig. 6. Over-approximations of bad initial states by linear inequalities over the observations

4 Step II: Executable State Machine

The specification automaton, described in the preceding section allows to detect errors,
but is not directly applicable for scheduling. In this section we use the specification
automaton to obtain an executable state machine that identifies times where sending a
message from the processor near the sensor to the processor near the actuator is essential
for keeping the control-loop stable.

Towards such an executable state machine, we define some of the states of the spec-
ification automaton as bad states. Specifically, q is marked as a bad state if there is a
path q = q(1), · · · , q(k) (of arbitrary length k) from q to an accepting state and a se-
quence y1, · · · , yk−1 ∈ R such that q(i+1) ∈ δ(q(i), 〈1, yi〉) for each i = 1, . . . , k−1
(where δ is the transition function).

Since every accepting state is a bad state, avoiding bad states ensures exponential
stability. But, unlike the case for accepting states, we now have also the following prop-
erty: if q is not a bad state then all the states in δ(q, 〈1, y〉) are not bad, for any y. This
property is useful for scheduling because it means that we can always avoid a transition
to a bad state by scheduling mode 1. Note that we are assuming that the initial state is
not bad. This assumption makes sense because if the initial state is already bad, we will
not get the required stability even if the bus is dedicated to the control loop. Practically,
we are assuming that the control design is such that the requirements are met when the
bus is always available.

An executable state machine is obtained by simulating the automaton. For a finite
trace T = 〈w(1), y(1)〉, . . . , 〈w(t − 1), y(t − 1)〉 of the system (1), the state of the
state-machine, at time t, is the set δ∗(q0, T ) ⊆ Q consisting of the end states of all
runs of the automaton up to time t. We say that the state-machine is in a must state
if choosing w(t) = 0 will make that state contain a bad state of the automaton. As
the transition from a state that is not bad to a bad state is conditioned on w(t) = 0
(otherwise the source is also bad), we are guaranteed that we can avoid bad states by
scheduling mode 1 whenever the executable state machine (described in the previous
section) is in a must state.

Note that our approach can be directly generalized to any number of concurrent
control loops. Imagine, for example, a second control loop (another triplet of sensor,
actuator and plant) that shares the same bus for communicating data from sensor to
actuator. In this case, the scheduler of each loop is going to get to a must state if it must
send in one of the next two communication slots.
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5 Step III: Stateful Priority Assignment

The executable state machine, described in the previous section, detects times when
sending a message is essential (when the machine is in a must state), but it does so in
a centralized manner. In this section we discuss an implementation of it using priority
based bus arbitration.

For implementation, we propose the use of priority based bus arbitration, but, instead
of assigning priorities to nodes or to message types, we propose to assign priorities to
states of the scheduler. Specifically, the priority of a message from the processor near
the sensor to the processor near the actuator is high when the scheduler is in a must
state and low otherwise.

Assigning priorities to messages based on system state has not been considered so
far, because the developer must assure that, at any point in time, each priority level is
used by at most one node. In this paper, a formal model (automaton) assist the developer
in guaranteeing this property for large, complex systems.

Using CAN. Controller Area Network (CAN) [6] is the most widespread priority based
networking technology for control applications. It provides eleven or 29 bits for encod-
ing an unsigned integer priority level for individual messages and requires two wires
for the physical communication layer. One wire implements the dominant bits while
the other implements recessive bits. Using a logical-AND between those two bits, the
bus implements a bit-wise arbitration mechanism, which allows the winning node to
continue sending its message during the arbitration.

The first step, towards applying CAN, is to annotate the transitions of the sched-
uler with priorities (highest and lowest), as follows: if the scheduler is in a must state
at time t, then it will have the highest priority. All other transitions in the scheduler
get assigned some value other than the highest priority level. The second step is to
assign priorities to background applications. The specific priorities assigned the back-
ground applications and the sensor can be tweaked to fit bandwidth defined by λ (see
Section 6).

Note that implementing our approach with CAN requires no extra hardware. With
eleven bits, the control engineer can assign 2046 priority levels (one for broadcast),
which means that the control application uses the priority levels 0x07FF and 0x001.
This leaves plenty of additional priorities for background applications. Using 29 bits
raises this range even further.

Our approach assigns different priorities to the same message depending on the mes-
sage context—high priority if the message is important, low priority if it is unimpor-
tant. In priority-driven arbitration such as CAN, nodes that simultaneously access the
bus must use different priorities, otherwise the bus arbitration will fail and cause data
corruption. Our approach still follows this rule, because instead of assigning one prior-
ity level to a message, we assign two. Both priority levels are exclusively used for this
message. A straightforward way to extend our approach is to share priorities among
messages and use formal verification of the schedulers to guarantee that two schedulers
never use the same message priority at the same time.
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6 Step IV: Testing and Validation

In this section we revisit the initial example, provide more technical details on con-
troller and scheduler designs and present some performance analysis that illustrates the
advantages and disadvantages of our approach.

Controller Design. As a specific example, we examine how an LQG controller can be
implemented with the architecture depicted in Figure 1, above, where a shared commu-
nication bus separates the processor near the sensor from the processor near the actuator.
The control loop is designed as a switched system with the following two modes.

Figure 7(a) shows the feedback mode, active when the processor near the sensor
sends data on the bus. The matrices Ap, Bp, Cp model the controlled plant and the
matrices Ac, Bc, Cc are computed using a standard technique for LQG design (e.g., by
MATLAB’s [17] lqg command).

x+
p = Apxp + Bpu y = Cpxp

x+
c = Acxc + Bcyu = Ccxc

Actuation Estimation

Plant Sensor

xp

y

xc

u

(a) Feedback Mode

x+
p = Apxp + Bpu

x+
c = Apxc + Bpuu = Ccxc

Actuation Simulation

Plant

xc

u

(b) Feedforward Mode

Fig. 7. Two modes of the control loop. The feedback mode, active when processor near the sensor
sends data to the processor near the actuator, is a full LQG based feedback. In the feedforward
mode, data is not sent. Instead, the processor near the actuator simulates the dynamics of the plant
based on earlier data.

The second mode of the controller corresponds to times at which the processor near
the sensor does not transmit its reading. In these times, the processor near the actuator
simulates the dynamics of the plant. Figure 7(b) shows this second mode. A simulation
block replaces the estimation block and the output of the plant remains unused (because
data is not sent).

The composition of the system with the controller modes results in the closed-loop

switched system described by equation (1), where A0 =
(
Ap BpCc

0 Ap +BcCp

)
, A1 =(

Ap BpCc

BcCp Ac

)
and x(t) = (xT

p , x
T
c )T . The switching signal w ∈ {0, 1}N is such that

w(t) is one iff the processor near the sensor sends data to the processor near the actuator
at time t.

As an example, consider the plant ẋp =
(
−1 1
1 −1

)
xp +

(
1
0

)
u, y = (0, 1)xp. In

MATLAB, the matrices A0 and A1 can be computed as follows: (1) get a discrete-
time model using c2d, (2) compute an LQG compensator using lqg. The closed loop
matrices obtained by this procedure (using Ts = 1 and QXU = QWV = .1) are:
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A1 =

⎛⎜⎜⎝
0.568 0.432 −0.357 −0.339
0.432 0.568 −0.142 −0.134

0 0.412 0.210 −0.319
0 0.461 0.291 −0.028

⎞⎟⎟⎠ and A0 =

⎛⎜⎜⎝
0.568 0.432 −0.357 −0.339
0.432 0.568 −0.142 −0.134

0 0 0.210 0.094
0 0 0.291 0.433

⎞⎟⎟⎠ .
The network is scheduled based on the difference between the output and the estimated
output, i.e., c0 = c1 = (0, 1, 0,−1).

Scheduling Scheme. As described in Section 2, the parameter λ specifies the fraction
of slots that the processor near the sensor should leave for background applications. To
achieve this requirement, we propose the following scheduling scheme. The executable
state machine, described in Section 4, is used in the following way. If the machine is
at a must state, the processor near the sensor sends data unconditionally. Otherwise,
a Bernoulli trial with 1 − λ probability of successes is conducted and a message is
sent only if the experiment successes. The input to state-machine is the sequence of
decisions of the processor near the sensor and the output of the plant.

This scheduling scheme respects both λ and the needs of the control loop. The pa-
rameter λ determines the likelihood of using the bus when the conditions of the control
loop allow not to. Note that an implementation of this scheme in a distributed environ-
ment means that decisions are made at the processor near the sensor. This may require
the processor near the sensor to also compute the estimation as the processor near the
actuator does, to get the estimated output.

Simulation Data. To test our approach, the automaton described in Section 3 is con-
structed with the parameters l = 15, δ = 1, ε = .1, ρ = 1 and the matrices A0 and A1
above.

The graphs in Figure 8(a) show how our approach allows dynamic adaptation of
control performance. The plots demonstrate an improvement in control performance
(faster convergence) when the competition for resources is lower (smaller values of λ).
This type of adaptation is not achievable with static scheduling, when the schedule is
planned only for the worst-case scenario.

In another experiment, we executed the scheduler with the parameter λ = 0, and
injected random noise to the control system at irregular intervals. The plot in Figure 8(b)
shows that the network is only used some time after each disturbance. The upper part
shows the network bandwidth used by the control loop and the lower part shows the
introduced disturbances. Static approaches (including the one described in [1, 2]) that
do not use the output of the plant to direct scheduling decisions cannot achieve this type
of dynamic adaptation.

The conclusion from the simulations is that our approach to scheduling gives best
benefits for systems that operates in dynamic conditions. While static scheduling may
give good results for systems with constant network load and evenly distributed distur-
bances, our approach delivers better performance when varying load and disturbances
that come in irregular bursts are present.

Integration Into Simulink. Simulink is the de-facto standard for modeling and
analysing control system. We integrate our guarded automata approach into Simulink
via the Network Code Machine extension [9] in the TrueTime library. TrueTime [7]
is a Simulink simulator library for embedded and networked control systems. It can
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Fig. 8. Simulation results showing how dynamic scheduling allows adjusting control performance
to network availability and adjusting network usage to control needs

simulate a number of different communication arbitration mechanisms. We extended
the TrueTime library with a block for the Network Code Machine, which takes a node
identifier as input and provide access to the network to the specified node. Our exten-
sion is available on the project web site and is planned to be part of the next major
TrueTime release.

Figure 9 provides a sample model that shows how to run the original model shown
in Figure 1 in this Simulink environment. The left part shows the control application
with the actuator, plant, and sensor blocks. The middle shows the networking part con-
sisting of the TrueTime Network, the messaging and reception blocks. The Guarded
Automaton-based Scheduler block and the Network Code Machine block also belong

Fig. 9. Guarded automaton in Simulink with TrueTime and Network Code Machine
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to the network part. The former implements the (ρ, l, ε, δ)-specification-automaton as
a state machine and the latter is an S-function extension for TrueTime to schedule the
networked as specified in the automaton. The right side of the figure shows background
application.

7 Related Work

Methodology. The concept of automata-based scheduling was introduced in [1] and [2]
in the context of CPU scheduling. The main contribution of the current paper over the
previous work on automata based scheduling is that it studies the use of guards as a way
to direct the schedules based on dynamic data.

Another, more technical, contribution is the elimination of the need to determinize
the automaton. In [1] and [2], the proposed methodologies involve computing an au-
tomaton similar (in spirit) to the automaton depicted in Figure 4 and then determinizing
it. As determinization does not scale, this paper proposes a direct way of using the
non-deterministic automaton for scheduling. Determinization is especially problematic
with guarded automata, because they usually have more states and because the formal
language they induce is over an infinite alphabet (the real numbers).

The concept of automata-based scheduling generalizes tree schedules [9]. The main
structural difference is that tree schedules require the underlying structure to be a tree
resulting in periodic resets to the root location. While the work on tree schedules mainly
concentrated on analyzing [3], composing [4], verifying, and implementing [9] them,
this work concentrates on the generation of schedulers.

Network Control Systems. Form the control perspective, the insertion of communica-
tion networks in the control loop is usually viewed as a source of random time delays
and information loss (see e.g., [7, 5, 11, 15, 22, 26]). For scheduling, this view leads to
mechanisms such as [18, 23], where a periodic schedule that can cope with the worst
case delays is proposed. Our approach views the network as a shared resource. Partic-
ularly, we do not view the other users of the network as introducing random delays but
as components of the system that we need to take into consideration. This perspective
allows more efficient use of the resource.

Communication Arbitration. In distributed control systems, nodes must access the
network mutually exclusively. The dominating approaches use either temporal isolation
or priority-based mechanisms. System such as the TTA [13], TTCAN [10], or FTT-
CAN [8] provide temporal isolation where each node accesses the network at predefined
time slots. Our approach follows a similar line in that it uses temporal isolation in its
TDMA scheme. However, in contrast to works such as the TTA and TT-Ethernet [21],
our approach uses temporal isolation to synchronize steps in the automata and then uses
priority-based arbitration for resource contentions instead of globally defined schedules.

Common architectures using priority-based mechanisms for resolving resource con-
tentions either assign priorities to individual nodes or to individual messages. It is
mandatory that each concurrent access must use a unique priority level, because other-
wise the collision-avoidance mechanism will fail. Thus, the common architectures such
as CANopen usually use a static global database assigning each message its unique
priority. Our approach differs from such architectures in that we assign individual
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priorities to messages based on the context of the application; meaning as a message
becomes more important to the application, its priority level changes. Although the
method sounds intuitive and simple, prior approaches had to rely on a quasi-static as-
signments of priority levels to nodes or messages, because dynamic assignment must
guarantee unique priority levels. Our system can guarantee this, because we can stat-
ically check whether two nodes on the same network will ever try to communicate
simultaneously with the same priority level.

8 Conclusions and Future Work

We proposed a dynamic scheduling scheme for network control systems. The main idea
is using automata with guards to decide resource assignments—in our case network
slots. The work contains a full walk through the development process comprising of:

1. Specifying stability parameters as high-level performance requirements.
2. Generating an automaton that specifies traces of the system implying that the re-

quirements are not met.
3. Constructing a scheduler state-machine that guarantees avoidance of the specified

traces.
4. Implementing the scheduler with priority-based congestion arbitration.

The approach is demonstrated with experiments that show its advantages compared
to standard approaches and previous work. Furthermore, the experimental data demon-
strates the unique ability of our approach to adjust the priority level to its context and
stay verifiable: after disturbances the control application requires more bandwidth to
adjust the plant and therefore uses elevated priority levels. While during calm opera-
tions the priority levels remain low. Future work can look into multiple-output systems,
more elaborate guards on the specification automaton and more sophisticated, possibly
optimal, construction algorithms for the scheduler.
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Abstract. This paper introduces Periodically Controlled Hybrid Au-
tomata (PCHA) for describing a class of hybrid control systems. In a
PCHA, control actions occur roughly periodically while internal and in-
put actions may occur in the interim changing the discrete-state or the
setpoint. Based on periodicity and subtangential conditions, a new suf-
ficient condition for verifying invariance of PCHAs is presented. This
technique is used in verifying safety of the planner-controller subsystem
of an autonomous ground vehicle, and in deriving geometric properties
of planner generated paths that can be followed safely by the controller
under environmental uncertainties.

1 Introduction

Alice, an autonomous vehicle built at Caltech, successfully accomplished two of
the three tasks at the National Qualifying Event of the 2007 DARPA Urban
Challenge [4], [17], [5]. In executing the third task, which involved making left-
turns while merging into traffic, its behavior was unsafe and almost led to a
collision. Alice was stuck at the corner of a sharp turn dangerously stuttering in
the middle of an intersection.

This behavior, it was later diagnosed, was caused by bad interactions between
the reactive obstacle avoidance subsystem (ROA) and the relatively slowly re-
acting path planner . The planner incrementally generates a sequence of way-
points based on the road map, obstacles, and the mission goals. The ROA
is designed to rapidly decelerate the vehicle when it gets too close to (possi-
bly dynamic) obstacles or when the deviation from the planned path gets too
large. Finally, for protecting the steering wheel, Alice’s low-level controller lim-
its the rate of steering at low speeds. Thus, accelerating from a low speed, if
the planner produces a path with a sharp left turn, the controller is unable
to execute the turn closely. Alice deviates from the path; the ROA activates
and slows it down. This cycle continues leading to stuttering. For avoiding
this behavior, the planner needs to be aware of the constraints imposed by the
controller.

Finding this type of design bugs in hybrid control systems is important and
challenging. While real world hybrid systems are large and complex, they are also
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engineered, and hence, have more structure than general hybrid automata [1].
Although restricted subclasses that are amenable to algorithmic analysis have
been identified, such as rectangular-initialized [6], o-minimal [8], planar [13],
and stormed [15] hybrid automata, they are not representative of restrictions
that arise in engineered systems. With the motivation of abstractly capturing
a common design pattern in hybrid control systems, such as Alice, and other
motion control systems [11], in this paper, we study a new subclass of hybrid
automata. Two main contributions of this paper are the following:

First, we define a class of hybrid control systems in which certain control
actions occur roughly periodically. Each control action sets the controlling input
to the plant or the physical process. In the interval between two consecutive
control actions, the state of the system evolves continuously and discretely, but
the control input remains constant. In particular, discrete state changes triggered
by an external source may changes the waypoint or the set-point of the controller,
which in turn may influence the computation of the next control input. For this
class of periodically controlled hybrid systems, we present a sufficient condition
for verifying invariant properties. The key requirement in applying this condition
is to identify subset(s) C of the candidate invariant set I, such that if the control
action occurs when the system state is in C, then the subsequent control output
guarantees that the system remains in I for the next period. The technique does
not require one to solve the differential equations, instead, it relies on checking
conditions on the periodicity and the subtangential condition at the boundary
of I. We are currently exploring the possibility of automating such checks using
quantifier elimination [3] and optimization [14].

Secondly, we apply the above technique to verify a sequence of invariant prop-
erties of the planner-controller subsystem of Alice. From these invariants, we are
able to deduce safety. That is, the deviation —distance of the vehicle from the
planned path—remains within a certain constant bound. In the process, we also
derive geometric properties of planner paths that guarantee that they can be
followed safely by the vehicle.

The remainder of the paper is organized as follows: In Section 2 we briefly
present the key definitions for the hybrid I/O automaton framework. In Section 3
we present PCHA and a sufficient condition for proving invariance. In Sections 4
and 5 we present the formal model and verification of Alice’s Controller-Vehicle
subsystem. Owing to limited space, complete proofs for identifying the class of
safe planner paths appear in the full version of the paper available from [16].

2 Preliminaries

We use the Hybrid Input/Output Automata (HIOA) framework of [9,7] for mod-
eling hybrid systems and the state model-based notations introduced in [10]. A
Structured Hybrid I/O Automaton (SHIOA) is a non-deterministic state ma-
chine whose state may change instantaneously through a transition, or continu-
ously over an interval of time following a trajectory.

Let V be a set of variables. Each variable v ∈ V is associated with a type.
The set of valuations of V is denoted by val(V ). For a valuation v ∈ V al(V )
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of set of variables V , its restriction to a subset of variables Z ⊆ V is denoted
by v � Z. A variable may be discrete or continuous . A trajectory for a set of
variables V models continuous evolution of the values of the variables over an
interval of time. Formally, a trajectory τ is a map from a left-closed interval of
R≥0 with left endpoint 0 to val(V ). The domain of τ is denoted by τ.dom. The
first state of τ , τ.fstate, is τ(0). A trajectory τ is closed if τ.dom = [0, t] for some
t ∈ R≥0, in which case we define τ.ltime

∆= t and τ.lstate ∆= τ(t). For a trajectory
τ for V , its restriction to a subset of variables Z ⊆ V is denoted by τ ↓ Z.

For given sets of input U , output Y , and internal X variables, a state model
S is a triple (F , Inv, Stop), where (a) F is a collection of Differential and
Algebraic Inequalities (DAIs) involving the continuous variables in U, Y, and X ,
and (b) Inv and Stop are predicates onX called invariant condition and stopping
condition of S. Components of S are denoted by FS , InvS and StopS . S defines
a set of trajectories, denoted by traj(S), for the set of variables V = X ∪U ∪Y .
A trajectory τ for V is in the set trajs(S) iff (a) the discrete variables in X ∪ Y
remain constant over τ ; (b) the restriction of τ on the continuous variables in
X ∪ Y satisfies all the DAIs in FS ; (c) at every point in time t ∈ dom(τ),
(τ ↓ X)(t) ∈ Inv; and (d) if (τ ↓ X)(t) ∈ Stop for some t ∈ dom(τ), then τ is
closed and t = τ.ltime.
Definition 1. A Structured Hybrid I/O Automaton (SHIOA) A is a tuple
(V,Q,Q0, A,D,S ) where (a) V is a set of variables partitioned into sets of
internal X , output Y and input U variables; (b) Q ⊆ val(X) is a set of states
and Q0 ⊆ Q is a nonempty set of start states; (c) A is a set of actions partitioned
into sets of internal H , output O and input I actions; (d) D ⊆ Q× A×Q is
a set of discrete transitions; and (e) S is a collection of state models for U , Y ,
and X, such that for every S,S′ ∈ S , InvS∩InvS′ = ∅ and Q ⊆

⋃
S∈S InvS . In

addition, A satisfies: E1 Every input action is enabled at every state. E2 Given
any trajectory υ of the input variables U , any S ∈ S , and x ∈ InvS , there exists
τ ∈ trajs(S) starting from x, such that either (a) τ ↓ U = υ, or (b) τ ↓ U is a
proper prefix of υ and some action in H ∪O is enabled at τ.lstate.

For a set of state variables X , a state x is an element of V al(X). We denote
the valuation of a variable y ∈ X at state x, by the usual (.) notation x.y. A
transition (x, a,x′) ∈ D is written in short as x a→A x′ or as x a→ x′ when A is
clear from the context. An action a is said to enabled at x if there exists x′ such
that x a→ x′. We denote the components of a SHIOA A by XA, YA, etc.

An execution of A records the valuations of all its variables and the occur-
rences of all actions over a particular run. An execution fragment of A is a finite
or infinite sequence α = τ0a1τ1a2 . . . such that for all i in the sequence, ai ∈ A,
τ ∈ trajs(S) for some S ∈ S , and τi.lstate

ai+1→ τi+1.fstate. An execution frag-
ment is an execution if τ0.fstate ∈ Q0. An execution is closed if it is finite and
the last trajectory in it is closed. The first state of α, α.fstate, is τ0.fstate, and
for a closed α, its last state, α.lstate, is the last state of its last trajectory. The
limit time of α, α.ltime, is defined to be

∑
i τi.ltime. The set of executions and

reachable states of A are denoted by ExecsA and ReachA. A set of states I ⊆ Q
is said to be an invariant of A iff ReachA ⊆ I.
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3 Periodically Controlled Hybrid Systems

In this section, we define a subclass of SHIOAs frequently encountered in appli-
cations involving sampled control systems and embedded systems with periodic
sensing and actuation. The main result of this section, Theorem 1, gives a suffi-
cient condition for proving invariant properties of this subclass.

A Periodically Controlled Hybrid Automaton (PCHA) is an SHIOA with a set
of (control) actions which occur roughly periodically. For the sake of simplicity,
we consider the PCHAs of the form shown in Figure 1, however, Theorem 1
generalizes to PCHAs with other input, output, and internal actions.

Let X ⊆ Rn, for some n ∈ N, and L,Z, and U be arbitrary types. Four key
variables of PCHA A are (a) continuous state variable s of type X , initialized
to x0, (b) discrete state (location or mode) variable loc of type L, initialized to
l0, (c) command variable z of type Z, initialized to z0, and (d) control variable
u of type U , initialized to u0. The now and next variables together trigger the
control action periodically.

PCHA A has two types of actions: (a) through input action update A learns
about new externally produced input commands such as set-points, waypoints.
When an update(z′) action occurs, z′ is recorded in the command variable z.
(b) The control action changes the control variable u. This action occurs roughly
periodically starting from time 0; the time gap between two successive occur-
rences is within [∆1, ∆1 +∆2] where ∆1 > 0, ∆2 ≥ 0. When control occurs, loc
and s are computed as a function of their current values and that of z, and u is
computed as a function of the new values of loc and s.

For each l ∈ L the continuous state s evolves according to the trajectories
specified by state model smodel(l), i.e., according to the differential equation
ṡ = fl(s, u). The timing of control behavior is enforced by the precondition of
control and the stopping condition of the state models.

Describing and proving invariants. Given a candidate invariant set I ⊆ Q, we
are interested in verifying that ReachA ⊆ I. For continuous dynamical systems,
checking the well-known subtangential condition (see, for example [2]) provides a

1signature
internal control, input update(z′ : Z)

3

variables
5internal s : X := x0

internal discrete loc : L := l0,
7z : Z := z0, u : U := u0

internal now : R≥0 := 0,
9next : R≥0 := −∆2

11transitions
input update(z′)

13eff z := z′

internal control
2pre now ≥ next

eff next := now + ∆1
4〈loc, s 〉:= h(loc, s, z); u := g(loc, s)

6trajectories
trajdef smodel(l : L)

8invariant loc = l
evolve d(now) = 1; d(s) = fl(s, u)

10stop when now = next + ∆2

Fig. 1. PHCA with parameters ∆1, ∆2, g, h, {fl}l∈L. See, for example, [10] for the
description of the language
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sufficient condition for proving invariance of a set I that is bounded by a closed
surface. Theorem 1 provides an analogous sufficient condition for PCHAs. In
general, however, invariant sets I for PCHAs have to be defined by a collection
of functions instead of a single function. For each mode l ∈ L, we assume that
the invariant set Il ⊆ X for the continuous state is defined by a collection of
m boundary functions {Flk}mk=1, where m is some natural number and each
Flk : X → R is a differentiable function1. Formally,

Il
∆= {s ∈ X | ∀k ∈ {1, . . . ,m}, Flk(s) ≥ 0} and I ∆= {x ∈ Q| x.s ∈ Ix.loc}.

Note that I does not restrict the values of the command or the control variables.
Lemma 1 modifies the standard inductive technique for proving invariance, so
that it suffices to check invariance with respect to Control transitions and Control-
free execution fragments. The proof appears in the full version [16].

Lemma 1. Suppose Q0 ⊆ I and the following two conditions hold:

(a) (Control steps) For each state x,x′ ∈ Q, if x control→ x′ and x ∈ I then x′ ∈ I,
(b) (Control-free fragments) For each closed execution fragment β =

τ0 update(z1) τ1 update(z2) . . . τn starting from a state x ∈ I where each
zi ∈ Z, if x.next− x.now = ∆1 and β.ltime ≤ ∆1 +∆2, then β.lstate ∈ I.

Then ReachA ⊆ I.

Invariance of control steps can often be checked through case analysis which
can be partially automated using a theorem prover [12]. The next key lemma
provides a sufficient condition for proving invariance of control-free fragments.
Since, control-free fragments do not change the valuation of the loc variable, for
this part, we fix a value l ∈ L. For each j ∈ {1, . . .m}, we define the set ∂Ij
to be part of the set Il where the function Flj vanishes. That is, ∂Ij

∆= {s ∈
X | Flj(s) = 0}. In this paper, we call ∂Ij the jth boundary of Il even though
strictly speaking, the jth boundary of Il is only a subset of ∂Ij according on
the standard topological definition. Similarly, we say that the boundary of Il, is
∂Il =

⋃
j∈{1,...,m} ∂Ij .

Lemma 2. Suppose that there exists a collection {Cj}mj=1 of subsets of Il such
that the following conditions hold:

(a) (Subtangential) For each s0 ∈ Il \Cj and s ∈ ∂Ij, ∂Flj(s)
∂s · fl(s, g(l, s0)) ≥ 0.

(b) (Bounded distance) ∃ cj > 0 such that ∀ s0 ∈ Cj , s ∈ ∂Ij, ||s− s0|| ≥ cj.
(c) (Bounded speed) ∃ bj > 0 such that ∀ s0 ∈ Cj , s ∈ Il, ||fl(s, g(l, s0))|| ≤ bj,
(d) (Fast sampling) ∆1 +∆2 ≤ minj∈{1,...,m}

cj

bj
.

Then, any control-free execution fragment starting from a state in Il where next−
now = ∆1, remains within Il.

1 Identical size m of the collections simplifies our notation; different number of bound-
ary functions for different values of l can be handled by extending the theorem in
an obvious way.
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In Figure 2, the control and control-free fragments
are shown by bullets and lines. A fragment starting
in I and leaving I, must cross ∂I1. Condition (a)
guarantees that if u is evaluated outside C1, then the
fragment does not leave Il because when it reaches
∂I1, the vector field governing its evolution points
inwards with respect to ∂I1. For a fragment start-
ing inside C1, condition (b) and (c) guarantee that
it takes finite time before it reaches ∂I1 and condi-
tion (d) guarantees that this finite time is at least
∆1 +∆2; thus, before the trajectory crosses ∂I1, u
is evaluated again.

C

Il

c

1

1

Fig. 2. An illustration for
Lemma 2 with m = 1

Proof. We fix a control-free execution fragment β = τ0update(z1)τ1
update(z2) . . . τn such that at β.fstate, next− now = ∆1. Without loss of gener-
ality we assume that at β.fstate, z = z1, loc = l, and s = x1, where z1 ∈ Z, l ∈ L
and x1 ∈ Il. We have to show that at β.lstate, s ∈ Il.

First, observe that for each k ∈ {0, . . . , n}, (τk ↓ s) is a solution of the
differential equation(s) d(s) = fl(s, g(l, x1)). Let τ be the pasted trajectory τ0 


τ1

. . . τn

2. Let τ.ltime be T . Since the update action does not change s, τk.lstate �
s = τk+1.fstate � s for each k ∈ {0, . . . , n− 1}. As the differential equations are
time invariant, (τ ↓ s) is a solution of d(s) = fl(s, g(l, x1)). We define the function
γ : [0, T ]→ X as ∀ t ∈ [0, T ], γ(t) ∆= (τ ↓ s)(t). We have to show that γ(T ) ∈ Il.
Suppose, for the sake of contradiction, that there exists t∗ ∈ [0, T ], such that
γ(t∗) �∈ Il. By the definition of Il, there exists i such that Fli(γ(0)) ≥ 0 and
Fli(γ(t∗)) < 0. We pick one such i and fix it for the remainder of the proof.
Since Fli and γ are continuous, from intermediate value theorem, we know that
there exists a time t1 before t∗ where Fli vanishes and that there is some finite
time ε > 0 after t1 when Fli is strictly negative. Formally, there exists t1 ∈ [0, t∗)
and ε > 0 such that for all t ∈ [0, t1], Fli(γ(t)) ≥ 0 and Fli(γ(t1)) = 0 and for all
δ ∈ (0, ε], Fli(γ(t1 + δ)) < 0.

Case 1: x1 ∈ Il \Ci. Since Fli(γ(t1)) = 0, by definition, γ(t1) ∈ ∂Ii. But from
the value of Fli(γ(t)) where t is near to t1, we get that ∂Fli

∂t (t1) = ∂Fli

∂s (γ(t1)) ·
fl(γ(t1), g(l, x1)) < 0. This contradicts condition (a).

Case 2: x1 ∈ Ci. Since for all t ∈ [0, t1], Fli(γ(t)) ≥ 0 and Fli(γ(t1)) = 0, we
get that for all t ∈ [0, t1], γ(t) ∈ Il and γ(t1) ∈ ∂Ii. So from condition (b) and
(c), we get ci ≤ ‖γ(t1)− x1‖ =

∥∥∥∫ t1
0 fl(γ(t), g(l, x1))dt

∥∥∥ ≤ bit1. That is, t1 ≥ ci

bi
.

But we know that t1 < t∗ ≤ T and periodicity of Control actions T ≤ ∆1 +∆2.
Combining these, we get ∆1 +∆2 >

ci

bi
which contradicts condition (d).

For PCHAs with certain properties, the following lemma provides sufficient con-
ditions for the existence of the bounds bj and cj which satisfy the bounded
distance and bounded speed conditions of Lemma 2.

2 τ1
� τ2 is the trajectory obtained by concatenating τ2 at the end of τ1.
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Lemma 3. For a given l ∈ L, let Ul = {g(l, s) | l ∈ L, s ∈ Il} ⊆ U and suppose
Il is compact and fl is continuous in Il×Ul. The bounded distance and bounded
speed conditions (of Lemma 2) are satisfied if Cj ⊂ Il satisfies the following
conditions: (a) Cj is closed, and (b) Cj ∩ ∂Ij = ∅.

Theorem 1 combines the above lemmas.

Theorem 1. Consider a PCHA A and a set I ⊆ QA. Suppose Q0A ⊆ I, A sat-
isfies control invariance condition of Lemma 1, and conditions (a)-(d) of Lemma
2 for each l ∈ LA. Then ReachA ⊆ I.

Although the PCHA of Figure 1 has one action of each type, Theorem 1 can
be extended for periodically controlled hybrid systems with arbitrary number
of input and internal actions. For PCHAs with polynomial vector-fields, given
the semi-algebraic sets Il and Cj , checking condition (a) and finding the cj and
bj which satisfy conditions (b) and (c) of Lemma 2 can be formulated as a
sum-of-squares optimization problem (provided that Cj and Il \ Cj are basic
semi-algebraic sets) or as an emptiness checking problem for a semi-algebraic
set. We are currently exploring the possibility of automatically checking these
conditions using SOSTOOLS [14] and QEPCAD [3].

4 System Model

In this section, we describe a subsystem of an autonomous ground vehicle (Alice)
consisting of the physical vehicle and the controller (see, Figure 3(a)). Vehicle
captures its the position, orientation, and the velocity of the vehicle on the
plane. Controller receives information about the state of the vehicle and period-
ically computes the input steering (φ) and the acceleration (a). Controller also
receives an infinite3 sequence of waypoints from a Planner and its objective is
to compute a and φ such that the vehicle (a) remains within a certain bounded
distance emax of the planned path, and (b) makes progress towards successive
waypoints at a target speed. Property (a) together with the assumption (possibly
guaranteed by Planner) that all planned paths are at least emax distance away
from obstacles, imply that the Vehicle does not collide with obstacles. While the
Vehicle makes progress towards a certain waypoint, the subsequent waypoints
may change owing to the discovery of new obstacles, short-cuts, and changes
in the mission plan. Finally, the Controller may receive an externally triggered
brake input, to which it must react by slowing the vehicle down.

Vehicle. The Vehicle automaton of Figure 3 specifies the dynamics of the au-
tonomous ground vehicle with acceleration (a) and steering angle (φ) as inputs.
It has two parameters: (a) φmax ∈ (0, π

2 ] is the physical limit on the steering
angle, and (b) L is the wheelbase. The main output variables of Vehicle are (a)
x and y coordinates of the vehicle with respect to a global coordinate system,
3 The verification technique can be extended in an obvious way to handle the case

where the vehicle has to follow a finite sequence of waypoints and halt at the end.
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Planner

Controller

Vehicle

plan(p)

a, φ
x, y

θ, v

brake(b)

vehicle

p[seg]

p[seg + 1]

current seg.

θ

e2

e
1

d

1variables
output x: R:= x0; y: R:= y0;

3θ: R:= θ0; v: R:= v0
input a, φ: R

5

trajectories
7evolve d(x) = v cos(θ)

d(y) = v sin(θ)
9if |u.φ| ≤ φmax

then d(θ) = v
L tan(φ)

11else d(θ) = v
L tan( φ

|φ|φmax) fi
if v > 0 ∨ a ≥ 0

13then d(v) = a
else d(v) = 0 fi

Fig. 3. (a) Planner-Controller system. (b) Deviation & disorientation. (c) Vehicle.

(b) orientation θ of the vehicle with respect to the positive direction of the x
axis, and (c) vehicle’s velocity v. These variables evolve according to the dif-
ferential equations of lines 7–14. If the input steering angle φ is greater than
the maximum limit φmax then the maximum steering in the correct direction
is applied. The acceleration can be negative only if the velocity is positive, and
therefore the vehicle cannot move backwards. The controller ensures that the
input acceleration is always within such a bound.

Controller. Figure 4 shows the SHIOA specification of the Controller automaton
which reads the state of the Vehicle periodically and issues acceleration and
steering outputs to achieve the aforementioned goals.

Controller is parameterized by: (a) the sampling period ∆ ∈ R+ , (b) the
target speed vT ∈ R≥0, (c) proportional control gains k1, k2 > 0, (d) a constant
δ > 0 relating the maximum steering angle and the speed, and (e) maximum
and braking accelerations amax > 0 and abrake < 0. Restricting the maximum
steering angle instead of the maximum steering rate is a simplifying but con-
servative assumption. Given a constant relating the maximum steering rate and
the speed, there exists δ as defined above which guarantees that the maximum
steering rate requirement is satisfied.

A path is an infinite sequence of points p1, p2, . . . where pi ∈ R2, for each i. The
main state variables of Controller are the following: (a) brake and new path are
command variables, (b) path is the current path being followed by Controller,
(c) seg is the index of the last waypoint visited in the current path. That is,
path[seg + 1 ] is the current waypoint. The straight line segment joining path[seg]
and path[seg + 1 ] is called the current segment . (d) deviation e1 is the signed
perpendicular distance of the vehicle to the current segment (see, Figure 3(b)).
(e) disorientation e2 is the difference between the current orientation of the
vehicle (θ) and the angle of the current segment. (f) waypoint-distance d is the
signed distance of the vehicle to the current waypoint measured parallel to the
current segment.

The brake(b) action is an externally controlled input action which informs the
Controller about the application of an external brake (b = On) or the removal of
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signature
2input plan(p:Seq[R]), brake(b:{On,Off})

internal main

4

variables
6input x, y, θ, v: R

output a, φ: R := (0, 0)
8internal brake: {On, Off} := Off

path: Seq[R2] := arbitrary, seg: N := 1
10new path: Seq[R2] := path

e1, e2, d : R := [e1,0, e2,0, d0 ]
12now: R := 0; next:R≥0 := 0

14transitions
input plan(p) eff new path := p

16

input brake(b) eff brake := b
18

internal main

20pre now = next
eff next := now + ∆

22if path �= new path ∨ d ≤ 0 then
if path �= new path

24then seg := 1; path := new path

elseif d ≤ 0
26then seg := seg + 1 fi

let p =

[
path[seg + 1].x − path[seg].x

path[seg + 1].y − path[seg].y

]

28q =

[
path[seg + 1].y − path[seg].y

−(path[seg + 1].x − path[seg].x)

]

r =

[
path[seg + 1].x − x

path[seg + 1].y − y)

]
30e1 := 1

‖q‖ q · r; e2 := θ − ∠p

d := 1
‖p‖ p · r fi

32

let φd = −k1 e1 − k2 e2

34φ = φd
|φd| min(δ × v, |φd|)

36if brake = On then a := abrake

elseif brake = Off ∧ v < vT

38then a := amax else a := 0 fi

40trajectories
d(now) = 1; d(d) = -v cos(e2)

42d(e1) = v sin(e2); d(e2) = v
L tan(φ)

stop when now = next

Fig. 4. Controller with parameters vT ∈ R≥0, k1, k2, δ,∆ ∈ R+ and abrake < 0

the brake (b = Off ). When brake(b) occurs, b is recorded in brake. The plan(p)
action is controlled by the external Planner and it informs the Controller about
a newly planned path p. When this action occurs, the path p is recorded in
new path. The main action occurs once every ∆ time starting from time 0 and
updates e1 , e2 , d , path, seg, a and φ as follows: A. if new path is different from
path then seg is set to 1 and path is set to new path. B. Otherwise, if the
waypoint-distance d is less than or equal to 0, then seg is set to seg +1 (line 26).
For both of the above cases several temporary variables are computed which
are in turn used to update e1 , e2 , d as specified in Lines 30-31; otherwise these
variables remain unchanged. C. The steering output to the vehicle φ is computed
using proportional control law and it is restricted to be at most δ times the
velocity of the vehicle. This constraint is enforced for the mechanical protection
of the steering. The steering output φ is set to the minimum of −k1e1−k2e2 and
v×δ (line 34). D. The acceleration output a is computed using bang bang control
law. If brake is On then a is set to the braking deceleration abrake; otherwise,
it executes amax until the vehicle reaches the target speed, at which point a is
set to 0.

Along a trajectory, the evolution of the variables are specified by the differ-
ential equations on lines 41-43. These differential equations are derived from
the update rules described above and the differential equations governing the
evolution of x, y, θ and v.

Complete System. Let A be the composition of the Controller and the Vehicle
automata. It can be checked easily that the composed automaton A is a PCHA.
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The key variables ofA corresponding to those of PCHA are (a) a continuous vari-
able 〈x, y, θ, v, e1, e2, d〉 of type X = R7, (b) a discrete variable 〈brake, path, seg〉
of type L = Tuple[{On,Off }, Seq[R2],N], (c) a control variable 〈a, φ〉 of type
U = R2, and (d) two command variables z1

∆= brake of type Z1 = {On,Off }
and z2 = path of type Z2 = Seq[R2]. For convenience, we define a single derived
variable s ∆= 〈x, y, θ, v, e1, e2, d〉 encapsulating the continuous variable of A. The
input update actions of A are brake(b) and plan(p). The command variables z1
and z2 store the values b and p, respectively, when these actions occur. An inter-
nal control action main occurs every ∆ time, starting from time 0. That is, values
of∆1 and ∆2 as defined in a generic PCHA are∆1 = ∆ and ∆2 = 0. The control
law function g and the state transition function h of A can be derived from the
specification of main action in Figure 4. Let g = 〈ga, gφ〉 where ga : L × X → R
and gφ : L × X → R represent the control law for a and φ, respectively, and let
h = 〈hs,1, . . . , hs,7, hl,1, hl,2, hl,3〉 where hs,1, . . . , hs,7 : L × X × Z1 × Z2 → R
describe the discrete transition of x, y, θ, v, e1, e2 and d components of s, and
hl,1 : L × X × Z1 × Z2 → {On,Off }, hl,2 : L × X × Z1 × Z2 → Seq[R2] and
hl,3 : L × X × Z1 × Z2 → N describe the discrete transition of brake, path
and seg, respectively. The definition of g and h appears in [16]. From the state
models of Vehicle and Controller automata specified on line 14 of Figure 3 and
lines 42-41 of Figure 4, we see that A only has one state model. For any value
of l ∈ L, the continuous state s evolves according to the differential equation
ṡ = f(s, u) where f = 〈f1, f2, . . . , f7〉 and f1, . . . , f7 : X ×U → R are associated
with the evolution of the x, y, θ, v, e1, e2 and d components of s, respectively.

5 Analysis of the System

Overview. The informally stated goals of the system translate to the following:

A. (safety) At all reachable states ofA, the deviation (e1) of the vehicle is upper-
bounded by emax, where emax is determined in terms of system parameters.

B. (segment progress) There exist certain threshold values of deviation, disori-
entation, and waypoint-distance such that from any state x with greater
deviation, disorientation and waypoint-distance, the vehicle reduces its devi-
ation and disorientation with respect to the current segment, while making
progress towards its current waypoint.

C. (waypoint progress) The vehicle reaches successive waypoints.

In Sections 5.1 and 5.2, we define a family {Ik}k∈N of subsets of QA and using
Lemma 2 and Lemma 3, we conclude that they are invariant with respect to
the control-free execution fragments of A. From the specification of main action,
we see that the continuous state changes only occurs if path �= new path or
waypoint-distance d ≤ 0. Hence, using Theorem 1, we conclude that any execu-
tion fragment starting in Ik remains within Ik, provided that path and current
segment do not change. In Section 5.3, we discuss the proofs for properties (B)
and (C) and the derivation of geometric properties of planner paths that can be
followed by A safely. Complete proofs appear in the full version [16].
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5.1 Assumptions and Family of Invariants

We define, for each k ∈ N, the set Ik which bounds the deviation of the vehicle
e1 to be within [−εk, εk]. This bound on deviation alone, of course, does not
give us an inductive invariant. If the deviation is εk and the vehicle is highly
disoriented, then it would violate Ik. Thus, Ik also bounds the disorientation
such that the steering angle computed based on the proportional control law is
within [−φk, φk]. To prevent the vehicle from not being able to turn at low speed
and to guarantee that the execution speed of the controller is fast enough with
respect to the speed of the vehicle, Ik also bounds the speed of the vehicle. Ik

is defined in terms of εk, φk ≥ 0 as Ik
∆= {x ∈ Q | ∀i ∈ {1, . . . 6}, Fk,i(x.s) ≥ 0}

where Fk,1, . . . , Fk,6 : R7 → R are defined as follows:

Fk,1(s) = εk − s.e1; Fk,2(s) = εk + s.e1; Fk,3(s) = φk + k1s.e1 + k2s.e2;
Fk,4(s) = φk − k1s.e1 − k2s.e2; Fk,5(s) = vmax − s.v; Fk,6(s) = δs.v − φb.

Here vmax = vT +∆amax and φb > 0 is an arbitrary constant. As we shall see
shortly, the choice of φb affects the minimum speed of the vehicle and also the re-
quirements of a brake action. We examine a state x ∈ Ik, that is, Fk,i(x.s) ≥ 0 for
any i ∈ {1, . . . 6}. Fk,1(s), Fk,2(s) ≥ 0 means s.e1 ∈ [−εk, εk]. Fk,3(s), Fk,4(s) ≥ 0
means that the steering angle computed based on the proportional control law
is in the range [−φk, φk]. Further, if φk ≤ φmax, then the computed steering sat-
isfies the physical constraint of the vehicle. If, in addition, we have φb ≥ φk and
Fk,6(s) ≥ 0, then the vehicle actually executes the computed steering command.
Fk,5(s) ≥ 0 means that the speed of the vehicle is at most vmax.

For each k ∈ N, we define θk,1 = k1
k2
εk − 1

k2
φk and θk,2 = k1

k2
εk + 1

k2
φk, that

is, the values of e2 at which the proportional control law yields the steering
angle of φk and −φk respectively, given that the value of e1 is −εk. From the
above definitions, we make the following observations about the boundary of the
Ik sets: for any k ∈ N and x ∈ Ik, x.e2 ∈ [−θk,2, θk,2], Fk,1(x.s) = 0 implies
x.e2 ∈ [−θk,2,−θk,1], Fk,2(x.s) = 0 implies x.e2 ∈ [θk,1, θk,2], Fk,3(x.s) = 0
implies x.e2 ∈ [−θk,2, θk,1], and Fk,4(x.s) = 0 implies x.e2 ∈ [−θk,1, θk,2].

We assume that φb and all the ε′ks and φk’s satisfy the following assumptions
that are derived from physical and design constraints on the controller. The
region in the φk,εk plane which satisfies Assumption 1 can be found in [16].

Assumption 1. (Vehicle and controller design) (a) φk ≤ φb ≤ φmax and φk < π
2

(b) 0 ≤ θk,1 ≤ θk,2 < π
2 (c) L cot φk sin θk,2 <

k2
k1

(d) ∆ ≤ c
b where c = 1√

k2
1+k2

2
(φk − φ̃),

b = vmax

√
sin2 θk,2 + 1

L2 tan2(φ̃) and φ̃ = cot−1
(

k2
k1L sin θk,2

)
.

If the vehicle is forced to slow down too much at the boundary of an Ik by the
brakes, then it may not be able to turn enough to remain inside Ik. Thus, in
verifying the above properties we need to restrict our attention to good executions
in which brake inputs do not occur at low speeds and are not too persistent. This
is formalized by the next definition.



Periodically Controlled Hybrid Systems 407

Definition 2. A good execution is an execution α that satisfies: if a brake(On)
action occurs at time t then (a) α(t).v > φb

δ + ∆|abrake|, (b) brake(Off ) must
occur within time t+ 1

|abrake| (α(t).v − φb

δ −∆|abrake|).

For the remainder of this section, we only consider good executions. A state
x ∈ QA is reachable if there exists a good execution α with α.lstate = x.

5.2 Invariance Property

We fix a k ∈ N for the remainder of the section and denote Ik, Fk,i as I and Fi,
respectively, for i ∈ {1, . . . , 6}. As in Lemma 2, we define I = {s ∈ X |Fi(s) ≥ 0}
and for each i ∈ {1, . . . , 6}, ∂Ii = {s ∈ X | Fi(s) = 0} and let the functions
f1, f2, . . . , f7 : R7 × R2 → R describe the evolution of x, y, θ, v, e1, e2 and d,
respectively. We prove that I satisfies the control-free invariance condition of
Lemma 1 by applying Lemma 2.

First, we show that all the assumptions in Lemma 2 are satisfied. All the proof
appears in the full version [16] which do not involve solving differential equations
but require algebraic simplification of the expressions defining the vector fields
and the boundaries {∂Ii}i∈{1,...6} of the invariant set.

The next lemma shows that the subtangential, bounded distance and bounded
speed conditions (of Lemma 2) are satisfied. The proof for j = 5 is presented
here as an example. The rest of the proof is provided in [16].

Lemma 4. For each l ∈ L and j ∈ {1, . . . , 6}, the subtangential, bounded dis-
tance, and bounded speed conditions (of Lemma 2) are satisfied.

Proof. Define C5
∆= {s ∈ I | s.v ≤ vT }. We apply Lemma 3 to prove

the bounded distance and the bounded speed conditions. First, note that the
projection of I onto the (e1, e2, v) space is compact and C5 is closed. Let
UI = {g(l, s) |l ∈ L, s ∈ I}. From the definition of I, it can be easily checked
that f is continuous in I × UI . In addition, s.v = vmax for any s ∈ ∂I5. Since
amax, ∆ > 0, vmax = vT +∆amax > vT . Therefore, C5 ∩ ∂I5 = ∅. Hence, from
Lemma 3, the bounded distance and bounded speed conditions are satisfied. To
prove the subtangential condition, we pick an arbitrary s ∈ ∂I5 and s0 ∈ I \C5.
From the definition of I and C5, vT < s0.v ≤ vmax. Therefore, for any l ∈ L,
either f4(s, g(s0, l)) = 0 or f4(s, g(s0, l)) = abrake and we can conclude that
∂F5
∂s · f(s, g(s0, l)) = −f4(s, g(s0, l)) ≥ 0.

From the definition of each Cj , we can derive the lower bound cj on the distance
from Cj to ∂Ij and the upper bound bj on the length of the vector field f where
the control variable u is evaluated when the continuous state s ∈ Cj . Using these
bounds and Assumption 1(d), we prove the sampling rate condition.

Lemma 5. For each l ∈ L, the sampling rate condition is satisfied.

Thus, all assumptions in the hypothesis of Lemma 2 are satisfied; from Theorem 1
we obtain that good execution fragments of A preserve invariance of I, provided
that the path and current segment do not change over the fragment.
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Theorem 2. For any plan-free execution fragment β starting at a state x ∈ I
and ending at x′ ∈ QA, if x.path = x.new path and x.seg = x′.seg, then x′ ∈ I.

5.3 Identifying Safe Planner Paths: An Overview

From invariance of Ik’s, we first show progress from Ik to Ik+1 and then identify
a class of planner paths that can be safely followed by A. Owing to limited space,
we describe the key steps in this analysis. The complete proofs appear in [16].

From Theorem 2, we know that for each k ∈ N, Ik is an invariant of A with
respect to execution fragments in which the path and the current segment do
not change. First, we show that for each k, starting from any reachable state
x in Ik, any reachable state x′ is in Ik′ ⊆ Ik, where k′ = k + n and n =
max(�x.d−x′.d

vmax∆ �−1, 0). Recall that Ik and Ik′ are defined in terms of the deviation
and the disorientation bounds εk, φk and εk′ , φk′ , respectively. We show that for
each k, there exist nonnegative constants ak and bk, with εk+1 = εk − ak and
φk+1 = φk−bk, for which the above progress condition is satisfied. Furthermore,
for k smaller than the threshold value k∗, we show that ak and bk are strictly
positive, that is, Ik′ � Ik. This essentially establishes property (B), that is, upto
a constant threshold, the vehicle makes progress towards reducing the deviation
and disorientation with respect to its current waypoint, provided the waypoint
distance is large enough. Figure 5 shows a sequence of shrinking Ik’s visited by
A in making progress towards a waypoint.

Next, we derive a sufficient condition on planner paths that can be safely
followed with respect to a chosen set Ik whose parameters εk ∈ [0, emax] and
φk ∈ [0, φmax] satisfy Assumption 1. The choice of Ik is made such that it is
the smallest invariant set containing the initial state Q0A. The key idea in the
condition is: longer path segments can be succeeded by sharper turns . The proof is
based on an invariant relationship R amongst the deviation, the disorientation,
and waypoint distance. Following a long segment, the vehicle reduces its devi-
ation and disorientation by the time it reaches the end, and thus, it is possible
for the vehicle to turn more sharply at the end without breaking the invariance
of Ik and the relationship R.

Assumption 2. (Planner paths) Let p0, p1, . . . be a planner path; for i ∈
{0, 1, . . .}, let λi be the length of the segment pipi+1 and σi be the difference
in orientation of pipi+1 and that of pi+1pi+2. Then,

(a) λi ≥ 2vmax∆+ εk.
(b) Let n = k+�λi−εk−2vmax∆

vmax∆ �. Then, λi and σi satisfy the following conditions:
(a) εn ≤ 1

| cos σi| (εk − vmax∆| sin(σi|) and (b) φn ≤ φk − k1vmax∆ sin |σi| −
k1εn(1 − cosσi) − k2|σi| where, given εk and φk, εj and φj are defined re-
cursively for any j > k by εj = εj−1 − aj−1 and φj = φj−1 − bj−1.

The relationship between λ and the maximum value of σ which satisfies this
assumption is shown in Figure 5. The choice of εk’s and φk’s affects both the re-
quirements on a safe path (Assumption 2) and the definition of good executions.
Larger εk’s and φk’s allow sharper turns in planned paths but forces brakes to
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Fig. 5. Left. Ik in black, Ik+i in red for i > 0. Right. Segment length vs. maximum
difference between consecutive segment orientations, for different values of L and δ.

occur only at higher speeds. This tradeoff is related to the design flaw of Alice
as discussed in the introduction of the paper. Without having quantified the
tradeoff, we inadvertently allowed a path to have sharp turns and also brakes at
low speeds—thus violating safety.

Consider a path that satisfies Assumption 2. Further assuming that (a) a new
planner path begins at the current position, (b) Vehicle is not too disoriented
with respect to the new path, and (c) Vehicle speed is not too high, we establish
that Ik is an invariant of A. Since for any state x ∈ Ik, |x.e1| ≤ εk ≤ emax,
invariance of Ik guarantees the safety property (A). For property (C), we note
that for any state x ∈ Ik, there exists vmin > 0 such that x.v ≥ vmin > 0
and |x.e2| ≤ θk,2 <

π
2 , that is, ḋ = f7(x.s, u) ≤ −vmin cos θk,2 < 0 for any

u ∈ U . Thus, it follows that the waypoint distance decreases and the vehicle
makes progress towards its waypoint.

The simulation results are shown in Figure 6 which illustrate that the ve-
hicle is capable of making a sharp left turn, provided that the path satisfies
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Fig. 6. The positions of the vehicle as it follows a path to execute a sharp left turn.
The solid line and the dash line represent, respectively, the path and the positions of
the vehicle. The initial path is drawn in black. The positions of the vehicle is plotted
in blue except when brake is triggered in which case it is plotted in red. Left. The path
satisfies Assumption 2. Right. The path does not satisfy Assumption 2 and the replan
occurs due to excessive deviation. The replanned paths are drawn in grey.
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Assumption 2. In addition, we are able to replicate the stuttering behavior de-
scribed in the Introduction when Assumption 2 is violated.
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Abstract. This paper studies the exponential stabilization problem for
discrete-time switched linear systems based on a control-Lyapunov func-
tion approach. A number of versions of converse control-Lyapunov func-
tion theorems are proved and their connections to the switched LQR
problem are derived. It is shown that the system is exponentially stabiliz-
able if and only if there exists a finite integer N such that the N-horizon
value function of the switched LQR problem is a control-Lyapunov func-
tion. An efficient algorithm is also proposed which is guaranteed to yield
a control-Lyapunov function and a stabilizing strategy whenever the sys-
tem is exponentially stabilizable.

1 Introduction

One of the basic problems for switched systems is to design a switched-control
feedback strategy that ensures the stability of the closed-loop system [1]. The sta-
bilization problem for switched systems, especially autonomous switched linear
systems, has been extensively studied in recent years [2]. Most of the previous
results are based on the existence of a switching strategy and a Lyapunov or
Lyapunov-like function with decreasing values along the closed-loop system tra-
jectory [3,4]. These existence results have also led to some controller synthesis
methods for finding the stabilizing switching strategy [5,6]. The main idea is to
parameterize the switching strategy and the Lyapunov function in terms of some
matrices and then translate the Lyapunov theorem to some matrix inequalities.
The solution of these matrix inequalities, when existing, will define a stabilizing
switching strategy. However, these matrix inequalities are usually NP-hard to
solve and relaxations and heuristic methods are often required. A similar idea is
used to study the stabilization problem of nonautonomous switched linear sys-
tems [7,8]. By assuming a linear state-feedback form for the continuous control
of each mode, the problem is also formulated as a matrix inequality problem,
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where the feedback-gain matrices are part of the design variables. Although
some sufficient and necessary conditions are derived for quadratic stabilizabil-
ity [4,9,10], most of the previous stabilization results are far from necessary in
the sense that the system may be asymptotically or exponentially stabilizable
without satisfying the proposed conditions or the derived matrix inequalities.

In this paper, we study the exponential stabilization problem for discrete-time
switched linear systems. Our goal is to develop a computationally appealing way
to construct both a switching strategy and a continuous control strategy to expo-
nentially stabilize the system when none of the subsystems is stabilizable but the
switched system is exponentially stabilizable. Unlike most previous methods, we
propose a controller synthesis framework based on the control-Lyapunov function
approach which embeds the controller design in the design of the Lyapunov func-
tion. The control-Lyapunov function approach has been widely used for studying
the stabilization problem of general nonlinear systems [11,12]. However, its appli-
cation in switched linear systems has not been adequately investigated. Another
novelty of this paper is the derivation of some nice connections between the sta-
bilization problem and the switched LQR problem. In particular, we show that
the switched linear system is exponentially stabilizable if and only if there exists
a finite integer N such that the N -horizon value function of the switched LQR
problem is a control-Lyapunov function. This result not only serves as a converse
control-Lyapunov function theorem, but also transforms the stabilization prob-
lem into the switched LQR problem. Motivated by the results of the switched
LQR problem recently developed in [13,14,15], an efficient algorithm is proposed
which is guaranteed to yield a control-Lyapunov function and a stabilizing strat-
egy whenever the system is exponentially stabilizable. A numerical example is
also carried out to demonstrate the effectiveness of the proposed algorithm.

2 Problem Formulation

We consider the discrete-time switched linear systems described by:

x(t+ 1) = Av(t)x(t) +Bv(t)u(t), t ∈ Z+, (1)

where Z+ denotes the set of nonnegative integers, x(t) ∈ Rn is the continu-
ous state, v(t) ∈ M � {1, . . . ,M} is the discrete mode, and u(t) ∈ Rp is the
continuous control. The integers n, M and p are all finite and the control u is
unconstrained. The sequence of pairs {(u(t), v(t))}∞t=0 is called the hybrid control
sequence. For each i ∈M, Ai and Bi are constant matrices of appropriate dimen-
sions and the pair (Ai, Bi) is called a subsystem. This switched linear system
is time invariant in the sense that the set of available subsystems {(Ai, Bi)}Mi=1
is independent of time t. We assume that there is no internal forced switchings,
i.e., the system can stay at or switch to any mode at any time instant. At each
time t ∈ Z+, denote by ξt � (µt, νt) : Rn → Rp × M the hybrid control law
of system (1), where µt : Rn → Rp is called the continuous control law and
νt : Rn → M is called the switching control law. A sequence of hybrid con-
trol laws constitutes an infinite-horizon feedback policy: π � {ξ0, ξ1, . . . , . . .}. If
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system (1) is driven by a feedback policy π, then the closed-loop dynamics is
governed by

x(t+ 1) = Aνt(x(t))x(t) +Bνt(x(t))µt(x(t)), t ∈ Z+. (2)

In this paper, the policy π is allowed to be time-varying and the feedback law
ξt = (µt, νt) at each time step can be an arbitrary function of the state. The
special policy π = {ξ, ξ, . . .} with the same feedback law ξt = ξ at each time t is
called a stationary policy.

Definition 1. The origin of system (2) is exponentially stable if there exist
constants a > 0 and 0 < c < 1 such that the system trajectory starting from any
initial state x0 satisfies:

‖x(t)‖ ≤ act‖x0‖.

Definition 2. The system (1) is called exponentially stabilizable if there exists
a feedback policy π = {(µt, νt)}t≥0 under which the closed-loop system (2) is
exponentially stable.

Clearly, system (1) is exponentially stabilizable if one of the subsystems is stabi-
lizable. A nontrivial problem is to stabilize the system when none of the subsys-
tems are stabilizable. The main purpose of this paper is to develop an efficient
and constructive way to solve the following stabilization problem.

Problem 1 (Stabilization Problem). Suppose that (Ai, Bi) is not stabilizable for
any i ∈ M. Find, if possible, a feedback policy π under which the closed-loop
system (2) is exponentially stable.

3 A Control-Lyapunov Function Framework

We first recall a version of the Lyapunov theorem for exponential stability.

Theorem 1 (Lyapunov Theorem [16]). Suppose that there exist a policy π
and a nonnegative function V : Rn → R+ satisfying:

1. κ1‖z‖2 ≤ V (z) ≤ κ2‖z‖2 for some finite positive constants κ1 and κ2;
2. V (x(t)) − V (x(t + 1)) ≥ κ3‖x(t)‖2 for some constant κ3 > 0, where x(t) is

the closed-loop trajectory of system (2) under policy π.

Then system (2) is exponentially stable under π.

To solve the stabilization problem, one usually needs to first propose a valid
policy and then construct a Lyapunov function that satisfies the conditions in the
above theorem. A more convenient way is to combine these two steps together,
resulting in the control-Lyapunov function approach.

Definition 3 (ECLF). The nonnegative function V : Rn → R+ is called an
exponentially stabilizing control Lyapunov function (ECLF) of system (1) if
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1. κ1‖z‖2 ≤ V (z) ≤ κ2‖z‖2 for some finite positive constants κ1 and κ2;
2. V (z)− inf{v∈M,u∈Rp} V (Avz +Bvu) ≥ κ3‖z‖2 for some constant κ3 > 0.

The ECLF, if exists, represents certain abstract energy of the system. The second
condition of Definition 3 guarantees that by choosing proper hybrid controls, the
abstract energy decreases by a constant factor at each step. This together with
the first condition implies the exponential stabilizability of system (1).

Theorem 2. If system (1) has an ECLF, then it is exponentially stabilizable.

Proof. Follows directly from Theorem 1 and Definition 3. ��

If V (z) is an ECLF, then one can always find a feedback law ξ that satisfies the
conditions of Theorem 1. Such a feedback law is exponentially stabilizing, but
may result in a large control action. A systematic way to stabilize the system with
a reasonable control effort is to choose the hybrid control (u, v) that minimizes
the abstract energy at the next step V (Avz +Bvu) plus certain kind of control
energy expense. Toward this purpose, we introduce the following feedback law:

ξV (z) = (µV (z), νV (z)) = arg inf
u∈Rp,v∈M

[
V (Avz +Bvu) + uTRvu

]
, (3)

where for each v ∈ M, Rv = RT
v � 0 characterizes the penalizing metric for

the continuous control u. Since the quantity inside the bracket is bounded from
below and grows to infinity as ‖u‖ → ∞, the minimizer of (3) always exists in
Rp ×M. Furthermore, if we have

V (z)− V (AνV (z)z +BνV (z)µV (z)) ≥ κ3‖z‖2, (4)

for some constant κ3 > 0, we know that system (1) is exponentially stabilizable
by the stationary policy {ξV , ξV , . . .}. The challenge is how to find an ECLF
that satisfies (4).

In the rest of this paper, we will focus on a particular class of piecewise
quadratic functions as candidates for the ECLFs of system (1). Each of these
functions can be written as a pointwise minimum of a finite number of quadratic
functions as follows:

VH(z) = min
P∈H

zTPz, (5)

where H is a finite set of positive definite matrices, hereby referred to as the
FPD set. The main reason that we focus on functions of the form (5) is that this
form is sufficiently rich in terms of characterizing the ECLFs of system (1). It
will be shown in Section 5 that the system is exponentially stabilizable if and
only if there exists an ECLF of the form (5).

With the particular structure of the candidate ECLFs (5), the feedback law
defined in (3) can be derived in closed form. Its expression is closely related to
the Riccati equation and the Kalman gain of the classical LQR problem. To
derive this expression, we first define a few notations. Let A be the positive
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semidefinite cone, namely, the set of all symmetric positive semidefinite (p.s.d.)
matrices. For each subsystem i ∈M, define a mapping ρ0i : A → A as:

ρ0i (P ) = AT
i PAi −AT

i PBi(Ri +BT
i PBi)−1BT

i PAi. (6)

It will become clear in Section 4 that the mapping ρ0i is the difference Riccati
equation of subsystem i with a zero state-weighting matrix. For each subsystem
i ∈M and each p.s.d. matrix P , the Kalman gain is defined as

Ki(P ) � (Ri +BT
i PBi)−1BT

i PAi. (7)

Lemma 1. Let H be an arbitrary FPD set. Let VH : Rn → R+ be defined by H
through (5). Then the feedback law defined in (3) is given by

ξVH(z) =
(
−KiH(z) (PH(z)) z, iH(z)

)
, (8)

where Ki(·) is the Kalman gain defined in (7) and

(PH(z), iH(z)) = argmin
P∈H,i∈M

zTρ0i (P )z. (9)

Proof. By (3), to find ξV , we need to solve the following optimization problem:

f(z) � inf
u∈Rp,i∈M

[
min
P∈H

(Aiz +Biu)TP (Aiz +Biu) + uTRiu

]
= min

i∈M,P∈H

{
inf

u∈Rp

[
(Aiz +Biu)TP (Aiz +Biu) + uTRiu

]}
. (10)

For each i ∈ M and P ∈ H, the quantity inside the square bracket is quadratic in
u. Thus, the optimal value of u can be easily computed as u∗ = −Ki(P )z, where
Ki(P ) is the Kalman gain defined in (7). Substituting u∗ into (10) and simpli-
fying the resulting expression yields f(z) = zTρ0iH(z)(PH(z))z, where PH(z) and
iH(z) are defined in (9). ��

To check whether a function VH defined by a FPD set H is an ECLF, it is
convenient to introduce another FPD set FH defined as:

FH = {ρ0i (P ) : i ∈M and P ∈ H}. (11)

In other words, FH contains all the possible images of the mapping ρ0i (P ) as i
ranges over M and P ranges over H.

Theorem 3. Let H be an arbitrary FPD set. Let VH : Rn → R+ and VFH :
Rn → R+ be defined by H and FH, respectively, by (5). Then the stationary
policy πVH = {ξVH , ξVH , . . .} is exponentially stabilizing if

VH(z)− VFH(z) ≥ κ3‖z‖2, (12)

for all z ∈ Rn and some constant κ3 > 0.
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Proof. Obviously, VH satisfies the first condition of Definition 3. By (8), it can
be easily verified that (12) implies (4). Thus, VH is an ECLF satisfying (4) and
the desired result follows. ��

For a given function VH of the form (5), to see whether it is an ECLF, we should
check condition (12). Since both VH and VFH are homogeneous, we only need to
consider the points on the unit sphere in Rn to verify (12). In R2, a practical way
of checking (12) is to plot the functions VH(z) and VFH(z) along the unit circle
to see whether VH(z) is uniformly above VFH(z). In higher dimensional state
spaces, there is no general way to efficiently verify this condition. Nevertheless,
a sufficient convex condition can be obtained using the S-procedure.

Theorem 4 (Convex Test). With the same notations as in Theorem 3, the
stationary policy πVH = {ξVH , ξVH , . . .} is exponentially stabilizing if for each
PH ∈ H, there exists nonnegative constants αj, j = 1, . . . , k, such that∑k

j=1
αj = 1, and PH �

∑k

j=1
αjP

(j)
FH , (13)

where k = |FH| and {P (j)
FH}

k
j=1 is an enumeration of FH.

Proof. See [17]. ��

4 A Converse ECLF Theorem Using Dynamic
Programming

By focusing on the ECLFs of the form (5) and the feedback laws of the form (3),
the stabilization problem becomes a quadratic optimal control problem. The
main purpose of this section is to prove that system (1) is exponentially stabiliz-
able if and only if there exists an ECLF that satisfies (4). Our approach is based
on the theory of the switched LQR problem recently developed in [13,15].

4.1 The Switched LQR Problem

Let Qi = QT
i � 0 and Ri = RT

i � 0 be the weighting matrices for the state and
the control, respectively, for subsystem i ∈ M. Define the running cost as

L(x, u, v) = xTQvx+ uTRvu, for x ∈ Rn, u ∈ Rp, v ∈M. (14)

Denote by Jπ(z) the total cost, possibly infinite, starting from x(0) = z under
policy π, i.e.,

Jπ(z) =
∑∞

t=0
L(x(t), µt(x(t)), νt(x(t))). (15)

Denote by Π the set of all admissible policies, i.e., the set of all sequences of
functions π = {ξ0, ξ1, . . .} with ξt : Rn → Rp ×M for t ∈ Z+. Define V ∗(z) =
infπ∈Π Jπ(z). Since the running cost is always nonnegative, the infimum always
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exists. The function V ∗(z) is usually called the infinite-horizon value function.
It will be infinite if Jπ(z) is infinite for all the policies π ∈ Π . As a natural
extension of the classical LQR problem, the Discrete-time Switched LQR problem
(DSLQR) is defined as follows.

Problem 2 (DSLQR problem). For a given initial state z ∈ Rn, find the infinite-
horizon policy π ∈ Π that minimizes Jπ(z) subject to equation (2).

4.2 The Value Functions of the DSLQR Problem

Dynamic programming solves the DSLQR problem by introducing a sequence of
value functions. Define the N -horizon value function VN : Rn → R as:

VN (z)= inf
u(t)∈Rp,v(t)∈M

0≤t≤N−1

{
N−1∑
t=0

L(x(t), u(t), v(t))
∣∣∣x(0)=z

}
. (16)

For any function V : Rn → R+ and any feedback law ξ = (µ, ν) : Rn → Rp×M,
denote by Tξ the operator that maps V to another function Tξ[V ] defined as:

Tξ[V ](z) = L(z, µ(z), ν(z)) + V (Aν(z)z +Bν(z)µ(z)), ∀z ∈ Rn. (17)

Similarly, for any function V : Rn → R+, define the operator T by

T [V ](z) = inf
u∈Rp,v∈M

{L(z, u, v) + V (Avz +Bvu)} , ∀z ∈ Rn. (18)

The equation defined above is called the one-stage value iteration of the DSLQR
problem. We denote by T k the composition of the mapping T with itself k times,
i.e., T k[V ](z) = T

[
T k−1[V ]

]
(z) for all k ∈ Z+ and z ∈ Rn. Some standard results

of Dynamic Programming are summarized in the following lemma.

Lemma 2 ([18]). Let V0(z) = 0 for all z ∈ Rn. Then (i) VN (z) = T N [V0](z)
for all N ∈ Z+ and z ∈ Rn; (ii) VN (z) → V ∗(z) pointwise in Rn as N →
∞. (iii) The infinite-horizon value function satisfies the Bellman equation, i.e.,
T [V ∗](z) = V ∗(z) for all z ∈ Rn.

To derive the value function of the DSLQR problem, we introduce a few
definitions. Denote by ρi : A → A the Riccati Mapping of subsystem i ∈M, i.e.,

ρi(P ) =Qi +AT
i PAi −AT

i PBi(Ri +BT
i PBi)−1BT

i PAi. (19)

Definition 4. Let 2A be the power set of A. The mapping ρM : 2A → 2A defined
by: ρM(H) = {ρi(P ) : i ∈M and P ∈ H} is called the Switched Riccati Mapping
associated with Problem 2.

Definition 5. The sequence of sets {Hk}Nk=0 generated iteratively by Hk+1 =
ρM(Hk) with initial condition H0 = {0} is called the Switched Riccati Sets of
Problem 2.
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The switched Riccati sets always start from a singleton set {0} and evolve ac-
cording to the switched Riccati mapping. For any finite N , the set HN consists
of up to MN p.s.d. matrices. An important fact about the DSLQR problem is
that its value functions are completely characterized by the switched Riccati
sets.

Theorem 5 ([13]). The N -horizon value function for the DSLQR problem is
given by

VN (z) = minP∈HN z
TPz. (20)

4.3 A Converse ECLF Theorem

The main purpose of this subsection is to show that if system (1) is exponentially
stabilizable, then an ECLF must exist and can be chosen to be the infinite-
horizon value function V ∗ of the DSLQR problem. Denote by λmin(·) and λmax(·)
the smallest and the largest eigenvalue of a p.s.d. matrix, respectively. Let

σ+
A = max

i∈M

{√
λmax(AT

i Ai)
}
, λ−Q = min

i∈M

{λmin(Qi)},

λ+
Q =max

i∈M

{λmax(Qi)}, λ−R = min
i∈M

{λmin(Ri)} and λ+
R = max

i∈M

{λmax(Ri)}.

We first prove some important properties of V ∗.

Lemma 3. If system (1) is exponentially stabilizable, then (i) there exists a
constant β <∞ such that λ−Q‖z‖2 ≤ V ∗(z) ≤ β‖z‖2; (ii) there exists a stationary
optimal policy.

Proof. (i) The proof of the first part is rather technical and is thus omitted here.
Interested readers may refer to [17] for the detailed proof. (ii) By Lemma 2,
V ∗(z) satisfies the Bellman equation, i.e.,

V ∗(z) = inf
u∈Rp,v∈M

{L(z, u, v) + V ∗(Avz +Bvu)} , ∀z ∈ Rn. (21)

Let z be arbitrary and fixed. If V ∗(z) is infinite, then an arbitrary ξ∗(z) ∈ Rp×M
achieves the infimum of (21) which is infinite. Now suppose V ∗(z) is finite. Then
there exists a hybrid control (u, v) under which the quantity inside the bracket
of (21) is finite. Denote by V̂ this finite number. Since Rv � 0 for all v ∈ M,
there must exists a compact set U such that L(z, u, v) ≥ V̂ as long as u /∈ U .
This implies that

V ∗(z) = inf
u∈U ,v∈M

{L(z, u, v)+V ∗(Avz +Bvu)} .

Since U is compact, there always exists a hybrid control that achieves the infi-
mum of (21). Therefore, in any case, there must exist a feedback law ξ∗(z) =
(µ∗(z), ν∗(z)) such that Tξ∗ [V ∗](z) = V ∗(z) for each z ∈ Rn. ��

The following theorem relates the exponential stabilizability with the infinite-
horizon value function V ∗.
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Theorem 6 (Converse ECLF Theorem I). System (1) is exponentially sta-
bilizable if and only if V ∗(z) is an ECLF of system (1) that satisfies condition (4).

Proof. The “only if” part follows directly from Theorem 2. Now suppose that
system (1) is exponentially stabilizable. By part (i) of Lemma 3, V ∗(z) satisfies
the first condition of Definition 3. Furthermore, by part (ii) of Lemma 3, there
exists a feedback law ξ∗ = (µ∗, ν∗) such that V ∗(z) = Tξ∗ [V ∗](z). This implies
that

V ∗(z)− V ∗(Aν∗(z)z +Bν∗(z)µ
∗(z))− [µ∗(z)]TRν∗(z)[µ∗(z)] ≥ λ−Q‖z‖2.

Let ξV ∗ = (µ̂, ν̂) be defined as in (3) with V replaced by V ∗. Then we have

V ∗(z)− V ∗ (Aν̂(z)z +Bν̂(z)µ̂(z)
)

≥V ∗(z)− V ∗ (Aν̂(z)z +Bν̂(z)µ̂(z)
)
− [µ̂(z)]TRν̂(z)[µ̂(z)]

≥V ∗(z)− V ∗ (Aν∗(z)z +Bν∗(z)µ
∗(z)

)
− [µ∗(z)]TRν∗(z)[µ∗(z)] ≥ λ−Q‖z‖2,

where the last step follows from the definition of ξV ∗ in (3). Thus, V ∗ also
satisfies condition (4). Hence, V ∗ is an ECLF satisfying (4). ��

By this theorem, whenever system (1) is exponentially stabilizable, V ∗(z) can
be used as an ECLF to construct an exponentially stabilizing feedback law ξV ∗ .
However, from a design view point, such an existence result is not very useful
as V ∗ can seldom be obtained exactly. In the next section, we will develop an
efficient algorithm to compute an approximation of V ∗ which is also guaranteed
to be an ECLF of system (1).

5 Efficient Computation of ECLFs

In this section, we will find an approximation of V ∗ which can be efficiently
computed yet close enough to V ∗ so that it remains a valid ECLF of system (1).
To find such an approximation, we need the following convergence result.

Theorem 7 ([14]). If V ∗(z) ≤ β‖z‖2 for some β <∞, then

|VN1(z)− VN (z)| ≤ αγN‖z‖2, (22)

for any N1 ≥ N ≥ 1, where γ = 1
1+λ−

Q/β
< 1 and α = max{1, σ+

A

γ }.

By this theorem, the N -horizon value function VN approaches V ∗ exponentially
fast as N →∞. Therefore, as we increase N , VN will quickly become an ECLF
of system (1).

Theorem 8 (Converse ECLF Theorem II). If system (1) is exponentially
stabilizable, then there exists an integer N0 < ∞ such that VN (z) is an ECLF
satisfying condition (4) for all N ≥ N0.



420 W. Zhang, A. Abate, and J. Hu

Proof. Define

ξ∗N (z) = (µ∗N , ν
∗
N ) � arg inf

u∈Rp,v∈M

{L(z, u, v) + VN (Avz +Bvu)}. (23)

By Lemma 2 and equation (23), we know that

VN+1(z) = T [VN ](z) = Tξ∗
N

(z)[VN ](z), ∀z ∈ Rn.

We now fix an arbitrary z ∈ Rn and let u∗ = µ∗N (z), v∗ = ν∗N (z) and x∗(1) =
Av∗z + Bv∗u∗. Therefore, VN+1(z) − VN (x∗(1)) − (u∗)TRv∗(u∗) ≥ λ−Q‖z‖2. By
Theorem 7, VN+1(z) ≤ VN (z) + αγN‖z‖2. Hence,

VN (z)− VN (x∗(1))− (u∗)TRv∗(u∗) ≥ (λ−Q − αγN )‖z‖2.

Thus, there must exist an N0 ≤ ∞ such that (λ−Q − αγN ) > λ−Q/2 for all
N ≥ N0. Then, by a similar argument as in the proof of Theorem 6, we can
conclude that VN is an ECLF satisfying (4) for all N ≥ N0. ��

Theorem 8 implies that when the system is exponentially stabilizable, the ECLF
not only exists but can also be chosen to be a piecewise quadratic function of
the form (5). Furthermore, as N increases, the N -horizon value function VN will
eventually become an ECLF. Therefore, to solve the stabilization problem, we
only need to compute the switched Riccati set HN . However, this method may
not be computationally feasible as the size of HN grows exponentially fast as N
increases. Fortunately, if we allow a small numerical relaxation, an approximation
of VN can be efficiently computed [15].

Definition 6 (Numerical Redundancy). A matrix P̂ ∈ HN is called (nu-
merically) ε-redundant with respect to HN if

min
P∈HN\P̂

zTPz ≤ min
P∈HN

zT (P + εIn)z, for any z ∈ Rn.

Definition 7 (ε-ES). The set Hε
N is called an ε-Equivalent-Subset (ε-ES) of

HN if Hε
N ⊂ HN and for all z ∈ Rn,

min
P∈HN

zTPz ≤ min
P∈Hε

N

zTPz ≤ min
P∈HN

zT (P + εIn)z.

Removing the ε-redundant matrices may introduce some error for the value func-
tion; but the error is no larger than ε for ‖z‖ ≤ 1. To simplify the computation,
for a given tolerance ε, we want to prune out as many ε-redundant matrices
as possible. The following lemma provides a sufficient condition for testing the
ε-redundancy for a given matrix.

Lemma 4 (Redundancy Test). P̂ is ε-redundant in HN if there exist non-
negative constants {α1}k−1

i=1 such that
∑k

i=1 αi = 1 and P̂ + εIn �
∑k

i=1 αiP
(i),

where k = |HN | and {P (i)}k−1
i=1 is an enumeration of HN \ {P̂}.
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Algorithm 1

1. Denote by P (i) the ith matrix in HN . Specify a tolerance ε and set H(1)
N = {P (1)}.

2. For each i = 2, . . . , |HN |, if P (i) satisfies the condition in Lemma 4 with respect
to HN , then H(i)

N = H(i−1)
N ; otherwise H(i)

N = H(i−1)
N ∪ {P (i)}.

3. Return H(|HN |)
N .

The condition in Lemma 4 can be easily verified using various existing con-
vex optimization algorithms [19]. To compute an ε-ES of HN , we only need to
remove the matrices in HN that satisfy the condition in Lemma 4. The detailed
procedure is summarized in Algorithm 1. Denote by Algoε(HN ) the ε-ES of HN

returned by the algorithm. To further reduce the complexity, we can remove
the ε-redundant matrices after every switched Riccati mapping. To this end, we
define the relaxed switched Riccati sets {Hε

k}Nk=0 iteratively as:

Hε
0 = H0 and Hε

k+1=Algoε(ρM(Hε
k)), for k ≤ N − 1. (24)

The function defined based onHε
N is very close to VN but much easier to compute

as Hε
N usually contains much fewer matrices than HN . We now use the following

example to demonstrate the simplicity of computing the set Hε
N .

A1 =
[
2 0
0 2

]
, A2 =

[
1.5 1
0 1.5

]
, B1 =

[
1
2

]
, B2 =

[
1
0

]
, Qi =I2, Ri =1, i=1, 2. (25)

Clearly, neither subsystem is stabilizable. As shown in Fig. 1, a direct com-
putation of {Hk}Nk=0 results in a combinatorial complexity of the order 109 for
N = 30. However, if we use the relaxed iteration (24) with ε = 10−3, even-
tually Hε

N contains only 16 matrices. This example shows that the numerical
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Fig. 1. Evolution of |Hε
N | with ε = 10−3
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Algorithm 2 (Computation of ECLF)

Specify proper values for ε, εmin and Nmax.
while ε > εmin do

for N = 0 to Nmax do
HN+1 = Algoε(ρM(HN ))
if Hε

N+1 satisfies the condition of Theorem 4 then
stop and return V ε

N as an ECLF
end if

end for
ε = ε/2

end while

relaxation can dramatically simplify the computation of HN . Our next task is to
show that this relaxation does not change the value function too much. Define
V ε

N (z) = minP∈Hε
N
zTPz. It is proved in [15] that the total error between V ε

N (z)
and VN (z) can be bounded uniformly with respect to N .

Lemma 5 ([15]). If V ∗(z) ≤ β‖z‖2 for some β <∞, then

VN (z) ≤ V ε
N (z) ≤ VN (z) + εη‖z‖2, (26)

where η =
1+(β/λ−

Q−1)γ
1−γ .

The above lemma indicates that by choosing ε small enough, V ε
N can approximate

VN with arbitrary accuracy. This warrantsV ε
N as an ECLF for largeN and small ε.

Theorem 9 (Converse ECLF Theorem III). If system (1) is exponentially
stabilizable, then there exists an integer N0 <∞ and a real number ε0 > 0 such
that V ε

N (z) is an ECLF of system (2) satisfying condition (4) for all N ≥ N0
and all ε < ε0.

Proof. Similar to the proof of Theorem 8.

In summary, if the system is exponentially stabilizable,we can always findanECLF
of the form (5) defined by Hε

N . To compute such an ECLF, we can start from a
reasonable guess of ε and perform the relaxed switched Riccati mapping (24). After
each iteration, we need to check whether the condition of Theorem 4 are met. If so,
an ECLF is found; otherwise we should continue iteration (24). If the maximum
iteration number Nmax is reached, we should reduce ε and restart iteration (24).
Since V ε

N converges exponentially fast, Nmax can usually be chosen rather small.
The above procedure of constructing an ECLF is summarized in Algorithm 2. This
algorithm is computationally efficient and guarantees to yield an ECLF provided
that εmin is sufficiently small and Nmax is sufficiently large.

6 Numerical Example

Consider the same two-mode switched system as defined in (25). Neither of the
subsystems is stabilizable by itself. However, this switched system is stabilizable
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Fig. 2. Simulation Results. Left figure: phase-plane trajectories generated by the
ECLFs V 1

6 and V 0.1
5 starting from the same initial condition x0 = [0, 1]T . Right figure:

the corresponding continuous controls.

through a proper hybrid control. The stabilization problem can be easily solved
using Algorithm 2. If we start from ε = 1, then the algorithm terminates after 5
steps which results in an ECLF V 1

6 defined by the relaxed switched Riccati set
H1

6. We have also tried a smaller relaxation ε = 0.1. In this case, the algorithm
stops after 4 steps resulting in an ECLF V 0.1

5 defined by the relaxed switched
Riccati set H0.1

5 . It is worth mentioning that H1
6 contains only two matrices and

H0.1
5 contains 3 matrices. With these matrices, starting from any initial position

x0, the feedback laws corresponding to H1
6 and H0.1

5 can be easily computed
using equation (3). The closed-loop trajectories generated by these two feedback
laws starting from the same initial position x0 = [0, 1]T are plotted on the left of
Fig. 2. On the right of the same figure, the continuous control signals associated
with the two trajectories are plotted. In both cases, the switching signals jump to
the other mode at every time step and are not shown in the figure. It can also be
seen that the ECLF V 0.1

5 stabilizes the system with a faster convergence speed
and a smaller control energy than V 1

6 . This is because it has a smaller relaxation
ε which makes the resulting trajectory closer to the optimal trajectory of the
DSLQR problem.

7 Conclusion

This paper studies the exponential stabilization problem for the discrete-time
switched linear system. It has been proved that if the system is exponentially
stabilizable, then there must exist a piecewise quadratic ECLF. More impor-
tantly, this ECLF can be chosen to be a finite-horizon value function of the
switched LQR problem. An efficient algorithm has been developed to compute
such an ECLF and the corresponding stabilizing policy whenever the system is
exponentially stabilizable. Indicated by a numerical example, the ECLF and the
stabilizing policy can usually be characterized by only a few p.s.d. matrices which
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can be easily computed using the relaxed switched Riccati mapping. Future re-
search will focus on extending the algorithm to solve the robust stabilization
problem for uncertain switched linear systems.
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Using Bisimulation Metrics�

Gang Zheng and Antoine Girard

Laboratoire Jean Kuntzmann, Université de Grenoble
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Abstract. In this paper, we propose an algorithm for bounded safety
verification for a class of hybrid systems described by metric transition
systems. The algorithm combines exploration of the system trajectories
and state space reduction using merging based on a bisimulation met-
ric. The main novelty compared to an algorithm presented recently by
Lerda et.al. lies in the introduction of a tuning parameter that makes
it possible to increase the performances drastically. The second signifi-
cant contribution of this work is a procedure that allows us to derive, in
some cases, a proof of unbounded safety from a proof of bounded safety
via a refinement step. We demonstrate the efficiency of the approach via
experimental results.

1 Introduction

Formal methods are now well established in the domain of embedded systems,
both for software and hardware design. Model checking [1] has been used suc-
cessfully in various industrial settings. Still, algorithmic verification of computing
systems embedded in a physical environment, involving interactions of discrete
and continuous dynamics, remains a great challenge. Several approaches have
emerged from hybrid systems research, ranging from approximate reachability
analysis, to abstraction techniques and safety certificates. We refer the reader
to the proceedings of the conference on Hybrid Systems: Computation and Con-
trol for a fair overview of the area. Recently, several safety verification tech-
niques based on exploration of individual trajectories of a system have been
proposed [2,3,4,5,6], arguing the moderate cost of the numerical simulation of
individual trajectories relatively to the complex computations involved in the
previously mentioned techniques.

In this paper, we first consider the problem of bounded safety verification for
a class of hybrid systems described by metric transition systems. We propose an
algorithm that determines if there exists a trajectory of bounded length that can
reach a set of unsafe states. It combines exploration of the system trajectories
and state space reduction using merging based on a bisimulation metric [3,7].
Intuitively, a bisimulation metric measures how far two states of the system are
from being bisimilar. A similar approach has recently been proposed in [6]; there
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are significant differences though. The most important one lies in the introduc-
tion of a tuning parameter ρ that determines the opportunity of merging states.
For ρ = 0, states are never merged and we make an exhaustive exploration of the
trajectories of the system. For ρ = 1, states are merged whenever it is possible
and we essentially get the algorithm presented in [6]. Interestingly, intermediate
choices for the parameter ρ may increase drastically the performances of the
algorithm. The second significant contribution is that we establish a procedure
that makes it possible, in some cases, to derive a proof of unbounded safety
(no trajectory of any length can reach the set of unsafe states) from a proof
of bounded safety via a refinement step. Finally, we use our approach for the
verification of a discrete-time switched linear system where the set of admissible
switching sequences is specified by an automaton. We demonstrate the efficiency
of the approach via experimental results.

2 Problem Formulation

We first introduce the class of metric transition systems and the associated bisim-
ulation metrics. Then, we define the bounded and unbounded safety properties.

2.1 Metric Transition Systems

In this paper, we will use metric transition systems as an abstract formalism for
describing hybrid systems. Essentially, metric transition systems are “classical”
transition systems whose set of states is equipped with a pseudo-metric1.

Definition 1. A metric transition system (MTS) is a tuple T = (Q,→, Q0, d)
consisting of:

– A set of states Q,
– A transition relation →⊆ Q×Q,
– A set of initial states Q ⊆ Q0,
– A pseudo-metric d : Q×Q→ R+ ∪ {+∞}

A transition (q, q′) ∈→ will be denoted q → q′. Let us remark that the set of
states can be discrete, continuous or hybrid. For all q ∈ Q, we will denote

succ(q) = {q′ ∈ Q| q → q′}.

For simplicity, we shall assume that the system is non-blocking (for all q ∈ Q,
succ(q) has at least one element) and possibly non-deterministic (succ(q) may
have more than one element). We will further assume that the system is finitely
branching (succ(q) have a finite number of elements).

A trajectory of a MTS is a finite sequence of states s = q0 . . . qK such that
qk → qk+1, for all 0 ≤ k < K− 1. K is referred to as the length of s. In addition,
we say that s is initialized if q0 ∈ Q0.
1 A pseudo-metric over a set Q is a function d : Q×Q → R+∪{+∞} which satisfies the

following properties: for all q1, q2, q3 ∈ Q, (i) d(q1, q1) = 0, (ii) d(q1, q2) = d(q2, q1),
(iii) d(q1, q3) ≤ d(q1, q2) + d(q2, q3).
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Example 1. Let us introduce a simple example that we will use for illustration
throughout the paper. We consider a discrete-time switched linear system where
the set of admissible switching sequences is specified by an automaton. Let T =
(Q,→, Q0, d) be a MTS where the hybrid set of states isQ = {1, 2, 3, 4}×R2. For
two states, q = (σ, x) and q′ = (σ′, x′) there is a transition q → q′ if and only if⎧⎪⎪⎨⎪⎪⎩

σ = 1 and σ′ = 2 and x′ = A1x+ b1
σ = 2 and σ′ = 3 and x′ = A2x+ b2
σ = 3 and σ′ ∈ {1, 4} and x′ = A2x+ b2
σ = 4 and σ′ ∈ {1, 3} and x′ = A2x+ b2

where A1, A2, b1 and b2 are matrices and vectors given by :

A1 =
(

0 −1
1 0

)
, A2 =

(
0 2

0.1 0

)
, b1 =

(
0
0

)
, b2 =

(
−1
0.9

)
.

We can see that the system is non-deterministic. The set of initial states is
Q0 = {(1, x0)} with x0 = (0 0)T and the pseudo-metric over the set of states is
d(q, q′) = ‖x− x′‖ where q = (σ, x) and q′ = (σ′, x′). The MTS T is represented
in Figure 1. This system belongs to a class of models that has been studied
recently in [8] in the context of control mode scheduling for switched systems.

2.2 Bisimulation Metrics

We first define the notion of bisimulation relation [9] in the framework of metric
transition systems.

Definition 2. A relation ∼⊆ Q × Q is a bisimulation relation for the MTS
T = (Q,→, Q0, d) if for all q1 ∼ q2 the following conditions hold:

1. d(q1, q2) = 0;
2. For all q1 → q′1, there exists q2 → q′2 such that q′1 ∼ q′2;
3. For all q2 → q′2, there exists q1 → q′1 such that q′1 ∼ q′2.

1 2

34

x′ := A2x + b2

x′ := A2x + b2

x′ := A2x + b2

x′ := A2x + b2

x′ := A2x + b2

x′ := A1x + b1

Fig. 1. Example of metric transition system
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The notion of bisimulation function has been introduced in [7] as a quantita-
tive generalization of the usual bisimulation relation. In this paper, we use bisim-
ulation metrics which are both pseudo-metrics and bisimulation functions [3]:

Definition 3. A function V : Q × Q → R+ ∪ {+∞} is a bisimulation metric
for the MTS T = (Q,→, Q0, d) if the following conditions hold:

1. V is a pseudo-metric;
2. For all q1, q2 ∈ Q,

V (q1, q2) ≥ d(q1, q2); (1)

3. There exists λ ∈ R+ such that, for all q1, q2 ∈ Q,

λV (q1, q2) ≥ max
q1→q′

1

min
q2→q′

2

V (q′1, q
′
2). (2)

If λ < 1, then the MTS T is said to be contractive with respect to bisimulation.

Remark 1. In the original definition of the bisimulation function, there is, in
addition to equations (1) and (2), the symmetrical2 of equation (2). It is not
stated explicitly here because symmetry is implied by V being a pseudo-metric.

It is straightforward to check that the zero set of V is a bisimulation relation for
the MTS T . Then, the intuitive meaning of a bisimulation metric is a measure
of how far two states are from being bisimilar. Describing a systematic way to
compute a bisimulation metric for arbitrary metric transition systems is out of
the scope of this paper. However, for the system considered in Example 1, we
show how a bisimulation metric can be obtained. A similar approach can be used
for other systems of the same class.

Example 2. Let T = (Q,→, Q0, d) be the MTS defined in Example 1. The rela-
tion given for q1 = (σ1, x1), q2 = (σ2, x2) by q1 ∼ q2 if and only if

(x1 = x2) ∧ ([σ1 = σ2 = 1] ∨ [σ1 = σ2 = 2] ∨ [σ1 ∈ {3, 4} ∧ σ2 ∈ {3, 4}])

is a bisimulation relation for the MTS T . Then, let us search for a bisimulation
metric of the form

V (q1, q2) =

⎧⎪⎪⎨⎪⎪⎩
‖x1 − x2‖1 if σ1 = σ2 = 1;
‖x1 − x2‖2 if σ1 = σ2 = 2;
‖x1 − x2‖3 if σ1 ∈ {3, 4} and σ2 ∈ {3, 4};

+∞ for all other cases.

where the norms ‖.‖i (i = 1, 2, 3) are given by ‖x‖i =
√
xTMix with Mi pos-

itive definite symmetric matrices. Let us remark that the zero set of V is the
bisimulation relation ∼. It is easy to check that V is a pseudo-metric. Equations
(1) and (2) in Definition 3 translate to the following linear matrix inequalities :

Mi � I, i = 1, 2, 3

and
2 λV (q1, q2) ≥ maxq2→q′2 minq1→q′1 V (q′1, q′2).
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λ2M1 � AT

1M2A1,
λ2M2 � AT

2M3A2,
λ2M3 � AT

2M3A2 and λ2M3 � AT
2M1A2.

This set of inequalities can be solved using semidefinite programming. For λ =√
0.8, we find the following matrices

M1 =
(

6.25 0
0 1.25

)
, M2 =

(
1 0
0 5

)
, M3 =

(
1 0
0 31.25

)
.

Since λ < 1, the MTS T is contractive with respect to bisimulation.

2.3 Bounded/Unbounded Safety

In this paper, we will only consider safety verification whose objective is to
determine whether there exists a trajectory reaching a predefined undesirable
region of the set of states.

Definition 4. Given a MTS T = (Q,→, Q0, d), a set of unsafe states Qu ⊆ Q
and N ∈ N, we say that:

– A state q ∈ Q is safe for bound N if for every trajectory s = q0 . . . qK with
q0 = q and of length K ≤ N , we have qk /∈ Qu, for all 0 ≤ k ≤ K. The MTS
T is safe for bound N , if all q0 ∈ Q0 are safe for bound N .

– A state q ∈ Q satisfies the unbounded safety property if for every trajectory
s = q0 . . . qK with q0 = q, we have qk /∈ Qu, for all 0 ≤ k ≤ K. The MTS T
satisfies the unbounded safety property if all q0 ∈ Q0 satisfy the unbounded
safety property.

In the following, we will assume that the set of initial states Q0 has only a fi-
nite number of elements. Since in addition, we consider finitely-branching systems,
there exists only a finite number of trajectories of length N or less. Then, the
bounded safety property can always be verified by complete exploration of the tra-
jectories of the system. However, for non-deterministic systems, this approachmay
be computationally untractable as the number of trajectories to be explored gen-
erally grows exponentially with respect to the bound N . Further, since the set of
statesQ can be infinite, it is generally not possible to verify the unbounded safety
property by exploring all reachable states. In the following section, we will show
how the use of bisimulation metrics makes it possible to overcome these
limitations.

3 Safety Verification Using Bisimulation Metrics

In this section, we propose an algorithm for bounded safety verification that does
not explore completely the trajectories of the system. In some cases, it allows us
to prove unbounded safety.
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Definition 5. Let V be a bisimulation metric, q ∈ Q, δ ∈ R+, the neighborhood
[q]δ ⊆ Q is defined by

[q]δ = {r ∈ Q| V (q, r) < δ}.

We say that [q]δ is safe for bound N ∈ N, if all r ∈ [q]δ are safe for bound N .

Our algorithm combines exploration of the system trajectories and state space
reduction using merging. It works as follows. We start the exploration of the
trajectories of T in a depth-first search manner; for each state q, whose safety is
verified for some bound M , we compute a neighborhood [q]δ safe for bound M .
When reaching a new state q, if we previously determined a neighborhood [p]γ
safe for a bound L such that q ∈ [p]γ , the safety of q for a bound M ≤ L can
be determined without exploring further the trajectories starting from q. This
is the merging operation.

A similar approach, inspired by the classical explicit state model checking
algorithm [1], combining depth-first search and merging based on proximity has
recently been proposed in [6]. There are significant differences with our work
though. Firstly, we use bisimulation metrics instead of bisimulation functions.
The fact that we use metrics allows us to replace some geometrical considera-
tions involving online numerical optimization problems by a simple use of the
triangular inequality. Secondly and more importantly, we add a tuning parame-
ter ρ ∈ [0, 1] to the algorithm that determines the opportunity to merge states.
If there is a neighborhood [p]γ safe for a bound L, such that V (p, q) < ργ, then q
is safe for all boundsM ≤ L and we do not explore the trajectories starting from
q. Let us remark, that if ργ ≤ V (p, q) < γ, then q is safe as well; however, in
that case we shall explore the trajectories starting from q. For ρ = 0 (i.e. states
are never merged), we make an exhaustive exploration of the trajectories of the
system. For ρ = 1 (i.e. states are merged whenever it is possible), we essentially
get, as a special case, the algorithm presented in [6]. Interestingly, intermediate
choices for the parameter ρ may increase drastically the performances of the al-
gorithm as will be shown later. Another significant contribution compared to [6]
is that we establish a procedure that makes it possible, in some cases, to derive
a proof of unbounded safety from a proof of bounded safety.

Bisimulation metrics have first been used for bounded safety verification in [3].
However, the algorithm presented in [3] is quite different as it uses breadth-first
search and neighborhood splitting. Its performances are far behind those of the
algorithm presented in this paper.

3.1 Bounded Safety Verification Algorithm

Algorithm 1 verifies whether a MTS T = (Q,→, Q0, d) is safe for a given bound
N . It returns “Safe” if T is safe for bound N . It returns (“Unsafe”, s) if T is
unsafe for bound N where s = q0 . . . qK is a counterexample (i.e. an initialized
trajectory of T of length K ≤ N and such that qK ∈ Qu).

The algorithm calls recursively the function check safety which verifies if a
state q ∈ Q is safe for a bound M ≤ N . If q is not safe for bound M , then
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the function returns (“Unsafe”, s) where s is a counterexample. Otherwise, it
returns (“Safe”, [p]γ , L) where the pair ([p]γ , L) is such that the neighborhood
[p]γ is safe for bound L ≥M and q ∈ [p]γ .

We maintain a list of safe neighborhoods (with their safety bound) stored
in the global variable N . Initially, N is empty. Each time a safe neighborhood
is determined, it is added to N . We compute a transition relation over the set
of safe neighborhoods N , denoted �. Additionally, we compute the function
merge : N → 2Q that keeps track of merging operations, and the function
num : N → N that records in which order the safe neighborhoods have been
computed. Though the transition relation � and functions merge, num are not
technically necessary for bounded safety verification, they help for the proof of
correctness and will be useful for the extension to unbounded safety verification.

The function check safety works as follows. Given a state q and a bound M ,
there are four possible cases:

1. If q ∈ Qu, then q is not safe. The trajectory of length 0 consisting of q is a
counterexample. The function returns (“Unsafe”, q).

2. If there exists ([p]γ , L) ∈ N , such that M ≤ L and V (p, q) < ργ, then q is
safe for boundM and we merge the states. We insert q in merge([p]γ , L) and
the function returns (“Safe”, [p]γ , L).

3. If M = 0 and q /∈ Qu, then q is safe for bound 0. Let δ be given by

δ = d(q,Qu) = inf
r∈Qu

d(q, r). (3)

We insert ([q]δ, 0) in N , we set merge([q]δ, 0) = {q} and the function returns
(“Safe”, [q]δ, 0).

4. In the other cases, we need to check the safety for bound M − 1 of the
successors of q:
– If one of the successors q′ is not safe for bound M − 1, then the function

check safety(q′,M − 1) returns a counterexample s. In that case, q is not
safe for bound M and a counterexample is given by the trajectory qs.
The function returns (“Unsafe”, qs).

– If all the successors q′1, . . . , q
′
n of q are safe for bound M − 1, then q is

safe for bound M . Let δ be given by

δ = min
(
d(q,Qu),

γ′1 − V (p′1, q
′
1)

λ
, . . . ,

γ′n − V (p′n, q
′
n)

λ

)
(4)

where the pair ([p′i]γ′
i
, L′

i) ∈ N is returned by check safety(q′i,M − 1),
for i = 1, . . . , n. We insert ([q]δ,M) in N , set merge([q]δ,M) = {q}
and ([q]δ,M) � ([p′i]γ′

i
, L′

i), for i = 1, . . . , n. Then, the function returns
(“Safe”, [q]δ,M).

Remark 2. We want to point out the following simple but useful properties.
Firstly, for all transitions ([q]δ,M) � ([p′]γ′ , L′), we have, by construction, that
L′ ≥M − 1 and num([q]δ,M) > num([p′]γ′ , L′). Secondly, for all ([q]δ,M) ∈ N ,
with M ≥ 1, for all q → q′, there exists, by construction, ([q]δ,M) � ([p′]γ′ , L′),
such that q′ ∈ merge([p′]γ′ , L′).
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Algorithm 1. Bounded safety verification algorithm

1: Input: MTS T , unsafe set Qu, bisimulation metric V and bound N .
2: Output: “Safe” or (“Unsafe”, s) where s is a counterexample.

3: Global N ← ∅; i ← 0;
4: Global �⊆ N ×N ; merge : N → 2Q; num : N → N;

5: Main: � Main procedure to check bounded safety of MTS T
6: for each q ∈ Q0 do
7: result ← check safety(q, N);
8: if result=(“Unsafe”, s) then
9: return result;

10: end if
11: end for
12: return “Safe”;

13: function check safety(q, M) � Check whether q is safe for bound M
14: if q ∈ Qu then � q is in the unsafe set
15: return (“Unsafe”, q);
16: else if ∃([p]γ , L) ∈ N such that M ≤ L and V (p, q) < ργ then
17: merge([p]γ , L) ← merge([p]γ , L) ∪ {q}; � Merging
18: return (“Safe”, [p]γ , L);
19: else if M = 0 then � q is safe for bound 0
20: δ ← d(q, Qu);
21: N ← N ∪ {([q]δ , 0)}; i ← i + 1;
22: merge([q]δ , 0) ← {q}; num([q]δ , 0) ← i;
23: return (“Safe”, [q]δ , 0);
24: else � Need to explore the successors of q
25: δ ← d(q, Qu); S ← ∅;
26: for each q′ ∈ succ(q) do
27: result← check safety(q′, M − 1);
28: if result=(“Unsafe”, s) then
29: return(“Unsafe”, qs);
30: else � Then result=(“Safe”, [p′]γ′ , L′)

31: δ ← min
(
δ, γ′−V (p′,q′)

λ

)
;

32: S ← S ∪ {([p′]γ′ , L′)};
33: end if
34: end for
35: N ← N ∪ {([q]δ , M)}; i ← i + 1;
36: merge([q]δ , M) ← {q}; num([q]δ, M) ← i;
37: for each ([p′]γ′ , L′) ∈ S do
38: Set ([q]δ , M) � ([p′]γ′ , L′);
39: end for
40: return (“Safe”, [q]δ , M);
41: end if
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Lemma 1. Let ([q]δ,M) ∈ N and r ∈ Q, such that r ∈ [q]δ, then:

– r /∈ Qu;
– if M ≥ 1, for all r→ r′, there is ([q]δ,M) � ([p′]γ′ , L′) such that r′ ∈ [p′]γ′ .

Proof. From equations (3) and (4), we have that δ ≤ d(q,Qu). Then, from
equation (1), d(q, r) ≤ V (q, r) < δ ≤ d(q,Qu) which implies that r /∈ Qu. The
first property holds. Let us assume that M ≥ 1 and let r → r′, from equation
(2), there exists q → q′, such that V (q′, r′) ≤ λV (q, r) < λδ. From equation (4),
there exists ([q]δ,M) � ([p′]γ′ , L′) such that δ ≤ (γ′ − V (p′, q′))/λ. Then, it
follows from the triangular inequality

V (p′, r′) ≤ V (p′, q′) + V (q′, r′) < V (p′, q′) + λδ ≤ γ′.

Hence, r′ ∈ [p′]γ′ and the second property holds. �

The correctness of algorithm 1 is a direct consequence of Lemma 1.

Theorem 1. Algorithm 1 is correct: if it returns (“Unsafe”, s) then T is not
safe for bound N and the trajectory s is counterexample; if it returns “Safe”,
then the MTS T is safe for bound N .

Proof. The proof of the first part of the theorem is straightforward. Let us
assume that the algorithm returns “Safe”. Let r0 . . . rK be an initialized tra-
jectory of T of length K ≤ N . Since algorithm 1 returns “Safe”, there exists
([q0]δ0 , N) ∈ N , such that r0 ∈ [q0]δ0 . Let us prove, by induction, that for
all k ∈ {0, . . . ,K}, there exists ([qk]δk

,Mk) ∈ N such that rk ∈ [qk]δk
and

Mk ≥ N − k. This is clearly true for k = 0. Let us assume this is true for some
k ∈ {0, . . . ,K − 1} and show that it is true for k + 1. We have rk → rk+1,
then from Lemma 1, and since Mk ≥ N − k ≥ 1, it follows that there exists
([qk]δk

,Mk) � ([qk+1]δk+1 ,Mk+1) such that rk+1 ∈ [qk+1]δk+1 . In addition, by
remark 2, we have Mk+1 ≥Mk − 1 ≥ N − k − 1. This completes the induction.
Further, from Lemma 1, it follows that rk /∈ Qu for k ∈ {0, . . . ,K}. Therefore,
r0 is safe for bound N and the MTS T is safe for bound N as well. �

Remark 3. The termination of algorithm 1 is an obvious consequence of T being
finitely branching with a finite set of initial states.

3.2 Unbounded Safety Verification Result

We now move to an interesting result that makes it possible, in some cases, to
derive a proof of unbounded safety from the proof of bounded safety provided
by algorithm 1. The main idea is the following. Let us assume that a MTS
T has been proved safe for some bound N using algorithm 1 and that for all
([p]γ , 0) ∈ N , there exists ([q]δ,M) ∈ N withM ≥ 1 such that [p]γ ⊆ [q]δ. Thus,
the neighborhoods [p]γ which are safe for bound 0, are included in neighborhoods
[q]δ safe for bound M ≥ 1. This implies that the neighborhoods [p]γ are safe for
bound 1 which in turn implies that the neighborhoods [q]δ are safe for boundM+
1. Then, by induction, it can be shown that the MTS T satisfies the unbounded
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safety property. Unfortunately, the elements of N generally do not satisfy the
previous condition. The reason is that for all ([p]γ , 0) ∈ N , we have γ = d(p,Qu).
Then, [p]γ is generally not included in another safe neighborhood [q]δ, since such
a neighborhood would most probably intersectQu which contradicts the fact that
it is safe.

Therefore, prior to apply the simple test described previously, we need to refine
the neighborhoods in N . In Algorithm 1, the safe neighborhoods are computed
backward, the safe neighborhood around a state is determined from the safe
neighborhoods around its successors. Our refinement step consists in reevaluating
forward these safe neighborhoods. We keep the safe neighborhoods around the
initial states unchanged. Then, the safe neighborhoods around the other states
are updated according to the safe neighborhoods around their predecessors. More
precisely, we use the function refine : N → R+ defined recursively as follows. Let
([p′]γ′ , L′) ∈ N , there are two different cases:

1. If L′ = N , then ([p′]γ′ , L′) corresponds to an initial state of T , we keep it
unchanged and refine([p′]γ′ , L′) = γ′.

2. If L′ �= N , we denote ([q1]δ1 ,M1), . . . , ([qn]δn ,Mn) the elements of N such
that ([qi]δi ,Mi) � ([p′]γ′ , L′), i = 1, . . . , n. Then,

refine([p′]γ′ , L′) =
n

max
i=1

mimax
j=1

(
λrefine([qi]δi ,Mi) + V (q′i,j , p

′)
)
. (5)

where {q′i,1, . . . , q′i,mi
} = succ(qi) ∩merge([p′]γ′ , L′).

Lemma 2. For all ([p′]γ′ , L′) ∈ N , refine([p′]γ′ , L′) is well defined and satisfies
refine([p′]γ′ , L′) ≤ γ′.

Proof. The proof is done by induction on num([p′]γ′ , L′). For ([p′]γ′ , L′) ∈ N ,
num([p′]γ′ , L′) ranges from 1 to Card(N ). Further, it is easy to see that the last
pair ([p′]γ′ , L′) added by algorithm 1, which verifies num([p′]γ′ , L′) = Card(N )
is such that L′ = N . In that case, refine([p′]γ′ , L′) = γ′. Now, let us assume that
there exists k ∈ {2, . . . ,Card(N )} such that for all ([p′]γ′ , L′) ∈ N , satisfying
num([p′]γ′ , L′) ≥ k, refine([p′]γ′ , L′) is well defined and refine([p′]γ′ , L′) ≤ γ′. Let
us remark that this holds for k = Card(N ). Let us prove that this true for k−1.
Let ([p′]γ′ , L′) ∈ N , such that num([p′]γ′ , L′) = k − 1, there are two possible
cases. If L′ = N , refine([p′]γ′ , L′) = γ′ and the property holds. If L′ �= N , then
for all ([qi]δi ,Mi) � ([p′]γ′ , L′), we have from remark 2, that num([qi]δi ,Mi) >
num([p′]γ′ , L′), hence by the induction assumption, we have that refine([qi]δi ,Mi)
is well defined and refine([qi]δi ,Mi) ≤ δi. Hence, refine([p′]γ′ , L′) is well defined.
Further, from equation (4), we have that for all q′i,j ∈ succ(qi)∩merge([p′]γ′ , L′),

γ′ ≥ λδi + V (q′i,j , p
′) ≥ λrefine([qi]δi ,Mi) + V (q′i,j , p

′)

Since this holds for all i ∈ {1, . . . , n}, for all j ∈ {1, . . . ,mi}, it follows that
refine([p′]γ′ , L′) ≤ γ′. This completes the induction. �
We define the set of refined neighborhoods:

N̂ =
{
([q]δ̂,M)| δ̂ = refine([q]δ,M), ([q]δ,M) ∈ N

}
.
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We lift the transition relation � from the set N to the set N̂ by setting
([q]δ̂,M) � ([p′]γ̂′ , L′) if and only if ([q]δ,M) � ([p′]γ′ , L′).

Lemma 3. Let ([q]δ̂,M) ∈ N̂ and r ∈ Q, such that r ∈ [q]δ̂, then:

– r /∈ Qu;
– if M ≥ 1, for all r→ r′, there is ([q]δ̂,M) � ([p′]γ̂′ , L′) such that r′ ∈ [p′]γ̂′ .

Proof. There exists ([q]δ,M) ∈ N with δ̂ = refine([q]δ,M). From Lemma 2,
δ̂ ≤ δ, it follows that [q]δ̂ ⊆ [q]δ. Then, from Lemma 1, the first property holds.
Let us assume that M ≥ 1 and let r → r′, from equation (2), there exists
q → q′, such that V (q′, r′) ≤ λV (q, r) < λδ̂. According to remark 2, there exists
([q]δ̂,M) � ([p′]γ̂′ , L′) such that q′ ∈ merge([p′]γ′ , L′). Hence, from equation (5),
we have that γ̂′ ≥ λδ̂ + V (q′, p′). Using the triangular inequality yields

V (p′, r′) ≤ V (p′, q′) + V (q′, r′) < V (p′, q′) + λδ̂ ≤ γ̂′.

Hence, r′ ∈ [p′]γ̂′ and the second property holds. �

We can now state the following unbounded safety verification result:

Theorem 2. Let us assume that

∀([p]γ̂ , 0) ∈ N̂ , ∃([q]δ̂,M) ∈ N̂ with M ≥ 1 such that [p]γ̂ ⊆ [q]δ̂. (6)

Then, the MTS T satisfies the unbounded safety property.

Proof. Let r0 . . . rK (with K ∈ N) be an initialized trajectory of T . Since the
MTS T has been proved safe for some bound N ≥ 1 using Algorithm 1, there
exists ([q0]δ0 , N) ∈ N such that r0 ∈ [q0]δ0 . We have δ̂0 = refine([q0]δ0 , N) = δ0,
therefore ([q0]δ̂0

, N) ∈ N̂ and r0 ∈ [q0]δ̂0
. Let us prove, by induction, that for

all k ∈ {0, . . . ,K}, there exists ([qk]δk
,Mk) ∈ N such that rk ∈ [qk]δk

and
Mk ≥ 1. This is clearly true for k = 0. Let us assume this is true for some
k ∈ {0, . . . ,K − 1} and show that it is true for k + 1. We have rk → rk+1, then
from Lemma 3, it follows that there exists ([qk]δ̂k

,Mk) � ([pk+1]γ̂k+1 , Lk+1) such
that rk+1 ∈ [pk+1]γ̂k+1 . If Lk+1 ≥ 1, then the induction hypothesis holds for k+1.
If Lk+1 = 0, we have from equation (6) that there exists ([qk+1]δ̂k+1

,Mk+1) ∈ N̂
with Mk+1 ≥ 1 and such that [pk+1]γ̂k+1 ⊆ [qk+1]δ̂k+1

. It follows that rk+1 ∈
[qk+1]δ̂k+1

. This completes the induction. Then, from Lemma 3, we have for all
k = 0 . . .K, rk /∈ Qu. This completes the proof. �

The inclusion test [p]γ̂ ⊆ [q]δ̂ in equation (6) can be replaced conservatively by
the easily checkable inequality V (p, q) + γ̂ ≤ δ̂.

Remark 4. From equation (5), we can show that there exists ([p]γ̂ , 0) ∈ N̂ such
that for all ([q]δ̂,M) ∈ N̂ , γ̂ ≥ λM δ̂. This implies that the unbounded safety
verification result given by Theorem 2 cannot be applied if T is not contractive
with respect to bisimulation.
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4 Experimental Results

In this section, we evaluate the performances of our approach by verifying safety
properties of the MTS defined in Example 1. The set of unsafe states is pa-
rameterized by θ ∈ R: Qu = {(σ, x) ∈ Q| (0 1)x ≥ θ}. It can be verified that
by choosing the admissible sequence of discrete states 1, 2, 3, 4, 3, 4, 3, 4 . . . , the
second component of the continuous state approaches asymptotically 1. Hence,
we shall choose θ ≥ 1.

4.1 Bounded Safety Verification

We start with bounded safety verification. Algorithm 1 has been implemented
in Matlab. It was applied for several values of the parameters ρ, N and θ. The
results are presented in figures 2, 3 and 4.

We first discuss the importance of the choice of the tuning parameter ρ. Let
us recall that for ρ = 0, Algorithm 1 explores exhaustively all the trajectories
of T of length N . For ρ = 1, Algorithm 1 merges states whenever it is possible
and is similar to the algorithm presented in [6]. In figure 2, we can see the
performances of the algorithm (CPU time and number of neighborhoods in N )
for several values of ρ and N ∈ {20, 30, 40}, θ = 1.1. As expected, the larger
the bound N , the more expensive the verification. What is more surprising is
the influence of the tuning parameter ρ. It can be seen that the optimal value
lies somewhere around ρ = 0.2 and not at ρ = 1 as one may intuitively think.
This means that sometimes, it is better not to merge states, even though it is
be possible.

We shall try to give an explanation by looking at the distribution of the pairs
([q]δ,M) ∈ N as a function of the safety bound M (see figure 3). For larger
values of ρ, e.g. 0.6, we can see that the number of pairs with a small value
of M is much less than the number of pairs with an intermediate value for M
(bell-shaped distribution). The interpretation is the following. With ρ = 0.6,
Algorithm 1 often uses the opportunity to merge states. This results, for small
values of M , in a lot of merging operations and few computed neighborhoods.
However, a lot of merging operations for small values of M result, because of
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ρ = 0.2) and N (right, θ = 1.1, ρ = 0.2)

backward computations, in safe neighborhoods of smaller size for larger values
of M . As the safe neighborhoods become smaller, Algorithm 1 has much less
opportunities to merge states and it needs to compute a lot of neighborhoods
for intermediate values of M to verify the safety of the system. On the contrary,
for smaller values of ρ, e.g. 0.2 and 0.01, the distribution of the pairs looks
quite uniform. This means that, by merging states less often when it gets the
opportunity, Algorithm 1 receives this opportunity more often. The optimal
balance seems to be obtained for ρ = 0.2.

For the sake of comparison, we also implemented the exhaustive exploration
without testing for merging, which results in much faster computations than Algo-
rithm 1 with ρ = 0. It takes 0.4 seconds (4022 explored states) forN = 20 and 18.3
seconds (183915 explored states) for N = 30, we stopped it before completion for
N = 40. We can see that even for N = 30, our algorithm with ρ = 0.2 is already
much faster (2.3 seconds) than the exhaustive exploration of the trajectories.

We now discuss the influence of the parameters θ and N (ρ is set to 0.2).
In figure 4, we represented the performances of the algorithm (CPU time and
number of neighborhoods in N ) for several values of θ and N . We can see that
as θ approaches 1, Algorithm 1 needs more time to verify the safety of the
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Fig. 5. Set of safe neighborhoods obtained after bounded safety verification (left) and
set of refined safe neighborhoods allowing to derive a proof of unbounded safety (right).
The darker (red) safe neighborhoods are those corresponding to safety bound M = 0.
Region above the line is the unsafe set.

system: as θ becomes close to 1, some trajectories of the system are very close
to the unsafe set resulting in safe neighborhoods of small size and less merging
opportunities. This corroborates the fact pointed out in [3] that robust safety
properties are easier to verify. The effect of the boundN is quite surprising. When
using exhaustive exploration of the trajectories, the time needed for bounded
safety verification grows exponentially with parameter N . With our approach
and for the optimal value ρ = 0.2, it seems that the time needed for bounded
safety verification grows only linearly with N . This is a huge improvement. For
comparison, we were able to verify, with our approach, bounded safety for N =
400 in a minute whereas we interrupted the exhaustive exploration for N = 40
since it was taking too much time.

4.2 Unbounded Safety Verification

We move to unbounded safety verification, the parameter θ is set to 1.1. The
bounded safety verification had previously been verified for N = 30 with ρ = 0.2.
Using the result presented in Theorem 2, a proof of unbounded safety could be
derived. Most of the computational effort was spent on bounded safety verifica-
tion so the overall process took less than 3 seconds.

In figure 5, we represented the set of safe neighborhoods obtained after
bounded safety verification and the set of safe neighborhoods after refinement.
The neighborhoods corresponding to safety bound M = 0 are represented in
dark (red). We can check that, after refinement, these are included in other
safe neighborhoods, thus allowing us to conclude that the system satisfies the
unbounded safety property.

5 Conclusion

In this paper, we first presented an algorithm for verifying bounded safety of
metric transition systems. In some cases, proofs of unbounded safety can be
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derived from the results of our algorithm. We provided experiments that show
the efficiency of the approach when the tuning parameter ρ of the algorithm
is well chosen. Future work will focus on better understanding the influence of
this parameter and extending our approach to infinitely branching transition
systems.
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Abstract. Event-driven control systems provide interesting benefits
such as reducing resource utilization. This paper formulates the opti-
mal boundary and regulator design problem that minimizes the resource
utilization of an event-driven controller that achieves a cost equal to the
case of periodic controllers.

1 Event-Driven Control System Model

We consider the control system

ẋ(t) = Ax(t) +B u(t)
y(t) = C x(t) (1)

with x ∈ Rn×1, A ∈ Rn×n, B ∈ Rn×m, u ∈ Rm×1, and C ∈ R1×n. Let

u(t) = uk = Lx(ak) = Lxk ∀t ∈ [ak, ak+1[ (2)

be the control updates given by a linear feedback controller designed in the
continuous-time domain but using only samples of the state at discrete instants
a0, a1, . . . , ak, . . . Between two consecutive control updates, u(t) is held constant.
In periodic sampling we have ak+1 = ak + h, where h is the period of the
controller.

Let ek(t) = x(t)−xk be the error evolution between consecutive samples with
t ∈ [ak, ak+1[. For several types of event-driven control approaches [1,2], event
conditions can be generalized by introducing a function f(·, ·, Υ ) : Rn × Rn →
R that defines a boundary measuring the tolerated error with to respect the
sampled state [3]. The condition that must be ensured is

f(ek(t), xk, Υ ) ≤ η (3)
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where η is the error tolerance and Υ = {υ1, υ2, . . . , υp}, υi ∈ R is a set of free
parameters. Hence, we can define the complete dynamics of the event-driven
system by the n+ 1 order non linear discrete-time system

ak+1 = ak + Λ(xk, Υ, η)
xk+1 = (Φ(Λ(xk, Υ, η)) + Γ (Λ(xk, Υ, η))L)xk

(4)

where Λ(xk, Υ, η) denotes the time separation between two consecutive activa-
tions ak+1 and ak, that solves (1), (2), and (3), assuming that xk = x(ak) is the
state sampled at ak, Υ is the set of free parameters of f , and η is the tolerance
to the error. We also define Φ(t) = eAt and Γ (t) =

∫ t

0 e
AsdsB. We highlight that

we have been able to find an expression for Λ(xk, Υ, η) only by approximating Φ
and Γ by Taylor expansion [3]. In all the other cases Λ can only be computed
numerically.

2 Optimal Problem Formulation

The optimal problem for event-driven controllers can be formulated in two com-
plementary ways: to minimize the cost while using the same amount of resources
than the periodic controller, or to minimize the computational demand while
achieving the same cost as in the case of the periodic controller. Here we describe
the resource usage minimization given a cost constraint. The other formulation
simply requires to exchange the goal function and one constraint, as it will be
indicated later.

Let be a standard quadratic cost function in continuous time defined as

J(L, Υ, η) =
∫ a�

0
x(t)TQcx(t) + u(t)TRcu(t)dt+ x(a�)TNcx(a�) (5)

The optimal boundary and regulator design problem for resource minimization
can be formulated as

maximize
∑�−1

k=0 Λ(xk, Υ, η)
k

w.r.t. L, Υ, η (6)

subject to xk+1 = (Φ(Λ(xk, Υ, η)) + Γ (Λ(xk, Υ, η))L)xk (7)
ak+1 = ak + Λ(xk, Υ, η) (8)
J(L, Υ, η) ≤ Jh (9)

where (6) sets the maximization goal equal to the average of the first " sampling
intervals, (7) enforces the relationship between two consecutive sampled states,
(8) describes the constraint among the activations, and Jh is the cost of an
optimal h-periodic controller.

Notice that by exchanging (6) with (9) we obtain the complementary problem
that minimizes the cost given an upper bound on the period.

The problem (6)–(9) can be numerically solved by constrained minimization
techniques such as Lagrange multipliers, or by standards procedures for time
varying discrete-time systems.
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3 Example

Consider the double integrator system

ẋ =
[
0 1
0 0

]
x+

[
0
1

]
u , y =

[
1 0

]
x.

A first closed loop system using a periodic optimal regulator designed using
standard methods to minimize (5) with h = 0.6s gives a cost of 27.3648 with
L =

[
−0.6115 −1.2637

]
, where

x0 =
[
0.54
0.84

]
, Qc =

[
10 0
0 10

]
, Rc =

[
10
]
, Nc =

[
0 0
0 0

]
, an = 100s.

Alternatively, for an event-driven controller, let

ẋT
k+M1ẋk+(ak+1 − ak)2 = ηxT

kM2xk (10)

be an execution rule as in (3) that intuitively mandates to trigger more frequent
control updates when the state moves fast. In (10) we set

ẋk+ = lim
t→a+

k

ẋ(t) = (A+BL)xk (11)

to denote the state derivative once the controller has been applied to the sampled
state. From (10), it follows that

ak+1 − ak = Λ(xk, Υ, η) =

√
η

xT
kM2xk

xT
k (A+BL)TM1(A+ BL)xk

. (12)

The optimal problem (6)–(9) is completely defined except for (9). Note that
for each optimization problem, 9 free parameters have been defined (6 for both
positive semidefiniteM1,2, 1 for η, and 2 for L). Considering for example problem
(6)–(9), the optimal solution achieves a slightly better cost than the optimal
periodic controller, 26.6005, with

L =
[
−0.847 −1.723

]
,M1 =

[
0.028 0.091
0.091 0.336

]
,M2 =

[
0.054 0.017
0.017 0.069

]
, η = 0.0.212,

but drastically reducing resource utilization.
Figure 1 a) shows the closed loops dynamics of the periodic optimal con-

troller and event-driven controller respectively, where circles mark control up-
dates. Both trajectories exhibit similar dynamics. Focusing on the dynamics
given by the periodic controller, we can observe that from the first to the second
control update, the state moves fast because it covers a long trajectory. And
as control updates progress, the covered trajectories become shorter (the state
moves slow). Looking at the dynamics given by the event-driven controller, we
can observe the opposite behavior. When the state moves fast, we have more
frequent control updates than when the state moves slow.
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Fig. 1. Numerical example

Figure 1 b) shows the activation pattern of control updates for the event-
driven controller. The x-axis is simulation time, and each control update is rep-
resented by a vertical line, whose height indicates the time (in seconds) elapsed
to the next control update. It shows that activation times occur within a range
([0.1 2.6]s, approximately) that in average is 1.84s, three times slower than the
periodic controller!! Only the first 10s of simulation time are shown in this sub-
figure. By looking at the rest of simulation time, we would observe that sampling
intervals oscillate within 2.51s and 2.58s.

4 Conclusions

This paper has formalized two optimal control design problems for event-driven
controllers with limited resource utilization. The formalization includes a restric-
tion on the amount of resources to be spent or on the cost to be achieved. Future
work will look for closed solutions to the problem.
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Abstract. We present a new method that addresses various deficiencies
of the state-of-the-art non-linear invariant generation methods for hybrid
systems. By identifying suitable endomorphisms for each algebraic con-
secution condition, we reduce the problem to the computation of specific
eigenspaces and their intersections.

1 Introduction

Consider a computational model of a hybrid system. An invariant at a location
is an assertion true of any reachable system states associated to this location.
In order to automate the generation of non-trivial multivariate polynomial in-
variants, one needs to handle initiation and discrete consecution conditions. We
need to discover inductive algebraic assertions that hold at the initialization, and
are induced by the structure of the discrete transitions at each state. Moreover,
one needs to handle continuous consecution conditions: differential consecution
and local conditions. This requires inductive algebraic assertions that hold at
each state satisfying the local state conditions and obeying the local differential
rules. Invariant generation for hybrid systems have seen tremendous progress
[1, 2] in recent years. But they are often based on highly complex computations
or are limited to linear or constant differential and discrete systems, or abstract
the local and initial conditions. First, we extend our previous work on discrete
systems [3] and we identify suitable morphisms for each consecution condition
of non-linear systems. The problem is then reduced to linear algebra and can be
solved using known techniques from algebraic geometry. All proofs and examples
are completely described in our associated technical report [4].

2 Hybrid Systems and Inductive Assertions

Definition 1. A hybrid system is given by 〈V, Vt, L, T , C,D, l0, Θ〉, where V is
a set of variables, Vt = {X1, .., Xn} where Xi(t) is a function of t, L is a set of
� Supported in part by CNPq grant 472504/2007-0.
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locations and l0 is the initial location. A state is an interpretation of the variables
in V ∪ Vt. A transition τ ∈ T is given by a tuple 〈lpre, lpost, ρτ 〉, where lpre and
lpost name the pre- and post- locations of τ . The transition relation ρτ is a first-
order assertion over V ∪Vt∪V ′∪V ′

t , where V and Vt correspond to current-state
variables and functions, while V ′ and V ′

t correspond to the next-state variables
and functions. Θ is the initial condition, given as a first-order assertion over
V ∪ Vt. Also, C associates each location l ∈ L to a local condition C(l) denoting
an assertion over V ∪Vt. Finally, D associates each location l ∈ L to a differential
rule D(l) corresponding to an assertion over V ∪ {dXi/dt|Xi ∈ Vt}.

The differential rules describe the local evolution of variables and functions in
Vt during an interval. A run of a hybrid automaton is an infinite sequence
〈l0, κ0〉

µ0−→ · · · µi−1−−−→ 〈li, κi〉
µi−→ · · · of states 〈li, κi〉 ∈ L × R|V ∪Vt| where l0

is the initial location and κ0 |= Θ. Given two consecutive states 〈li, κi〉 and
〈li+1, κi+1〉, each condition µi describes a discrete consecution if there exists a
transition 〈q, p, ρi〉 ∈ T such that q = li, p = li+1 and 〈κi, κi+1〉 |= ρi. Otherwise
µi is a continuous consecution condition and there exists q ∈ L, ε ∈ R and a
differentiable and continuous function φ : [0, ε] → R|V ∪Vt| such that the fol-
lowing three conditions hold: (i) li = li+1 = q, (ii) φ(0) = κi, φ(ε) = κi+1,
(iii) During the time interval [0, ε], φ satisfies the local condition C(q) (i.e.
∀t ∈ [0, ε], φ(t) |= C(q)) according to the local differential rule D(q) (in other
words ∀t ∈ [0, ε], 〈φ(t), dφ(t)/dt〉 |= D(q)).

Definition 2. Let W be a hybrid system. An assertion ϕ over V ∪ Vt is an
invariant at l ∈ L if κ |= ϕ when 〈l, κ〉 is a reachable state of W .

So, an invariant holds on all states that reach location l.

Definition 3. Let D be an assertion domain. An assertion map for W is a
map γ : L → D. We say that γ is inductive if and only if the Initiation and
Consecution conditions hold: (Initiation) Θ |= γ(l0), (Discrete Consecution) for
all τ ∈ T s.t τ = 〈li, lj , ρτ 〉 we have γ(li)∧ρτ |= γ(lj)′, (Continuous Consecution)
for all l ∈ L, and two consecutive reachable states 〈l, κi〉 and 〈l, κi+1〉 in a possible
run of W such that κi+1 is obtained from κi according to the local differential
rule D(l), if κi |= γ(l) then κi+1 |= γ(l).

Note that if γ(l) ≡ (Q(X1, .., Xn) = 0) where Q is a multivariate polynomial in
K[X1, .., Xn] then C(l) ∧ (Q(X1, .., Xn) = 0) |= (d(Q(X1, .., Xn)/dt = 0). Hence,
if γ is an inductive assertion map then γ(l) is an invariant at l for W .

3 New Continuous Consecution Conditions

Now we show how we can encode differential continuous consecution conditions.
Consider W as the hybrid automaton just as above. Let l ∈ L (which could
eventually be in a circuit) and η(l) be a polynomial with unknown coefficients
(that is, a candidate invariant) of the form η(l) = P (X1, .., Xn). Hence we have
dη(l)/dt = ∂P (X1, .., Xn)/∂X1 dX1(t)/dt+· · ·+∂P (X1, .., Xn)/∂Xn dXn(t)/dt.
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Definition 4. For P (X1, .., Xn) ∈ R[X1, .., Xn], we define the polynomial DP

of R[Y1, .., Yn, X1, .., Xn]: DP (Y1, .., Yn, X1, .., Xn) = ∂P (X1, .., Xn)/∂X1 Y1 +
...+ ∂P (X1, .., Xn)/∂Xn Yn.

Hence, dη(l)/dt = DP (Ẋ1, .., Ẋn, X1, .., Xn). From now on, let Ḟ denote dF/dt.
Let 〈l, κi〉 and 〈l, κi+1〉 be two consecutive configurations in a run. Then we can
express local state continuous consecutions as C(l) ∧ (η(l) = 0) |= (η̇(l) = 0).

Definition 5. LetW be a hybrid system and let η be an algebraic inductive map.
We identify the following notions to encode continuous consecution conditions:
(i) η satisfies a Constant-scale local consecution at l if and only if there exists
a constant λ ∈ K such that C(l) |= (dη(l)/dt − λη(lj) = 0), (ii) η satisfies a
Strong-scale local consecution at l if and only if C(l) |= (dη(l)/dt = 0).

4 Morphisms for strong Differential Invariant Generation

We first consider a non linear differential system without initial conditions of
the form [ Ẋ1 = P1(X1, . . . , Xn), . . . , Ẋn = Pn(X1, . . . , Xn) ].

Theorem 1. A polynomial Q ∈ K[X1, .., Xn] is a strong invariant for the dif-
ferential rules if and only if DQ(P1(X1, .., Xn), .., Pn(X1, .., Xn), X1, .., Xn) = 0.

If Q has degree r, and d is the maximal degree of the Pi’s, then we must have
that DQ(P1..Pn, X1..Xn) has degree at most r+d−1. We reduce the problem by
considering the endomorphism D from Rr[X1, .., Xn] to Rr+d−1[X1, .., Xn] given
by P (X1, .., Xn) �→ DP (P1(X1, .., Xn), .., Pn(X1, ..Xn), X1, .., Xn) and we denote
byMD its matrix in the canonical basis of Rr[X1, .., Xn] and Rr+d−1[X1, .., Xn].

Theorem 2. A polynomial Q of Rr[X1, .., Xn] is a strong differential invariant
for the preceding differential system if and only if it lies in the kernel of MD.

Example 1. (MD for 2 variables, a degree 2 differential rule, and degree 2 invari-
ants) The polynomials P1 and P2 are of the form P1(x, y) = a1x2+a2xy+a3y2+
a4x+a5y+a6, and P2(x, y) = a7x2+a8xy+a9y2+a10x+a11y+a12. Using the ba-
sis (x2, xy, y2, x, y, 1) of R2[x, y] and the basis (x3, x2y, xy2, y3, x2, xy, y2, x, y, 1)
of R3[x, y], the matrix MD becomes:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2a1 a7 0 0 0 0
2a2 a1 + a8 2a7 0 0 0
2a3 a2 + a9 2a8 0 0 0
0 a3 2a9 0 0 0

2a4 a10 0 a1 a7 0
2a5 a4 + a11 2a10 a2 a8 0
0 a5 2a11 a3 a9 0

2a6 a12 0 a4 a10 0
0 a6 2a12 a5 a11 0
0 0 0 a6 a12 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

If we add initial conditions of the form (x1(0) = u1, .., xn(0) = un), we are look-
ing for an invariant in Rr[x1, .., xn] that belongs to the hyperplane P (u1, .., un) =
0, i.e., we are looking for Q in ker(MD)∩{P/P (u1, .., un) = 0}. As the intersec-
tion of the hyperplane {P |P (u1, .., un) = 0} with constant polynomials is always
reduced to zero, and as the intersection of any hyperplane with a subspace of
Rr[x1, .., xn] has dimension at least one, we deduce the following theorem.
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Theorem 3. There exists a strong invariant of degree r for the differential sys-
tem with initial conditions (any initial conditions, actually), if and only if the
kernel of MD is of dimension at least two.

Lemma 1. Let Q1, . . . , Qn be n polynomials in R[x1, . . . , xn]. Then there exists
a polynomial Q such that ∂1Q = Q1, . . . , ∂nQ = Qn if and only if for any i �= j,
1 ≤ i, j ≤ n, one has ∂iQj = ∂jQi.

Let Syz(P1, .., Pn) denote the Syzygy bases [5] of (P1, . . . , Pn).

Theorem 4. There exists a strong invariant for a differential system if and only
if there exists (Q1, .., Qn) in Syz(P1, .., Pn), such that for any i, j with i �= j and
1 ≤ i, j,≤ n, one has ∂iQj = ∂jQi.

For example, when n = 2, we get the following class of systems for which one
can always find a strong invariant: [ ẋ1 = P1(x1, x2), ẋ2 = P1(x1, x2) ] with
∂2P2 = −∂1P1. Indeed, (P2 − P1) always belongs to Syz(P1, P2) (it is actually
a basis when P1 and P2 are relatively prime). Consider the following differen-
tial rules: [ ẋ = xy, ẏ = −y2/2 ]. Here, we indeed have ∂2P2 = −∂1P1 = −y.
The corresponding invariant is Q(x, y) = xy2/2 = 0. Consider a generalization
to dimension n of the rotational motion of a rigid body as an other example:
[ ẋ1 = a1x2 . . . xn, . . . , ẋn = anx1 . . . xn−1 ]. We treat the case when the ai’s
are non zero, other cases being easier. Indeed, the vector (Q1 = x1/a1, Q2 =
−x2/(n − 1)a2, . . . , Qn = −xn/(n − 1)an) belongs to Syz(P1, .., Pn), where
Pi = aix1 . . . xi−1xi+1 . . . xn belongs to the set of polynomials defining the dif-
ferential rule. Now if i �= j, one has ∂iQj = ∂jQi = 0, and applying Theorem
4 we deduce that the system admits a strong invariant. We just have to solve
∂1Q = x1/a1;Q2 = −x2/(n − 1)a2; ...;Qn = −xn/(n − 1)an. A trivial solution
is Q(x1, .., xn) = x2

1/2a1−x2
2/2(n− 1)a2 · · · − x2

n/2(n− 1)an. Hence, the system
admits x2

1/2a1 − x2
2/2(n− 1)a2 · · · − x2

n/2(n− 1)an = 0 as a strong invariant.

5 Morphisms for Constant-Scale Consecution

Definition 6. Let Q ∈ K[X1, ..., Xn]. Then Q is a λ-invariant for constant-scale
continuous consecution for the differential rules if ˙Q(X1, .., Xn)=λQ(X1, .., Xn),
that is, DQ(P1(X1, .., Xn), .., Pn(X1, .., Xn), X1, .., Xn) = λQ(X1, .., Xn).

If Q has degree r, we reduce the problem by considering the endomorphism
D of Rr[X1, .., Xn] given by P (X1, .., Xn) �→ DP (P1, .., Pn, X1, .., Xn). By the
definition of invariant for constant-scale consecution, Q will be a λ-invariant for
constant-scale consecution of degree at most r if and only if λ is an eigenvalue
of D, and Q is an eigenvector for λ. By letting MD be the matrix of D in the
canonical basis of Rr[X1, .., Xn] we can state the following theorem.

Theorem 5. A polynomial Q of Rr[X1, .., Xn] is a λ-invariant for differential
scale consecution of the differential system if and only if there exists an eigenvalue
λ of MD such that Q belongs to the eigenspace ofMD corresponding to λ.
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Example 2. (General case for 2 variables and degree 2) Consider the differential
rules [ ẋ = a1x + b1y + c1 ẏ = a2x + b2y + c2 ], the matrix MD in the basis

(x2, xy, y2, x, y, 1) is:

⎛⎜⎜⎜⎜⎜⎝
2a1 a2 2b2 0 0 0
2b1 a1 + b2 2a2 0 0 0
0 b1 0 0 0 0

2c1 c2 0 a1 0 0
0 c1 2c2 b1 b2 0
0 0 0 c1 c2 0

⎞⎟⎟⎟⎟⎟⎠ . Roots of such associated character-

istic polynomial can be calculated by Cardan’s method. Thus, one will always
be able to find non-trivial λ invariants in this case.

Consider the following differential system with initial conditions (where strong
invariant can not be generated): [ ẋ = x ∧ ẏ = ny ∧ (x(0), y(0)) = (λ, µ) ]
has associated endomorphism L : Q(x, y) �→ ∂xQ(x, y)x + n∂yQ(x, y)y. Writing

its matrix in the basis (xn, xn−1y, .., xyn−1, yn, .., x, y, 1) gives:
⎛⎜⎜⎝

n . . . 0 0
0 M 0 0
0 . . . n 0
0 . . . 0 0

⎞⎟⎟⎠ . The

corresponding eigenspace has at least dimension 2, and it contains V ect(xn, y).
Using the theorem on the existence on solutions for any initial conditions, we
deduce that there exists an invariant of the form axn +by, and which must verify
aλn + bµ = 0. If λ and µ are non zero, which is the interesting case, one can take
a = λ−n and b = µ−1, which gives the invariant xn/λn + y/µ = 0.

6 Conclusions

Our non-trivial non-linear invariant generation methods do not require (doubly)
exponential computations from the use of Grobner bases, quantifier eliminations,
cylindrical algebraic decompositions, direct resolution of non-linear systems, or
any abstraction operators. Moreover, we succeeded in reducing the problems
to linear algebra and we presented necessary and sufficient conditions for the
existence of non-trivial non-linear invariants.
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Abstract. In this paper, we introduce the hybrid automaton on the dis-
crete time structure of a countable scattered linear-order set and present
the reachability analysis for the Zeno and reversed-Zeno behaviors in the
Fuller’s phenomenon by using the extended automaton.

1 Introduction

A hybrid system is the system in which discrete and continuous dynamics in-
teract each other. In the most general hybrid system, the set of time points
at which the discrete change occurs consists of a countable scattered linear-
order set, which contain no dense sub-ordering. By Hausdorff’s theorem [4], a
countable scattered linear order set is formed from the order-type n, N and −N,
where n denotes the order-type of the finite set {0, 1, 2, · · · , n−1}, N denotes the
order-type of the set of natural number 1, 2, · · · , and −N means the order-type
of the negative part of integer number {· · · ,−2,−1}. For example, the discrete
time structure of Zeno is given by N, and the reverse Zeno is corresponding
to −N. Therefore, Hausdorff’s theorem means that the order-type of discrete
time structure of hybrid systems is restricted in the order-type of finite, Zeno,
reversed-Zeno or its superposition. In this paper, we extend the discrete struc-
ture of the transfinite hybrid automaton (hereafter THA) from the ordinal to
the countable scattered linear-order set, and we gives the reachability analysis
for the Zeno and reversed-Zeno behaviors in the Fuller’s phenomenon which has
the order structure of N + n +−N.

2 Transfinite Hybrid Automaton

[Hyper-real number ∗R]. ∗R is an enlargement of the field of real number
R including infinitesimal numbers and infinite numbers. Let F is Frećhet filter
such that F = {A ⊆ N|N−A is finite }. Let W denote a set of sequences of real
numbers (a1, a2, · · ·). The set of hyperreal numbers ∗R is defined by introducing
the following equivalence relation into W .
(a1, a2, · · ·) ∼ (b1, b2, · · ·)⇔ {k | ak = bk} ∈ F
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Namely, ∗R = W/ ∼. We denote the equivalence class of (a1, a2, · · ·) by
[(a1, a2, · · ·)]. Intuitively, [(a1, a2, · · ·)] is formed from the sequences by ignor-
ing the difference of the finite parts. The usual real number a is treated as
[(a, a, a, · · ·)], so that ∗R contains R itself. An element of R in ∗R is called a
standard number. We define a relation u ≈ v if the distance from u to v is
infinitesimal. It is known that for any finite number a ∈ ∗R, there is only one
standard number b ∈ R such that a ≈ b. b is called a shadow of a and denoted by
b = ◦a. We use an infinite number ω = [(1, 2, · · ·)], and an infinitesimal number
ε (ε = 1

ω ) in the following section.

[Transfinite Hybrid Automaton THA]. A THA is a combination of the
Büchi’s transfinite automaton on ordinals and the nonstandard analysis which
has been proposed in [3]. We extend the original THA to the automata on the
countable scattered linear-order set by adding the left-limit transition [2]. In this
paper, we use the (nonstandard) differential equation to describe the continuous
dynamics of the system instead of the infinite iteration of infinitesimal action in
the original THA.

Definition 1. A THA A is a 4 tuple, A = (X, Ẋ,Q,E) where
(1) X = {x1, x2, · · · , xm}, Ẋ = {ẋ1, ẋ2, · · · , ẋm}: Sets of continuous variables
and its derivatives. (x, ẋ) is called ‘situation’.
(2) Q = {q1, q2, · · · , qn}: The finite set of states.
(3) E: The set of transition rules. E ⊆ Q×Q ∪ P(Q)×Q ∪Q× P(Q).
(4) Ẋ = fq(x, ẋ) which gives the continuous dynamics for each q ∈ Q.
(5) The discrete action Hi(x, ẋ)→ x := gi(x, ẋ) which is a label for E. Hi(x, ẋ)
is a switching manifold on which discrete changes happen.

Definition 2. Let
LimL({q0, q1, · · · , qi}) = {q ∈ Q|∀k < i∃j[k < j < i and q = qj ]},
LimR({qi+1, qi+2, · · ·}) = {q ∈ Q|∀k > i∃j[i < j < k and q = qj ]}.
A scattered linear-order set T=(t0, t1, · · · , tk) : , where k is nonstandard integer,
has a transition of the automaton A = (X, Ẋ,Q,E) if and only if there exists
ϕ : T → Q such that ϕ(ti) = qi and each qi satisfies one of the following
conditions for the continuation.

(1) a next transition: There exists (qi, qi+1) ∈ E such that Hi(x(ti), ẋ(ti)), and
x(ti+1) = gi(x(ti), ẋ(ti)).
(2) a left-limit transition: There exist {qi1, qi2, · · · , qir} ⊆ LimL({q0, q1, · · · , qi})
such that ({qi1, qi2, · · · , qir}, qi+1) ∈ E, and x(ti1) ≈ x(ti2) ≈ · · · ≈ x(tir) then
x(ti+1) ≈ x(ti1).
(2) a right-limit transition: There exist {qi1, qi2, · · · , qir}⊆LimR({q0, q1, · · · , qi})
such that (qi, {qi1, qi2, · · · , qir}) ∈ E, and x(tik) ≈ x(ti) for 1 ≤ k ≤ r.

3 A Verification of Zeno Phenomenon

[Fuller’s Phenomenon]. Fuller’s problem is to minimize
∫ tf

t0

x2dx under the

condition of ẋ = y, ẏ = u, u ∈ [−1, 1] with the initial condition of
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q0 : (x, y) ∈π1

ẋ = y
ẏ = −1

q1 : (x, y) ∈π2

ẋ = y
ẏ = 1

q2 :

q3 : (x, y) ∈π3

ẋ = y
ẏ = −1

q4 : (x, y) ∈π4

ẋ = y
ẏ = 1{q , q }0     1

x := x x := x

x := x x := xy := y y := yy := y y := yt < tr

ẋ = ε
ẏ = ε

x := xr
y := yr

t = tr

x := 0
y := 0

{q , q }3     4

H  > 02

H  < 02H  > 01

H  < 01

Fig. 1. THA of Fuller’s dynamics

x(t0) = x0, y(t0) = y0, x(tf ) = xf , y(tf ) = yf . This is a classical problem of
the optimal control theory. By using Pontryagin’s maximal principle, Fuller had
given the solution that contains infinite repetitions of discrete changes in 1961 [5].
Actually, Fuller’s solution approaches to the point (x, y) = (0, 0) through Zeno
trajectory, then stay there for a finite period, and goes out through reversed-Zeno
trajectory (Fig.2). Namely, the Zeno and reversed-Zeno give the optimal path to
enter the stable state and to escape from the state, respectively. The THA for
Fuller’s phenomenon is given in Fig. 1.

[The existence of Zeno in Fuller’s dynamics]. We analyze the part of
trajectory toward the stable point (x, y) = (0, 0) from the initial state of which
discrete time structure is denoted by T = (t0, t1, · · · , tω) (Fig.2(a)). Let assume
that H1(x, y) = x+ cy2, H2(x, y) = −x+ cy2 and the areas π1, π2 is defined as:
π1 = {(x, y)|H1(x, y) ≥ 0 ∧ y ≥ 0 ∨H2(x, y) ≤ 0 ∧ y < 0}
π2 = {(x, y)|H1(x, y) ≤ 0 ∧ y ≥ 0 ∨H2(x, y) ≥ 0 ∧ y < 0} .
The areas π1, π2 divides the space (x, y) into two parts. The part of y > 0 of
H1(x, y) = 0 and the part of y < 0 of H2(x, y) = 0 are switching manifold
(Fig.2).

Under the condition 0 < c < 1
4 , the THA for Fuller dynamics satisfies:

ẋ = y , ẏ = u, (inside of all states)
H1(x, y) = 0 ∧ y > 0→ u := −1, (at the state transition from q1 to q0)
H2(x, y) = 0 ∧ y < 0→ u := 1(at the state transition from q0 to q1).

Without loss of generality, we can assume that the initial situation (x0, y0) sat-
isfies I ≡ x0 < 0 ∧ 0 < y0 ∧H1(x0, y0) = 0.
We introduce the predicate Ψ such that
Ψ(ti) ≡ ∃a, b[∀tj ≤ ti ∈ T (|x(tj)| ≤ a ∧ |y(tj)| ≤ b)] for standard a, b > 0.

Also we introduce the following two functions,

V1(x, y) = x+
1
2
y2, V2(x, y) = −x+

1
2
y2.
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x

y

H2 : −x + cy2H1 : x + cy2

H1 ≥ 0H1 ≤ 0 H2 ≥ 0 H2 ≤ 0

V1

V2

π1

π2

(a) Zeno

H1 ≥ 0H1 ≤ 0 H2 ≥ 0 H2 ≤ 0

x

y

π4

π3

H2 : −x + cy2H1 : x + cy2

V1

V2

(b) reversed-Zeno

Fig. 2. Fuller’s dynamics (x-y phase portrait)

Because V̇1(x, y) = ẋ+ yẏ = y − y = 0 in π1, we get

V1(x, y) = x+
1
2
y2 = x0 +

1
2
y20 = (

1
2
− c)y20 .

And because x0 ≤ x ≤ (1
2 − c)y20 , we get a = (1

2 − c)y20 . Therefore, |x| ≤ a at π1.
Also, from 1

2y
2 = (1

2 − c)y20 − x0, we have |y| ≤ y0. Thus, we get |y| ≤ b at π1
by putting b = y0. Considering that ẏ = −1 (y decreases monotonically) in
this case, and x, y is bounded, we can see that the trajectory of the system
behavior reaches the other manifold H2(x, y) = 0 ∧ y < 0 within a finite time
duration without being trapped into any equilibrium nor going out to infinity.
Let assume that this point on the switching manifold is (x, y) = (x1, y1), then

we have H2(x1, y1) = 0 ∧ V1(x1, y1) = 0. By putting ρ =
1− 2c
1 + 2c

, we get x1 =

ρcy20 , y1 = −√ρy0.
And the time to reach to the next switching manifold is

t1 = t0 +
∫ y1

y0

−1dy = y0 − y1 = (1 +
√
ρ)y0.

Thus we have that I ⊃ ϕ(t1).
In the same way, we have V2(x, y) = −x+ 1

2y
2 = −x1 + 1

2y
2
1 = (1

2 − c)y21 from
V̇2(x, y) = −ẋ+ yẏ = −y + y = 0 in the area π2. And from (1

2 − c)y20 ≤ x ≤ x0,
1
2y

2 = (1
2 − c)y21 + x1, we get |x| ≤ ρa, |y| ≤ ρb. Thus, we have |x| ≤ ρa ∧ |y| ≤

ρb at π2.
Therefore, the trajectory of the dynamics reaches to the switching manifold

H1(x, y) = 0∧y > 0 again. We put this point (x, y) = (x2, y2), then we get x2 =
−ρx1 = ρ2x0, y2 = −√ρy1 = ρy0 because H1(x2, y2) = 0 ∧ V2(x2, y2) = 0. And
the time to reach to the switching manifold is t2− t1 = y2− y1 =

√
ρ(1+

√
ρ)y0.

Therefore, Ψ(t1) ⊃ Ψ(t2) becomes true because ρ < 1.
Similarly we can prove Ψ(ti) ⊃ Ψ(ti+1) for any ti ∈ T . Note that the mathe-

matical induction holds even for the nonstandard natural number so that we get
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x(tn) = (−ρ)nx0, y(tn) = (−√ρ)ny0, tn = tn−1 +
√
ρn(1 +

√
ρ).

Since ρ < 1, we have x(ti1) ≈ x(ti2) ≈ · · · ≈ x(tin) ≈ 0 for the infinite integers
i1, i2, · · · , in. By the continuation condition, x(tω) ≈ x(ti1) ≈ 0. .Also,

tz = t1 + t2 + · · · = (1 +
√
ρ+ · · ·)t1 ≈

1 +
√
ρ

1−√ρy0
Thus we can conclude that the twisted chattering arc of Zeno approaches to the
stable point (0, 0) after the infinite switching within the finite time duration.

[Trajectory of the reverse Zeno]. We analyze the behavior the untwisted
chattering of reverse Zeno on the time structure T = (t−ω, · · · t−i, t−i+1, · · · , tf ).
However, the reverse Zeno contains the inherent uncertainty such that an in-
finitesimal difference in the initial condition causes observable effect after the
infinite switching. Therefore, we can only argue about the weak reachability
that there exists a trajectory such that x(tf ) = xF and there is no infinite inte-
ger ij such that x(t−ω) �≈ x−ij .
We define the areas π3, π4 as following:
π3 = {(x, y)|H1(x, y) ≥ 0 ∧ y < 0 ∨H2(x, y) ≤ 0 ∧ y ≥ 0}
π4 = {(x, y)|H1(x, y) ≤ 0 ∧ y < 0 ∨H2(x, y) ≥ 0 ∧ y ≥ 0}.
The part y ≤ 0 of H1(x, y) = 0 and the part y > 0 of H2(x, y) = 0 are switching
manifold this time.

Since the behavior of this part is completely symmetric to Zeno though time
is reverse, we have xn−k = (−ρ)kxf , yn−k = (−√ρ)kyf for any k.

Therefore, we can find the starting time and the position (x, y) = (xr , yr) for
the reverse Zeno.

tr = tn + tn−1 + · · · = (1 +
√
ρ)(1 +

√
ρ+ · · ·)yb ≈ 1+

√
ρ

1−√
ρy0,

xr = δxf , yr =
√
δyf where δ = ρω ≈ 0

Finally, we can conclude that the system reaches to the Zeno point from the
initial situation (x0, y0, t0), then it remains at stable state for sometime, and
there exists a trajectory which starts from the neighbor of (0, 0) and arrives at
the final state (xf , yf , tf ) after the untwisted chattering (reversed-Zeno).
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Abstract. In this paper we study the stochastic optimal tracking prob-
lems with preview for a class of linear discrete-time Markovian jump
systems. Our systems are described by the discrete-time switching sys-
tems with Markovian mode transitions. The necessary and sufficient
conditions for the solvability of our optimal tracking problem is given
by coupled Riccati difference equations with terminal conditions. Cor-
respondingly feedforward compensators introducing future information
are given by coupled difference equations with terminal conditions. We
consider both of the cases by state feedback and output feedback.

Keywords: Markovian jump systems; Stochastic optimization theory;
Tracking control with preview; Coupled Riccati difference equations;
Coupled feedforward compensators.

Notations: Throughout this paper the superscript ”′” stands for the matrix trans-
position, ‖ · ‖ denotes the Euclidian vector norm and ‖v‖2R also denotes the
weighted norm v′Rv.

1 Problem Formulation

Let (Ω,F ,P) be a probability space and, on this space, consider the following
linear discrete-time time-varying system with reference signal and Markovian
mode transitions.

x(k + 1) = Ad,m(k)(k)x(k) +Gd,m(k)(k)ωd(k)
+B2d,m(k)(k)ud(k) +B3d,m(k)(k)rd(k), x(0) = x0, m(0) = i0 (1)

zd(k) = C1d,m(k)(k)x(k) +D12d,m(k)(k)ud(k) +D13d,m(k)(k)rd(k)
y(k) = C2d,m(k)(k)x(k) +Hd,m(k)(k)wd(k)

where x ∈ Rn is the state, ωd ∈ Rpd is the exogenous random noise, ud ∈ Rm

is the control input, zd ∈ Rkd is the controlled output, rd(·) ∈ Rrd is known
or measurable reference signal and y ∈ Rk is the measured output. x0 is an
unknown initial state with given distribution and i0 is a given initial mode.
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{m(k)} is a homogeneous Markov process taking values on the finite set φ =
{1, 2, · · · , N∗} with the following transition probabilities:

P{m(k + 1) = j|m(k) = i} =: pd,ij(k)

where pd,ij(k) ≥ 0 is also the transition rate at the jump instant from the state
i to j, i �= j, and

∑N∗

j=1 pd,ij(k) = 1. We assume that all these matrices are of
compatible dimensions. Throughout this paper the dependence of the matrices
on k will be omitted for the sake of notation simplification.

For this system (1), we assume the following conditions.

A1: D12d,m(k)(k) is of full column rank.
A2: D′

12d,m(k)(k)C1d,m(k)(k) = O, D′
12d,m(k)(k)D13d,m(k)(k) = O

A3: E{x(0)} = µ0, E{ωd(k)} = 0,
E{ωd(k)ω′

d(k)1{m(k)=i}} = Ξi(k), E{x(0)x′(0)1{m(0)=i0}} = Qi0(0)
A4: Gd,m(k)(k)H ′

m(k)(k) = O, Hm(k)(k)H ′
m(k)(k) = O

where 1{m(k)=i} := 1 if m(k) = i, and 1{m(k)=i} := 0 if m(k) �= i.
For the given initial mode i0 and the given distribution of x0, considering the

stochastic mode transitions and the average of the performance indices over the
statistics of the unknown part of rd, we define the following performance index.

JdT (x0, ud, rd) :=
N∑

k=0

ER̄k
{‖C1d,m(k)x(k) +D13d,m(k)rd(k)‖2}

+
N−1∑
k=0

ER̄k
{‖D12d,m(k)ud(k)‖2} (2)

ER̄k
means the expectation over R̄k+h, h is the preview length of rd(k), and R̄k

denotes the future information on rd at the time k, i.e.,R̄k := {rd(l); k < l ≤ N}.
Now we formulate the following optimal fixed-preview tracking problems for

(1) and (2). In these problems, it is assumed that, at the current time k, rd(l)
is known for l ≤ min(N, k + h).

The Stochastic Optimal Tracking Problem
Consider the system (1) and the performance index (2), and assume the conditions
A1, A2 and A3. Then, find {u∗d} minimizing the performance index (2).

State feedback Case. The control strategy u∗d(k), 0 ≤ k ≤ N − 1, is based on
the information Rk+h := {rd(l); 0 ≤ l ≤ k + h} with 0 ≤ h ≤ N and the state
information x(k) at the current time k.

Output Feedback Case. The control strategy u∗d(k), 0 ≤ k ≤ N − 1, is based
on the information Rk+h := {rd(l); 0 ≤ l ≤ k + h} with 0 ≤ h ≤ N and the
observed information Yk := {y(l); 0 ≤ l ≤ k}.
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2 Design of Tracking Controllers by State Feedback

Now we consider the coupled Riccati difference equations ([1][4])

Xi(k) = A′
d,iEi(X(k + 1), k)Ad,i + C′

1d,iC1d,i − F ′
2,iT2,iF2,i(k), k = 0, 1, · · · (3)

where Ei(X(k + 1), k) =
∑N∗

j=1 pd,ij(k)Xj(k + 1), X(k) = (X1(k), · · · , XN∗(k))

T2,i(k) = D′
12d,iD12d,i +B′

2d,iEi(X(k + 1), k)B2d,i,

R2,i(k) = B′
2d,iEi(X(k + 1), k)Ad,i, F2,i(k) = −T−1

2,i R2,i(k)

and the following scalar coupled difference equations.

αi(k) = Ei(α(k + 1), k) + tr{Gd,iΞi(k)G′
d,iEi(X(k + 1), k)} (4)

Then we obtain the following necessary and sufficient conditions for the solv-
ability of our stochastic optimal tracking problem and an optimal control strat-
egy by state feedback for this problem.

Theorem 1. Consider the system (1) and the performance index (2). Suppose
A1, A2 and A3. Then the Stochastic Optimal Tracking Problem by
State Feedback for (1) and (2) is solvable if and only if there exist matrices
Xi(k) > O and scalar functions αi(k), i = 1, · · · , N∗ satisfying the conditions
Xi(N) = C′

1d,i(N)C1d,i(N) and αi(N) = 0 such that the coupled Riccati equa-
tions (3) and and the coupled scalar equations (4) hold over [0, N ]. Moreover an
optimal control strategy for our tracking problem (1) and (2) is given by

u∗d(k) = F2,i(k)x(kτ) + Du,i(k)rd(k) + Dθu,iEi(θc(k + 1), k)@
for i = 1, · · · , N∗

Du,i(k) = −T−1
2,i (k)B′

2d,iEi(X(k + 1), k)B3d,i and Dθu,i(k) = −T−1
2,i (k)B′

2d,i.
θi(k), i = 1, · · · , N , k ∈ [0, N ] satisfies

θi(k) = Ā′
d,i(k)Ei(θ(k + 1), k) + B̄d,i(k)rd(k), θi(N) = C′

1,iD13,ird(N) (5)

where Ād,i(k) = Ad,i −D′
θu,iT2,iF2,i(k),

B̄d,i(k) = A′
d,iEi(X(k + 1), k)B3d,i − F ′

2,iT2,iDu,i(k) + C′
1d,iD13d,i

and θc,i(k) is the ’causal’ part of θi(·) at time k. This θc,i is the expected value
of θi over R̄k and given by⎧⎨⎩

θc,i(l) = Ā′
d,i(l)Ei(θc(l + 1), l) + B̄d,i(l)rd(l), k + 1 ≤ l ≤ k + h,
θc,i(k + h+ 1) = 0 if k + h ≤ N − 1
θc,i(k + h) = C′

1,iD13,ird(N) if k + h = N
(6)

Ei(θc(k + 1), k) =
∑N∗

j=1 pd,ij(k)θc,j(k + 1) and θc(k) = (θc,1(k), · · · , θc,N∗(k)).
Moreover, the optimal value of the performance index is

JdT (x∗0, u
∗
d, rd) = tr{Qi0Xi0}+ αi0(0) + ER̄0

{2θ′i0x0}

+
N−1∑
k=0

ER̄k
{‖T 1/2

2,m(k)Dθu,m(k)(k)Em(k)(θ−c (k + 1), k)‖2}+ J̄d(rd) (7)
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where θ−c,m(k)(k) = θm(k)(k)− θc,m(k)(k), k ∈ [0, N ],

Ei(θ−c (k + 1), k) =
∑N∗

j=1 pd,ij(k)θ−c,j(k + 1), and θ−c (k) = (θ−c,1(k), · · · , θ−c,N∗(k))
J̄d(rd) means the tracking error terms including the future information θi and
not depending on x0 and ud.

3 Output Feedback Case

For the plant dynamics (1), consider the controller

x̂e(k + 1) = Ad,m(k)(k)x̂e(k) +B2d,m(k)(k)ūd,c(k) + r̄d,c(k)
−Mm(k)(k)[y(k)− C2d,m(k)x̂e(k)] (8)

ūd,c(k) = F2,m(k)(k)x̂e(k), x̂e(0) = ER̄0
{x0} = µ0

where Mm(k) is the controller gain to decide later, using the solution of another
coupled Riccati equations introduced below, and

ūd,c(k) := ud(k)−Du,i(k)rd(k)−Dθu,i(k)Ei(θc(k + 1), k)
r̄d,c(k) := B2d,m(k)(k){Du,m(k)(k)rd(k) + Dθu,m(k)(k)Em(k)(θc(k + 1), k)}

+B3d,m(k)(k)rd(k)

Define the error variable e(k) := x(k) − x̂e(k) and the error dynamics is as
follows:

e(k + 1) = Ad,m(k)(k)e(k) +Gd,m(k)(k)wd(k)
+Mm(k)(k)[y(k)− C2d,m(k)(k)x̂e(k)]

= [Ad,m(k) +Mm(k)C2d,m(k)](k)e(k) + [Gd,m(k)(k) +Mm(k)Hm(k)](k)wd(k)

Note that this error dynamics does not depend on the exogenous inputs ud nor
rd. Our objective is to design the controller gain Mm(k) which minimizes

JdT (x0, ūd,c∗, rd) = tr{Qi0Xi0}+ αi0 (0) + ER̄0
{2θ′i0x0}

+
N−1∑
k=0

ER̄k
{‖F2,m(k)e(k) + Dθu,m(k)(k)Em(k)(θ−c (k + 1), k)‖2}T2,m(k)(k) + J̄d(rd)

Now we consider the following coupled Riccati difference equations and the initial
conditions.

Yj(k + 1) =
∑

i∈J(k)

pd,ij

[
Ad,iYi(k)A′

d,i

−Ad,iYi(k)C′
2d,i(Hd,iH

′
d,iπi(k) + C2d,iYi(k)C′

2d,i)
−1C2d,iYi(k)A′

d,i (9)

+πi(k)Gd,iG
′
d,i

]
, Yi(0) = πi(0)(Q0 − µ0µ

∗
0)

where πi(k) := Prob{θ(k) = i},
∑N∗

i=1 pd,ijπi = πj ,
∑N∗

i=1 πi = 1, J(k) := {i ∈
N;πi(k) > 0}
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Since E{e(k)} = 0 for k∈[0, N ] and r̄d,c(k) is deterministic if rd(l) is known
at all l ∈ [0, k + h], we can show, for each k ∈ [0, N ],

ER̄k
{e(k)r̄′d,c(k)1{m(k)=i}} = πi(k)ER̄k

{e(k)}r̄′d,c(k) = O.

Namely there exist no couplings between e(·) and r̄d,c(·). The development of
e(·) on time k is independent of the development of r̄d,c(·) on time k. Then we
can show the orthogonal property ER̄k

{e(k)x̂′e(k)1{m(k)=i}} = O as [Theorem
5.3 in [1] or Theorem 2 in [3]] by induction on k. Moreover define

Ȳi(k) = E{e(k)e′(k)1{m(k)=i}}

and then we can show Yi(k) = Ȳi(k). From all these (orthogonality) results,
as the case of rd(·) ≡ 0, using the solutions of the coupled difference Riccati
equations, it can be shown that the gain Mm(k) minimizing JdT is decided as
follows (cf.[1,3]):

Mi(k) =

⎧⎨⎩
−Ad,iYi(k)C′

2d,i(Hd,iH
′
d,iπi(k)

+C2d,iYi(k)C′
2d,i)

−1 for i ∈ J(k)
0 for i /∈ J(k)

(10)

Finally the following theorem, which gives the solution of the output feedback
problem, holds.

Theorem 2. Consider the system (1) and the performance index (2). Suppose
A1, A2, A3 and A4. Then an optimal control strategy which, gives the solution
of the Stochastic Optimal Tracking Problem by Output Feedback for
(1) and (2) is given by the dynamic controller (8) with the gain (10) using the
solutions of the two types of the coupled Riccati difference equations (3) with
Xi(N) = C′

1d,i(N)C1d,i(N) and (9).
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1 Introduction

Biomedical research is increasingly using formal modeling and analysis meth-
ods to improve the understanding of complex systems. Verification methods for
Stochastic Hybrid Systems (SHSs) are burdened with the curse of dimensional-
ity; however, probabilistic analysis methods such as Monte Carlo (MC) methods
can be used to analyze larger systems. MC methods are useful for estimating
probabilities of event occurrences in SHS, but large and complex systems may
require prohibitively large computation time to generate sufficient accuracy. In
this work we present the multilevel splitting (MLS) variance reduction tech-
nique that has the potential to reduce the variance of MC methods by an order
of magnitude significantly improving both their efficiency and accuracy [1].

This work presents an implementation of MLS methods for safety analysis of
SHS. We apply the approach for safety analysis of the glycolysis process, which
we model with a SHS model with two discrete states and 22 continuous variables.
We also present experimental data along with accuracy and efficiency analysis.
Further, the technique is parallelized to increase the efficiency, and we present
the scalability of the parallelization.

2 SHS Model of Glycolysis

Glycolysis is a series of biochemical reactions that converts carbohydrates into
chemicals and energy in a currency useful to cells. As it is a fundamental process
to all living cells, it has been studied and modeled extensively in many organisms.
Although the individual steps of glycolysis have been thoroughly examined, the
interaction of glycolytic enzymes, substrates, and products with the intracellular
environment is not fully understood. Modeling and simulating glycolysis using
SHS can further our understanding of contextual cellular respiration.

Twenty-two chemical species and 37 chemical reactions have been identified
which play an important role in glycolysis. The reaction rates for the system have
been developed in previous work and can be found in [2]. The model presented
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Fig. 1. SHS model of glycolysis

in [2] is a deterministic model, but the chemical reactions in the real system
actually behave in a probabilistic manner due to the uncertainty of molecular
motion, so we have developed a stochastic model in a similar manner as was
done in [3].

We have added discrete dynamics to the original glycolysis model to cap-
ture the concept of ’feeding’ the yeast. Glucose must be added to the system
to continue production of the energy molecules, and when the concentration of
glucose diminishes, the amount of energy molecules that the system can produce
decreases. In many organisms, this reduction in energy output triggers mecha-
nisms which encourage the introduction of more glucose (i.e. feeding). Therefore,
we have modeled this behavior using a SHS with two states: saturated and defi-
cient. In the saturated state, the glucose intake is fairly low, and in the deficient
state, the glucose intake is much higher. Switching between the states is regu-
lated by the concentration of ATP (x3). A probabilistic reset map is used on the
transition to avoid Zeno behavior. Figure 1 depicts the graphical version of the
SHS model.

It is important for the cell performing glycolysis to maintain a certain concen-
tration of Glucose x1 to maintain cell health. Therefore, we want to determine
if the state trajectories will avoid the set U = {(q, x) : x1 < 2.5}.

3 Multilevel Splitting

We denote s(t) the SHS trajectory, τmax the maximum simulation time, and we
define the stopping time τU = inf {t > 0 : s(t) ∈ U}. We want to compute the
probability that a trajectory will hit the unsafe set Phit = P [τU < τmax]. Phit

can be estimated using MC methods; however, they are often computationally
too expensive to generate estimators with small variance. MLS is an adaptation
of MC methods that reduces the overall variance of the estimator by increasing
the density of simulation trajectories near U [1].

MLS trajectories use importance values vi to represent the amount of influence
a trajectory has on Phit. Initially vi = 1/n where n is the total number of
trajectories. We define splitting levels using proper supersets of the unsafe set
U : U ⊂ U1 ⊂ U2 ⊂ ... ⊂ Ug. When a trajectory crosses from a bigger set Uk into
a smaller set Uk−1, the trajectory is split into j new trajectories, the importance
value of the current trajectory is split between the new forked trajectories, and
the total number of trajectories nm is incremented by j − 1.
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Fig. 2. MLS problem in a hybrid state space

The probability of hitting the unsafe set U is estimated for MLS methods
by P̂hit =

∑nm

i=1Hivi where Hi = 1 if the trajectory eventually reaches U and
Hi = 0 otherwise. Even though the resulting split trajectories are not completely
independent, P̂hit is an unbiased estimator. The efficiency and accuracy of the
estimator are dictated by the boundary placement, splitting policy, and dynamics
of the model. The efficiency can be evaluated using Eff

[
P̂hit

]
= 1

V ar·C where
C is the expected execution time to compute the estimator, and V ar is the
variance of the estimator [1].

The discrete boundaries and reset maps present in SHS can create disconti-
nuities which can cause accuracy and efficiency challenges for variance reduction
methods. Figure 2 demonstrates a MLS scenario for a SHS where the trajectory
crosses a splitting and hybrid boundary simultaneously. A hybrid trajectory
starts at state s0 = (q1, x0), and evolves until it reaches the boundary for U2 or
the guards for a hybrid transition are satisfied. In this scenario, both the hybrid
transition is fired and the splitting level is crossed, and the reset of the hybrid
transition updates the state of the trajectory to s = (q2, xt). Because the new
state is not in the splitting region U2, splitting the trajectory before applying
the reset will not necessarily reduce the variance, and will decrease the efficiency,
so it should be avoided. This problem is further exacerbated if the number of
splits at a level is large because poor splitting choices decrease efficiency without
increasing accuracy.

We have implemented the MLS algorithm for SHS using the simulation meth-
ods described in [4] to generate accurate and efficient SHS trajectories. Our MLS
implementation ensures that discrete transitions are fired before testing split-
ting boundaries to avoid the potential efficiency loss of the boundary problem
shown in Figure 2. The number of required simulations to achieve a sufficiently
small variance may still be quite large even when using our algorithm, so we
use parallel methods to improve overall efficiency. There are no dependencies
between MLS simulations, so trajectories can be parallelized by running simula-
tions concurrently on multiple processors. This type of parallelization has been
used previously with MC methods [5], and care must be taken to ensure that
the random number generators do not introduce bias.
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Fig. 3. Trajectory of the glycolysis model with MLS

Table 1. Performance and variance results

Simulation Estimator V ar T ime(C) Eff Phit

sim1 MC 623 398 0.0000040 0.12
sim2 MC 625 500 0.0000032 0.0625
sim1 MLS 711 128 0.0000110 0.0625
sim2 MLS 691 123 0.0000118 0.0625

Table 2. Parallel performance results

Processors Time to Execute (m)
16 8.6
8 8.5
4 8.2
2 8.3
1 8.5

4 Experimental Results

Single trajectories of a model can be used to collect specific information about
the system. In Figure 3, we show a single trajectory of the glycolysis model using
MLS with two levels and two splits at each level.

To evaluate the efficiency of our methods for the glycolysis model, we used 16
trajectories for the MC methods and 2 MLS trajectories. This allows both meth-
ods to reach the same potential accuracy because the MLS scenario used three
levels with two splits at each level yielding 24 = 16 potential forked trajecto-
ries. In Table 1 we compare the variance and execution times using an order 0.5
simulation method (sim1) and an order 1.0 method with probabilistic bound-
ary detection (sim2) from [4] with both MC methods and MLS methods. The
data shows a significant efficiency improvement for the MLS estimator without
a significant decrease in variance.

We also performed experiments to test the parallel scalability of our algo-
rithm. We found that the MLS algorithm took virtually the same amount of
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time regardless of the number of processors it was run on as seen in Table 2.
The Advanced Computing Center for Research and Education (ACCRE) at Van-
derbilt University provides the parallel computing resources for our experiments
(www.accre.vanderbilt.edu).

5 Conclusions and Future Work

Analysis of SHS using Monte Carlo methods with variance reduction is an impor-
tant technique which has the potential to expose insights into complex models
efficiently. The SHS analysis method we present in this work demonstrates an
efficient, accurate variance reduction method with parallelization, but it requires
significant domain knowledge to determine appropriate splitting parameters. The
method holds promise to provide further analysis capability for SHS simulation
methods as well. In the future we will be investigating methods for selecting
boundary placement and splitting policies based on methods presented for other
splitting techniques. Our goal is to find an optimal policy for selecting the MLS
parameters.

Acknowledgements. This research is partially supported by the National Sci-
ence Foundation (NSF) CAREER grant CNS-0347440.
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Abstract. This paper addresses the orbital stabilization of controlled polygonal
billiard systems. Such systems form a subclass of so-called planar impulsive hy-
brid systems that feature controllable guards and state resets. While the structure
of the guards and the reset map is completely determined by the system set-up,
both mappings are jointly adjustable through exogenous control inputs. As a cen-
tral feature, control actions cause simultaneous, inseparable changes in the reset
time and in the reset action. The paper proposes a hybrid control approach for the
stabilization of an admissible stationary orbit.

1 Introduction

This paper proposes a model-based hybrid control strategy for the orbital stabilization of
controlled polygonal billiard systems [1]. Such systems consist of a ball, which moves
along straight line sequences on a closed polygonal table (see Fig. 1(a)). Each collision
between the ball and one of the E wallsWσ is elastic and results in a reflection of the
ball. By rotating the pivot-mounted walls ν degrees away from their nominal orientation
n�

σ , the reflection angle γ can be adjusted at run-time to control the ball’s evolution as
desired. Commanded wall rotations are assumed to occur instantaneously. Uncontrolled
polygonal billiards are known to behave chaotically.

From a system theoretic perspective, controlled billiard systems belong to a class
of periodically operated, planar impulsive hybrid systems (IHS) [2,3] with externally
manipulable autonomous state resets. In the realm of mechanical systems with impacts,
they are referred to as juggling systems [4,5] and have received considerable attention
due to their relevance for robotics and locomotion. In particular, the task of stabilizing
periodic stationary operations by controlled impacts has been extensively studied. Due
to the inherent complexity of the problem, published results are limited to either simple
1-D dynamics, small control actions and/or low order periodic orbits [6,7].

This paper addresses the model-based design of an event-surface controller for con-
trolled planar polygonal billiard systems. The controller processes sampled state mea-
surements into an input sequence that simultaneously alters parameters of the reset map
as well as the instants t̄(k), at which such resets occur. Due to the inseparable coupling
of the event-time and the reset effect, every control action compromises between the

R. Majumdar and P. Tabuada (Eds.): HSCC 2009, LNCS 5469, pp. 465–469, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



466 A. Schild, M. Egerstedt, and J. Lunze

xp,2

xp,1

xp,E

v0x

x( )k

n4*

n2*

n3( )kxp,3

2

1

3

(a)

v0

x

x(2)

x(1)

x(4)

x(3)

(b)

Fig. 1. Controlled polygonal billiard system: (a) Physical set-up, (b) stabilized ball motion on a
rectangular table

”best” reset action and the ”best” event time. A more detailed description of the results
summarized here can be found in [8].

2 Continuous-Time Hybrid Model of Polygonal Billiards

The controlled billiard system evolves according to a hybrid model similar to [7]:

Impulsive hybrid system with controlled resets (IHSCR):

Autonomous continuous dynamics:

ζ̇(t) =
(
0 0
I 0

)
ζ(t) , ζ(0) =

(
vx,0 vy,0 xx,0 xy,0

)T
(1)

Controlled event generator: (control input u(t)=
(
n̄1(t) . . . n̄E(t)

)T
)

Φ(ζ(t) , u(t) , σ) =

⎧⎪⎨⎪⎩
n̄T

1(t) (xp,1 − x(t)) , if σ = 1
...

n̄T
E(t) (xp,E − x(t)) , if σ = E

(2)

e(t) = arg min
σ∈Σ
|Φ(ζ(t) , u(t) , σ)| (3)

t̄(k) = arg min
t>t̄(k−1)

t : |Φ(ζ(t) , u(t) , e(t))| = 0 (4)

Controlled reset map (assuming completely elastic impacts):

ζ
(
t̄(k)+

)
=

(
I − 2

n̄ē(k)n̄
T
ē(k)

n̄T
ē(k)n̄ē(k)

0

0 I

)
ζ
(
t̄(k)−

)
, n̄ē(k) = ne(t̄(k)−)

(
t̄(k)−

)
(5)
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Here, ζ(t) = (v(t) , x(t))T ∈ IR4 is the ball’s state (heading and position), which
evolves according to (1). An elastic collision between the ball and the σ-th wall occurs,
whenever the controllable piecewise-affine event function (2) evaluates to zero for a
tupel (ζ(t̄(k)−),u(t̄(k)−), σ). The states ζ, for which this condition is satisfied, form
the controlled event surfaces S(σ,u) = {ζ : Φ(ζ, u, σ) = 0} in state-space. At each
intersection of ζ(t) with a surface S(σ,u), the ball’s state is discontinuously updated
according to the controlled reset map (5), i.e. it is reflected at S(σ,u). The exogenous
input u(t) ∈ IR2E , which defines the current wall orientations nē(k), allows to control
the event time and the piecewise constant event sequence e(t), despite the autonomous
motion of the ball. Event-sampled signal values are denoted by ζ̄(k) , ē(k), etc.

A trajectory ζ�(t) is called periodic of order p, iff ζ̄
�(k + p) = ζ̄

�(k) for all k. It
traces out a closed orbit Γ , which is called the limit cycle corresponding to the statio-
nary input u(t) = u�. Let ζ̄

�(σ�
k) ∈ Γ denote the impact points of Γ associated with

the event σ�
k of the periodic event sequence ē�(k) =

(
σ�

0 . . . σ
�
p−1σ

�
0 . . .

)
. Moreover,

define τ̄�(σ�
k) = t̄�(k+1) − t̄�(k) and Γk =

{
y : ∃τ ∈ IR s.t. y = ζ

(
τ, ζ̄

�(σ�
k)
)}

.

ζ�
m = 1/m

∑p−1
k=0 ζ̄

�(σ�
k) is the centroid and I(Γ ) =

{
ζ : nT

Γk

(
ζ − ζ̄

�(σ�
k)
)
≤ 0,

∀k = 0 . . . (p−1)} is the interior of Γ . The normal nΓk
of Γk satisfies

nT
Γk

(
ζ̄

�(
σ�

k+1

)
−ζ̄

�(σ�
k)
)

= 0 and nT
Γk

(
ζ�

m−ζ̄
�(σ�

k)
)
< 0. Similarly, the interior of

the nominal table set-upW� = {n�
σ�
0
, . . .n�

σ�
E
} is I(W�) = {ζ : Φ(ζ, u�, σ) ≥ 0,

∀σ = 1 . . . E}.

3 Problem Formulation for the Billiards Problem

Problem 1. Given the hybrid model (1)-(5) of the billiards problem and an admissible
desired stationary orbit Γ , the objective is to determine stabilizing pivot locations
xp,σ, σ = 1 . . . E and an event surface control law u(t) = f c(ζ(t) , e(t)) in state-
feedback form, which ensures global asymptotic orbital stability of Γ .

Definition 1 (Global asymptotic orbital stability). [9] A periodic trajectory ζ�(t) is
called asymptotically orbitally stable, iff for any ε > 0 there exists a δ > 0, such that
any ζ(t) starting at dist(ζ(0), Γ ) < δ asymptotically converges towards ζ�(t), which
implies that dist(ζ(t) , Γ ) < ε, ∀t > 0 and limt→∞ dist(ζ(t) , Γ ) = 0.

A trajectory ζ�(t) is called globally asymptotically orbitally stable, iff convergence
is given for arbitrary initial conditions ζ(0) ∈ I(W�).

4 Controlled Embedded Map for the Controlled Billiards System

A central step in the solution to problem 1 is to derive a sampled abstraction of the
hybrid model (1)-(5) at the unknown time instants t̄(k). This controlled embedded
map [10] describes the state evolution from one impact ζ̄(k) to the next ζ̄(k+1). It
establishes an explicit relation between the design parameters and the control output
and provides the foundation for the model-based design. Given a desired orbit Γ and
assuming its event sequence ē�(k) can be enforced by dedicated controls ū(k), the
controlled embedded error map is:
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Controlled embedded error map of the billiard system with respect to Γ :

∆v̄(k+1) = ∆v̄(k)−
2n̄σ�

k

n̄T
σ�

k
n̄σ�

k

+
2n�

σ�
k

n�T
σ�

k
n�

σ�
k

, ∆ζ̄(0) = ζ0 − ζ̄
�(σ�

0) (6)

∆x̄(k+1) = ∆x̄(k) + τ̄�(σ�
k)∆v̄(k)− v̄(k)

{
∆xT

p(k) n̄σ�
k

+ τ̄�(σ�
k)
}

(7)

Here, the errors are defined as ∆x̄(k) = x̄(k)−x̄�(σ�
k), ∆xp(k) = x̄(k)−xp,σ�

k+1

and∆v̄(k)= v̄(k)−v̄�(σ�
k). Moreover, the k-th input must satisfy the length constraint

v̄T(k) n̄ē(k) = 1. Equation (6), (7) reveal: 1. Only by controlling the wall orientations at
operation, the heading error can be compensated, 2. only by deviating from the nominal
heading, the position error can be reduced, and, 3. a vanishing position error∆x̄(k) =
0, ∀k > K implies∆v̄(k) = 0, ∀k > K .

5 Stabilizing Hybrid Control Strategy and Simulation Results

The key ingredient for achieving orbital stabilization of Γ is to enforce a monotonous
decay of the heading error∆v̄(k) at each impact.

Theorem 1. For a given nominal table set-upW�, there exist pivot locations xp,σ for
each wallWσ , which are independent of the initial condition ζ0 ∈ I(W�) and enable
a monotonous reduction of the heading error ∆v(k) with increasing k.

Being allowed to freely place the pivots xp,σ along the nominally oriented walls, the
following can be shown [8]:

Theorem 2. Under the assumption of appropriate pivot locations xp,σ , it is possible
to asymptotically drive any ball trajectory starting inside I(W�) onto the orbit Γ by
composing an appropriate input sequence from two basic control maneuvers

– (I) enforce next impact x̄(k+1) ∈ Γ on orbit
– (II) command next impact x̄(k+1) �∈ Γ , such that the ball is tranferred to a point

x̄(k+2) =
(
x̄�
(
σ�

k+2

)
+ x̄�

(
σ�

k+3

))
/2.

For both control maneuvers (I) and (II) closed-form state-feedback expression were
obtained. The hybrid control strategy, which achieves global asymptotic stability of a
given Γ , is summarized in Algorithm 1. For details, please refer to [8].

A successful application of the control strategy to a billiard system with a nominal
rectangular table set-up is illustrated in Figure 1(b)). The depicted simulated execution
starts at an arbitrarily chosen initial condition and is driven to the desired unstable orbit
Γ within eight impacts. At the beginning, an initial transition onto Γ is executed. The
third impact x̄(3) is commanded to occur not on the orbit, as x̄(4) would otherwise be
once again located outside of the orbit. Instead, another transfer to a point on the inside
of Γ is performed. All subsequent impacts then alternate between the inside and the
outside of the orbit, which is crucial for the stabilization of Γ .
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Algorithm 1. Globally stabilizing hybrid control strategy for controlled billiards.

Given: Billiard system (1)-(5), admissible orbit Γ and nominal wall set-upW�

Initialization:

1. Determine stabilizing pivot locations xp,σ for each wall.
2. Run the system uncontrolled with nominal wall orientations W�, until
∃ n̄σ�

k+1
, such that x̄(k+2) = x̄�(σ�

2).

3. Given ζ̄(k), adjust Wσ�
k+1

, such that a transfer from x̄(k) to x̄�(σ�
2) is

achieved.

During operation (k ≥ 2):

1. If impact x̄(k) occurs on Γk, but not in I(Γ ), execute maneuver (I).

2. Else, compute the actuations n̄
(1)
σ�

k+1
and n̄

(2)
σ�

k+1
for both control maneuvers (I)

and (II) and apply the input n̄σ�
k+1

= argmini(∆xT
p(k) n̄

(i)
σ�

k+1
(k)).

Result: Global orbital stability of Γ for arbitrary (x(0),v(0)).
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Abstract. We study maintenance of network connectivity in robotic
swarms with discrete-time communications and continuous-time motion
capabilities. Assuming a network topology induced by spatial proximity,
we propose a coordination scheme which guarantees connectivity of the
network by maintaining a spanning tree at all times. Our algorithm is
capable of repairing the spanning tree in the event of link failure, and of
transitioning from any initial tree to any other tree which is a subgraph
of the communications graph.

1 Introduction

Given a group of robots with processing, motion, and communication capabilities
executing a motion coordination algorithm, we address the following problem:
how can we guarantee that the interaction graph induced by the inter-agent
communication remains connected?

One strategy is to make custom modifications to each motion control algo-
rithm to guarantee connectivity. It is desirable, however, to synthesize a general
methodology that goes beyond a case by case study, and can be used in conjunc-
tion with any motion coordination algorithm. In this paper we take on this aim
and propose an approach based on the preservation of a spanning tree of the un-
derlying communication graph. The idea is to synthesize a distributed algorithm
to agree upon “safe” re-arrangements of the spanning tree (i.e., re-arrangements
that do not break connectivity) based on preferences specified by the motion
coordination algorithm. Space constraints prevent us from presenting more than
a rough sketch of our algorithm design and analysis results. A complete version
of our discussion here can be found in [13].

Literature review. The fundamental importance of spanning trees to dis-
tributed algorithms motivate a vast collection of literature, see e.g., [7,9], which
explores their properties and designs algorithms to construct them. Spanning
trees are especially crucial for the specific case of distributed computation over

R. Majumdar and P. Tabuada (Eds.): HSCC 2009, LNCS 5469, pp. 470–474, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Distributed Tree Rearrangements for Reachability and Robust Connectivity 471

ad-hoc networks. For a survey of spanning tree repair algorithms for ad-hoc net-
works, see [4]. In cooperative control and robotics, several works have studied
how to constrain the motion of the agents to preserve connectivity. For brevity,
we only mention a few here. [1,6,5,10] maintain the connectivity of the network
by constraining robot motion to maintain a fixed set of links. The centralized
solution proposed in [15] allows for a general range of agent motions. Many
works [16,3,14,12] control the algebraic connectivity of a robotic network.

2 Connectivity Maintenance Algorithm

The Connectivity Maintenance (CM) Algorithm is an algorithm to main-
tain a spanning tree of the communication graph. The intent is that if robot mo-
tion is constrained to not break any links of the spanning tree, the underlying
graph will remain connected as well. An informal algorithm description follows.

[Informal description:] Each robot maintains a reference to its parent
in the spanning tree. At pre-arranged times, each robot is allowed to
change its parent. Connectivity is preserved in the following way. Each
robot keeps an estimate of its depth, i.e., distance from the root in the
spanning tree. If no robot picks a robot of greater depth than its parent’s,
then no robot will pick one of its current descendants as a parent node. To
allow robots to attach to potential parents of the same depth estimate,
a tie-breaking algorithm based on UIDs is used to prevent potential
formation of cycles, thus maintaining the spanning tree property.

The CM Algorithm should be coupled with two other algorithms:

– The first is a modification of the underlying motion coordination algorithm,
modified to preserve the links of the spanning tree maintained by CM Algo-

rithm. We refer to an algorithm which satisfies the constraints required for
this role as one which is motion compatible with CM Algorithm. This algo-
rithm also specifies which neighbors each agent would prefer to be connected
to as an order relation. The relation we use in the simulations presented in
Section 4 is roughly “each agent prefers to attach to agents which are closer
to its position in physical space.”

– The second algorithm is one which tells the robots to artificially increase
their depth estimates at particular times. Doing so allows a robot of a lower
actual depth to attach to a robot of a higher actual depth, at the expense
of making the “depth estimates” diverge from the actual depth (hopefully
only for short periods of time). Care must be taken to ensure that such an
algorithm does not cause robot depth estimates to grow in an unbounded
fashion. We specify a series of constraints on such an algorithm so that it
still guarantees correctness of CM Algorithm. We refer to an algorithm
which satisfies these constraints as one which is depth compatible with CM

Algorithm. The simplest such algorithm, called Null Depth Increment

Algorithm, never tells an agent to artificially increase its depth estimate.
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We show in [13] that CM Algorithm can recover from a wide variety of
states (positions and topologies) resulting from link failures of the form “a link
between two agents disappears who are instantly made aware of the link failure.”

3 Reachability Analysis: Cycle-Detecting Depth
Increment Algorithm

We introduce an algorithm which is depth compatible with CM Algorithm

called Cycle-detecting Depth Increment Algorithm. When this algo-
rithm is combined with CM Algorithm, the resulting strategy satisfies a very
nice property: the combined algorithm can induce the constraint tree to match
any tree, T2, which is a subgraph of the communication graph. Specifically, if a
tree, T2, is a subgraph of the current graph, and every edge of T2 is preferred
by its parent, i, in T2 to each of i’s neighbors, then the tree stored by CM

Algorithm will eventually become T2.
An informal description of Cycle-detecting Depth Increment Algo-

rithm is as follows.

[Informal description:] Each robot stores a “start number”, a “number
of descendants” and a “mapping from child UID to child start number.”
At each round, in addition to the tree constraint info, each node sends
the following info to each neighbor. If the neighbor is a child, it sends the
appropriate entry in its mapping, or, if the child is not in the mapping, it
sends its own start number. It always sends its “number of descendants.”
If the neighbor is not a child, it sends its own start number. With the
messages received, each node updates its numbers in the following way.
Its “number of descendants” is the sum of the “number of descendants”
info received from each child, plus one (for itself). Its “start number” is
the number its parent sends it. For each child it receives a message for,
it adds an entry to its map that is indexed by that child’s UID and has
a value of “the sum, over all children with lesser UID, of the number of
descendants of those children, plus one plus its own start number.”

4 Simulations

Here we illustrate the performance of the Connectivity Maintenance Algo-

rithm in several simulations. We combine the algorithm with Cycle-detecting

Depth Increment Algorithm and the deployment algorithm presented in [2].
The proximity graph of the robotic network is the r-disk proximity graph. The de-
ployment algorithm assumes that each robot has a sensor coverage disk. It moves
the robots to maximize sensor coverage of a “region of interest” represented by
a density function ρ : R2 �→ R given sensors which cover disks of radius rd. We
assume the robots have a maximum velocity of vspeed.

Links of the constraint tree are preserved via a modification of the procedure
described in [1]. To preserve a link between two robots, we constrain the motion
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(a) (b) (c)

Fig. 1. The plots show an execution of Connectivity Maintenance Algorithm,
showing (a) the paths taken by the robots, (b) a contour plot of the density field and
the sensor coverage regions of the robots, (c) the final network constraint tree

of the two robots to a circle of radius r
2 centered at the midpoint of the line

between their positions. Because each robot has a “target” it moves towards, we
can find the closest point to the target in the intersection of the circles generated
by the constraint edges.

The algorithm resulting from the combination of the deployment algorithm
with the Connectivity Maintenance Algorithm is executed in our Java
simulation platform [11]. This platform provides a software implementation of
the modeling framework introduced in [8]. Our results are shown in Figure 1.

Figure 2 shows the evolution of the algorithm when repairing an initially
disconnected tree.

(a) (b) (c)

Fig. 2. Progress of repair starting with an initially disconnected constraint tree. Agents
are labelled by “agent id/root id” : those in blue have not yet completed repair.

5 Conclusions and Future Work

We have designed a tree-rearrangement algorithm for connectivity with reacha-
bility and repair capabilities. The algorithm can be shown to be provably correct,
and is easily composable with other motion coordination algorithms. Future work
will include understanding how the resulting trees of our algorithm compare to
minimum spanning trees, developing systematic ways to encode preference re-
arrangements in connection with other coordination algorithms, and exploring
the properties of the algorithm in conjunction with other proximity graphs, such
as the visibility graph.
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The Sensitivity of Hybrid Systems Optimal Cost
Functions with Respect to Switching Manifold

Parameters�
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Abstract. This paper presents an analysis of hybrid systems perfor-
mance with respect to the variation of switching manifold parameters.
The problem presented here has two aspects: (i) the general hybrid con-
trol problem and (ii) the variation of the switching manifold configu-
rations which determine the autonomous (uncontrolled) discrete state
switchings. The optimal cost variation (i.e. derivative) as a function of
the switching manifold parameters is described by the solution of a set of
differential equations generating the state and costate sensitivity func-
tions. An example is presented to illustrate the main result of the paper.

Keywords: Hybrid Control Systems, Switching Manifolds, Variational
Methods, Optimal Control.

1 Introduction

Problems of hybrid systems optimal control (HSOC) has been studied and ana-
lyzed in many papers, see e.g [3,4,7]. One direct extension of the optimal control
problem for autonomous hybrid systems concerns the notion of switching man-
ifold geometry, where this is interpreted as the shaping and displacement of
switching manifolds in order to optimize system performance, [5], [1,2]. The sys-
tems studied in [1,2] are (switched) autonomous hybrid control systems (AHCS),
that is to say, the hybrid systems have no continuous control in their distinct
phases, and the discrete state switchings occur autonomously, i.e. where the con-
tinuous component of the state trajectory passes through a switching manifold.

In this paper we analyze HSOC sensitivity with respect to the parameters
determining a system’s switching manifolds. Although attention is restricted
here to the purely autonomous switching case with one switching event, neither
restriction is a necessary feature of the theory (see [6]). The results of [1,2]
are recovered from those in this paper by removing the continuous inputs. The
corresponding multiple switching case is analyzed in [6]. Subsequent work will
focus on the influence of geometric properties of the switching manifolds, for
instance curvature and global topology, and on the optimality, sensitivity and
robustness properties of the associated autonomous HOC problem solutions.
� This work was supported by an NSERC Discovery Grant.
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2 Hybrid Systems

Within the standard hybrid systems framework (see e.g. [3]), the formulation
of a hybrid system H := {H = Q × Rn, I = Σ × U,F,A,Γ,M} is given in
terms of discrete state space Q; continuous state space Rn; discrete input set Σ;
continuous input value space U ; family of controlled vector fields F , discrete state
transition automaton A, time independent (partially defined) discrete transition
map Γ and set of switching manifolds M. A hybrid system input is a triple
I := (τ, σ, u) defined on a half open interval [t0, T ), T ≤ ∞, where u ∈ U
and (τ, σ) is a hybrid switching sequence (τ, σ) = ((t0, σ0), (t1, σ1), (t2, σ2), . . .)
of pairs of switching times and discrete input events, σ0 = id, σi ∈ Σ, i ≥ 1,
and where σ is called a location or discrete state sequence. Let {lj}j∈Q, lj ∈
Ck(Rn×U;R+), k ≥ 1 be a family of loss functions and h ∈ Ck(Rn;R+), k ≥ 1,
a terminal cost satisfying the following hypotheses:
A1: There exist Kl <∞ and 1 ≤ γ <∞ such that |lj(x, u)| ≤ Kl(1+ ||x||γ), x ∈
Rn, u ∈ U, j ∈ Q.
A2:There exist Kh < ∞, 1 ≤ δ < ∞ such that |h(x)| ≤ Kh(1 + ||x||δ), x ∈ Rn.
Consider the HSOC with initial time t0, final time tf < ∞, initial hybrid state
h0 = (q0, x0), and L̄ < ∞. Let SL = ((t0, σ0), (t1, σ1), . . . , (tL, σL)) be a hybrid
switching sequence and let IL := (SL, u), u ∈ U , be a hybrid input trajectory,
where L≤L̄<∞ is the number of switchings. A hybrid cost function is defined as

J(t0, tf , h0; IL, L̄,U) :=
L∑

i=0

∫ ti+1

ti

lqi(xqi (s), u(s))ds+ h(xqL(tf ) (2.1)

where (see [3] for all details) the continuous dynamics of the hybrid system are
specified as follows:

ẋqi (t) = fqi(xqi (t), u(t)), a.e. t ∈ [ti, ti+1),

u(t) ∈ U ⊂ Ru, u(.) ∈ L∞(U), h0 = (q0, x0), i = 0, 1, . . . , L,

xqi+1(ti+1) = limt→ti+1xqi(t), tL+1 = tf <∞. (2.2)

3 Problem Formulation and Main Result

The switching manifolds M considered in this paper depend upon time, state
and, in addition, a parameter α ∈ Rm. Locally they are specified by the equations

mp,q(x, t, β) = 0, x ∈ Rn, β ∈ N (α) ⊂ Rm, p, q ∈ Q, (3.3)

where N (α) is an open neighborhood of the nominal parameter α and mp,q

is a continuously differentiable function. Let V (t0, tf , h0, α) denote the value
function,

V (t0, tf , h0, IL, L̄,U , α) := infILJ(t0, tf , h0, IL, L̄,U , α), (3.4)
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and denote by tα the associated optimal switching time for the nominal mani-
fold parameter α, which is assumed to be unique. In this setting, the motivating
problem for this work is to find values of α which infimize the total α depen-
dent value function. Let us write xα(.), xβ(.) for the optimal state trajectories
corresponding to the nominal and perturbed parameters respectively, and let
uα(.), uβ(.) be the associated optimal controls. Define

Hq(x, λ, u) = λT fq(x, u) + lq(x, u), x, λ ∈ Rn, u ∈ U, q ∈ Q. (3.5)

Then to each optimal trajectory there is associated a piecewise absolutely con-
tinuous adjoint process satisfying

λ̇j = −∂Hj

∂x
(x, λ, u), t ∈ (tj , tj+1], (3.6)

together with the boundary conditions given in [3]. Let us define the state
and adjoint variables sensitivities for the nominal and perturbed manifold
parameters as:

y(t) = limδtα→0
δx(t)
δtα

, z(t) = limδtα→0
δλ(t)
δtα

, t ∈ [t0, tf ]. (3.7)

where δx(t) := xβ(t)− xα(t), δλ(t) := λβ(t)− λβ(t), δtα := tβ − tα. Assume
that there exists a continuously differentiable one to one mapping between α
and tα in the neighborhood N (α), so locally β → α if and only if tβ → tα.

Theorem 1. [6] Consider a hybrid system (2.2) possessing two modes q1, q2:

ẋ1 = f1(x1(t), u1(t)), t ∈ [0, ts), ẋ2 = f2(x2(t), u2(t)), t ∈ [ts, tf ], (3.8)

for which the cost function is defined by (2.1). Assume that fi, li ∈ C2, i = 1, 2.
Then the optimal state and adjoint variable sensitivities with respect to the
switching time are given by

y(t) =
∫ t

t0

F1(x,λ)(y(τ), z(τ))dτ, t ∈ [0, tα), (3.9)

y(t) =
∫ tα

t0

F1(x,λ)(y(τ), z(τ))dτ +R1 +
∫ t

tα

F2(x,λ)(y(τ), z(τ))dτ, t ∈ [tα, tf ],

together with

z(t) =
∂2h

∂x2 y(tf ) +
∫ tf

tα

H2
2(x,λ)(y(τ), z(τ))dτ +

∫ tα

t

H2
1(x,λ)(y(τ), z(τ))dτ

+H̄(1,2)(x, λ) +
∂pα∇xm(xα, tα)

∂xα
(y(tα) + f1(x(tα), λα

1 (tα)))

+
∂pα∇xm(xα, tα)

∂λ1
(z−(tα)− ∂H1

∂x
(xα(tα), λα

1 (tα)))

+
∂pα∇xm(xα, tα)

∂λ2
(z+(tα)− ∂H2

∂x
(xα(tα), λα

2 (tα)))

+
∂pα∇xm(xα, tα)

∂tα
+
∂pα∇xm(xα, tα)

∂α

∂α

∂tα
, t ∈ [0, tα). (3.10)
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z(t) =
∫ tf

t

H2
2(x,λ)(y(τ), z(τ))dτ +

∂2h

∂x2 (xα(tf ))y(tf ), t ∈ [tα, tf ].

(3.11)

where pα is the adjoint variable discontinuity parameter and

z−(tα) = limt↑tαz(t), z+(tα) = limt↓tαz(t) (3.12)

R1 = f1(xα(tα), λα
1 (tα))− f2(xα(tα), λα

2 (tα)), (3.13)

Fi(x,λ)(y(t), z(t)) = ∇(x,λ)fi(xα(tα), λα
i (tα)).[y(t), z(t)]T , i = 1, 2. (3.14)

H̄(1,2)(x, λ) =
∂H1

∂x
(xα(tα), λα

1 (tα))− ∂H2

∂x
(xα(tα), λα

2 (tα)). (3.15)

H2
i(x,λ)(y(t), z(t)) =

∂

∂x
∇(x,λ)Hi(xα(t), λα

i (t)).[y(t), z(t)]T , i = 1, 2.(3.16)

Here we note that the optimal control u(.) in H(., .) is replaced by λ(.), for
detailed information see [6].

4 Example

Here we present an example which illustrates the results above. In this case, since
analytic solutions are not available, the optimal switching time and state for the
nominal α are obtained numerically via the HMPC algorithm [3]. Consider the
hybrid system with two modes given by:

ẋ(t) = x(t) + u(t), t ∈ [0, tα], ẋ(t) = −x(t) + u(t), t ∈ (tα, 2], (4.17)

where the switching manifold is the following time varying structure:

m(x(t), α, t) = x− t− α = 0, t ∈ [0, 2]. (4.18)

The cost function for the hybrid system is chosen to be

J(0, 2, h0, IL, L̄,U) =
1
2

∫ tα

0
u2(t)dt+

1
2

∫ 2

tα

u2(t)dt, (4.19)

where L̄ = 2 and h0 = (0, 1). In this example we vary α between 0 to 0.5 and the
optimal cost is then obtained as a function of the manifold parameter. Figure 1
displays the optimal cost variation (i.e. derivative) displayed as a function of the
switching time tα and the optimal cost variation (i.e. derivative) as a function
of the manifold parameter α.
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Fig. 1. Optimal Cost Derivative versus Switching Time (left) and Manifold Parameter
(right). Solid lines are computed via Theorem 1 and dashed lines are obtained by direct
calculation.
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Abstract. We introduce STORMED hybrid games (SHG), a generalization of
STORMED Hybrid Systems [15], which have natural specifications, allow rich
continuous dynamics and admit various properties to be decidable. We solve the
control problem for SHG using a reduction to bisimulation on game graphs. This
reduction generalizes to a greater family of games, which includes o-minimal
hybrid games [5]. We also solve the optimal-cost reachability problem for
Weighted SHG.

1 Introduction

Hybrid automata are a popular formalism for modelling and verifying embedded sys-
tems. Hybrid games [11,5,6] have been extensively used for modelling and designing
hybrid controllers to control embedded systems. They are defined similar to hybrid
automata but with discrete transitions partitioned into controllable and uncontrollable
transitions.

We introduce STORMED hybrid games (SHG) defined using STORMED hybrid
systems (SHS) formalism [15]. SHG games allow for richer continuous dynamics than
the other popular decidable formalisms like rectangular hybrid games [11] and timed
games [2,3]. Also they admit a stronger coupling between the continuous and discrete
state components than found in o-minimal hybrid games [5].

Our main result is that for regular winning objectives, the controller synthesis prob-
lem is decidable, provided the o-minimal theory used to describe the SHG is decidable.

Next we consider weighted hybrid games, where there is a cost associated with each
of the game choices, and the goal is to design optimal (cost) winning strategies for
the controller. We show that weighted SHS(WSHS) with reachability objectives are
decidable (and the controller synthesizable) when the underlying o-minimal theory is
decidable.

Related Work

The controller synthesis problem for real-time and hybrid systems has attracted a lot of
attention since [2] and [13]. Symbolic algorithms for the controller synthesis problem
were first presented in [10]. Generally one assumes that a controller can examine the
state at various times, and can influence the transitions taken. When the controller can
choose not only a discrete transition but also when it is taken, the problem is known
to be undecidable for initialized rectangular automata [12], and decidable for timed
automata [13], and o-minimal hybrid automata [5] with decidable theories. Here we
extend these observations to STORMED systems.
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Zeno behavior must be dealt in a dense time setting [9]. As in [10,8] we eliminate it
via by semantic constraints imposed on the winning conditions.

Weighted timed games were first considered in [1,4]. Synthesizing the optimal cost
controller for reachability is undecidable for timed automata [7], but decidable for o-
minimal hybrid systems [6] with decidable underlying theories. We show that optimal
reachability is decidable for STORMED games.

Note. Due to lack of space, we refer the reader to [16] for more details, including proofs
and intermediate lemmas and definitions. Here, we present only the most important
definitions and results in the following sections.

2 Decidability of Control for STORMED Hybrid Games

Definition 1. A hybrid game H is a tuple (Loc,ActC ,ActU , Labels,Cont, Edge,
Inv,Flow, Reset, Guard, Lfunc) where:

– Loc is a finite set of locations,
– ActC is a finite set of controllable actions,
– ActU is a finite set of uncontrollable actions,
– Labels is a finite set of state labels,
– Cont = Rn for some n, is a set of continuous states,
– Edge ⊆ Loc× (ActC ∪ ActU )× Loc is a set of edges,
– Inv : Loc→ 2Cont is a function that associates with every location an invariant,
– Flow : Loc× Cont→ (R+ → Cont) is a flow function,
– Guard : Edge→ 2Cont is a function that assigns to each edge a guard,
– Reset : Edge→ 2Cont×Cont is a reset function, and
– Lfunc : Loc× Cont→ Labels is a state labeling function.

At each step of the game, the controller and the environment have two choices: either to
let time pass for t time units or to take a controllable (or uncontrollable) transition en-
abled at the state. If both the controller and the environment pick time, then the system
evolves continuously for the shorter of the two durations. If exactly one of them picks
a discrete transition, then the discrete transition chosen is taken and finally, in the case
when both pick discrete transitions, the controller’s choice is respected. A play is an al-
ternating sequence of states and transitions. From each state both the controller and the
environment propose a transition, and the transition followed by it in the play is chosen
according to the above rule. A strategy for the controller tells the transition that needs
to be taken given the information of the play till then. A play conforms to a strategy if
the controller selects the transitions according to the strategy. A trace is an alternating
sequence of state labels and actions. The trace of a play is the sequence of labels of its
states and the actions. A winning condition is a set of admissible traces. A strategy for
the controller is winning with respect to a winning condition if the trace of every play
conforming with the strategy is admissible according to the winning condition. We con-
sider winning conditions which are ω-regular. The control problem is to decide given a
hybrid game and a winning condition if the controller has a strategy which is winning.
Further, the controller synthesis problem is to come up with such a strategy. The formal
semantics of a hybrid game is given in terms of a game graph and can be found in [16].

We now define STORMED hybrid games.
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Definition 2. A STORMED hybrid game is defined as a hybrid game with the following
restrictions.

S. Guards are Separable:
For all l1, l2 ∈ Loc such that l1 �= l2, dist(G(l1),G(l2)) = inf{||x − y|| |x ∈
G(l1), y ∈ G(l2)} > 0.

T. The flow is time-independent spatially consistent (TISC):
For every state (l, x) ∈ Loc×Cont, Flow(l, x) is continuous and Flow(l, x)(0) = x,
and for all t, t′ ∈ R+, Flow(l, x)(t+ t′) = Flow(l,Flow(l, x)(t))(t′).

O. The guards, invariants, flows and resets are definable in an o-minimal1 theory, that
is, by a first order formula of the theory.

RM. Resets and flows are monotonic along some vector φ:
There exists ε > 0 such that for all l ∈ Loc, x ∈ Cont and t, τ ∈ R+,
φ · (Flow(l, x)(t+ τ) − Flow(l, x)(t)) ≥ ε||Flow(l, x)(t+ τ)− Flow(l, x)(t)||.
There exist ε, ζ > 0 such that for all l1, l2 ∈ Loc and x1, x2 ∈ Cont such that
(x1, x2) ∈ Reset(l1, l2):

– if l1 = l2, then either x1 = x2 or φ · (x2 − x1) ≥ ζ, and
– otherwise φ · (x2 − x1) ≥ ε||x2 − x1||.

ED. Guards are ends-delimited along φ: The set {φ · x |x ∈ G(l), l ∈ Loc} ⊆ [b−, b+]
for some b− and b+.

The following theorem states that the control problem is decidable for this class.

Theorem 1. Given a STORMED hybrid game H and a winning condition W which
is ω-regular, the control problem is decidable if the underlying o-minimal theory is
decidable. The controller synthesis problem is also decidable.

Proof. Details of the proof are in [16]. It proceeds as follows: We first prove that under
special acyclicity conditions, bisimulation equivalence on the time-abstract transition
system defined by the SHG preserves winning (and losing) states which is not true in
general for hybrid systems [5]. The time-abstract transition system is the labelled tran-
sition system semantics of the SHG that ignores the distinction between controllable
and uncontrollable transitions and abstracts the time when continuous transitions are
taken. We show that both STORMED systems and o-minimal systems meet this tech-
nical acyclicity condition. Further the observations that the time-abstract transition sys-
tem for a SHS has a finite bisimulation quotient [15] (which is effectively constructable
when the underlying o-minimal theory is decidable) and the fact that finite games with
regular objectives are decidable [14], allow us to conclude the decidability of SHG.
The same argument holds for o-minimal systems. ��

3 Weighted Hybrid Games and Hybrid Systems

We now consider weighted games, where transitions have associated costs, and the goal
is to minimize these costs while meeting certain qualitative objectives. We consider

1 A theory is o-minimal if the sets definable by formulas with one variable are a finite union of
intervals.
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the problem of designing optimal controllers for reachability objectives, and also the
problem of verifying hybrid systems with costs.

A Weighted hybrid game is a pair (G,Cost), where the hybrid game G is equipped
with a non-negative and time-non-decreasing cost function Cost : Loc × R+ → R+,
i.e., Cost(q, t) ≥ 0 for all t and Cost(q, t1) ≥ Cost(q, t2) if t1 > t2. In addi-
tion the cost function satisfies the following additive property Cost(q, t1 + t2) =
Cost(q, t1) + Cost(q, t2). Hence with every move of the controller and the environ-
ment, there is an associated cost (the cost associated with a discrete transition can be
assumed to be 0). The cost associated with a play is the sum of the cost of all the moves.
The cost associated with a controller strategy is the supremum of the costs of all plays
conforming with the strategy. Given a Goal, a set of states, a strategy is said to reach the
goal if all the plays conforming with the strategy reach the goal. Given a Goal (a set of
states), the optimal cost reachability problem is to compute the infimum of the costs of
the controller strategies which reach goal. If there exists a strategy which achieves the
infimum, we call it an optimal strategy.

A Weighted STORMED hybrid game is a pair (G,Cost), where G is a STORMED
hybrid game and the cost function Cost is definable is the o-minimal theory in which
G is defined. The next theorem states that we can solve the optimal-cost reachability
problem for Weighted STORMED hybrid games.

Theorem 2. Given a Weighted STORMED hybrid game (G,Cost), where the underly-
ing theoryM is decidable, and a Goal, where Goal is definable inM, the optimal-cost
reachability problem is decidable. In fact, we can compute an optimal strategy if one
exists.

First observe that, when considering non-zeno plays 2, if there is a winning strategy
λ for the controller then there is a winning strategy in which the controller does not
choose a time step if in the previous step the controller chose a time step shorter than
the environment. This is challenging to prove due to the fact that these games may not
have memoryless winning strategies. We then conclude that for non-zeno reachability
games for SHS, we need only consider bounded step strategies, and therefore can not
only compute the cost of the optimal strategy but also synthesize it. Again, details of
the proof are in [16].
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Abstract. We present timed branching bisimulation in an environment
which allows us to design a new bisimulation-checking algorithm with en-
hanced performance by reducing state spaces with shared environment
state information between the model and the specification automatas.
We also propose non-Zeno bisimulation in an environment that fully
characterizes TCTL formulas. We then report our implementation and
experiments with the ideas.
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1 Introduction

Two systems are timed branching bisimulation (TB-bisimulation) equivalent [4,7]
if any transition that one system can make at a particular time can also be
matched by the other system at the same time, and vice versa. Conceptually, a
TB-bisimulation is a binary relation between the state sets of two automata. A
state pair is in a TB-bisimulation if and only if its elements are TB-bisimulation
equivalent. For convenience, given an automaton A, we use S(A) to denote the
set of state equivalence classes of A. In practice, a modelM and a specification
S can themselves be product automata and share a lot of common components.
With the traditional techniques of TB-bisimulation checking [3, 7, 10], we need
to manipulate a preliminary TB-bisimulation image of |S(E ×M)| × |S(E × S)|
state pairs where for each automata A1 and A2, A1×A2 is a product automaton.
As can be seen in this image, there is duplicate information in the two E compo-
nents. It is our goal to develop a new framework of TB-bisimulation in a common
environment (TBE-bisimulation) to allows us to present a new branching bisim-
ulation checking algorithm that only needs to manipulate |S(E ×M×S)| state
pairs in a preliminary bisimulation image.

For untimed systems, branching bisimulation preserves all properties
expressible in the propositional µ-calculus, which subsumes CTL* [2, 5] in
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expressiveness. However, our TBE-bisimulation does not preserve all properties
expressible in the dense-time counterpart of CTL, i.e., TCTL [1]. Another contri-
bution in this work is that we present the non-Zeno bisimulation in an environ-
ment (NZE-bisimulation) which preserves the TCTL properties. We prove that
a TBE-bisimulation is strictly contained in its corresponding NZE-bisimulation.

We have implemented our ideas in our TCTL model-checker RED 7.1 and
carried out experiments to evaluate the ideas. Algorithms and related work are
discussed in the full version.

2 Communicating Timed Automata

A process timed automaton (PTA) is equipped with a finite set of dense-time
clocks and synchronization events. Given a PTA A, we let LA, XA, and ΣA

denote the mode set, clock set, and event set of A respectively. A Communicating
timed automaton (CTA) [6] is a pair 〈A0, A1〉 such that A0 and A1 are PTAs
with LA0 ∩ LA1 = ∅, XA0 ∩XA1 = ∅, and ΣA0 = ΣA1 .

R≥0 is the set of nonnegative real numbers. N is the set of nonnegative integers.
A state ν of a CTA 〈A0, A1〉 is a valuation of XA0 ∪ LA0 ∪XA1 ∪ LA1 with the
following constraints.
• For each q ∈ LA0 ∪ LA1 , ν(q) ∈ {false, true}. Moreover for each i ∈ {0, 1},

there exists a unique q ∈ LAi such that ν(q) ∧ ∀q′ ∈ LAi − {q}(¬ν(q′)) is
true. Given q ∈ LAi , if ν(q) is true, we denote q as modeAi(ν).
• For each x ∈ XA0 ∪XA1 , ν(x) ∈ R≥0.

In addition, we require that ν |= VA0 ∧VA1 . Also for convenience, we now change
the meaning of S〈A0, A1〉 to the set of states of 〈A0, A1〉.

For any state ν and real number t ∈ R≥0, ν+ t is a state identical to ν except
that for every clock x ∈ XA0 ∪XA1 , (ν + t)(x) = ν(x) + t. Also given a state ν
and process transition e of A, νe is the destination state from ν through e.

A process transition e1 of a PTA A0 and an e2 of another PTA A1 are compati-
ble iff they observe the same events. A global transition of a CTA 〈A0, A1〉 is a pair
of two compatible transitions respectively of A0 and A1. A run of a CTA 〈A0, A1〉
is an infinite sequence of state-time pairs (ν0, t0)(ν1, t1) . . . (νk, tk) . . . . . . such
that t0t1 . . . tk . . . . . . is a non-decreasing and divergent real-number sequence;
and for all k ≥ 0, there is an (e, f) ∈ T 〈A0, A1〉 such that the CTA can go from
νk to νk+1 through a global transition (e, f) after tk+1−tk time units, in symbols

νk
tk+1−tk,(e,f)−→ νk+1. A run segment is a finite prefix of a run.

3 Timed Branching Bisimulations in an Environment

Suppose we have three PTAs E , M, and S which represent an environment,
a model, and a specification respectively. We let S〈E ,M,S〉 denote the set of
state pairs (µ, ν) such that µ ∈ S〈E ,M〉, ν ∈ S〈E ,S〉, and for all x ∈ LE ∪
XE , µ(x) = ν(x). A run segment (ν0, t0) . . . (νk, tk) of 〈E ,S〉 is called a pre-
matching segment of length t ∈ R≥0 for a µ ∈ S〈E ,M〉 and a binary relation
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B ⊆ S〈E ,M,S〉 iff the following constraints are satisfied. tk − t0 = t; for every
h ∈ [0, k) and t′ ∈ [0, th+1 − th], (µ + th − t0 + t′, νh + t′) ∈ B; and for every

h ∈ [0, k), νh
th+1−th,(⊥q,gh+1)−→ νh+1 for some global transition (⊥q, gh+1) of

〈E ,S〉. Similarly, we can also define the pre-matching segments of length t ∈ R≥0

for a ν ∈ S〈E ,S〉 and a B ⊆ S〈E ,M,S〉. We now first extend TB-bisimulation
to dense-time systems in an environment as follows.

Definition 1. Timed branching bisimulation in an environment
Suppose we are given an environment PTA E , a model PTA M, and a spec-
ification PTA S. A (timed branching) bisimulation between M and S in envi-
ronment E (TBE-bisimulation) is a binary relation B ⊆ S〈E ,M,S〉 with the
following restrictions on all its element (µ0, ν0).
B0: modeE(µ0) = modeE(ν0) and for every x ∈ XE(µ0(x) = ν0(x)).
B1: For every t ∈ R≥0, global transition (e, f) of 〈E ,M〉, and µ′ ∈ S〈E ,M〉,

if µ
t,(e,f)−→ µ′, then there are a g ∈ TS , a state ν′ ∈ S〈E ,S〉, and a pre-

matching segment (ν0, t0) . . . (νn, tn) of 〈E ,S〉 of length t for µ and B such

that g is compatible with f , νn
0,(e,g)−→ ν′, and (µ′, ν′) ∈ B.

B2: For every t ∈ R≥0, global transition (e, g) of 〈E ,S〉, and ν′ ∈ S〈E ,S〉, if

ν
t,(e,g)−→ ν′, then there are an f ∈ TM, a state µ′ ∈ S〈E ,M〉, and a pre-

matching segment (µ0, t0) . . . (µn, tn) of 〈E ,M〉 of length t for ν and B such

that f is compatible with g, µn
0,(e,f)−→ µ′, and (µ′, ν′) ∈ B.

Given a TBE-bisimulation B between M and S in E , we denote M B≡E S if for
every state µ |= IE ∧ IM, there is a ν |= IE ∧ IS with (µ, ν) ∈ B; and for every

state ν |= IE∧IS , there is a µ |= IE∧IM with (µ, ν) ∈ B. If ∃B(M B≡E S), we say
that M and S are TBE-bisimulation equivalent in E , in symbolsM≡E S. �
Given an environment PTA E , we can construct another PTA Ê that is identical
to E except that all mode names q are replaced by q̂ and all variables x ∈ LE∪XE
are replaced by x̂. Then we have the following lemma.

Lemma 1. Suppose we are given an environment PTA E, a model PTA M,
and a specification PTA S. M≡E S if and only if 〈E ,M〉 ≡ 〈Ê ,S〉. �

4 Non-Zeno Bisimulation in an Environment

However, TBE-bisimulation does not preserve TCTL [1] properties since TCTL
formulas are defined with non-Zeno runs. In contrast, TBE-bisimulation does not
address this issue. For convenience, we let TCTL(c, L) denote the set of TCTL
formulas with timing constants no greater than c and propositions from L. Here
we propose the following variation of TBE-bisimulation to patch this gap.

Definition 2. Non-Zeno bisimulation in an environment Suppose we are
given three PTAs E , M, and S. A non-Zeno bisimulation B between M and S
in E (NZE-bisimulation) is a binary relation B ⊆ S〈E ,M,S〉 with the following
restrictions on all its elements (µ0, ν0).
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B0: the same as restriction B0 in definition 1.
B3: For every t ∈ R≥0, global transition (e, f) of 〈E ,M〉, and µ′ ∈ S〈E ,M〉, if

µ0
t,(e,f)−→ µ′ and there is a (non-Zeno) run from µ′, then there are a g ∈ TS ,

a state ν′ ∈ S〈E ,S〉, and a pre-matching segment (ν0, t0) . . . (νn, tn) of 〈E ,S〉
of length t for µ0 and B such that g is compatible with f , νn

0,(e,g)−→ ν′,
and (µ′, ν′) ∈ B.

B4: For every t ∈ R≥0, global transition (e, g) of 〈E ,S〉, and ν′ ∈ S〈E ,S〉, if

ν0
t,(e,g)−→ ν′ and there is a (non-Zeno) run from ν′, then there are an f ∈

TM, a state µ′ ∈ S〈E ,M〉, and a pre-matching segment (µ0, t0) . . . (µn, tn) of

〈E ,M〉 of length t for ν0 and B such that g is compatible with f , µn
0,(e,f)−→

µ′, and (µ′, ν′) ∈ B.

Given such a B, if M B≡E S, then we say M and S are NZE-bisimulation

equivalent in E , in symbolsM NZ≡ E S. �
Let A, µ |= φ denote that state µ in automaton A satisfies formula φ.

Lemma 2. Let c be the biggest timing constant used in PTAs E,M, and S. Let
Q be the mode names in E. Let B be an NZE-bisimulation between M and S in
E. For any µν ∈ B and φ ∈ TCTL(c,Q), 〈E ,M〉, µ |= φ iff 〈E ,S〉, ν |= φ. �
We can show that TBE-bisimulations are stronger than NZE-bisimulations.

Table 1. Performance data of scalability w.r.t. various bisimulation definitions

Traditional TBE NZE
benchmarks versions m time memory time memory time memory
Fischer’s timed & 4 >1800s >8M 103s 425k 101s 424k
mutual non-Zeno 5 N/A 282s 876k 279s 876k
exclusion bisim. eq. 6 829s 1856k 786s 1856k
(m non-Zeno 4 >1800s >8M 74.2s 442k 99.9s 436k
processes bisim. eq. 5 N/A 210s 875k 302s 976k
) 6 570s 1766k 1136s 3100k

4 >1800s >8.5M 32.4s 249k 31.9s 249k
None 5 N/A 91.6s 478k 90.0s 478k

6 250s 943k 225s 944k
CSMA/CD timed & 1 0.236s 102k 0.164s 41k 0.144s 41k
(1 bus+ non-Zeno 2 72.9s 1791k 2.90s 211k 2.92s 211k
m senders bisim. eq. 3 >1800s >700M 497s 5362k 506s 5362k
) non-Zeno 1 0.480s 173k 0.332s 114k 0.788s 76k

bisim. eq. 2 >1800s 500M 86.8s 6143k >1800s >169M
3 N/A >1800s >75M N/A
1 0.144s 103k 0.144s 41k 0.136s 41k

None 2 52.9s 3132k 2.87s 222k 2.90s 222k
3 N/A 48.7s 2613k 50.1s 2613k

data collected on a Pentium 4 1.7GHz with 380MB memory running LINUX;
s: seconds; k: kilobytes of memory in data-structure; M: megabytes of total memory.
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Lemma 3. Given three PTAs E ,M, and S, if M ≡E S, then M NZ≡ E S; but
not vice versa. �

5 Implementation and Experiments

We have implemented the techniques discussed in this paper in RED 7.1, a
model-checker for CTAs and parametric safety analysis for LHAs based on CRD
(Clock-Restriction Diagram) [8] and HRD (Hybrid-Restriction Diagram) tech-
nology [9]. The state-spaces are explored in a symbolic on-the-fly style. We used
some parameterized benchmarks [8, 11] from the literature. The performance
data is reported in table 1. As can be seen, algorithms for our two new bisim-
ulation definitions perform much better than that for the traditional branching
bisimulation.
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