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Preface

This volume contains the papers presented at the 8th International Confer-
ence on Independent Component Analysis (ICA) and Source Separation held
in Paraty, Brazil, March 15–18, 2009. This year’s event resulted from scientific
collaborations between a team of researchers from five different Brazilian uni-
versities and received the support of the Brazilian Telecommunications Society
(SBrT) as well as the financial sponsorship of CNPq, CAPES and FAPERJ.

Independent component analysis and signal separation is one of the most ex-
citing current areas of research in statistical signal processing and unsupervised
machine learning. The area has received attention from several research commu-
nities including machine learning, neural networks, statistical signal processing
and Bayesian modeling. Independent component analysis and signal separation
has applications at the intersection of many science and engineering disciplines
concerned with understanding and extracting useful information from data as
diverse as neuronal activity and brain images, bioinformatics, communications,
the World Wide Web, audio, video, sensor signals, and time series.

Evidence of the continued interest in the field was demonstrated by the
healthy number of submissions received, and of the 137 papers submitted 97
were accepted for presentation. The proceedings have been organized into seven
sections: theory, algorithms and architectures, biomedical applications, image
processing, speech and audio processing, other applications, and the special ses-
sion on evaluation. Within each section, papers have been organized alphabet-
ically by the first author’s last name. However, the strong interaction between
theory, method, and application inevitably implies that many papers could have
equally been placed in alternative categories.

The conference featured a lecture session on semi-blind methods, emphasiz-
ing the importance of the small modification introduced to the conference ti-
tle last year by removing the word blind. Indeed, semi-blind techniques, and
other factorization methods, most important of which are the non-negative
decompositions, continued to be emphasized. We also received a significant
number of papers that concentrated on time-frequency domain approaches and
in particular sparse decompositions and representations. The application areas
were dominated by submissions focusing on biomedical and speech and audio
applications as well as image processing. We would like to thank Emmanuel
Vincent, Pau Bofill, and Shoko Araki, organizers of the Special Session on eval-
uation. Our warmest thanks go to our plenary speakers, Andrzej Cichocki from
RIKEN, Japan, David J. Field from Cornell University, USA, Simon Haykin from
McMaster University, Canada, and Mark D. Plumbley from Queen Mary Uni-
versity of London, UK.

There are many people that should be thanked for their hard work, which
helped produce the high-quality scientific program. First and foremost we would



VI Preface

like to thank all the authors who have contributed to this volume. Without
them there would be no proceedings. In addition, we thank the members of
the Organizing Committee and the reviewers for their efforts in commission-
ing the reviews, and for their help in selecting the very best papers for inclu-
sion in this volume and for providing valuable feedback that helped improve
the papers. We thank in particular Romis Attux , Charles Cavalcante, and Ri-
cardo Suyama for their hard work and constant support throughout the process.
Their close attention to every detail has been the most important factor in the
achievement of this volume. Gratitude is due to Ursula Barth and other Springer
staff for their solicitude and diligence in the preparation of this volume and the
CD-ROM Proceedings. Thanks also go to the members of the ICA International
Steering Committee for their continued advice and ongoing support for the ICA
conference series.

Last, but not least, our deepest thanks go to our Local Organizing Committee
and to Roberta Cavalcante from Ikone. Thanks to their initiative our conference
came to the Southern Hemisphere for the first time. We express our gratitude
for this unique opportunity of attending such a high-level conference in Paraty
and enjoying all the beautiful sites around this wonderful village.

January 2009 Tülay Adali
Christian Jutten

Allan Kardec Barros
João Marcos Travassos Romano
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Säıd Moussaoui Nantes University, France
Klaus-R. Mueller Fraunhofer FIRST, Germany
Esa Ollila Helsinki University of Technology, Finland
Noboru Ohnishi Nagoya University, Japan
Mariane Petraglia Federal University of Rio de Janeiro, Brazil
Dinh Tuan Pham CNRS, Grenoble, France
Mark Plumbley Queen Mary, University of London, UK
Luis Castedo Ribas University of La Coruña, Spain
Justinian Rosca Siemens, USA
Hiroshi Sawada NTT CS Labs, Japan
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Elmar W. Lang

Separation of Convolutive Mixtures with Hybrid Sources . . . . . . . . . . . . . . 114
Christine Servière

Blind Extraction of Chaotic Sources from White Gaussian Noise Based
on a Measure of Determinism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Diogo C. Soriano, Ricardo Suyama, and Romis Attux

Estimating Squared-Loss Mutual Information for Independent
Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Taiji Suzuki and Masashi Sugiyama

Complete Blind Subspace Deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Zoltán Szabó
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Canonical Dual Approach to Binary Factor Analysis . . . . . . . . . . . . . . . . . . 346
Ke Sun, Shikui Tu, David Yang Gao, and Lei Xu

Soft Dimension Reduction for ICA by Joint Diagonalization on the
Stiefel Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

Fabian J. Theis, Thomas P. Cason, and P.-A. Absil

Estimating Phase Linearity in the Frequency-Domain ICA Demixing
Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

Keisuke Toyama and Mark D. Plumbley

Nonlinear Blind Source Deconvolution Using Recurrent Prediction-Error
Filters and an Artificial Immune System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

Cristina Wada, Douglas M. Consolaro, Rafael Ferrari,
Ricardo Suyama, Romis Attux, and Fernando J. Von Zuben

Arabica: Robust ICA in a Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
Jarkko Ylipaavalniemi and Jyri Soppela

Biomedical Applications

Estimating Hidden Influences in Metabolic and Gene Regulatory
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
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Antônio Mauŕıcio Ferreira Leite Miranda de Sá,
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Raúl Llinares, Jorge Igual, Addisson Salazar,
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Abstract. Non-stationarities are an ubiquitous phenomenon in time-
series data, yet they pose a challenge to standard methodology: classifi-
cation models and ICA components, for example, cannot be estimated
reliably under distribution changes because the classic assumption of a
stationary data generating process is violated. Conversely, understanding
the nature of observed non-stationary behaviour often lies at the heart of
a scientific question. To this end, we propose a novel unsupervised tech-
nique: Stationary Subspace Analysis (SSA). SSA decomposes a multi-
variate time-series into a stationary and a non-stationary subspace. This
factorization is a universal tool for furthering the understanding of non-
stationary data. Moreover, we can robustify other methods by restricting
them to the stationary subspace. We demonstrate the performance of our
novel concept in simulations and present a real world application from
Brain Computer Interfacing.

Keywords: Non-Stationarities, Source Separation, BSS, Dimensionality
Reduction, Covariate Shift, Brain-Computer-Interface, BCI.

1 Introduction

The assumption that the distribution of the observed data is stationary is a
cornerstone of mainstream statistical modelling: ordinary regression and classifi-
cation models, for instance, rely on the fact that we can generalize from a sample
to the population. Even if we are primarily interested in making accurate pre-
dictions as in Machine Learning, differences in training and test distributions
can cause severe drops in performance [9], because the paradigm of minimizing
the expected loss approximated by the training sample is no longer consistent.
The same holds true for unsupervised approaches such as PCA and ICA.

As many real data sources are inherently non-stationary, researchers have
long tried to account for that. In inferential statistics, the celebrated Heckman
[4] bias correction model attempts at obtaining unbiased parameter estimates
under sample selection bias; cointegration methods [2] aim at discovering stable
relationships between non-stationary time-series. In order to improve predic-
tive performance, several approaches have been developed: explicit modeling of
the non-stationary process; tracking rsp. adapting to non-stationarity via online
learning [7]; constructing features that are invariant under non-stationarities

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 1–8, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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[1] and correcting for biased empirical risk estimates under covariate shift by
reweighting [10].

In this paper, we propose a novel decomposition paradigm that, to the best
of our knowledge, has not been explored so far. The premise is similar in spirit
to the ICA setting [5], in that we assume that a multivariate time-series was
generated as a mixture of sources. However, instead of assuming independent
sources, we suppose that some of the sources are stationary while others are
not. The proposed Stationary Subspace Analysis (SSA) algorithm then finds a
factorization into a stationary and a non-stationary component from observed
data. Apart from shedding light on the nature of the non-stationarities, this
decomposition can be used to build robust learning systems by confining them
to the stationary subspace as we exemplify in an application to Brain-Computer-
Interfacing.

Previous work along similar lines has addressed the question of whether two
samples come from the same distribution [3], without trying to find subspaces
where the distribution stays the same. While ICA finds independent sources,
SSA divides the input space into a stationary and a non-stationary component
regardless of independence within or between the subspaces.

2 Problem Formalization

We assume that the non-stationary behaviour of the data generating process is
confined to a linear subspace of the D-dimensional data space, i.e. there exists a
d-dimensional subspace that is undisturbed by the nonstationarity. Formally, we
assume that the analyzed system generates d stationary source signals ss(t) =
[s1(t), s2(t), . . . , sd(t)]� (also referred to as s-sources) and D− d non-stationary
source signals sn(t) = [sd+1(t), sd+2(t), . . . , sD(t)]� (also n-sources).

The observed signals x(t) are then modeled as linear superpositions of these
sources

x(t) = As(t) =
[
As An

] [ss(t)
sn(t)

]
(1)

where A is an invertible matrix.1 The columns of As span the subspace that the
s-sources live in, we will refer to this space as s-subspace. Similarly, the span of
An will be called n-subspace. The goal is now to estimate a linear transformation
B from the observed data x(t) that separates the s-sources from the n-sources,
i.e. factorizes the observed signals according to eq. (1).

Figure 1 shows an example of partly non-stationary two-dimensional time
series, i.e. the upper time course is non-stationary and the lower one is station-
ary. Due to the non-stationarity, the scatter plots of different parts of the data
are quite different. Note, that PCA or ICA would not be able to perform the
separation task due to the strong correlations between the two signals.

1 For simplicity we assume A to be a square matrix. Note that we do not assume the
sources to be statistically independent or even uncorrelated.
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Fig. 1. A two-dimensional time series consisting of a one dimensional stationary and
a one-dimensional non-stationary part. The marginal distributions of different sections
of the time series are different in the n-subspace (horizontal histograms), but constant
in the s-subspace (vertical histogram on the left side). Note, that the distributions in
these subspaces are in general not independent.

3 Identifiability and Uniqueness of the Solution

Given the mixing model, the first question is whether it is in principle possible
to invert it given only the observed (i.e. mixed) signals. In other words: can the
mixing matrix A be uniquely identified or are there symmetries that give rise
to multiple solutions?2 Obviously, the basis within each of the two subspaces
(stationary or not) can only be identified up to arbitrary linear transformations
in these subspaces. However, the answer to the question whether or not the two
subspaces themselves are uniquely identifiable is less obvious. Let us write the
estimated mixing and demixing matrices as

Â =
[
Âs Ân

]
and B̂ = Â−1 =

[
B̂s

B̂n

]
. (2)

The matrices B̂s ∈ Rd×D and B̂n ∈ R(D−d)×D denote the projections from the
observed data into the estimated s- and n-subspaces. If we express the true s-
and n-subspaces as linear combinations of the respective estimated subspaces

As = ÂsM1 + ÂnM2

An = ÂsM3 + ÂnM4 (3)

2 And if so, how do these solutions differ?
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(with M1 ∈ Rd×d, M2 ∈ R(D−d)×d, M3 ∈ Rd×(D−d), and M4 ∈ R(D−d)×(D−d))
then the composite transformation (the true mixing followed by the estimated
demixing matrix) reads

B̂A =
[
B̂sAs B̂sAn

B̂nAs B̂nAn

]
=

[
M1 M3
M2 M4

]
(4)

The estimated s- and n-sources can now be written in terms of the true sources:

ŝs = M1s
s +M3s

n

ŝn = M2s
s +M4s

n (5)

Given that the estimated transformation separates stationary from non-stationary
signals,M3 must vanish since estimated signals that contain non-stationary source
signals will be non-stationary as well. The estimated n-sources, on the other hand,
might contain contributions from the true s-sources. So the matricesM1,M2,M4
remain unconstrained3.

From equation (3) and M3 = 0 we see, that the estimated n-subspace is
identical to the true n-subspace while the estimated s-subspace is a linear com-
bination of true s- and n-subspaces4. Since this linear combination is arbitrary,
the estimated s-subspace can always be chosen such that it is orthogonal to the
n-subspace. If we additionally chose orthogonal bases within each of these esti-
mated subspaces, we have effectively restricted ourselves to the estimation of an
orthogonal mixing matrix.

This means that we can restrict our search for the mixing matrix to the space
of orthogonal matrices even if the model allows general (non-orthogonal) mixing
matrices. As a result, the estimated s-sources will be linear combinations of the
true s-sources but well separated from the n-sources.

4 Estimating the Stationary Subspace

We will now formulate an optimization criterion that allows us to estimate a
demixing matrix B̂ given N sets of data X1, . . . ,XN ⊂ RD. These datasets may
for example correspond to epochs of a time series as in Figure 1. More precisely,
we want to find an orthogonal transformation B̂ such that the first d components
of the transformed data ŝ(t) = B̂x(t) are as stationary as possible. Since these
components are completely determined by the sub-matrix B̂s, the cost function
can only depend on this sub-matrix, even if the optimization takes place in the
full space of orthogonal matrices. For the latter calculations it is convenient
to express B̂s in terms of the complete demixing matrix as B̂s = IdB̂, where
Id ∈ Rd×D is the identity matrix truncated to the first d rows.

3 Apart from the mere technical assumption of invertibility of Â.
4 Note that for the estimated sources this is the other way round: while the estimated

s-sources are mixtures of the true s-sources only, the estimated n-sources are mixtures
of both the true n- and s-sources.
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We will consider a set of d estimated sources as stationary, if the joint dis-
tribution of these sources stays the same over all sets of samples. Therefore,
our objective function is based on minimizing the pairwise distance between the
distributions of the projected data which we measure using the Kullback-Leibler
divergence. For technical reasons, we only consider differences in the first two
moments, i.e. two distributions are assumed to be the same if they have the
same mean and covariance matrix. Consequently, our method is ignorant of any
non-stationary process that does not change the first two moments. Even though
the rationale for this restriction is purely technical, its practical consequences
should be limited.5 In order to compute the KL divergence, we need to estimate
both densities. Since we have restricted ourselves to distributions whose suffi-
cient statistics consist of the mean and covariance matrix, a natural choice is to
use a Gaussian approximation according to the maximum entropy principle [6].

Let (μ̂i, Σ̂i) be the estimate of mean and covariance for dataset Xi. Then we
find the demixing matrix as the solution of the optimization problem

B̂ = argmin
BB�=I

∑
i<j

KL
[
N (IdBμ̂i, IdBΣ̂i(IdB)�) || N (IdBμ̂j , IdBΣ̂j(IdB)�)

]
.

To stay on the manifold of orthogonal matrices (or, more formally speaking:
the special orthogonal group SO(N)), we will employ a multiplicative update
scheme: starting with B = I, we multiply B in each iteration by an orthogonal
matrix, Bnew ← RB. At each step, the estimated projection to the s-subspace is
then given by IdRB and we can write the projected mean and covariance matrix
of data set Xi as

μ̂s
i = IdRBμ̂i and Σ̂s

i = IdRBΣ̂i(IdRB)�,

and the loss function as

LB(R) =
∑
i<j

log
det(Σ̂s

j )

det(Σ̂s
i )

+ tr
(
(Σs

j )
−1Σs

i

)
+ (μs

j − μs
i )
�(Σs

j )
−1(μs

j − μs
i ).

The rotationR can be parametrized as the matrix exponential of an antisymmet-
ric matrix, R = eM withM = −M�, where each elementMij can be interpreted
as generalized rotation angle (i.e. rotating axis i towards axis j). Using this, we
can express the gradient of the function LB(R) = LB(eM ) w.r.t. M in terms of
the corresponding gradient w.r.t. R (see e.g. [8]) as

∂LB/∂M |M=0 = (∂LB/∂R)R� −R(∂LB/∂R)�. (6)

The gradient of the loss function with respect to R is

∂LB
∂R

= Id�IdR
∑
i<j

B

(
Σ̂iQΣ̂

−1
j + Σ̂−1

j QΣ̂i + Σ̂jQΣ̂
−1
i + Σ̂−1

i QΣ̂j

+
(
Σ̂−1
j + Σ̂−1

i

)
QDμ +DμQ

(
Σ̂−1
j + Σ̂−1

i

))
B� (7)

5 Real world nonstationary processes will hardly go unnoticed by the first two mo-
ments. Moreover, estimates of higher-order moments are less stable themselves.



6 P. von Bünau, F.C. Meinecke, and K.-R. Müller

with Q = B�R�Id�IdRB and Dμ = (μ̂i − μ̂j)(μ̂i − μ̂j)�. The factor of Id�Id

from the left ensures that the lower D − d rows of this matrix gradient vanish.
This means, that in the gradient w.r.t. M the lower right block has to be zero.
Furthermore, since every summand in the sum is symmetric, the skew-symmetry
of eq. (6) makes the upper left block in ∂LB/∂M vanish as well. Thus the
gradient has the shape

∂LB
∂M
|M=0 =

[
0 Z
−Z� 0

]
where the non-zero part Z ∈ Rd×(D−d) corresponds to the rotations between
coordinates of the s- and n-space. Note that the derivative w.r.t. the rotations
within the two spaces must vanish, because they do not change the solution.
Thus we can reduce the number of variables to d(D − d). The optimization is
then carried out using a standard conjugate gradient procedure in angle space
with multiplicative updates.

5 Simulations

We investigate the performance of SSA under different scenarios based on sim-
ulated data. In order to make the analysis more concise, we first consider the
hypothetical case where the true mean and covariance matrix of the data gener-
ating process are known and then examine the impact of the estimation error in
a second set of experiments. The experimental setup is as follows: we randomly
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Fig. 2. The left plot shows the results of the simulations for a 20 dimensional input
space. The performance of the method is measured in terms of the median angle to
the true n-subspace (vertical axis) for several dimensionalities (horizontal axis) and
number of datasets N = 8, 15, 25 (red, blue and green curve) over 100 random trials.
The error bars stretch from the 25% to the 75% quantile. The right plot shows the
performance under varying numbers of samples in each dataset for fixed d = 5 and
N = 10 in D = 10 input dimensions.
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sample N covariance matrices and means such that the s-subspace is spanned
by the first d coordinates. Moreover, we randomly sample a well-conditioned
mixing matrix A that is then applied to each mean and covariance matrix. Note
that ICA cannot in principle separate the s- from the n-space because we have
allowed for arbitrary correlations between them. For each trial, in order to avoid
local minima, we restart the optimization procedure five times and then select
the solution with the lowest objective function value. The accuracy is measured
as angle between the estimated n-subspace and the ground truth.

From the results shown in the left plot of Figure 2, we can see that the like-
lihood that the true s-sources can be found grows with the number of available
datasets and scales with the degrees of freedom d(D − d). In order to analyze
the influence of the number of samples within each dataset n = |Xi|, 1 ≤ i ≤ N ,
we fix the other parameters and vary n. The right plot in Figure 2 shows the
result: the performance clearly increases with the number of available samples
whereas the method remains applicable even in the small sample case.

6 Application to Brain-Computer-Interfacing

We demonstrate that SSA can be used for robust learning on EEG dat (49
channels) from Brain-Computer-Interfacing (BCI) where the task is to distin-
guish imagined movements of the right/left hand. Imagined movements of the
hand are known to produce characteristic spatio-temporal signal patterns on the
respective contralateral hemispheres. However, the frequency content of these
signals over the motor cortex (μ-rhythm) is in the same range as the occipital α-
rhythm. The strength of the α-rhythm is task unrelated and strongly correlated
to the tiredness or the exposure to visual stimulation of a subject.

In our experiment, we induce changes in the strength of the α-rhythm by
first extracting it from a separate artefact measurement session (using ICA) and
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Fig. 3. Results on the BCI data for varying levels of change in the strengths of the
α component between test and training data (increasing from left to right). For each
scenario, the test error rate of the CSP baseline method is indicated by the dashed
black line. The boxplots show the distribution of the test error rates on the s-subspace
for varying dimensionalities d = 48, 45, 40 over 100 runs of the optimization. The blue
triangle indicates the error rate on the s-subspace that attained the minimum objective
function value over all runs.
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then superimpose it on the data in varying strengths in order to induce realistic
yet controlled non-stationarities. See [1] for a full exposition of the experimental
setup. The data is divided into three parts: a training data set that contains
strong α-activity which corresponds to a wakeful resting brain state and a test
data set, where we change the strength of the α-components. From the test por-
tion, we set aside the first 30 trials for adaptation. Then we estimate the s-space
over the training and adaptation part and apply the standard CSP algorithm
within the s-space. The performance is measured as the misclassification rate
on the test set. The experimental results presented in Figure 3 show that the
classification accuracy can be retained even under very strong non-stationarities
if the learning algorithm is restricted to a 45 dimensional s-subspace.

7 Conclusion and Future Work

We have presented the first algorithm for decomposing a multivariate time-series
into a stationary and a non-stationary component. A number of interesting ques-
tions remain: first of all, how can we choose the dimensionality of the s-space
from data? Secondly, can we extend the algorithm to measure non-stationarities
in higher order moments? Finally, we will pursue further applications beyond
the neurosciences.
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Abstract. We deal with blind signal extraction in the framework of a
convolutive mixture of independent sources. Considering so-called ref-
erence signals, we generalize former identifiability conditions. Based on
this result, we propose to incorporate some a priori information in the
references. We show the validity of reference based contrast functions in
two semi-blind situations. The results are confirmed by computer simu-
lations.

1 Introduction

This paper deals with the problem of source extraction in the general case of
a convolutive mixture. This issue finds applications in many contexts such as
blind equalization for digital communication signals,. . . Moreover, this problem
is a key component in blind source separation methods based on a multi-stage
(or iterative) approach (often called deflation [4,5]).

One interesting way to tackle this problem consists in optimizing an adapted
criterion called contrast function. However,finding identifiability conditions which
state the precise context where source signals can be extracted remain important.
This paper considers the above two points.

In this context, reference based methods have recently been introduced [1,2].
They consider a reference signal which provides a supplementary degree of free-
dom and which can be used in different ways. Here we propose to incorporate
some a priori information in the reference signal and we show its effectiveness.
New identifiability results which generalize former conditions on the reference are
first proposed. Then, we show the validity of reference based contrast functions
in two semi-blind interesting situations. Finally, computer simulations illustrate
our results.

2 Problem Statement

2.1 Mixing Model

We consider a Q-dimensional (Q ∈ N, Q ≥ 2) discrete-time signal which is called
vector of observations and denoted by x(n) (in the whole paper, n stands for

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 9–16, 2009.
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any integer: n ∈ Z). It results from a linear time invariant (LTI) multichannel
system {M} described by the input-output relation:

x(n) =
∑
k∈Z

M(k)s(n− k) � {M}s(n), (1)

where M(n) is the sequence of (Q,N) impulse response matrices and s(n) is a N -
dimensional (N ∈ N∗) unknown and unobserved column vector, which is referred
to as the vector of sources. The multichannel deconvolution problem consists in
estimating a multivariate LTI system {W} operating on the observations, such
that the vector y(n) =

∑
k∈Z

W(k)x(n − k) � {W}x(n) restores the N input
sources. Different situation can occur depending on context: when no information
is available on the mixing system and when the sources cannot be observed, the
problem is referred to as the blind source separation (BSS) problem. On the
contrary, when some information is assumed to be known on the sources or on
the mixing system, the problem is sometimes referred to as semi-blind source
separation (S-BSS).

The matrix transfer function M[z1] of the mixing channel is given by the
following z-transform (where z1 is used instead of z for reasons that appear
later)

M[z1] =
∑
n∈Z

M(n)z−n1 . (2)

A similar definition holds for the matrix transfer function W[z1] of the separator
{W}. We define the combined mixing-separating (N,N) LTI filter {G} by its
impulse response G(n) =

∑
k∈Z

W(k)M(n− k).
In an iterative approach, the sources are extracted one by one. We consider

one row of the separator {W}, which is a (1, Q) LTI row filter {w} with output
y(n) given by:

y(n) =
∑
k∈Z

w(k)x(n − k) � {w}x(n). (3)

Similarly, {g} denotes the (1, N) row filter given by the row of {G} which cor-
responds to {w}. We have then:

y(n) =
∑
k∈Z

g(k)s(n− k) � {g}s(n). (4)

We say that the separation is achieved when only one component of {g} is non
zero, say the i0th:

{g} =
(
0, . . . , 0, {gi0}, 0, . . . , 0

)
. (5)

When the source signals are assumed to be temporally i.i.d. (independent and
identically distributed) signals, a more restrictive separation condition is consid-
ered. In this case, {g} should satisfy the following condition in addition to (5):

∃l ∈ N : gi0(k) = 0 if k �= l and gi0(l) = α ∈ C∗ (6)
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The parameters i0, l, and α correspond respectively to the well-known indeter-
minacies of BSS (or S-BSS): permutation of the sources, delay and amplitude
factor. In the case of non i.i.d. sources, a filtering ambiguity is included by spec-
ifying no constraint on {gi0}.

2.2 Reference Based Separation

In order to be able to solve the BSS or S-BSS problem, we introduce the following
assumption on the sources:

A1. The source vector components si(n), i ∈ {1, . . . , N} are mutually indepen-
dent, stationary and zero-mean processes with unit variance.

In addition, we assume that there exist an additional signal r(n), which is referred
to as a “reference” signal. This reference signal is used in order to facilitate the
source separation and the following assumption is made:

A2. The signals si(n), i ∈ {1, . . . , N} and r(n) are jointly stationary up to the
fourth order.

It has been shown that r(n) can generally be constructed from the observations.
The corresponding constraints on r(n) being quite weak, an efficient BSS proce-
dure has been proposed based on the maximization of a reference based contrast
function [1,2]. In the following Section, we give general conditions on r(n) so that
the extraction of a particular source is allowed. Furthermore, it is rather natural
to use the reference signal in a S-BSS context: we indeed propose in Section 4 to
include in r(n) some a priori information on the source which is being extracted.
The validity of the corresponding separation criteria is proved.

3 Generalized Identifiability Conditions

Higher Order Statistics. We consider higher order cumulants and define the
following fourth order cross-cumulant:

Cr
sisj

(n) = Cum {si(n), sj(n− n1)∗, r(n− n2), r(n− n2)∗} . (7)

Note that it exists and depends on n = (n1, n2) only according to assumption
A2. We consider a multidimensional z-transform of order two w.r.t. the variables
n = (n1, n2). It is defined by:

Cr
sisj

[z] =
∑
n∈Z2

Cr
sisj

(n)z−n1
1 z−n2

2 (8)

where z = (z1, z2) ∈ (C∗)2. For the signal x(n), the cumulants Cr
xixj

(n) and
their respective z-transforms Cr

xixj
[z] are defined similarly to the definitions

given by (7) and (8). Let us introduce the matrices Cr
x[z] and Cr

s [z] whose (i, j)
components are Cr

xixj
[z] and Cr

sisj
[z] respectively.
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Cumulant Decomposition. Using the multilinearity property of cumulants,
it can be verified that the following decomposition holds:

Cr
x[z] = M[z1z2]Cr

s [z]M[z−1
1 ]

H
. (9)

Second order statistics appear formally as a particular case of the preceding
results. When there is no reference signal, (7) corresponds to the correlation for
which we adopt the specific notation:

Γsisj (n1) � Cum {si(n), sj(n− n1)∗} Γs(n1) =
(
Γsisj (n1)

)
(i,j)∈{1,...,N}2 .

Corresponding to (8), the power spectral matrix of the sources is defined by:

Γs[z1] �
∑
n1∈Z

Γs(n1)z−n1
1 . (10)

Note that contrary to (9), z2 does not appear here. Similar notations hold for
the observations x(n) (Γx(n1) and Γx[z1] respectively). Similarly to (9), we have
the well-known relation:

Γx[z1] = M[z1]Γs[z1]M[z−1
1 ]

H
. (11)

Identifiability Condition. Based on (9) and (11), the following general iden-
tifiability result can be proved. The proof proceeds along similar lines as the one
in [3] and it is not provided because of lack of space.

Proposition 1. Assume that

A3. the matrix Cr
s [z] is diagonal, and the first diagonal element of Cr

s [z] is a
function distinct from all other diagonal elements.

Then, the first source of the mixture is identifiable in the following sense: for
any N × Q matrix W[z1] such that the N × N combined channel-equalizer z-
transform matrix G[z1] = W[z1]M[z1] is irreducible, if W[z1]Γx[z1]W[z−1

1 ]
H

and W[z1z2]Cr
x[z]W[z−1

1 ]
H

are both diagonal, then:

G[z1] = P

⎛⎝α 0 ... 0
0...
0

Q̃

⎞⎠ (12)

where α ∈ C, α �= 0 and P is a permutation matrix. In addition, Q̃ is a unitary
matrix.

The above result corresponds to the possibility of extracting the first source.
Indeed, if P is the identity matrix, the first row of the above G[z1] is such that
the corresponding row LTI filter satisfies both (5) and (6).
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4 Contrast Functions

4.1 BSS Contrast Functions

A commonly used approach in BSS consist in finding criteria, which yield separa-
tion when they reach their maximum value: such criteria are by definition called
contrast functions. The modulus of the fourth-order auto-cumulant is one of the
most popular contrast [4,5]. In [1], a more general expression of the following
contrast has been introduced:

Cr{y(n)} � |κr{y(n)}| where: κr{y(n)} � Cum {y(n), y(n)∗, r(n), r(n)∗} (13)

with r(n) the reference signal. It has been proved that (13) is a valid contrast
under the constraint E

{|y(n)|2} = 1 and additional constraint on the reference
signal r(n).

Consider the specific situation where the reference r(n) depends only on the
source signal which is extracted (say s1(n)) and is independent on the other
source signals. One can then see that only the first element of the matrix Cr

s [z]
is non zero and condition A3 of Proposition 1 is satisfied. This situation should
thus be very favorable in order to extract s1(n) and we illustrate two such
situations of interest. Of course, in such a situation, the original permutation
ambiguity is reduced and necessarily, the first source is extracted, that is i0 = 1
in (5)-(6).

4.2 S-BSS Contrast Function: Information on the Signal Phase

We consider in this paragraph the situation where the reference signal reads:{
r(n) = ε(n) s1(n)

|s1(n)| where:

|ε(n)| = 1 and ε(n) is independent of the source signals.
(14)

This situation corresponds to the case where the reference contains some infor-
mation on the phase of s1(n). This information is corrupted by the perturbation
process ε(n) which randomly changes the phase.

Lemma 1. In the case of i.i.d. source signals, if r(n) is given by (14), we have
(where ε and s1 denote ε(n) and s1(n) for readability):

Cr{sj(n− k)} =

⎧⎨⎩0 if (j, k) �= (1, 0),

|E {ε} |2
[∣∣∣E{

s21
|s1|

}∣∣∣2 + |E {|s1|} |2
]

if (j, k) = (1, 0).
(15)

Proof. For (j, k) �= (1, 0), the equality κr{sj(n− k)} = 0 follows from indepen-
dence and the vanishing property of the cumulants. Now, if (j, k) = (1, 0), by
developing the cumulant in term of moments, we obtain:

κr{s1(n)} = E
{|s1|2|ε|2}− E

{|s1|2}E
{|ε|2}− ∣∣∣∣E{

ε
s21
|s1|

}∣∣∣∣2 − E {ε|s1|} |2

The result then follows from the independence of ε(n) and s1(n) and after
simplification. 	
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We can now state the following result:

Proposition 2. Considering the reference signal given by (14), the criterion Cr
in (13) is a contrast function for i.i.d. sources under the condition E {ε(n)} �= 0.
In addition, the source identified by Cr is s1(n).

Proof. Note that, except in the degenerate case where s1(n) = 0 almost surely,
Cr{s1(n)} > 0 when E {ε(n)} �= 0. The proposition then follows from Lemma 1
and a straightforward application of [1, Prop. 1]. 	


4.3 S-BSS: Information on the Signal Modulus

This paragraph is concerned with the case where the reference signal has the same
modulus as s1(n) but a random phase. All the results and comments in the pre-
vious section are adapted hereunder. More precisely, the reference signal reads:{

r(n) = ε(n)|s1(n)|
|ε(n)| = 1,E {ε(n)} = 0 and ε(n) is independent of the sources.

(16)

Lemma 2. In the case of i.i.d. source signals, if r(n) is given by (16), we have
(where ε and s1 denote ε(n) and s1(n) again for readability):

Cr{sj(n− k)} =

{
0 if (j, k) �= (1, 0),
E
{|s1(n)|4}− E

{|s1(n)|2}2 if (j, k) = (1, 0).
(17)

Proof. For (j, k) �= (1, 0), the equality κr{sj(n− k)} = 0 follows from indepen-
dence and the vanishing property of the cumulants. Now, if (j, k) = (1, 0), by
developing the cumulant in term of moments, we obtain:

κr{s1(n)} = E
{|s1|4|ε|2}− E

{|s1|2}E
{|εs1|2}− |E {εs1|s1|} |2 − E {εs∗1|s1|} |2

The result then follows after simplification, using the independence of ε(n) and
s1(n) and the assumption E {ε(n)} = 0. 	

Proposition 3. Considering the reference signal given by (16), the criterion Cr
in (13) is a contrast function for i.i.d. sources if s1(n) has non constant modulus.
In addition, the source identified by Cr is s1(n).

Proof. Note that, if s1(n) does not have constant modulus, Cr{s1(n)} > 0 since
it is the variance of |s1(n)|. The proposition then follows from Lemma 1 and a
straightforward application of [1, Prop. 1]. 	


4.4 Generalization

As mentioned, the reference signal r(n) defined by (14) or (16) satisfy the con-
ditions of Proposition 1 because it depends on s1(n) only. Obviously, if r̃(n) is
a scalar filtering of r(n), it also depends on s1(n) only. More precisely, one can
see that any scalar filtering of a reference given by (14) or (16) remains a valid
reference signal under the same conditions as the above given ones. Finally, we
would like to stress that the results in Section 4 remain valid in the case of non
i.i.d. sources, although not presented here due to the lack of space.
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5 Simulations

We considered three different kind of sources:

– real valued, uniformly distributed with mean zero and unit variance.
– complex valued, QAM4 and QAM16, that is the real and imaginary parts

are independent taking their values with equal probability in {±1/
√

2} for
QAM4 sources and in {±1/

√
5,±3/

√
5} for QAM16 sources.

For each of the above choices, a set ofN = 3 mutually independent and temporally
i.i.d. sources have been generated. They have been mixed by a Q ×N randomly
chosen finite impulse response (FIR) filter of length 3 and with Q = 4 sensors.
We then used the contrast Cr in (13) and the associated algorithm proposed in [1]
to test the effectiveness of our result. The different choices for r(n) are detailed
next. All presented results correspond to averaged values over 1000 Monte-Carlo
realizations of the mean square error (MSE) on the estimated source.

5.1 Information on the Signal Phase

The original reference r(n) is given by (14), where:

– ε(n) is a binary i.i.d. Bernoulli process with P (ε(n) = 1) = p and P (ε(n) =
−1) = 1− p in the case of real-valued sources.

– ε(n) = eıθ(n) and θ(n) is uniformly distributed on an interval [−ϑ, ϑ] in the
case of complex-valued sources.

Table 1. Average (1000 realizations) MSE on the reconstructed source (real-valued
sources with uniform distribution). r(n) is given by (14).

Number
of samples

Reference: r(n) Reference: r̃(n) ↔ “r(n)+filt.”
p = 1 p = 0.9 p = 0.7 p = 0.5 p = 1 p = 0.9 p = 0.7 p = 0.5

1000 0.0078 0.0249 0.1548 1.0780 0.0379 0.0945 0.7079 1.1340
5000 0.0015 0.0050 0.0331 1.0799 0.0130 0.0748 0.2470 1.1303
10000 7.57e-4 0.0025 0.0168 1.0762 0.0073 0.0142 0.1383 1.1335

Table 2. Average (1000 realizations) MSE on the reconstructed source (complex valued
sources with QAM4 or QAM16 distribution). r(n) is given by (14).

Sources
Number
of samples

Reference: r(n)
ϑ = 0 ϑ = π

4
ϑ = π

2
ϑ = π

QAM4
1000 5.84e-5 0.0055 0.0334 1.2114
5000 2.11e-6 0.0011 0.0067 1.2160
10000 4.98e-7 5.40e-4 0.0034 1.2119

QAM16
1000 0.0027 0.0087 0.0395 1.2116
5000 5.23e-4 0.0017 0.0080 1.2133
10000 2.63e-4 8.65e-4 0.0040 1.2126
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According to Section 4.4, we consider also r̃(n) as a reference, where r̃(n) has
been obtained by a FIR scalar filtering of r(n). The filter have three taps with
randomly driven coefficients. Different values of the parameters p, ϑ and different
sample sizes are considered. The results are reported in Table 1 for real-valued
sources and in Table 2 for complex-valued sources.

One can observe the effectiveness of the separation when p �= 0.5 and ϑ �= π:
it should indeed be no surprise that no separation is obtained for p = 0.5 or
ϑ = π since in this case, r(n) is independent of s1(n).

5.2 Information on the Signal Modulus

Now the original reference r(n) is given by (16), where:

– ε(n) is a binary i.i.d. process with P (ε(n) = 1) = P (ε(n) = −1) = 1/2 in the
case of real-valued sources.

– ε(n) = eıθ(n) and θ(n) is uniformly distributed on the interval [−π, π] in the
case of complex-valued sources.

Similarly to the previous paragraph, we considered r(n) and r̃(n) as reference
signals, where r̃(n) is a scalar filtering of r(n). The results are showed in Table 3.
The reader can see the effectiveness of our method for uniformly distributed and
QAM16 sources. On the contrary, QAM4 sources have constant modulus and
thus do not satisfy the conditions of Proposition 3.

Table 3. Average (1000 realizations) MSE on the reconstructed source. r(n) is given
by (16).

Sources Uniform QAM16 QAM4
Number of samples 1000 5000 10000 1000 5000 10000 10000

Reference r(n) 0.0238 0.0045 0.0022 0.0548 0.0100 0.0050 1.2080
r̃(n) ↔“r(n)+filt.” 0.2433 0.0651 0.0408 0.6247 0.1930 0.1190 1.2690
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Abstract. In this paper we present a relationship between supervised
(MMSE) and unsupervised criteria for minimum bit error rate (BER)
filtering. A criterion based on the probability density function (pdf) es-
timation which has an information theoretical approach is used to link
the MMSE criterion and the maximum a posteriori one in order to ob-
tain a linear filter that minimizes the BER. An analytical relationship
among those three criteria is presented and analyzed showing the limits
imposed to achieve minimum BER without training sequences when the
pdf estimation-based criterion is considered.

1 Introduction

A classical strategy for the optimization of an adaptive equalizer is the use of
a training sequence. Using this approach, the optimum solution is provided by
the minimum mean square error (MMSE) supervised criteria [1].

Whenever such sequence is not available, an unsupervised, or blind, process-
ing is employed in the optimization procedure, based in some known statistical
characteristics of the involved signals [2]. Even that most blind algorithm have
higher computational complexity they have a lower information complexity since
they require less information about the signal than supervised strategies.

Despite its frequent use in supervised strategies, the MMSE is not the op-
timum solution in practical systems [3]. The minimization of the bit error rate
(BER) is more useful due to the importance of such measure in practice. Further,
it is known that MMSE does not achieve minimum BER when the equalizer does
not have an appropriate length [4].

Some works have considered an optimization criterion based on minimum
BER [4,5]. However, they rely on supervised optimization criteria. So the fol-
lowing question arises: when a training sequence is not available or desired is
it possible to perform minimum BER filtering? This paper aims to provide an
answer to this question.

A probability density function (pdf) estimation-based blind criterion was pro-
posed in [6]. Using a parametric model that matches the statistical characteristics
of the transmitted signal, the equalizer is designed to minimize the divergence
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between the pdf of the equalized signal and such parametric model. This idea is
based on an information-theoretic approach that aims to maximize the relative
entropy of the system [7].

In this paper, we present a relationship that shows that it is not possible to
achieve minimum BER using the proposal in [6]. Using the maximum a posteriori
(MAP) criterion, which minimizes the BER, we derive a relationship between
the MMSE, MAP and the blind criteria proposed in [6]. This result shows an
important property of the blind filtering approach when minimum BER is re-
quired.

The rest of the paper is organized is follows. Section 2 describes the system
model. The blind criterion is revisited in Section 3 and the relationship between
the blind criterion and minimum BER approach is presented in Section 4. Finally,
our conclusions are stated in Section 5.

2 System Model

The considered base-band system model is depicted in Figure 1.

Fig. 1. Base-band system model

The transmitted sequence is represented by a(n)=[a(n) · · · a(n−N−M+1)]T ,
whereN andM are, respectively, the channel and equalizer lengths. It is assumed
independent and identically distributed (i.i.d) symbols a(n) ∈ A, and the set A
has cardinality S. The channel is represented by a FIR filter given by h =[
h0 · · · hN−1

]T .

The additive noise denoted in vectorial way by v(n)=
[
v(n) · · · v(n−M+1)

]T
is white, Gaussian, uncorrelated from the transmitted sequence and has variance
σ2
v .
The equalizer, which has finite impulse response (FIR) denoted by w(n) =[
w(n) · · · w(n −M + 1)

]T , is fed by the channels outputs x(n) = x̃(n) + v(n)

where x̃(n) =
N−1∑
i=0

hia(n− i) are the noiseless channel outputs.

The equalizer output is denoted in vectorial representation by y(n) =
wT (n)x(n), where x(n) =

[
x(n) · · · x(n−M + 1)

]
. This model will be used

in the rest of this paper.
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3 Blind Criterion for PDF Estimation: A Review

Let wideal be an ideal linear equalizer, its output can be written as

y(n) = wT
idealx(n), (1)

where
x(n) = Ha(n) + v(n) (2)

and H is the M × (N +M − 1) convolution matrix of the channel [8].
Then, using Eq. (2) in (1), it is possible to write:

y(n) = (Ha(n) + v(n))T wideal

= aT (n)HTwideal + vT (n)wideal

= aT (n)HTwideal︸ ︷︷ ︸
gideal

+vT (n)wideal

= aT (n)gideal + ϑ(n)
= a(n− δ) + ϑ(n),

(3)

where gideal is the ideal system response, δ is a delay and ϑ(n) is a random vari-
able (r.v.) assumed with zero mean independent Gaussian samples with variance
σ2
ϑ [9].
Eq. (3) states that the pdf of the signal on the output of the equalizer is a

mixture of Gaussians given by:

pY (y) =
1√

2πσ2
ϑ

·
S∑
i=1

exp
[
−|y(n)− ai|

2

2σ2
ϑ

]
· Pr(ai), (4)

where the ai are the possible values of a(n − δ) which are also symbols of the
transmitted alphabet A, and Pr(ai) denotes the probability of a discrete-valued
symbol taking the value ai.

Since the pdf of the desired equalized signal is known, we wish to design a
criterion that forces the adaptive filter to produce signals with the same (or
similar) pdf than the ideal one. It is then interesting to use the well known
measure of similarities between strictly positive functions (such as the pdfs), the
Kullback-Leibler Divergence (KLD) [8].

In order to use the KLD to provide pdf estimation, a parametric model which
is a function of the filter parameters is constructed [9]. A natural choice is the
same model of mixture of Gaussians, as the pdf of the data recovered by an ideal
equalizer, like the one in Eq. (4). Then

Φ(y, σ2
r ) = A ·

S∑
i=1

exp

(
−

∣∣wT (n)x(n) − ai
∣∣2

2σ2
r

)
· Pr(ai), (5)

is the chosen parametric model, where σ2
r is the variance of each Gaussian in

the model and where A = 1√
2πσ2

r

. In pattern classification field these kind

of parametric functions, which are used to measure similarities against other
functions, are called target functions [10].
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Then, applying KLD to compare Equations (4) and (5) yields:

Dp(y)||Φ(y,σ2
r) =

∞∫
−∞

p(y) · ln
(

p(y)
Φ (y, σ2

r )

)
dy

=

∞∫
−∞

p(y) · ln (p(y)) dy −
∞∫

−∞
p(y) · ln (

Φ(y, σ2
r )
)
dy.

(6)

Minimizing (6) is equivalent to minimizing only the Φ
(
y, σ2

r

)
-dependent term,

since the remaining term provides the entropy of the variable y, that is:

JFPC (w) = −E {
ln

[
Φ
(
y, σ2

r

)]}
= −E

{
ln

[
A ·

S∑
i=1

exp

(
−|y(n)− ai|

2

2σ2
r

)
· Pr(ai)

]}
.

(7)

The Fitting pdf (FP) criterion corresponds to minimizing JFPC (w). Fur-
thermore, it is known that minimizing Eq. (7) corresponds to finding the entropy
of y if Φ

(
y, σ2

r

)
= pY (y) [10, p. 59].

A stochastic algorithm for filter adaptation is given by:

w(n+ 1) = w(n)− μw∇JFPC (w(n))

∇JFPC (w(n)) =

S∑
i=1

exp
(
− |y(n)−ai|2

2σ2
r

)
(y(n)− a∗i )

σ2
r ·

S∑
i=1

exp
(
− |y(n)−ai|2

2σ2
r

) x(n),
(8)

where μw is the step size. The choice of the step size is done according the
condition of convergence of adaptive algorithms [1]. Typically, μw has the same
value than the step size for other blind algorithms, e.g. the CMA one. For the σ2

r

the optimum value would be the variance of the Gaussian noise, since the model
in Eq. (5) should be the best representation of the pdf of the recovered signals
without intersymbol interference. However, we do not assume the knowledge
about the SNR at the receiver. Instead, we select an arbitrary value for σ2

r that
allows a proper recovering of the symbols.

The adaptive algorithm shown in Eq. (8) shows an important property of the
algorithm: it takes into account the phase of the transmitted symbols.

The computational complexity of this algorithm is proportional to the com-
putation of S exponentials which are required by Eq. (8). Thus, its complexity
is a little higher than other LMS-like algorithms.

Due to the nature of the approach used to derive the criterion FP it turns out
that it is very similar to the results from entropy estimators that we can find
in the literature of blind source separation, see for instance [11]. However, the
rationale of our approach is very different from those. They reach a similar model
making use of a Gaussian kernel to implement a nonparametric pdf estimator.
In our case, we assume the knowledge about the noise pdf form in order to
construct the criterion.
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• The parameter σ2
r :

As shown in the previous section, the parametric model used to update the filter
coefficients is also σ2

r -dependent. This parameter plays an important role since
it is the variance of each Gaussian in the parametric model.

Moreover, σ2
r is also important for the convergence rate because it modifies

the effective step size, that is, μeff = μw

σ2
r
. In the classification field this parameter

is similar to the temperature one in annealing processes [7].
A numerical problem that arises with the use of the FPA is the nonconvergence

for very small values of σ2
r . This is due to the Gaussians being very sharp and

much more difficult to fit the data on them. This model has also been considered
in [12], where the ideal pdf of the received signal is assumed to be a mixture of
impulses and later a Gaussian mixture model is considered in order to make the
assumption more realistic and feasible.

4 Minimum BER: Supervised and Blind Criteria

In order to allow the analysis of a minimum BER criterion, we consider the MAP
one.

The MAP criterion aims to maximize the probability of recovering a symbol
ai given that y(n) has been observed at the equalizer output. Then, the MAP
criterion can be written as [13]:

JMAP(w) = E {ln [p (ai |y(n) )]} , (9)

where we are considering the logarithm in Eq. (9) in order to simplify computa-
tions [13].

Let us write the a posteriori probability density functions using the Bayes’
rule as [13]:

p (ai |y(n) ) =
p (y(n) |ai ) · Pr (ai)

S∑
j=1

p (y(n) |aj ) · Pr (aj)
. (10)

Here, we have to change the way we use to present the FPC. The parametric
model Φ(y) represents the sum of probabilities of a possible transmitted signal
ai given that y(n) has been observed. Since there is no knowledge about the
transmitted symbol itself, Φ(y) is then the sum of all conditional probabilities
of the received signal y(n) given the transmission of symbol ai. In other words,
we can write:

Φ(y) =
S∑
i=1

p(y(n)|ai) · Pr(ai). (11)

Of course, if we assume that the signal is corrupted by AWGN, we obtain
Eq. (5). Besides, we can use the gradient of JFPC without the stochastic approx-
imation in the form

∇JFPC(w) = −EY

⎧⎨⎩EA
{
A · exp

(
− |y(n)−a(n)|2

σ2
r

)
[y(n)− a∗(n)]

}
σ2
r ·EA

{
A · exp

(
− |y(n)−a(n)|2

σ2
r

)} x

⎫⎬⎭ , (12)
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where EY and EA stand for expectation with respect to the variables Y and A,
respectively and A = 1/

√
2πσ2

r .
As in [14], we can define an auxiliary function given by

ψ(y, a) =
A · exp

(
− |y(n)−a(n)|2

σ2
r

)
EA

{
A · exp

(
− |y(n)−a(n)|2

σ2
r

)} , (13)

that measures “how sure” is the decision of symbol a(n) since only y(n) has been
observed and the signal has a conditional pdf given as a Gaussian.

Then, comparing Equations (10) and (13), we can observe that considering
the Gaussian model for the conditional pdf we have the same measure [9].

Using such consideration and supposing that σ2
r is chosen appropriately, the

MAP criterion can be written as [9]:

E {ln [p (ai |y(n) )]} = E

{
ln

[
p (y(n) |ai ) · Pr (ai)

Φ(y)

]}
JMAP = E {ln [p (y(n) |ai ) · Pr (ai)]}−E {ln [Φ(y)]}︸ ︷︷ ︸

JFPC

.
(14)

It is worth mentioning that the conditional probability p (y(n) |ai ) concerns the
assumedmodel to the signal at the output of the equalizer and we are also assuming
an ideally equalized signal in presence of additive Gaussian noise. We then have:

p (y(n) |ai ) · Pr (ai) =
1√

2πσ2
ϑ

exp

(
−|y(n)− ai|

2

2σ2
ϑ

)
· Pr (ai) . (15)

Therefore, we can rewrite Eq. (14) as

JMAP = − 1
2σϑ2

E
{
|y(n)− ai|2

}
+ ln

[
Pr(ai)√

2πσ2
ϑ

]
+ JFPC

JFPC − JMAP =
1

2σϑ2
E

{
|y(n)− ai|2

}
− ln

[
Pr(ai)√

2πσ2
ϑ

]
.

(16)

Now, we need to explore the right side of Eq. (16) in order to provide an
appropriate relationship.

Eq. (11), as we stated before, corresponds to the sum of all probabilities of
symbol ai given the observation y(n).

This is due to the blind processing, when there is no information about the
transmitted symbol in a given time instant. In the case of supervised processing,
the transmitted symbol is known at each time instant and there is no need of
computing the contribution of all symbols from alphabetA. Thus, the parametric
model for the supervised case is given by [9]:

Φ(y) = p(y(n)|a(n)). (17)

Considering Eq. (17), and also assuming the ideally recovered signal immersed
in AWGN, that is, the conditional probability as given by Eq. (15), we can write
JFPC(w) in Eq. (7) for the supervised case as:
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JFPC(w) = −E
{

ln

[
A · exp

(
−|y(n)− a(n)|

2

2σ2
r

)
· Pr(ai)

]}

=
1

2σ2
r

E
{
|y(n)− a(n)|2

}
− ln[A · Pr(ai)].

(18)

Clearly, the cost function in Eq. (18) is the MMSE cost function up to scaling
and translation effects. However, the optimization of Eq. (18) with respect to w
provides the same solution than the classical MMSE cost function given as [1]:

JMMSE(w) = E
{
|y(n)− a(n)|2

}
. (19)

Therefore, the cost function in Eq. (18) will be denoted JMMSE as it stands
for the MMSE in the supervised case.

Observing Eq. (16) and comparing the right side with Eq. (18) we can see
that it is the same. Thus, the following relationship can be given considering
σ2
r = σ2

v [9]:
JMAP = JFPC − JMMSE. (20)

Eq. (20) provides an important issue about relationships of blind and super-
vised criteria for minimum BER filtering using the FPC criterion. It shows that
when there is no knowledge about the transmitted signal, the FPC does not
achieve minimum BER. So, it is not possible to perform minimum BER filtering
with this criterion without the knowledge of the transmitted sequence. Further,
since the criteria are defined as positive functions we can also write the following
inequality for the FPC and MAP:

JFPC ≥ JMAP, (21)

showing that achieving the minimum for JFPC does not necessarily imply achieve
minimum BER.

On the other hand, we may start the analysis from the MMSE criterion in
order to quantify the achieved fraction of minimum BER.

According to the MMSE criterion, given by Eq. (19), one can see that the ex-
pectation is taken w.r.t. the possible values of the r.v. a(n). This makes necessary
the knowledge of the pdf of the transmitted symbols.

Performing minimization of BER, in terms of maximum a posteriori probabil-
ities, also requires the minimization of the joint pdfs p(y, ai). For this sake, it is
required the estimation of the pdf from the equalizer output and the transmitted
sequence.

When we deal with finite length equalizers, the estimate of the joint pdfs is
easier to be achieved since the number of probabilities is much higher to be taken
into account. Otherwise, we reach a suboptimum solution that does not provides
minimum BER.

5 Conclusions and Perspectives

In this paper we have presented a relationship between supervised and unsuper-
vised criteria aiming a minimum bit error rate filtering.
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The unsupervised criteria is based on estimating the probability density
function of the signal on the equalizer output using a parametric model. The
Kullback-Leibler divergence is used to minimize the divergence between the
equalizer output pdf and the parametric model.

This criterion presents some interesting properties that are based on the eval-
uation of the conditional probabilities of received signal over all possible trans-
mitted ones. As a result, the presented approach allows to achieve a relationship
between the supervised and unsupervised criteria.

The obtained relationship indicates that minimum BER is not attained with
the blind criteria because it requires the instantaneous knowledge of the trans-
mitted signal. Thus, such relationship is given in terms of the minimum mean
square error and FPC criteria for achieving maximum a posteriori probabilities.

The main perspective for future works is the investigation and proposal of a
semi-blind criterion that can possibly minimize BER and some other metric (e.g.
Kullback-Leibler one) with a good compromise of computational and information
complexity.
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Abstract. In this paper, we propose a new method for the blind source
separation with assuming that the source signals are cyclostationarity.
The proposed method exploits the characteristics of cyclostationary sig-
nals in the Fraction-of-Time probability framework in order to simulta-
neously separate all sources without restricting the distribution or the
number of cycle frequencies of each source. Furthermore, a new identifi-
ability condition is also provided to show which kind of cyclostationary
source can be separated by the second-order cyclostationarity statistics.
Numerical simulations are presented to demonstrate the effectiveness of
the proposed approach.

Keywords: Blind source separation, cyclostationary signals, Fraction-
of-Time, identifiability condition.

1 Introduction

Blind source separation (BSS) aims to recover a set of source signals and/or a
linear combination (mixing) from data that are recorded from a set of multiple
sensors. The common mixture model for BSS is the instantaneous mixing. The
source signals are often assumed to be zero mean, stationary, ergodic and statis-
tically independent while the additive noise is Gaussian with the same variance.
To our knowledge, there are many different methods that have been proposed to
solve this problem since the eighties. These methods can be classified into several
major approaches: non-gaussianity, maximum likelihood, minimum mutual in-
formation, neural network modelling and algebraic. Moreover, there are several
famous algorithms which are based on the algebraic approach such as AMUSE
[1], FOBI [1], SOBI [2], JADE [3]. All these above algorithms are designed to
apply to the stationary signal but can be used for cyclostationary signal in some
particular case [2].

In this paper, the source signals are assumed to be cyclostationary. Cyclo-
stationary signals (CS) include virtually all man-made signals encountered in
telecommunications, in mechanics, in econometrics, etc. In addition, the theory
of CS has been studied in term of two alternative approaches: the orthodox
approach based on stochastic processes framework where all statistical param-
eters are defined in term of a probability space (an ensemble of signal together

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 25–33, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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with a probability rule) and the more recently developed approach based on the
Fraction-of-Time (FOT) probability framework where all statistical parameters
are defined through infinite-time averages of a single time-series rather ensemble
averages of a stochastic process [4]-[8]. On the other hand, for an only observed
sample, the question of ergodicity (or cycloergodicity) is the primary importance
(see [5], [6]). Therefore, the theory of the second order and higher order cy-
clostationary (SOCS, HOCS, respectively) using stochastic process requires a
thorough understanding of cycloergodicity and complicates the development of
a single data record estimators of the parameters of the theory, since the pa-
rameters are based on an ensemble, whereas the estimators operate on a single
sample path [5].

Recently, several algorithms have been proposed to take advantage of the
cyclostationarity property to solve the above problem such as methods in [9]-
[14]. Although these algorithms are successful under several assumed conditions
such as: the CS is assumed to be cycloergodic, the source shares only one cycle
frequency, the cyclic autocorrelation function of each source at its cycle frequency
at zero lag is positive (Rαi

si
(0) > 0) or the CS has to satisfy the condition of

identification of source [11], etc. But, in general, such requirements can not be
always satisfied, e.g. absence of cycloergodicity; each CS exhibits more than one
cycle frequency; shares one or more cycle frequencies with the other CS; the
condition of source in [11] can not be satisfied, Rαi

si
(0) is negative or complex,

etc. Particularly, most of these above algorithms (except [14]) are proposed using
the stochastic process framework.

Thus, in order to overcome the aforementioned limitations, the statistical
analysis framework used throughout this paper is FOT probability framework,
which obviates the concept of cycloergodicity and avoids some difficulties related
to the estimation of the SOCS and HOCS parameters. In addition, by resorting
to the FOT probability framework that has been developed by W.A. Gardner,
C.M. Spooner, A. Napolitano [4]-[8] for cyclostationary signals, we propose in
this paper an identifiability condition, an algorithm for the blind separation
of cyclostionary signals. The proposed algorithm is an extension of the SOBI
algorithm [2]. The remainder of this paper is organized as follows. In Section 2,
the relevance theory of cyclostationarity signal in the FOT probability framework
is firstly reviewed. Next, in Section 3, the signal model and the assumption for
BSS are briefly presented. In Section 4, the new identifiability condition and the
proposed algorithm are provided. Furthermore, in Section 5, several different
types of simulation experiments are presented to demonstrate the efficiency of
the proposed algorithm. Finally, this paper is concluded in Section 6.

2 Cyclostationary Signal

In the FOT probability framework, signals are modelled as single function of
time (called time-series). Briefly, a time-series s1(t) is said to exhibit SOCS with
cycle frequency α �= 0 if there exists at least one of two functions Rα

s�
1
(τ), Rα

s1(τ):

Rα
sε
1
(τ) Δ=

〈
s1(t+ τ1)sε1(t+ τ2)e

−j2παt〉
t

(1)
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is not identically zero for some values τ Δ= [τ1, τ2]T ∈ R2 [4]-[6], ε = ±1 where
s11(t)

Δ= s
1(t) and s−1
1 (t) Δ= s1(t). In (1), Rα

s�
1
(τ), Rα

s1(τ), the operator 〈·〉t, the su-
perscript 
 and T denote the cyclic autocorrelation function, the cyclic conjugate
autocorrelation function, the time-averaging operation, the complex conjugate
and the transpose of a vector, respectively.

For a real time-series, two functions Rα
s�
1
(τ), Rα

s1(τ) are equivalent. Thus, s1(t)
is said to be purely stationary if Rα

s1(τ) is not identically zero for only α = 0.
On the other hand, if Rα

s1(τ) is not identically zero for only α = n/T0, for some
integers n including n = 0, then s1(t) is said to be purely cyclostationary with
period T0. Otherwise, if Rα

s1(τ) �= 0 for some values of α that are not all integer
multiples of one non-zero value, then s1(t) is said to be almost cyclostationary
with multiple incommensurate periods [4].

For complex-valued time-series, two functions Rα
s�
1
(τ), Rα

s1(τ) are distinct. For
certain complex-valued signal type, the cycle frequency sets {α}, {η} such that
Rα
s�
1
(τ) �= 0, Rη

s1(τ) �= 0 are disjoint, as illustrated in [5], [6]. For many complex-
valued communication signal models, the cycle frequency sets depend on the
modulation type: e.g. the sets {η} are related to the carrier frequency (or carrier
offset), whereas the sets {α} are related to the pulse rate, etc.

Let Ik, I be the cycle frequency sets of time-series sk(t), k = 1, . . . , N and the
cycle frequency sets of all source signals, thus, one can be expressed as:

Ik
Δ= ∪

τ∈R2
{α, η ∈ R∗ : Rα

s�
k
(τ) or Rη

sk
(τ) �= 0} (2)

I
Δ=

N∪
k=1

Ik −
N∪

k,l=1
k �=l

(Ik ∩ Il) (3)

Equation (3) takes into account that some signals can be shared the same cycle
frequencies. Furthermore, if s1(t) exhibits SOCS, then Lsε

1
(t, τ) i.e. the second-

order lag product of s1(t), contains a poly-periodic or just periodic component
psε

1
(t, τ) and an aperiodic residual component msε

1
(t, τ) :

Lsε
1
(t, τ) Δ= s1(t+ τ1)sε1(t+ τ2) = psε

1
(t, τ) +msε

1
(t, τ) (4)

where
〈
msε

1
(t, τ)e−j2παt

〉
t
= 0, ∀α �= 0.

Now let us define the temporal expectation operation Ê{α}{·} that is simply
the sum of all sine waves component extractors in Lsε

1
(t, τ) :

Ê{α}{Lsε
1
(t, τ)} Δ= Rsε

1
(t, τ) Δ=

∑
α�=0

〈
Lsε

1
(u, τ)e−j2παu

〉
u
ej2παt (5)

= psε
1
(t, τ) =

∑
α∈I1

Rα
xε(τ)ej2παt (6)

where Rsε
1
(t, τ) is called the temporal moment function (TMF) of s1(t).

Note that the computation of the TMF must be accomplished from discrete
samples of s1(t) with sampling period Ts. In addition, due to aliasing effects in
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both α and f parameters, Ts must be sufficiently small to avoid spectral aliasing,
then Ts ≤ B1/4 where B1 is bandwidth of s1(t). More details treatments about
the continuous- and discrete-time time-series in the FOT probability framework
context can be found in [4]-[8], and references therein.

3 Problem Formulation

Consider the following model of instantaneous mixtures:

y(t) = As(t) + b(t) (7)

where y(t) ∈ CM (or ∈ RM ), A ∈ CM×N (RM×N ), s(t) ∈ CN (RN ) and b(t) ∈
CM (RM ) denote the observation vector, the unknown mixing matrix which
characterizes the medium or the channel, the vector of unknown source signals
and the additive stationary noise, respectively. The purpose of BSS problem is
to identify the mixing matrix A and/or recover the source signals s(t) from the
sensor array observation y(t). Thus, one should look for a separating matrix
B ∈ CN×M such that: BA = PΛ, where P ∈ PN×N , Λ ∈ DN×N , PN×N is a set
of permutation matrices and DN×N is a set of non-singular diagonal matrices.

The following assumptions are hold in through this paper: The mixing matrix
A has full column rank (M ≥ N). Each component of the source signal s(t) is
statistically mutually independent (over time), exhibits SOCS with at least one
non-zero real number of the cycle frequency and may contain more than one cycle
frequency. Moreover, the source signal may also share one or more common cycle
frequencies. The additive stationary noise b(t) may be Gaussian or non Gaussian,
temporally white or colored, spatially uncorrelated or correlated from sensor to
each other. The source signal s(t) and noise b(t) are statistically independent of
each other.

4 Identifiability Condition and Proposed Algorithm

The concept of identifiability condition in BSS problem was first defined and in-
troduced by L. Tong et al. in [1] with assuming that source signals are stationary.
Moreover, another one was also presented by Abed-Meraim, K. et al. [11] in the
case where source signals are assumed to be cyclostationary. It was shown in [11]
that BSS can be achieved using the second order cyclic correlation matrices for
a set of lags, if and only if there does not exist two distinct source signals sk(t),
sl(t), k �= l, k, l = 1, . . . , N whose cycle frequencies are the same (αk = αl) and
whose cyclic autocorrelation vectors ρk and ρl (ρk

Δ= [Rαk
sk

(0), . . . , Rαk
sk

(τp)]T ) are
linearly dependent.

For cyclostationary signal, the TMF, cumulant, etc are really the function of
two independent variables, t and τ , and periodic or polyperiodic in t for each
value of τ . Thus, the identifiability condition and hence, the algorithm in [11],
that is only based on the cyclic correlation function depending on only τ for
each cycle frequency, has certain limitations. Let us demonstrate this limitation
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by the following example. Given two distinct CS which have different cycle fre-
quency sets but share a common cycle frequency. Their cyclic autocorrelation
vectors at the same cycle frequency are linearly dependent. Therefore, according
to the identifiability condition in [11], they can not be separated. However, in
practice, such two CS can be totally separated. Thus, to overcome this limita-
tion, we present here an identifiability condition in company with an algorithm,
based on second order cyclostationary in order to limit a class of inseparable
cyclostationary signal in BSS problem.
Theorem 1. (A necessary and sufficient condition for BBS to be achievable):
The source signals can be recovered1 in BSS problem if and only if for all k �=
l, k, l = 1 . . .N , there exist at least one value of ε and a pair (ta, τa), (tb, τb)
(which are not identically at the same time), such that:
i. Rsε

k
(ta, τa)Rsε

l
(ta, τa) > 0

ii. Rsε
k
(tb, τb)/Rsε

k
(ta, τa) �= Rsε

l
(tb, τb)/Rsε

l
(ta, τa)

According to (5) and (6), it is easy to see that there always exist the value of
(ta, τa) such that the first condition in Theorem 1 is satisfied. Moreover, under
the assumptions in Section 3, we obtain the following equation:

Ryε(t, τ) Δ= Ê{α}{y(t)yεT (t+ τ1)} = AÊ{α}{s(t)sεT (t+ τ1)}AεT (8)
= ARsε(t, τ)AεT = Adiag(Rsε

1
(t, τ), . . . , Rsε

N
(t, τ))AεT (9)

where Rsε(t, τ) Δ= Ê{α}{s(t)sεT (t + τ1)}, s1T (t) Δ= sH(t), s−1T (t) Δ= sT (t) and
the superscript H denotes the complex conjugate transpose of a matrix. Note
that the equations in (8) and (9) are called the identification equation of blind
identification problem. Furthermore, the additive stationary noise component
does not contribute to Ryε(t, τ), and the (k, l)th entry of the matrix Ryε(t, τ) is
computed by:

Ryε(t, τ)k,l
Δ=

∑
α∈I

〈
yk(u)ylε(u + τ1)e−j2παu

〉
u
ej2παt (10)

=
N∑
i=1

akia
ε
liRsε

i
(t, τ) (11)

Proof of necessity: By contradiction, it suffices to show that if Rsε
l
(t, τ) =

ξβRsε
k
(t, τ) where ξ = ±1 and β > 0 for some k, l, then there exist a ma-

trix B which can not be written as B = APΛ. Without loss of generality, let
k = 1, l = 2, and with any mixing matrix A and source signal s(t) satisfying the
assumptions in Section 3 and the equation in (7), (8), (9), we now define another
mixing matrix B and the source singal ŝ(t) as follow:

B = Adiag
(

1√
β + ξm2

√
β

[−m 1√
β ξm

√
β

]
, IN−2

)
(12)

ŝ(t) = diag
([−ξm√β 1√

β m

]
, IN−2

)
s(t) (13)

1 One can be found a matrix B such that BA = PΛ or B = APΛ.
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In (12), if there exist the value of ξ,m such that 1+ξm2 = 0⇒ Q. E. D., else,
according to (7), (12), (13), it is easy to verify that: y(t) = As(t)+b(t) = Bŝ(t)+
b(t) and Rŝε(t, τ)=diag

(
k(m2 + ξ)Rsε

1
(t, τ), (m2 + 1)Rsε

2
(t, τ), . . . , Rsε

N
(t, τ))

)
.

Then, B and ŝ(t) satisfy the (8), (9) but, B �= APΛ ⇒ Q. E. D.

Proof of sufficiency: One can be used the Lemma 4.1 in [15] to prove the sufficient
part of this theorem.

Note that the proposed condition can not be satisfied if and only if there
exist two distinct sources sk(t) and sl(t) that have the same cycle frequency sets
and their cyclic autocorrelation vectors ρk and ρl are linearly dependent at each
cycle frequency in the sets. Moreover, we assume that I can be known a priori or
directly estimated from the data by using the existed algorithm in [17] or [18].
We now present an algorithm for blind identification of CS:

1. Choose some value ti, i = 1, . . . ,K, estimate the set of matrices: Ryε(ti, 0)
by using (8), (10).

2. Choose a set of real numbers {βi}, i = 1, . . . ,K [16] such that the matrix F,
defined as follows:

F
Δ=

K∑
i=1

βiRyε(ti, 0) =
K∑
i=1

AβiRs(ti, 0)AH (14)

is a positive definite matrix.
3. Compute the Singular Value Decomposition (SVD) of F:

F = [U1:NUN+1:M ]diag(d21, ..., d
2
N , 0)[U1:NUN+1:M ]H (15)

4. Data transformation:

W
Δ= diag(1/d1, ..., 1/dN)UH

1:N (16)

z(t) Δ= Wy(t) = WAs(t) +Wb(t) (17)

5. Choose some value of lag τ and ti, compute the set of matrixR = {Rzε(ti, τ)}
6. An orthogonal matrix V is then obtained as diagonalizer of the set of matrix

R. Rk = V DkV
H

7. Channel estimation A: Â = U1:Ndiag(d1, . . . , dN )V .
8. Source estimation: ŝ(t) = V Hz(t).

5 Simulations

In this section, we present three different simulations. For all simulations, two
cyclostationary source signals, one is an AM signal which has only one cycle
frequency (2f1) and the other is a stacked carrier AM signal which maybe have
more than one cycle frequency [4] (2f2 + k/T0, k = −n, . . . , n), are created as
follows:

s1(t) = a1(t)cos(2πf1t+ π/6) (18)

s2(t) =
n∑

k=−n
a2(t)cos(2πf2t+ πk/T0t+ π/8) (19)
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where a1(t), a2(t) are the colored second-orderwide-sense stationary signals which
have been obtained by passing two independent white noise signals through the
low-pass filter with transfer function H1(f), H2(f), respectively. The mixing ma-
trix is chosen randomly:

A =

⎡⎣0.9797 0.8757
0.7373 0.8714
0.1365 0.2523

⎤⎦ (20)

The additive noise is chosen to be Gaussian temporally colored and spatially
correlated (b(t) = Qn(t) where Qij = 0.6|i−j| and n(t) is Gaussian temporally
colored). In order to evaluate the effectiveness of the proposed approach, one
can measure the following index: “Mean rejection level” [2], defined as:

Iperf
Δ=

∑
p�=q

E |(BA)pq |2
E |(BA)pp|2

(21)

In addition, the snapshot size is 1000 samples. The mean rejection level is
estimated by averaging 100 independent trials. The signal to noise ratio (SNR) is
computed as SNR = −10log10σ2. We compare the performance of the proposed
method with SOBI and JADE algorithms.

Example 1: Two CS have different cycle frequency set, f1 = 0.1/Ts, f2 =
0.15/Ts, n = 0.

Example 2: Two CS have the same cycle frequency set f1 = f2 = 0.1/Ts, n = 0
but the low-pass filter are different H1(f) �= H2(f).

Example 3: Two CS have different cycle frequency set but share a common
cycle frequency f1 = f2 = 0.1/Ts, n = 1 and T0 = 20Ts. The low-pass filters are
the same.

Fig.1 shows a plots of “Mean rejection level” as a function of SNR for the various
algorithms in the simulation example.
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Fig. 1. Mean rejection level versus SNR
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6 Conclusions

This paper briefly provides some relevant of the theory of the cyclostationary
signal in the framework of the Fraction Of Time probability model. In addi-
tion, the new identifiability condition as well as an algorithm, based on the
second order for blind separation of cyclostationary signals are also presented.
Such a new method is shown to operate properly in the presence of station-
ary noise, which can be either Gaussian or non-Gaussian, spatially white or
colored, correlated or uncorrelated from sensor to another. Simulation results
have shown that the proposed algorithm performs better than SOBI and JADE
algorithms.
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Abstract. In this work, we propose a novel subspace clustering method
for learning dictionaries from data. In our method, we seek to identify
the subspaces where our data lives and find an orthogonal set of vectors
that spans each of those subspaces. We use an Orthogonal Subspace
Pursuit (OSP) decomposition method to identify the subspaces where the
observation data lives, followed by a clustering operation to identify all
observations that lives in the same subspace. This work is motivated by
the need for faster dictionary training methods in blind source separation
(BSS) of audio sources. We show that our dictionary design method offer
considerable computational savings when compared to the K-SVD[1] for
similar performance. Furthermore, the training method also offers better
generalizability when evaluated on data beyond the training set, and
consequently is well suited for continuously changing audio scenes.

1 Introduction

In the problem of underdetermined blind source separation, it is common prac-
tice to assume sparsity in some representation in order to separate the sources.
In the literature, one can find two approaches based on sparsity. The first is
to use sparse ”traditional” transforms such as the Short Time Fourier Trans-
form (STFT) or Modified Discrete Cosine Transform (MDCT). The second is to
use redundant representations. In recent years, sparse transforms have gain in
popularity because they are computationally faster to compute and have demon-
strated good performance. However, redundant representations can have sparser
representation than STFT or MDCT and as such hold even more potential for
source separation. In this work, we are interested in developing a training method
to be used to learn redundant representations from data. These representations,
also known as overcomplete dictionaries, have the potential to yield very sparse
representations and could offer significant source separation performance im-
provements over traditional transforms, with the caveat that the dictionary has
to be properly tuned to the underlying signals.

In our previous work on sparse decomposition and underdetermined BSS, we
have found that the best dictionary training method available was the K-SVD
[1] which we have used extensively in the past [2,3] for audio source separation.
However, the computational complexity of the K-SVD makes it impractical for

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 34–41, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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audio separation for scenarios where the audio scene is continuously changing.
In such cases a lower complexity online training method is required to keep the
dictionary tuned to the signals. Given a matrix a collection of training signals,
the goal of our algorithm is to identify subspaces in the data which can represent
its most salient features. The collection of vectors spanning the subspaces would
collectively represent our dictionary. The training takes place in two stages. The
first stage involves using a sparse decomposition algorithm to find the represen-
tation of a vector in terms of the training set. The assumption here is that if
multiple signals vectors live on the same subspace, then each one of these signals
can be represented as a linear combination of the others. The second stage is a
data clustering operation, where the vectors that lies on the learned subspace
are identified and then removed from the training set.

In BSS, it is desirable to have a dictionary that can be adaptable to changing
audio scene, i.e. it should be computationally tractable and be generalizability to
signals beyond the training set. We show that that our subspace training method
can run in minutes in cases where the K-SVD takes hours to train. Furthermore,
we show that for training data, our method can deliver representations that are al-
most as sparse as the K-SVD and for data beyond the training set, our methods de-
livers a sparser representation. This generalizability property is very desirable for
continuously changing audio. In section 2, we review the idea of sparse decomposi-
tion using overcomplete dictionaries and describe an Orthogonal Subspace Pursuit
(OSP) method that we have found to give the sparsest representation of any itera-
tively greedy method for a generic dictionary. We then show how the OSP method
can be combined with a data clustering method to produce a dictionary training
method. In section 3, we describe how our method was evaluated in the context
of sparse representation and source separation. In section 4, we discuss some work
currently under investigation and the challenges that lies ahead.

2 Dictionary Learning Using Orthogonal Subspace
Pursuit

Given a set of K observation vectors, Y = {yi}Ki=1, each of dimension N ×1, the
goal of a dictionary training algorithm is to find a set of potentially overcomplete
basis vectors that are the common building blocks for these data. The idea of
subspace clustering is based on the observation that if the data in our training
set were derived from the same basis vectors, they will all lie on the plane
spanned by those vectors. To identify the subspaces, we note that when several
observation vectors lie on the same subspace as illustrated in fig 1, each vector
can be expressed as a linear combination of the other vectors from the same
subspace. Using a proper sparse decomposition algorithm, and the matrixD = Y
as a dictionary, we could find the representation of a vector from our training
set as a linear combination of the columns of D, and consequently identifying an
orthogonal set of vectors that span this subspace. To find all the subspaces within
our data, we need to combine the subspace identification step with a clustering
step where we find all the observation data that lies on the same subspace and
remove them from the training set. This ensures a faster convergence.
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Fig. 1. Example of data living on subspaces, A1, A2, A3

In section 2.1, we give a brief description of how the very popular K-SVD
algorithm tackles the dictionary training task. In this paper, we have used an
Orthogonal Subspace Pursuit (OSP) sparse decomposition algorithm, which we
describe in section 2.2, to identify the subspaces. The OSP method, is based
on the Orthogonal Least Square (OLS) procedure originally introduced in the
context of regression and neural networks [4]. We found this method to give
the sparsest representation of all the available sparse decomposition methods. In
section 2.3, we describe the complete dictionary training method using subspace
identification and clustering.

2.1 Prior Art: The K-SVD Algorithm

The K-SVD algorithm is a generalization of the K-Means method that is used
to design optimal codebooks for vector quantization (VQ). The algorithm tries
to solve the following problem:

minD,X{‖Y −DX‖2F} s.t ∀i ‖xi‖0 ≤ T0, (1)

where T0 is a hard constraint on the maximum number of non-zero elements
allowed, and D is the learned dictionary. This is solved iteratively in two stages,
involving a sparse coding stage using a pursuit method, and a update stage
where the dictionary atoms and the coefficients are sequentially updated using
SVD operations.
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2.2 Orthogonal Subspace Pursuit

The Orthogonal Subspace Pursuit (OSP) algorithm is an iteratively greedy pur-
suit method, similar to the Matching Pursuit (MP) and Orthogonal Matching
Pursuit (OMP) [5], with a key difference in the directional update procedure.
Let vector, y, be a vector of dimension N×1, and let D be an initial known over-
complete dictionary. A sparse decomposition algorithm seeks to approximate y
in terms of a minimum number of columns of D. Let the dictionary be a collec-
tion of K atoms, dk, of size N ×1 each, where K >> N such that D = {dk}Kk=1.
Using a sparse decomposition algorithm, we can express the signal in terms of
its approximation, and a residual such that y = ŷm + rm at mth iteration. We
denote Γm as the set of atoms that has been selected by the algorithm until
iteration m, while Ωm is the set of atoms that has not yet been selected. At
all times, the union of Γm and Ωm is the set of all dictionary indices. At each
iteration, we have ŷm =

∑
i∈Γm xidi, and rm is the approximation error at the

mth iteration, and is commonly known as the residual.
The OSP procedure involves two main steps, the first involves finding the

most correlated atom from the dictionary, and the second involves a dictionary
decorrelation step where the atoms that were not selected are decorrelated from
previously chosen atoms. The algorithm is described below:

1. Initialization
m = 0, r0 = y, ŷ0 = 0, Ω0 = {1, 2, 3, ...,K}, Γ 0 = �, W = {di}i∈Ω0

2. While stopping criteria are not met
(a) m = m+ 1
(b) Pick atom with maximum correlation to residual

im = argj max|< wj , rm−1 >|, j ∈ Ωm−1

(c) Remove atom index from set Ω and add to set Γ
Ωm = Ωm−1 ⊗ im; Γm = Γm−1 ∪ im

(d) Update residual and approximation
rm = rm−1− < wim , rm−1 > wim ; ŷm = ŷm−1+ < wim , r

m−1 > wim
(e) Decorrelate remaining dictionary atoms from wim such that for all j ∈

Ωm,
wj = wj− < wj , wim > wim ; wj = wj/norm(wj)

(f) Check stopping criteria

The stopping criteria is an error threshold and a maximum number of itera-
tions. Although this method is computationally more demanding than the MP
or OMP, we found it to produce the sparsest representation. The algorithm will
produce a set of orthogonal vectors that spans the subspace where y lives. In the
next section, we describe how this can be used to learn dictionaries.

2.3 Dictionary Training Algorithm

For the dictionary training, we have the training set in matrix Y , and an initial
dictionary, D, which we initialize to equal to Y . The algorithm has two stages,
first we identify a subspace from the training data, and second we find all the



38 B.V. Gowreesunker and A.H. Tewfik

training data that lives on this subspace and remove them from Y before looking
for the next subspace. The algorithm can be describe as follows:

1. Initialize Algorithm
i = 0, D0 = Y ,

2. Sparse coding
(a) i = i+ 1 Choose the ith vector, yi, from the training set, and remove it

from the dictionary
(b) Find a representation of yi in terms of Di using the OSP method de-

scribed above, where Di = D ⊗ yi
(c) Let Si be the set of λi vectors that represents yi
(d) Find the SVD of Si such that UΣV T = Si
(e) We define the subspace, Ai, as the first λi columns of U

3. Create data clusters
(a) Find the projection of yj onto the subspace of Ai, where j �= i
(b) Assign all yj that lies in the subspace of Ai to the same cluster and

remove them from training set, Y
4. The learned dictionary is A = the collection of subspaces {Ai}Mi=1, where M

is the number of subspaces

It should be noted that the only change done to the dictionary at each iteration
is to ensure that the data, yi is not part of the dictionary, otherwise the solution
will be trivial. Our algorithm also includes some safeguards to ensure that the
subspaces are legitimate. First, we require that the vectors lies on the subspace
within a certain error threshold, to ensure robustness to noise. Second, if a data
point cannot be represented by others in the training set, within a reasonable
approximation error, it is not used.

3 Evaluation

Depending on the application, there are different ways of evaluating a dictionary.
However, it is generally agreed that the signals should admit a sparse represen-
tation over the dictionary with the elements of the dictionary characterizing
the most important features of the signals. Furthermore, in the context of blind
source separation, it is of interest to have a dictionary that has some generaliz-
ability beyond the training data with some practical computation cost. In this
section, we show that the proposed subspace approach offers better sparsity,
generalizability and has significant computational advantage when compared to
the K-SVD algorithm.

For the set of experiments below, we assume that we have three tracks of
10 seconds speech from male speakers, sampled at 16 kHz. We would like to
design a dictionary that can efficiently capture the 3 sources. For evaluation, we
split our data into 2 groups, a training set and a testing set. The training set
comprises of the first T seconds of speech from each speaker and the testing set
is the remaining (10 - T) seconds of speech. We train our dictionary using only
the training set and evaluate it using both the training and testing sets. For each
set, the data is formatted into frames of size, N, with a Hanning window and a
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50% overlap. We compare two methods, the K-SVD and the subspace approach
described above for N = 128, 256 and 512. The K-SVD algorithm can always
be further optimized by changing the maximum number of coefficients or by
using a good initialization of the dictionary. However, the results presented here
was for dictionary initialization using data, and fair limit on the max number of
coefficient from our experience with the data set. Although the actual numbers
might improve with more optimization, the essence of the differences still holds
true. Sparsity is evaluated by the number of non-zero coefficients in the coefficient
vector and is presented here in the form of (mean +/- standard deviation). The
computational complexity is described by the matlab runtime on 2.5 GHz PC
and the approximation error is the 2-norm of the error, ‖y − ŷ‖2.

3.1 Sparsity Results

Once, we have our dictionary, the sparsity was evaluated using the Orthogonal
Matching Pursuit (OMP) sparse decomposition algorithm, such that each data
frame can be represented as ŷi = Axi, where xi is the coefficient vector. The
sparsity is evaluated from the mean and standard deviation of the number of
non-zero elements in xi for all elements in the training or test set. For N = 128
and 256, the first 5 seconds of each track was used for training and the remainder
was used for testing. For N = 512, we had to use the first 8 seconds for training
and only the last 2 seconds for testing, because the K-SVD requires that we
have a lot more test data than the size of the dictionary. In table 1, we show the
results when dictionary was evaluated for the training set. Clearly, the proposed
subspace method has much lower computational complexity than the K-SVD
and this difference is accentuated as the dimension increases to N = 512, which
a commonly used frame length for 16 kHz audio. The mean number of non-zero
coefficient is slightly better for K-SVD in the case of N = 256 and 512 but the
standard deviation is much larger than for the Subspace method, which makes
that the Subspace approach is more appealing. In table 2, we present the results
for the testing set, and clearly, the subspace approach is much sparser than the
K-SVD method, and hence has better generalizability beyond the training data.
In section 3.2, we explore how the proposed dictionary training method was used
in the context of BSS.

Table 1. Results for training set data. The convention μ +/- σ means that μ is the
mean and σ is the standard deviation per frame.

Frame size Method No. of Non-zero Coef Approx. Error Training Time
N = 128 K-SVD 12.3 +/- 13.8 0.09 +/- 0.01 16 min

Subspace 9.3 +/- 6.5 0.09 +/- 0.02 9 min
N = 256 K-SVD 16.2 +/- 24.0 0.09 +/- 0.02 32 min

Subspace 18.9 +/- 12.3 0.09 +/- 0.02 4 min
N = 512 K-SVD 29.2 +/- 38.1 0.10 +/- 0.04 507 min

Subspace 35.3 +/- 26.4 0.10 +/- 0.05 7 min
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Table 2. Results for test set data. The convention μ +/- σ means that μ is the mean
and σ is the standard deviation per frame.

Frame size Method No. of Non-zero coefficients Approximation Error
N = 128 K-SVD 21.3 +/- 19.1 0.09 +/- 0.01

Subspace 13.6 +/- 10.9 0.09 +/- 0.01
N = 256 K-SVD 49.3 +/- 41.1 0.10 +/- 0.02

Subspace 41.1 +/- 25.7 0.10 +/- 0.01
N = 512 K-SVD 93.1 +/- 49.2 0.14 +/- 0.10

Subspace 70.4 +/- 47.0 0.11 +/- 0.04

3.2 Blind Source Separation Results

We applied the proposed subspace learning method to train dictionaries for BSS
of underdetermined instantaneous mixtures. We used the sources and mixtures
from the development data made available by the stereo audio source separation
campaign (Sisec 2008) concurrently organized with ICA 2009. The dictionar-
ies were trained on the sources the same way as in section 3.1 and separation
performance was evaluated on the test data, i.e. the last T seconds for the two
frame sizes, N = 256 and N = 512. In figure 2, we compare the average Signal-
to-Interference Ratio (SIR) improvement using our BSS algorithm [2] for two
dictionaries, the K-SVD and the Subspace method, on test data.
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Fig. 2. Signal-to-Interference ratio for test data with frame size = 256, 512

We find the performance of both dictionaries to be practically the same when
tested beyond the training data although we showed earlier that the Subspace
method offered better generalizability. This is due to the SIR results being skewed
by frames in the test data that couldn’t be completely represented by the dictio-
nary. This is a problem any training method faces when generalized to test data.
One solution we have successfully used for BSS is to have the final dictionary be
a union of the trained dictionary and a standard set of bases such as Discrete
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Cosine Transform (DCT), which ensures that features that were not present in
the training set can be represented. However, this discussion is more relevant
to practical implementation of BSS than the training method itself. We foresee
that a computationally tractable method like the subspace clustering method
proposed here could be incorporated in a typical BSS algorithm by starting with
an offline trained dictionary, and have that dictionary periodically updated every
20 to 30 seconds to track changes in the audio scene.

4 Conclusion

We proposed a novel dictionary training method that is based on the idea of
identifying and extracting subspaces within the data. The merits of the algo-
rithm is the relative low complexity when compared to algorithms like the K-
SVD for comparable performance, and the generalizability to data beyond the
training set. The target application for this dictionary training method is that
of blind source separation of audio sources. In such applications, the ability to
periodically update the dictionary is critical especially when the environment is
changing, and all the sources are not known apriori. The algorithm has been suc-
cessfully used in source separation and we are currently working on finding ways
to better train a dictionary when only mixtures are available and developing a
shift-invariant version of the method.
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Abstract. Joint SVD is a problem of finding a pair of unitary matrices
which simultaneously diagonalizes several (possibly non-square) matri-
ces. This paper compares two main approaches to joint SVD problem,
“approach via joint diagonalization” and “direct approach”. The former
is relatively easy to implement because we can make use of literature
of joint diagonalization algorithms while the latter has advantages in
numerical accuracy and flexibility to fit on-line applications. Numerical
simulation for comparison using gradient-based algorithms verifies that
the latter has advantage in numerical accuracy.

1 Introduction

Joint diagonalization has played an essential role in independent component
analysis and blind signal separation with several target matrices including fourth
order cumurant matrices[1][2] and time-delayed correlation matrices[3]. One of
natural extensions of joint diagonalization is “joint SVD”, a problem of simul-
taneous singular value decomposition of several (possibly non-square) real or
complex matrices with a single pair of orthogonal or unitary matrices. Given a
set of K real or complex m× n matrices

{A1, A2, . . . , AK},
joint SVD (or simultaneous SVD) is a problem of finding orthogonal or unitary
matrices U and V which make

{U∗A1V, U
∗A2V, . . . , U

∗AKV }
as diagonal as possible simultaneously where ∗ denotes the Hermitian transpose.
We say that a joint SVD problem is left-exact (right-exact) when all the given
matrices share a common set of left (right) singular vectors. We say that the
problem is exact when it is left-exact and right-exact and the left and right
singular vectors have one-to-one correspondence over the given matrices. From a
purely mathematical viewpoint, a joint SVD problem can be solved exactly only
if the problem is exact, where the SVD of an arbitrary single matrix Ai gives
the solution to the problem. From a practical viewpoint, however, the problem is
rarely exact and we have to find optimal solution with respect to some diagonality
criterion. One of the typical situations in practical applications is that additive
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noise on observed matrices makes the problem non-exact although the problem
is theoretically exact.

Joint SVD has found an application in image processing[4] and is expected to
find more applications in signal processing and image processing. The purpose of
this paper is to compare two main approaches to joint SVD problem, “approach
via joint diagonalization” and “direct approach” described in the following sec-
tions, in aspects including numerical accuracy, computational complexity and
flexibility to fit on-line applications. A gradient-based joint SVD algorithm of
“direct approach” is derived and compared with another gradient-based joint
SVD algorithm of “approach via joint diagonalization” by simulation.

The rest of the paper is organized as follows. Section 2 explains “approach
via joint diagonalization”. Section 3 explains “direct approach” and derives a
gradient-based joint SVD algorithm of “direct approach”. Section 4 carries out
a numerical simulation to compare two main approaches from the viewpoint of
numerical accuracy. Section 5 contains concluding remarks.

2 Approach via Joint Diagonalization

Consider two unitary joint diagonalization problems of sets of Hermitian matri-
ces,

{A1A1
∗, A2A2

∗, . . . , AKAK
∗} (1)

and
{A1

∗A1, A2
∗A2, . . . , AK

∗AK}, (2)

and suppose that unitary matrices U and V are the solutions to the respec-
tive unitary joint diagonalization problems obtained using some previous joint
diagonalization algorithm, then

{U∗A1V, U
∗A2V, . . . , U

∗AKV }
is expected to be the joint SVD of the given set of matrices,

{A1, A2, . . . , AK}.
The advantage of this “approach via joint diagonalization” is that it is relatively
easy to implement because we can make use of rich literature of developed joint
diagonalization algorithms. On the other hand, it is not expected to be numeri-
cally accurate because the matrix multiplications for making Hermitian matrices
square the singular values and make condition numbers worse. Also the matrix
multiplications increase computational complexity and it is difficult to fit on-line
applications where given matrices are time-varying.

3 Direct Approach

Some recent works have been intended to develop new algorithms for joint SVD
which do not depend on previous joint diagonalization algorithms. Pesquet-
Popescu et al.[4] developed a joint SVD algorithm which is an extension of
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the Jacobi algorithm. We introduce a gradient-based joint SVD algorithm of
“direct approach” in the following subsection. Comparing to “approach via joint
diagonalization”, “direct approach” is expected to be numerically more accu-
rate, does not require computational cost to calculate matrix multiplication for
making Hermitian matrices and is easier to fit on-line applications. The first
subsection introduces matrix gradient flows for SVD and the second one extends
them to matrix gradient flows for joint SVD.

3.1 Matrix Gradient Flows for SVD

Let U(n) and u(n) denote the sets of all the n× n unitary and skew Hermitian
matrices respectively,

U(n) = { U ∈M(n,C) | U∗U = In },
u(n) = { X ∈M(n,C) | X∗ = −X }.

Consider the set of all the m× n matrices which share the singular values with
A0 ∈M(m× n,C),

S = { A=U∗A0V | U ∈ U(m), V ∈ U(n) },
and a continuous dynamical system on the set,

A(t) = U(t)∗A0V (t),

where m ≥ n (See [10] for detail of the structure of the set S). When U(t) and
V (t) evolve as

d

dt
U(t) = U(t)X(t), U(0) = Im, (3)

d

dt
V (t) = V (t)Y (t), V (0) = In, (4)

where X(t) ∈ u(m) and Y (t) ∈ u(n), we have

Ȧ = U̇∗A0V + U∗A0V̇ = (UX)∗A0V + U∗A0V Y

= X∗(U∗A0V ) + (U∗A0V )Y
= X∗A+AY = AY −XA,

therefore A(t) evolves as

d

dt
A(t) = A(t)Y (t)−X(t)A(t), A(0) = A0. (5)

Suppose that φ is an arbitrary real-valued function defined on the set ofm×n
complex matrices,

φ : M(m× n,C)→ R.

The rest of this subsection is spent on the derivation of the gradient equation
of the potential function ϕ(U, V ) = φ(A) = φ(U∗A0V ). In the derivation, we
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regard M(m × n,C) not as an mn-dimensional complex space Cmn but as a
2mn-dimensional real space R2mn. We denote the real and the imaginary parts
of a complex number x by x̂ and x̌ as well as Rex and Imx respectively. We use
the relations such as trAB = trBA and Re trX∗Y =

∑
i,j(x̂ij ŷij + x̌ij y̌ij).

We derive the gradient equation with respect to the inner product on u(n)
defined as

< X1, X2 >= RetrX1
∗X2.

We note that the inner product coincides with (the negative of) the Killing form
in Lie group theory and the gradient method with respect to the inner product
is equivalent to what is called “natural gradient” or “relative gradient” in ICA
learning theory. It is easy to verify that the orthogonal projection to u(n) with
respect to the inner product is given by

πu(n)A =
1
2
(A−A∗).

Using the chain rule, we have

d

dt
φ(A(t)) =

∑
i,j

(
∂φ(A)
∂âij

dâij
dt

+
∂φ(A)
∂ǎij

dǎij
dt

)

= Re tr
(
dφ

dA

)∗
dA

dt

= Re tr
(
dφ

dA

)∗
(AY −XA)

= Re tr
(
A∗

(
dφ

dA

))∗
Y − Re tr

((
dφ

dA

)
A∗

)∗
X

where (d φdA ) denotes the matrix whose (i, j)-th entry is ∂φ(A)
∂âij

+ ∂φ(A)
∂ǎij

i. Let
{Xk|k = 1, . . . ,m2} and {Yl|l = 1, . . . , n2} be the orthonormal basis of u(m)
and u(n) on R respectively. The steepest ascent direction of φ(A) in terms of X
and Y is calculated as

X = −
m2∑
k=1

(
Re tr

((
dφ

dA

)
A∗

)∗
Xk

)
Xk

= −πu(m)

((
dφ

dA

)
A∗

)
=

1
2

(
A

(
dφ

dA

)∗
−

(
dφ

dA

)
A∗

)
,

Y =
n2∑
l=1

(
Re tr

(
A∗

(
dφ

dA

))∗
Yl

)
Yl

= πu(n)

(
A∗

(
dφ

dA

))
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=
1
2

(
A∗

(
dφ

dA

)
−

(
dφ

dA

)∗
A

)
.

Substituting these in (1), (2) and (3), we obtain the general gradient ascent
equations in terms of U and V ,

dU

dt
=

1
2
U

(
A

(
dφ

dA

)∗
−

(
dφ

dA

)
A∗

)
, (6)

dV

dt
=

1
2
V

(
A∗

(
dφ

dA

)
−

(
dφ

dA

)∗
A

)
, (7)

and the equation in terms of A,

dA

dt
=

1
2
A

(
A∗

(
dφ

dA

)
−

(
dφ

dA

)∗
A

)
− 1

2

(
A

(
dφ

dA

)∗
−

(
dφ

dA

)
A∗

)
A. (8)

Example. Consider the gradient descent equation of

ψ(A) =
∑

1 ≤ i ≤ m
1 ≤ j ≤ n

i �= j

|aij |2

which is expected to converge to the SVD of the initial matrix. This is equivalent
to the gradient ascent equation of

φ(A) =
∑

1≤j≤n
|ajj |2

because ψ(A) + φ(A) is invariant on S. We have

dφ

dA
= 2diag(A)

where diag(A) denotes an m× n extended diagonal matrix whose diagonals are
the same as A and off-diagonals are 0’s, which yields with (6), (7) and (8),

U̇ = U((U∗AkV )diag(U∗AkV )∗ − diag(U∗AkV )(U∗AkV )∗), (9)
V̇ = V ((U∗AkV )∗diag(U∗AkV )− diag(U∗AkV )∗(U∗AkV )), (10)
Ȧ = A(A∗diag(A) − diag(A)∗A)− (Adiag(A)∗ − diag(A)A∗)A. (11)

This is equivalent to the SVD flow introduced by [11] where the initial matrix
and the flow are on the set of real matrices. They proved that the flow converges
to the SVD of the initial matrix as t → ∞ if the initial matrix meets suitable
conditions (See [11] for detail).

3.2 Matrix Gradient Flows for Joint SVD

This section proposes to use the gradient ascent equations of U and V of the
potential function

ϕ(U, V ) =
K∑
k=1

φk(U∗AkV ) (12)
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to solve a joint SVD problem where each φk(A) is a diagonality criterion sup-
posed to take its maximum when A is an extended diagonal matrix. Using (6)
and (7), the gradient ascent equations of U and V of (12) are obtained as

dU

dt
=

1
2
U

K∑
k=1

((U∗AkV )(
dφk
dA

(U∗AkV ))∗ − (
dφk
dA

(U∗AkV ))(U∗AkV )∗), (13)

dV

dt
=

1
2
V

K∑
k=1

((U∗AkV )∗(
dφk
dA

(U∗AkV ))− (
dφk
dA

(U∗AkV ))∗(U∗AkV )). (14)

Example. To derive actual gradient equations for solving joint SVD problems,
we define the diagonality criteria

φk(A) =
∑

1≤j≤n
|ajj |2, k = 1, . . . ,K,

which take their maxima when A is an extended diagonal matrix and substitute
them in (13) and (14) to obtain

U̇ = U
K∑
k=1

((U∗AkV )diag(U∗AkV )∗ − diag(U∗AkV )(U∗AkV )∗), (15)

V̇ = V

K∑
k=1

((U∗AkV )∗diag(U∗AkV )− diag(U∗AkV )∗(U∗AkV )). (16)

This can be regarded as a superposition of the SVD flows (9) and (10) and is
expected to converge to the solution of a joint SVD problem.

4 Simulation

We compare two main approaches to joint SVD by simulation with gradient-
based algorithms. Although the gradient-based algorithms have convergence too
slow for practical use, comparison using them gives us information on the essen-
tial difference of two main approaches which is useful for further development
of practical algorithms. We use (15) and (16) as “direct approach”. As “ap-
proach via joint diagonalization”, we apply gradient-based joint diagonalization
algorithm introduced by [5],

U̇ = U

K∑
k=1

((U∗AkV )diag(U∗AkV )− diag(U∗AkV )(U∗AkV )), (17)

to the two sets of Hermitian matrices (1) and (2). We apply two approaches with
gradient-based algorithms to a toy exact joint SVD problem which consists of
the following two 5× 3 real matrices,

A1 = U0 diag5×3(1, 2, 3) V0
∗,

A2 = U0 diag5×3(3, 2, 1) V0
∗,
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whereU0 and V0 are 5×5 and 3×3 randomly generated orthogonal matrices which
are close to identity matrices. The integration of the gradient equations is done by
the Euler method with a stepsize 0.001. Fig. 1 shows the convergence of “direct
approach”(solid lines) and “approach via joint diagonalization”(dot lines). The
vertical axis shows the deviations of U and V from the true diagonalizers U0 and
V0 respectively while the horizontal axis the iteration number of the Euler method.
The deviation of V from the true diagonalizer V0 is measured by | log(V V ∗0 )|where
log stands for the logarithm of a matrix and | · | is the Frobenius norm. Since U
has the indeterminacy in its last columns, the deviation of U from U0 is measured
by | log(U(:, 1 : 3)U0(:, 1 : 3)∗)| where U(:, 1 : 3) means the first three columns
of U . The fast convergence of “approach via joint diagonalization” in early phase
is mainly due to the squared singular values of the Hermitian matrices. From the
late phase, we see that “direct approach” has advantage in numerical accuracy
comparing to “approach via joint diagonalization”.

Fig. 1. Convergence of “direct approach”(solid lines) and “approach via joint diago-
nalization”(dot lines) – deviations from true diagonalizers versus iteration number

5 Concluding Remarks

Two main approaches to joint SVD, “approach via joint diagonalization” and
“direct approach”, were considered. The former is relatively easy to implement
because we can depend largely on literature of existing joint diagonalization
algorithms. On the other hand, the latter has advantage in computational com-
plexity and flexibility to fit on-line application where target matrices are time-
varying. Two main approaches were compared by simulation with gradient-based
algorithms which gave some evidence that “direct approach” has advantage in
numerical accuracy. Since the two approaches are formulated as optimization
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problems on the set of unitary matrices, combinations with the conjugate gra-
dient method and the Newton method with orthogonality constraints such as
introduced by [13][14] may bring us more practical algorithms. Total compari-
son of those methods including the Jacobi-based algorithms[1][2][4] is left to our
future study.
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Abstract. Independent component analysis (ICA) and blind source sep-
aration (BSS) deal with extracting mutually-independent elements from
their observed mixtures. In “classical” ICA, each component is one-
dimensional in the sense that it is proportional to a column of the mixing
matrix. However, this paper considers a more general setup, of multi-
dimensional components. In terms of the underlying sources, this means
that the source covariance matrix is block-diagonal rather than diago-
nal, so that sources belonging to the same block are correlated whereas
sources belonging to different blocks are uncorrelated. These two points
of view —correlated sources vs. multidimensional components— are con-
sidered in this paper. The latter offers the benefit of providing a unique
decomposition. We present a novel, closed-form expression for the op-
timal performance of second-order ICA in the case of multidimensional
elements. Our analysis is verified through numerical experiments.

Keywords: Independent component analysis, blind source separation,
correlated sources, multidimensional components, performance analysis,
joint block diagonalization.

1 Introduction

In their most basic setting, independent component analysis (ICA) and blind
source separation (BSS) aim at extracting m mutually independent elements
from m observed mixtures. The model is of T observations of an m × 1 vector
x(t), modeled as

x(t) = As(t) 1 ≤ t ≤ T (1)

where A is anm×m full-rank matrix and s(t) is a vector of independent sources.
A natural extension of practical interest is to consider correlated sources. More
specifically, this contribution1 addresses the case where some entries of s(t) are
correlated to some others. That is, the m sources can be partitioned into n ≤ m
� This research was partially supported by the Chateaubriand Fellowship of the “ser-

vice scientifique” of the French embassy in Israel.
1 This contribution presents results of a paper under preparation, titled “Multi-

dimensional ICA: Second-Order Methods and Applications”.

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 50–57, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Optimal Performance of Second-Order Multidimensional ICA 51

groups with the sources of the same group being dependent while sources be-
longing to two different groups are independent. This is equivalent to considering
multidimensional components, as detailed below.

In the literature, correlated sources have already been discussed (e.g. [1, 5, 6,
9, 12]). However, to the best of our knowledge, no complete performance analy-
sis has been conducted. Here, we consider a second-order based method which
extends the maximum likelihood (ML) treatment of [10,11] to the case of corre-
lated sources/multidimensional components and provides a complete asymptotic
performance analysis for it. The closed-form expression for the error covariance
matrix is the Cramér-Rao lower bound (CRLB) for the case of Gaussian sources.

2 Correlated Sources vs. Multidimensional Components

Two Points of View. In this work, we partition the columns of A into n blocks:
A = [A1, . . . , An]. Denotem(i) the number of columns in Ai so that

∑n
i=1m(i) =

m. We partition similarly the source vector as s(t) = [s†1(t), . . . , s
†
n(t)]†, where

()† denotes transpose, and define the i-th component as xi(t)
	
= Aisi(t). With

these notations, the multiplicative model (1) becomes an additive model :

x(t) =
n∑
i=1

Aisi(t) =
n∑
i=1

xi(t) . (2)

By writing x(t) =
∑

iAisi(t) we express the model in terms of sources, while
by writing x(t) =

∑
i xi(t) we express the model in terms of components.

We address the problem of blind separation of correlated sources defined as
follows: find matrices Ai with m(i) columns such that A is full rank and the
corresponding source vectors si and sj are uncorrelated for i �= j. Note that if
a given set of matrices Ai satisfies this requirement, then so does the set Ãi =
AiZi where {Zi} is any set of m(i)×m(i) invertible matrices. Such a transform
propagates into the sources as s̃i = Z−1

i si. Hence, the scale indetermination
of regular ICA is exacerbated into a problem where each si can be blindly
recovered only up to some scaling matrix. However, the components themselves
are unaffected by such a transform. Indeed, x̃i = Ãis̃i = (AiZi)(Z−1

i si) =
Aisi = xi.

In the following, we keep on using both points of view. The source model is
closer to the familiar ICA setting but has the drawback of resorting to matrices
Ai which are not blindly identifiable. On the other hand, the components xi(t) are
well defined and can be recovered blindly without scale ambiguity. Applications in
which the component model is adequate are, for instance, spike detection in MEG
data [8], fetal ECG detection [3] and separation of astrophysical emissions [4].

Projectors as Parameters. The fact that each Ai can be blindly identified up
to a scaling factor means that only its column space has some significance. There-
fore, the identifiable parameters are the (orthogonal) projectors onto Span(Ai),
i.e. the subspace in which each component lives:
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Πi = Ai(A
†
iAi)−1A†i = AiA

�
i (3)

with A�
i = (A†iAi)−1A†i denoting the pseudo-inverse of Ai.

The component model x(t) =
∑n

i=1 xi(t) has no mixing matrix and there-
fore no separating matrix. This is unneeded anyway since we want to extract
components, not sources. What we need is the (oblique) projector Pi onto
Span(Ai) orthogonally to all other components. These are the operators sat-
isfying PiAj = δijAi, so that the i-th component is extracted by Pix(t) = xi(t).
An oblique projector can be expressed in terms of all orthogonal projectors as [3]

Pi = Πi

(∑n
j=1Πj

)−1
.

In summary, we have defined a linear model for x(t) as the sum of n inde-
pendent components xi(t) living in subspaces of dimensions m(i). In order to
recover the i-th component, one must estimate the (uniquely defined) oblique
projector Pi.

3 Gaussian Likelihood for Multidimensional Components

Contrast Function. We generalize the method of Pham and Garat [11] and
Pham and Cardoso [10], which is based on localized covariance matrices. The
sample set t = {1, . . . , T} is partitioned into Q domains Dq, q = 1, . . . , Q where
domain q contains nq samples (hence,

∑
q nq = T ). A simple Gaussian likelihood

for the data is set up by assuming that model (2) holds, that x(t) is independent
of x(t′) if t �= t′ and that, for any t ∈ Dq, vector si(t) is normally distributed
with zero mean and a covariance matrix denoted P (q)

S,ii. Then, for any t ∈ Dq,
the covariance matrix of s(t) is

P
(q)
S

	
=

⎡⎢⎢⎣
P

(q)
S,11 0 0

0
. . . 0

0 0 P
(q)
S,nn

⎤⎥⎥⎦ 	
= blkdiag{P (q)

S,11, . . . , P
(q)
S,nn} (4)

where blkdiag{} creates a block-diagonal matrix from the matrices in brackets
and the covariance matrix of x(t), t ∈ Dq is P (q)

X = AP
(q)
S A†.

Proceeding as in [10], the likelihood of this model depends on the parameter
θ =

{
A, {P (q)

S }Qq=1

}
and is found to be [10]

log p(x; θ) = −
Q∑
q=1

nqD(P
(q)
X , AP

(q)
S A†) + cst (5)

where we use the Kullback-based divergence between two m×m matrices

D(R1, R2) =
1
2
(
tr

{
R1R

−1
2

}− log det(R1R
−1
2 )−m)

(6)
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and the data enters only via a set of localized covariance matrices:

P
(q)
X

	
=

1
nq

∑
t∈Dq

x(t)x†(t) . (7)

It is not hard to show that, for fixed A (hence for fixed y, where y(t) =
A−1x(t)), (5) is minimized with respect to P (q)

S at point

P̂
(q)
S = blkdiag{P (q)

Y } . (8)

Therefore, max
P

(q)
S

log p(x; θ) = −T CML(A) + cst where we define the contrast
function

CML(A)
	
= 〈D(P

(q)
Y , blkdiag{P (q)

Y })〉 (9)

with angle brackets meaning 〈M (q)〉 	= 1
T

∑Q
q=1 nqM

(q), that is, averaging across
domains. Hence, minimizing CML(A) is equivalent to maximizing our likelihood.
Clearly, CML(A) is also a criterion of joint block diagonalization (JBD) (see
also [2, 9]).

Estimating Equations. The relative variation of CML with respect to A can be
formulated in full analogy to the uncorrelated sources case in [10]. One obtains
the relative gradient with respect to A:

∇CML(A) = 〈blkdiag−1{P (q)
Y } P

(q)
Y 〉 − I . (10)

Setting ∇CML(A) = 0 yields the estimating equations in terms of the estimated
sources y(t):

I = 〈blkdiag−1{P (q)
Y } P

(q)
Y 〉 . (11)

Using the block-diagonal structure of P (q)
S , eq. (11) also reads block-wise as

〈P (q)
Yii

−1
P

(q)
Yij
〉 = 0, i �= j (12)

where i, j are understood as block indices. The main-diagonal blocks i = j do
not yield any constraints, reflecting the scale indetermination of the problem
when expressed in terms of sources. While the form of (8)-(12) is as in [10] with
diag replacing blkdiag, a formal proof of this extension is given in [7].

With some care, these estimating equations can be re-expressed (see [7] for
details) in terms of components exclusively:

〈P (q)�
XiXi

P
(q)
XiXj

〉 = 0 i �= j (13)

i.e. the components xi estimated for the ML value of A are such that (13) holds.
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4 Error Analysis

Quantifying the Separation Error. Given an estimate P̂i of the oblique
projector on a component subspace, the estimated i-th component is

x̂i = P̂ix = (Pi + δPi)
n∑

j=1

xj = xi +
n∑

j=1

δPixj . (14)

Using
∑n

i=1 Pi = I, so that δPi = −∑
j �=i δPj , the error for component i is

Δxi(t)
	
= x̂i(t)− xi(t) = −

n∑
j �=i

Ejixi(t) +
n∑
j �=i

Eijxj(t) (15)

where we have defined pairwise error terms:

Eij 	= δPiΠj = (P̂i − Pi)Πj . (16)

The first sum in the RHS of (15) is a reconstruction error for the i-th compo-
nent2. The second term in the RHS of (15) is a sum over contaminations of the
recovered i-th component by all other components.

For fixed E the relative mean square error (MSE) for component i, defined
below as ρi(E), is split (since components are mutually uncorrelated) into a sum
of ρij(E). The contribution of each component to the MSE is

ρi(E) 	= σ−2
i E

{
1
T

T∑
t=1

|Δxi(t)|2
}

=
n∑

j=1

ρij(E) (17)

where we denote σ2
i

	
= tr

{
〈P (q)

XiXi
〉
}

the total power of component i averaged
over all domains. Some algebra [7] yields

ρii(E) = σ−2
i tr

⎧⎨⎩〈P (q)
XiXi

〉
n∑
j �=i

E†jiEji

⎫⎬⎭ , ρij(E) = σ−2
i tr

{
〈P (q)

XjXj
〉E†ijEij

}
.

(18)
Define the covariance of the estimation error (15) as

MSEi
	
=

n∑
j=1

E {ρij(E)} . (19)

Taking expectation over E , we are therefore led to evaluate [7]

E {ρii(E)} = σ−2
i tr

[
(I ⊗ 〈P (q)

XiXi
〉)

n∑
j �=i

Cov(vec{E†ji})
]

E {ρij(E)} = σ−2
i tr

[
(〈P (q)

XjXj
〉 ⊗ I)Cov(vec{Eij})

]
(20)

where ⊗ denotes the Kronecker product.
2 In classical ICA, it would correspond to an error in the scale of x̂i; in the more

general case considered here, it is a more complicated form of error.
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First-Order Error Analysis. The computation for the error analysis proceeds
along the lines of first-order approximations [7]. We introduce

G
(q)
ij = P

(q)
XiXj

P
(q)�
XjXj

, H
(q)
ij = P

(q)�
XjXj

⊗ P (q)
XiXi

(21)

which come out of Taylor expansions of the estimating equations (13). We find
that [7]:

[
vec{E†ji}
vec{Eij}

]
= −

[
〈H(q)

ij 〉 I

I 〈H(q)�

ij 〉

]−1 [
vec{〈G(q)

ij 〉}
vec{〈G(q)†

ji 〉}

]
+ o(1/

√
T ) , (22)

so that [7]

Cov

([
vec{〈G(q)

ij 〉}
vec{〈G(q)†

ji 〉}

])
=

1
T

[
〈H(q)

ij 〉 I

I 〈H(q)�

ij 〉

]
. (23)

Hence,

Cov
([

vec{E†ji}
vec{Eij}

])
=

1
T

[
〈H(q)

ij 〉 I

I 〈H(q)�

ij 〉

]−1

+ o(1/T ) . (24)

Since (15) is a linear expression in E , substituting the relevant entries of (24)
in (20) yields an explicit, closed-form expression for the normalized MSE of x̂i.
Since the error covariance was derived for the ML estimator of Pi, expression (24)
is the CRLB on the estimation error of P̂i for the case of Gaussian components.

5 Numerical Results

We implemented an algorithm, based on the relative gradient, which solves
eq. (12). This algorithm thus obtains the ML solution and, since the reduced
log-likelihood is of the form (9), our algorithm is a joint block diagonalization
(JBD) algorithm.

In the simulations, all model and analysis requirements hold and data are
obtained from the Gaussian distribution. Therefore, we expect the CRLB to be
achieved. We set Q = 5, T = 8193. In each scenario, different A and P (q)

S are
chosen. Each scenario is simulated with 500 Monte-Carlo trials.

Fig. 1 compares the theoretical prediction of the error E given by eq. (22)
with the measured value Ê (defined by eq. (16)) in the case of scenario #3 of
Table 1. Due to lack of space, we only present the results for a specific entry,
namely E12(2, 4) (other entries behave similarly). Fig. 1(a) plots Ê12(2, 4) vs.
E12(2, 4). The spread of the values along the diagonal (the thin line represents
E = Ê) shows good correspondence between the empirical values and the pre-
dicted ones. Fig. 1(b) compares the residual error (Ê12(2, 4) − E12(2, 4)) with
Ê12(2, 4); the residual, which represents higher-order terms, is smaller than the
first-order term, showing that the method does operate in the asymptotic regime
here.
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Fig. 1. Error terms: theoretical vs. empirical (a) E vs. Ê (b) (Ê − E) vs. Ê

Table 1. Performance of Second-Order Multidimensional ICA

Scenario Component dimensions MSE(Empirical)
MSE(Theoretical)

1 5 1.054
4 1.056

2 2 1.019
3 1.012
4 0.987

3 3 1.028
2 1.065
1 1.102

4 1 1.004
1 1.008
1 0.990

Table 1 lists the predicted MSEi defined in (19) for several scenarios of com-
ponent dimensions. The second column states the dimension of each component
in the scenario. The third column gives the ratio of MSEi, theoretical vs. sim-
ulated. Note that all values in the third column are close to 1. Therefore, the
results in the “MSE(Empirical) / MSE(Theoretical)” column verify our analysis
and show that the CRLB is achievable.

6 Summary

In this paper we present the concept of blind source separation of multidimensio-
nal components as a different perspective on the correlated sources model. We
derive a source separation ML criterion for multidimensional components, based
on second-order statistics. A closed-form expression for its performance is eval-
uated. By definition, this expression is the CRLB for the case of Gaussian com-
ponents. Our derivation is verified in numerical simulations.
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In [7], this performance is compared with the separation performance of clas-
sical joint diagonalization and our treatment of multidimensional components is
shown to yield a significant gain in their separation.
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Abstract. Given a time series of multicomponent measurements x(t),
the usual objective of nonlinear blind source separation (BSS) is to find
a “source” time series s(t), comprised of statistically independent combi-
nations of the measured components. In this paper, the source time series
is required to have a density function in (s, ṡ)-space that is equal to the
product of density functions of individual components. This formulation
of the BSS problem has a solution that is unique, up to permutations
and component-wise transformations. Separability is shown to impose
constraints on certain locally invariant (scalar) functions of x, which are
derived from local higher-order correlations of the data’s velocity ẋ. The
data are separable if and only if they satisfy these constraints, and, if
the constraints are satisfied, the sources can be explicitly constructed
from the data. The method is illustrated by using it to separate two
speech-like sounds recorded with a single microphone.

1 Introduction

Consider a time series of data x(t), where x is a multiplet of N measurements
(xk for k = 1, 2, . . . , N). The usual objectives of nonlinear BSS are: 1) determine
if these data are instantaneous mixtures of N statistically independent source
components s(t)

x(t) = f [s(t)], (1)

where f is a possibly nonlinear, invertible N -component mixing function, and,
if this is the case, 2) compute the mixing function. In other words, the problem
is to find a coordinate transformation f−1 that transforms the observed data
x(t) from the measurement-defined coordinate system (x) on state space to a
source coordinate system (s) in which the components of the transformed data
are statistically independent. In the source coordinate system, let the state space
probability density function (PDF) ρS(s) be defined so that ρS(s)ds is the frac-
tion of total time that the source trajectory s(t) is located within the volume
element ds at location s. In the usual formulation of the BSS problem [1], the
source components are required to be statistically independent in the sense that
their state space PDF is the product of the density functions of the individual
components

ρS(s) =
N∏
k=1

ρk(sk), (2)

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 58–65, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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However, it is well known that this criterion is so weak that this form of the BSS
problem always has many solutions (see [2] and references therein).

The issue of non-uniqueness can be circumvented by considering the data’s
trajectory in (s, ṡ)-space instead of state space (i.e., s-space). First, define the
PDF ρS(s, ṡ) in this space so that ρS(s, ṡ)dsdṡ is the fraction of total time
that the location and velocity of the source trajectory are within the volume
element dsdṡ at location (s, ṡ). Earlier papers [3,4] described a formulation of
the BSS problem in which this PDF was required to be the product of the density
functions of the individual components

ρS(s, ṡ) =
N∏
k=1

ρk(sk, ṡk). (3)

This type of statistical independence is satisfied by almost all classical non-
interacting physical systems. Furthermore, because separability in (s, ṡ)-space is
a stronger requirement than separability in state space, the corresponding BSS
problem can be shown to have a unique solution [3,4].

It was previously demonstrated [3,4] that the (s, ṡ)-space PDF of a time series
induces a Riemannian geometry on the data’s state space, with the metric equal
to the local second-order correlation matrix of the data’s velocity. Nonlinear
BSS can be performed by computing this metric in the x coordinate system
(i.e., by computing the second-order correlation of ẋ(t) at point x), as well as
its first and second derivatives with respect to x. However, if the dimensionality
of state space is high, it must be covered by a great deal of data in order to
calculate these derivatives accurately. The current paper shows how to perform
nonlinear BSS by computing higher-order local correlations of the data’s velocity,
instead of computing derivatives of its second-order correlation. This approach
is advantageous because it requires less data for an accurate computation.

In addition to using a stronger criterion for statistical independence, there
are technical differences between the proposed method and conventional ones.
First of all, the technique in this paper exploits statistical constraints on the
data that are locally defined in state space, in contrast to the usual criteria for
statistical independence that are global conditions on the data time series or its
time derivatives [5]. Furthermore, unlike many other methods [6], the mixing
function is constructed in a “deterministic”, non-parametric manner, without
using probabilistic learning methods and without parameterizing it with a neural
network architecture or other means.

The next section describes the theoretical framework of the method. Section
3 illustrates the method by using it to separate two simultaneous speech-like
sounds that are recorded with a single microphone. The implications of this
work are discussed in the last section.

2 Method

The local correlation of the data’s velocity is

Ckl...(x) =< (ẋk − ¯̇xk)(ẋl − ¯̇xl) . . . >x, (4)
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where ¯̇x =< ẋ >x is the local time average of ẋ, where the bracket denotes the
time average over the trajectory’s segments in a small neighborhood of x, where
1 ≤ k, l ≤ N , and where “. . .” denotes possible additional indices on the left
side and corresponding factors of ẋ − ¯̇x on the right side. The definition of the
PDF implies that this velocity correlation is one of its moments

Ckl...(x) =
∫
ρ(x, ẋ)(ẋk − ¯̇xk)(ẋl − ¯̇xl) . . . dẋ∫

ρ(x, ẋ)dẋ
, (5)

where ρ(x, ẋ) is the PDF in the x coordinate system. Incidentally, although
Eq. (5) is useful in a formal sense, in practical applications, all required corre-
lation functions can be computed directly from local time averages of the data
(Eq. (4)), without explicitly computing the data’s PDF. Also, note that the
analogous velocity “correlation” with a single subscript vanishes identically.

Next, let M(x) be a local N xN matrix, and use it to define transformed
velocity correlations

Ikl...(x) =
∑

1≤k′, l′,...≤N
Mkk′(x)Mll′ (x) . . . Ck′l′...(x), (6)

where “. . .” denotes possible additional indices of I and C, as well as corre-
sponding factors of M(x). Because Ckl(x) is positive definite at any point x, it
is always possible to find an M(x) such that

Ikl(x) = δkl (7)∑
1≤m≤N

Iklmm(x) = Dkl(x), (8)

where D(x) is a diagonal N xN matrix. As long as D is not degenerate, M(x) is
unique, up to arbitrary local permutations and reflections. In almost all realistic
applications, the velocity correlations will be continuous functions of the state
space coordinate x. Therefore, in any neighborhood of state space, there will
always be a continuous solution for M(x), and this solution is unique, up to
arbitrary global reflections and permutations.

Now, imagine doing the same computation in some other coordinate system
x′. An M -matrix that satisfies Eqs. (7, 8) in the x′ coordinate system is given
by

M ′
kl(x

′) =
∑

1≤m≤N
Mkm(x)

∂xm
∂x′l

(x′). (9)

This can be understood in the following manner: because velocity correlations
transform as contravariant tensors, the partial derivative factor transforms corre-
lations from the x′ coordinate system to the x coordinate system, and the factor
M(x) then transforms these correlations into the functions on the left sides of
Eqs. (7, 8). All other solutions forM ′(x′) differ from this one by global reflections
and permutations. Similar reasoning shows that the functions I ′kl...(x

′), derived
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by using Eq. (6) in the x′ coordinate system, equal the functions Ikl...(x), up to
possible global permutations and reflections. In other words,

I ′kl...(x
′) =

∑
1≤k′, l′,...≤N

Pkk′Pll′ . . . Ik′l′...(x), (10)

where Pkk′ denotes an element of a product of permutation, reflection, and iden-
tity matrices. Essentially, the functions Ikl...(x) transform as scalar functions on
the state space, except for possible reflections and index permutations.

We now assume that the system is separable and derive some necessary con-
ditions in the source coordinate system (s). Then, the above-described scalar
functions are used to transfer these separability conditions to the measurement-
defined coordinate system (x), where they can be tested with the data. In order
to make the notation simple, it is assumed that N = 2. However, as described be-
low, the methodology can be generalized in order to separate higher-dimensional
data into possibly multidimensional source variables.

Separability implies that there is a transformation f−1 from the x coordinate
system to a source coordinate system (s) in which Eq. (3) is true. Because of
Eq. (5), the velocity correlation functions in the s coordinate system are products
of correlations of independent sources

CS1...2...(s1, s2) = CS1...(s1)CS2...(s2), (11)

where 1 . . . and 2 . . . denote arbitrary numbers of indices equal to 1 and 2, re-
spectively. It follows that, in the s coordinate system, Eqs. (7, 8) are satisfied
by a block-diagonal matrix M , in which each “block” is the 1 x 1 M “matrix”
satisfying Eqs. (7, 8) for one of the subsystems. Therefore, in the s coordinate
system, the functions ISkl...(s), which are defined by Eq. (6) with all subscripts
kl . . . equal to 1 (2), must equal the corresponding functions derived for subsys-
tem 1 (2), and these latter functions depend on s1 (s2) alone. Although these
constraints were derived in the s coordinate system, Eq. (10) implies that they
are true in all coordinate systems, except for possible permutations and reflec-
tions. Therefore, in the measurement-defined coordinate system (x), the func-
tions Ikl...(x), which are defined by Eq. (6) with all subscripts equal to 1, must
be functions of either s1(x) or s2(x). Likewise, the functions Ikl...(x), which are
defined by Eq. (6) with all subscripts equal to 2, must be functions of the other
source variable (s2(x) or s1(x), respectively).

This coordinate-system-independent consequence of separability can be used
to perform nonlinear BSS in the following manner:

1. Use Eq. (4) to compute velocity correlations, Ckl...(x), from the data x(t).
2. Use linear algebra to find a continuous matrix M(x) that satisfies Eqs (7, 8)

(or that satisfies similar algebraic constraints that determine M(x) uniquely,
except for permutations and reflections).

3. Use Eq. (6) to compute the functions Ikl...(x).
4. Plot the values of the triplets

IA(x) = {I111(x), I1111(x), I11111(x)} (12)
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IB(x) = {I222(x), I2222(x), I22222(x)}, (13)

as x varies over the measurement-defined coordinate system.
5. If the plotted values of IA and/or IB do not lie in one-dimensional subspaces

within the three-dimensional space of the plots, IA(x) and/or IB(x) cannot
be functions of single source components (s1(x) or s2(x)) as required by
separability, and the data are not separable.

6. If the plotted values of both IA and IB do lie on one-dimensional mani-
folds, define one-dimensional coordinates (σA and σB , respectively) on those
subspaces [7]. Then, compute the function σ(x) = (σA(x), σB(x)) that maps
each coordinate x onto the value of σ, which parameterizes the point
(IA(x), IB(x)). Notice that, because of the Takens’ embedding theorem [8], x
is invertibly related to the six components of IA(x) and IB(x), and, therefore,
it is invertibly related to σ.

7. Transform the PDF (or correlations) of the measurements from the x coor-
dinate system to the σ coordinate system. The data are separable if and only
if the PDF factorizes (the correlations factorize) in the σ coordinate system.

The last statement can be understood in the following manner. As shown
above, separability implies that IA(x) must be a function of a single source
variable (s1(x) or s2(x)), and the Takens theorem implies that this function is
invertible. Because IA is also an invertible function of σA, it follows that σA must
be invertibly related to one of the source variables, and, in a similar manner,
σB must be invertibly related to the other source variable. Thus, separability
implies that σA and σB are themselves source variables. It follows that the data
are separable if and only if the PDF factorizes in the σ coordinate system.

This procedure can be generalized to determine whether data with N > 2
are a mixture of two, possibly multidimensional source variables. Consider any
partition of the x indices (k = 1, 2, . . . , N) into two groups: dA “A” indices and
dB = N − dA “B” indices. Let IA(x) (IB(x)) be any set of more than 2dA (2dB)
of the functions Ikl...(x) for which all subscripts belong to the A (B) group.
Now, suppose that the data are separable. Then, there must be such a partition
for which the values of IA(x) (IB(x)) lie in a dA-dimensional (dB-dimensional)
subspace, as x varies over the N -dimensional data space. Furthermore, if σA
and σB are some coordinates on those subspaces, a set of source variables is
given by σ(x) = (σA(x), σB(x)), the values of σA and σB that parameterize the
point (IA(x), IB(x)). Therefore, to perform BSS: 1) systematically examine
all possible index partitions and determine if the data-derived functions, IA(x)
and IB(x), map x onto subspaces with the required dimensions; 2) if they do
comprise such maps, construct the function σ(x) and determine if the data’s
PDF factorizes in the σ coordinate system. The data are separable if and only if
at least one such index partition leads to a σ(x) that factorizes the PDF. If the
data are separable, the same procedure can then be used to determine if each
multicomponent independent variable (σA or σB) can be further separated into
lower-dimensional independent variables.
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3 Numerical Example: Separating Two Speech-Like
Sounds Recorded with a Single Microphone

This section describes a numerical experiment in which two speech-like sounds
were synthesized and then summed, as if they were simultaneously recorded
with a single microphone. Each sound simulated an “utterance” of a vocal tract
resembling a human vocal tract, except that it had fewer degrees of freedom
(one degree of freedom instead of the 3-5 degrees of freedom of the human
vocal tract). The methodology of Section 2 was blindly applied to a time series
of two features extracted from the synthetic recording, in order to recover the
time dependence of the state variable of each vocal tract (up to an unknown
transformation on each voice’s state space). BSS was performed with only 16
minutes of data, instead of the hours of data required to separate similar sounds
using a differential geometric method [3,4].

The glottal waveforms of the two “voices” had different pitches (100 Hz and
160 Hz), and the “vocal tract” response of each voice was characterized by a
damped sinusoid, whose amplitude, frequency, and damping were linear func-
tions of that voice’s state variable. For each voice, a 16 minute utterance was
produced by using glottal impulses to drive the vocal tract’s response, which
was determined by the time-dependent state variable of that vocal tract. The
state variable time series of each voice was synthesized by smoothly interpolating
among successive states, which were randomly chosen at 100-120 msec intervals.
The resulting utterances had energies differing by 2.4 dB, and they were summed
and sampled at 16 kHz with 16-bit depth. Then, this “recorded” waveform was
pre-emphasized and subjected to a short-term Fourier transform (using frames
with 25 msec length and 5 msec spacing). The log energies of a bank of 12 mel-
frequency filters between 0-8000 Hz were computed for each frame, and these
were then averaged over pairs of consecutive frames. These log filterbank out-
puts were nonlinear functions of the two vocal tract state variables, which were
chosen to be statistically independent of each other.

In order to blindly analyze these data, we first determined if any data com-
ponents were redundant in the sense that they were simply functions of other
components. Figure 1a shows the first three principal components of the log fil-
terbank outputs during a typical short recording of the simultaneous utterances.
Inspection showed that these data lay on an approximately two-dimensional sur-
face within the ambient 12-D space, making it apparent that they were produced
by a “hidden” dynamical system with two degrees of freedom. The redundant
components were eliminated by using dimensional reduction (principal compo-
nents analysis in small overlapping neighborhoods of the data) to establish a co-
ordinate system x on this surface and to find x(t), the trajectory of the recorded
sound in that coordinate system. The next step was to determine if x(t) was
a nonlinear mixture of two source variables that were statistically independent
of one another. Following steps 1-4 of the BSS procedure in Section 2, x(t) of
the entire recording was used to compute “invariants” Ikl...(x) with up to five
indices, and the related functions IA(x) and IB(x) were plotted, as illustrated
in Fig. 1b. It was evident that the plotted values of both IA and IB did lie in
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Fig. 1. (a) The first three principal components of log filterbank outputs of a typical
short recording of two simultaneous speech-like sounds. (b) The distribution of the
values of IA(x) (Eq. (12)), as x varied over the approximately two-dimensional manifold
in (a). (c) The time dependence of one of the source variables, blindly computed from a
typical five-second segment of the data’s trajectory x(t), by finding the coordinates of
IA[x(t)] on the approximately one-dimensional manifold in (b). (d) The state variable
time series originally used to generate one of the speech-like sounds during the five-
second recording analyzed in (c).

approximately one-dimensional subspaces. Following step 6 of the BSS proce-
dure, a dimensional reduction procedure [7] was used to define coordinates (σA
and σB) on these one-dimensional manifolds, and a numerical representation of
σ(x) = (σA(x), σB(x)) was derived. If the data were separable, σ must be a set of
source variables, and σ[x(t)] must describe the evolution of the underlying vocal
tract states (up to invertible component-wise transformations). As illustrated in
Figs. 1c-d, the time courses of the putative source variables (σA[x(t)], σB [x(t)])
did resemble the time courses of the state variables that were originally used
to generate the voices’ utterances (up to an invertible transformation on each
state variable space). Thus, it was apparent that the information encoded in the
time series of each vocal tract’s state variable was blindly extracted from the
simulated recording of the superposed utterances.

4 Discussion

In previous papers [3,4], the nonlinear BSS problem was formulated in (state,
state velocity)-space, instead of state space as in conventional formulations. This
approach is attractive because: 1) this type of statistical independence is satis-
fied by almost all classical non-interacting physical systems; 2) this form of the
BSS problem has a unique solution in the following sense: either the data are
inseparable, or they can be separated by a mixing function that is unique, up to
permutations and transformations of independent source variables. This paper
shows how to perform this type of nonlinear BSS by computing local higher-order
correlations of the data’s velocity ẋ(t), instead of computing derivatives of its
local second-order correlation as was previously proposed [3,4]. This is advanta-
geous because it requires less data for an accurate computation, as demonstrated
in a numerical example in which BSS was performed with minutes (instead of
hours) of data.

The BSS procedure in Section 2 shows how to compute (σA[x(t)], σB [x(t)]),
the trajectory of each independent subsystem in a specific coordinate system on
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that subsystem’s state space. In many practical applications, a pattern recogni-
tion “engine” has been trained to recognize the meaning of trajectories of one
subsystem (e.g., “A”) in another coordinate system (e.g., sA) on that subsys-
tem’s state space. In order to use this information, it is necessary to know the
transformation to this coordinate system (σA → sA). For example, subsystem
A may be the vocal tract of speaker A, and subsystem B may be a noise gen-
erator of some sort. In this example, we may have trained an automatic speech
recognition (ASR) engine on the quiet speech of speaker A (or, equivalently, on
the quiet speech of another speaker who mimics A in the sense that their state
space trajectories are related by an invertible transformation when they speak
the same utterances). In order to recognize the speaker’s utterances in the pres-
ence of B, we must know the transformation from the vocal tract coordinates
provided by BSS (σA) to the coordinates used to train the ASR engine (sA).
This mapping can be determined by using the training data to compute more
than 2dA invariants (like those in Eq. (6)) as functions of sA. These must equal
the invariants of one of the subsystems identified by the BSS procedure, up to a
global permutation and/or reflection (Eq. (10)). This global transformation can
be determined by permuting and reflecting the distribution of invariants pro-
duced by the training data, until it matches the distribution of invariants of one
of the subsystems produced by the BSS procedure. Then, the mapping σA → sA
can be determined by finding paired values of σA and sA that correspond to the
same invariant values within these matching distributions. This type of analysis
of human speech data is currently underway.
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Abstract. We present a probabilistic model for robust principal com-
ponent analysis (PCA) in which the observation noise is modelled by
Student-t distributions that are independent for different data dimen-
sions. A heavy-tailed noise distribution is used to reduce the negative
effect of outliers. Intractability of posterior evaluation is solved using
variational Bayesian approximation methods. We show experimentally
that the proposed model can be a useful tool for PCA preprocessing
for incomplete noisy data. We also demonstrate that the assumed noise
model can yield more accurate reconstructions of missing values: Cor-
rupted dimensions of a “bad” sample may be reconstructed well from
other dimensions of the same data vector. The model was motivated
by a real-world weather dataset which was used for comparison of the
proposed technique to relevant probabilistic PCA models.

1 Introduction

Principal component analysis (PCA) is a widely used method for data prepro-
cessing (see, e.g., [1,2,3]). In independent component analysis (ICA) and source
separation problems, PCA is used for reducing the dimensionality of the data
to avoid overlearning, to suppress additive noise, and for prewhitening needed
in several ICA algorithms [2,4]. PCA is based on the quadratic criteria of vari-
ance maximisation and minimisation of the mean-square representation error,
and therefore it can be sensitive to outliers in the data. Robust PCA techniques
have been introduced to cope this problem, see, for example, [4] and the ref-
erences therein. The basic idea in robust PCA methods is to replace quadratic
criteria leading to standard PCA by more slowly growing criteria.
PCA has a probabilistic interpretation as maximum likelihood estimation of

a latent variable model called probabilistic PCA (PPCA) [5]. While PPCA is
a rather simplistic model based on Gaussion assumptions, it can be used as a
basis for building probabilistic extensions of classical PCA. Probabilistic models
provide a principled way to cope with the overifitting problem, to do model
comparison and to handle missing values. Probabilistic models for robust PCA
have been introduced recently [6,7,8]. They treat possible outliers by using heavy-
tailed distributions, such as Student-t or Laplacian, for describing the noise.
In this paper, we present a new robust PCA model based on the Student-

t distribution and show how it can be identified for incomplete data, that is,

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 66–73, 2009.
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(a) PPCA (b) Fully corrupted (c) Partially corrupted

Fig. 1. Principal subspace estimation using (a) probabilistic PCA [5], (b) robust PCA
assuming fully corrupted outliers [7] and (c) robust PCA assuming partially corrupted
outliers. The crosses represent data points and the circles show their projections onto
the found principal subspace.

datasets with missing values. We assume that the outliers can arise indepen-
dently in each sensor (i.e. for each dimension of a data vector). This is different
to the previously introduced techniques [6,7] which assume that all elements of
an outlier data vector are corrupted. This work was inspired by our intention
to apply a semi-blind source separation technique, called denoising source sepa-
ration (DSS) to a weather dataset which is too much corrupted by outliers and
missing values. We have earlier successfully applied DSS to exploratory analysis
of global climate data [9].
Our modelling assumption can be more realistic for some datasets and there-

fore they can improve the quality of the principal subspace estimation and
achieve better reconstructions of the missing values. The model can also be
used to remove outliers by estimating the true values of their corrupted compo-
nents from the uncorrupted ones. This is illustrated in Fig. 1 using an artificial
two-dimensional data with a prominent principal direction and a few outliers.
The subspace found by the simplest PCA model is affected by outliers, whereas
robust techniques are able to find the right principal subspace. However, the
reconstruction of the data is quite different depending on whether one assumes
fully corrupted or partially corrupted outliers: Fully corrupted outliers can be
reconstructed by projecting orthogonally onto the subspace, while improbable
values of partially corrupted samples can be ignored and reconstructed based on
the uncorrupted dimensions.

2 Model

Let us denote by {yn}Nn=1 a set ofM -dimensional observations yn. The data are
assumed to be generated from hidden D-dimensional states {xn}Nn=1 using the
transformation:

yn = Wxn + μ + εn ,

where W is a M ×D loading matrix, μ is a bias term and εn is noise. Usually
the dimensions fulfil D < M < N . The prior models for the latent variables are
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the same as in PPCA and we use conjugate prior for μ and hierarchical prior
for W as in [10] to diminish overfitting [11]:

p(X) =
M∏

m=1

N∏
n=1

N (xmn|0, 1) ,

p(W |α) =
M∏

m=1

D∏
d=1

N (wmd|0, α−1
d ) ,

p(μ) =
M∏

m=1

N (μm|0, β−1) ,

p(α) =
D∏
d=1

G(αd|aα, bα) .

Hyperparameters aα, bα, and β are fixed to some proper values.
The noise term εn is modelled using independent Student-t distributions for

its elements. This is achieved by using a hierarchical model with extra variables
umn:

p(Y ,U |W ,X,μ, τ ,ν)=
∏

mn|Omn

N
(
ymn|wT

mxn + μm, 1
τmumn

)
G(umn|νm

2 ,
νm

2 ) ,

which yields a product of Student-t distributions S(ymn|wT
mxn + μm,

1
τm
, νm)

with degrees of freedom νm when U is marginalised out [12]. Here, Omn denotes
such indices that the corresponding ymn is actually observed and wT

m is the m-th
row of W . Precision τm defines a scaling variable which is assigned a conjugate
prior

p(τ ) =
M∏

m=1

G(τm|aτ , bτ ) ,

with aτ and bτ set to proper values. Separate τm and νm are used for each
dimension but with simple modifications the dimensions can have a common
value. Especially for the precision τ , common modelling may prevent bad local
minima. For the degrees of freedom ν we set a uniform prior.

3 Posterior Approximation

Bayesian inference is done by evaluating the posterior distribution of the un-
known variables given the observations. We use variational Bayesian approach
to cope with the problem of intractability of the joint posterior distribution (see,
e.g., [3, ch.10] for more details). The approximate distribution q is factorised with
respect to the unknown variables as

N∏
n=1

q(xn)
M∏

m=1

q(wm)
M∏

m=1

q(μm)
M∏

m=1

q(τm)
M∏

m=1

N∏
n=1

q(umn)
D∏
d=1

q(αd)
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and each factor q(θi) is updated assuming the other factors are fixed. This is done
by minimising the Kullback-Leibler divergence cost function. Using conjugate
priors yields simple update rules presented in the appendix.

4 Experiments with Real-World Data

The proposed model was largely motivated by the analysis of real-world weather
data from the Helsinki Testbed research project of mesoscale meteorology. The
data consists of temperature measurements in Southern Finland over a period
of almost two years with an interval of ten minutes, resulting in 89 000 time
instances. Some parts of the data were discarded: Stations with no observa-
tions were removed and we used only the measurements taken in the lowest
altitude in each location. The locations of the remaining 79 stations are shown
in Fig. 2.
The quality of the dataset was partly poor. Approximately 35% of the data

was missing and a large number of measurements were corrupted. Fig. 3 shows
representative examples of measurements from four stations. The quality of the
dataset can be summarised as follows: Half of the stations were relatively good,
having no outstanding outliers and only short periods missing. More than 10
stations had a few outliers, similarly to the first signal from Fig. 3. Five stations
had a large number of outliers, see the second signal in Fig. 3. The quality of
the data from the rest of the stations was somewhat poor: The signals contained
a small number of measurements and were corrupted by outliers, see the two
signals at the bottom of Fig. 3.
Although the outliers may sometimes be easily distinguished from the data,

removing them by hand requires a tedious procedure which turned out to be non-
trivial in some cases. Therefore, we used the proposed robust PCA method as a
preprocessing step which automatically solves the problems of outlier removal,
dimensionality reduction and infilling missing values. To keep the preprocessing
step simple, we did not take into account the temporal structure of the data.
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Fig. 2. The weather stations are shown as purple dots on the topographical map of
the studied area. The colour represents the altitude above sea level in meters.
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Fig. 3. Temperature data from four stations from the Helsinki Testbed dataset

In the presented experiment, we estimated the four-dimensional principal
subspace of the data using the following models: probabilistic PCA [5], robust
PPCA (RPCA-s) [7] and the robust model presented in this paper (RPCA-d).
For RPCA-d, the degrees of freedom {νm}Mm=1 were modelled separately for each
station whereas the precision τm = τ was set to be common. Broad priors were
obtained by setting aα = bα = β = aτ = bτ = 10−3.
Fig. 4 presents the reconstruction of the missing data for the four signals

from Fig. 3 using the compared techniques. The reconstructions obtained by
PPCA and RPCA-s are clearly bad. Both models are over-fitted to outliers
and to spontaneous correlations observed in scarce measurements from prob-
lematic stations. The methods reproduce accurately some outliers and gen-
erate new outliers in the place of missing values. In contrast, the results by
RPCA-d are clearly much better: The outliers are removed and reasonable
reconstructions of the missing values are obtained. Although the signals look
rather similar in Fig. 4c (the analysed spatial area is small and the annual
cycle is obviously the dominant pattern), the reconstructed signals look very
plausible.
The loading matrix W obtained with the different techniques is also visualised

in Fig. 4. Each column of W is a collection of weights showing the contribution
of one principal component in reconstructing data in different spatial locations.
The patterns shown in Fig. 4 are interpolations of the weights over the map of
Southern Finland. The patterns produced by PPCA and RPCA-s clearly contain
lots of artefacts: the components are over-fitted to the outliers registered in
some weather stations. On the contrary, the components found by RPCA-d are
much more meaningful (though they contain some artefacts due to problematic
stations in the central area): The first component explains the dominant yearly
and daily oscillations and the patterns associated with the rest of the principal
components are very typical for PCA applied to spatially distributed data. Since
the investigated area is rather small, the first principal component has similar
loading for all weather stations. Note a clear coast line pattern in the second
and the third components.
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Fig. 4. Experimental results obtained for the Helsinki Testbed dataset with different
models. Left: The reconstructions of the signals shown in Fig. 3. Right: The principal
component loadings interpolated over the map of Southern Finland.

5 Conclusions

In this paper, we presented a probabilistic model for robust PCA which can
be a useful tool for preprocessing incomplete data with outliers. The effect of
outliers is diminished by using the Student-t distribution for modelling the ob-
servation noise. We showed that using a model with independent elements of the
noise vector can be more appropriate for some real-world datasets. We tested
the proposed method on a real-world weather dataset and compared our ap-
proach with the probabilistic PCA model [5] and robust PPCA assuming fully
corrupted outlier vectors [7]. The experiment showed the superior performance
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of the presented model, which found meaningful spatial patterns for the princi-
pal components and provided reasonable reconstruction in the place of missing
data.
The proposed algorithm is based on a probabilistic model and therefore it

provides information about the uncertainty of the estimated parameters. The
uncertainty information can be taken into account, for example, when the prin-
cipal components are ordered according to the amount of explained data variance
[11]. The model can easily be extended, for example, by taking into account the
temporal structure of the data. This would result in better performance in the
tasks of missing value reconstruction and outlier removal.
In our work, we use the proposed technique as a preprocessing step for fur-

ther exploratory analysis of data. For example, one can investigate a principal
subspace found for weather data in order to find meaningful weather patterns or
to extract features which might be useful for statistical weather forecasts. This
can be done, for example, by using rotation techniques closely related to ICA.
We have earlier used this approach for analysis of global climate data [9].
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Appendix: Update Rules

q(xn)=N (xn|xn,Σxn), q(wm)=N (wm|wm,Σwm) and q(μ)=N (μm|μm, μ̃m)
are Gaussian density functions updated as follows:

Σ−1
xn

= I +
∑

m|Omn

〈τm〉〈umn〉(wmwT
m + Σwm)

xn = Σxn

∑
m|Omn

〈τm〉〈umn〉wm(ymn − μm)

Σ−1
wm

= diag 〈α〉+ 〈τm〉
∑

n|Omn

〈umn〉(xnxT
n + Σxn)

wm = Σwm〈τm〉
∑

n|Omn

〈umn〉xn(ymn − μm)

μ̃−1
m = β + 〈τm〉

∑
n|Omn

〈umn〉

μm = μ̃m〈τm〉
∑

n|Omn

〈umn〉
(
ymn −wT

mxn

)
where 〈·〉 denotes expectations over the approximate distribution.
Approximate q(τm) = G(τm|ăτm , b̆τm), q(umn) = G(umn|ăumn , b̆umn) and

q(αd) = G(αd|ăα, b̆αd
) are Gamma density functions updated as follows:

ăτm = aτ + Nm

2 b̆τm = bτ + 1
2

∑
n|Omn

〈umn〉(e2mn + μ̃m + ξ̃mn)

ăumn = νm

2 + 1
2 b̆umn = νm

2 + 1
2 〈τm〉(e2mn + μ̃m + ξ̃mn)

ăα = aα + M
2 b̆αd

= bα + 1
2

M∑
m=1

〈
w2
md

〉
where ăumn and b̆umn are estimated only for observed ymn, Nm denotes the
number of observed values in the set {ymn}Nn=1, while emn and ξ̃mn are shorthand
notations for

emn = ymn −wT
mxn − μm

ξ̃mn = wT
mΣxnwm + xT

nΣwmxn + tr(ΣwmΣxn) .

The degrees of freedom ν are point-estimated in order to keep the posterior
approximation analytically tractable. The maximum likelihood estimate is found
by maximising the lower bound of the model loglikelihood. This yields

1 + log
(
νm

2

)− ψ(νm

2

)
+ 1

Nm

∑
n|Omn

(〈log umn〉 − 〈umn〉) = 0 ,

which can be solved using line search methods. One may try to start updating
the hyperparameters α and ν after the iteration has already run for some time
if the algorithm seems to converge to bad local optimum.
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Abstract. Independent component analysis (ICA) is an important topic
of signal processing and neural network which transforms an observed mul-
tidimensional random vector into components that are mutually as inde-
pendent as possible. In this paper, we have introduced a new method called
SwiPe-ICA (Stepwise Pearsonian ICA) that combines the methodology of
projection pursuit with Pearsonian density estimation. Pearsonian density
function instead of the classical polynomial density expansions is employed
to approximate the density along each one-dimensional projection using
differential entropy. This approximation of entropy is more exact than the
classical approximation based on the polynomial density expansions when
the source signals are supergaussian. The validity of the new algorithm is
verified by computer simulation.
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1 Introduction

The ICA was started to solve the blind source separation [12] problem, i.e. given
only the mixtures of a set of underlying signal sources, the aim is to retrieve the
original signals, having unknown but independent distributions. Unlike Principal
Component Analysis (PCA), which only decorrelates the data, ICA searches
for that direction in the data-space, which are independent across statistical
moments of all orders [1,8].

The problem of blind signal separation arises in many areas such as telecom-
munication, economic indicators, digital images and medical science. The refer-
ences at the end list pointers to the vast literature.

In this paper we shall use Pearsonian density function for estimating density.
This function has already been used for ICA [7]. However, our approach is com-
pletely different in the sense that our method strongly relies on stepwise entropy
minimization.
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2 ICA Model

Let x=(x1, x2, · · · , xm)T be the observed random vector, and s=(s1, s2, · · · , sp)T
be the latent random vector with mutually independent components (IC). The
ICA model assumes that

x = As , (1)

where A is a constant m × p matrix which is unknown. We assume that A is
of full column rank, i.e. the columns of A are linearly independent. We make
a further assumption that the dimension of x and s are equal, i.e. m = p. So
A is assumed to be non-singular. Non-Gaussianity of the ICs is necessary for
identifiability of the model (1) [1].

Suppose x(t), t = 1, 2, · · · , n, are the observed values of x. Let us define
Xp×n = [x(1), ...,x(n)]. Similarly, we have s(t)’s and Sp×n. Then our model can
be written as

X = AS . (2)

Now the problem is to estimate the (weight) matrix W so that the components
of

Ŝ = WX (3)

are statistically as independent among each other as possible.

3 Entropy and Projection Pursuit

Comon [12] has showed a general formulation for ICA using the entropy function.
The differential entropy of a random vector y = (y1, y2, · · · , yn)T is defined as

H(y) = −
∫
f(y) log f(y)dy , (4)

where f(·) is the density of y.
Negentropy, defined as J(y) = H(z)−H(y), is invariant under linear trans-

formations. Here z is a Gaussian random vector with the same covariance matrix
as y. Negentropy is a measure of nongaussianity [4] of a random vector. Now
we define the mutual information I among n uncorrelated random variables of a
random vector y as

I(y1, y2, · · · , yn) = J(y) −
∑
i

J(yi) , (5)

which is a information-theoretic measure of the independence among the random
variables. Hence W in (3) can be determined so that the mutual information of
the transformed components, ŝi, is minimized. It can be noted that the source
signals are identifiable up to scale and permutation.

By (5), finding an invertible transformation W that minimizes the mutual
information is roughly equivalent to finding direction in which the negentropy is
maximized. This formulation of ICA also shows explicitly the connection between
ICA and projection pursuit [13].
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4 Approximating the Entropy Function

The estimation of entropy is very difficult in practice. Using the definition in (4)
requires estimation of the density of x, which is theoretically difficult and com-
putationally demanding. Simpler approximations of entropy have been proposed
both in the context of projection pursuit [11,13] and independent component
analysis [12,14]. These approximations are usually based on approximating the
density f(x) using the polynomial expansions of Gram-Charlier or Edgeworth.
The construction leads to the use of higher order moments, which provide a
poor approximation of entropy. Finite sample estimations of higher order mo-
ments are highly sensitive to outliers, i.e. their values depend on only a few,
possibly erroneous, observations with large values. This means that outliers may
completely determine the estimates of moments. Again, even if the moments
were estimated perfectly, they measure mainly the tails of the distribution, and
are largely unaffected by the structure near the center of the distribution [5,6].

Here we shall estimate the density f(·) assuming that it satisfies the Pearso-
nian [9,10] condition

df

dx
=

(x− α)f(x)
b0 + b1x+ b2x2 . (6)

The general solution of the differential equation is

f(x) = C exp
[∫

(x− α)dx
b0 + b1x+ b2x2

]
. (7)

By choosing C suitably we can make f(x) a probability density. The key idea
behind estimating density using Pearsonian curves lies in estimating the param-
eters α, b0, b1 and b2 from the data. In case of zero mean and the unit variance
the moment estimate of the parameters become

b̂1 = α̂ = −μ3(μ4 + 3)/D ,

b̂0 = −(4μ4 − 3μ3
2)/D ,

b̂2 = −(2μ4 − 3μ3
2 − 6)/D , (8)

where D = 2(5μ4 − 6μ3
2 − 9) and μi is the ith central moment.

So the estimate of the density function becomes

f̂(x) = C exp
[∫

(x− α̂)dx

b̂0 + b̂1x+ b̂2x2

]
, (9)

where C is a suitable constant. In the next section we will see that we do not
need to calculate C in our algorithm.

Let y = (y1, y2, · · · , yn)T be a random sample of size n from a random variable
Y. Then we will estimate the entropy of Y as

H(Y) = − 1
n

n∑
i=1

log f̂(yi) . (10)
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Let us define
h(x) =

x− α̂
b̂0 + b̂1x+ b̂2x2

, (11)

and
g(x) =

∫
h(x)dx = log f̂(x)− logC . (12)

So the entropy of Y in (10) can be written as

H(Y) = − 1
n

n∑
i=1

g(yi)− logC . (13)

5 SwiPe-ICA

In this section we present a new algorithm called Stepwise Pearsonian ICA
(SwiPe-ICA) which retains the stepwise nature of projection pursuit, and yet
benefits from Pearsonian density estimation paradigm. The algorithm finds W
row by row from the (centered and whitened) input mixture signals. To find each
row we project the data along various directions orthogonal to the rows already
found. The best direction is chosen to minimize the estimated entropy along that
projection. While this skeletal structure is very similar to that of FastICA [2],
SwiPe-ICA employs a completely different method for estimating the entropy.

To find the jth direction aj we minimize H(aTX) or equivalently maximize
−nH(aTX) with respect to a subject to the conditions

aTa = 1 and aTak = 0 ∀k = 1, · · · , j − 1, (14)

where a1, · · · ,aj−1 are the directions already found. The Lagrangian multiplier
method and Newton-Raphson iterations are used for this constrained maximiza-
tion. At the jth step we will maximize

φj(a,λ) = −nH(aTX) + λj(aTa− 1) +
j−1∑
k=1

λkaTak (15)

with respect to a and λ = (λ1, λ2, · · · , λj)T , where λ is the vector of Lagrange
multipliers. For simplicity we assume that ∂θ/∂a is negligible for the parameters
θ = b0, b1, b2 and C (this assumption is supported by simulation results).

So at the jth step the iterations are applied to the equation Sj(a, λ) = 0,
where

Sj(a, λ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂φj/∂a
∂φj/∂λ1
∂φj/∂λ2

...
∂φj/∂λj−1
∂φj/∂λj

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∑n
i=1 h(a

Txi)xi + 2λja +
∑j−1

k=1 λkak
aT1 a
aT2 a

...
aTj−1a

aTa− 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

(16)
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The (r + 1)th iteration of the Newton-Raphson becomes

yj(r + 1) = yj(r) − F−1
j (r)Sj(r) , (17)

where yj(r) and Sj(r) are the rth iteration of (a, λ1, λ2, · · · , λj)T and Sj(a, λ)
respectively, and F j(r) are the rth iteration of

F j =

⎛⎜⎜⎜⎝
∂2φj/∂a2 ∂2φj/∂a∂λ1 · · · · · · ∂2φj/∂a∂λj
∂2φj/∂λ1∂a ∂2φj/∂λ

2
1 · · · · · · ∂2φj/∂λ1∂λj

...
...

...
...

...
∂2φj/∂λj∂a ∂2φj/∂λj∂λ1 · · · · · · ∂2φj/∂λ

2
j

⎞⎟⎟⎟⎠ (18)

=
(∑n

i=1 h
′(aTxi)xixiT + 2λjIp βT

β Oj×j

)
, (19)

where β = (a1,a2, · · · , · · · ,aj−1, 2a)T , Oj×j is a zero matrix of order j × j and
h′(x) = d

dxh(x). Here we can simplify the computation of F−1
j using the block

structure of F j .

6 Results

6.1 Performance of the Pearsonian ICA in Audio Data

In this section we shall see how the Pearsonian ICA algorithm performs for an
audio data set. The algorithm has been implemented in the Matlab programming
language. The sounds that we have used are that of a car siren, a English news
program in a television channel and a sound of piano. Each sound track is about
5 seconds long and contains 50000 sample points. Thus, S in (2) is of order
3× 50000. The mixing matrix A is chosen randomly, where each of the 9 entries
of A are independent and identically distributed (i.i.d.) uniform (0, 1).

(a) (b)

Fig. 1. The time series plots of the original (a) and the recovered signals (b)
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Fig. 2. The scatter plots of the original signals against the recovered signals

From figure (2) we can see that there is one and only one diagonal (approxi-
mately) plot in every row and column. The other plots show data clouds without
much definite pattern. This implies that each recovered signal has high corre-
lation with its corresponding source signal, while it is independent of the other
source signals.

As the original sources are known one can use signal-to-interface ratio (SIR)
[3] as a measure of performance of the ICA method, which is defined as

SIR(dB) =
1
n

n∑
i=1

10 log10
max(P i)2

P i
TP i −max(P i)2

, (20)

where P = WA, P i is the ith column of P . The higher SIR is, the better
the separation performance of the algorithm. Another commonly used index
cross-talking error (CTE) [14], which is used to measure the accuracy of sepa-
rating the independent components, is the distance between the overall trans-
forming matrix P and an ideal permutation matrix (where every rows and
columns contain exactly one element equal to unity and rest are zero). CTE is
defined as

CTE =
∑
i

⎛⎝∑
j

|pij |
maxj′ |pij′ | − 1

⎞⎠ +
∑
j

(∑
i

|pij |
maxi′ |pi′j | − 1

)
, (21)

where pij is the (i, j)th element of P . The lower CTE is, the better the separation
performance of the algorithm.

The values of these indexes in the above experiment are 49.6418 dB and
0.0274 respectively. The performance of SwiPe-ICA is not only much more bet-
ter than the ICA methods based on the polynomial density expansions, it is
also comparable with the FastICA method [2] particularly when the sources are
supergaussian.
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6.2 Comparison between Pearsonian ICA and FastICA

In the next experiment, we have used 3 artificially generated time series of 500
samples each. The analytical form along with their skewness and kurtosis are
given in table 1, where the function rem(x, y) denotes the remainder when x
is divided by y, rand(1, x) is an array of length x whose elements are random
numbers from uniform (0, 1), I(·) is an identity function and ‘⊗’ denotes the
elementwise multiplication.

Table 1. The analytical form of signals along with their skewness and kurtosis

Source signal Skewness Kurtosis
Impulsive curve: S1(t) = ((rem(t, 23) − 11)/9)5 -0.011 2.353
Exponential decay: S2(t) = 5 exp(−t/121)cos(37t) 0.055 3.410
Spiky noise: S3(t) = (2I(rand(1, 500) < .5) − 1) ⊗ log(rand(1, 500)) 0.464 2.228

In this experiment we have used the FastICA algorithm taking different non-
linear contrast functions and compared their performances with our proposed
algorithm by the indexes SIR and CTE. Each algorithm was repeated 500 times
and the 9 entries of the mixing matrix were chosen randomly form uniform (0, 1).
The results are shown in the following table, where the median of CTE and SIR
along with their first and third quantiles in brackets are mentioned.

Table 2. CTE and SIR of SwiPe-ICA and FastICA

Algorithm CTE SIR(dB)
SwiPe-ICA 0.3582 (0.2722, 0.4882) 27.9586 (24.7591, 30.5289)
FastICA with g(u) = u3 0.7131 (0.5546, 1.0127) 21.1239 (18.4048, 23.6924)
FastICA with g(u) = tanh(u) 0.4226 (0.3325, 0.5601) 26.4373 (23.5400, 28.6691)
FastICA with g(u) = u exp(u2/2) 0.3813 ( 0.2894, 0.5155) 27.3453 (24.2308, 29.7747)

7 Some Insights behind the Efficiency of SwiPe-ICA

Although SwiPe-ICA is based on sample moments, Pearsonian density estimates
are known to be “exceptionally accurate” for long tailed distributions [6]. So
SwiPe-ICA has a significant advantage over other moment-based methods for
supergaussian sources.

ICA does not require estimation of the source densities per se, rather it needs
to estimate only the score function involving the derivatives of the densities.
SwiPe-ICA avoids the instability of approximate differentiation by directly esti-
mating the opposite of the score function and its derivative.

Pearsonian density estimation is somewhat complicated [6]. But since SwiPe-
ICA works with the derivatives of the densities, much of the complexity is
avoided.
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8 Conclusion

In this paper we have proposed a new method for ICA involving density estima-
tion by Pearsonian curves. The reason for using Pearsonian density function is
that it gives a good estimate of the density function and the algorithm performs
very well when the sources signals are supergaussian. This algorithm also gives
good result when at most one of the sources is subgaussian, but simulations show
that it is not so efficient in separating two subgaussian sources.
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Abstract. In light of the recently proposed generalized correlation function 
named correntropy, which exploits higher-order statistics and the time structure 
of signals, we have, in this work, two main objectives: 1) to give a new 
interpretation – founded on the relationships between the constant modulus 
(CM) and Shalvi-Weinstein criteria and between the latter and methods for ICA 
based on nongaussianity – to the performance of the constant modulus approach 
under dependent sources and 2) to analyze the correntropy in the context of 
blind deconvolution of i.i.d. and dependent sources, as well as to establish 
elements of a comparison between it and the CMA. The analyses and 
simulation results unveil some theoretical aspects hitherto unexplored.   

Keywords: Blind deconvolution, correntropy, constant modulus criterion, 
Shalvi-Weinstein criteria, nongaussianity-based ICA. 

1   Introduction 

Interest in blind deconvolution (or equalization) techniques comes from the fact that 
their operation depends only on the channel output and some statistical characteristics 
of the transmitted signal. Considering classical techniques such as the constant 
modulus (CM) [1] or Shalvi-Weinstein (SW) [2] criteria, a good performance is 
guaranteed when the transmitted signal is composed of independent samples. 
However, when we consider, for example, the use of error-correcting codes, this 
condition is not satisfied, and the algorithms may present a non-satisfactory 
performance [3]. 

Recently, a new approach derived from the field of information-theoretic learning 
was proposed in a blind equalization context, taking into account the temporal 
structure of the transmitted signal. This measure, named correntropy, is conceived to 
deal with the presence of correlated sources, relaxing the restriction that was generally 
present when blind techniques were discussed [4]. 

In view of this new situation, it is interesting to note that much remains to be done 
in terms of analyzing classical blind equalization criteria, such as the CM approach, 
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when a correlated signal is transmitted. Even with the development of blind source 
separation techniques, which enabled a new interpretation of blind equalization 
methods [5], the problem was not completely solved. In [6,7], the following 
conclusion is reached: the existence of dependence between source samples may 
change the positions of the CM error surface minima. Depending on the focused 
source, these minima can be associated with closed-eye situations even when exact 
channel inversion is possible. However, a complete explanation of such phenomenon 
was not provided. 

In this paper, we propose a new interpretation of the performance of the CM 
criterion when applied to the recovery of correlated sources. This interpretation, 
which is founded on the equivalence between the CM and SW criteria and on the 
relationship between kurtosis and nongaussianity-based ICA, is tested in a number of 
representative situations. Afterwards, we present elements of a comparison between 
the CM algorithm (CMA) and a correntropy-based method for deconvolution of 
correlated and uncorrelated sources, emphasizing some pertinent aspects that were not 
discussed in [4]. These analyses provide theoretical elements to the blind equalization 
and blind source separation theories.  

2   The Constant Modulus Criterion 

The constant modulus (CM) criterion [1,7,8] is based on the idea of minimizing a 
dispersion of the absolute value of the equalizer output around a fixed value that 
depends on statistics of the transmitted signal, which gives rise to the following cost 
function: 

 ( )22

2( )  ,CMJ E y n R= −� �
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 where 

4

2 2
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( )

E s n
R

E s n
=
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,                       (1) 

y(n) is the equalizer output signal and s(n) is the transmitted signal. The associated 
stochastic gradient search method, the constant modulus algorithm (CMA) [1,8], is 
given by: 

 ( )2

1 2n n n n ny y Rμ+ = − −w w x ,                                         (2) 

where w=[w0 w1 ... wL-1]
T is the equalizer tap-weight vector, with length L, xn=[xn xn-1 

… xn-L+1]
T  is the equalizer input vector and μ is the step-size. 

Analysis of the structure of (1) and of the dynamical behavior of (2) has been 
carried out considering, as a rule, that the transmitted signal is composed of 
independent and identically distributed (i.i.d.) samples. This assumption is valid in 
certain applications, but not in others, e.g. those including error-correcting codes or 
even those associated with certain nondigital signals.  

Previous efforts to analyze the CM criterion for dependent data [7, 3] reached an 
important conclusion: dependent sources lead to modifications in the CM cost 
function, which, in some cases, give rise to minima that are inadequate from the 
standpoint of channel inversion [6]. Having this state of things in view, we shall, in 
section 4, propose an interpretation of the behavior of the constant modulus criterion 
under correlated sources that is based on two results: the equivalence between the CM 
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and SW criteria and the relationship between the SW criterion and the idea of 
nongaussianity, which is a pillar of the independent component analysis (ICA). 

3   Information-Theoretic Learning and Correntropy 

Information-theoretic learning (ITL) [10] constitutes a relevant step towards an 
adaptive filtering framework effectively capable of making use of the potential 
brought by nonlinear structures and/or higher-order statistics. Among the techniques 
employed to perform ITL, those based on kernel methods have received a great deal 
of attention in the last years [11]. A consequence of these important efforts was the 
proposal of a generalized correlation function to which the name correntropy was 
associated [4]. This correlation function can be understood as a dependence measure 
that attempts to incorporate the benefits of information-theoretic entities.  

It is possible to define correntropy as: 

 [ ] ( )1ˆ ,
1

N

n n m
n m

V m k x x
N m

−
=

= −
− + �                                         (3) 

where k(.) denotes a kernel function, N is the size of the data window used to estimate 
correntropy and m is the lag being considered. 

In [4], correntropy is employed to solve the blind equalization problem under the 
hypothesis that the information source is subject to some sort of coding. In such case, 
the source samples are temporally dependent, and the idea is exactly to incorporate 
the structure of this dependence in the equalization criterion. The used criterion is 
stated as follows: 

 ( )2
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where Vs is the correntropy of the source, Vy is the correntropy of the equalizer output 
and P is the number of lags. The associated adaptive algorithm is given by 
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To the best of our knowledge, a systematic analysis of the convergence of this 
technique under correlated and uncorrelated sources, including elements of comparison 
with more classical blind approaches, has not yet been performed. An objective of this 
work is to take a first step in this direction, as will be shown in section 5. 

4   An Analysis of the Constant Modulus Criterion with Correlated 
Sources 

As discussed in section 2, the problem of studying the CM criterion in the context of 
“non-i.i.d.” sources is of great theoretical and practical relevance. We will now 
attempt to provide an explanation for the performance degradation verified in such 
context based on two pillars: the equivalence between the CM and SW criteria as 
established by Regalia [9] and the conceptual link between the SW approach and the 
idea of nongaussianity-based ICA. 
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In [9], Regalia proved that the CM and SW criteria have equivalent stationary 
points. Interestingly, an analysis of the SW theorem [2] from an ICA-oriented 
perspective reveals a relationship between the notion of describing zero-forcing (ZF) 
solutions in terms of an equality between the absolute values of the equalizer output 
and source kurtosis (under a power constraint) and the idea of seeking a condition that 
be as opposite as possible to the gaussianizing effect of the convolution [11]. When 
ZF solutions are not attainable, the family of SW criteria attempts to maximize the 
absolute value of the output kurtosis, in a clear parallel with the notion of seeking the 
recovery of a component that be as nongaussian as possible [5], i.e., that be “as close 
as possible”, in some sense, to an underlying independent source. 

When the transmitted signal is i.i.d., the entire line of reasoning makes sense, 
because this search for recovering an independent component will lead, at least 
approximately, to channel inversion. On the other hand, when the transmitted signal is 
no longer formed by i.i.d. samples, we are faced with an important question: will it be 
possible to maintain the link between the idea of inversion, which is the very essence 
of the equalization task, and the notion of seeking a nongaussian solution, which 
forms the core of the SW criteria? 

Our approach to analyzing this problem follows exactly the outlined path: the use 
of the CM criterion is, implicitly, related to the idea of seeking the maximization of a 
measure of nongaussianity, which is related to the notion of estimating an 
independent component of a convolutional superposition. Therefore, when the CM is 
applied in the context of dependent sources, it should, in a certain sense, continue to 
approximate an independent component: therefore, it is possible that it attempts to 
equalize, when this is feasible, even the model that originates the sample dependence, 
which means that the obtained solutions will not be exclusively concerned with 
channel inversion, but will also “interpret” the source dependence as a mixing effect 
to be counterbalanced. In order to test the validity of this simple hypothesis, we shall 
now turn our attention to two representative scenarios. 

4.1   First Scenario 

In the first scenario, we assume that dependence between samples of the transmitted 
signal is generated by a linear finite impulse response (FIR) system h(z)=1+0.4z-1 that 
acts as a stochastic process model or as a precoder. The input to this precoder is a 
sequence of i.i.d. +1/-1 samples. The channel is assumed to be h(z)=1+0.6z-1. 

In Fig. 1a, we present the contours of the CM cost function for two situations: when 
there is no precoder and when the precoder is applied. These contours reveal that the 
existence of dependence between samples indeed modifies the position of the minima, 
which gives support to the results reported in [7]. In accordance with the proposed 
interpretation, this modification comes from the fact that the CM solutions are 
attempting to equalize the combined precoder + channel impulse response. In order to 
test the validity of this idea, we present, in Fig. 1b, the contours of the CM cost function 
for two situations: dependent source + channel and i.i.d. source + precoder / channel 
cascade. The contours are identical, which reveals, in consonance with our line of 
reasoning, that both equalization problems are equivalent. It is important to remark that, 
in order to have a perfect superposition of both surfaces, it was necessary to apply a 
scaling factor to the precoder to make the constant R2 equal in both cases. The constant  
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Fig. 1. Contours of CM cost function: (a) i.i.d and correlated sources, h(z)=1+0.6z-1 (b) i.i.d 
source with h(z)=1+1z-1+0.24z-2 and correlated source with h(z)=1+0.6z-1 

influences only the magnitude of the equalizer parameter vector, there being no impact 
on the performance in terms of intersymbol interference removal. 

4.2   Second Scenario 

The second scenario is employed to illustrate an important point: although it is usual 
to speak of “correlated sources”, when blind criteria are considered, the most relevant 
aspect is statistical dependence. The precoder, in this case, is an pass-filter with 
transfer function h(z)=(1+2z-1)/ (1+0.5z-1) , which means that the generated source 
possesses uncorrelated - albeit not statistically independent – samples. Even with this 
white source, Fig. 2a reveals that there is a substantial modification in the contours of 
the CM cost function in comparison with the i.i.d. case. Furthermore, as shown in  
Fig. 2b, a comparison with the case in which an i.i.d. source is filtered with the 
combined precoder+channel response gives, once more, support to our interpretation: 
in view of the statistical dependence inherent to the source, the CM solutions will 
consider the all-pass precoder as additional system to be inverted. 
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Fig. 2. Comparison of CM cost function for an i.i.d. source and a white but non-independent 
source, (a) same channel, h(z)=1+0.6z-1 (b) i.i.d. source with equivalent channel (precoder+channel) 
and non-i.i.d. source with channel h(z)=1+0.6z-1 



 An Analysis of Unsupervised Signal Processing Methods 87 

5   CMA and Correntropy 

As shown in section 3, correntropy is based on the expected value of a kernel 
function. Thus, while the CM criterion can be seen as a criterion that aims to recover 
the condition of independence between source samples, correntropy follows a 
“temporal version” of the pdf-matching (or, at least, higher-order moment-matching) 
philosophy that is similar, to a certain extent, to that associated with the Benveniste-
Goursat-Ruget theorem [5]. The pdf can be estimated using Parzen’s nonparametric 
approach, which leads to an efficient kernel method that, as shown in section 3, may 
exploit the time structure of the signal, in contrast with the standard CMA. In this 
section, we will compare and discuss the performance of both techniques when 
applied to the recovery of uncorrelated and dependent sources.  

5.1   Uncorrelated Sources 

The performance of the CMA when applied to the recovery of i.i.d. sources is a 
classical research topic [1,10]. Nevertheless, correntropy has not yet been analyzed in 
this context. Let us consider the transmission of a BPSK (Binary Phase Shift Keying) 
modulated signal. Following the definition given by (3), the theoretical correntropy 
function of this source is: Vs[0]=k(0), and Vs[m]=0.5k(0)+0.5k(2) for m�0, where k(.) 
is the Gaussian kernel. 

Considering the simple FIR channel h(z)=1+0.5z-1, Fig. 3a shows the performance 
obtained using CMA (2) and correntropy (5) for an average of 50 simulations with a 
signal to noise ratio (SNR) of 20dB. The CMA step-size parameter was 0.01, and 
correntropy was simulated considering P=5, N=100 and μ=0.3 (all choices were based 
on preliminary simulations). The equalizers had, in both cases, two taps initialized at w 
= [1 0]T. It is interesting to observe that, in this case, CMA has a better performance. 
The algorithm converges faster, attains a lower value of ISI and oscillates much less 
than correntropy.  In order to compare the points of minima of both criteria, Fig. 3b 
shows the contour curves of their error surfaces. Even though the surfaces present 
important differences, which is reflected, for instance, on their having completely 
different local minima, the global minima are close. Given these results, we conclude 
that, for this i.i.d. case, the CM approach was more efficient than the correntropy-based 
method in making an effective use of the higher order statistics of the involved signals.  
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Fig. 3. Correntropy and CMA, h(z)=1+0.5z-1, SNR=20dB (a) performance, (b) contour curves 
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Figure 4 considers the case of a white but not independent source. We use here the 
same example considered in section 4.2. In this case, correntropy is able to reduce 
some of the ISI but CMA is not, which reveals the importance of employing higher-
order knowledge about the time structure of the transmitted signal. Correntropy was 
simulated with 5 taps, μ=0.08, P=5, N=100, while CMA had 7 taps and μ=0.0005.                 

5.2   Correlated Sources 

Let us consider again a channel with transfer function h(z)=1+0.5z-1. Fig. 5 shows the 
results obtained using an alternate mark inversion (AMI) source signal, instead of a 
BPSK modulated signal. The AMI signal is a correlated sequence drawn from the 
alphabet {-1,0,+1}, being its correntropy is given in [4]. Correntropy was simulated 
with P=5, N=100, μ=0.15, while CMA used a μ=0.005. Both filters had three 
coefficients. 

In consonance with the second scenario shown in section 5.1, the correntropy-
based method was the best solution. This can be explained once more by the fact that, 
in this case, only the correntropy is able to take into account the time structure of the 
signals: the CMA, as discussed in section 4, will treat the precoder as an additional 
distortion to be counterbalanced. The results reveal the importance of incorporating 
additional a priori information whenever one deals with “non i.i.d. sources”. 
However, notice that this does not necessarily require the use of correntropy: it is 
possible to conceive a modified CMA to explore the statistical dependence. 

 

  

Fig. 4. Correntropy and CMA performance 
source codified by an all-pass filter 

Fig. 5. Correntropy and CMA performance, 
AMI source, channel h=[1 0.5] 

6   Conclusion 

In this work, we provided a novel interpretation of the modus operandi of the constant 
modulus criterion under the hypothesis that the source has statistically dependent 
samples. The interpretation, which is founded on the equivalence between the CM 
and SW criteria and on nongaussianity-based ICA, allowed us to explain the 
modification in the position of the cost function minima (correspondent to a 
performance degradation) previously reported in the literature. We also presented an 
analysis of the correntropy for i.i.d. and statistically dependent sources. This analysis 
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revealed that the CM approach employed the higher-order statistics of the involved 
signals in a more efficient way in the i.i.d. case. On the other hand, the a priori 
higher-order time structure information brought by the correntropy-based method is 
decisive when the sources are dependent. 

There are many perspectives for future investigations, among which we highlight 
the realization of additional experiments to test the proposed interpretation of the CM 
criterion, an analysis of different kernels and parameters to improve the performance 
of the correntropy-based method under i.i.d. sources and the proposal of a modified 
CMA to include a priori information about the time structure of the relevant signals. 
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Abstract. We propose a probabilistic model for the Independent Vector Analysis
approach to blind deconvolution and derive an asymptotic Newton method to
estimate the model by Maximum Likelihood.

1 Introduction

In this paper we propose a probabilistic model for the complex STFT coefficient vec-
tors, which can be used in Independent Vector Analysis (IVA) [7] to perform blind
deconvolution. We use adaptive source densities [11] that are dependent across frequen-
cies [6,12] via complex Gaussian scale mixtures (CGSMs). These densities are shown
to be the natural result of the sampling of Fourier coefficients of intermittent sources,
in which a source is active only over a random fraction of each time window used to
sample the DFT. We derive a Newton method for Maximum Likelihood estimation [2].
The IVA model was developed by Kim, Eltoft, Lee, and others [8,6,7].

Notation: We denote the imaginary number by j �
√−1.

2 Densities over Complex Vectors and STFT Coefficients

A probability density defined on a complex vector space is simply a joint density for-
mulated over the real and imaginary parts of the vector. In particular, the probability
density function is real valued. Integration over Cn is equivalent to integration over
R2n. However, some real valued functions of complex vectors can be expressed in a
simpler form in terms of the complex vectors z = x+ jy and z∗ = x− jy, rather than
the real and imaginary parts x and y. And optimization of the real valued function may
be more conveniently carried out in the complex space Cn using the Wirtinger calculus,
instead of working in R2n [9].

Fourier coefficients of a stationary time series are complex valued random variables.
Stationarity implies that the covariance matrix of the real and imaginary parts has a
particular form. Let x be an n dimensional complex valued random vector. Then if the
real-valued random vectors xR, and xI are jointly distributed as,[

xR
xI

]
∼ N

([
cR
cI

]
, 1

2

[
ΣR −ΣI

ΣI ΣR

])
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for some complex vector c and Hermitian positive definite matrix Σ, then we say x is
complex multivariate Normal distributed, and write x ∼ NC(c,Σ).

The real domain probability density over (xR,xI) can be written in terms of complex
quantities p(x) � p(xR,xI) as,

p(x) = π−n(detΣ)−1 exp
(− (x− c)HΣ−1(x− c)

)
In particular, the univariate complex Normal distribution is given by

NC(x;μ, σ2) = π−1σ−2 exp(−σ−2|x− μ |2)

where xR and xI are independentN (μR, σ2/2) and N (μI , σ2/2) respectively.
Using the central limit theorem, it is shown that for stationary time series yi(t), the

distribution of the Fourier coefficients yi(ωk), k = 1, . . . , N , are independent complex
multivariate Gaussian [4]. Specifically we have the following [4, Thm.4.4.1].

Theorem 1. Let x(t) be a strictly stationary real vector time series with absolutely
summable cumulant spectra of all orders. Suppose 2ωj , ωj ± ωk �= 0 (mod 2π) for
1 ≤ j ≤ k ≤ N . Let,

d(T )(ω) =
1
T

T−1∑
τ=0

x(τ) exp(−jωτ)

Then the random vectors d(T )(ωk), k = 1, . . . , N , are asymptotically independent
complex Normal random vectors,NC(0,Σ(ωk)). Also if ω = 0 (mod 2π) then d(T )(ω)
is asymptotically N (c,Σ(0)), independent of the previous estimates, and if ω = π (
mod 2π), then d(T )(ω) is asymptoticallyN (0,Σ(0)), independent of the previous es-
timates.

The density of linear transformations can also be expressed simply in terms of complex
quantities. If b ∼ pb(b), then the density of x = Ab is, with W � A−1,

px(x) = det
(
WWH

)
pb(Wx)

3 Blind Deconvolution and Complex Gaussian Scale Mixtures

In the noiseless blind deconvolution problem [5], we have,

x(t) =
∞∑
τ=0

A(τ)s(t − τ)

where the time series si(t), i = 1, . . . , n are mutually independent. Using the discrete
Fourier transform, this is expressed in the frequency domain as,

x(ω) = A(ω)s(ω)
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where x(ω) �
∑

τ x(τ) exp(−jωτ), etc. We consider the asymptotic distribution of
the short time Fourier transform (STFT) coefficients, calculated by,

x(ωk, t) � x:kt �
T−1∑
τ=0

x(t− τ) exp(−j ωkτ)

Since the sources si(t) are independent, we have that si(ω1) and sj(ω2) are independent
for i �= j, and any ω1, ω2. Thus the joint distribution over the sources is a product,

p
(
s(ω1), . . . , s(ωN )

)
=

n∏
i=1

p
(
si(ω1), . . . , si(ωN )

)
By Theorem 1, for stationary sources, the joint distribution over the frequencies is the
product of n univariate complex Gaussians,

p
(
si(ω1), . . . , si(ωN )

)
=

N∏
k=1

NC

(
si(ωk); 0, σ2

k

)
where NC(μ, σ2) is the univariate complex Normal distribution, which is a radially
symmetric distribution over the real and imaginary parts of si(ωk), with variance σ2

k,
which gives the spectral power at frequency ωk. Theorem 1 holds for stationary time
series, but most long term observations of sensor data are non-stationary.

A more realistic assumption is that the time series is stationary over contiguous
blocks, switching at discrete (random) times among a set of stationary regimes. For
each individual stationary regime, as the window size, and/or sampling rate tend to
infinity, the Fourier coefficients will tend to complex Gaussians. In a switching time se-
ries, a window may contain two or more stationary regimes. If we let the sampling rate
tend to infinity, the individual stationary segments in the window will still be asymp-
totically complex Normal, and the overall distribution of the coefficients in the window
will be a convex sum of the two (or more) complex Normal random variables.

Since each window will contain a random size segment of a given stationary state,
the distributions of the Fourier coefficients for each state will be complex Gaussian
scale mixtures, with the Fourier coefficients at different frequencies being uncorrelated
but dependent. The joint distribution is given by,

p
(
si(ω1), . . . , si(ωN )

)
=

∫ ∞

0

N∏
k=1

NC

(
si(ωk); 0, ξ σ2

i,k

)
f(ξ) dξ

The distribution of si is equivalent to the product of a non-negative mixing random
variable with a complex Normal random vector, si = ξ1/2zi, where ξ ∼ p(ξ) and zi ∼
NC(0, diag(σi)), and can be expressed in a form similar to that of real valued Gaussian
scale mixtures, where the squared magnitude of the complex variable is substituted for
the square of the real variable [12].

Knowing the distribution of the Fourier coefficients of the independent sources, we
can calculate the distribution of the observation Fourier coefficients as,

p
(
x(ω1), . . . ,x(ωN )

)
=

( N∏
k=1

detW(ωk)W(ωk)H
) n∏

i=1

pi
(
bi(ω1), . . . , bi(ωN )

)
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The parameters of the unmixing system W(ω), as well as the CGSM density models,
for each source i = 1, . . . , n are adapted by Quasi Maximum Likelihood.

3.1 Generalized Inverse Gaussian and Generalized Hyperbolic

The Generalized Inverse Gaussian (GIG) density [3,6,12] is a convenient mixing den-
sity. It can be thought of as a combination and generalization of the gamma and inverse
gamma distributions. The GIG density has the form,

N †(ξ ;λ, τ, υ
)

=
υλ

2Kλ(τ)
ξλ−1 exp

(− 1
2τ

(
(υξ)−1+ υξ

))
(1)

for ξ > 0, where Kλ is the Bessel K function, or modified Bessel function of the
second kind. The moments of the Generalized Inverse Gaussian are easily found by
direct integration, using the fact that (1) integrates to one,

E{ξa} = υa
Kλ+a(τ)
Kλ(τ)

(2)

Since υ is a scale parameter and we we will estimate the scale of the complex Normal
directly, we will eliminate this redundancy by setting υ = 1 in the mixing density.

The generalized hyperbolic distribution [3] is the complex Gaussian scale mixture
arising from the GIG mixing density. We write the generalized hyperbolic density in
the form,

GHC(bi;λ, τ) =
τn−λ

πnKλ(τ)
τ(bi)λ−nKλ−n

(
τ(bi)

)
(3)

where τ(bi) �
√
τ2 + 2τ‖bi‖2.

The GIG density is conjugate to the Normal density, so the posterior density of ξ
given bi is also a GIG density. In particular the parameters of the posterior density of ξ
are,

λ′ = λ− n, τ ′ = τ(bi), υ′ = τ/τ(bi)

We can thus find the posterior expectation required for the EM algorithm using (2),

E{ξ−1
i |bi} =

τ(bi)
τ

Kλ−n−1(τ(bi))
Kλ−n(τ(bi))

(4)

4 Probabilistic IVA and Maximum Likelihood

We shall assume for simplicity of presentation and implementation that ωk �= 0(modπ)
for k = 1, . . . , N , so that all the STFT coefficients are all complex valued. Thus for
each observation x::t of STFT coefficients of the data, there is a set of random vectors
of independent, zero mean sources b:kt, such that,

x:kt = Akb:kt , k = 1, . . . , N
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The density of the observations p(x::t) � p(x:0t,x:1t . . . ,x:Nt) is given by,

p(x::t) =
( N∏

k=1

detWkWH
k

) n∏
i=1

qi
(
bi:t

)
where Wk � A−1

k , and b:kt = Wkx:kt, k = 1, . . . , N . The sources are modeled as
mixtures of Gaussian Scale Mixtures, extending the real model in [11] to the complex
dependent case. We define,

yijkt � β
1/2
ijk bikt

The source density models are defined as follows,

qi
(
bi:t

)
=

m∑
j=1

αij

(∏N
k=1βijk

)
qij

(
yij:t ; τij

)
Each qij is a CGSM parameterized by νij .

Thus the density of the observations x::: � {x::t}, t = 1, . . . , T , is given by
p(x:::;Θ) =

∏T
t=1 p(x::t;Θ), and the parameters to be estimated are

Θ =
{
Wk, αij , βijk, τij

}
for i = 1, . . . , n, j = 1, . . . ,m, and k = 1, . . . , N .

4.1 Maximum Likelihood

Given the STFT data X = {x:kt}, k = 1, . . . , N , t = 1, . . . , T , we consider the
ML estimate of Wk = A−1

k , k = 1, . . . , N . We employ the EM algorithm to allow
the source density at each frequency to be a mixture of (multivariate intra-dependent)
CGSMs. Thus we define the random index jit ranging over {1, . . . ,m} with probabil-
ities αij , j = 1, . . . ,m, and we let zijt = 1 if jit = j, and 0 otherwise. For the joint
density of X and Z, we have,

p(X,Z) =
T∏
t=1

( N∏
k=1

detWkWH
k

) n∏
i=1

m∏
j=1

α
zijt

ij β̃
zijt

ij qij
(
yij:t

)zijt

where qij(yij:t) is the jth mixture component of the dependent multivariate density
model for the STFT coefficients of ith source, bi:t is the vector of STFT coefficients
for source i at time t, and β̃ij �

∏N
k=1 βijk . We define,

fij(‖yij:t‖) � gij(‖yij:t‖2) � − log qij(yij:t)

For the log likelihood of the data then (scaled by 1/T ), which is to be maximized with
respect to the parameters, we have,

L(W) =
( N∑

k=1

log detWkWH
k

)
− 1
T

T∑
t=1

n∑
i=1

m∑
j=1

ẑijt gij
(∑N

�=1βij�|bi�t|2
)
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Note that |bi�t|2 = (wi�x:�t)(wi�x:�t)∗ = (wi�x:�t)(w∗i�x
∗
:�t). The complex gradient,

or Wirtinger conjugate derivative of L is thus,

∂

∂W∗
k

L(W) � Gk = W−H
k +

1
T

T∑
t=1

ϕ:ktx
H
:kt (5)

for k = 1, . . . , N , where,

ϕikt � − biktγikt, γikt �
m∑
j=1

ẑijt βijk g
′
ij

(∑N
�=1βij�|bi�t|2

)
(6)

If we multiply (5) by WH
k Wk on the right, we get,

ΔWk ∝
(
I +

1
T

T∑
t=1

ϕ:ktb
H
:kt

)
Wk (7)

This linear transformation of the complex gradient is a positive definite, and thus a valid
descent direction. The direction (7) is known as the “natural gradient” [1].

4.2 Hessian and Newton Method

If we expand L in a second order Taylor series, L(W + dW), and solve for the maxi-
mizing dW, we arrive at the equation,

H11(dW∗
k) +H12(dWk) +

∑
� �=k

H′11(dW∗
� ) +H′12(dW�) = −Gk (8)

for k = 1, . . . , N , where H11 denotes two consecutive conjugate derivatives of Wk,
H12 denotes a conjugate derivative of Wk followed by a non-conjugate derivative of
Wk, etc. TheH′ terms are derivatives with respect to Wk followed by derivatives with
respect to W� where " �= k.

Now, we have,
∂ϕikt
∂[Wk]rs

= −δir (γikt + ψikt)xskt

where δir is the Kronecker delta symbol, and,

ψikt � |bikt|2
m∑
j=1

ẑijt β
2
ijk g

′′
ij

(∑N
�=1βij�|bi�t|2)

Similarly, we have,

∂ϕikt
∂[Wk]∗rs

= −δir ψikt
(
bikt/|bikt|

)2
x∗skt

Now let Bk = dWk. Then we have,

H11(Bk) +H12(B∗k) = −W−H
k BH

k W−H
k

−
〈

diag(ζ :kt)B
∗
kx
∗
:ktx

H
:kt

〉
T
−

〈
diag(γ:kt + ψ:kt)Bkx:ktxH:kt

〉
T
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where
〈 · 〉

T
denotes the empirical average 1

T

∑ ·, and,

ζikt � ψikt
(
bikt/|bikt|

)2

The terms involving H′11, etc., tend to zero since the STFT coefficients at different
frequencies are orthogonal (though nevertheless dependent) by definition.

Thus (8) reduces to,

Gk = W−H
k BH

k W−H
k +

〈
diag(ζ :kt)B

∗
kx
∗
:ktx

H
:kt

〉
T
+
〈

diag(γ :kt+ψ:kt)Bkx:ktxH:kt
〉
T

(9)
We would like to solve this equation for Bk = dWk.

If we define B̃k � BkW−1
k and G̃k � GkWH

k , then (9) can be written,

G̃k = B̃H
k +

〈
diag

(
ζ:kt

)
B̃∗kb

∗
:ktb

H
:kt

〉
T

+
〈

diag
(
γ:kt + ψ:kt

)
B̃kb:ktbH

:kt

〉
T

(10)

We find asymptotically for the diagonal elements,[
G̃k

]
ii

= [B̃k]∗ii + E
{
ψikt|bikt|2

}
[B̃k]∗ii + E

{
(γikt + ψikt)|bikt|2

}
[B̃k]ii

The cross terms drop out since the expected value of ψiktbsktb∗ikt is zero for i �= s by
the independence and zero mean assumption on the sources. Thus we have,[

G̃k

]
ii

=
(
[G̃k]ii − 1 + ηik

)
[B̃k]ii + (1 + ηik)[B̃k]∗ii

where we define ηik � E{ψikt|bikt|2}. Since [G̃k]ii is real, this equation implies that
[B̃k]ii must be real, and,

[B̃k]ii =
[G̃k]ii

[G̃k]ii + 2ηik
(11)

The equation for the off-diagonal elements in (10) is,

[G̃k]ij = [B̃k]∗ji + E{ζikt}E{b2jkt}∗[B̃k]∗ij + E{γikt + ψikt}E{|bjkt|2}[B̃k]ij

For circular complex sources such as the Fourier coefficients of stationary signals, we
have E{b2ikt} = 0. We can thus solve the following system of equations for [B̃k]ij ,[

G̃k

]
ij

= [B̃∗k]ji + κikσ2
jk[B̃k]ij[

G̃∗
k

]
ji

= [B̃k]ij + κjkσ2
ik[B̃

∗
k]ji

where we define κik � E{γikt + ψikt} and σ2
ik � E{|bikt|2}. Thus,[

B̃k

]
ij

=
κjkσ

2
ik[G̃k]ij − [G̃∗

k]ji
κikκjkσ2

ikσ
2
jk − 1

(12)

where G̃k = I + 1
T

∑T
t=1 ϕ:ktb

H
:kt. With B̃k defined by (11) and (12), we then put,

ΔWk = B̃kWk (13)

For the EM updates of αij and βijk , we have,

αij =
1
T

T∑
t=1

ẑijt, β−1
ijk =

1
T

T∑
t=1

ẑijt E{ξ−1
ijt |bi:t}|bikt|2 (14)

where the posterior expectation is given by equation (4).
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5 Conclusion

We have formulated a probabilistic framework for IVA and developed an asymptotic
Newton method to estimate the parameters by Maximum Likelihood with adaptive
complex Gaussian scale mixtures. We have extended the IVA model by deriving the
model probabilistically using complex Gaussian scale mixtures. We also allow sources
to have arbitrary spectra by adapting the spectral power parameters βijk , and to assume
multiple spectral regimes using a mixture of CGSMs in the source model. Here we have
concentrated on Generalized Inverse Gaussian mixing density, but the framework can
accommodate other CGSM families as well, e.g. Generalized Gaussian or Logistic den-
sities [12]. The Newton method can be extended to handle non-circular sources as well,
leading from equation (9) to a block 4 × 4 Hessian structure [10]. The probabilistic
model also allows straightforward extension to an IVA mixture model.
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Abstract. This paper presents the theoretical background for the
Model Based Underdetermined Source Separation presented in [5]. We
show that for a given frequency band, in contrast to customary assump-
tion, the observed Short-Time Fourier Transform (STFT) ratio coming
from one source is not constant in time, but is a random variable whose
distribution we have obtained. Using this distribution and the Time-
Frequency (TF) “disjoint” assumption of sources, we are able to obtain
promising results in separating four audio sources from two microphones
in a real reverberant room.

1 Introduction

Blind Source Separation (BSS) is a well known technique to recover multiple
original sources from their mixtures. Applications of BSS can be found in differ-
ent fields like acoustic, biomedical and even economic. In the acoustic domain,
BSS aims at separating speech and/or audio sources that have been mixed and
then captured by multiple microphones in usually reverberant environment (the
problem is referred as the cocktail party). The difficulty of the problem lies in
the nature of the mixing system which is not instantaneous but convolutive (due
to numerous reflections) with long impulse responses. In real reverberant situa-
tion, such responses can have thousands of taps even with small sampling rate
(2400 taps for 60-dB reverberation time1 of 300ms with 8KHz sampling rate).
The problem gets harder in the underdetermined case (number of sources greater
than number of microphones): in this case, no unique algebraic solution exists
unless additional information on the mixing matrix or on the sources is given.

Different approaches are proposed in the literature to separate underdeter-
mined audio mixtures. Most of these methods operate in the frequency domain

1 This is the time for which the sound energy has decayed by 60dB.

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 98–105, 2009.
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(FD). The time-domain mixed signals xj(t) observed at the microphones are con-
verted into frequency-domain time-series signals by a short-time Fourier trans-
form (STFT):

Xj(t, ω) =
L−1∑
k=0

w(k)xj(t+ k)e−iωk =
N∑
p=1

Xj,p(t, ω), (1)

where w(·) is an analysis window (e.g. Hamming) and Xj,p(t, ω) is the con-
tributed STFT of the pth source to the jth sensor, that is of xj,p(t) = (aj,p$sp)(t),
aj,p(·) denoting the filter impulse response describing the effect of the pth source
on the jth microphone and $ denoting the convolution. Working in the FD has
two major reasons. Firstly, it permits transforming convolutive mixtures into
instantaneous ones in each frequency band. Specifically Xj,p(t, ω) may be ap-
proximated by Aj,p(ω)Sp(t, ω) where Aj,p is the frequency response of the filter
aj,p and Sp(t, ω) is the STFT of sp(t). Secondly, the sparseness of speech signals
becomes prominent in the Time-Frequency (TF) domain. This feature plays a
crucial role in the underdetermined case: It entails that in the TF domain, the
quasi-support2 of the source would be nearly disjoint, hence in each TF bin there
is a high probability that at most one source is dominant. Thus the sources can
be separated by binary masks. Still it remains the problem of how to allocate
each TF bin to the corresponding source. Applying the “disjoint” assumption,
at each bin (t, ω), the last sum in (1) contains one single non negligible term,
hence:

Xj(t, ω) ≈ Xj,q(t, ω) ≈ Ajq(ω)Sq(t, ω) (2)

where q denoted the dominant source index at (t, ω). The ratio of the observed
STFT at this point would then be:

R(t, ω) =
X1(t, ω)
X2(t, ω)

≈ X1,q(t, ω)
X2,q(t, ω)

≈ A1q(ω)
A2q(ω)

(3)

Being frequency and source dependent (but time independent), this ratio can
be used in each frequency band to identify the sources in each TF bin. Most
existing methods follows this approach. Note that, the modulus and argument
of R(t, ω) are no other than the traditional Interchannel Level Difference (ILD)
and Interchannel Phase Difference (IPD).

As we can see, underdetermined audio separation is based on two approxima-
tion: the sparseness or more exactly the “disjoint” assumption, which results in
the first approximation in (2) and (3), and the second approximation in (2) or
more exactly in (3). The validity of the sparseness assumption can be found in
[2,?,4]. In this paper we will show that the second approximation in (2) and (3)
unfortunately are not valid in realistic situations where the room impulse re-
sponse often exceeds the STFT window length L. More precisely, we will show
that for a fixed frequency band ω and even with only one active source sp(t, ω),
the observed STFT ratio X1,p(t, ω)/X2,p(t, ω) can not be considered as constant

2 By quasi-support we mean the set of TF bins for which the signal is not negligible.
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in time, but is a random variable with an infinite variance. The logarithm of
this ratio however has a finite variance and its mean and variance would tend to
log[A1,p(ω)/A2,p(ω)] and 0 as L → ∞ (as expected). But for L not large with
respect to the impulse response length, the variance can be appreciable. We will
derive formulas for the mean and variance of this “log ratio” and also its prob-
ability density function. Having this “log ratio” model and after estimating its
parameters by an Expectation Maximization (EM) algorithm, soft masks can be
derived to separate the sources. Note that Balan and Rosca [1] has also consid-
ered a probabilistic model for the observed STFT ratio, but they still rely on
the approximation (3) while relaxing somewhat the “disjoint assumption”.

2 The STFT Ratio Distribution

We consider the case where only one source sp is active at the two microphones:

xj,p(t) = (aj,p $ sp)(t) =
M−1∑
k=0

ajp(k)sp(t− k), j = 1, 2.

The time-domain observed signals xj,p(t) are converted into frequency-domain
time-series Xj,p(t, ω) signals using the STFT:

Xj,p(t, ω) =
L−1∑
k=0

w(k)xj,p(t+ k)e−ikω =
0∑

k=1−L
w(−k)eikωxj,p(t− k)

As we can see from the above second right hand side, Xj,p(t, ω) can be considered
as the output of the filter wω : wω(k) = w(−k)eikω applied to the signal xj,p(t).
At its turn, xj,p(t) is the filtered version of sp(t) by the filter aj,p . Thus, for a
given ω, Xj,p(t, ω) is the filtered version of sp(t) by the filter aj,p $ wω , which
has Fourier transform W (ω − ·)Aj,p(·), W denoting the Fourier transform of w.

2.1 Variance and Correlation

Note that the filter ajp $wω has support in [1−M,L−1]. Therefore if we assume
that the signal sp can be considered stationary in the time frame [t−L+ 1, t+
M − 1] with power spectral density denoted by Dp(t, ·)3, then X1,p(t, ω) and
X2,p(t, ω) have variances

σ2
j,p(t, ω) = E|Xj,p(t, ω)|2 =

∫ π

−π
|W (ω − λ)|2|Ajp(λ)|2Dp(t, λ)

dλ

2π
, j = 1, 2

and (complex) covariance

cov[X1,p(t, ω), X2,p(t, ω)] = E|X1,p(t, ω)X∗2,p(t, ω)]

=
∫ π

−π
|W (ω − λ)|2A1p(λ)A∗2p(λ)Dp(t, λ)

dλ

2π
.

3 This assumption might not be quite realistic for large L + M − 2, however the cal-
culations might still be valid by interpreting Dp(t, ·) as the average spectral density.
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Note that for large L, |W |2 will have the shape of a Dirac: it is negligible outside
in interval centered at 0 of length of the order 1/L. Thus if we assume that the
spectral density does not vary much in a interval of frequencies of length about
1/L, we may pull the term Dp(t, λ) outside the above integrals, which yields the
approximations to th complex correlation between X1,p(t, ω) and X2,p(t, ω)

ρp(t, ω) ≈
∫ π

−π |W (ω − λ)|2A1p(λ)A∗2p(λ)dλ∫ π

−π |W (ω − λ)|2|A1p(λ)|2dλ
∫ π

−π |W (ω − λ)|2|A2p(λ)|2dλ]1/2

and to their variance ratio

σ2
1,p(t, ω)
σ2

2,p(t, ω)
≈

∫ π

−π |W (ω − λ)|2|A1p(λ)|2dλ∫ π

−π |W (ω − λ)|2|A2p(λ)|2dλ
.

The above approximations are reasonable and will be made. It follows that the
variance ratio and the correlation don’t vary in time and depend only on the
chosen analysis window and the filter impulse responses. Note that if we make
the unrealistic assumption that M is much smaller than L, then A1p and A2,p
also don’t vary much in a interval of length about 1/L and thus |ρp(t, ω)| ≈ 1.
This means that X1p(t, ω)/X1p(t, ω) is constant in time and we get the second
approximation in (2) and (3) mentioned in the introduction.

2.2 Ratio Distribution

To simplify the notations, in this section we will omit the ω variable since it
remains fixed throughout. By the approximations in previous section, the vari-
ance ratio and correlation do not depend on time, hence the time variable will
also be dropped in their symbols. We assume that L is large enough so that,
by the Central Limit Theorem, the pair X1,p(t) and X2,p(t) can be considered
as Gaussian (complex circular) with variance σ2

1,p(t) and σ2
2,p(t) and correla-

tion ρp. To compute the distribution of X1,p(t)/X2,p(t), a trick is used to take
the correlated item X2,p(t) out of X1,p(t). It can be checked that the difference
X1,p(t)/σ1,p(t) − ρpX2,p(t)/σ2,p(t) is uncorrelated with, hence independent of,
X2,p(t) and has variance 1− |ρp|2. Thus:

X1,p(t)/σ1,p(t) = ρpX2,p(t)/σ2,p + (1 − |ρp|2)1/2R1|2,p(t)

where R1|2,p(t) is a complex standard normal variable independent of X2,p(t).
Therefore

R(t) =
X1,p(t)
X2,p(t)

=
σ1,p

σ2,p

(
ρp +

√
1− |ρp|2

)
R1|2,p(t)

X2,p(t)/σ2,p(t)
(4)

Both R1|2,p(t) and X2,p(t)/σ2,p(t) are complex standard normal variables, hence
are distributed as

√
V eiU where V is an exponential variable with unit mean and

U is uniform in [0, 2π]. Thus the right hand side of (4) has the same distribution
as:

σ1,p

σ2,p

(
ρp +

√
1− |ρp|2

)√
ReiU
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where R is the ratio of two independent exponential variables of same mean and
U is uniform in [0, 2π] (since the difference modulo 2π of 2 independent uniform
variables in [0, 2π] is again uniform in [0, 2π]). Explicit calculation shows that
R admits the density function 1/(1 + r)2, hence it has an infinite mean but its
square root has a finite mean. Therefore R(t) has infinite variance. To avoid this
problem, we propose to consider its logarithm, which is distributed as

log(σ1,p/σ2,p) + i arg ρp + log[|ρp|+ (1− |ρp|2)1/2
√
ReiU ] (5)

(arg z denoting the argument of the complex number z: z = |z|eiarg z), since
(U − arg ρp) mod 2π has the same distribution as U .

The first two terms in (5) are non random and correspond to the mean of
log[X1,p(t)/X2,p(t)] since the remainder term log[|ρp|+(1−|ρp|2)1/2

√
ReiU ] has

zero mean as it can be seen later. The joint density of the real and imaginary
part of this complex variable can be obtained from the known joint density of
the independent random variables R,U and the transformation r, u �→ log[|ρp|+
(1 − |ρp|2)1/2√reiu] = x + iy. An explicit (and tedious) calculation yields this
joint density:

p|ρp|(x, y) =
1
4π

1− |ρp|2
(coshx− |ρp| cosx)2

. (6)

This density is an even function of both of its arguments, hence the corresponding
complex variable has zero mean and uncorrelated real and imaginary parts.

Finally, the time set of log |R(t)| and argR(t) have the joint density:

p|ρp|(x− log |rp|, y − arg rp) (7)

where rp = (σ1,p/σ2,p)ei arg ρp . Note that rp and |ρp| may be viewed respectively
as standing for the source sp position in space and for the reverberation degree
of the acoustic path between sp and the set of microphones, so that |ρp| tends
to one when the mixture tends to be anechoic.

3 Application to Sparse Source Separation

In [5], we have used the density model given in (6) – (7) to separate audio sources
in the underdetermined case. The method and results are briefly described here.

Under the “disjoint” assumption, at most one source is dominant in each TF
bin, but we don’t know which one it is. Thus given the one source log ratio
density function in (6) –(7), we adopt the following model for the distribution
of the real and imaginary parts of logR(t, ω) for a given ω:

p(x, y|ρρρ,rrr,μμμ) =
N∑
p=1

μpp|ρp|(x− log |rp|, y − arg rp)

where ρρρ = (|ρ1|, . . . , |ρN |), rrr = (r1, . . . , rN ) andμμμ = (μ1, .., μN ) are the frequency
dependent model parameters (the frequency variable ω is again omitted for sim-
plicity), μp denoting the a priori probability that the pth source being dominant
in the considered frequency band. As no model is known for the parameters rp
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and |ρp| as function of frequency or that such a model is too complex, we choose
to estimate them independently at each frequency band, for example, by the
maximum likelihood method based on the data set {log |R(t)|, argR(t)} and the
model (6) – (7). Once estimated, the a posteriori probability that pth source is
dominant at the TF point (t, ω) is given by:

πp(t) =
μpp|ρp|[log |R(t)/rp|, argR(t)/rp]∑N
i=1 μip|ρi|[log |R(t)/ri|, argR(t)/ri]

.

These a posteriori probabilities can be used to construct a binary or a soft mask
to extract the pth source.

To maximize the likelihood, the EM (expectation-maximization) algorithm
can be used. The hidden variable is taken as the indicator variable that indicates
which source is dominant at each TF point. Of course, working in FD has the
permutation ambiguities problem. These ambiguities should be aligned properly
so that the separated frequency components that originate from the same source
are grouped together, using for example the methods in [3].

4 Experiments and Results

We adopt the experimental setup (room dimensions and source/microphone po-
sitions) as described in Fig. 1. Further, development data can be downloaded
from the Signal Separation Evaluation Campaign site at [6].

First, in order to highlight the bad approximation of X1,p(t, ω)/X2,p(t, ω)
by A1p(ω)/A2p(ω) we compute numerically the correlation ρp(ω) between the
twos STFT output X1,p(t, ω) and X2,p(t, ω) and their standard deviation ra-
tio σ1,p(ω)/σ2,p(ω). We choose p = 1, hence the computation is based on the
mixing filters which relate the first source to the set of microphones (D=5cm,
source angle = −45◦). Theoretically, the “log ratio” log[X1,1(t, ω)/X2,1(t, ω)]
has means log[σ1,1(ω)/σ2,1(ω)] + i arg ρ1(ω) and its variability is controlled by
ρ1(ω) but is better measured by

√
1− |ρ1(ω)|2, since the later (by numerical

calculation) varies more or less linearly with the standard deviations of its real

Fig. 1. Recording arrangement used for development data
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Fig. 2. Histogram of
√

1 − |ρ1|2, left panel, and scatter plot of log[(σ1,1/σ2,1)ei arg ρ1/
(A11/A21)], right panel

and imaginary parts. Therefore we plot in Figure 2 the histogram of
√

1− |ρ1|2
(left panel) and the scatter plot of log[(σ1,1/σ2,1)ei arg ρ1/(A11/A21)] (right panel,
real and imaginary parts as abscissa and ordinate). One can see that for many
frequency bins the variability of the “log ratio” is significant. In fact half of them
have a

√
1− |ρ1|2 exceeding 0.4554. This corresponds to a standard deviation

of log |X1,1(t, ω)/X2,1(t, ω)| of 0.53 and a difference of ±0.53 in the logarithm
corresponds to a 70% increase or 41% decrease in value. The means of the “log
ratio” can also be quite different from log[A11(ω)/A21(ω)] for some frequencies.

Next, we examine the performance of the algorithm in section 3. We measure
it by the improvement of the Signal to Interference Ratio (SIR) and Signal to
distortion Ratio (SDR) as in [4]. For both criteria, larger number refers to better
results. SIR improvement is calculated by the difference between the mean of
the Input and Output SIR:

InputSIRp =
1
2

2∑
j=1

10 log10

∑
t |xj,p(t)|2∑

t |
∑

q �=p xj,q(t)|2

OutputSIRp =
1
2

2∑
j=1

10 log10

∑
t |yj,pp(t)|2∑

t |
∑

q �=p yj,qp(t)|2

where yj,qp is the inverse STFT of the observation Xj,q masked by Mp
4. The

SDR for output p is defined by the mean of the power ratio between xj,p and
the distortion in yj,pp

SDRi =
1
2

2∑
j=1

10 log10

∑
t |αpxj,p(t)|2∑

t |yj,pp(t)− αpxj,p(t)|2

where αp is an adjusting factor for amplitude differences and is optimally ob-
tained by least-mean-square: αp = (

∑
t yj,pp(t)xj,p(t))/

∑
t |xj,p(t)|2.

4 Mp(t, ω) = πp(t, ω) is the separation soft mask that extracts the source p.
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Table 1. Results for live recording with two microphone spacing (5cm, 1m) and two
different types of speaker; Overall performance of the separation is presented in the
last column

Mixture 4 females live recording 4 males live recording
D = 5cm D = 1m D = 5cm D = 1m Over all

Source s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4

SIR 7.8 8.3 8 7.1 9.3 7 9.9 9.8 7.8 6.6 7.3 7.2 8.2 6.8 9 8.4 8.1
SDR 6.7 1.5 6.4 8.8 6.8 7.1 6.7 5.9 4.5 3 7.8 7.2 5.2 6.4 6.7 6.7 6.1

Table 1 displays the performance results. As we can see the new algorithm
gives promising results in a very chalenging situation (average SIR improve-
ment of 8.1dB). These results compare favorably with other previous methods
(see [5]). Our method can make use of soft mask which gives less distortion in
the separated sources, in another term, less artefacts as it can be seen in the
obtained SDR average (6.1dB).

5 Conclusion

In this paper, we show the non validity of approximating the one source observed
STFT ratio by the filter frequency response ratio. Instead, the first ratio is a
random variable, the distribution of which we have obtained in close form. A
separation procedure based on this distribution model has been briefly described.
Experiments are conducted in a real reverberant room where results show good
performance for the new proposed algorithm.
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and Elmar W. Lang1

1 CIMLG / Biophysics, University of Regensburg, 93040 Regensburg, Germany
2 Infineon Technologies AG, 93049 Regensburg, Germany

3 DETI / IEETA, Universidade de Aveiro, 3810-Aveiro, Portugal
elmar.lang@biologie.uni-regensburg.de

Abstract. We propose a determinant criterion to constrain the solu-
tions of non-negative matrix factorization problems and achieve unique
and optimal solutions in a general setting, provided an exact solution
exists. We demonstrate with illustrative examples how optimal solutions
are obtained using our new algorithm detNMF and discuss the difference
to NMF algorithms imposing sparsity constraints.

1 Introduction

Non-negative Matrix Factorization (NMF) has seen numerous applications since
its invention by Paatero [1]. A couple of different cost functions as well as var-
ious optimization techniques have been presented in recent years [2], [6], [12].
However, uniqueness of NMF-solutions is still an open issue despite some recent
attempts to deal with the subject [10], [11]. There are two popular routes to
enforce uniqueness of the solutions. While in [4], arguments from sparse coding
are invoked, the development of positive matrix factorization as surveyed in [14]
rather proposes application-driven solutions requiring background knowledge.
Both approaches are limited to special applications where specific information
about the data is available or specific assumptions concerning the composition
of data are necessary.

This letter suggests a more principled approach to uniqueness. Starting from a
geometrical point of view similar to [16], we illustrate the problem of uniqueness
and explain how, given no further restrictions, the determinant can be used
to identify an optimal solution arising naturally among all possible exact non-
negative decompositions of a given data matrix .

Recently, a similar concept has been proposed to solve spectral unmixing
problems assuming a linear mixing model [18]. However, the additional sum-
mation constraint on the mixing coefficients and an approximation involving a
PCA imposes unnecessary limitations and complications which distinguishes the
approach in [18] from ours.

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 106–113, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 Geometrical Approach

2.1 Problem Illustration

In the following, we consider an exact decomposition where each observed signa-
ture Xn∗ (n = 1, . . . , N) can be represented as a non-negative, linear combination
of K non-negative modes Hk∗:

Xn∗ =
K∑
k=1

WnkHk∗ (1)

We further assume the Hk∗ to be normalized, so that
∑

j(Hkj)2 = 1 for k =
1, . . . ,K. The goal of any NMF-algorithm then is the identification of such modes
uniquely, given the data X, the number of modes K and the non-negativity
constraints. Note that uniqueness is limited by trivial scaling and permutation
indeterminacies.
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Fig. 1. 2D illustration of detNMF: Data were generated via WH, using H =√
4
5

( 1
2 1

1 1
2

)
and arbitrary mixing coefficients wnm ∈ {0, 2}. Two possible NMF-bases

(H1∗,H2∗), (H′
1∗,H

′
2∗) are indicated as well as the minimal determinant parallelepiped

with normalized hkm and wnk.

Geometrically, non-negativity manifests itself as follows: (see figure 1 for a
two-dimensional example where N = K = 2, see also [14], [16])

– X ≥ 0:
All data vectors {Xi∗}Ni=1 constitute a cloud in the non-negative quadrant
(R+

0 )M of RM .
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– H ≥ 0:
Each basis vector Hk∗ points into (R+

0 )M ; Normalized vectors Hk∗ span a
K-dimensional subset of the non-negative quadrant (R+

0 )M of RM .
– W ≥ 0:

Positive coefficients Wnk for all k imply that a data vector Xn∗ is inside this
K-dimensional subset, whereas Wnk = 0 for at least one k indicates that
point Xn∗ lies on a K-1 dimensional peripheral surface. Here, we consider
the surfaces as part of the interior of the subset.

Any set of K non-negative vectors {Hk∗}Kk=1 which enclose the data X pro-
vides a valid solution to the NMF-problem X = WH. A natural choice of a
unique solution, given the data X, is a set of nonnegative modes {Hk∗}Kk=1, which
span a parallepiped with minimal volume containing X. In other words, the non-
negative K-tuple of N -dimensional vectors enclosing the data in the tightest
possible way is our candidate for a unique solution. (See the pair (H1∗,H2∗) in
figure 1.)

3 The Algorithm detNMF

3.1 Determinant Criterion

Let P (H) be the parallelepiped spanned by the vectors H1∗, . . .HK∗. If H is a
square matrix, the volume of P (H) is given by vol(P ) = | det(H)|, otherwise
the volume of the parallelepiped can be obtained by vol(P ) =

√
det(HHT ).

Thus we seek non-negative modes Hk∗ such that det(HHT ) is minimal. If we

normalize each mode Hk∗ by
(√∑

j(Hkj)2
)−1

, a minimal P (H) is equivalent

to minimal angles between the edges of P (H). Below we provide the algorithm
detNMF which directly implements this determinant criterion.

Assuming a noise-free model, there is at least one exact solution for the correct
K. Unless the convex hull of the data is rotationally symmetric, there is an
optimal solution among them selected by the determinant criterion (unique up
to permutation). If there is rotational symmetry, there are several equivalent
optimal solutions, which cannot be distinguished by the determinant criterion.

If the model X ≈WH holds only approximately, a suitable tradeoff between
the reconstruction accuracy and a minimal determinant must be found. In that
case, the existence of unique solutions is of course arguable, and will not be
discussed here (see [9]).

3.2 Update Rules

Consider the mean squared reconstruction error regularized by the minimal de-
terminant criterion (α > 0)

Edet(X,WH) = (NM)−1
N∑
n=1

M∑
m=1

(Xnm − [WH]nm)2 + α det (HHT ), (2)
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The term det (HHT ) is differentiable, and its partial derivatives are given by

∂ det(HHT )
∂Hkm

= 2 det (HHT )[(HHT )−1H]km. (3)

Gradient descent then leads to the following multiplicative update rules (4)-
(7) of the algorithm detNMF :

update:

Hkm ← Hkm

(
[WTX]km

[WTWH]km
− α · det (HHT )

[(HHT )−1H]km
[WTWH]km

)
(4)

Wnk ← Wnk · [XHT ]nk
[WHHT ]nk

(5)

normalize:

Hkm ← Hkm√∑
m(Hkm)2

(6)

Wnk ←Wnk ·
√∑

m

(Hkm)2 (7)

These update rules represent a modification of the well-known unconstrained
NMF algorithm [2] to which they reduce in the limit α→ 0. Note that the latter
algorithm has been shown not to increase the reconstruction error [3]. General
methods of how to regularize multiplicative updates with additional constraints
are discussed in [6], [12] or [15].

As described in Section , any solution to an exactly solvable NMF-problem
requires the modes Hk∗ to lie on the periphery of the data cloud. The NMF
algorithm, initialized randomly, moves the modes Hk∗ outside of the given data
cloud. For any α > 0, the determinant constraint instead forces the basis vec-
tors Hk∗ to move towards each other. These conflicting requirements can be
controlled by choosing a small α > 0 which should be increased only when all
modes lie outside the data cloud. In simulations we observed that with α kept
small enough so that the reconstruction error does not increase during an itera-
tion step, very satisfactory results are obtained.

3.3 Geometrical Interpretation and the Multi-layer Technique

The determinant criterion can also be related to a practice called multi-layer
technique [7], [8]. Such a sequential decomposition of nonnegative matrices as
a cascade of unmixing systems usually yields a better performance than one
single decomposition. The determinant criterion intuitively explains this effect
by noting that

det
(
HHT

)
= det

(
H(L) . . .H(1)H(1)T . . .H(L)T

)
= det

(
H(L)H(L)T

)
. . .det

(
H(1)H(1)T

)
. (8)
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Normalizing the rows of H(l) such that (
∑

j(H
(l)
kj )2) = 1 for all k = 1, . . . ,K

implies that det
(
H(l)H(l)T

) ≤ 1 for every term l = 1 . . . L in the last line of
(8). The larger L, the higher is the probability to obtain a solution with a small
determinant in at least one iteration, and accordingly a small overall determinant
results.

4 Illustrative Example

4.1 Unconstrained NMF versus detNMF

We tested the performance of the detNMF algorithm on artificial data. For this
purpose, we used the following simulation setup:

– Generate H (see figure 2, left)

H =

⎛⎝H1∗
H2∗
H3∗

⎞⎠ =

⎛⎝ bowl
stair
block

⎞⎠ (9)

– Initialize W by non-negative random numbers

1 2 3 4 5
0

0.5

1

1 2 3 4 5
0

0.5

1

1 2 3 4 5
0

0.5

1

1 2 3 4 5
0

0.5

1 2 3 4 5
0

0.5

1

1 2 3 4 5
0

0.5

Fig. 2. Left: Original features bowl H1∗(top), stair H2∗(center), and block
H3∗(bottom), which are perfectly recovered by the detNMF algorithm. Each vector
Hk∗ is a 5-dim analogon to the 2-dim vectors in figure 1. Right: Example of a valid
solution, but with wrong features H′

1∗,H′
2∗, H′

3∗, obtained via unconstrained NMF.

The algorithm receives X = WH and K = 3 as input. The matrices H and
W are initialized with random positive numbers and then iteratively updated as
described above until the normalized reconstruction error falls below a certain
threshold (e.g. (NM)−1E(α = 0) < 10−10). In the simulations, the algorithm
detNMF always extracted the correct modes despite starting with random initial-
izations as well as different original coefficient matrices W and varying numbers
of individuals (e.g. N = 100, 1000, 10000).

During iteratively reconstructing the data matrix X with sufficient precision,
the determinant criterion pushes the feature vectors towards the optimal solution
with the smallest possible determinant. In contrast, the unconstrained version
(α = 0) converges to several different solutions, depending on the initialization.
In figure 2 (right) we give an example of an exact nonnegative factorization of
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the data in (W′,H′) which does not reproduce the original modes H correctly.
Note that H′

2∗ + 0.2H′
3∗ ≈ H2∗. Furthermore, note that det(HHT ) = 0.18

and det(H′H′T ) = 0.31. The basis H′ is sufficient to explain all data by a non-
negative superposition, but does not contain the correct solution which generated
the data and which is characterized by a minimal determinant.

4.2 Determinant Criterion versus Sparseness Constraints

We now discuss an example in which the algorithm detNMF obtains the correct
solution of a specified NMF problem, whereas a sparse approach [4], [13] fails to
do so. For comparison, we chose the nnsc-algorithm, as described in [4] (nnsc:
non-negative sparse coding), which minimizes the following objective function

Ennsc = (NM)−1
N∑
n=1

M∑
m=1

(Xnm − [WH]nm)2 + λ
∑
nk

Wnk. (10)

The term λ
∑

nkWnk, λ ≥ 0 penalizes large weights Wnk, hence a maximally
sparse W corresponds to a solution where the columns W∗k contain as many
zeros as possible.

Here we discuss a counter-example which demonstrates potential drawbacks
of sparsity constraints. Using the same modes Hk∗ as in (eq. 9), we construct
the coefficients in W as follows:

90% of the points are generated via s ·(t ·H1∗+(1−t)·H3∗), where the param-
eter t is randomly drawn from a Gaussian distribution with (μ, σ) = (0.5, 0.03),
and s is equally distributed between 0 and 1. The feature vectors Hk∗ constitute
the edges of a tetrahedron (see figure 3, solid lines). By construction, the data
has exactly three principal components related to nonzero eigenvalues. Most data
points lie on a surface between two edges, hence two modes contribute roughly
equally. The remaining 10% of the data are equally distributed on all surfaces
spanned by the mode vectors.

After random initialization of W and H we applied both algorithms,
detNMF and nnsc, until the reconstruction error in the objective function
((NM)−1Edet(α = 0) in eq. 2 and (NM)−1Ennsc(λ = 0) in eq. 10, respec-
tively) was smaller than 10−10. The detNMF algorithm recovered the correct
modes. The nnsc algorithm, instead, produced a solution with a smaller value of∑

n,kWnk, but also a larger determinant. The final values of the constraints are
given in table 1, while a 3D-visualization of the data and the resulting modes are
shown in figure 3. Note that while one mode H′

i∗ is oriented such as to satisfy the
sparseness constraint, a second mode moves away from the given data points to
satisfy the overall non-negativity constraint. Thus, if the data is not sparse, the
decomposition achieved by a sparse NMF-algorithm does not necessarily yield
the correct underlying causes. The minimal determinant constraint provides a
more general approach, because it does not depend on the distribution of coef-
ficients directly and obtains the true unique solutions even if the data are not
sparse. In case of very sparsely encoded data where 90% of the data lie close to
the edges Hk∗, both algorithms achieve similar results as is seen also in Table 1.
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Fig. 3. 3D-visualization of the example (see text for details). Data vectors and modes
are projected onto the three principal components of the data. In this space, the original
modes H1∗, H2∗, H3∗ constitute the edges of a tetrahedron with unit length, which
are exactly recovered by the detNMF algorithm (solid lines). Obviously, the nnsc-NMF
algorithm fails to position all basis vectors correctly. Note that the normalized modes
deduced from the nnsc algorithm are drawn on an elongated scale (dashed lines) to
render them visible. All modes intersect in a vertex at the origin. Left: top view, the
origin vertex is in the center Right: side view, the left corner is the origin.

Table 1. Comparison of the values of the constraints at the optimal solutions gained
by both algorithms, nnsc and detNMF for a non-sparse and a very sparse data set

non-sparse sparse
det(HHT )

∑
n,k Wnk det(HHT )

∑
n.k Wnk

detnmf 0.1806 495.6798 0.1803 583.3226
nnsc 0.3096 487.7167 0.1804 583.2772
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Abstract. We propose in this paper a unique method to separate sources that 
may have different statistical properties, in the case of FIR convolutive mix-
tures. No constraint is necessary on the source statistics (i.i.d variables, Gaus-
sian sources or temporally correlated sources..), nor on the number of each type 
of sources. On the contrary of previous works, no assumption of overdeter-
mined mixtures is used. It relies on joint block-diagonalization of correlation 
matrices of some appropriate variables called differential complex signals, 
which are introduced in the paper. 

1   Introduction 

Blind source separation methods (BSS) consist in restoring a set of N unknown source 
signals from M N≥ observed mixtures. Sources are only supposed to be mutually 
statistically independent. Many methods have been proposed for instantaneous mix-
tures but recovering the sources from their linear FIR convolutive mixtures remains a 
challenging problem. Several solutions have been addressed in the time-domain. In 
the first approach, authors assume each source to be non Gaussian, independent and 
identically distributed variables. Non-Gaussianity and independence are then used as 
separation criteria and therefore methods such as deflation approach, convolutive fast 
ICA or contrast maximization have been developed [1-4]. In the second approach, 
temporally correlated sources are considered. The FIR convolutive mixing model can 
be reformulated into an instantaneous one as suggested in [5-7] by introducing some 
appropriate variables. Then the problem comes down to separation of an instantane-
ous mixture of some new sources but some of then are now dependent. To solve this 
challenging problem, authors have generalized standard BSS methods for the instan-
taneous case by using a unitary or nonunitary joint block-diagonalization scheme  
[6-8]. However this new instantaneous mixing model is full rank under the hypothesis 
of overdetermined model M N> . More precisely, a condition links the source num-
ber N, the sensor number M and the taps number of the mixing filter L.  

We propose in this paper a unique method to separate sources that may have dif-
ferent statistical properties: white sources, i.i.d variables (eventually Gaussian) or 
temporally correlated sources. No constraint is necessary on the type of sources, the 
number of each type of sources or on M and N.  So, we suppose M=N in all the paper. 
First the aim of BSS is presented in section 2. Then in section 3, we introduce the 
differential complex signal, denoted Δs(t, k, P), as the difference between s(t) and its 
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delayed version s(t+P)exp(-j2πkP/L). The differential complex signal is linked to the 
Sliding Fourier Transform calculated at frequency bin k.  Its temporal redundancy 
makes Δs(t, k, P) correlated versus parameter k, whatever the original statistical prop-
erty of s(t). Differential methods have been already used in [9,10] but in a different 
way for undetermined mixtures and non-stationary signals. The goal was to hide sta-
tionary signals and keep non-stationary ones. In section 4, we show how the FIR 
convolutive mixing model can be reformulated into an instantaneous one by introduc-
ing the differential complex signals as new sources whose some of them are now 
dependent. Then the problem comes down to separation of an instantaneous mixture, 
invertible without supposing overdetermined mixtures. The problem is solved in sec-
tion 5 by the joint block-diagonalization of a set of correlation matrices (NxN) instead 
of (ML’)x(ML’) where L’ is an integer verifying: ' ( ')ML N L L≥ +  in previous 

works. The proposed cost function is then easier to handle with, even for large dimen-
sion of the mixing filters L. 

2   Aim of the BSS and Assumptions  

Let us consider the standard convolutive mixing model with N inputs and N outputs. 
Each sensor xj(t) (j=1, .., N) receives a linear convolution (noted *) of each source 
si(t) (i=1,…,N) at discrete time t: 

1

1 1 0

( ) * ( ) ( )* ( )
N N K

j ij i ij i
i i k

x t h s t h k s t k
−

= = =

= = −� ��          (1) 

where hij represents the impulse response from source i to sensor j with K taps. The 
sources are only supposed to be uncorrelated.  

As the inverse of mixing filters are not necessarily causal, the aim of BSS is to re-
cover non-causal filters with impulse responses gij between sensor i and output j, such 
that the output vector y(t) estimates the sources, up to a linear filter : 

/ 2

1 / 2

( ) ( ) ( )
N L

j ij i
i k L

y t g k x t k
= =−

= −� �          (2) 

3   Differential Signals Constructed from Sliding Fourier 
Transforms 

The Sliding Fourier Transform (SFT) of a discrete-time signal s(t) is obtained by 
applying the L-point discrete Fourier Transform to moving windows of size P (P<L), 
[s(t), s(t+1),…, s(t+P-1)], i.e: 

1

0

(exp 0, ..., 1, 0,1, ...( , ) ( ) ),
P

k k

m

k L ts t s t m j mω ω
−

=

= − == + −�                       (3) 

where ωk=2π k/L denotes the frequency bin. We assume that the number of frequen-
cies, L, is greater than the window size P. This implies that the windows must be 
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padded with L-P zeros before processing them. (3) introduces redundancy in the fre-
quency-domain signal when considering overlapping consecutive windows at t and 
t+1. Indeed, s( ωk, t) and s( ωk, t+1) only differ in two samples s(t) and s(t +P). This 
redundancy can be exploited to express a relation between the time-domain signal s(t) 
and the time-frequency signal (SFT) s( ωk ,t): 

2 / 2 /( ( ) ( , ) ( , 0, ..., 11 ,) )
k k

j kP L j kP Ls t s t P e s t s t e k Lπ πω ω− −+ − = −− = +       (4) 

This relation is used in section 4 and is the key point to reformulate the convolutive 
mixture (1) into an instantaneous one, without supposing overdetermined mixture and 
constraint between M, N and L. We suppose M=N in all the paper.  

Denote Δs(t, k, P) the differential complex signal between s(t) and the delayed ver-
sion s(t+P)exp(-j2πkP/L), of parameters k and P. From (4), we have : 

/

/
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( ( )
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kP L

kP L

j

j

t

k L

s s t s t P e

s t s t e

k P π

πω ω

−

−

Δ =

= −

+

−

−
= +

        (5) 

The main property of the differential complex signal Δs(t, k, P), which will be useful 
in the rest of the paper, is that Δs(t, k, P) is correlated versus parameter k, whatever 
the statistical property of the signal s(t): E{Δs(t, k 1, P)Δs(t, k 2, P)*} is not zero. 

1 2 1 2/ / /

1 2

2 ) 2 2(
( )(1 ( ){ ( ) ( )* 0 ) ( ), , }, , k k P L k P L k P Lj j j

s sE s t s t Pe e ek P k P π π π− − −Δ Δ + −Γ Γ= +  

( ( ) ( ) ( )){ ( ) ( )* 02 cos 2, , } /, , s sE s t s t Pk P k P kP LπΔ Δ Γ Γ= −                            (6) 

with : ( ) { ( ) ( )*}s E s t s tτ τ= −Γ . 

4   Reformulation of the Model 

The BSS convolutive mixing model (1) can be reformulated, using the differential 
signals of sources Δsj(t, k, P) and observations Δxi(t, k, P). From the properties of the 
Fourier transforms, xi(ωk,t) are instantaneous mixtures of the frequency-domain 
sources sj(ωk,t,):  

1

( , ) ( , )( )
k kk

N

i ij j
j

x t s tHω ωω
=

= �                                              (7) 

if P is chosen such that K<P<L, and Hij(ωk) is the L-point DFT of filters hij: 

1

0

( ) ( ) ( , 0, ..., 1exp )
P

k

m

m k Lij ij kH h j mω ω
−

=

= = −−� ,   ωk=2π k/L                  (8) 

Applying equation (5) to the differential observations signals and using (7),  the 
model described in (1) is rewritten as : 

1
( , , ) ( ) ( , , )

N

iji
j

x t k P H s t k Pk jω
=

Δ = Δ�                                      (9) 
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Let us denote by Δx(t, P) the vector of the differential observations signals and by 
Δs(t, P)  the vector of the differential sources signals, where : 

[ ]1 0 1 1 0 1( , ) ( ) ( ) ( ) ( ),..., ,, , ,..., , , , , ,..., , ,
T

L N N Lt P x t x t x t x tk P k P k P k P− −Δ Δ Δ Δ=�x  (10) 

[ ]1 0 1 1 0 1( , ) ( ) ( ) ( ) ( ),..., ,, , ,..., , , , , ,..., , ,
T

L N N Lt P s t s t s t s tk P k P k P k P− −Δ Δ Δ Δ=�s  (11) 

The model described by (1) and (9) is rewritten in matrix form and reformulated into 
the instantaneous model: 

( ) ( ), ,t tP P=�x �sH                                                  (12) 

1 1 1
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H O
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H

ω

ω −

� �
� �
� �
� �� �

=
 

where ijH  is a (LxL) diagonal matrix. 

The convolutive model states now : Δx(t, P) =H Δs(t, P). Each component of Δs(t, P), 
 Δ si (t, k, P), is correlated versus parameter k (6), so that the correlation matrix of 
[Δsi(t, k0, P) ,…, Δsi(t, kL-1, P)] is full for each source i=1,…,N, whatever the original 
temporal structure of the source and its statistical properties. We see from (6) that 
even the correlation matrix of a white signal is full (and also different for different 
values of P). The correlation matrix of Δs(t, P) is then a block diagonal matrix. 

5   Separating Algorithm 

As proposed in [6-8], one possible way to tackle the problem is joint block-
diagonalization of a set of n estimated correlation matrices of the observations 
E{Δx(t, Pi )Δx(t, Pi )

H} for i=1,…,n. The assumption of non-stationary sources is usu-
ally exploited to form a set of different correlation matrices. In this paper, we see 
from (12) that the set may be also composed of correlation matrices calculated with 
different values of P.  

Let us consider the set of matrices composed by the n correlation matrices  
E{Δx(t, Pi )Δx(t, Pi )

H},i=1,…,n, where (.)H denotes the transpose conjugate operator. 

( ( ( () ) ) ), , } , , }H H H
t t t tP P P P=E{�x �x E{�s �sH H                       (13) 

where : 

,11

,

,

( (

0 0

) ) 0 0

0 0

, , }
P

P ii

P NN

H
t t

D

D

D

P P

� �
� �= � �
� �� �

E{�s �s  

H is a (NL)x(NL) full rank matrix and G stands for its inverse. As proposed in [8] G 
is estimated from the non-unitary joint block diagonalization of the set of n matrices : 
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GE{Δx(t, Pi )Δx(t, Pi )
H}G H, for i=1,…,n. 

Let us consider that : MP = E{Δx(t, P )Δx(t, P )
H}. We propose to minimize the fol-

lowing cost function : 

2

{ }H
P

F

O ffdiag�
Pn

P = P1

C(G ) = G GM                                      (14) 

where Offdiag{.} denotes the zero-block-diagonal matrix and .
F

the Frobenius 

norm. This cost function has already been envisaged in [8] in a general way and leads 
to : 

( )
2

, 1( ) , 1

N L Hm n
i j

i j i j m n= ≠ =
� � �
Pn

P
P = P1

C(G) = g M g                              (15) 

where m
ig stands for the m th row vector of matrix Gi if G =[ G1 … GN ]T and Gi 

i=1,..,N, are (LxN) block matrices. Yet the interest of using the previous instantane-
ous model is that the new ‘mixing matrix’ H and its inverse G own a particular struc-
ture that can be introduced in the function (15) to simplify it. As H is constituted of 
square block-matrices Hij (i,j=1,N) which are all diagonal matrices, its inverse G has 
also the same particular structure: 
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=G                  (16) 

Gij  are (LxL) diagonal matrices and terms in G verify : 
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1 1
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Id    (17) 

As many terms are null in Gij and m
ig the cost function may be simplified into : 

( )
2

, 1( ) , 1

( , )
N L Hm n

i P j
i j i j m n

M m n
= ≠ =

= � � � �� �
Pn

P = P1

C(G) g g                                    (18) 

where m
i

�g is the restriction of vector m
ig to the N non-zero terms (instead of LN 

terms in m
ig ). From (16), we have:  

]1 1 11 2[ ( ) ( ) . . ( )m m m

m
i i i iNG G Gω ω ω− − −=�g                    (19) 

( , )
P

m n�M is a NxN matrix composed of elements of matrix MP (NL)x(NL). If MP = 

[M1 … MN ]T where Mi  i=1,..,N, are block matrices of dimension LxNL, ( , )
P

m n�M  
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is extracted from MP by first cancelling (L-1) rows in each matrix Mi. These rows 

depend on m and correspond to null terms in vector m
ig in the matrix product 

m
i PMg . Then if MP =[ M’1 … M’N ] where M’i i=1,..,N, are block matrices of di-

mension NLxL, (L-1) columns are cancelled in each matrix M’i. The place of these 

columns depends on n and corresponds to null terms in vector ( )Hn
jg in the matrix 

product ( )Hn
P jM g . After these two operations, the matrix is contracted into a NxN 

matrix ( , )
P

m n�M where the null terms are eliminated. So, vectors m
i

�g , n
j

�g , and the 

(NxN) matrix ( , )
P

m n�M  verify the scalar equality:  

( ) ( )( , )
H Hm n m n

i P j i P jM M m n= �� �g g g g  

The cost function can be rewritten on the following quadratic form : (20) 
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1
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L N Hm m
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1( ) 1
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P j j P
j i j n

B i g M m n M m n
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= � � � � �� �
Pn

P= P1

g g  

As proposed in [8], the minimization of (20) is achieved by taking m
i

�g as the L unit 

eigenvectors associated with the L smallest eigenvalues of the NxN matrices B(i,g). 
The minimization is achieved with an iterative procedure as B(i,g) also depends on 

vectors m
i

�g for a given i.  

The main interest of this approach versus previous ones [6-8] is that the matrices 
to diagonalized are NxN instead of (LN)x(LN), where N is the source number. The 
sources are not supposed to be temporally correlated or non-stationary. So the pro-
posed method can be applied to hybrid sources and its effectiveness is shown in next 
section. The difference of the proposed method with a frequency-approach is that 
there is no permutation ambiguity as the criterion comes from the joint bock diago-
nalization of correlation matrices and not spectral ones.  

6   Performance and Simulation 

We present simulations to illustrate the effectiveness of the proposed algorithm. It is 
measured with the performance index I which shows the closeness of the global ma-
trix GH with a true bock diagonal matrix. The better result is obtained when I is close 
to 0. 

2 2

ij ij

2 2
1 1il lj

(GH) (GH)
(1 /( ( 1))( ( 1) ( 1)

max (GH) max (GH)

N N N N

i jl l

N N
= =

= − − + −� � � �
j= 1 i= 1

I  
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The index I is displayed in figure 1 versus the number of matrices MP for the pro-
posed method and compared with [8]. The case of 4 sensors is considered. The 
sources are mixed through FIR filters of  K=4 coefficients in the model (1). The coef-
ficients are random entries chosen from a Gaussian  distribution with zero mean and 
unit variance. 40000 samples are used in the simulation and the index is then averaged 
on 50 realizations. Spatially and temporally uncorrelated noises are also added with a 
signal to noise ratio of 10dB. [8] needs temporally correlated signals and overdeter-
mined mixtures. For L=4, only two sources are permitted. So, the performance index 
of [8] is calculated in the case of 4 mixtures of two speech signals (solid green line). 
The performance index of the proposed method is computed, considering 4 mixtures 
of 4 sources : two sources are Gaussian iid signals and two sources are the previous 
speech signals (solid blue line). The proposed method shows better results for the 
convergence speed and the residual error than method [8] (due to smaller matrices). 
The presence of iid sources does not prevent the separation to be achieved. 

0 2 4 6 8 1 0 1 2
- 2 5

- 2 0

- 1 5

- 1 0

- 5

0

m a t r i c e s

in
de

x 
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Fig. 1. Index performance versus number of matrices 

To show that the method does not assume hypothesis on the type of statistics, we 
compute the performance index for 5 matrices with 4 different mixtures : 4 Gaussian 
white sources, 4 speech signals, 2 speech signals and 2 Gaussian iid. variables, 2 
sinusoids and 2 uniform iid variables. The mixing matrix is computed as previously. 
The values of I shown in table 1 reveal that the index is quasi independent of the type 
of source statistics. [8] is not able to achieve the separation in these cases. Other simu-
lations results prove that the performance index only depends on the signal to noise 
ratio and the source number.  

Table 1. Performance index for hybrid sources 

 4 Gaussian 
white 
sources 

4 speech 
signals 

2 speech signals 
+ 2 Gaussian iid. 
variables 

2 sinusoids and 2 
uniform iid variables 

I -23.4dB -  21.5dB -23.1dB -22.5dB 
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7   Conclusion 

We focus on the separation of FIR convolutive mixtures of hybrid sources and pro-
pose a unique method to separate hybrid sources. The sources are allowed to have 
different statistics (i.i.d or temporally correlated variables, eventually Gaussian) and 
the number of each type of source is not necessary. It relies on joint block-
diagonalization of correlation matrices of some appropriate variables called differen-
tial complex signals, defined in the paper. The differential complex signal is linked to 
the Sliding Fourier Transform. Its temporal redundancy makes it correlated versus an 
appropriate parameter whatever the original statistical property of the sources.  
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Abstract. This work presents a new method to perform blind extraction of chaotic 
signals mixed with stochastic sources. The technique makes use of the features 
underlying the generation of chaotic sources to recover a signal that is “as 
deterministic as possible”. The method is applied to invertible and underdertemined 
mixture models and illustrates the potential of incorporating such a priori 
information about the nature of the sources in the process of blind extraction. 

Keywords: Blind source extraction, blind source separation, chaotic signals, 
recurrence maps. 

1   Introduction 

Nonlinear systems exhibit a very rich dynamical scenario, which includes possibilities 
such as convergence to fixed points, existence of limit-cycles, quasi-periodicity and chaos. 
This last kind of oscillation, in particular, is characterized by aperiodicity and sensitivity to 
initial conditions, aspects that can be easily mistaken for random behavior [1]. 

In fact, distinguishing chaotic from random signals is a far from a trivial task, 
which is reflected in the relatively small number of methods developed to solve it [2, 
3]. Typically, these methods are less robust when the analyzed signals are mixtures of 
chaotic and random processes: in these cases, it is certainly of great use to rely on a 
preprocessing stage (e.g., a filtering process in frequency domain) in order to enhance 
specific features of each class of signals, although this can cause the loss of relevant 
information [4, 5, 6], since both signals have a broadband spectrum.  

From a theoretical standpoint, the above described scenario is intimately related to 
the blind source extraction (BSE) problem, as its essence lies in the idea of recovering 
a specific set of signals of interest – usually the deterministic signals – from mixed 
versions of them. In order to achieve a successful extraction, there must be a criterion 
capable of establishing an effective distinction between signals belonging to different 
classes. A natural possibility would be to employ a classical blind approach such as 
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the well-established independent component analysis (ICA), although it would not be 
capable of exploring the peculiar features of the problem, particularly, the fact that 
some signals are generated by a deterministic dynamical system. As a matter of fact, 
this is an instance in which a priori information about the sources is available, which 
is always something that widens the applicability of blind signal processing (research 
areas such as sparse component analysis attest this fact). 

In this work, a new method for solving the BSE problem when chaotic and stochastic 
processes are mixed is presented. The technique explores the dynamic features underlying 
the generation of the chaotic sources to recover a signal that is “as deterministic as 
possible”. The solution employs a recurrence map - a well-established tool for analyzing 
dynamical systems [3, 7] – to build a cost function capable of quantifying the degree of 
determinism of a given signal. This cost function is used to adapt linear separating systems 
under different signal and mixture models (both invertible and underdetermined), and a 
comparison with a classical ICA methodology is established. 

2   Chaotic Signals and the Generation of a Recurrence Map 

For our purposes, a chaotic signal should be simply understood as one generated by a 
chaotic system, which means that its properties are defined by the dynamical system 
that generates it and the behavior of its trajectories in the phase space [1]. Therefore, 
the first analytical step we must take is to reconstruct the associated phase-space from 
the observed signal. In view of Takens’ embedding theorem [1, 3, 4, 6], 
reconstruction can be performed by defining a state vector x(k) such that 

( ) ( ) ( ) ( )( )[ ]ττ 1−−−= edkxkxkxk �x  (1) 

where de represents the embedding dimension – defined as the effective number of 
degrees of freedom of the dynamical system – and �  represents the delay between 
samples. Even though this trajectory may not be exactly the same as that generated by 
the system, it will be topologically equivalent thereto [1]. 

Since the approach we wish to present is based on a recurrence map, let us consider 
how this analytical tool - first proposed by Eckmann et. al. [3] – can be built and how 
it provides means to determine whether one deals with random or chaotic signals. 
Using the reconstructed state x(k), the recurrence map will be represented by an NxN 
matrix, where the element (i,j) will be zero in a grayscale representation (a black dot) 
whenever x(i) is sufficiently close to x(j), i.e., whenever |x(i)-x(j)|< �. 

The applicability of recurrence maps becomes clear when we compare maps 
obtained from signals of different natures. In Fig. 1, we present maps generated from 
a periodic signal (Fig. 1A), a chaotic signal (Fig. 1B), a random signal (Fig. 1C) and a 
mixture of chaotic and random signals (Fig. 1D). Notice how the patterns differ in 
their structure and their regularity: in fact, these aspects provide relevant information 
about the dynamical behavior. For example, long diagonal lines represent periodic 
states, while horizontal and vertical lines represent unchanged states. 

In this work, the crucial point is that chaotic time series generate shorter diagonals 
than those associated with periodic signals, but longer than those associated with a 
random process [7], as can be observed in Fig. 1. This suggests that the “length” of 
diagonals in a recurrence map can be used to form a contrast function to separate a 
deterministic from a random signal. In the following, we shall develop this idea. 
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Fig. 1. Panels A, B, C, D show in detail, respectively, the recurrence maps (N = 1000 samples, 
de = 3, � = 3, � = 0.5) from a periodic oscillation (sin(10t)), a chaotic Lorenz time series, a 
gaussian random source (zero mean and unitary variance) and  a mixture of random and chaotic 
sources 

3   Extracting Deterministic Sources 

Let us consider that two sources - one being a chaotic signal sc(n) and the other being 
a stochastic signal ss(n) – are linearly mixed, giving rise to x(n) = As(n), where x(n) = 
[x1(n) x2(n)]T is the mixture vector, A is the 2x2 mixing matrix (which is assumed to 
have full rank) and s(n) = [s1(n) s2(n)]T is the source vector. In this problem, the aim 
of the BSE task we wish to solve is to extract a source from the mixtures, which can 
be achieved by multiplying the mixture vector by a vector w, so that the output vector 
yield y(n) = wTx(n) = sc(n). Let us also assume, without loss of generality, that the 
mixing matrix is orthogonal (this can be achieved via a whitening procedure) and that 
w can be parameterized in terms of a single variable �, i.e., w = [cos� sin�]T. 

Classical ICA approaches look for solutions in � that ensure maximal 
nongaussianity (which can be evaluated with the aid of the kurtosis of the output 
components) or, alternatively, by maximization of independence between the 
elements of the output vector (e.g. by minimizing a mutual information measure). It is 
also important to remark that ICA allows the recovery of the original sources up to 
scale and permutation ambiguities [8]. However, when it is known that one of the 
sources is, for example, a deterministic chaotic signal, it is viable to obtain the  
 



 Blind Extraction of Chaotic Sources from White Gaussian Noise 125 

separating system within a very different framework, a framework based on a priori 
information, i.e., the deterministic nature of the signal. In this case, and assuming that 
the idea is to extract sc(n), it is possible to look for a separating vector that maximizes 
the deterministic character of the estimated source. An immediate consequence is that 
the permutation ambiguity should not exist, at least in its original form, since the 
measure will establish a difference between deterministic and stochastic sources. 

The deterministic character of the outputs can be measured, in consonance with what 
was presented in section 2, by employing a recurrence map. A straightforward 
possibility is to analyze the occurrence of diagonal lines (specially “long” ones) in the 
map. In very simple terms, we will use the fact that “long diagonals” tend to 
characterize deterministic behavior to tailor a cost function capable of discriminating 
between signals of different natures. The rationale is that “long diagonals”, in a certain 
sense, are indicative of temporal and spatial correlation caused by the deterministic 
generative law underlying sc(n), whereas the same does not hold, by definition, for a 
random signal. The reader interested in a more formal presentation of recurrence maps 
and of their relationship with the idea of correlation is referred to [2, 7]. 

In the exposed methodology, we aim to find the value of � that provides the 
separating vector that maximizes the following cost function (based on the recurrence 
map of the output signal y(n)): 

� =
= b

ak kNfit  (2) 

where Nk is the percentage of points in a diagonal of length k, which implicitly 
depends on the mixing matrix, on the reconstruction parameters and on the threshold 
distance �. 

4   Results 

In order to analyze the validity of the proposed methodology, we shall turn our 
attention to distinct representative simulation scenarios. In all cases, we will consider 
that sc(n) is the first state variable of the emblematic Lorenz system [1] (pre-processed 
to have zero mean and unitary variance), and that the stochastic sources are always 
white gaussian processes (zero mean and 10 dB below the chaotic source in power). 
These choices were made after a sequence of initial tests, although they are by no 
means mandatory: tests with other chaotic systems (e.g. the Rossler dynamical system 
and the Logistic map) led to similar results. 

The first set of simulations exactly corresponds to the example used in our 
previous discussion, being a typical case in which perfect inversion of the mixing 
matrix is possible. There are two sources, sc(n) and ss(n), and the method will be 
tested in its potential of recovering both the chaotic signal and the stochastic signal. In 
the second set of simulations, we will consider a case that is a “twofold taboo” in 
comparison with the standard signal model: there will be three sources and only two 
mixtures and, moreover, two sources will be gaussian processes with zero mean and 
unitary variance. In order to guide our analysis in this underdetermined context, we 
will consider as a reference the performance of the separating solutions obtained via 
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the (supervised) Wiener paradigm [9]. The idea is to have a clearer idea of the 
influence of criterion and structure in the quality of the obtained estimates. 

4.1   First Scenario 

In the first scenario, we have two signals - sc(n) and ss(n) – and a full rank mixing 
matrix A = [sin� –cos�; cos� sin�], with � = pi/6. In order to recover the chaotic 
source, the extracting vector w should be chosen such that y1(n) = wTx(n) be as 
deterministic as possible, using (2) to quantify the degree of determinism of the 
estimated signal. 

The cost function (2) was evaluated taking into account diagonals of length 20 to 
40 (a = 20 and b = 40). In Fig. 2, we present the values of the proposed cost function 
and also of two commonly used contrasts in classical ICA methods: the kurtosis of 
y1(n), and the mutual information between y1(n) and y2(n) = [-sin� cos�]x(n) 
(evaluated with the estimator developed in [10]). 
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Fig. 2. Panel A – deterministic measure (2) of y1(n), kurtosis of y1(n) and mutual information 
between y1(n) and y2(n) for different � values. Panel B - time series of the sc(n), x1(n) and the 
recovered sc(n) with inverted phase obtained from deterministic approach, (a.u. – arbitrary 
units). 

 
The first important conclusion is that the proposed method has global optima at the 

solutions that lead to perfect inversion (up to a sign ambiguity), a feature shared by 
methods based on kurtosis and mutual information. These results reveal that the 
proposal fulfilled the essential “soundness requirements” of a separation method and 
had a performance equivalent to that obtained via classical ICA methods. Fig. 2B 
contains the time series of sc(n), x1(n) and the estimate of sc(n) (with inverted phase) 
provided by deterministic approach. 

The return map for the recovered signal is shown in Fig. 3A, and is very similar to 
that shown in Fig. 1B. In Fig. 3B, we show the percentage of dots lying on diagonals 
of lengths between 20 and 40: notice how the mixed signal has a completely different 
behavior in this respect, whereas sc(n) and y1(n) have similar curves.  
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Fig. 3. Panel A - show in detail the recurrence map obtained from recovered chaotic source, (N 
= 1000, � = 3, de = 3, � = 0.5). Panel B – percentage of points (N(L)) in diagonals of length L 
for the signals sc(n), x1(n) and the estimate of sc(n). 

 

4.2   Second Scenario 

The analysis of the proposed method in the previous scenario essentially revealed the 
viability of its adoption, but the context of underdetermined separation (more sources 
than sensors) offers other important perspectives of application. In our analysis, we 
will assume that a chaotic source is mixed with two other stochastic (gaussian 
distributed) signals. Notice that the use of a mutual information measure is, in this 
case, made difficult due to the structural impossibility of reaching a condition of 
perfect inversion. A measure based on kurtosis can be directly applied in this case, but 
it is conceptually difficult to rely on its establishing any distinction in favor of the 
recovery of the deterministic signal.  

Fig. 4A shows the three cost functions for this scenario (A = [0.2 0.7 0.4; 0.7 0.2 
0.3]). Notice that the mutual information of the output is not a reliable criterion for  
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Fig. 4. Panel A – typical result of normalized deterministic measure of y1(n), kurtosis of y1(n) and 
mutual information between y1(n) and y2(n) for different � values when the underdetermined case 
is considered. Panel B – the same simulation is performed, but the situation when kurtosis fail to 
recover the chaotic source is illustrated. 
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determining a separating matrix (due to the structural aspect discussed above), while 
nongaussianity, evaluated using kurtosis, has clear nulls related to the recovery of the 
stochastic sources (which are Gaussian) but does not have a maximum at the correct 
angle in all cases (as shown in Fig. 4B).  

Table 1 shows the mean and standard deviation of the residual mean-square errors 
of the recovered chaotic source in 50 runs performed in different scenarios (for three 
approaches: Wiener, the proposed method and the kurtosis-based method). Notice 
how the values related to the deterministic approach are very similar to those 
associated with the Wiener paradigm. In fact, in 30% of the performed simulations, 
the kurtosis-based method led to an MSE 50% higher than that obtained via the 
Wiener approach, which never happened for the deterministic method. Even when the 
mixture matrix (A = [0.8 0.7 0.4; 0.7 0.3 0.5]) gives rise to a relatively large minimum 
Wiener error, the performance of the proposed method is better than that of the 
kurtosis criterion. 
 

Table 1. Mean square error (MSE) ± standard deviation (using 50 trials) for the recovered 
chaotic source estimated via the Wiener approach (MSEw), via the proposed deterministic 
measure (MSEd) and via an ICA method based on kurtosis (MSEk). The first and the second 
data rows consider, respectively, mixture matrices that provide a low and high minimum 
Wiener error.  

MSEw MSEd MSEk 
0.063 ± 2.83·10-3 0.069 ± 6.17·10-3 0.157 ± 0.321 
0.403 ± 1.73·10-2 1.118 ± 4.24·10-2 1.268 ± 0.800 

   

5   Discussions and Conclusions 

This work presented a method to perform BSE when there are mixtures of chaotic and 
white gaussian processes. The results showed that the method was capable of producing 
solutions with a performance compatible with that of classical ICA under an invertible 
mixture model. Additionally, for more complicate (e.g. underdetermined) models, the a 
priori information incorporated by the approach was responsible for a significant degree 
of robustness, allowing an adequate estimate of the separating matrix even when only a 
small number of samples is available. The deterministic approach is not only restricted 
to gaussian processes, but can be employed for mixtures of uniform stochastic sources 
as well (data not shown). On the other hand, the proposal requires a higher amount of 
computational resources in comparison with standard separation/extraction solutions. 

It is important to stress that is quite possible to achieve better criterions to solve 
this extraction problem based on other recurrence plot characteristics [7] or taking 
into account statistical properties of the signals [11]. Moreover, the blind extraction / 
separation of chaotic and stochastic sources is also important for being related to the 
practical problem of denoising chaotic time series, which is extremely relevant to the 
study of several dynamical processes [1,4,6]. This initial work was not devoted to 
solving this specific problem, but a more detailed investigation of the proposed 
method is certainly an interesting perspective for its application in denoising. In 
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addition, it seems possible to adapt these denoising methods in order to improve the 
solution of extraction problem exposed here. 

Finally, after this discussion, perhaps it can be stated that the main contribution of 
this work is not only a technique, but a distinct way of employing a priori information 
about certain signals that play a key role in several scenarios of theoretical and 
practical significance in dynamical systems. It is our belief that the implications and 
the potential of this “deterministic component analysis” deserve careful analysis.    
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Abstract. Accurately evaluating statistical independence among
random variables is a key component of Independent Component
Analysis (ICA). In this paper, we employ a squared-loss variant of
mutual information as an independence measure and give its estimation
method. Our basic idea is to estimate the ratio of probability densities
directly without going through density estimation, by which a hard task
of density estimation can be avoided. In this density-ratio approach,
a natural cross-validation procedure is available for model selection.
Thanks to this, all tuning parameters such as the kernel width or the
regularization parameter can be objectively optimized. This is a highly
useful property in unsupervised learning problems such as ICA. Based
on this novel independence measure, we develop a new ICA algorithm
named Least-squares Independent Component Analysis (LICA).

Keywords: Independent component analysis, Mutual information,
Squared loss, Density ratio estimation, Cross-validation.

1 Introduction

The purpose of Independent Component Analysis (ICA) [1] is to obtain a trans-
formation matrix that separates mixed signals into statistically-independent
sources signals. A direct approach to ICA is to find a transformation matrix
such that independence among separated signals is maximized under some in-
dependence measure such as mutual information (MI).

Various approaches to computing the independence measures from samples
have been studied so far. A naive approach is to estimate probability densities
based on parametric or non-parametric density estimation. However, finding
an appropriate parametric model is not easy without strong prior knowledge
and non-parametric estimation is not accurate in high-dimensional problems.
Thus this naive approach is not so useful in practice. Another approach is to
approximate the negative entropy based on the Gram-Charlier expansion [6,7,3]
or the Edgeworth expansion [5]. An advantage of this approach is that a hard
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c© Springer-Verlag Berlin Heidelberg 2009



Estimating Squared-Loss Mutual Information 131

Table 1. Summary of existing and proposed ICA methods

Model selection Distribution
Fast ICA (FICA) [2] Not Necessary Not Free

Natural-gradient ICA (NICA) [3] Not Necessary Not Free
Kernel ICA (KICA) [4] Not Available Free

Edgeworth-expansion ICA (EICA) [5] Not Necessary Nearly normal
Least-squares ICA (LICA) [proposed] Available Free

task of density estimation is not directly involved. However, these expansion
techniques are based on the assumption that the target density is close to normal
and violation of this assumption can cause large approximation error.

The above approaches are based on the probability densities of signals. An-
other line of research that does not explicitly involve probability densities em-
ploys non-linear correlation—signals are statistically independent if and only if
all non-linear correlations among the signals vanish. Following this line, com-
putationally efficient algorithms have been developed based on the fourth-order
statistics [8,2]. However, these methods ignore higher-order correlation and thus
could be inaccurate depending on the target distribution. To cope with this prob-
lem, the kernel trick has been applied in ICA [4], which allows us to evaluate
all non-linear correlations efficiently. However, its practical performance depends
on the choice of kernels (more specifically, the Gaussian kernel width) and there
seems no theoretically-justified method to determine the kernel width. This is a
critical problem in unsupervised learning problem such as ICA.

In this paper, we use a squared-loss variant of MI as an independence measure
and give a novel method for estimating it. Our key idea is to estimate the ratio of
probability densities contained in squared-loss MI (SMI) directly without going
through density estimation. This allows us to avoid a hard task of density esti-
mation. Another practically important advantage of this density-ratio approach
is that a natural cross-validation (CV) procedure is available for model selec-
tion. Thus all tuning parameters such as the kernel width or the regularization
parameter can be objectively optimized through CV.

From an algorithmic point of view, the density-ratio approach analytically
provides a non-parametric estimate of SMI; furthermore its derivative can also
be computed analytically and these useful properties are utilized in deriving
a new ICA algorithm—the proposed method is named Least-squares Indepen-
dent Component Analysis (LICA). Characteristics of existing and proposed ICA
methods are summarized in Table 1, highlighting the advantage of the proposed
LICA approach.

2 SMI Estimation for ICA

In this section, we formulate the ICA problem and introduce our independence
measure, SMI. Then we give an estimation method of SMI and based on it we
derive an ICA algorithm.
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2.1 Problem Formulation

Suppose there is a d-dimensional random signal

x = (x(1), . . . , x(d))�

drawn from a distribution with density p(x), where {x(m)}dm=1 are statistically
independent of each other. Thus, p(x) can be factorized as

p(x) =
d∏

m=1

pm(x(m)).

We cannot directly observe the source signal x, but a linearly mixed signal y:

y = Ax,

where A is a d× d invertible matrix called the mixing matrix. The goal of ICA
is, given mixed signal samples {yi}ni=1, to obtain a demixing matrix W that
recovers the original source signal x—we denote the demixed signal by z:

z = Wy.

The ideal solution is given by W = A−1, but we can only recover it up to
permutation and scaling of components of x due to non-identifiability of the
ICA setup [1].

A direct approach to ICA is to determine W so that components of z are as
independent as possible. Here, we adopt SMI as the independence measure:

Is(Z(1), . . . , Z(d)) :=
1
2

∫ (
q(z)
r(z)

− 1
)2

r(z)dz, (1)

where q(z) denotes the joint density of z and r(z) denotes the product of
marginal densities {qm(z(m))}dm=1:

r(z) =
d∏

m=1

qm(z(m)).

Since Is vanishes if and only if q(z) = r(z), the degree of independence among
{z(m)}dm=1 may be measured by SMI. Note that Eq.(1) corresponds to the f -
divergence from q(x) to r(z) with the squared loss, while ordinary MI corre-
sponds to the f -divergence with the log loss. Thus SMI could be regarded as a
natural generalization of ordinary MI.

Based on the independence detection property of SMI, we try to find the
demixing matrix W that minimizes SMI estimated from the demixed samples:

{zi | zi = (z(1)i , . . . , z
(d)
i )� := Wyi}ni=1.

Our key constraint when estimating SMI is that we want to avoid density esti-
mation. Below, we show how this could be accomplished.
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2.2 SMI Inference via Density Ratio Estimation

Using convex duality [9], we can express SMI as

Is(Z(1), . . . , Z(d)) = sup
g

[∫ (
g(z)q(z) − 1

2
g(z)2r(z)

)
dz − 1

2

]
, (2)

where supg is taken over all measurable functions. Thus computing Is is reduced
to solving the following optimization problem:

inf
g

[∫ (1
2
g(z)2r(z) − g(z)q(z)

)
dz

]
. (3)

We can confirm that the optimal solution g∗ of the problem (3) is given as

g∗(z) =
q(z)
r(z)

. (4)

Thus, solving the problem (3) amounts to inferring the density ratio (4).
However, directly solving the problem (3) is not possible due to the following

two reasons. The first reason is that finding the minimizer over all measurable
functions is not tractable in practice since the search space is too vast. To over-
come this problem, we restrict the search space to some linear subspace G:

G = {α�ϕ(z) | α = (α1, . . . , αb)� ∈ Rb}, (5)

where α is a parameter to be learned from samples, � denotes the transpose of
a matrix or a vector, and ϕ(z) is basis function such that

ϕ(z) = (ϕ1(z), . . . , ϕb(z))� ≥ 0b for all x.

0b denotes the b-dimensional vector with all zeros. Note that ϕ(z) could be de-
pendent on the samples {zi}ni=1, i.e., kernel models are also allowed. We explain
how the basis functions ϕ(z) are chosen in Section 2.3.

The second reason why directly solving the problem (3) is not possible is that
the true probability densities q(z) and r(z) contained in the density ratio (4) are
unavailable. To cope with this problem, we approximate them by their empirical
distributions—then the optimization problem is reduced to

α̂ := argmin
α∈Rb

[
1
2
α�Ĥα− ĥ�α +

1
2
λα�α

]
, (6)

where we included λα�α (λ > 0) for regularization purposes and

Ĥ :=
1
nd

n∑
i1,...,id=1

ϕ(z(1)i1
, . . . , z

(d)
id

)ϕ(z(1)i1
, . . . , z

(d)
id

)�, ĥ :=
1
n

n∑
i=1

ϕ(z(1)i , . . . , z
(d)
i ).

Differentiating the objective function (6) with respect to α and equating it to
zero, we can obtain an analytic-form solution as

α̂ = (Ĥ + λIb)−1ĥ,
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where Ib is the b-dimensional identity matrix. Thus, the solution can be com-
puted very efficiently just by solving a system of linear equations. Using the
solution α̂, we can approximate SMI as

Îs = −1
2
− 1

2
α̂�Ĥα̂ + ĥ�α̂. (7)

Ordinary MI can also be estimated similarly using the density ratio [10].
However, the use of SMI is more advantageous due to the analytic-form solution.

2.3 Design of Basis Functions and Model Selection

As basis functions, we propose using a Gaussian kernel model:

ϕ�(z) = exp
(
−‖z − v�‖2

2σ2

)
=

d∏
m=1

exp

(
− (z(m) − v(m)

� )2

2σ2

)
, (8)

where {v� | v� = (v(1)� , . . . , v
(d)
� )�}b�=1 are Gaussian centers randomly chosen

from {zi}ni=1—more precisely, we set v� = zc(�), where {c(")}b�=1 are randomly
chosen from {1, . . . , n} without replacement. An advantage of the Gaussian ker-
nel lies in the factorizability in Eq.(8), contributing to reducing the computation
of the matrix Ĥ significantly:

Ĥ�,�′ =
1
nd

d∏
m=1

[
n∑
i=1

exp

(
− (z(m)

i − v(m)
� )2 + (z(m)

i − v(m)
�′ )2

2σ2

)]
.

In the experiments, we fix the number of basis functions at

b = min(100, n),

and choose the Gaussian width σ and the regularization parameter λ by CV
with grid search as follows. First, the samples {zi}ni=1 are divided into K dis-
joint subsets {Zk}Kk=1 of (approximately) the same size (we use K = 5 in the
experiments). Then an estimator α̂Zk

is obtained using {Zj}j �=k (i.e., without
Zk) and the approximation error for the hold-out samples Zk is computed:

J
(K-CV)
Zk

=
1
2
α̂�Zk

Ĥα̂Zk
− ĥ�α̂Zk

,

where |Zk| denotes the number of sample pairs in the set Zk. This procedure is
repeated for k = 1, . . . ,K and its average J (K-CV) is outputted:

J (K-CV) =
1
K

K∑
k=1

J
(K-CV)
Zk

.

For model selection, we compute J (K-CV) for all model candidates (the Gaussian
width σ and the regularization parameter λ in the current setting) and choose
the model that minimizes J (K-CV). We can show that J (K-CV) is an almost
unbiased estimate of the objective function in Eq.(3), where the ‘almost’-ness
comes from the fact that the number of samples is reduced in the CV procedure
due to data splitting.
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2.4 The LICA Algorithm

Finally, we show how the above SMI estimation idea could be employed in the
context of ICA.

Here, we use a simple gradient technique for obtaining a minimizer of the
estimated SMI. The update rule of the demixing matrix W is given by

W ←−W − ε ∂Îs
∂W

, (9)

where ε (> 0) is the step size. We can show that the gradient is given by

∂Îs
∂W�,�′

=
∂ĥ�

∂W�,�′
(−β̂ + 2α̂) + α̂�

∂Ĥ

∂W�,�′
(β̂ − 3

2
α̂), (10)

where

∂ĥk
∂W�,�′

=
1
nσ2

n∑
i=1

(z(�)i − v(�)k )(u(�′)
k − y(�′)

i ) exp
(
−‖zi − vk‖2

2σ2

)
,

∂Ĥk,k′

∂W�,�′
=

1
nd−1

d∏
m=1,m �=�

[
n∑
i=1

exp

(
− (z(m)

i − v(m)
k )2 + (z(m)

i − v(m)
k′ )2

2σ2

)]

×
[

1
nσ2

n∑
i=1

(
(z(�)i − v(�)k )(u(�′)

k − y(�′)
i ) + (z(�)i − v(�)k′ )(u(�′)

k′ − y(�′)
i )

)
× exp

(
− (z(�)i − v(�)k )2 + (z(�)i − v(�)k′ )2

2σ2

)]
,

u� =yc(�), yi = (y(1)
i , . . . , y

(d)
i )�, and β̂ = (Ĥ + λIb)−1Ĥα̂.

In ICA, scaling of components of z can be arbitrary. This implies that the
above gradient updating rule can lead to a solution with bad scaling, which is
not preferable from a numerical point of view. To avoid numerical instability, we
normalize W at each gradient iteration as

W�,�′ ←− W�,�′√∑d
m=1W

2
�,m

. (11)

The proposed ICA algorithm, which we call Least-squares Independent Com-
ponent Analysis (LICA), is summarised below.

1. Initialize demixing matrix W and normalize it by Eq.(11).
2. Optimize Gaussian width σ and regularization parameter λ by CV.
3. Compute gradient ∂Îs

∂W by Eq.(10).
4. Choose step-size ε such that Îs (see Eq.(7)) is minimized (line-search).
5. Update W by Eq.(9).
6. Normalize W by Eq.(11).
7. Repeat 2.–6. until W converges.
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3 Numerical Examples

In this section, we illustrate how our algorithm behaves using the following three
2-dimensional datasets:

(a) Sub·Sub-Gaussians: p(x) = U(x(1);−0.5, 0.5)U(x(2);−0.5, 0.5),
(b) Super·Super-Gaussians: p(x) = L(x(1); 0, 1)L(x(2); 0, 1),
(c) Sub·Super-Gaussians: p(x) = U(x(1);−0.5, 0.5)L(x(2); 0, 1),

where U(x; a, b) (a, b ∈ R, a < b) denotes the uniform density on [a, b] and
L(x;μ, v) (μ ∈ R, v > 0) denotes the Laplacian density with mean μ and variance
v. Let the number of samples be n = 300 and we observe mixed samples {yi}ni=1
through the following mixing matrix:

A =
(

cos(π/4) sin(π/4)
− sin(π/4) cos(π/4)

)
.

The observed samples are plotted in Figure 1.
Figure 2 depicts the value of estimated SMI (7) over iterations and Figure 3

depicts the elements of the demixing matrix W over iterations. The true inde-
pendent directions as well as the estimated independent directions are plotted
in Figure 1. The results show that estimated SMI decreases rapidly and good
solutions are obtained for all the datasets.
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Fig. 1. Observed samples (black asterisks), true independent directions (red dotted
lines) and estimated independent directions (blue solid lines)
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Fig. 2. Estimated SMI Îs over iterations
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Fig. 3. The elements of the demixing matrix W over iterations. The blue, green, red,
cyan lines correspond to W1,1, W1,2, W2,1, and W2,2, respectively. The black dotted
lines denote the true values.

4 Conclusions

In this paper, we have proposed a new estimation method of a squared-loss vari-
ant of mutual information, and based on this, we developed an ICA algorithm.
The proposed ICA method, named least-squares ICA (LICA), has several prefer-
able properties, e.g., it is distribution-free and model selection by cross-validation
is available. Our future work includes development of efficient optimization al-
gorithm beyond gradient techniques.
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Department of Information Systems, Eötvös Loránd University,
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Abstract. In this paper we address the blind subspace deconvolution
(BSSD) problem; an extension of both the blind source deconvolution
(BSD) and the independent subspace analysis (ISA) tasks. While previ-
ous works have been focused on the undercomplete case, here we extend
the theory to complete systems. Particularly, we derive a separation tech-
nique for the complete BSSD problem: we solve the problem by reducing
the estimation task to ISA via linear prediction. Numerical examples
illustrate the efficiency of the proposed method.

Keywords: Complete blind subspace deconvolution, separation princi-
ple, linear prediction, independent subspace analysis.

1 Introduction

Recently, research on independent component analysis (ICA) [1,2] and its ex-
tensions has gained much attention. One can think of ICA as a cocktail-party
problem, where there are D one-dimensional sound sources and D microphones
and the task is to estimate the original sources from the observed mixed signals.
Nonetheless, applications in which only certain groups of sources are indepen-
dent may be highly relevant in practice. In this case, the independent sources can
be multidimensional. For instance, consider the generalization of the cocktail-
party problem, where independent groups of people are talking separately about
independent topics or more than one group of musicians are playing at the party.
This problem is referred to as independent subspace analysis (ISA) [3].1 Another
extension of the original ICA task is the blind source deconvolution (BSD) prob-
lem. This problem emerges, for example, when a cocktail-party takes place in an
echoic room. Several theoretical questions of ICA, ISA and BSD have already
been addressed (see, e.g., [4], [5] and [6] for recent reviews, respectively), and
numerous application areas show the potential of these fields including (i) re-
mote sensing applications: passive radar/sonar processing, (ii) image-deblurring,
image restoration, (iii) speech enhancement using microphone arrays, acoustics,
(iv) multi-antenna wireless communications, sensor networks, (v) financial, gene
and biomedical signal—EEG, ECG, MEG, fMRI—analysis, (vi) face view recog-
nition, (vii) optics, (viii) seismic exploration.
1 ISA is also called multidimensional independent component analysis and group ICA

in the literature.
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The simultaneous assumption of the two extensions, that is, ISA combined
with BSD, has recently emerged in the literature. For example, at the cocktail-
party, groups of people or groups of musicians may form independent source
groups and echoes may be present. The task is called blind subspace deconvo-
lution (BSSD). Probably one of the most exciting and fundamental hypotheses
of the ICA research has been formed by [3]: the solution of the ISA problem
can be separated to ICA and then clustering the ICA elements into statistically
dependent subspaces. This ISA separation principle has been rigorously proven
for some distribution types in [5], and forms the basis of the state-of-the-art ISA
algorithms. Similar separation based techniques can be derived for the solution
of the undercomplete BSSD task (uBSSD), where in terms of the cocktail-party
problem there are more microphones than acoustic sources. It has been shown
that the uBSSD problem can be reduced to ISA by means of temporal con-
catenation [5]. However, the associated ISA problem can easily become ‘high
dimensional’. The dimensionality problem can be circumvented by applying a
linear predictive approximation (LPA) based reduction [7]. Here, we show that
it is possible to extend the LPA idea to the complete BSSD task.2 In the un-
dercomplete case, the LPA based solution was based on the observation that
the polynomial matrix describing the temporal convolution had, under rather
general conditions3, a polynomial matrix left inverse. In the complete case such
an inverse doesn’t exist in general. However, provided that the convolution can
be represented by an infinite order autoregressive process, one can construct an
efficient estimation method for the hidden components via an asymptotically
consistent LPA procedure. This thought is used here to extend the technique of
[7] to the complete case.

The paper is structured as follows: Section 2 formulates the problem domain.
Section3 shows how to transformthe completeBSSD task into an ISA taskviaLPA.
Section 4 contains numerical illustrations. Conclusions are drawn in Section 5.

2 The BSSD Model

Here, we define the BSSD task [5]. Assume that we haveM hidden, independent,
multidimensional components (random variables). Suppose also that only their

x(t) =
L∑
l=0

Hls(t− l) (1)

convolutive mixture is available for observation, where x(t) ∈ RDx and s(t) is the
concatenation of the components sm(t) ∈ Rdm , that is s(t) = [s1(t); . . . ; sM (t)] ∈
RDs (Ds =

∑M
m=1 dm). Denoting the time-shift operation by z, one may write

Eq. (1) compactly as
x = H[z]s, (2)

2 The overcomplete BSSD task is challenging and as of yet no general solution is
known.

3 If the coefficients of the undercomplete polynomial matrix are drawn from a non-
degenerate continuous distribution, such an inverse exists with probability one.
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where the mixing process is described by the polynomial matrix H[z] :=∑L
l=0 Hlz

l ∈ R[z]Dx×Ds . We assume that the components sm are

1. independent: I(s1, . . . , sM ) = 0, where I denotes the mutual information,
2. i.i.d. (independent identically distributed) in t, and
3. there is at most one Gaussian component among sms.

The goal of the BSSD problem is to estimate the original source s(t) by using
observations x(t) only. While Dx > Ds is the undercomplete case , Dx = Ds is
the complete one. The case L = 0 corresponds to the ISA task, and if dm = 1
(∀m) also holds, then the ICA task is recovered. In the BSD task dm = 1 (∀m)
and L is a non-negative integer.

3 Method

Contrary to previous works [5,7] focusing on the undercomplete BSSD problem,
in the present paper we address the complete task (D = Dx = Ds). We as-
sume that the polynomial matrix H[z] is invertible, that is det(H[z]) �= 0, for
all z ∈ C, |z| ≤ 1. Let E(·) and cov(·) denote the expectation value, and the co-
variance of a random variable, respectively. Because the mean can be subtracted
from the process and the transformation x = (H[z]B−1)(Bs) leads to the same
observation, one may presume, without any loss of generality, that s is white:

E(s) = 0, cov(s) = I, (3)

where I is the identity matrix. The invertibility of H[z] implies that the ob-
servation process x can be represented as an infinite order autoregressive (AR)
process [8]:

x(t) =
∞∑
j=1

Fjx(t− j) + F0s(t). (4)

By applying a finite order LPA approximation (fitting an AR process to x),
the innovation process F0s(t) can be estimated. The innovation can be seen as
the observation of an ISA problem because components of s are independent:
ISA techniques can be used to identify components sm. Choosing the order
of the fitted AR process to x as p = o(T

1
3 ) T→∞−−−−→ ∞, where T denotes the

number of samples, guarantees that the AR approximation for the MA model is
asymptotically consistent [9].

4 Illustrations

Here, we illustrate the efficiency of the proposed complete BSSD estimation
technique. Test cases are introduced in Section 4.1. To evaluate the solutions
we use the performance measure given in Section 4.2. Numerical results are
presented in Section 4.3.
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4.1 Databases

We define three databases to study our identification algorithm. The smiley test
has 2-dimensional source components representing the 6 basic facial expressions
(dm = 2, M = 6). Sources sm were generated by sampling 2-dimensional coordi-
nates proportional to the corresponding pixel intensities (see Fig. 1(a)). In the
3D-geom test sms were random variables uniformly distributed on 3-dimensional
geometric forms (dm = 3). We chose 4 different components (M = 4) and, as
a result, the dimension of the hidden source s is D = 12 (see Fig. 1(b)). Our
Beatles test [5] is a non-i.i.d. example. Here, hidden sources are stereo Beatles
songs.4 8 kHz sampled portions of two songs (A Hard Day’s Night, Can’t Buy
Me Love) made the hidden sms. Thus, the dimension of the components dm was
2, the number of the components M was 2, and the dimension of the hidden
source D was 4.

(a) (b)

Fig. 1. Illustration of the smiley (a) and the 3D-geom databases (b)

4.2 Performance Measure, the Amari-Index

Recovery of components sm are subject to the ambiguities of the ISA task.
Namely, components of equal dimension can be recovered up to permutation and
invertible transformation within the subspaces [10]. For this reason, in the ideal
case, the linear transformation G that optimally approximates the relation s �→
ŝ, where ŝ denotes the estimated hidden source, resides also within the subspaces
and so it is a block-permutation matrix. This block-permutation structure can
be measured by the ISA adapted version [11] of the Amari-error [12] normalized
to the interval [0, 1] [13]. Namely, let us suppose that the source components
are d-dimensional5, and let us decompose matrix G ∈ RD×D into blocks of size
d × d: G = [Gij ]i,j=1,...,M . Let gij denote the sum of the absolute values of
matrix Gij ∈ Rd×d. Now, the following term

r(G) :=
1

2M(M − 1)

⎡⎣ M∑
i=1

(∑M
j=1 gij

maxj gij
− 1

)
+

M∑
j=1

(∑M
i=1 gij

maxi gij
− 1

)⎤⎦ (5)

denotes the Amari-index that takes values in [0,1]: for an ideal block-permutation
matrix G it takes 0; for the worst case it takes 1.
4 See http://rock.mididb.com/beatles/
5 The d = dm (∀m) constraint was used only at the performance measurements (i.e.,

for the Amari-index).
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4.3 Simulations

Results on databases smiley, 3D-geom and Beatles are provided here. The Amari-
index was used to measure the performance of the proposed complete BSSD
method. For each individual parameter, 20 random runs were averaged. Our
parameters are: T , the sample number of observations x(t), L, the parameter of
the length of the convolution (the length of the convolution is L + 1), and λ,
parameter of the invertible H[z]. It is expected that if the roots of H[z] are close
to the unit circle then our estimation will deteriorate, because the invertibility
of H[z] comes to question. We investigated this by generating the polynomial
matrix H[z] as follows:

H[z] =

[
L∏
l=0

(I− λOiz)

]
H0 (|λ| < 1, λ ∈ R), (6)

where matrices H0 and Oi ∈ RD×D were random orthogonal and the λ → 1
limit was studied. ‘Random run’ means random choice of quantities H[z] and s.
The AR fit to observation x was performed by the method detailed in [14]. To
study how the o(T 1/3) AR order (see Section 3) is exploited, the order of the
estimated AR process was limited from above by pmax(T ) = 2�T 1

3− 1
1000 �, and

we used the Schwarz’s Bayesian Criterion to determine the optimal popt order
from the interval [1, pmax(T )]. The ISA subtask on the estimated innovation was
carried out by the joint f-decorrelation method [15].

First we studied the Amari-index as a function of the sample size. For the
smiley and 3D-geom databases the sample number T varied between 2, 000 and
20, 000. The length of convolution varied as L = 1, 2, 5, 10. The λ parameter of
H[z] was chosen as 0.4, 0.6, 0.7, 0.8, 0.85, 0.9. Results are shown in Fig. 2(a)-(b).
The estimation errors indicate that for L = 10 and about λ = 0.85 the estimation
is still efficient, see Fig. 3 for an illustration of the estimated source components.
The Amari-indices follow the power law r(T ) ∝ T−c (c > 0). The power law
decline is manifested by straight line on log-log scale. The slopes of these straight
lines are very close to each other. Numerical values for the estimation errors are
given in Table 1. The estimated optimal AR orders are provided in Fig. 2(c).
The figure demonstrates that as λ → 1 the maximal possible order pmax(T ) is
more and more exploited.

On the Beatles database the λ parameter was increased to 0.9, and the sample
number T varied between 2, 000 and 100, 000. Results are presented in Fig. 2(d).
According to the figure, for L = 1, 2, 5 the error of estimation drops for sample
number T = 10, 000 − 20, 000, and for L = 10 the ‘power law’ decline of the
Amari-index, which was apparent on the smiley and the 3D-geom databases,
also appears. Numerical values for the estimation errors are given in Table 1. On
the Beatles test, the maximal possible AR order pmax(T ) was fully exploited on
the examined parameter domain.
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Fig. 2. Precision of the estimations and the estimated optimal AR orders. The plots
are on log-log scale. (a), (b): on the smiley (3D-geom) database the Amari-index as
a function of the sample number for different λ → 1 parameter values of H[z] and
convolution lengths, respectively. In (a): L = 10, in (b): λ = 0.85. (c): on the smiley
(3D-geom) database the estimated AR order as a function of the sample number with
L = 10 for different λ values. (d): the same as (b), but for the Beatles dataset with
λ = 0.9. For graphical illustration, see Fig. 3. For numerical values, see Table 1.

Table 1. Amari-index in percentages on the smiley, 3D-geom (λ = 0.85, T = 20, 000)
and the Beatles dataset (λ = 0.9, T = 100, 000) for different convolution lengths:
mean± standard deviation. For other sample numbers, see Fig. 2.

L = 1 L = 2 L = 5 L = 10
smiley 0.99% (±0.11%) 1.04% (±0.09%) 1.22% (±0.15%) 1.69% (±0.26%)

3D-geom 0.42% (±0.06%) 0.54% (±0.05%) 0.88% (±0.14%) 1.15% (±0.24%)
Beatles 0.72% (±0.12%) 0.75% (±0.11%) 0.90% (±0.23%) 6.64% (±7.49%)
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

(j) (k) (l) (m) (n)

Fig. 3. Illustration of the estimations on the 3D-geom[(a),(b),(e)-(i)] and smi-
ley [(c),(d),(j)-(n)] datasets. Number of samples: T = 20, 000. Length of the convo-
lution: L = 10. In the first row: λ = 0.4. (a), (c): observed convolved signal x(t). (b),
(d): Hinton-diagram of G, ideally a block-permutation matrix with 2 × 2 and 3 × 3
blocks, respectively. (e)-(i), (j)-(n): estimated components ŝm, recovered up to the ISA
ambiguities from left to right for λ = 0.4, 0.6, 0.7, 0.8, 0.85. All the plotted estimations
have average Amari-indices, see Fig. 2(a).

5 Conclusions

In this paper we focused on the complete case of the blind subspace deconvolu-
tion (BSSD) problem, a common extension of the independent subspace analysis
(ISA) and the blind source deconvolution (BSD) tasks. We presented a separa-
tion technique for the solution of the complete BSSD task: the estimation task
has been reduced to ISA via linear predictive approximation (LPA). We also
demonstrated the efficiency of the algorithm on different datasets. Our simula-
tions revealed that the error of the estimation of the hidden sources decreases
in a power law fashion as the sample size increases. Interestingly, our algorithm
recovered the sources when the assumptions of the BSSD problem were violated;
that is in the case of the Beatles songs with non-i.i.d. sources. This result points
to the ISA separation principle; one expects that it may be valid for a larger
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domain. Similar conjecture exists for joint block diagonalization [16] about the
global minima.
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Abstract. The estimation of relevant information theoretical quanti-
ties, such as entropy, mutual information, and various divergences is
computationally expensive in high dimensions. However, for this task,
one may apply pairwise Euclidean distances of sample points, which
suits random projection (RP) based low dimensional embeddings. The
Johnson-Lindenstrauss (JL) lemma gives theoretical bound on the di-
mension of the low dimensional embedding. We adapt the RP technique
for the estimation of information theoretical quantities. Intriguingly, we
find that embeddings into extremely small dimensions, far below the
bounds of the JL lemma, provide satisfactory estimates for the original
task. We illustrate this in the Independent Subspace Analysis (ISA) task;
we combine RP dimension reduction with a simple ensemble method. We
gain considerable speed-up with the potential of real-time parallel esti-
mation of high dimensional information theoretical quantities.

Keywords: Independent subspace analysis, random projection, pairwise
distances, information theoretical estimations.

1 Introduction

The take-off of information theory goes back to the forties [1]. Tremendous appli-
cations have been developed ever since. The computation/estimation of informa-
tion theoretical quantities (entropy, mutual information, divergence) is still slow.
However, consistent estimation of these quantities is possible by nearest neighbor
(NN) methods (see, e.g., [2]) that use the pairwise distances of sample points.
Although search for nearest neighbors can also be expensive in high dimensions
[3], low dimensional approximate isometric embedding of points of high dimen-
sional Euclidean space can be addressed by the Johnson-Lindenstrauss Lemma
[4] and the related random projection (RP) methods [5,6]. The RP approach
proved to be successful, e.g., in classification, clustering, search for approximate
NN (ANN), dimension estimation of manifolds, estimation of mixture of Gaus-
sian models, compressions, data stream computation (see, e.g., [7]). We note that
the RP approach is also related to compressed sensing [8].

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 146–153, 2009.
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In this paper we show a novel application of the RP technique: we estimate
information theoretical quantities using the ANN-preserving properties of the
RP technique. We illustrate the method on the estimation of Shannon’s mul-
tidimensional differential entropy for the Independent Subspace Analysis (ISA)
task [9]. The ISA problem extends Independent Component Analysis (ICA) [10]
by allowing multidimensional independent components: at a cocktail party, ICA
(ISA) is searching for (groups of) people talking independently. Another ap-
plication area is image registration, where (i) information-theoretical similarity
criterion can be advantageous, and (ii) high dimensional features should be han-
dled [11,2] (work in progress). We note that RPs have been applied for ICA,
but the underlying considerations differ from ours: [12] picks out random sam-
ples using Bernoulli variables and decreases the computational load on ICA, [13]
uses RPs for preprocessing before principal component analysis.

The paper is structured as follows: Section 2 formulates the problem domain.
In Section 3 the random projection technique is adapted to the estimation of
information theoretical quantities and we use it for the estimation of multidi-
mensional differential entropy. Section 4 contains the numerical illustrations.
Conclusions are drawn in Section 5.

2 The ISA Model

Let us define the ISA task. Let us assume the observations x(t) ∈ RD, t = 1, 2, . . .
are linear mixtures of multidimensional independent sources, components sm(t):

x(t) = As(t), (1)

where s(t) concatenates components sm(t) ∈ Rdm ; s(t) = [s1(t); . . . ; sM (t)] ∈ RD

(D =
∑M

m=1 dm). Our assumptions are the following:

1. components are (i) independent: I(s1, . . . , sM ) = 0, where I denotes the
mutual information, (ii) i.i.d. (independent identically distributed) in t, and
(iii) there is at most one Gaussian component among sms.

2. The unknown A ∈ RD×D mixing matrix is invertible.

In the ISA problem one estimates hidden source components (sm) from obser-
vations x(t) alone. (ICA problem: ∀dm = 1). The ISA problem has ambiguities
[14,15]: components of equal dimension can be determined up to permutation
and up to invertible transformation within the subspaces. Thus, for ISA demix-
ing matrix WISA we have that WISAA ∈ RD×D is a block-permutation (or
block-scaling [16]) matrix. The block-permutation property and the quality of
the ISA estimation can be measured by the ISA adapted and normalized Amari-
error [17], the Amari-index (r) [18], which is 0 for perfect estimation and can
not exceed 1.

3 Method

We present our RP based approach through the ISA problem. The ISA task can
be viewed as the minimization of the mutual information between the estimated
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components, or equivalently as the minimization of the sum of Shannon’s multi-
dimensional differential entropies of the estimated components on the orthogonal
group [19]:

J(W) :=
M∑

m=1

H (ym)→ min
W∈OD

, (2)

where y = Wx, y =
[
y1; . . . ;yM

]
, ym ∈ Rdm and dms are given. It has been

conjectured that the solution of the ISA task can be reduced to ICA followed
by grouping of the non-independent ICA elements into ISA subspaces [9]. The
conjecture has been rigorously proven by the ISA Separation Theorem for some
distribution types [20]. It means that the demixing matrix assumes the form
WISA = PWICA (ŷISA = [ŷ1

ISA; . . . ; ŷMISA] = PŷICA, ŷmISA ∈ Rdm), where the
permutation matrix P ∈ RD×D is to be determined. Estimation of cost function
J involves multidimensional entropy estimation, which is computationally expen-
sive in high dimensions, but can be executed by NN methods consistently [21,22].
It has been shown in [11] (in the field of image registration with high dimensional
features) that the computational load can be decreased somewhat by (i) divid-
ing the samples into groups and then (ii) computing the averages of the group
estimates. We will combine this parallelizable ensemble approach with the ANN-
preserving properties of RPs and get drastic savings. We suggest the following
entropy estimation method1, for each estimated ISA component v := ŷmISA: (i)
divide the T samples {v(1), . . . ,v(T )} into N groups indexed by sets I1, . . . , IN
so that each group contains K samples, (ii) for all fixed groups take the random
projection of v as vn,RP(t) := Rnv(t) (t ∈ In;n = 1, . . . , N ;Rn ∈ Rd′

m×dm),
(iii) average the estimated entropies of the RP-ed groups to get the estimation
Ĥ(v) = 1

N

∑N
n=1 Ĥ(vn,RP). Our particular choice for Rn is given in Section 4.2.

For the optimization of the estimated cost function Ĵ(P) one can apply (i) greedy
optimization (exchange of 2 coordinates if it decreases Ĵ), or (ii) global meth-
ods of higher computational burden, e.g., the cross-entropy (CE) method [23]
adapted to permutation searches, because the estimation of Ĵ is quick.

4 Illustrations

Here, we illustrate the efficiency of the proposed RP based entropy estimation.
Section 4.1 is about test cases. Numerical results are presented in Section 4.2.

4.1 Databases

We define three databases [20] to study our RP based ISA identification algo-
rithm. In the d-spherical test hidden sources sm were spherical random vari-
ables. Since spherical variables assume the form v = ρu, where u is uniformly
distributed on the d-dimensional unit sphere, and ρ is a non-negative scalar ran-
dom variable independent of u, they can be given by means of ρ (see Fig. 1(a)).
1 The idea can be used for a number of information theoretical quantities, provided

that they can be estimated by means of pairwise Euclidean distances of the samples.
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In the d-geom dataset sms were random variables uniformly distributed on
d-dimensional geometric forms (see Fig. 1(b)). In the all-k-independent database,
the d-dimensional hidden components v := sm were created as follows: coordi-
nates vi (i = 1, . . . , k) were independent uniform random variables on the set
{0,. . . ,k-1}, whereas vk+1 was set to mod(v1 + . . .+ vk, k). In this construction,
every k-element subset of {v1, . . . , vk+1} is made of independent variables.

(a) (b)

Fig. 1. Illustration of the (a): d-spherical (d = 2), and (b): d-geom (d = 3) databases.
ρ of the stochastic representation on the left (right): exponential with parameter μ = 1
(lognormal with parameters μ = 0, σ = 1).

4.2 Simulations

Results on databases d-spherical, d-geom, and all-k-independent are provided
here. These experimental studies focused on the following issues:

1. What dimensional reduction can be achieved in the entropy estimation of
the ISA problem by means of random projections?

2. What speed-up can be gained with the RP dimension reduction?
3. What are the advantages of our RP based approach in global optimization?

In our experiments the number of components was minimal (M = 2). We used
the Amari-index to measure and compare the performance of the different meth-
ods. For each individual parameter, 50 random runs were averaged. Our parame-
ters included T , the sample number of observations x(t) and d, the dimension of
the components (d = d1 = d2

2). We also studied different estimations of the ISA
cost function: we used the RADICAL procedure3 [24] and the NN method [19]
for entropy estimation and the Kernel Canonical Correlation Analysis (KCCA)
[25] for mutual information estimation. The reduced dimension d′ in RP and the
optimization method (greedy, global (CE), NCut [26]) of the ISA cost were also
varied in different tests. Random run means random choice of quantities A and
s. The ICA step was performed by the well-known fastICA method. The size
of the randomly projected groups was set to |In| = 2, 000, except for the case
d = 50, when it was 5, 000. RP was realized by the database-friendly projection
technique, i.e., the rn,ij coordinates of Rn were drawn independently from dis-
tribution P (rn,ij = ±1) = 1/2, but more general constructions could also be
used [5,6].
2 This constraint was used only for the evaluation of the performance (Amari-index)

of the algorithm.
3 We chose RADICAL, because it is consistent, asymptotically efficient, converges

rapidly, and it is computationally efficient.
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Fig. 2. Performance of the RP method. Notations: ‘RPd′ - method of cost estimation
(method of optimization if not greedy)’. (a), (b): accuracy of the estimation versus the
number of samples for the d-spherical and the d-geom databases on log-log scale. (c):
notched boxed plots for d = 50, (d): Performance comparison on the all-4-independent
database between the RP method using global optimization and the NCut based group-
ing of coordinates using the pairwise mutual information graph (on log-log scale). (e)-
(f): Accuracy and computation time comparisons with the NN based method for the
20-spherical and the 20-geom databases (on log-log scale).
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(a) (b) (c)

(d) (e)

Fig. 3. Estimated components and Hinton-diagrams. Number of samples: T = 100, 000.
Databases 2-geom: (a)-(c), 50-spherical : (d), 50-geom: (e). (a): observed signals x(t),
(b): Hinton-diagram: the product of the mixing matrix of the ISA task and the esti-
mated demixing matrix is approximately a block-permutation matrix with 2×2 blocks,
(c): estimated components ŝm, recovered up to the ISA ambiguities, (d)-(e): Hinton-
diagrams of the 50-spherical and the 50-geom tests, respectively. Hinton-diagrams have
average Amari-indices: for (b) 0.2%, for (d) 1%, for (e) 12%.

In the first study we were interested in the limits of the RP dimension re-
duction. We increased dimension d of the subspaces for the d-spherical and the
d-geom databases (d = 2, 10, 20, 50) and studied the extreme case, the RP di-
mension d′ was set to 1. Results are summarized in Fig. 2(a)-(b) with quartiles
(Q1, Q2, Q3). We found that the estimation error decreases with sample number
according to a power law [r(T ) ∝ T−c (c > 0)] and the estimation works up to
about d = 50. For the d = 50 case we present notched boxed plots (Fig. 2(c)).
We show the quartiles and depict the outliers, i.e., those that fall outside of in-
terval [Q1−1.5(Q3−Q1), Q3 +1.5(Q3−Q1)] by circles. According to the figure,
the error of estimation drops for sample number T = 100, 000 for both types of
datasets: for databases 50-geom and 50-spherical, respectively, we have 5 and 9
outliers from 50 random runs and thus with probability 90% and 82%, the esti-
mation is accurate. As for question two, we compared the efficiency (Q1, Q2, Q3)
of our method for d = 20 with the NN methods by RP-ing into d′ = 1 and d′ = 5
dimensions. Results are shown in Fig. 2(e)-(f).4 The figure demonstrates that
for database 20-geom performances are similar, but for database 20-spherical

4 We note that for d = 20 and without dimension reduction the NN methods are very
slow for the ISA tasks.
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our method has smaller standard deviation for T = 20, 000. At the same time
our method offers 8 to 30 times speed-up at T = 100, 000 for serial implementa-
tions. Figure 3 presents the components estimated by our method for dimensions
d = 2 and d = 50, respectively. With regard to our third question, the ISA prob-
lem can often be solved by grouping the estimated ICA coordinates based on
their mutual information. However, this method, as illustrated by (Q1, Q2, Q3)
in Fig. 2(d), does not work for our all-4-independent database. Inserting the
RP based technique into global optimization procedure, we get accurate estima-
tion for this case, too. CE optimization was used here. Results are presented in
Fig. 2(d).

5 Conclusions

In this paper we have shown that random projections (RP) can be used for the
estimation of information theoretical quantities. The underlying thought of our
approach is that RP approximately preserves the Euclidean distances between
sample points and that a number of information theoretical quantities can be
estimated from the pairwise distances of sample points. The proposed technique
has been demonstrated on the estimation of Shannon’s multidimensional differ-
ential entropy for the solution of the Independent Subspace Analysis task. The
promise of this work is a considerable speed-up that results from the RP tech-
nique and the parallel nature of the ensemble method that we applied. Promising
applications emerge – among many others – in the field of image registration.

Acknowledgments. This work has been supported by the National Office for
Research and Technology and by the EC NEST ‘Perceptual Consciousness: Ex-
plication and Testing’ grant under contract 043261. Opinions and errors in this
manuscript are the author’s responsibility, they do not necessarily reflect the
opinions of the EC or other project members.

References

1. Shannon, C.: The mathematical theory of communication. Bell System Technical
Journal 27, 623–656 (1948)

2. Neemuchwala, H., Hero, A., Zabuawala, S., Carson, P.: Image registration methods
in high-dimensional space. Int. J. Imaging Syst. and Technol. 16(5), 130–145 (2007)

3. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal
algorithm for approximate nearest neighbor searching in fixed dimensions. J. of
the ACM 45(6), 891 (1998)

4. Johnson, W., Lindenstrauss, J.: Extensions of Lipschitz maps into a Hilbert space.
Contemporary Mathematics 26, 189–206 (1984)

5. Arriga, R.I., Vempala, S.: An algorithmic theory of learning: Robust concepts and
random projections. Machine Learning 63, 161–182 (2006)
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Abstract. Detecting the dimension of the latent subspace of a linear
model, such as Factor Analysis, is a well-known model selection prob-
lem. The common approach is a two-phase implementation with the help
of an information criterion. Aiming at a theoretical analysis and compar-
ison of different criteria, we formulate a tool to obtain an order of their
approximate underestimation-tendencies, i.e., AIC, BIC/MDL, CAIC,
BYY-FA(a), from weak to strong under mild conditions, by studying a
key statistic and a crucial but unknown indicator set. We also find that
DNLL favors cases with slightly dispersed signal and noise eigenvalues.
Simulations agree with the theoretical results, and also indicate the ad-
vantage of BYY-FA(b) in the cases of small sample size and large noise.

1 Introduction

Linear model is one of the most common modeling approaches to multivariate
data in many scientific fields. Factor Analysis (FA)[1] is a such widely-used linear
model that assumes the observations come from a linear mixture of some latent
Gaussian factors with additive Gaussian noise. It is usually used for dimension
reduction via detecting the hidden structures. Also, as recently revisited in [2],
PCA is equivalent to a special case of FA [1] under the Maximum Likelihood
(ML) principle. FA is extended to Independent Component Analysis (ICA)[3]
by requiring higher order independence, no noise and square mixing matrix.

One of the fundamental tasks in FA modeling is determining the dimension
of the latent subspace, i.e., the number of hidden factors. It is a model selection
problem in machine learning. Also, it is addressed as the problem of detecting the
number of signals through a noisy channel in signal processing [4,5,6,7,8]. One
conventional approach is hypothesis tests based on the likelihood ratio statistic
[9] and a subjective threshold. Another approach is the two-phase implementa-
tion that requires no subjective threshold with the help of an information cri-
terion such as Akaike’s Information Criterion (AIC)[10], Bozdogan’s Consistent
Akaike’s Information Criterion (CAIC)[11], Schwarz’s Bayesian Information Cri-
terion (BIC)[12] (which coincides with Rissanen’s Minimum Description Length
(MDL)[13]), and Bayesian Ying-Yang (BYY) harmony learning criterion[14].

Following an early work [4] in signal processing literature, a framework was
proposed in [5] for studying criteria such as AIC and MDL, with asymptotic

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 154–162, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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bounds provided for overestimation and underestimation probabilities, which
was further studied in [6,7]. Recently, the behaviors of AIC and MDL in a situ-
ation with high dimensional signals but relatively few samples were investigated
in [8]. In this track [4,5,6,7,8], FA is considered in its special case of PCA, and
the studies are focused on asymptotic properties, such as consistency and asymp-
totic normality, and the results were shown to be robust for non-Gaussian sources
empirically[7]. However, in practical the sample size is finite or even small, and it
is intractable to get an exact selection accuracies of different criteria. An easier
way is to study their relative selection tendencies for a preliminary comparison.

This paper formulates a tool further developed from[5] for a theoretical com-
parison of typical criteria in terms of ordered approximate underestimation ten-
dencies. It suffices to study a key statistic and an indicator set which is inherently
associated with each criterion and depends on the distribution of samples. The
order from weak to strong is shown to be AIC,BIC,CAIC and BYY-FA(a) under
mild conditions, while DNLL is found to favor the cases with slightly dispersed
signal and noise eigenvalues. Though analytically hard, BYY-FA(b) is shown to
be empirically superior for those small-sample-size and large-noise cases.

The rest of the paper is organized as follows. In Section 2, we briefly review
FA and several criteria. In Section 3, we formulate a tool for comparisons of
different criteria via studying a key statistic and a crucial indicator set, and
then conduct simulations in Section 4. The conclusion is made in Section 5.

2 Factor Analysis and Serval Model Selection Criteria

Factor Analysis. Assume x is an observed n-dimensional random variable, and
it is distributed according to the following descriptions:

x = Ay + μ + e, p(x|y) = G(x|Ay + μ,Σe), p(y) = G(y|0,Σy),{
Θm = {A,Σe} if Σy = Im (the m×m identity matrix), for FA(a);
Θm = {A,Λm,Σe} if Σy = Λm (diagonal) and ATA = Im, for FA(b);

p(x) =
∫
p(x|y)p(y)dy = G(x|μ,Σx), Σx = AAT + Σe

(1)

where y is an m× 1 hidden factor, Θm is the unknown parameter set including
an n ×m factor loading matrix A and a diagonal noise covariance matrix Σe,
and G(•|μ,Σ) denotes a Gaussian distribution with the mean vector μ and the
covariance matrix Σ. The two formulations, i.e., FA(a) and FA(b), are equiva-
lent under the Maximum Likelihood principle for parameter learning, but they
are different under the BYY harmony learning [14] for selecting m which will be
introduced in Section 3.3&4.1. In the sequel, we assume μ = 0,Σe = σ2

eIn.

Several Criteria and Two-phase Implementation. The task of FA mod-
eling consists of parameter learning and selecting m, based on a sample set
XN = {xt}Nt=1, and it is tackled by the following two-phase implementation:

– Phase I: Compute Θ̂m = Θ̂(XN ,m) for each m ∈ [mlow,mup] with
mlow and mup given. Normally, Θ̂m is the Maximum Likelihood (ML) es-
timator Θ̂ML

m = argmaxΘm ln p(XN |Θm) = argminΘm EL(XN |Θm), where
EL(XN |Θm)=− 2

N ln p(XN |Θm) is denoted as NLL(negative log-likelihood).
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– Phase II: Estimate m̂ = argminm ECri(XN , Θ̂m), where ECri is formulated
according to a criterion (Cri), e.g.,

ECri(XN , Θ̂m) = EL(XN , Θ̂m) + ρcridm,

dm = nm+ 1, ρcri =

⎧⎪⎪⎨⎪⎪⎩
ρL = 0; for NLL
ρAIC = 2

N ; for AIC
ρBIC = lnN

N ; for BIC
ρCIC = lnN+1

N ; for CAIC

(2)

3 Theoretical Analysis and Comparisons

3.1 A Tool for Comparisons

Based on Sec.2&[5], this subsection further formulate a tool aiming at analysis
and comparisons of different criteria for FA modeling, and provides a summarized
guidance for the detailed analysis in the subsequent subsections.

– select m via discrete optimization. Consider S(Θm,m) to be a family of
statistical models p(x|Θm) for FA(a) given in eq.(1) with Θm = {An×m, σ2

e}.
Given a criterion(Cri) with ECri = ECri(XN , Θ̂(XN ,m)) = ECri(XN ,m),
an estimator of m∗(the underlying true dimension) is given by m̂(XN ) =
arg minm ECri. To locate the minima w.r.t. discrete m, no derivative can
be used. However, it is reasonable to study instead the backward difference
function ∇mECri = ECri(XN ,m)−ECri(XN ,m−1), as shown in Fig.1(a)(b).

– from ∇mECri to local preference. It is intractable to study ∇mECri as a
function of XN ,m. Fortunately, ∇mECri from several criteria for FA can be
formulated as ∇mECri(γm,m)(Fig.1(b)(c)), a function of m and a statistic
γm given in eq.(8), which will be shown in Sec.3.2&3.3. The medium γm
extracts and transmits sufficient information from samples to selecting m,
and also determines the local preference over each {m−1,m} as in Fig.1(d).
Γ ∗m and its element γ∗m are separately termed indicator set and indicator
at m. Note that γm is closely related to the signal-to-noise ratio.

– approximate underestimation tendency. Underestimation refers to an
event “m̂ < m∗”. Considering the Local preference defined in Fig.1(d) over
{m∗− 1,m∗}, if γm∗ ∈ Γ+

m∗ , then m∗− 1 is preferred to m∗, which indicates
that “m̂ < m∗” is likely to happen (though not guaranteed). Therefore, it is
reasonable to approximate the underestimation tendency by the probability
Pr{γm∗ ∈ Γ+

m∗}. Its exact evaluation is intractable for a finite or small N ,
but the relative tendencies of different criteria can be determined as follows.

– A TOOL for comparisons. Fixing m = m∗, assume ∇mECri1(γm) and
∇mECri2(γm), sketched in Fig.1(c), are strictly monotone decreasing in do-
main ΓD with their indicators satisfying γ∗m(Cri1) < γ∗m(Cri2). Actually,
these assumptions hold for several criteria as in Sec.3.2. Then, Γ+

m(Crii) =
(−∞, γ∗m(Crii))

⋂
ΓD, i=1, 2, and Pr{γm ∈ Γ+

m(Cri2)}−Pr{γm ∈ Γ+
m(Cri1)}

= Pr{γ∗m(Cri1) < γm < γ∗m(Cri2)} ≥ 0. So, “approximately the underesti-
mation tendency of Cri2 is stronger than that of Cri1” or Cri1 ≺u Cri2.
Similar analysis on overestimation can be performed at m = m∗ + 1.
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Fig. 1. For a given XN , graphs of ECri and ∇mECri w.r.t. m are sketched in (a)&(b),
while for two criteria, Cri1 and Cri2, the graphs of ∇mECri1 ,∇mECri2 w.r.t. γm given
m are sketched in (c), as well as its corresponding local preference defined in (d)

3.2 AIC, BIC, CAIC

Assume the eigenvalues of the sample covariance matrix, i.e., SN = 1
N

∑N
t=1 xtxTt ,

are {si : 1 ≤ i ≤ n} with s1 ≥ . . . ≥ sn. The Maximum Likelihood (ML) estimate
Θ̂ML

m for FA(a) in eq.(1) is given to be ([1,4,2]):{
ÂML

n×m = Un×m(Dm − σ̂2
e)

1
2 RT , Dm = diag[s1, . . . , sm],

σ̂2,ML
e = 1

n−m
∑n

i=m+1 si,
(3)

where the i-th column of Un×m is the eigenvector of SN corresponding to si,
and R is an arbitrary rotation matrix. According to eq.(2) and eq.(3), the NLL
and the difference functions of some criteria, are further formulated as:

EL(XN , Θ̂ML
m ) = k ln

n∑
i=m+1

si − k ln k −
n∑

i=m+1

ln si, k = n−m, (4)

∇mEL(γm,m) .= ∇mEL(XN , Θ̂ML
m ) = −(k + 1) ln

(
1 +

γm − 1
k + 1

)
+ ln γm (5)

∂∇mEL(γm,m)
∂γm

= − k(γm − 1)
(k + γm)γm

≤ 0, ∀γm ∈ [1,+∞). (6)

∇mECri(γm,m) .= ∇mECri(XN , Θ̂ML
m ) = ∇mEL(XN , Θ̂ML

m ) + nρcri (7)

where ρcri is given in eq.(2), and γm is explicitly formulated by

γm = γm,m, γi,m = si/An
m+1 ≥ 1, i = 1, . . . ,m; An

m = 1
n−m+1

∑n
i=m si, (8)

Due to the space limit, all theoretical results are given without proofs.

Lemma 1. (1). Given ρ > 0, the root γ∗ of ∇mEL(γ) = −nρ is unique for
γ > 1 and bounded in (γlow, γup), where γlow = (k+ 1)C0− k, and γup = γlow +√

2(k + 1)C0(C0 − 1), and C0 = exp{nρk }, k = n−m. (2). For ρ1 > ρ2 > 0, we
have γ∗(ρ1) > γ∗(ρ2) > 1.

Remarks: Similar bounds were provided in[5,6] by two kinds of Taylor approx-
imations w.r.t. two formulated variables separately, while Lemma 1(1) was de-
rived by a second-order Taylor approximation (as in[6]) w.r.t to γ (as in[5]).
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Theorem 1. Since the indicator γ∗m(Cri) is a root of ∇mECri(γm) = 0, then

1. 1 = γ∗m(NLL) < γ∗m(AIC) < γ∗m(BIC) < γ∗m(CAIC), if N ≥ 8 > e2.
2. Γ+

m = [1, γ∗m(Cri)), Γ−m = (γ∗m(Cri),+∞), and indicator set Γ ∗m = {γ∗m(Cri)}.
3. Applying C0 ≈ 1 + nρ

k to γup in Lemma 1, we get a further approximation:

γ∗m(Cri) ≈ 1 + (n+ n/k) · c
N

+
n

k

√
2(k + 1)

(
k

n
+
c

N

)
c

N
+O(

c

N
), (9)

where c = 2, lnN, lnN+1 for AIC, BIC, CAIC separately, and k = n−m.

Remarks: This theorem indicates: (1). NLL tends to select largem in probability
one unless γm = 1, ∀m > m∗ or si = σ2 (∀i ≥ m∗) which requires N → +∞;
(2). Fixing m = m∗, “AIC≺uBIC≺uCAIC” holds according to Sec.3.1.

3.3 DNLL and BYY-FA(a)

The likelihood-ratio test is a conventional approach to model selection in statis-
tics [9]. The logarithm of the likelihood-ratio or the difference of the Negative-
Log-likelihood (NLL) is denoted as DNLL, and the corresponding objective
function is EDNLL(XN , Θ̂ML

m ) = ∇mEL, where ∇mEL is given in eq.(5). Then,

∇m(EDNLL(XN , Θ̂ML
m )) = ∇2

mEL = −2(k + 1) ln
(
1 + γm,m−1

k+1

)
+(k + 2) ln

(
1 + γm−1,m+γm,m−2

k+2

)
− ln γm−1,m

γm,m

(10)

where γm−1,m, γm,m are formulated in eq.(8), and γm−1,m ≥ γm,m ≥ 1. Ac-
cording to the Formulation 1, γ(XN ,m) is generalized to a two-variable vector
(γm−1,m, γm,m), and the indicator set Γ ∗m becomes a 2-dimensional boundary.

Theorem 2. Define sp, . . . , sq to be “slightly dispersed”, if |si −Aq
p| < δ holds

for any i ∈ [p, q] and a very small δ(> 0). The criterion DNLL captures the
variations of NLL, and especially at the unknown true dimension m∗ we have

1. When m = m∗: If sm−1 ≈ sm � An
m+1, then γm−1,m ≈ γm,m � 1, which

implies ∇mEDNLL < 0, i.e., m∗ is preferred to m∗ − 1.
2. When m − 1 = m∗: If sm−1 � sm ≈ An

m+1, then γm−1,m � γm,m ≈ 1,
which implies ∇mEDNLL > 0, i.e., m∗ is preferred to m∗ + 1.

3. If s1, . . . , sm∗ are slightly dispersed, sm∗+1, . . . , sn are also slightly dispersed,
and sm∗ � sm∗+1, then m∗ is the global minimum of EDNLL.

Remarks: Instead of strict mathematical formulations, the conditions in Theorem
2 are stated in an intuitive way. It implies DNLL favors slightly dispersed signal
and noise eigenvalues, as well as a large signal-to-noise ratio (SNR). However,
the conditions will be probably violated when N and SNR is small.

Another approach to tackling model selection problems is the Bayesian Ying-
Yang (BYY) harmony learning theory[14]. We defer its detailed introduction to
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the next section. With γm again formulated in eq.(8), a BYY criterion (denoted
as BYY-FA(a)) for FA(a) in eq.(1) as well as its difference function is

EaH(XN , Θ̂ML
m ) = m ln(2πe) + n ln

(
1

n−m
∑n

i=m+1 si

)
,

∇mEaH(γm,m) = ln(2πe)− n
{
ln

(
1 + γm

n−m
)

+ ln
(
1 + 1

n−m
)}
,

(11)

Lemma 2. According to eq.(11) and the tool defined in Sec.3.1, we have

1. Since the indicator γ∗m(Ha) is the root of ∇mEaH(γm) = 0, then γ∗m(Ha) =
(n−m+ 1)

[
(2πe)

1
n − 1

]
+ 1 > 1, e.g., γ∗m(Ha) ≈ 3.595 when n = 9,m = 3.

2. Γ+
m = [1, γ∗m(Ha)), Γ−m = (γ∗m(Ha),+∞), the indicator set Γ ∗m = {γ∗m(Ha)}.

Theorem 3. There exists an equivalent ρHa for BYY-FA(a), and then we in-
directly compare the indicator γ∗m(Ha) of BYY-FA(a) with γ∗m(Cri) of another
criterion (Cri) by approximately comparing ρHa with ρcri as follows:

1. ρHa is bounded in
(
ρ
(low)
Ha

, ρ
(up)
Ha

)
, where ρ(up)H2

= n−m
n ln cn and ρ(low)

Ha
=

cn + 2cn−1
k−1 −

√
2(k+1)cn(cn−1)+1

k−1 , cn = n
√

(2πe), k = n−m.
2. Given n,m, ∃Ncri > 1 such that ρHa < ρcri iff 1 < N < Ncri. Also, Ncri is

lower bounded by Nup, which is the largest N that satisfies ρ(up)Ha
< ρcri. E.g.,

Nup = 14, 23, 31 for AIC, BIC, and CAIC respectively, when n = 9,m = 5.

Remarks: Considerm = m∗. (1). Since γ∗m∗(Ha) is irrelevant to N and γm∗ is the
ML estimator for the true unknown SNR γo = λm∗/σ2, then BYY-FA(a) tends
to underestimate m regardless of N as long as γ∗m∗(Ha) > γo. (2). We compare
BYY-FA(a) with other criteria (Cri), such as AIC, BIC and CAIC, directly by
calculating each indicator γ∗m∗(Cri) as in Lemma 1&2 or indirectly in form of
ρcri as in Theorem 3. (3). There exists a small Ncri, such that if N < Ncri then
BYY-FA(a)≺uCri, otherwise Cri≺uBYY-FA(a), according to Sec.3.1.

4 Empirical Study and BYY-FA(b)

4.1 BYY-FA(b)

The criteria analyzed above are relatively easy for a theoretical analysis, while
BYY Harmony Learning Theory on another formulation of FA, i.e., FA(b) in
eq.(1), is difficult. However, via an empirical comparison, we still provide insights
of its model selection performances.

Firstly proposed in 1995 and systematically developed in the past decade,
Bayesian Ying-Yang (BYY) harmony learning theory is a general statistical
learning framework that can handle both parameter learning and model selection
under a best harmony principle. The BYY harmony learning leads us not only
a set of new model selection criteria for typical structures, but also a class of
automatic model selection algorithms. For more details, please refer to a recent
systematic review[14].
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FA(a) and FA(b) in eq.(1) are equivalent under ML principle but different
under the BYY harmony learning theory [14]. The former leads to BYY-FA(a)
in Sec.3.3, while the latter leads to BYY-FA(b) as follows, with a similar two-
phase procedure (see eq.(7) in[14]) implemented,

EbH = m ln(2πe) + ln |Λ|+ n lnσ2
e + h2Tr

[
(AΛAT + σ2

eIn)−1] . (12)

4.2 Simulations

We design 3 × 3 = 9 cases of experimental environments by considering three
levels of sample size N and noise σ2

e respectively, with n = 9 and m∗ = 3 fixed.
Three levels are 100, 50, 25 for N or 0.1λm∗ , 0.3λm∗ , 0.5λm∗ for σ2

e (equivalently
γo = λm∗/σ2

e = 10, 3.33, 2), where λm∗ is the m∗-th largest Gaussian signal’s
variance. We randomly generate samples according to each setting of FA in
eq.(1) for each of 100 independent repeated runs, in which two-phase procedure
is implemented by setting [mlow,mup] = [1, 6] and randomly initializing Θm.
The selection percentage rates are reported in Table 1. The indicators γ∗m∗(Cri)
are approximately calculated by eq.(9), and γ∗m∗(Ha) by Lemma 2.

The simulations suggest the following observations. (1). The performances
of all criteria are comparable when N ,γo are large, but they decline at dif-
ferent speeds as N , γo reduce. (2). For a large N(= 100), BIC and CAIC is
consistent but AIC risks an overestimation. Let Cri be AIC, BIC or CAIC,
and then γ∗m∗(Cri) grows as N reduces. When γ∗m∗(Cri) exceeds γo, Cri tends

Table 1. We report the percentage rates of model selection of 9 combinations in three
categories, i.e., underestimation(U),successful selection(S) and overestimation(O). The
indicator γ∗

m(Cri) is calculated at m = m∗ = 3. Note that γ∗
m(Cri) by eq.(9) approxi-

mates γnum
m well, where γnum

m is the numerical solution of ∇mECri(γ) = 0.

(a). Sample size N = 100, γo = λm∗/σ2
e (3 levels)

noise level: γo = 10 γo = 3.33 γo = 2 γ∗
m(Cri) approximated γnum

m is the
Cri \ rates U S O U S O U S O by eq.(9). numerical sol.
AIC 0 99 1 0 96 4 0 97 3 γ∗

3 (AIC) ≈ 1.87 γnum
3 (AIC) = 1.83

BIC 0 100 0 1 99 4 9 91 0 γ∗
3 (BIC) ≈ 2.50 γnum

3 (BIC) = 2.43
CAIC 0 100 0 1 99 4 22 78 0 γ∗

3 (CAIC) ≈ 2.72 γnum
3 (CAIC) = 2.65

DNLL 2 98 0 39 61 0 63 27 0 not available not available
BYY-FA(a) 0 100 0 30 70 0 98 2 0 γ∗

3 (Ha) = 3.59 γ∗
3 (Ha) = 3.59

BYY-FA(b) 0 100 0 1 99 0 1 95 4 not available not available

(b). Sample size N = 50, γo = λm∗/σ2
e (3 levels)

(same as (a)) U S O U S O U S O γ∗
m(Cri) by eq.(9) γnum

3 (Cri)
AIC 0 98 2 0 99 1 18 79 3 γ∗

3 (AIC) ≈ 2.36 γnum
3 (AIC) = 2.30

BIC 0 100 0 6 94 2 76 24 0 γ∗
3 (BIC) ≈ 3.18 γnum

3 (BIC) = 3.10
CAIC 0 100 0 20 80 2 91 9 0 γ∗

3 (CAIC) ≈ 3.57 γnum
3 (CAIC) = 3.50

DNLL 5 95 0 49 51 0 86 14 0 not available not available
BYY-FA(a) 0 100 0 35 65 2 96 4 0 γ∗

3 (Ha) = 3.59 γ∗
3 (Ha) = 3.59

BYY-FA(b) 0 100 0 3 97 0 5 84 11 not available not available

(b). Sample size N = 25, γo = λm∗/σ2
e (3 levels)

(same as (a)) U S O U S O U S O γ∗
m(Cri) by eq.(9) γnum

3 (Cri)
AIC 1 92 7 13 85 2 58 40 2 γ∗

3 (AIC) ≈ 3.21 γnum
3 (AIC) = 3.13

BIC 1 99 0 49 51 0 94 6 0 γ∗
3 (BIC) ≈ 4.15 γnum

3 (BIC) = 4.10
CAIC 1 99 0 84 16 0 100 0 0 γ∗

3 (CAIC) ≈ 4.88 γnum
3 (CAIC) = 4.91

DNLL 11 89 0 62 38 0 89 11 0 not available not available
BYY-FA(a) 1 92 7 35 63 2 85 12 3 γ∗

3 (Ha) = 3.59 γ∗
3 (Ha) = 3.59

BYY-FA(b) 0 99 1 6 89 5 21 66 13 not available not available
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to underestimates m, where AIC remains more robust. These agree with The-
orem 1. (3). DNLL fails as N, γo reduce, which agrees with Theorem 2. (4).
BYY-FA(a) tends to underestimate m when γo < γ∗m∗(Hb), which is worse
than BIC and CAIC for N = 100 but better for N = 25. This coincides with
Theorem 3. (5). BYY-FA(b) becomes evidently superior when N ≤ 50 and
γo ≤ 3.33. For example, it improves by 4.7%, 6.3%, 65% relative to AIC when
(N, γo) = (25, 3.33), (50, 2), (25, 2) respectively.

5 Conclusion

We have provided a preliminary theoretical comparison of several criteria based
on the problem of selecting the hidden dimension of FA in its special case of
PCA. It suffices to study a statistic and a crucial but unknown indicator set
for each criterion. Due to the difficulty in exact evaluation of selection accuracy
for a finite or small sample size N , the model selection behavior is preliminarily
characterized by an order of the approximate underestimation tendencies, i.e.,
AIC≺uBIC≺uCAIC≺uBYY-FA(a) . DNLL requires a proper dispersion of signal
and noise eigenvalues. The simulations agree with the theoretical results and also
indicates that BYY-FA(b) becomes superior as N reduces and noise increases.

Acknowledgments. The work described in this paper was fully supported by
a grant from the Research Grant Council of the Hong Kong SAR (Project No:
CUHK4177/07E).
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Abstract. In this paper, a new approach for quasi-sphering in noisy
ICA by means of exploratory factor analysis (EFA) is introduced. The
EFA model is considered as a novel form of data matrix decomposition.
By factoring the data matrix, estimates for all EFA model parameters
are obtained simultaneously. After the preprocessing, an existing ICA
algorithm can be used to rotate the sphered factor scores towards inde-
pendence. An application to climate data is presented to illustrate the
proposed approach.

Keywords: Noisy ICA, Exploratory factor analysis, Less observations
than variables, Factor rotation, Procrustes problems, Climate anomalies.

1 Introduction

As a preprocessing step in ICA, a mean-centered data matrix is often whitened
or sphered to transform its covariance matrix to be the identity matrix. This
operation was named quasi-sphering in the context of noisy ICA by [8]. To fit
the noisy ICA model, exploratory factor analysis (EFA) is frequently used to
perform quasi-sphering of the data [9,11]. Traditionally, EFA seeks estimates for
a factor loadings matrix and a matrix of unique variances which give the best
fit to the sample covariance/correlation matrix [12]. Sphered factor scores are
obtained as a function of these estimates and the data.

In a number of modern applications, the number of variables p exceeds the
number of available observations n. Thus, the sample covariance/correlation ma-
trix is singular and methods such as e.g. maximum-likelihood factor analysis
cannot be applied. In addition, numerical algorithms factorizing a p× p covari-
ance/correlation matrix may become computationally slow if p is huge.

A new and efficient approach for fitting the EFA model is presented in this
paper. The EFA model is considered as a specific form of data matrix decom-
position. Estimates for all EFA model parameters are obtained simultaneously.
Based on this initial solution, the JADE criterion [2] is optimized to estimate the
mixing matrix and the independent sources. The proposed approach is applied
to study winter climate anomalies in the Northern Hemisphere.

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 163–170, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



164 S. Unkel and N.T. Trendafilov

2 Statistical Models of Noisy ICA and EFA

Consider the noisy ICA model [8]:

x = As + u , (1)

where x ∈ Rp×1 is a random vector of manifest variables, s ∈ Rk×1 is a random
vector of k ≤ p latent sources, A ∈ Rp×k is a mixing matrix with rank(A) = k,
and u ∈ Rp×1 is a random vector of error terms. Assume that s consists of
mutually independent sources of which at most one is Gaussian. Furthermore,
let E(x) = E(s) = 0 and E(ss′) = Ik. Finally, suppose that E(su′) = 0k×p and
u ∼ Np(0,Ψ2), where Ψ2 is a positive definite diagonal matrix.

The noisy ICA problem of obtaining approximately independent realizations
of the sources can be transformed into a specific EFA task by showing the close
connection between noisy ICA and EFA. Consider the EFA model [12]:

x = Λf + Ψu , (2)

where f ∈ Rk×1 is a vector of k common factors, Λ ∈ Rp×k is the loading matrix
with rank(Λ) = k, u ∈ Rp×1 is a vector of unique factors, and Ψ is a p × p
diagonal matrix of unique factor-pattern coefficients. In EFA it is assumed that
k  p, where the choice of k is subject to some limitations [12], which will
not be discussed here. Assume that E(x) = E(f) = E(u) = 0. Furthermore, let
E(ff′) = Ik, E(uu′) = Ip and E(fu′) = 0k×p. Hence, all factors are uncorrelated
with one another. Under these assumptions, the model in (2) represents an EFA
model with uncorrelated or orthogonal (random) common factors.

For the random EFA model, it is often convenient to assume that not only u
but also f and hence x are multinormally distributed. This assumption is usually
made for purposes of statistical inference [12]. As the elements of f are uncor-
related, the assumption of normality means they are statistically independent
random variables. Unlike EFA, noisy ICA assumes that the k sources in s are
both mutually independent and non-normal, or that at least all but one are
non-normal. Apart from this key difference, the EFA model in (2) is virtually
identical to the noisy ICA model in (1), where the common factors f correspond
to the sources s and the loadings Λ to the mixing matrix A.

In the EFA model, the factor loadings are not unique. If T is a non-singular
k × k matrix, (2) may be rewritten as

x = ΛTT−1f + Ψu ,

which is a model with loading matrix ΛT and common factors T−1f. The as-
sumptions about the random variables that make up the original model are not
violated by this transformation. This means that there is an infinite number of
factor loadings satisfying the original assumptions of the model.

As a remedy, parameter estimation is usually followed by some kind of rota-
tion such that a certain simplicity criterion (e.g. Varimax) is optimized [12]. In
noisy ICA, the assumption of both non-normal and independent common factors
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removes the rotational redundancy of the EFA model. The mixing matrix can
be identified up to permutation and sign ambiguities and there is no need for
‘simple structure’ rotation. This is achieved by optimizing criteria that involve
measures of departure from normality and/or independence [3,8].

One can start from an initial EFA solution, and rather than rotating the factor
loadings towards simplicity, rotate the common factors orthogonally towards
independence to achieve the ICA goal. From this point of view, ICA is just
another method of factor rotation in EFA [7,8]. There are a number of problems
to find factor scores following the classical EFA [12]. In the next section, a new
approach to EFA is presented which facilitates the factor scores estimation.

3 Fitting the EFA Model by Data Matrix Decomposition

Given a multivariate sample of n independent observations on x = (x1, . . . , xp)′

(n > p), the k-factor model in (2) can be written as

X = FΛ′ + UΨ , (3)

where X = (x1, . . . ,xp) ∈ Rn×p corresponds to the observed data matrix in
which xj = (x1j , . . . , xnj)′ (j = 1, . . . , p), and F = (f1, . . . , fk) ∈ Rn×k and
U = (u1, . . . ,up) ∈ Rn×p denote the unknown matrices of factor scores for the
k common factors and p unique factors on n observations, respectively.

To facilitate notations, assume that the columns of X, F, and U are mean-
centered and scaled to have unit length. Furthermore, suppose that rank(Λ) = k,
F′F = Ik, U′U = Ip, U′F = 0p×k, and that Ψ is a diagonal matrix.

The EFA model (3) and the assumptions imply the following model correlation
structure R for the observed variables:

R = ΛΛ′ + Ψ2 . (4)

In EFA, the most common approach is to find the pair {Λ̂, Ψ̂} which gives the
best fit, for certain k, to the sample correlation matrix C = X′X with respect
to some discrepancy measure. The process of finding this pair is called factor
extraction. Various factor extraction methods have been proposed [12].

After estimates Λ̂ and Ψ̂ have been found, common factor scores can be
computed as a function of X, Λ̂, and Ψ̂ in a number of ways [12]. For the EFA
model (3), [1] proposed the following set of factor scores:

F̂ = XΨ̂
−2

Λ̂
(
Λ̂
′
Ψ̂
−2

CΨ̂
−2

Λ̂
)− 1

2
, (5)

which satisfies the correlation-preserving constraint F′F = F̂
′
F̂ = Ik. Note that

(5) is undefined if Ψ is singular, a situation not uncommon in practice.
In formulating EFA models, the standard approach is to embed the data in a

replication framework by assuming the observations are realizations of random
variables. For n > p, [4] formulated the EFA model directly in terms of the data



166 S. Unkel and N.T. Trendafilov

instead. Let ||Z||F =
√

trace(Z′Z) denote the Frobenius norm of Z and consider
minimizing the following least squares goodness-of-fit criterion [4]:

||X− FΛ′ −UΨ||2F (6)

subject to rank(Λ) = k, F′F = Ik, U′U = Ip, U′F = 0p×k, and Ψ being a
p×p diagonal matrix. Thus, the observations X are in the space spanned by the
common and unique factor scores. The loss function (6) is bounded below [5]. To
optimize the objective function (6), [4] proposed an algorithm of an alternating
least squares (ALS) type.

If the number of variables exceeds the number of observations (p > n), the
sample correlation matrix is singular. Then, the standard maximum-likelihood
factor analysis or generalized least squares factor analysis cannot be applied.
Maximum-likelihood fit to such rank-deficient correlation matrices by the EFA
correlation structure ΛΛ′+Ψ2 was considered in [13]. They look to approximate
a singular correlation matrix by a positive definite one having the specific form
ΛΛ′ + Ψ2 and assuming Ψ2 positive definite.

Alternatively, one can use the least squares approach, which does not need C
to be invertible. It can be formulated as the following optimization problem [10]:

min
Λ,Ψ
||C−R||2F . (7)

However, there is a conceptual difficulty in adopting the approach to EFA in-
troduced by [13], or solving the least squares problem (7). The EFA correlation
structure ΛΛ′ + Ψ2 is a consequence of the accepted EFA model (2) and the
assumptions made for its parameters. When the number of variables exceeds the
number of observations, the classical constraint U′U = Ip cannot be fulfilled
as U′U has at most rank n (< p). Furthermore, algorithms factorizing a p × p
matrix C may become computationally slow if p is huge. In the case of high-
dimensional data and n p, taking a n× p data matrix as an input for EFA is
a reasonable alternative.

With U′U �= Ip, the EFA correlation structure can be written as

R = ΛΛ′ + ΨU′UΨ . (8)

In order to preserve the standard EFA correlation structure (4), the more general
constraint U′UΨ = Ψ is introduced. The immediate consequence from this new
constraint is that the existence of unique factors with zero variances is acceptable
in the EFA model when n < p. With classical EFA (n > p), there is a long-
standing debate about the acceptance of zero entries in Ψ2. It seems that an
universal EFA model covering both cases n > p and p > n should allow Ψ2

to be positive semi-definite. This modified EFA problem will fit the singular
correlation p× p matrix of rank at most n by the sum ΛΛ′+Ψ2

n of two positive
semi-definite p× p matrices with ranks k and n (at most), respectively.

By defining the block matrices B = [F : U] and A = [Λ : Ψ] of dimensions
n× (k + p) and p× (k + p), respectively, (6) can be rewritten as

||X−BA′||2F = ||X||2F + trace(B′BA′A)− 2trace(B′XA) , (9)
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which is optimized subject to the new constraint BB′ = In. The middle term in
(9), trace(B′BA′A), can be written as

trace(B′BA′A) = trace
{[

F′

U′

] [
F : U

] [Λ′

Ψ

] [
Λ : Ψ

]}
=

trace
{[

Ik 0k×p
0p×k U′U

] [
Λ′Λ Λ′Ψ
ΨΛ Ψ2

]}
= trace

{[
Λ′Λ Λ′Ψ

U′UΨΛ U′UΨ2

]}
=

trace(Λ′Λ) + trace(Ψ2
n) ,

showing that trace(B′BA′A) does not depend on F and U. Hence, as with
the standard Procrustes problem, minimizing (9) over B is equivalent to the
maximization of trace(B′XA). For this problem a closed-form solution via the
singular value decomposition (SVD) of XA exists [6].

After solving the Procrustes problem for B = [F : U], one can update the
values of Λ and Ψ by Λ = X′F and Ψ = diag(U′X) using the identities

F′X = F′FΛ′ + F′UΨ =⇒ F′X = Λ′ , (10)
U′X = U′FΛ′ + U′UΨ =⇒ U′X = Ψ (and thus diagonal) , (11)

which follow from the EFA model (3) and the new constraint U′UΨ = Ψ
imposed. The matrix of factor loadings Λ is required to have full column rank k.
Constructing it as Λ = X′F gives rank(Λ) = min{rank(X), rank(F)}. Assuming
that rank(X) ≥ k, the ALS algorithm preserves the full column rank property
of Λ. The whole ALS process is continued until the loss function (9) cannot be
reduced further.

4 Rotation towards Independence

Finding estimates for uncorrelated factor scores F̂ and loadings Λ̂ is a standard
EFA problem. To solve the corresponding noisy ICA problem one needs to go one
step further. The common factor scores should be independent. For this reason,
they are rotated towards independence, that is,

Ŝ = F̂T , (12)

for some orthogonal matrix T, where Ŝ denotes the estimate for the matrix of
independent scores of the n observations on k sources. To find the matrix T
that leads to approximately independent scores, various ICA algorithms can be
applied [8], as e.g. JADE, FastICA, et cetera. Once the optimal rotation matrix
T and hence Ŝ has been found, the noisy ICA mixing matrix is obtained by
Â = Λ̂T.

5 Application

5.1 Data

In this section, the proposed approach is applied to climate data from the Na-
tional Center for Environmental Prediction/National Center for Atmospheric
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Research (NCEP/NCAR) reanalysis project. The data set consists of winter
monthly sea-level pressures (SLP) over the Northern Hemisphere north of 20oN.
The winter season is defined by the months December, January, and February.
The data set spans the period December 1948 to February 2006 (n = 174 obser-
vations) and is available on a regular grid with a 2.5olatitude × 2.5olongitude
resolution (p = 29× 144 = 4176 variables).

Prior to the analysis the data was preprocessed as follows. First, the mean an-
nual cycle was calculated by averaging the monthly data over the years. Anoma-
lies were then computed as departures from the mean annual cycle. To account
for the converging longitudes poleward, an area weighting was finally performed
by multiplying each grid point by the square root of the cosine of the corre-
sponding latitude. These weighted sea-level pressure anomalies are considered in
the following.

5.2 Results

By applying the EFA procedure described in section 3, five factors were extracted
which account for 60.2% of the total variance in the data. This choice is dictated
by the need for a balance between explained variance and spatial scales. Ex-
tracting more factors increases the explained variance but includes more small
scales. Five factors are found to provide a fine balance.

For k = 5 and twenty random starts, the procedure requires on average 90
iterations, taking about 20 minutes in total using MATLAB 7.1 on a PC operat-
ing with an Intel Pentium 4 CPU having 2.4 GHz clock frequency and 1 GB of
RAM. For comparison, factorizing a 4176× 4176 covariance matrix and finding
a numerical solution for the least squares optimization problem (7) based on an
iterative Newton-Raphson procedure takes about 2.5 hours.

The JADE procedure [2] is used to obtain the matrix of approximately in-
dependent factor scores Ŝ = F̂T and an estimate of the ICA mixing matrix
Â = Λ̂T.

By means of the mixing or loading matrix, noisy ICA provides a method of
describing spatial patterns of winter sea-level pressures. For each factor, there is
a loading for each manifest variable, and because variables are gridpoints it is
possible to plot each loading on a map at its corresponding gridpoint, and then
draw contours through geographical locations having the same coefficient values.
Compared to a loading matrix with 4176 loadings for each factor, this spatial
map representation greatly aids interpretation, as is illustrated in Figure 1.

These plots give the maps of loadings, arbitrarily renormalized to give ‘round
numbers’ on the contours. The plots (i) and (ii) in Figure 1 represent the first and
second column of the 4176× 5 ICA mixing matrix, respectively. Winter months
having large positive scores for the factors will tend to have high loadings and
hence high SLP values, where loadings on the map are positive, and low SLP
values at gridpoints where the coefficients are negative. Since the data is mean-
centered the loadings can be interpreted as covariances between the observed
variables and the common factors.
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Fig. 1. Spatial map representation of the first (i) and second (ii) column of the ICA
mixing matrix for k = 5 factors applied to winter SLP data. Positive contours are
represented by solid lines and negative contours by dotted lines.

Spatial map (i) shows the North Atlantic Oscillation (NAO). The NAO is a
climatic phenomenon in the North Atlantic Ocean of fluctuations in the differ-
ence of sea-level pressure between the Icelandic low and the Azores high. The
second ICA pattern (ii) yields the North Pacific Oscillation (NPO) or Pacific
pattern, a monopolar structure sitting over the North Pacific. Applying ICA to
winter mean sea-level pressure anomalies shows that the NAO and the Pacific
pattern correspond to two approximately independent factors.

6 Conclusions

This paper proposes a new method for sphering in ICA in the presence of noise
based on EFA. The EFA is considered as a novel form of data matrix decom-
position. To preserve the EFA model correlation structure for cases where the
number of observations is less than the number of variables, a new model con-
straint is introduced which allows the matrix of unique-factor variances to be
positive semi-definite. By formulating the EFA model directly in terms of the
data and optimizing a least squares loss function, estimates for all EFA model pa-
rameters are obtained simultaneously. For high-dimensional data, this approach
is computationally more efficient than factorizing a matrix of second-order cross
products. Based on the initial EFA solution, the common factor scores are ro-
tated towards independence to implement the noisy ICA model.

The proposed approach is applied to the monthly winter sea-level pressure
field over the Northern Hemisphere for the period 1948-2006. It is shown that
noisy ICA is able to identify physically interpretable spatial patterns, namely
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the NAO and the NPO. This paper gives evidence that noisy ICA can be of
value in climate research for separating underlying anomaly signals that may be
generated by independent physical processes.
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Abstract. The various scales of a signal maintain relations of depen-
dence the ones with the others. Those can vary in time and reveal
speed changes in the studied phenomenon. In the goal to establish these
changes, one shall compute first the wavelet transform of a signal, on vari-
ous scales. Then one shall study the statistical dependences between these
transforms thanks to an estimator of mutual information (MI) called
divergence. The time-scale representation of the sources representation
shall be compared with the representation of the mixtures according to
delay in time and in frequency.

Keywords: Blind sources separation, divergence, Gaussian signal,
wavelet transform.

1 Introduction

A growing interest is evident in investigating the dependence relationships be-
tween complex data such as curves, spectra, time series or more generally signals.
In these cases, each observation consists of values of dependent variables which
are usually function of time.

This paper examines the dynamic interactions, and more specifically, the im-
pacts of changes in a set of wavelet coefficients by using wavelet analysis. As
a semi-parametric method, wavelets analysis might be superior to detect the
chaotic patterns in the non-coherent markets.

The paper begins with an information analysis of statistical dependencies
between wavelet coefficients providing from signals. These intra and interscale
dependencies are measured using mutual information (MI). MI depends strongly
on the choice on the wavelet filters. Such dependencies have been studied inten-
sively in [9]. Wavelet analysis takes contact with self-similar fractals and iterative
analysis, through other techniques of functional approximation, such as radial
basis functions, etc. although we do not want to enter in the arsenal of modern
tools.In the study of time series it is crucial to understand what is dependent
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and what independent of the temporal and space scales. The wavelet transform
(WT) nearly decorrelates many time series and can be viewed as a Karhunen-
Loève transform. Nevertheless, significant dependencies still exist between the
wavelet coefficients.

Most algorithms focus on a certain type of dependencies, which it attempts
to capture using a relatively simple and tractable model, such as the Karhunen-
Loève transform (KLT), the discrete Fourier transform (DFT), and the discrete
wavelet transform (DWT). Among them KLT is the most effective algorithm
with minimal reconstruction error. The times series dataset is transformed into
an orthogonal feature space in which each variable is orthogonal to the oth-
ers. The time series dataset can be approximated by a low-rank approximation
matrix by discarding the variables with lower energy [1].

DWT and DFT are powerful signal processing techniques and both of them
have fast computational algorithms. DFT maps the time series data from the
time domain to the frequency domain, and the fast Fourier transform algorithm
(FFT) can compute the DFT coefficients in O(mn logn) time. Unlike DFT which
takes the original time series from the time domain and transforms it into the
frequency domain, DWT transforms the time series from time domain into time-
frequency t− f domain.

The fact that the wavelet transform (WT) has the property of time-frequency
localisation of the time series means that most of the times series energy can
be represented by only a few wavelet coefficients. Chan and Fu used the Haar
wavelet for time series representation and showed (classification) performance
improvement over DFT [4]. Popivanov and Miller proposed an algorithm using
the Daubechies wavelet for time series classification [13]. Lin et al. proposed
an iterative clustering algorithm exploring the multi-scale property of wavelets
[8]. Numerous other techniques for time series data reduction have been pro-
posed such as regression tree [2], piecewise linear segmentation [7], etc. These
algorithms work well for time series with few dimensions because the high cor-
relation among time series data makes it possible to remove huge amount of
redundant information. But for clustering algorithms with unlabeled data, deter-
mining the dimensionality of the feature dimensionality becomes more difficult.
To our personnal knowledge, the feature dimension needs to be decided by the
user.

The aim of this paper is to propose a time-series feature extraction algorithm
using orthogonal wavelet capable to test for the presence of a dependence struc-
ture. The problem of determining the feature dimensionality is circumvented by
choosing the appropriate scale of the WT. An ideal feature extraction technique
has the ability to efficiently reduce the data while preserving the properties of the
original data. However, infomation is lost in dimension reduction. The rest of the
paper is organized as follows. Section 2 is a reminder on multiresolution analysis.
Section 3 gives the basis for supporting our feature extraction algorithm. Section
4 contains a comprehensive experimental evaluation of the proposed algorithm.
We conclude the paper by summarizing the main contribution in section 5.
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2 A Refresher on Wavelet Representations

WT preserved the broad trend of the input sequence in an approximation part,
while the localized changes are kept in some detail parts. More details about
WT can be found in [5].

For short, a wavelet is a smooth and quickly vanishing oscillating function
with good localisation properties in both frequency and time, this is more suit-
able for approximating time series data that contain regional structures [11,6].
To efficiently calculate the WT for signal processing, Mallat introduced the mul-
tiresolution analysis (MRA) and designed a family of fast algorithms based on
[11]. With MRA, a signal can be viewed as being composed of a smooth back-
ground and fluctuations (also called details) on top of it. The distinction between
the smooth part and the details is determined by the resolution, that is the scale
below which the details of a signal cannot be discerned. At a given resolution,
a signal is approximated by ignoring all fluctuations below that scale. We can
progressively increase the resolution: finer details are then added to the coarser
description, providing a better approximation of the signal

X = AJ +
J∑

j=1

Dj , (1)

where Aj and Dj are respectively the approximation and the detail at level j
of the signal X . In other words, any time series can be written as the sum of
orthogonal signals. Each signals lies in a common space denoted by V0 and are
of lenght n [12]. But Aj and Dj belong to spaces Vj and Wj respectively. This
sequence of nested approximation spaces (Vj) involved in the multiresolution
framework is such that VJ ⊂ VJ−1 ⊂ . . . ⊂ V0. The space Wj is an orthogonal
complement of Vj−1 in Vj , i.e. Vj = Vj−1 ⊕Wj−1. Then by defining

V0 ⊕ W0︸ ︷︷ ︸
V1

⊕W1 ⊕ . . . ⊕ Wj−1 = Vj (2)

any signal belonging to Vj (resp. Wj) can be viewed as an approximation (resp.
detail) signals like Aj (resp. Dj). From a signal processing point of view, the
approximation coefficients within lower scales correspond to the lower freequency
part of the signal. Hence the first few coefficients Aj constitute a noise-reduced
signal. Thus keeping these coeffciients will not loose much information from
the original time series X . Hence, normally, the first coefficients are chosen as
the features: they retain the entire information of X at a particular level of
granularity. The task of choosing the first few wavelet coefficients is circumvented
by choosing a particular scale. The candidate selection of feature dimensions is
reduced from {1, 2, . . . , n} to {20, 21, . . . , 2J−1}.

For our tests, we used the Haar wavelet which has the fastest transform al-
gorithm and is the most popularly used orthogonal wavelet. Fig. 1 plots two
wavelets: the Haar on the left and the Daubechies (db2) series on the right.
Conceptually, these mother wavelet functions are analogous to the impulse re-
sponse of a band-pass filter.
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Fig. 1. Shapes of 2 wavelets commonly used in wavelet analysis. The sharp corners
enable the transform to match up with local details that cannot be observed when
using Fourier transform that matches only sinusoidal shapes. (a) The Haar wavelet (b)
the Daubechies wavelet.

So far, for many time series, the construction is not very good. In this case, no
effort was made to do a good job of the decomposition, but merely to perform
one MRA and to make it comprehensive.

3 Methods

One frequent assumption in the wavelet domain is the absence of correlations
between coefficients. This assumption should be questionned. In the literature
devoted to the statistical physics, the dependence between scales is given a pre-
cise meaning, and models of the random processes are debated.

Consider two signals for which the same wavelet decomposition is performed.
Feature extraction consists to select the set of wavelet coefficients which will
maximise the separation between the subspaces occupied by the signals. These
features can be interpreted as being representative of the dissimilarities between
the signals if we generate a set of image patterns that exhibit an increase in
separation as measured between signals. Such a problem is considered from the
point of view of utilizing a matrix transformation to generate images which max-
imize the interset distance between signals while keeping the intraset distance
of the subspaces constant. The separation of pattern classes can be measured in
terms of quantities other than euclidean distances. A more abstract concept of
distance is the divergence (see more details in [3,14]).

Consider 2 subspacesΩ1 andΩ2, governed by the probability densities p1(x) =
p(x|Ω1) and p2(x) = p(x|Ω2) respectively. The divergence between the two sub-
spaces is given by

J12 =
∫
x

(p1(x) − p2(x)) log
p1(x)
p2(x)

dx. (3)

The divergence can be used as a criterion for generating an optimum set of fea-
tures. We are seeking a transformation matrix A which yields image patterns of
lower dimensionality, i.e. y = Ax, where y is a m-vector, x is a n-vector, and
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A is a m × n matrix whose rows are the linearily independent vectors ai, i =
1, . . .m < n. The divergence between the image patterns is given by

J ′
12 =

∫
y

(p1(y) − p2(y)) log
p1(y)
p2(y)

dy. (4)

Assume that the wavelet coefficients in the classes Ω1 and Ω2 are Gaussian
distributed N(m1, C1) and N(m2, C2) respectively. The means vectors of the
image are given by m′

1 = Am1,m′
2 = Am2, and the covariance matrices are

C′1 = AC1A
T , C′2 = AC2A

T .
Under these conditions, the divergence of the image coefficients is given by

J ′
12 =

1
2
trace[C′−1

2 C′
1 + C′−1

1 C′
2] − m +

1
2
trace[(C′−1

1 + C′−1
2 )m′m′T ] (5)

where m = A(m1−m2). The trace of a matrix can be rewritten in terms of the
eigenvalues [10]:

J ′
12 =

1
2

m∑
i=1

(λi +
1
λi

) − m +
1
2
λm+1 +

1
2
λm+2, (6)

where λi are the eigenvalues of C′−1
2 C′1, λm+1, λm+2 are the eigenvalues of

C′−1
1 m′m′T and C′−1

2 m′m′T respectively. The differential of (6) is

dJ ′
12 =

1
2

m∑
i=1

(1 − λ−2
i )dλi +

1
2
dλm+1 +

1
2
dλm+2. (7)

From the eigenvalues equations (AC2A
T )−1(AC1A

T )ei = λiei, where ei is the
eigenvector of C′−1

2 C′1 associated with λi, the differential gives:

dA(C1A
T − λiC2A

T )ei + (AC1 − λiAC2)(dAT )ei

= −(AC1A
T − λiAC2A

T )dei + (dλi)AC2A
T ei.

(8)

C′1 and C′2 are symmetrical, then the eigenvectors will be mutually orthogonal
with respect to C′2. Suppose we can find a complete set of eigenvectors such dei
can be rewritten dei =

∑m
j=1 cjiej , where the ej are normalized with respect to

C′2, that is ejC′2ej = 1. Substituting in (8) yields:

dA(C1A
T − λiC2A

T )ei + (AC1 − λiAC2)(dAT )ei

=
∑m

i cji(λj − λi)AC2A
T ej + AC2A

T ei(dλi).
(9)

Equation (9) results in

dλi = ei(dA)(C1A
T − λiC2A

T )ei. (10)

The differentiales dλm+1 and dλm+2 can be determined in a similar manner.
Similarly we obtain:

dλm+1 = 2em+1(dA)(mmT AT − λm+1C1A
T )em+1 (11)

and
dλm+2 = 2em+2(dA)(mmT AT − λm+2C2A

T )em+2. (12)
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Inserting (11) and (12) into (7) yields in terms of the trace:

dJ ′
12 = trace[(dA)Λ], (13)

where

Λ =
m∑

i=1

(1 − λ−
i 2)(C1A

T − λiC2A
T )eie

T
i +

+ (mmT AT − λm+1C1A
T )em+1e

T
m+1 + (mmT AT − λm+2C2A

T )em+2e
T
m+2.

Since dA is arbitrary, a necessary conditions for J ′12 to be an extremum is that
Λ be equal to zero. In the particular case C1 = C2 = C and m1 �= m2, Λ
reduces to Λ = 2(mmTAT − λm+1CA

T )em+1eTm+2 and the necessary condition
for J12 to be an extremum is that mmTAT em+1eTm+2 = λm+1CA

T em+1eTm+2.
In the general case, the solution Λ = 0 can be found by using a steepest ascent
approach in which we increment A by δΛ where δ is some suitable convergence
factor so that J12 increases:

A(t+1) = A(t) + δΛ(t), (14)

where t is an iteration index. Applying the transformation y = Ax to the pat-
terns results in a satisfyingm-dimensional image patterns. These patterns exhibit
the expected separating properties.

4 Computer Simulations

In this simulation, we consider N = 3 source signals of length T = 2048 and
M = 3 mixtures. The sources are defined by s1(t) = sin(250πt2), s2(t) =
sin(150πt3), s3(t) = sin(350πt), t ∈ [0, 1]. The mixing matrix is unknown.

We consider the complex Morlet mother wavelet defined as : ψ(t) =
1√
πfb
e2iπfcte

− t2
fb . The mixtures are represented in the time-scale plane in

Figure 2.a. Figure 2.b shows sources after performing the projection Ax in the
same plane.

We now summarize the results, obtained on a subset of the full 1024× 1024
MI matrix, for clarity reasons. Fig.3(a) represents the p-values matrix (pij) for
the statistical test of independence between two coefficients cj1,k1 and cj2,k2 .
Low values in dark stand for values such that it is unlikely that the coefficients
indexed are independent. After thresholding by the a = 5% significance level,
the couples that failed to pass the test are shown in light color by Fig.3(b).

Remark that the main diagonal is rejected, which is consistent with the fact
that a coefficient is hardly independent with itself. Now, other unexpected struc-
tures appear along the y = ax line, for different slopes though. Their presence
can be explained thanks to the wavelet coefficient dependence tree, displayed in
a decimated way by Fig.3(d). A connection between two nodes means that two
coefficients failed to pass the independence test, and we can note that nodes per-
taining to a given scale s are connected with their closest neighbour. Such nodes
correspond precisely to the y = ax lines with a �= 1 in the rejection matrix.
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Fig. 2. (a) Time-scale transform of mixtures using complex Morlet wavelet. (b) Time-
scale transform of estimated sources using complex Morlet wavelet.

Fig. 3. Inferred structure of dependence, for the first 256 coefficients, out of 1024 (a) p-
value matrix (pij), for the test against the null hypothesis of independence between two
DWT coefficients indexed by i, j (b) rejection matrix, rij = 1 if the two coefficients
cannot be considered as independent (c) Wavelet coefficients dependence graph (d)
Decimated dependence graph
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5 Conclusion

We emphasize in this paper that the separation of sources having different time-
scale representations can be realized. Proposed solution is based on the projection
in a high-dimensional space spanned with the wavelets chosen for the decompo-
sition. We have illustrated the effectiveness of the proposed method thanks to
computer simulations.

A deep study of noisy mixture can be interesting for future work since the
wavelet transform can be used both for noise cancellation and source separation.
A more challenging case will be also when the mixing system is a convolutive
one, i.e., when the sources are mixed through a linear filtering operation.
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Abstract. We propose a new approach for ICA by maximizing the non-stability 
contrast function in this paper. This new version of ICA is motivated by the 
Generalized Central Limit Theorem (GCLT), an important extension of 
classical CLT.  We demonstrate that the classical ICA based on maximization 
of non-Gaussianity is a special case of the new approach of ICA we introduce 
here which is based on maximization of non-Stability with certain constraints. 
To be able to quantify non-stability, we introduce a new measure of stability 
namely Alpha-stable negentropy. A numerical gradient ascent algorithm for the 
maximization of the alpha-stable negentropy with the objective of source 
separation is also introduced in this paper. Experiments show that ICA by 
maximum of non-stability performs very successfully in impulsive source 
separation problems.  

Keywords: ICA, non-stability, alpha-stable negentropy, source separation, 
impulsive signals. 

1   Introduction 

Independent Component Analysis (ICA) is a statistical method for separating a 
mixture signal into subcomponents with the assumption that the source signals are 
mutually independent and non-Gaussian except possibly one. Non-Gaussianity 
principle based on the Central Limit Theorem (CLT) is one important approach for 
separation. As a classic result in probability theory, Central Limit Theorem (CLT) 
tells us that mixed signals are closer to Gaussian than the original sources. 
Researchers in classical ICA use the maximum non-Gaussianity criterion to obtain 
independent sources [7], [8], [9].  

Generally, negentropy or its approximations such as kurtosis based on the second- and 
fourth-order cumulants [8] are used as the contrast function, based on which algorithms, 
like FastICA [6], were developed. However, most impulsive signals do not possess finite 
second or higher-order moments, and classical ICA based on maximization of non-
Gaussianity is not suitable to solve impulsive source separation problems. Limited works 
exist in the literature on source separation of impulsive signals. In [10], the Minimum 
Dispersion Criterion approach employed an pl -norm contrast function is for the 

separation of alpha-stable distributed sources.  Our work differs from such work in that 
we challenge the non-Gaussianity based ICA assumption and our method is designed not 
only for alpha-stable signals but is valid for any impulsive source mixture. 
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Generalized Central Limit Theorem (GCLT) seen as an extension of CLT without 
the constraint of limit variance states that the sum of independent and identically 
distributed random variables with or without finite variance converges to an alpha 
stable distribution, for a large number of variables [2],[3]. 

Alpha stable distribution is a class of probability distributions that allows skewness 
and heavy tails. It has four parameters , , ,α β λ δ  and is best described by its 

characteristic function showed below: 

[ ]{ }( ) exp 1 ( ) ( , )z j z z j sign z zαϕ δ γ β ω α= − +  where, tan ,     1
2( , )

2
log     1

if
z

z if

απ α
ω α

α
π

	 ≠

= �

 =

�

 

and 0 2, 1 1, 0,α β γ δ< ≤ − ≤ ≤ > −∞ ≤ ≤ ∞ . 

Note that the Gaussian distribution is a special case of alpha stable distribution when 
α equals 2, and this is important to understand the relationship between this new 
version of ICA and classical ICA discussed below. 

According to GCLT, the sum of even two independent random variables (with no 
condition on the variance) is more likely to be alpha stable distributed than each of the 
two variables. In parallel to the motivation of the non-Gaussianity maximization 
based ICA, we can assert that to include the case of impulsive signals, we should 
define the component separation problem with the maximization of the non-stability. 
Hence, motivated by the generalized CLT, we propose a new version of ICA, where 
the non-Gaussianity principle is replaced by a new general non-stability principle. In 
this paper, we propose the use of alpha-stable negentropy as a new measure of non-
stability. Through maximizing the non-stability contrast function, it finds the 
independent components.   

2   Maximum Non-stability ICA Method 

2.1   Definition  

The model in maximum non-stability ICA is the same with that in classical ICA, 
which is: 

x As=  (1) 

What’s different here is that source vectors
1,..., ns s  in s may have large or even 

infinite variance. Here, we should restrict 
1,..., ns s  not to be alpha stable distribution 

because of the stability property, which is the property that the sum of two 
independent stable random variables with the same characteristic exponent is again 
stable and has the same characteristic exponent [3]. Similar to the classical ICA case 
in which Gaussian variables are inseparable, alpha stable source signals with the same 
characteristic exponent are inseparable.  

Although alpha stable sources with different characteristic exponents may also be 
separable, but for simplicity we assume that 1,..., ns s  not to be alpha stable here. 

Moreover, A is thought to be square in this paper also for the sake of simplicity.  
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Our objective is to estimate the mixing matrix A, and then we can compute its 
inverse, say W, which separates the mixture signals into independent components by: 

y Wx=  (2) 

2.2   Non-stability Principle 

In this section, we are going to demonstrate that the non-stability principle is a 
meaningful way for separation and how it works in maximum non-stability ICA. 

In the beginning, let us rewrite Eq. (2) in another way: 

y w x
i i

=  (3) 

where iw is the ith row vector in W. Now, if iw was the ith row of the inverse of A in 

Eq. (1), iy  is the one of the independent components. Similar to classical ICA [4], we 

make a change of variables, defining z w A
i i

= where z is a row vector. Then, 

equation Eq. (3) can be changed into: 

y w x w As z s
i i i i

= = =  (4) 

From Eq. (4), we see iy is a linear combination of is where is is the ith row vector in 

s. According to the GCLT, z s
i

is more stable than each is  unless z s
i

 is equal to one of 

the independent components in s. Similar to the classical ICA, we can find a iw which 

maximizes the non-stability of iw x  and it gives us one independent component. In the 

next section, we define a new measure of non-stability as a contrast function. 

2.3   Measure of Non-stability 

2.3.1   Negentropy and Alpha-Stable Negentropy 
Various measures exist to quantify the Gaussianity of a distribution, among which 
negentropy is one of the most frequently used which provides us an information 
theoretic measure of non-Gaussianity. Negentropy is based on the differential 
entropy, which is closely tied with the idea of (Shannon) entropy.  
 

Definition: Let X be a random variable with the probability density function 
( )f x whose support vector is I, then the differential entropy ( )h x  is defined as: 

( ) ( ) log ( )h x f x f x dxI= −  (5) 

As in entropy for discrete distributions, differential entropy is a measure of 
uncertainty, for continuous distributions.  

The classical (Gaussian) negentropy is defined as: 

( ) ( ) ( )J y h y h y
gauss

= −  
(6) 

where gaussy is a Gaussian random variable of the same covariance matrix as y [2]. 

Seen as an extension of the classical negentropy, we define alpha-stable negentropy J 
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in Eq. (7) as a measure of the distance of a distribution from alpha-stable distribution 
that is a measure of non-stability.  

( ) ( ) ( )J y h y h y
s ta b l eα= −−

 (7) 

where stableyα − is an alpha-stable random variable with the parameters , , ,α β γ δ  

estimated from y. Here, y is not necessarily an alpha stable distribution, and more 
strictly in this initial study y is constrained not to be alpha stable distribution. But, as 
an impulsive signal it should have the characteristics of a heavy tailed distribution, 
Therefore, we estimate , , ,α β γ δ  from it. From the definition, alpha-stable 

negentropy will be non-zero except the case that y is an alpha stable distribution. 
Alpha-stable negentropy can calculate the distance from the observed data to alpha 
stable data in entropy, so it can be used as a measure of the non-stability. By 
maximizing (7) we arrive at a signal which is as far as possible from the alpha-stable 
distribution with the parameters computed from the data. 

It is necessary to explain the relationship between alpha-stable negentropy and the 
classical negentropy here. As mentioned above, Gaussian distribution is a special case 
of the alpha stable distribution when α equals 2. So, if we restrict α in stableyα − in Eq. 

(7), alpha-stable negentropy will reduce to negentropy. Moreover, the relationship 
between maximum non-stability ICA and classical ICA can be understood by the 
similar way. If we add the finite variance constraint to GCLT, the limit distribution 
tends to be Gaussian distribution instead of alpha-stable distribution, and GCLT 
reduces to CLT. Then maximum non-stability ICA based on GCLT will also reduce 
to classical ICA. 

2.3.2   Calculation of Alpha-Stable Negentropy 
From the definition in Eq. (7), two differential entropies of stableyα − and y should be 

calculated separately. In practice, prior knowledge of y is usually rare so we always 
do not know the exact distribution of y, so generally the histogram is used in 
computing the differential entropy of y.  

As in the differential entropy of stableyα − , the calculation can be divided into two 

parts: the estimation of parameter: , , ,α β γ δ  from y, and the numerical calculation of 

the differential entropy. There are some effective approaches which can well estimate 
the parameters from y, such maximum likelihood, quantiles, empirical characteristic 
function method and method of moments using fractional or lograritmic moments [1]. 
Then, the probability density can be calculated evaluating Fourier transform [5] from 
the characteristic function with parameters , , ,α β γ δ . Finally, we get the differential 

entropy of stableyα −  through numerical integration and the alpha-stable negentropy is 

calculated from the difference of these two quantities. 

2.4   New ICA Using Numerical Gradient Ascent Algorithm 

In the previous section, we introduced a new measure of non-stability, alpha-stable 
negentropy, and how to calculate it. Now we need an algorithm to maximize this 
contrast function Eq. (7). In this first paper on the topic we provide a simple 
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numerical gradient ascent algorithm for the maximization of the alpha-stable 
negentropy. Moreover, some issues to simplify this problem in this beginning work 
should be explained before further discussion. First, the data we are dealing with is of 
zero mean and no noise at all. Second, whitening is not included in this work because 
of the large or even infinite variance of the signals.  

Gradient ascent algorithm finds the local maximum of the contrast function Eq. (7), 
and it takes steps proportional to the gradient: 

1
( ),  N 1 and >0

N N N N
w w w w J wi i i iλ λ λ

+
= + Δ = + ∇ ≥  (8) 

where w∇ and ( )N
iJ w∇ are the gradient of contrast function and it equals  

( ( )) ( ( )) ( ( ))
[ , , , ], N 1

1 2

N N Nd J w x d J w x d J w xi i i
dw dw dwi i in

≥�  (9) 

The reason we use a numerical method is that the gradient of contrast function Eq. 
(7) can only be calculated via the numerical differentiation by Eq. (9) at present. Full 
steps of the numerical gradient ascent algorithm are shown as follows: 

 

1. Initialize a unit vector 1
iw  in Eq. (4) randomly. 

2 Compute the wΔ using Eq. (9) 

3. Let 1 ,  N 1 and >0N N
i iw w wλ λ+ = + Δ ≥  

4. If not converged, go to step 2. 

Here, convergence means 1N
iw + and N

iw point to the same direction. λ  is chosen to be 

a small constant number.  

3   Experiment 

In this section, we examine maximum non-stability ICA through an impulsive  
source separation problem. Two source signals with 10000 sample data each are 
generated by 1 1 2 2_ ( ,0, ,0) _ ( ,0, ,0)stable stableα α γ α α γ+  separately. In source one, 

1 2 1 21, 0.7, 100, 10α α γ γ= = = = , and in source two 1 2 1 20.5, 0.6, 200, 100α α γ γ= = = = . 

A 2 by 2 mixing matrix is chosen randomly. Note that the ICA by maximizing non-
Gaussianity is not suitable to this problem because the source signals do not possess 
the second-or higher-order moments which can be used as contrast functions in 
classical ICA. 

Fig. 1 shows the source signals and the mixture signals. Applying the numerical 
gradient ascent algorithm to this problem, the performance of maximum non-stability 
ICA can be shown in Fig. 2, Fig. 3 and Fig. 4. 

In Fig. 2, lines representing the directions of separation vectors are plotted for this 
two-dimension problem. Red lines are right directions of the separation vectors while 
green lines the estimated directions. We can observe that they match well, which 
means that maximum non-stability ICA behaves effectively in this impulsive source 
separation problem. A visual observation of how this algorithm works can be seen in 
Fig. 3 in which the alpha-stable negentropy versus the angle between the direction of  
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Fig. 1. Along with the vertical direction, two original source signals and two mixture signals 
are plotted 

 

Fig. 2. Scatter dispersion of the mixture signals as well as optimal (deep color lines) and 
estimated (light color lines) separation directions of iw  are plotted 

 

Fig. 3. Alpha-stable negentroepy versus the angel of iw  
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Fig. 4. Estimated source signals from maximum non-stability ICA and the square error between 
normalized source signals and estimated ones 

iw and the horizontal axis. Four maxima can be clearly seen from this curve. The first 

maximum refers to 1θ which is the angle of the first estimated direction 1w , and the 

third maximum give us 1θ π+ or 1w− . Both 1w and 1w− are regarded to be estimated 

direction because they give the same independent component with the difference of 
the sign. This is an ambiguity of both classical ICA and this maximum non-stability 
ICA. Same explanation suits the second and the fourth maximum.  Finally, the 
estimated source signals and square error between original and estimated sources with 
the normalized variance are plotted in Fig. 4. And the mean square errors for 
normalized 1s and 2s are 0.4806 and 3.75e-017 respectively. 

New ICA performs successfully in solving this impulsive source separation 
problem, but some drawbacks still exist. Firstly, numerical calculation of the alpha-
stable negentropy leads to a large computational cost. Secondly, numerical calculation 
introduces errors in the result, so large integration range and small integration step are 
necessary to protect the accuracy.  

4   Conclusion 

Motivated by the Generalized Central Limit Theorem (GCLT), in this paper, we 
illustrate that classical ICA is one special case of maximum non-stability ICA and the 
non-Gaussianity principle should be replaced by the non-stability principle. 
Meanwhile, a new method of non-stability called alpha-stable negentropy is also 
proposed as the contrast function in maximum non-stability ICA. Experiments using a 
numerical gradient ascent algorithm based on this new contrast function show that 
maximum non-stability ICA performs successfully in impulsive source separation 
problems. However, large computation cost and numerical error accumulation call for 
better methods for the maximization of the alpha-stable negentropy. 
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Abstract. The Matrix-Pencil approach to blind source separation esti-
mates the mixing matrix from the Generalized Eigenvalue Decomposi-
tion (GEVD), or Exact Joint Diagonalization, of two “target-matrices”.
In a Second-Order-Statistics framework, these target-matrices are two
different correlation matrices (e.g., at different lags, taken over different
time-intervals, etc.), attempting to capture the diversity of the sources
(e.g., diverse spectra, different nonstationarity profiles, etc.). A central
question in this context is how to best choose these target-matrices,
given a statistical model for the sources. To answer this question, we
consider a general paradigm for the target-matrices, viewed as two “gen-
eralized correlation” matrices, whose structure is governed by two se-
lected “Association-Matrices”. We then derive an explicit expression
(assuming Gaussian sources) for the resulting Interference-to-Source Ra-
tio (ISR) in terms of the Association-Matrices. Subsequently, we show
how to minimize the ISR with respect to these matrices, leading to op-
timized selection of the matrix-pair for GEVD-based separation.

1 Introduction and Problem Formulation

Perhaps one of the most conceptually appealing and computationally simple
approaches to Blind Source Separation (BSS) is to base the estimation of the
unknown mixing matrix on a pair of “target-matrices”, estimated from the ob-
served mixtures. Such a framework is sometimes called a Matrix-Pencil approach
[10] or a Generalized Eigenvalue Decomposition (GEVD) approach [6], essen-
tially leading to Exact Joint Diagonalization (EJD) of the two target-matrices.
This approach basically relies on the understanding that a whitening (sphering)
operation, which consists of diagonalizing the mixtures’ covariance matrix, does
about “half” of the separation - namely, it enables to estimate the mixing ma-
trix up to some unitary matrix factor. Then, a single “second matrix” is usually
sufficient for providing the “second half” (the unitary factor) of the estimate.

To be more specific, we consider the standard linear, instantaneous, square
and noiseless BSS model X = AS, where S is a K ×N matrix composed of K
statistically independent, zero-mean N × 1 source signals S = [s1 s2 · · · sK ]T ;
A is the unknown K×K mixing matrix; and X is the K×N matrix of observed
mixtures. The two K ×K target-matrices (or Matrix-Pencil), denoted R̂1 and
R̂2, are usually empirical estimates of R1 = AD1A

T and R2 = AD2A
T , where

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 187–194, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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D1 and D2 are diagonal by virtue of the sources’ statistical independence. As
mentioned above, R1 is usually [6] the observations’ covariance. R2 is selected
according to the sources’ statistical model: For example, when the temporal
structure of each source is composed of independent, identically-distributed (iid)
samples, R2 can be taken as a linear combination of certain cumulants matrices
of the observations (e.g., [6,4]) or as an off-origin Hessian of their joint log-
characteristic function [11].

In many other cases of interest, both R1 and R2 can be based on Second-
Order Statistics (SOS). To define a general framework, let P 1 and P 2 denote
some arbitrary N ×N matrices, which we term “Association-Matrices”, and let
the estimated “generalized correlation matrices” R̂1 and R̂2 be given by

R̂1 = XP 1X
T R̂2 = XP 2X

T . (1)

By proper choice of the Association Matrices P 1 and P 2, several particular
classical choices of R̂1 and R̂2 may be identified. For example, when P 1 = 1

N I,
R̂1 obviously becomes the observations’ empirical correlation matrix. Then, if
P 2 is taken as an all-zeros matrix with a sequence of M non-zero values of 1

M

somewhere along its main diagonal, R̂2 becomes the empirical correlation esti-
mated over the respective time-segment, as used for non-stationary sources, e.g.,
in [6,7,8]. If P 2 is taken as an all-zeros matrix with 1

N−|�| along its "-th diago-

nal1, R̂2 becomes the unbiased estimate of the observations’ lagged correlation
at lag ", as used for stationary sources, e.g., in [7,2]. Likewise, if P 2 is a gen-
eral Toeplitz matrix, R̂2 can be regarded as a linear combination of estimated
correlation matrices at different lags, or, alternatively, as the correlation matrix
between linearly filtered versions of the observations, as used, e.g., in [10]. Spec-
tral matrices, time-frequency matrices [3], or cyclic correlation matrices [1] can
also be obtained by setting P 2 to the appropriate transformation matrices.

However, in many cases of interest the source signals are not truly stationary,
block-stationary, cyclostationary, etc. Even when they are, it is not clear that
the respective Association Matrices mentioned above are optimal for the Matrix-
Pencil approach in these cases. Thus, two important interesting questions arise
in this general framework:

1. How does the resulting separation performance depend on P 1 and P 2?
2. Can P 1 and P 2 be chosen so as to optimize the performance, given a par-

ticular statistical model for the sources?

Our goal in this paper is to answer these two questions.
To this end, we assume a rather general statistical model for the sources: Our

only restrictive assumption is that the sources are all (jointly) Gaussian (and, of
course, independent). For convenience, we also assume zero-mean. Yet, we make
no restrictions on the temporal covariance structures. We denote the covariance
of the k-th source as a general N × N matrix Ck

	
= E[sksTk ], k = 1, 2, ...,K.

1 The �-th diagonal of P 2 is the diagonal extending from P2[� + 1, 1] to P2[N, N − �]
for � ≥ 0, or from P2[1, 1 − �] to P2[N + �, N ] for � ≤ 0.
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For example, for stationary sources the respective Ck would have a Toeplitz
structure, whereas for block-stationary sources they would have a block-Toeplitz
structure, etc. But we do not restrict the structure of Ck in any way, hence we
do not confine the results to any particular temporal model of the sources.

2 A Small-Errors Perturbation Analysis for the EJD

Let Rq
	
= E[XP qX

T ] = AE[SP qS
T ]AT 	

= ADqA
T (q = 1, 2) denote the

true generalized-correlation matrices, estimated by R̂1 and R̂2 (resp.). Under
some commonly met conditions (see, e.g., [12]), the closed-form EJD of R̂1 and

R̂2 can be readily obtained from the eigen-decomposition of Q̂
	= R̂1R̂

−1
2 : The

eigenvectors matrix Â which satisfies Q̂Â = ÂD̂ (where D̂ is some diagonal

matrix), also satisfies R̂1 = ÂD̂1Â
T

and R̂2 = ÂD̂2Â
T
, where D̂1 and D̂2 are

diagonal matrices, such that D̂ = D̂1D̂
−1
2 .

When the estimates R̂1 and R̂2 are exact and the model is identifiable, the
resulting Â coincides with A (up to the inevitable scale and permutation ambi-
guities). Naturally, however, departure of R̂1, R̂2 from their true values inflicts
errors on Â. A common measure of the estimation error (useful in the BSS con-

text) is to consider the resulting overall mixing-unmixing matrix T
	
= Â

−1
A.

Assuming, just for simplicity of notations, that the scaling and permutation am-
biguities have been resolved, T would ideally be the identity matrix. However,
due to estimation errors in Â, its off-diagonal elements T [k, "] (k �= ") would
not vanish, and would reflect a residual mixing per realization. Their second mo-
ments, E[T 2[k, "]], are usually called the "-to-k ISR (denoted ISRk,�), assuming
that all sources have equal energy2.

Our goal in this section is to quantify the effect of estimation errors in R̂1 and
R̂2 on all T [k, "]. We begin by observing a very appealing invariance property of
T in this context: Given a specific realization S of the sources, the same value
of T would be obtained (in our framework) with any (nonsingular) A.

To observe this, assume first that A = I, and let us denote the estimated
R̂1 and R̂2 in this case as R̂q(I) = XP qX

T = SP qS
T (q = 1, 2). Likewise,

denote Q̂(I)
	
= R̂1(I)R̂

−1
2(I), with eigenvectors and eigenvalues matrices Â(I) and

D̂(I) (resp.): Q̂(I)Â(I) = Â(I)D̂(I). Evidently, the matrix T in this case is given

by T (I)
	
= Â

−1
(I)A = Â

−1
(I)I = Â

−1
(I). Now consider a general mixing matrix A.

We then have R̂q = XP qX
T = ASP qS

TAT = AR̂q(I)A
T (q = 1, 2), and,

consequently, Q̂ = AQ̂(I)A
T . It is readily observed that the matrix AÂ(I) is

the eigenvectors matrix of Q̂ (with eigenvalues matrix D̂(I)), since

Q̂AÂ(I) = AQ̂(I)A
−1AÂ(I) = AQ̂(I)Â(I) = AÂ(I)D̂(I), (2)

2 If the sources have different energies, each ISRk,� should be normalized by the ratio
between the respective energies, so as to reflect the mean residual energy ratios.
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so Â = AÂ(I), and therefore T = Â
−1

A = Â
−1
(I) = T (I), which establishes the

invariance of T in A. This appealing property allows us to analyze the matrix
T under the simple non-mixing condition A = I, knowing that the same result
would hold with any other invertible mixing matrix A.

Recall the definition of the diagonal matrices D1
	
= E[SP 1S

T ] and D2
	
=

E[SP 2S
T ], where (at least) the latter is invertible, and denote D

	
= D1D

−1
2 .

Assume a non-mixing condition (A = I), thus denoting

R̂1 = D1 + E1 R̂2 = D2 + E2 = D2(I + D−1
2 E2), (3)

where E1  D1 and E2  D2 are the respective estimation errors, assumed
“small”. Applying a small-errors analysis, which neglects second (and higher)
order terms in E1, E2, we get

Q̂ = R̂1R̂
−1
2 = (D1 + E1)(I + D−1

2 E2)−1D−1
2

≈ (D1 + E1)(I −D−1
2 E2)D−1

2 ≈D + E1D
−1
2 −DE2D

−1
2 . (4)

In the error-free case the eigenvectors matrix of Q̂ would be the true mixing-
matrix Â = A = I, and the eigenvalues matrix would be D. Let us denote by
E and Δ the resulting respective errors in these matrices (namely, Â = I + E ,
D̂ = D + Δ), such that Q̂(I + E) = (I + E)(D + Δ). Substituting (4) we have
(again, using the small-errors assumption)

Q̂(I + E) ≈ (D + E1D
−1
2 −DE2D

−1
2 )(I + E) ≈D + E1D

−1
2 −DE2D

−1
2 + DE

and
(I + E)(D + Δ) ≈D + ED + Δ. (5)

Equating these terms we get

DE − ED = DE2D
−1
2 − E1D

−1
2 + Δ. (6)

Eventually we would have T = Â
−1 ≈ I − E, and since we are only interested

in the off-diagonal terms of T , we may ignore the unknown Δ in (6). Denoting
by dq[k] the [k, k]-th element of Dq (q = 1, 2), we have, from (6)

E [k, "]
(
d1[k]
d2[k]

− d1["]
d2["]

)
=

d1[k]
d2[k]d2["]

E2[k, "]− 1
d2["]

E1[k, "] 1 ≤ k �= " ≤ K. (7)

Applying some straightforward algebraic manipulations, we end up with the
following expression for T [k, "] = −E [k, "]:

T [k, "] =
d1[k]E2[k, "]− d2[k]E1[k, "]
d1["]d2[k]− d1[k]d2["] 1 ≤ k �= " ≤ K, (8)

which establishes the explicit dependence of T (under the small-errors assump-
tion) on the generalized-correlations’ estimation errors E1 and E2 under the
non-mixing condition A = I.
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3 Explicit Expressions for the ISR

We now turn to calculate the second moments of the off-diagonal elements of T
(namely, the ISRs), based on (8) and on the second-order statistics of E1 and E2.
All expressions will be given in terms of the sources’ covariance matrices {Ck}
and the selected “Association Matrices” P 1 and P 2. We begin with expressions
for the coefficients dq[k] (q = 1, 2):

dq[k] = E[sTk P qsk] = Tr {P qCk} k = 1, 2, . . . ,K. (9)

Next, consider the zero-mean error-matrices E1 = R̂1 −D1, E2 = R̂2 −D2
(defined under the non-mixing condition X = S). For computing the ISR from
(8) we need to know the variances and covariances of E1[k, "] and E2[k, "]. From
the non-mixing condition and the diagonality of D1, D2, we note that

E1[k, "] = sTk P 1s� and E2[k, "] = sTk P 2s�. (10)

Assume now that the source signals sk and s� (k �= ") are Gaussian (and inde-
pendent), and consider the two zero-mean random variables defined as sTk P ps�
and sTk P qs� for some p, q ∈ {1, 2}. Their covariance is given by

E[sTk P ps�s
T
k P qs�] =

N∑
i,j,m,n=1

E [sk[i]Pp[i, j]s�[j]sk[m]Pq[m,n]s�[n]]

=
∑
ijmn

Pp[i, j]Pq[m,n]E [sk[i]sk[m]s�[j]s�[n]]=
∑
ijmn

Pp[i, j]Pq[m,n]Ck[i,m]C�[j, n]

=
∑
ijmn

Pp[i, j]C�[j, n]PT
q [n,m]Ck[m, i] = Tr{P pC�P

T
q Ck}, (11)

where we have used the zero-mean, (joint) Gaussianity and statistical indepen-
dence of the sources in the transition on the second line, and where PT

q [n,m]
denotes the [n,m]-th element of P T

q (which is the [m,n]-th element of P q).
Applying this result for calculating the variances of E1[k, "], E2[k, "] and their

covariance (by substituting (p, q) = (1, 1), (2, 2), (1, 2), resp.), we obtain

E
[E2

1 [k, "]
]

= Tr{P 1C�P
T
1 Ck} , E

[E2
2 [k, "]

]
= Tr{P 2C�P

T
2 Ck} (12)

E [E1[k, "]E2[k, "]] = Tr{P 1C�P
T
2 Ck}. (13)

Finally, by substituting (12), (13) and (9) into (8), we end up with

ISRk,� = E[T 2[k, "]] =
(
Tr2{P 1Ck}Tr{P 2C�P

T
2 Ck}−

−2Tr{P 1Ck}Tr{P 2Ck}Tr{P 1C�P
T
2 Ck}+Tr2{P 2Ck}Tr{P 1C�P

T
1 Ck}

)
/

/ (Tr{P 1C�}Tr{P 2Ck} − Tr{P 1Ck}Tr{P 2C�})2 , 1 ≤ k �= " ≤ K. (14)

Although derived under a non-mixing (A = I) assumption, due to the invariance
property this expression holds with any (nonsingular) mixing matrix A.
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4 Optimizing the Association-Matrices

Having obtained an explicit expression for the ISRs, an interesting question
that comes to mind is - which Association-Matrices would be optimal, given
the sources’ covariance matrices. Note that the ISR expression (14) is a ratio of
fourth-order multinomials in the elements of P 1 and P 2, and as such is rather
involved for direct minimization. However, assuming one of the matrices (say P 2)
to be fixed, both the numerator and denominator of (14) are quadratic in the
elements of the other (P 1). The ratio of two quadratic expressions can admit a
closed-form minimizing solution, but if we treat all elements of the matrix P 1 as
N2 free unknowns, the resulting solution would be prohibitively computationally
demanding (requiring the eigendecomposition of an N2 ×N2 matrix).

We therefore prefer to restrict the structure of P 1, so as to depend on a small
number of parameters. One such plausible restriction is to constrain P 1 to be a
symmetric band-Toeplitz matrix with L free diagonal values, and optimize the
ISR with respect to these values. Note that this interpretation makes the esti-
mated R̂1 a linear combination of “standard” (symmetrized) lagged correlation
matrices, where the coefficients of the linear combination are the parameters
along the respective diagonals of P 1.

To this end, suppose that P 1 is parameterized by an L×1 vector θ, such that
P1[k, "] = θ[|k − "| + 1] for 0 ≤ |k − "| ≤ L − 1 (and equals zero elsewhere). In
this case we may note the following (for any N ×N matrices Q, G, H):

Tr{P 1Q} = δTθ, with δ["]
	
= Tr{J �Q} " = 1, . . . ,K (15)

Tr{P 1GP T
1 H} = θTFθ, with F [k, "]

	
= Tr{J�GJkH}, k, " = 1, . . . ,K

where J � is a symmetric Toeplitz matrix, which is all-zeros except for 1-s along
its ±(" − 1)-th diagonals. Expressions in this form are required in (14) with
Q = Ck, Q = C�, Q = C�P

T
2 Ck, G = C� and H = Ck. Consequently, we can

express each ISRk,� of (14) in terms of θ as

ISRk,� =
θTU(P 2,Ck,C�)θ
θTV (P 2,Ck,C�)θ

, (16)

where the L×L matrices U(P 2,Ck,C�) and V (P 2,Ck,C�) are obtained from
substituting (15) in (14) (explicit expressions are omitted due to lack of space).

We may now seek the optimal θ, so as to minimize any chosen element of
the ISR matrix. By some kind of “poetic justice”, minimization of (16) with
respect to θ requires yet another GEVD - this time the target matrices are U
and V , and the minimizing θ can be easily shown3 to be the eigenvector of
V U−1 associated with the smallest eigenvalue.

Once the minimizing θ is found, P 1 can be constructed, and may then switch
roles with P 2, so as to serve as the fixed matrix, enabling further minimization
of ISRk,� with respect to P 2. The procedure may be iterated, giving rise to an

3 Using Lagrange multipliers for constrained minimization of θT Uθ s.t. θT V θ = 1.



On Optimal Selection of Correlation Matrices 193

alternating-directions type optimization. Note that normally, this is an off-line
procedure, which can be done in preparation for the on-line separation, whenever
the covariance matrices of the sources are known in advance.

Two important comments are in order:

– The above procedure optimizes P 1 and P 2 for a specific element ISRk,�

of the K × K ISR matrix. In other words, P 1 and P 2 which have been
optimized for some (k, ") might, in general, not be optimal for other (k, ")
pairs. Still, they can often do much better (for all ISRs) than just using
the “standard” Association-Matrices mentioned in the Introduction. Note
that given the closed-form ISR expressions (14), (16), it is also possible to
minimize any measure of the overall ISR (e.g.,

∑
k �=� ISRk,�) with respect to

both P 1 and P 2, but this minimization problem would probably no longer
admits an appealing closed-form solution.

– Optimal SOS-based separation usually requires the use of optimally-weighted
Approximate Joint Diagonalization (AJD) of several “generalized correla-
tion” matrices (or an equivalent solution), and cannot be attained with a
simple matrix-pair EJD-based solution. For example, when the sources are
stationary Autoregressive (AR) processes of some maximal order p, it has
been explicitly shown (e.g., [9]) that Weighted AJD of p + 1 correlation
matrices is required for attaining the optimal ISR. Moreover, an induced
Cramér-Rao Lower Bound (iCRLB) on the ISR matrix for this case was de-
rived [5], and the WASOBI algorithm [9] (based on p+ 1 lagged correlation
matrices) was shown to asymptotically attain this bound for all (k, ") pairs
simultaneously. Naturally, this is beyond the capability of a Matrix-Pencil
based algorithm, whose attainable ISR would never be smaller (usually be
higher) than the bound for each (k, ") pair, as we demonstrate immediately.

5 Simulation Results
To enable comparison to the ISR bound in [5], we simulated AR(3) sources, s1,
s2 and s3 with poles at (−0.7, 0.2±0.9j), (−0.8, 0.6±0.7j) and (−0.9, 0.7±0.7j)
(resp.), each of length N = 500, driven by white Gaussian noise. The 3×3 mixing
matrix A was set randomly with standard Gaussian elements drawn indepen-
dently. Each experiment was repeated 1000 times, where each trial consisted
of estimating the generalized-correlation matrices, applying GEVD to obtain Â,
and then resolving the scaling and permutation ambiguities to obtain T = Â

−1
A

nearest to I. The off-diagonal terms of T were squared and averaged over the
1000 trials to obtain the empirical ISRk,� for all 1 ≤ k �= " ≤ 3.

We conducted three experiments, differing only in the selection of the gener-
alized correlation matrix-pair. In the first experiment we used the “standard”
empirical correlation matrices at lags zero and one, denoted R̂x[0] and R̂x[1]. In
the second experiment we used target matrices obtained using the Association
Matrices P 1 and P 2 obtained by optimizing ISR1,2. In the third experiment we
repeated the same with P 1, P 2 optimized for ISR3,2. P 1 and P 2 were taken as
symmetric band-Toeplitz matrices with seven nonzero diagonals (namely, L = 4),
enabling linear combinations of all lagged correlations from lag zero to three.
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The results are summarized in Table 1, showing good agreement (in each
experiment) between the empirical ISRs (in parentheses) and their theoretically
predicted values (using (14)). We observe that the theoretical (and empirical)
results are never lower than the iCRLB, yet the optimized ISR1,2 and ISR3,2
(in the respective experiments) are significantly closer to the bound than their
unoptimized values (in the first experiment, which used “standard” correlations).

Table 1. Theoretical and empirical results in terms of (ISRk,�)−1 in [dB]. For each
experiment, the empirical results are shown in parentheses next to the predicted the-
oretical results. The optimized ISRs (ISR1,2 in the second and ISR3,2 in the third
experiment) are seen to be close to the induced CRLB, shown on the second column.

(k, �) iCRLB [5] Using R̂x[0], R̂x[1] Optimized for ISR1,2 Optimized for ISR3,2

(1, 2) 33.3 27.7 (27.1) 33.2 (33.0) 31.1 (30.8)
(1, 3) 42.4 40.4 (39.1) 41.9 (41.3) 41.5 (40.5)
(2, 1) 32.3 27.0 (26.9) 30.6 (31.0) 32.0 (31.7)
(2, 3) 27.3 24.6 (23.1) 26.1 (26.1) 26.1 (25.3)
(3, 1) 34.2 26.7 (26.7) 31.7 (31.6) 33.9 (33.8)
(3, 2) 25.1 16.2 (15.3) 15.5 (14.7) 24.3 (23.7)
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Abstract. When applying independent component analysis (ICA),
sometimes we expect the connections between the observed mixtures
and the recovered independent components (or the original sources) to
be sparse, to make the interpretation easier or to reduce the random effect
in the results. In this paper we propose two methods to tackle this prob-
lem. One is based on adaptive Lasso, which exploits the L1 penalty with
data-adaptive weights. We show the relationship between this method
and the classic information criteria such as BIC and AIC. The other is
based on optimal brain surgeon, and we show how its stopping criterion
is related to the information criteria. This method produces the solu-
tion path of the transformation matrix, with different number of zero
entries. These methods involve low computational loads. Moreover, in
each method, the parameter controlling the sparsity level of the trans-
formation matrix has clear interpretations. By setting such parameters
to certain values, the results of the proposed methods are consistent with
those produced by classic information criteria.

1 Introduction

Independent component analysis (ICA) aims at recovering latent independent
sources from their observable linear mixtures [4]. Denote by x = (x1, ..., xn)T

the vector of observable signals. x is assumed to be generated by x = As,
where s = (s1, ..., sn)T has mutually independent components. For simplicity
we assume the number of observed signals is equal to that of the independent
sources. Under certain conditions on the mixing matrix A and the distributions
of si, ICA applies a linear transformation on x, i.e., y = Wx, and tunes the
de-mixing matrix W to make the components of y = (y1, ..., yn)T mutually as
independent as possible; finally yi provide an estimate of the original sources si.

We sometimes prefer the transformation matrix (the de-mixing matrix W or
mixing matrix A) to be sparse, under the condition that yi are independent,
for reliable parameter estimation, or for an easier interpretation purpose [5,11].
For example, when performing LiNGAM (short for linear, non-Gaussian, acyclic
models) causality analysis based on ICA [8], we prefer W to be sparse, since the
LiNGAM analysis requires that W can be permuted to lower triangularity.

Generally speaking, sparsityof the transformationmatrix canbeeasilyachieved.
One can simply resort to the hard thresholding (which sets small coefficients to

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 195–202, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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zero), sparse priors [5], the SCAD penalty [11] (which corresponds to an improper
prior). Wald test can also be used to set insignificant connections to zero [8]. The
problem with these methods is how to determine the free parameter in these meth-
ods which controls the level of sparsity. Moreover, for most of them, it is unclear if
the subset of the non-zero entries of the transforationmatrix could be found consis-
tently (e.g., the estimated subset converges to the correct one in probability when
the data follow the model and the sample size grows infinite). On the other hand,
one may exploit traditional information criteria, such asBIC [7] and AIC [1], to find
the subset of non-zero coefficients in the transformation matrix. The properties of
model selection based on information criteria have been well studied. For exam-
ple, BIC can select the true model consistently, while the model selected by AIC
has good prediction performance. Unfortunately, this model selection approach re-
quires exhaustive search over all possible models, which usually involves two stages
(training all models followed by comparison of the criteria) and is computationally
intensive. Generally speaking, in ICA, the transformation matrix has many entries,
and the space of candidate models is too large. Consequently this approach is not
practical.

We propose two methods to do ICA with sparse connections which combine
the strengths of the two model selection approaches mentioned above. The first
one is based on adaptive Lasso [14], which exploits modified L1 penalties and
was recently proposed for variable selection in linear regression. We relate adap-
tive Lasso with the traditional information criteria, and show how to select the
penalization parameter in adaptive Lasso to make its model selection results
consistent with those based on information criteria. As L1 penalties are not dif-
ferentiable at zero, optimization involving such penalties based on gradients is
generally troublesome. We further propose a very simple, yet effective scheme
to solve this problem. The second method is based on optimal brain surgeon
(OBS) [3] for network pruning. We also show the relationship between this ap-
proach and model selection based on traditional information criteria.

2 ICA Based on Maximum Likelihood

Since we will develop ICA with sparse connections by maximizing the penalized
likelihood, in this section we briefly review the derivation of ICA algorithms from
a maximum likelihood point of view [6]. Denote by fi the density functions of
si. The log likelihood of the observed data x is

LT =
T∑
t=1

n∑
i=1

log fi(yi,t) + T log | detW|, (1)

where T denotes the sample size. Note that if fi are not given (say, if it is
estimated from data), the scale of yi and W estimated by maximizing the above
likelihood is arbitrary, due to the scaling indeterminacy in ICA solutions. This
can be avoided by constraining the variances of yi or by keeping certain entries
of W (or A) constant. One scheme is to maximize the likelihood using gradient
(or natural gradient) based methods: 1

T · ∂LT

∂W = −E{ψ(y)xT }+[WT ]−1, or, 1
T ·
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∂LT

∂A = [AT ]−1 · [E{ψ(y)yT } − I], where ψ(y) = (ψ1(y1), · · · , ψn(yn))T with

ψ1(y1) = − f ′
i(yi)
f(yi)

, and in each iteration the variance of each yi is normalized.
Alternatively, one may incorporate the constraint E{y2

i } = 1using the reg-
ularization technique. The objective function to be maximized then becomes

JT =
T∑
t=1

n∑
i=1

{log fi(yi,t)} + T log | detW| − β
n∑

j=1

(E{y2
i } − 1)2, (2)

where β is a regularization parameter. In our experiments we used β = 1. The
gradients of the above function w.r.t. W and A can be easily derived.

3 ICA with Sparse Connections Based on Adaptive Lasso

We first propose to achieve the sparsity of the transformation matrix by penalized
maximum likelihood. The penalty term we adopt is based on adaptive Lasso [14].
We will show that the result of this penalization method is consistent with that
based on traditional information criteria, by setting the penalization parameter
to certain given values.

3.1 Idea of Adaptive Lasso

Here we assume that the model under consideration satisfies some regularity con-
ditions including identification conditions for the parameters θ, the consistency
of the estimate θ̂ when the sample size T tends to infinity, and the asymptotical
normality of θ̂. The penalized likelihood can be written as

pL(θ) = L(θ)− λpλ(θ), (3)

where L(θ) is the log likelihood, θ contains the parameters (which are not re-
dundant), and pλ(θ) =

∑
i pλ(θi) is the penalty.

The L1 penalty is well known for producing sparse and continuous esti-
mates [10]. However, it also causes bias in the estimate of significant parameters,
and more importantly, it could select the true model consistently only when the
data satisfy certain conditions [13]. Adaptive Lasso [14] was proposed to over-
come the disadvantage of the L1 penalty. In adaptive Lasso, pλ(θ) =

∑
i ĉi|θi|,

with ĉ = 1/|θ̂|γ , where γ > 0 and θ̂ is a consistent estimator to θ. In this way,
the strength for penalizing different parameters may be different, depending on
the magnitude of their estimate. It was shown that under some regularity con-
ditions and the condition λT /

√
T → 0 and λTT (γ−1)/2 →∞ (the subscript T in

λT is used to indicate the dependence of λ on T ), the adaptive Lasso estimate
is consistent in model selection.

3.2 Relating Adaptive Lasso to Information Criteria

Let us focus on the case γ = 1 of adaptive Lasso, meaning that

pλ(θi) = ĉi|θi| = |θi|/|θ̂i|, (4)
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where θ̂ can be any consistent estimator, e.g., the maximum likelihood estima-
tor. After the convergence of the adaptive Lasso procedure, insignificant param-
eters become zero, and pλ(θi) = 0 for such parameters. On the other hand, the
“oracle property” [2] holds for adaptive Lasso with suitable λ, meaning that
the pointwise asymptotic distribution of the estimators is the same as if the
true underlying model were given in advance. Significant parameters are then
changed very little by the penalty, when the sample size is not small. Conse-
quently, at convergence, pλ(θi) = |θ̂i,ALasso|/|θ̂i| ≈ 1 for non-zero parameters,
where θ̂i,ALasso denotes the adaptive Lasso estimator. In other words, the penalty
pλ(θi) indicates whether the parameter θi is active or not. Suppose the param-
eters considered are not redundant.

∑
i pλ(θi) is then an approximator of the

number of free parameters, denoted by D, in the resulting model. Recall that
the traditional information criteria for model selection can be written as

ICD = −L(θ̂D,ML) + λICD (5)

The BIC [7] and AIC [1] criteria are obtained by setting the value of λIC to
λBIC = 1/2 · logT, and λAIC = 1, (6)

respectively. Relating Eq. 5 to the penalized likelihood Eq. 3, one can see that by
setting λ in adaptive Lasso considered here to λIC in Eq. 5 (which may be λBIC ,
λAIC , etc.), the model selection result of adaptive Lasso would be consistent with
that obtained by minimizing the information criterion corresponding to λIC .

We give the following remarks for model selection based on adaptive Lasso.
First, when the initialized model is very large (i.e., it involves very many param-
eters), θ̂ may be too rough due to finite sample effects, and it is useful to update
θ̂ using a consistent estimator when a smaller model is derived. Second, in prac-
tice, especially when the sample size is not large, adaptive Lasso still causes bias
in the estimate of significant parameters: usually the adaptive Lasso estimator
still gives pλ(θi) = |θ̂i,ALasso|/|θ̂i| < 1 for significant parameters. Therefore, at
convergence, the penalty pλ(θ) =

∑
i pλ(θi) is expected to be a little smaller

than the number of parameters that are set to zero. To achieve that, we should
give a heavier weight for the penalization term. That is, λT should be a little
larger than the recommended values given above. (Or equivalently, ĉi should be
a little larger than 1/|θ̂i|.) In our experiments, we set λ = 1.5λBIC = 1.5

2 logT
to achieve the BIC-like model selection.

3.3 ICA with Sparse Connections Based on Adaptive Lasso

It is obvious that without specifying the variance of yi or specifying certain
entries of W (or A), applying adaptive Lasso will make the involved parameters
smaller and smaller. To avoid that, we can either normalize the variance of yi
in each iteration or enforce E{y2

i } = 1 by using Eq. 2 as the objective function.
Here we adopt the former scheme. Consequently, the objective function for ICA
with a sparse de-mixing matrix is the penalized likelihood:

pLT =
T∑
t=1

n∑
i=1

log fi(yi,t) + T log | detW| − λ
n∑

i,j=1

|wij |/|ŵij |, (7)



ICA with Sparse Connections: Revisited 199

where ŵij are entries of Ŵ, which is an estimate of W obtained by conventional
ICA. Similarly, replacing |wij |/|ŵij | in Eq. 7 with |aij |/|âij | will produce ICA
with a sparse mixing matrix. Note that unlike other methods, here λ is easily
determined, based on the relationship between adaptive Lasso and information
criteria discussed in Subsection 3.2

Now we aim to maximize the above penalized likelihood. Since the L1 function
is not differentiable at 0, gradient-based methods could not be directly applied for
optimization involving L1 penalties. Most existing methods for such optimization
are not easy to implement or could not set insignificant parameters to 0 exactly.
We propose a very simple but effective way for this problem.

3.4 A Simple Approach for Optimization Involving L1 Penalties

The difficulties in optimization involving L1 penalties are caused by the “sudden
change” of the L1 function. We can then consider such penalties as ravines that
are parallel to some axes. The so-called adaptive step size technique [9], which
was originally proposed for accelerating the optimization procedure in neural
networks learning, can then be exploited for optimization involving such penal-
ties. Note that for a ravine in the objective function parallel to an axis, use of an
appropriate individual step size is equivalent to re-scaling the ravine. Moreover, if
two successive updates of a given parameter are performed in the same/opposite
directions, the step size should be increased/decreased. Consequently, the param-
eters that should be shrunk to 0 by L1 penalties will gradually stop oscillation
and converge to 0, due to the diminishing step size.

Suppose we aim to maximize the objective function J (Eq. 7, in this case).
With an adaptive step size, the change of the parameter θi in the kth iteration
is given by "θ(k)i = η

(k)
i ( ∂J∂θi

)(k), where the step size for parameter θi depends on

the successive signs of the gradient: η(k)
i = η

(k−1)
i u, if ( ∂J∂θi

)(k) · ( ∂J
∂θi

)(k−1) > 0,

and η(k)
i = η

(k−1)
i d, if ( ∂J∂θi

)(k) · ( ∂J∂θi
)(k−1) < 0, with u > 1 and d < 1. We used

u = 1.1 and d = 0.5 in experiments, and found that they work quite well.

4 ICA with Sparse Connections Based on Optimal Brain
Surgeon

Sometimes we may want to obtain the solution path of ICA with sparse con-
nections, which gives all possible solutions with different sparsity levels we are
interested in. This can be achieved by using optimal brain surgeon (OBS) [3] for
network pruning. We further show the relationship between the stopping crite-
rion of OBS and traditional information criteria, and show how to make OBS
produce similar results as information criteria do.

4.1 Optimal Brain Surgeon

Suppose we aim to maximize the objective function J . Assuming that the change
of J around its (local) optimum is nearly quadratic in the perturbation of its
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parameters, i.e., δJ = − 1
2δθ

THδθ, where δθ denotes the perturbation of the
parameters and −H is the Hessian matrix (containing all second order deriva-
tives). We are looking for a set of parameters whose deletion causes the least
change in the value of J .

Mathematically, the least change in J caused by eliminating θq can be written
as minδθ{ 1

2δθ
THδθ}, subject to eTq δθ + θq = 0, where eq is the unit vector with

only the qth element being 1. Using the Lagrangian multiplier, one can find that
the optimal weight change and the resulting change in J are

δθ = − θq
[H−1]qq

H−1 ·wq, and Sq =
1
2

θ2q
[H−1]qq

, (8)

where Sq is called the saliency of the θq. OBS finds the q that gives the smallest
saliency and prunes it. If J is not very close to quadratic, one needs to adjust
the remaining parameters to maximize J , after pruning a parameter and re-
calculating other parameters according to Eq. 8. We repeat the above pruning
procedure ultil the smallest saliency of remaining parameters is larger than Th,
a threshold whose determination is discussed below. One advantage of OBS is
that it does not cause any bias in the estimate of the remaining parameters.

4.2 Relating Stopping Criterion of OBS to Information Criteria

Suppose the objective function J is the log-likelihood of the data. We make the
following assumptions. 1. The information criterion Eq. 5 for model selection
has no local minimum. 2. For the OBS procedure, J is well approximated by a
quadratic form, and no parameter pruned earlier becomes significant in a smaller
model. Under assumption 1, the model selected by minimizing the information
criterion has D∗ free parameters if ICD∗ > ICD∗−1 and ICD∗ > ICD∗+1. Ac-
cording to Eq. 5, this gives L(θ̂D∗+1,ML)−L(θ̂D∗,ML) < λIC while L(θ̂D∗,ML)−
L(θ̂D∗−1,ML) > λIC . Assumption 2 implies that L(θ̂D+1,ML)−L(θ̂D,ML) is ac-
tually the smallest saliency Sq when we eliminate a parameter among all the
D + 1 parameters. One can then see that by setting the threshold Th for stop-
ping the OBS procedure to λIC in the information criterion, OBS gives the same
model selection result as the corresponding information criterion does.

4.3 ICA with Entries Pruned by OBS

Entries of the ICA transformation matrix can be pruned by OBS, with Eq. 2 as
the objective function. Note that Eq. 2 has incorporated the constraint on the
scale of yi. Due to space limitation, the calculation of the Hessian matrix, as
well as how to avoid the heavy computational load in calculating its inverse, is
not given here. Note that the quadratic approximation of the objective function
may not be very accurate. Consequently, after pruning a parameter and updat-
ing others according to Eq. 8, one needs to update remaining parameters to
reach the (local) optimum, by making use of the gradient of Eq. 2; alternatively,
the Newton-Raphson method may be adopted, as the Hessian matrix has been
calculated in the OBS stage.
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5 Experiments

We first illustrate the performance of the proposed methods by simulation stud-
ies. These mothods can carry out both ICA with a sparse de-mixing matrix
and ICA with a sparse mixing matrix. Here only the former is demonstrated.
We randomly generated a 5 × 5 lower-triangular matrix W. The magnitude
of its non-zero entries is uniformly distributed between 0.1 and 1. The mixing
matrix was constructed as A = W−1. The five sources si were obtained by
passing independent Gaussian i.i.d. signals through power nonlinearities with
the exponent between 1.5 and 2. The variances of the sources are randomly
chosen between 0.2 and 1. The observations were generated by x = As. We ex-
amined two cases in which the sample size is 200 and 500, respectively. ICA
with a sparse de-mixing matrix based on adaptive Lasso and that based on
OBS, proposed above, were used to separate such mixtures. To make their re-
sults similar to that given by BIC, for the former method, we set the penalization
parameter λ = 1.5λBIC = 1.5

2 logT , and for the latter one, we set the threshold
Th = λBIC = log T

2 .
We repeated the simulation for 40 trials. The percentages of lost connections

(non-zero connections that were wrongly set to 0) and spurious connections (zero
entries that were not set to 0) are summarized in Table 1. One can see that there
are very few entries of W wrongly identified. As the sample size increases, the
error rate diminishes. This coincides with the fact the BIC is consistent in model
selection. Fig. 1(a) gives some of wij in the training process of ICA with sparse
W based on adaptive Lasso in a typical run, while (b) plots the solution path
of the OBS-based method for small parameters in a typical run (it shows the

Table 1. Percentages of lost non-zero entries and spurious connections (40 trials)

Sample size T 200 500
Method ALasso-based OBS-based ALasso-based OBS-based
Lost connections (%) 2.83% 5% 1% 1.17%
Spurious connections (%) 3% 2% 0.33% 0.25%
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Fig. 1. (a) Some of wij in the learning process of ICA with sparse W based on adaptive
Lasso (T=200). (b) A typical solution path of ICA with sparse W based on OBS
(T=200). For clarity, only small weigts are shown.
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solution of wij for each possible Th between 0 and λBIC). Clearly the pruning
result does not depend solely on the magnitudes of the parameters.

We also applied the proposed methods for ICA with sparse W to separate the
14-dimensional financial returns used in [12]. To obtain BIC-like model selection
results, we used the same settings as in the simulations above. The resulting W
could not be permuted to lower triangularity, meaning that LiNGAM [8] does
not hold for this data set. This is consistent with the claim in [12].

6 Conclusion and Discussions
We have proposed two methods to perform ICA with a sparse transformation
matrix (the mixing matrix A or de-mixing matrix W). The methods are based on
the adaptive Lasso penalty and the optimal brain surgeon technique, respectively.
We have shown how to relate the proposed methods to model selection based
on traditional information criteria (e.g., BIC and AIC). The proposed methods
involve comparatively light computational load, and most importantly, one can
easily determine the parameters that control the level of sparsity to make the
model selection results consistent with those based on information criteria.
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Abstract. ICA can be interpreted as the minimization of a disorder
parameter, such as the sum of the mutual informations between the
estimated sources. Following this interpretation, we present a disorder
parameter minimization algorithm for the separation of sources orga-
nized in subspaces when the phase synchrony within a subspace is high
and the phase synchrony across subspaces is low. We demonstrate that a
previously reported algorithm for this type of situation has poor perfor-
mance and present a modified version, called Independent Phase Analysis
(IPA), which drastically improves the quality of results. We study the
performance of IPA for different numbers of sources and discuss further
improvements that are necessary for its application to real data.

Keywords: Phase-locking, synchrony, blind source separation (BSS),
independent component analysis (ICA), subspaces, multiple runs, cost
smoothness.

1 Introduction

The interest of the scientific community in synchrony phenomena has risen in
recent years. Synchrony has been observed in a multitude of oscillating physical
processes, including electrical circuits, laser beams and human neurons [1]. This
behaviour is usually not due to a strong interaction forcing in-phase oscillations,
but rather a consequence of a weak interaction that slowly drifts the relative
phase values of the oscillators toward one another.

Our particular motivation for studying synchrony phenomena comes from
the human brain. It has been discovered that, during a motor task, several
brain regions oscillate coherently with one another [2,3]. There are multiple
indications that several pathologies, including Alzheimer, Parkinson and autism,
are associated with a disruption in the synchronization profile of the brain (see
[4] for a review).

When trying to detect and quantify synchrony in real applications, it is impor-
tant to have access to the time evolution of the individual oscillators. Otherwise,
synchrony measures will not be accurate (midrange values of synchrony become
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more likely than high or low values). In many real applications such as EEG and
MEG, the signals from individual oscillators, henceforth denominated sources,
are not directly measurable. Instead, the analyst only has access to a superpo-
sition of the sources. For example, in brain electrophysiological signals (EEG
and MEG), the signals measured in one sensor contain components coming from
several brain regions [5].

Blind source separation (BSS) addresses these issues. The typical instanta-
neous linear mixing assumption is valid in this situation, because most of the
energy is in frequencies below 1 KHz, and the quasi-static approximation of
Maxwell’s equations holds [6]. However, for example, independence of the sources
is not valid, because phase-locked sources are not independent. We now address
how to correctly separate the sources in this context to avoid the erroneous de-
tection of spurious synchronization. The separation algorithm we propose uses
solely the phase information of the signals, since signals may exhibit synchrony
even when their amplitudes are uncorrelated [8].

It should be emphasized that the algorithm presented here assumes nothing
specific of brain signals, and should be applicable to any situation where phase-
locked sources are mixed approximately linearly and where noise levels are low.

2 Background, Motivation and Algorithm

Given two oscillators with phases φj(t) and φk(t) obtained through the Hilbert
transform [9] for t = 1, . . . , T , the Phase Locking Factor (PLF) is defined as

%jk =

∣∣∣∣∣ 1
T

T∑
t=1

ei[φj(t)−φk(t)]

∣∣∣∣∣ =
∣∣∣〈ei(φj−φk)

〉∣∣∣ , (1)

where 〈·〉 denotes a time average operation. It is easy to see that 0 ≤ %jk ≤ 1.
%jk = 1 corresponds to two oscillators that are perfectly synchronized, i.e., that
have a constant phase lag. Note that this lag may be non-zero, which allows for
a non-instantaneous interaction. %jk = 0 is attained if the two oscillators are not
synchronized as long as the observation period T is sufficiently long.

It is important to understand the effect of a linear mixture on the phase-
locking between signals. Such effect can be intuitively described as “tending
toward partial synchrony”: If some sources have very low synchrony (PLF ≈ 0),
their mixtures have a higher PLF, since each source is present in all mixed
signals. If some sources have very high synchrony (PLF ≈ 1), their mixtures
have a lower PLF, because each mixed signal has components from sources that
were not phase-locked. These statements are illustrated in Fig. 1. Note that
significant partial synchrony is present in all pairs of mixture signals.

We now discuss how linearly mixed signals y can be separated. Denote the
extracted sources by z = WTy. One classic formulation of ICA [7] is the mini-
mization of the mutual information I of the extracted sources,

I(z) =
∑
j

H [zj ]−H [y]− log | detW|, (2)
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Fig. 1. Simulated data set used for comparing IPA with the logarithm and cosine
cost functions: original sources (far left) and PLFs between them (middle left); mixed
signals (middle right) and PLFs between them (far right). The area of each white
square is proportional to the corresponding pairwise PLF. Sources 1 and 2 have a
mutual constant phase difference, as do sources 3 and 4.

where W is a matrix to be determined such that WTA (where A is the mix-
ing matrix) is close to a permutation of a diagonal matrix. The entropy of the
observations H [y] can be dropped since it does not depend on W. The sum of
the estimated source entropies

∑
j H [zj ] can be considered a disorder or com-

plexity measure, and − log | detW| can be viewed as a penalty term preventing
degenerate solutions with W close to singular. This motivated the original for-
mulation of Independent Phase Analysis (IPA) [10]. The disorder parameter Plog
was given by

Plog = −
∑
j,k

%jk log %jk, (3)

where %jk is the PLF between estimated sources j and k. Plog is non-negative and
attains its minimum value of 0 only if all the %jk are either zero or one.1 In other
words, Plog is low when the estimated sources are either non-synchronized or
fully synchronized. This suggests that minimization of Plog can separate sources
that have PLFs close to one or zero. Thus the cost function to be minimized was

Clog = −
∑
j,k

%jk log %jk − log | detW|, (4)

where the penalty term − log | detW| prevents degenerate solutions which triv-
ially have %jk = 1. Each column of W is constrained to have unit norm, to
prevent trivial decreases of the penalty term. This cost function was used in
[10].

We present results showing that this formulation of IPA gives poor results.
Using the data set in Fig. 1, a typical solution given by this formulation of IPA is
presented in the left half of Fig. 2. The key to understanding these poor results
is the presence of a PLF value of zero (between estimated sources 2 and 4),
when the real sources do not have any zero values of PLF. Since the disorder
parameter Plog falls sharply close to %jk = 0, this situation is a sharp local
minimum of Clog. Intuitively, once the algorithm finds a PLF of zero, it “stays
there”, preventing the optimization of the remaining PLF values.

Given the above considerations we propose that the disorder parameter P
should still have minima for %jk = 0, 1 but these minima should not be sharp.

1 Note that Plog cannot be interpreted as an entropy because
∑

j,k jk �= 1 in general.
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Fig. 2. Results of the IPA algorithm. Estimated sources for the logarithm cost function
(far left) and PLFs between them (middle left). Estimated sources for the cosine cost
function (middle right) and PLFs between them (far right). For the results of the
cosine cost function, the permutation, scaling and sign of the extracted sources were
manually manually. Results with λ = 0.2. The Amari Performance Index was 0.87 for
the logarithm and 0.10 for the cosine cost functions, corresponding to the highest bins
of Fig. 3.

Also, we propose that the disorder parameter be normalized regarding the total
number of pairs of oscillators N2 to make it scale better for large N . We thus
propose a new disorder parameter, and a corresponding cost function, given by

Pcos =
1
N2

∑
j,k

(1 − cos(2π%jk)) (5)

Ccos = (1− λ) 1
N2

∑
j,k

(1− cos(2π%jk))− λ log | detW|, (6)

where λ controls the relative weight of the penalty term versus the disorder
parameter. Pcos still has minima for %jk = 0, 1 but the derivative at those points
is zero, allowing for a smoother optimization of the PLF values.

The gradient of Ccos relative to an entry wij of the weight matrix is given by

∂Ccos
∂wij

= 4π
N∑
k=1

[sin(2π%jk)]
〈

sin(Ψjk −Δφjk) Yi
Zj

sin(ψi − φj)
〉
− [

W−T
]
ij

(7)

where %jk is the PLF between estimated sources j and k, Yi = |ỹi| where ỹi is
the analytic signal of the i-th measurement (obtained from the Hilbert transform
[9]), Zj = |z̃j | where z̃j is the analytic signal of the j-th estimated source,
ψi = angle(ỹi) is the phase of the i-th measurement, φj = angle(z̃j) is the phase
of the j-th estimated source, Δφjk = φj−φk is the phase difference of estimated
sources j and k, Ψjk = angle

(〈eiΔφjk 〉) is the average phase difference between
estimated sources j and k, and

[
W−T

]
ij

is the (i, j) element of the inverse of
WT. Each column of W must be constrained to have unit norm to prevent trivial
decreases of the penalty term.

3 Results

We present results that demonstrate that this smoother cost function drastically
improves the quality of the separation. Gradient descent with adaptive step
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Fig. 3. Histogram of the Amari Performance Index (API) for the logarithm cost func-
tion (left) and for the cosine cost function (right), and threshold for good separations
(Amari Performance Index = 0.3, dashed vertical line). The logarithm cost function
achieves only 2% of good separations, versus 71% for the cosine cost function. Results
for λ = 0.2.
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Fig. 4. Results of one run of IPA: original sources (top left) and PLFs between them
(top right); mixed signals (middle left) and PLFs between them (middle right); ex-
tracted sources (bottom left) and PLFs between them (bottom right). Results obtained
for λ = 0.2, after manually compensating for permutation, scaling and sign of the
extracted sources. The Amari Performance Index was 0.06.
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sizes was used to perform the optimization, using MATLAB. This takes about
10 minutes on a 1.6 GHz machine. The data used are depicted in Fig. 1. We
artificially simulate a noiseless mixture of four sources in two clusters of size 2
each. The mixing matrix was chosen randomly but constrained to be orthogonal
(this is not strictly necessary; see Sec. 4), producing the measurements in the
bottom of Fig. 1. We then run the IPA algorithm 1000 times for each of the two
cost functions with random initializations of W.

Typical results are shown, in Fig. 2, for the logarithm and the cosine cost
function. To assess the quality of the source extraction, we use the Amari per-
formance index (API) [11], which measures how close WTA is to a permutation
of a diagonal matrix. The API is non-negative and the lower its value, the better
the separation quality. We show histograms of the API for the logarithm and
cosine cost functions in Fig. 3. The histograms show that the use of Ccos yields a
drastic improvement in the quality of the results, relative to Clog. If we consider
that an API below 0.3 indicates a good separation, in 71% of the tests using
Ccos yielded good results, compared to just 2% for Clog.

A second experiment involved a larger number of sources with a more complex
cluster structure. The data used and the corresponding results are shown in
Fig. 4. It can be seen that the source separation was very good (API = 0.06).
Naturally, since the number of parameters to optimize is N2, the optimization
procedure took considerably longer in this case, but on a 1.6 GHz machine it
still took less than an hour. The majority of the runs yielded good separations,
although the percentage of good separations is slightly less than for the small
data set.

4 Discussion

These results show that IPA with the cosine cost function can successfully extract
mixed sources based on their phase synchronization properties. The results of
the multiple runs show also that most of the runs yield good separations, and
the few times that IPA yields bad results can be circumvented by running it a
few times and keeping the most consistent solutions.

It could be argued that since the used sources have distinct frequencies, a
simple frequency filtering algorithm could separate the signals. Such a procedure
would not be able to disambiguate the signals within each cluster. Also, in real
applications, IPA should prove useful for signals which are not synchronized but
have overlapping frequency spectra. It could also be argued that other source
separation techniques are able to separate this kind of signals. We investigated
this for FastICA [7] and TDSEP [12] on the small data set (results are not shown
due to lack of space). FastICA fails to separate the sources because they are not
independent. TDSEP sometimes gives results as good as IPA and sometimes
not, depending on the specific sources used. This is only an empiric finding so
far and we are actively studying which sources cause TDSEP to fail.

The results presented in Fig. 4 suggest that IPA will not stop when the cor-
rect PLF values are found, but will actually overtrain and yield more extreme
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values, although the quality of the separation is unharmed. In fact, preliminary
results (not shown) suggest that IPA’s performance is quite good if the sources’
PLFs are above approximately 0.9 or below approximately 0.1. The decrease of
performance of IPA for sources with PLF values far from 1 or 0 suggests that
further improvements are required before IPA is applicable to noisy mixtures in
real situations, where a) noise corrupts our estimate of the PLF values and b)
even the true, noiseless underlying sources are probably not fully synchronized
or fully desynchronized.

IPA has only one parameter, λ, which controls the relative weight of the
disorder parameter and the penalty term. We found the algorithm to be very
robust to changes in this parameter, with values between λ = 0.1 and λ =
0.7 yielding similar results. For example, using λ = 0.5 yields 65% of good
separations instead of 71%. Note that if λ = 0, and if the sources have PLFs
of 1 or 0, the trivial solutions with W singular have the same cost value as the
correct solution. Therefore, even small values of λ are enough to differentiate
these two situations.

Interestingly, the optimization procedure has two different time scales: usu-
ally, the first tens of iterations of gradient descent are enough to separate the
subspaces from one another (up to around 20 iterations for N = 4, and around
100 for N = 9). Even for N = 9 this usually takes no more than a few minutes.
After this initial phase, several hundred iterations of gradient descent are nec-
essary to separate the sources within each subspace, and convergence is slower.
This suggests that using more advanced optimization algorithms might prove
very useful in speeding up IPA and refining the extracted sources.

Currently, IPA works well for mixing matrices not far from orthogonal, in
particular for matrices with a low value of the eigenvalue ratio |eigmax|

|eigmin| , but its
performance decays for matrices with higher ratios. We believe this limitation
can be avoided by making the penalty term depend on the extracted sources
alone instead of the demixing matrix W.

5 Conclusion

We have presented an algorithm to separate phase-locked sources from linear mix-
tures. We have shown that using a cosine cost function in IPA yields drastically
better separation results than those of the previous version, making IPA a valid
choice for separation of sources that are either synchronized or de-synchronized, in
noise-free situations. Further improvements are necessary to improve convergence
speed and to deal with more complex real-world applications.
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Abstract. Adaptive subband structures have been proposed with the
objective of increasing the convergence speed and/or reducing the com-
putational complexity of adaptation algorithms for applications which
require a large number of adaptive coefficients. In this paper we propose
an online blind source separation method for convolutive mixtures which
employs a real-coefficient uniform subband structure with critical sam-
pling and extra filters that cancel aliasing between adjacent channels.
Since the separation filters in the subbands work at reduced sampling
rates, the proposed method presents smaller computational complexity
and larger steady-state signal to noise interference ratio when compared
to the corresponding fullband algorithm.

1 Introduction

Blind source separation (BSS) techniques have been extensively investigated in
the last decade, allowing the extraction of the signal of a desired source sq(n)
from mixed signals of more than one source xp(n) without any other knowledge of
the original sources, such as their positions or spectral contents, nor of the mixing
process. Examples of applications of BSS are speech enhancement/recognition
(cocktail party problem) and digital communication, among others. The mix-
tures can be classified as linear or non-linear and instantaneous or convolutive.
This paper considers convolutive mixtures of speech signals, which takes into ac-
count the reverberation in echoic ambients. In such cases, finite impulse response
(FIR) separation filters of large orders are usually required, making the sepa-
ration task very complex. In order to solve such problem, several time-domain
and frequency-domain methods based on independent component analysis (ICA)
have been proposed in the literature.
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Some of these solutions employ FIR separation filters, whose coefficients are
estimated with an ICA-based algorithm directly in the time-domain. In real ap-
plications, the separation filters have thousands of coefficients and, therefore, the
BSS algorithms present large computational complexity, slow convergence and
undesired whitening effect in the sources estimations [1]. In order to ease such dif-
ficulties, frequency-domain BSS methods were proposed, where the convolutions
become products, and the convolutive mixtures can be treated as instantaneous
mixtures in each frequency bin [2]. The disadvantages of such methods are the
scaling and permutation problems among the bins, besides the need of using long
windows of data for implementing high-order filters. Due to the non-stationarity
of the speech signals and mixing systems, the estimates of the needed statistics
for each bin might not be correct for long window data. Such disadvantages can
degrade severely the performance of the frequency-domain algorithms. There are
also techniques which combine the time and frequency domain solutions to im-
prove the BSS performance and reduce its computational complexity [3]. In this
scenery, subband methods have been proposed mainly due to their characteris-
tics of breaking the high-order separation filters into independent smaller-order
filters and of allowing the reduction of the sampling rate. Such methods usually
employ oversampled uniform filter banks with complex-coefficients [4].

In this paper we propose an online subband BSS method which employs real-
coefficients critically-sampled uniform filter banks and reduced-order separation
FIR filters. The separation filters coefficients at the different subbands are ad-
justed independently by a time-domain adaptation algorithm [1], which employs
second-order statistics. Extra filters are used in the proposed subband algorithm
in order to cancel aliasing among adjacent bands [5].

2 BSS for Convolutive Mixtures

Fig. 1 illustrates a blind source separation system, where the number of sources
is equal to the number of microphones. Considering that the unknown mixture
system can be modeled by a set of FIR filters of length U (convolutive linear
mixtures), the signals captured by the microphones xp(n) can be written as

xp(n) =
P∑

q=1

U−1∑
k=0

gpq(k)sq(n − k) (1)

where gpq is the filter that models the echo path from the qth source to the pth
sensor, and P is the number of sources and sensors (determined BSS).

In the BSS problem, the coefficients of the separation filters wqp (of length
S) are estimated through an adaptive algorithm, so that their output signals
become mutually independent, with the qth output given by

yq(n) =
P∑

p=1

S−1∑
k=0

wqp(k)xp(n − k). (2)
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Fig. 1. Linear MIMO configuration for fullband BSS

3 Subband BSS Algorithm for Convolutive Mixtures

Subband BSS methods have been recently proposed with the objective of re-
ducing the computational complexity and improving the adaptation convergence
rate, while keeping the aliasing effects negligible and maintaining enough number
of samples for estimating the statistics of the subband signals [4]. Usually, such
results are achieved using oversampled filter banks. In this paper, we propose the
use of a critically sampled structure that uses extra filters in the decomposition
of the observed signals for canceling the aliasing among adjacent subbands [5].
The idea is to exploit the characteristics of better convergence rate and reduced
computational complexity of the corresponding adaptive subband algorithm [5].

Figure 2 shows the kth channel of the linear TITO (two sources and two
sensors) configuration for the M -channel subband BSS. In this structure each
observed signal (xq(n)) is decomposed by direct-path filters (hk,k(n)) and by
extra filters (hk,k−1(n) and hk,k+1(n)). The resulting signals (xk,kq (n), xk,k−1

q (n)
and xk,k+1

q (n)) are down-sampled by the critical decimation factor (M) and
passed by separation filters (wk

qp(n), w
k−1
qp (n) and wk+1

qp (n)). The corresponding
output signals are up-sampled and recombined by the synthesis filters (fk(n))
to restore the fullband output signals (estimated sources, yq(n)). Considering
perfect reconstruction (PR) filter banks, this structure is able of exactly modeling
any FIR unmixing system [5].

Assuming that hp(n) is the impulse response of a prototype filter of length
NP that allows perfect reconstruction in a cosine modulated multirate system
of M bands [6], the analysis and synthesis filters are given, respectively, by [7]:

hk(n) = 2hp(n)cos
[

π

M
(k + 0.5)(n − NP − 1

2
) + θk

]
, (3)

fk(n) = 2hp(n)cos
[

π

M
(k + 0.5)(n − NP − 1

2
) − θk

]
, (4)

where θk = (−1)k π4 , for 0 ≤ k ≤M − 1 and 0 ≤ n ≤ NP − 1. The filters hk,i(n)
of Fig. 2, which decompose the observed signals xq(n), have impulse responses
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hk,i(n) = hk(n) ∗ hi(n). The number of coefficients of each separation subfilter
at the kth subband should be at least K =

⌈
S+NP

M

⌉
[5].

The observed subband signals of Fig. 2 can be expressed as

xk,i
p (m) = xT

p (m)hk,i, (5)

where xp(m) = [xp(mM), xp(mM − 1), . . . , xp(mM − NH + 1)]T is the vector that
contains the latest NH = 2Np − 1 samples of the pth sensor signal and hk,i =
[hk,i(0), hk,i(1), . . . , hk,i(NH − 1)]T is the vector that contains the NH coefficients
of the analysis filter hk,i(n).

For colored and non-stationary signals, such as speech signals, the BSS prob-
lem can be solved by diagonalizing the output correlation matrix considering
multiple blocks in different time instants (TDD - Time-Delayed Decorrelation).
In this section we extend the online wideband solution proposed in [1] to the
subband domain, employing multirate processing. The method derived in [1] is
based on second-order statistics and explores two characteristics of the source
signals simultaneously: nonwhiteness and nonstationarity. From Fig. (2), con-
sidering that there is no overlap among the frequency responses of non-adjacent
filters hk(n), the qth output signals at the kth subband are given by

yk
q (m) =

P∑
p=1

k+1∑
i=k−1

[wi
qp]

T xk,i
p (m), (6)

where xk,ip (m) is the vector that contains the latest K samples of the pth sensor
subband signal xk,ip (m), and wi

qp = [wi
qp(0), wi

qp(1), . . . , wi
qp(K−1)]T is the vector

that contains theK coefficients of the subband separation subfilters wi
qp(m). The

vector xk,ip (m) can be expressed as

xk,i
p (m) = Xp(m)hk,i (7)
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with the K ×NH matrix Xp(m) given by

Xp(m)=

⎡⎢⎢⎢⎣
xp(mM) xp(mM − 1) · · · xp(mM−NH +1)

xp((m−1)M) xp((m−1)M−1) · · · xp((m−1)M−NH +1)
...

...
. . .

...
xp((m−K+1)M) xp((m−K+1)M − 1) · · · xp((m−K+1)M−NH +1)

⎤⎥⎥⎥⎦. (8)

In the generic block time-domain subband BSS algorithm, definingN as the
block size (N≥D) andD as the number of blocks which are used in the correlation
estimates (1≤D≤K), the kth output vectors of block index " can be written as

[yk
q (�)]T =

[
yk

q (�K), yk
q (�K+1), . . . , yk

q (�K+N−1)
]

=
P∑

p=1

k+1∑
i=k−1

[wi
qp]T X̂

k,i

p (�) (9)

with the K ×N matrix X̂
k,i

p (�) = [Xp(�K),Xp(�K + 1), · · · ,Xp(�K + N − 1)] Hk,i,
where the NHN ×N matrix Hk,i has the first column formed by the coefficients
of hk,i(n) followed by (N −1)NH zeros, and the following columns are circularly
shifted (by NH positions) versions of the previous columns. The D×N matrices
Yk

q ("), formed by D subsequent output vectors, can be expressed as

Yk
q (�) =

P∑
p=1

k+1∑
i=k−1

Wi
qp(�) Xk,i

p (�) (10)

with Xk,i
p (�)=

[
X̂

k,i

p (�), X̂
k,i

p (�−1)
]T

and Wi
pq(�) a D×2K Sylvester-type matrix

given by

Wi
qp(�) =

⎡⎢⎢⎢⎢⎢⎣
wi

pq(0) wi
pq(1) · · · wi

pq(K − 1) 0 · · · 0 0

0 wi
pq(0) wi

pq(1) · · · wi
pq(K − 1) 0 · · · 0

...
. . .

. . .
. . .

. . .
. . . 0 0

0 · · · 0 wi
pq(0) wi

pq(1) · · · wi
pq(K − 1) 0

⎤⎥⎥⎥⎥⎥⎦ . (11)

Combining the P outputs at each subband, Eq. (10) can be expressed concisely as

Yk(�) =
[
Yk

1(�), · · · , Yk
P (�)

]T =
k+1∑

i=k−1

Wi(�)Xk,i(�) , (12)

where

Xk,i(�) =
[
Xk,i

1 (�), . . . , Xk,i
P (�)

]T
, Wi(�) =

⎡⎢⎣Wi
11(�) . . . Wi

1P (�)
...

. . .
...

Wi
P1(�) . . . Wi

PP (�)

⎤⎥⎦ . (13)

In matrix formulation, the online subband BSS cost function is given by

�k(�) = log(det(bdiag(Yk(�)[Yk(�)]T )) − log(det(Yk(�)[Yk(�)]T )), (14)

where bdiag(A) is the operator that zeroes all the submatrices that are not
located in the main diagonal of A.
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Applying the natural gradient method to the cost function of Eq. (14),we get

∇GN
W �(�) = 2Wk(�)

{
Rk

yy(�) − bdiag
(
Rk

yy(�)
)}{

bdiag
(
Rk

yy(�)
)}−1

(15)

where Rk
yy(�) = Yk(�)[Yk(�)]T .

The online algorithm for adjusting the coefficients of the separation subfilters,
considering a TITO system, isgivenby (omittingthe index" foreasingthenotation)

Wk(�) = Wk(� − 1) − 2μ

⎡⎣[Rk
y1y1 ]

−1[Rk
y2y1 ]

T Wk
21 [Rk

y1y1 ]
−1[Rk

y2y1 ]
T Wk

22

[Rk
y2y2 ]

−1[Rk
y1y2 ]

T Wk
11 [Rk

y2y2 ]
−1[Rk

y1y2 ]
T Wk

12

⎤⎦ (16)

where Rk
yqyp

(") of dimension D ×D is a submatrix of Rk
yy(") of Eq. (15) and μ

is the step-size of the adaptation algorithm.
Due to redundancies in Wk

qp(�) (see Eq. (11)) and for convergence reasons [1],
only the first K elements of the first-line of this matrix are updated at each
iteration. In order to reduce the computational complexity of the algorithm, the
normalization factor [Rk

yqyq
(�)]−1 in Eq. (16) can be simplified considering a single

output block [8], that is, Rk
yqyq

(�)≈ [yk
q (�)]T yk

q (�)I with ykq (") given in Eq. (9).
For high-order separation filters and straigthforward implementation, the

overall number of multiplications per block (NMPB) required by the proposed
subband BSS algorithm, considering only the dominant terms, is given by

NMPBSB ≈ P 2(12MK3 − 8K3)
M

. (17)

The corresponding expression for the fullband algorithm is

NMPBF B ≈ 4P 2S3. (18)

4 Experimental Results
In all experiments, two speech signals (of 60 s up to 75 s of duration) sampled
at Fs = 16 kHz were used (a female and a male voice, both in English lan-
guage). Such signals were convolved with artificial impulse responses, obtained
considering a room of dimensions 3.55 m × 4.55 m × 2.5 m (with reverberation
time around 250 ms) [9]. Such impulse responses were truncated, considering
only their first U samples. The distance between the two microphones was 5 cm
and the sources were positioned at 1 m of distance from the center point of the
microphones, at directions of −500 and 450.

In this experiment we compare the performances of the fullband algorithm
presented in [1] and of the proposed subband online algorithm (Sec. 3), consid-
ering mixture filters of different lengths: U= 256, 512 and 1024. The lengths S of
the fullband separation filters were fixed at the same value of the mixing filters.

The uniform subband structure was implemented using cosine modulated filter
banks with M= 2, 4, 8 and 16 bands, Np=16M , all yielding perfect reconstruc-
tion. Table 1 presents the length K of the separation subfilters wi

pq(m) and the
adaptation step-sizes used in the fullband (M =1) and subband simulations for
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Table 1. Parameters for the fullband and subband algorithms

Length K of separation subfilters Step-size
M U = 256 U = 512 U = 1024 μ

1 256 512 1024 2.5 × 10−4

2 144 272 528 5 × 10−4

4 80 144 272 1 × 10−3

8 48 80 144 2 × 10−3

16 32 48 80 3 × 10−3
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Fig. 3. SIR evolution for fullband (dotted line) and subband (solid line) algorithms
with different mixing filters lengths: (a) U=256, (b) U=512, and (c) U=1024

different mixture filters. These step-size values were chosen such that all algo-
rithms presented similar convergence rates. The number of time-lags used in the
block correlation calculations was D =K and the length of the output signal
blocks was N=2K.

Figure 3 shows the signal to interference ratio (SIR) evolution and Table 2
contains the steady-state SIR (corresponding to their average values over the
latest 10 iterations) for fullband and subband algorithms, and present the num-
ber of multiplications per block (NMPB) according to Eqs. (17) and (18). From
this table and Fig. 3, it can be observed that as the order of the mixture system
increases (corresponding to more reverberation), the advantages of the subband
structure over the fullband structure become more evident, resulting in a sig-
nificantly larger final SIR and smaller processing time when compared to the
fullband algorithm.

During our experiments we monitored the correlations among the estimates
of the sources in the several subbands in order to avoid permutation problems.
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Table 2. Number of multiplications per block and Steady-state SIR (in dB)

M = 1 M = 2 M = 4 M = 8 M = 16
S=U NMPB SIR NMPB SIR NMPB SIR NMPB SIR NMPB SIR
256 2.7×108 13.0 9.6×107 13.7 2.1×107 13.9 4.9×106 13.3 1.5×106 16.0
512 2.1×109 9.7 6.4×108 9.0 1.2×108 10.0 2.2×107 10.0 5.1×106 11.9
1024 1.7×1010 7.2 4.7×109 6.6 8.1×108 7.4 1.3×108 7.5 2.3×107 8.8

5 Conclusion

In this paper we proposed a new subband blind source separation algorithm
that employs uniform filter banks to decompose the signals of the sensors. The
separation filters, applied to the subband observed signals, work at the critical
sampling rate. The adaptation is performed by a natural-gradient type algorithm
in each subband. The use of extra filters in the subband algorithm avoided alias-
ing effects, resulting in a subband BSS algorithm with steady-state performance
similar to the one of fullband algorithm. Computer simulations with speech
signals were presented, showing the advantages of the subband structure with
respect to processing time and final signal to noise interference ratio over the
fullband algorithm.
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Abstract. The aim of the present paper is to propose a new algorithm
for the estimation of the ICA model, an algorithm based on Cebysev
method. The first sections briefly present the standard FastICA algo-
rithm based on the Newton method and a new version of the FastICA
algorithm. The proposed algorithm to estimate the independent com-
ponents use a superior order method as Cebysev coefficients technique.
The final section presents the results of a comparative analysis experi-
mentally derived conclusions concerning the performance of the proposed
method. The tests were performed for signals source separation purposes.

Keywords: Independent Component Analysis, Blind Source Separation,
Numerical Methods.

1 Introduction

An important problem arising in signal processing, mathematical statistical and
neural networks is represented by the need of getting adequate representations of
multidimensional data. The problem can be stated in terms of finding a function
f such that the n dimensional transform defined by s = f(x) possesses some
desired properties, where x is a m dimensional random vector. Being given its
computational simplicity, frequently the linear approach is attractive, that is the
transform is

s = Wx (1)

where W is a matrix to be optimally determined from the point of view of a
pre-established criterion.

There are a long series of methods and principles already proposed in the liter-
ature for solving the problem of fitting an adequate linear transform for multidi-
mensional data [1,4], as for instance, Principal Component Analysis (PCA), factor
analysis, projection methods and Independent Component Analysis (ICA).

The aim of Independent Component Analysis is to determine a transform
such that the components si, i = 1..n becomes statistically independent, or at
least almost statistically independent. In order to find a suitable linear transform
to assure that (1) si, i = 1..n become ’nearly’ statistically independent several

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 219–226, 2009.
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methods have been developed so far. Some of them, as for instance Principal
Component Analysis and factor analysis are second order approaches, that is
they use exclusively the information contained by the covariance matrix of the
random vector x, some of them, as for instance the projection methods and
blind deconvolution are higher order methods that use an additional information
to reduce the redundancies in the data. Independent Component Analysis has
became one of the most promising approaches in this respect and, consists in
the estimation of the generative model of the form x = As, where the s =
(s1s2, . . . sn)T are supposed to be independent, and A is the mixing matrix m×
n− dimensional of the model. The data model estimation in the framework
of independent component analysis is stated in terms of a variational problem
formulated on a given objective function. The aim of the research reported in
this paper is to introduce a new version of the FastICA algorithm; an algorithm
that is based on Cebysev coefficients and to analyze the performances of the
algorithm in signal applications.

2 Fixed-Point ICA Based on Cebysev Coefficients

2.1 Cebysev Method for the ICA Model

We consider the following equation:

f(w) = 0 (2)

where f is a function, f : I → R, I = [wa, wb], I is an real interval and suppose
that f ∈ C([wa, wb]), where f ∈ Cn([wa, wb]) means that the function f have
continuous derivatives of order n.

Let f ∈ Cp+1([wa, wb]) and suppose that w∗ ∈ [wa, wb] is a solution for
equation (2). We also suppose that f

′
(w) �= 0 on the interval [wa, wb]. Then

there is an inverse function of f denoted by ϕ and defined on [f(wa), f(wb)].
The function ϕ is a differentiable function by order p+ 1.

Using the Taylor formula we have:

ϕ(z) = ϕ(y) +
p∑

i=1

ϕ(i)(y)
i!

(z − y)i +
ϕ(p+1)(η)
(p+ 1)!

(z − y)p+1, η ∈ (y, z) (3)

Taken z = 0 and y = f(w) we observe that ϕ(0) = w∗, because f(w) = y ⇔
w = ϕ(y) and η ∈ (f(w), f(w∗)). Thus, there is one ξ ∈ (w,w∗) with f(ξ) = η.
Denoting by θi(w) = ϕi[f(w)] the Cebysev coefficients, we obtain:

w∗ = w +
p∑

i=1

(−1)i
θi(w)
i!

(f(w))i + (−1)p+1ϕ
(p+1)[f(ξ)]
(p+ 1)!

(f(w))p+1 (4)

We denote by:

T (w) = w +
p∑

i=1

(−1)i
θi(w)
i!

(f(w))i (5)
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and take T as being the iteration function. Thus, we obtain the Cebysev method
for solving the equation (2):

wk+1 = T (wk) (6)

As compared to the Newton method, the convergence rate of the iterative method
(6) is at least of order two. The Cebysev method has a convergence rate equal
with p+ 1 [9]. Thus we get an iterative scheme yielding to an improved conver-
gence rate in estimating the independent components.

Remark 1. The Cebysev coefficients may be calculated by successive derivates
of the identity ϕ[f(w)] ≡ w. We obtain:

ϕ
′
[f(w)]f

′
(w) = 1

ϕ
′′
[f

′
(w)2] + ϕ

′
[f(w)]f

′′
(w) = 0

...

(7)

and it results the following expression that allows us to recursively extract the
Cebysev coefficients values:

θ1(w)f
′
(w) = 1

θ2(w)[f
′
(w)2] + θ1(w)f

′′
(w) = 0

...

(8)

Remark 2. The first two values of the Cebysev coefficients sequence are:

θ1(w) = f
′
(w)−1

θ2(w) = −f ′′
(w)f

′
(w)−3

(9)

Remark 3 (Particular Cases). The recursively formulas may be written for par-
ticular values of the p index:

[case p = 1] : wk+1 = wk − f(wk)
f ′(wk)

[case p = 2] : wk+1 = wk − f(wk)
f ′(wk)

− f
′′
(wk)f(wk)2

f ′(wk)3

(10)

that is just the Newton method (p=1) and the Cebysev method with convergence
rate equal three (p=2).

Remark 4. For two wn+1 and wn consecutive approximations of the sequence
from the (4) relation, taking into consideration the context of the ICA model in
which the w (weighting vector) which leads us to the independent components
are normalized, we have:

‖wn+1 − wn‖ =
√

2 (1− < wn+1, wn >) (11)

From the established (11) relation it results that at the convergence of the (4)
sequence we obtain: ‖wn+1 − wn‖ → 0, meaning that from (11) we have
(1− < wn+1, wn >)→ 0 ⇒< wn+1, wn >→ 1.
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Remark 5. In the case of the ICA model the f function is given by f(w) =
F ∗(w), F ∗(w) = E

{
zg(wT z)

} − βw, where z is the observations vector, g is a
function properly chosen, and β is a real constant.

2.2 Estimation Algorithm of the ICA Model by Cebysev
Coefficients

In this article we want to achieve the establishment of the algorithm which
estimates the independent components through successive approximations using
as objective function the negentropy, which is largely used in the field.

We obtain:
F ∗(w) = E

{
zg(wT z)

}− βw = 0 (12)

where β is a real constant, β = E
{
wT

0 zg(wT
0 z)

}
, where w0 is the critical value

of w.
For the (12) equation, using the Cebysev coefficients, the approximations se-

quence can be written by:
wk+1 = T (wk)

where

T (w) = w +
p∑

i=1

(−1)i
θi(w)
i!

[F ∗(w)]i , θi(w) = ϕi[F ∗(w)]

and w is normalized at each iterative step, w ← w/‖w‖.
According to the observation 4, the convergence condition of the approxima-

tions sequence is given by 〈wn+1, wn〉 → 1, where wn+1 and wn are two nor-
malized consecutive values of the sequence. A detailed version of the FastICA
algorithm based on Cebysev coefficients (CCM - Cebysev coefficients method)
is described as follows.

CCM Algorithm - The FastICA algorithm based on Cebysev coefficients for es-
timating several independent components

Step 1 : Center the data to mean.
Step 2 : Apply the whitening transform to data (z).
Step 3 : Select the number of independent components n and set counter

r← 1.
Step 4 : Select the initial guess of unit norm for wr.
Step 5 : Apply the updating rules:

wr ← wr +
p∑

i=1

(−1)i
θi(wr)
i!

[F ∗(wr)]
i (13)

where θi(wr) = ϕi[F ∗(wr)], F ∗(wr) is defined in (12) and g is de-
fined as in [1].

Step 6 : Do the orthogonalization transform:

wr ← wr −
r−1∑
j=1

(wT
r wj)wj (14)
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Step 7 : Let wr ← wr/‖wr‖.
Step 8 : If wr has not converged (

∥∥wrk+1 − wrk
∥∥ > ε, where ε is a small

real constant), go back to step 5.
Step 9 : Set r← r + 1. If r ≤ n then go to step 4.

3 Experimental Analysis

The assessment of the performances of the proposed algorithm for the determin-
ing of the independent components is achieved in problems of signals recognition.

We define an absolute mean sum error (AbsMSE) for comparing the accu-
racy of matching between original signals and restored signals. Then AbsMSE
is defined as follows:

AbsMSE =
N∑
i=1

|si − s estimatedi|/N (15)

where si and s estimatedi represent the i-th pixel values for original and restored
signals, respectively, and N is the total number of pixels.

All the presented tests comprise the recognition performances of the indepen-
dent components using as an objective function the negentropy for which they
used one at a time in the approximation the three functions adopted in the field
[1]. In a comparative study the proposed method based on Cebysev coefficients
has recognition performances of the original signals which are better, more ac-
curate than the implemented methods, such as FastICA based on the secant
method [3] or the gradient type method.

3.1 Experimentally Derived Conclusions on the Performance of the
Algorithm in the Case of the Mixtures of the Signals

Test I. We consider as observation data two signals which are mixed and
recorded based on two independent components.

In this first test, the original sources are signals generated using the Matlab
functions, and the results obtained after applying the algorithm based on Ceby-
sev coefficients show a recognition performance similar to the standard FastICA
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Fig. 1. Source Signals Discovered by the Algorithm (Left: 3 images), The Mixed Signals
(Middle: 3 images) and Original Signals (Right: 3 images)
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Table 1. AbsMSE of versions of the FastICA Algorithm for experimental test I

FastICA Test I Test I Test I
Basic Method tanh (g1) exp (g2) kurt (g3)
Newton 0.010692 0.010703 0.010688
Secant 0.010726 0.010672 0.012785
Gradient 0.011879 0.011130 0.011668
Cebysev Coeff. 0.010666 0.010665 0.010668

method based on the Newton and to the method FastICA method based on
the secant method. The source signals discovered by the algorithm, the mixed
signals and the source signals generated by Matlab subjected to the analysis pro-
cedure in independent components are represented in figure 1. In the respective
figure we can notice the marginal densities corresponding to the two signals as
well as the joint density which is common to the mixtures for the source signals
discovered by the algorithm, for the mixed signals and for the source signals,
respectively.

The results of the test regarding the appliance of the algorithm based on
successive approximations are given in table 1.

Test II. This test resembles the anterior test with the difference that it uses,
as original signals, the uniform distribution signals.
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Fig. 2. Source Signals (uniform) Discovered by the Algorithm (Left: 3 images), The
Mixed Signals (uniform) (Middle: 3 images) and Original Signals (uniform) (Right: 3
images)

The figure 2 comprise the original source signals, the mixed signals and the
source signals discovered by the algorithm for the uniform signals case. In the
respective figure, again, we can notice the marginal densities corresponding to
the two signals as well as the joint density which is common to the mixtures for
the source signals discovered by the algorithm, for the mixed signals and for the
source signals, respectively. The results obtained after the comparative study
regarding the proposed method and other methods used in the estimation of the
ICA model, are similar to the ones from the first test conform with table 2.
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Table 2. AbsMSE of versions of the FastICA Algorithm for experimental test II

FastICA Test II Test II Test II
Basic Method tanh (g1) exp (g2) kurt (g3)
Newton 0.023866 0.023166 0.024166
Secant 0.023145 0.022754 0.023145
Gradient 0.023074 0.022991 0.023993
Cebysev Coeff. 0.022985 0.022981 0.022984

3.2 Experimentally Derived Conclusions on the Performance of the
Algorithm in the Case of the Mixtures of the Face Images

Test III. The achieved test refers to the capacity of the proposed algorithm of
recognizing independent image faces from images of the mixed faces which can
represent joint and superimposed faces as well as deteriorated images subjected
to restoration.

Fig. 3. Original Faces Discovered by the Algorithm (Left: 2 images), The Mixed Faces
for Face Recognition (Middle: 2 images) and Original Faces for Face Recognition (Right:
2 images)

Table 3. AbsMSE of versions of the FastICA Algorithm for experimental test III

FastICA TestIII TestIII TestIII
Basic Method tanh (g1) exp (g2) kurt (g3)
Newton 0.004482 0.004482 0.006113
Secant 0.005818 0.005945 0.005479
Gradient 0.005303 0.005486 0.005589
Cebysev Coeff. 0.005266 0.005376 0.005095

In this test we considered again the bidimensional case with two mixed images
over which we apply the deterioration algorithm of the original faces. The orig-
inal image faces, the mixed image faces and the image faces discovered by the
proposed algorithm are in figure 3. Just as the anterior examples, the obtained
results offer good recognition performances of the original faces, showing also in
this case a qualitative superiority in the recognition (the results are presented
in table 3) compared with other used methods and anterior specified.
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4 Summary and Conclusions

In this article we developed an algorithm for estimating the independent com-
ponents based on an iterative scheme that use Cebysev coefficients yielding to a
superior convergence rate. We derived a suitable algorithm and supplied a com-
parative analysis of its recognition capacities against the previously developed
algorithm. In order to derive conclusive remarks the tests were performed on
different signal samples.
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Abstract. The paper presents a new geometric method for the blind
identification of linear instantaneous MIMO systems driven by multi-
level inputs. The number of outputs may be greater than, equal to, or
even less than the number of sources. The sources are then extracted
using the identified system parameters. Our approach is based on the
fact that the distribution of the distances between the cluster centers of
the observed data cloud reveals the mixing vectors in a simple way. In
the noiseless case the method is deterministic, non-iterative and fast: it
suffices to calculate the histogram of these distances. In the noisy case,
the core algorithm must be combined with efficient clustering methods
in order to yield satisfactory results for various SNR levels.

1 Introduction

Blind Source Separation refers to the recovering of n unknown signals using only
the mixtures observed at m sensors. The term “blind” refers to the fact that the
underlying mixing operator is unknown as well. According to the mixing pro-
cess the models can be divided into memoryless linear mixture BSS (also known
as instantaneous BSS) and convolutive mixture BSS (also referred to as Multi-
Input Multi-Output (MIMO) Blind Deconvolution/Equalization). In the former
the mixing operator is a constant matrix and there is no time shift of the source
signals. Instantaneous BSS can’t tolerate source multipath dispersion caused by
reflections from obstacles between the source and the observation. Such multi-
path phenomena often appear in many applications in mobile communications,
acoustics etc and they are modeled by MIMO convoluted systems.

The BSS methods can be divided into two major groups according to sta-
tistical moments: a) Higher-order methods (HOS), and b) Second-order meth-
ods (SOS). The methods of the first group are based on the optimization of
higher order statistical functions [1,2]. Typically these methods try to separate
sources based on their statistical independence. HOS methods can treat systems

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 227–234, 2009.
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driven by independent and identically distributed random variables (i.i.d.). The
methods of the latter group reduce the strong hypothesis of source statistical
independence to source orthogonality. These methods exploit the diversity of
the sources, either in the time or in the frequency domain. In [3] Tong showed
that BSS can be achieved through the eigendecomposition of a spatial covariance
matrix. However full separation of the sources requires eigendecomposition with
distinct eigenvalues. Belouchrani in [4] suggested the joint diagonalization of a
set of time-lagged covariance matrices so that there is less chance that a matrix
contains close-value eigenvalues.

A third approach for BSS is based on the geometric properties of the output
signal constellation. In [5] Diamantaras e.a. investigated the problem of blind
separation and identification of an instantaneous Multi-Input Single-Output
(MISO) system driven by binary antipodal signals. The system filter is recur-
sively deflated, yielding in the final step: the filter and the source signals. The
same idea was further developped by Li e.a. in [6]. The blind separation of convo-
lutive MISO systems driven by binary sources was explored in [7]. The method
is also based on the sequential deflation of the mixing filter, through the ex-
ploration of the observation signal succession rules. So long as the observation
signal is rich enough, these methods yield accurate results.

In this paper we present a geometric method for blind identification and sep-
aration of multilevel signals, such as PAM coded sources. The proposed method
is based on the distances between the centers of the clusters formed in the data
constellation. The paper is organized as follows: in Section 2 we formally de-
scribe the problem and the basic assumptions; in Section 3 we present the new
method blind identification and separation method starting with the noiseless
case and extending our results to the noisy case. In Section 4 we present sim-
ulations results on two different types of data (a) under-determined noiseless
4-levels PAM source signals and (b) over-determined noisy 4-levels PAM source
signals. Finally we conclude in Section 5.

2 Problem Formulation

Consider them-dimensional instantaneous mixture of n real source signals s1(k),
..., sn(k),

x(k) = a1s1(k) + · · ·+ ansn(k) (1)

where x = [x1, · · · , xm]T . There is no restriction on the length m of the observa-
tion vector: it may be greater than, equal to, or less than the number of sources
n. In any case, the real mixing vectors ai ∈ IRm, are unknown and we assume
that the sources take L values from a finite set

V = {v0, · · · , vL−1}
where consecutive values in V have equal distances D, so vp = v0 + pD, p =
0, · · · , L−1. Such source signals appear for example, in digital communications:
Pulse Amplitude Modulated (PAM) signals with L levels take values from the
set V = {−(L− 1)/2, −(L− 3)/2, · · · , (L− 3)/2, (L− 1)/2}, with D = 1. Also
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square QAM signals with constellation size L2 can be split into two real PAM
signals with L levels (real and imaginary part of QAM). In this case, the mixing
model (1) with n complex QAM inputs andm complex observations corresponds
to a real model with 2n inputs and 2m observations:

Re{x}(k) =
n∑
i=1

Re{ai}Re{si}(k)− Im{ai}Im{si}(k)

Im{x}(k) =
n∑
i=1

Re{ai}Im{si}(k) + Im{ai}Re{si}(k)

Another example area is digital imaging where the luminance values are typically
in the set V = {0, 1, 2, · · · , 255}. Without loss of generality, in the sequel we shall
assume that D = 1, so

vp = v0 + p, p = 0, · · · , L− 1. (2)

Since the input values come from a finite alphabet, the values of x also belong
to a finite set

S = {c1, · · · , cN}. (3)

Each member of S will be called a center and comes from a linear combination
of the form

cp = a1v1(p) + · · ·+ anvn(p) (4)

for some v1(p), ..., vn(p) ∈ V . For our subsequent analysis it is essential that we
make the following assumption

Assumption 1. There are no repeated centers:

cp = cq ⇔ v1(p) = v1(q), · · · , vn(p) = vn(q) (5)

Therefore, there will be N = Ln distinct centers.

If the mixing vectors are in general position then the above assumption is true.

3 Counting Frequencies of Center Differences

Our proposed method uses the distribution of the centers and in particular, the
frequencies of the center differences, in order to recover the mixing vectors and
then reconstruct the sources. Subtracting any two centers cp, cq, we obtain

dp,q = cp − cq = a1β
(p,q)
1 + ...+ anβ(p,q)

n (6)

where the values β(p,q)
i = vi(p)− vi(q), i = 1, · · · , n, belong to the following set:

Δ = {vi − vj | any vi, vj ∈ V }
= {−L+ 1, −L+ 2, · · · , 0, · · · , L− 2, L− 1}
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Straightforward combinatorial analysis shows that the v-difference β = 0 can be
generated in L different ways,

0 = v0 − v0 = v1 − v1 = ... = vL−1 − vL−1,

In general, the v-difference β = ±δ can be generated in L− δ different ways,

±δ = ±(vδ − v0) = ±(vδ+1 − v1) = ... = ±(vL−1 − vL−1−δ).

Assumption 2. The input sequence s(k) = [s1(k), · · · , sn(k)]T , k = 1, · · · ,K,
is rich enough so that it contains all possible n-tuples of input values in V n.

Assumption 3. The mixing vectors ai are in general position so that every
distinct sum d =

∑n
i=1 aiβi is generated by a unique n-tuple (β1, · · · , βn) ∈ Δn

n∑
i=1

aiβi =
n∑
i=1

aiβ′i ⇔ β1 = β′1, · · · , βn = β′n,

βi, β
′
i ∈ Δ . (7)

Let us now take all the differences d = cp−cq between the members of S. These
differences belong to the set

Γ =
{
d =

n∑
i=1

aiβi | βi ∈ Δ
}

Since, by assumption 3, each difference d is generated by a unique set of values
β1, ..., βn, the frequency by which d occurs is the product f1 × f2 × · · · × fn
where fi is the number of different ways the v-difference βi occurs. So the most
common difference is d = 0 generated by β1 = β2 = · · · = βn = 0 occuring
L× L× · · · × L = Ln times. The next most common differences are

d = ap · (±1) +
∑
i�=p

ai · 0 = ±ap, p = 1, · · · , n

all of which occur L(n−1)× (L− 1) times, since β = 0 occurs in L different ways
while β = ±1 occurs in L− 1 ways.

Next in frequency come the differences d = ±ap± aq, any p, q, each of which
occurs L(n−2)× (L− 1)2 times, and then come the differences d = ±2ap, any p,
each of which occurs in L(n−1) × (L − 2) times, etc.

According to the above results it is clear that all the mixing vectors appear in
the most frequent center differences. In particular, excluding the most common
difference d = 0, the next 2n most frequent differences are ±ap occuring (L −
1) × L(n−1) times. The permutation and sign ambiguity appears in all blind
separation problems and can not be treated unless further information is given
about the source signals.

Once we obtain the estimates (up to a permutation and sign)

âp = ap or − ap
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the sources si(k) are estimated by finding the source values vi that minimize the
reconstruction error:

ŝ(k) = arg min
[v1,··· ,vn]T

[
x(k) −

n∑
i=1

âivi
]2

Therefore, we come to the following algorithm for separating the two sources
based on the frequency of the center differences:

Algorithm 1. Blind Separation for Noiseless Data

1. Using the observed signal x(k) form the set of centers S = {c1, · · · , cN}
2. Compute the differences dp,q = cp − cq for each pair of centers cp �= cq ∈ S
3. Compute the histogram of the differences dp,q (count how many times each

difference appears)
4. Set ±âp, p = 1, · · · , n, equal to the 2n most frequent differences.

3.1 Adding Noise

In many practical cases the observed data are corrupted by noise described by
the following data model

x(k) =
n∑
i=1

aisi(k) + e(k) (8)

where the extra term e(k) corresponds to gaussian additive noise with zero mean
and variance σ2I. Even if the number of observation centers is known a priori, the
localization of their correct position is a non-trivial task. The noisy observations
of every class form a gaussian “bell” under which the correct observation center
is hidden. The greater part of the observations are accumulated around the
correct center, while the observations that are heavily altered by the noise tend to
disperce from it. This assumption is the basic idea of our noise removal scheme:
the closest observation pairs should be near a true observation center. This
method can succesfully treat cases where the noise variance is smaller than the
minimum distance between the observation centers. In the opposite case, the
center localization may be erroneous. So, first we collect the closest observation
pairs, and then we cluster them in N distinct classes. The mean observation
of every class is the estimation of an observation center c̄i i = 1, ..., N . The
estimated obervations are used to compute the differences d̄p,q = c̄p− c̄q for each
pair of centers c̄p �= c̄q. As there is an error in the estimation of the centers, there
is an error propagated in the differences as well. Consequently, it is impossible
to directly use the frequency method. Instead, we perform clustering in the
differences, in order to calculate the differences histogram. The method can be
summarized in following algorithm

Algorithm 2. Blind Separation for Noisy Data

1. Using the observed signal x(k) form the approximated set of the centers S =
{c̄1, · · · , c̄N}

2. Compute the approximated differences d̄p,q = c̄p− c̄q for each pair of centers
c̄p �= c̄q ∈ S
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3. Cluster the differences.
4. Compute the histogram of the differences d̄p,q (count how many times each

difference appears)
5. Set ±âp, p = 1, · · · , n, equal to the 2n most frequent differences.

4 Results

4.1 Noiseless Simulation

We tested the proposed method on a system with n = 4 source 4-PAM signals,
and one observation signal in an error-free environment. The mixing parameters
were [a1, a2, a3, a4] = [0.1739, 0.4259, 0.5305,−0.7120]. The dataset consisted of
N = 2000.

Using the histogram (Fig. 1) we collected eight(= 2n) differences with the sec-
ond higher frequency (the higher frequency corresponds to the zero difference).
These correspond to the mixing parameters. The blind identification and the
source signals reconstruction are perfect in the noiseless scenario.

4.2 Noisy Simulation

The noiseless scenario is very unrealistic since in real world applications there
are various sources of noise. In order to simulate these situations, we conducted
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Fig. 1. The frequency histogram of the observation differences
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Fig. 2. The identification accuracy of the proposed method for various SNR levels

Table 1. The mean Symbol Error Rate (%) of the second scenario for various noise levels

SNR
Observation Signals 20dB 25dB 30dB 35dB 40dB 45dB

2 0.146 0.018 0 0.066 0 0
3 0 0 0 0 0 0
4 0.001 0 0 0 0 0
5 0 0 0 0 0 0

a second set of experiments, where gaussian additive noise was added to the mix-
tures. We created 4 different systems with two 4-PAM sources of 1000 samples,
and two, three, four and five observation signals. The simulations were per-
formed in a Monte Carlo framework with 100 tries for each set. Additive noise
was injected to the observed signals with SNR varying from 20 to 45 dB. The
mixing parameters were fixed for every system that we tested. The 2x2 system
was generated by a1 = [−0.611, 0.956] and a2 = [−0.791, 0.294], the 2x3 sys-
tem was generated by a1 = [0.966, 0.920, 0.355] and a2 = [0.259, 0.392,−0.935],
the 2x4 system was generated by a1 = [0.935, 0.827,−0.885,−0.776] and a2 =
[0.353, 0.562,−0.465, 0.631], and the 2x5 system was generated by the filters a1 =
[−0.516, 0.671,−0.946,−0.483, 0.831] and a2 = [0.857,−0.742,−0.324,−0.876,
−0.557].

The identification accuracy was counted using RMSE (Root Mean Square
Error) defined as

RMSE =

√√√√ 1
m

m∑
i=1

(ai − âi)2 (9)

and the separation accuracy was counted using SER (Symbol Error Rate).
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The RMSE of the filter estimation (Fig. 2) shows that the accuracy estimation
is independent of the number of observation sources, since the performance is
almost identical in every case we tested. One the other hand, the estimation
error decreases as the SNR level decreases.

5 Conclusions

In this paper we presented a new blind identification method for MIMO instanta-
neous systems driven by multi-level sources. The method can be directly used for
the blind separation of the mixtures. The method is based on the geometric char-
acteristics of the observed data constellation and in particular on the distribution
of the differences between centers. The core of the method is non-iterative. The
suppression of the noise effect in the mixtures is based on clustering techniques.
The method was tested in various noiseless and noisy simulation environment
with success.
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Abstract. In this work, we propose a new method for source separation of post-
nonlinear mixtures that combines evolutionary-based global search, gaussianization 
and a local search step based on FastICA algorithm. The rationale of the proposal is 
to attempt to obtain efficient and precise solutions using with parsimony the 
available computational resources, and, as shown by the simulation results, this aim 
was satisfactorily fulfilled. 

Keywords: Nonlinear blind source separation, post-nonlinear models, 
gaussianization, evolutionary algorithms, artificial immune systems. 

1   Introduction 

The problem of blind source separation (BSS) is related to the recovery of source 
signals only by using information contained in mixed versions of them. Until the end 
of the last decade, the great majority of the proposed BSS techniques [1] were 
designed to solve the standard BSS problem, that is to say, the case in which the 
mixture model is linear and instantaneous. However, in some applications [2], such as 
digital satellite communications, as a consequence of the nonlinear character of the 
sensors, the use of the linear BSS framework may lead to unsatisfactory results, which 
motivates the adoption of nonlinear mixing models.     

An inherent difficulty associated with the separation of nonlinear mixtures comes 
from the fact that, in contrast with the linear case, it is not always possible to ensure 
that the model be separable solely by means of an independent component analysis 
(ICA) approach. Thus, one can conclude that the nonlinear BSS problem cannot be 
solved in a general fashion: it is necessary to make hypotheses about the source 
and/or the mixture model [1].  

A strategy that is viable and relevant from a practical standpoint is to restrict the 
mixture model to a class of separable nonlinear systems [1] [3]. In accordance with 
this idea, the so-called Post-Nonlinear (PNL) model [3] emerges as an important 
option, especially because of its separability and its practical applicability [3]. The  
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Fig. 1. The PNL mixing system 

PNL mixture model is formed by a two-stage mixing system composed of a linear 
mixture followed by memoryless nonlinear functions, as shown in Fig. 1. 

In [3], Taleb and Jutten proposed a paradigm for inverting the action of a PNL 
mixture system that was based on minimization of the mutual information between 
the source estimates. Despite its theoretical soundness, this approach suffers from two 
major practical drawbacks. The first one comes from the fact that the evaluation of the 
mutual information demands estimation of the marginal entropies, which may be a 
rather complex task. The second one is related to the presence of local minima in the 
mutual information-based cost function, which makes separating system adaptation 
via gradient-based algorithms very complicated. Therefore, in this strategy, the 
success of any paradigm is closely related to the efficacy of the entropy estimator and 
to the potential of avoiding local minima. 

Having Taleb and Jutten’s ideas in mind and taking the two-stage PNL mixing 
system as a study model, we propose a novel BSS strategy that employs gaussianization 
techniques [6] and a hybrid search algorithm, combining an evolutionary optimization 
tool with the well-known FastICA algorithm [1]. In this twofold approach, the FastICA 
algorithm is devoted to finding the solution to the linear part of the problem. On the 
other hand, evolutionary algorithms are used to optimize the parameters of the nonlinear 
part of the separating system, significantly reducing the chance of local convergence. 

The work is structured as follows. In Section 2, the fundamentals of the problem of 
separating PNL mixtures are discussed. In Section 3, we present our proposed 
algorithm. Simulations results are shown and discussed in Section 4. Finally, in 
Section 5, we expose our conclusions. 

2   Problem Statement 

Let s= [s1, s2,…, sN]T denote N mutually independent sources and x= [x1, x2,…, xN]T 

be a vector of N mixtures of the source signals i.e., x=�(s). BSS techniques are used 
to recover the source signals based only on the observed samples of the mixtures and 
on a minimal amount of statistical information about the signals. 

When the mapping �(.) is linear and instantaneous, this becomes the classical 
linear BSS problem, and the following model holds: x=As, where A is the NxN 
mixing matrix. In this case, separation algorithms based on ICA (Independent 
Component Analysis) aim to find a linear separating matrix W such that the vector y = 
Wx has statistically independent elements. Ideally, the separating matrix W will be, up 
to scaling factors and permutations, the inverse of the mixing matrix A [1].  

However, if �(.) is a nonlinear function, one should consider using a NBSS (Nonlinear 
Blind Separation Signal) approach. In this case, the independence hypothesis, which is 
the basis of ICA, may no longer be enough to obtain the original sources. Thus, it 
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becomes essential to deal with a more restricted class of tractable mixtures, among which 
it is possible to highlight the two-stage PNL mixing system [3].  

The PNL model divides the mixture into a linear and a nonlinear part, which means 
that one can consider the existence of two distinct but interrelated problems. 
Mathematically, the function �(.) is given by a composition of a nonlinear function 
f(.) and a linear matrix A, and the model becomes: x = f(As), where f = [f1(.), f2(.), …, 
fN(.)]T denotes the nonlinearities applied to each output of the linear mixing stage. 

Source separation of PNL mixtures can be achieved by considering a full invertible 
separating system as depicted in Fig. 2, the output of which is y =Wg(x) [5], being 
g(.)=[g1 (.),g2(.),…,gN(.)]T  a set of nonlinear functions that must be precisely adjusted 
in order to invert the action of the nonlinearity f(.).  

 

 

Fig. 2. The PNL mixing and separating systems 

3   Nonlinear Source Separation Using a Gaussianization Strategy 
and an Artificial Immune System 

An analysis of Fig. 2 reveals that BSS of PNL mixtures can be achieved by seeking a 
linear separating matrix W and a nonlinear function g(.) able to counterbalance the 
action of the mixing system, given by a linear matrix A and nonlinearities f(.). 
Therefore, we propose a solution that divides the problem into two parts: adaptation 
of the separating matrix W via the efficient local search method known as FastICA 
and choice of the parameters of g(.) using an artificial immune system (AIS), with a 
significant potential of finding good optima employing a criterion based on the idea of  
Gaussianization. This approach combines the relative simplicity of a well-established 
adaptive methodology with the remarkable capacity of multimodal optimization that 
is characteristic of the adopted AIS. 

Gaussianization, first introduced by Solé-Casals and Chen [5][6], is an approach 
whose modus operandi can be understood in light of the central limit theorem. This 
theorem states, in simple terms, that a linear mixture of nongaussian signals tends 
towards a gaussian signal. This tendency is more pronounced if the number of signals 
present in the mixture is increased. Applying these notions in the context of the 
problem of BSS of PNL mixtures, one can notice that the linear mixing stage has a 
Gaussianizing effect. Moreover, as depicted in Fig. 3, the “significantly Gaussian” 
vector e=[e1, e2, …, eN]T goes through a nonlinear stage, the effect of which tends to 
be of causing the signals to be less Gaussian or more nongaussian. In summary, the 
separating system input vector x will tend, once more, to be nongaussian. 

This state of things opens a compelling perspective: what if the design of g(.) is 
guided by the notion of recovering a condition of maximum Gaussianity? In such 
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case, the nonlinearities will have, to a certain extent, an effect contrary to that of f(.). 
As a consequence, the residual mixture will be linear or almost linear, which means 
that the use of a conventional matrix W should conclude the separating task. These 
are, in a nutshell, the concepts that give support to the use in BSS of the idea of 
Gaussianization. 

 

 
Fig. 3. Gaussianization Strategy 

Mathematically, the gaussianization of a random variable x can be achieved by 
defining a transformation g(.) that produces a Gaussian random variable z=g(x). If z 
has unit variance and zero mean, its cumulative distribution is given by: 

 ∞−

−
⋅= iz

i dezG απ
α

2
2

)21()( . (1) 

The gaussian transformation can then be written as: gi=G-1(Pi(xi)). This equation 
comes from the fact that the application of the cumulative distribution Pi(.) of the 
mixtures to the mixture signals engenders a random variable with uniform distribution 
and that the application of the inverse of the Gaussian cumulative distribution G-1(.) to 
the uniform random variable originates a Gaussian random variable. This combination 
allows to the nongaussian vector x to be transformed into a Gaussian vector z. 

In order to quantify the degree of (non)gaussianity of a signal, we shall use a 
measure of negentropy. By definition, the negentropy of a Gaussian signal is null [7], 
which means that it should be possible to carry out Gaussianization by finding a 
transformation g(.) that produces an output negentropy as close as possible to zero. 
This leads to the following adaptation criterion, where H represents entropy: 

min NG(g(x)) = min {H(g(x)) – H(x))} . (2) 

being z=g(x) a Gaussian random variable with the same correlation matrix as x.  
As stated in equation (2), negentropy calculation requires entropy estimation 

which, as a rule, leads to pdf estimation. Alternatively, one can make use of a method 
based on polynomial moments [1]:  

NG(g(x)) = � {E[Q(g(x))] – E[Q(x)]}2 . (3) 

where � is a constant and Q(.) is a nonlinear even function. 
The proposed criterion has a strong nonlinear character, which indicates that the 

optimization problem may have a pronounced multimodal character. This is one of 
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the main concerns in the context of PNL models, as stated in previous works [11, 12, 
13]. This fact justifies our adoption of an evolutionary search technique that 
establishes a fine balance between local and global search mechanisms and that, 
moreover, has been successfully applied in the context of BSS [8]: the artificial 
immune system known as opt-aiNet [9].  

3.1   The opt-aiNet 

The Optimization Version of an Artificial Immune Network (opt-aiNet), first proposed 
in [9], is a search algorithm founded on the combination of three concepts derived 
from modern theories about the immune system: clonal selection, affinity maturation 
and the concept of immune network [10].  

In simple terms, the immune system can be understood as being composed of cells 
and molecules that carry receptors for antigens (disease-causing agents). When these 
cells recognize a given antigen, they are stimulated to proliferate. During the 
replication process, mutations occur in an inverse proportion to the degree of 
pathogen recognition (this process is intimately related to the clonal selection 
principle). Useful receptors tend to be kept, which means that the defense system will 
be able to respond with more efficiency to an invasion by the same or by a similar 
pathogen. Furthermore, the opt-aiNet also incorporates mechanisms of diversity and 
population size control that are inspired by the immune network theory, which 
supports the idea that the immune system possesses “eigenbehaviors” even in the 
absence of antigens [10].  

Some important points should be taken into account when implementing the opt-
aiNet algorithm: 1) The fitness function, which is the one being optimized, is, in fact, 
a measure of affinity between antibody and antigen; 2) Each solution corresponds to 
the information contained in a given receptor (network cell); 3) The affinity between 
cells is measured by a simple Euclidean distance. A pseudo-code for the opt-aiNet 
algorithm is shown in Table 1. 

 

Table 1. Opt-aiNet Pseudo-code 

1. Randomly initialize a population of cells (No)  
2. While stopping criterion is not met do 

a) Determine the fitness of each network cell and normalize the vector of fitnesses; 
b) Generate a number Nc of clones for each network cell; 
c) Mutate each clone proportionally to its parent cell’s fitness, keeping the parent cell.  
d) Determine the fitness of all cells. 

e) For each clone, select the cell with highest fitness and calculate the average 
fitness of the selected population. 

f) If the average error of the population is not significantly different from the 
previous iteration, then continue. Else, return to step 2.a) 

g) Determine the affinity of all cells in the network. Suppress all but the highest 
fitness of those cells whose affinities are less than the suppression threshold �s and 
determine the number of network cells, named memory cells, after suppression. 
h) Introduce a percentage � % of randomly generated cells and return to step 2. 

3. EndWhile 
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Important definitions concerning the use of the opt-aiNet algorithms are as follows: 

Coding: the nonlinear function g(.) is modeled as a set of 5th-order polynomials with 
odd powers: gi(xi) = ci1xi

5 + ci2xi
3 + ci3xi. Since a crucial requirement of the PNL 

model is that each function be monotonic, the coefficients of each polynomial are 
restricted to be positive. Network cells are defined as vectors of g(.) coefficients: 
cij=[c11, c21, c31, c21, c22, c23, …]; where i represents the mixture and j represents the 
coefficient.  

Fitness function: This is the algorithm’s objective function given by: 1/NG(g(x)). 

The opt-aiNet parameters are: N0: number of individuals in the population; Nc: 
number of clones; �s: suppression threshold and �: mutation rate.  

4   Simulations 

In order to study the proposed methodology, this section provides simulation results 
based on two scenarios. In consonance with the structure of the PNL separating 
system, described by the input-output relationship y = Wg(x), the adaptation process 
takes place, at each iteration, in separate stages, one in which the separating linear 
matrix W is adapted using the FastICA, and another in which the nonlinear functions 
g(.) are updated with the aid of evolutionary algorithms. The standard method was 
tested with 10 trials run with the following parameters: N0=5, Nc=5, �=50, �s=3. 

4.1   Simulation Scenarios 

The first PNL-based scenario is composed of two uniformly-distributed sources 
(between [−1, 1]) mixed with the following linear and nonlinear stages: 
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The average speed, the average time spent per iteration (all the simulations were 
performed in the same machine, an Athlon64 3000+ with 1GB RAM) and the average 
time to converge are depicted in Table 2. In addition to that, mean-square errors 
(MSE) between sources and their estimates are shown in Table 3. 

Table 2. Metrics related to convergence and results for the first scenario (Performance Results) 

Metrics  
Convergence speed (iterations) 1750 
Time spent per iteration (ms) 222 
Average time to converge (min) 6.5 

Table 3. Average MSE results for the first scenario (Solution Quality) 

MSE (x 10-3)  
y1 23.6758 
y2 39.3453 
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Tables 2 and 3 show that the combination between the FastICA algorithm as a 
local search tool and the opt-aiNet as an evolutionary global search strategy leads to 
satisfactory results for an execution time that is reasonable in view of, for instance, 
that associated with the mutual information-based approach presented in [8]. As far as 
the estimation error is concerned, this new method did provide solutions with a small 
MSE. 

The second scenario is simulated using the following linear and nonlinear 
characteristics: 
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Once again, Table 4 and Table 5 reveal that a satisfactory performance in terms of 
MSE was reached, with an execution time that is very promising in comparison with 
that of [8]. In comparison with the previous scenario, it is possible to verify that there 
was reduction in the convergence speed and an increase in time spent per iteration, 
which leads to a higher total execution time. These results are expected due to the 
increase in the order of the problem to be solved.   

Table 4. Metrics related to results for the second scenario (Performance Results) 

Metrics  
Convergence speed (iterations) 1350 
Time spent per iteration (ms) 430 
Average time to converge (min) 9.7 

Table 5. Average MSE results for the second scenario (Solution Quality) 

MSE (x 10-3)  
y1 25.2899 
y2 41.9756 
y3 89.0077 

 
Since both scenarios have mixtures composed of a relatively small number of 

source signals, the applicability of the central limit theorem is, to a certain extent, 
restricted. This means that better results could be obtained for scenarios with more 
sources: this is, in our opinion, the main path to improving the results obtained in this 
work.  

In view of the initial character of this work, our main objective was not to compare 
the proposed methodology to other approaches, but to analyze its applicability. In this 
sense, it is possible to state that the above presented results are quite encouraging, 
although preliminary efforts indicate that the Gaussianization-based solution still 
requires a certain degree of improvement if one aims to reach the same quality of 
results of, for instance, the evolutionary mutual information-based approach presented 
in [8].  
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5   Conclusions 

When dealing with the problem of BSS of post-nonlinear mixtures, researchers 
usually face two problems: 1) the difficulty of estimating the nonlinearities; and 2) the 
multimodal character of the underlying optimization task. This article proposes a new 
method that is capable of meeting these requirements using the FastICA as a local 
search tool and an evolutionary gaussianization method to allow the adaptation of the 
nonlinear separating stage. The presented initial results show that the novel solution 
reaches an interesting tradeoff between performance, speed of convergence and 
computational effort, which leads us to the conclusion that the idea of allying an 
evolutionary algorithm to a FastICA-based refinement stage may be decisive in the 
process of implementing practical and efficient nonlinear separating systems. 

References 

1. Hyvärinen, A., Oja, E.: Independent Component Analysis. John Wiley and Sons, 
Chichester (2001) 

2. Arons, B.: A review of the cocktail party effect. Journal of the American Voice 
Input/Output Society 12, 35–50 (2006) 

3. Taleb, A., Jutten, C.: Source Separation in Post-Nonlinear Mixtures. IEEE Transactions on 
Signal Processing 47(10), 2807–2820 (1999) 

4. Picinbono, B., Barret, M.: Nouvelle Présentation de la Méthode du Maximum d’Entropie. 
Traitement du Signal 7(2), 153–158 (1990) 

5. Solé-Casals, J., Babaie-Zadeh, M., Jutten, C., Pham, D.T.: Improving Algorithm Speed in 
PNL Mixture Separation and Wiener System Inversion. In: Proceedings of the Fourth 
International Workshop on Independent Component Analysis and Blind Signal Separation, 
ICA, Nara, Japan (2003) 

6. Chen, S.S., Gopinath, R.A.: Gaussianization. Technical Report, IBM T. J. Watson 
Research Center (2000) 

7. Lee, T.W., Girolami, M., Bell, A.J., Sejnowski, T.J.: A Unifying Information-Theoretic 
Framework for Independent Component Analysis. Computers and Mathematics with 
Applications 39(11), 1–21 (2000) 

8. Duarte, L.T., Suyama, R., de Faissol Attux, R.R., Von Zuben, F.J., Romano, J.M.T.: Blind 
source separation of post-nonlinear mixtures using evolutionary computation and order 
statistics. In: Rosca, J.P., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, 
vol. 3889, pp. 66–73. Springer, Heidelberg (2006) 

9. de Castro, L.N., Timmis, J.: An Artificial Immune Network for Multimodal Function 
Optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation (2002) 

10. de Castro, L.N., Timmis, J.: Artificial Immune Systems: a New Computational Intelligence 
Approach. Springer, Heidelberg (2002) 

11. Ziehe, A., Kawanabe, M., And Harmeling, S.: Separation of post-nonlinear mixtures using 
ACE and Temporal Decorrelation. In: Proc. Int. Workshop on Independent Component 
Analysis and Blind Signal Separation – ICA, pp. 433–438 (2001) 

12. Zhang, K., Chan, L.-W.: Extended Gaussianization Method for Blind Separation of Post-
Nonlinear Mixtures. Neural Computation 17(2), 425–452 (2005) 

13. Rojas, F., Puntonet, C.G., Rodriguez-Alvarez, M., Rojas, I., Martin-Clemente, R.: Blind 
source separation in post-nonlinear mixtures using competitive learning, simulated 
annealing, and a genetic algorithm. IEEE transactions on systems, man and cybernetics. 
Part C, Applications and reviews 34(4), 407–416 (2004) 



Adapted Deflation Approach for Referenced
Contrast Optimization in Blind MIMO

Convolutive Source Separation
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Abstract. The paper deals with the problem of the blind source sepa-
ration after a MIMO convolutive mixture. The source separation is done
with successive extractions of one source signal that is a deflation ap-
proach. The extraction stage is performed using a MISO equalizer and
based on a third order tensor decomposition. Computer simulations il-
lustrate the good behavior and the usefulness of our algorithm in com-
parison with algorithms based on fourth order tensor.

Keywords: Contrast Functions, Blind Source Separation, Higher Or-
der Statistics, Tensor Decomposition.

1 Introduction

We consider the blind source separation in a MIMO context. In this case non
observable source signals are mixed through an unknown multidimensional con-
volutive channel. The goal of separation consists of recovering all the source sig-
nals. In our study, we proceed in a sequential way, that is a deflation approach
based on successive extractions of one source [1].

One extraction stage consists of optimizing criteria based on high order statis-
tics, see e.g. [2,3,4], involving high order dependence of the criteria on the param-
eters. Through the use of so-called reference signals, new solutions were proposed
that consider high order statistics with a quadratic dependence of searched pa-
rameters [5,6].

In this paper, first we introduce tensor algebra and best rank-1 tensor ap-
proximation which are the basis of our algorithm. Then we expose the link with
source separation and define a new criterion based on high order statistics but
showing a cubic dependence on parameters thanks to reference signals. The op-
timization of the proposed criterion is based on best rank-1 approximation of
third order tensors. We next perform the source separation in a new algorithm

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 243–250, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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based on a deflation approach and adapted to the reference signals. Finally, com-
puter simulations are used to show the usefulness and the good behavior of our
approach.

2 Tensor Algebra

In the following, tensors are written as calligraphic letters. For the following
definitions, we refer to [7].

The scalar product 〈A,B〉 of two tensors A,B ∈ RI1×I2×I3 is defined as

〈A,B〉 �
∑
i1

∑
i2

∑
i3

Ai1i2i3Bi1i2i3 .

The Frobenius norm of A is then ‖A‖ �
√〈A,A〉.

The 1-mode product of A by a matrix U ∈ RJ1×I1 , denoted by A ×1 U, is
an (J1 × I2 × I3)-tensor of which the entries are given by

(A ×1 U)j1i2i3 �
∑
i1

Ai1i2i3Uj1i1 .

We define similarly the 2-mode and the 3-mode products and the following no-
tation, if I1 = I2 = I3 = J1:

A×3 U � A×1 U×2 U×3 U.

In the matrix unfoldings A(1) ∈ RI1×(I2I3), A(2) ∈ RI2×(I3I1) and A(3) ∈
RI3×(I1I2) of A, the component Ai1i2i3 is respectively at the (i1, (i2− 1)I3 + i3),
(i2, (i3 − 1)I1 + i1), (i3, (i1 − 1)I2 + i2) coordinates. The High Order Singular
Value Decomposition (HOSVD) of A [7] is given by:

A = S ×1 U(1) ×2 U(2) ×3 U(3), (1)

where S ∈ RI1×I2×I3 and U(n) ∈ RIn×In , n ∈ [1, 2, 3] are unitary matrix.
A rank-1 third order tensor B ∈ RI1×I2×I3 is equal to the outer product of 3

vectors u(1),u(2),u(3) of size I1, I2, I3 respectively. Bi1i2i3 = u(1)
i1

u(2)
i2

u(3)
i3

for all
values of the indices, which is written as B = u(1) ◦ u(2) ◦ u(3).

The best rank-1 approximation of a third order tensor can be described as fol-
lows. Given A ∈ RI1×I2×I3 , find a scalar λ and unit-norm vectors u(1),u(2),u(3)

such that the rank-1 tensor Ã ∈ RI1×I2×I3 , Ã � λu(1) ◦ u(2) ◦ u(3) minimizes
the least-squares cost function

f(Ã) = ‖A− Ã‖2.
This can be solve [8] using a higher-order extension of the power method (HOPM)
for matrices.
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HOPM
Input: A ∈ RI1×I2×I3
Output: Ã ∈ RI1×I2×I3

1. Initial values: u(n)
0 is the first column of U(n) in the HOSVD decomposi-

tion, n ∈ [1, 2, 3].
2. Until convergence:

– ũ(1)
k+1 = A×2 u(2)T

k ×3 u(3)T

k

λ
(1)
k+1 = ‖ũ(1)

k+1‖ and u(1)
k+1 = ũ(1)

k+1/λ
(1)
k+1

– ũ(2)
k+1 = A×1 u(1)T

k+1 ×3 u(3)T

k

λ
(2)
k+1 = ‖ũ(2)

k+1‖ and u(2)
k+1 = ũ(2)

k+1/λ
(2)
k+1

– ũ(3)
k+1 = A×1 u(1)T

k+1 ×2 u(2)T

k+1

λ
(3)
k+1 = ‖ũ(3)

k+1‖ and u(3)
k+1 = ũ(3)

k+1/λ
(3)
k+1

Solutions : u(1),u(2),u(3), λ.
3. Ã = λu(1) ◦ u(2) ◦ u(3).

3 Source Separation

We consider the following noise free convolutive mixing model

x(n) =
∑
k∈Z

M(k)s(n− k) � {M(z)}s(n), (2)

where x(n) is the (N, 1) observation vector (N ∈ N, N � 2), s(n) is the (K, 1)
source vector (K ∈ N∗), and M(n) is the (N,K) matrix corresponding to the
impulse response of the convolutive mixing system, whose transfer function is
denoted by M(z) =

∑
n∈Z

M(n)z−n. To achieve the blind extraction, we assume
that the LTI mixing system is stable, left invertible and the polynomial matrix
z-transform M(z) is irreducible, that involves N > K. In the MISO context,
the aim is to estimate one row of the separating matrix W(z), that is a (1, N)
vector filter w(z), called an equalizer, such that the scalar signal

y(n) =
∑
k∈Z

w(k)x(n− k) (3)

restores one of the components si(n), i ∈ {1, . . . ,K}, of the source vector. In
this context it is classical to define the corresponding (1,K) global vector filter
g(z) by its impulse response g(n) �

∑
k∈Z

w(k)M(n− k). Hence we have

y(n) =
∑
k∈Z

g(n− k)s(k) � {g(z)}s(n) . (4)

In this paper, we assume that the source signals si(n), i ∈ {1, . . . ,K} are zero-
mean, unit variance, i.i.d. random signals and statistically mutually independent,
at least up to the order of the considered cumulants. As the source signals are
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unobservable, there exist some inherent undetermined factors in their estimation.
The extraction is done when the global filter reads

∃i0 ∈ {1, . . . ,K}, ∃l ∈ Z gi(n) � (g(n))i = αδn−lδi−i0 (5)

where α ∈ R, α �= 0. The above relation is called the “equalization condition”
and expresses the fact that y(n) is equal to one source signal, si0(n− l) up to a
delay.

We consider the definition of contrasts within the classical context of i.i.d.
source signals given in [5] and we propose an new contrast function which is
cubic w.r.t. the searched parameters.

Proposition 1. Using the following fourth-order cross-cumulant, where z(n) is
a given reference signal,

κ3,4,z{y(n)} � Cum{y(n), y(n), y(n), z(n)} , (6)

the function
C3,4,z{y(n)} � |κ3,4,z{y(n)}| , (7)

is a contrast for y(n) in the case of i.i.d. source signals.

The proof is reported in a forthcoming paper. The reference signal has to depend
linearly on source signals. In practice, we choose z(n) as the first observation sig-
nal. In the same way we consider the extraction based on fourth order cumulant
[2,3] without reference, with our notation

C4,4{y(n)} � |Cum{y(n), y(n), y(n), y(n)}|.

4 Proposed Algorithm

4.1 Extraction Stage

We assume that the mixing filter admits a MIMO-FIR left inverse filter of length
D, which can be considered causal because of the delay ambiguity. The row
vectors which define the impulse response can be stacked in the following (1, QD)
row vector:

w � (w(0) . . .w(D − 1)). (8)

We also define the (QD, 1) column vector of observations

x(n) � (x(n)Tx(n− 1)T . . .x(n−D − 1)T )T . (9)

It is then easily seen that y(n) = wx(n). Considering the covariance matrix
Rx = E{x(n)x(n)T }, we have E{|y(n)|2} = wRxwT .

Now using the multilinearity property of cumulants, we have

κ3,4,z{y(n)} =
∑
i,j,k

wiwjwkCum{xi(n), xj(n), xk(n), z(n)}. (10)
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Thus this relation can be written as a third order tensor decomposition

κ3,4,z{y(n)} = C3 ×3 w where (C3)i,j,k = Cum{xi(n), xj(n), xk(n), z(n)}.
(11)

The optimization of the contrast function in (7) under the unit power constraint
is equivalent to the maximization of |C3×3w| under the constraint wRxwT = 1.
To ensure that we have a unique solution, w is projected onto the signal subspace.
So we decompose Rx = UDUT through SVD, we define P = UD1/2 and
Q = D−1/2UT in order to project onto the signal subspace: w̃ = wP and
C̃3 = C3 ×3 Q. Thus the optimization is equivalent to the maximization of
|C̃3 ×3 w̃| under the constraint w̃ w̃T = 1. We propose to realize the above
maximization, noted E3,HOPM , searching for the best rank-1 approximation of
tensor C̃3, using the HOPM algorithm. Similarly, the algorithm realizing the
maximization of |C̃4 ×4 w̃|, and using HOPM is called E4,HOPM .

4.2 Deflation Approach

After the extraction of one source, we consider now an iterative way, called de-
flation, to extract all the sources [1,5]. At each stage, we cancel the contributions
of the extracted source to the observations using a least mean squares (LMS)
method. Then, the resulting problem becomes the separation of the K − 1 re-
maining sources knowing N observations. By an iterative process, we extract all
the sources that is to say, the separation of the sources. The deflation principle
is explained for two sources in the figure 1.

Consider the matrix T(M) QD ×K(L+D − 1)

T(M) �

⎛⎜⎜⎜⎜⎝
M(0) . . . M(L− 1) 0 . . . 0

0 M(0) . . . M(L− 1)
. . .

...
...

. . . . . . . . . . . . 0
0 . . . 0 M(0) . . .M(L− 1)

⎞⎟⎟⎟⎟⎠ ,

and the column vector

s(n) � (s(n)T s(n− 1)T . . . s(n− L−D + 2))T ,

we get x(n)=T(M)s(n) and Rx=T(M)RsT(M)T , where Rs � E{s(n)s(n)T }.
If D � K(L − 1), the rank of Rx is equal to the rank of Rs. When we cancel
the contributions of one source to the observations, this source disappears from
the mixture. L +D − 1 components of s(n) vanish, and the rank of Rx fall by
the same number. At the P -th extraction, P − 1 deflation steps have been done
and the rank of Rx is reduced of (P − 1)(L +D − 1).

We propose here a method to avoid the rank reduction in the mixing matrix.
In our algorithm, the reference directs the maximization to the extraction of a
source included in the reference. This property is used in a “fixed point” like
method in [5] to make the extraction better through iteration. To extract a
new source after a first extraction, we use an observation signal as reference,
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that does not depend on the last extracted source. We obtain this modified
observation signal in cancelling the last extracted source contributions to the
observations using a LMS method. It’s the same principle as the deflation, but
here we propose, not to modify the whole observations but the observations seen
in the reference of our criterion. Thus, we still want to extract one of the K
sources using N observations, and the rank of Rx is not modified. In referenced
contrast, this method can be seen as a deflation of the reference.

Fig. 1. Deflation principle for 2 sources

Deflation algorithm
Input: x0(n) = x(n), r0 = rank(Rx0) For i ∈ {1, . . . ,K}:
1. Decompose Rxi−1 in singular values, keep the ri−1 most important. Ex-

tract a source from xi−1(n) thanks to the method from 4.1, giving yi(n)
2. Deflation stage:

– substract yi(n) from xi−1(n) by LMS method, giving xi(n)
– ri = ri−1 − (P − 1)(L+D − 1).

3. Output: yi(n)

5 Simulation Results

We now propose computer simulations to illustrate the usefulness of the algo-
rithm. We consider real-valued binary source signals (they take their values in
{-1,1} with equal probabilities) and real-valued mixing systems. We compare
the E3,HOPM and the unreferenced E4,HOPM using the classical deflation ap-
proach and the E3,HOPM using our proposed deflation of reference approach. In
the E3,HOPM , we realize two iterations of a “fixed point” like method. All the
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results presented below consist in Monte-Carlo simulations involving 100 realiza-
tions. At each run, the mixing system (according to a normal distribution) and
the Ne sources samples have been drawn randomly. The quality of extraction is
measured thanks to a performance index derived from [9] and defined by:

ind(g) �
∑

i∈{1,...,N}

( ∑
k∈Z

|gi(k)|2

max
i∈{1,...,N}

∑
k∈Z

|gi(k)|2
)
− 1. (12)

We consider here a mixture of K = 3 source signals. The length of the mixing
filter is L = 3, the number of observations is N = 4 and D = 6. In figure 2
we present the performances of the extraction for the E3,HOPM and E4,HOPM

versus the number of sources samples Ne using the classical deflation method.
In figure 3, we show the performances of the E3,HOPM using our deflation of
reference method.
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As classically observed, the successive classical deflation stages lead to degra-
dation of performances (see figure 2). Our proposed approach, directly using
the reference signal for the deflation, shows always good performances for all
extracted source signals (see figure 3).

6 Conclusion

We have proposed a new referenced contrast function optimized using a best
rank-1 tensor decomposition and a new deflation approach for referenced contrast
to solve the blind MIMO convolutive separation problem. Computer simulations
illustrate interesting features and good performances in comparison with the
classical approach of deflation and with the classical kurtosis based contrast.
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Abstract. We propose a blind algorithm to determine the order
and estimate the coefficients of multiple-input single-output (MISO)
communication channels. The proposed order detection method exploits
the sensitiveness of a Chi-square test statistic to the non Gaussianity
of a stochastic process. Order detection is coupled with channel param-
eter estimation in a nested-loop operation based on a deflation-type
technique using the 4th-order output cumulants. Successively treating
shorter and shorter channels, we can also determine the number of
sources. Simulation results illustrate the performance of the proposed
algorithm.

Keywords: Blind identification, channel parameter estimation,
Chi-square test, high-order statistics (HOS), MISO channels, order
detection.

1 Introduction

In wireless, satellite and radiocommunication systems, the transmission chan-
nel is typically characterized by multipath propagation, inducing frequency-
selectiveness and intersymbol interference (ISI). To ensure correct information
recovery and avoid performance limitations, it is necessary to reduce or suppress
the ISI. Most channel parameter estimation algorithms require knowledge about
the channel order (at least an upper bound) [11]. Channel order mismatches may
yield bit error rate (BER) floors and signal-to-noise ratio (SNR) penalties [8].

A vast amount of papers can be found in the literature about the blind identi-
fication of overdetermined mixtures (those with more sensors than sources), in-
cluding the instantaneous [4] and the convolutive cases [12,15,16]. More recently,
underdetermined mixtures have also been treated [2,7], but the single-input case
has received less attention. In this paper, we address the problem of determin-
ing the order and estimating the coefficients of finite impulse response (FIR)
channels using only the output signals of a multiple-input single-output (MISO)
communication system, which is an underdetermined convolutive mixture.
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The main contribution of this paper is the introduction of a blind procedure
that detects the presence of signal sources in a MISO mixture, determines chan-
nel orders and estimates channel coefficients. The proposed blind channel order
detection method is based on a Chi-square hypothesis test using the multivari-
ate estimator of the 4th-order output cumulants. We use a scalar Chi-square
test statistic, which is sensitive to the non Gaussianity of a stochastic process,
enabling us to detect the order of a FIR channel model by measuring the en-
ergy of output cumulants. Based on a cumulant matrix rank-one approximation,
a blind channel identification method is also introduced. Using a deflation ap-
proach, shorter and shorter channels are identified using the residual 4th-order
cumulant information. This deflation-type technique was introduced in [9], in
the context of 2× 1 MISO channels, with a different order detection method.

The rest of this paper is organized as follows: in section 2, we present the MISO
channel model and define output cumulant vectors. In section 3, we propose a
channel order detection method based on 4th-order output cumulants. In section
4, we propose a new blind MISO channel identification algorithm and introduce
a deflation-type detector that performs combined order detection and parameter
estimation. In section 5, computer simulation results illustrate the performance
of the proposed algorithm in terms of parameter estimation. In section 6, we
draw conclusions and set out perspectives.

2 MISO Channel Model and 4th-Order Output
Cumulants

Let us consider a multiuser communication system with an unknown number Q
of co-channel users located far apart each other1 and one single receive antenna.
After sampling at the symbol rate, the equivalent baseband output signal y(n)
is given as:

xq(n) =
Lq∑
�=0
hq(")sq(n− "), hq(0) = 1,

y(n) =
Q∑
q=1

xq(n) + υ(n),
(1)

where hq(") are the complex coefficients of the equivalent discrete MISO channel
impulse response, including transmit and receive filters. The channel order is
asociated with the channel memory and generally expressed in terms of the
symbol period. Denoting by Lq the order of channel q, its memory is given by
Lq + 1. The following assumptions hold:

A1 : The non-observable discrete input signals sq(n), q ∈ [1, Q], are complex-
valued, non-measurable, ergodic, stationary, mutually (spatially and tem-
porally) independent and identically distributed with symmetric distribu-
tion. In addition, we assume that E {sq(n)} = 0, E

{|sq(n)|2} = 1 and
γ4,sq � E

{|sq(n)|4}− |E{
sq(n)2

} |2 − 2 (E
{|sq(n)|2})2 �= 0.

1 Transmitted signals share the same carrier frequency and use physically different
channels.
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A2 : The additive noise υ(n) is normally distributed, zero-mean with unknown
autocorrelation function, and assumed to be independent from s(n).

A3 : The FIR filter representing each channel is assumed to be causal with order
Lq, q ∈ [1, Q], i.e. hq(") = 0, ∀ " /∈ [0, Lq], and hq(") �= 0 for " = Lq and " = 0.

A4 : All channel orders are bounded by a known value K, i.e. K > Lq
∀ q ∈ [1, Q]; without loss of generality, we consider that K > L1 > . . . > LQ,
so that L1 = max

1≤q≤Q
(Lq).

The 4th-order output cumulants, defined in [3], can be expressed as the sum
of the marginal cumulants, i.e. c4,y(τ1, τ2, τ3) =

∑Q
q=1 Cq(τ1, τ2, τ3), where

Cq(τ1, τ2, τ3) = γ4,sq

Lq∑
�=0

h∗q(")hq("+ τ1)h∗q("+ τ2)hq("+ τ3), q ∈ [1, Q], (2)

where γ4,sq = c4,sq(0, 0, 0). From A3, we get:

Cq(τ1, τ2, τ3) = 0, ∀ |τ1|, |τ2|, |τ3| > Lq. (3)

We can define a 4th-order output cumulant vector ck =
∑Q

q=1 ck,q for each
k ∈ [1,K], where the pth-element of vector ck,q ∈ CP×1 is given by:[

ck,q
]
p

= Cq(ip − 1, jp − 1, k − 1), q ∈ [1, Q], p ∈ [1, P ], (4)

with (ip, jp) ∈ J , where the index set J = {(i1, j1); . . . ; (iP , jP )} is formed of
strictly positive integer numbers ip, jp ≤ K. Note from (3) that the marginal
4th-order output cumulants are zero whenever either ip, jp, or k are larger than
the channel memory Lq + 1, and hence, ck,q = 0P , ∀ k > Lq + 1. Thus:

ck =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0P , if k > L1 + 1
ck,1, if L2 + 1 < k ≤ L1 + 1
ck,2 + ck,1, if L3 + 1 < k ≤ L2 + 1

...
...

ck,Q + . . .+ ck,1, if k ≤ LQ + 1.

(5)

In most of the real-life situations, the true values of the output cumulants are
not available and have to be estimated from the N output signal measurements
y(n), n = 0, . . . , N−1. Due to the ergodicity assumption, the 2nd- and 4th-order
moments can be estimated by means of time averages. By combining moment
estimates, it is straightforward to derive a cumulant estimator that is asymptot-
ically unbiased and consistent [3,10].

Let us now define the following real-valued vector:

zk =
[
Re(ck)T Im(ck)T

]T

∈ R2P×1, (6)

where the operators Re(·) and Im(·) return the real and imaginary parts
of the vector argument, respectively. Consider the estimator ẑk with covari-
ance matrix Σk � E

{
(zk − ẑk)(zk − ẑk)T

} ∈ R2P×2P , which can be read-
ily deduced from the circular and the noncircular 2nd order moments Vk �
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E
{
(ĉk − ck)(ĉk − ck)H

}
and Wk � E

{
(ĉk − ck)(ĉk − ck)T

}
, which are the

P × P positive-definite Hermitian and complex symmetric covariance matrices
of the estimator ĉk, respectively.

We can now define the scalar multivariate function ξk � (zk − ẑk)T

Σ−1
k (zk − ẑk) [14]. Expressions for computing the covariance matrices are avail-

able for symmetrically distributed sources [1] and also in the general case [5].
These expressions, commonly used in the context of Gaussianity tests [6], are
very useful for algorithmic purposes when only output measurements are
available.

3 Channel Order Detection

The complex multivariate cumulant estimator ĉk is shown to be asymptotically
Gaussian with mean equal to ck and covariance matrix Vk, i.e. ĉk ∼ N

(
ck,Vk

)
[3]. As a consequence, we have ẑk ∼ N

(
zk,Σk

)
, as N → ∞. Hence, ẑk can be

viewed as an asymptotically Gaussian random vector, which can be standardized
as2 ωk = Σ−1/2

k (zk − ẑk) ∈ Rdk , so that ωk is asymptotically normal with zero
mean and an identity covariance matrix.

Therefore, the scalar random variable ξk can be rewritten as ξk = ωT
kωk. Since

ωk ∼ N (0, I) as N → ∞, we conclude that ξk asymptotically follows a Chi-
square distribution with dk degrees of freedom [13], i.e. ξk ∼ X 2

(dk), so that
μξk

= E {ξk} = dk and σ2
ξk

= E
{
(ξk − μξk

)2
}

= 2dk.

3.1 Order Detection Algorithm

Note from (5) and (6) that zk = 0 for k > L1 +1. Replacing Σk by its estimate,
ωk becomes ω̂k = −Σ̂−1/2

k ẑk, for k > L1 + 1, and we can define:

ρk � ω̂T
k ω̂k = ẑT

k Σ̂−1
k ẑk, for k > L1 + 1. (7)

Since ẑk is a consistent estimator with asymptotically zero bias, ρk is asymptot-
ically X 2

(dk) for k > L1 + 1. This property enables us to detect the presence of
signal sources having nonzero 4th-order cumulants at k ≤ L1 + 1. In this latter
case, ρk has a non-central Chi-square distribution, nCχ2

(dk)(λk), with dk degrees
of freedom and parameter λk = zT

kΣ
−1
k zk, so that E {ρk} = λk + dk.

Hypothesis test
In the sequel, a hypothesis test is defined, in order to determine the channel
order. The null and alternative hypotheses, H0(k) and H1(k), respectively, are:

2 We avoid zero elements in the vector ẑk by eliminating its mk entries corresponding
to the imaginary part of purely real-valued cumulants. In order to avoid the inversion
of an ill-conditioned covariance matrix, we perform the eigenvalue decomposition
of Σ̂k and then find its inverse removing the eigenvectors associated with the μk

smallest eigenvalues, so that its condition number is smaller that a certain threshold
ρ. So, the actual dimension of vector ωk is dk = 2P − mk − μk.
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H0(k) : k > L1 + 1 ⇒ ρk ∼ X 2
(dk) ⇒ ρk < ηk

H1(k) : k = L1 + 1 ⇒ ρk ∼nC χ
2
(dk)(λk) ⇒ ρk ≥ ηk

Under H0(k), we have E {ρk} = dk and we should expect that ρk < ηk, where ηk
is a decision threshold associated with the number dk of degrees of freedom of
the test statistic ρk. Under H1(k), E {ρk} = λk +dk, and we should get ρk ≥ ηk.
Starting with k = K, the test is performed until we find the largest k for which
the null hypothesis H0(k) is rejected, i.e. ρk ≥ ηk, which implies L̂1 = k − 1.
The non-rejection of H0(k) for a given k (ρk < ηk) induces a new test on ρk−1.
Knowing the distribution of ρk, a decision threshold ηk can be established in
order to ensure that, for each k ∈ [Lq+2,K], the probability of rejection ofH0(k)
remains under an acceptable level α, i.e. P[ρk ≥ ηk|H0(k)] ≤ α. This subject is
not discussed here, but is addressed in a full-length version of this paper.

4 Blind MISO Channel Identification Algorithm

Equation (5) shows that, if k = L1 + 1 then ck can be written only in terms
of the coefficients h1("), since ĉL1+1,1 = ĉL1+1. This allows us to estimate the
channel coefficients of source q = 1. Using the estimated channel coefficients,
the marginal cumulants of source q = 1 can be approximately calculated for all
k ∈ [1, L1 + 1]. Then, by subtracting ĉk,1 from ĉk, we get an identical situation
withQ−1 sources. The algorithm is stopped when the residual cumulants contain
no useful information. The following steps are repeated for each q ∈ [1, Q]:

1. Channel order detection: determine Lq + 1;
2. Blind channel identification: estimate channel coefficients ĥq("), " ∈ [0, Lq];
3. Estimation of marginal cumulants: reconstruct ĉk,q for all k ∈ [1, Lq + 1]

using the estimated channel coefficients.

Before proceeding to user q+1, the marginal contribution of user q is subtracted
from the estimated output cumulant vector ĉk.

Parameter estimation based on a rank-1 approximation
Assuming known the channel order Lq and the marginal 4th-order cumulants
Cq(ip − 1, jp − 1, Lq), we now discuss the estimation of the channel coefficients
ĥq("), with (ip, jp) ∈ J , q ∈ [1, Q]. From (2), we know that Cq(ip−1, jp−1, Lq) =
γ4,sq h

∗
q(0)hq(ip − 1)h∗q(jp − 1)hq(Lq), q ∈ [1, Q], and hence

cLq+1,q = γ4,sqh
∗
q(0)hq(Lq)g(q), (8)

where [g(q)]p = hq(ip − 1)h∗q(jp − 1), p ∈ [1, P ]. In order to recover the channel
parameters, we need to impose some minimal conditions on the index set J
of the cumulants utilized by the algorithm. Simple conditions ensuring correct
parameter estimation are ip = p and jp = 1, ∀ p ∈ [1, P ], with P = K. Using
such an index set, we get [g(q)]p = hq(p − 1)h∗q(0) and (8) becomes cLq+1,q =
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γ4,sqh
∗2
q (0)hq(Lq)h(q), with h(q) = [hq(0), . . . , hq(Lq), 0, . . . , 0]T ∈ CK×1. Thus

we can construct the matrix Cq ∈ CK×K , as follows:

Cq = cLq+1,qcH
Lq+1,q = γ2

4,sq
|hq(0)|4|hq(Lq)|2h(q)h(q)H , (9)

which is clearly a rank-1 matrix. A solution to (9) is obtained, up to a complex
scaling factor, by computing the eigenvector associated with the largest eigen-
value of Cq. By imposing the constraint hq(0) = 1 we avoid the trivial solution
and eliminate the scaling ambiguity.

Recomposition of marginal cumulants
Using (5) with k = Lq + 1, q ∈ [1, Q], we can estimate the marginal cumulants
of source q as follows:

ĉLq+1,q = ĉLq+1 −
q−1∑
i=1

c̄Lq+1,i. (10)

where c̄Lq+1,i are the reconstructed cumulant vectors obtained from (2) using
the previously estimated coefficient vectors ĥi, i∈ [1, q−1]. To achieve this step, the
kurtosis of source q needs to be estimated, which can be done from (8), using the
estimated marginal cumulants and the estimated channel parameters of source q.

5 Simulation Results

In order to evaluate the proposed detection/identification method, we make use
of the two following criteria, which are defined for each signal source q ∈ [1, Q]:

i. The empirical probability of detection, defined as Rq/R, where Rq is the
number of Monte Carlo simulations in which the estimated channel order
matches its true value (L̂q = Lq) and R is the total number of simulations;

ii The normalized mean squared error (NMSE):

NMSE(q) =
1
Rq

Rq∑
r=1

∥∥∥ĥ〈r〉q − hq

∥∥∥2

‖hq‖2
, q ∈ [1, Q] (11)

where ĥ〈r〉q is the estimated channel vector of source q at the simulation r.

We consider a MISO channel with Q = 2 users, L1 = 2, L2 = 1, and one
single receive antenna. It is assumed that channel coefficients do not vary within
the duration of one time-slot (N symbols). The results below were obtained
with the coefficient vectors h1 = [1.0, 1.35− 0.57j, −0.72 + 1.49j]T and h2 =
[1.0, −1.14 + 0.23j]T, which have been randomly generated from a continuous
complex Gaussian distribution. The channel order upper bound is K = 4. Input
signals are QPSK modulated and R = 300 time-slots have been used.

First, with a fixed SNR of 40dB, we used an output sample data length (N)
varying from 103 to 104. In Fig. 1 (left), notice that detection performance for
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Fig. 1. Blind MISO channel order identification performance: empirical probability
of detection (left) and NMSE (right) as a function of the sample data length, with
SNR=40dB (L1 = 3, L2 = 1 and K = 4)
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Fig. 2. SNR × NMSE: blind MISO channel identification with N = 10000 symbols
(L1 = 3, L2 = 1 and K = 4)

both sources is satisfactory as soon as the sample data length is greater than
N = 3000. As expected, and due to consistency of cumulant estimates, the
channel identification error tends to zero as the sample size N tends to infinity,
as shown in Fig. 1 (right).

In fig. 2, we show the results for the same experiment with N = 104 and
SNR varying from 5 to 40dB. Note that the proposed method is quite robust
with respect to additive Gaussian noise at moderate and high SNR levels. For
low SNR levels the channel estimation performance is significantly degraded. In
both fig. 1 and fig. 2 we note a severe performance loss between sources 1 and 2
due to the error propagation caused by the deflation technique.

6 Conclusion

In this paper, we have proposed a channel order detection algorithm based on
HOS hypothesis testing, relying on some properties of the 4th-order output
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cumulants. Moreover, a new blind algorithm has been introduced, combining
order detection and parameter estimation in the context of frequency-selective
MISO-FIR channels. Based on a deflation technique, the proposed algorithm
successively detects the signal sources, determines the order of their individual
transmission channel and estimates the associated channel coefficients, testing
for the presence of shorter and shorter channels. Computer simulation results
have been shown to illustrate the performance of the proposed method.

The case of channels with the same order needs further investigation. Cumu-
lants are also sensitive to the nonlinearity of a stochastic process, and the output
of a linear MISO-FIR filter with i.i.d. inputs cannot be obtained by linear filter-
ing of a single i.i.d. input. Exploiting this property, we can detect the number
of sources when channels may have the same length.
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Abstract. Independent Subspace Analysis (ISA) is an extension of In-
dependent Component Analysis (ICA) that aims to linearly transform
a random vector such as to render groups of its components mutually
independent. A recently proposed fixed-point algorithm is able to locally
perform ISA if the sizes of the subspaces are known, however global con-
vergence is a serious problem as the proposed cost function has additional
local minima. We introduce an extension to this algorithm, based on the
idea that the algorithm converges to a solution, in which subspaces that
are members of the global minimum occur with a higher frequency. We
show that this overcomes the algorithm’s limitations. Moreover, this idea
allows a blind approach, where no a priori knowledge of subspace sizes
is required.

Assuming an independent random vector S that is mixed by an unknown mixing
matrix A, Independent Component Analysis (ICA) denotes the task of recover-
ing S, given only the mixed signals, X = AS. It is known [1] that under mild
assumptions, ICA has a solution that is unique up to the obvious indetermina-
cies of permutation and scaling. Since we are operating blindly i.e. we only see
the mixed data set X and not S, we cannot know if S actually follows the ICA
assumption of statistical independence. ICA only guarantees reconstruction for
data that follows the model, so it can be used to analyze only a subset of all
random variables, and one cannot even tell in advance if a given data set falls
into this subset or not.

Independent Subspace Analysis (ISA) extends the ICA model by allowing
dependencies in the source data set S as introduced by Cardoso and others [2,3].
In the ISA model, S does not consist anymore of one dimensional independent
random variables S1, . . . , SN , but rather of random vectors S1, . . . ,SN such that
the random vectors Si are mutually independent, but dependencies within the
components Si are allowed. A commonly used ad-hoc approach to solve the ISA
problem is to simply apply an ICA algorithm — with the reasoning that it will
find a representation that is as independent as possible — and then to perform

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 259–266, 2009.
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clustering on the resulting sources in order to group components that still show
non-neglectable dependencies [4]. This however depends strongly on the specific
ICA algorithm; for some (JADE, Infomax) there exists strong evidence that such
an approach is feasible [4]. In general however it is unclear if the ICA algorithm
can perform the first task of separating any data set as much as possible.

In this contribution we use clustering in the space of linear subspaces to
address problems with the FastISA approach [5]. At first we apply it to the
independent subspace extraction problem to enhance the stability of the algo-
rithm and to access the reliability of the result. This is done using the results
from multiple runs with different initializations and/or bootstrapping. As a sec-
ond step we apply clustering techniques to the collected subspaces of multiple
runs with different extraction parameters, especially the subspace dimensions.
The resulting centroids of the clustering then exhibit the independent subspace
structure of the data and hence lead to a full independent subspace analysis.

1 Independent Subspace Analysis (ISA)

Generalizing ICA to deal with the case of inherent dependencies within the
sources, a first approach can be described as follows: Given an N -dimensional
signal X, find an invertible N × N matrix A such that AX = (S�1 , . . . ,S

�
k )�

with mutually independent Sj . It is easy to see that this description is not
sufficient, as for any X, choosing A = IN and then k = 1 and S1 = X fulfills
this condition: Here X can be seen as one large signal, independent of the (non-
existing) rest. Clearly this is not a desired result, so additional constraints are
required. The additional requirement of irreducibility of the extracted sources Sk

imposes sufficient restrictions to overcome this drawback: A signal Y is called
irreducible if there is no A such that AY = (S�1 ,S�2 )� with S1 and S2 being
independent. Under the additional assumption of irreducibility of the extracted
sources, ISA indeed has a unique solution up to the obvious indeterminacies,
choice of basis within the subspaces and order of the subspaces [6].

1.1 The FastISA Algorithm

The idea of the FastISA algorithm as introduced by Köster and Hyvärinen [5] can
be described as searching for linear subspaces of Rn such that the norms of the
projections of the mixed signals onto these subspaces are stochastically indepen-
dent. Given an N -dimensional mixed signal X and known subspace dimensions
N1, . . . , Nl (where

∑
j Nj = N), FastISA searches for matrices wj ∈ RN×Nj ,

(j = 1, . . . , l) such that the norms of the projections uj := ‖w�j X‖2 are inde-
pendent. The algorithm estimates the demixing matrix W = (w1, . . . ,wl)

� by
blockwise updates of its possibly multidimensional rows w�i using the update
step

wnew
j = E{X(w�

j X)
�

g(‖w�
j X‖2

2)} − E{g(‖w�
j X‖2

2) + 2(w�
j X)2g′(‖w�

j X‖2
2)}wj

where g(.) and g′(.) are the first and second derivatives of a nonlinear ‘score’
function G(.). For our simulations we chose G(x) =

√
x+ γ where γ is a small,
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arbitrary constant to aid with stability, and it was chosen to be 0.1. Assuming
whitened sources and recordings, which does not lose any generality in offline ISA
algorithms, the demixing matrix is known to be orthonormal, so W is orthonor-
malized after each update step in the algorithm. The algorithm terminates if the
change ‖WnewW�‖ falls below a threshold. Here ‖.‖ denotes the anti-blockwise
Frobenius norm, that is the sum of the squares of only the values not on the
block diagonal. It is known [5] that this algorithm locally converges against a
demixing matrix W, so FastISA can be used exactly this way if and only if one
already has a good estimate of an actual solution.

1.2 Using Grassmannian Clustering for Global Search and
Independent Subspace Extraction

The FastISA cost function is prone to local minima, so it alone cannot be used to
solve the ISA problem. To overcome these limitations, we propose a two-level ap-
proach. The first step consists of running FastISA multiple times with different
initial conditions. We keep only those FastISA outputs (candidate demixings)
where the algorithm terminated by reaching a fixed point. The algorithm will
only sometimes converge to the global minimum of the cost function, but will
converge to local minima otherwise. The second step therefore consists of choos-
ing which of the reconstructions represent valid reconstructions. We perform
clustering on the linear subspaces defined by the rows of the estimated demixing
matrices. We here observe that among the set of candidate demixings those that
are real demixings form a rather dense cluster, while the other suggestions are
somewhat scattered.

In toy data experiments we found that for typical parameters (total dimension
≤ 10, number of samples ≤ 1000) the correct reconstruction is found in only very
few cases (≤ 5%), see figure 1(a). Hence traditional outlier detection algorithms
are not very effective since the majority of results are in fact outliers, but we
can exploit the fact that the correct cluster is far more densely packed than
the rest of the subspaces. To achieve this we calculate the distances of each
subspace to all others and select those subspaces having a maximal variance in
those distances. This technique yields very good results, see figure 1(b).

We only get good clustering if our choice of a subspace dimension was valid,
i.e. if it can be written as a sum of some of the Nj . If this is not the case, that is,
if there is no k-dimensional data subset in our original signals, then essentially
all candidate demixings are equally incorrect, and we find that we are unable
to perform the clustering as mentioned above. This can be used to estimate
dimensionality and can effectively be detected in the variance of the resulting
cluster, see figure 2.

One approach for Independent Subspace Analysis is the common deflationary
algorithm from projection pursuit, but now using Independent Subspace Extrac-
tion as basis. Additionally, the FastISA algorithm can easily be extended to not
only decompose the data set into two subspaces of given size, but into an arbi-
trary number of subspaces, as long as their total dimension matches the source
dimensionality, see figure 3(b) for the result of such runs.
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Input: X data matrix of dimension d with n samples
Output: set S of subspaces

collect:
i ← �d/2�
repeat

use FastISA to extract subspaces s1, s2 of dimension i and d − i1

add s1, s2 to S2

run collect on Ps2X to get a set of subspaces T (Ps2 is the projection onto3

the subspace s2)
add P−1

s2 s (canonical embedding) to S for all s in T4

i ← i − 15
until i = 0 ;

Algorithm 1. Collect candidate subspaces

All these algorithms suffer from the very frequent local minima in the FastISA
algorithm. Hence we propose a completely different independent subspace anal-
ysis method based on the FastISA algorithm. At first we recursively collect a big
number of candidate subspaces using algorithm 1 and then use clustering (here
k-means) on this set. The resulting cluster centroids then will be the sought after
independent subspaces. For results of this algorithm see figure 4.

1.3 Metric and Clustering in ISA Subspaces

For clustering we need a notion of similarity between subspaces. The standard
approach is to define a metric. The subspaces resulting from an ISA analysis
are best viewed as elements of the total Grassmannian space

⋃Gi(Rn) = G(Rn)
where Gi(S) = {s subspace S | dim(s) = i} are the subspaces of dimension i.

The usual metric [7] on the total Grassmannian space is the one induced by
the Frobenius norm of the linear projections onto the subspaces:

d(x,y) := ‖xx� − yy�‖F =
√
< xx�,xx� − yy� > − < yy�,xx� − yy� >

where x and y are represented by orthogonal bases — note that orthogonal base
transformation does not change the right hand side. ‖P‖F denotes the Frobenius
norm and < P,Q > the scalar product induced by the Frobenius norm, i.e. the
standard scalar product. This metric has the property that subspaces of different
dimension have at least distance 1 even if they are contained in each other. For
ISA purposes this is not desired and we use a corrected ‘metric’

dc(x,y) := (< xx�,xx� − yy� >< yy�,xx� − yy� >)
1
4

which is equal to 0 if and only if one of the parameters is a subspace of the
other. It is not a metric anymore because it satisfies neither positive-definiteness
nor the triangle-equation on G. However it is easily seen that on every Gi both
metrics coincide.

The k-means algorithm is a iterated 2 step minimization of the quadratic
quantisation error by replacing all the elements of a cluster by its associated
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(b) FastISA with one-cluster correction.

Fig. 1. Comparison of standard FastISA and the one-cluster extension on a 5 dimen-
sional data set with 2 independent signals of dimension 2 and 3. The comparison is
done with varying levels of additional white noise between no noise and noise with
SNR = 1.34. The performance is measured by the anti-blockwise Frobenius norm and
the box plot shows the statistics over 80 runs.

cluster centroid. In the first step the clusters are selected by searching for the
closest centroid and in the second step the centroids are updated based on the
current cluster associations. For the calculation of centroids we have to solve an
optimization problem of the form: f(y) =

∑
x d(x,y)2. This optimization prob-

lem is solved by the eigenvectors of
∑

x xx� [8, 9]. For the corrected metric the
situation is more complicated and we have to resort to a gradient descent ap-
proach. For fc(y) =

∑
x dc(x,y)2 we can calculate ∇fc(y) =

∑
x dc(x,y)−2(4 <

xx�,xx� − yy� > −2‖xx� − yy�‖Fxx�)y. Since both metrics are related, we
can use the eigenvector solution as a starting point for the gradient descent. Us-
ing simulations we found that the corrections for the centroid are quite small and
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Fig. 2. The subspace dimension detection capability of the one-cluster algorithm is
illustrated on 9 and 11 dimensional data sets with 1000 samples. Each test is run 10
times. Note the minima at all combinations of input subspace dimensions 2,4,5,6 =
2 + 4,7 = 2 + 5,9 = 4 + 5 in the second example.
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Fig. 3. The deflationary and the multi-subspace algorithm are applied to different data
sets with 1000 samples each (the input subspace dimensions are indicated at the x-
axis). The multi-subspace algorithm was run with the one-cluster outlier removal on
100 simple runs. The experiment is repeated 20 times and the box plot shows the
statistics of the runs.
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(b) The algorithm extracted subspaces of
dimension 3,3,3,2 and 1.

Fig. 4. Independent subspace analysis of a 15 dimensional data set with 1000 samples
containing 1, 2, 3, 4 and 5 dimensional independent subspaces. The result from 2 differ-
ent runs are shown. The anti-blockwise Frobenius norms are 0.51 and 1.00 respectively.
As comparison: The anti-blockwise Frobenius norm of a JADE run using the mixing
matrix to find the correct permutation is 0.67. The graphic shows the absolute value
of WA where W is the estimated demixing matrix. The input dimensions are at the
x-axis and the output dimensions are at the y-axis.

can often be neglected (especially in the starting steps of the k-means clustering
algorithm).

Clustering in the full Grassmannian space also exhibits the problem of esti-
mating the dimensions of the centroid subspaces. This is a typical dimension
estimation problem and we use a Minimum Description Length (MDL) estima-
tor [10,11] as in [12] to select an appropriate dimension. For this we consider the
sum of the associated projectors Vj =

∑
x xx� for x ∈ Sj of each subset in one
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cluster Sj ⊂ G and view this as a covariance matrix of a random vector where
the number of samples matches the cluster size. The MDL value is calculated as:

p = argmin
p=1,...,m

− ln

m∏
j=p+1

δ
1

m−p

j

m∑
j=p+1

δj

m−p

+

(
pm − p+p2

2
+ 1

(m − p)n

)⎛⎝ 1
2

+ ln γ − 1
2p

p∑
j=1

ln

√
2δ2

j

n

⎞⎠
where δj are the singular values of the covariance matrix and γ a parameter
relating the variances to coding lengths (typical values are around 32 which
corresponds with a bit depth of the input data of around 50).

2 Simulations

All the toy data in the simulations was constructed similarly as in the works
of Köster [5]. At first we evaluate the stability of the FastISA algorithm on a
2-independent subspace problem, i.e. a data set containing 2 independent sub-
spaces. We use generated data with different levels of additional noise and mul-
tiple runs to access the gain in stability we get from clustering in independent
subspace extraction. Figure 1(a) shows the result of the simple FastISA algo-
rithm and figure 1(b) the results using a one cluster/outlier detection enhanced
algorithm described in section 1.2. One can see that the one-cluster algorithm
greatly enhances the stability: For example the anti-blockwise Frobenius norm
is below 0.1 even for SNR > 4 for the enhanced version whereas the original al-
gorithm does not exceeds norm 2 on average. This makes the algorithm a viable
alternative for real world examples.

In the next experiment we try to detect the dimensionality of the contained
subspaces. Each test is run 10 times and the cluster variance of the one-cluster
is analyzed, see figure 2 for the result. The minima of the cluster variances are
clearly at the input subspace dimensions and at non-irreducible combinations
thereof.

In a further experiment we compare the deflationary approach to the multi-
subspace extension of the FastISA algorithm with one-cluster outlier detection.
In figure 3 both algorithms are applied to data sets with varying subspace struc-
ture. It is clear that both suffer from the poor convergence properties of the
FastISA algorithm in these cases, but the deflationary algorithm outperforms
the multi-subspace version. The result is that only in one case (input subspace
dimensions 2,3,2) the deflationary approach can extract the correct subspaces
on average. In all other cases only a few runs can identify the input subspaces.

Finally, we illustrate the effectiveness of the collect and cluster algorithm on a
15 dimensional data set. The results of two runs are shown in figure 4. The input
subspaces are clearly identified but due to the incorrect dimension estimation of
the cluster centroids not all input dimensions are recovered.

3 Outlook

We evaluated different techniques to enhance the FastISA algorithm for ISA
problems by proposing to use clustering techniques in Grassmannian space.
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A crucial part of the clustering in total Grassmannian space is the correct
selection of the dimension of the centroid. Especially with the corrected met-
ric this stems from the inclusion property of the metric which often results in
overestimating the subspace dimension. Enhancing this would result in a more
reliable independent subspace analysis. In the future we want to investigate the
feasibility of a divide and conquer approach as described above. We also want
to employ other clustering techniques to the collected subspace set to reduce
the number of parameters of the independent subspace analysis. Here we want
to look especially into hierarchical clustering and softclustering to eliminate the
need for prior knowledge of the number of subspaces. Softclustering would also
mitigate the centroid dimensionality problem mentioned above.

All algorithms are available as MATLAB/OCTAVE code at http://www-
aglang.uni-regensburg.de

In future we plan to evaluate and use the algorithm on real world data from
functional MRI data containing blocks of dependent multidimensional sources.
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Teixeira, A.R., Puntonet, C.G., Saéz, J.M.G.: Denoising using local projective sub-
space methods. Neurocomputing (2006)



On IIR Filters and Convergence Acceleration
for Convolutive Blind Source Separation

Diego B. Haddad1, Mariane R. Petraglia2, and Paulo B. Batalheiro3

1 Federal Center for Technological Education, CEFET-RJ
CP 26041-271 , Nova Iguaçu, Brazil
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Abstract. It is desirable that online configurations of convolutive source
separation algorithms present fast convergence. In this paper, we propose
two heuristic forms of increasing the convergence speed of a source sepa-
ration algorithm based on second-order statistics. The first approach con-
sists of using time-varying learning factors, while the second approach
employs a recursive estimation of the short-time autocorrelation func-
tions of the outputs. We also verify, through experiments, whether the
cost function considered in the derivation of the algorithm yields, in gen-
eral, good selection of IIR filters to perform the separation.

1 Introduction

A MIMO (multiple-input multiple-output) linear model accurately approximates
several transfer functions encountered in practice. Among them are the acoustics
transfer-function of a room and the existing multiple paths in telecommunica-
tions systems. Considering a MIMO system with P inputs, we can decompose
each of its outputs in P components, each of them originating from one of the
inputs. This fact allows us to describe each output as a mixture of its inputs. To
estimate the inputs of the MIMO system (or mixture system) from its outputs
only (without any knowledge about the spectra of the sources nor the mixing
system) is referred in the literature as the problem of Blind Source Separation
(BSS) or cocktail party. This expression refers to the human ability of main-
taining a dialog in a party, despite the fact that other conversations are taking
place.

An instantaneous mixture model does not contemplate the presence of differ-
ent delays from the signals to the sensors, nor reverberation or multiple-paths. In
this paper we focus on blind source separation techniques considering the more
general case of convolutive mixtures, called Convolutive Blind Source Separation
(CBSS). A robust technique for the CBSS problem was presented in [1], and is
called Generalized Blind Source Separation (GBSS) algorithm.

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 267–273, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Most online applications of the GBSS algorithm require fast convergence.
However, the convergence rate obtained with such approach is not good enough
in many cases. In this paper we propose two techniques with the objective of
reducing this problem: i) use of time-varying and distinct learning factors for
the different coefficients and ii) recursive estimation of the required statistics,
reusing the data. Experiments with IIR separation filters are also included.

2 GBSS Method

The GBSS method employs a linear MIMO separation system composed of FIR
filters which, when applied to the mixtures, present, as outputs, estimations of
the sources. The coefficients of the separation filters are obtained through the
minimization of a cost function. Considering that there are P sources to be
separated from the same number P of sensor signals, the nth sample of the qth
output can be expressed as

yq(n) =
P∑
p=1

L−1∑
k=0

wpq(k)xp(n− k), (1)

where L is the length of the filters (wpq) of the separation system. Define the
N × 2L matrix

Wpq =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wpq(0) 0 · · · 0

wpq(1) wpq(0)
. . . · · ·

... wpq(1)
. . . 0

wpq(L− 1)
...

. . . wpq(0)

0 wpq(L− 1)
. . . wpq(1)

...
...

. . .
...

0 · · · 0 wpq(L − 1)
0 · · · 0 0
... · · · ...

...
0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

with N being the data block size. Let Yq(m) be the matrix that contains the
samples of the mth block of the qth estimated output, given by

Yq(m) =

⎡⎢⎢⎢⎢⎣
yq(mL) · · · yq(mL−D + 1)

yq(mL+ 1)
. . . yq(mL−D + 2)

...
. . .

...
yq(mL+N − 1) · · · yq(mL−D +N)

⎤⎥⎥⎥⎥⎦ , (3)

where D is the number of blocks which are used in the correlation estimates,
and the matrix Xp(m) of dimension L × 2L be formed by samples of the pth
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mixture, such that Yq(m) =
∑P

p=1 Xp(m)Wpq. Combining the input and out-
put matrices of all channels, we get X(m) = [X1(m) · · · XP (m)] and Y(m) =
[Y1(m) · · · YP (m)]. Defining the matrix W with the coefficients of all separa-
tion filters as

W =

⎡⎢⎣W11 · · · W1P
...

. . .
...

WP1 · · ·WPP

⎤⎥⎦ , (4)

we can express the output signals in the compact form:

Y(m) = X(m)W. (5)

The cost function of the online GBSS method is given by

'(m) = log
{
det

[
bdiag

(
YT (m)Y(m)

)]}
− log

[
det

(
YT (m)Y(m)

)]
, (6)

where (·)T denotes the transpose operation, and bdiag(A) is the operator that
zeroes the sub-matrices out of the main diagonal of the matrix A.

For simplicity, let us suppose P = 2. The natural gradient for the above cost
function is given by (omitting the index m for easing the notation)

∇GN
W = 2

[
W12Ry2y1

R−1
y1y1

W11Ry1y2
R−1

y2y2

W22Ry2y1
R−1

y1y1
W21Ry1y2

R−1
y2y2

]
, (7)

where Rypyq
= YT

p (m)Yq(m). The simplified GBSS algorithm (of the NLMS-
type) is obtained substituting R−1

ypyp
by the scalar 1/

[
(yp)Typ

]
, where yp is the

first column of Yq(m).
The update equation, employing a learning factor μ, is given by

W(m) = W(m− 1)− μ∇GN
W . (8)

The matrix W is Toeplitz (see Eq. (2)), and hence presents redundancies. There-
fore, only the first L elements of the first column of the the sub-matrices Wpq

are updated.

3 Approach 1: Varying Learning Factors

The GBSS method employs a fixed learning factor μ, that is identical for all
parameters wpq(k). Since hundreds, or even thousands, of coefficients are usually
required, it is expected that the use of distinct learning factors for the different
parameters and of some heuristics for varying such factors, along the adaptation
process, could accelerate the convergence of the algorithm [2], [3].

Our first proposal (VM-I) was to verify the change in each parameter wpq(k)
between two consecutive iterations. If such change at a given iteration has the
same sign of the previous iteration, then the learning factor of the corresponding
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coefficient, denoted by μipq(k) for the ith iteration, was multiplied by a constant
α slightly larger than 1. Otherwise, μipq(k) was divided by α.

In our simulations, we verified that the VM-I algorithm presented a conver-
gence rate larger than the conventional algorithm. However, after convergence,
we verified a degradation in the algorithm performance, since some of the learn-
ing factors became very large, causing instability.

In order to avoid such instability problem, we limited the values of the learning
factors to a constant Cμ0, where C is an arbitrary positive constant and μ0
is the initial learning factor value. This modification generated the algorithm
referred to as VM-II. In our simulations, the use of small values for C resulted
in more regular convergence, even though the convergence speed was slower.
This new algorithm also presented a degraded convergence (not as bad as the
VM-I algorithm) when compared to the original algorithm. Such degradation is
a result of the use of a larger learning factor, which tends to increase the final
signal-to-interference ratio (SIR).

Based on the above observations, we propose a modification in the algorithm
by introducing a variable limit for μipq(k). Such limit assumes larger values in the
beginning of the adaptation process, to guarantee fast convergence, and decreases
after some time, to avoid performance degradation due to use of a large learning
factor. We denote the resulting algorithm as VM-III. In this algorithm, the
variable limit to the learning factor is: C(i) = 1 + (C0 − 1)e−λ(i−1), where i is
the iteration number and λ is a new parameter that controls the rate with which
each C(i) tends to 1. We observe that C(1) = C0 and that limi→∞C(i) = 1,
that is, after increasing the initial convergence, the algorithm tends to behave
like the conventional GBSS algorithm.

4 Approach 2: Reusing the Data

In the online implementation of the above BSS algorithms, the matrices Rypyp

are obtained at each iteration from the actual data block only, corresponding to
noisy estimates of the autocorrelation matrices. A form of introducing informa-
tion from other data blocks, without increasing significantly the computational
complexity, is to update such estimates in a recursive manner, such as

R(new)
ypyp

= γR(old)
ypyp

+ (1− γ)R(current)
ypyp

, (9)

where γ, known as forgetting factor, is a positive constant smaller than (but close
to) 1. We denote the algorithm that incorporates such recursion as GBSSrec.
Since in such algorithm the data from previous blocks is reused through the
above recursion, the resulting convergence rate is improved with respect to that
of the conventional GBSS method.

5 Selection of IIR Filters

FIR filters are usually employed in the separation techniques of CBSS, due to
their well-behaved characteristics. In this paper we exam the possibility of em-
ploying the cost function of Eq. (6) to select IIR filters for the separation system.
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The calculation of the gradient for IIR filters is a complex procedure, but it might
be worth if the minima of such function correspond to maxima of the SIR.

We propose to evaluate such possibility by varying the coefficients of an IIR
filter, obtaining the corresponding output signal and the SIR. Comparing the
SIR and the cost function, we can verify if the minimization of the cost function
leads us to the correct selection of IIR filters for the separation problem. The
results of such evaluation will be shown in Subsection 6.3.

6 Simulation Results

In all experiments, speech signals (of 10 s up to 20 s of duration) sampled at
Fs = 8 kHz were used.

6.1 Experiment 1

In the online implementations, the simplified GBSS algorithm presented better
results and tended to be more robust than the non-simplified algorithm. There-
fore, we employed the learning factor proposed in VM-III in the simplified algo-
rithm. Using the first 512 samples of the transfer functions of a simulated room
(obtained from [5] and resampled at 8 kHz) at two different source locations,
we generated two mixtures from the signals of two sources. A comparison of the
SIR evolutions of the conventional and proposed simplified GBSS algorithms is
presented in Fig. 1. A significant improvement in the performance of the VM-III
algorithm when compared to the simplified GBSS can be noticed. This behavior
was observed with large variations in the parameters μ, C0, α and λ.

6.2 Experiment 2

Choosing four different combinations of the sources positions (with the transfer
functions of [5], resampled at 8 kHz and truncated to 512 coefficients) and using
γ = 0.8 for the GBSSrec, we obtained the SIR evolutions of the original and
proposed algorithm, shown in Fig. 2. We verified in all four different experiments
that the GBSSrec algorithm presented better performance than the simplified
GBSS algorithm.

6.3 Experiment 3

In this experiment, we used a mixture system with FIR filters of length U = 3
and considered FIR and IIR separation filters. Separation FIR filters with L = 2
coefficients were optimized by the GBSS algorithm, resulting in a SIR equal to
16.27 dB. First-order IIR separation filters, with transfer functions Wpq(z) =
bpq/(1+apqz−1), were also designed. The optimal values for apq and for bpq were
searched in the intervals [−0.99, 0.99] and [−3, 3], respectively. In our simulations
we verified that, in general, the IIR system obtained with the cost function of
Eq. (6) is not optimum. The most frequent problems found in the filters search
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Fig. 1. Average SIR (in dB) of the simplified GBSS and of the proposed VM-III
algorithm for α = 1.25, μ = 5 × 10−4, C0 = 10, L = 512 and λ = 0.005
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Fig. 2. Average SIR (in dB) for the simplified GBSS and proposed GBSSrec for γ = 0.8
and μ = 10−4 and four different mixtures

were: i) “local” minima of the cost function did not correspond to maxima of
the SIR; ii) “local” maxima of the SIR corresponded to global minima of the
cost function; iii) “local” minima of the cost function corresponded to “local”
maxima of the SIR. Figure 3 illustrates the occurrence of problem (iii) during
the optimization of the parameters of the filter W22.
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Fig. 3. (a) Cost function values for parameters a22 and b22; (b) SIR (in dB) for pa-
rameters a22 and b22

7 Conclusions

In this paper, we proposed two techniques to speed up the convergence of a blind
source separation algorithm. The first technique employed variable learning fac-
tor heuristics to improve the initial convergence rate, resulting in the VM-III
algorithm. The second technique employed recursive estimations for the short-
time correlations, resulting in the GBSSrec method. The combination of both
techniques seems to be promising for improving the performance of the convolu-
tive blind source separation algorithm proposed in [1]. We also verified, through
simulations, that the cost function employed in this algorithm is not adequate
for the selection of IIR separation filters.
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Abstract. This paper presents a novel technique for separating convo-
lutive mixtures of statistically independent non-Gaussian signals. The
time-domain convolution is transformed into several instantaneous mix-
tures in the frequency-domain. The separation of these mixtures is per-
formed in two steps. First, the instantaneous mixture at the frequency
of reference is solved using JADE and the other mixtures are then sep-
arated using the Mean Square Error (MSE) criterion. We also present a
novel method to select the frequency of reference.

1 Introduction

Blind source separation (BSS) consists of recovering a set of unknown signals
(sources) from mixtures recorded by an array of sensors (observations). The term
blind (or unsupervised) refers to the fact that the sources and the mixing system
are completely unknown [2]. In many real-world applications, the sources are
received at the antennas by multiple paths [8] and the observations, xi(n), i =
1, 2, · · · ,M , are expressed as convolutive mixtures of the sources si(n), i =
1, 2, · · · , N . We have

x(n) =
∞∑

l=−∞
A(l)s(n− l) (1)

where A(l) is an unknown M ×N matrix representing the mixing system whose
elements, aij(l), model the propagation conditions from the j-th source to the
i-th observation. One way of solving the convolutive problem consists in trans-
forming the convolutive mixture in several instantaneous mixtures by using the
Fourier transform given by

xi[ωk, n] =
L−1∑
t=0

xi(n(L− 1) + t)e−jωkt, n = 0, 1, ... (2)

� This work has been supported by Xunta de Galicia, Ministerio de Educación y
Ciencia of Spain and FEDER funds of the European Union under grants number
PGIDT06TIC10501PR and TEC2007-68020-C04-01.
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where ωk = 2πk/L, k = 0, 1, ..., L − 1 denotes the frequency and L denotes
the number of points in the discrete Fourier transform (DFT). Using the DFT
properties, the frequency-domain observation vector at each frequency is an in-
stantaneous mixture of the frequency-domain sources given by

x[ωk, n] = A[ωk]s[ωk, n] (3)

where A[ωk] represents the mixing coefficients in the frequency domain. As a
result, we can recover the frequency-domain sources by using a MIMO system
with output

y[ωk, n] = WH [ωk]x[ωk, n] (4)

where W[ωk] is the M ×N coefficients matrix which is typically obtained using
BSS algorithms proposed in the case of instantaneous mixtures. Notice that if the
separating system at each frequency is computed independently, the frequency-
domain sources can be recovered in a different order (permutation indetermi-
nacy) and with different gain (gain indeterminacy). When this occurs, the sources
cannot be recovered using the inverse DFT (IDFT).

The classical scheme for solving permutation/gain indeterminacy consists of
including additional stages in the separating system. For a review of this ap-
proaches the reader is referred to [8]. Capdevielle et al. [3] have proposed a
method to avoid the permutation indeterminacy by recovering the continuity
of the frequency spectra. Due to the independence of the sources, the cross-
correlation between the frequency-domain outputs corresponding to different
sources is zero and, therefore, the frequency-domain outputs corresponding to
the same source can be determined by maximizing the cross-correlation between
them. This idea has also been used in [7,10]. The disadvantage of this method
is its high computational cost since the Fourier transform is calculated with a
window shift of one point. In addition, it can be only used for temporally-colored
sources. Computationally less expensive methods for solving the permutation in-
determinacy have been proposed in [6,9] for temporally-white sources. The idea
is also to cluster the outputs taking into account the statistical dependence be-
tween frequency-domain outputs corresponding to the same source but the DFT
is applied to non-overlapped windows: Mejuto et al. [9] have proposed maximiz-
ing 4th-order cross-cumulants while Dapena et al. [6] utilize cross-correlation.

The main contribution of this work is to present in Section 2 a separating system
that does not suffer from permutation/gain indeterminacy. We will show that if
the frequency-domain sources corresponding to the same time-domain source are
correlated, permutation/gain indeterminacy can be avoided by selecting the sep-
arating coefficients in order to minimize the mean squared error (MSE) between
the frequency-domain outputs in adjacent frequencies. Using this strategy, all the
frequency-domain sources are extracted with the same order and gain, and the
sources can be recovered using the frequency-to-time transform. Section 3 focuses
on the problem of selecting an adequate frequency of reference. Section 4 presents
some simulation results and Section 5 contains the conclusions.
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2 The FD-BSS Cascade System

In this section, we propose a novel Frequency-Domain Blind Source Separation
(FD-BSS) system that does not suffer from permutation/gain indeterminacy. We
assume the following conditions:

C1. The convolutive mixture can be transformed into several instantaneous mix-
tures using the DFT given in equation (2).

C2. The cross-correlation between the sources in different frequencies (ωk and
ωr) satisfies

E[si[ωk, n]s∗i [ωr, n]] �= 0 (5)
E[si[ωk, n]s∗j [ωr, n]] = 0 if i �= j (6)

where the cross-correlation is estimated by sample averaging over the R
samples

E[si[ωk, n]s∗j [ωr, n]] =
1
R

R−1∑
n=0

si[ωk, n]s∗j [ωr, n] (7)

C3. The mixing matrix A[ω] in all the frequencies is invertible.

The spectral correlation C2 is crucial to avoid the permutation/amplitude am-
biguities. In section 4 we will show that signals typically used in digital commu-
nication satisfied this condition.

Figure 1 shows the proposed separating system. Each particular observation,
xj(t), j = 1, ...,M , is split into non-overlapped segments of L points and the L-
DFT is computed over them. The next step consists in computing the separating
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Fig. 1. Scheme of the FD-BSS Cascade System
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coefficients at one specific frequency, denoted by ωr, by using a given unsuper-
vised algorithm whose output, y[ωr, n], will be used in the adjacent frequencies
r − 1 and r + 1. The separating matrices in these frequencies are computed by
using the MSE criterion defined by

W[ωk] = arg min
W[ωk]

J(W[ωk])

= arg min
W[ωk]

E[|y[ωk, n]−Δk y[ωr, n]|2], k ∈ {r − 1, r + 1} (8)

where Δk is an N ×N diagonal matrix that must be determined by taking into
account the statistics of the sources. Notice that condition C2 guarantees that
the frequency-domain sources corresponding to the same time-domain sources
are correlated and, therefore, the criterion (8) can be used to measure the de-
pendence between y[ωk, n] and y[ωr, n].

The solution to the MSE criterion (8) is given by

Wo[ωk] = Δ∗
k Rx

−1[ωk, ωk]Rxy[ωk, ωr] (9)

where Rx[ωk, ωk] = E[x[ωk, n]xH [ωk, n]]
Rxy[ωk, ωr] = E[x[ωk, n]yH [ωr, n]] (10)

If Rx[ωk, ωk] is not full rank, a pseudo-inverse is computed instead of the inverse
in equation (9).

The outputs of these frequency y[ωk, n] = WH
o [ωk]x[ωk, n] are now used in

the adjacent frequencies. The last stage of our separating system consists of
computing the IDFT of each output in all the frequencies, yi[ωk, n], k = 0, ..., L−
1, to obtain the estimation of the sources in the time domain.

2.1 The Matrix Δk

A crucial task in this approach is to determine the matrix Δk in order to en-
sure the same permutation and gain in all the frequencies. Using x[ωk, n] =
A[ωk]s[ωk, n] and y[ωr , n] = G[ωr]s[ωr, n], the matrix Rxy[ωk, ωr] can be writ-
ten as

Rxy[ωk, ωr] = A[ωk]Rs[ωk, ωr]GH [ωr] (11)

where Rs[ωk, ωr] = E[s[ωk, n]sH [ωr, n]]. By a similar reasoning, the other term
in equation (10) can be written as follows

Rx[ωk, ωk] = A[ωk]Rs[ωk, ωk]AH [ωk] (12)

where Rs[ωk, ωk] = E[s[ωk]sH [ωk]]. Substituting (11) and (12) in (9), the sepa-
rating matrix takes the form

Wo[ωk] = Δ∗
k (A[ωk]Rs[ωk, ωk]AH [ωk])−1(A[ωk]Rs[ωk, ωk]GH [ωk])

= Δ∗
kA

−H [ωk]Rs
−1[ωk, ωk]Rs[ωk, ωr]GH [ωr] (13)
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where A−H [ωk] = (AH [ωk])−1. Using this equation we can express the gain
matrix at the k-th frequency as follows

G[ωk] = WH
o [ωk]A[ωk]

= Δk G[ωr]Rs
H [ωk, ωr]Rs

−H [ωk, ωk] = ΔkG[ωr]P[ωk, ωr] (14)

where Rs
−H [ωk, ωk]=(Rs[ωk, ωk]H)−1 and P[ωk, ωr]=Rs

H [ωk, ωr]Rs
−H [ωk, ωk].

In particular, when the condition C2 is verified, Rs[ωk, ωr] and Rs[ωk, ωk] are di-
agonal matrices with entries E[si[ωk, n]s∗i [ωr, n]] and E[|si[ωk, n]|2], respectively.
This implies that P[ωk, ωr] is a diagonal matrix

P[ωk, ωr] =

⎡⎢⎢⎢⎢⎢⎣
E[s∗1 [ωk,n]s1[ωr,n]]

E[|s1[ωk,n]|2] 0 ... 0

0 E[s∗2 [ωk,n]s2[ωr,n]]
E[|s2[ωk,n]|2] ... 0

... ...
...

0 0 ...
E[s∗N [ωk,n]sN [ωr,n]]

E[|sN [ωk,n]|2]

⎤⎥⎥⎥⎥⎥⎦ (15)

In order to obtain G[ωk] = G[ωr] in expression (14), the matrix Δk must be
computed by inverting the matrix P[ωk, ωr] given in equation (15).

3 The Reference Frequency

A new question arises when the convolutive problem is transformed into instan-
taneous mixtures: not all instantaneous separation algorithms are designed for
separating mixtures of complex-valued sources and the convergence of some algo-
rithms, like Complex FastICA [1], depend on the selection of some non-linearity
functions and step-size parameters.

In order to separate the sources at the reference frequency, we have selected the
blind identification algorithm by Joint Approximate Diagonalization of Eigen-
matrices (JADE) proposed in [4] which works with complex-valued signals and
whose convergence does not depend on non-linearities. The JADE algorithm can
be described by the following steps1:

Step 1. Compute the whitening matrix U[ωr] from the sample covariance
Rx[ωr, ωr] and obtain the whitened process z[ωr] = U[ωr]x[ωr].

Step 2. Compute the 4th-order cumulants matrices
Ck,l = cum(z[ωr], zH [ωr], zk[ωr], z∗l [ωr]), k, l = 1, ...,M of z[ωr] with
dimension M ×M .

Step 3. Compute the M2×M2 matrix B = [ĉ1,1, ĉ1,2, ...., ĉ1,M , ..., ĉM,M ] where
ĉi,j = [(ci,j1 )T , (ci,j2 )T , ..., (ci,jM )T ]T is an M2 × 1 vector formed by the
columns of Ci,j (ci,jk denotes the k-th column of Ci,j).

Step 4. Perform the eigendecomposition of B and select the N more significant
eigenpairs {λi,mi}, i = 1, ..., N . From these eigenpairs, compute the
M ×M matrices Mi = λi[mi(1:M) mi(M+1:2M)....], i = 1, ..., N .

1 A Matlab implementation of JADE is available on www.tsi.enst.fr/˜
cardoso/guidesepsou.html
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Step 5. Diagonalize jointly the set of matrices Mi, i = 1, ..., N to obtain the
matrix W[ωr]. This step is implemented by extending the single-matrix
Jacobi technique to several matrices as described in [5].

Step 6. Estimate the mixing matrix A[ωr] as Â[ωr] = UH [ωr]W[ωr] and recover
the frequency-domain sources as y[ωr, n] = Â−1[ωr]x[ωr, n].

JADE provides an adequate separation in most case but we have observed that
the degree of separation depends on the eigenvalue spread of the matrix diag-
onalized in Step 5. We propose the following procedure to select the reference
frequency:

– Set as reference frequency r = 0.
Step 1. Compute JADE for the frequency ωr and evaluate the eigenvalue spread

of the matrix diagonalized in Step 5. We define the eigenvalue spread as
follows

ei =
∑
i=1

|λi − λi+1| (16)

where λi, i=1, 2.. denote the eigenvalues of this matrix, with λi>λi+1. The
case ofN matrices to diagonalize, we take the averaged eigenvalue spread.

Step 2. If the eigenvalue spread is greater than a threshold β, use this frequency
as reference. If this not the case, set r = r + 1 and go to Step 1.

If the eigenvalue spread is less than β for all the frequencies, we set r to the
frequency with the highest eigenvalue spread. Note that this procedure increases
the computational load because JADE is used in several frequencies. As shown
in Section 4, however, this scheme significantly improves the performance of the
FD-BSS Cascade system.

4 Simulation Results

In this section we will illustrate the behavior of the proposed separating sys-
tem. We have used complex-valued temporally-white sources (4-QAM) divided in
blocks ofK = 11 symbols. The number of blocks has been 5,000. The mixing sys-
tem is modeled as FIR filters of P = 6 taps with randomly generated coefficients.
The L-DFT has been applied to non-overlapped windows of L = K+P −1 = 16
points of the observations.

First, we will determine the matrix Δk that must be used for temporally-
white signals. Note that the sources have been transmitted in block of K points
and, therefore, the sources at the k-th frequency have the form

si[ωk, n] =
K−1∑
t=0

si(n(K − 1) + t)e−jωkt = fHk si(n) (17)

where fk = f = [1, ej2πk/L, · · · , ej2πk(K−1)/L]T and si(n) = [si(n), si(n +
1), ..., si(n+K − 1). Using these expressions, it is straightforward to determine
that the matrix Δk must be selected as follows
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Δk =
E[|si[ωk, n]|2]

E[s∗i [ωk, n]si[ωr, n]]
I =

K

fHk fr
I =

K∑K−1
m=0 e

−j2π(r−k)m/L
I (18)

Another interesting question is how to select the parameter β. We have per-
formed 1,000 independent simulations varying the reference frequency from 0
to 15 and we have evaluated the eigenvalue spread (equation (16)) in Step 5 of
JADE and the final error probability. The results are plotted in Figure 2. Note
that a poor performance has been obtained in some cases where the eigenvalue
spread is close to 0.01. For this reason, we have selected β = 0.02.

Now, we will compare the performance obtained using the following strategies:

– The mixtures in all the frequencies are separated by using JADE. In this
case, the permutation/gain ambiguity is not eliminated.

– The mixtures in all the frequencies are separated by using JADE. The per-
mutation indeterminacy is solved using the method proposed in [9] and the
gain indeterminacy is solved using the method proposed in [6].

– The mixtures in all the frequencies are separated by using JADE. Both the
permutation and the gain indeterminacies are solved using the approach
proposed in [6].

– FD-BSS Cascade system with r = 0.
– FD-BSS Cascade system selecting the reference frequency using the proce-

dure described in Section 3 with β = 0.02.

Table 1 shows the error probability and the time required to recover 5,000 sym-
bols (measured using Matlab code running in a Centrino Duo Processor at 1.66
GHz). We have averaged the results of 1,000 independent simulations. The low
error probability and computational load of the FD-BSS Cascade system is ap-
parent. Notice that using β = 0.02 the time remains low and the probability
error is considerably reduced.
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Table 1. Comparison between frequency-domain BSS approaches in terms of error
probability and processing time

JADE JADE &
Permutation
[9] & Gain [6]

JADE &
Permutation
[6] & Gain [6]

FD-BSS Cas-
cade (r = 0)

FD-BSS
Cascade(β =
0.02)

Error probability 0.67 1.40 × 10−3 5.40 × 10−3 2.30 × 10−3 8.45 × 10−7

Time (sec.) 1.9440 2.3216 2.1953 0.1950 0.3230

5 Conclusions

In this paper we have presented a simple strategy to separate convolutive mix-
tures of statistically independent sources. We have shown that in applications
where there is statistical dependence between the frequency-domain sources in
different frequencies, it is possible to solve the permutation/gain indeterminacy
by using a simple MSE-based unsupervised strategy. The basic idea is to separate
the instantaneous mixture at a specific frequency using a BSS algorithm and use
these signals to extract the frequency-domain sources in the other frequencies.
Finally, the sources are recovered by applying the IDFT to the frequency-domain
outputs.
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Abstract. An often used approach for separating convolutive mixtures
is the transformation to the time-frequency domain where an instanta-
neous ICA algorithm can be applied for each frequency separately. This
approach leads to the so called permutation and scaling ambiguity. While
different methods for the permutation problem have been widely stud-
ied, the solution for the scaling problem is usually based on the minimal
distortion principle. We propose an alternative approach that shapes the
unmixing filters to have an exponential decay which mimics the form of
room impulse responses. These new filters still add some reverberation
to the restored signals, but the audible distortions are clearly reduced.
Additionally the length of the unmixing filters is reduced, so these filters
will suffer less from circular-convolution effects that are inherent to un-
mixing approaches based on bin-wise ICA followed by permutation and
scaling correction. The results for the new algorithm will be shown on a
real-world example.

1 Introduction

The blind source separation (BSS) problem has been widely studied for the
instantaneous mixing case and several efficient algorithms exist [1,2,3]. However,
in a real-world scenario in an echoic environment, the situation becomes more
difficult, because the signals arrive several times with different time lags, and
the mixing process becomes convolutive. Although some time-domain methods
for solving the convolutive mixing problem exist [4,5], the usual approach is
to transform the signals to the time-frequency domain, where the convolution
becomes a multiplication [6] and each frequency bin can be separated using an
instantaneous method. This simplification has a major disadvantage though.
As every separated bin can be arbitrarily permuted and scaled, a correction is
needed. When the permutation is not correctly solved the separation of the entire
signals fails. A variety of different approaches has been proposed to solve this
problem utilizing either the time structure of the signals [7,8,9] or the properties
of the unmixing matrices [10,11,12]. When the scaling is not corrected, a filtered
version of the signals is recovered. In [13,14] the authors proposed a postfilter
method that aims to recover the signals as they have been recorded at the
microphones, accepting the distortions of the mixing system while not adding
new ones. This concept appears to be quite reasonable, but the desired goal is

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 282–289, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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often not exactly achieved in practice due to circular convolution artifacts that
stem from the bin-wise independent design of the unmixing filters which does not
obey the filter-length constraints known from fast-convolution algorithms. This
problem has been addressed in [15], where the authors applied a smoothing to
the filters in the time domain in order to reduce the circular-convolution effects.
In this paper, we propose a new method for solving the scaling ambiguity

with the aim of shaping the unmixing filters to have an exponential decay. This
mimics the behavior of room impulse responses and reduces the reverberation.
In order to achieve this, we calculate the dependency between the scaling factors
and the impulse responses of the unmixing filterbank and calculate the scaling
factors that shape the desired form.

2 The Framework for Mixing and Blind Unmixing

The instantaneous mixing process of N sources into N observations can be mod-
eled by an N ×N matrix A. With the source vector s(n) = [s1(n), . . . , sN (n)]T

and negligible measurement noise, the observation signals are given by

x(n) = [x1(n), . . . , xN (n)]T = A · s(n). (1)

The separation is again a multiplication with a matrix B:

y(n) = B · x(n) (2)

with y(n) = [y1(n), . . . , yN (n)]T . The only source of information for the esti-
mation of B is the observed process x(n). The separation is successful when B
can be estimated so that BA = DΠ with Π being a permutation matrix and
D being an arbitrary diagonal matrix. These two matrices stand for the two
ambiguities of BSS. The signals may appear in any order and can be arbitrarily
scaled. For the separation we use the well known gradient-based update rule
according to [1].
When dealing with real-world acoustic scenarios it is necessary to consider

the reverberation. The mixing system can be modeled by FIR filters of length
L. Depending on the reverberation time and sampling rate, L can reach several
thousand. The convolutive mixing model reads

x(n) = H(n) ∗ s(n) =
L−1∑
l=0

H(l)s(n− l) (3)

where H(n) is a sequence of N×N matrices containing the impulse responses of
the mixing channels. For the separation we use FIR filters of length M ≥ L− 1
and obtain

y(n) = W(n) ∗ x(n) =
M−1∑
l=0

W(l)x(n− l) (4)

with W(n) containing the unmixing coefficients.
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Using the short-time Fourier transform (STFT), the signals can be trans-
formed to the time-frequency domain, where the convolution approximately be-
comes a multiplication [6]:

Y (ωk, τ) = W (ωk)X(ωk, τ), k = 0, 1, . . . ,K − 1, (5)

with K being the FFT length. The major benefit of this approach is the possibil-
ity to estimate the unmixing matrices for each frequency independently, however,
at the price of possible permutation and scaling in each frequency bin:

Y (ωk, τ) = W (ωk)X(ωk, τ) = D(ωk)Π(ωk)S(ωk, τ) (6)

whereΠ(ω) is a frequency-dependent permutation matrix and D(ω) an arbitrary
diagonal scaling matrix.
The correction of the permutation is essential, because the entire unmixing

process fails if different permutations occur at different frequencies. A number
of approaches has been proposed to solve this problem. [7,8,9,10,11,12].
When the scaling ambiguity is not solved, filtered versions of the sources

are recovered. A widely used approach has been proposed in [13]. The authors
aimed to recover the signals as they were recorded at the microphones accepting
all filtering done by the mixing system. A similar technique has been proposed
in [14] under the paradigm of the minimal distortion principle, which uses the
unmixing matrix

W ′(ω) = dg(W−1(ω)) ·W (ω) (7)

with dg(·) returning the argument with all off-diagonal elements set to zero.
However, as mentioned in the introduction, the independent filter design for
each frequency bin may result in severe circular convolution artifacts in the final
unmixed time-domain signals. In this paper, we therefore propose a method to
re-scale the frequency components in such a way that the resulting unmixing
filters obey a desired decay behavior. This new approach will be described in the
next section.

3 Filter Shaping

The proposed method is to introduce a set of scaling factors c(ω) for the unmixed
frequency components that ensure that the unmixing filters obey a desired decay
behavior. The motivation for this comes from the fact that the impulse responses
achieved by the minimal distortion principle have a quite arbitrary form. In
particular, they often show many large coefficients after the main peak, which
results in a significant amount of added reverberation and can even lead to
problems of circular-convolution artifacts. For addressing both above-mentioned
problems we propose to shape the unmixing filters to have an exponential decay.
This reduces the perceived echoes as well as the problems of circular convolution.
In Fig. 1 the overall BSS system is shown. It consists of N×N single channels

as depicted in Fig. 2. In this representation the permutation has already been
corrected. The dependency of time-domain filter coefficients of a filter vector
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Fig. 1. Overview of frequency-domain BSS

Fig. 2. Data flow from input i to output j

wij and scaling factors cj = [cj(ω0), cj(ω1), . . . , cj(ωK−1)]T for output j can be
calculated as follows:

wij =
∑
l

El · F−1 ·Cj ·W ij · F ·Dl · δ

=
∑
l

El · F−1 · diag(F ·Dl · δ) ·W ij · cj
=V ij · cj

(8)

where diag(·) converts a vector to a diagonal matrix. The term δ is a unit vector
containing a single one and zeros otherwise. Dl is a diagonal matrix containing
the coefficients of the STFT analysis window shifted to the lth position according
to the STFT window shift. F is the DFT matrix. W ij is a diagonal matrix
containing the frequency-domain unmixing coefficients. cj is a vector of the
sought scaling factors, and Cj is a diagonal matrix made up as Cj = diag(cj).
El is a shifting matrix corresponding to Dl, defined in such a way that the
overlapping STFT blocks are correctly merged. Note that for real-valued signals
and filters, the above equation can be modified to exploit the conjugate symmetry
in the frequency domain.
Using the formulation of [16,17] a desired impulse response ddij can now be

expressed as
ddij = diag(γdij ) · V ij · cj (9)

with γdij = [γdij (0), γdij (1), . . . , γdij (M − 1)] a vector with the desired shape of
the unmixing filter. Here we use a two-sided exponentially decaying window

γdij (n) =
{

10q1(no−n) for 0 ≤ n ≤ n0

10q2(n−no) for n0 ≤ n (10)

with n0 being the position of the maximum of |wij |. The factors q1 and q2 have
been chosen heuristically as q1 = −0.1 and q2 = −0.05.
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Fig. 3. Comparison of filter sets using the minimal distortion principle (left) and the
new method (right)

An undesired part is formulated analogously as

duij = diag(γuij ) · V ij · cj (11)

with

γuij (n) =
{

10q3(no−n) for 0 ≤ n ≤ n0

10q4(n−no) for n0 ≤ n (12)

Here the factors have been chosen heuristically to be q3 = 0.001 and q4 = 0.0005.
As the filters corresponding to the same output channel have the same scaling

factors, cj(ω) has to be optimized simultaneously for these filters. Therefore V ij

corresponding to the same output j are stacked to V̄ j . The same applies for γdij

and ddij which are stacked into γ̄dj (n) and d̄dj respectively.
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Fig. 4. Magnitudes of filters designed via the minimal distortion principle (left) and
the new method (right)

Now the matrices Ā and B̄ can be calculated as in [18]:

dH
u du = dHuj

· V̄ H
j · diag(γH

uj
) · diag(γuj ) · V̄ j · duj = dH

uj
· Ā · duj (13)

dHd dd = dHdj
· V̄ H

j · diag(γH
dj

) · diag(γdj ) · V̄ j · ddj = dH
dj
· B̄ · ddj (14)

Finally, the optimal scaling factors copt are the solution of the generalized
eigenvalue problem [18]

B̄ · copt = Ā · copt · λmax (15)

with λmax being the largest eigenvalue and copt being the corresponding eigen-
vector.
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4 Simulations

Simulations have been done on real-world data available at [19]. This data set
consists of eight-seconds long speech recordings sampled at 8 kHz. The chosen
parameters were a Hann window of length 2048, a window shift of 256, and
an FFT-length of K = 4096. Every frequency bin has been separated using 200
iterations of the gradient-based rule from [1]. As the original sources are available
for the considered data set, the permutation problem has been ideally solved,
so that permutation ambiguities do not influence the results, and the scaling
problem can be studied exclusively.

Table 1. Comparison of the signal-to-interference ratios in dB between the minimal
distortion principle and the new algorithm

Left Right Overall

MDP 16.07 16.72 16.41

New Alg. 24.88 28.81 26.75

In Figs. 3 and 4 the filters designed with the traditional method (7) and
the proposed method are shown, respectively. The main difference is the clearly
visible and significantly bigger main peak and the faster decay of the impulse
responses designed with our method. As one can observe by comparing Fig. 4,
the energy difference between the main peak and the tail of the impulse response
could be increased by about 25 dB.
The new filters are also able to significantly enhance the separation perfor-

mance as shown in Table 1.

5 Conclusions

In this paper, we have proposed the use of the scaling ambiguity of convolutive
blind source separation for shaping the unmixing filters. We calculate a set of
scaling factors that shape exponentially decaying impulse responses with less
reverberation. On a real-world example, the energy decay could be improved by
25dB, which also translated into better signal-to-interference ratios.
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Abstract. This work presents a novel robust method for a two-channel
multiple Time Difference of Arrival (TDOA) estimation. The method is
based on a recursive frequency-domain Independent Component Anal-
ysis (ICA) and on the novel State Coherence Transform (SCT). ICA is
computed at different independent time-blocks and the obtained demix-
ing matrices are used to generate observations of the propagation model
of the intercepted sources. For the assumed time-frequency sparse domi-
nance of the recorded sources, the observed propagation models are likely
to represent all the active sources. The global coherence of the models
is evaluated by a cumulated SCT, which provides a precise TDOA esti-
mation for all the sources. Experimental results show that an accurate
localization of 7 closely-spaced sources is possibile given only few sec-
onds of data even in the case of low SNR. Experiments also show the
advantage of the proposed strategy when compared with other popular
two-microphone GCC-PHAT based methods.

Keywords: Blind source separation (BSS), TDOA estimation, indepen-
dent component analysis (ICA), multiple speaker localization.

1 Introduction

Multiple speaker localization is a difficult problem which has interesting impli-
cations in the field of acoustic signal processing. A high reverberation time, the
presence of strong enviromental noise, and spatial ambiguity make the localiza-
tion task harder, especially when just two microphones are used. The problem
of multiple TDOA estimation is also relevant in the Blind Source Separation
(BSS) community since knowledge of the TDOAs is useful for solving the “per-
mutation problem” [1]. Recent works show that the frequency-domain BSS is
strictly connected with the propagation models of the sources [2] and that the
localization of multiple sources based on the Independent Component Analysis
outperforms other popular narrow-band techniques such as MUSIC [3].

Our earlier work [4] showed that a joint TDOA estimation can be performed
for all the sources with a State Coherence Transform (SCT) applied to the
demixing matrices obtained by the Independent Component Analysis. The SCT

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 290–297, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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is invariant to the permutations and insensitive to the phase-wrapping ambigu-
ity of frequencies affected by spatial aliasing, and thus can be applied even to
widely-spaced microphones. In this work we extend the SCT to a cumulative
SCT (cSCT) which, according to a sparse-dominance assumption of the sources,
enables the estimation of the TDOA of many sources by using only two micro-
phones.

In the next section we recall the physical interpretation of the ICA when
applied in frequency-domain and the formulation of the SCT. Following, the
cumulative SCT is discussed. Finally, in section 4, experimental results show the
effectiveness of the proposed method when compared to other GCC-PHAT [5]
based popular methods.

2 Physical Interpretation of the Demixing Matrices of
Frequency-Domain BSS

In frequency-domain the signals observed by the microphones can be modeled us-
ing a time-frequency representation computed by a short-time Fourier analysis.
According to the convolutive model for the observed mixture, each time-frequency
component can be considered as a linear combination of the time-frequency com-
ponents of the original source signals. In matrix notation one can write:

y(k, τ) = H(k)x(k, τ) (1)

where y(k, τ) are the observed mixtures, x(k, τ) are the original signals, τ is the
time instant at which each frequency is evaluated according to the time-frame
shifting, k is the frequency bin index and H(k) is a mixing matrix. A complex-
valued ICA is applied to the time-series of each frequency. Then the original
components can be retrieved by computing a demixing matrix W(k) which is
an estimate of the matrix H(k)−1 up to scaling and permutation ambiguities:

x(k, τ) = Λ(k)P(k)W(k)y(k, τ) (2)

where Λ(k) and P(k) are a complex-valued scaling matrix and a permutation
matrix, respectively.

In the ideal case, neglecting the reverberation, we can assume the sources to
be in free-field conditions. Thus the signals observed at the microphones can be
considered to be a sum of delayed and scaled version of the orignal source signals
according to the relative position of the sources with respect to the microphones.
For the case of two channels, in frequency-domain each mixing matrix can be
modelled as:

H(k) =
( |h11(k)|e−jϕ11(k) |h12(k)|e−jϕ12(k)

|h21(k)|e−jϕ21(k) |h22(k)|e−jϕ22(k)

)
(3)

ϕiq(k) = 2πfkTiq (4)
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where Tiq is the propagation time from the q-th source to the i-th microphone
and fk is the frequency, in Hz, associated to the k-th frequency bin. Our earlier
work [6] has shown that the elements of each row of W(k) can be directly used
to obtain the observations of the ideal propagation models. These are expressed
for the two sources by the ratios computed as follows:

r1(k) = −w12(k)
w11(k)

, r2(k) = −w22(k)
w21(k)

(5)

Such ratios are scaling invariant and their phase is expected to vary linearly
with frequency, according to the TDOAs of the sources. Neglecting the wave
attenuation, the ideal propagation model of each source can be represented as:

c(k, τ) = e−j2πfkτ (6)

where τ is the TDOA of the source. Thus, for each frequency, an observation
of the ideal propagation model can be obtained by normalizing the ratios ri(k)
with respect to their magnitude:

ri(k) =
ri(k)
||ri(k)|| (7)

In [7] we showed that a joint multiple TDOA estimation can be performed by
using a State Coherence Transform (SCT) which was formulated as follows:

SCT (τ ) =
∑

k

N∑
i=1

[
1 − g

( ||c(k, τ ) − ri(k)||
2

)]
(8)

where N is the number of the observed states for each frequency and g(·) is a
function of the euclidean distance. In this work we select a non linear function
defined as:

g(x) = tanh(α · x) (9)

where α is chosen according to the distance between the microphones, as de-
scribed in [7].

3 Cumulative SCT for Multiple TDOA Estimation

Theoretically, the SCT is able to estimate a number of TDOAs equal to the
number of microphones. However, we can assume that for each time-frequency
block only two sources are dominant (sparse dominance). Then by computing
ICA in different time-frequency blocks we would observe states which represent
the propagation models of all the active sources. For every time-block and any
frequency k each ratio ri(k) is an observation of the propagation model of the i−
th source among the N dominant ones. Then, for the case of two microphones the
coherence of all the observed states can be globally evaluated on a multiplicity of
time blocks by using a cumulative SCT (cSCT), which is formulated as follows:

cSCT (τ ) =
∑

b

∑
k

2∑
i=1

[
1 − tanh

(
α
||c(k, τ ) − rb

i(k)||
2

)]
(10)



Cumulative State Coherence Transform 293

where rbi(k) is the normalized state obtained for the k− th frequency bin in the
time block b. The cumulative SCT analysis requires to evaluate the ratios rbi(k)
by applying ICA to short time-blocks. However the accuracy of the ICA estima-
tor decreases with the length of the observed data and thus an appropriate choice
for the block size is needed. In [8] we showed that a recursive approach across the
frequency can be exploited to increase the ICA accuracy when short signals are
observed (e.g. 300ms). For the physical interpretation of the frequency-domain
BSS, the demixing matrices are expected to vary smoothly across the frequen-
cies. Such a property can be used to recursively initalize each ICA with a smooth
estimation of W(f). The initialization decreases the probability that ICA could
converge to wrong local minima generated from the observed limited amount of
data. A detailed description of the methods can be found at [6] and [8].

4 Experimental Results

The algorithm has been coded both in matlab and C++ and works in real-
time on a normal laptop. To perform an on-line TDOA estimation rather than
applying directly the formula (10), we evaluate the SCT for each single block
and we recursively average the envelopes over the time as follows:

cSCT b(τ) =
1
b
SCTb(τ) +

(b− 1)
b

cSCT b−1(τ) (11)

where b is the time-block for which the SCTb(τ) is evaluated. We summarize in
pseudo-code the main steps of the implemented algorithm:

apply the Short-Time Fourier Transform to the recorded signals
subdivide each time-frequency series in b max blocks
for b=1 to b max

for k=maximum frequency to 1
compute the matrix W(k) by the recursive-ICA for the b-th block
compute the normalized ratios ri(k) as in (5) and (7)

end
compute the SCT as in (9)
compute the cSCT as in (11)
extract the TDOAs corresponding to the peaks of the cSCT envelope

end

In this experiment the algorithm has been evaluated for the estimation of the
TDOAs of 7 loudspeakers playing simultaneously sound files of about 10 seconds:
3 male utterances, 3 female utterances, 1 pop song. The mixture signals were
produced by separately recording the spatial image of each source over the two
microphones then summing the spatial images of all sources over each channel.
The loudspeakers have been uniformly spaced with an average angular distance
of about 13◦ and located at an average distance of about 1 meter from the center
of the two microphones. Recordings were performed in a room with T60 = 700ms
with a sampling rate of fs = 16kHz and the FFT analysis was performed with
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(c) RMSE error for the case
of SNR=20dB
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(d) Cumulative SCT profile
(SNR=5dB)
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(e) Cumulative GCC-PHAT
profile (SNR=5dB)
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(f) RMSE error for the case
of SNR=5dB

Fig. 1. Comparison between the cSCT and the cumulative GCC-PHAT. The red dotted
lines are the true expected TDOAs. (c) and (f) show the RMSE localization error for
the cumulative GCC-PHAT (blue dotted line) and the cSCT (solid red line).

an Hanning window of 2048 samples and a frame-shifting of 512 samples. The
length of the time-block used for the ICA and the SCT analysis was 300ms. The
signals were recorded with two microphones spaced of 0.26m; according to the
sound speed and to the maximum admissible time-delay, the SCT was computed
for 180 values of τ in the range from -13 to +13 samples.

In [3] it has been shown that ICA outperforms the MUSIC algorithm in the
DOA estimation for the case of multiple sources. In such a work closely spaced
microphones were used to avoid the frequency-phase ambiguity introduced by
the spatial aliasing. On the contrary, the SCT does not suffer of such ambigu-
ity since the TDOA is evaluated according to the complex-valued model of the
acoustic propagation. Moreover, it has been shown that the SCT can be consid-
ered a multisource extension of the GCC-PHAT (see [4]). Thus, the method has
been compared with two other GCC-PHAT based approach: 1) TDOAs selected
by a cumulative GCC-PHAT 2) TDOAs selected by Time-frequency histogram
(TFH) [9]. For both the methods the GCC-PHAT was computed over frames of
4096 points with step of 256 points. Moreover, in order to obtain a theoretical
resolution of 180 possible time-delays, an interpolation was applied. The cumula-
tive GCC-PHAT was obtained by a recursive averaging of the envelopes similarly
to formula (11). Figure 1(subpictures (a)(b)(d)(e)) shows the final envelopes as-
sociated with the cumulative SCT and with the cumulative GCC-PHAT, when
the signals are affected by an Additive White Gaussian Noise (AWGN) resulting
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(c) RMSE error

Fig. 2. Comparison between the cSCT and the cumulative GCC-PHAT for 4 sources
recorded with microphones spaced of 0.05m. In the envelopes the red dotted lines
are the true expected TDOAs. In (c) is plotted the RMSE localization error for the
cumulative GCC-PHAT (blue dotted line) and the cSCT (solid red line).

in a SNR of 20dB and 5dB. For the case of lower SNR both the envelopes show
clear peaks at values close to the corresponding expected TDOAs (red dotted
lines). In fact since the sources are sparse in time-frequency domain the cumula-
tive GCC-PHAT is able to intercept the coherence of the observed propagation
models across all the time-frequency points. In this condition the cumulative
GCC-PHAT can be assumed to be a good approximation of the cumulative
SCT. However as the noise increases the cSCT clearly outperforms the GCC-
PHAT. Infact, whilst the GCC-PHAT uses the normalized cross-spectrum as
observation of the propagation models, the cSCT uses the demixing matrix ob-
tained by the ICA stage and it is consequently less sensitive to the noise. In
subpictures (c) and (f) of figure 1 the Root Mean Square localization Error is
plotted. The corresponding directions of arrival were computed according to the
geometrical information and using the TDOAs estimated at each time block. It
is worth noting that for both the cases the cSCT converges to a small error and
just in few seconds.

Another important advantage of the cSCT is the increased spatial resolu-
tion of the TDOA estimator when microphones are closely spaced. In figure 2
we show the resulting envelopes obtained with the cumulative GCC-PHAT and
the cSCT, when 4 sources are recorded by two microphones spaced of 0.05m.
Since the phase difference between the propagation models of different sources
is reduced, the resolution of the resulting cumulative GCC-PHAT is too low
to enable the discrimination of peaks related to different sources. On the other
hands, the non linear mapping of the cSCT reduces the intereference effect be-
tween the propagation models belonging to different sources and consequently
the resolution of the envelope is increased.

A comparison between the proposed method with a GCC-PHAT based time-
frequency histogram (TFH) [9] is also provided. For the TFH all the TDOAs
chosen from the GCC-PHAT of each frame are pooled in a histogram where
the maxima are expected to correspond to the most probable TDOAs. In order
to have a direct comparison between the two methods, we similarly computed
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(f) RMSE error for the case
of SNR=5dB

Fig. 3. Comparison between the cSCT and the cumulative GCC-PHAT. In the en-
velopes the red dotted lines are the true expected TDOAs. In (c) and (f) is plotted
the RMSE localization error for the cumulative GCC-PHAT (blue dotted line) and the
cSCT (solid red line).

the histogram of the TDOAs obtained at each time-block, using the peaks of the
cSCT. Figure 3 shows the normalized histograms of the selected TDOAs for both
the methods. We observe that when the GCC-PHAT is used, the histogram is
very noisy. Even for high SNR the noiseness of the histogram make the correct
peak selection hard and the resulting averaged localization error is unstable
during the time. In the case of the cSCT the stability of the TDOA estimates
produce clearer and more stable results.

5 Conclusions

This work introduced a new method to perform multiple TDOA estimation by
using only two microphones. The SCT and the recursive ICA are combined to
obtain a robust TDOA estimator for many active sources. Experimental results
show that the method is robust even in presence of strong noise and enables the
discrimination of 7 active sources recorded under challenging conditions. Future
investigation will concern the use of the proposed strategy as a starting point
for a robust underdetermined blind source separation.
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Abstract. We present a new algorithm for approximate joint diagonal-
ization of several symmetric matrices. While it is based on the classical
least squares criterion, a novel intrinsic scale constraint leads to a simple
and easily parallelizable algorithm, called LSDIC (Least squares Diag-
onalization under an Intrinsic Constraint. Numerical simulations show
that the algorithm behaves well as compared to other approximate joint
diagonalization algorithms.

1 Introduction

The diagonalization of a matrix and the joint diagonalization of two matrices
are well-established concepts in linear algebra and their use in engineering is
ubiquitous. Approximate joint diagonalization (AJD) refers to the problem of
diagonalizing more then two matrices simultaneously. Considerable interest for
AJD followed the discovery that it yields a solution for independent component
analysis (e.g., JADE [2]) and second-order blind source separation (e.g., SOBI [1],
see also [8]).

The classical linear instantaneous BSS problem assumes a mixing model of
the form x(t) = As(t), where x is a K-vector holding the sensor measurements,
A is the K×K mixing matrix and s is a K-vector holding the source processes.
The task is to recover the sources out of a scaling and permutation indetermi-
nacies from the observation x, assuming no knowledge of A and of the sources
distribution. A simple approach to the source separation problem is to consider a
set of matrices {C1, . . . ,CN} consisting of statistics of the observations (of sec-
ond order in most cases) which are estimates of matrices of the form ADnAT ,
where Dn is a diagonal matrix with k-th diagonal element depending only on
the distribution of the k-th source. The AJD then seeks a matrix BT such that
all N congruence transformations BTCnB, n = 1, . . . , N , are as diagonal as
possible. Therefore it provides an estimate of the inverse of A (up to a scaling
and a permutation) and the BSS problem is solved by s(t) = BTx(t).

Several iterative algorithms have been developed to solve the AJD problem.
A simple way to proceed is to minimize the criterion

N∑
n=1

‖Off(BTCnB)‖2 (1)
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where Off denotes the operator which retains only the off diagonal of its matrix
argument and ‖M‖ = [tr(MMT )]1/2 denotes the Frobenius norm of the matrix
M. However, without any restriction, one would end up with the trivial solution
B = 0. In [3], B is restricted to the orthogonal group and an efficient algorithm
based on Givens rotations is presented. This restriction allows BSS only after
whitening the sensor measurements, but whitening is known to affect adversely
the quality of the separation forcing the data covariance to be exactly diago-
nal at the expenses of the input matrix set. In [9,5] it is required instead that
Diag(BTC0B) = I, with C0 being some positive definite matrix, Diag denot-
ing the operator which cancels the off diagonal elements of its matrix argument.
This amounts to a normalization of the columns of B (a scaling). The algorithms
are slow because for each iteration one needs to repeat K times the search for
the eigenvector associated with the smallest eigenvalue of a K ×K matrix. To
avoid degeneracy, as well as the trivial solution, in [6] a term proportional to
− log | det(B)| is added to the criterion, albeit yielding an even slower algorithm.

Another line of research has focused on multiplicative algorithms with super-
linear convergence. Such algorithms update the Cn matrices at each iteration
and typically are faster than those minimizing the off-criterion. In [7] the intro-
duction of a different criterion leads to a very efficient multiplicative Givens-like
algorithm. However, it allows only positive definite input matrices and such
requirement may be cumbersome in some BSS applications. The notion of cri-
terion is dropped altogether in [10], where a multiplicative algorithm based on
heuristics is described instead.

In this paper we will elaborate further upon the off criterion (1), expanding
results presented in [4], where it has been shown that its minimizer under cer-
tain constraint satisfies a nested system of K generalized Rayleigh quotients.
We propose a pseudo-Newton fixed point algorithm to solve such system which
requiring no eigenvalue-eigenvector decomposition and no Cn matrices updates.
We discuss the local stability of the algorithm, i.e., its convergence near the
solution. The algorithm, named LSDIC (Least Squares Diagonalization under
an Intrinsic Constraint) has complexity per iteration similar to multiplicative
algorithms. As in the case of other algorithms minimizing the off-criterion, the
convergence is linear, thus overall execution time may be superior to multi-
plicative algorithms. However LSDIC is naturally parallelizable not only with
respect to N , like multiplicative algorithms, but also with respect to K, allow-
ing computational super-efficiency in massive parallel computing architectures.
Furthermore, unlike multiplicative algorithms (with the exception of [7]), it ac-
commodates complex mixing and/or sources.

2 The Criterion

We consider the joint approximation diagonalization of a set of N symmetric
K×K matrices C1, . . . ,CN . We consider the least square criterion (1) subjected
to the constraint:

∑N
n=1(b

T
kCkbk)2 = 1, k = 1, . . . ,K (bk denoting the k-th

column of B). Unlike other constraints, this is a new intrinsic constraint that



300 D.-T. Pham and M. Congedo

does not favor a particular matrix in the above set or make use of another matrix
outside this set.

Since
∑N

n=1(b
T
kCnbk)2 =

∑N
n=1 bT

kCnbkbT
k Cnbk the constraint can be

rewritten as bT
kM(bk)bk = 1, k = 1, . . . ,K, where

M(bk) =
N∑
n=1

CnbkbT
kCn. (2)

Further, ‖Off(BTCnB)‖2 = ‖BTCnB‖2−
∑K

k=1(b
T
k Cnbk)2 and ‖BTCnB‖2 =

tr(BTCnBBTCnB), therefore, the criterion (1) under the above constraint re-
duces to tr[BTM(B)B]−K where M(B) is defined as in (2) but with bk replaced
by B. Note that M(B) can also be computed as M(B) =

∑K
k=1 M(bk).

One can turn the minimization problem of tr[BTM(B)B] under the constraint
bT
kM(bk)bk = 1, k = 1, . . . ,K, into one without constraint, as follows. Note

that for an arbitrary matrix B, the matrix BD−1/4(B), where D(B) is the
diagonal matrix with diagonal elements

d(bk) = bT
k M(bk)bk, k = 1, . . . ,K, (3)

will satisfy the constraint. Replacing B in the criterion tr[BTM(B)B] by
BD−1/4(B) then yields the criterion

C(B) = tr[D−1/2(B)BT M̃(B)B] =
N∑
n=1

tr{[D−1/2(B)BTCnB]2}, (4)

where

M̃(B) =
N∑
n=1

CnBD1/2(B)BTCn =
K∑
k=1

M(bk)/d1/2(bk).

Therefore one may simply minimize C(B) given in (4) without any constraint.

3 Gradient of the Criterion

To compute the gradient of the criterion (4) at the point B we shall perform its
Taylor expansion around B up to first order. Let Δ be a small increment of B
then for any symmetric matrix E, one has

tr{[E(B + Δ)TCn(B + Δ)]2}
= tr[(EBTCnB + EBTCnΔ + EΔTCnB + EΔTCnΔ)2]
= tr[(EBTCnB)2] + 4tr(EBTCnBEBTCnΔ) +O(‖Δ‖2), (5)

where O(‖Δ‖2) denotes a term of the same order as ‖Δ‖2 as Δ → 0. By the
same calculation with E being the identity matrix and B and Δ replaced by
their k-th rows bk and δδδk, one gets, after summing up with respect to n:

d(bk + δδδk) = d(bk) + 4bT
kM(bk)δδδk +O(‖δδδk‖2).
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Therefore

D(B + Δ) = D(B) + 4Diag[PT (B)Δ] +O(‖Δk‖2)

where
P(B) = [M(b1)b1 · · · M(bK)bK ] .

Then from the first order Taylor expansion (x + ε)−1/2 = x−1/2 − 1
2x
−3/2ε +

O(|ε|2), one gets

D−1/2(B + Δ) = D−1/2(B)− 2D−3/2(B)Diag[PT (B)Δ] +O(‖Δ‖2) (6)

Applying now (5) with E = D−1/2(B + Δ) = D−1/2(B) +O(‖D‖) yields

tr{[D−1/2(B + Δ)(B + Δ)TCn(B + Δ)]2} =
tr{[D−1/2(B + Δ)BTCnB]2}+ 4tr[D−1/2(B)BTCnBD−1/2(B)BTCnΔ]

+O(‖Δ‖2).

But by (6)

tr{[D−1/2(B + Δ)BTCnB]2} = tr{[D−1/2(B)BTCnB]2}
− 4tr{BTCnBD−1/2(B)BTCnBD−3/2(B)Diag[P(B)Δ]} +O(‖Δ‖2).

Therefore combining the above results and summing up with respect to n,
one gets:

C(B + Δ) = C(B) + 4tr[D−1/2(B)BT M̃(B)Δ]
− 4tr{BTM̃(B)BD−3/2(B)Diag[PT (B)Δ]}+O(‖Δ‖2).

Finally, noting that tr[UDiag(V)] = tr[Diag(U)Diag(V)] = tr[Diag(U)V],
one gets

C(B + Δ) = C(B) + 4tr{D−1/2(B)[BTM̃(B)− Γ(B)PT (B)]Δ}+ O(‖Δ‖2).

where
Γ(B) = D−1(B)Diag[BTM̃(B)B].

The above relation shows that the gradient of the criterion C is

C′(B) = 4[M̃(B)B−P(B)Γ(B)]D−1/2(B)].

Setting the gradient to 0 yields the equations

M(bk)bk =
bT
kM(bk)bk

bT
k M̃(B)bk

M̃(B)bk, k = 1, . . . ,K

which means that bk is a generalized eigenvector of M(bk) relative to M̃(B),
with eigenvalue [bT

kM(bk)bk]/[bT
k M̃(B)bk].
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4 Pseudo Newton Algorithm

We have thought of implementing quasi Newton algorithm to minimize the cri-
terion (4), which would require the calculation of an approximate Hessian. Al-
though such calculation is theoretically possible, the result is quite involved so
that the corresponding algorithm is very complex and costly computationally.
Therefore we shall replace the true Hessian with some reasonable positive definite
matrix, which we call pseudo Hessian. Let vec(B) denotes the vector formed by
stacking the columns of B, then the pseudo Newton algorithm can be expressed
as vec(B) ← vec(B) − H−1(B)vec[C′(B)] where H(B) is the pseudo Hessian.
We take

H(B) = 4

⎡⎢⎢⎢⎢⎢⎢⎢⎣

M̃(B)
d1/2(b1)

0 · · · 0

0
. . .

. . .
...

...
. . . . . . 0

0 · · · 0
M̃(B)
d1/2(bK)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

This is a reasonable choice as it is positive definite and is of about the same order
of magnitude as the Hessian (the expansion of C(B + Δ) up to second order in
Δ contains actually the positive term 4tr[ΔTD−1/2(B)M̃(B)Δ]). But the main
reason for making the above choice is that the corresponding algorithm reduces
to a very simple fixed point iteration:

B← M̃−1(B)P(B)Γ(B)D−1/2(B),

or explicitly

bk ← bT
k M̃(B)bk

d(bk)
M̃−1(B)M(bk)bk, k = 1, . . . ,K.

Further, since the criterion (4) is scale invariant, we may drop the factor
bT
k M̃(B)bk/d(bk) and renormalize bk so that d(bk) = 1. This leads to the

algorithm:

bk ←M−1(B)M(bk)bk, bk ← bk/[bT
kM(bk)bk]1/4, k = 1, . . . ,K,

assuming that B has been previously normalized so that M̃(B) = M(B).
It is worthwhile to note that the normalization of bk already requires the

calculation of M(bk)bk, hence the computation of the unnormalized new bk

requires only a pre-multiplication with M̃−1(B). Thus our algorithm can be
implemented as follows.

1. Initialization: Start with some unnormalized B. For k = 1, . . . ,K, compute
(in parallel): Mk =

∑N
n=1 CnbkbT

kCn, pk = Mkbk, sk = (bT
k pk)1/2 and

normalize bk ← bk/s
1/2
k , pk ← pk/s

3/2
k .

2. Iteration: while not converge do
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– Compute M =
∑K

k=1 Mk/sk, then make the Cholesky decomposition
M = RTR (R upper triangular).

– For k = 1, . . . ,K, compute (in parallel): bk = R−1(RT −1pk), Mk =∑N
n=1 CnbkbT

kCn, pk = Mkbk, sk = (bT
k pk)1/2 and normalize bk ←

bk/s
1/2
k , pk ← pk/s

3/2
k . (Note that multiplication by the inverse of a

triangular matrix is done by solving a linear triangular system.)

The above fixed point algorithm is locally stable (i.e. convergent when started
near a solution) if the matrix I−H−1(B)C′′(B), where C̃′′(B) denotes the true
Hessian, has all its eigenvalues of modulus strictly less than 1. The conver-
gence speed is controlled by the maximum modulus of the eigenvalues. For
the (quasi-) Newton algorithm, H is (nearly) equal to C′′(B), hence the ma-
trix I−H−1(B)C′′(B) is (nearly) zero and the algorithm has (almost) quadratic
convergence. For the pseudo Newton algorithm, if the chosenH(B) is not too far
from C′′(B), one may still expect convergence although the speed is only linear.
Simulations indeed show that our pseudo Newton algorithm converges generally
well. Note that (global) convergence is not guaranteed even in the quasi-Newton
algorithm, as the starting point may be too far from the solution. But since
H(B) is positive definite, one can always reduce the step size, i.e. by taking the
new vec(B) as vec(B) − λH−1(B)C′(B), with λ ∈ (0, 1], so that the criterion
is decreased at each iteration. The algorithm would then converge at least to a
local minimum point.

5 Simulation

We compare our LSDIC algorithm to the well-established FFDIAG algorithm
of [10] and QDIAG of [9]. We plan to perform a more comprehensive comparison
and to publish that in a longer article elsewhere.

Square diagonal matrices with each diagonal entry distributed as a χ-square
random variable with one degree of freedom are generated. Each of these ma-
trices, named Dn, may represent the error-free covariance matrix of indepen-
dent standard Gaussian processes. The noisy input matrices are obtained as
Cn = ADnAT + Nn with symmetric noise matrix Nn having entries randomly
distributed as a Gaussian with zero mean and standard deviation σ. Further-
more, the diagonal elements of Nn are taken unsigned so to obtain (in general)
positive definitive input matrices Cn. The parameter σ controls the overall sig-
nal to noise ratio of the input matrices. Two different values will be considered,
of which one (σ = 0.01) represents a small amount of noise closely simulating
the exact joint diagonalization (JD) case and the other (σ = 0.05) simulating
the approximate JD case. Two kinds of mixing matrix A are considered. In the
general case mixing matrix A is obtained as the pseudo-inverse of a matrix with
unit norm row vectors which entries are randomly distributed as a standard
Gaussian; in this case the mixing matrix may be badly conditioned and we can
evaluate the robustness of the AJD algorithms with respect to the conditioning
of the mixing matrix. We also consider the case in which A is a random orthog-
onal matrix; in this case we can evaluate their robustness with respect to noise.
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For QDIAG a normalization matrix C0 such that Diag(BTC0B) = I needs to
be specified; we use the sum of the input matrix for C0. As it is well known
given true mixing A, each AJD algorithm estimates demixing matrix BT , which
should approximate the inverse of actual A out of row scaling and permutation.
Then, the global matrix G = BTA should equal a scaled permutation matrix.
At each (simulation) repetition we compute the performance index as

Performance Index =
2(K − 1)

∑K
i=1

∑K
j=1G

2
ij∑K

i=1 maxj=1,...,K G2
ij +

∑K
j=1 maxi=1,...,K G2

ij

. (7)

This index is positive and reaches its maximum 1 if and only if G has only
one non-null elements in each row and column, i.e., if BT has been estimated
exactly out of the usual row scaling and permutation ambiguities. We computed
the means and standard deviations obtained across 250 repetitions for 30 input
matrices of dimension 15 × 15. For each simulation set we then computed all
pair-wise bi-directional student-t tests for the null hypothesis μj = μk, j �= k,
where μj (j = 1, 2, 3) denotes the performance means of the j-th AJD methods.
We corrected the resulting p-values for the number of comparisons (3 method
pairs) using Bonferroni’s method. Results are presented in table 1.

Table 1. Mean and standard deviation (in parentheses) of the performance index (7)
attained by QDIAG [9], FFDIAG [10] and our LSDIC algorithm across 250 repetitions
of the simulation with K = 15 and N = 30. The higher the mean and the lower
the standard deviation, the better the performance. Legend: < (>) indicates that the
mean performance of the AJD method is significantly worse (better) as compared to the
other two methods as seen with a student-t test with 248 degrees of freedom and setting
the type I (false positive) error rate to 0.05 after Bonferroni correction (bi-directional
p(t) < 0.017).

Orthogonal Mixing Non-Orthogonal Mixing
(good conditioning) (variable conditioning)

σ = 0.01 σ = 0.05 σ = 0.01 σ = 0.05
QDIAG 0.99976054 0.93320283< 0.99976047 0.93436055

(0.00015259) (0.05647088) (0.00015269) (0.05463265)
FFDIAG 0.99975514 0.94904938 0.98244331< 0.88311444<

(0.00015743) (0.04617571) (0.05888834) (0.13230755)
LSDIC 0.99976258 0.95775684 0.99976252 0.95796237>

(0.00014988) (0.03721794) (0.00014992) (0.03702060)

To see how badly conditioned are our (non orthogonal) mixing matrices, we
have computed their condition number for matrix inversion with respect to the
Frobenius norm, which for a square matrix A is given by ‖A‖‖A−1‖. This num-
ber is always not less than 1 and a high values indicate bad conditioning. In
our 250 repetitions of the simulation, we found that the logarithms of the con-
dition number of our mixing matrices have mean 4.90, standard deviation 1.00,
minimum 3.44 and maximum 9.03.
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In the case of orthogonal mixing the three algorithms display nearly identical
results in the low-noise simulation (σ = 0.01), whereas in the noisy simula-
tion (σ = 0.05) QDIAG performs significantly worse then both FFDIAG and
LSDIC. In the case of non-orthogonal mixing matrices (general case) FFDIAG
performs significantly worse than both QDIAG and LSDIC regardless the noise
level, whereas LSDIC significantly outperformed both QDIAG and FFDIAG in
the high-noise (σ = 0.05) case. The lower mean and larger standard deviation
displayed by FFDIAG in the non-orthogonal case reflects occasional failing in
estimating correctly the demixing matrix B due to the ill-conditioning of the
mixing matrix. On the other hand QDIAG appears little robust with respect
to noise regardless the conditioning of the mixing matrix. These simulations
show the good behavior of LSDIC both in low and high noise conditions and its
robustness with respect of the ill-conditioning of the mixing matrix.

6 Conclusion

We have proposed a new algorithm for joint approximated diagonalization of a
set of matrices, based on the common least squares criterion but with a novel
intrinsic scale constraint. The algorithm is simple, generally fast and is easy to
parallelize.
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Abstract. We recently proposed several time-frequency blind source
separation methods applicable to attenuated and delayed mixtures. They
were limited by heuristics and only processed integer-sample time shifts.
In this paper, we propose and test improvements of these approaches
based on modified clustering techniques for scale coefficients and a new
iterative method to estimate possibly non-integer and large delays.

1 Introduction

Blind source separation (BSS) consists in estimating a set of N unknown sources
from P mixtures of these sources. Most of the approaches that have been de-
veloped to this end are based on Independent Component Analysis [1]. Since
the last decade, some methods using Sparse Component Analysis, e.g. time-
frequency (TF) analysis, have been proposed [1]. Some of these approaches like
DUET and its extensions [2, 3] need the sources to be (approximately) disjoint
in the analysis domain (WDO assumption). DUET separates attenuated and
delayed (AD) mixtures, a simple class of convolutive mixtures physically corre-
sponding to anechoic propagation, but cannot estimate delays higher than one
sample. On the contrary, we recently proposed several AD TF-BSS methods, i.e.
AD-TIFROM and AD-TIFCORR [4, 5], which only need tiny TF zones where
a source occurs alone in order to estimate the mixing matrix. These methods
deal with a much wider range of time shifts (typically 0 to 200 samples) than
DUET but they only estimate integer-sample time shifts and need a user-defined
threshold in order to distinguish columns of the mixing matrix, which is a major
limitation since the adequate values of this threshold depend on the unknown
mixing parameters. Lastly, Arberet et al. also proposed an AD-TF method, called
DEMIX Anechoic [6], which can be wiewed as a hybrid combination of DUET
and AD-TIFROM/CORR: like DUET, it assumes approximate WDO (and deals
with underdetermined non-integer-sample AD mixtures) but adds a confidence
measure of the "single-source quality", as proposed in [4, 5]. However, the tests
in [6] are only performed with less than 3-sample time shifts.
As a consequence of the above analysis, we here propose several improvements

to our previous methods: the first one consists in solving the problem of the above
user-defined threshold, thanks to a clustering approach. We also propose a new
iterative method to estimate time shifts, applicable to their fractional values. We

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 306–313, 2009.
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thus process the same class of mixtures as DUET and DEMIX Anechoic, while
dealing with a much larger range of delays.

2 Problem Statement

In this paper, we assume that N unknown sources sj(n) are mixed through AD
propagation channels and added, thus providing a set of N mixed signals xi(n):

xi(n) =
N∑
j=1

aijsj(n− nij) j ∈ {1 . . .N}, (1)

where aij > 0 are constant scale coefficients and nij are first supposed to be
integer time shifts for the sake of clarity. We then propose an extension to non-
integer ones in Subsect. 5.2. By applying the approach used in [4], we handle
the scale/filter and permutation indeterminacies inherent in the BSS problem:
we rewrite (1) with respect to the contributions of the sources in the first obser-
vation, up to an arbitrary permutation σ(.). These contributions read

s′j(n) = a1,σ(j) sσ(j)
(
n− n1,σ(j))

)
(2)

and (1) may be rewritten as

xi(n) =
N∑
j=1

ai,σ(j) sσ(j)
(
n− ni,σ(j))

)
=

N∑
j=1

bij s
′
j (n− μij)) (3)

with
bij = ai,σ(j)

a1,σ(j)
and μij = ni,σ(j) − n1,σ(j). (4)

Equation (3) reads in the Fourier domain

Xi(ω) =
N∑
j=1

bij e
−jωμij S′j(ω) i ∈ {1 . . .N}. (5)

We therefore aim at estimating the following mixing matrix

B(ω) =
[
bije

−jωμij
]

i, j ∈ {1 . . .N}. (6)

3 Overall Structure of AD-TIFCORR

As stated in Sect. 1, we recently proposed two AD TIme-Frequency BSS ap-
proaches resp. based on Ratios Of Mixtures and CORRelation. Here, we in-
troduce improvements, applicable to both methods, that we describe in the
framework of AD-TIFCORR [5]. The considered TF transform of the signals
is the Short Time Fourier Transform (STFT). Our approach uses the following
definitions and assumptions.
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Definition 1. A "TF analysis zone" is a series of adjacent TF windows (n, ω).
More precisely, they can have any shape in the TF plane but we focus on
constant-frequency (CF) and constant-time (CT) analysis zones which can be
resp. defined as series of M time-adjacent and M ′ frequency-adjacent TF win-
dows (n, ω). We resp. denote them (T, ω) and (n,Ω).
Definition 2. A source is said to be "isolated" in a TF analysis zone if only
this source has a non-zero power (i.e. mean-square value) in this TF zone.

Definition 3. A source is said to be "accessible" in the TF domain if there exist
at least one TF zone where it is isolated.

Assumption 1. i) each source is accessible in the TF domain and ii) there exist
no TF zone where the TF transforms of all sources are equal to zero everywhere1.

For any couple of signals u1 and u2, we define the cross-correlation of the TF
transforms of these signals over the considered CF analysis zone (T, ω) as

Ru1u2(T, ω) =
1
M

M∑
p=1

U1(np, ω)U∗2 (np, ω), (7)

where the superscript ∗ denotes complex conjugate. The corresponding correla-
tion coefficient reads

ru1u2(T, ω) =
Ru1u2(T, ω)√

Ru1u1(T, ω)Ru2u2(T, ω)
. (8)

For each analysis zone (T, ω), the vector consisting of TF values Sj(np, ω) of any
source signal sj(n) is denoted Vsj (T, ω) hereafter.
Assumption 2. Over each analysis zone (T, ω), the non-zero vectors Vsj (T, ω)
are linearly independent (if there exist at least two such vectors in this zone)2.
The AD-TIFCORR method aims at estimating the mixing matrix defined in (6),
i.e. the scale coefficients bim and the associated time shifts μim. It is composed
of three main stages, preceded by a pre-processing stage:
1. The pre-processing stage consists in deriving the STFTs of the mixed signals.
2. We detect single-source CF analysis zones, where we estimate the scale co-

efficients bim.
3. We detect single-source CT analysis zones, where we estimate the time shifts
μim′ and couple then to bim. The basic version of Steps 2 and 3 and their
improved version proposed in this paper are resp. detailed in Sect. 4 and 5.

4. In the combination stage, we eventually derive the output signals. They may
be obtained in the frequency domain by computing

Y (ω) = B−1(ω)X(ω), (9)

where Y (ω) = [Y1(ω) · · ·YN (ω)]T and X(ω) = [X1(ω) · · ·XN(ω)]T .
1 Assumption 1 ii) is only made for the sake of simplicity: it may be removed in
practice, thanks to the noise contained by real recordings [5].

2 In [5], we assumed the sources to be uncorrelated but we recently proved [7] that,
thanks to Assumption 2, TIFCORR can also be applied to correlated sources.
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4 Detection of Single-Source Zones and Identification of
Mixing Parameters in "Basic" AD-TIFCORR

Equation (5), written in the frequency domain, remains almost exact when ex-
pressed in the TF domain (provided the temporal width of TF windows in the
STFTs is significantly higher than the applied time shifts nij), i.e.

Xi(n, ω) =
N∑
j=1

bij e
−jωμij S′j(n, ω) i ∈ {1 . . .N}. (10)

Applying the general proof of [7] directly shows that a necessary and sufficient
condition for a source to be isolated in a TF analysis zone (T, ω) is

|rx1xi(T, ω)| = 1 ∀i ∈ {2 . . .N}. (11)

In practice, we compute the mean |rx1xi(T, ω)| over i of |rx1xi(T, ω)| and sort
the TF zones (T, ωl) according to decreasing values of |rx1xi(T, ωl)|. If a source
Sk(n, ω) is isolated in a TF zone (T, ωl) then (10) and (7) yield∣∣∣∣Rxix1(T, ωl)

Rx1x1(T, ωl)

∣∣∣∣ =
∣∣∣∣ aika1k

e−jω(nik−n1k)
∣∣∣∣ =

∣∣bime−jωμim
∣∣ = bim (12)

with bim and μim defined by (4) and k = σ(m). The basic procedure for esti-
mating all parameters bim applies as follows: we successively study the analysis
zones in the above sorted list, we estimate a column of parameters bim according
to (12) and keep it if its distance with respect to each previously found column
is above a user-defined threshold ε1, which is a major limitation of the method,
since its value has to be selected with respect to the values of unknown bim. We
stop the procedure when N columns have been found.
The estimation of time shifts is based on the phase of ratios αi(n, ω) of TF

transforms of mixtures, defined as

αi(n, ω) =
Xi(n, ω)
X1(n, ω)

=

∑N
j=1 aij e

−j ωnij Sj(n, ω)∑N
j=1 a1j e−j ωn1j Sj(n, ω)

. (13)

If a source Sk(n, ω) is isolated in a TF zone (np′ , Ω), then the curve associated
to the variations of the phase of αi(np′ , ωl′) in this zone is a line and its slope
is equal to (the opposite of) the associated time shift μim′ (with k = σ(m′)).
We therefore consider each CT zone (np′ , Ω) and compute the regression line
and the corresponding error associated to the variations of the above phase. The
CT zones with a low error are single-source and columns of μim′ are set to (the
opposite of) the integers which are the closest to the slopes of the corresponding
lines. A procedure described in [5] then maps each column of time shifts μim′

to a previously estimated column of scale coefficients bim. A set of time shifts
μim′ is thus associated to each parameter bim. We then derive the histograms
of these parameters μim′ , independently for each index i and each index m. We
eventually keep the peak value in each histogram as the estimate of μim.
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5 Proposed Improvements

5.1 Clustering Techniques for Scale Coefficients bim

We now present improvements of the AD-TIFCORR method, which can also be
applied to the basic AD-TIFROM methods defined in [4]. The first one consists
in modifying the detection and estimation stages for scale coefficients. Indeed,
when many sources are mixed or time shifts are quite large, we faced cases when a
"false" single-source TF zone is detected and the associated column of bim is kept,
thus yielding poor performance. We therefore proposed [4] a simple clustering
method, called CBCE (Cardinality-Based Cluster Elimination) hereafter, that
solves this problem but still needs the user-defined threshold ε1 defined in Sect.
4 in order to separate clusters.
We here solve both above problems, i.e. we do not depend on the value of a

user-defined threshold to distinguish columns of bim and we cancel false single-
source zones effects, by using the K-means clustering technique [8] or its modified
version K-medians [9]. Our new approach thus operates as follows: we first de-
termine all TF zones such that

|rx1xi(T, ω)| ≥ 1− ε2, (14)

we keep at most the 1000 "best" zones (T, ω) satisfying (14) if they exist, and
we then process their columns of coefficients b̂im with K-means or K-medians,
hence denoting these methods Selective K-means (resp. K-medians) hereafter.
Indeed, when many zones meet (14) (typically from several thousands to several
tens of thousands), we noticed that the standard K-means/medians estimate
the coefficients bim with a poor accuracy, because the number of "coarse" esti-
mates is much higher than the number of "accurate" ones3. This result is very
important because a lot of WDO-based BSS methods, e.g. [3], use K-means on
all the analysis domain and could be highly improved as well with our selective
approach.

5.2 An Iterative Method for Estimating Time Shifts μim

We presented in Sect. 4 an approach for estimating time shifts. However, in
some cases, this method does not yield estimated time shifts exactly equal to
the theoretical ones. In order to improve it, we propose an iterative method that
operates as follows:

1. in a first step, we estimate time shifts μim in constant-time TF zones, as
explained in Sect. 4. These estimated values, associated to scale coefficients
bim, are denoted μ̂im hereafter.

3 As an alternative, one can reduce the value of ε2 in (14). However, in this case, we
noticed that when the time shifts were quite large, some sources could be unaccessi-
ble. Limiting the number of TF zones to 1000 is thus an acceptable trade-off: on the
one hand, when there exist many single-source zones, the 1000 "best" zones yield a
high accuracy in the estimation of coefficients bim. On the contrary, when there are
few of them, the threshold ε2 guarantees a quite good "single-source quality".
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2. For each of these estimates, we reduce the time lag of the associated source
in observations, by applying a time shift of μ̂im samples to x1(n), i.e. we
create the modified observations defined as{

x̃1(n) = x1(n− μ̂im)
x̃i(n) = xi(n)

. (15)

If the considered estimated time shift μ̂im, associated to a source sk(n), is
equal to the corresponding theoretical value, then, from the point of view of
this source sk(n), the BSS problem (15) is instantaneous. On the contrary,
if the estimated and theoretical values of μim are not equal, there exist a
residual time shift τim �= 0 in the signals x̃1(n) and x̃i(n) so that

Rx̃ix̃1

Rx̃1x̃1

= bime
−jωτim . (16)

3. We apply the procedure described in Sect. 4 to the time-shifted observations
x̃1(n) and x̃i(n), in order to estimate τim and we derive μ̂im + τ̂im which is
a closer estimate of μim than μ̂im.

4. Steps 2 and 3 are performed I times (I ≥ 1) or until

∀i, m ∈ {2, . . . , N}, τ̂im = 0. (17)

This iterative method not only provides a means to improve the estimation
of time shifts but also to estimate non-integer ones. Indeed, let us suppose that
μim /∈ N. What we can compute with the basic or the above improved method
is an estimate of the integer part of μim, denoted �̂μim� hereafter. For each
estimate �̂μim�, there exists a residual fractional time shift ζim such that

μim = �̂μim�+ ζim. (18)

We then propose to run a slightly modified version of the above iterative proce-
dure: in Step 2, we apply a delay of �̂μim� samples to (15) and we oversample
by a factor F (e.g. F = 10) the observations x̃1(n) and x̃i(n). As a consequence,
at the end of the iterative procedure, we ideally estimate ζim with an accuracy
of about F−I , where I is the above-defined number of iterations.

6 Experimental Results

We test the performance of both basic and improved methods described in Sect.
4 and 5, with 2 sets of N = 2 sources of English speech signals sampled at
20 kHz that we previously used in [4]. The performance achieved in each test
is measured by the overall output signal-to-interference-ratio achieved by this
system, denoted SIRout below [4], and the success rate, i.e. the percentage of
cases when estimated integer time shifts are exactly equal to theoretical ones [4].
We consider symmetrical mixing matrices defined as

A(ω) =
[

1 λe−jωη

λe−jωη 1

]
, λ = 0.5, 0.9 and η = 0, 10, 20, 200. (19)
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Our method uses TF transforms of observations twice, when resp. considering CF
and CT analysis zones. Therefore, we independently use two sets of parameters,
resp. associated to the above two types of analysis zones, i.e.

– We here denote d (resp. d′) the number of samples of observed signals xi(n)
in each time window of STFTs used in CF (resp. CT) analysis zones.

– ρ (resp. ρ′) is the temporal overlap between the time windows in the STFTs
used in CF (resp. CT) analysis zones.

All these parameters take the following values: d = 256, M = 10, ρ = 75%,
d′ = 2m, M ′ = 2m−7, 2m−6 or 2m−5, ρ′ = 50, 75 or 90% with m = 9 . . . 14. The
above-defined thresholds are fixed to ε1 = 0.15 and ε2 = 1.5e − 2 while the
number I of iterations, when used, for estimating time shifts is set to 1.
Figure 1(a) provides the inverse of the mean of the Frobenius norm of the

difference between the estimated and actual matrices of parameters bim, over
the sets of sources and the mixing parameter λ, with respect to the time shift
η and the clustering technique (the basic approach [5] without clustering is also
tested). This figure shows that Selective K-means and K-medians outperform all
other techniques. In particular, when η = 0, they provide estimates 100 times
more accurate than non-selective K-means and K-medians, i.e. which only test
(14). Lastly, Selective K-medians yields slightly better estimates than Selective
K-means for η �= 0. As a consequence, only this approach is tested below.
We showed [4] that our AD TF-BSS methods are mainly sensitive to the

number d′ of samples in STFTs computations. Figure 1(b) therefore shows the
mean performance obtained by the AD-TIFCORR method with both basic and
iterative methods for estimating μim, with respect to d′. This figure shows that
the proposed approach improves SIRout and success rates (above 90%) for the
lowest values of d′ (below 8192).

(a) (b)

Fig. 1. (a) Inverse of the mean Frobenius norm of the difference between estimated
and actual values of matrix [bim] vs applied time shift η. (b) Left: mean SIRout vs
STFT size d′. Right: mean success rate vs STFT size d′.
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We now test our Selective K-medians-based iterative AD-TIFCORR method
for non-integer-sample AD mixtures of the above sets of sources, with the fol-
lowing mixing parameters in (19): λ = 0.9 and η = 30.5. The parameters in
CF zones are the same as above and, for the sake of brevity, we fixed the CT
parameters to d′ = 2048,M ′ = 16 and ρ′ = 75%, and the oversampling factor to
F = 10. The proposed approach succeeded in estimating the mixing matrix with
both sets of sources: SIRout were then resp. equal to 48.7 and 37.9 dB, while
"Basic" AD-TIFCORR [5] yielded SIRout resp. equal to 12.3 and 10.5 dB.

7 Conclusion and Extensions

We introduced improvements for our previous AD TF-BSS methods based on
single-source analysis zones: we used the proposed Selective K-means or K-
medians clustering techniques for estimating scale coefficients and an iterative
method for estimating possibly non-integer time shifts. We presented various
aspects of the experimental performance of the approach, showing the rele-
vance of the proposed improvements. In our future investigations, we will aim at
performing a more detailed characterization of their performance, at studying
the underdetermined case and at extending our method to general convolutive
mixtures.
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Abstract. In the case of a determined linear instantaneous mixture, a
method to estimate non-stationnary sources with non activity periods is
proposed. The method is based on the assumption that speech signals
are inactive in some unknown temporal periods. Such silence periods
allow to estimate the rows of the demixing matrix by a new algorithm
called Direction Estimation of Separating Matrix (DESM). The periods
of sources inactivity are estimated by a generalised eigen decomposition
of covariance matrices of the mixtures, and the separating matrix is then
estimated by a kernel principal component analysis. Experiments are
provided with determined mixtures, and shown to be efficient.

1 Introduction

Blind source separation consists of estimating unknown signals (denoted sources)
from mixtures of them without prior knowledge neither about the nature of mix-
ing function nor about the sources. When involved sources have specific prop-
erties, the source separation can be based on them leading thus to semi-blind
source separation methods. For instance when speech signals are present among
the sources, non-stationarity [10,13], or sparse decomposition in a specific ba-
sis [17,1,2] have been exploited. In parallel, the bi-modal (audio-visual) nature of
speech was used [14,16,11,12]. Audiovisual speech source separation is based on
the strong links which exist between the sound produced by a speaker and visual
speech signals, in particular speaker’s lips movement: these methods exploit the
complementarity and the redundancy of these modalities.

The proposed method is based on the “sparsity” of speech signals. Indeed,
they are highly non-sationnary: there are a lot of lapses of time during which
the signal power is negligible compared its averaged power, for instance time
between words. The proposed method draws from [12] where the silent moments
of a speaker (estimated by a purely visual voice activity detection [3]) are used to
identify the function which allows to extract this specific speech signal. Even if
this audiovisual approach is efficient (even in the convolutive case), it requires a
specific device to record simultaneously audio and video signals by microphones
and camera, respectively. In the present study, the instantaneous mixing case is
addressed by a purely acoustic method which estimates jointly the voice non-
activity periods and the separation matrix.

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 314–321, 2009.
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This paper is organised as follows. Section 2 presents the proposed approach
to exploit the natural speech sparsity, while Section 3 describes DESM algorithm
to estimate sources. Numerical experiments and results are given in Section 4
before conclusions and perspectives in Section 5.

2 Exploitation of Natural Speech “Sparsity”

In this section, the general framework of source separation with instantaneous
mixture is recalled before introducing the proposed method to exploit the natural
sparsity of speech.

Let s(t) ∈ RNs denotes the Ns dimensional column vector of source signals
whose j-th component is sj(t). With instantaneous mixtures, observations xi(t)
are expressed as a linear combination of sources sj(t): xi(t) =

∑
j ai,jsj(t), or

with matrix notation
x(t) = A s(t), (1)

where A ∈ RNm×Ns denotes the mixing matrix whose (i, j)-th entry is ai,j and
x(t) ∈ RNm is the Nm dimensional column vector of the observations. In this
study, the determined case is considered: the number of mixtures Nm is so equal
to the number of sources Ns. The source estimation problem is then equivalent
to estimate a separating matrix B ∈ RNs×Ns such that

y(t) = B x(t) (2)

is a vector whose components are the estimate of sources si(t).
The independant component analysis (ICA) [6,4], which exploits the mutual

independance between the sources, was widely used to solve this problem. Re-
cently sparsity was introduced in source separation [8]. For instance, methods
proposed in [17,1,2] are based on the assumption that, in some basis, there ex-
ist some parts where at most one source is present at the time allowing thus
to estimate the mixing matrix. Indeed, if at time index τ , only source sn(τ) is
active (i.e., ∀i �= n, si(τ) = 0) then x(τ) = ansn(τ). In other words, mixtures
x(τ) are proportional to n-th column an of mixing matrix A. It is thus possible
to estimate all the columns of the mixing matrix, and to express the separating
matrix B as the inverse of the estimated mixing matrix.

The proposed method is quite different since it is based on the assumption
that there exist some time indexes where at least one source is inactive: i.e.
for t = τ, ∃n / sn(τ) = 0. Let suppose, in this section, that all the sources
are stationnary excepted one, let say s1(t) without any loose of generality. Let
R1 denotes the covariance matrix of observations x(t) computed for all time
indexes t, and let R2 denotes covariance matrix of observations computed dur-
ing an inactivity period of source s1(t). The proposed method is based on the
general eigenvalue decomposition of couple (R2, R1) [15]. It is easy to check that
(R2, R1) admits only two disctint generalised eigenvalues: 1 degenerated Ns − 1
times (whose eigensubspace E is a hyperplan complementary to a1), and 0 whose
generalised eigenvector v is orthogonal to E . Thus the projection of observations
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x(t) on generalised eigenvector v allows to extract source s1(t) by cancelling
the contribution of other sources: ∀i �= 1, vTai = 0, since ai for i �= 1 are in
hyperplan E .

This method allows first to detect if source s1(t) vanishes by testing gener-
alised eigenvalues and then to extract source s1(t) when it is active by projecting
the observations on the generalised eigenvector associated with the generalised
eigenvalue equal to zero.

3 DESM Algorithm

In the previous section, only one source was considered to be non-stationnary
with non active periods. However, several sources can be non active (possibly
in different periods): for instance if the mixtures contain several speech sources.
Moreover, the inactivity periods are unknown. In this section, the proposed Di-
rection Estimation of Separating Matrix (DESM) algorithm is presented: it ex-
tends the previously proposed method (Section 2) to extract from the mixture
all the sources with non active periods.

To detect time periods where at least one source is non active, we proposed
to compute the generalised decomposition of couple {(R2(τ), R1)}τ where R1
is the covariance matrix of observations x(t) estimated with all time samples
and R2(τ) is the covariance of observations x(t) estimated on windowed samples
around τ (typically, this window is about 100 milliseconds). The generalised
eigen decompositions of {(R2(τ), R1)}τ provide

R2(τ)Φ(τ) = R1 Φ(τ)Λ(τ), (3)

where Λ(τ) is a diagonal matrix whose diagonal terms λ1(τ) ≤ · · · ≤ λNs(τ) are
the generalised eigenvalues and Φ(τ) is an orthonormal matrix whose columns
φi(τ) are the generalised eigenvectors. Thus at τ time, if N sources are inactive
thenN generalised eigenvalues are null whose associated generalised eigenvectors
defined a subspace orthogonal to the subspace spanned by the Ns − N active
sources.

The proposed DESM algorithm can thus be decomposed in two steps:

1. the first one is to detect the periods where at least one source is inactive
by testing the generalised eigenvalues {λ1(τ)}τ : if λ1(τ) ≤ η, where η is a
threshold chosen a priori, then the algorithm decides that at least one source
was inactive during time window centred on τ . Let Θ = {τ | λ1(τ) ≤ η} be
the set of time indexes where at least one source is inactive (the cardinal of
Θ is Nτ ). This provides a set of vectors {φ1(τ)}τ∈Θ defined as the set of the
first generalised eigenvector with τ ∈ Θ. These vectors are mainly aligned in
the directions which allows to extract corresponding sources (Fig. 2). These
direction are the rows of the separating matrix.

2. then the DESM algorithm estimates these directions thanks to a kernel prin-
cipal component analysis (kernel PCA) [9,7], where the kernel is chosen as
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k
(
φ1(t), φ1(t′)

)
= kt,t′

	
=

{
φT

1 (t)φ1(t′)−cos θ0
1−cos θ0

, if φT1 (t)φ1(t′) ≥ cos θ0
0, else

(4)

with t and t′ in Θ, and where θ0 is an angle which is chosen a priori. Kernel
PCA consists in performing an eigen decomposition of matrix K ∈ RNτ×Nτ

whose (i, j)-th entry is ki,j :

K = ΨΔΨT , (5)

where Δ is a diagonal matrix of eigenvalues of K, and Ψ is an orthonormal
matrix whose columns are eigenvectors of K. Let W = [ψ1, · · · , ψNs ] be the
matrix composed by the concatenation of Ns eigenvectors ψi associated with
the Ns largest eigenvalues.

The separation matrix is then obtained by

B =WT K V, (6)

where V = [φ1(t ∈ Θ)] is the matrix obtained by the concatenation of generalised
eigenvector associated with the smallest generalised eigenvalue λ1(t) (3) with
t ∈ Θ. The sources are finally estimated thanks to

ŝ(t) = Bx(t), (7)

for all time indexes t, including those when sources are active.
Finally, DESM algorithm which allows to extract non-stationnary sources with

inactive periods, is summarised in Algorithm 1.

Algorithm 1. DESM algorithm
1: Compute covariance matrix R1 from all time samples
2: for each τ do
3: Compute covariance matrix R2(τ ) with time window centred on τ
4: Compute generalised eigen decomposition (3) of couple (R2(τ ),R1)

⇒ (Φ(τ ), Λ(τ ))
5: end for
6: Estimate Θ = {τ | λ1(τ ) ≤ η}
7: Compute matrix K defined by (4)
8: Perform eigen decomposition (5) of K ⇒ (Ψ, Δ)
9: Compute W = [ψ1, · · · , ψNs ] and V = [φ1(t ∈ Θ)]

10: Compute B = W T K V (6)
11: Estimate sources by ŝ(t) = Bx(t)

Note that using generalised eigenvalues of couple (R1, R2(τ)) in stage 4, in-
stead of using simple eigenvalues of R2(τ), overcomes the problem of relative
power of sources. In particular when some of the sources are definitely less pow-
erful than others, using eigenvalues can lead to consider that these sources are
inactive.
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4 Numerical Experiments

In this section, the principle of the proposed DESM algorithm is illustrated to
extract speech signals from linear instantaneous mixtures of audio sources (i.e.
speech and musical sources). The sources are from two databases: the first one is
composed of 18 French sentences read by French speakers (males and females),
the second one is composed of music signals. All signals were sampled at 16kHz.
In the different tested configurations, the sources are randomly chosen and the
entries of the mixing matrix are randomly chosen from a uniform random variable
distributed from -1 to 1. For each configuration (i.e. for each number of sources)
100 different mixtures were tested.

In the first experiment, the extraction of two speech signals from three mix-
tures is illustrated (Fig. 3). One of the source is thus a musical signal without
inactive periods, the second in this example. First of all, the estimation of non-
activity periods thanks to generalised eigen decomposition is illustrated on Fig. 1.
As one can see on the top plot, which represents the power of the three sources
computed with a time-sliding window of 100ms, the two speech sources have
(possibly overlapped) non-activity periods while the musical source has its short
term power almost constant. It is quite interesting to note that the smallest gen-
eralised eigenvalue λ1(t) (bottom plot) allows to detect these inactivity periods,
without labbeling which speech signals are inactive. Moreover, generalised eigen-
vectors φ1(t) (Fig. 2) are mainly in two directions corresponding to the rows of
the separating matrix that extract the two speech signals. Fig. 3 shows that the
proposed DESM algorithm is efficient to extract speech signals (ŝ1(t) et ŝ2(t)).
Moreover, the third estimated source is still a mixture of the three sources since
kernel PCA of matrix K1 only presents two significant eigenvalues. More gener-
aly, the number of significant eigenvalues of matrix K1 could be used to estimate
the number of speech sources to only extract these sources.
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Fig. 1. Estimation of non-activity periods thanks to DESM algorithm. Top figure shows
the power of the three sources on a time-sliding window of 100ms (blue, green and red
curves for the 1st, 2nd and 3rd source, respectively). Bottom figure shows the smallest
generalised eigenvalue (3) λ1(τ ) (blue curve) as well as chosen threshold η (red dotted
curve). Plots are in logarithm scale.
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Fig. 2. Estimation of separating matrix B (6) thanks to DESM algorithm with three
sources. Projections of estimated rows (red curves) and generalised eigenvectors φ1(t)
with t ∈ Θ (blue points) on (x1, x2), (x2, x3) et (x1, x3). Generalised eigenvectors are
multiplied by 1/λ1(t).
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Fig. 3. Illustration of DESM algorithm

In the second experiment (Fig. 4), the performance of the proposed algorithm
was estimated. To evaluate the estimation of the rows of the separating matrix,
we use the performance index defined as

PI =
∑
i∈S

∑
j

∣∣∣∣∣ Ci,j

maxk
∣∣Ci,k∣∣

∣∣∣∣∣− 1, with C = BA, (8)

where S denotes the set of speech sources. So the smaller the performance index
is, the better the extraction is. In these experiments, only two sources are speech
sources, all the other sources are musical signal. Figure 4 shows the median
performance index versus the number of sources. The performance achieved by
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the proposed DESM algorithm are compared with the performance provided
by the JADE algorithm [5]. As one can see, the DESM algorithm compares
favourably with the JADE algorithm, even with numerous sources.

5 Conclusions and Perspectives

In this paper, a new algorithm denoted DESM (Direction Estimation of Sepa-
rating Matrix) is proposed to extract the sources with non active periods from
a linear instantaneous mixture. The detection of these inactive periods allows to
estimate the separating matrix which is then used to extract these sources when
they are active. The proposed algorithm was tested with different configurations
and shown to be efficient at a low computational cost. Even if in this study,
the purpose was to extract speech sources, the DESM algorithm can be used
in a more general context (i.e. to extract any “sparse” sources). In perspective,
this methods could be used with convolutive mixtures in the frequency domain.
However, this leads to the classical permutation problem [4] which could be fixed
by one of the numerous methods proposed in the literature.
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17. Yilmaz, Ö., Rickard, S.: Blind Separation of Speech Mixtures via Time-Frequency
Masking. IEEE Transactions on Signal Processing 52(7), 1830–1847 (2004)



Blind Separation of Noisy Mixtures of
Non-stationary Sources Using Spectral

Decorrelation

Hicham Saylani1,2, Shahram Hosseini1, and Yannick Deville1

1 Laboratoire d’Astrophysique de Toulouse-Tarbes
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Abstract. In this paper, we propose a new approach for blind sepa-
ration of noisy, over-determined, linear instantaneous mixtures of non-
stationary sources. This approach is an extension of a new method based
on spectral decorrelation that we have recently proposed. Contrary to
classical second-order blind source separation (BSS) algorithms, our pro-
posed approach only requires the non-stationary sources and the station-
ary noise signals to be instantaneously mutually uncorrelated. Thanks to
this assumption, it works even if the noise signals are auto-correlated.
The simulation results show the much better performance of our ap-
proach in comparison to some classical BSS algorithms.

1 Introduction

This paper deals with blind separation of noisy, over-determined, linear instanta-
neous mixtures of non-stationary sources, in the frequency domain. We therefore
considerM noisy mixtures xi(t) (i = 1, ...,M) ofN real, non-stationary, discrete-
time sources sj(t) (j = 1, ..., N), N < M , described by the following equation

x(t) = As(t) + n(t), (1)

where A is a real mixing matrix, of dimensionM×N , and x(t) = [x1(t), x2(t), ...,
xM (t)]T , s(t) = [s1(t), s2(t), ..., sN (t)]T and n(t) = [n1(t), n2(t), ..., nM (t)]T are
respectively the observation, source and noise vectors, where T stands for trans-
pose. Blind Source Separation (BSS) aims at estimating the pseudo-inverse of
the matrix A, denoted by A+, provided that the mixing matrix A is of full rank
(equal to N). The BSS approaches based on Independent Component Analysis
(ICA) and dealing with noisy mixtures may be split into two principal classes:

1. The approaches based on higher-order statistics assuming that the sources
sj(t) are stationary (possibly auto-correlated), mutually independent and

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 322–329, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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independent from noise signals ni(t) which are supposed to be stationary,
Gaussian, zero-mean, with the same variance σ2 and such that (see Chapter
15 of [1])

∀ (i, j) ∈ [1,M ]2, ∀ t, E [ni(t)nj(t)] = δ(i− j)σ2, (2)

where δ(.) represents the Kronecker delta.
2. Second-order approaches (e.g. [2],[3],[4]), assuming that

– The sources sj(t) are zero-mean, non-stationary “and/or” auto-correlated,
mutually uncorrelated i.e.

∀ (i, j) ∈ [1, N ]2, i �= j, ∀ t, τ, E [si(t)sj(t− τ)] = 0, (3)

and uncorrelated to ni(t) i.e.

∀ (i, j) ∈ [1,M ]× [1, N ], ∀ t, τ, E [ni(t)sj(t− τ)] = 0. (4)

– The noise signals ni(t) are stationary, zero-mean, with the same variance
σ2, mutually uncorrelated and temporally uncorrelated i.e.

∀ (i, j) ∈ [1,M ]2, ∀ t, τ, E [ni(t)nj(t− τ)] = δ(i− j)δ(τ)σ2. (5)

The approach proposed in this paper is also a second-order approach but con-
trary to classical second-order methods mentioned above, it only requires the
non-stationary sources sj(t) and the stationary noises ni(t) to be instanta-
neously mutually uncorrelated. Due to this assumption, it works even if the
noise signals ni(t) are auto-correlated. In other words, we only require Con-
ditions (3), (4) and (5) to be met for τ = 0 which is a much less restrictive
assumption. This frequency-domain approach is an extension, to noisy mixtures
and to a more general class of source signals, of a new method based on spec-
tral decorrelation that we have recently proposed [5],[6]. A review of that basic
method is presented in Section 2. In Section 3, we then describe the extensions
proposed in this new work. Simulation results are presented in Section 4, before
we conclude in Section 5.

2 Spectral Decorrelation Method

We recently proposed a new BSS method for separating non-stationary, tem-
porally uncorrelated, mutually uncorrelated, real sources [5],[6]. This method ex-
ploits some interesting properties of random signals in the frequency domain and
is based on the following theorem.

Theorem 1. If u(t) is a temporally uncorrelated, real, zero-mean random signal
with a (possibly non-stationary) variance γ(t), i.e. E [u(t1)u(t2)] = γ(t1)δ(t1 −
t2), then its Fourier transform1 U(ω) is a wide-sense stationary process with
autocorrelation Γ (ν) which is the Fourier transform of γ(t), i.e.2

1 The Fourier transform of a discrete-time stochastic process u(t) is a stochastic pro-
cess U(ω) defined by U(ω) =

∑∞
t=−∞ u(t)e−jωt [7].

2 In the following ∗ stands for conjugate and T for Hermitian transpose.
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E [U(ω)U∗(ω − ν)] = Γ (ν) =
+∞∑

t=−∞
γ(t) e−jνt. (6)

Moreover, if u(t) is non-stationary with respect to its variance, i.e. if γ(t) is not
constant, then the process U(ω) is auto-correlated.

In [5],[6] we studied the case of a determined and noiseless mixture (M = N and
n(t) = 0). By mapping the mixtures in the frequency domain, we can write

X(ω) = AS(ω), (7)

where S(ω)= [S1(ω), S2(ω), · · · , SN (ω)]T , X(ω)= [X1(ω), X2(ω), · · · , XN (ω)]T ;
Sj(ω) and Xi(ω), (i, j) ∈ [1, N ]2, are respectively the Fourier transforms of sj(t)
and xi(t). Thus, the frequency-domain observations Xi(ω) are linear instan-
taneous mixtures of the frequency-domain sources Sj(ω). If the real temporal
sources sj(t) are non-stationary, temporally uncorrelated and mutually uncorre-
lated, then

1. following Theorem 1, the frequency-domain sources Sj(ω) are wide-sense
stationary and auto-correlated in the frequency domain,

2. since the property of mutual uncorrelatedness of random signals is kept af-
ter computing their Fourier transforms [5],[6], the frequency-domain sources
Sj(ω) are mutually uncorrelated.

Many algorithms have been proposed for separating mixtures of time-domain
wide-sense stationary, time-correlated processes (for example AMUSE [2] and
SOBI [3]) and nothing prohibits us from applying them to frequency-domain
wide-sense stationary, frequency-correlated processes. For example, a simple al-
gorithm proposed in [5],[6], which may be considered as a modified version of the
AMUSE algorithm in the frequency domain, consists (in the determined case)
in diagonalizing the matrix

(
E

[
X(ω)XH(ω)

])−1
E

[
X(ω)XH(ω − ν)] for some

frequency shift ν meeting the following identifiability condition

E [Si(ω)S∗i (ω − ν)]
E [|Si(ω)|2] �= E

[
Sj(ω)S∗j (ω − ν)

]
E [|Sj(ω)|2] , ∀ i �= j. (8)

Hence, the separating matrix A−1 is identifiable if and only if the temporal
source signals have different normalized variance profiles [5],[6].

Contrary to time-domain classical statistical BSS methods based on non-
stationarity of the signals, piecewise stationarity is not required for our above
frequency-domain method. However, the temporal uncorrelatedness assumption
made in Theorem 1 is too restrictive because a great number of real-world sources
are auto-correlated, that is why in [6] we proposed a solution to cope with this
problem and to apply the method when the non-stationary sources are auto-
correlated. Nevertheless, in [6], like in our previous works [5], we considered
determined noiseless mixtures and we supposed that the sources were mutually
uncorrelated i.e. that Condition (3) was true for all τ . The approach proposed
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in the following section is an extension of the above method to noisy over-
determined mixtures of non-stationary (possibly auto-correlated) sources with
less restrictive hypotheses about mutual correlation of source and noise signals
than our previous methods and classical BSS algorithms.

3 Proposed Approach

The new approach introduced in this paper is based on the following theorem and
can be applied for separating over-determined noisy mixtures of non-stationary
(possibly auto-correlated) sources having different normalized variance profiles
when Conditions (3), (4) and (5) are met only for τ = 0.

Theorem 2. Let up(t) (p = 1, ...,N ) be N real, zero-mean and instantaneously
mutually uncorrelated random signals i.e.

∀ (p, q) ∈ [1,N ]2, p �= q, ∀ t, E [up(t)uq(t)] = 0. (9)

Suppose g(t) is a real, zero-mean, stationary, temporally uncorrelated random
signal, independent from all signals up(t). Then, the signals u′p(t) defined by
u′p(t) = g(t)up(t) are real, zero-mean, temporally uncorrelated and mutu-
ally uncorrelated. Moreover, each new signal u′p(t) has the same normalized
variance profile as the original signal up(t).

Proof: See Appendix.

Therefore, by multiplying Equation (1) by a random signal g(t), which meets the
conditions of Theorem 2 (with respect to all signals sj(t) and ni(t)) and which
has a variance σ2

g , we obtain

x′(t) = As′(t) + n′(t) (10)

where x′(t) = g(t)x(t), s′(t) = g(t)s(t) and n′(t) = g(t)n(t). We assume non-
stationary sources sj(t) and stationary noise signals ni(t), all of them being
real, zero-mean and mutually instantaneously uncorrelated. Thanks to Theorem
2, the new sources s′j(t) = g(t)sj(t) are non-stationary, the new noise signals
n′i(t) = g(t)ni(t) are stationary, and all of them are temporally and mutually
uncorrelated, that is for all t and τ :⎧⎪⎪⎪⎨⎪⎪⎪⎩

E
[
s′(t)s′T (t− τ)

]
is diagonal

E
[
n′(t)n′T (t− τ)

]
= σ′2IMδ(τ)

E
[
n′(t)s′T (t− τ)

]
=

(
E

[
s′(t)n′T (t− τ)

])T
= 0MN

(11)

where σ′2 = σ2σ2
g is the variance of each noise signal n′i(t), IM is the M -

dimensional identity matrix and 0MN is the M × N null matrix. Moreover,
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by mapping the new mixture of Equation (10) in the frequency domain and de-
noting X ′i(ω), S′j(ω) and N ′i(ω) respectively the Fourier transforms of the signals
x′i(t) = g(t)xi(t), s′j(t) and n′i(t) we can write

X′(ω) = AS′(ω) + N′(ω) (12)

where X′(ω) = [X ′1(ω), X ′2(ω), ..., X ′M (ω)]T , S′(ω) = [S′1(ω), S′2(ω), ..., S′N (ω)]T

and N′(ω) = [N ′1(ω), N ′2(ω), ..., N ′M (ω)]T . Since the Fourier transform keeps
the property of mutual uncorrelatedness, following (11), the covariance ma-
trices E

[
S′(ω)S′H(ω − ν)

]
and E

[
N′(ω)N′H(ω − ν)

]
are also diagonal, and

E
[
S′(ω)N′H(ω − ν)

]
and E

[
N′(ω)S′H(ω − ν)

]
are null matrices whatever the

frequency shift ν. According to Theorem 1, since non-stationary sources s′j(t)
and stationary noise signals n′i(t) are real, zero-mean and temporally uncorre-
lated, then the frequency-domain sources S′j(ω) are wide-sense stationary and
auto-correlated, and the signals N ′i(ω) are wide-sense stationary and spectrally
uncorrelated. Using (12) we can write :

RX′(ν) = E
[
X′(ω)X′H(ω − ν)

]
(13)

= AE
[
S′(ω)S′H(ω − ν)

]
AH + E

[
N′(ω)N′H(ω − ν)

]
(14)

= ARS′(ν)AH + E
[
N′(ω)N′H(ω − ν)

]
. (15)

Moreover, following Theorem 1

∀ i, E [
N ′i(ω)N ′∗i (ω − ν)

]
=

+∞∑
t=−∞

σ′2 e−jνt = 2πσ′2
+∞∑

k=−∞
δ(ν − 2kπ) (16)

where δ represents the Dirac delta. According to this result, the covariance of
the Fourier Transform of each noise signal n′i(t) is equal to infinity at ν = 2kπ.
In practice, however, we compute the Discrete Fourier Transform (DFT) of the
signals over a finite number of samples. As a result, at ν = 2kπ the covariance
E

[
N ′i(ω)N ′∗i (ω − ν)

]
has a finite value, denoted by 2πη in the following, which

depends on the number of samples. The matrix E
[
N′(ω)N′H(ω − ν)

]
being

diagonal, Eq. (15) reads in practice (up to estimation errors)

RX′ (ν) =
{

ARS′(ν)AH + 2πηIM for ν = 2kπ
ARS′(ν)AH for ν �= 2kπ (17)

Since the frequency-domain sources S′j(ω) are wide-sense stationary and auto-
correlated, Eq. (17) may be used to estimate the separating matrix A+ using
one of the algorithms exploiting autocorrelation of source signals, for example
AMUSE [2] or SOBI [3], but in the frequency domain. For example, using the
SOBI algorithm in the frequency domain, called SOBI-F in the following, an
estimate of the separating matrix A+, denoted Â+, may be obtained by

Â+ = ({UHW}, (18)
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where W is a whitening matrix of dimension N ×M , obtained by eigenvalue
decomposition of the matrix R̂X′(0), and U is a unitary matrix obtained by si-
multaneous diagonalization of several covariance matrices R̂Z′(νp) (p = 1, 2, ...),
where Z′(ω) = WX′(ω). Because of working in the frequency domain, the matrix
UHW may be complex, that is why Â+ is equal to the real part of this matrix
(see [5],[6] for more details). Once the separating matrix Â+ has been estimated,
a noisy estimate of the source vector s(t), denoted ŝn(t), can be obtained using
Equation (1) as follows (ignoring permutation and scale indeterminacies)

ŝn(t) = Â+x(t) (19)

= Â+As(t) + Â+n(t) (20)

) s(t) + Â+n(t) (21)

4 Simulation Results

We consider three mixtures of two unit-power 20000-sample speech signals,
mixed by the following mixing matrix

A =

⎛⎝ 1 0.9
0.8 1
0.5 0.9

⎞⎠ . (22)

We compare the performance of our method with those of AMUSE [2], SOBI [3]
and SONS [4]. The components of the additive noise vector n(t) are Gaussian
with cross-correlation matrix Rn(0) = E[n(t)nT (t)] = σ2I3. We consider both
white and colored noise signals. These colored noises are derived from white
signals using 32th order FIR filters. In both cases, 10 log10(1/σ

2) = 10dB. The
signal g(t) mentioned in Theorem 2 is an i.i.d. uniformly distributed real and
zero-mean signal. The results are reported below with and without multiplication
of the observations by this signal g(t). The separation performance for each
source sj(t) is measured using the performance index, defined by

∀ j ∈ [1, N ], Ij = maxi10 log10

(
b2ij∑k �=j

k∈[1,N ] b
2
ik

)
, (23)

where bij , (i, j) ∈ [1, N ]2, are the entries of the N-dimensional square matrix
B = Â+A, called the performance matrix. The global separation performance
for N sources is then measured by the global performance index, defined by

I =

⎛⎝ N∑
j=1

Ij
⎞⎠ /N. (24)
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Our SOBI-F algorithm as well as the SOBI and SONS algorithms are tested by
simultaneously diagonalizing 4 covariance matrices. For the SONS algorithm,
these matrices are estimated over 200-sample frames3. The results with and
without an additive noise vector n(t) are reported in Table 1.

Table 1. Global performance index I in dB obtained in our simulations

Algorithm AMUSE SOBI SONS SOBI-F without g(t) SOBI-F with g(t)
I (dB), n(t) = 0 33.0 28.2 40.3 39.7 64.3
I (dB), white n(t) 9.8 17.3 31.8 33.9 51.6
I (dB), colored n(t) 1.7 1.9 21.1 31.0 51.7

This table deserves the following comments:

– Noiseless mixtures: without multiplying the observations by the signal
g(t), our SOBI-F algorithm has nearly the same performance as SONS and
outperforms the other two methods. With multiplication by g(t), it is much
more efficient than the other algorithms.

– Noisy mixtures: our algorithm is more efficient than the other algorithms
in all cases, and much better when using multiplication by g(t).

– The SONS algorithm is more efficient than AMUSE and SOBI, and contrary
to these two algorithms, it is rather robust to non-whiteness of additive noise.

– Without multiplication by g(t), our algorithm is slightly less efficient with
colored noise than with white noise. This result is not surprising because
the Fourier transforms of the colored noises ni(t) are not stationary. It can
be seen however that the difference is not significant. Using multiplication
by g(t), our algorithm has the same performance with colored noise as with
white noise. That is because in the two cases, after multiplication by g(t),
the new noise signals n′i(t) are white.

5 Conclusion and Perspectives

In this paper, we proposed a new BSS approach for over-determined noisy mix-
tures of non-stationary sources, based on spectral decorrelation method. Our
assumptions about source and noise signals are much less restrictive than those
made by classical BSS methods. Our simulations confirmed the better perfor-
mance of our approach using SOBI-F algorithm compared to three classical
algorithms (AMUSE, SOBI and SONS ) for separating speech signals especially
with colored noise. More tests using other source and noise signals being only
instantaneously mutually uncorrelated and a statistical performance test seem
however necessary and will be done in the future.

3 The SONS algorithm [4] exploits both autocorrelation and non-stationarity of the
source signals assuming that they are piecewise stationary.
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Appendix: Proof of Theorem 2

Denote u(t) = [u1(t), u2(t), ..., uN (t)]T and u′(t) = g(t)u(t).

1. Since g(t) is independent from all the zero-mean signals up(t), we can write

∀ p ∈ [1,N ], E
[
u′p(t)

]
= E [g(t)up(t)] = E [g(t)]E [up(t)] = 0. (25)

Hence, the new signals u′p(t) (p = 1, ...,N ) are also zero-mean.
2. Whatever the times t1 and t2, we have

E
[
u′(t1)u′(t2)T

]
= E

[
g(t1)g(t2)u(t1)u(t2)T

]
. (26)

The independence of g(t) from all the signals up(t) yields

E
[
u′(t1)u′(t2)T

]
= E [g(t1)g(t2)]E

[
u(t1)u(t2)T

]
, (27)

and since g(t) is zero-mean, stationary and temporally uncorrelated

E
[
u′(t1)u′(t2)T

]
= σ2

gδ(t1 − t2)E
[
u(t1)u(t1)T

]
(28)

where σ2
g is the variance of g(t). The signals up(t) being zero-mean and

instantaneously mutually uncorrelated, the matrices E
[
u(t1)u(t1)T

]
and so

E
[
u′(t1)u′(t2)T

]
are diagonal. As a result, the new zero-mean signals u′p(t)

are mutually uncorrelated. Moreover, according to Eq. (28), the diagonal
entries of the matrix E

[
u′(t1)u′(t2)T

]
can be written as

E
[
u′p(t1)u

′
p(t2)

]
=σ2

gδ(t1−t2)E [up(t1)up(t1)]=σ2
gδ(t1−t2)E

[
u2
p(t1)

]
. (29)

Hence, the new signals u′p(t) are temporally uncorrelated. Furthermore, by
choosing t1 = t2 = t, Eq. (29) becomes E

[
u′2p (t)

]
= σ2

gE
[
u2
p(t)

]
which means

that the new signals u′p(t) have the same normalized variance profiles as the
original signals up(t).
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Abstract. In this paper we present a probabilistic algorithm which fac-
torizes non-negative data. We employ entropic priors to additionally sat-
isfy that user specified pairs of factors in this model will have their cross
entropy maximized or minimized. These priors allow us to construct fac-
torization algorithms that result in maximally statistically different fac-
tors, something that generic non-negative factorization algorithms cannot
explicitly guarantee. We further show how this approach can be used to
discover clusters of factors which allow a richer description of data while
still effectively performing a low rank analysis.

1 Introduction

With the recent interest in non-negative factorization algorithms we have seen
a rich variety of algorithms that can perform this task for a wide range of ap-
plications using various models. Empirically it has been observed that the non-
negativity constraint in conjunction with the information bottleneck that such
a low-rank factorization imposes, often results in data which is often interpreted
as somewhat independent. Although this is approximately and qualitatively a
correct observation, it is not something that is explicitly enforced in such algo-
rithms and thus more a result of good fortune than planning. Nevertheless this
property has proven to be a primary reason for the continued interest in such
factorization algorithms. The task of finding independence in non-negative data
has been explicitly tackled in the past using non-negative ICA and PCA algo-
rithms [1,2] but such models have not been as easy to manipulate and extend as
non-negative factorization models, which resulted in a diminished use of explicit
independence optimization for non-negative data.

In this paper we present a non-negative factorization approach that explic-
itly manipulates the statistical relationships between the estimated factors. We
recast the task of non-negative factorization as a probabilistic latent variable de-
composition on count/histogram data. Using this abstraction we treat the input
data as a multidimensional probability distribution and estimate an additive set
of marginal distributions which would approximate it. This approach allows us
� Work performed while at Adobe Systems Inc.

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 330–337, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Probabilistic Factorization of Non-negative Data 331

to implicitly satisfy the non-negativity constraint (due to the fact that we esti-
mate the factors as distributions), and at the same time allows for a convenient
handle on statistical manipulations. As shown in [3] this approach allows us to
use probabilistic approaches to matrix factorization problems and is implicitly
tied to a lot of recent work on decompositions and factorizations. In this paper
we extend the original PLCA model [4], so that we can manipulate the cross
entropy between the estimated marginals. This allows us to extract marginal
distributions which are pairwise either similar or dissimilar. We also show how
this approach can help in constructing more sophisticated analysis structures by
enforcing the creation of related cliques of factors.

2 The PLCA Model

Probabilistic Latent Component Analysis (PLCA) decomposes a multidimen-
sional distribution as a mixture of latent components where each component
is given by the product of one-dimensional marginal distributions. Although we
will proceed by formulating the PLCA model using a two-dimensional input, this
can be easily extended to inputs of arbitrary dimensions which can be seen as
non-negative tensors. A given two-dimensional data matrix V is modeled as the
histogram of repeated draws from an underlying two-dimensional distribution
P (x1, x2). PLCA factorizes this distribution and is formulated as

P (x1, x2) =
∑
z∈Z

P (z)P (x1|z)P (x2|z), (1)

where z is a latent variable that indexes the latent components and takes values
from the set Z = {z1, z2, . . . , zK}. Given V, parameters can be estimated by
using the EM algorithm. Maximizing the expected complete data log-likelihood
given by

L =
∑
x1,x2

Vx1,x2

∑
z

P (z|x1, x2) log
[
P (z)P (x1|z)P (x2|z)

]
(2)

yields the following iterative update equations:

P (z|x1, x2) =
P (z)P (x1|z)P (x2|z)∑
z∈Z P (z)P (x1|z)P (x2|z) (3)

P (x1|z) =

∑
x2
Vx1,x2P (z|x1, x2)∑

x1,x2
Vx1,x2P (z|x1, x2)

P (x2|z) =

∑
x1
Vx1,x2P (z|x1, x2)∑

x1,x2
Vx1,x2P (z|x1, x2)

P (z) =

∑
x1,x2

Vx1,x2P (z|x1, x2)∑
z,x1,x2

Vx1,x2P (z|x1, x2)
, (4)

where equation (3) represents the Expectation step and equations (4) represents
the Maximization step of the EM algorithm. As shown in [4], the above formu-
lation can be expressed as a matrix factorization, where P (x1, x2) represents a
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non-negative matrix and P (x1|z) and P (x2|z) are the factors along each of the
input’s dimensions.

3 Imposing Cross-Factor Constraints

In this section we describe how we can manipulate a statistical relationship
between two arbitrary sets of marginal distributions in our model. For simplicity
we will manipulate the relationship between two sets of marginals as observed
along the dimension of x1. Extending this to other or more dimensions is a trivial
extension of the following formulation.

Let the two sets of latent variables be represented by Z1 and Z2 where
Z1 ∪Z2 ⊆ Z . To impose our desired constraint, we need to make P (x1|z1) and
P (x1|z2) similar or dissimilar from each other. We can achieve this by modifying
the cost function of equation (2) by appending a metric that corresponds to
the dissimilarity between the distributions. During estimation, maximizing or
minimizing that cost function will result in biasing the estimation towards the
desired outcome. One measure we can use to describe the similarity between
two distributions is the cross entropy. For two distributions qzi = P (x1|zi) and
qzk

= P (x1|zk), cross entropy is given by

H(qzi ,qzk
) = −

∑
x1

P (x1|zi) logP (x1|zk). (5)

Appending to the log-likelihood L cross-entropies H(qzi ,qzk
) and H(qzk

,qzi)
for all zi ∈ Z1 and zk ∈ Z2, we obtain the new cost function as1

Q = L+ α
∑

i|zi∈Z1

∑
k|zk∈Z2

(H(qzi ,qzk
) +H(qzk

,qzi))

= L − α
∑

i|zi∈Z1

∑
k|zk∈Z2

∑
t

P (x1|zk) logP (x1|zi)

−α
∑

i|zi∈Z1

∑
k|zk∈Z2

∑
t

P (x1|zi) logP (x1|zk)

where α is a tunable parameter that controls the extent of regularization. We use
the EM algorithm again to estimate all the parameters. The E-step remains the
same as given by the equation (3). Since the terms appended to L in the new cost
function does not involve P (f |z) or P (z), the update equations for them remain
the same as given by equations (4). Consider the estimation of qzi = P (x1|zi)
for a given value of i. Adding a Lagrange multiplier term and differentiating the
new cost function with respect to P (x1|zi) and setting it to 0, we obtain∑

x2
Vx1,x2P (zi|x1, x2)− α

∑
zk
P (x1|zk)

P (x1|zi) − α
∑
zk

logP (x1|zk) + λ = 0 (6)

1 This cost function is equivalent to the log-posterior obtained in a MAP formulation
where the exponential of cross-entropy is used as a prior. The prior is given by
P (qz1 ,qz2) ∝ eαH(qz1 ,qz2 )eαH(qz2 ,qz1 ) where z1 ∈ Z1 and z2 ∈ Z2.
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which implies that∑
x2

Vx1,x2P (zi|x1, x2)− α
∑
zk

P (x1|zk) = P (x1|zi)
(
α
∑
zk

logP (x1|zk)− λ
)
,

where λ is the Lagrange multiplier. Treating the term logP (x1|zk) as a constant
and utilizing the fact that

∑
x1
P (x1|zi) = 1, we can sum the above equation

with respect to x1 to obtain∑
x1

∑
x2

Vx1,x2P (zi|x1, x2)− α
∑
x1

∑
zk

P (x1|zk) = α
∑
zk

logP (x1|zk)− λ.

Utilizing this result in equation (6), we obtain the update equation as2

P (x1|zi) =

∑
x2
Vx1,x2P (zi|x1, x2)− α

∑
zk
P (x1|zk)∑

x2

∑
x1
Vx1,x2P (zi|x1, x2)− α

∑
x1

∑
zk
P (x1|zk) (7)

Since P (x1|zk) is treated as a constant during the estimation of P (x1|zi) (and
similarly P (x1|zi) treated as a constant while estimating P (x1|zk)), the updates
for P (x1|zi) and P (x1|zk) should be alternated between iterations. The above
update equation works well when we attempt to perform minimization of the
cross-entropy between marginals. It does however present a problem when we
attempt to perform cross-entropy maximization while attempting to produce
maximally different marginal distributions. To do so we would use a positive α
which can potentially result in the outcome of equation 7 to be negative-valued.
This is of course an inappropriate estimate for a distribution and would violate
its implicit non-negative nature. The easiest way to deal with this problem is
to discard any negative valued estimates and replace them with zeroes. In other
experiments, more rigorously motivated approaches such as those employed in
discriminative training methods [6], which prevent negative probability estimates
by employing additive correction terms were observed to result in no apprecia-
ble difference in estimates. Finally we note that the estimation equations as
presented can be very effective in imposing the cross-entropy prior, sometimes
counteracting the fit to the data. In practical situations we found it best to
progressively reduce the weight of the prior across the EM iterations.

Examples of cross entropy manipulation: To show the performance of the
above estimation rules let us consider a simple non-negative factorization prob-
lem. As the input we use the magnitude spectrogram of a drums recording shown
in figure 1. In this input we can clearly see the different types of drums in the
mixture aided by their distinct spectral and temporal profiles. A factorization
algorithm is expected to be able to distinguish between the various drum sounds

2 When α is positive, the update equation for P (x1|zi) can also be derived as follows.
We construct a lower bound Q′ for Q by removing all the H(qzi ,qzk) terms from Q.
Since Q′ ≤ Q, we can estimate parameters by maximizing Q′ instead of maximizing
Q. Adding a lagrangian to Q′ and taking derivatives w.r.t. P (xi|zi), it can be easily
shown that the resulting update equation is given by equation (7).



334 P. Smaragdis et al.

for the same reasons. We performed the analysis using the same starting con-
ditions but imposing a cross-entropy prior on the marginals corresponding to
the time axis. The results of these analyses are shown in figure 2. The top row
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Fig. 1. The drums recording spectrogram we used as an input for the examples in
this paper. In it one can clearly see each instrument and a factorization algorithm
is expected to discover individual instruments by taking advantage of their distinct
spectral and temporal positioning.
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Fig. 2. The results of analyzing the same input with various prior weights. The ex-
amples from left to right column show the results with a maximal dissimilarity prior
to a maximal similarity prior. The middle column is the case with no prior. The top
row shows the reconstruction in each case, the middle row the extracted horizontal
marginals and the bottom row their KL divergence.
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shows the reconstruction of the input, the middle row shows the extracted time
marginals and the bottom row shows their mutual KL divergence (we chose to
display the KL divergence since it is a more familiar indicator of relationship
between distributions as opposed to the cross entropy). Each column of plots is
a different analysis with the prior weight shown in the top. From left to right
the prior goes from imposing maximal dissimilarity to maximal similarity. The
middle column has no prior imposed. One can clearly see from the plots that
for large positive values of the prior’s weight we estimate a much more sparse
set of marginals, and one where their respective KL divergence is maximal. As
the prior weight is moved towards large negative values we gradually observe
the discovery of less sparse codes, up to the extreme point where all extracted
marginals are very similar.

4 Group-Wise Analysis

A powerful use of the above priors is that of performing a group-based analysis,
similar to the concept of the multidimensional independent component anal-
ysis [5]. This means factorizing an input with a large number of components
which are grouped in a smaller set of cliques of mutually related components.
To perform this we need to partition the marginals of an analysis in groups and
then use the prior we introduced to request minimal cross-entropy between the
marginals in the same groups and maximal cross-entropy between the marginals
from different groups. This will result in a collection of marginal groups in which
elements of different groups are statistically different, whereas elements in the
same group are similar. To illustrate the practical implications of this approach
consider the following experiment on the data of figure 1. We partitioned the
twelve requested marginals in six groups of two. We performed the analysis with
no priors, then with priors forcing the time marginals from separate groups to
be different, then with priors forcing time marginals in the same group to be
similar, and finally with both types of priors. All simulations were run with the
same initial conditions. The results of these analyses are shown in figure 3. Like
before each column shows different measures of the same analysis. The left most
shows the case where no priors were used, the second one the case where the
within group similarity was imposed, the third one where out of group dissim-
ilarity was imposed and the rightmost one where both within group similarity
and out of group dissimilarity were imposed. The top row shows the resulting re-
construction, the second row shows the discovered time marginals and the third
row shows the KL divergence between the time marginals. Also shown in the
titles of the top figures is the KL divergence between the input and the model
reconstruction. Occasionally when we impose a prior in the model we observe
a slight increase which signifies that the model is not representing the input as
accurately. Qualitatively this increase is usually fairly minor however and is ex-
pected since the model is not optimizing just the fit to the input data anymore.
Observing the results we can clearly see that when we impose the within group
similarity the extracted marginals belonging to the same group are more similar
than otherwise. But by doing so we also implicitly encourage more similarity
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         α = 0, β = 0
D( input || model ) = 0.041
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Fig. 3. Analysis results with various values of cross entropy priors. The variables α and
β are the out-of-group dissimilarity and in-group similarity prior weights, and they
were applied on the horizontal factors only. Each column of plots shows the results
of a different analysis with its α and β values shown over the top figures of each
column. The top figures show the resulting reconstructions and on their title we show
the KL divergence between the input and the reconstruction. The middle figures show
the resulting horizontal factors and the bottom figures show the KL divergence values
between all factor pairs.

across all marginals since there is nothing to stop two different groups latching
on the same instrument. In contrast when we use the out of group dissimilarity
prior we see that we get very dissimilar marginals in the outputs, while some
of them belonging in the same group happen to have some similarity. Imposing
both of the previous priors at the same time results in a more desirable out-
put where each group contains marginals which are dissimilar from marginals
of other groups, yet similar to the marginals in the same group. Effectively we
see the extracted marginals from the same groups latching on to different parts
of the same drum sounds. Also shown at the top of each plot column is the KL
divergence between the input and the model. We see that there is no significant
deterioration in the fit when imposing these priors. More aggressive values of
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these priors will result in a worse fit, but an even stronger statistical separation
(or not) between the extracted marginals.

In this particular case since the audio stream contains elements with time
correlation we used that as the dimension in which the cross-entropy manipula-
tion was performed. This would also be supplemented by using neighboring time
samples in order to look for temporal causality as well. In other cases however
we might prefer to impose priors on all dimensions as opposed to only one. The
estimation process is flexible enough to deal with any number of dimensions and
to impose priors that either minimize or maximize cross-entropy on any arbitrary
dimension subset.

5 Conclusions

In this paper we presented a non-negative data factorization approach which
allows us to discover factors which can be mutually similar or dissimilar. In order
to do so we reformulated the nonnegative factorization process as a probabilistic
factorization problem and introduced new priors that can minimize or maximize
the cross-entropy between any of the discovered marginals. The cross-entropy
was shown to be an appropriate measure of similarity which allows us to express
arbitrary relationships between any of the estimated marginals. We have shown
that using this approach we can perform analysis which is slightly more akin to
ICA than NMF by extracting maximally different marginals, and also that we
can extract groups of components which contain highly relevant marginals but
bear little relation to other groups.
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Abstract. Existing methods for frequency-domain estimation of mixing
filters in convolutive blind source separation (BSS) suffer from permuta-
tion and scaling indeterminacies in sub-bands. However, if the filters are
assumed to be sparse in the time domain, it is shown in this paper that
the �1-norm of the filter matrix increases as the sub-band coefficients are
permuted. With this motivation, an algorithm is then presented which
solves the source permutation indeterminacy, provided there is no scaling
indeterminacy in sub-bands. The robustness of the algorithm to noise is
also presented.

Keywords: Convolutive BSS, permutation ambiguity, sparsity,
�1-minimization.

1 Introduction

The need to separate source signals from a given set of convolutive mixtures
arises in various contexts. The underlying model of having M mixtures xm(t),
m = 1 . . .M from N source signals sn(t), n = 1 . . .N , given a discrete time index
t, is given by

xm(t) =
N∑
n=1

K−1∑
k=0

amnksn(t− k) + vm(t) (1)

with vm(t) the noise term. Concisely, it can be written in the matrix notation as

x(t) =
K−1∑
k=0

Aks(t− k) + v(t) (2)

where x(t),v(t) are m× 1 vectors, Ak is an M ×N matrix which contains the
filter coefficients at kth index. The notation Amn(t) = amnt will also be used
for each mixing filter, which is of length K. The ultimate objective of a BSS
system is to recover back the original source signals sn, n = 1 . . .N given only
the mixtures xm(t),m = 1 . . .M .

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 338–345, 2009.
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A standard approach is to first estimate the mixing matrix A(t) = (Amn(t))
m = 1 . . .M, n = 1 . . .N and then recover the sources sn(t). This paper focusses
on the estimation of the mixing matrix.

1.1 Permutation Problem Description

Several methods have been proposed by the signal processing community to
estimate the mixing matrices in convolutive BSS. Pedersen et. al. present an
excellent survey of the existing methods [1]. Broadly, the techniques can be
classified into time-domain and frequency-domain techniques. Both approaches
have their own advantages and disadvantages. They are summarized in table 3
of [1].

The context of our problem arises in the frequency-domain approach. A survey
of these techniques is provided in [2]. The main advantage of frequency-domain
techniques is that the convolutive mixture case is transformed (under the nar-
rowband assumption) into complex-valued instantaneous mixture case for each
frequency bin:

x(f, t) = A(f)s(f, t) + v(f, t) (3)

where f = 1 . . . F are the sub-band frequencies.
The central task of frequency-domain mixing matrix estimation techniques is

to provide an estimate Â(f) of A(f) . However, the frequency-domain approach
suffers from permutation and of scaling indeterminacies in each sub-band f .
Specifically, the estimated Â(f) is related to the true filter matrix A(f), for
each f in the following form

Â(f) = A(f)Λ(f)P(f) (4)

where P(f) is the frequency-dependent permutation matrix, Λ(f) is a diagonal
matrix containing the arbitrary scaling factors.

The frequency-domain methods have to invariably solve the permutation and
scaling indeterminacy to eventually estimate A(t) up to a unique global permu-
tation and scaling Â(t) = A(t)ΛP.

1.2 Existing Approaches to Solve the Described Problem

There are mainly two categories of approaches to solve the permutation indeter-
minacy in the sub-bands of the estimated mixing filters [1].

The first set of techniques use consistency measures across the frequency sub-
bands of the filters to recover the correct permutations, such as inter-frequency
smoothness, etc. This category also includes the beamforming approach to iden-
tify the direction of arrival of sources and then adjust the permutations [3].

The second set of techniques use the consistency of the spectrum of the re-
covered signals to achieve the same. The consistency across the spectrum of the
recovered signals is applicable for only those signals which have strong correla-
tion across sub-bands, such as speech [4].
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Different definitions of consistency have been used to propose different meth-
ods. Table 4 in [1] contains a categorization of these approaches.

1.3 Proposed Approach: Sparse Filter Models

Here we propose to use a special type of consistency that can be assumed on
the mixing filters: sparsity. That is, the number S of non-negligible coefficients
in each filter Amn(t) is significantly less than its length K. Acoustic impulse
responses have few reflection paths relative to its duration, and hence the sparsity
of mixing filters is a realistic approximation.

The idea behind our approach is that the permutations in the sub-bands
decreases the sparsity of the reconstructed filter matrix Â(t). So, one can solve
the permutations by maximizing the sparsity.

The sparseness of the filter matrix is measured by its "0-norm, defined as
||A(t)||0 =

∑M
m=1

∑N
n=1

∑K
t=1 |Amn(t)|0. Lesser the norm, sparser is the filter

matrix. However, the "1-norm of the filter matrix defined by

||A(t)||1 =
M∑

m=1

N∑
n=1

K∑
t=1

|Amn(t)| (5)

is also a sparsity promoting norm. It is shown by Donoho that working with "1-
norm is as effective as working with "0-norm while looking for sparse solutions to
linear systems [5]. Furthermore "1-norm being convex, has certain computational
advantages over the former and is robust to noise.

We concentrate on the permutation problem and will assume that the esti-
mated filter sub-bands are free from scaling indeterminacy. That is

Â(f) = A(f)P(f), f = 1 . . . F. (6)

Hence, when Â(t) is reconstructed using Â(f), given by Eqn. (6) one can expect
an increase in ||Â(t)||1. In Sec. 2 we experimentally show that this is indeed the
case.

Then in Sec. 3 we show that if there is no scaling indeterminacy, a simple al-
gorithm which minimizes the "1-norm of the filter matrix solves the permutation
indeterminacy, even under noisy conditions.

2 Source Permutations and �1-Norm

This section presents some preliminary experimental study on how the "1-norm
of the filter matrix A(t) is affected by permutation in the sub-bands.

For experimental purposes, 50 different filter matrices were synthetically cre-
ated with N = 5 sources and M = 3 channels, and each filter having a length
of K = 1024 with S = 10 non-zero coefficients. The non-zero coefficients were
i.i.d. Gaussian with mean zero and variance one. The locations of non-zero coef-
ficients were selected uniformly at random. Then for each such instance of filter
matrix A(t) the discrete Fourier transform (DFT) Âmn(f) was computed for
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each filter Amn(t), to obtain the frequency-domain representation Â(f) of A(t).
These filters were used in the following two kinds of experiments.

2.1 Random Source Permutations

In a practical scenario, each sub-band can have a random permutation. So, for
each filter matrix in the frequency domain, the sources were permuted randomly
in an increasing of number of sub-bands (chosen at random), and their "1-norms
were computed. The positive and negative frequency sub-bands were permuted
identically.

For one such experimental instance, Fig. 1(a) shows the variation of "1-norm
against increasing number of randomly permuted sub-bands. The circle shows
the norm of the true filter matrix. Each star represents the norm after randomly
permuting the sub-bands at random locations. Note the gradual increase in the
norm as the number of sub-bands being permuted increases. Similar experiments
were conducted with combinations of M = 3, N = 4 and M = 2, N = 3 and
S = 10, 15, 20, leading to similar observations.

2.2 Sensitivity of �1-Norm to Permutations

In order to show that even a single permutation in only one sub-band can in-
crease the norm, only two sources, chosen at random were permuted in increasing
number of sub-bands.

For one such instance, Fig. 1(b) shows a plot of the variation in "1-norm with
the number of sub-bands permuted.The circle in the plot shows the "1-norm of
the true filter matrix. Each star shows the norm after permuting the sources 2
and 3.
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Fig. 1. The variation in the �1-norm of the filter matrix against the number of sub-
bands permuted. (a) All the sources are permuted randomly (b) Only sources 2 and 3
are permuted.
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3 Proposed Algorithm

With the inspiration from the previous section, we present an algorithm in this
section to solve the permutation indeterminacy.

Assumption: The estimate Â(f) of the sub-band coefficients A(f) are provided
by some other independent technique and Â(f) = A(f)P(f), f = 1 . . . F .

The absence of scaling indeterminacy is not totally a realistic assumption but
we feel that this is the first step towards solving the bigger problem.

3.1 Description

We denote the set of all the possible source permutations by P (|P| = N !) and
the inverse discrete Fourier transform by IDFT . At each sub-band, every P ∈ P
is explored, keeping the other sub-bands fixed, and that permutation is retained
which minimizes the "1-norm. This ensures that "1-norm of the filter matrix is
lowered to the minimum possible extent by aligning that particular sub-band.
At the end of one such iteration through all the sub-bands, the norm of the filter
matrix would have significantly reduced. However, as the sub-bands were locally
examined, the resulting norm may not be the global minimum. Hence, the entire
process is iterated until the difference in the norm does not reduce significantly
between iterations.

Input: Â, θ: The estimated sub-band coefficients of A(t) and a threshold
Output: Ã: The sub-band coefficient matrix after solving for the permutations

(1) Initialize Ã ← Â;
(2) Update all sub-bands;

foreach f = 1 : F do

oldÃ ← Ã;
foreach P ∈ P do

Ã(f) ← Â(f)P;
val(P) ← ||IDFT (Ã(f ′))||1, f ′ = 1 . . . F ;

end
P(f) ←arg min

P∈P val(P);

Ã(f) ← Â(f)P(f);
end

(3) Test if the algorithm should stop;
if ||Â(t)||1 ≥ ||oldÂ(t)||1 − θ then Output Ã else Go to step (2)

Algorithm 1. Algorithm to solve the permutation indeterminacy by min-
imizing the "1-norm of the time domain filter matrix

3.2 Objective of the Algorithm

The aim of the algorithm is to obtain the sub-band matrix which would give the
minimum "1-norm. However, currently we do not have analytical proof about
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the convergence of the algorithm to the global minimum. Also, the sources will
be globally permuted at the end.

3.3 Complexity

A brute force approach to solve the ideal "1-minimization problem would need
N !KK logK operations. In our case, each outer iteration needs to inspect N !×K
permutations and at each step, an inverse FFT has a complexity of K logK.
Hence, the complexity in each outer iteration is N !K2 logK. This is still costly
because it grows in factorial with the number of sources, but it is tractable for
small problem sizes.

4 Experimental Results

In this section we present an illustration of the algorithm presented above.

4.1 The No Noise, No Scaling Case

Firstly, we consider the case where the sub-band coefficients are assumed to
be estimated without noise and scaling ambiguity. 20 filter matrices with N =
3,M = 2,K = 1024 and S = 10 were created, transformed and sub-bands
permuted in a similar way as explained in Sec. 2.1 and were the input to the
algorithm. The value of θ was set to 0.0001 in all the experiments.

The output was transformed back to time domain to compute the reconstruc-
tion error. In all the experiments, the output filters were identical to the true
filters up to a global permutation and within a numerical precision in Matlab.

4.2 Effect of Noise

The estimation of Â(f) by an actual BSS algorithm invariably involves some
level of noise (as well as scaling, which we do not deal with here). Hence, the
permutation solving algorithm needs to be robust to certain level of noise. Ex-
periments were conducted by permuting the sub-bands and adding noise to the
coefficients:

Â(f) = A(f)P(f) + N(f) (7)

where N(f) is i.i.d. complex Gaussian with mean zero and variance σ2.
For illustration, Fig. 2 shows an instance of the reconstructed filter matrix

using Algorithm 1 with the input corrupted by additive complex Gaussian noise
with σ2 = 0.2. Each filter had 10 significant coefficients which have been faith-
fully recovered, along with some amount of noise.

For a quantitative analysis of the effect of noise, the input SNR was varied
between -10 dB and 40 dB in steps of 5 dB and the output SNR was computed.
The SNR definitions are given in Eqn. (8). The problem size was N = 3,M =
2,K = 1024, and 20 experiments were conducted to obtain each data point.

SNRin = 20 log10

( ||A(t)||2
||N(t)||2

)
, SNRout = 20 log10

( ||A(t)||2
||A(t) − Ã(t)||2

)
(8)

The experiments were repeated for S = 10 and S = 25.
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Figure 3 shows the variation of output SNR (in dB) with input SNR. Due to
the absence of scaling, a perfectly reconstructed filter will have the same SNR as
the input. The thick line shows the ideal relationship for reference. In the range
of 5 to 10 dB input SNR, the curve for S = 10 coincides with the ideal line. For
S = 25, the curve coincides with the ideal line for range of 5 to 20 dB input
SNR. At other places, both the curves closely follow the ideal line suggesting
perfect reconstruction in most number of experiments.
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5 Conclusion and Future Work Direction

Frequency-domain estimation of mixing matrices in convolutive BSS suffers from
the indeterminacies of source permutations and scaling of sub-bands. Hence,
solving the permutation indeterminacy is an important aspect of such BSS sys-
tems. In this paper, it has been shown that in the absence of scaling, the "1-norm
of the filter matrix is very sensitive to permutations in sub-bands. An algorithm
has been presented based on the minimization of "1-norm of the filter matrix
to solve for the permutations. Experimental results show that in the absence of
scaling, the "1-minimization principle to solve the permutations performs well
even in the presence of noise.

Though the absence of scaling is not a realistic assumption, it can be a first
step towards sparsity motivated permutation solving methods. Also, the com-
plexity of the algorithm grows with the N ! and K2, which is expensive even for
moderate values for the number of sources N and filter length K. Our future
work focusses on replacing the combinatorial optimization step by an efficient
convex optimization formulation and devising "1-norm based methods to solve
the permutation problem in presence of arbitrary sub-band scaling.
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Abstract. Binary Factor Analysis (BFA) is a typical problem of Inde-
pendent Component Analysis (ICA) where the signal sources are binary.
Parameter learning and model selection in BFA are computationally in-
tractable because of the combinatorial complexity. This paper aims at an
efficient approach to BFA. For parameter learning, an unconstrained bi-
nary quadratic programming (BQP) is reduced to a canonical dual prob-
lem with low computational complexity; for model selection, we adopt
the Bayesian Ying-Yang (BYY) framework to make model selection au-
tomatically during learning. In the experiments, the proposed approach
cdual shows superior performance. Another BQP approximation round

is also good in model selection and is more efficient. Two other methods,
greedy and enum, are more accurate in BQP but fail to compete with
cdual and round in BFA. We conclude that a good optimization is es-
sential in a learning process, but the key task of learning is not simply
optimization and an over-accurate optimization may not be preferred.

1 Introduction

Binary Factor Analysis (BFA) explores latent binary structures of data. Unlike
in clustering analysis where the observations are scattered around several un-
correlated centers, in BFA the cluster locations are correlated and represented
by a binary vector with independent dimensions. From an information theo-
retic perspective, the observables can be traced to several independent binary
random variables as information sources. Research on BFA has been conducted
with wide applications. One stream has been focused on analysis of binary data
[1] with the aid of Boolean Algebra. The broad variety of binary data, such as
social research questionnaires, market basket data and DNA microarray expres-
sion profiles, gives this research enormous practical value. Another stream tries
to discover binary factors in continuous data [2] [3] [4], taking advantage of the
representational capacity of the underlying binary structure. The present work
falls in the second category.

A general and difficult problem in BFA is the combinatorial complexity in
the inference of a m-bit binary code y(x) or a 2m-point posterior distribution

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 346–353, 2009.
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p(y |x) for each training sample x. Past efforts in tackling this problem include
applying the Markov Chain Monte Carlo (MCMC) methods [3], or restricting
the model so that the posterior distribution has independent dimensions [2].

Another difficulty in BFA is to determine an appropriate length of the internal
binary code y. The traditional approach for model selection has to enumerate a
set K and perform maximum likelihood (ML) learning for each candidate length
dim(y) ∈ K, then the optimal length is selected via minimizing an information
criterion [5] [6]. This two-phase approach suffers from excessive computation due
to the computational complexity of BFA. In the past decade efforts have also
been made to determine a proper model scale during parameter learning. As a
general framework for parameter learning and model selection, BYY harmony
learning [7] [8] is capable to discard redundant structures during training. The
paper [8] investigates machine learning versus optimization from the BYY per-
spective, where BFA is discussed as a special case. The paper [4] studies BFA
under the BYY framework, where p(y |x) is assumed to be free of structure.

This paper considers the same BFA model as in [4] and [2]. In help of a canon-
ical duality of BQP [9][10], we can compute efficiently for each training sample
xt a binary code y(xt). As learning proceeds, redundant binary dimensions
are identified and discarded with a BYY learning algorithm [8]. A comparison
among four BQP methods is presented. The proposed approach cdual is not the
best in BQP optimization but presents superior performance in BFA learning.
A relax-and-round method round, which is rather rough from an optimization
perspective, is also good in model selection and provides a performance even
better than the accurate BQP techniques.

The rest of this paper is organized as follows. Section 2 introduces BFA and
a BYY learning algorithm. Section 3 imports the canonical duality theory to
overcome the BQP computational bottleneck. Section 4 includes an experimental
comparison among four BQP methods in BFA learning. Section 5 concludes.

2 Binary Factor Analysis

This paper studies the BFA model

q(y) =
m∏
i=1

θ
(1+yi)/2
i (1− θi)(1−yi)/2, q(x |y) = G(x |Ay + c, Σ), (1)

where y ∈ {−1, 1}m is an internal binary code, 0 < θi < 1, i = 1, 2, . . . ,m, x is
a continuous observation, G(· |μ, Ψ ) denotes a Gaussian distribution with mean
μ and covariance Ψ , Σ is a positive definite diagonal matrix. This model has
been studied previously from different perspectives [11] [4] [2].

Within the BYY framework [7], another joint distribution p(x, y) describes
the observations with p(x) and the inference of binary codes with p(y |x). In
this paper, p(x) is chosen as p(x) =

∑N
t=1 δ(x− xt)/N , where δ(.) is the Dirac

delta function; p(y |x) = δ(y − ŷ(x)) is assumed to be free of structure, where
ŷ(x) is derived through maximizing the harmony function [7] [8] such that
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ŷ(x) = arg max
y∈{−1,1}m

log q(x,y) = argmin
y∈{−1,1}m

{
1
2
yTQyy − fT

y (x)y
}
, (2)

Qy=ATΣ−1A, fy(x)=[log θ − log(1− θ)] /2+ATΣ−1(x−c), θ=(θ1, . . . , θm)T .
By definition, the harmony function is

H(p || q) =
∫

p(x)p(y |x) log q(y)q(x |y) dy dx =
1
N

N∑
t=1

H̃(xt, ŷ(xt), Θ),

H̃(x, y, Θ) =
m∑

i=1

[
1 + yi

2
log θi +

1 − yi

2
log(1 − θi)

]
+ log G (x |Ay + c, Σ) . (3)

BYY harmony learning with automatic model selection (BYY-AUTO) is imple-
mented by maximizing H(p || q) on the training set. Starting from a large initial
coding length, the gradient flow of H(p || q) may either push θi to 0 or 1 when yi

turns deterministic, or push the ratio ||Ai||22/
√

AT
i ΣAi (Ai is the i’th column

of A) to 0 when Aiyi is flooded by noise. In both these cases the i’th bit of
y is identified as redundant and is discarded while the learning proceeds. The
learning process is sketched in Algorithm 1.

Algorithm 1. Free structure BYY-AUTO learning algorithm for BFA
Input : A set {xt}Nt=1 ⊂ (n of observations

Output: An estimated binary coding length dim(y); Θ = {θ,A, c,Σ}
Initialize dim(y) with a large integer m0; Θ0 = {θ0,A0, c0,Σ0};1

repeat2

Take Xe ⊂ {xt}Nt=1 sequentially or through a sampling algorithm;3

Encode Xe into {ŷ(x) : x ∈ Xe} with a binary encoder;4

Update Θ along the gradient flow of
∑

x∈Xe
H̃(x, ŷ(x),Θ);5

if θi < ε or θi > 1− ε or ||Ai||22 < δ
√

AT
i ΣAi then6

Discard the i’th dimension of y; update Θ accordingly;7

until H(p || q) has reached convergence ;8

In the experiments we fix ε = 0.1, δ = 2, |Xe| = N , m0 = 2m� − 1, where

m� = dim(y�) is the “true” binary dimension in synthetic data generation.

3 Canonical Dual Approach to Binary Encoding

In BFA, a binary encoder ŷ : {xt}Nt=1 → {−1, 1}m is usually employed so that
a function can be computed numerically or a mapping, such as p(y |x,Θ), can
be regularized with the encoding results. In the context here, we need such an
encoding, as in Eq. (2) or line 4 in Algorithm 1, to maximize H(p || q) in Eq.
(3) by a gradient-based optimization. Eq. (2) is a BQP that falls in NP-hard.
The BFA-specific formula of Qy and fy(x) can not make the problem easier.
An approximation is required to avoid the combinatorial complexity.
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Both exact and heuristic approaches to BQP have been widely studied in the
literature of optimization [12]. Recently Gao et al. have constructed a pair of
canonical dual problems for BQP [9] [10] with zero duality gap. The solution ζ̄
of the canonical dual problem

(Pd) : max
ζ>0

{
P d(ζ) = −1

2
fT

y (x)
[
Qy + diag(ζ)

]−1
f y(x) − 1

2
eT ζ

}
, (4)

if exists, will lead to a solution ŷ(x) = (Qy + diag(ζ̄))−1fy(x) of Eq. (2), where
e = (1, 1, . . . , 1)T . In contrast to the primal BQP, Pd is a constrained convex
optimization problem that can be handled much more efficiently. Algorithm 2
employs a gradient descent to solve BQP through solving Pd in Eq. (4).

Algorithm 2. min
y∈{−1,1}m

{
1
2
yTQy − fTy

}
via max its canonical dual

Normalize Qnew = Qold/tr(Qold), fnew(x) = fold(x)/tr(Qold);1

Pre-process Qnew = Qold + ΛQ, ΛQ is diagonal (optional);2

Initialize ζ = max(−Qe− f ,Qe + f − 2diag(Q));3

for epoch ← 1 to max epochs do4

y = (Q + diag(ζ))−1f ;5

+ = (y ◦ y − e)/2;6

if || + ||∞ < Threshold then break;7

ζ = ζ + γ+ (γ > 0 is a small learning rate);8

Round y to {−1, 1}m; return y.9

In the experiments, max epochs = 50, Threshold = 0.5, γ = 0.02. Step 2 is

a classical trick [12] based on y2
i ≡ 1 but not adopted in the experiments.

Table 1. Algorithms for solving the BQP in Eq. (2)

Name Description
enum exhaustively enumerate y ∈ {−1, 1}m, which was used in BFA [4]
greedy the greedy BQP algorithm on page 203 [12]
cdual the canonical dual approach to BQP (Algorithm 2 in this paper)
round round ỹ = Q−1

y f y(x) to the nearest binary vector in {−1, 1}m, which
was proposed (Table II, page 836 [11]) for BFA learning under the name
“fixed posteriori approximation”

Figure 1 shows the accuracy and efficiency of the BQP algorithms listed in
Table 11. round is fastest but its performance degenerates greatly as dim(y)
increases; greedy is most accurate among {round, cdual, greedy} but suffers
from O(dim3(y)) computation [12]; cdual is less accurate than greedy but is

1 All experiments in this paper are implemented with GNU Octave 3.0.3 on a Intel
Core 2 Duo 2.13GHz with 1GB RAM running FreeBSD 7.0.
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Fig. 1. Performance (out of 100 runs) of the BQP algorithms with tr(Q) = 1.0

much more efficient. As ||fy(x)||2 turns small, round becomes a little more
accurate while the error of cdual and greedy raises up significantly.

If ||fy(x)||2 is small enough such that ||Q−1
y fy(x)||∞ < 1, then +P d|ζ=0 <

0. From the convexity of P d(ζ) on (m+, the dual solution ζ̄ > 0 does not
exist. This explains the failure of cdual on small ||fy(x)||2. We further consider
its impact on BFA learning. In Algorithm 1, dimension i will be deducted if
|θi − 0.5| is large enough, hence θ is in a small neighbourhood around 0.5e and
||fy(x)||22 = ||ATΣ−1(x − c) + [log θ − log(1− θ)] /2||22 is a convex function
minimized around x = c. A small ||fy(x)||2 is due to samples lying between the
2m representative clusters in BFA. cdual is not accurate on these samples.

4 Experiments

This section compares enum, greedy, cdual and round in BFA with synthetic
data generated according to Eq. (1). Because of space limitation, we concentrate
on the case where dim(x) = 10, y evenly taking values from the 2m−1 points
{y ∈ {−1, 1}m : mod [

∑m
i=1(yi + 1)/2, 2] = 0}2, A = QΛ, Q is orthogonal,

Λ = diag(λ1, λ2, . . . , λm), λi uniformly distributed over the interval (1, 2) so that
the scale ||Ai||2 in each binary dimension does not vary too much, and Σ = σ2I.
Three aspects that may affect the learning performance are investigated: the true
binary dimension(dim(y�)), the sample size(N) and the noise level(σ).

4.1 Binary Matrix Factorization with Fixed Dimension

We fix the binary dimension by skipping line 6 ∼ 7 in Algorithm 1 and study its
performance on the binary matrix factorization (BMF) Xn×N = An×mY m×N ,
2 This is a subset of {−1, 1}m ⊂ �m that can only be well separated with ≥ m

hyperplanes. Hence the “true” binary dimension is m. It is chosen instead of {−1, 1}m

to simulate data in real world where not all 2m binary encodings are valid or observed.
A comparison between data generated with this 2m−1-point subset and {−1, 1}m is
nevertheless interesting but omitted here for saving space.
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where A is real and Y ∈ {−1, 1}m×N . Such a factorization differs from the
classical BMF in that the matrix to be factored is continuous rather than boolean
and is different from [3] in the factorization form. It may be useful in recovering
binary signals from continuous observations. For example, a noisy binary image
Y can be reverted after rotation or scaling. Figure 2 presents the BMF error and
learning time over dim(y). The training error gets an order round > cdual >
greedy > enum while the running time is in a reverse order. When dim(y)
is large, round and cdual is not as accurate as the others because of their
deteriorated BQP accuracy. As a trade-off they are much faster. Training time
of round appears to be constant over dim(y). greedy has avoided the exponential
complexity of enum but still requires huge computation on a large dim(y). To
sum up, cdual and greedy are recommended for the BMF task.
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4.2 Model Selection on Synthetic Data

In Algorithm 1, dim(y) is initialized large enough and deducted during learn-
ing. Since computational overhead arises when dim(y) is large, how soon this
deduction stops determines the learning efficiency. With a true binary dimension
dim(y�) = 5 and the learner’s dim(y) initialized to 9, Figure 3 shows the av-
erage dimension deduction curve after 100 independent runs for σ ∈ {0.1, 0.3}.
Two observations are made. (a) the convergence speed of dim(y) is in the same
order as the BQP speed in Figure 1(b). Convergence slows down as the noise
level increases. (b) cdual is robust to noise and yields the best accuracy; enum
and greedy overestimates the model scale; round also shows a slight tendency of
overestimation. The over/under estimation is controlled by the threshold δ and
is related to |Xe| in Algorithm 1. They are both fixed in this paper for brevity.

Consider one binary dimension yi with a small ||Ai||2 and big noise. Maximiz-

ing H(p || q) may further shrink ||Ai||22/
√

AT
i ΣAi to achieve model selection.

The error of cdual on the samples lying among the 2m representative clusters
forms a natural regularization to dimension deduction. An over-accurate binary
encoder does not have this type of regularization therefore tends to overesti-
mation. Similar cases may arise in clustering. A carefully designed optimization
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Fig. 3. Dimension deduction over learning time (average of 100 runs)

noise(σ)

sample size(N)

dim(y�)

200
50 3

5

0.05 0.1 0.2 0.4

enum

19(8.2) 10(8.6) 8(8.6) 16(8.1)
19(7.7)16(8.3)16(8.3)19(8.2)

22(4.6) 25(4.5) 28(4.4) 57(3.8)
29(4.4) 19(4.6) 32(4.3) 45(4.0)

greedy

27(7.2) 22(7.6) 24(7.1) 47(6.1)
43(5.7)28(7.1)31(7.0)31(7.2)

29(4.2) 44(3.9) 59(3.7) 82(3.3)
30(4.2) 34(4.1) 54(3.7) 81(3.3)

cdual

91(4.9) 100(5.0) 82(4.8) 68(4.5)
41(3.9)78(4.6)84(4.9)91(4.9)

95(3.0) 97(3.0) 96(3.0) 95(3.0)
93(3.1) 93(3.0) 96(3.0) 89(2.9)

round

6(7.6) 10(7.2) 34(6.1) 77(4.7)
57(4.3)47(5.9)19(6.9)5(7.3)

33(4.0) 43(3.8) 70(3.4) 95(3.0)
26(4.1) 45(3.8) 68(3.4) 88(2.9)

Fig. 4. “κ(dim(y))” out of 100 independent runs for each configuration tetrad
(dim(x), dim(y�), N, σ) ∈ {10} × {3, 5} × {50, 200} × {0.05, 0.1, 0.2, 0.4}, where κ is
the number of correctly estimated dim(y) and dim(y) is the average dim(y)

algorithm which is not so accurate at the cluster boundaries may be good for
model selection. As a sub-procedure, an optimization should be customized for
learning instead of being isolated and implemented as accurately as possible.

Figure 4 shows the percentage κ of correctly estimated dim(y) and the average
resulting dim(y) on a 2×2×4 configuration grid. According to the experiments
κ is sensitive to the threshold δ which is set to 2 here. Generally the performance
degrades as N goes small or dim(y�) goes large. In the batch algorithm where
|Xe| = N , the resulting model scale tends to be smaller as σ increases. Therefore
κ may increase with σ during overestimation, as in the case of {enum, greedy,
round}. cdual is the most robust and shows the best performance in nearly all
configurations. round is also good especially when σ is large. Moreover, they
outperform greedy and enum considerably in computational cost.

5 Concluding Remarks

The combinatorial complexity in BFA has been avoided through a canonical dual
approach and the ML training enumeration in model selection has been avoided
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by the BYY harmony learning. Among the algorithms investigated, cdual pro-
vides the best overall performance; round is comparably accurate on large noise
and is much more efficient; greedy and enum are both inaccurate and time-
consuming. A good optimization is crucial in learning. Learning, however, is
not simply optimization. It includes an essential task to select a hierarchy of
structures and a proper level in this hierarchy, which is difficult on small sample
size and may get promoted with a customized optimization. A more detailed
discussion on BFA learning and optimization will follow in subsequent works.
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Abstract. Joint diagonalization for ICA is often performed on the or-
thogonal group after a pre-whitening step. Here we assume that we only
want to extract a few sources after pre-whitening, and hence work on
the Stiefel manifold of p-frames in Rn. The resulting method does not
only use second-order statistics to estimate the dimension reduction and
is therefore denoted as soft dimension reduction. We employ a trust-
region method for minimizing the cost function on the Stiefel manifold.
Applications to a toy example and functional MRI data show a higher
numerical efficiency, especially when p is much smaller than n, and more
robust performance in the presence of strong noise than methods based
on pre-whitening.

1 Introduction

The common approach to blind source separation of a set of multivariate data
is to first whiten the data and to then search on the more restricted orthogonal
group. This has two advantages: (i) instead of optimizing a cost function on
n2, the optimization takes place on a n(n − 1)/2 dimensional manifold. (ii)
During whitening via PCA, the dimension can already be reduced. However
a serious drawback of this sometimes called hard-whitening technique is that
the resulting method is biased towards the data correlation (which is used in
the PCA step). Using the empirical correlation estimator, the method perfectly
trusts the correlation estimate, whereas it ‘mistrusts’ any later sample estimates.

In contrast to hard-whitening, soft-whitening tries to avoid the bias towards
second-order statistics. In algorithms based on joint diagonalization (JD) of a
set of source conditions, reviewed for example in [1], this implies using a non-
orthogonal JD algorithm [2, 3,4, 5]. It jointly diagonalizes both the source con-
ditions together with the mixture covariance matrix. Then possible estimation
errors in the second-order part do not influence the total error disproportionately
high.

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 354–361, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Soft-whitening essentially does away with issue (i). In this contribution, we
propose a method to deal with issue (ii) instead: The above argument of bias
towards correlation with respect to source estimation also applies to the bias
with respect to dimension reduction. This can be solved by a subspace extraction
algorithm followed by an ICA algorithm, see e.g. [6,7], which however may lead
to an accumulation of errors in the two-step procedure. Hence, we propose the
following integrated solution implementing a soft dimension reduction: We will
first whiten the data, so we will assume (i) and hard-whitening. However we
do not reduce the data dimension beforehand. Instead we propose to search for
a non-square pseudo-orthogonal matrix (Stiefel matrix) such that it minimizes
the JD cost function. An efficient minimization procedure will be proposed in
the following. Examples to speech and fMRI data confirm the applicability of
the method. In future research a combination of (i) soft-whitening and (ii) soft
dimension reduction may be attractive.

2 Joint Diagonalization on the Stiefel Manifold

Let St(p, n) = {Y ∈ Rn×p : Y TY = I} denote the Stiefel manifold of orthogonal
p-frames in Rn for some p ≤ n. The JD problem on the Stiefel manifold consists
of minimizing the cost function

fdiag : St(p, n)→ R : Y �→ fdiag(Y ) = −
N∑
i=1

‖diag(Y TCiY )‖2F , (1)

where ‖diag(X)‖2F returns the sum of the squared diagonal elements of X . In
the context of ICA, the matrices Ci can for example be cumulant matrices (as
in the JADE algorithm [8]) or time-lagged covariance matrices (as in SOBI [9]).

2.1 Diagonal Maximization versus Off-Diagonal Minimization

In the case p = n, minimizing fdiag is equivalent to minimizing the sum of the
squared off-diagonal elements

foff : St(p, n)→ R : Y �→ foff(Y ) =
∑
i

‖off(Y TCiY )‖2F .

Indeed, ‖off(Y TCiY )‖2F = ‖Y TCiY ‖2F −‖diag(Y TCiY )‖2F and ‖Y TCiY ‖2F does
not depend on Y ∈ St(n, n) = O(n). When p < n, we can still observe that if
Y∗ minimizes fdiag, then it minimizes foff over {Y∗Q : Q ∈ O(p)} ⊂ St(p, n);
this follows from the same argument applied to the function Q �→ fdiag(Y∗Q).
Note that minimizing foff is clearly not sufficient for minimizing fdiag. As an
illustration, consider the case N = 1, i.e., there is only one target matrix, C,
assumed to be symmetric positive definite with distinct eigenvalues. Then the
minimizers of foff are all the matrices Y ∈ St(p, n) such that Y TCY is diagonal
(when p < n, there are infinitely many such Y ), whereas the optimizers of fdiag
are Y∗ =

[
v1 . . . vp

]
π, where v1, . . . , vp are the p dominant eigenvectors of C and

π denotes any signed permutation matrix.
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2.2 A Trust-Region Method for Minimizing fdiag

Minimizing fdiag is an optimization problem over the Stiefel manifold. Recently,
several methods have been proposed to tackle optimization problems on mani-
folds; see, e.g., [10, 11, 12] and references therein. In this paper, we use a
trust-region approach, which combines favorable global and local convergence
properties with a low numerical cost.

In Rn, trust-region methods proceed as follows. At the current iterate xk, a
model mxk

is chosen to approximate a cost function f . The model is “trusted”
within a ball of radius Δk around xk, termed the trust region. A candidate for
xk+1 is selected as an (approximate) solution of the trust-region subproblem,
namely, the minimization of mxk

under the trust-region constraint. The new
iterate is accepted and the trust-region radius Δk updated according to the
agreement between the values of f and mxk

at the candidate. We refer to [13]
for more information.

The concept of trust-region was generalized to Riemannian manifolds in [14].
On a manifold M, the trust-region subproblem at xk becomes a subproblem
on the tangent space Txk

M. Since the tangent space is a linear space, the clas-
sical techniques for solving trust-region subproblems apply as well. The corre-
spondence between the tangent spaces and the manifold M is specified by a
mapping R, called retraction, that is left to the user’s discretion but for some
rather lenient requirements. The retraction makes it possible to pull back the
cost function f on M to a cost function f̂xk

= f ◦ Rxk
on Txk

M, where Rxk

denotes the restriction of R to Txk
M.

More specifically, the Riemannian trust-region method proceeds along the
following steps.

1. Consider the local approximation of the pulled back cost function f̂xk

mxk
(ξ) = f(xk) + 〈ξ, gradf(xk)〉+ 1

2
〈ξ,Hessf(xk) [ξ]〉 ,

where gradf and Hessf stand for the gradient and the Hessian of f , respec-
tively, and 〈., .〉 denotes the scalar product on the tangent space given by
the Riemannian metric. Obtain ξk by (approximately) solving

min
ξ∈Txk

M
mxk

(ξ) s.t. ‖ξk‖ ≤ Δk,

where Δk denotes the radius.
2. Evaluate the quality of the model mxk

through the quotient

ρk =
f̂xk

(0)− f̂xk
(ξk)

mxk
(0)−mxk

(ξk)
.

If ρk is exceedingly small, then the model is very inaccurate, the trust-region
radius is reduced and xk+1 := xk. If ρk is small but less dramatically so, then
Yk+1 = Rxk

(ξk) but the trust-region radius is reduced. Finally, if ρk is close
to 1, then there is good agreement between the model and the function, and
the trust-region radius can be expanded.
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Note that trust-region algorithms (much as steepest-descent, Newton, and
conjugate gradient algorithms) are local methods : they efficiently exploit infor-
mation from the derivatives of the cost function, but they are not guaranteed
to find the global minimizer of the cost function. (This is not dishonorable, as
computing the global minimizer is a very hard problem in general.) Nevertheless,
they can be shown to converge globally (i.e., for every initial point) to station-
ary points of the cost function; moreover, since they are descent methods, they
only converge to minimizers (local or global), except in maliciously-crafted cases.
More details on the Riemannian trust-region method can be found in [14, 11].
We also refer to [15] for recent developments.

2.3 Implementing the Riemannian Trust-Region Method

A generic Matlab code for the Riemannian trust-region method can be obtained
from http://www.scs.fsu.edu/~cbaker/GenRTR/. The optimization method
utilizes Matlab function handles to access user-provided routines for the objec-
tive function, gradient, Hessian, retraction, etc. This allows the encapsulation of
a problem into a single driver. In the remainder of this section, we describe the
essential elements of the driver that we have created for minimizing fdiag (1).

The driver must contain a routine that returns the inner product of two vectors
of TY St(p, n), so as to specify the Riemannian structure of St(p, n). We choose
〈ξ1, ξ2〉 = tr(ξT1 ξ2), which makes St(p, n) a Riemannian submanifold of Rn×p.
The retraction is chosen as

RY : TY St(p, n)→ St(p, n) : ξ �→ RY ξ := qf(Y + ξ)

where qf(Y ) denotes the Q factor of the QR decomposition of Y . We further need
a formula for the gradient of fdiag. We have gradfdiag(Y ) = PY gradf̂diag(Y ),
where gradf̂diag(Y ) = −∑

i 4CiY ddiag(Y TCiY ) is the gradient of

f̂diag : Rn×p → R : Y �→ f̂diag(Y ) = −
∑
i

‖diag(Y TCiY )‖2F ,

and where PY denotes the orthogonal projection onto TY St(p, n) i.e. PY ξ :=
ξ − Y sym

(
Y T ξ

)
. Finally, the Hessian of fdiag is given by

Hessf(Y ) [ξ] = ∇ξgradf(Y )

where ∇ is the Riemaniann connection on M (see [11, Section 5.3.2]). In our
case we choose ∇ηξ := PY (Dξ(Y )[η]), where Y denotes the foot of η and D the
derivative. Therefore, the Hessian of fdiag is given by

Hessfdiag(Y )[ξ] = PY Dgradf̂diag(Y )[ξ]− ξ sym(Y T gradf̂diag(Y )),

where sym(A) = (A+AT )/2 and Dgradfdiag(Y ) is

Dgradfdiag(Y )[ξ] = −
∑
i

4Ci

⎛⎝ ξ ddiag(Y TCiY )
+Y ddiag(ξTCiY )
+Y ddiag(Y TCiξ)

⎞⎠ .
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3 Simulations

We propose two applications of the above ‘JD Stiefel’ algorithm in the following.
As source conditions, we will follow the SOBI algorithm [9] and calculate lagged
auto-covariance matrices.

3.1 Artificial Data

In the first example, we apply the JD Stiefel algorithm to the SOBI cost function
in order to separate artificially mixed speech data. n = 5 speech sources with
3500 samples were chosen1. These were embedded using a matrix chosen with
independent normal random elements into a m = 10-dimensional mixture space.
White Gaussian noise was added with varying strength.

Algorithmically, the noisy mixture data was first whitened. Then either SOBI
[9] with dimension reduction was applied or the JD Stiefel algorithm. For both
algorithms, N = 20 lagged autocovariance matrices were calculated (with lags
2, 4, 6, ..., 40). The trust-region method was applied with initial/maximal trust-
region radius of 1/100 respectively and maximal 100 outer iterations and ad-
ditional convergence tolerance. We are interested in the performance of the
algorithm when recovering parts of the mixing matrix A. We only recover part
of the data in order to simulate the situation of larger dimension than source
dimension of interest. This is realized by extracting only a n′ ≤ n dimensional
subspace, either by PCA and SOBI or by the non-squared JD Stiefel algorithm.

In order to measure deviation from perfect recovery, given a projection matrix
W, we want the resulting matrix WA to have only one large number per row.
This is measured by Amari’s performance index [16] E(WA) generalized to non-
square matrices:

E(C) =
n′∑
i=1

⎛⎝ n∑
j=1

|cij |
maxk |cik| − 1

⎞⎠
In figure 1(b,c), we show the results for a low and a high noise setting with

signal-to-noise ratios of 32.4dB and 4.65dB, respectively. Clearly the JD Stiefel
algorithm is able to take advantage of the full dimensionality of the data when
searching the correct subspace, so it always considerably outperforms the SOBI
algorithm, which only operates on the PCA-dimension-reduced data. Moreover,
we see that even in the case of low signal-to-noise ratio (SNR), the JD Stiefel
algorithm performs satisfactorily well.

3.2 Recording from Functional MRI

Functional magnetic-resonance imaging (fMRI) can be used to measure brain
activity. Multiple MRI scans are taken in various functional conditions; the
extracted task-related component reveals information about the task-activated
1 Data set ‘acspeech16’ from ICALAB http://www.bsp.brain.riken.jp/ICALAB/

ICALABSignalProc/benchmarks/
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Fig. 1. Application of the algorithm to speech data

brain regions. Classical power-based methods fail to blindly recover the task-
related component as it is very small with respect to the total signal, usually
around one percent in terms of variance. Hence we propose to use the autoco-
variance structure (in this case spatial autocovariances) in combination with the
soft dimension reduction to properly identify the task component.

fMRI data with 98 images (TR/TE = 3000/60 msec) were acquired with five
periods of rest and five photic simulation periods with rest. Simulation and rest
periods comprised 10 repetitions each, i.e. 30s. Resolution was 3 × 3 × 4 mm.
The slices were oriented parallel to the calcarine fissure. In order to speed up
computation, we reduce the 98 slices to 10 slices by PCA. This corresponds to
considering the spatial ICA model x = As, where each source si is a component
image.
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Fig. 2. Application of the algorithm to data acquired from functional MRI: (a) shows
the temporal mean of the 128 × 128 × 98 data set. (b) shows the comparison of JD
Stiefel and PCA+SOBI algorithm when recovering the task-related component.

As before, in order to compare the performance of JD Stiefel versus SOBI after
PCA (with N = 100 lagged autocovariance matrices), we analyze how well the
task-related component with the known task vector v ∈ {0, 1}98 is contained in
a component by the maximal crosscorrelation of all columns of A with v. This is
motivated by the fact that maximal preservation of the task-related component
is key to any dimension reduction method.

We compare the two algorithms for dimension reductions n′ ∈ {1, . . . , 10}
in figure 2. The key result is that JD Stiefel already detects the main task
component when reducing to only one dimension (crosscorrelation larger than
80%). SOBI is only able to find this when having access to at least 5 dimensions.
Then SOBI outperforms JD Stiefel, which is prone to fall in local minima during
its search. Multiple restarts and more extended searches should resolve this issue,
as the cost functions coincide if n = m. More complex analyses of fMRI data
using dimension reduction can now be approached, as generalization of e.g. [17].

4 Conclusions

Instead of reducing the dimension of the data and searching for independent
components in two distinct steps, we have proposed a two-in-one approach which
consists of optimizing the JD cost function on a Stiefel manifold. Numerical ex-
periments on artificially mixed toy and fMRI data are promising. In analogy to
soft-whitening, where the correlation estimate is weighed equally with respect
to higher-order moments of the data, the proposed method implements a soft
dimension reduction strategy, by using both second- and higher-order informa-
tion of the data. In future work, we propose merging soft-whitening and soft
dimension reduction.
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Abstract. We consider a method for solving the permutation problem
in blind source separation (BSS) by the frequency-domain independent
component analysis (FD-ICA) by using phase linearity of FD-ICA demix-
ing matrix. However, there is still remaining issue how we can estimate
the phase linearity. In this paper, we propose two methods to estimate
the linearity of the phase response of the FD-ICA demixing matrix. Our
experimental result shows that our new methods can provide better es-
timation of the phase linearity than our previous method.

1 Introduction
Frequency-domain Independent Component Analysis (FD-ICA) [1] is a blind
source separation method for convolutive mixtures, where separation using ICA
is performed in the frequency domain, separately for each frequency component.
However, successful use of FD-ICA involves solving a permutation problem, since
the extracted sources in different frequency bins may be permuted relative to
those in other frequency bins. The permutation problem can be tackled by using
the direction of arrival (DOA) of each source [2,3], but this can suffer from a
spatial aliasing problem above a certain frequency limit. It is possible to deal
with this problem by using phase linearity. Sawada et al. have proposed a method
to solve this problem by estimating mixing model parameters and fitting to an
idealised direct path mixing model, introducing a linear phase assumption on
the FD-ICA mixing matrix [4]. We have proposed a method which uses linearity
of the phase response of the demixing matrix directly [7,8]. Nesta et al. also
have proposed a similar method which uses the phase linearity based on time
difference of arrival (TDOA) [6]. However, there is remaining issue how we should
estimate the phase linearity. In this paper we propose new methods to estimate
the phase linearity based on the DOA method or the Best Fit method.

2 BSS for Convolutive Mixtures

In the time-frequency domain, the observed signals at microphones Xl(f, t) are
expressed as

Xl(f, t) =
K∑
k=1

Hlk(f)Sk(f, t), l = 1, ..., L (1)
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where f represents frequency, t is the frame index, Hlk(f) is the frequency re-
sponse from source k to microphone l, and Sk(f, t) is a time-frequency-domain
representation of a source signal. Equation (1) can also be expressed as X(f, t) =
H(f)S(f, t) where X(f, t) = [X1(f, t), ..., XL(f, t)]T is the observed signal vector,
S(f, t) = [S1(f, t), ..., SK(f, t)]T is the source signal vector, and

H(f) =

⎡⎢⎣H11(f) · · · H1K(f)
...

. . .
...

HL1(f) · · · HLK(f)

⎤⎥⎦ (2)

is the complex-valued mixing matrix.
In frequency-domain ICA, we perform signal separation from X(f, t) sepa-

rately at each frequency f using the complex-valued demixing matrix

W(f) =

⎡⎢⎣ W11(f) · · · W1L(f)
...

. . .
...

WK1(f) · · ·WKL(f)

⎤⎥⎦ (3)

which is adopted so that the reconstructed output signals Y(f, t) = [Y1(f, t),
..., YK(f, t)]T = W(f)X(f, t) become mutually independent. This can be done
using any suitable ICA algorithm, such as the natural gradient approach [1].
Hereafter, we suppose we have two sources (K = 2) and two microphones (L = 2)
for simplicity.

3 Permutation Problem

Since the ICA method has been applied separately at each frequency f , FD-ICA
has an ambiguity in the order of the rows of W(f), such that permuted matrix is
also the solution for FD-ICA. This problem is called as the permutation problem
[1]–[3]. Methods designed to solve the permutation problem include the use of
the amplitude correlation between adjacent frequencies [1,3], and the use of the
direction of arrival (DOA) [2,3].

In the DOA method, we suppose a signal with frequency f comes from a
source in the direction of θ. When the signal exp(j2πft) is observed at the middle
point of the microphones, the observed signals at the microphones are Xl(f, t) =
exp (j2πf [t− dl sin(θk(f))/c]), where dl is the position of the microphone (d1 =
−d2 = D/2) and c is the speed of sound. The frequency response of the demixing
process between the observed signals and the separated signals is expressed by
their ratio, Yk(f, t)/ exp(j2πft). Thus, we can obtain the gain of the frequency
response with respect to the direction as

Gk(θk(f)) = |Yk(f, t)/ exp(j2πft)|
= |Wk1(f) exp(−j2πf(d1 sin(θk(f)))/c)

+Wk2(f) exp(−j2πf(d2 sin(θk(f)))/c)|. (4)

If f < c/2D, the gain Gk(θk(f)) has at most one peak and one null point in
a half period of θk(f) where |θk(f)| ≤ π/2. The direction where the gain has
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the unique minimum value (null point) could be regarded as the direction of the
unwanted source signal. Therefore, we can solve the permutation problem by
comparing the direction of the two sources, θ1(f) and θ2(f). For more details of
this process see [2,3].

However, if f > c/2D, the gain Gk(θk(f)) has two or more local minimum
points so that we cannot uniquely determine the magnitude relationship between
θ1(f) and θ2(f): this problem is called the spatial aliasing problem. For example,
if the distance between two of microphones is 4 cm and the speed of sound is
343 m/sec, the spatial aliasing problem occurs for f > 4288 Hz.

However, by considering phase instead of direction or delay, we can obtain a
new insight into this problem allowing us to reduce the spatial aliasing problem.
A recent approach [4] to solve the permutation problem with the spatial aliasing
problem is to estimate phase and amplitude parameters of an estimated mixing
matrix Â(f) = W−1(f) assuming an anechoic direct path model. We have also
proposed a method which uses the phase parameters, but for the demixing matrix
W(f) directly [7,8].

The direction of arrival θk(f) can be calculated as [3]:

θk(f) = arcsin
(

(φk(f)− (2nk(f) + 1)π)c
2πfD

)
(5)

where

φk(f) = � Wk1(f)− � Wk2(f) (6)

and nk(f) is an arbitrary integer to be determined such that |(φk(f)−(2nk(f)+
1)π)c/2πfD| ≤ 1 is satisfied. However, if we plot the phase difference φk(f)
itself, this often has an approximate linearity corresponding to constant delay.
Thus, the difference could be represented by the following equation:

φ̂k(f) = akf + bk (7)

where bk = ±π and the equation holds modulo 2π. We know bk = ±π since
the DC component (f = 0) does not have phase information so that the two
signals at two microphones should have opposite sign to suppress the signal. Our
proposed method utilises this linear phase property. To solve the permutation
problem, we estimate the ak in (7) and then we calculate the distance between
φk(f) and φ̂k(f).

4 Proposed Estimation Methods

In our previous papers [7,8], we have estimated the parameters ak and bk by us-
ing the method of least squares on low frequency data where the spatial aliasing
problem has not occurred (f < c/2D). However, the microphone spacing be-
comes wider, we can use fewer data values and the accuracy of the estimation of
those parameters is likely to become worse. To prevent this problem, we propose
new two methods to estimate those parameters.



Estimating Phase Linearity in the Frequency-Domain ICA Demixing Matrix 365

4.1 Method Based on DOA

To estimate the parameter ak by using the method of least squares, we need
reliable data where the permutation problem has not occurred. In a real envi-
ronment, the DOA method is the most prevalent tool for solving the permutation
problem in low frequencies where the spatial aliasing problem has not occurred
[2,3]. We therefore first apply the DOA method at low frequencies, then we use
the phase linearity property to extend to higher frequencies by the following
steps.

[Step 1] Solve the permutation problem by using the DOA method in low fre-
quencies where the spatial aliasing problem has not occurred. Set initial loop
counter l := 1.

[Step 2] Estimate ak in (7) by using the method of least squares, as

ak =

∑
f∈F fφk(f)− bk

∑
f∈F f∑

f∈F f2 (8)

bk =
{

π if
∑

f∈Flow
φk(f) > 0

−π otherwise
(9)

where F = {f : flow ≤ f ≤ f
(l)
high}, Flow = {f : flow ≤ f ≤ c/2D}, and

the frequencies flow and f
(l)
high are the low and high limits of the frequency

range used to estimate ak. For example, flow is chosen to avoid the effect of low
frequencies such as bins 5–20 [3]. f (l)

high is calculated at the Step 8. For the first

loop, f (1)
high = c/2D.

[Step 3] Estimate the lines φ̂k(f) (equation (7)).

[Step 4] Wrap the values of φk(f) and φ̂k(f) into −π to π.

[Step 5] Calculate the distance Dprop(f) between φk(f) and φ̂k(f) using

Dprop(f) = [E11(f) + E22(f)]− [E12(f) + E21(f)] (10)

where

Eij(f) =
{ |φi − φ̂j | if |φi − φ̂j | < π

2π − |φi − φ̂j | otherwise.
(11)

[Step 6] Solve the permutation problem by usingDprop(f). IfDprop(f) < 0, con-
sider that a permutation has occurred at the frequency f , whereas if Dprop(f) >
0, a permutation has not occurred at the frequency f .

[Step 7] Calculate the set of “phase wrapping” frequencies Fwrap as

Fwrap = {0 < f ≤ fmax : φ̂k(f) = ±(2n+ 1)π, k = 1, 2} (12)

where fmax is the Nyquist frequency. If no wrapping frequencies exist, Fwrap is
a null set.
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[Step 8] Make the set of the high limit frequencies to estimate the ak as

{f (l)
high} = {c/2D} ∪ Fwrap ∪ {fmax}. (13)

The (l+1)-th smaller number is used as f (l)
high at the Step 2 in the next loop.

[Step 9] Unwrap the values of φk as

φk(f) = φk(f) + sign(ak)2πmk (14)

where mk is chosen to keep the line continuous.

[Step 10] Increase the loop counter l := l+ 1 and update the set of frequencies
F as F = {f : flow ≤ f ≤ f (l)

high}, and then repeat from the Step 2. In the final

loop when f (l)
high = fmax, do the Step 2–6 and then stop.

4.2 A “Best Fit” Method

The method which is described in Section 4.1 needs the observed data for which
the permutation problem has already been solved using e.g. the DOA method.
Thus, the performance of the estimation of the parameters ak depends on the
performance of the initial permutation solver. Here, we propose a new method
which does not require these conditions.

To estimate the ak, we calculate the distance between φk and assumed linear
curves calculated by using all possibility of the value of ak. We assume the linear
curve φ̃(a, f) as

φ̃(a, f) = af + b (15)

b =
{

π if a < 0
−π otherwise (16)

where a is assumed value and the range of the value depends on the location of
sources and microphone. Here, we use {a : −0.1 < a < 0.1}. Next, we calculate
the distance Derror(a) between φ̃(a, f) and φk(f) for all values of a.

Derror(a) =
∑
f

min(|φ̃(a, f)− φ1(f)|, |φ̃(a, f)− φ2(f)|) (17)
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The distance Derror(a) has two local minimum values (see the Figure 1). These
local minimum values should be the estimated value of ak. To solve the permu-
tation problem, we calculate the distance between φk(f) and φ̂k(f) as same as
the Step 5 and 6 in Section 4.1.

5 Experiments

To confirm our methods, we performed experiments to separate two speech sig-
nals (5 sec of speech at 44.1 kHz) mixed using impulse responses of an anechoic
room (T60 = 0 msec), an echo room (T60 = 300 msec), a Japanese Tatami floored
room (T60 = 600 msec), and a conference room (T60 = 780 msec). These im-
pulse responses are supplied by RWCP database. The distance between the two
microphones is 2.83 cm, so spatial aliasing would begin at 6060 Hz. For the
FD-ICA part, we adopt 2048 as the length of FFT window, and run for 300
iterations. In these experiments, we compared the performance of our methods
(method A described in [7], method B described in Section 4.1, and method C
described in Section 4.2) to the inter-frequency correlation method [1,3] and the
DOA method [2,3]. For the proposed methods, we used 5 as the lowest frequency
bin number flow.

Here, we define “correct” permutation data to evaluate the performance of
the inter-frequency correlation method and our proposed methods. The “cor-
rect” data are obtained by the correlation between the input signal Ulk(f, t) =
Hlk(f)Sk(f, t) observed at microphone and the separated signal Zlk(f, t) =
W−1

lk (f)Yk(f, t) which is projected to the microphone by the inverse matrix of
the demixing matrix at each frequency [8].

Table 1. Error rate obtained with the inter-frequency correlation method, the DOA
method, and the proposed methods

Error rate [%]
Inter-freq.
correlation DOA Proposed A Proposed B Proposed C

Anechoic Room 30.15 0.88 3.41 8.78 8.39
Echoic Room A 6.83 60.59 15.12 4.59 6.44

Japanese Tatami Room 28.78 12.68 41.95 8.68 7.02
Conference Room 34.93 54.44 17.56 9.17 6.63

Table 2. Comparison of average SIR [5] obtained with the inter-frequency correlation
method, the DOA method, and the proposed methods. All values are expressed in
decibels (dB).

SIR [dB]
Inter-freq.
correlation DOA Proposed A Proposed B Proposed C

Anechoic Room 23.860 22.478 32.725 32.725 32.542
Echoic Room A 17.538 16.037 17.543 17.543 17.549

Japanese Tatami Room 2.346 3.411 3.451 3.451 3.455
Conference Room 0.191 3.234 3.378 3.378 3.406
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Fig. 2. Detection of permutation in (i) the anechoic room, (ii) the echoic room, (iii)
the Japanese Tatami room, (iv) the conference room; (a) correct detection, (b) detec-
tion errors in the inter-frequency correlation method, (c) detection errors in the DOA
method, (d) detection errors in proposed method A, (e) detection errors in proposed
method B, (f) detection errors in proposed method C
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Fig. 3. The demixing matrix phase response in the same rooms as Fig. 2, showing
observed points φ1 (‘×’), φ2 (‘+’), and estimated lines φ̂1 (solid line), φ̂2 (dashed
line) from equations (6) and (7). In each environment, (a) shows φk before solving
the permutation problem, (b)–(d) show φk and φ̂k after solving the permutation using
method A (b), method B (c), and method C (d).
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The results are shown in Figures 2 and 3, and Tables 1 and 2. The methods
B and C can solve the permutation better than the inter-frequency correlation
method and the DOA method in all the environments. It can be seen from the
Figure 3, the estimation of phase linearity is better in methods B and C than
for method A which uses only low frequency data to estimate the parameter ak,
especially in the Japanese Tatami Room. It seems that the estimation of the
linear curve of method C is slightly better than that of method B. Because the
method B relies on the performance of previous permutation solver in each loop
for estimating the linear curve, so that the estimation error would be accumu-
lated. On the other hand, method C estimates the linear curve directly from the
observed data. Thus, the method C does not suffer from such error essentially.
However, if we do not know the direction of sources, we have to calculate all
direction for estimating the linear curve.

6 Conclusion

We have proposed two methods which estimate the linearity of the phase re-
sponse of the demixing matrix to solve the permutation problem. While the
permutation errors for methods B and C are significantly reduced from method
A, the SIR (Table 2) is only slightly reduced, probably due to most of the energy
in these signals being in the lower frequency regions. The proposed methods can
estimate the phase linearity better than inter-frequency correlation method, the
DOA method, and our previous method in [7,8] especially in long reverberant en-
vironments. In future work, we plan to compare the performance of our methods
with that of Sawada’s method [4] and Nesta’s method [6].
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Abstract. In this work, we propose a general framework for nonlinear 
prediction-based blind source deconvolution that employs recurrent structures 
(multi-layer perceptrons and an echo state network) and an immune-inspired 
optimization tool. The paradigm is tested under different channel models and, in 
all cases, the presence of feedback loops is shown to be a relevant factor in 
terms of performance. These results open interesting perspectives for dealing 
with classical problems such as equalization and blind source separation. 

Keywords: Unsupervised Deconvolution, Nonlinear Prediction, Recurrent 
Neural Networks, Echo State Networks, Artificial Immune Systems. 

1   Introduction 

The problem of unsupervised (or blind) deconvolution plays a key role in research 
fields as diverse as digital communications and seismology, and, in a certain sense, 
may be considered to possess an additional interest from theoretical and practical 
standpoints due to its relationship with the blind source separation (BSS) problem in 
its convolutive and undetermined versions [1]. 

In the classical blind equalization theory, it is known that the problem can be 
solved using second-order statistics to choose the parameters of linear prediction-error 
filters (PEFs) [2]. Nevertheless, such approach cannot be adopted when the channel is 
a mixed phase system: this is indeed a case wherein the difference between 
uncorrelated and independent signals is essential (analogously to the classical 
PCA/ICA dilemma [3]). Interestingly, it was shown in [4] and [5] that such 
limitations are not intrinsically related to the criterion of minimum mean squared 
prediction error, but to the choice of a linear structure. Through the use of nonlinear 
prediction techniques, such as neural networks and fuzzy filters, it becomes possible 
to deconvolve mixed phase channels. This can be explained from two different 
perspectives: (a) the use of a nonlinear structure increases the flexibility available in 
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the process of generating adequate input-output mappings; and (b) a nonlinear 
structure is capable of originating higher-order statistics even if a mean squared error 
(MSE) criterion is employed (like in nonlinear PCA [3]). 

In this work, we propose two extensions of the current state of the nonlinear 
prediction blind deconvolution paradigm: the use of recurrent neural networks (more 
specifically, recurrent versions of the multilayer perceptron (MLP) and an echo state 
network) and of an evolutionary optimization method to choose the parameters of the 
MLPs (even in the feedforward case). These proposals are analyzed throughout the 
paper and they are tested under a representative set of channels. The obtained results 
allow us to reach conclusions that provide a more complete view of the approach and 
also of its potential implications to blind signal processing tasks. 

2   Nonlinear Prediction and Unsupervised Deconvolution 

Let s(n) = [s(n) s(n-1) ... s(n-K+1)]T  be a vector of independent and identically 
distributed (i.i.d.) samples of an information source and  h(n) = [h0 h1 … hK-1]

T be the 
vector representing the channel impulse response. The channel output x(n) is then 
given by: 

 )1(...)()()()( 10 +−++== − Knshnshnnnx K
T sh .                          (1) 

The PEF (in this initial explanation, for the sake of clarity, we consider it to be a 
feedforward structure) has an input vector x(n-1) = [x(n-1) x(n-2) … x(n-L)]T, where L 
is the number of filter inputs, and attempts to estimate the signal x(n) by minimizing a 
mean squared error (MSE) cost function: 

 ]))(ˆ)([(])([ 22 nxnxEneEJ MSE −== .                                      (2) 

Since the predictor input is the vector x(n-1), the estimate )(ˆ nx  must be, in 

accordance with (1), a function of a certain number of past values of the source, 
)(ˆ nx = f(x(n-1)) = g(s(n-1), s(n-2), …, s(n-L)), which means that )(ˆ nx is independent 

of s(n).This fact indicates that the best estimate provided by the predictor would be: 

 )1(...)2()1()(ˆ 121 +−++−+−= − Knshnshnshnx K ,                            (3) 

and, in this situation, the prediction error in the instant n would be h0s(n), showing 
that, in the ideal scenario, the PEF would be able to deconvolve the signal. Although 
these ideas reveal the potential of solving the deconvolution problem using PEFs, it is 
well-known that linear predictors are not applicable to the deconvolution of mixed 
phase systems. In an ideal case, the predictor must be flexible enough to provide a 
mapping that effectively produces an estimate as close as possible to (3): this fact 
requires the use of nonlinear predictors. 

So in this work, we shall employ three structures: (i) a feedforward MLP, which 
will be a reference of the standard performance of the nonlinear prediction paradigm; 
(ii) an MLP with feedback loops, which may be decisive in some cases (e.g. when 
there are close or coincident channel states [6]); and (iii) an echo state network, which  
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has, in a certain extent, the potential of dynamical processing without a significantly 
more complex training procedure. Another contribution of this work is an investigation 
of the applicability of an artificial immune system (AIS) in the adaptation of the 
connectionist models in (i) and (ii). These efforts lead to a more general formulation of 
the nonlinear prediction approach, and this is, in fact, our main objective. It is important 
to remark that this aim, if fulfilled, would have implications beyond the blind 
deconvolution problem per se, for, as shown in [7], the nonlinear prediction framework 
can also be applied in a BSS context. 

3   MLP-Based Prediction-Error Filters 

As stated above, we will employ both a feedforward [8] and a recurrent version of the 
MLP (which shall be referred to as a recurrent MLP). Since we deal with a prediction 
task, the input layer of a feedforward MLP is composed of the input vector x(n-1) and 
of a bias signal equal to one. We consider networks with a single hidden layer, being 
the signal )(ˆ nx estimated by the predictor given by: 
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where wo,i represents the synaptic weights of the output neuron, wi,k represents those 
of the i-th neuron of the hidden layer and the vector u(n) is composed of the outputs 
of the M neurons of the hidden layer. In (4), we have a predictor with an 
autoregressive (AR) character. 

The structure of the proposed recurrent MLP is similar: however, in the input 
vector xR(n-1), there are past values of e(n): 
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Applying this vector in the structure of the recurrent MLP, we obtain: 
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A comparison with (4) reveals the addition of a moving-average (MA) parcel to the 
model. Thus, the recurrent MLP can be conceived in terms of a nonlinear 
autoregressive moving average (NARMA) model. 

In the training of an MLP network, it is well-known that the use of adaptive 
algorithms built from the derivatives of the cost function is subject to local 
convergence. In addition to that, in the case of recurrent MLPs, the process is also 
made more complex due to the constant menace that an unstable solution be reached 
and to difficulties in carrying out the calculation of derivatives [9]. Having this in 
mind, we propose the use of an artificial immune system (AIS) [10] that do not 
require the manipulation of the derivatives of the cost function and are robust to the 
convergence to poor local minima due to their populational character. 
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4   Artificial Immune Systems 

Artificial immune systems (AISs) are algorithms inspired by the behavior of certain 
organisms in the presence of antigens – molecules which lead to an immune response 
[10]. In this work, we have adopted a model based on the clonal selection principle, a 
version of the CLONALG, first proposed in [11]. 

According to the clonal selection principle, when pathogens invade the body, the 
defense cells suffer an intense replication. During cell division, mutations occur in an 
inverse proportion to the degree of recognition of the pathogens. The higher the 
affinity relationship (fitness), the lower the mutation suffered by the cells, and vice-
versa. Through this mechanism, the cells become more efficient and recognize more 
quickly a future invasion by the same or by a similar pathogen [10]. 

In analogy with the immune system, in the adopted AIS each defense cell is 
represented by a vector whose elements are the parameters of the neural network, 
while the affinity between the cell and the invader is related to the cost function to be 
optimized. Since the algorithm is suited to maximization problems and we want to 
minimize the mean squared prediction error, the fitness is proportional to the inverse 
of JMSE. The algorithm is summarized below: 

 
1. Randomly initialize a population of NA cells; 
2. Compute the fitness of each cell: JFIT = (1+JMSE)-1; 
3. While the n-th generation is not attained do 

3.1. Create NC clones for each cell; 
3.2. Keep the original cell and apply a mutation process to each clone following the 

equation: 

 )1,0(' Ycc α+=                                                            (7) 
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β

α                                                          (8) 

where c’ is the modified clone, Y(0,1) is a random Gaussian variable with zero mean and 
unit variance and β is the control parameter. 
3.3. Keep in the population only the best solution of each group formed by the individual 

and its clones; 
3.4. Determine the best individual, which has the highest fitness, among the groups; 
3.5. After each t iterations, eliminate m elements of the population with the lowest values of 

fitness and replace them with randomly generated individuals. 
4.  End while  
 

The mutation process is represented in step 3.2, in which the copies of the 
parameter vector suffer a random modification proportional to the value of α. In this 
stage, as well as in 3.3 and 3.4, the algorithm establishes an efficient local search 
mechanism, although there is also a global search potential in the mutation. In 3.5, on 
the other hand, there is a determinant increase in the global search potential because 
of the insertion of random individuals in the population, allowing the exploration of 
novel portions of the search space. 
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5   MLP Simulation Results 

In order to test the proposed technique, we will perform simulations using the MLPs 
in three scenarios, always with discrete sources formed by i.i.d. binary {+1;-1} 
samples and without noise. The channel models are: H1 = 1 - 1z-2, H2 = 0.38 + 0.60z-1 
+ 0.60 z-2 + 0.38z-3 and H3 = -0.8221 + 0.4521z-1 + 0.3288z-2 + 0.1079z-3, and, in the 
simulations, their impulse responses were, without loss of generality, normalized to 
engender a signal with unit variance. In the first and second channels, there are 
coincident states [6]: the presence of such states means that the channels cannot be 
properly equalized by any feedforward filter. In particular, the second channel was 
chosen also because it has a relatively long impulse response and is proven to be the 
worst channel of four coefficients in the bit error rate sense [12]. The third channel 
has no coincident states, but the channel has one zero near the unit circle, which make 
the task of deconvolution more difficult. Although the third channel can be equalized 
with a feedforward structure, it is valid to expect that the problem will be simplified 
by the information brought by the presence of a feedback loop. 

In Table 1, we present the values of the relevant parameters of the feedforward and 
recurrent MLP, and as well as those of the AIS. In order to test the performance of the 
nonlinear PEF, we divided the available time series into training and test sets with Ntrain 
and Ntest samples, respectively. The MSEs will always be those associated with the test 
phase. The mutation parameter β is increased in some moments when the algorithm 
reaches a certain generation (indicate in Table 1 by gen). This allows the search 
performed by each individual to become more and more local. All filter and algorithm 
parameters were chosen with the aid of several preliminary simulations, having always 
in mind the idea of looking for solutions as efficient and parsimonious as possible. 

Table 1. Simulations parameters 

Feedforward MLP Recurrent MLP  
H1 H2 H3 H1 H2 H3 

M 2 2 8 2 2 2 
L 4 2 2 4 (r=2) 5 (r=4) 6 (r=4) 
Ntrain 2000 2000 2000 2000 2000 2000 
Ntest 1000 1000 1000 1000 1000 1000 
NA 20 20 25 20 20 20 
NC 4 4 4 4 4 4 
gen 60/150 100/200 80/150 80/200 100/200/300 80/200 
β 10/50 10/50 10/50 10/50 10/20/50 10/50 
T 30 40 40 40 30 40 
M 6 7 10 6 6 6 

 
In Table 2, we present the best, worst and average MSE obtained from a set of 10 

simulations. A first analysis reveals that the recurrent MLP leads to the best results in all 
scenarios, always with a number of inputs that is smaller than that of the feedforward 
MLP. This indicates that the moving average character played a decisive role in the 
process of equalizing this class of “difficult channels”. As a matter of fact, for H1 and H2, 
the presence of coincident states is responsible for the expressive MSE values originated  
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Table 2. Mean square prediction error 

canal MLP MSE min MSE mean MSE max 
forward 0.1247 0.1335 0.1443 H1 
recurrent 0.0036 0.0058 0.0087 
forward 0.0833 0.0857 0.0895 H2 
recurrent 0.0013 0.0046 0.0082 
forward 0.0260 0.0523 0.0631 H3 
recurrent 0.0033 0.0116 0.0244 

 
by the feedforward structure. As we can see in Figure 1 the “open eye” condition is not 
attained by the feedforward MLP for the channel H2 in the minimum MSE realization, 
while this difficulty is completely overcome by the presence of feedback loops.  

The results obtained under the third channel model also favor the performance 
reached with the recurrent MLP. In this case, there are no coincident states, but, on 
the other hand, the existence of close states demands a complex mapping that is far 
from being easily built using a feedforward structure. Such facts are in consonance 
with the widespread notion that feedback loops are useful when dealing, for instance, 
with long impulse response channels [13].  

Finally, the performance level shown in Table 2 and the relatively uniform 
distribution verified for the results give strong support to the conclusion that the 
chosen AIS was able to make an efficient use of the approximation potential brought 
by the structures. In Figure 2, we have, for a typical trial involving a recurrent MLP 
and channel H2, the time evolution of the maximum fitness (solid line) and of the 
average fitness (dashed line) of the population. The curve of the maximum fitness 
shows that the technique quickly found a promising solution, whereas the curve of 
average fitness and its distance from the solid line reveal that a reasonable level of 
population diversity is maintained. In summary, we conclude that the algorithm 
achieved its aims, searching for good solutions and avoiding, in recurrent structures, 
the menace of instability and the difficulties related to cost function manipulation.  
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Fig. 1. Best performance of the feedforward 
(top) and the recurrent (bottom) MLP for H2. 
The symbol ‘x’ corresponds to the prediction 
error, while ‘.’ to the source signal. 

0 50 100 150 200 250 300
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

generations

fit
ne

ss

 

 

best individual
population average

 

   Fig. 2. Maximum fitness and average fitness 
for recurrent MLPs and channel H2 



 Nonlinear Blind Source Deconvolution 377 

6   On the Applicability of Echo State Networks 

Echo state networks (ESNs), first proposed in [14], are nonlinear recurrent filtering 
devices that establish a tradeoff between the dynamical processing capability of 
feedback structures and the relative simplicity of the training process associated with 
feedforward structures. The ESN structure we will be concerned with in this work is 
formed by a layer of fully interconnected neurons (perceptrons with hyperbolic 
tangent activation functions) followed by a linear output layer. This means that the 
behavior of the ESN can be described by a pair of equations: 
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where Win represents the matrix of the input weights, W is the matrix of weights of 
the recurrent layer neurons and wout is the vector of weights of the output units.  

The outputs of the recurrent layer neurons (also known as dynamical reservoir) are 
called echo states. The weights Win and W are chosen without the influence of the 
desired signal: the choice is guided solely by the notion of establishing a repertoire of 
dynamical patterns that be as diversified as possible in order to facilitate the task of 
the output layer (which is trained using the desired signal under a classical linear 
regression framework). Naturally, being the reservoir thus designed, the ESN will not 
make use of the full potential of the underlying filtering structure. On the other hand, 
its training process is much simpler than that of a standard recurrent network. 

In this work, the study involving the echo state network can be considered 
preliminary, and will gravitate around a single question: are the feedback loops 
present in the fixed reservoir enough to ensure the benefits brought by the use of a 
recurrent predictor? In order to answer that question, we will consider a channel with 
a zero at –1, which generates coincident states. This channel cannot be properly 
deconvolved with any feedforward structure [6], which means that, if the ESN be able 
to equalize it, it can be concluded that its recurrent character made the difference. 

We trained an echo state network to play the role of predictor using the 
methodology discussed in [15]. After some preliminary results, we chose the number 
of neurons in the reservoir to be equal to 10, the spectral radius to be equal to 0.95 
and the matrix Win to be composed of equiprobable {+1;-1} values. Ten simulations 
were performed with a single-input predictor, and the training and test MSE values 
were 8.3x10-3 and 7.7x10-3, respectively. These values when compared to the MSE of 
the optimal feedforward predictor [5], which in this case is equal to 0.5, reveal that 
the ESN played with success the role of nonlinear recurrent predictor in the spirit of 
the proposal that forms the essence of this work. This certainly calls for a detailed 
future investigation of the performance of this interesting signal processing solution 
under a more diversified set of channel models. 

7   Conclusions 

In this paper, we have proposed a new approach to the problem of nonlinear 
prediction-based blind source deconvolution that employs recurrent neural networks 
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and an artificial immune system. In all studied scenarios, the presence of feedback 
loops improve the performance, in particular, when the analyzed channels had 
coincident states, since the feedforward structures are unable to properly deal with 
them. The performance of the AIS was also quite satisfactory in terms of MSE, 
robustness to unstable solutions and global search potential/population diversity. It 
should also be noticed that the echo state network reached a very satisfactory 
performance using a training process simpler than the AIS. 

As perspectives for future work, we may indicate: extension to cases involving 
continuous sources, a comparison between the AIS and other optimization tools, and 
an analysis of the potential of ESN in blind and supervised deconvolution tasks.  
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Abstract. We introduce a new robust independent component analy-
sis (ICA) toolbox for neuroinformatics, called ”Arabica”. The toolbox
is designed to be modular and extendable also to other types of data.
The robust ICA is the result of extensive research on reliable applica-
tion of ICA to real-world measurements. The approach itself is based on
sampling component estimates from multiple runs of ICA using boot-
strapping. The toolbox is fully integrated to a recently developed pro-
cessing pipeline environment, capable of running on a single machine or
in a cluster of servers. Additionally, the toolbox works as a standalone
package in Matlab, when the full pipeline is not required. The toolbox
is aimed at being useful for both machine learning and neuroinformatics
researchers.

Keywords: Toolbox, pipeline, bootstrapping, ICA, fMRI.

1 Introduction

Biomedical signal analysis has been one of the most successful application do-
mains for independent component analysis (ICA) (see, e.g., [1]). In recent years,
the neuroscience and neuroinformatics communities have acknowledged the great
potential of such exploratory analysis (see, e.g., [2]), particularly under measure-
ment conditions where it is difficult to make valid assumptions or predict the
outcome (see, e.g., [3,4,5]). Therefore, researchers in these fields are looking for
ways to incorporate ICA into their existing analysis frameworks.

Another field with promising recent development has been building processing
pipeline environments that would offer the capabilities of running algorithms and
handling data in a cluster of servers, or a grid. These are critical capabilities in
modern infrastructures, where large databases can be hosted at a certain facility,
algorithms developed in another facility, and possibly a third facility providing
computing resources.

However, incorporating ICA seamlessly into existing frameworks is not the
only major obstacle. Data-driven analysis of real-world signals as part of bigger
analysis pipelines needs to be reliable, both in the sense that the results must be
reproducible simply by re-running the whole process, and that analysis of new
data can be trusted.

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 379–386, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The motivation for our new toolbox is to provide a robust ICA method that is
easy to integrate to existing frameworks or use on its own. Also, as a part of such
a framework it needs to be capable of running in single machines and cluster
servers. The design of the toolbox is fully modular, allowing for the addition
of new or alternative parts, such as, algorithms, visualization, or handling of
different data formats. Currently, Arabica offers modules to perform robust ICA
and handle input, output and visualization of fMRI data.

The name ”Arabica” was inspired by the finest species of coffee beans, but
also serves as the acronym for ”Adaptive Robust Additions to Bagging ICA”.
Our goal is to setup an open community, based on open source standards, where
anyone interested can join in and further develop the toolbox, or integrate it with
other existing methods or frameworks. The toolbox community can be found,
and the toolbox itself downloaded, at http://launchpad.net/arabica.

2 Background

There are many widely used and trusted analysis toolboxes in the neuroinfor-
matics field (see, e.g., [6,7]), but they are mainly designed to be used on their
own, as standalone tools. It is very difficult to use parts of one toolbox and com-
bine it with parts of another. Some recent toolboxes even provide ICA (see, e.g.,
[8,9]), but they are typically designed for a specific purpose and can be difficult
to integrate into larger analysis frameworks. Additionally, none of the existing
toolboxes offer the level of robustness needed for reliably reproducing the same
decomposition when reapplied to the same data.

The robust ICA approach introduced in [10] aims at being reliable and easy
to use in practice. By running ICA many times using bootstrapping and random
resampling of the data, it allows for analyzing the distribution of the component
estimates. The variability information can be used in assessing the reliability and
making correct interpretations of the components. One of the main benefits is
the knowledge of uncertainty within the components when applying the method
to new data.

The recent shift towards cluster or grid computing, to allow for ever larger
datasets to be collected and analyzed in a feasible manner has not been taken into
account in any of the previous toolboxes. One very promising framework for al-
lowing flexible definition and execution of processing in a cluster of computers is
the recently released LONI Pipeline environment ([11], http://pipeline.loni.
ucla.edu). The environment allows for graphical definition of processing
pipelines consisting of inter-connected modules that can be executed in one or
many computers. Such an environment is very useful, since it offers the ability to
reuse, replace, and modify only certain parts of a big processing pipeline without
needing to know every detail of the other parts. This means that an ICA expert
can change parameters of an ICA module, or replace a whole module, without
being an expert in, e.g., pre-processing of brain measurements. Likewise, a neu-
roscientist can alter parts of pre- or post-processing without needing to be an
expert in ICA. The environment also allows for easy sharing of parts, or even
complete, processing pipelines between researchers.
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3 Toolbox Design

The toolbox is divided into packages that define one or many modules, using
the same module definition as the LONI Pipeline environment. Packages can
be installed by the end user or even added at runtime programmatically, al-
lowing easy implementation of new and alternative modules, such as, analysis
algorithms, data visualization, and data file handling. Individual modules, or
processing flows consisting in many modules, can be automatically exported for
use outside of Matlab in the LONI Pipeline environment. Fig. 1 shows an illus-
tration of the control flow during execution of a processing pipeline. The toolbox
provides an automatic wrapper for modules defined inside Matlab that allows
easy and transparent integration of Matlab functions as parts of a processing
pipeline.

Fig. 1. Designed flow of execution control when running Arabica. The standard LONI
Pipeline process on the left, where the pipeline client or server executes module code on
the command-line shell in the localhost or in a grid server cluster. The Arabica toolbox
provides a wrapper module that launches Matlab with the Arabica framework. Inside
Matlab, execution is governed by the Arabica Core package that allows a module to
consist in both shell commands and normal Matlab functions.

4 Illustrative Usage

This section demonstrates the use of the toolbox in the analysis of real multi-
subject fMRI measurements. Fig. 2 shows the processing pipeline in the LONI
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Fig. 2. An illustrative example of a typical Arabica process in the LONI Pipeline client
program, when processing multi-subject fMRI data. The interface shows a library of
predefined processing modules on the left and an editable graph of the processing
pipeline on the right. The popups show selected parameters for two of the Arabica
modules. The illustrated process starts from the top with the dataset consisting of
functional measurements of two subjects in two trials, followed by the individual skull
stripping volume masks. In this simplified illustration, the datasets are already as-
sumed to be suitably pre-processed. The datasets are fed to the Arabica Normalize
module which allows for a group analysis of multiple datasets. The module also out-
puts metadata that is needed in the later stages of the pipeline. The normalized group
data is the input to the Arabica Robust ICA module that produces the clustered IC
estimates. The last steps in the example process output and visualize the reliable ICs
of the individual subjects.
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Fig. 3. An illustrative example of a typical Arabica standalone user interface running
inside Matlab. It offers a simple way of managing a single execution flow through
processing modules. The upper list displays the possible modules to be added to the
flow. The lower list the actual process flow and allows management of inputs and
outputs of the modules.

Pipeline client program. The figure only illustrate small parts of the data and the
processing pipeline. The full pipeline would consist of more subjects and more
trials, where each of the datasets may require individual pre-processing, such as,
filtering, motion compensation and co-registering to a standard template.

In the example, the inputs are already considered to be pre-processed using
some standard fMRI tools and are represented in the pipeline only as single
input nodes. The pre-processing could be done, e.g., as a separate processing
pipeline. Similarly, the final output and visualization only illustrates the use of
a single Estimate module that constructs the reliable component mixing vectors
and signals. In practice, the outputs would depend on what kind of information
the user is interested in, e.g., separate estimation nodes may be needed to allow
for interpretations of how the ICs apply on both individual and group level.
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Fig. 4. An illustrative example of results acquired with Arabica Robust ICA. For each
of the 4 components, the visualization shows details of robustness, on the left, the spa-
tially independent activation maps, in the middle, and, on the right, the corresponding
activation time courses, i.e., mixing vectors. The robustness details include: the IC
number; the discrimination rings depicting the distributions of inter-cluster (left arc)
and intra-cluster (right arc) distances of all the estimates; and the occurrance proba-
bility with a histogram over the 100 runs. The spatial patterns are shown along three
different axes with the volume histogram embedded into the colorbar, which shows
the skewness and non-gaussianity of the component. Finally, the estimated mean time
courses are shown surrounded by the percentiles of the distributions of all estimates,
instead of just the typical variance based error-bars. Note particularly, the ability of
the method to reliably separate the two last components even though they have very
small occurrance probabilities.

Considering the illustrative example further, the first Arabica module to be
executed is the Normalize module, which masks and whitens each input dataset
individually, and then outputs a concatenated single data matrix suitable ICA.

The normalizing module can be considered as consisting of many sub-modules
that can also be controlled individually. Fig. 3 shows the internal structure of the
module inside the standalone user interface in Matlab. The interface can also
be used without the LONI Pipeline environment. However, unlike the LONI
client program, the Matlab interface only supports a linear execution flow at the
moment.

The Arabica toolbox includes a visualizer interface that allows the results of
the robust ICA method to be plotted in an easy to interpret fashion. Fig. 4 illus-
trates possible results from the Arabica Robust ICA module. The figure shows 4
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typical spatially independent components reliably identified from a multi-subject
fMRI study. The analysis of robustness of the ICs and mixing vector variabil-
ity applies to any type of data. However, visualization of the signal itself is
data dependent, e.g., in this case the activation pattern as spatial volumes. The
modularity of the toolbox allows for different visualizers to be added for other
types of data. Naturally, modules that output the resulting signals in a standard
format, loadable in external visualization tools, are possible as well.

For a real application of the robust ICA see, e.g., the study in [12], which
also highlights the fact that a typical analysis may also require post-processing
after the ICA. The analysis in that study used further clustering and canonical
component analysis (CCA) as refinement methods within each set of estimates
belonging to a reliable component. The modularity of the Arabica toolbox would
allow such methods to be easily defined as modules in Arabica and in the LONI
Pipeline environment.

5 Discussion

The robust ICA approach allows for easy and reliable use of ICA. It provides
information on the distribution of the component estimates that is required for
correct interpretation of the results. One of the main benefits is the knowledge
of uncertainty within the components when applying the method to new data.

Arabica provides a toolbox that is fully integrated into an existing processing
environment. It works in a cluster of servers or a single machine, and can be used
as a part in the LONI Pipeline or as a standalone package in Matlab. The current
development version of Arabica offers basic modules to perform robust ICA as
a part of larger processing, and provides further modules for input, output and
visualization of fMRI data. The toolbox is currently implemented completely
with bash shell scripts and Matlab code, but depending on the needs of the
community future work may include, e.g., integration of modules implemented
as Python code.

Recent developments, such as our Arabica toolbox, offer the ICA community
an opportunity to build something useful on a large scale. We hope to gain a
wide range of users in machine learning, neuroinformatics, and possibly other
fields. There is a clear vision for the future development of many parts of the
toolbox, but we invite anyone interested to join the community in developing
the core toolbox or new modules that would be useful for them and others.
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Abstract. We address the applicability of blind source separation (BSS)
methods for the estimation of hidden influences in biological dynamic sys-
tems such as metabolic or gene regulatory networks. In simple processes
obeying mass action kinetics, we find the emergence of linear mixture
models. More complex situations as well as hidden influences in regula-
tory systems with sigmoidal input functions however lead to new classes
of BSS problems.

The field of independent component analysis (ICA) as solution to BSS prob-
lems has been in the focus of rather intense research during the past decade
[1]. With the nowadays available robust algorithms in particular for the linear
case, more and more people turn towards model generalizations and applica-
tions of ICA. One area of application of ICA and machine learning in general
has been bioinformatics [2], which mostly deals with the analysis of large-scale
high-throughput data sets from genomics. With the basic methods being robustly
established, a trend in this field is to deal with smaller-scale fine-grained models
closely integrating information from experiments. This systems-biology ansatz
is increasingly bringing forth concise explanations for biological phenomena. In
this contribution, we will list a few possible application areas of BSS in systems
biology. A key ingredient for the system modeling is the detailed description of
the system dynamics; we will consider mass action and Hill kinetics. We then
address the question of how to model unknown sources (latent variables) that
can be inferred from the observations. In a few situations this can be done even
in a linear mixing system, in more general setting we will have to consider ex-
tensions of standard BSS models. We will denote measured time-courses by g
and hidden influences by h, dropping their explicit time dependence.

1 Mass Action Kinetics

The modeling of a macroscopic chemical system such as a metabolic network is
commonly simplified by neglecting the discrete nature of the participating re-
actants and their reactions. Therefore one introduces continuous concentrations
as well as continuous reaction rates linked by a system of ordinary differential

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 387–394, 2009.
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388 F. Blöchl and F.J. Theis

(a) g1

k1

���
��

��
��

��
��

��

g2

(b) g1

k1

���
��

��
��

��
��

��
h

kh

����
��
��
��
��
��
�

g2

(c) g1

k

��

h

g2

Fig. 1. Reactions of order one and two: (a) shows a reaction, where g1 reacts to g2 with
rate k1, see Eq. (1). In (b) we add a hidden influence h, which also contributes to the g2

concentration. Figure (c) depicts a situation, where g1 and h react to g2, see (4).

equations (ODE), the so-called rate equations. These rate laws are governed by
the law of mass action, which says that the instantaneous rate of a reaction is
proportional to the concentration of each reactant, raised to the power of its
stoichiometry. The largest degree occurring in this equation is called the order
of the reaction, which rarely exceeds two [3]. Figure 1 shows the elementary reac-
tions of order one and two, which we will take as starting point for the following
discussion.

1.1 First-Order Mass Action Kinetics

For the rate equations of the direct conversion g1
k1−→ g2 in Figure 1a, we find

ġ1 = −τ1g1 − k1g1 , ġ2 = −τ2g2 + k1g1 , (1)

where the reaction runs with rate k1. We additionally introduce decay terms
quantifying the loss of reactants due to degradation with time constants τ1/2. If
we now allow one hidden influence h that produces g2 in a first-order reaction
(Fig. 1b), we have to change the rate law for g2 to ġ2 = −τ2g2 + k1g1 + khh . In
this situation — provided that we know both the decay rates and g1 — we can
directly calculate the time-course of khh via khh = ġ2 + τ2g2 − k1g1. Obviously,
we cannot determine the scale of the hidden influence and its reaction rate kh
observing only g1 and g2.

However, if g1 and h are assumed to be uncorrelated or independent (e.g.
because they stem from different biological processes), we can even estimate k1
from the observed time-courses: we simply minimize the absolute correlation
between g1 and khh, which has a unique solution in this case. Simulations with
various parameter sets and shapes of hidden influences show that k1 can be
estimated up to an absolute error that depends on the size of the (in practice non-
vanishing) correlation between g1 and h. For instance, with the hidden influences
in Figure 2, randomly sampled k1 ∈ (0.1, 1) can be estimated with an absolute
error of 0.005, averaged over 100 runs with random decay rates in (0.1, 1).

In a general reaction network of this kind with N species gi, let gj
kij−→ gi

denote the reaction with rates kij vanishing if no reaction occurs. We may write
the rate law for any of the reactants in a system with n hidden influences as
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Fig. 2. (a) A coherent feed-forward loop with two hidden influences. (b) Simulated
time-courses of the measured reactants for k1 = 0.3, k2 = 0.7, k3 = 0.4 and degradation
rates τ1 = 0.1, τ2 = 0.6, and τ3 = 0.5. (c) The two simulated hidden influences and
their reconstructions using FastICA. We use the solutions of ḣ1 = (2(t − 1))−1 − h1

for t > 2 and 2ḣ2 = (1 + (t − 7)3)−1 − 3h2 for t > 7. For the mixing matrix we choose
A = (0.6, 0.4; 0, 0.6), where we find SNR of 22 and 36 dB.

ġi + τigi −
N∑
l=1

(kilgl − kligi) =
n∑

j=1

aijhj . (2)

Denoting the left hand side of this equation by xi and using matrix notation,
we arrive at the common linear blind-source separation problem x = Ah. This
problem can be solved by various techniques, if we assume that the hidden
influences fulfill certain conditions like decorrelation (PCA [4]), statistical inde-
pendence (ICA [1]) or non-negativity, possibly combined with sparseness (NMF
[5,6]). Moreover, these properties can be used to estimate reaction rates anal-
ogously to the upper example. If at least one reactant gu is known not to be
affected by the hidden ones, we may estimate the rates k occurring in its rate
law as k̂ = argmink |corr (xu; gu)|. This estimate has — possibly many — inde-
terminacies depending on the network topology.

Example: A feed-forward loop. A frequently occurring motif in metabolic
networks is the coherent feed-forward loop [7], as shown in Figure 2a. We study
the first-order coupling of two statistically independent hidden influences h1/2
to this system, which for example may correspond to a separation of overlapping
metabolic pathways. We write the rate equations for the depicted problem as
linear mixing model

ġ2 + τ2g2 + k1g1 − k2g2 =
∑

a1jhj (3)

ġ3 + τ3g3 + k2g2 + k3g1 =
∑

a2jhj .

Hence, if the time-courses of the reactants are measured and the reaction rates
and time constants are known, we can estimate ġi and reconstruct h1/2 by as-
suming approximate statistical independence. In our simulations we perform ICA
using the FastICA algorithm [8]. With this, in 100 simulations (rate parameters
given in Figure 2) with random positive mixing coefficients, we reconstruct the
hidden influences with a mean signal-to-noise ratio of 25± 9 dB.
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Fig. 3. Second-order mass action kinetics: a three node cascade with 2 hidden influences
(a) and a simulated time course (b). All time constants equal 0.01; we choose a mixing
matrix A = (0.8, 0; 0.2, 0.5) and the hidden influences from Figure 2. With FastICA
we can reconstruct them with a SNR of 14 dB and 27 dB, plotted in (c).

1.2 Second-Order Mass Action Kinetics

The easiest and analytically solvable example for second-order mass action ki-
netics with a hidden influence h is a reaction g1 + h k−→ g2, as shown in Figure
1c. The corresponding ODE system contains only degradation terms and the
product term representing the reaction:

ġ1 = −τ1g1 − kg1h , ġ2 = −τ2g2 + kg1h . (4)

Hence, if we measure the time-courses of g1 and g2 and also know their decay
rates we can determine kh = (ġ2 + τ2g2) /g1, given that g1 �= 0. If additionally
the reaction rate k is known, we can extract the hidden influence. Otherwise this
constant and with it the scale of h remains an indeterminacy of this problem,
even if e.g. we assume independence of the two reactants.

Now consider a cascade g1 −→ g2 −→ g3 of second-order reactions. Here
we could try to estimate the time-courses of two unobserved reaction partners
h1/2 that may take part in both reactions — e.g. two enzymes that have similar
functions but are regulated by different processes. The rate equations for the
first and the third reactant again lead to a linear mixing model (ġl + τlgl)/gl =∑2

m=1 alkhk for l = 1, 3. As before, this can be easily solved by ICA. Figure 3
shows a simulated example.

However, these procedures only work in the discussed simple cases. If, for
instance, there exists a direct second-order reaction g1 −→ g3 in the three node
cascade or if we have a larger cascade with more than two influences, we arrive
at a mixing model with time-dependent mixture coefficients.

For a general network of second-order reactions r : gra + hj −→ grb
with n

hidden influences we find rate equations ġi = −τigi −
∑

ra=i

∑n
j=1 arajgihj +∑

rb=i

∑n
j=1 ajragrahj +

∑
(reactions of gi without hidden influences). We

therefore will have to solve the BSS problem

xi =
n∑

j=1

(
−

∑
ra=i

arajgi +
∑
rb=i

ajragra

)
hj , (5)
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where we know the time-courses of all g. Hence, the estimation of hidden in-
fluences in such systems leads to a class of linear mixing models with time-
dependent coefficients.

In many reactions, especially enzymatic ones, one observes processes of com-
plex formation and dissociation like g1 + g2 ←→ C −→ g3 + g2. This can be
modeled by a detailed second-order mass action system. If however the con-
centration of g2 (the enzyme) is much lower than the concentration of g1 (the
substrate), the dynamics can be approximated by Michaelis-Menten kinetics
(cf. [3]). However, this type of reaction is formally a special case of Hill kinetics,
which will be discussed in the following.

2 Gene Regulatory Networks

Molecular interactions on a genetic level are known to show a switch-like behav-
ior. Motivated by the analysis of a promotor binding model (see e.g. [3]), they
are usually described by activating H+

n,k(g) = gn(gn + kn)−1 and inhibiting Hill
functions H−n,k(g) = (gn +kn)−1. Here the Hill coefficient n is a measure for the
cooperativity of the interaction. The threshold parameter k corresponds to the
concentration at half maximum activation.
A negative feedback loop modeled with Hill kinetics. As showcase for
the issues we face in estimating hidden influences in gene regulation, imagine
the mutual inhibition of two genes shown in Figure 4a, a bistable motif that is
found in many developmental processes:

ġ1 = −τ1g1 +H−n2,k2
(g2) , ġ2 = −τ2g2 +H−n1,k1

(g1) . (6)

Again we can measure the time-courses of both genes and know all parameters
in the rate equations (6). If we now allow two hidden influences h1 and h2, we
first have to specify the logical operations that couple them to the system. The
translation of the potentially complex ‘molecular computations’ taking place in a
gene’s promotor region into differential equations is still a field of active research.
However, purely additive as well as purely multiplicative coupling of all incoming
regulations are widely-used approaches. This corresponds to a combination of
the inputs by Boolean or and and logic, respectively. Both logics can only be
transformed to the common linear mixing model, if any hidden influence couples
to measured genes with the same Hill function.

In this simplified situation we can proceed analogously to the last section
and extract at least the Hill-transformed hidden influences, as demonstrated
in Figure 4. In the case of multiplicative coupling, we have rate equations
ġ1 = −τ1g1 + Hn2,k2 (g2)

∏2
j=1H

a1j

nhj ,khj
(hj) and symmetrically for g2. Here,

after bringing the degradation term to the left hand side, we take the logarithm
and subtract the regulation of the measured gene, arriving at

log (ġ1 + τ1g1)− log (Hn2,k2 (g2)) =
2∑

j=1

a1j log
(
Hnhj ,khj

(hj)
)
. (7)

Hence, in this situation we can determine the Hnhj ,khj
(hj) up to an exponent.
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Fig. 4. (a) Mutual inhibition of two genes g1 and g2 with two hidden influences h1

and h2. We add h1 and h2 as defined in Figure 2 as activators with mixing matrix
(1, 1; 1, 0) to the system. This leads to completely different time-courses of g1 and g2,
depending on whether we use additive (b) or multiplicative (c) logic, despite using the
same parameters (we take all n and τ equal to one, k1 to k4 are 0.4, 0.2, 0.4, 0.3)
and initial conditions. Under the assumption of equal coupling, the Hill-transformed
hidden influences (d) can be reconstructed fairly well by FastICA: for or logic (e) we
get SNR of 18 dB and 34 dB, for and logic ((f), sign corrected before exponentiating)
SNR of 11 dB in both cases.

(a)
g1

���
��
��
��
��
��
�

g2
	 g3


�������������

(b)

0 10 20 30 40 50
t

co
nc

en
tr

at
io

n

g
1

g
2

g
3

(c)

0 10 20 30 40 50
−6

−4

−2

0

2

4

t

ac
tiv

at
io

n

Fig. 5. The repressilator (a), a three-node motif giving stable oscillations and (b) a
simulated time-course with our two hidden influences (with a time shift of 20, then
oscillations without the hl would be stable), coupling to g1 and g2 with mixing matrix
A = (20,−1; 10, 0). We choose a = 1, the same for all degradation rates, all time delays
are 5, and the non-vanishing interaction weights are 20, 15, 10. A reconstruction of the
transformed hidden influences (c) with FastICA.

2.1 Gene Regulatory Networks with Hill Kinetics

In general regulatory networks, a participating gene as well as a hidden influence
can act both as inhibitor I−(g) and activator I+(g) to a gene g. Additionally,
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the Hill parameters may vary in every interaction. For additive coupling, this
situation leads to ODEs of the form

ġi = −τigi +
∑
σ=±

⎛⎝ ∑
gj∈Iσ(gi)

Hσ
nji,kji

(gj) +
∑

hl∈Iσ(gi)

ailH
σ
nli,kli

(hl)

⎞⎠ . (8)

If and logic is used, we have to write products and exponents instead of the
weighted sums of Hill functions, which after logarithmic transformation is con-
verted to weighted sums again. With this, when rearranging the rate equations
two new mixing models arise:

xi =
∑

j∈I−(gi)

aij

k
nj

ij + hnj

j

+
∑

j∈I+(gi)

aijh
nj

j

k
nj

ij + hnj

j

(for or logic) (9)

xi =
∑
j

aij log
(
k
nj

ij + hnj

j

)− ∑
j∈I+(gi)

aij log
(
h
nj

j

)
(for and logic) (10)

The use of different functions for activation and inhibition is a consequence of the
non-negativity of Hill functions and their combinations. These models cannot be
solved by linear BSS.

2.2 Continuous-Time Recurrent Neural Networks (CTRNN)

A recent approach to gene expression data analysis [9] uses generalized CTRNN
as abstract dynamical models of regulatory systems, leading to ODEs of the form

ġi (t) = τi

(
−gi (t) +

∑
l

Wliσ (gl (t−Δl)− kl) + Ii(t)

)
. (11)

Here τi denotes the degradation rate, Ii an external input and kl are thresholds.
Interactions are incorporated via the activation function σ(x) = (1 + e−ax)−1

and additively connected by a real weight matrix W . The delay constants Δl

account for the time delay due to gene induction, transcription and translation.
Of course, this approach has the advantage of a single function for both inhibition
and activation, but on the other hand we loose the biological model and direct
interpretability. However, for the estimation of hidden influences hj in such an
ODE system we obtain the mixing model

xi =
∑
j

Wjiσ (hj (t−Δj)− kj) . (12)

Here the time delays will remain an indeterminacy. In the case of equal coupling,
this again reduces to a problem solvable using ICA. In Figure 5 we discuss an
example for this, two hidden influences to the so-called repressilator [10]. If,
which is more realistic, we assume interaction-specific delay times Δij , we can
use convolutive ICA [1]. However, linear BSS is unable to estimate additional
parameters such as the kj and exponents in σ.
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3 Conclusions

With the availability of more and more quantitative data the estimation of hid-
den influences in biological systems is an upcoming challenge and crucial for the
interpretation of many experiments. For simple processes in mass action kinet-
ics and first-order reaction networks we showed that this task leads to a linear
BSS problem that can be solved e.g. using ICA. In the more delicate case of
second-order reactions and regulatory interactions, where we have to deal with
sigmoidal input functions that may be connected by different logical operations,
new mixing models arise. The analysis of these models and the estimation of the
occurring parameters in nonlinear situations necessitates a treatment within a
Bayesian framework, similar to e.g. [11]. In practice, we will be confronted with
networks involving reactions and interaction of more than one of the discussed
types, leading to a variety of hybrid models and corresponding likelihood func-
tions. Moreover we will only observe a fraction of the known network elements, so
there exists an added layer of model inference. These involved learning problems
may be solved by extensions of BSS or Bayesian methods.
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Abstract. We consider a systems biology problem of reconstructing
gene regulatory network from time-course gene expression microarray
data, a special blind source separation problem for which conventional
methods cannot be applied. Network component analysis (NCA), which
makes use of the structural information of the mixing matrix, is a tailored
method for this specific blind source separation problem. In this paper,
a new NCA method called nonnegative NCA (nnNCA) is proposed to
take into account of the non-negativity constraint on the mixing matrix
that is based on a reasonable biological assumption. The nnNCA prob-
lem is formulated as a linear programming problem which can be solved
effectively. Simulation results on spectroscopy data and experimental re-
sults on time-course microarray data of yeast cell cycle demonstrate the
effectiveness and anti-noise robustness of the proposed nnNCA method.

1 Introduction

Gene regulatory network reconstruction is an important research problem in
systems biology where structure and dynamics of cellular functions are of inter-
est. Since gene regulatory network reveals the underlying inter-dependency and
cause-and-effect relationship between various cellular functions, it has become
one of the key areas of interest in systems biology.

Gaining a quantitative understanding of gene regulation is of vital importance
in modern biology. In general, the problem relates to how and where a particular
gene is expressed, often under combinatorial control of regulatory proteins known
as transcription factors (TF). The dynamics of gene expression levels, i.e. the
mRNA concentrations, in a cell can be measured simultaneously by microarray
technology for all genes in the genome in a form of multi-channel time-course sig-
nal. However, the dynamics of the regulatory signal, i.e., the transcription factor
activities (TFA), cannot be measured by the current technology. In addition, the
control strength of a regulatory transcription factor to a gene is another impor-
tant aspect in the gene regulatory network, which is unfortunately also unknown.
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In order to understand the entire gene regulatory network, we need to recon-
struct the transcription factor activities and the matrix of control strengths from
the gene expression measurements. This is a highly challenging inverse problem,
especially because microarray data are always extremely noisy.

TF1 TF2 TF3

g1 g2 g4g5 g6 g3g7

Fig. 1. Gene regulatory network

A conceptual gene regulatory network with 7 genes (g1 . . . g7) and 3 transcrip-
tion factors (TF1, TF2, TF3) is illustrated by Fig 1. In general, gene regulation
processes are dynamic and nonlinear. It is assumed that the time scale of change
of transcription factor activities (TFA) is much greater than that of gene expres-
sion. Therefore, mRNA levels at most time are in a quasi-steady state, and thus
at this quasi-steady state the dynamic model becomes approximately instanta-
neous. In addition, the nonlinear dependence of gene expression on the TFAs is
approximately log-linear [1]. Therefore, when the gene expressions are expressed
as log-ratios, the model becomes X = AS + Γ, where X,A,S, and Γ are gene
expression, connectivity matrix, TFAs, and noise, respectively.

Under the above instantaneous linear model, gene regulatory network recon-
struction is a blind source separation problem, and independent component anal-
ysis (ICA) [2,3] had been applied to solve the problem. However, in this special
blind source separation problem, the source signals are dependent in general.
Therefore, the networks inferred from ICA are not accurate and do not conform
to the realistic network structure which is of known sparse structure. There are
some other approaches that work on dependent sources [4,5], but the underlying
assumptions do not readily apply to gene regulatory network.

It was noted in the pioneering work of [6] that if the sparse network structure
is known and satisfies some conditions, then the network can be uniquely recon-
structed if there is no noise, and a method called network component analysis
(NCA) was proposed to find a connectivity matrix (conformable to the known
structure) and a set of transcription factor activities that best fit the model by
using alternating least squares (ALS). The original ALS approach to NCA suf-
fers from drawbacks of instability, inefficiency, and local convergence. Tikhonov
regularization has been proposed to overcome the problem of instability [7], but
on the other hand it is computationally even more inefficient. Then in [8,9]
we proposed a more efficient and more effective method called FastNCA that
successfully overcomes all the three drawbacks. FastNCA provides a closed-form
solution to estimate the connectivity matrix and TFAs through fitting the model
by a series of subspace projections.
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Although NCA is by far one of the most effective approaches to gene regu-
latory network reconstruction, existing algorithms, however, lack accuracy and
consistency. This motivates us to improve NCA and develop more accurate and
robust network reconstruction methods by incorporating some prior informa-
tion; thereby greatly enhance our ability to accurately reconstruct the networks.
Specifically, in this paper we will assume that the entries of the connectivity ma-
trix A are all nonnegative, and develop a linear programming method to solve
the NCA problem with non-negativity constraints on the connectivity matrix.

2 Nonnegative Network Component Analysis

Recall the instantaneous linear gene regulation model mentioned in Section 1.

X = AS + Γ. (1)

Our aim is to estimate the connectivity matrix A and the TFAs S from the
time-course microarray data X.

Assume that in the network we have N genes and M transcription factors,
and the length of time series is K. Then the dimension of X and Γ is N ×K,
the dimension of A is N ×M , and the dimension of S is M ×K.

As proved in [6,9], this inverse problem has a unique solution (up to scaling
ambiguity of the TFAs) in the noise-less case if the following NCA criteria are
satisfied:

(i) A has full column rank;
(ii) when any one column of A is removed together with the rows corresponding

to the nonzero entries of this column, the resulting sub-matrix has full
column rank;

(iii) S has full row rank.

The blind source separation problem or inverse problem of estimating A and S
from X based on Eq. (1) and the three NCA criteria is called network component
analysis (NCA).

Though the three NCA criteria are enough to estimate the connectivity matrix
when there is no noise in the model, additional constraints, if can be used in the
algorithm, will certainly yield a more robust estimate in practice when noise is
inevitable.

According to [10], we have the biological knowledge that most likely a tran-
scription factor will have the same effect (either positive or negative) on all its
regulated genes. This knowledge means that the entries within the same column
of A should have the same sign, and by moving the sign to the corresponding
row of S we can assume that all non-zero entries of A are positive, i.e., all entries
of A are nonnegative. In other words, if a transcription factor regulates the genes
negatively, then we can simply multiply its transcription factor activity (TFA)
by −1 and this sign-inversed TFA will regulate the genes positively.

We call the network component analysis problem under the additional non-
negativity constraint on the connectivity matrix A nonnegative network com-
ponent analysis (nnNCA).
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3 A Linear Programming Approach to nnNCA

If there is no noise in the NCA model Eq. (1), i.e., X = AS, then the range of
X is equal to the range of A since A is of full column rank and S is of full row
rank. Because X is known to us, we can get the orthonormal basis matrix of the
range space of X, denoted by X̄ = orth{X}, and we have

X̄ = orth{X} = orth{A} . (2)

With X̄ known, we can get further its orthogonal complement

C = X̄⊥ (3)

such that
CT X̄ = 0 . (4)

From Eq. (2) and (4), we have

CTA = 0 . (5)

Since C can be estimated from the known time-course microarray data X, the
connectivity matrix A can be obtained by solving the systems of equation con-
sisting of Eq. (5) and the NCA criterion (ii) described in Section 2.

In general, if there is noise in the model Eq. (1), singular value decomposition
(SVD) [11] will be applied to X to obtain a robust estimation of C. We write X
in the standard SVD form as follows

X = UΣVT . (6)

Partition U, the matrix of left singular vectors of X, as

U = [US UN ] , (7)

where US contains the first M columns of U and UN contains the remaining
N −M columns of U. Here we state again that N is the number of genes and
M is the number of transcription factors. The matrices US and UN are called
the signal subspace and noise subspace of X, respectively. Then we get a robust
estimate of C as

C = UN . (8)

Note that in the noisy case with C estimated by Eq. (8), Eq. 5 does not hold
in general. To estimate A in such case, instead of solving a system of equations
as in the noiseless case, we minimize all entries of CTA with the constraints
imposed by the NCA criteria and non-negativity of A by solving the following
constrained optimization problem via linear programming.

Let A = [a1, . . . ,aM ] and C = [c1, . . . , cN−M ], where ai is the ith column
of A and ci is the ith column of C. In addition, we denote I as the indices
where the entries of A are zeros, and J as the indices where the entries of A are
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nonzero (positive). Then, we can estimate the connectivity matrix A by solving
the following linear programming problem

min t s.t. − t < cTi aj < t, A(I) = 0, A(J) > 0,
N∑
n=1

an,j = Lj , (9)

for i = 1, . . . , N − M and j = 1, . . . ,M , where Lj is the number of nonzero
entries of aj , A(I) = 0 means the entries of A indexed by I are zero, and
A(J) > 0 means that the entries of A indexed by J are positive. The last
constraint

∑N
n=1 an,j = Lj is imposed to avoid the trivial solution t = 0 with

A = 0, and the right-hand-side Lj is chosen to make the solution conformable
to the normalization strategy adopted in [6,9].

For real biological systems, the connectivity matrix A may be very sparse.
Problem (9) can be simplified by considering only the non-zero (positive) entries
of A. Denote ãj as the vector of nonzero entries of the jth column of A, and
c̃i,j as the vector of entries of the ith column of C corresponding to the nonzero
entries of the jth column of A. Then problem (9) can be simplified as

min t s.t. − t < c̃Ti,j ãj < t, ãj > 0,
Lj∑
n=1

ãn,j = Lj . (10)

Problem (10) is a linear programming problem [12,13], and can be solved
by standard algorithms implemented in many mature linear programming soft-
ware packages. In this paper we use the GLPK package [14] to solve the linear
programming problem.

4 Results

4.1 Simulation Results

To test the proposed linear programming based nnNCA algorithm, we use the
simulation data described in [6]. In this simulation data, the conceptual gene
regulatory network shown in Fig 1 is simulated by the mixing of spectroscopy
signals. Three transcription factors are simulated by three kinds of hemoglobins,
and the expression of seven genes are simulated by the spectroscopy of the mixed
hemoglobins with different mixing ratios that are conformable to the structure of
the network in Fig 1. The length of each measured spectroscopy signal is 321. It
has been shown in [6,8] that conventional blind source separation methods, based
on either higher-order statistics or second-order statistics, cannot recover the
true pure spectroscopy signal of the three hemoglobins, while the NCA methods,
either by ALS algorithm or FastNCA, can extract the source signals perfectly.

To demonstrate the effectiveness of the nnNCA method, we apply it to the
spectroscopy mixtures, and the estimated source signals are shown in the middle
column of Fig 2. It is found that the results of nnNCA in this case is almost
exactly the same as that of FastNCA [9], with negligible difference of the order of
numerical calculation error. Then independent white Gaussian noises are added
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to the mixing mixture to the level of SNR=5dB (signal to noise ratio). Both
FastNCA and nnNCA are applied to the noisy data, and a great number of
Monte Carlo runs are performed. Though nnNCA is not guaranteed to always
perform better than FastNCA, the overall performance of nnNCA is superior
to FastNCA. The estimated source signals by nnNCA and FastNCA from a
typical Monte Carlo run are compared in Fig 2. The results demonstrate that
the inclusion of the constraints on the positivity of the entries of the connectivity
matrix A makes the NCA method more robust to measurement noise.

Fig. 2. Simulation results, SNR=5 dB

4.2 Experimental Results

To test the improved robustness to noise of the proposed nnNCA over conven-
tional NCA methods for the analysis of real biological networks, we apply it to
analyze the time-course microarray data of yeast cell cycle in [15], and compare
the results with that of FastNCA. In this study, there are three experiments with
different synchronization methods represented by alpha, cdc15, and elutriation.
The time-course microarray data contains 6178 genes and 56 time points. In this
analysis, we are interested in the 11 transcription factors that are known to reg-
ulate the expression of genes that are involved in the cell cycle process. In order
to apply NCA to recover the TFAs of these 11 transcription factors, we need to
work on a sub-network that contains the 11 TFs. For this purpose we construct
a network that contains only these 11 TFs and those genes that are regulated by
only these 11 TFs, based on the network topology information inferred from the
ChIP-chip experiment in [16]. Both nnNCA and FastNCA are then applied to
this network and the estimated TFAs are displayed in Fig 3 shoulder to shoulder
for the ease of comparison, where the curves in black are for FastNCA and the
curves in blue are for nnNCA.

The experiment “alpha” contains 2 cell cycles, “cdc15” contains 3 cycles, and
“elutriation” contains 1 cycle. The names of the TFs are shown on the right-
hand side of the figure. Since these 11 TFs regulate the cell cycle process, it is
expected that the TFA of them should be cyclic, and we know that the gene
expression signal of many of them are not cyclic at all [6,9]. We observe that the
results of these two method are similar in general, and there is no case that the
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Fig. 3. Analysis of the yeast cell cycle data

estimated TFA by nnNCA is less cyclic than that by FastNCA, while in some
cases, such as FKH1 for all 3 experiments and MCM1 for “alpha”, the results of
nnNCA are significantly more cyclic than that by FastNCA. These demonstrate
the superior robustness of nnNCA for the analysis of real biological networks.

5 Discussion and Conclusion

Gene regulatory network reconstruction is an inverse problem similar to blind
source separation, but conventional blind source separation methods cannot be
applied because the source signals are dependent in general. Network component
analysis (NCA) is a suitable source separation method for this specific problem.
In this paper a new NCA method, nnNCA, is developed that incorporates a
reasonable biological knowledge. It is demonstrated by both simulation and ex-
perimental results that nnNCA is more robust. The linear programming based
algorithm is also very fast, slightly slower than but comparable to FastNCA, and
much faster than the original ALS based NCA. The developed method may also
find its applications in some other similar signal processing problems.
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Abstract. A new technique for investigating synchronism in the electroen-
cephalogram (EEG) during intermittent photic stimulation (IPS), based on the 
Independent Component Analysis (ICA) is proposed. It was tested with simula-
tion EEG data and the coherence estimation-based methods were used for 
 performance evaluation. The application of ICA-based allows a suitable inves-
tigation about event-related desynchronization (ERD) studies, since it can sepa-
rate the phase-locked and time-locked spectra to the external stimulation. 

Keywords: EEG, ICA, IPS, ERD, ERS, ERP. 

1   Introduction 

The electroencephalogram (EEG) is a complex signal representing the brain electrical 
activity that is recorded in the scalp. It results from the temporal and spatial summa-
tion of different rhythmic activities that may reflect distinct neurophysiologic mecha-
nisms [1]. Such activities are frequently classified according to frequency bands (e.g. 
alpha, beta, theta and delta rhythms) [1], and hence the EEG analysis is more conven-
iently carried out in the frequency domain. It is well known that external stimulation 
may change the EEG spectrum and several methods have been developed to analyze 
and detect such changes [2]-[8]. The coherence function has become a standard tool 
in the quantitative analysis of the EEG, to measure the degree of synchronization be-
tween the signals obtained from different cortical areas [2].  It is analogous to correla-
tions coefficient, but in the frequency domain. 

Intermittent photic stimulation (IPS) in conjunction with coherence estimates have 
been proposed by some authors [3]-[6], since the stimulus may reduce the variability 
of mental states [6] as well as lead to distinct EEG patterns in groups with similar 
background activities [3]-[5].  However, intermittent stimulation may also change the 
ongoing EEG in a time-locked manner while not phase-locked. In such case, the 
changes are not synchronized to the external signal, but do occur during the stimula-
tion process. This influence is often referred as event-related synchronization (ERS) 
and desynchronization (ERD) [7], depending on whether the stimulation leads to an 
increase or decrease in the power spectrum. 
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In ERS (ERD) studies, quantifying the degree of synchronization (desynchroniza-
tion) in the ongoing EEG activity is an important task. The classical approach [7] con-
sists of first bandpass filtering each event-related trial, squaring next the amplitude 
samples (to obtain power samples for each trial) and then averaging the pre-processed 
set of trials. Finally, this time evolution of an instantaneous band power is compared 
with that of the EEG without stimulation (e.g. the spontaneous activity). However, 
phased-locked (e.g. ERP) and non-phased-locked activities cannot be separated when 
they are within the same frequency band. 

In [8], the partial coherence (i.e. the coherence between two signals after removal of 
the linear contribution from a group of other signals) removing the stimuli was proposed 
for quantifying the similarity between two EEG activities that are not phase-locked to 
the stimulating signal. It should allow a more suitable evaluation of the ongoing mul-
tichannel EEG relationship. Thus, this partial coherence estimate, together with simple 
coherence might be useful in order to quantify the relationship between cortical activi-
ties that would not be completely synchronized to the stimulating signal, but that could 
reflect time-locked spectral changes [8]. On the other hand, in [9], a statistical fre-
quency-domain signal processing technique was proposed for separating the ongoing 
EEG activity spectrum from that of the ERP during external rhythmic stimulation. The 
methodology was based on the coherence estimate between the stimulation signal and 
the EEG and took into account only the data during stimulation.  

In this context, the problem could be viewed as a Blind Source Separation (BSS) 
problem and the Independent Component Analysis (ICA) [10] could be used. ICA is a 
technique that, for a given linear mixture of source variables (observed variables), 
estimates the source variables based on the statistical independence of them. 

In this paper, the ICA technique is used to remove the contribution from the stimu-
lation signal from EEG signals and for separating the ongoing EEG activity spectrum 
from that of the ERP during external rhythmic stimulation. The results of the pro-
posed method are then compared with the ones based in the coherence estimation. 

2   Independent Component Analysis 

The main goal of the ICA technique is to express a set of random variables as linear 
combinations of statistically independent component variables [10].  The basic model 
is represented by (1). 

o[k] = As[k] (1) 

where o[k] = [x1[k], x2[k], ..., xM[k]]T is the observed data vector at sample k, s[k] = 
[s1[k], s2[k], ...,sM[k]]T  is the statistically mutually independent component vector at 
sample k and A is a M × N scalar matrix which is called mixing matrix.  

In the model, only the random variables oi[k] are known and the mixing matrix 
should be estimated using only o[k]. The goal of the ICA is to find a separation matrix 
W that makes the outputs as independent as possible:  

e[k] = Wo[k] (2) 

where e[k] = [e1[k], e2[k], ..., eM[k]]T
  provides the estimations of the independent 

components si[k]. 
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For the estimation of data model, a suitable objective function should be chosen for 
optimization. In this paper, the ICA is based on the maximization of the nongaussian-
ity. The nongaussianity can be measured by kurtosis or negentropy [11].  

The FastICA algorithm [12], used in this work, is based on a fixed-point iteration 
scheme. It basically consists of two steps, the preprocessing step and the FastICA algo-
rithm itself. The preprocessing consists of centering and whitening data. The centering 
step is done by subtracting the mean of the observed data xi. Therefore, the result of this 
step is a zero mean data. A whitening step is used to remove the correlation between the 
observed data. The whitening reduces the number of parameters to be estimated.  

The FastICA finds a direction in which e = wTz has the maximal nongaussianity, 
where z is the mixture vector after the whitening step. The final vector w gives one of 
the independent components as the linear combination wTz. The directions of the in-
dependent components are orthogonal in the whitened space, therefore, the second 
independent component can be found as the orthogonal direction of w corresponding 
to the first estimated independent component. For more dimensions, we need to rerun 
the algorithm, always constraining the current w to be orthogonal to the previously 
estimated vectors w. 

3   Coherence-Based Methods 

The (magnitude-squared) coherence estimate between the discrete-time signals y1[k] 
and y2[k] may be obtained based on the approach of dividing them into M independ-
ent segments and performing the Fourier Transforms of each data segment. This 
yields to the following estimator [13]:  
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where Y1i(f) and Y2i(f) are, respectively, the i-th window Fourier transform of y1[k] and 
y2[k] at frequency f, “^” and “*” superscript denotes, respectively, an estimation and 
the conjugate.  

Considering the linear model of Figure 1 with a periodic input signal (x[k]), the par-
tial coherence estimate expression between the output signals removing the contribu-
tion from the input, can be obtained as [8]: 
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(4)

where “*” superscript denotes complex conjugate. Such expression can be obtained 
by simplifying the general matrix expression provided in [14] for the particular case 
when x[k] is periodic. It has been developed in [2] for estimating the coherence be-
tween two Electroencephalographic (EEG) signals during sensory stimulation after 
removal of this latter.  It hence aims at measuring the similarity between the back-
ground EEG activity, which is not accounted for by the stimulation.  
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Critical values for 
1 2

2ˆ ( )y y fγ  are provided in [15] and for )(ˆ 2
21 fyy •κ  can be obtained 

with the multivariate extension of the invariance of coherence statistics when one 
signal is Gaussian and coherence is zero [16] as: 

)2,1(betaˆ 2
21 −=• Mcrit crityyκ  (5)

where betacrit(1,M–2) is the critical value of the beta distribution with parameters p=1 
and q=M–2 for a given significance level.  
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Fig. 1. Linear model used in deriving 
1 2

2ˆ ( )y y fγ  and )(ˆ 2
21 fyy •κ . x[k] is the stimulus, v1[k] and v2[k] 

are the responses [output of the filters H1(f) and H2(f)], and n1[k] and n2[k] are the contributions 
of background activity to the measured EEG signals y1[k] and y2[k] 

For the model of Fig. 1, the auto-spectra of signals vi[k] (evoked response) and 
ni[k] (ongoing EEG activity), for i = 1, 2, may be expressed, since the stimulation 
signal x[k] is periodic, as [8]: 
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(7)

In (7) it is implicitly assumed that the M windows are chosen as to contain an  
integer number of fundamental periods of signal x[k]. In such a case the Fourier 
Transform of the input signal will have the same value in all windows leading to the 
simplification above. 

4   Results 

In this section, the proposed method will be evaluated from simulation EEG data. The 
basic idea of the proposed method is first to apply the ICA on the EEG signals aiming 
at the removal of the stimulation from them.  
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For the model of Fig. 1, x[k] was generated as an unit impulse train and both H1(f) 
and H2(f) were set constant (=a). The background noise terms n1[k] and n2[k] were 
obtained as the sum of two parcels - an identical activity (band-filtered white noise 
within (9-13Hz)) and another uncorrelated activity (unit-variance Gaussian signals).  

In order to remove the contribution of the stimulation signal (x[k]) from y1[k] and 
y2[k], modeled according to Fig. 1, FastICA algorithm was applied in the mixture ma-
trix consisting of x[k], y1[k] and y2[k]. The estimated source spectrum by ICA are 
shown in Fig. 2a, 2c and 2e, respectively from y1[k], y2[k] and x[k]. Figures 2b, 2d and 
2f show the spectrum of y1[k] and y2[k] without stimulation and x[k], respectively. It is 
important to note the similarity between the estimated spectrum and the original ones. 
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Fig. 2. Normalized spectrum of estimated sources by ICA in (a), (c) and (e); and normalized 
spectrum of signals y1[k] and y2[k] without stimulation and x[k] 

Another way to analyze the ICA-based method for the removal of the contribution 
from the stimulation is to estimate the simple coherence between the estimated 
sources by ICA and compare with the partial coherence estimation between the sig-
nals y1[k] and y2[k] removing the stimulation x[k]. This comparison is shown in  
Fig. 3a. Fig. 3b shows the simple coherence estimation (dashed line) between y1[k] 
and y2[k] and simple coherence estimation (solid line) between estimated sources by 
ICA referring to y1[k] and y2[k]. In all these spectral estimations, the window length 
was set equal to 2 s, leading to M=12 data segments in each estimation. This lets to a 
critical value (�=5%) of 0.259 for )(ˆ 2

21 fyy •κ , according to (5). The coherence critical 
value was found to be 0.283 (from [17]). It can be seen that the ICA-based method 
clearly removes the peaks due to the periodic input signal and preserves the wide peak 
that occurs within 9-13 Hz, which is due to the nonsynchronized simulated back-
ground activity on both signals. 
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Fig. 3. (a) Simple coherence estimation 1 2

2ˆ ( )y y fγ  (solid line) between ICA estimated sources 

refering to y1[k] and y2[k] and the partial coherence estimation )(ˆ 2
21 fyy •κ  (dashed line) between 

the simulated signals y1[k] and y2[k]. (b) The coherence estimation 1 2

2ˆ ( )y y fγ  (dashed line) be-

tween y1[k] and y2[k] and the coherence estimation 1 2

2ˆ ( )y y fγ  (solid line) between ICA  
estimations refering to y1[k] and y2[k]. The signals y1[k] and y2[k] were obtained with an 6-
Hz impulse train stimulation (x[k]), according to the model of Fig. 1. The respective critical 
values are indicated in horizontal lines. 
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Fig. 4. Normalized spectrum of estimated sources by ICA in (a) and (c), and normalized spec-
trum of original signals n1[k] and x[n] in (b) and (d), respectively 

Next, FastICA algorithm was applied in the mixture matrix consisting of x[k] and 
y1[k]. The goal of this application is to obtain the EEG background (n1[k]) estimation. 
The estimated source spectrums by ICA are shown in Fig. 4a and 4c. Figures 4b and 
4d show the spectrum of n1[k] and x[k], respectively. It is important to note the simi-
larity between the estimated spectrum and the original ones. 

Figure 5 illustrates the estimated spectrum of signal n1[k] using equation (6). It’s 
easy to see that this technique based in coherence can not to estimate the EEG back-
ground (n1[k]) very well.  
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Fig. 5. Estimative of normalized spectrum of n1[k] obtained by equation (6) 

5   Conclusions 

First, the ICA was applied on EEG signals in order to remove the stimulation from the 
acquired signals. The coherence between the derivations were obtained and compared 
with the one resulted from the partial coherence. Both methods show similar results, 
but with the ICA method the EEG signals without the contribution of stimulation cold 
be estimated, which is not achieved by the use of partial coherence. Next, the EEG 
background (n1[k]) was estimated by ICA and compared ones obtained by coherence-
based method. The results showed that the ICA method won best performance. The 
application of this methodology (ICA-based) allows a suitable investigation of the ef-
fect of stimulation in the ongoing activity, as well as separating phase-locked and time-
locked spectra to the external stimulation.  Thus, they could be useful in the ERD/ERS 
studies. Additionally, these results were obtained using a linear model (see Fig. 1) and, 
for nonlinear models, the coherence-based method could produce erroneous results. 
For future studies, the ICA-based method here proposed will be performed together 
with the Second-Order Blind Inference (SOBI) method using real EEG data.  
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Localization of Generalized Discharge Sources in
Patients with Juvenile Myoclonic Epilepsy Using
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Abstract. One important information for the classification of epilepsy
is the spatial localization of the discharges source. Juvenile myoclonic
epilepsy (JME) is an idiopathic generalized epilepsy (IGE) that typi-
cally presents generalized tonic-clonic, myoclonic, or absence seizures, or
a combination of these. In typical cases of JME, the seizures are usually
bilateral and symmetric, and EEG shows generalized interictal epilepti-
form discharges and a generalized seizure pattern that also is bilaterally
synchronous. Despite of the generalized pattern of this type of epilepsy,
there are some electroencephalographic and clinical features that sug-
gest a frontal origin for the discharges. In this work, EEG recordings
were analyzed in order to find evidences for this frontal origin in JME.
The analysis of the signals was based on independent component analy-
sis (ICA) for separating epileptiform discharges from artifacts and other
brain sources; then the discharge components were used to spatially lo-
calize its source. In the six patients the dipole sources were localized
mainly in the frontal region, what suggests an important participation
of the frontal lobe for this kind of epilepsy.

Keywords: Juvenile myoclonic epilepsy, electroencephalography,
independent component analysis, generalized discharges, dipole source
localization.

1 Introduction

Juvenile myoclonic epilepsy (JME) is an idiopathic generalized syndrome that
appear typically around puberty and it is characterized by myoclonic jerks, ab-
sence and generalized tonic-clonic seizures. The electroencephalographic (EEG)
recording in patients with this type of epilepsy usually shows generalized epilep-
tiform discharges such as generalized spikes, polyspikes, spike-wave complexes,
or combinations of these [1]. Due its generalized character on the EEG recording,
the origin of discharges have been under debate. However, a few reports concern
clinical or EEG focality or asymmetry or both in patients with JME [2].
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Generalized spike-wave (GSWC) and polyspike-wave complexes (PSWC),
with fronto-central accentuation are the typical EEG pattern shown in JME
[3]. Arzimanoglou et al [4] attended in some patients with JME that, on the
EEG recording, there is an onset and maximal voltage in the frontocentral re-
gions, then spreading to the parietal, temporal, and occipital regions, suggesting
thus a possible frontal origin for JME. The problem is that to analyze epilepsy,
principally generalized, only through the voltage of raw EEG is not reliable, since
there are many artifacts that contaminate the EEG recording, and consequently
tend to change the electrical potential of the discharges sources [5].

Brain topographic maps and source analysis with dipole modeling have been
used to study spatial distribution of GSWC and PSWC in JME. Santigo-
Rodrigues et al. [6] applied dipole modeling and brain distributed analysis found
that pre-frontal medial current sources corresponding to spikes and many diffuse
sources in cortical regions corresponding to wave components of PSWC in JME.

Bianchi et al. [7] used mutual synchronization among EEG channels in pa-
tients with idiopathic generalized seizures, Juvenile Absence Epilepsy (JAE) and
JME. In JAE patients, a leading role of the left frontal lobe was evidenced in
correspondence to the seizure, while in JME patients a leading region was not
identified. Thus, the location of focuses for JME remains an open issue.

Currently, a new approach has been proposed for preprocessing of EEG, the
Independent Components Analysis (ICA) [8]. This method, originally proposed
to solve the blind source separation problem, has been applied for several kinds
of signals (e.g. voice, music, electrocardiography and other signals). In the case
of EEG, studies have demonstrated that ICA is an efficient tool in the separating
artifacts from raw EEG[9]. Further, recently, Kobayashi et al [10] demonstrated
that ICA can separate two spikes that occurred at approximately the same time,
but that had different waveforms and spatial distributions.

This finding have induced some researchers to use ICA not only to separate
artifacts from EEG, but also try to separate epileptiform discharges waveforms
present on the EEG recordings in patients with epilepsy [11], [12]. Using this
approach, they successfully localized discharge sources in Creutzfeldt-Jakob dis-
ease [13], primary versus secondary bilateral synchrony [11]. This way we propose
in this study, the dipole source localization of epileptiform discharges source in
patients with JME using ICA to process the EEG signals.

2 Methods

2.1 Patients

Six patients with JME were included in this study, raging from age from 15-38
yrs, being two males and four females. EEG data were collected on a local data
after approval of the hospital ethical committee. It was sampled at 128 Hz. The
electrodes impedance was always less than 5 kΩ, and they were placed using the
10/20-electrode International System.
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2.2 Data Processing and Analysis

We analyzed separated episodes of spike-and-wave activity in all the six patients.
The first three showed ten episodes each, and the last three presented eight, four
and three respectively. For each patient the activities were concatenated giving
the total time of recording of 13 s for two patients and 31, 33, 34 and 35 s for the
others. On fig. 1(a) it is shown ten seconds of EEG presenting three concatenated
discharges of patient one.

Nineteen EEG electrodes were placed on the scalp, creating a total of 18 chan-
nels. All the channels were referenced to lead CZ. Periods of discharges from the
raw digital EEG were determined by a visual inspection of a specialized doctor
for each subject. We applied a extended version of Independent Component Anal-
ysis called extended infomax ICA algorithm, that separates sources that have
either supergaussian or subgaussian distributions, allowing line noise, which is
subgaussian, to be focused efficiently into a single source channel and removed
from the data [15].

2.3 Dipole Localization

The recorded EEG consists in the mixture of different activities. In other words,
each electrode registers different cortical dipole sources added to artifacts, such
as: eye blinks, ocular movement, muscular artifacts and others. The great chal-
lenge of researchers is finding the origin of this cortical generator through EEG.
In order to solve this inverse problem, it is necessary to build a model for the
head as being a volume conductor and a model for the cortical sources, usu-
ally as dipole sources, as described in [16]. We assumed a spherical head model
with conductivities (mhos/m) of 0.33 for the scalp, 0.0042 for the skull, 1.00
for cerebrospinal fluid, and 0.33 for the brain. The radii of the spheres were
standardized to 85 mm for the scalp, 79 mm for the skull. 72 mm for the cere-
brospinal fluid, and 71 mm for the brain. Goodness of fit was estimated in terms
of residual variance (R.V), i.e. the percentage of the spike variance that could
not be explained by the model. The head model used is already implemented in
the EEGlab toolbox for Matlab (The Mathworks, Natick, MA, USA) developed
by Delorme and Makeig [14].

However, since the EEG is a record of various different brain signals in ad-
dition to artifacts such as, eyes blink, ocular movement, muscular artifact, the
application of source localization in this model to raw EEG data could erro-
neously localize sources. For this reason many methods have been proposed
with the goal of filtering or separating the brain originated sources from these
artifacts. A method currently much used in the separation of the artifacts from
interest signals is independent components analysis, and we proposed applying
this algorithm in the solution of this research.

2.4 Independent Component Analysis

Independent Component Analysis (ICA) is a method that finds underlying fac-
tors or components from multivariate data. It is assumed that linear mixtures of
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the independent components form input data records, and there is no need for
detailed models of either the dynamics or the spatial structure of the separated
components [5]. Even if two processes occur simultaneously, ICA can be used
to separate them. Whether we consider the EEG record like a linear combina-
tion of several statistically independent sources (like artifacts or other cortical
sources) then ICA is able to separate these sources. Recently, Kobayashi et al [10]
demonstrated that ICA worked for the separation of two spikes that occurred at
approximately the same time, but that had different waveforms spatial distribu-
tions. In the same way, ICA could be a reliable method for separating generalized
spike-and-wave complexes into patients with JME.

The basic ICA model is:
X = AS (1)

where X = [x1,x2, ...,xM]T corresponds to M scalar valued vectors of observa-
tions, while S = [s1, s2, ..., sN]T are N sources that are linearly mixed by the
M ×N matrix A. Assuming that the sources in S are statistically independent
it is possible to estimate the original sources S and the mixing matrix A using
only X. There are several methods to estimate S and A; in this work we used the
Extended Infomax algorithm [15]. The Infomax algorithm tries to minimize the
mutual information among the sources through high order statistical moments.
However, it has been showed that the Infomax is limited to separating sources
with only supergaussian distributions, but some kinds of noises have subgaussian
distributions. So the Extended Infomax algorithm was proposed with the goal
of separating sources with both supergaussian and subgaussian distributions.

Here we assume that the EEG data is a mixture of several temporally and
spatially independent sources, being the number sources equal to the number of
sensors. It is this property of being temporally insensitive that allows the EEG
to be divided into sections, so that many epochs can be concatenated together
to look for features constant across discharges.

To localize any component, we reconstructed the data using only this compo-
nent (i.e., setting all columns in the estimated mixing matrix to zero, except the
appropriate column associated with this component). The projected component
data has the same size of the original data and each row is a single electrode, as
in the original data, and is scaled in the original data units (e.g. μV).

3 Results

From the EEG recordings, the selected discharge epochs were concatenated in a
single matrix for each patient. ICA algorithm was applied on these data. Fig. 1(a)
shows ten seconds of the EEG row with three concatenated discharges selected
from patient one. On Fig. 1(b) we see the 18 independent components separated
by the ICA algorithm. The components 2, 3, 6 and 9 show characteristics of
epileptiform activities. For instance, at 4.5 s and 5.5 s, we found spike-and-
wave patterns, typical of epileptiform discharges, while the other independent
components are likely to be artifacts and brain underlying activities.
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The EEG signal was reconstructed using each independent component that
accounted for epileptiform activity separately. For each reconstructed EEG data
was selected about 0.2 seconds of discharges (0.1 s before and 0.1 s after the
maximum negative amplitude), and mapped in the scalp topography map to
estimate the origin of these sources. Fig. 2 shows the distributions of potentials
of the independent components 2, 3, 6 and 9 of patient one, within the head. This
scalp topography map reveals largely overlapping of components in the frontal
regions. The dark values on the head figures show greater contribution (either
positive or negative) of a channel to the given component spatial distribution.
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Fig. 1. Here, we show three epochs exhibiting epileptiform discharges and the corre-
sponding independent sources. In (a) the concatenated 18 channel EEG data of patient
one and (b) the resulting separated sources using ICA.

The source localization was made on the standard 3D MRI head model,
Fig. 3. The component 2 showed bilateral activity on the frontal lobes, thus
a second dipole needed to be added to show the bilateral activity on this re-
gion(represented in the Fig. 3 by blue dipole). Similarly the components 3, 6
and 9 (represented by green, red and pink dipole), that had singular dipole
models, was localized on the frontal region in the MRI image on Fig. 3.

On Fig. 2 we see the potential distribution on the scalp maps of the three
discharge components that were selected from patient two. Two components are
localized on the frontal regions and one on the central region. On Fig. 3 it is
shown these components on the head model. The central component had dipole
fitting with residual variance (RV) of 22%. If the best-fitting single or dual equiv-
alent estimated dipole has more than 15% residual variance from the spherical
forward-model scalp projection (over all scalp electrodes), the component is not
further analyzed. Components with equivalent dipole(s) located outside of the
model brain volume were also excluded from analysis [17].

For the six patients analyzed, there were about 17 independent components
that could be visually accounted as discharge components. In average, about
70.59% (12 of 17) of the independent components had dipole sources within the
frontal region, 11.77% (2 of 17) of the components within central regions and
17.65% (3 of 17) had dipole fitting located outside the brain model or had RV
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Fig. 2. Scalp topography maps of the independent components of patients one (up) and
two (down). It was taken 0.1 s before and 0.1 s after the negative maximum potential
of arbitrary discharges. There is an overlapping of components in the frontal regions
for both patients, but for patient two there is one component in the central region.
Darker values (red or blue) on the maps show greater contribution (either positive or
negative) of a channel to the given component spatial distribution. The component two
of patient one displays clear symmetrical activity.

Fig. 3. Localization and orientation of the dipoles in the standard 3D MRI head model,
referent to selected independent components of patient one (left) and two (right). The
orientations of all dipoles are preferentially radial for patient one, but for patient two
the orientation of the green and blue dipoles is radial, while the orientation of red one
is tangential. The central component of patient two was not accounted for dipole model
fitting since its RV was more than 15%.

more than 15%. About 85.71% (12 of 14) of the fitted dipoles had unilateral
symmetry and 14.29% (2 of 14) had bilateral symmetry. On Table 1, we have a
summary of each patient’s components and dipole analysis.

4 Discussion

It is important in this evaluate whether ICA can be used to separate epileptiform
discharges in patients with JME. ICA was processed to GSWD data from EEG
recordings. The components that visually accounted as GSWD were selected
and reconstructed to be fitted in the head model. The results shown that few
independent components (1 to 4) was necessary to represent discharge activities.
Similarly, Rodin et al [18] analyzed dipole sources of brain activities, and showed
that GSWD of absence seizures could be modeled adequately using three or four
equivalent regional dipole sources.
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Our results showed that there is a large overlapping of the estimated inde-
pendent components that accounted as epileptiform discharges in the frontal re-
gions, being few components localized in extrafrontal regions. Analyzing Table 1,
almost all components are unilateral with radial orientation. The presence of one
patient with bilateral dipole suggest that discharges may spread via the corpus
callosum from frontal regions to other regions [11]. These factors suggest an im-
portant participation of the frontal regions for this kind of epilepsy, corroborating
with the physiological investigations of Santiago et al. [6].

Table 1. Characteristics of the independent components that accounted as epileptiform
discharges for each patient

Patients 1 2 3 4 5 6 Total

n. of components 4 2 2 1 2 3 14
Orientation

Radial 4 2 2 1 1 2 12
Tangential - - - - 1 1 2

Location
Frontal 4 2 2 1 1 2 12
Extra-frontal - - - - 1 1 2

Laterality
Unilateral 3 2 2 1 1 2 12
Bilateral 1 - - - - 1 2

Mean

mean RV 3.04% 3.37% 3.19% 7.30% 9.37% 5.96% 5.37%

However, as proposed by Jung et al. [11], a more precise estimative of brain
sources location should be made using more electrodes. We attempted to use
more signal inputs on bipolar reference, but without success, since independent
components were badly estimated, perhaps due the redundant information in
the channels of disposable data. Also, despite of a small number of patients
our study suggests that ICA models could be useful to analyze EEG records
of JME. More reliable and precise investigations concerning the participation
of JME discharges in the frontal regions should be made using more patients.
Other localization methods should be used to corroborate our hypotheses.
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Abstract. In this study, we present a method to remove ocular artifacts
from electroencephalographic (EEG) recordings. This method is based
on the detection of the EOG activation periods from a reference EOG
channel, definition of covariance matrices containing the nonstationary
information of the EOG, and applying generalized eigenvalue decompo-
sition (GEVD) onto these matrices to rank the components in order of
resemblance with the EOG. An iterative procedure is further proposed
to remove the EOG components in a deflation fashion.

1 Introduction

Electroencephalography (EEG) is a widely used technique for analyzing and
interpreting human cerebral activity. EEG signals are usually interpreted by
means of spectral and topographical measures that reflect global activity of the
brain network. However, EEG measures are always contaminated by non-cerebral
signals, which may disturb the interpretation of the brain activity. This issue has
become a recurrent problem, for example in Brain-Computer Interfaces (BCI),
where it has been proved to decrease classification error rates [11].
Ocular artifacts generally occur during blinking or saccades of the eye, and are

featured by high amplitude transient artifacts that defect the EEG. They are best
recorded by an Electrooculogram (EOG) electrode or a pair of electrodes located
close to the eyes. The high amplitude peaks are not seen on all channels, but
mainly (and almost exclusively) on the fronto-paretal channels in combination
with the occipital electrodes. These peaks are considered as one of the most
considerable artifacts in EEG studies [7].
A common way of removing these artifacts is to apply independent component

analysis (ICA) on multichannel EEG recordings and to remove the components
which show a maximal correlation with a reference EOG channel [6,5]. However,
it is not always possible to associate the components extracted by ICA to the
EOG in an automatic and unsupervised manner. Moreover, EEG recordings can
� This work was supported by Égide, the French Ministry of Defense (Délégation
Générale pour l’Armement – DGA), the Open-ViBE project, and the European
program of Cooperation in the Field of Scientific and Technical Research.
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be rather noisy, and since ICA is based on a measure of independence (and not
a measure of signal “cleanness”), the noise in the input channels can be amplified
in the output, which again makes the detection of the true EOG component
rather difficult. Lastly, most ICA methods are blind to Gaussian noise and as a
consequence spread the Gaussian noise among the components.
Another common way of removing EOG artifacts from the EEG is to use a

subtraction-based approach [8]. Here, the idea is to use the clean EOG recordings
to remove ocular signals from EEG by a simple subtraction of a scaled EOG. Yet
there is no evidence that EOG recordings are free of EEG. Thus by subtracting
EOG we can also remove EEG signals of interest.
In recent works we have shown the applicability of Generalized Eigenvalue

Decomposition (GEVD) for separating pseudo-periodic maternal ECG from fetal
ECG signals recorded from the maternal abdomen [9]. In that work, one of the
advantages of GEVD over other source separation techniques was the ability
of ranking the extracted components in order of periodicity, which provided a
means of automatic and unsupervised ECG decomposition and filtering. In this
work, we develop a similar idea based on GEVD for the automatic detection and
removal of EOG artifacts from multichannel EEG recordings.
The remainder of this paper is organized as follows: in section 2, we present

a general nonlinear framework to decompose signals into independent subspaces
using GEVD; the results of this method are presented in section 3 over simulated
and real signals. The last section is devoted to conclusion and perspectives.

2 Method

2.1 Linear Transform

Suppose that we have an array of N EEG channels x(t), and a reference EOG
channel denoted by EOG(t). Due to the spiky nature of the EOG, it is possible
to detect the onset and offset times of the EOG artifact from the reference EOG
channel. To do so, we define E(t), the averaged power of the EOG signal (or,
alternatively the variance) within a sliding window of length w around t, as

E(t) .=
1
w

w/2∑
τ=−w/2

EOG(t− τ)2 . (1)

Using this definition, an EOG is detected whenever E(t) passes some predefined
threshold th. The active periods of the EOG may therefore be defined as

ta
.= {t|E(t) > th} . (2)

As we will note later, the procedure of finding the offsets and onsets of the
EOG does not need to be perfect, and the results can be further improved in a
recursive procedure.
We now seek linear transforms of the multichannel recordings x(t), that max-

imally resemble the EOG (in the sense that the power of the extracted signals
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are concentrated during the active time periods). Therefore, if we denote the
linear mixture as y(t) = bTx(t), we can try to maximize the cost function

ζ(b) =
Eta

{
y2(ta)

}
Et {y2(t)} , (3)

where Et{·} represents averaging over t. Here, the idea is to find linear mixtures
of the input signals, with a maximal energy during the EOG activation time ta,
while minimizing the global component energy. Equation (3) may be rewritten
as

ζ(b) =
bTEta

{
x(ta)x(ta)T

}
b

bTEt {x(t)x(t)T }b
, (4)

which is in the form of the Rayleigh Quotient [10,3], and may be solved by the
joint diagonalization of two covariance matrices: the covariance matrix of the
EEG channels over the whole dataset, and the covariance matrix of the data
during the active periods of the EOG, respectively defined as

Cx
.= Et{x(t)x(t)T } , (5)

Ax
.= Eta{x(ta)x(ta)T } . (6)

The intuition behind this method is to achieve decorrelated components that
are at the same time globally and locally decorrelated. We already have a sense
about the global decorrelation, which is achieved by sphering Cx. In addition,
the diagonalization of Ax assures that the achieved components are also locally
decorrelated over the active EOG epochs, too. This assures that the later ex-
tracted components have no redundancy up to second order statistics.
The matrix that jointly diagonalizes the matrix pair (Ax, Cx) is in fact the

solution to the GEVD problem written as{
UAxU

T = Λ
UCxU

T = I
, (7)

where Λ is a diagonal matrix containing the generalized eigenvalues on its diag-
onal in descending order, and U is the matrix containing the generalized eigen-
vectors on its columns1.
The decomposed signals may now be found by

y(t) = UTx(t) , (8)

where the elements of y(t) correspond to a linear transformation of the original
data x(t) that are ranked according to their resemblance with the EOG acti-
vation epochs. This means that y1(t) contains the most information regarding
1 Note that, contrary to the eigenvalues of symmetric matrices that are mutually
orthogonal, generalized eigenvectors, i.e., the columns of U , are not generally or-
thogonal to each other; but following (7) they are “Cx-orthogonal" [10], p. 344.
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the EOG while yN (t) is the least resembling the EOG. Another interpretation
for the method is that y1(t) is the most dominant component of the EOG while
having the least contribution in the overall energy of the signals (corresponding
to the largest eigenvalue of Λ). On the other hand yN (t) is the main non-EOG
component, with the least EOG contamination (corresponding to the smallest
eigenvalue of Ax, i.e., having the least contribution of the active EOG epochs).

2.2 Signal/Noise Separation

Up to now, the components have been ranked according to their resemblance with
the EOG through a linear transformation. The next step is to remove the ocular
artifacts from the most contaminated components using a linear or nonlinear
transformation. The result of this noise removal, denoted by z .= (z1, · · · , zN)T ,
can be expressed as

∀i ∈ [1, ..., N ] zi(t) = yi(t)− fi[yi(t)] , (9)

The denoising transform must be carefully chosen to remove ocular artifacts from
the most contaminated signals, while preserving the non-EOG components. A
simple but efficient choice is

f :
{
fi(u) = u , i ∈ [1, ...,M ]
fi(u) = 0 , i ∈ [M + 1, ..., N ] . (10)

This transform removes the first M (M  N) components contaminated by
ocular artifacts and keeps the remaining N −M components unchanged. There-
fore, in order to find the EOG free components, we can eliminate the first few
components of y(t) and transform back the rest of the components using the
inverse of the matrix U . The number of eliminated components M depends on
the number of expected dimensions of the EOG subspace. Note that due to the
elimination of the first M components, the rank of the multichannel signals are
reduced to N −M .

2.3 Iterative Improvements

So far, we have removed the most dominant EOG components through a com-
bination of a linear transformation, denoising, and back-projection. The results
may be further improved by repeating the upper mentioned method in a recur-
sive procedure. To do so, we can use y1(t), the component which most resembles
the EOG, to re-estimate the onset and offsets of the EOG and its activation
epochs using a smaller energy threshold th, and to recalculate Cx, Ax, and the
other steps of the algorithm in each iteration. By repeating this procedure in
several iterations, a better estimate of the EOG will be achieved. This iterative
extension of the algorithm is of special interest for the cases in which a good
EOG reference is not available. Therefore, we start with a coarse EOG onset
and offset estimate; but we improve this estimate in the next iterations.
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3 Experiments

Simulated Data. In order to test the method, we generate artificial EEG con-
taminated by ocular artifacts. The signals are generated as follows:

x(t) = EEG(t) + β (k1 · · · kN )T EOG(t) , (11)

where (1) EEG(t) is generated using a multivariate autoregressive filter (Yule-
Walker order p = 8, cf. [1] for details), trained using N = 4 channels of
artifact-free EEG data, (2) EOG(t) results from the convolution of a typical blink
segment, extracted from real EOG data, and an ensemble of Dirac impulses hav-
ing a Poisson distribution with parameter λ = 0.2Hz, (3) β is a scale parameter
to adjust the signal-to-noise ratio (SNR) and (4) (k1, · · · , kN )T is a vector of
gain under a linear hypothesis between EOG and EEG, for all i, ki ∼ N (1, 0.3).
A multivariate autoregressive filter has been preferred over a multi-univariate
autoregressive filter, because the multivariate filter naturally takes into account
spatial correlations of the data and learns those correlations from the real data.
Our approach is compared with a classical ICA approach for EOG removal,

based on FastICA [4]. The input of the algorithm consists of the N EEG channels
x(t) and the EOG channel EOG(t). FastICA seeks the most independent N + 1
components. We then remove the component which is the most correlated to the
EOG, by setting it to zero. Components are then back-projected onto the sensor
space.
The method proposed in this paper and FastICA, abbreviated GEVD and

ICA, respectively, are evaluated by comparing the first N components of the
back-projected signals and the EEG generated by the multivariate autoregressive
filter. The idea behind this evaluation procedure is that a perfect denoising would
lead to perfect recovery of the multivariate autoregressive process EEG(t), free
of any EOG contamination. We therefore define the error signals as a function
of the denoised processes resulting from ICA and GEVD (xICA and xGEVD,
respectively) as

εICA(t) = xICA − EEG(t) (12)
εGEVD(t) = xGEVD − EEG(t) , (13)

from which we can define the following performance index (in decibels):

Q = 10 log

(
1
N

N∑
i=1

V(εGEVDi
(t))

V(εICAi
(t))

)

where V(·) denotes the variance operator. This index is built such that a positive
value indicates that ICA outperforms GEVD, while a negative index indicates
that GEVD outperforms ICA.
Figure 1 shows the results obtained for simulated data. Two signal lengths

are considered (50000 and 100000 points). Two hundred simulations are done
for each box-plot. The SNR tuned by β, is varying between -10dB and 30dB.
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These values are chosen by considering that a blinking artifact can have an
amplitude of up to 100 times stronger than the EEG. Such a condition would
yield an SNR of between -10dB to 0dB, depending on the blinking rate.
In the GEVD method, only the first component given by GEVD is removed.

This choice is due to the rather simple method used to generate the EOG and
EEG mixture. Moreover, in this case the iterative EOG improvement method
is not used, since the EOG onsets and offsets are already known. We highlight
the fact that in our simulation scenario, the simulation condition for the ICA
method is better than it is for real signals, since we provide it with the clean
EOG channel, directly.
Our method based on GEVD is shown to clearly outperform a classical ICA

approach for a large set of SNRs (t-test highly significant). This effect is much
more significant for low SNRs, showing that our method is of particular interest
for bad conditionings of the signals.

Fig. 1. Method comparison: for different values of initial signal to noise ratios between
EEG and EOG, we performed 200 simulations. The performance index is positive when
ICA performs better than GEVD whereas it is negative otherwise.

Real Data. We also evaluate our algorithm using a BCI experiment dataset2
[2]. The data consists of 22 EEG channels and three EOG channels. The inter-
electrode distance is about 3.5 cm. The signals are sampled with 250Hz and
bandpass filtered between 0.5 and 100Hz. An additional 50Hz notch filter is
used to suppress power-line noise.
The back-projected signals after removing the first EOG component are de-

picted in Fig. 2. In this example, due to the quality of one of the EOG channel,
no improvements are achieved by iterating the method. This figure only shows
two of the 22 denoised EEG channels. The first one, Fz, is known to be highly
contaminated by EOG artifacts because it is close to the eyes. Fig. 2 shows that
the EOG component is removed from this channel and also that the EEG signal
outside blink contamination is kept perfectly unchanged. Channel Cz, known to
be less contaminated than Fz is also drawn (Fig. 2 middle). While not as clear
2 BCI competition IV, dataset 2a, subject A05 [2].
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Fig. 2. Denoising of two specific channels, Fz and Cz electrodes (left and right, respec-
tively). From top to bottom, the signals are (1) initial EEG, (2) denoised EEG, (3)
residuals, and (4) EOG recordings.

Fig. 3. Iterative improvements of the estimation of EOG. We start from a noisy EEG
channel (up). The active periods is then determined according to the energy of the
noisy EEG channel. We then select the first component to iterate the method: the
active periods of the (i + 1)th iteration are determined using the energy of the first
component extracted in the ith iteration.

as in the first presented channel, we can see that the most important part of the
EOG contamination is removed from the channel.
To illustrate the interest of the iterative method, we then show that due to the

high amplitude features of the EOG contamination, we can even use some EEG
channels to evaluate the active periods of EOG. This is of particular interest
when no EOG channel is provided. Such a situation is illustrated in Fig. 3 where
we have started with a noisy EEG reference and improved this reference after
two iterations of GEVD.

4 Conclusion

We presented an automatic method to remove ocular artifacts fromEEGmeasure-
ments. Our algorithm outperformed a classical approach based on independent
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component analysis of EEG data. This method is a special case of a more general
framework designed to generally decompose multivariate signals into independent
subspaces. This flexible framework allows to choose different criteria for determin-
ing the optimal linear transform. In this paper, the nonstationarity of the EOGwas
used; but in other applications other prior information such as the periodicity or
spectral contrast may be used.
In future works, further improvements can be achieved by replacing our simple

component nulling function by some wavelet-based denoising method applied on
the first few channels. In that case, it is expected that we separate the EOG
from the EEG, without reducing the rank of the EEG signals.
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Abstract. Functional brain mapping is often performed by analysing
neuronal responses evoked by external stimulation. Assuming constant
brain responses to repeated identical stimuli, averaging across trials is
usually applied to improve the typically poor signal-to-noise ratio. How-
ever, since wave shape and latency vary from trial to trial, information is
lost when averaging. In this work, trial-to-trial jitter in visually evoked
magnetoencephalograms (MEG) was estimated and compensated for, im-
proving the characterisation of neuronal responses. A denoising source
separation (DSS) algorithm including a template based denoising strat-
egy was applied. Independent component analysis (ICA) was used to
compute a seed necessary for the template construction. The results are
physiologically plausible and indicate a clear improvement compared to
the classical averaging method.

Keywords: Single trial, event related, denoising, magnetoencephalog-
raphy (MEG), independent component analysis (ICA), denoising source
separation (DSS).

1 Introduction

The standard way of analysing brain responses to external stimulation is averag-
ing across trials, i.e. single stimulus-response entities. The averaging is based on
the assumption that the brain produces identical responses to identical stimuli
while ongoing brain activity and noise varies. Thus, the averaging boosts the re-
sponses but suppresses the rest. However, there is evidence that brain responses
exhibit inter-trial variations [1]. Therefore, averaging leads to loss and distor-
tion of information. Robust quantification of the variations should bring more
accurate insight into the functioning of the brain.

A Bayesian algorithm for the analysis of single trial event related brain activity
has been proposed [2]. The algorithm is initialised with the average of the channel
capturing the most of stimulus related activity. However, such an initialisation
biases the source estimates towards a particular region in the brain. Another
algorithmic solution based on maximum likelihood estimation with modelling of
the ongoing activity has been introduced as well [3].
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In this paper, a denoising source separation (DSS) algorithm including a tem-
plate based denoising strategy was applied to magnetoencephalographic (MEG)
measurements. Independent component analysis (ICA) was used to compute a
seed necessary for the template construction. In addition, the trial-to-trial jitter
in brain responses was estimated and compensated for. The suitability of ICA in
the MEG analysis has been reported [4,5]. However, better separation results can
be achieved by the DSS algorithm used in this study. Compared to the Bayesian
approach, the DSS algorithm has the advantage of being computationally simpler
and using a more generic seed. Furthermore, the use of ICA as a seed generator
results in multiple principled templates allowing for a significantly wider range
of source search.

2 Data

The experimental data consisted of MEG measurements of brain responses to
visual stimuli. In MEG, the magnetic fields produced by the electric activity of
neurons are measured on the head surface. MEG is thus a non-invasive method
for monitoring a living brain exhibiting good time resolution. In addition, MEG
is a good starting point for inverse problem solving, i.e. the localisation of the
neuronal sources, due to its fair spatial resolution. However, in event related
studies, because of the weakness of the evoked phenomena compared to the
ongoing brain activity, the signals have a poor signal-to-noise ratio.

The measurements were conducted in the magnetically shielded room in the
Brain Research Unit of the Low Temperature Laboratory at Helsinki University
of Technology. The measuring device was a 306-channel MEG system (Elekta
Neuromag Oy, Helsinki, Finland) comprising 204 planar gradiometers and 102
magnetometers in a helmet shaped sensor array. Gradiometer data from a single
subject was used for the analysis. 106 visual stimuli, consisting of meaningful
four-letter words embedded in dynamic noise, were presented at intervals of 990
ms. For details see [6]. The signals were pre-processed by a FIR filter with pass-
band from 1 Hz to 45 Hz and down-sampled from 600 Hz to 300 Hz.

3 Methods

A DSS algorithm with a template based denoising strategy was used for the
analysis of the MEG recordings. In the template construction, an initial es-
timate of underlying sources was needed. Therefore, independent components
were estimated by ICA from the whole data set and used as seeds for the DSS
algorithm. In addition, an estimation and compensation of trial-to-trial jitter in
brain response latencies was included.

3.1 Independent Component Analysis

ICA [7] is a statistical and computational method for revealing hidden factors
underlying multidimensional data. It is based on the assumption of statistical
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independence of the source signals and one of the most widely used methods of
solving the blind source separation problem.

In this work, FastICA [8,9] was used for estimating independent components.
In order to reduce sensitivity to outliers, hyperbolic tangent was chosen as the
nonlinearity. Symmetric orthogonalisation was applied to avoid accumulation of
estimation errors.

When ICA estimation is performed, the resulting independent components
tend to differ slightly from run to run [10]. The variability can originate from
several sources: Real data may not fully fulfil the theoretical assumption of sta-
tistical independence. Despite dimension reduction, noise is usually still present
although the noiselessness assumption is commonly made. In addition, varying
the initialisations of ICA algorithms may result in different estimates. ARABICA
toolbox in MATLABTM [11] was used in order to obtain robust estimates of the
independent components: FastICA was run multiple times in a bootstrapping
manner and the resulting estimates were clustered based on correlation. The
obtained cluster centroids were averaged across the trials and those exhibiting
stimulus related activity were chosen for further analysis.

3.2 Denoising Source Separation

DSS [12] is a framework for a variety of source separation algorithms, constructed
around different denoising strategies. Whitening of data results in rotational in-
variance in the sense that no separation of the sources can be considered superior
to the others without additional information. In figure 1 a schematic illustration
of a DSS algorithm is depicted. In DSS, a denoising function f(S) breaks the
symmetry produced by whitening and highlights directions of particular inter-
est resulting thus in a more appropriate separation than blind methods. The
approach also enables embedding of prior knowledge in denoising procedures to
guide the separation.

Fig. 1. A denoising source separation algorithm

In this work a template based denoising was applied. Therein the template
serves as a target for the algorithm, which searches for a linear transforma-
tion (W) that maps the whitened data (Y) as close to the template (f(S)) as
possible. After each iteration the template is updated based on the emerging
characteristics of the data.



430 E. Karp, L. Parkkonen, and R. Vigário

In the template construction, the periodicity of the stimulus presentation
and the assumption that the brain responds similarly to each stimulus were
exploited. In order to get a first robust estimate of the responses, an independent
component was averaged over all trials. The average was then placed around each
stimulus on an otherwise zero valued signal.

The template was renewed after each iteration and the initial response es-
timate, i.e. the averaged independent component, was replaced by the average
of the strongest denoised source estimate. In addition, the trial-to-trial jitter in
the brain responses was estimated and compensated for. Since DSS computes a
linear transformation, the estimated brain responses emerge at the very instants
found in the original data. Therefore, the jitter can be estimated after each it-
eration of the DSS algorithm by computing a sliding correlation between the
denoised source estimate and its average. In order to compensate for the jitter
during the template construction, replicas of the denoised source average were
placed at the instants of the highest correlation rather than those of the stimulus
presentation.

3.3 Multitemplate Approach

While whitening the data, the dimension was reduced from the original 204 to 50.
ICA was computed on the raw data and four independent components exhibiting
most prominent stimulus related activity were selected by visual inspection of
the averages. The chosen components were used to construct one template each,
which were then fed into the DSS algorithm one at a time. From the parallel
DSS algorithms, one estimated denoised source per template was obtained. The
source estimate with the highest correlation with its corresponding template
was considered to be the global outcome of one DSS round. Between the rounds,
the chosen source estimate was removed from the whitened data, leaving only
directions orthogonal to it for further analysis. The rounds followed one another
until the data was exhausted and no interesting signals could be found anymore.
The time window used for all averaging was 100 ms before and 800 ms after
either the stimulus or the jitter corrected instant. The procedure is illustrated
in figure 2.

Fig. 2. Multitemplate denoising source separation
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4 Results

Illustrative examples of averaged MEG recordings with and without relation to
stimuli are shown in figure 3 MEG(a). Corresponding evoked field (EF) image
plots [5] are shown in figures 3 MEG(b–e). EF image plots are constructed by
stacking vertically single grey coded trial traces sorted by the peak latency and
smoothing across neighbouring trials by moving average.

MEG

IC

DS

(a) (b) (c) (d) (e)
100 ms

Fig. 3. Illustrative examples of averaged MEG measurements MEG(a) and correspond-
ing EF image plots MEG(b–e) together with obtained independent components IC(a)
and denoised sources DS(a) as well as corresponding EF image plots IC(b–e) and DS(b–
e). Independent components are sorted by descending amplitude. Denoised sources
appear in the order of acquisition.

In the independent components, depicted in figure 3 IC together with their EF
image plots, some interesting features start to emerge. Yet, the characteristics of
the signals are fuzzy and the time courses unclear. On the contrary, the denoised
sources in figure 3 DS(a) exhibit distinct features and clear time courses. The
first source shows a strong, transient response to the visual stimuli. Particularly
interesting is, however, the emergence of periodic signals: the third source ex-
hibits continuous periodicity fitting the α-range, while in the second one this
periodic behaviour ceases after 200–300 ms after the stimulus presentation.

Comparison of the EF image plots of the denoised signals (figure 3 DS(b–e))
and the independent components (figure 3 IC(b–e)) renders jitter compensation
visible. E.g. in figure 3 DS(d) the periodic behaviour is approximately in phase
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Fig. 4. Estimated trial-to-trial jitter, in samples, sorted in ascending order. In DS3, two
outliers with values 34 and 39 were omitted from the figure but used in the template
construction.
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Fig. 5. Field patterns associated with the denoised sources (DS) and the locations of
corresponding equivalent current dipoles. P stands for posterior, R for right and L for
left view.

compared to the curly activity in the corresponding independent component in
figure 3 IC(e). Jitter compensation for each denoised source is shown in figure 4.

From the EF image plots it is clear that the data contains significant trial-
to-trial variations. Thus, essential features are lost during averaging as can be
seen by comparing the averages and the corresponding EF image plots. The EF
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image plot of the second independent component (figure 3 IC(c)) shows that
the main stimulus locked response, although steady across trials, is not even the
strongest signal in the component. It can, however, be detected by DSS because
the implicit assumption of constant brain responses is embedded in the template
construction (see figure 3 DS(b)).

In addition to the denoised sources, DSS also estimates the corresponding
mixing matrix. Each column of the matrix contains a mapping between one
denoised source and the measured data. Thus, the mapping can be considered as
the magnetic field pattern generated by the denoised source. The field patterns
of the denoised sources in figure 3 DS are shown in figure 5. Clearly dipolar
structure of the patterns is in accordance with classical models of focal neuronal
activity. One exception is the denoised source 3 which a simple dipole model is
insufficient to fully explain. However, its periodic nature does not even suggest
focal activity.

To investigate further the physiological plausibility of the results, the neuronal
sources producing such field patterns were localised by fitting current dipoles
through inverse problem solving [13]. The fitted dipoles are shown in figure 5
superimposed on transversal and lateral MRI slices. The dipole locations are
physiologically plausible and in agreement with the results of the previous anal-
ysis of the same data [6]. Furthermore, the occipital locations of the dipoles
associated with the denoised sources one and three suggest processing of visual
stimuli. The goodness-of-fit [13] was over 80% for all seven dipoles.

5 Conclusions

The results clearly indicate benefits of single trial analysis. The classical assump-
tion of a constant brain response to a particular stimulus type is embedded in
the analysis whereas trial-to-trial latencies were allowed to vary. Because of the
variation of the latencies, a considerable amount of information is usually lost
in averaging. In addition, the invariance in the responses is assumed rather than
imposed and thus changes in wave shape across trials can be observed in single
trial analysis (see figure 3 DS(b–e)) providing an additional source of error when
averaging.

DSS produces physiologically plausible results. The sources exhibit reason-
able dynamics and conceivable latencies. They produce simple dipolar like field
patterns with realistic neuronal locations. Moreover, DSS discovered unexpected
rhythmic components suggesting the need for further physiological research. In
addition, the trial-to-trial jitter in the brain response latencies can be tracked.

The DSS algorithm included the replication of the averaged signal during the
template construction. Loosening this implicit assumption of the similar shape
of the individual responses could produce interesting results, too. Extending
the research to more subjects could bring additional insight into the robustness
of the proposed analysis method as well as physiological interpretation of its
outcomes.
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Abstract. We present a novel analysis to quantify the eye movement
from functional magnetic resonance (fMRI) data without the aid of ded-
icated eye-trackers. We show that by using the parts of the functional
image data that contain the motion artefacts of the subject’s eyes and
by applying spatial independent component analysis to it, it is possible
to detect eye movement and to estimate the point of gaze at the time of
the data acquisition.

1 Introduction

Functional magnetic resonance imaging (fMRI) is a valuable technique to inves-
tigate the activity of the brain. But in many experimental settings the position
of the gaze of the subject’s eyes is also of interest (e.g. to verify task compliance
during the experiment). However, the use of a dedicated eye-tracker is either
impossible because of lack of space in the scanner or it is inconvenient because
of the discomfort for the subject under investigation and the additional effort in
the set up and configuration.

At the same time eye motion artefacts are a common problem in the analysis
of fMRI data sets. The variance of the voxels which represent activities related
with eye movements can even be higher than the variance induced by brain
activities in the regions of interest. Due to the sensitivity of many independent
component analysis (ICA) algorithms to outliers it is a common pre-processing
step to mask out signals from the eyes for the application of ICA to fMRI data
sets. [1]

These motion related artefacts thus might be used to detect the position of the
eyes, hence one could avoid problems arising from an application of dedicated
eye-trackers inside the scanner. Beauchamp showed in [2] that the existence of
eye movements can be deduced from the variance of fMRI signals stemming from
the eyes. However, he was not able to extract additional information concerning
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the actual position or movement of the eyes. Tregellas et al [3] estimated the
artefacts resulting from eye movements to reduce the error for motion estimation
of the whole head. They used the local changes in voxel intensity to estimate the
eye movement within a six dimensional rigid body model. However, they were
unable to show that their model correctly represented the actual eye movement.
Instead they reported many difficulties, ranging from high noise levels to lack of
complete directional information.

In the next sections we will show that applying a spatial ICA to a proper
fMRI data-set of an eye saccade experiment, we are able to yield information on
the position of the point of gaze at the time of image acquisition.

2 fMRI and Eye Movement

Functional magnetic resonance imaging (fMRI) of the brain relies on a spe-
cial effect called Blood Oxygenation Level Dependent (BOLD) contrast to detect
changes in the blood flow that are correlated to increased activity in the brain. [4]
The BOLD contrast is based on the detection of local changes in the magnetic
susceptibility that affect the signal in T2*-sensitive pulse sequences. However,
a large part of the observed signal still derives from the physical structure of
the brain. Head movement artefacts in the fMRI signal are well understood and
various techniques have been developed to minimise the error that is induced by
these movements [5, 6,7,8]. These methods typically are based on a rigid body
motion estimation of the head and thus should not affect artefacts resulting from
eye movements located in the spatial region of the eye in the image.

Fig. 1. Functional Magnetic Resonance Imaging data from subject 2 showing a slice
through the eye of the subject (left view: from above, right view: from the side of
the head). The vitreous body of the eye and the optic nerve appear as high intensity
voxels surrounded by low intensity voxels. Artefacts from the sharp change in magnetic
susceptibility between tissue and air can be seen extending from the eyes to the air in
front of them.

The vitreous humor of the eye consists mainly of water and appears with high
intensity on fMRI slices which traverse it. While the normal scan frequency (TR)
of an fMRI experiment is within the range of seconds, saccadic eye movements
happen on a far more rapid time scale, typically below 100 ms. Therefore it
is obvious that fMRI experiments are far too slow to observe a saccadic eye
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movement directly. However, it should be possible to detect motion artefacts
related to different positions of the vitreous humor of the eye, the optic nerve,
the surrounding muscles and the aqueous environment inside the vitreous body.
The main effect should show up as large changes in local intensity as a voxel
outside the eye with low level intensity changes to the high intensity level within
the eye (see figure 1).

3 Spatial ICA Applied to a Saccadic Eye Movement
Experiment

In the next sections we describe a fMRI experiment and an Independent Com-
ponent Analysis (ICA) based method to detect the position of the eyes’ focal
point.

3.1 Experimental Setup

Two healthy volunteers (2 males) with normal vision participated in a simple
visual tracking paradigm. Subjects had to look at a fixation cross (0.4◦ diameter),
which was presented at the central fixation point and had to perform a saccade,
when the cross jumped to a quadrant (11◦ horizontal and 7◦ vertical offset).
After each fixation period of 2 seconds, the cross appeared for 7 seconds at one
of the four quadrants. A pause of 1 second was included and for each quadrant
16 trials were performed. Both subject reported no difficulties in following the
task as expected.

Stimuli were back-projected via an LCD video projector (JVC, DLA-G20,
Yokohama, Japan, 72 Hz, 800×600 resolution) onto a translucent circular screen
(approximately 30◦ diameter), placed inside the scanner bore at a distance of
63 cm from the observer. Stimulus presentation was controlled via Presentation
Software (Neurobehavioral Systems, Albany, CA, www.neurobs.com).

Imaging was performed using a 3-Tesla MR head scanner (Siemens Allegra,
Erlangen, Germany). We continuously acquired a series of functional volumes
of 20 ascending axial slices using a standard T2∗ weighted echo-planar imaging
(EPI) sequence (TR= 2000 ms; TE= 30 ms; flip angle=90◦; 64 × 64-matrices;
in-plane resolution: 3× 3 mm; slice thickness: 3.75 mm).

For the analysis the data was converted from DICOM to the NII format us-
ing SPM [9] and an image registration to the first image of each session was
performed to minimise the influence of head movement. No slice timing compen-
sation was applied.

3.2 Spatial ICA Based Eye Movement Quantification

To detect the components related to eye movement artefacts, we applied a spa-
tial Independent Component Analysis (sICA) to the fMRI data of the saccadic
eye movement experiment. We expected the movement artefacts to be spatially
independent as the spatial position of the artefacts for vertical and horizontal
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movement should be localised in different voxel positions. The time courses of
the components, however, should be statistically dependent due to the selected
focal points in the four quadrants.

In spatial ICA, X contains in its rows the observed fMRI images, A denotes
the mixing matrix and S will contain the estimated sources:

X = AS (1)

Before applying ICA, we reduced the data to a rectangular part of the image
which contained both eyes, optic nerve and surrounding tissue of the subject.
The 3D data of each image was reorganised as a column vector and from these
vectors X was constructed. The ICA then estimates the matrix of independent
components S and the mixing matrix A which contains the estimated time-
courses of the independent components.

Using the SPM toolbox MFBOX [10] as front-end, we applied the JADE
algorithm [11] to the problem. For an optimal estimation of the number of sources
in the data-set, we applied JADE with increasing number of estimated sources
and used the correlation coefficient between the time-courses of the experiment
and the time-courses of the resulting independent components to identify the
best match.

3.3 Single-slice Analysis

To identify slices where information on eye movements is contained, we applied
the spatial ICA separately to each horizontal slice of the recorded image data
while varying the maximal number of components from 1 to 30. Then, after
normalising each column ai of each resulting A to mean 0 and variance 1 and
performing the same normalisation on each relevant time-course of horizontal
or vertical movement ymov(t) from the experimental setting, we calculated the
correlation coefficient

ccoeff = aT
i ymov (2)

between each independent component’s time-course ai(t) and the relevant time-
course of horizontal or vertical movement ymov(t) from the experimental setting.
Figure 2 shows the results for both subjects, where the correlation coefficient is
given as the coloured box (ranging from 0 (black) to 1 (white)) depending on
the number of the tested image slice and the maximal number of independent
components used for the ICA.

We also tested for the possible influence of a time lag in the movement time-
course to compensate for the time differences between slice acquisition times.
However, the strongest correlations in all slices were found at zero time lag.

As can seen from this result, the information of the eye position is contained
in all slices that pass through the eye to some extent. The ICA is able to recover
this information to various degrees with best results for slice 13 and slice 12 for
subject 1 and subject 2 respectively. These are the slices that contain the optic
nerve, which corresponds to the observations made by Trellegas et al in [3].
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Fig. 2. The correlation coefficients for the time-courses of horizontal (top row) and
vertical (bottom row) movement with the time-course of the best correlated indepen-
dent component, as function of the number of horizontal slice and maximal number
of components used in the ICA. Data-sets: subject 1 (left side), subject 2 (right side).
The eyes of subject 1 occupy voxels in slice 7 to 16, while for subject 2 these voxels
are in slice 8 to 15.

It is also interesting to note that the results of JADE in some slices seem
to depend on the given number of maximal independent components. While for
obvious reasons the correct number of independent sources in each slice should
be at least 2, we are not able to estimate the exact number.

3.4 Multi-slice Analysis

In the next step we used the whole 3D data from each subject within a rectan-
gular region containing both eyes for the spatial ICA to extract the independent
components of eye movement. Figure 3 shows the correlation coefficients for the
best correlated independent components. In both subjects JADE was able to
identify both the horizontal and vertical movements with correlation coefficients
well above 0.9.

In figure 4 we plot the time-course of the component related to horizontal move-
ment against the time-course of the component related to vertical movement,
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Fig. 3. The correlation coefficients for the time-courses of horizontal (crosses) and
vertical (boxes) movement with the time-course of the best correlated independent
component, given for the maximal number of components used in the ICA. Data-sets:
subject 1 (left), subject 2 (right).

Fig. 4. Scatterplots of the columns ai of the mixing matrix for the components re-
lated to horizontal movement against vertical movement. All five fixation points of the
experiment are clearly distinguishable. Data-sets: subject 1 (left), subject 2 (right).

thus resulting in the spatial localisation of the focus point of the eye during image
acquisition. For both subjects the five fixation points (four quadrants and central
fixation) are clearly visible.

The spatial localisation of the independent components related to the move-
ment follow the form typical for motion artefacts in fMRI. For subject 1 they
are located within the vitreous body, while for subject 2 they are located at the
position of the optic nerve. This difference, possibly due to anatomical differ-
ences in the subjects, could explain why constructing an universal rigid body
model in [3] failed in estimating the exact eye position. ICA does not depend
on a physical or anatomical model and thus will adapt automatically to each
subject.

As further example of how well sICA is performing we refer to figure 5 where
we plotted the expected time-courses for horizontal and vertical eye movement
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Fig. 5. The time-courses for eye movement (top: horizontal, bottom: vertical) as taken
from the experiment (dotted) plotted together with the time-courses estimated by the
spatial ICA (crosses, line) for subject 1 (first plot, above) and subject 2 (second plot)

from the experiment together with the estimated time-courses from the spa-
tial ICA.

4 Conclusion

We have shown that it is possible to use spatial ICA to detect the position
of the fixation of the human eye in an fMRI experiment without the use of
a dedicated eye-tracker. While this result still needs further refinement in the
actual procedure of application in fMRI experiments, we were able to show
very promising results that may render unnecessary the time consuming and
uncomfortable use of a dedicated eye-tracker for the purpose of task conformance
compliance testing.
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Abstract. ICA is often employed for the analysis of MEG stimulus experiments.
However, the assumption of independence for evoked source signals may not be
valid. We present a synthetic model for stimulus evoked MEG data which can
be used for the assessment and the development of BSS methods in this context.
Specifically, the signal shapes as well as the degree of signal dependency are
gradually adjustable. We illustrate the use of the synthetic model by applying
ICA and independent subspace analysis (ISA) to data generated by this model.
For evoked MEG data, we show that ICA may fail and that even results that
appear physiologically meaningful, can turn out to be wrong. Our results further
suggest that ISA via grouping ICA results is a promising approach to identify
subspaces of dependent MEG source signals.

1 Introduction

Stimulus experiments are a common way to investigate brain functioning. An evoked
brain response consists of a neuronal current, whose location and time dynamics are
of interest. For this, magnetoencephalography (MEG) may be used to record the re-
sulting magnetic fields non-invasively. However, each MEG channel gives access only
to a superposition of fields, generated by many neuronal currents, active at the same
time instant. Independent component analysis (ICA) methods [1,2] are frequently used
in order to decompose the signal mixture. They have been successfully applied to re-
move artifacts and interferers [3]. However, this framework relies on the assumption
that all source signals are statistically independent. When ICA is applied to data from a
stimulus experiment, different source signals are triggered by the same stimulus and the
independence assumption may no longer hold. For example, evoked signals may have
a similar activation and termination time leading to a correlation of their energies.

Recently, ICA has been extended to independent subspace analysis (ISA) or multi-
dimensional ICA, where sources are allowed to be dependent within a group as long as
different groups are mutually independent [4,5,6,7,8,9,10,11]. In [4], Cardoso proposed
that ICA followed by a grouping algorithm may be sufficient to find dependent sub-
spaces from the data. Szabó et al. have given a sufficient condition for this conjecture
in [8]. Nevertheless, plain ICA methods are often applied to MEG data consisting of
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possibly dependent source signals. Here, we present a model for synthetic MEG data
in order to develop and assess BSS methods. The model allows generating subspaces
of various dimensionalities with gradually adjustable dependencies using a multitude
of signals. Applied to this data, ICA shows severe shortcomings, while ISA via group-
ing ICA results seems a promising method to reveal the subspaces of dependent source
signals.

2 SSEJR – A Model for Stimulus Evoked MEG

In the following the Synthetic Stimulus Evoked Jittered Response (SSEJR) Model is
presented. The core functionality of this model is a simple mechanism that gradually
changes the degree of dependency. Specifically, the signal dependency is controlled
by a single parameter, while subspaces remain mutually independent. Against a sweep
through values of the dependence parameter, the reliability of algorithms using indepen-
dence (ICA), relaxed independence (ISA) or no independence (non-independent BSS)
assumptions may be evaluated.

2.1 Generation of Dependent Source Signal Subspaces

In this work a setting with two independent subspaces is used. The first has 2 signal
dimensions (2D) and the second 3 signal dimensions (3D). Representatively, the gener-
ation of dependent source signals for the 2D subspace is explained. For this, two time
domain signals are created consisting of 100 epochs assuming 1 kHz sampling rate.
Each epoch starts with an assumed stimulus followed by a time response, one for each
source, that has a source specific form and latency. The response time duration is about
200 ms. A random stimulus is modeled by randomly drawing the epoch length between
800 ms to 1200 ms, such that the average epoch length is 1000 ms. As an example,
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Fig. 1. Synthetic MEG data. (a) 2 epochs of weakly dependent source signals are generated by
using the SSEJR model with a high jitter value. Lowering the jitter, all epochs will eventually
have responses as depicted in the first epoch leading to two independent signal subspaces (2D
and 3D) with highly dependent source signals. The last row depicts one representative AR noise
process. (b) Associated field maps. (c) Sphere model of human head with source (black) and
noise (gray) dipoles. Sensor coordinates (diamonds) correspond to PTB 93-channel MEG [13].
(d) 2 typical sensor observations exemplify the generated MEG data.
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0 ms 10 ms 25 ms 50 ms 200 ms 

Fig. 2. Hinton diagrams with estimates of pairwise normalized mutual information between 5
SSEJR source signals at different jitter levels. The 2D+3D subspace setting is clearly visible.

one source may have a Gaussian shaped response with 300 ms latency while the other
source may have a temporally differentiated Gaussian shaped response with 290 ms la-
tency. This setting is depicted in the first epoch of Fig. 1 a). When all epochs are equal
to epoch 1, the resulting signals in the 2D subspace are highly dependent. In order to
lower the dependencies, the source specific latencies are changed in each epoch by two
normally distributed random numbers with zero mean and standard deviation σ, which
leads to a jitter in the latencies. In the following, σ is referred to as the jitter parameter.
It is the key parameter of the model controlling gradually the degree of dependence. The
higher the jitter the lower the dependency between the signals and vice versa. We refer
to this model as the Synthetic Stimulus Evoked Jittered Response (SSEJR) model. Any
subspace of any size may be modeled likewise. Subspaces are made mutually indepen-
dent by choosing all source specific latencies such that signals from different subspaces
do not overlap in time. This work’s setting uses 5 signals in 2D and 3D subspaces, as
depicted in Fig. 1. The dependence of a set of SSEJR generated signals si, i = 1, ..., 5,
will be evaluated in terms of their normalized pairwise mutual information, which may
be expressed as

In(si, s j) =
I(si, s j)√
H(si)H(s j)

, with I(si, s j) =
∫

p(si, s j) log
p(si, s j)

p(si)p(s j)
dsids j. (1)

H(si) is the entropy of si. Note that the marginal distributions p(si) and p(s j) of
any pair of signals within a subspace remain unchanged with varied jitter. The joint
distribution p(si, s j) approaches the product of the marginals with increasing the jit-
ter as more sample combinations occur. Hence the mutual information decreases with
increasing jitter. Fig. 2 shows the normalized pairwise mutual information between
5 simulated SSEJR source signals for different jitter values. The Hinton diagrams show
a block diagonal structure with small off-diagonal elements indicating almost mutually
independent subspaces. Elements asscociated with source signals within each subspace
decrease gradually with increasing jitter. This confirms the expected behaviour of the
SSEJR model.

2.2 Generating Various Evoked Brain Signals

Fixed signal forms as shown in Fig. 1 a) may not be general enough. As a matter of
fact, the use of different signal forms influences the performance of methods under test
[13]. Ideally, one would like to consider a large variety of signal forms.
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Fig. 3. 10 examples of randomly generated evoked responses using a mixture of 3 Gaussian
shaped time signals

Inspired by Gaussian mixture models, time domain signals with various shapes are
generated as follows. In the d-th iteration, for a fixed jitter level, the i-th source signal
is given by

sd
i (t) =

3∑
k=1

ak exp(− (t − mk)2

s2
k

), (2)

where t is the time index with a support of 200 ms, and ak, mk and sk are
uniformly distributed random numbers with −1 < ak < 1, −50 < mk < 50 and
5 < sk < 50, respectively. Using Equ. 2, a large variety of simulated evoked signals
is generated at random. A draw of 10 responses is depicted in Fig. 3.

2.3 Synthetic MEG Data

A homogeneous conducting sphere model serves as an approximation of the human
head. The neuronal currents in the brain are modeled by equivalent current dipoles.
In this work 25 such dipoles are used, 5 representing evoked sources and 20 inde-
pendent interfering noise processes. Each such noise dipole follows a 7-th order AR
process activated by Laplacian distributed white noise with AR coefficients that reflect
prestimulus MEG data. Magnetic fields are calculated at PTB 93-channel MEG sen-
sor coordinates [13], using the quasi-stationary Maxwell equations for dipole currents
and emerging volume currents [14]. Sensor noise is introduced with an average SNR of
30 dB. Following the linear ICA model x = As, A is the mixing matrix emerging from
the contribution of each source to each sensor. The superposition of all magnetic fields
gives the observed MEG data x.

For ICA and non-independent BSS the goal is to infer the unmixing matrix
W = PDA−1, where D is diagonal and P a permutation matrix. ISA aims at separat-
ing only the subspaces with an arbitrary linear combination of rows of W associated
with the source signals within each subspace.

3 Performance of ICA for SSEJR Data

In this section the robustness of ICA against a violation of the independence assumption
is investigated. We tested JADE, Extended Infomax and FastICA as sample distribution
processing methods [1,2]. The application of methods exploiting the time structure,
such as SOBI or TDSEP [1,2], are deferred to future work. The performance of PCA,
as a preprocessing step to ICA, is given as well.
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Fig. 4. Performance of ICA (a,c) and associated recovered field maps (b,d) for the 2D subspace
(a,b) and 3D subspace (c,d), respectively. For convienence, the estimated normalized mutual in-
formation In(s1, s2) (a) and In(s3, s4) (c) are depicted, too.

3.1 Performance Metric

A normalized version of Amari’s performance index [2] gives the unmixing error E,
which may be expressed as

E(G) =
1

2m(m − 1)

⎡⎢⎢⎢⎢⎢⎢⎣
∑

j

⎛⎜⎜⎜⎜⎜⎝
∑

i

Gi j

maxk Gk j
− 1

⎞⎟⎟⎟⎟⎟⎠ +
∑

i

⎛⎜⎜⎜⎜⎜⎜⎝
∑

j

Gi j

maxk Gik
− 1

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ , (3)

where the m x m matrix G = WA is the product of the estimated unmixing matrix W
with the simulated mixing matrix A. E is always between 0 and 1 and equal to 0 iff
G = PD, i.e. unmixing is perfect.

3.2 Simulation Setup

The SSEJR model is used with 20 iterations per jitter value, hence considering the
results over 20 different signal forms for each source. The simulated MEG data x is
whitened and reduced to 25 dimensions prior to the application of ICA. For the con-
figuration of 20 interferers and 5 SSEJR source signals belonging to a 2D and a 3D
subspace, the unmixing error is calculated based on the matrix Gk of the same dimen-
sions as the k-th subspace. In simulations, the sequence of the 25 simulated signals is
known in advance. Hence, we may extract Gk by taking only elements from G that are
associated with the SSEJR source signals in the k-th subspace. For example, for the
2D subspace, the first two elements of two rows in G with best signal to interference
ratio give the 2 x 2 matrix G1. This matrix contains the information to what extent the 2
SSEJR source signals in the 2D subspace have been separated.
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Fig. 5. Performance of ICA to unmix the 2D and 3D subspace containing dependent SSEJR
source signals

3.3 Results

The median of the unmixing error and the recovered field maps for the 2D and 3D
subspaces are depicted in Fig. 4. A histogram based estimator of mutual information
[12] illustrates the functionality of the SSEJR model. The mutual information decreases
gradually with increasing jitter. As expected, PCA fails to decompose the signals for all
jitter values. In contrast, all tested ICA methods show good performance for almost
independent signals at 100 ms jitter, i.e. E drops below 0.2. However, when lowering
the jitter value, all ICA methods loose performance. Strikingly, their unmixing error
closely follows the estimated mutual information. For highly dependent source signals
separation fails completely. In the MEG community, the recovered field maps are of
interest, too. Fig. 4 b), d) depict maps for independent and dependent signals. For in-
dependent signals at 100 ms all patterns have been recovered by ICA. For dependent
signals false pattern emerge, however. Most critically, for closely spaced dipoles, as
in the 2D subspace, false recovered maps show a dipolar structure, cf. Fig. 4 b). This
finding stresses that even physiologically meaningful results recovered by ICA do not
proove their correctness.

4 Grouping the ICA Results – An Approach to ISA

It has been conjectured that ICA can separate mutually independent subspaces of depen-
dent source signals [4]. Based on this conjecture, we grouped the ICA estimated source
signals according to their residual dependencies. More precisely, the histogram based
estimated normalized pairwise mutual information [12] is used to build an adjacency
matrix. To this matrix, a tree-based grouping algorithm is applied to find the underlying
subspace structure. Note that other researchers followed the same conjecture but used
different techniques to build the adjacency matrix [7,10,11].

4.1 Simulation Setup

The simulation setup follows Subsec. 3.2. The subspace unmixing error Es is evaluated
using Bach’s performance index Es [6]. It is always between 0 and 1 and equals zero
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Fig. 6. Grouping error against the threshold. Grouping is perfromed by a tree-based algorithm
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iff the m x m matrix G is a permuted block diagonal matrix, which means that depen-
dent signals in a subspace are possibly mixed, while the different subspaces have been
unmixed.

4.2 Grouping Method

The histogram based estimate of normalized pairwise mutual information of ICA recov-
ered source signals is used to construct an adjacency matrix. Subsequently, a maximum
weight spanning tree is learned. By cutting edges with weights inferior to a threshold,
an estimate to the number of subspaces and their associated dependent source signals is
obtained [6]. The threshold is varied from 0 to 1, i.e. from cutting no edges to cutting all
edges of the tree. It has to be chosen such that dependent and independent source sig-
nals are correctly grouped. In the limit, choosing the threshold equal to one will always
result in finding only 1D subspaces.

4.3 Results

Fig. 5 depicts the subspace unmixing error Es against dependency levels ranging from
0 ms to 50 ms jitter. The ICA methods under test show an error close to zero. This
strongly supports the conjecture that ICA may be used to unmix mutual independently
SSEJR subspaces. Representatively, the tree-based grouping results for extended Info-
max are given in Fig. 6. Three graphs show the median grouping error over 20 iterations
at 0 ms, 20 ms and 200 ms jitter. The first two jitter values aim at detecting the subspace
setting 2D+3D+20x1D, the latter the setting 25x1D. For almost independent source
signals, at 200 ms jitter, correct grouping is obtained choosing a threshold larger than
0.42. In order to detect the correct subspaces at jitter values below 20 ms, the threshold
has to be below 0.35. Hence, there is a trade off between detecting the correct group
of almost independent source signals and dependent source signals. The grouping suc-
cess for SSEJR signals at 0 ms, 20 ms and 200 ms jitter is 95%, 60% and 65% for a
threshold of 0.3. A threshold of 0.18 yields rates of 85%, 85% and 15% and a thresh-
old of 0.42, 70%, 0% and 100%. Note that a grouping is judged successful only if the
whole subspace decomposition was found correctly. Hence, finding subspaces based
on postprocessing ICA results seems possible for SSEJR data. Still, the performance is
sensitive to the choice of threshold, which is a target for future improvements.
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5 Conclusions

This work considers source dependencies in MEG stimulus experiments. The SSEJR
model is introduced for the generation of synthetic stimulus evoked MEG signals. Var-
ious signals in subspaces of various size with gradually adjustable dependencies are
the key features. We applied ICA and ISA to data generated by this model. For evoked
MEG data, our results suggest that ICA may fail. Most critically, even results that appear
physiologically meaningful, can be significantly wrong. Our results further suggest that
ISA via postprocessing ICA results may be a promising approach to identify subspaces
of dependent MEG source signals.
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Abstract. Atrial fibrillation is the most common human arrhythmia. The analysis 
of the associated atrial activity provides features of clinical relevance. Previously, 
the extraction of the atrial signal is necessary. We follow the semi Blind Source 
Extraction S-BSE approach to solve the problem. The proposed algorithm 
satisfies the prior knowledge about the atrial signal: its statistical properties and its 
spectral content. The introduction of this prior information allows obtaining a new 
algorithm with the following advantages: it allows the extraction of only the atrial 
component and it improves the quality of the recovered atrial signal in terms of 
spectral concentration as we show in the results.  

Keywords: Atrial Tachyarrhythmia, Power Spectrum, Kurtosis, Independent 
Component Analysis, Blind Source Extraction, Electrocardiogram. 

1   Introduction 

Atrial fibrillation (AF) is a kind of tachycardia. A normal, steady heart rhythm 
typically beats 60-80 times a minute. In cases of atrial fibrillation, the rate of atrial 
impulses can range from 300-600 beats per minute. The analysis of these very fast, 
irregular fibrillatory waves (F-waves) can be used for the identification of underlying 
AF mechanisms and prediction of therapy efficacy [1]. In particular, the fibrillatory 
rate has primary importance in AF spontaneous behavior [2], response to therapy [3] 
or cadioversion [4]. 

The proper analysis of atrial fibrillation requires the extraction of the atrial activity 
from the recordings, i.e., the cancellation of the ventricular activity. Taking into account 
the independence between the atrial and ventricular activity, ICA algorithms based on 
HOS and SOS have been applied directly to the standard ECG recordings, obtaining the 
different sources: the atrial rhythm, the ventricular activity and other artefacts such as 
noise or breathing components [5], [6], [7]. Other algorithms not exploiting the 
decoupling of the activities have also been proposed to obtain the F-waves [8], 
obtaining similar performance results when all of them are compared [9]. 

All these ICA algorithms are focused in a linear transformation of the ECG in 
order to obtain a set of independent components, not only the atrial rhythm. It means 
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that they are applied directly without considering the problem of the extraction, not 
separation, of the only interesting atrial component; in the case of the standard 12-
lead ECG recordings, these are decomposed as the linear combination of at most 12 as 
independent as possible components. As a consequence, depending on the algorithm, 
the atrial activity is recovered in different positions. All of these solutions require a 
postprocessing step to distinguish which one is the atrial activity from the set of 
recovered sources. The identification can be carried out using a kurtosis-based 
reordering of the separated signals followed by spectral analysis of the subgaussian 
sources [5] or searching for the source with a peak in the range of 3-10 Hz from the 
set of final candidates [6]. 

2   Semi-Blind Source Extraction of the Atrial Rhythm  

2.1   Review Stage 

None of the proposed solutions explained in the previous Section includes the specific 
characteristics of the target signal, i.e., the F-waves, in the separation process. In [10], a 
prior knowledge about the sources is used in the separation process of the atrial activity 
from ECG recordings. The statistical distribution of the ventricular and atrial activities, 
supergaussian and subgaussian respectively, is introduced in the maximum likelihood 
ICA approach [11]. Nevertheless, it needs the post-processing step to confirm which 
one is the correct atrial activity. Some recent algorithms introduce the spectral content 
information in the separation step, avoiding the postprocessing identification stage [12], 
[13]. But none of the previous algorithms takes into account, simultaneously, the 
statistical and spectral features of the atrial activity to extract the signal. 

2.2   Atrial Activity Features 

The statistical analysis of the atrial activity reveals that it presents a Gaussian or 
subgaussian behavior (it depends on the patient and the state of the disease). It can be 
modeled as a saw-tooth signal consisting of a sinusoid with several harmonics [8]. In 
this case, the kurtosis values are close to zero.  

On the other hand, atrial activity signal typically exhibits a narrowband spectrum 
with a main frequency between 3.5–9 Hz [6]. The main peak in the band determines 
the most common fibrillatory rate of nearby endocardial sites [14]. None of the other 
signals involved in the ECG has the same spectral characteristics. We show in Fig. 1 
the normalized spectra of four typical sources mixed in an ECG recording with AF 
(atrial, ventricular, power line interference and breathing sources); as we can see the 
atrial signal is concentrated in the aforementioned range of frequencies. 

These are the main characteristics of this signal and they will be our prior 
knowledge about the atrial activity. Hence, we will try to estimate a signal with 
minimum kurtosis and simultaneously with spectral content as close as possible to the 
spectral known properties of the atrial signal. 

The mathematical formulation of the power spectral density information about the 
atrial waveform consists on the maximization of the of the relative power contribution 
to the relevant frequency band: 
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Fig. 1. Superposed power spectra of four sources mixed in the ECG (atrial activity, ventricular 
activity, 50 Hz power line interference and breathing) 
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where ( )φy f is the power spectrum of the recovered signal ( )y t .  

It is maximum for the atrial activity ( )Ay t ; the interval of integration 1 2[ , ]f f  

depends on the prior information about the patient and the criterion to fix the 
bandwidth. One option is the full range of frequencies 3.5-9 Hz, i.e., there is no prior 
knowledge about the patient or the kind of AF. 

2.3   Algorithm for Atrial Activity Extraction Using Prior Information 

The atrial fibrillation mixture model reads: 

( ) ( )t t=x As  (2) 

where x is the mixtures vector, i.e., the ECG recording, A the mixing matrix and s the 
sources vector. In atrial fibrillation episodes, the ventricular and atrial activities are 
the statistically independent sources, in addition to artifacts and noise sources. 
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We will assume that the recorded signals are first whitened by PCA in order to 
reduce the dimensions of the problem, to exhaust the use of the second order statistics 
and to assure that all the sources have the same variance (this simplifies (1) to the 

numerator): ( ) ( )t t=z Vx , where V is the KxM whitening matrix, so ( ) ( )TE t t� � =� �z z I . 

The Blind Source Extraction BSE of the atrial component ( )Ay t  is: 

( ) ( )T
Ay t t= w z  (3) 

with the restriction 1T =w w  to keep the unit variance constraint. In order to 

estimate ( )Ay t , i.e., the recovering Kx1 unit norm w  vector, we will use the 

combination of the cost functions, resulting in the following optimization problem: 

( )2

1

arg max ( ) ( ) , 1
A

f T
A yf

k y f df subject toφ− + =
w

w w  (4) 

where ( )Ak y  is the kurtosis of Ay . The integral in (4) is calculated numerically and 

the frequencies normalized by the sampling frequency. The method used to estimate 
the power spectrum ( )

A

j
y e ωφ  is the classical periodogram due to its simplicity. Then, 

we can express (4) as function of the unknown vector w and the whitened 
observations z: 
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 (5) 

where ( )je ωZ is the column vector with the Fourier transforms of ( )iz t  and [ ]1 2,I I  

the corresponding interval of digital frequencies. 
To solve (4), we use a gradient based algorithm that, after every iteration, enforces 

the constraint 1T =w w  dividing by its norm, obtaining the following updating rule: 
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 (6) 

where μ  is the learning step. 

3   Results 

3.1   Database 

The data correspond to the “PTB Diagnostic ECG Database” from the MIT database 
Physionet [15]. There is a total of fifteen patients with atrial fibrillation. 
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Each record includes 15 simultaneously measured signals: the conventional 12 leads 
(I, II, III, VR, VL, VF, V1, V2, V3, V4, V5, V6) together with the 3 Frank lead ECGs 
(VX, VY, VZ). Each signal is digitized at 1000 samples per second, with 16 bit 
resolution over a range of ± 16.384 mV. In our simulations, we have used the 15 leads 
during 10 seconds for every patient. The data were downsampled by a factor of 5 and 
filtered with a 0.5-40 Hz bandwidth filter; this preprocessing does not alter the results. 

3.2   Algorithms 

We applied the proposed algorithm (we will refer it as KSC – Kurtosis and Spectral 
Concentration) and two ICA algorithms, one based on high order statistics (FastICA 
[16]) and other based on second order statistics (SOBI [17]). 

All the necessary parameters for the algorithms are experimentally adjusted; for 

KSC, the learning step has the form 
k

μ
μ +

 ( k  is the iteration variable); for FastICA, 

the "pow3” non-linearity (kurtosis approximation) is used; for SOBI, the value of 
time-lags is 55. 

3.3   Quality Measurements 

The measurement of the quality of the estimation of the residual ECG, i.e., the 
extraction of the F-waves, is not easy because of the real atrial signal is unknown by 
definition; it is a hidden or unobserved variable that is only unveiled through the ECG 
recordings mixed with the rest of biological and non biological signals. 

We will use a performance index that measures the quality of the extraction in a 
quantitative way: the Spectral Concentration (SC). It is defined such as [6]:  
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 (7) 

where ( )A iP f  is the power spectrum of the extracted atrial signal and pf  the main 

peak frequency. The estimation of the spectra is carried out with the modified 
periodogram using the Welch-WOSA method with the following parameters: a 
Hamming window of 4096 points length, a 50% overlapping between adjacent 
windowed sections and a Fast Fourier Transform (FFT) with 8192 points. 

SC is a measure of the relative power contained in the narrowband around the peak 
frequency. It means that, when we compare different algorithms applied to the same 
patient, a higher SC value indicates a better extraction of the atrial F-waves.  

In Table 1, we show the SC obtained from the different algorithms. The quality of 
the estimated atrial signal is similar in terms of spectral concentration for KSC and 
SOBI (a little bit better for the KSC algorithm) and worse for FastICA. We must 
remember that the 1 2[ , ]f f  interval corresponds to the full range of the atrial 

component, so this prior is only used for the purpose of focus the KSC algorithm in 
the search for the atrial signal instead of any source. 
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The real advantage of KSC with respect to SOBI and FastICA is that it allows the 
extraction of the atrial signal, i.e., we avoid to recover all the sources and after the 
identification step of the atrial signal, as ICA separation algorithms require.  

The mean of the kurtosis obtained by the different methods are -0.0171±0.3736 for 
KSC, 0.9962±1.2550 for FastICA and 0.4653±0.9500 for SOBI. These values confirm 
the hypothesis of subgaussian behavior of the atrial activity. In Fig. 2 we show the 
atrial signal and the associated histogram (with the value of the kurtosis) 
corresponding to patient #9. 

Table 1. Spectral Concentration obtanied by the different methods and patients 

Patient KSC FastICA  SOBI 
#1 0.5363 0.4260 0.5326 
#2 0.5420 0.3286 0.5259 
#3 0.5898 0.3442 0.5958 
#4 0.6835 0.6193 0.6849 
#5 0.5933 0.3202 0.5840 
#6 0.4337 0.2775 0.4211 
#7 0.6240 0.4282 0.6185 
#8 0.4567 0.3236 0.4419 
#9 0.8238 0.7704 0.8255 
#10 0.4049 0.1846 0.3319 
#11 0.5413 0.3554 0.5391 
#12 0.6423 0.4929 0.6463 
#13 0.6075 0.5444 0.6050 
#14 0.4448 0.2225 0.4274 
#15 0.4947 0.2531 0.4867 

Mean 0.5612 0.3927 0.5511 
Std. Dev. 0.1100 0.1586 0.1226 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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time (sec)
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50
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Histogram of AA

 

Fig. 2. Five seconds of atrial activity and associated histogram (with kurtosis value) of  
patient #9 

4   Conclusions 

We have presented an algorithm for the extraction of the atrial rhythm in atrial 
fibrillation based on the prior statistical and spectral knowledge of the atrial signal. We 
have show that it is able to extract the signal of interest, instead of recovering all the 
sources superposed in the ECG. It allows the simplification of the extraction of the atrial 
signal but at the same time the use of all the information contained in all the leads. We 
have improved the results obtained by ICA algorithms, following a Semi –Blind 
approach to solve the problem, i.e., adapting the algorithm to the specific application. 
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Abstract. We present a method which allows for the blind source sep-
aration of sparse overcomplete mixtures. In this method, linear filters
are used to find a new representation of the data and to enhance the
signal-to-noise ratio. Further, “Deconfusion”, a method similar to the
independent component analysis, decorrelates the filter outputs. In par-
ticular, the method was developed to extract neural activity signals from
extracellular recordings. In this sense, the method can be viewed as a
combined spike detection and classification algorithm. We compare the
performance of our method to those of existing spike sorting algorithms,
and also apply it to recordings from real experiments with macaque mon-
keys.

1 Introduction

In order to understand higher cortical brain functions, an analysis of the simulta-
neous activity of a large number of individual neurons is essential. One common
way to acquire the necessary amount of neural activity data is to use acute extra-
cellular recordings, either with electrodes or, more recently, with multi electrodes
(e.g. tetrode arrays). However, the recorded data does not directly provide the
isolated activity of single neurons, but a mixture of neural activity from many
neurons additionally corrupted by noise. The signal of the neurons is represented
by spikes, which have a length of up to 4ms and an occurrence frequency of up
to 350Hz. In order to maximize the information yield, one aims at recording
from as many neurons as possible; the number of recording channels in acute
recordings, however, is mostly limited to 4 (in tetrodes). Thus, these recordings
represent a sparse and overcomplete mixtures of neural signals.

The task of so called “spike sorting” algorithms is to reconstruct the single
neural signals (i.e., spike trains) from these recordings. There are several reasons
to favor realtime online sorting over offline sorting, although more methods
are available in the latter category. For example, realtime online spike sorting
techniques are particularly desired for conducting “closed loop” experiments
and for brain interface devices. The approaches in realtime online sorting (see

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 459–466, 2009.
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[1] and the references therein) are cluster-based and have mainly the following
drawbacks: 1) They do not resolve overlapping spikes, 2) they do not perform
well on data with a low signal-to-noise ratio (SNR), 3) they are not able to adapt
to nonstationarities of the data as caused by tissue drifts.

An approach based on blind source separation (BSS) techniques and address-
ing primarily problems 1) and 3) was presented in [2]. Therein, independent com-
ponent analysis (ICA) was applied on multichannel data recorded by tetrodes.
Later, the method was adopted to data recorded by dodecatrodes (12 channels)
[3]. However, both approaches had to deal with several new problems: Amongst
others, time delays across the channels were not considered, biologically mean-
ingless independent components had to be discarded manually, and different
neural signals with similar channel distribution could not be classified correctly.
The most severe problem, though, is the fact that the method can not process
data containing neural activity from a greater number of neurons than recording
channels (overcompleteness).

A possible solution to the overcompleteness was provided in [4]. Therein, the
ICA was combined with a conventional clustering technique (k-means clustering)
and an aggregation procedure. This approach works only offline and is computa-
tionally very expensive, making a real time implementation infeasible. Moreover,
the other just mentioned problems persist.

In the following, we present an online realtime algorithm based on the BSS
idea, which successfully handles all of the problems 1)-3), but also avoids the
discussed drawbacks of the methods in [2,4]. We compare the performance of
our algorithm to other common spike sorting techniques and demonstrate its
capabilities on real data from extracellular recordings made in the prefrontal
cortex of awake behaving macaque monkeys. In order to avoid repetition, we
directly formulate the method in the framework of spike sorting.

2 Method
2.1 Generative Model

We assume an explicit model for the neural data recorded extracellularly. The
assumptions made are:

1. Each neuron generates a unique spike waveform ξi (called template), which
is constant over time windows.

2. All time series υi of spike times of neuron i (called spike trains) are sta-
tistically independent of the noise η. Furthermore, these quantities sum up
linearly.

3. The noise statistics is entirely captured by a covariance matrix C.

These assumptions are reasonable and underlie, explicitly or implicitly, most
spike sorting techniques [5]. Consequently, the measured signal xk,t on channel
k at time t can be expressed as:

xk,t =
M∑
i=1

∑
τ

υit−τξ
i
k,τ + ηk,t k = 1, ..., N (1)
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The measured data is a convolution of the templates with the corresponding
intrinsic spike trains corrupted by colored Gaussian noise.

2.2 Calculation of Linear Filters

Spike sorting is achieved when the intrinsic spike train υit is reconstructed from
the measured data. Since, according to the model (1), the data was generated
by a convolution of the intrinsic spike trains with fixed templates, the intu-
itive procedure would be to apply a deconvolution on the matrix X (where
(X)k,t := xk,t) in order to retrieve υit. However, for an exact deconvolution a fil-
ter with an infinite impulse response is necessary. In general, such a filter is not
stable and would amplify noise [6]. Nevertheless, a noise robust approximation
for an exact deconvolution can be achieved with finite impulse response filters,
to which we will refer as linear filter.

In brief, a set of filters
{
f1, . . . ,fM

}
is desired, such that each filter f i has a

well defined response of 1 to its matching template ξi at shift 0 (i.e. ξi
� ·f i = 1),

but minimal response to the rest of the data. This means that the spikes of neuron
i are the signal to detect for filter f i, but will be treated as noise by filter f j �=i.

Incorporating these conditions leads to a constrained optimization problem,
to which the solution are the desired filters. A major advantage is the fact that
the mentioned optimization problem can be solved analytically. In particular,
the filters are given by the following expression:

f i =
R−1ξi

ξi
�

R−1ξi
i = 1, ...,M (2)

where ξi :=
(
ξi1,1 . . . ξ

i
1,T . . . ξ

i
N,1 . . . ξ

i
N,T

)�
(f i is defined analogously) and R

is the multichannel data covariance matrix. Linear filters maximize the signal-to-
noise ratio and minimize the sum of false negative and false positive detections,
and are therefore optimal in this sense [7].

2.3 Filtering the Data

Once the filters are calculated, they are cross-correlated with the measured sig-
nal, i.e.

∑
k,τ xk,τ+tf

i
k,τ =: yit. Note that we do not have to preprocess the data

with a whitening filter, but the filters can be applied directly to X, because the
noise statistics is already captured in the matrix R.

From a different point of view, the filtering just changed the representation
of the templates. While in the original space the i-th template was represented
by ξi, its representation in the filter output space is given by the vectors ξi $f j ,
j = 1, ...,M , where

(
ξi $ f j

)
t
:=

∑
k,τ ξ

i
k,t+τf

j
k,t is the cross-correlation function.

This interpretation of filtering will be useful in the next section.

2.4 Deconfusion

The linear filters derived in the previous section should suppress all signal com-
ponents except their corresponding template with zero shift. Thus, the filter
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response to all templates (and their shifted variants) has to be minimal. Ig-
noring the fact that noise has to be suppressed as well, this leads already to
(2T − 1) ·M minimization constraints; a number which is regularly larger than
the number of free variables of a filter which is T ·N . Furthermore, if the SNR is
low, the data covariance matrix R is dominated by the noise covariance matrix
C. Hence, the lower the SNR, the less spikes from non-matching neurons a filter
will suppress. Simple positive thresholding in the filter output is, therefore, not
the optimal way to sort spikes. This is because only the filter output of filter
f i is taken into account for the detection of spikes from neuron i, but the filter
response of filter f j �=i to template ξi is ignored. The idea is to use this additional
information for improved sorting.

Since the detection and classification of the spikes is based on the detection of
high positive peaks in the filter output (by construction), all values below zero
in the filter output do not carry any valuable information. Therefore, we ignore
all values below zero by applying a half-wave rectification function I(x) to the
filter output Y , where I(x) := x ·H(x), H(x) being the Heaviside function.

In the next step, I(Y ) is considered as a linear mixture of different sources.
Every source is the intrinsic spike train υi of a neuron. However, it is not guar-
anteed that the maximal response of filter f i to spikes from neuron j will be at
a shift of 0, i.e., when the filter and the template overlap entirely. This leads to
the following model for the rectified filter output:

I(yit) =
∑
j

(A)i,j υ
j
t+τi,j

(3)

with A being the mixture matrix, and τi,j being the associated shifts, i.e.,
(A)i,i = 1 and τi,i = 0 ∀i by construction. We want to reconstruct the sources
υi by solving the corresponding inverse problem:

υit ≈ zit =
∑
j

(W )i,j I(y
j
t−τj,i

) (4)

with W = A−1. Here, the relation to ICA becomes clear, since this is a similar
inverse problem ICA solves. In contrast to ICA, we do not have to estimate W
and τi,j from the data, but can calculate them directly from the responses (i.e.,
cross-correlation functions) of all filters to all templates.

The mixing matrix A is given by the maxima of these responses and τi,j by
their respective shifts:

(A)i,j = max
τ

{(
ξi $ f j

)
τ

}
τi,j = argmax

τ

{(
ξi $ f j

)
τ

}
(5)

We will refer to the procedure summarized in (4) as “Deconfusion”. After De-
confusion the false responses of filters to non-matching templates are suppressed,
and hence the filter outputs are de-correlated. In principle, it is possible that the
inverse problem is not exactly solvable, if the shifts are not consistent, i.e., if the
following equation is violated:

τj1,k − τj1,i = τj2,k − τj2,i ∀i, j1, j2, k (6)
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For arbitrary templates and data covariance structures inconsistent shift may
occur, however, with templates from real experiments we did not observe this to
be a concern.

In the final step, thresholding is applied to every output channel zi. All local
maxima after a threshold crossing are identified as spiking times of neuron i. In
this sense, spike detection and spike classification are performed simultaneously.
All found spikes are used to re-estimate the templates. Consequently, the linear
filters and the Deconfusion are adjusted as well, allowing the method to adapt
to non-stationary templates and to a varying noise structure.

2.5 Initialization

All of the analysis done in the precedent sections was based on the assumption
of known initial templates. Hence, before applying our method to the data, one
needs an initialization phase during which the templates are found. In principle,
any supervised or unsupervised learning method can be applied.

In our experiments we used an energy based spike detection method (as
in [1]) and a Gaussian mixture model in combination with the expectation-
maximization algorithm for clustering. The number of clusters was determined
by the Bayesian inference criterion. The clustering was done on the first 6 prin-
ciple components of the detected, pre-whitened spikes.

We want to emphasize that the initialization phase is only necessary at the
beginning of a recording session. Once the initial templates are estimated, the
main algorithm runs online. Usually we used an initialization phase of about 30 s
in our real recordings.

3 Evaluation

3.1 Comparison to Existing Spike Sorting Methods

The performance of our method was compared to two popular spike sorting
algorithms, of which the implementation is publicly available. OSort is an online
sorting method based on the Euclidean distance between the estimated cluster
means and the pre-whitened spikes [1]. On the other hand, WaveClus is an offline
method using superparagmetic clustering of wavelet coefficients [8]. Note that
neither OSort nor WaveClus are formulated for tetrode data, so a comparative
evaluation with these methods on real data (see Sec. 3.2) would be difficult.

The artificially generated data simulates a single channel recording of 50 s
length and a sample frequency of 25kHz containing activity from two neurons
with firing frequencies of 10Hz each. The two used templates were extracted
manually from real recordings beforehand and scaled to equal maximal height.
The overcompleteness and the equal heights constraint do not allow for the use of
the ICA method described in [3,4] (see Sec. 1 for a more detailed discussion). The
noise was generated by an ARMA model approximating a noise characteristic of
real recordings [9].
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We evaluated the performance on two different settings, in which either the
noise level or the amount of overlapping spikes was varied. Our method yields
even better results than the offline method, especially in the case of low SNR
and in the presence of many overlapping spikes; see Fig. 1.
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Fig. 1. Average performances over 10 simulations of different spike sorting methods.
The parameters in the rival methods were set according to their references. The error is
defined as the sum of false positive detections and false negative detections times 100,
divided by the total number of inserted spikes. Left: Performance for different noise
levels. The noise level is varied by changing the noise standard deviation in respect
to the maximal height of the template. Right: Performance for different amounts of
overlapping spikes; the noise level was set to 21%. The amount of temporal overlap
between the two templates is drawn from a standard uniform distribution.

3.2 Application to Real Data

The sorting capability of the algorithm was also evaluated on extracellular
recordings of in vivo experiments. Activity was recorded while a macaque mon-
key performed a visual short-term memory tasks; approximatively 2000 trials
per session.

We recorded from the ventral prefrontal cortex with an array of 16 individu-
ally movable micro-tetrodes. Data were sampled at 32 kHz and bandpass filtered
between 0.5 kHz and 10 kHz. Since the tetrodes are inserted anew before every
experiment (acute recordings), tissue drifts occur due to tissue relaxation, which
leads to constantly varying spike shapes and noise levels. For the initialization
phase we used the first 7 trials of the recordings. Our method was executed in
the exactly same way as described in Sec. 2. The 7 trials used for the initial-
ization were also processed with our method in order to improve the sorting
quality.

Two well-established tests to quantitatively asses the sorting quality of a
method performing on real data are the interspike interval distribution and the
projection test [1,5]. We evaluated our sorting with both tests (see Fig. 2, for
illustration only the results obtained from one tetrode are shown) and conclude
that our method is well suited for the use in real experiments.
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Fig. 2. A: Plot of the concatenated templates ξ and their standard deviation. For the
averaging all detected spikes from trials 50–90 were used. The vertical lines indicate
the concatenation points, while the colored dots on the right serve as a label of the
corresponding neuron. On the left, the estimated SNR values are given. B: Histogram
of the interspike interval distribution with a bin size of 1ms. The numbers on the
left represent the percentage of spikes with an inter-spike interval of less than 3ms.
A small value means that the refractory period of the neurons is respected; thus, the
found sources correspond to putative neurons. C: Projection test of the found clusters.
The solid line represents a Gaussian distribution whose mean is the corresponding
template and whose variance is 1. A good fit indicates that the assumptions in Sec.
2.1 are appropriate. The D value is the distance in standard deviations between the
means, indicating the separation quality of the clusters.

4 Conclusion

We proposed a blind source separation method for sparse overcomplete mix-
tures. In the first step, linear filters were applied to the data, which transformed
the overcomplete separation problem into a complete one. Signals are repre-
sented in the filter output as high positive peaks allowing to ignore all negative
values (half-wave rectification) and making following linear transformations non-
redundant. A source separation technique, which we called “Deconfusion”, was
performed on the rectified filter output providing simultaneous detection and
classification of the signals. Although this last step is similar to the ICA ap-
proach, the parameters of the Deconfusion do not have to be estimated from
the data by assuming some statistical properties about it, but can be directly
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calculated from the cross-correlation functions of the filters and templates. We
used this method as a spike sorting algorithm in order to retrieve spike trains
from extracellular recordings. Since the linear filters maximize the SNR and
the filtering and Deconfusion are linear operations, our method performs well
on noisy data and resolves overlapping spikes. Simulations revealed that our
method indeed outperforms other existing spike sorting algorithms. Moreover,
our method operates online and adapts to non-stationaries present in the data.
Therefore, the method is well suited for the analysis of acute recordings, which
was also demonstrated in this contribution.
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Abstract. We apply filter-based image classification methods to skin
lesion images obtained by two different recording systems. The task is to
distinguish different malignant and benign diseases. This is done by ex-
tracting features form fluorescence images by applying adaptively learnt
or predefined filters and applying a standard classification algorithm to
the filter outputs. Several methods for filter bank creation such as ICA,
PCA, NMF and Gabor filters are compared.

1 Introduction and Motivation

For many modern medical imaging methods there exist computational solutions
to help the physician in the interpretation of the recorded material. In der-
matology there are software solutions commercially available, which proved to
be useful in the discrimination of malignant melanoma from harmless nevi [1].
Horsch et al. describe an algorithm which proposes a diagnosis based on heuristic
criteria derived from the well-known “ABCD-rule”. This rule originally refers to
the features “asymmetry”, “border”, “color” and “diameter”. This feature set was
later expanded by Horsch et al., and is widely accepted among dermatologists.
The algorithm achieved a rate of success of 91% in a study of 749 cases [2].
In contrast to only detecting and delineating lesions, photodynamic diagnosis

(PDD) [3] based on fluorescence images is a very recent approach in actually
diagnosing skin lesions. Thus is almost no clinical experience available which
could give information about which features were typical and discriminative for
the diseases under consideration and therefore could be useful for classification.
Hence appropriate features need to be extracted from the data adaptively. This
approach thus necessitates the design of filter-based classification methods. It
relies completely on features that are either entirely independent of the image
material (e.g. pre-calculated Gabor filter banks) or are obtained by applying
unsupervised learning algorithms. In both cases the filter-based approach does
not need previous knowledge about discriminative features of the image classes.
The only assumption taken is that the texture of the images contains informa-

tion which allows us to determine their class. This assumption seems reasonable
on physiological grounds and justifies the use of filter-based methods. All of the
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considered diseases change the layered structure of the skin and the cohesion and
growth of the keratinocytes in a typical way. The latter cells form the major-
ity of cells in the epidermis. These structural changes give the lesions a typical
appearance on the surface of the skin which is used by dermatologists to distin-
guish the different diseases. It seems plausible that these physiological changes
also cause typical, disease-specific changes in the fluorescence patterns observed
during fluorescence diagnosis.
If doubts remain, in clinical practice, of course, a biopsy is performed and

the lesion in question is judged on the cellular level by histology. This is the
’gold standard’ in diagnostic dermatological methods to definitely determine the
type and especially the malignancy of suspicious tissue but implies of course
additional costs and additional stress for the patient both of which non-invasive
methods as the proposed one could help to avoid.

2 Filter-Based Image Classification

There is a considerable amount of methods available for the analysis of images
with filters. Two tasks are common: the detection of certain features within an
image (segmentation) and the assignment of an image to a group (classification).
For both tasks the methods used in the feature extraction stage are very similar.
The first step in feature extraction is the calculation of the filter bank. Several

methods are possible here which will be addressed later. The second step is the
filtering of the images to determine the filter outputs. This filtering is in fact a
convolution. Denoting image intensities at location (x, y) with I(x, y) and the j-
th filter with wj(x, y), the related filter response is denoted as rj(x, y) (boundary
effects are neglected here):

rj(x, y) =
∑
(k,l)

wj(k, l)I(x+ k, y + l)

As a third step the actual features for classification (or segmentation) are
calculated from these filter responses. In the case of segmentation it is the goal
to find regions in an image that meet certain prescribed conditions. This is in
general a match between one of the filters and the image to at least a certain
degree. For the classification task it mostly suffices to detect the presence or
absence of features anywhere in an image, their exact position in the image
being of lesser (or no) importance.
One possible method to do this detection is to reduce the filter response to a

single value which measures the presence of textural features and their degree
of similarity with the corresponding filter. Very common for this task is the
’energy’ of a filter response which is basically Ej =

∑
(x,y) (rj(x, y)) 2 [4][5].

Other functions are also possible and will be addressed later.
When filtering with a whole set of filters w = (w1, ..., wn), a vector of ’energy’

feature values E = (E1, ..., En) is obtained from an image. This is done for every
image in a training set. So each image Iq(x, y) is represented by a feature vector
Eq. The training and classification procedures themselves are straight forward
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then. The feature vectors of all images of the training set are presented to a
classifier together with their class labels for training. In our case this was a two-
layered perceptron with ten neurons in the hidden layer and two neurons in the
output layer in order to distinguish two diseases at a time. When a satisfactory
training error is reached, the trained system can be used to classify an image
with unknown class label. Filtering this test image It(x, y) with the filter bank
w results in a feature vector Et which is presented to the classifier to determine
the class label of It(x, y).
A good estimation of the performance of the trained classifier can be obtained

with leave-one-out cross-validation. This is training the classifier with the whole
set of available images with known class labels except one. The latter is used to
test the classification result. The procedure is repeated for every single image in
the data set and the generalization error estimated as the fraction of wrongly
classified images.

2.1 Filtering Methods for Filter Bank Construction

ICA. The procedure to extract filters by ICA is well known and described in
numerous publications [6][7]. The same number of patches of size n xn is ex-
tracted at random positions in every image. These patches are considered to
be the data vectors x(t) in the ICA-model x(t) = As(t). The components of
the data vector x(t) are given by the pixel positions in the patches: x(t) =
(x(1, 1, t), ..., x(n, n, t)). Application of an ICA algorithm – in our case fastICA
– yields the underlying independent sources (or causes) s(t) and the decompo-
sition W = A−1. The rows of W = A−1 represent the desired ICA filters wj
which produce filter responses as statistically independent as possible for the
same input x(t):

rj(t) = sj(t) =
∑
(k,l)

wj(k, l)x(k, l, t)

Due to the independence of the rj(t), the ICA filters wj cover a range of
different features in the image material. The whole set of filters w describes the
most important structural elements in the images in the sense that it is able to
represent every patch-sized image section with a small error. This was shown to
be the case for photographs of the natural surroundings of mammals (like trees,
grass, landscape and so on) where the ICA filters resemble two-dimensional
Gabor-functions [8][9]. Le Borgne et al. reported similar observations on ICA
filters tuned to four different classes of images (“cities”, “open”, “indoor”, “closed”)
whose Gabor-fits were clearly distinct in center frequencies and orientation angle.
Moreover they found that the energies of the filter responses of filters learnt
from just one class indeed sufficed to determine the class label of an image with
high probability [11]. Several authors investigated in more depth the usability of
this ICA filter based approach for image classification and texture segmentation
tasks [5][4] and proved its applicability to real world problems, e.g. cell counting
[12], [13].



470 H.G. Stockmeier et al.

PCA. Principal Component Analysis is a well-known method for source decor-
relation and can be used for filter set calculation completely analogously to ICA.
Besides that PCA can also be used to limit the size of the filter bank to m filters.
This is done by keeping only the filters yielding the responses with the m highest
variances in the bank and omitting the rest. This kind of dimension reduction
was also utilized as a preprocessing step for the calculation of the ICA filter
banks with fastICA. In both cases m was 30.

Gabor filters. Gabor filters are calculated from the two-dimensional Gabor-
function h(x, y):

h(x′, y′) = A exp
(
−(x′/

√
2σx)2 − (y′/

√
2σy)2

)
cos(2πfx′ + φ)

x′ = (x− x0) cos θ + (y − y0) sin θ
y′ = (x− x0) sin θ + (y − y0) cos θ

The parameter θ denotes the orientation of the filter which was successively
set to 0°, 30°, 60°, 90°, 120° and 150°. The parameters σx and σy denote the
widths of the Gaussian along the orientation θ and perpendicular to it, and
were set to a fixed ratio of σx/σy = 2. σx was calculated in dependence of the
spatial frequency f of the plane wave equal to σx = 1/πf . f was chosen to be√

2/2nwith n = 2...6. These parameter values are very similar to that given in
[14] and result in a ’dyadic Gabor filter bank’ of 36 filters. The size of the filters
was fixed for all frequencies and orientations to 20 pixels.

NMF. Non-negative matrix factorization aims to find an approximate factoriza-
tion V ≈ WH of a non-negative data matrix V into non-negative factorsW and
H . W and H are supposed to provide parts-based linear representations of V .
NMF can be reformulated in terms of the filtering model by identifying V with
the image patches x(t) and H with the coefficients rj(t). The rows of W corre-
spond to the filters. NMF can then be used to learn filters from image material.
Again, these are supposed to catch the most important structural information
in the image [15]. Consequently NMF filter banks can also be used for image
classification. This is an application of NMF which to our knowledge has not
been studied yet.

NMFsc. NMF decomposes the data matrix V according to the error criterion
||V −WH ||2 which is to be minimized. This decomposition is not unique and
does not always produce a sparse representation of the data. Such a sparse
representation is desirable because it encodes much of the data using only few
concurrently ’active’ filter components and is therefore supposed to give an en-
coding which can be interpreted more easily. It is similar to one obtained by
ICA with the difference that NMFsc is aiming directly at a sparse decomposi-
tion while in ICA this is rather a side-effect and due to the fact that independent
components mostly yield a super-gaussian distribution and are therefore sparsely
distributed. Hoyer [15] included an additional sparseness criterion in the NMF
algorithm which enables the user to explicitly control the sparseness ofW andH :
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s(x) =

√
dim(x)− (

∑ |xi|) /√∑
x2
i√

dim(x)− 1

In our study we chose a sparseness of 0.99 for the coefficients H and left W
unconstrained. The dimension of H , which equals the number of filters, was set
to 30 while the dimension of V was given by the size of the patches which again
was 10x10 pixels. The number of patches x(t) for the unsupervised training of
PCA, ICA, NMF and NMFsc filters was 3000 from every single image in the
training set.

2.2 Filter Response Evaluation

There were several methods proposed to measure if and to what amount typical
structures, to which a filter is tuned, are present in an image. The most com-
mon one is to calculate the ’energy’ Ej =

∑
(x,y) (rj(x, y)) 2 of a filter response

image which is the sum of the squared gray values of all its pixels as previously
mentioned.
Since ICA and also NMFsc filter responses are in general sparsely distributed,

it seems reasonable to use sparseness measures to detect if a filter is well tuned
to textural structures in an image. Several of such measures were proposed e.g.
in [14]. We used the kurtosis Kj =

∑
(x,y) (rj(x, y))

4 − 3 which is the 4th order
statistical moment of the filter response distribution. It was computed after
normalization of the variance of rj(x, y) to unity.
The kurtosis is also a measure of the deviation of a distribution from the

Gaussian distribution. Therefore it seemed interesting to also try the negentropy
as evaluation function which is also a measure for the above mentioned deviation.
Hyvärinen et al. give an estimation for the negentropy which is more robust and
less sensitive to outliers than the kurtosis and which is used in the fastICA
algorithm [16]. It is basically an estimation of the entropy and leads to the
evaluation criterion Nj =

∑
(x,y) log (cosh (rj(x, y))).

3 Image Acquisition Methods and Images Available

The first image ensemble was recorded with a fluorescence diagnosis prototype
which consisted of a commercially available light source called ’D-Light’ (Karl
Storz GmbH & Co KG, Tuttlingen, Germany) emitting between 380nm and
450nm and an 8bit CCD-camera-prototype (PCO AG, Kelheim, Germany) with
a resolution of 735x582 pixels and equipped with an edge filter which was per-
missive for wavelengths above 610nm.
The second image ensemble was recorded with an integrated fluorescence di-

agnosis system called ’Dyaderm’ (Biocam GmbH, Regensburg, Germany). Fluo-
rescence was excited with the integrated flash lamp emitting light in the spectral
range of 380nm to 450nm at a repetition rate of about 10Hz and recorded with
an integrated CCD-camera with a resolution of 320x240 pixels at 12 bits depth.
Table 1 gives an overview of the number of recorded skin lesions organized by

disease. In the ’prototype’ image ensemble actinic keratoses and Bowen’s disease
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Table 1. Numbers of Images Available

’Prototype’ ensemble lesions patients ’Dyaderm’ ensemble lesions patients
basal cell carcinomas 45 31 basal cell carcinomas 61 18
precancerous lesions 42 28 actinic keratoses 51 21
psoriasis lesions 41 2 Bowen’s disease lesions 21 5

total 131 61 total 133 34

lesions were combined in one class called ’precancerous lesions’. This is because
both are precursors to the squamous cell carcinoma of the skin albeit in different
stages of development. The differences between these diseases are in many cases
subtle and so lesions are often clinically hard to differentiate. A distinction is nev-
ertheless of interest to the dermatologist and therefore both classeswere separately
registered for the ’Dyaderm’ ensemble of images. Psoriasis is mostly easily distin-
guished from other diseases by practitioners and so was included in the first image
ensemble mainly to test the system’s performance. Besides that exists a possible
application in form of mass screening of psoriasis lesions with the goal to detect
single cancerous or precancerous lesions among the psoriasis lesions which often
occur in great numbers or cover whole parts of the body. However, since only ten
psoriasis images were available for the ’Dyaderm’ ensemble these were omitted.

4 Results and Conlusions

Table 2 displays the results for the experiments performed. Each experiment con-
sisted of the task to distinguish two classes of skin lesions. For each of the classes a
separate filter bank was learnt for the ICA, PCA, NMF and NMFsc methods. So
for each of these experiments 60 filters per filter bank were available. The Gabor
filter bank consisted of 36 distinct filters. Each of the experiments was repeated
five times. Table 2 gives the mean values of the respective classification results.
First of all the evaluation function seems to be of some importance for the

quality of the classification. Entropy estimation and energy criterion are clearly
superior to kurtosis in almost all experiments. Because both performed equally

Table 2. Rates of Correct Classification in %

Filtering Method ICA PCA NMF NMFsc Gabor
Evaluation Crit. Ener. Kurt. Entr. Ener. Kurt. Entr. Entr. Entr. Entr.

Prototype
Prec. – Basal. 55.9 54.8 55.0 51.4 60.5 50.7 50.3 51.2 56.4
Psor. – Basal. 85.6 72.1 88.6 87.0 68.6 85.8 74.0 84.0 88.6
Psor. – Prec. 87.9 70.0 87.6 87.9 65.7 85.5 68.3 83.3 89.9

Dyaderm
Act.K. – Basal. 67.2 53.3 65.9 65.7 57.1 64.5 62.2 – 57.6
Act.K. – Bowen’s 70.4 65.4 72.6 68.7 66.3 69.6 72.6 – 59.1
Basal. – Bowen’s 76.7 74.1 79.5 76.3 71.0 76.4 74.9 – 66.9
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well we relied on the entropy estimation criterion only for the Gabor and NMF
experiments.
The performance among the filtering methods was rather similar with the ex-

ception of the Gabor filter set and NMF (without sparseness constraints). The
latter achieved considerable less accurate results in all experiments. In contrast,
NMF with sparseness constraints proved very good considering the classifica-
tion rate but was extremely demanding regarding computation times. NMFsc
exceeded the calculation times of fastICA (both implemented in Matlab) by a
factor of 20 to 25 and took six to eight days for a single run of one experiment
on a 2.8GHz Pentium 4. Experiments on the ’Dyaderm’ image ensemble with
NMFsc were therefore omitted so far.
Gabor filtering performed very well compared to the unsupervised learning

methods in the case of the ’Prototype’ image ensemble but rather poor with
the ’Dyaderm’ ensemble. One possible explanation could be the fact that the
image ensembles were recorded with different camera resolutions. So in one case
the Gabor filters would cover the distinctive textural features with their pre-
selected range of orientations and frequencies but not in the other case with a
lower camera resolution. ICA, presumably adapting to the right scale of these
structures by learning, would perform well in both cases. This assumption is
supported by some preliminary results we obtained from experiments where the
images were linearly scaled before training and classification and which show
that the classification rate is dependent of the scaling factor.
Overall the classification rates achieved are not yet satisfying. It also has

to be stated that the number of images which were available does not allow
for statistically reliable conclusions. But regarding the facts that classification
rates better than 90% are considered to be feasible for clinical practice [1] or
even sufficient for commercial success [2] in the task of distinguishing malignant
melanoma from melanocytic nevi and that the tasks in the ’Dyaderm’ ensemble
are interesting for dermatologists and were classified with a reasonably good rate
of success, we are hopeful that filter based classification can contribute to the field
of dermatological image recognition research. Accordingly we plan future work
along several lines. These are the combination of several evaluation functions and
several different filtering methods in one classifier, the test of different filter sizes
and filter numbers together with different scaling factors as well as the detection
of the most discriminative features (filters) and feature boosting.
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Abstract. A new method for action potentials detection is proposed.
The method is based on a numerical differentiation, as recently intro-
duced from operational calculus. We show that it has good performance
as compared to existing methods. We also combine the proposed method
with ICA in order to obtain spike sorting.

1 Introduction

Decoding the neural information is one of the most important problems in neu-
roscience. As it is well known, this information is conveyed by the spike train
of electrical discharges, called action potential. Action potentials are generated
when the equilibrium of electrical charges across the axonal membrane of a
neuron is broken [1]. Decoding of the communication between neurons is an ex-
tremely challenging problem. One of the difficulties stems from the impossibility,
in general, to record the activity of a single neuron but only a mixture activity
of all neurons in a measured region. Imperative requirement for the neural infor-
mation decoding is the ability of action potential detection and sorting (finding
out which action potentials are fired by the same neuron) [2], [3], [4], [5].

To make the detection and sorting easier, recording systems usually consist
of several electrodes. Each electrode receives the action potentials from all the
surrounding neurons. The contribution from a single neuron depends on its dis-
tance from the electrode and on the type of the tissue that the action potentials
go through. It is shown that ICA [6], [7] has a strong potential in neural signals
detection and sorting [8], [9], even though it is well known that neurons are not
independent sources – they are communicating with each other and the breaking
of the equilibrium of electrical charges is caused by that communication.

In this paper we show how a new algebraic technique for numerical differentia-
tion [10] can lead to a very good performances in neural spike detection. Further
on, we use a combination of the technique with ICA to perform spike sorting.

In a neural recording settings, the number of neurons significantly exceeds that
of the intracranial electrodes. We assume a measurement configuration where the
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distances between the neurons and the electrodes are such that the contribution of
only few closest neurons will have a strong influence on the electrodes. The spiking
activity of the remaining neurons is considered as the background noise [11].

The neural signal is first represented using a local piecewise polynomial model.
The occurrence of an action potential (a spike) is represented by a discontinuity
point in the model. Now, such singularities are fully characterized and easy to
handle by the differential algebra and operational calculus approach to parameter
estimation, introduced in [12] (see also [10] and [13]). Following this approach, we
give in section 2 an explicit characterization of the spiking instants, as solutions
of a polynomial equation, whose coefficients are composed of a short time window
iterated integrals of the signal observation. Using classical numerical integration,
we implement these coefficients as outputs of FIR filters. The filters are, as a
matter of fact, numerical differentiators and moreover, they inherit the very
important low pass property of the iterated integrals. The proposed method
is compared in section 3 with two among the most successful methods in the
literature. The simulation is performed using synthetic signal. We also combine
our detection approach with ICA (see section 4). Benefit of such approach is not
only a spike detection, but also a spike sorting, done by ICA. Some concluding
remarks are pointed out in section 5.

2 Characterization of the Spike Instants

In this section we give an explicit characterization of the spiking instants. More
precisely we show that if an action potential occurs at time instant t�, then this
may be described as a solution of a polynomial equation.

2.1 Mathematical Model

To begin, the noisy observation spike train y(t) is represented by the piecewise
regular model

y(t) =
K∑
i=1

χ[ti−1,ti](t)pi(t− ti−1) + n(t), (1)

where χ[ti−1,ti](t) is the characteristic function of the interval [ti−1, ti], the ti are
the spiking instants and n(t) is the noise corruption. In the sequel, we denote
by x(t) = y(t) − n(t) the unobserved noise-free signal. Each pi(t) is assumed
to be a polynomial. Set t0 = 0. Let T be given such that there is at most one
discontinuity point in each interval ITτ = (τ−T, τ), τ ≥ T . Let set xτ (t) = x(τ−
t), t ∈ [0, T ] for the restriction of the signal in ITτ and redefine the discontinuity
point, say tτ , relatively to ITτ with:
– tτ = 0 if xτ (t) is smooth
– 0 < tτ ≤ T otherwise

Now, the N th order derivative of xτ (t) (in the sense of distributions theory
[14]) satisfies

dN

dtN
xτ (t) = [x(N)

τ ](t) +
N∑
k=1

(
μ0
N−kδ(t)

(k−1) + μN−kδ(t− tτ )(k−1)
)

(2)
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where:

– μ0
k = x(k)(0+)− x(k)(0−) = x(k)(0)

– μk is the jump of the kth order derivative at the point tτ

μk = x(k)(tτ+)− x(k)(tτ−)

with:
• μ0 = μ1 = ... = μN−1 = 0 if there is no spike (action potential)
• μk �= 0, 0 ≤ tτ ≤ T if there is a spike (action potential)

where the notation f (k) means kth order derivative of f .
– [x(N)

τ ] represents the regular part of the N th order derivative of the signal.

The action potential detection problem is now casted into the estimation of the
location of the signal discontinuities, viz spike locations, tτ .

We assume that the degree of each pi(t) in (1) does not exceed N − 1. The
regular part [x(N)

τ ] then vanishes. Notice that different choices for N lead to
different descriptions of tτ . In the sequel we set N = 2. Equation (2) then
reduces to

d2

dt2
xτ (t) =

2∑
k=1

(
μ0

2−kδ(t)
(k−1) + μ2−kδ(t− tτ )(k−1)

)
(3)

2.2 Finding the Firing Instants

In order to solve the equation (3) for tτ , the problem is transferred into the
operational domain (it is possible to solve the equation in the time domain too,
but it is easier to handle expression like δ(t) using operational calculus) where
equation (3) reads as:

s2x̂τ (s)− sxτ (0)− ẋτ (0) = μ1e
−tτs + sμ0e

−tτs (4)

Unknown parameters μ0, μ1 and initial conditions xτ (0) and ẋτ (0) are irrelevant
for our purpose. We consider them as undesired perturbations which are easy to
eliminate by a N th order differentiation with respect to s. This results in:

t2τ (s
2x̂τ )(2) + 2tτ (s2x̂τ )(3) + (s2x̂τ )(4) = 0 (5)

Multiplication by sk, k > 0 in the operational domain implies k order deriva-
tive in the time domain. Now differentiation is known to be difficult and ill-
conditioned. On the other hand division by sν , ν > 0 corresponds in the time
domain to the νth order iterated integral

û

sν
→ f(t) =

1
(ν − 1)!

∫ t

0
(t− λ)ν−1u(λ)dλ.
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Let us then divide equation (5) by sν , ν > 2. The resulting equation becomes
in the time domain:

t2τ

∫ t

0
(t− λ)ν−1λ2x(2)

τ (λ)dλ − 2tτ
∫ t

0
(t− λ)ν−1λ3x(2)

τ (λ)dλ

+
∫ t

0
(t− λ)ν−1λ4x(2)

τ (λ)dλ = 0. (6)

In the sequel we fix t to t = T . Next, we integrate by parts and we replace the
unobserved signal xτ (t) by its noisy observation counterpart yτ (t) = y(τ − t) =
x(τ − t) + n(τ − t). This leads to the explicit characterization of t̂τ :

t̂τ
2
∫ T

0

[
(T − λ)ν−1λ2](2) y(τ − λ)dλ − 2t̂τ

∫ T

0

[
(T − λ)ν−1λ3](2) y(τ − λ)dλ

+
∫ T

0

[
(T − λ)ν−1λ4](2) y(τ − λ)dλ = 0 (7)

Let us define:

hg(λ) =

⎧⎨⎩
[
(T − λ)ν−1λg+1

](2) 0 ≤ λ < T
0 otherwise

(8)

where g = 1, 2, 3. After inserting hg(λ) back in equation (7) we obtain

t̂τ
2
∫ T

0
h1(λ)y(τ−λ)dλ−2t̂τ

∫ T

0
h2(λ)y(τ−λ)dλ+

∫ T

0
h3(λ)y(τ−λ)dλ = 0 (9)

The coefficients of this equation can be easily implemented as FIR filters.
Only discrete samples of the observation are available. We assume a regular

sampling with the sampling period Ts. Let τ = nTs and T = MTs. Using a
numerical integration method with abscissasmTs and weightWm, m = 0, ...,M ,
we obtain the discrete approximation of equation (9) given by

t̂τ
2

M∑
m=0

h1,myn−m − 2t̂τ
M∑

m=0

h2,myn−m +
M∑

m=0

h3,myn−m = 0 (10)

where: hg,m = Wmhg(mTs) and ym = y(mTs). Trapezoidal rule for numerical
integration defines the parameters Wm:

W0 =WM =
Ts
2
, Wi = 1, i = 1, 2, ...,M − 1

3 Spike Detection Algorithm

Recall that if the input observation xτ is smooth, then all the three coefficients
of the second order equation (6) are equal to 0 and we have tτ = 0. Otherwise,



Spike Detection and Sorting: Combining Algebraic Differentiations with ICA 479

the spiking instant satisfies 0 � tτ � T . In the discrete time domain each of
these coefficients can be derived as the input observation xτ filtered with one of
the three filters {hg,m}, g = 1, 2, 3 from equation (10). In the presence of a noise,
yτ = xτ +nτ , each filter’s output will be different from 0, wether xτ is smooth or
not. But still, the values of the filters outputs will be highly correlated with the
smoothness of the noise-free observation xτ (see [10] where it is shown that the
filters behave as a numerical differentiators). Therefore we use a product of the
three filter’s outputs as the final spike detection decision parameter. In this way,
the occurrences of the spikes are highly emphasized with respect to the noise.

Comparison of the proposed detection method with two methods among the
most accurate ones in the literature is hereafter presented. These are the method
based on a combination of median filter, matched filter and nonlinear energy op-
erator (NEO) [4] and the method based on wavelet transformation [5]. The spike
train observation data are simulated1 as in [4]. The value of the parameter T ,
that defines the filter window length, is set to be 20% above the simulated spike
length (T = 100 samples). Figure 1 displays the receiver operating characteristic
(ROC) curves for the different methods. These results show that the proposed
method compares favorably with respect to the others.

ROC curve obtained for FR of 30 samples/sec
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ROC curve obtained for FR of 10 samples/sec
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Fig. 1. ROC curves obtained by using the proposed method (Algebraic), NEO, and
wavelet based method. Figures for two different firing rates (FR) are shown.

4 Combination with ICA

In this section, we use a more elaborated neural model for the simulation. This is
described first. The description is followed by the implementation of the algebraic
differentiation filters with ICA. Finally the simulation results are presented.

4.1 Creating the Model

Signals for the simulation are created from cell attached recording performed
simultaneously on one of the Purkinje cells2 (figure 2(a)). Two seconds activity,
1 The signal is created using a code provided by Bruce Land at http://www.nbb.

cornell.edu/neurobio/land/PROJECTS/spikeSort
2 Signals are downloaded from C. Pouzat web page: http://www.biomedicale.

univ-paris5.fr/physcerv/C_Pouzat/Data.html see [15] for more information.
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(a) Cell attached recording on one of Purk-
inje cells (left: 30000 recorded samples; right:
zoom with 1000 samples)

−1.0

−0.5

0.0

0.5

−1.0

−0−5

0.0

0.5

−1.0

−0.5

0.0

0.5

1.0 1.0 1.0

0 40 80 0 40 80 0 40 80

(b) Three action potential templates

Fig. 2. Cell attached recording and action potential templates

with 15kHz sampling frequency (30000 samples in total), of 1000 artificial neu-
rons are simulated. For this, spikes extracted from the recording were aligned into
three clusters by using a classical K-means algorithm. Three different templates
(figure 2(b)) are obtained by the centroids of each cluster.

For each neuron, we simulate first the firing instants as Poisson distributed
with a refractory period of 6.7ms. To each location, we then associate randomly
one of the above spike templates. The neurons are spatially randomly distributed
in the form of a cube, with minimal and maximal mutual distances. Four elec-
trodes are placed on one side of the cube. We assume an isotropic medium
(constant conductivity of the tissue), so that the contribution of each neuron is
determined only by its distance from each electrode.

4.2 Spike Detection and Sorting

Superposition of the distant neurons activity occurs as a noise on the electrodes
– original action potential shape waveforms are destroyed. Only the action po-
tentials coming from the neurons that are close to the electrodes are recorded
as spike shape waveforms. Next, signals from the four electrodes are applied to
each of the three filters in order to emphasize action potential shape waveforms.
The product of the filters outputs at each electrode may be used as a decision
function. This was done in the previous section. Here we use the filters outputs
as inputs for ICA in order to perform both, spike detection and sorting. We
apply ICA on each set of the four outputs from each of the three filters. The
goal is to reconstruct the activity of one neuron per electrode (the closest one).
FastICA MATLAB toolbox3 is used for ICA implementation. ICA gives three
results for each of the three filters. The final detection and sorting result is given
as a product of these three ICA outputs.

4.3 Results

To gauge the effects of the filters, we also consider the same settings, but with
the filters replaced by the identity: we apply ICA directly on the signals from
3 The toolbox is developed at Laboratory of Information and Computer Science in

the Helsinki University of Technology and it is available on http://www.cis.hut.

fi/projects/ica/fastica/



Spike Detection and Sorting: Combining Algebraic Differentiations with ICA 481
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Fig. 3. Results of spike detection and sorting on one electrode with 30000 samples
when only ICA is applied and when the combinations of algebraic differentiations and
ICA is applied

the electrodes and then raise each ICA output to the power 3. Figure 3 compares
the two normalized results obtained with and without the filters, on one sample
realization of the reconstructed activity of one neuron. The figure shows that
the amplitudes of the spikes that are not fired by the neuron closest to the
observed electrode are attenuated more with the proposed method than when
only ICA is used. This is confirmed in Table 1 that displays the ratio of the
mean amplitude of the correctly detected action potentials (15 in total) over the
mean amplitude of the falsely detected ones (80 in total). At a given electrode,
a correct detection is meant when the detected action potential stems from the
closest neuron. Otherwise, the detection is qualified as false. The first row of the
table concerns the combination of the algebraic differentiations and ICA while
the second row is for ICA alone. The different columns correspond to the four
electrodes.

Table 1. Comparison of action potentials (AP) sorting when ICA is combined with
the algebraic differentiation filters and when only ICA is used

Averaged normalized amplitudes of correctly detected AP / Av-
eraged normalized amplitudes of falsely detected AP
Neuron 1 Neuron 2 Neuron 3 Neuron 4

AD and ICA 29.45 48.97 29.76 86.31
ICA 19.72 46.80 15.41 78.12

5 Conclusion

We have proposed a piecewise regular model for the spike train where the oc-
currence of a spike (transient) is represented by a discontinuity points. Using
operational calculus and basic algebraic manipulations we give an explicit char-
acterization of these discontinuity points. The characterization provides a spike
detection method which compares favorably with the existing methods. By com-
bining this approach with ICA we obtain not only good results for detection,
but also for spike sorting.
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Abstract. Multi-scale processing is one of the main issues in the seg-
mentation of natural and man-made structures in real worlds scenes. In
this work, we use independent component analysis (ICA) to learn sets
of multi-scale features specialized for natural and man-made structures,
respectively. Then, we use the learned features to represent images ac-
cording to a simple linear generative model. Finally, we separate each
group of structures by analyzing the error of representation for each
set of features. The features learned by ICA reflected both second and
higher-order statistical information of each dataset. The average time
consumed in the segmentation was 3 milliseconds by image block. The
system was validated using scenes from different image databases.

1 Introduction

Even for humans subjects, the segmentation of natural and man-made structures
in real-world scenes at different ranges is not a trivial task. Many works have
focused on classical edge detection to segment the geometry of man-made struc-
tures at both ground and aerial level [1][2]. Indeed, contour detection along with
texture analysis can be useful for such applications. However, considering scenes
at long range and involving complex structures, edge detection can be very noisy.
Furthermore, geometry analysis normally involves the use of pre-defined shape
models, which might not fit to diverse set of structures.

On the other hand, second order statistics have also been used to classify
scenes into natural or man-made [3]. Interestingly, it has been shown that the
power spectra information can be easily used to differentiate natural and man-
made scenes even at different ranges. The drawback of such technique is that it
requires the use of the whole scene to estimate a consistent spectral signature,
which is not suitable for a block-level classification.

Another interesting approach is the use of a probability model which capture
local dependencies to label image sites [4]. Also, a set of features learned from
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multi-scale analysis is used. However, according to the authors, such technique
is not feasible to close range and fails to differentiate image blocks that contains
sky from those of man-made images that do not contain lines or edges.

Therefore, the purpose of this work is to propose a system to segregate natural
and man-made structures at different ranges. Firstly, we use independent com-
ponent analysis (ICA) to learn features adapted to the statistical characteristics
of each image group. Secondly, we use the learned features to represent image
blocks according to a linear generative model. Finally, we carry out a block-level
classification by analyzing the error of representation for each set of features.

2 Methods

Let us divide an image into a set of m non-overlapping blocks indicated by the
vector y = [y1, y2, . . . , ym]T. Then, assume that each block yi can be generated
as a linear combination of vectors from a stochastically learned subspace Φ =
[φ1, φ2, . . . , φn]T, where φi is also called basis function. This process might be
written as

ŷi = w1φ1 + w2φ2 + . . .+ wnφn, (1)

where ŷi is the reconstructed version of block yi and each component wi is the
projection coefficient on the ith base function.

Also, let us define the error εi for the projection of the image block yi onto
the subspace Φ as

εi = yi − ŷi. (2)

Now, let us assume that the subspaces ΦNat and ΦMan represent underly-
ing bases of natural and man-made images, respectively. Then, we can estimate
errors εiNat and εiMan by projecting an image block yi onto the those two sub-
spaces. Finally, to segregate natural and man-made structures within a real world
image, we use the following hypothesis:

If yi is natural, then E{ε2iNat
} < E{ε2iMan

}. (3)

If yi is man−made, then E{ε2iNat
} > E{ε2iMan

}. (4)

To learn the subspaces ΦNat and ΦMan, and estimate the projection coeffi-
cients, we used the system shown in Figure 1. The following subsections provide
a full explanation of the structure of our model.

Learning. Let x = [x1, x2, . . . , xm]T be a set of observations taken from the
same data class and written as in Eq. 1. Using x as a training input, ICA learns
basis functions φi for the data class so that the set of variables which composes
vector a = [a1, a2, . . . , an]T are mutually statistically independent.

x = aTΦ. (5)

To achieve statistically independence, ICA algorithms work with higher-order
statistics which point out directions where data is maximally independent. Here,
we used the FastICA algorithm [5].
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Fig. 1. The system consist of two phases: learning and projection. In the learning
phase, we use independent component analysis (ICA) to learn subspaces specialized
for natural and man-made images. In the projection phase, we estimate the projections
coefficients through a minimum mean square error (MSE) estimation.

Projection. The projection phase consists of finding out the image represen-
tation for the subspace Φ. Such representation is given by the projection vector
w = [w1, w2, . . . , wn]T where each coefficient wi shows how the ith base function
is activated inside the image. In our model, the projection vector is found out
through minimum mean square error (MSE) estimation.

Hence, for a given image block yi, the projection vector is estimated such that
it minimizes the MSE between the reconstructed block ŷi and the original one.
For this estimation method, the solution vector is given by

w = E[ΦΦT]−1E[Φyi]. (6)

The term E[ΦΦT]−1 in Eq. 6 holds information about the angles between
every two basis functions of Φ and is necessary to achieve the minimum error
once that there is no constraint about orthogonality for the ICA basis.

3 Results

In the learning phase, we have used 15 natural and 15 man-made images from
McGill Calibrated Image Database [6]. This database contains over 850 real-
world images of 576 x 768 pixels from natural and urban environments. In both
learning and projection phase, images were processed in gray scale not requiring
color information.

The natural ensemble included open and close-up views of forests, fields,
mountainous landscapes and also natural objects such as trees and flowers. Here,
image blocks containing are also considered natural. This way, only images in
the natural training ensemble contained sky. The man-made set included urban
scenes with restriction for natural structures. For both groups, images in close,
medium, and long range were used.

To form the learning input, blocks of 16 x 16 pixels were randomly selected.
Overlapping was permitted. For each block, two learning samples were generated.
The first sample was obtained performing a line-wise reading of the pixels inside
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(a) (b)

Fig. 2. Example of subspaces. (a) ΦNat learned from natural and (b) ΦMan learned
from man-made images.

the block and second one, through a column-wise reading. We have extracted
100.000 samples from each image group. Figure 2 shows examples of subspaces
ΦNat and ΦMan learned from natural and man-made images.

In the projection phase, have selected several images (not previously used
for training) that contains both natural and man-made structures. The selected
scenes are shown in Figures 3(a), 3(c), and 3(e). These scenes include a di-
verse type of structures in close, medium and long range. Also, sky blocks are
presented. Here, we used 50-dimensional subspaces. The average time taken
was 3 milliseconds by image block on Matlab in a 2.4 Ghz Intel processor.
Figures 3(b), 3(d), and 3(f) shows the results of the segmentation by using the
hypothesis defined in Equations 3 and 4. Here, the image blocks that contains
man-made structures are highlighted by a cross ’+’.

To validate the system performance and also to test generality of the fea-
tures learned by ICA, we have also used image from different image databases.
Figure 4(a) and 4(c) shows images from the Labelme database [7] and Hateren
database [8], respectively. The segmentation results are shown in Figures 4(b)
and 4(d).

4 Discussion

The system proposed here to segregate natural and man-made structures in
real-world scenes is based on a quite intuitive idea: structures should be best
represented by a set of features which are adapted to their statistical proprieties.
This way, firstly, let us analyze the subspaces ΦNat and ΦMan learned by ICA.

From Figure 2(a), one can see that the basis functions of ΦNat are Gabor-like
in accordance with results of classical works on the efficient coding of natural
images. On the other hand, the basis functions learned from man-made images
resembles bars and step edges. These two different subspaces may reflect impor-
tant characteristics of their respective classes.

First, the Gabor-like basis of ΦNat present no preference for specific orien-
tations as suggested by the almost isotropic power spectra of natural images
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Segmentation of natural and man-made structures in real world scenes. Figures
(a), (c) and (e) show the original images. The respective results of the segmentation are
shown in Figures (b), (d) and (f). The image blocks that contains man-made structures
are highlighted by a cross ’+’. All unmarked blocks were classified as natural.

[3]. In case of ΦMan however, the bar and step edge-like basis appear only at
vertical and horizontal orientations. This propriety match the power spectra of
man-made images which is strongly dominated by those two orientations.
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Fig. 4. Generality of the subspaces ΦNat and ΦMan for other image database. Figures
(a) and (c) show the original images from Labelme database [7] and Hateren database
[8]. Figures (b) and (d) show the segmented images. For the first scene, the blocks
which contains man-made structures are highlighted by a cross ’+’. In second scene,
natural structures are highlighted by a star ’*’.

More importantly, these subspaces may reflect phase information of each im-
age class. In fact, the ICA learning is based on higher-order statistics which are
thought to extract phase information from the input data [9]. In this regard,
natural and man-made images are likely to exhibit phase spectra with differ-
ent characteristics. For instance, it has been reported that contrary to natural
scenes, edges found in man-made scenes present high degrees of coherence [10].
This means that in man-made images, the pixel arrangement across the length of
an edge normally present one orientation. According to [11], a coherent or a step
edge produce a global alignment of frequency components in the phase spectra.
On the other hand, the orientation of edges in natural scenes continuously turns
and twists producing local or phase alignment only in frequency bands. This
way, it is reasonable to expect that the step-edge-like basis of ΦMan can capture
global phase alignments and the Gabor-like basis of ΦNat, which are band-pass,
can capture local phase alignments.
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Since, the subspaces ΦNat and ΦMan learned by ICA seem to be well-adapted
to represent both second and higher order statistical information of their re-
spective classes, let us now analyze the detection results in several real-world
scenes shown in Figure 3. The first scene (Figure 3(a),3(b)) shows natural and
man-made structures at both medium and long range. The image also contains
sky blocks. Analyzing the original and the processed image, we can notice that
the system has a higher accuracy in medium range than in long range. Notice
that in Figure 3(b), the man-made structures in long range, especially roofs,
are more often misclassified as a natural texture. For this scene, almost all sky
blocks were correctly classified as a natural structure.

The second scene in Figure 3(a),(b) present both types of structures at close
range. The accuracy of the detection appears to be constant from medium to
close range. For this scene, most of the misclassified blocks were from grass
and textures from the superficies of vehicles. The third scene present a natural
structure at medium range and man-made structures at medium and long range.
Also, sky blocks are present. Although many sky blocks are misclassified, it is
noticeable that the majority is still corrected classified as natural.

In Figure 4, we test the generality of the subspaces ΦNat and ΦMan. The system
works with similar accuracy for a different database even though using features
learned from a previous one. The accuracy of this method can be improved by
using local dependencies over image sites or a lateral inhibition process. Indeed,
such strategies may reduce the quantity of isolated blocks especially in sky areas.

5 Conclusions

Our system consists of two phases: learning and projection. In the learning phase,
we used independent component analysis (ICA) to learn subspaces which can
represent the underlying basis of natural and man-made images. We have found
that the basis functions of man-made images consists of sharp discontinuities
resembling bars and step edges in contrary to the Gabor-like basis functions of
natural images. According to these features, both subspaces appear to be well-
adapted to the second and higher-order statistics of their respective classes. In
the projection phase, the system calculate the error of projection of a real-world
scene onto those two subspaces. Then, each image block is classified as natural
or man-made according to the subspace that generates the lower error. We have
found that the system have a higher accuracy at medium and close range. The
system also can distinguish sky blocks from close and medium range man-made
blocks.
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Abstract. The topographic independent component analysis (TICA) is
a technique for texture segmentation in which the image base is obtained
from the mixture matrix of the model through a bank of statistical fil-
ters. The use of energy as the topographic criterion in connection with the
TICA filter bank has been explored in the literature, with good results.
In such context, this paper proposes the use of energy plus a morphologic
fractal descriptor as a new topographic criterion to be used in connec-
tion with the TICA filter bank. The new approach, called TICA fractal
multi-scale (TICAFS) approach, results in a meaningful reduction of the
segmentation error and/or in a meaningful reduction in the number of
filters, when compared to the TICA energy (TICAE) approach.

Keywords: TICA, Fractals, Morphology, Texture, Natural Images.

1 Introduction

Models taking into account high-order statistics, like Independent Component
Analysis (ICA) and fractal analysis, have been adopted to perform texture seg-
mentation. ICA performs blind source separation, using high-order statistics to
obtain a linear system of statistically independent components, while statistic
fractals are characterized by the property of statistical self-similarity [1].

A variation of the ICA technique, the Topographic Independent Component
Analysis (TICA), allows getting a more precise model of the human vision sys-
tem. Developed by Hyvarinen and co-authors [2], the TICA approach is a par-
ticularization of the Independent Subspace Analysis (ISA) approach [3] allowing
approximating the model of the simple V1 cells of the visual cortex and the
complex cells of the human vision system as well [3]. As TICA inserts a spatial
organization in the ICA model, which can be seen as a topographic organization
of the V1 cells of the visual cortex [2], it establishes a relationship of residual
dependency in the structure of the cells of the visual cortex [2], trying to find
subspaces with invariant characteristics, in terms of high-order statistics [3].

Textures are characterized by two basic properties, namely homogeneity and
localness of the representation, which means that the visual perception of tex-
tures can be addressed by analyzing the statistical behavior of the image in a

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 491–498, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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window of limited dimension [4]. This can be perceived through using statistical
filters which map the image values in each neighborhood in a subspace of rele-
vant perceptivity, thus reducing the size of the representation while preserving
the structural information [4]. On the other hand, the natural appearance of the
fractals is a strong evidence that they capture perceivable relevant structures
of the natural surfaces [5]. In such context, which is proposed in this work is
just to change the residual dependency relationship of the TICA model, in order
to improve the sensitivity of the bank of statistical filters in the regions with
”visible” singularities, in terms of high-order statistics, using fractals.

2 Background

Natural images are well represented by non-Gaussian distributions, extracted
through TICA [2], and by statistical fractals [5]. A merging of these two math-
ematical models is the essence of the method here addressed.

The TICA model is similar to the ICA one, the difference being the algorithm
used to get the model. Considering the ICA approach based on the maximum
likelihood estimation, the adaptation for the TICA method is expressed as [6]

ICA Case:

logL(W ) =
T∑
t=1

n∑
i=1

log pi
(
wT

i x(t)
)

+ T log |detW |, (1)

TICA Case (energy criterion - TICAE approach):

logL(W ) =
T∑
t=1

n∑
j=1

G

(
n∑
i=1

h(i, j)
(
wT

i x(t)
)2

)
+ T log |detW |, (2)

where G is a nonlinear monotonic transformation of real positive numbers, h(i, j)
is the neighborhood function,

(
wT

i x(t)
)2 is the energy of the high-order non-

negative independent components, x(t) is a mixture component of the ICA model
and wT

i is a component of the inverse mixture matrix [6]. The properties of the
TICA model are described in [2], where its statistical order is defined as

σi = ϕ

(
n∑

k=1

h(i, k)uk

)
, (3)

with ϕ(.) being another nonlinear monotonic transformation of positive real
numbers, h(i, k) being the neighborhood function once more, and uk being the
non-negative independent components of high statistical order used to generate
the statistical components of the model.

In this work the fractal dimension is adopted as the high-order statistical
component of the TICA model. It is able to statistically describe a same phe-
nomenon in an image in different scales, thus providing a more efficient tool to
analyze textures [7]. Such ability is explained, at least in part, by the fact that
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the image singularities are preserved, which means that the fractal dimension
in the border regions of a texture is always lower than the fractal dimension of
the texture as a whole [5]. Thus, using the fractal dimension it is possible to
determine the border lines separating regions of different textures, as it is shown
in the analysis of the experimental results (Section 5).

The fractal model used in the experiments here reported is adapted from the
texture descriptor called Local Multi-fractal Morphologic Exponent (LMME)
[7]. How to obtain this adapted descriptor is now considered.

An N × N image is considered as a 3-D surface defined as the set of triples
{i, j, f(i, j); i, j = 1, ..., N}. For a given scale ε and a structuring element Yε, it
is defined another set of triples, {iεk, jεk, βε}, where k = 1, ..., Pε, Pε being the
number of elements in Yε, and β is a shape factor, which defines the shape of
the structuring element. The dilatation of the image with Yε, at the pixel (i, j),
is calculated as

fε(i, j) = max
k=1,...,Pε

{f(i+ iεk, j + jεk)} + βε. (4)

A natural local measure is defined in a window of dimension W ×W as

με(i, j) =
|fε(i, j)− f(i, j)|∑W
i,j |fε(i, j)− f(i, j)|

, (5)

so that the measure of order q in the scale ε is given by

I(q, ε) =
W∑
i,j

με(i, j)q, (6)

the LMME corresponding to the window is

Lq =
(

1
1− q

)
lim
ε→0

(
ln I(q, ε)

lnN/ε

)
, (7)

and, finally, the LMME of the grid is given by

Lq(i, j) =
(

1
1− q

)
lim
ε→0

(
lnμε(i, j)

lnN/ε

)
. (8)

The region of the neighborhood delimited by the structuring element, in a
given scale, can be seen as a ”click” to the theory of Markov fields. The successive
dilatations of the structuring element correspond to successive dilatations of the
”click”, which corresponds to the expansion of the region under consideration in
different scales, which will compose the Markovian fields. Such fields, by their
turn, are correlated by a single measure obtained from the successive ones. The
measure correlating the successive fields is the fractal descriptor LMME, Lq,
which can be obtained from the gradient of the line interpolating the points of
ln (I(q, ε))× ln (1/ε), for different scales [7].
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3 The Proposed Model

It is known that the ICA model is an approximation of the simple cells in V1
[6] and that the TICA model performs a spatial organization of such cells, thus
approximating the behavior of the complex cells in V1 [2]. As the human beings
are able to observe and distinguish self-similar characteristics in images like the
carpet of Sierpinsk [1], there is evidence that the human visual system interprets
simple self-similar structures.

Taking into account that the simple cells in V1 process just local statistical
information and that the complex cells perform the statistical organization of
the information coming from the V1 cells, a model for the self-similar statistical
organization is here proposed as the topographic criterion for the TICA.

By its turn, the fractal descriptor LMME provides a good measure of high-
order statistical self-similarity to be used in connection with the TICA model.
Instead of the function uk (see (3)), the fractal descriptor LMME is here adopted
to represent the non-negative high-order independent components used to gen-
erate the statistical dependency. Actually, it is adopted the function R(si) (si
is the independent component si = ωT

i x(t)) (see (9)), which is based on the
LMME descriptor of a region of the image. This way, the TICA model using
the descriptor LMME here proposed, hereinafter referred to as TICAFS (TICA
Fractal with multiple scales - see (8)), is

logL(W ) =
T∑
t=1

n∑
j=1

G

(
n∑
i=1

h(i, j)R
(
wT

i x(t)
))

+ T log |detW |, (9)

which is based on Eq. (2). The R(si) function corresponds to the application
of Eq.(8) in each grid of the neighborhood function, similar to the energy cal-
culation in the TICAE model. By its turn, x(t) are parts of the original image
randomly selected.

4 Experiments

In order to check the effectiveness of the proposed method, two stochastic tex-
tures with linear Markovian dependency were generated, which are different only
in the variance. The method adopted to generate such samples was the Pearson
system of distributions [8]. Such textures were mixed to compose the mosaic
shown in Figure 1-a, which will be used to test the method here proposed for
segmentation. Two other tests were also performed, now using Brodatz’s tex-
tures [9] (the D9, D22, D55 and D103 textures), to compose the test images of
Figures 1-b and 1-c. The texture D9 is a non-periodic one, while the textures
D22, D55 and D103 are periodic.

For each image of Figure 1, a set of samples of the mixture, X(t), was built
with 2000 windows, x(t), of dimension 8×8 pixels (that determines the filter-bank
length - 64 filters - see [10]), which were randomly selected to avoid any tempo-
ral correlation. Each window comprises a neighborhood of the TICA model. For
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Fig. 1. (a)Test-image with stochastic textures (b)Test-image with the textures D55
(the inner one) and D22 (the outer one) (c)Test-image with the textures D103 (the
inner one) and D9 (the outer one)

each pixel of it there is a structuring element whose dimension is lower than the
dimension of the window, which is centered in such pixel. To calculate the LMME
spectrum (Eq. (8)), the scales considered for the structuring element were 2, 3, 4
and 5, the value adopted for β was 3 and the value adopted for q was 1. To calculate
the energy, the dimension of the structuring element was fixed in 5.

The segmentation was implemented by adopting the algorithms proposed in
[11] and using the k-means algorithm for clustering.

5 Results

Figure 2 shows the classification error resulting from the segmentation of the
stochastic textures of Figure 1-a (the TICAE method does not separate the
image regions), while Figures 3 and 4 show the same error when segmenting
the textures of Figures 1-b and 1-c, respectively. In all cases, different lengths
were adopted for the bank of filters (see [11]), as shown in the graphics, for both
the TICA energy (TICAE) method and the TICA with fractal descriptor using
multiple scale factors (TICAFS) method here proposed.
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Fig. 2. Classification error for the textures of Figure 1-a
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Fig. 3. Classification error for the textures of Figure 1-b

Fig. 4. Classification error for the textures of Figure 1-c

Fig. 5. Results of texture classification considering the mosaic of Figure 1-a for the
(a)TICAE method and (b)TICAFS method here proposed, for a bank of 62 filters

Finally, Figures 5-a and 5-b show the result of the classification considering the
textures of the mosaic of Figure 1-a, for the same two techniques. The black line
delimits the borderline separating the areas corresponding to the two textures.
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As one can see from the figures presented, the classification error is much lower
when using the proposed TICAFS method, considering images with high order
statistics (like that in Figure 1-a). Other advantage of the proposed method, in
comparison with the TICAE method, is that the same classification error can be
obtained with a bank containing much less filters, as it can be seen from Figures
3 and 4. Another meaningful result is that the border of the region characterized
by a certain texture is much better defined when using the TICAFS technique
here proposed (see Figure 5).

In addition, it should be stressed that the method here proposed, as all ICA-
based methods, is a non-supervised one, thus not demanding anyprevious training.

6 Conclusion

The fractal multi-scale analysis in the topographic criterion of the TICA tech-
nique has shown to be more robust than the traditional model using energy.
The use of the morphologic fractal spectrum gives to the TICA model informa-
tion about the high-order statistics of the textures, what allows a more effective
separation of the statistically independent components.

The value of the fractal spectrum LMME is obtained over multi-scale Marko-
vian fields in the neighborhood region of the TICA model, thus determining a
representative measure of a stochastic process, which yielded to a better result,
considering the synthetic image of Figure 1-a.

The quality of the texture classification by using the TICA model depends
on the length, on the disposition and on the approach adopted over the Marko-
vian fields in the neighborhood region. Thus, it is natural that a same texture
be classified with different approximation rates for distinct approaches of the
neighborhood model. The behavior of the model here proposed is justified by
the higher sensitivity of the fractal descriptor regarding the singularities of the
textures. On the other hand, the compromise between the generalization and
the specification internal to the texture was enough to guarantee a good clas-
sification in spite of the noisy representation inherent to the model of fractal
surfaces.

Therefore, the conclusion is that the proposal here presented improves the
sensitivity of the neighborhood function in the border region of contiguous tex-
tures, thus providing a more robust classification, which is validated by the
results presented.
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Abstract. We investigate the problem of source separation in images in
the Bayesian framework using the color channel dependencies. As a case
in point we consider the source separation of color images which have
dependence between its components. A Markov Random Field (MRF) is
used for modeling of the inter and intra-source local correlations. We re-
sort to Gibbs sampling algorithm for obtaining the MAP estimate of the
sources since non-Gaussian priors are adopted. We test the performance
of the proposed method both on synthetic color texture mixtures and a
realistic color scene captured with a spurious reflection.

1 Introduction

The problem of blind image separation is encountered in various applications
such as document image restoration, astrophysical component separation, anal-
ysis of functional MRI (Magnetic Resonance Imaging) and removal of spurious
reflections. Most of the previous studies for image source separation have as-
sumed that the source signals are statistically independent. There are cases,
however, where this assumption does not hold anymore. For example, the RGB
components of a color image are known to be strongly correlated. We conjecture
that a source separation algorithm that explicitly takes into consideration this
prior information can perform better.

In this paper, we propose a Bayesian approach for the image source separa-
tion problem which takes the color channel dependencies into consideration using
coupled MRF model. We limit our study to the separation of color image com-
ponents, which are dependent, and an independent reflection source. The more
general problem of source separation from multi-band observations, with inter-
dependencies between the bands, is out of scope of this study. The application
scenario is a color image corrupted by spurious reflections. Notice that reflection
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removal problem was addressed in [1] where at least two observed images were
required. These had to be obtained in different lighting or under different po-
larization conditions [1]. In contrast our method can remove reflections by using
only one observed color image.

The Bayesian frameset allows for under-determined linear mixture models,
where the number of observations is smaller than the number of sources. For
example, consider a color scene behind a transparent surface photographed with
camera, but with an undesired achromatic reflection on the surface. We as-
sume that reflected images are generally achromatic. In this case, the number
of sources is four, with three dependent (RGB) components and the fourth one,
the reflection, independent from them. Notice that the RGB components are
considered as the three sub-sources of a single color source, which is itself mixed
with an achromatic image. Since the source separation works with a single ob-
served mixture image, the problem is severely under-determined. However, this
under-determined problem is converted into a better posed one, by supplying
the missing information via a constrained coupled MRF source model.

There are some recent papers that address the dependent source separation
problem. For astrophysical images, Bedini et al. [2] proposed a method for cor-
related component separation, and Caiafa et al. [3] developed a technique for
non-independent components using entropic measures. Gencaga et al. [4] pro-
posed a method for separation of non-stationary mixtures of dependent sources.
Hyvarinen and Hurri [5] and Kawanabe and Muller [6] developed separation
methods for sources that have variance dependencies. There are also studies
which investigate the frequency domain [7] and time-frequency [8] dependencies.
Except for [2] and [3], these methods are all developed for dependent 1D signal
separation applications.

We overcome the difficulty of separation of such under-determined and sparse
models by using spatio-chromatic coupled MRF source models. The coupled
MRF model takes both the inter- and the intra-channel dependencies into ac-
count. To obtain the MAP estimate of the sources we used Gibbs sampling [9],
which is a fully Bayesian algorithm. The algorithm used in this study is an
extension of the algorithm in [10].

2 Problem Definition in the Bayesian Framework

In this study, we limit our study to the mixture case of a trichromatic color
image and an achromatic component, which results in a single observed color
image. The three components of the observed image are yj(n), j ∈ {r, g, b}, where
n indexes the pixels. Thus in the parlance of source signal separation one has
L = 4 sources, si(n), i ∈ {r, g, b,m} and K = 3, yj(n), j ∈ {r, g, b} observations.
The linear mixing model is given as:⎡⎣ yr(n)yg(n)

yb(n)

⎤⎦ =

⎡⎣ar,r 0 0 ar,m
0 ag,g 0 ag,m
0 0 ab,b ab,m

⎤⎦
⎡⎢⎢⎣
sr(n)
sg(n)
sb(n)
sm(n)

⎤⎥⎥⎦ + V (1)
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where V is a zero-mean Gaussian noise vector with Σ = diag{σ2
r , σ

2
g , σ

2
b} covari-

ance matrix. Noise terms are independent identically distributed (iid) in every
pixel of the three component images.

When we formulate the BSS problem in the Bayesian framework, the joint
posterior density of unknowns s and A can be written as:

p(sr,g,b,m,A|yr,g,b) ∝ p(yr,g,b|sr,g,b,m,A)p(sr,g,b,m,A) (2)

where s and y are lexicographically ordered vector representation of source and
observation images, respectively. The unknown sources and the elements of the
mixing matrix must be found by using their joint posterior density in (2).

Since the joint solution of (2) is not tractable, we must separate the problem
into more manageable parts. According to the source and observation models,
we assume that the mixing matrix and the sources are mutually independent,
and also the achromatic source is independent from the color image. But the
components of the color image are dependent. Using the Bayes rule, conditional
densities for sources and mixing matrix can be written as:

p(sr,g,b|sm,yr,g,b,A) ∝ p(yr,g,b|sr,g,b,m,A)p(sr,g,b) (3)

p(sm|sr,g,b,yr,g,b,A) ∝ p(yr,g,b|sr,g,b,m,A)p(sm) (4)

p(A|sr,g,b,m,yr,g,b) ∝ p(yr,g,b|sr,g,b,m,A)p(A) (5)

One can use the maximum-a-posteriori (MAP) estimate by alternating vari-
able approach, such as Iterated Conditional Mode. Difficulties may arise in MAP
estimation due to non-Gaussian prior densities since they disturb the convex-
ity of the MAP estimate. So we resort to Markov Chain Monte Carlo-based
(MCMC) numerical Bayesian methods such as Gibbs sampling.

We use Gibbs sampler to break down the multivariate sampling problem into
a set of univariate ones [9]. This iterative procedure continues until the sam-
ples converge to those that would have been obtained by sampling the joint
density. Our random sampling scheme from source images is hybrid wherever we
cannot use direct sampling methods, in other words Metropolis steps are embed-
ded within Gibbs sampling. The normalization term of the Gibbs distribution,
namely the partition function, is intractable. Since the posterior of a pixel is
formed by the product of a Gaussian likelihood and a Gibbs prior, the posterior
is also intractable and direct sampling is not possible. Therefore we resort to
Metropolis steps.

After sampling all the images with Metropolis method, the next step is draw-
ing samples from the mixing matrix. When all of the unknowns are sampled,
one iteration of the Gibbs sampling algorithm is completed. The Gibbs sam-
pling modified by embedded Metropolis steps, as used in this study, is given in
Table 1.
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Table 1. Gibbs sampling algorithm

for all source image, l = r, g, b, m

for all pixels, n = 1 : N
Using Metropolis method
st+1

l (n) ←− samplesl(n)

{
p(sl(n)|st

l\(n), s
t
{r,g,b,m}\l, yr,g,b,A

t)
}

for all elements of mixing matrix, (k, l) = (1, 1) : (K, L)

at+1
k,l ←− sampleak,l

{
p(ak,l|At

−(k,l),yr,g,b, s
t
r,g,b,m)

}

3 Observation Model

Since the observation noise is assumed to be iid zero-mean Gaussian at each
pixel, the likelihood is also Gaussian such that

p(yr,g,b|sr,g,b,m,A) =
∏

k∈{r,g,b}
N (yk|ȳk, σ2

k) (6)

where N (yk|ȳk, σ2
k) represents a Gaussian density with mean ȳk and variance

σ2
k and

ȳk =
L∑
l=1

ak,lsl, L = 4. (7)

The prior distributions of elements of A are chosen as a non-negative uniform
distribution due to the lack of any information to the contrary.
p(ak,l) = [u(ak,l)−u(ak,l−Amax)]/Amax where Amax is the maximum allow-

able value of the mixing matrix and u(.) is the unit step function. Using this
prior and likelihood in (6), the posterior density of ak,l is formed as

p(ak,l|yr,g,b, sr,g,b,m,A−ak,l
, σ2

1:K) ∝ N (ak,l|μk,l, γk,l)[u(ak,l)− u(ak,l −Amax)].
(8)

The mean μk,l and the variance σ2
k are calculated only for the nonzero elements

of the mixing matrix in (1) such that

μk,l =
1

sTl sl
sTl (yk −

∑
i∈{r,g,b,m},i�=l

ak,isi) (9)

and γk,l = σ2
k/s

T
l sl and l ∈ {r, g, b,m} and k ∈ {r, g, b}.

4 Source Model

Two source models have been used in this study; one of them is for achromatic
source and the other is for the color source.
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4.1 Achromatic Source Model

For independent achromatic source, we assume that it is modelled as MRFs and
that its density p(sm) is chosen as Gibbs distribution with possibly non-convex
energy potential function. The energy function of Gibbs distribution is

U(sm) =
1
2

∑
{n,q}∈C

βmρm(sm(n)− sm(q)) (10)

where ρm(.) is the non-convex potential function and C is the entire clique set.
The Gibbs distribution is given as

p(sm) =
1

Z(βm)
e−U(sm) (11)

where Z(βm) and βm are the partition function and the parameter of MRF,
respectively.

In this work we opt to describe pixel differences in terms of iid Cauchy density.
Notice that while pixels are dependent, the pixel differences can often be modeled
as an iid process [10]. Then the clique potential of the Gibbs density under
Cauchy assumption becomes:

ρm(sm(n)− sm(q)) = ln
[
1 +

(sm(n)− sm(q)))2

δm

]
(12)

where δm is the scale parameter of Cauchy distribution and is called also as
threshold parameter of the regularization function. In this study, both of the βm
and δm parameters are assumed homogeneous over the MRF.

4.2 Color Source Model

For the prior of the color image, we use multivariate Cauchy density. The clique
potential of dependent color component sc(n) = [sr(n) sg(n) sb(n)]T can be
written as

ρc(sc(n)− sc(q)) =
5
2

ln
[
1 + [sc(n)− sc(q)]TΔ−1[sc(n)− sc(q)]

]
. (13)

where Δ is 3× 3 symmetric matrix which defines the correlation between color
channels. Again we want to point out that these correlations are between pixel
differences, which implies that the component edge images are mutually cor-
related. Our model does not assume any correlation between the pixel values
directly, so that ρc(.) is a function of pixel differences [sc(n)− sc(q)]. only. The
choice of a non-convex clique potential function helps to preserve the edges. The
matrix Δ can be expressed explicitly as

Δ =

⎡⎣ δr,r δr,g δr,bδr,g δg,g δg,b
δr,b δg,b δb,b

⎤⎦ (14)

and the elements of this matrix are defined by the user.
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5 Simulation Results

We illustrate the performance of the proposed dependent color source separation
algorithm with two examples: The first example consists of a synthetic mixture
of texture images, while the second one is real mixture case actually taken with
a camera. We use the Peak Signal-to-Inference Ratio (PSIR) as performance
indicator. Furthermore, we assume that the correlation coefficients of the color
components in (14) as well as the variances of the noise terms in (1) are known
or user defined.

5.1 Synthetic Mixture Case

The mixture consists of a color texture image whose components are dependent
and another gray-valued texture image independent of the color image. Sample
images of original textures and their mixtures are shown in the first and second
columns of Fig. 1, respectively. The true color version of the original color im-
age and mixtures (observation) can be seen in Fig. 2. The mixing matrix was
chosen as

A =

⎡⎣1.0 0 0 0.4
0 0.7 0 0.6
0 0 0.5 0.8

⎤⎦ . (15)

These results are compared with those obtained under independent color chan-
nels assumption. The PSIR (dB) results obtained under dependence and in-
dependence assumptions are shown in Table 2. To obtain the results for the
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Fig. 1. Simulation experiments with noiseless texture images. First column: original
images; second column: images mixed with A in (15); third column: sources estimated
with dependence assumption; fourth column: sources estimated with independence as-
sumption.
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(a)

Source 1, RGB

(b)

Mixture

(c)

Dependency mod.

(d)

Independency mod.

Fig. 2. True color images: (a) original color texture, (b) true color mixture (observa-
tion), (c) and (d) estimated color texture under dependence and independence assump-
tion, respectively

Table 2. PSIR (dB) results of the separated sources under dependence and indepen-
dence assumptions. While source 1 has red, green and blue components, source image
2 consists of only one gray-valued component.

red green blue achromatic

Dependence assumption 48.98 37.69 36.39 38.55
Independence assumption 48.30 31.83 25.75 34.76

(a)

Actual observation

(b)

Reflection removed

(c)

Reflection

Fig. 3. Removal of reflection image mixed to a color image. (a) Observed actual mixed
image, (b) Color image with mixed reflection removed, (c) Estimated achromatic re-
flection image.

independence assumption, the source model and the algorithm in [10] was used.
Dependence assumption yields better results as compared to the independence
assumption. For example, the blue component is not separated under indepen-
dence assumption.

5.2 Real Mixture Case

For a realistic application, we used a color image taken with digital camera and
corrupted by a reflection as in Fig. 3 (a)1. The scene is organized such that a
toy is standing behind a transparent CD box and a reflection occurs on the box
surface. The reflection is assumed as an achromatic source while the scene behind
is a color image source. We were justified in using the proposed linear mixing
model in (1) since the reflection image is both transparent and additive. However,
as would occur in real-life situations, the mixing is not stationary, which means
that the mixing matrix changes from pixel-to-pixel. Although the mixing is not
stationary since the amount of reflection has been changing over the surface,

1 The authors would like to thank to Alpay Kucuk for taking the photograph used in
Sect. 5.2.
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the separation results are quite satisfactory as shown in Fig. 3 (b) and (c). The
entries of the Δ matrix has been manually tuned to optimal values by trial
and error. The color image of the toy scene is well separated with the reflection
almost removed while the achromatic reflection component still contains some
vestige of the color image.

6 Conclusion

In this study, we have proposed statistical models for blind separation of depen-
dent source images, and have shown that taking into account the prior infor-
mation on the dependence of color components results in higher performance as
compared to the independence model. The proposed model can find application
in color document analysis, restoration of ancient documents and polarized im-
age applications. In a follow-up study we will extend the algorithm for automatic
estimation of MRF parameters and noise variances.
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Abstract. We present a novel extension to Independent Component
Analysis (ICA), where the data is generated as the product of two sub-
models, each of which follow an ICA model, and which combine in a
horizontal fashion. This is in contrast to previous nonlinear extensions
to ICA which were based on a hierarchy of layers. We apply the product
model to natural image patches and report the emergence of localized
masks in the additional network layer, while the Gabor features that are
obtained in the primary layer change their tuning properties and become
less localized. As an interpretation we suggest that the model learns to
separate the localization of image features from other properties, since
identity and position of a feature are plausibly independent. We also
show that the horizontal model can be interpreted as an overcomplete
model where the features are no longer independent.

1 Introduction

The study of natural images statistics has recently received a great deal of at-
tention in machine learning as well as in computational neuroscience for its wide
applicability from machine vision to the understanding of cortical processing.
There is now a large body of evidence suggesting that neural visual systems are
adapted to the statistics of the input [1,2], where the timescale of adaptation can
range from evolutionary scale to the scale of seconds. Hence, visual mechanisms
reflect the statistical structure of the visual data. For example the features ob-
tained by applying Independent Component Analysis (ICA) to natural images
have very similar properties to those of Simple Cells in mammalian primary
visual cortex[3,4,5].

In ICA, the observed data vector x is assumed to be generated as a linear
superposition of features, x = As, where the distribution of the sources is usually
assumed to be a known supergaussian probability density function (pdf). Due to
the assumption that sources are independent, we can write p(s) =

∏
i pi(si) or for

the log-probability log p(s) =
∑

i log pi(si). If the mixing matrix A is invertible
and has inverse W, consisting of vectors wi we can make a transformation of
density to obtain the pdf for the data as log p(x) =

∑
i log pi(wT

i x)−log | detW|.
This model can easily be optimized with maximum likelihood.

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 507–514, 2009.
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A weakness of ICA is, that as an inherently linear model, it is not able to re-
cover independent sources from data with complex, nonlinear dependencies such
as most natural signals. Therefore attempts have been made [6,7] to extend ICA
to model more general densities. Taking these ideas in a different direction, here
we try to nonlinearly extend the ICA model to include two classes of sources,
which are mixed independently to reflect different aspects of an observed data
vector. The two parts are then combined nonlinearly to produce the actual ob-
served data vector. For modelling natural image patches this means that we
independently sample from submodels xl and xr, and the actual observed image
patch x is obtained as x = xl,xr, where , denotes elementwise multiplication.

This kind of model can be interpreted as taking the basic principle from a
linear superposition model such as ICA but generalizing it to a nonlinear super-
position of different ”sources”, where the sources themselves are now generated
as ICA-like linear superpositions. As a general example of this idea, one visual
subsystem could specialize in ’what’ there is in a particular scene, whereas an-
other would code for ’where’ in the scene the stimulus is located. These two are
plausibly independent in general, but obviously cannot be captured by indepen-
dent sources in a linear model.

2 Methods

2.1 The Proposed Model

We define the generative model for the data as follows:

x = xl , xr = As, (Bt + c) (1)

where xl = As is the ”classical” ICA or sparse coding part and xr = Bt + c
codes for aspects of data that cannot be captured by the linear ICA model. The
, indicates elementwise multiplication, so each pixel is defined by the product
of two independent parts. The matrix A is square and invertible whereas B is
undercomplete, with significantly fewer columns (features) than A. The vectors
s and t are the independent components of the two subimages. We require both
B and t to be non-negative to ensure that that xr is always positive. c is a small
constant that is added for numerical stability, and it was set to c = 0.1 for all
experiments. The model can be written more succinctly as

x = D(Bt + c)As (2)

where D indicates diagonalization of the vector.

2.2 Maximum Likelihood Optimization

As A is assumed to be invertible, we can solve for the components s as

s = A−1D(Bt + c)−1x = WD(Bt + c)−1x (3)
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where we define the filter matrix W = A−1 to be the inverse of the feature
matrix A. Now we define a pdf on s following the ICA model

p(s) =
∏
i

exp (g(si)) =
4
√

3
π

∏
i

1
cosh2(π/

√
12si)

(4)

where the function g(s) defines the normalized log-pdf, which we choose to be
the logistic distribution. Now we transform the density to obtain the probability
distribution for x as

log p(x|W,B, t) =
∑
i

g(wT
i D(Bt+ c)−1x)+ log | detW|−

∑
i

log |bT
i t+ c| (5)

where the extra terms due to the normalization constant are given by the de-
terminant of the Jacobian of the matrix WD(Bt)−1. From this we get the log-
likelihood of the parameters for a sample of data vectors of size T . We choose a
flat prior for A and B and a Laplacian prior for t, so the log-likelihood for one
data sample becomes:

log p(W, B, t|x) =
∑

i

g(wT
i D(Bt + c)−1x) + log |detW| −

∑
i

log |f(bT
i t)| − |t|1

(6)

This can now be optimized by taking gradients of the sample expectation w.r.t.
both the weight matrices and the components t.

3 Identifiability with Artificial Data

To create random data following the model, we sample from a logistic distri-
bution for s and from an exponential distribution for t. The mixing matrices
are also generated randomly, with the restriction that the matrices have to be
well-conditioned for the algorithm to converge. We arbitrarily constrained the
condition number of A and B to be no larger than ten. Furthermore, B is con-
strained to be non-negative, following the model definition. The independent
mixtures xl = As and xr = Bt + c are multiplied elementwise to obtain data
following the model distribution. We generated 20,000 samples with a dimen-
sionality of 60, and with 4 and 8 features in B. Then, we attempted to estimate
the model parameters A and B from the data. Like in ICA, the order and the
sign of the components cannot be determined, so given the true mixing matrix
Ã we expect the product ÃA−1 to be a permuted diagonal matrix with random
sign. Similarly, for the second part of the model we expect B̃B† to be a permuted
identity matrix. Here the pseudo-inverse is used, since B is not a square matrix.

The results for our experiments on artificial data are given in Fig. 1. Up to
some noise, both A and B are correctly identified. The product ÃA−1 shows
that the vectors in A and Ã are identical up to randomly flipped signs, but the
order of the vectors is randomized. Since the vectors in B are constrained to be
non-negative, there is no sign indeterminacy but only the order of the vectors is
shuffled. This shows that the parameters of the proposed model can be identified
for a range of different sizes of B.
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Fig. 1. Both parameter matrices A and B can be identified up to order and sign
indeterminacies. We show the product of the true and the inverse of the estimated
matrices, which results in permuted diagonal matrices. In the plots we code 0 as gray,
1 as black and -1 as pure white. The two plots on the left are for data generated with
4 vectors in B, on the right there are 8 vectors. The larger plots show ÃA−1, the
smaller ones B̃B†, the product of the true parameter matrix and the pseudoinverse of
the estimated matrix.

4 Experiments on Natural Images

4.1 Preprocessing

Experiments were performed on natural image patches sampled from natural
images available in P. O. Hoyer’s ImageICA package1. We used 20,000 patches
of size 16 × 16 pixels for all experiments and performed zero phase whitening
on the data [8]. The dimensionality was not reduced, and the DC-component
was retained. We discarded 20% of the patches with the lowest variance, which
correspond to blank image regions and do not significantly affect the gradient.

We performed experiments with B having a varying number of features between
2, 4, 8 and 16. The estimation was started with A initialized randomly, and B to a
matrix of all ones divided by the number of elements. The hidden variables t were
also initialized randomly, but each vector t was then normalized to unit L1-norm.
This had the effect that, with c = 0.1, each pixel of xr was close to one initially
and not influencing the xl part of the model. The estimation was then started by
learning only the matrix A for xl with a stepsize of 0.1, until visual inspection
showed that it had converged to an ICA basis set characterized by Gabor-like re-
ceptive fields. After this initialization, A, B and t were estimated simultaneously.
The stepsize for t was chosen to be 1, while the stepsizes for A and B were both
0.1. The non-negativity of the components xr was ensured by forcing both B and
t to be non-negative after every update step.

4.2 Separation into Gabors and Localized Masks

Since the novel model presented here is a generalization of ICA, and in fact
feature matrix A is initialized with an ICA basis, it should not be surprising that
1 Available at http://www.cis.hut.fi/projects/ica/imageica/
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the ”independent components” recovered by the model are Gabor-like filters that
are localized, oriented and band-pass, as shown in Fig. 2(a) for different numbers
of columns in B. However there are important differences that emerge once the
modulation due to the Bt component is taken into account. While for a small
number of columns in B the features look like the Gabor filters familiar from
the classical ICA model, they become less localized as the number increases. In
all cases the filters in B learn to perform a localized modulation, that dampens
some of the image to create a patch with blank areas. The vectors in B evenly
tile all of the pixel space, but selectively boost or mask regions of individual
patches. This is shown in Fig. 2(b).

4.3 Dependence of Tuning Properties on the Number of Filters

To investigate the change in appearance of the features in A, we parametrized
them with a least-squares fit to Gabor functions, i.e. Sinusoids with a Gaussian
envelope. We then analyzed the tuning statistics of the Gabors in terms of fre-
quency and size. As we show in Fig. 3, there is a significant change in aspect
ratio and modulation (number of zero crossings of the sinusoid) of the Gabors
as the number of filters in B is increased.

5 Discussion

5.1 Separation of Structure and Position

The most striking aspect of the results is that with an increasing number of
vectors in B, the appearance of the features starts to differ significantly from
the Gabor-like features that are obtained by most other ICA or Sparse Coding
models. All features become less localized, and especially the highest frequency
features, which tend to be very localized in the classical ICA model, loose all lo-
calization and cover the whole image patch. In an ICA model, this would clearly
be less than optimal because most natural images patches have only localized
structure. In the nonlinear model the situations is quite different though: De-
pending on the structure of xr, the localization properties can be recovered by
”masking off” the part of the reconstruction xl that does not contribute to the
total image patch x = xl,xr that is being coded. This is conceivable since most
image patches have blank regions and only localized structure such as edges or
textured objects. Rather than having a set of features that can code for arbitrary
image patches, it is advantageous to independently specify the region of the im-
age patch that contains structure, and the kind of structure. Our new model can
be viewed as accomplishing this by coding image structure in xl and location in
xr. By having the ICA reconstruction xl = As matched just to the structure,
and discarding most localization information from the basis A, a representation
with higher likelihood can be achieved. The additional part of the model xr
then simply masks off where in the image patch the particular structure occurs,
leaving the rest of the image patch blank. In this way, is possible to encode a
particular image patch with fewer basis functions than with classical ICA, since
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Fig. 2. Comparison of the features obtained with ICA (top) and the new product
model (bottom three rows). We show a subset of 64 randomly chosen feature vectors of
A in the first column, and their Fourier power in the second column. For the product
model the with 4, 8 and 16 secondary features, the vectors of B are shown in the third
column. While A converges to the familiar ICA features, B produces localized masks.
As the number of features in B increases, the Gabors in A spread out to cover more of
the image patch, this is particularly evident for 16 columns in B. Intuitively, this can
be explained as a masking, where combining one feature from A with different masks
from B can produce new Gabors in various positions. The Fourier transforms show
how the features become more localized in Fourier space as the number of vectors of
B increases, but also helps to identify the unlocalized highest frequency features as
aliasing artifacts: All the Fourier power should be confined to a cicle around the origin,
the four corners are artifacts due to the rectangular sampling grid.
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Fig. 3. Change in tuning of the basis functions in A with an increasing number of
local fields in B. The aspect ratio increases for more fields, i.e. the Gabors become
more elongated, filling most of the patch rather than just a small portion. The number
of sidelobes of the Gabors also increases, making the basis functions less localized and
more similar to a Fourier basis.

the features can become more specialized for orientation and frequency, while
the localization in preserved in the second part of the model.

Along these lines, it is also possible to view the novel model as an implicitly
overcomplete version of ICA. By multiplying each of the n features in A with
each of the m features in B, a new set of features of size mn is obtained. For
a large number of secondary features, e.g. m = 16 the vectors in A are close
to sinusoids and the vectors of B are nearly Gaussian. Each of the sinusoids is
masked with Gaussians at different positions, which corresponds to constructing
a new set of Gabor features. It is important to note that the weights of the new
features will no longer be independent, since the ”mask” xr chosen for one of
the features in A will also be applied to each other features.

5.2 Relation to Contrast Gain Control

One of the initial motivations for the way the model was specified, in particular
the nonnegativity of xr , was that the secondary features would perform divisive
Contrast Gain Control (CGC) on the image patches. This can be easily seen by
rewriting 1 as

x
Bt + c

= As (7)

where with slight abuse of notation the fraction is taken to be elementwise.
Models of divisive normalization in various ways are abundant in the literature [9]
and are motivated from the observation that natural images are not stationary,
and the statistics vary considerably from one image region to another [10].

However, in preliminary experiments (results not shown) we could not confirm
a significant reduction in energy dependencies in our model compared to the
classical ICA model.

6 Conclusion

We have presented an extension of ICA with a second layer, where, in contrast to
previous work, the layers are horizontal rather than hierarchical. After showing
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the identifiability on simulated data, we have applied the novel model to natural
images. We report the emergence of localized ”masks” in the additional layer,
while the Gabor-like features in the primary layer become less localized than in
classical ICA. As a possible interpretation we suggest that the model learns to
separately code for the structure and position of features in image patches. This
gives the features an implicit position invariance, with one feature in A being able
to code for many different positions conditional on B. This is a powerful principle
which is outside the scope of linear models but may be of great importance in
neural visual systems.
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Abstract. Markov Random Field (MRF) models with potentials
learned from the data have recently received attention for learning the
low-level structure of natural images. A MRF provides a principled model
for whole images, unlike ICA, which can in practice be estimated for
small patches only. However, learning the filters in an MRF paradigm
has been problematic in the past since it required computationally ex-
pensive Monte Carlo methods. Here, we show how MRF potentials can be
estimated using Score Matching (SM). With this estimation method we
can learn filters of size 12×12 pixels, considerably larger than traditional
”hand-crafted” MRF potentials. We analyze the tuning properties of the
filters in comparison to ICA filters, and show that the optimal MRF
potentials are similar to the filters from an overcomplete ICA model.

1 Introduction

Probabilistic models of natural images are useful in a wide variety of applications,
such as denoising and inpainting[1], novel view synthesis[2], texture modelling
[3], and in modelling the early visual system [4]. Such models can also provide
controllable test stimuli for experiments in neurophysiology and psychophysics.

Two approaches that have received significant interest with relation to image
modelling are Markov Random Fields (MRF, e.g. [5]) and Independent Compo-
nent Analysis (ICA [6], in images context see e.g. [4]). Traditionally, in the MRF
framework the model parameters have been selected by hand (e.g. [3]) rather
than learned, whereas in the ICA approach the model parameters are learned
from the data. Only recently Roth and Black have shown that MRF performance
can be improved by fitting the model parameters to natural image data [1].

In ICA, the observed data vector x is assumed to be generated as a linear
superposition of features, x = As, where the distribution of the sources is usually
assumed to be a known supergaussian probability density function (pdf). Due to
the assumption that sources are independent, we can write p(s) =

∏
i pi(si) or for

the log-probability log p(s) =
∑

i log pi(si). If the mixing matrix A is invertible
and has inverse W , consisting of vectors wi, we can make a transformation of
density to obtain the pdf for the data as log p(x) =

∑
i log pi(wT

i x)+log | detW |.
This model can easily be estimated with maximum likelihood.

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 515–522, 2009.
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Fig. 1. Sketch of a Markov Random Field: The MRF has maximal cliques of size 2× 2
pixels; one clique xi is highlighted. Each unit of the field is associated to a pixel of the
underlying image Y . The potential energy V for each clique is defined as a function of
the inner product of the image patch corresponding to the clique with a bank of filters
of the same size as the clique, V (x) = φ(wT x). This is visualized by the filter vector w
that is scanned over the whole image, and the product is computed with each clique. In
general there will be several filters in a filter matrix W , but for visualization purposes
only one is shown.

On the other hand, a MRF is a graphical model that is defined as a 2-D lattice of
units with undirected links, as illustrated in Fig. 1. The maximal cliques formed
by these connections play an important role as the potential energy of the field
is given as a function of these cliques. The key property of a MRF is conditional
independence, so the state of each unit on the field depends only on those units it
is directly linked to and the unit is independent of all other units in the field. While
ICA is limited to modelling small image patches, the MRF provides a principled
model for whole images of arbitrary size, even if the clique size is limited.

The paper is structured as follows: In Section 2 we present the MRF model
and how it can be estimated with Score Matching. In Section 3 we discuss the
application of the model to natural images, show the filters that are obtained,
and analyze the properties of the filters compared to ICA models. Finally we
discuss the implications of this work in Section 4.

2 The MRF Model and Estimation

In contrast to ICA, where filter responses are computed by a simple inner prod-
uct, the energy (i.e. the negative logarithm of the non-normalized pdf) of a MRF
is given by a convolution of the image I with potential functions Uk

V (I, θ) =
∑
k,x,y

φ (Uk ∗ I) =
∑
k,x,y

φ

⎛⎝∑
x′,y′

Uk,x′,y′Ix−x′,y−y′

⎞⎠ (1)
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where the convolution (denoted by ∗) runs over pixels indices x and y. The
elementwise nonlinearity φ gives the energy of the cliques of the field, which are
simply summed up to obtain the energy V of the field. As it is customary in ICA
to work on whitened data, we insert a whitening filter Q in the convolution so
it becomes V (I, θ) =

∑
k,x,y φ(Uk ∗Q ∗ I). The whitening filter can be absorbed

into the image, which corresponds to estimating a model for white data, but it
can also be viewed as a part of the potential function when the model is applied
to non-whitened data. It is important to use a whitening filter rather than an
arbitrary whitening matrix for this to hold.

The unnormalized probability of the model is given by the exponential of the
negative energy, and must be normalized by the partition function Z. Since Z
cannot be computed in closed form, we estimate the model using Score Matching
[7], which works on the non-normalized distribution. To estimate the model with
Score Matching we need to compute the Score function Ψj = ∂V

∂Ij
, the Score

Matching objective function J and its derivatives w.r.t. the parameter vectors.

J =
∑
j

(
1
2
Ψ2
j + Ψ ′j

)
,

∂J

∂wk
=

∑
j

(
Ψj
∂Ψj
∂wk

+
∂Ψ ′j
∂wk

)
(2)

For further analysis it is convenient to rewrite the convolution as a discrete
sum of inner products. We rewrite the convolution I ∗Uk = Xwk where X is a
matrix containing vectorized patches xi from the image, and wk is a vectorized
filter. Similarly we write Xj as a subset of X containing only those patches which
include the image pixel Ij . Thus the energy becomes

V (I, θ) =
∑
k,i

φ
(
wT
k xi

)
(3)

Where the sum over i is over the patches contained in the matrix X. Using this
notation we can compute the score function w.r.t. to the image pixels Ij

Ψj =
∂V

∂Ij
=

∂

∂Ij

∑
k,x,y

φ (Uk ∗ I) =
∑
k

w̌T
k φ
′ (Xjwk) (4)

Ψ ′j =
∂2V

∂I2
j

=
∑
k

(wk ,wk)Tφ′′ (Xjwk) (5)

We denote elementwise multiplication of vectors by ,, and w̌ indicates reversal
of the order of elements in a vector. It is important to note that in order to avoid
border effects, the index j does not run over all image pixels, but only those that
lie in the central region of the image so it can be reached by all pixels in the
filter w. The gradient of the objective function is now easily obtained from the
gradients

∂Ψj
∂wk

=φ̌′ (Xjwk) + Xj [w̌k , φ′′ (Xjwk)] (6)

∂Ψ ′j
∂wk

=2w̌kφ
′′ (Xjwk) + Xj [w̌k , w̌k , φ′′′ (Xjwk)] (7)

Thus the Score Matching objective can easily be optimized by gradient descent.
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3 Experiments on Natural Images

3.1 Methods

We performed experiments on natural images from P.O. Hoyer’s ImageICA pack-
age1. For the ICA and overcomplete ICA experiments we randomly sampled
20,000 image patches of 8× 8 and 12× 12 pixels size. For the MRF, we sampled
5,000 larger ”images” of size 25× 25 and 36× 36 for use with filters of size 8× 8
and 12× 12 respectively. Now since the main advantage of the MRF model over
ICA is that it can be applied to arbitrarily large images, it may seem surprising
that we use images that are not significantly larger than the patches ordinarily
used in ICA. However, what is important for estimating the model is the size of
the filters relative to the images. In particular, since we use only the valid region
of the convolution, only the central pixels of the image contribute to the objec-
tive function. Thus the full range of dependencies is captured, and the filters
should be identical if they were estimated with larger images.

We used less samples for the MRF than for ICA since each of the images is
effectively generating more data points due to the convolution. In preprocessing
we removed the DC value of the images and normalized them to unit variance.
After sampling, we whitened the image vectors with a zero phase whitening filter
[8]. We did not reduce the dimensionality with PCA as it is customary in ICA
models, since this would destroy the structure that we wish to capture with the
MRF. Therefore the highest frequencies containing aliasing artifacts due to the
rectangular sampling grid will be boosted, which has to be taken into account
in the analysis of the results.

We performed experiments on a complete ICA model with 144 filters, and a 16
times overcomplete ICA model with 2304 filters. The MRF had 144 filters, and
all three models were estimated with Score Matching. The filters were initialized
randomly and estimated by gradient descent, in case of the MRF a stochastic
gradient with a batch size of 20 was used. The experiments were repeated 10
times with different random seed for the sampling of image patches and initial-
ization of the weight matrix. All the filters were normalized to unit norm, which
is necessary to prevent filters from going to zero in the overcomplete ICA and
MRF models. Convergence was determined by optical inspection of the filters.
Because the estimation of ICA with Score Matching is not widely used, we also
estimated the complete ICA model with FastICA, to control for differences that
are due to the estimation method.

3.2 Results

In most classical MRF work, the potentials that were used were of rather small
size such as 3× 3 pixels and typically chosen to be directional derivatives. Thus
it is perhaps not surprising that the larger MRF filters we estimated are very
similar to ICA filters in appearance, being localized Gabor-like filters with tuning
for spatial frequency, phase and orientation. This is shown in Fig. 2, where ICA
and MRF filters are compared directly for different image patch sizes.
1 Available at http://www.cs.helsinki.fi/u/phoyer/imageica.tar.gz
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(a) MRF 12 × 12 (b) Subset of 16× over-
complete ICA 12 × 12

(c) ICA 12 × 12

(d) MRF 8 × 8 (e) MRF 8× 8, no normal-
ization

(f) ICA 8 × 8

Fig. 2. Comparison of the filters obtained for 12 × 12 (top) and 8 × 8 (bottom) image
patches. The complete and overcomplete ICA models shows the well-known Gabor like
filters, and the MRF potentials are very similar, sharing the properties of localization
and tuning for spatial frequency, phase and orientation. While for the ICA model it is
not necessary to normalize the filters, it is interesting to note that in the MRF case almost
all the filters go to zero unless the norms of the vectors w are constrained to be unity.

Fig. 3. Polar plot of frequency vs. orientation for 12×12 image patches for ICA (circles)
and MRF (crosses). The orientations are not uniformly distributed, with filters prefer-
ring to be aligned along the pixels, horizontal or vertical, and at 45 degrees to these
directions. Due to the rectangular sampling grid, the maximum frequency is higher
along the diagonal, which may also account for the non-uniformity. Usually this prob-
lem is alleviated by dimensionality reduction amounting to high-pass filtering, which
is not easily possible with the MRF model.
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(b) MRF
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(c) Overcomplete ICA

Fig. 4. Tuning of ICA (top), MRF and overcomplete ICA (bottom) for 12 × 12 image
patches. We show the size (length and width in pixels) of the Gaussian envelope of
the Gabors we fit, and the distribution of frequencies (rad per pixel). Additionally, we
show the distribution of orientations, which is clearly not uniform in both cases.

To analyze the similarity between the two models further, we fit Gabor func-
tion to the filters so we can analyze their tuning properties. We used a least
squares fit adapted from [9] to parametrize the filters in terms of length and
width, frequency, phase and orientation. In Fig. 3 we show a polar plot plotting
orientation against frequency.

In Fig. 4 we show histograms of the size and frequency distribution for the
three models. The complete ICA model produces very localized filters which
cover a relatively narrow band of frequencies. Both overcomplete ICA and the
MRF give slightly larger filters with a slightly broadened distribution of frequen-
cies. While the distributions for the MRF and ICA are somewhat different, it is
important to note that the filters for overcomplete ICA are also slightly different
and in some respects more similar to the MRF (e.g. somewhat larger filters with
less peaked frequency tuning). This may suggest that there are no fundamental
differences between the filters obtained from the two models.

We performed t-tests to quantify the statistical significance of the difference
in mean length, width and frequency of the filters between the four models,
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FastICA, ICA and overcomplete ICA estimated with Score Matching and the
MRF. Only in the comparison between the MRF and overcomplete ICA, there
was no sufficient difference in the tuning properties to reject the null hypothesis
at the Bonferroni corrected threshold of 0.017. It is interesting to note that
estimating the same ICA model with two different estimation methods produces
a larger difference in the filters, than the difference between overcomplete ICA
and the MRF estimated with Score Matching.

4 Discussion

Estimating optimal MRF potentials from natural images has previously been
attempted by Roth and Black [1], making use of Contrastive Divergence (CD)
[10]. We would like to point out that the filters obtained in the work of Roth
and Black have a very different appearance, being disjoint and distributed over
the whole image patch rather than the coherent and smooth Gabors that we
obtain. The patch size used by those authors was considerably smaller (3 × 3
and 5 × 5, which may forces features to spread out more to capture the longer
range dependencies of natural images. In addition, it is conceivable that with the
particular Monte Carlo method used by the authors, a different local optimum
is found or the method encountered some other problems.

It is possible to view the MRF model as a highly overcomplete ICA model
with some additional constraints. In particular, the convolution in (1) can be
interpreted as keeping the image fixed, and multiplying it with the filters in
different positions.The resulting ”filters” would be shifted copies of the original
filters at different positions in the image and padded with zeros. Thus, while
the model is highly overcomplete, non of the filters model the whole image, but
only regions. If we assume natural images to be stationary having copies of the
filters at different positions does not have an effect, and the main difference to
ICA would be that the size of the filters is restricted to be much smaller than
the image. This makes it quite obvious that optimal MRF filters should not be
vastly different from ICA filters. It would be interesting to investigate if there
are systematic differences in the sets of filters, and how they tile the parameter
space of positions, orientations etc. In particular, while an ICA basis may contain
nearly identical filters in different positions, this should not be the case with the
MRF model. Therefore, if one were to attempt to use ICA filters in place of MRF
potentials for e.g. a denoising task, one would face the problem of selecting the
correct subset of an ICA basis to form a set of near-optimal MRF potentials.

To conclude, we have show that it is possible to learn the filters used in a non-
Gaussian Markov Random Field model. The learning is based on score matching
and leads to Gabor-like filters. This gives a well-defined probabilistic model of
whole images instead of just small patches.

Acknowledgements. We wish to thank Jascha Sohl-Dickstein for helpful dis-
cussions. Urs Köster is supported by a Scholarship from the Alfried Krupp von
Bohlen und Halbach-foundatation.
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Abstract. Recently, sparsity and morphological diversity have emerged
as a new and effective source of diversity for Blind Source Separation
giving rise to novel methods such as Generalized Morphological Compo-
nent Analysis. The latter takes advantage of the very sparse represen-
tation of structured data in large overcomplete dictionaries, to separate
sources based on their morphology. Building on GMCA, the purpose of
this contribution is to describe a new algorithm for hyperspectral data
processing. It assumes the collected data exhibits sparse spectral signa-
tures in addition to sparse spatial morphologies, in specified dictionaries
of spectral and spatial waveforms. Numerical experiments are reported
which demonstrate the validity of the proposed extension.

Keywords: Morphological diversity, GMCA, MCA, sparsity, BSS,
wavelets, curvelets, hyperspectral data, multichannel data.

1 Introduction

Generalized Morphological Component Analysis (GMCA) is a recent algorithm
for multichannel data analysis and blind source separation introduced in [3],
which relies on sparsity and morphological diversity to disentangle the source
signals from observed mixtures. Indeed, sparsity has been recognized recently as
an effective source of diversity for BSS [15]. The successes of GMCA in many
generic multichannel data processing applications, including BSS, color image
restoration and inpainting [4,3], strongly motivated research to extend its appli-
cability. In particular, there are instances where one is urged by prior knowl-
edge to set additional constraints on the estimated parameters (e.g. equality
constraints, positivity). Building on GMCA, the purpose of this contribution is
to describe a new algorithm for so-called hyperspectral data processing. Hyper-
spectral imaging systems collect data in a large number (up to several hundreds)
of contiguous spectral intervals so that it makes sense to consider e.g. the reg-
ularity of some measurement from one channel to its neighbors. Typically, the
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spectral signatures of the structures in the data may be known a priori to have
a sparse representation in some specified possibly redundant dictionary of tem-
plate spectral waveforms.

In what follows, regardless of other definitions or models living in other sci-
entific communities, the term hyperspectral will be used generically to identify
multichannel data with the above two specific properties i.e. that the number of
channels is large and that these achieve a regular if not uniform sampling of some
additional and meaningful physical index (e.g. wavelength, space, time) which
we refer to as the spectral dimension. We further assume that hyperspectral data
is structured a priori according to the simple yet common instantaneous linear
mixture model given as follows:

X = AS + N =
∑
k

Xk + N =
∑
k

aksk + N (1)

where the measurements X ∈ Rm,t are a mixture of contributions from various
objects Xk with different statistical and spatio-spectral properties. These induce
inter- and intra- sensor structures or signal coherence in space and across sensors
which we classically assume to be well represented by rank one matrices, product
of a spectral signature ak ∈ Rm,1 and a spatial density profile sk ∈ R1,t. Here,
sk and ak are respectively the kth row and column of S ∈ Rn,t and A ∈ Rm,n.
The m × t random matrix N is included to account for Gaussian instrumental
noise assumed, for simplicity, to be uncorrelated inter- and intra- channel with
variance σ2. The image from the pth channel is formally represented here as the
pth row of X, xp.

We describe next the proposed modified GMCA algorithm for hyperspectral
data processing when it is known a priori that the underlying objects of interest
Xk = aksk exhibit sparse spectral signatures and sparse spatial morphologies in
known dictionaries of spectral and spatial waveforms. Accounting for this prior
requires a modified objective function which is discussed in section 2. The mod-
ified GMCA algorithm this entails is then given in section 3. Finally, numerical
experiments in section 4 demonstrate the efficiency of the proposed method.

2 Objective Function

Initially, the GMCA algorithm aims at solving the following non-convex problem:

min
A,S

∑
k

λk‖νk‖1 +
1

2σ2

∥∥∥∥∥X−∑
k

aksk

∥∥∥∥∥
2

with sk = νkΦ (2)

which is readily derived as a MAP estimation of the model parameters A and
S where the "1 penalty terms imposing sparsity come from Laplacian priors on
the sparse representation νk of sk in Φ. Interestingly, the treatment of A and S
in the above is asymmetric. This is a common feature of the great majority of
BSS methods which invoke a uniform improper prior distribution for the spec-
tral parameters A. Truly, A and S often have different roles in the model and
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very different sizes. However, dealing with so-called hyperspectral data, assuming
that the spectral signatures ak also have sparse representations γk in spectral
dictionary Ψ, this asymmetry is no longer so obvious. Also, a well known prop-
erty of the linear mixture model (1) is its scale and permutation invariance. A
consequence is that unless a priori specified otherwise, information on the sep-
arate scales of ak and sk is lost du to the multiplicative mixing, and only a joint
scale parameter for ak, sk can be estimated. This loss of information needs to
be translated into a practical prior on Xk = aksk = ΨγkνkΦ. Unfortunately,
deriving the distribution of the product of two independent random vectors γk

and νk based on their marginal densities is notoriously cumbersome. We propose
instead that the following pπ is a good and practical candidate joint sparse prior
for γk and νk after the loss of information induced by multiplication:

pπ(γk, νk) = pπ(γkνk, 1) ∝ exp(−λk‖γkνk‖1) ∝ exp(−λk
∑
i,j

|γki νjk|) (3)

where γki = γkνk is the ith entry in γk and νjk is the jth entry in νk. Note that the
proposed distribution has the nice property, for subsequent derivations, that the
conditional distributions of γk given νk and of νk given γk are both Laplacian
distributions. Finally, inserting the latter prior distribution in a Bayesian MAP
estimator leads to the following minimization problem:

min
{γk,νk}

1
2σ2

∥∥∥∥∥X−∑
k

ΨγkνkΦ

∥∥∥∥∥
2

+
∑
k

λk‖γkνk‖1 (4)

Interestingly, this can be expressed slightly differently as follows:

min
{αk}

1
2σ2

∥∥∥∥∥X−∑
k

Xk

∥∥∥∥∥
2

+
∑
k

λk‖αk‖1 with Xk = ΦαkΨ and ∀k, rank(Xk) ≤ 1

(5)
thus uncovering a nice interpretation of our problem as that of approximating
the data X by a sum of rank one matrices Xk which are sparse in the specified
dictionary of rank one matrices [14]. This is the usual "1 minimization prob-
lem [7] but with the additional constraint that the Xk are all rank one at most.
The latter constraint is enforced here mechanically through a proper parametric
representation of Xk = aksk or αk = γkνk.

We note that rescaling the columns of A ← ρA while applying the proper
inverse scaling to the rows of S← 1/ρS, leaves both the quadratic measure of fit
and the "1 sparsity measure in equation (4) unaltered. Although renormalizing is
still worthwhile numerically, it is no longer dictated by the lack of scale invariance
of the objective function and the need to stay away from trivial solutions, as in
GMCA.

There have been previous reports of a symmetric treatment of A and S for
BSS [12,8] however in the noiselesscase. We also note that very recently, the
objective function (5) was proposed in [10] however for dictionary learning ori-
ented applications. The algorithm used in [10] is however very different from the
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method proposed here which benefits from all the good properties of GMCA,
notably its speed and robustness which come along the iterative thresholding
with a decreasing threshold.

3 GMCA Algorithm for Hyperspectral Data

For the sake of simplicity, consider now that the multichannel dictionary Ω =
Ψ ⊗ Φ reduces to a single orthonormal basis, tensor product of orthonormal
bases Ψ and Φ of respectively spectral and spatial waveforms. In this case, the
minimization problem (4) is best formulated in coefficient space as follows:

min
{γk,νk}

1
2σ2 ‖α− γν‖2 +

n∑
k=1

λk‖γkνk‖1 (6)

where the columns of γ are γk, the rows of ν are νk and α = ΨTXΦT is the
coefficient matrix of data X in Ω. Thus, we are seeking a decomposition of matrix
α into a sum of sparse rank one matrices αk = γkνk.

Unfortunately, there is no obvious closed form solutions to problem (6). We
propose instead a numerical approach by means of a block-coordinate relaxation
iterative algorithm, alternately minimizing with respect to γ and ν. Indeed,
thanks to the chosen prior, for fixed γ (resp. ν), the marginal minimization
problem over ν (resp. γ) is convex. Inspired by [6,5,13], we obtain the following
system of update rules, akin to a Projected Landweber algorithm [1]:{

ν(+) = Δη

(
ν(−) + Rν

(
α− γν(−)

))
γ(+) = Δζ

(
γ(−) +

(
α− γ(−)ν

)
Rγ

) (7)

where Rν and Rγ are appropriate relaxation matrices for the iterations to be
non-expansive. Assume left invertibility of A and right invertibility of S. Then,
taking Rν =

(
γTγ

)−1
γT and Rγ = νT

(
ννT

)−1, the above are rewritten as
follows:

ν(+) = Δη

((
γTγ

)−1
γTα

)
(8)

γ(+) = Δζ

(
ανT

(
ννT

)−1
)

(9)

where vector η has length n and entries η[k] = λk‖γk‖1/‖γk‖22, while ζ has
length m and entries ζ[k] = λk‖νk‖1/‖νk‖22. The multichannel soft-thresholding
operator Δη acts on each row k of ν with threshold η[k] and Δζ acts on each col-
umn k of γ with threshold ζ[k]. Equations (8) and (9) rules are easily interpreted
as thresholded alternate least squares solutions. Finally, in the spirit of the fast
GMCA algorithm [4,3], it is proposed that a solution to problem (6) can be ap-
proached efficiently using the following symmetric iterative thresholding scheme
with a progressively decreasing threshold, which we refer to as hypGMCA:
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1. Set the number of iterations Imax and initial thresholds λ
(0)
k

2. Transform the data X into α
3. While λ

(h)
k are higher than a given lower bound λmin,

– Update ν assuming γ is fixed using equation (8).
– Update γ assuming ν is fixed using equation (9) .

– Decrease the thresholds λ
(h)
k .

5. Transform back γ and ν to estimate A and S.

The salient to fine process is also the core of hypGMCA. With the threshold suc-
cessively decreasing towards zero along iterations, the current sparse approxima-
tions for γ and ν are progressively refined by including finer structures spatially
and spectrally, alternatingly. The final threshold should vanish in the noiseless
case or it may be set to a multiple of the noise standard deviation as in common
detection or denoising methods. A discussion of different possible thresholding
strategies is given in [2]. When non-unitary or redundant transforms are used,
the above is no longer strictly valid. Nevertheless, simple shrinkage still gives
satisfactory results in practice.

Fig. 1. Image data set used in the experiments

4 Numerical Experiments

In this section, we report on two toy BSS experiments in 1D and 2D to compare
GMCA to its extension hypGMCA. First we consider synthetic 2D data consist-
ing of m = 128 mixtures of n = 5 image sources. The sources were drawn at
random from a set of 128× 128 structured images shown on Figure 1. The spec-
tra were generated as sparse process in some orthogonal wavelet domain given
a priori. The wavelet coefficients of the spectra were sampled from a Laplacian
probability density with scale parameter μ = 1. Finally, white Gaussian noise
with variance σ2 was added to the pixels of the synthetic mixture data in the
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Fig. 2. Four 128 × 128 mixtures out of the 128 channels. The SNR is equal to 20dB.

different channels. Figure 2 displays four typical noisy simulated mixture data
with SNR = 20dB. A visual inspection of figure 3 allows a first qualitative as-
sessment of the improved source recovery provided by correctly accounting for
a priori spatial as well as spectral sparsity. The top images were obtained with
GMCA while the bottom images, were obtained with hypGMCA. In all cases,
both methods were run in the curvelet domain [11] with the same number of
iterations. The graph on figure 4 gives more quantitative results. It traces the
evolution of the mixing matrix criterion CA = ‖In−PÃ†A‖1 as a function of the
SNR which was varied from 0 to 40dB, where P serves to reduce the scale and
permutation indeterminacy of the mixing model and Ã† is the pseudo-inverse
of the estimated mixing matrix. In simulation, the true source and spectral ma-
trices are known and so that P can be computed easily. The mixing matrix
criterion is then strictly positive unless the mixing matrix is correctly estimated
up to scale and permutation. Finally, as we expected since it benefits from the
added a priori spectral sparsity constraint it enforces, the proposed hypGMCA
is clearly more robust to noise.

Fig. 3. Top row: Estimated sources using the original GMCA algorithm. Bottom
row: Estimated sources using the new hypGMCA.
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Fig. 4. Evolution of the mixing matrix criterion CA as a function of the SNR
in dB. Solid line: recovery results with GMCA. •: recovery results with hypGMCA.
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Fig. 5. Abscissa: Number of sources. Ordinate - left: Recovery SNR. Right:
sparsity-based criterion C�1 . Solid line: recovery results with GMCA. •: recovery results
with hypGMCA.

In a second experiment, GMCA and hypGMCA are compared as the num-
ber n of sources is increased while the numbers of samples t and channels m
are kept constant. Increasing the number of sources makes the separation task
more difficult. We consider now 1D synthetic source processes S generated from
i.i.d. Laplacian probability density distributions with scale parameter μ = 1.
The Dirac basis was taken as the dictionary of spatial waveforms Φ. The en-
tries of the mixing matrix are also drawn from i.i.d. Laplacian distributions
with scale parameter μ = 1 and the Dirac basis was also taken as dictionary
of spectral waveforms Ψ. The data are not contaminated by noise. The num-
ber of samples is t = 2048 and the number of channels is m = 128. Figure 5
depicts the comparisons between GMCA and its extension to the hyperspec-
tral setting. Each point of this figure has been computed as the mean over
100 trials. The panel on the left of Figure 5 features the evolution of the re-
covery SNR when the number of sources varies from 2 to 64. At lower n, the
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spatiospectral sparsity constraint only slightly enhances the source separation.
However, as n becomes larger than 15 the spectral sparsity constraint clearly
enhances the recovery results. For instance, when n = 64, the GMCA algorithm
with the spectral sparsity constraint outperforms the original GMCA by up to
12dB. The right of Figure 5 shows the behavior of both algorithms in terms of
C�1 =

∑n
i=1

∥∥aisi − ãis̃i∥∥1 /
∑n

i=1

∥∥aisi∥∥1. As expected, accounting for spectral
sparsity yields sparser results. Furthermore, as the number of sources increases,
the deviation between the aforementioned methods becomes wider.

5 Conclusion

We described a new algorithm, hypGMCA, for blind source separation in the
case where it is known a priori that the spatial and spectral features in the data
have sparse representations in known dictionaries of template waveforms. The
proposed method relies on an iterative thresholding procedure with a progres-
sively decreasing threshold. This alone gives the method true robustness to noise.
As expected, taking into account the additional prior knowledge of spectral spar-
sity leads to enhanced performance. It was illustrated by numerical experiments
that spatiospectral sparsity yields robustness to noise contamination, as well
as statbility when the dimensionality of the problem increases. Current work
is on enforcing other prior constraints such as positivity and on applications
of the proposed method. In fact promising results have been obtained on real
hyperspectral data from Mars Observer previously studied in [9].
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Abstract. In this paper, an algorithm for image coding based on a
sparse 3-dimensional Discrete Cosine Transform (3D DCT) is studied.
The algorithm is essentially a method for achieving a sufficiently sparse
representation using 3D DCT. The experimental results obtained by the
algorithm are compared to the 2D DCT (used in JPEG standard) and
wavelet db9/7 (used in JPEG2000 standard). It is experimentally shown
that the algorithm, that only uses DCT but in 3 dimensions, outperforms
the DCT used in JPEG standard and achieves comparable results (but
still less than) the wavelet transform.

Keywords: Sparse image coding, 3 dimensional DCT, wavelet trans-
form.

1 Introduction

In data compression reducing or removing redundancy or irrelevancy in the data
is of great importance. An image can be lossy compressed by removing irrelevant
information even if the original image does not have any redundancy [1]. The
JPEG standard [2] which is based on Discrete Cosine Transform (DCT) [3],
is widely used for both lossy and lossless image compression, especially in web
pages. However, the use of the DCT on 8×8 blocks of pixels results sometimes in
a reconstructed image that contains blocking effects (especially when the JPEG
parameters are set for large compression ratios). Consequently, JPEG2000 was
proposed based on Discrete Wavelet Transform (DWT) [4,5] which provides more
compression ratios than JPEG for comparable values of Peak Signal-to-Noise
Ratio (PSNR).
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Compression systems are typically based on the assumption that the signal
can be well approximated by a linear combination of a few basis elements in
the transform domain. In other words, the signal is sparsely represented in the
transform domain, and hence by preserving a few high magnitude transform
coefficients that convey most of information of the signal and discarding the rest,
the signal can be effectively estimated. The sparsity of representation depends
on the type of the transform used and also the signal properties. In fact the great
variety in natural images makes impossible for any fixed 2D transform to achieve
good sparsity for all cases [1]. Thus, the commonly used orthogonal transforms
can achieve sparse representations only for particular image patterns.

In this article an image coding strategy based on an enhanced sparse repre-
sentation in transform domain is studied which is based on a recently proposed
approach [6] for image denoising. Based on this approach an enhanced sparse
representation can be achieved by grouping similar 2D fragments of input image
(blocks) into 3D data arrays. We have used this approach with a 3D DCT trans-
form for image coding purposes. The procedure includes three steps: 3D DCT
transformation of a 3D array, shrinkage of the transform domain coefficients,
and inverse 3D DCT transformation. Due to the similarity between blocks in
a 3D array, the 3D DCT transform can achieve a highly sparse representation.
Experimental results demonstrate that it achieves outstanding performance in
terms of both PSNR and sparsity.

The paper is organized as follows. The next section describes the main idea
and discusses its effectiveness. The algorithm is then stated in Section 3. Finally,
Section 4 provides some experimental results of algorithm and its comparison
with DWT.

2 The Basic Idea

The basic idea of this article is achieving an enhanced sparse representation by
grouping similar 2D fragments of the input image into 3D arrays, and then using
a 3D DCT transformation to transform 3D arrays. In fact this idea has been
introduced in [6] for image denoising and has been shown to outperform state of
the art denoising algorithms [6]. Then, in this article, we consider applying an
approximately similar idea for image compression and study its performance.

A simple justification for the effectiveness of the proposed idea is as follow [6]:

• Assume that the grouping is done, i.e. similar blocks are placed in groups
and a 2D DCT transformation is used for each group.
• In each group we have similar blocks and hence after transformation we will

have the same number of high-magnitude coefficients for each block in a
group, say α high-magnitude coefficients for each block.
• Assuming n blocks in each group, we will have nα high-magnitude coefficients

in that group. In other words this group can be represented by nα coefficients.
• Now we should perform a 1D DCT transform on the third dimension (along

each row) of each group.
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• Components of this row are similar (because only similar blocks are in this
group), i.e. there is a kind of similarity for all members of the row.
• As an example, after using 1D DCT transform the first or second coefficients

of this row will be high-magnitude (because of the compaction property
of DCT transform). This means that the whole group can be represented
by α or 2α coefficients instead of nα coefficients (i.e. a much more sparse
representation).

3 The Algorithm

Based on the main idea of the previous section, the algorithm is as follows:

– Grouping:
1. Block input image to 8× 8 fragments with one pixel overlap
2. Save blocks in Y .

– while Y is not empty
for i=1,...,Number Of Fragments:

1. Choose one block as a reference block (Yr).
2. Calculate d(Yr , Yi) = ‖Yr−Yi‖22

N2 were Yi is the ith block.
3. if d(Yr, Yi) ≤Threshold Distance

• Assign Yi to a group.
• Remove Yi from Y.

Save resulted group in a 3D array named Group Array
– 3D DCT

1. for every group of Group Array
Perform a 2D DCT on that group

2. Perform a 1D DCT on the third dimension of Group Array
– Shrinkage

1. if Transform Domain Coefficients ≤ Hard Threshold
Discard that coefficient.

– Calculate inverse 3D DCT transform
– Place each decoded block in its original position.

Remark 1. For image blocking we have used (as suggested in [6]) blocks with
one pixel overlap to increase PSNR and also overcome the blocking effects
resulted from image blocking.

Remark 2. Grouping can be realized by various techniques; e.g., K-means clus-
tering, self-organizing maps, fuzzy clustering, vector quantization and others.
A complete overview of these approaches can be found in [7]. A much simpler
and effective grouping of mutually similar signal fragments can be realized
by matching as discussed in [6]. In matching we want to find blocks which are
similar to a reference block. It needs a search between all blocks to find blocks
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similar to a given reference block. The fragments whose distance from the
reference block is smaller than a grouping threshold are stacked in a group.
Any image fragment can be used as a reference block and thus a group can
be constructed for it. The similarity between image fragments is typically
computed as the inverse of some distance measure. Hence, a smaller distance
implies higher similarity. In particular, we use the same distance proposed
in [6] which is defined below as a measure of dissimilarity.

d(Yr , Yi) =
‖Yr − Yi‖22

N2 (1)

In (1), Yr is the reference block from which the distance of the ith block
(Yi) is calculated. N is the size of the chosen blocks (for all our simulations
8× 8 blocks are used, that is N = 8). This distance can also be computed in
the transform domain; i.e., we can do the grouping after 2D transformation
(transform domain grouping) and then perform a 1D DCT on third dimen-
sion along the rows. This idea was tested and the changes in PSNR were in
the order of 10−2 with the same sparsity.

Remark 3. Note that in the 3D DCT transformation at first a 2D DCT trans-
form is applied on groups and then a 1D DCT transform is performed on
the third dimension, which is on the rows of every group. Both of the used
DCT transformations are complete DCT transforms.

Remark 4. In the shrinkage we have used a hard thresholding methodology;
i.e., we have simply discarded those coefficients in the transform domain
whose magnitude is less than some fixed threshold.

Remark 5. Obviously a straightforward implementation of this algorithm is
highly computationally demanding. In order to realize a practical and ef-
ficient algorithm, some constraints should be considered. For example to
reduce the number of processed blocks we can only use a limited number of
reference blocks by choosing reference blocks between every N1 blocks. In
this way we will have (Total Number Of Blocks)/N1 reference blocks. A com-
plete set of such ideas to reduce the computational complexity and increase
the speed of the algorithm can be found in [6].

4 Simulation Results

In this section, we study the performance of the presented approach and compare
it with 2D DCT and wavelet transform for image compression. The wavelet trans-
form that we have used in this comparison is db9/7 which is used in JPEG2000
standard [8]. This wavelet transform is also used in FBI fingerprint database [9].
The images which have been used for all simulations are 441 × 358 Tracy and
Barbara images. Our criterion to measure sparsity is simply the "0 norm, that
is, the number of nonzero coefficients. The simulation results are as presented
in Table 1 (note that all transforms mentioned in this table are complete). In
this table dG stands for distance used for grouping and thC stands for the hard
threshold used to shrinkage the coefficients.
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As it can be seen in Table 1, generally the performance of 3D DCT is better than
2D DCT (an improvement about 2dB in PSNR with the same degree of sparsity).
Note that in the last row of the table for Tracy image the results of 2D DCT and
3D DCT are very close to each other. The reason is that in this case the distance
threshold used for grouping is very high (245) and therefore we don’t have an exact
grouping; i.e., similarity of the third dimension is not high and this yields weak
results with 3D DCT. Generally it can be deduced from the table that with more
precise grouping we will have better results but only in terms of PSNR. If we want to
achieve high sparsity at the same time, we would need some sort of balance between
the number of nonzero elements ("0 norm as a criterion to measure sparsity) and
PSNR. This result was expected because the main idea was based on the similarity
between blocks and if this similarity increases then the similarity that exists in
the third dimension of every array will increase and therefore more compaction
can be achieved. The best result from 3D DCT idea has been shown in bold in
the table. It should also be noted that generally 3D DCT results are weaker than
results obtained by wavelet transform in terms of PSNR with the same sparsity
for Tracy image. It is interesting to note the results for Barbara image. In this
case results of 3D DCT are closer to (or even better than) those of the Wavelet
transform.

Although the complexity of wavelet transforms depends on the size of filters
and the use of floating point vs integer filters, wavelet transforms are gener-
ally more computationally complex than the current block- based DCT trans-
forms [10].

Table 1. 3D DCT Versus 2D DCT and Wavelet db9/7

TestImage dG thC �0 Norm PSNR in dB
2D DCT 4 Level Wavelet db 9/7 3D DCT

10 50 3327 32.8294 38.2536 36.7798
10 30 4703 36.3101 39.8067 38.2879

Tracy 10 20 6175 37.9671 40.9493 39.3012
20 20 5608 37.3384 40.5386 39.0774
50 20 5189 36.8697 40.1906 38.7131
245 20 6009 37.8331 40.8519 38.1795
10 50 9027 27.5271 29.4975 29.3795
10 30 15068 30.3920 32.0041 32.2399

Barbara 10 20 22138 33.9195 34.5035 34.6991
20 20 21758 33.6757 34.5024 34.6826
50 20 21205 33.5548 34.4704 34.6386
245 20 20273 33.1230 34.1353 33.9469

Figures 1 and 3 show the original images and their decoded versions using
wavelet db9/7, DCT and 3D DCT for the bold rows of Table 1. As it can be
seen from these figures, the blocking effect when 2D DCT is used is clearly
visible. But when 3D DCT is used there is almost no blocking effect. In Figs. 2
and 4, a comparison between the performances of these three transforms is made
for both test images.
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Fig. 1. The zoomed results of using various transforms for Tracy test image (a) The orig-
inal image (b) Decoded image after compression using wavelet db9/7 (c) Decoded image
after compression using 2D DCT (d) Decoded Image after compression using 3D DCT

Fig. 2. Comparison between DCT, 3D DCT and wavelet db9/7 for Tracy test image
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Fig. 3. The zoomed results of using various transforms for Babara test image. (a) The
original image (b) Decoded image after compression using wavelet db9/7 (c) Decoded
image after compression using 2D DCT (d) Decoded Image after compression using
3D DCT.

Fig. 4. Comparison between DCT, 3D DCT and wavelet db9/7 for Barbara test image
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5 Conclusions

In this article the idea of a recently proposed approach for image denoising
was studied to be used for image compression. This idea is based on 3D DCT
transform to enhance the sparsity of the coefficients. Our simulations show that
the usage of this idea enhances the results compared to 2D DCT transform (used
in JPEG), and gives the results comparable (but still below) what is obtained
using wavelet transform (used in JPEG2000).
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Abstract. We present a Bayesian treatment of non-negative matrix fac-
torization (NMF), based on a normal likelihood and exponential priors,
and derive an efficient Gibbs sampler to approximate the posterior den-
sity of the NMF factors. On a chemical brain imaging data set, we show
that this improves interpretability by providing uncertainty estimates.
We discuss how the Gibbs sampler can be used for model order selection
by estimating the marginal likelihood, and compare with the Bayesian
information criterion. For computing the maximum a posteriori estimate
we present an iterated conditional modes algorithm that rivals existing
state-of-the-art NMF algorithms on an image feature extraction problem.

1 Introduction

Non-negative matrix factorization (NMF) [1,2] has recently received much atten-
tion as an unsupervised learning method for finding meaningful and physically
interpretable latent variable decompositions. The constraint of non-negativity is
natural for a wide range of natural signals, such as pixel intensities, amplitude
spectra, and occurence counts. NMF has found widespread application in many
areas, and has for example been used in environmetrics [1] and chemometrics [3]
to find underlying explanatory sources in series of chemical concentration mea-
surements; in image processing [2] to find useful features in image databases; in
text processing [4] to find groups of words that constitute latent topics in sets
of documents; and in audio processing [5] to separate mixtures of audio sources.

In this paper, we discuss NMF in a Bayesian framework. Most NMF algo-
rithms can be seen as computing a maximum likelihood (ML) or maximum a
posteriori (MAP) estimate of the non-negative factorizing matrices under some
assumptions on the distribution of the data and the factors. Here, we derive
an efficient Markov chain Monte Carlo (MCMC) method for estimating their
posterior density, based on a Gibbs sampling procedure. This gives not only an
estimate of the factors, but also an estimate of their marginal posterior density,
which is valuable for interpreting the factorization, computing uncertainty esti-
mates, etc. This work is related to the Bayesian spectral decomposition (BSD)
method of Ochs et al. [6], that uses a (computationally expensive) atomic point-
mass prior and is implemented in a modified commercial MCMC toolbox; and
to the Bayesian non-negative source separation method of Moussaoui et al. [7]
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that incorporates a hybrid Gibbs-Metropolis-Hastings sampling procedure. The
contributions of this paper are three-fold: 1) We present a fast and direct Gibbs
sampling procedure for the NMF problem that, compared with BSD, reduces
computation time by more than an order of magnitude on the same data. 2) We
present a marginal-likelihood estimation-method based on the Gibbs sampler,
which leads to a novel model order selection method for NMF. 3) We propose
an iterated conditional modes algorithm for computing the MAP estimate of the
Bayesian NMF, and show that this algorithm rivals current state-of-the-art NMF
algorithms. Matlab implementations of the presented algorithms are available at
http://www.mikkelschmidt.dk/ica2009.

2 Bayesian Non-negative Matrix Factorization

The non-negative matrix factorization problem can be stated as X = AB + E,
where X ∈ RI×J is a data matrix that is factorized as the product of two
element-wise non-negative matrices, A ∈ R

I×N
+ and B ∈ R

N×J
+ (R+ denotes

the non-negative reals), and E ∈ RI×J is a residual matrix. In the Bayesian
framework, we state our knowledge of the distribution of the residual in terms
of a likelihood function, and the parameters in terms of prior densities. The
priors are chosen in accordance with our beliefs about the distribution of the
parameters; however, to allow efficient inference in the model it is desirable
to choose prior densities with a convenient parametric form. In this paper, we
choose a normal likelihood and exponential priors, which are suitable for a wide
range of problems, while permitting an efficient Gibbs sampling procedure. We
assume that the residuals, Ei,j , are i.i.d. zero mean normal with variance σ2,
which gives rise to the likelihood,

p(X |θ) =
∏
i,j

N (
Xi,j ; (AB)i,j , σ2) , (1)

where θ = {A,B, σ2} denotes all parameters in the model and N (x;μ, σ2) =
(2πσ2)−1/2 exp(−(x − μ)2/(2σ2)) is the normal density. We assume A and B
are independently exponentially distributed with scales αi,n and βn,j ,

p(A) =
∏
i,n

E (Ai,n;αi,n) , p(B) =
∏
n,j

E (Bn,j;βn,j) , (2)

where E(x;λ) = λ exp(−λx)u(x) is the exponential density, and u(x) is the unit
step function. The prior for the noise variance is chosen as an inverse gamma
density with shape k and scale θ,

p(σ2) = G−1 (σ2; k, θ
)

=
θk

Γ (k)
(σ2)

−k−1
exp

(
− θ
σ2

)
. (3)

Using Bayes rule, the posterior can now be written as the product of Equations
(1–3). The posterior can be maximized to yield an estimate of A and B; however,
we are interested in estimating the marginal density of the factors, and because
we cannot directly compute marginals by integrating the posterior, we proceed
in the next section by deriving an MCMC sampling method.
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2.1 Gibbs Sampling

In Gibbs sampling, a sequence of samples is drawn from the conditional posterior
densities of the model parameters, that converges to a sample from the joint
posterior. To derive the Gibbs sampler for the Bayesian NMF problem, we first
consider the conditional densities of A and B which are proportional to a normal
multiplied by an exponential, i.e., a rectified normal density, which we denote
by R (

x;μ, σ2, λ
) ∝ N (x;μ, σ2)E(x;λ). The conditional density of Ai,n is

p(Ai,n|X, A\(i,n),B, σ
2) = R

(
Ai,n;μAi,n , σ

2
Ai,n

, αi,n

)
, (4)

μAi,n =
∑

j(Xi,j−
∑

n′ �=n Ai,n′Bn′,j)Bn,j∑
j B2

n,j
, σ2

Ai,n
= σ2∑

j B2
n,j
, (5)

where A\(i,n) denotes all elements of A except Ai,n, and due to symmetry, the
similar expression for Bn,j can easily be derived. The conditional density of σ2

is an inverse-gamma

p(σ2|X,A,B) = G−1(σ2; kσ2 , θσ2) (6)

kσ2 = IJ
2 + 1 + k, θσ2 = 1

2

∑
i,j(X −AB)2i,j + θ. (7)

The posterior can now be approximated by sequentially sampling from these
conditional densities.

A few remarks on the implementation: Since the elements in each column of
A (row of B) are conditionally independent, we can samples an entire column
of A (row of B) simultaneously. When I × J � (I + J)×N it advantageous to
implement equations (5) and (7) in a way that avoids explicitly computing large
matrix products of size I × J . The bulk of the computation is the comprised of
the matrix products XB� and A�X that can be precomputed in each iteration.
Based on this, an efficient NMF Gibbs sampler is given as Algorithm 1, where R
and G−1 denotes drawing a random sample from the rectified normal and inverse-
gamma densities, and the notation A:,\n is used to denote the submatrix of A
that consists of all colums except the n’th.

2.2 Estimating the Marginal Likelihood

An important problem in NMF is to choose the number of factors, N , for a given
data set (when this is not evident from the nature of the data). In the Bayesian
framework, model selection can be performed by evaluating the marginal like-
lihood, p(X), which involves an intractable integral over the posterior. Several
methods exist for estimating the marginal likelihood, including annealed impor-
tance sampling, bridge sampling, path sampling, and Chib’s method [8]. The
latter is of particular interest here since it requires only posterior draws, and
can thus be implemented directly using the described Gibbs sampler.

Chib’s method is based on the relation p(X) = p(X|θ)p(θ)
p(θ|X) . The numer-

ator can easily be evaluated for any θ, so the problem is to evaluate the
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denominator, i.e., the the posterior density at the point θ. If the parame-
ters are segmented into K blocks, {θ1, . . . ,θK}, using the chain rule we may
write the denominator as the product of K terms, p(θ|X) = p(θ1|X) ×
p(θ2|θ1,X) × · · · × p(θK |θ1, . . . ,θK−1,X). If these K parameter blocks are
chosen such that they are amenable to Gibbs sampling, each term can be ap-
proximated by averaging over the conditional density p(θk|θ1, . . . ,θk−1,X) ≈
1
M

∑M
m=1 p(θk|θ1, . . . ,θk−1,θ

(m)
k+1, . . . ,θ

(m)
K ,X), where θ

(m)
k+1, . . . ,θ

(m)
K are Gibbs

samples from p(θk+1, . . . ,θK |θ1, . . . ,θk−1,X). Thus, the marginal likelihood
can be evaluated by K runs of the Gibbs sampler. This procedure is valid for
any value of θ, but the estimation is most accurate when θ is chosen as a high
density point, e.g., the posterior mode.

In the NMF problem, the columns of A and rows of B can be used as the
parameter blocks, and the marginal likelihood can thus be estimated by 2N runs
of the Gibbs sampler, which makes this method attractive especially for NMF
models with a small number of components.

2.3 An Iterated Conditional Modes Algorithm

With the conditional densities of the parameters in the NMF model in place,
an efficient iterated conditional modes (ICM) [9] algorithm can be derived for
computing the MAP estimate. In this approach, we iterate over the parameters
of the model, but instead of drawing random samples from the conditionals, as
in the Gibbs sampler, we set each parameter equal to the conditional mode,
and after a number of iterations the algorithm converges to a local maximum of
the joint posterior density. This forms a block coordinate ascent type algorithm
with the benefit that the optimum is computed for each block of parameters
in each iteration. Since the modes of the conditional densities have closed-form
expressions, the ICM algorithm has a low computational cost per iteration. The
ICM NMF is given as Algorithm 2. In the algorithm, P+ sets negative elements
of its argument to zero.

3 Experimental Evaluations

3.1 Analysis of Chemical Shift Brain Imaging Data

We demonstrate the proposed bayesian NMF method on a chemical shift imag-
ing (CSI) data set [6], that consists of 369-dimensional spectra measured at
256 positions in a human head. The measured spectra are mixtures of differ-
ent underlying spectra, and the NMF decomposition finds these as the columns
of A and the corresponding active positions in the head as the rows of B.
Ochs et al. [6] demonstrate that the data is well described by two components
that correspond to brain tissue and muscle tissue, and present a bilinear MCMC
method that provides physically meaningful results but takes several hours to
compute. Sajda et al. [10,3] demonstrate, on the same data set, that a constrained
NMF method provides meaningful results, and Schmidt and Laurberg [11] ex-
tend the NMF approach by including advanced prior densities.
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In our experiments, the priors for A and B were chosen as αi,n = 1 and
βn,j = 10−6 to match the overall amplitude of the data. For the noise variance
we used an uninformative prior, k = θ = 0. We sampled 40, 000 points from the
posterior and discarded the first half to allow for the sampler to burn in. The
computations took 80 seconds on a 2 Ghz Pentium 4 computer. We then com-
puted the mean and the 5’th and 95’th percentile of the marginal distributions
of the resolved spectra. For comparison, we computed the MAP estimate using
the ICM algorithm, that provides a solutions almost identical to the results of
Sajda et al. [3]. The results are shown in Figure 1.

Uncertainty in NMF can be caused by noise in the data, but since NMF in
general is not unique multiple competing solutions may also be reflected in the
posterior. Also, because of the bilinear structure of NMF, uncertainties may
be correlated between A and B, which can not be seen in plots of marginal
distributions, but can be assesed through further analysis of the posterior density.

3.2 NMF Model Order Selection

To demonstrate the proposed model order selection method, we generated a
data matrix by multiplying two random unit mean i.i.d. exponential distributed
matrices with I = 100, J = 20, and N = 3, and added unit variance zero mean
i.i.d. normal noise. Using Chib’s method, we computed the marginal likelihood
for model orders between 1 and 5. We generated 20, 000 samples per parameter
block, and discarded the first half to allow burn-in; several runs of the algorithm

Algorithm 1. Gibbs sampler
for m = 1 to M do

C = BB�, D = XB�

for n = 1 to N do

A:,n←R
(
an, σ2

Cn,n
, α:,n

)
end
σ2←
G−1

(
IJ
2

+ k + 1, χ + θ + ξ
)

E = A�A, F = A�X
for n = 1 to N do

Bn,:←R
(
bn, σ2

En,n
, βn,:

)
end

A(m)←A, B(m)←B
end

Output.
{
A(m), B(m)

}M

m=1

Algorithm 2. ICM
repeat

C = BB�, D = XB�

for n = 1 to N do
A:,n = P+(an)

end

σ2 =
θ + χ + ξ
IJ
2

+ k + 1
E = A�A, F = A�X
for n = 1 to N do

Bn,:=P+ (bn)
end

until convergence
Output. A, B
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Fig. 1. Analysis of chemical shift imaging data. Two components are identified corre-
sponding to (top) muscle and (bottom) brain tissue. MAP estimation provides a point
estimate of the components whereas Gibbs sampling gives full posterior marginals, that
provide an uncertainty estimate on the spectra, and leads to better interpretation of
the results. For example, the confidence intervals show, that many of the low amplitude
peaks in the MAP spectra may not be significant.
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Fig. 2. NMF model order selection using Chib’s method and the Bayesian information
criterion (BIC). Left: A three-component toy example demonstrates that the method
finds the correct number of components where BIC fails due to the small sample size.
Center: Several runs of the algorithm suggest that the estimate of the marginal likeli-
hood is stable after a few thousand Gibbs samples. Right: Analysis of the chemical shift
imaging data confirms that it contains two spectral components. In this experiment,
Chib’s method and BIC were in agreement.
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Fig. 3. Convergence rate for three least squares NMF algorithms on an image feature
extraction problem. The ICM algorithm converges much faster than the Lee-Seung
algorithm and with similar rate per iteration as the Kim-Sra-Dhillon algorithm.

suggested that this was sufficient for the sampler to stabilize. For comparison,
we computed the Baysian information criterion (BIC), where the number of
effective parameters was chosen as the number of non-zero parameters in the
MAP estimate. The marginal likelihood attained its maximum at the correct
model order, N = 3, whereas BIC favored a simpler model, N = 2. The reason
why BIC fails in this case is the small number of samples in the data set, and
our results suggest that Chib’s method is more robust. Next, we applied the
marginal likelihood estimation technique to the CSI data set described in the
previous section, and here Chib’s method and BIC agreed in confirming that the
data contains two spectral components. The results are shown in Figure 2.

3.3 Image Feature Extraction

To compare our ICM algorithm with other methods, we computed an N = 32
components factorization of a database of images. We used the cropped UMIST
Face Database [12], which consists of 564 grayscale images of size 92× 112, that
were vectorized to form a data matrix of size I = 10304×J = 564. To be able to
directly compare with existing least squares NMF methods, we used a flat prior,
αi,n = βn,j = k = θ = 0. We compared with two state-of-the-art methods: Lee
and Seung’s multiplicative update algorithm [13] and Kim, Sra, and Dhillon’s
fast Newton algorithm (FNMAI) [14].

The results (see Figure 3) show that the ICM algorithm converges much faster
than the Lee-Seung algorithm and with approximately the same rate per itera-
tion as the Kim-Sra-Dhillon algorithm. Since all three algorithms are dominated
by the computation of the same matrix products they have approximately the
same computational cost per iteration.

4 Conclusions

We have taken a Bayesian approach to NMF and presented a fast MCMC sam-
pling procedure for approximating the posterior density, and we have showed
that this can be valuable for the interpretation of the non-negative factors re-
covered in NMF. The sampling procedure can also directly be used to estimate
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the marginal likelihood, which is useful for model order selection. Finally, we
have presented an iterated conditional modes algorithm for computing the MAP
estimate, that rivals existing state-of-the-art NMF algorithms.

Acknowledgments. We thank Paul Sajda and Truman Brown for making the
chemical shift brain imaging data set available to us.
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Abstract. Recently, we have proposed a blind source separation algo-
rithm to separate dyes in multiply labeled fluorescence microscopy im-
ages. Applying the algorithm, we are able to successfully extract the
dye distributions from the images. It thereby solves an often challenging
problem since the recorded emission spectra of fluorescent dyes are envi-
ronment and instrument specific. The separation algorithm is based on
nonnegative matrix factorization in a Poisson noise model and works well
on many samples. In some cases, however, additional cost function terms
such as sparseness enhancement are necessary to arrive at a satisfactory
decomposition.

In this contribution we analyze the algorithm on two very well con-
trolled real data sets. In the first case, known sources are artificially
mixed in varying mixing conditions. In the second case, fluorescent beads
are used to generate well behaved mixing situations. In both cases we can
successfully extract the original sources. We discuss how the separation
is influenced by the weight of the additional cost function terms, thereby
illustrating that BSS can be be vastly improved by invoking qualitative
knowledge about the nature of the sources.

Blind source separation (BSS) and independent component analysis in particu-
lar have become well established and are studied from applied and theoretical
perspectives. However, while possible applications are numerous, real-world ex-
amples of successful applications of BSS are surprisingly rare. They include audio
source separation [1], applications to data from neuroscience such as EEG [2] and
fMRI [5] and analysis of astrophysical data sets. Typically whole groups have
devoted a significant amount of time to the detailed development of a successful
strategy for applying ICA.

Recently [6] we have proposed a novel application of BSS algorithms1: We
applied BSS to multiply labeled fluorescence microscopy images, in which the
1 Accepted manuscript available at
http://wwwuser.gwdg.de/~azeug/paper/Zeug2008.pdf

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 548–556, 2009.
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sources are the individual labels. Their distributions are the quantities of interest
and have to be extracted from the images. We have developed a non-negative
matrix factorization (NMF) algorithm to detect and separate spectrally distinct
components of multiply labeled fluorescence images. It operates on spectrally
resolved images and delivers both the emission spectra of the identified compo-
nents and images of their abundances. We tested the proposed method using
biological samples labeled with up to 4 spectrally overlapping fluorescent labels.
In most cases, NMF accurately decomposed the images into the contributions
of individual dyes. However, the solutions are not unique, when spectra overlap
strongly or else when images are diffuse in their structure. To arrive at satisfac-
tory results in such cases, we extended NMF to incorporate preexisting quali-
tative knowledge about spectra and label distributions. For this an additional
sparseness constraint denoted as segregation bias was introduced.

In this contribution we will shortly present the algorithm as variant of NMF,
which instead of Gaussian noise assumes a Poisson noise model more adequate
for the microscopy environment. We then present a detailed study on both ‘semi
toy’ data, i.e. data generated on the basis of experimental data, and controlled
real data. The segregation bias is not required in the toy examples but turns
out to be crucial for real data. To illustrate the nature of the ambiguity and the
effect of the segregation bias, we introduce a visualization of the very common
case of three sources (dyes).

1 The PoissonNMF Algorithm

Given image data X ∈ RN×n, N being the number of pixels and n the number
of observed images i.e. the number of spectral wave lengths, consider the fac-
torization problem X ≈ AS. Here A ∈ RN×r denotes the r concentration maps
and S ∈ Rr×n the dye spectra.

We search for a factorization as above with both A and S non-negative. In
our case, a sensible noise model is to assume that at each pixel i in image j,
we independently observe xij photons observing a Poisson statistic P (xij) =
exp(−λij)λxij

ij /xij ! with rate parameter λij = (AS)ij =
∑r

k=1 aikskj given by
the noiseless model. The joint likelihood can therefore be written as

L(X|A,S) =
∏
ij

P (xij) =
∏
ij

exp(−λij)
λ
xij

ij

xij !
.

Hence, determining the parameters A and S by maximum likelihood implies
minimizing the negative log likelihood f0(A,S) := − lnL(X|A,S) =

∑
ij(λij −

xij lnλij +lnxij !). In practice, we include a sparseness term denoted segregation
bias with weight λ, favoring solutions with high spectral overlap and segregated
labels: f(A,S) = f0(A,S)+λ

∑
i(
∑

j |aij |)(
∑

j a
2
ij)
−1/2. Here sparseness is mea-

sured by the mean ratio of 1- over 2-norm of the rows of A. Taking derivatives
yields a gradient descent method, which by appropriate choice of the update
rates can be rewritten as multiplicative updates rules [6]:
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apq ← apq
1∑
j sqj

⎛⎝∑
j

sqjxpj
(AS)pj

+ λ

(
1

(
∑

j a
2
pj)1/2

− apq
∑

j apj

(
∑

j a
2
pj)3/2

)⎞⎠ ,
spq ← spq

1∑
j ajp

∑
j

ajpxjq
(AS)jq

.

This update rule is similar to the one derived by [3,4] using the Kullback-Leibler
divergence. Alternative minimization methods have been discussed for general
NMF algorithms, however many algorithms use such multiplicative update rules
simply due to the fact of easy preservation of non-negativity.

A key requirement for a useful algorithm is a direct assessment of the quality of
a separation. To enable such quality control for 3 or more source, we visualize the
extracted sources by constructing a so-called simplex-projection of the mixtures
along the estimated source spectra S ∈ Rn. We project a series of values x ∈ Rn

onto an affine 2-dimensional plane H ⊂ Rn that is being spanned by three
‘principal spectral vectors’ s1, s2, s3 ∈ Rn. The projection onto the simplicial
cone spanned by s1, s2, s3 can be visualized in two dimension by intersection it
with the plane spanned by the unit vectors. Then the mixture data lies in a
triangle spanned by the three dye spectra si, see e.g. figure 1(b). The details of
this projection are given as supplement of [6]. For more than three sources, this
projection can be applied using subset of the sources.

2 Application to Artificially Mixed Data

We will first show the results of poissonNMF when applied to the following test
data: Using a confocal laser scanning microscope (cLSM, Zeiss LSM 510 META)
equipped with a spectroscopic detection unit, we acquired xyλ image stacks of
three dye solutions, i.e. Alexa Fluor 488 (A 488), Alexa Fluor 546 (A 546, both
Invitrogen), and ethidium bromide (EtBr). Two acquisition parameter sets have
been used, one with 8 λ-channels of 21.4nm spectral width and the other with
16 λ-channels of 10.7nm spectral width.

Spatially non-overlapping sources. This sequentially recorded dataset was
rearranged to a 4d data stack (x × y × dye × λ), see figure 1(a). A trivial mix-
ture was generated where each pixel contains one dye only, which corresponds
to mixing matrix A = I. By applying the poissonNMF algorithm, we were able
to accurately retrieve the spectra of the individual dyes, shown in figure 1(b).
The reference spectra were obtained from the separate measurements of each
dye before concatenation. The simplex projection of the dataset X using the
obtained spectra S = (sA488, sA546, sEtBr) is shown in figure 1(c). The contour
plot representing the distribution of X shows three well distinct pixel clusters in
the appropriate region of the principle vectors (sA488, sA546, sEtBr). The size of
the individual distribution around one principle spectral vector is a measure for
the noise of the data X. The spectra found by the presented algorithm nicely
represent the distributions but slightly deviate from the individual central posi-
tions. This minor off-center position is one the scale of the noise in the dataset.
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(a) source data set
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Fig. 1. Non-overlapping mixture: the data is concentrated at the corners of the NMF
simplex. (a) sequentially acquired test data set of fluorescent dye solution. (b) extracted
source spectra (o) of A488 (blue), A546 (green) and EtBr (red) with respect to their
reference spectra (line). (c) data projection (contour plot) onto the simplex plane de-
fined by the three NMF spectra (red dots), which deviate slightly from the reference
spectra (blue dots), with a mean signal-to-noise ratio (SNR) of 32.9 dB.

The simplex projection also shows the boundary of the region on the affine hy-
perplane, where all components of the data are positive. Indeed, no data points
were found in the negative region of the surface. They are, however, very close
to the boundary, because the spectra are almost zero at some wavelength.

Despite of the significant overlap of the three spectra, NMF performed well on
the data shown in figure 1 and the additional segregation bias was required. The
algorithm converged after a few (3–5) iterations where for the presented dataset
of∼ 106 pixels each iteration cycle takes about 2 seconds on a standard Laptop (2
MHz CPU) without further speed optimization. The following iterations resulted
in only slight changes of the spectra, which are practically not visible but still
lead to an additional 20% decrease of the cost function. The presented results
have been obtained within 300 iterations, which roughly took 6 minutes including
pre and post processing. At the final iterations the cost function changed by less
than 0.01 percent. Due to the highly overdetermined structure of the data set
no significant differences have been found between the data set with 8 and 16
channels—except for the doubled computational cost for the doubled data size.
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Fig. 2. Discrete spatial overlap: the data is artificially mixed on three different levels,
see inset of (a). (a) itself shows the extracted source spectra (o) of A488 (blue), A546
(green) and EtBr (red) with respect to their reference spectra (line). (b) data projection
(contour plot) onto the simplex plane defined by the three NMF spectra (red dots),
which deviate slightly from the reference spectra (blue dots) as can be seen from a high
mean SNR of 34.4 dB.

Mixture with discrete spatial overlap. In a second application we generate
a patch of partially overlapping spectra by simply adding integer combinations of
the three single dye data to an artificial dataset. Here, the pixel show a mixture
of none, one, two or three dye spectra (figure 2). The resulting mixture image is
shown as inset in figure 2(a). Again the algorithm delivers precise spectra after
only a few iterations. According to the reduced size of the dataset (3.3 ·105 data
points) the computation time was one third of the calculation described before.
The spectra are similar to that in figure 1(b). Here the superposition of dyes
can be nicely found in the projection: Data points are not only found at the
corners of the simplex, but also at the middle of the sides for data points with
two dyes, and one at the center of the triangle when all three dyes are present
at a pixel. The estimated spectral basis again nicely encloses all data points in
the projection. A small fraction of datapoints to lie in the negative space of the
spectral basis, but the distance to the positive domain in less than the noise in
the data and data points that appear as if they had negative contributions are
consistent with that contribution being zero.

Sources with continuous spatial overlap. Realistic conditions are simulated
in the third example. Here we introduced a gradient to the dye sources to gen-
erate a fractional superposition of all dye contributions (figure 3). We took care
that A546 (green) does never occurs by itself; this can be seen by comparing the
simplex projections of figures 1–3). Due to the inhomogenity of the dye distri-
butions, the spectra show a stronger deviation from the reference spectra. The
algorithm does not converge as fast as in the previous examples, because the
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Fig. 3. Continuous spatial overlap: (a) a gradient was added in the artificially superim-
posed dyes. (b) dye distribution of A488 (blue), A546 (green) and EtBr (red) obtained
from NMF analysis. (c) extracted source spectra (o) of A488 (blue), A546 (green) and
EtBr (red) with respect to their reference spectra (line). (d) data projection (contour
plot) onto the simplex plane defined by the three NMF spectra (red dots), which only
slightly deviate from the reference spectra (blue dots), mean SNR 27.3 dB.

main contribution to the gradient comes from data points in the periphery of
the triangle, of which there are far fewer here. After 10 iterations the spectra
did not reach their final shape. The cost value reaches its 20% limit after 60 it-
erations. After 300 iterations the resulting dye distribution was acceptable, but
continuous to show deviations most obvious in the simplex projection. To find
a more precise decomposition the algorithm requires more iteration steps (or
sparseness must be introduced to the algorithm).

The simplex projection nicely visualizes the principle of the presented algo-
rithm. NMF will find spectra vectors such that the projected triangle (red in
figure 1(c), 2(c), 3(d)) optimally encloses all data points X (contour plot). Due
to the non negativity of spectral superposition only data points inside the trian-
gle can be described with this set of spectral vectors. Thus the spectral vectors
always have a slight tendency to larger triangles, especially in the case of datasets
with higher noise level i.e. with enlarged contours in the regions of the princi-
ple spectra. To force the algorithm to tighter triangles a sparseness enhancing
term was introduced, which results in smaller triangles. With this term, the al-
gorithm weighs data points outside the triangle against smaller triangle, such
that a number of data points can lie outside the triangle.
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(a) observed mixture data
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Fig. 4. Bead data set: (a) shows the observed mixture data set consisting of beads of
three different colors, measured in 16 channels. The extracted source SNRs are given
in (b) and are visualized via the simplex projection in (c). (d) gives a surface plot of
the concentration map with false colors encoding the three different dye sources.

3 Application to Bead Data

In a real experiment we examined a standard bead slide with a distribution of
three kinds of subresolution, single color beads using a spectra resolving cLSM
(Zeiss LSM 710). 18 lambda channels have been recorded simultaneously for a
3d image stack of 1024 × 1024 × 100 voxels. The resulting 3.5GB of data have
been analyzed with poissonNMF (figure 4). Presented in figure 4(a) is a λ-stack
of z-projections of a zoomed region of the data. The brightness of the three
different types of beads differs significantly. Moreover, even beads of one type
do not have a single brightness level. Due to clustering effects, beads frequently
aggregate so that spots can be found with a superposition of two or occasionally
three spectra, although the latter case is very unlikely due to steric conditions.

PoissonNMF was applied with different strengths of sparseness enhancement
(dark red to bright red with increasing sparseness). Due to the size of the dataset
slightly more computational power is required than is available from standard
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personal computers. However only a fraction of the data contains significant
information and the relevant subset can be extracted by thresholding. The sim-
plex projection was calculated for the spectral basis at highest sparseness. In
the simplex plane projection in figure 4(c) we see that the data is concentrated
on the bounding cone of the nonnegative mixing model. With increasing sparse-
ness the triangle of the spectral basis converges to the center of the three dye
distributions. We observed this stays more or less constant even when increas-
ing the sparseness parameter. Indeed when increasing λ the mean SNR of the
concentration images is above 30 dB already after 15% of the tested sparseness
values, figure 4(b). This shows the robustness of the method with respect to the
choice of sparseness parameter and underscores that the inclusion of such a bias
is not a fudge parameter that can be arbitrarily adjusted to obtain the desired
result. Instead, by adding the segregation bias to the data, we exploit qualitative
knowledge about the structure of the data.

4 Conclusions

We have studied a previously proposed NMF algorithm [6] in the application
context of spectral microscopy. A key requirement for the broad applicability of
such a separation algorithm is that it is well behaved in controlled examples.
Here we have analyzed artificial mixtures of real sources with varying concentra-
tion overlap and real data with close-to point activity in the concentration maps
(beads). In all the examples we see good separation performance. Moreover the
necessary use of sparseness in the case of realistic data is acceptable in the sense
that the additional sparseness parameter λ does not seem to strongly disturb
separation performance in a wide range of values — which can be determined
from the simplex projections. In future work we will extend and study the algo-
rithm in the case of higher-dimensional data sets and multiple excitation wave
lengths, which leads to nonnegative tensor factorization.
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the Helmholtz Alliance on Systems Biology (project ‘CoReNe’). RAN acknowl-
edges financial support by the National Science Foundation under grant no. NSF
PHY05-51164.
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Abstract. The problem of removing white zero-mean Gaussian noise
from an image is an interesting inverse problem to be investigated in this
paper through sparse and redundant representations. However, finding
the sparsest possible solution in the noise scenario was of great debate
among the researchers. In this paper we make use of new approach to
solve this problem and show that it is comparable with the state-of-art
denoising approaches.

1 Introduction

Being a simple inverse problem, the denoising is a challenging task and basically
addresses the problem of estimating a signal from the noisy measured version
available from that. A very common assumption is that the present noise is addi-
tive zero-mean white Gaussian with standard deviation σ. Many solutions have
been proposed for this problem based on different ideas, such as spatial adap-
tive filters, diffusion enhancement [1], statistical modeling [2], transfer domain
methods [3], [4], order statistics [5] and yet many more. Among these meth-
ods, methods based on with sparse and redundant representations has recently
attracted lots of attentions [8]. Many researchers have reported that such rep-
resentations are highly effective and promising toward this stated problem [8].
Pioneered by Donoho [5], sparse representations firstly examined with unitary
wavelet dictionaries leading to the well-known shrinkage algorithm [5]. A major
motivation of using overcomplete representations is mainly to obtain translation-
invariant property [6]. In this respect, several multiresolutional and directional
redundant transforms are introduced and applied to denoising such as curvelets,
contourlets, wedgelets, bandlets and the steerable wavelet [5] [8].

The aim of all such transforms is to provide a redundant sparse decomposi-
tion of the signal. In parallel, beside providing a suitable redundant transform,
representation of a signal with these transforms is also of high value, since such
a representation is not necessarily unique. Several methods are then proposed to
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find the best possible representation of a signal from a redundant, overcomplete
dictionary obtained by these transforms, namely Matching Pursuit(MP), Basis
Pursuit(BP), FOCUSS, and Smoothed "0- Norm (SL0) [7]. All these approaches
basically try to find the sparsest possible solution among all the possible rep-
resentations a signal can obtain. As an alternative point of view to obtain the
sparse representation, example-based dictionary learning of K-SVD which is in-
troduced by Aharon, et. al. [8] attempts to find the sparse dictionary over the
image blocks. When using the Bayesian approach to address this inverse problem
with the prior of sparsity and redundancy on the image, it is the dictionary to be
used that we target as the learned set of parameters. Instead of the deployment
of a pre-chosen set of basis functions like the curvelet or contourlet, this process
of dictionary learning can be done through examples, a corpus of blocks taken
from a high-quality set of images and even blocks from the corrupted image itself.
This idea of learning a dictionary that yields sparse representations for a set of
training image blocks has been studied in a sequence of works [8] and specifically
the one using K-SVD has shown to outperform in both providing the sparse rep-
resentation and capability of denoising. While the work reported here is based
on the same idea of sparsity and redundancy concepts, a different method is used
to solve the sparsest possible solution in presence of noise. An example-based
dictionary learning such as K-SVD along with here used technique can provide
better solutions in estimation of the original clean signal.

The paper is organized as follows. In section 2, we briefly present modeling of
the scenario in decomposing a signal on an overcomplete dictionary in the pres-
ence of noise. In section 3 we discuss this algorithm in the real image denoising
task. At the end we conclude and give a general overview to future’s work.

2 Finding the Sparse Representation in Presence of Noise

Consider the problem of estimation of x from the observed signal

y = x + n

where n denotes the observation noise. Assume that x has a sparse representation
over the dictionary Φ, i.e. x = Φα with a small ‖α‖00 (the number of nonzero
elements of a vector) and also assume that a good estimation on the energy of
the present noise, ‖n‖22 ≤ ε2 is provided.

The sparsest representation we are looking for, is simply

P0 : min ‖α‖00 subject to ‖y−Φα‖22 ≤ ε2 (1)

Note that the above-stated problem rarely has a unique solution [11], since
once the sparsest solution is found, many feasible variants of it sharing the same
support can be built. Since the above-stated problem is highly nonconvex and
hard to deal with, many researchers pursue a strategy of convexification with



Image Denoising Using Sparse Representations 559

– Initialization: let α = λ(I + ΦT Φ)−1ΦT y
(This is equivalent to the solution when the σ tends to be infinity)
i.e.:

argminα ‖α‖2
2 + λ‖y − Φα‖2

2

– Choose a suitable decreasing sequence for σ, [σ1 . . . σJ ].
– for n = 1, . . . , J :

1. Let σ = σn.
2. find αopt

σ = argminα (m − Fσ(α)) + λ‖y − Φα‖2
2

using any kind of optimization tool ,
say steepest decent with fixed number of iterations

– Final answer is α = αopt.

Fig. 1. Algorithm for finding the sparse coefficients in presence of noise

replacing "0 norm with "1- norm. so simply try to solve the following problem
instead:

P1 : min ‖α‖1 subject to ‖y−Φα‖22 ≤ ε2 (2)

where ‖α‖1 =
∑

αi is the "1-norm of α. Note that the replacing "0-norm by
other convex cost functions such as "1-norm is only asymptotic and the equiva-
lence does not always hold [9]. Hereafter, motivated by the recently stated work
of Mohimani, et al. [7] we seek to find the sparsest possible answer without
such a replacement and instead, attempt to relax the replacing "0- norm by a
continuous, differentiable cost function, say Fσ(α) =

∑
i exp(−α2

i /2σ
2).

This function tends to count the number of zero elements of a vector. So, as
stated in [7] the above problem can be converted to:

P0 : min
α

(m− Fσ(α)) subject to ‖y−Φα‖22 ≤ ε2 (3)

The above optimization task can be converted to optimizing the Lagrangian:

P0 : min
α

(m− Fσ(α)) + λ‖y−Φα‖22 (4)

So that the constraint becomes a penalty and the parameter λ is dependent
on ε. Solution toward this problem was recently proposed in [12] and it is shown
that for a proper choice of λ, these two problems are equivalent. The σ param-
eter determines the smoothness of the approximated cost function. By gradual
decrease in this parameter it is highly probable to skip trapping in local mini-
mum. The overall algorithm which is used through this paper is shown in Fig. 1
is a slight modification of the same idea presented in [12].

Once the sparsest solution of (3) has been found with the stated algorithm
summarized in Fig. 1, we can retrieve the approximate image by x̂ = Φα̂.
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3 Image Denoising

The problem of estimation of X from an observed noisy version of it under the
sparsity prior has two essential issues: first, to find a dictionary Φ which permits
a sparse representation regarding the fact that the sample are noisy and second
to find the coefficients of this sparse representation. The second phase was what
explained so far. As it was shown by Aharon [8], et. al., the K-SVD learning is
a very efficient strategy which leads to satisfactory results. This method along
with all other types of dictionary learning fails to act properly [8] when the size
of dictionary grows. Beside that, the computational complexity and thus time
needed for training will grow awesome.

When we are dealing with larger size images we are still eager to apply this
method but as stated it is computationally costly and both dictionary learning
and optimization to find the coefficients of sparse representation are sometimes
intractable. To overcome this difficulty, an image with size

√
N ×√N is divided

to blocks of size of
√
n × √n. These blocks are chosen highly overlapped for

two reasons: first, to avoid blockiness and second to have better estimate in
noise removal process. Then a dictionary is tried to be found over these blocks
and all these blocks are cleaned with algorithm of Fig. 1. Let Lij be a matrix
representing each block to be located in (ij )-th position of the image. Lij is
a matrix of size n × N which provides the location information of all possible
blocks of the images. So in this respect, the noise removal process changes to:

{X̂, α̂} = argminX,αλ‖Y−X‖22 +
∑
ij

γ‖αij‖00 +
∑
ij

‖Φα− LijX‖22 (5)

in which X is the original image to be estimated and the Y is the observed
available noisy version of it. This equation is similar to (1) with this slight dif-
ference that local analysis was taken into account and a linear combination of
"0-norm and "2-norm of all sparse representation and error between the original
signal and the reconstructed one tried to be minimized. In this process, visible
artifacts may occur due to blocking phenomena. To avoid this, we choose the
blocks with overlap and at the end average the results in order to prevent block-
iness artifact. After determining all the approximated coefficients, we estimate
the original image by solving the following equation:

X̂ = argminXλ‖Y−X‖22 +
∑
ij

‖Φα− LijX‖22 (6)

This quadratic equation has the solution:

X̂ = (λI +
∑
ij

LT
ijLij)−1(λY +

∑
ij

LT
ijΦα̂)−1 (7)

This estimated modified image can be interpreted as a relaxed averaging be-
tween the noisy observed image with the cleaned estimated one. The summarized
overall algorithm is shown is Fig. 2.
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– Goal: denoise a given image Y from additive white Gaussian noise with variance
of ‖n‖2

2

– parameters:
n block-size ,k dictionary, λ Lagrangian multiplier.the task is to optimize

{X̂, α̂} = argminX,αλ‖Y − X‖2
2 +

∑
ij γ‖αij‖0

0 +
∑

ij ‖Φα − LijX‖2
2

– train a dictionary Φ of size n × k using K-SVD.

– find the sparse noisy coefficients of α using algorithm stated in Fig. 1.

– Final estimation is X̂ = (λI +
∑

ij LT
ijLij)−1(λY +

∑
ij LT

ijΦα̂)−1.

Fig. 2. The final denoising algorithm
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Fig. 3. Coefficients of a sample block represented with OMP above and in bottom.
The latter, leads to the same result or sparsely superior one.

4 Experimental Results

In this work, the underlying dictionary was trained with the K-SVD method
and once the learning is done, the image blocks was represented sparsely via
Fig. 1. The algorithm of section 2 was used for such a representation. The overall
denoising method explained above was examined with numerous test images
mainly of size 256× 256 and 512× 512 with different noise levels. Blocks of size
8× 8 was driven by the synthesis noisy image and a dictionary of size 64× 256
was learned through this blocks using K-SVD method. Then we applied the
algorithm of Fig. 1 to represent each block on the provided dictionary, while
the similar approach done by Aharon [8] make use of Orthogonal Matching
Pursuit (OMP) [10] for this stage. The tested images are all the same ones as
those used in the denoising experiments reported in [8], in order to enable a fair
comparison. Table 1 summarizes the denoising results in the same database of
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Fig. 4. Coefficients of a sample block. From top to bottom: the original clean signal,
the signal corrupted with additive white Gaussian noise of ‖n‖2 = 20, recovered block
via OMP and the recovered block with the algorithm of Fig. 1.

Fig. 5. From left to right: original image, noisy image with zero-mean white gaussian
noise of ‖n‖2 = 20, the cleaned image via sparse representation described

images. In a quite large experiments we found sparser solution and better quality
of representations. Every result reported is an average over 5 experiments, having
different realizations of the noise. To show a comparison in sparsity yielded with
different methods coefficients in representations of a sample block with OMP
and the stated algorithm was depicted in Fig. 3. The quite same results is valid
for other blocks as well.

The denoised blocks were averaged, as described in Fig.2 .In Fig. 5 the results
of the overall algorithm for the image ”Barbara” for ‖n‖2 = 20 is shown. By
refereing to Table 1, as it is seen, when the level of noise grows, our approach
outperforms K-SVD with OMP and we can conclude the mentioned algorithm
is suitably designed for noisy cased with known energy.

Also a comparison was done with other types of sparse coding phase such
as FOCUSS and SL0 [8] and yet the proposed algorithm outperforms them. A
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Table 1. Summary of denoising PSNR results. In each column the bottom is corre-
sponding to our approach and the above is corresponding to the K-SVD with OMP.
the bold one corresponds with better response.

σ
PSNR

LENA BARBARA BOAT Fgrpt House Peppers Average σPSNR

2/42.11 43.58 43.67 43.14 42.99 44.47 43.33 44.47 43.33
42.11 42.38 42.17 41.85 42.92 42.51 42.92 42.51

5/34.15 38.60 38.08 37.22 36.65 39.37 37.78 39.37 37.78
38.18 37.41 36.68 36.17 38.25 37.08 38.25 37.08

10/28.13 35.47 34.42 33.64 32.39 35.98 34.28 35.98 34.28
35.42 34.51 33.62 32.31 35.60 34.53 35.60 34.53

15/24.61 33.70 32.36 31.73 30.06 34.32 32.22 34.32 32.22
33.91 32.79 32.13 30.258 34.40 32.79 34.40 32.79

20/22.11 32.38 30.83 30.36 28.47 33.20 30.82 33.20 30.82
33.46 32.01 31.29 29.16 34.19 31.58 34.19 31.58

25/20.17 31.32 29.60 29.28 27.26 32.15 29.73 32.15 29.73
32.72 31.01 30.46 28.90 33.61 30.83 33.61 30.83

50/14.15 27.79 25.47 25.95 23.24 27.95 26.13 27.95 26.13
28.98 26.93 27.30 24.43 28.69 27.70 28.69 27.70

75/10.63 25.80 23.01 23.98 19.97 25.22 23.69 25.22 23.69
26.93 24.71 25.33 21.69 26.83 24.28 26.83 24.28

100/8.13 24.46 21.89 22.81 18.30 23.71 21.75 23.71 21.75
26.32 23.55 24.36 22.19 25.08 23.14 25.08 23.14

sample comparison has been done in Fig. 4. In this experiment after providing
the dictionary, the sparse representation coefficients are found with different
approaches. The coefficients of the original clean signal, the signal corrupted
with additive white gaussian noise of v‖n‖2 = 20, recovered block via OMP and
the recovered signal via Fig. 1 is depicted in Fig. 4 and as it can be seen the our
recovered signal resembles more to the original signal.

5 Discussions and Conclusions

In this paper a simple algorithm for denoising application of an image was pre-
sented leading to state-of-the-art performance, equivalent to and sometimes sur-
passing recently published leading alternatives. It is basically on the basis of
sparse representation of an image in the presence of noise. The stated algorithm
considers local approach, splits the noisy observed image to several blocks and
learns a dictionary over these blocks and attempts to find the best possible sparse
representation of each block with this dictionary. In order to find the cleaned
image some averaging is needed to avoid the blocking effect in boundaries. Ex-
perimental results show satisfactory recovering of the image. Future theoreti-
cal work on the general behavior of this algorithm is on our further research
agenda.
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Abstract. This paper presents a method for enhancing a target speech
in the presence of a jammer and background diffuse noise. The method
is based on frequency domain blind signal separation (FD-BSS). In par-
ticular, the permutation resolution is done using both the direction of
arrival (DOA) information contained in the estimated filters and some
statistical features computed on the estimated signals. This enables the
separation of the target speech, the jammer and the diffuse background
noise which is not possible if using only the DOA or the statistical fea-
tures. Since in presence of diffuse noise, FD-BSS cannot provide a good
estimate of the target speech a channel wise modified Wiener filter is
proposed as post processing to further enhance the target speech.

Keywords: Acoustical blind signal separation, permutation resolution,
nonlinear post filter.

1 Introduction

The cocktail party problem is one of the well known applications of blind sig-
nal separation (BSS), the goal is to separate the speeches of several persons
talking at the same time by means of multiple microphones (also referred to
as BSS for convolutive mixture, see review paper [1]). In particular, the fre-
quency domain approach (FD-BSS) is of great practical interest because of its
lower computational cost [2]. However, a specific problem of FD-BSS is the so
called permutation indeterminacy that requires the addition of a permutation
resolution method to achieve the separation.

Since most of the research has been focused on the cocktail party problem an-
other application of FD-BSS has been overlooked: the extraction of a close target
speech signal from a diffuse background noise. This situation is of great interest
since it describes the simple human/machine hands-free speech interface. The
user interacting with the machine, target speech, is close to the microphone array
whereas other sources are at a larger distance and create the diffuse background
noise. The permutation methods developed for the cocktail party problem, that
exploit the direction of arrival (DOA) of the speeches [3], are not a reliable so-
lution in the presence of diffuse background noise. Thus an approach exploiting

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 565–572, 2009.
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the statistical discrepancy between the target speech and the diffuse background
noise was proposed to overcome this problem [4]. This method performs well as
long as the user is the only point source close to the microphone array. If another
speech source, referred to as jammer in the remainder, is close enough to the
microphone array to be considered as a point source the performance degrades
dramatically.

In this paper we propose a permutation resolution method combining the sta-
tistical information used in [4] with the DOA information. This approach solves
the problem of extracting the target speech in the presence of both diffuse back-
ground noise and jammer. Another issue is that in presence of diffuse background
noise, FD-BSS gives a better estimate of the diffuse background noise than of
the point sources [5]. Consequently the target speech is usually further enhanced
by some nonlinear post processing exploiting the noise estimate given by FD-
BSS (for example spectral subtraction [5] or Wiener filtering [6]). Similarly, in
our case, the estimates of the target speech and the jammer are still highly con-
taminated by the diffuse background noise whereas the diffuse background noise
is accurately estimated. Consequently, we apply a modified Wiener filter that
exploits the target speech and diffuse background noise estimates in order to
further enhance the target speech after the FD-BSS.

Some experimental results show that the proposed method is able to suppress
efficiently the diffuse background noise and the jammer with moderate distortion
of the target speech estimate.

2 Preliminaries: FD-BSS for Cocktail Party

In the cocktail party problem, the goal of FD-BSS is to recover some speeches
when only convolutive mixtures of these speeches are observed. Performing the
separation in the frequency domain replaces the time domain convolutive mix-
ture by several simpler instantaneous mixtures in the frequency domain. The
frequency domain model of the mixture is obtain by applying a short time
Fourier transform (STFT with a F points analysis frame) to the received sig-
nals. The observed signal at the fth frequency bin is X(f, t) = A(f)S(f, t),
where the n×n matrix A(f) represents the instantaneous mixture and S(f, t) =
[s1(f, t), . . . , sn(f, t)]T is the emitted signal at the fth frequency bin (t denotes
the frame index and f the frequency bin).

In the fth frequency bin, the estimates Y (f, t) = [y1(f, t), . . . , yn(f, t)]T are
obtained by applying an unmixing matrices B(f) to the observed signals

Y (f, t) = B(f)X(f, t) = B(f)A(f)S(f, t).

If the components of S(f, t) are statistically independent it is possible to recover
them up to scale and permutation indeterminacy by finding the unmixing matrix
B(f) that gives an estimate Y (f, t) with statistically independent components.
For such unmixing matrix we have Y (f, t) = P (f)Λ(f)S(f, t) where P (f) is a
n× n permutation matrix and Λ(f) is a diagonal n× n matrix ([7]) .

Because of the permutation indeterminacy P (f), before transforming back the
signals to the time domain, it is necessary to match the components belonging
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to the same signal across all the frequency bins. This is done by applying a
permutation resolution method. For the cocktail party problem, speech signal
can be approximately considered as a point source and FD-BSS is equivalent to
a set of adaptive null beamformers each having its null toward different speakers
[8]. Then it is possible to resolve the permutation by determining the position of
these nulls using the directivity pattern of the matrices B(f) [8]. A fast method
exploiting the DOA information that does not requires the estimation of the
directivity patterns was proposed in [3].

After resolving the permutation, the estimated speeches are still filtered by an
indeterminate filter because of the scaling indeterminacy Λ(f). A solution is to
project back the estimated speeches to the microphone array [9]. The projection
back of the ith estimate is a n component signal defined by

Z(f, t) = B(f)−1DiY (f, t)

where Di is a matrix having only one non null entry dii = 1. If we assume
perfect separation B(f)A(f) = P (f)Λ(f) and the estimated speech is sj(f, t)
then P (f) is such that P (f)−1DiP (f) = D1 and Z(f, t) = A(f, t)(:,j)sj(f, t)
where A(f, t)(:,j) is the jth column of A(f, t). Namely Z(f,t) is equal to the
contribution of the jth speech at the microphone array.

3 Proposed Method

3.1 Problem Formulation

The simple model of the human/robot hands-free speech interface is very dif-
ferent from the cocktail party model. The user is assumed to be close to the
microphone array and thus is modeled as a point source. But the other sources
are seen as a diffuse background noise as they are far from the microphone array
and the environment is reverberant. In particular the diffuse background noise
has no clear DOA preventing the use of a permutation resolution method based
solely on DOA.

In [4], we proposed a permutation resolution method that exploits the statis-
tical discrepancies between the diffuse background noise and the target speech.
This method works very well for the simple human/robot hands-free speech in-
terface. But for a more complicated model where the target speech and several
other speech sources, the jammers, stand out of the diffuse background noise
the performance are very poor. To treat this problem, we propose to improve
the method in [4] by exploiting the DOA information of some of the separated
components.

3.2 Permutation Resolution

In the time domain, the distribution of the speech signal amplitude is often
modeled by a Laplacian distribution because the speech is a non stationary sig-
nal having activity and non activity parts (silence). On the contrary, the diffuse



568 J. Even, H. Saruwatari, and K. Shikano

background noise is composed of the superposition of many sounds consequently
its amplitude has a distribution that is close to the Gaussian distribution. After
the STFT, in each of the frequency bins, we can also observe that the modulus of
the speech signal has a spikier distribution than that of the diffuse background
noise. This statistical discrepancy between speech and diffuse background noise
is the key of the permutation resolution method presented in [4]. In each fre-
quency bins, after convergence of the separation matrices B(f), the permutation
resolution is performed using statistical features computed on the components
of Y (f, t) (several methods are presented in [4]).

In this paper, we use the scale parameter αi(f) of the Laplacian distribution
that fits the distribution of the modulus. The maximum likelihood estimate of
this parameter is αi(f) = (E {|yi(f, t)|})−1. In [4], the component with the largest
parameter was selected as the target speech. In presence of several jammers,
we have several speeches thus we have several estimated components yi(f, t)
with large αi(f) (see Fig. 1(c) obtained for a target in front of the array and
one jammer; each symbol ◦, ×, � or � corresponds to a component). We first
estimate the number of speeches standing out of the diffuse background noise by
determining how many components have larger αi(f). Here we simply computed
the means of the αi(f) for the middle range frequency where the contrast between
speech and diffuse noise is the highest and applied a simple thresholding (see
Fig. 1(d) � and �).

After selecting the number m of speech components, we estimate the DOA
of the m components with higher αi(f), i.e. we use the spatial information
contained in the separation matrices B(f). This reduces the DOA information of
B(f) (in Fig. 1(b)) to that of the selected speech components only (in Fig. 1(e)).
Clustering the DOAs in Fig. 1(b) results in much permutation errors whereas
we are able to cluster easily the ones in Fig. 1(e) (see the clustered DOAs in
Fig. 1(f)).

Finally in the plane {αi(f), θi(f)}, Fig. 1(d), we can see the clustering of the
noise (� and �), the jammer (◦) and the target (×). The noise components have
low αi(f) and broad range for θi(f) whereas the speech and jammer components
have narrow range θi(f) and large αi(f). The discrimination between the jam-
mers and target requires some additional knowledge (for example the target is
assumed to be the closest to the front direction). Note: Using direct clustering
of the plane {αi(f), θi(f)} in Fig. 1(a) is another possible approach.

3.3 Channel-Wise Wiener Post Filter

After resolving the permutation and projecting back the estimated signals to the
microphone array we have (dropping frequency and frame indexes)

X̂S ≈ XS +XN , X̂J ≈ XJ +XN , X̂N ≈ XN ,

where XS(f, t), XJ (f, t) and XN(f, t) are the true values at the microphone
array of the target, the jammer and the noise. The reason is that FD-BSS can
only efficiently cancel n− 1 point sources when using a n microphone array [8]
(the proposed method can theoretically treats up to n− 2 jammers).
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Fig. 1. Statistical index αi(f) versus DOA θi(f) before clustering (a), all DOA θi(f)
versus frequency (b), statistical index αi(f) versus frequency (c), statistical index αi(f)
versus middle frequency range after speech selection (d), DOA of speeches versus fre-
quency before clustering (e), DOA of speeches versus frequency after clustering (f) and
statistical index αi(f) versus DOA θi(f) after clustering (g)
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Fig. 2. Overview of the proposed method

The jammer estimate is discarded whereas the speech and noise estimates are
used to compute the gain of a Wiener filter for further processing the target
speech (see Fig. 2). The modified Wiener filtering is applied on each of the
components of the projection back of the estimated target. The Wiener gain for
the ith component is

G(i)(f, t) =
|X̂(i)

S (f, t)|2 �K(f, t)

|X̂(i)
S (f, t)|2 �K(f, t) + γ|X̂(i)

N (f, t)|2 �K(f, t)

where the subscript (i) denotes the ith component, � denotes the 2D convolution,
K(f, t) is a small kernel (spectral smoothing) and γ is a parameter controlling the
noise reduction. The ith component of the filtered target speech is

Ŝ(i)(f, t) =
√
G(i)(f, t)|X̂(i)

S (f, t)|2 X̂
(i)
S (f, t)

|X̂(i)
S (f, t)|

.

finally the speech estimate is obtained by applying a delay and sum (DS) beam-
former in the direction θ of the target speech (the target DOA is estimated
during the permutation resolution step but requires some a priori knowledge
to discriminate between jammer and target) Ŝ(f, t) =

∑n
i=1G

(i)
DSθ(f, t)Ŝ

(i)(f, t)
where G(i)

DSθ(f, t) the gain of the DS beamformer at the ith microphone.

4 Experimental Results

We used a four microphone array with inter-microphone spacing of 2.15cm. The
target speaker is in front at one meter of the microphone array whereas the
jammer is at two meters with an angle of −40o. The diffuse noise source is
created by a vacuum cleaner at two meters from the array at an angle of 40o.
The room reverberation time is T60 = 200ms. The SNR of the target speech
to the jammer is 0dB. We performed simulations with different level of diffuse
noise 5dB, 10dB and 15dB SNR. For each case we used 100 different utterances
for a female target speaker and five different utterances for a male jammer (the
signals are from a database of Japanese utterances at 16kHz). All results are
averaged values computed on these 500 trials.

The short time Fourier transform uses a 512 point hanning window with 50%
overlap and pre-emphasis (a first order high pass filter zp = 0.97). Speech separa-
tion is performed by 600 iterations of the FD-BSS method with adaptation step
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of 0.3 divided by two every 200 iterations. The nonlinear functions in the update
rule are estimated from the data (adapted from [10]). The spectral smoothing
uses a Gaussian kernel K(f, t) of size 9× 9.

First we checked that the proposed permutation resolution method solves the
problem encountered in [4] by comparing the quality of the target and noise
estimates. The estimation quality is measured in term of noise reduction rate
(NRR) defined as the difference of the SNR before and after processing, i.e. a
positive value indicates improvement [8]. In Fig. 3, we can see that the speech
estimate obtained with the proposed method (LAP-DOA) is better than that of
the method in [4] (LAP) and also outperforms the delay and sum beamformer
(DS). DS refers to a simple delay and sum beamformer in the target direction
(not to the proposed post processing). The quality of the noise estimation re-
mains the same.

Fig. 3. NRR for target and noise estimation with proposed permutation solver (LAP-
DOA) and permutation solver in [4] (LAP) and target estimate with DS beamformer

N
R

R
[d

B
]

CD CD CD

Input SNR 5dB Input SNR 10dB Input SNR 15dB

DS

BSS

Proposed

Fig. 4. Noise rate reduction (NRR) versus Cepstral distance (CD) for DS beamformer
(◦), BSS (�) and the proposed method (×)

Then to see the improvement of the post-processing, we both considered the
NRR and the cepstral distance (CD) between the estimated signal and the contri-
bution of the target speech at the microphone array. The CD measures the amount
of nonlinear distortion introduced by the post processing stage. Figure 4 shows the
NRR versus the CD at different SNRs (input SNR: between speeches and noise).
The simple delay and sum beamformer (circ), the BSS target speech estimate (�)
and the proposed method (×) with parameter γ ∈ {0.1, 0.5, 1, 1.5, 3, 5, 10, 15, 20,
25, 50, 75, 100} are compared. For the proposed method NRR and CD are increas-
ing with γ. For a CD of the same order as the DS, the proposed method has an
NRR improvement over BSS of 8.34dB, 5.1dB and 4.4dB at 5dB, 10dB and 15dB
of SNR respectively (γ = 75, γ = 20 and γ = 10).
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5 Conclusions

In this paper we proposed a permutation resolution method efficient for the hu-
man/machine hands-free interface as it can deal with diffuse background noise
and jammer in a blind manner. Moreover we show how to further enhance the
target speech by applying a modified Wiener filter that exploits the good esti-
mation of the diffuse background noise.
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Abstract. We describe a new localisation and source separation algo-
rithm which is based upon the accurate construction of time-frequency
spatial signatures. We present a technique for constructing time-frequency
spatial signatures with the required accuracy. This algorithm for multi-
channel source separation and localisation allows arbitrary placement of
microphones yet achieves good performance. We demonstrate the efficacy
of the technique using source location estimates and compare estimated
time-frequency masks with the ideal 0 dB mask.

1 Introduction

Speech is sparse in the time-frequency (T-F) domain, a property which has
been exploited for Blind Source Separation (BSS), [4]. Related assumptions,
namely the log-max [5] or Windowed Disjoint Orthogonality (WDO) assumption
[8] in various transform domains are exploited for decompositions of financial
data [6] and images [9]. Localisation can be performed in the time or frequency
domain when the technique relies on a sparse representation in a dictionary
of pre-computed transfer functions [1,2]. We discuss the challenges involved in
constructing a T-F dictionary of spatial signatures for source localisation in
T-F in Section 3. A typical office contains recording devices, such as mobile
phones, MP3 players, PDAs, hearing aids, and computers all equipped with
(largely unused) microphones. Consider a dedicated teleconferencing room, with
an arbitrary number of inexpensive microphones. The source location, detected
using this sensor array, is used to automatically identify the speaker or indicate
the position of the speaker in the room. Our goal is to perform localisation and
separation using multiple observations from arbitrarily placed sensors. The T-F
domain lends itself to this problem as speech typically has increased WDO [8]
and sparsity [7] in the T-F domain than in the time domain or frequency domain.

In an anechoic environment, a continuous time source signal sj(t) is attenuated
and delayed as it propagates the direct path to sensor xi. The attenuation and
delay effect on the jth source received at the ith sensor is (aji, δji), consequently
ŝji(t) = ajisj(t−δji). I mixture signals are observed, xi(t), at physical locations
xi, where hji(t) is the continuous time transfer function from source to sensor.

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 573–580, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The source is constrained to lie at one of P arbitrarily placed grid points. We
consider a synthetic scenario where the sensors are placed arbitrarily in a 2m×
2m× 2m room in Section 4 and observe the signals,

xi(t) =
J∑

j=1

ŝji(t) = h1i(t) $ s1(t) + h2i(t) $ s2(t) + · · ·+ hJi(t) $ sJ(t). (1)

2 Fractional Delay of Discrete Signals

A continuous time signal s(t) is denoted by s[n] = s(nT ) in the discrete time
domain where T is the sampling period and n = 0, 1, 2, . . .. A continuous time
signal delayed by δ ∈ R seconds is denoted by s(t − δ). A discrete signal, s[n],
can be delayed by an integer, d, number of samples giving s[n−d] or by rounding
down, �d�, if d = δ/T is non-integer yielding s[n − �d�]. A source signal s(t) is
delayed by δ seconds propagating to a sensor xi in an ideal anechoic telecon-
ferencing room. Constraining the source physical locations such that the signals
can only be delayed by an integer number of samples in the discrete time domain
when propagating to each sensor limits the possible source locations. Alterna-
tively, rounding down (denoted by �d�) introduces error. Although sources are
constrained to lie on a grid, this grid can be refined and a space of interest more
densely populated to locate arbitrarily placed sources. Non-integer sample delay,

sδ[n] = s(nT − δ), (2)

can be computed using sinc interpolation, given that the signal is bandlimited
and sampled at a sufficiently high sampling rate,

sδ[n] =
∞∑

n=−∞
s[n]sinc(nT − δ). (3)

In practice a finite length approximation of the sinc function leads to error
in the estimate of sδ[n]. A non-integer sample delay of a bandlimited signal
sampled above the Nyquist rate can also be determined by multiplying the Dis-
crete Fourier Transform of s[n], DFT{s[n]} = S[k] =

∑N−1
n=0 s[n]W

kn where k =
0, 1, . . . , N − 1 and W = e−j

2π
N , by a linear phase term W kd. This corresponds

to a circular shift of the signal by d = δ/T ∈ R samples. We define the zero-
padding function ZP (b, s[n], e) which appends b and e zeros to the beginning
and end of the signal respectively. The inverse-pad function IP (b, s[n], e) re-
moves b and e samples from the beginning and end of the signal. Zero-padding
by -d., where -·. is the ceiling function, taking the DFT, multiplying by the
linear phase term, taking the IDFT and inverse-padding gives the desired re-
sult. Defining IDFT{S[k]} = 1

N

∑N−1
k=0 S[k]W−kn to be the inverse DFT, the

frequency domain method in (Eqn. 4) is the benchmark method we shall use for
the remainder of this work.

sδ[n] = IP
(-d., IDFT{DFT{ZP(-d., s[n], 0)}W kd}, �d�) (4)
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The contributions of this paper are the formulation of the T-F spatial signa-
tures problem, the construction of a practical solution via Algorithm 1 and the
synchronized STFT, and a demonstration of the efficacy of the technique by
implementing a source localisation algorithm in the discrete T-F domain.

3 Time-Frequency Spatial Signatures

S[k,m] is the Short-Time-Fourier-Transform (STFT) of s[n],

STFT{s[n]} = S[k,m] =
N−1−mR∑
n=mR

s[n]wa[n−mR]W k(n−mR) (5)

positioned at sample mR where wa[n] is the analysis window function and R
is the number of window hop-size samples. [k,m] are the discrete frequency and
time indices respectively. N is the FFT size. The STFT is inverted using the
synthesis window ws[n] and Over-Lap and Add (OLA) re-synthesis. A discrete
source signal sj [n] is delayed by d ∈ R samples (neglecting attenuation effects)
as it propagates to sensor xi yielding sδj [n].

Problem. Construct a T-F spatial signature Hδ[k,m] so that,

Sδj [k,m] = S0
j [k,m]Hδ[k,m] for j = 1, . . . , J and ∀|δ|/T < Δ. (6)

Sδj [k,m] and S0
j [k,m] are the synchronized STFT (sSTFT) of sδj [n] and sj [n]

respectively. We define the sSTFT so that the analysis window is centered on
the same portion of the signal for the signal delayed by |δ|/T < Δ samples,
and the windowed segment of sδ[n] is a circular shift of the windowed seg-
ment of s[n]. Δ is a user defined upper-bound on the range of delays under
consideration specified by the maximum expected propagation distance.

The sSTFT is an alternative T-F analysis to the typical STFT method in (Eq. 5).
It has the property that if a single source is active in T-F bin [k,m], the T-F
representation of the source at each xi is calculated such that wa[n] is aligned
with the received delayed source sδj [n] ∀|δ|/T < Δ.

Definition 1. For a delay |δ|/T < N/4 samples, we define the sSTFT of sδj [n],

Sδj [k,m] =
N−1−mR∑
n=mR

sδj [n]w
δ
az [n−mR]W k(n−mR), (7)

where the window hop-size is R = N/4 samples. We define analysis and synthesis
windows which are non-zero for N/2 samples and zero-padded by N/2 zeros,

waz [n] = ZP (N/4, wa[n], N/4) , wsz [n] = ZP (N/4, ws[n], N/4) (8)
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Fig. 1. The STFT (Eq.5) using wa[n] (which is not zero-padded) does not have the
circular shift property in col. 1. The sSTFT (Eq.7) using waz[n] (which is zero-padded)
allows the analysis to be synchronized with delays up to N/4 samples in col. 2.

to form a pair of windows of length N . Firstly, waz[n] allows the signal s[n] to
be shifted by |δ|/T < N/4 samples such that the circular shift property still
holds for each local windowed version of s[n]. Secondly, waz [n], is aligned with
the source signal by delaying it by d = δ/T samples so that the same samples of
s[n] and sδ[n] are multiplied by the same samples of wδ

az[n]. We define,

wδ
az [n] = IDFT{DFT{waz}[n]W kd} and wδ

sz [n] = IDFT{DFT{wsz}W kd} (9)

Fig. 1 illustrates the difference between the STFT and the sSTFT using a signal,
s[n], of length 32 samples in column 1 row 1. We index each subplot using the
figure number and then row and column index in parenthesis, e.g. Fig. 1(1,1).
Samples 9-24 are analyzed using a 16-point FFT and 16-point Hamming window.
The Hamming window is superimposed on the signal in Fig. 1(2,1). Samples 9-24
supported by the window, wa[n], have linear stalks. Samples 1-8 and 25-32 are
denoted by dotted stalks. s[n] is delayed by 3 samples in Fig. 1(3,1). Different
portions of the signal s[n] and its delayed counter-part are analyzed in Fig. 1(2,1)
and Fig. 1(3,1) using the STFT. Samples common to both windowed signals are
scaled differently due to the shifted version of the signal in Fig. 1(2,1) and
Fig. 1(3,1) relative to the window. The Fourier transform circular shift property
does not hold for the local windowed signal Fig. 1(2,1) and its delayed windowed
version Fig. 1(3,1). Analyzing s[n] as specified by (Eq.7) using the zero-padded
window w0

az [n] (Eq. 8) with δ = 0 in Fig. 1(2,2) and analyzing sδ[n] with wδ
az [n]

(Eq. 9) in Fig. 1(3,2) preserves the Fourier transform circular shift property.
w0
az [n] is pre-zero-padded and post-zero-padded by N/4 samples. w0

az [n] is non-
zero for N/2 samples. A circular shift of w0

az[n] by d < N/4 samples yielding,
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wδ[n], times sδ[n] results in a windowed signal which is a circular shift of the
original windowed signal in Fig.1(2,2). This facilitates the construction of T-F
spatial signatures using the Fourier transform circular shift property. Due to the
analysis window alignment of the sSTFT, the re-synthesis is not dependent on
the analyzed signal s[n]. The synthesis window wδ

sz [n] corresponding to wδ
az [n] is

used to re-synthesize any signal accurately using OLA. Synchronized T-F spatial
signatures independent of the signal to be delayed and unbiased by wrap-around
and windowing can be estimated using Alg. 1 and sSTFT.

Algorithm 1. Synchronized T-F Spatial Signatures
s[n] delayed by δ/T < N

4 samples, resulting in sδ[n], is calculated by element-
wise multiplication with the matrix Hδ[k,m] in discrete T-F given the s[n]
is analyzed using (Eq. 7) yielding S0[k,m] using the analysis window w0

az in
(Eq. 8), e.g. Sδ[k,m] = S0[k,m]Hδ[k,m]. Using the sample indices q, g

Hδ[k,m] =

∑Q−1−mN
4

q= mN
4

sinc(qT − mN
4 − δ)wδ

az [q − mN
4 ]W k(q−mN

4 )∑G−1−mN
4

g= mN
4

sinc(gT − mN
4 )waz [g − mN

4 ]W k(g−mN
4 )

. (10)

We form x[k,m] = [X1[k,m], . . . , Xi[k,m], . . . , XI [k,m]]T ∈ CI×1 a vector of the
observations at each sensor for each T-F point [k,m] using sSTFT. We construct
a T-F spatial signatures matrix for each [k,m], D[k,m] ∈ CI×P , using Alg. 1
and attenuating each Hpi[k,m] using aji. D[k,m] gives the transfer function,
Hpi[k,m], for every location, p, in the grid relative to each sensor, xi, for [k,m].

D[k,m] =

→
Se

ns
or

i
←

←−Location p−→⎛⎜⎜⎜⎜⎜⎜⎝

H11[k,m] . . . Hp1[k,m] . . . HP1[k,m]
... . . .

... . . .
...

H1i[k,m] . . . Hpi[k,m] . . . HPi[k,m]
... . . .

... . . .
...

H1I [k,m] . . . HpI [k,m] . . . HPI [k,m]

⎞⎟⎟⎟⎟⎟⎟⎠ (11)

The J sources [s1, . . . sj . . . , sJ ] are constrained to lie on a subset of the P grid
points. We locate a source by estimating the vector c[k,m] ∈ CP×1 which ex-
plains the sensor observations in the most parsimonious manner given D[k,m].

x[k,m] = D[k,m]c[k,m]. (12)

4 Source Localisation and Separation Simulations

We solve each subsystem [k,m] in (Eq. 12) independently. This approach lends
itself to real-time parallel implementation on dedicated processors. Assuming
WDO in T-F, a single source is active in [k,m]. The element of the estimated



578 R. de Fréin, S.T. Rickard, and B.A. Pearlmutter

c[k,m] with the most energy, for example p = 25 in Fig. 2(b), indicates the
position of the source. For example in Fig. 2(b) a mixed L1 + λL2

2 objective
function prejudiced in favor of the sparsity constraint, L1-norm yields a solution
with significant energy at one grid location p = 25 in comparison with a solution
with an emphasis on the L2

2-norm. The weight λ is a data dependent heuristic.
Masking the mixture at xi, Xi[k,m], using cp[k,m] as an indicator for each [k,m]
for each p of interest, separates the source at p. We consider a mixed objective

min
c

1
2

P∑
i=1

|cp|︸ ︷︷ ︸
E1

+λ ||Dc− x||22︸ ︷︷ ︸
E2

, and define D̃ =
(

Re{D̂} −Im{D̂}
Im{D̂} Re{D̂}

)
. (13)

We use an iteratively re-weighted least squares approach in the spirit of [3],

min
c
Ê(c) = Ê1 + λE2, Ê1 ≡ 1

2

P∑
p=1

αk
p|ckp|2, α ∈ RP×1 and Λ = diag (α). (14)

Using a modified objective (Eq. 14) we solve ∂Ê(c)
∂ck = 0 for ck, where k denotes

the iteration index and (·)H denotes the conjugate transpose operation.(
Λ + λD̃

T
D̃

)(
Re{c}
Im{c}

)
= λD̃

T
(

Re{x}
Im{x}

)
= (Λ + λDHD)c = λDHx(15)

Solving (15) iteratively and setting αk+1
p = 1/|ckp| yields a fixed point solution.

In the first experiment we show that construction of accurate T-F spatial sig-
natures, Hji(k,m), is crucial for a sparse solution. Wrap-around and windowing
effects inherent in unsynchronized analysis using STFT of (Eq. 5) introduce er-
ror and occlude the true solution. We estimate Sδ[k,m] using (Eq. 7) to analyze
s[n]. We delay s[n] in T-F using Alg. 1 and re-synthesize using OLA with wδ

sz [n]
and hop-size of N/4 (method 1). We compare method 1 with a STFT approach
(method 2) e.g., s[n − d] ≈ ISTFT(STFT(s[n], wa, N,N/2)W kd, ws, N,N/2).
Method 2 performs analysis of s[n] using the STFT (Eq. 5) with a window wa[n]
of N samples and hop-size N/2 (as in Fig. 1 column 1). A linear phase termW kd

shifts each frame of the signal in T-F. The resulting signal is re-synthesized using
the inverse STFT with a synthesis window ws[n] of length N and overlap N/2
using OLA re-synthesis. SNR is defined as 20∗ log(||sδB [n]||2)/||sδB[n]−sδest[n]||2),
where sδest[n] is the estimate of the delayed signal and the benchmark, sδB[n], is
computed using (Eq. 4). We analyze speech from the TIMIT database, sam-
pled at 16kHz, with the parameters N = 2048 and R = N/4 and R = N/2
for method 1 and 2 respectively. Fig. 2(a) illustrates the window wrap-around
and windowing effects on the delayed source using the sSTFT (method 1) and
STFT (method 2). The sSTFT method exhibits sub-sample dips in SNR due
to the numerical instability of the truncated delayed sinc function yet degrades
gracefully as a function of delay and achieves an estimate > 40dB when delayed
by 511 samples. The SNR of method 2 in Fig. 2(a) decreases rapidly as a func-
tion of delay in samples due to windowing effects. These inaccurate T-F spatial
signatures are unsuitable for localization via sparse representations.
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Fig. 2. Fig. 2(a) illustrates the effects of window misalignment and wrap-around using
the STFT compared to sSTFT analysis. Row 2 Fig. 2(b) shows that a sparse solution
reveals the source location (position 25) compared to a more dense solution (Row 1).

Table 1. Average Localisation and Separation Performance

Source PSR WDO WDO (0dB) Loc %

p 3 5 6 3 5 6 3 5 6 3 5 6
s1 25 0.89 0.60 0.86 0.88 0.60 0.83 0.92 0.87 0.85 25.0 8.0 6.3
s2 97 0.90 0.69 0.67 0.89 0.68 0.65 0.92 0.82 0.75 47.0 14.0 11.0
s3 105 0.80 0.58 0.67 0.79 0.57 0.65 0.87 0.79 0.69 17.0 5.0 5.0
s4 5 − 0.86 0.70 − 0.85 0.68 − 0.79 0.73 − 24.0 3.0
s5 62 − 0.94 0.90 − 0.92 0.89 − 0.90 0.86 − 43.0 54.0
s6 112 − − 0.77 − − 0.74 − − 0.78 − − 18.0

In the second experiment we perform source localisation, using the sSTFT
approach, in a synthetic 2m × 2m × 2m room with grid points every 50cm.
We tune (Eq.13) over a range of λ. A sparse solution decreases the Euclidean
distance between our signal estimate and the original signal as the trade-off
between the reconstruction penalty E2 and sparsity penalty E1 is adjusted in
(Eq.13). Mixtures of 1 to 6 speakers are generated from the TIMIT database
by assigning them randomly to grid-points {25, 97, 105, 5, 62, 112}. We perform
multiple experiments with different initial conditions to test the accuracy of the
localisation experiment. We use 10 microphones in each experiment. We choose
candidate locations—based on the signal power at each location—by analyzing a
subset of the T-F points with the optimal analysis window for each grid point p,
e.g. wp

az . Localisation and separation is performed using these optimal windows.
The mean results for the 3, 5, 6 speaker cases are tabulated in Table 1. The T-F
mask metrics PSR and WDO introduced in [8] are used for comparison with the
0dB ideal mask defined in [8] to gauge separation performance. Our technique
achieves performance comparable with the 0dB mask. A significant percentage
of the signal energy is located at the correct source positions.

With regard to existing T-F separation algorithms, relying on relative mea-
surements between multiple observations of the mixture could introduce bias if
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the analysis is unsynchronized using STFT (Eq. 5). The DUET algorithm [8]
estimates relative attenuations and delays between two closely spaced sensors
using the ratios of the STFT of the observations at sensor x1 and x2. A bias has
been noted in attenuation and delay estimates in [8] where the delay between 2
sensors ranges from −5 to 5 samples and attenuation from −0.15 to 0.15. It is
clear from Fig. 1 that using (Eq. 5) to computeX1[k,m] and X2[k,m] and taking
the ratio of these two channels in T-F, introduces error as the mixture at x2 is
shifted relative to the window and the mixture x1[n]. The circular shift property
is not satisfied. The delay estimate is only approximate δ[k,m] ≈ − 1

2πk∠X2[k,m]
X1[k,m] .

The samples of the windowed signal x1[n] common to the windowed x2[n] are
scaled differently due to window misalignment for analysis and so the relative
attenuation α[k,m] ≈ |X2[k,m]

X1[k,m] | is approximate. To conclude, the synchronized
STFT method combined with the algorithm for T-F spatial signature construc-
tion facilitates the implementation of a global signal shift as a circular shift with
in the support of each frame of the analyzed signal. We have presented a sparse
source localisation technique using synthetic experiments to motivate this ap-
proach. Incorporating sSTFT into a existing techniques, such as DUET and its
extensions will lead to gains in accuracy of the mixing parameter estimation. We
will extend this approach to the echoic case in future work.
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Abstract. The problem of Blind Source Separation (BSS) of convolved acous-
tic signals is of great interest for many classes of applications such as in-car
speech recognition, hands-free telephony or hearing devices. The quality of
solutions of ICA algorithms can be improved by applying time-frequency mask-
ing. In this paper, a number of time-frequency masking algorithms are com-
pared and a post-processing algorithm is presented that improves the quality
of the results of ICA algorithms by applying a modified speech enhancement
technique. The proposed method is based on a combination of "classical" time-
frequency masking methods and an extended Ephraim-Malah filter. The algo-
rithms have been tested on real-room speech mixtures with a reverberation time
of 130 - 159 ms, where a SIR-improvement of up to 23dB has been obtained,
which was 11dB above ICA performance for the same dataset.

1 Introduction

Blind source separation (BSS) is a technique of recovering the source signals using only
observed mixtures when the mixing process is unknown. In recent years, the problem
has been widely studied and many methods have been proposed [11,14]. However, in
the majority of cases, the estimated source signals are still corrupted by remaining in-
terferences. The quality of the recovered source signals can be improved by applying
post-processing on the ICA outputs [14]. There exist a number of algorithms for cal-
culating time-frequency masks from the estimated direction of arrival of the separated
signals [15,19], from the estimates of the local SNRs [9], from the cosine distance be-
tween a sample vector and the basis vector corresponding to the target [16], or from an
approximation of the remaining interferences [7]. The main idea of the proposed ap-
proach is to combine the information contained in the time-frequency masks from the
algorithms above with a better speech enhancement technique in order to improve the
separation performance. For this propose, a method for the post processing stage, based
on the optimally-modified Log-Spectral Amplitude (OM-LSA) estimator by Cohen [4],
is adapted for the multichannel case. The proposed method is a further development of
the approach presented in [8].

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 581–588, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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A further goal of this paper is a comparative study of different time frequency mask-
ing algorithms to show the effectiveness of different approaches on the same datasets.

2 Proposed Method

In this section, the applied method for blind source separation is presented. First the
time-domain signals are converted into frequency-domain time-series signals using the
Short-Time Fourier Transform (STFT), on which the JADE-Algorithm is applied, to
compute the unmixing filter matrices W(Ω). At the next step, the permutation problem
is treated, so the unmixing filter matrices can be corrected by multiplication with the
permutation matrix P(Ω) as described already in [1,17]. At the post-processing stage
of the algorithm, a speech enhancement algorithm is applied to improve the quality
of the extracted signals and to minimize those crosstalk components, which were not
eliminated by the ICA algorithm.

2.1 ICA

Acoustic signal mixtures in reverberant environments can be described by

x(t) = A ∗ s(t), (1)

where s(t), x(t) and A denote the the vector of source signals, the vector of mixed
signals and a mixing matrix containing the impulse responses between the sources and
the sensors and ∗ denotes the convolution operator. Transforming (1) into the frequency
domain reduces the convolutions to multiplications

X(Ω, τ) ≈ A(Ω)S(Ω, τ), (2)

where Ω is the normalized angular frequency, τ represents the frame index, A(Ω) is the
mixing system in the frequency domain, S(Ω, τ) = [S 1(Ω, τ), . . . , S N(Ω, τ)] represents
the source signals, and X(Ω, τ) = [X1(Ω, τ), . . . , XN(Ω, τ)] denotes the observed signals.
So for each frequency bin an instantaneous ICA problem has to be solved. For this
purpose the JADE-algorithm has been used, which is based on joint diagonalization of
the most significant cumulant matrices of higher order [2].

2.2 Permutation Correction

The filter matrices calculated by ICA can be randomly permuted. To solve the permu-
tation problem, the phase differences in the estimated unmixing filter matrices are used
[1,16]. For this purpose we normalize the estimated mixing matrix Â(Ω)) on the first
row, so the normalized mixing matrix can be written as

Â(Ω) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 · · · 1
· · · · · · · · ·

â j1e− jΩδ j1 · · · â jne− jΩδ jn

· · · · · · · · ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (3)

To correct the permutations, the phase differences δi are compared and the columns
of the mixing filter matrix are sorted, so δi < δk for all i < k.
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2.3 Time-Frequency Masking

In this section, a brief review of existing time-frequency masking algorithms will be
given. Each approach calculates a mask in the range 0 ≤M(Ω, τ) ≤ 1.

Amplitude Based Mask Estimation. The time-frequency mask is calculated by com-
paring the estimates of the local SNRs of the output signal Yi(Ω, τ) with a threshold
T [9]

Mi(Ω, τ) = Ψ

(
log
(
|Yi(Ω, τ)|2

)
−max
∀ j�i

log
(∣∣∣Y j(Ω, τ)

∣∣∣2) − T
10

)
(4)

and a sigmoid nonlinearity Ψ defined by

Ψ (x) =
1

1 + exp(−x)
. (5)

The threshold T was set to 3dB, with higher thresholds leading to better SNR gains but
in some test cases to musical noise.

Phase Angle Based Mask Estimation. The algorithm proposed in [16] considers
closeness of the phase angle θi(Ω, τ) between a column of the mixing matrix ai(Ω) and
the observed signal X(Ω, τ) calculated in the space transformed by a whitening matrix
V(Ω) = R−1/2(Ω), R(Ω) =

〈
X(Ω, τ)X(Ω, τ)H

〉
. The phase angle is given by

ϑi(Ω, τ) = arccos

∣∣∣bH
i (Ω)Z(Ω, τ)

∣∣∣
‖bi(Ω)‖ ‖Z(Ω, τ)‖ , (6)

where Z(Ω, τ) = V(Ω)X(Ω, τ) are whitened samples and bi(Ω) = V(Ω)ai(Ω) is the basis
vector i in the whitened space. Then the mask is calculated by

Mi(Ω, τ) =
1

1 + exp(g(ϑi(Ω, τ) − ϑT ))
(7)

where ϑT and g are parameters specifying the transition point and its steepness,
respectively.

Interference Based Mask Estimation. The mask is estimated by

Mi(Ω, τ) =
1

1 + exp(g(S̃i(Ω, τ) − λs))
×
(
1 − 1

1 + exp(g(Ñi(Ω, τ) − λn))

)
(8)

where λs, λn and g are parameters specifying the threshold points and the steepness of
the sigmoid function and S̃i(Ω, τ) and Ñi(Ω, τ) are speech and noise dominance mea-
sures given by

S̃i(Ω, τ,RΩ,Rτ) =

∥∥∥Φ(Ω, τ,RΩ,Rτ)(Yi(Ω, τ) −∑m�i Ym(Ω, τ))
∥∥∥∥∥∥Φ(Ω, τ,RΩ,Rτ)

∑
m�i Ym(Ω, τ)

∥∥∥ (9)

and

Ñi(Ω, τ,RΩ,Rτ) =

∥∥∥Φ(Ω, τ,RΩ,Rτ)(Yi(Ω, τ) −∑m�i Ym(Ω, τ))
∥∥∥

‖Φ(Ω, τ,RΩ,Rτ)Yi(Ω, τ)‖ . (10)
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Here, ‖·‖ denotes the Euclidean norm operator and

Φ(Ω, τ,RΩ,Rτ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
W(Ω − Ω0, τ − τ0,RΩ,Rτ), |Ω − Ω0| ≤ RΩ,

|τ − τ0| ≤ Rτ
0, otherwise

(11)

utilizes a two dimensional window functionW(Ω−Ω0, τ−τ0,RΩ,Rτ) of the size RΩ×Rτ
(e.g. a two dimensional Hanning window) [7].

Power Ratio Based Mask Estimation. Power ratio was proposed in [17] and was
originally used for detection of permutations.

powRatioi(Ω, τ) =

∥∥∥aH
i (Ω)Yi(Ω, τ)

∥∥∥2∑N
k=1 ‖ak(Ω)Yk(Ω, τ)‖2 (12)

where ai(Ω) is the i-th column of the estimated mixing matrix and Yi(Ω, τ) is the un-
mixed signal i. Since this measure is in the range 0 ≤ powRatioi(Ω, τ) ≤ 1 and repre-
sents the dominance of the i-th separated source in the observation, it is possible to use
the power ratio for masking purposes, so Mi(Ω, τ) = powRatioi(Ω, τ).

2.4 Speech Enhancement

In the following, an algorithm is described to minimize the remaining noise components
based on a speech enhancement technique. For this purpose, the following signal model
is assumed

Y(Ω, τ) = Yc(Ω, τ) + Yn(Ω, τ), (13)

where the clean signal Yc(Ω, τ) is corrupted by a noise component Yn(Ω, τ), the remain-
ing sum of the interfering signals and the background noise. To improve the quality of
the separated signals, an optimally modified log-spectral amplitude (OM-LSA) speech
enhancement technique has been used. The estimated signals are obtained by

Ỹ(Ω, τ) = G(Ω, τ)Y(Ω, τ), (14)

where G(Ω, τ) is the amplitude estimator gain. It is calculated by

G(Ω, τ) = GS E(Ω, τ)p(Ω,τ)G(1−p(Ω,τ))
min , (15)

where Gmin is a spectral floor constant, GS E the gain of the speech enhancement method
and p(Ω, τ) is the speech presence probability [3,6]. The speech presence probability
is used to modify the spectral gain function. Since the probability functions are not
known, the masks from section 2.3 are used at this point to approximate the speech
presence probability. For the calculation of the gain GS E(Ω, τ) in (15), different speech
enhancement algorithms can be used. In [8] the method by McAulay and Malpass [12]
has been used. In this paper it is suggested to use the log spectral amplitude estimator
(LSA) as proposed by Ephraim and Malah [5].

For our algorithm, we defined the a posteriori γi(Ω, τ) and a priori SNR ξi(Ω, τ) by

γi(Ω, τ) =
|Yi(Ω, τ)|2
λD(Ω, τ)

(16)
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and

ξi(Ω, τ) = αξi(Ω, τ − 1) + (1 − α)
λX(Ω, τ)
λD(Ω, τ)

, (17)

where α is a smoothing parameter that controls the trade-off between the noise reduction
and the transient distortionis [6], Yi(Ω, τ) is the i-th ICA-output, λD(Ω, τ) is the noise
power

λD(Ω, τ) = αDλD(Ω, τ − 1) + (1 − αD)D2
i (Ω, τ) (18)

with the noise estimate Di(Ω, τ) given by

Di(Ω, τ) = |Yi(Ω, τ)| (1 − pi(Ω, τ)), (19)

and λX(Ω, τ) is the approximate clean signal power

λX(Ω, τ) = (|Yi(Ω, τ)| pi(Ω, τ))
2 . (20)

With these parameters, the log spectral amplitude estimator is given by:

GS E(Ω, τ) =
ξ(Ω, τ)

1 + ξ(Ω, τ)
exp

(∫ ∞
t=ν(Ω,τ)

e−t

t
dt

)
(21)

with ξ(Ω, τ) denoting the local a priori SNR and ν(Ω, τ)

ν(Ω, τ) =

(
ξ(Ω, τ)

1 + ξ(Ω, τ)

)
γ(Ω, τ). (22)

3 Experiments and Results

3.1 Recording Conditions

For the evaluation of the proposed approaches, two different sets of recordings were
used. The first data set was created at TU Berlin. In these recordings different audio
files from the TIDigits database [10] were used and mixtures with up to four speakers
were recorded. The distance Li between loudspeakers and microphones were varied be-
tween 0.9 and 2 m. The second dataset was recorded in a meeting room under mildly
reverberant conditions [18]. Here, also mixtures with up to four speakers are repre-
sented. The experimental setup is shown schematically in Figure 1. The experimental
conditions are summarized in Table 1.

3.2 Parameter Settings

The algorithm was tested on both recordings, which were first transformed to the fre-
quency domain at a resolution of NFFT = 1024. For calculating the spectrogram, the
signals were divided into overlapping frames with a Hanning window and an overlap of
3/4 · NFFT and the STFT was then calculated.
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Fig. 1. Experimental Setup

Table 1. Mixture description

Mixture Mix. 1 Mix. 2 Mix. 3 Mix. 4 Mix. 5 Mix. 6
TU Berlin TU Berlin TU Berlin NTT Labs [18] NTT Labs [18] NTT Labs [18]

Reverberation time TR 159 ms 159 ms 159 ms 130 ms 130 ms 130 ms
Distance between 3 cm 3 cm 3 cm 4 cm 4 cm 4 cm

two sensors d
Sampling rate fS 11 kHz 11 kHz 11 kHz 8 kHz 8 kHz 8 kHz

Number of speakers N 2 3 4 2 3 4
Distance between L1 = L2 = L1 = L2 = L1 = L2 = L1 = L2 = L1 = L2 = L1 = L2 =

speaker i and array center 0.9 m L3 = 0.9 m L3 = L4 = 1.2 m L3 = 1.2 m L3 = L4 =

= 0.9 m = 1.2 m
Angular position θ1 = 50◦ θ1 = 30◦ θ1 = 25◦ θ1 = 30◦ θ1 = 30◦ θ1 = 30◦
of the speaker i θ2 = 115◦ θ2 = 80◦ θ2 = 80◦ θ2 = 70◦ θ2 = 70◦ θ2 = 70◦

(as shown in θ3 = 135◦ θ3 = 130◦ θ3 = 110◦ θ3 = 110◦
Figure 1) θ4 = 155◦ θ4 = 150◦

3.3 Performance Measurement

For calculation of the effectiveness of the proposed algorithm, the signal to interfer-
ence ratio (SIR) was used as a measure of the separation performance and the signal to
distortion ratio (SDR) as a measure of the signal quality.

SIRi = 10 log10

∑
n y2

isi
(n)∑

j�i
∑

n y2
is j

(n)
(23)

SDRi = 10 log10

∑
n x2

ksi
(n)∑

n(xksi(n) − αyisi(n − D))2
, (24)

where yi,s j is the i-th separated signal with only the s j source active, and xk,s j is the
observation obtained by microphone k when only s j is active. α and D are parameters
for phase and amplitude chosen to optimally compensate the difference between yi,s j

and xk,s j .
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Table 2. Experimental results (mean value of output SIR/SDR in [dB])

Mixture Mix. 1 Mix. 2 Mix. 3 Mix. 4 Mix. 5 Mix. 6
TU Berlin TU Berlin TU Berlin NTT Labs NTT Labs NTT Labs

ICA only 6.8/8.2 5.1/4.3 3.2/1.6 12.2/12.7 7.1/7.7 4.5/4.4

ICA and TF-Mask from [9] 12.0/6.5 7.6/4.0 5.4/1.4 17.5/10.2 9.1/7.1 5.2/4.4
ICA and proposed method using [9] 16.1/5.4 10.4/3.3 9.0/0.9 21.0/7.8 10.6/5.6 5.8/3.5

ICA and TF-Mask from [16] 11.5/5.5 13.1/2.9 11.8/0.2 19.3/8.8 12.5/4.8 9.1/1.8
ICA and proposed method using [16] 12.6/4.8 15.7/2.1 14.3/-0.2 20.5/7.7 13.6/3.9 11.4/1.2

ICA and TF-Mask from [7] 14.3/5.7 13.1/2.6 10.9/0.3 19.0/9.3 16.4/4.1 12.9/1.5
ICA and proposed method using [7] 16.0/5.4 14.8/2.4 12.7/0.1 20.2/8.4 17.5/3.5 13.8/1.4

ICA and TF-Mask using Power Ratio 11.0/7.2 9.5/3.6 7.7/0.9 15.8/10.8 11.1/5.9 6.9/2.7
ICA and proposed method using Power Ratio 14.6/6.2 12.6/2.7 10.1/0.4 17.7/8.9 13.6/4.6 7.8/2.0

ICA and TF-Mask
combination of [9] and [16] 13.9/5.0 13.7/2.8 12.6/0.1 21.9/8.3 12.4/4.7 8.7/2.1

ICA and proposed method using
a combination of [9] and [16] 18.2/4.0 17.6/2.1 15.9/-0.0 25.8/6.4 13.1/3.7 9.6/1.5

ICA and TF-Mask
combination of [7] and [16] 15.9/4.5 16.9/2.2 15.3/-0.3 23.0/7.9 17.7/3.7 14.9/1.3

ICA and proposed method using
a combination of [7] and [16] 18.3/3.9 20.9/1.8 18.3/-0.6 25.0/6.8 19.9/2.9 17.4/1.0

ICA and TF-Mask
combination of Power Ratio and [16] 13.9/5.2 14.5/2.6 13.3/0.3 21.6/8.4 13.5/4.4 9.3/1.8

ICA and proposed method using
a combination of Power Ratio and [16] 17.8/4.2 19.1/1.9 16.2/-0.2 24.6/6.9 16.6/3.2 11.8/1.1

3.4 Experimental Results

In this section the experimental results of the signal separation will be compared. All
the mixtures from Table 1 were separated with the JADE algorithm and subsequently
the time frequency masking from Sections 2.3-2.4 was performed using parameter
settings as shown in Section 3.2. For each result the performance is calculated using
Eq. (23)-(24). Table 2 shows the results of the applied methods.

4 Conclusions

In this paper, an approach for the post processing of ICA outputs for speech mixtures
has been presented. It uses the combination of an optimally modified log-spectral am-
plitude (OM-LSA) speech enhancement technique and information from different time
frequency masking algorithms for approximation of speech probabilities. The proposed
algorithm has been tested on reverberant speech mixtures with RT60 ≈ 130 - 159 ms.
As can be seen in Table 2, the best results were achieved by applying a combination
of the algorithms presented in [7] and [16] for probability calculation. Still, the results
of the proposed method depend on the results of the preceding BSS algorithm. Thus,
given a low ICA performance (in terms of SIR,SDR), a stronger signal distortion should
be expected, which is the case for all tested masking algorithms. This tendency can be
seen especially in Mixture 3 in Table 2.

With the proposed method an SIR-improvement of up to 23dB has been obtained.
This is 11dB above ICA performance for the same dataset.
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Abstract. The acoustic echo cancellation (AEC) problem in the double-
talk scenario and the blind source separation (BSS) problem resemble
each other in that, for both problems, mixed signals are given and the
objectives are to remove unwanted signals from the mixed signals. As
many BSS algorithms have utilized the non-Gaussianity of the source
signals to solve the separation problem, the super-Gaussianity of the
near-end speech signal can be utilized to perform AEC in the double-
talk scenario. Here, we propose a maximum likelihood (ML) approach
using a super-Gaussian source prior to solve the double-talk-scenario
AEC problem and compare the algorithm with minimizing mean squared
error (MSE). The simulation results and analysis support the efficiency
of the proposed method.

1 Introduction

In hands-free teleconferencing where microphones and loudspeakers are located
in the same room, acoustic echo is unavoidable. Echo refers to the sound that
is heard again after being reflected. In a teleconferencing system as in Fig. 1,
the voice of the far-end speech (FES) is played by the near-end loudspeakers
and is inevitably captured by the near-end microphones, and thus it is sent
back to the far-end loudspeakers to become echo. Also, the echo can be reflected
again to produce a chain of echoes in the far-end room. During a conversation,
such echoes are mostly annoying and they usually disturb the participants in
their conversation by letting the talkers hear their own voice back. Hence, in a
teleconferencing system, it is essential to prevent the FES from being reflected.

Other than physically blocking the unwanted signal from entering the mi-
crophone, a common approach to this problem is to algorithmically remove the
unwanted signal. While sound is played in the near-end loudspeaker, the signal
can be sampled by the system (which we will call the reference signal) and can
be used to remove itself that is filtered and added into the microphone signal.
This kind of problems are called acoustic echo cancellation (AEC) problems
and are basically system identification problems where the input signals and the

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 589–596, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



590 I. Lee et al.

Fig. 1. Configuration of a duplex videoconferencing system

corresponding output signals of the system are given. Here in the problem, the
system to be identified is the convolution of the room impulse response and the
impulse response of the loudspeaker, that are mostly identified together as one
filter.

AEC has been researched for several decades and there have been many suc-
cessful algorithms proposed where most of them assume that in the microphone
signal there is no foreground speech, or only noise, added to the convolved ref-
erence signal. In this case, popular objective functions are such ones as mean
squared error (MSE), least square, or weighted least square. (For more details,
please see [1] and the references therein). However, in the microphone signal,
local speech can easily be mixed with the convolved reference signal. The AEC
problem in such a double-talk scenario is more challenging for system identifica-
tion than the AEC problem in single-talk scenario.

In order to solve this problem, we take advantage of the non-Gaussian property
of the echo-canceled near-end speech signal. And thus, a maximum likelihood
(ML) approach using super-Gaussian source priors is proposed. This kind of ap-
proach closely resembles the methods of independent component analysis (ICA)
or blind source separation (BSS) since non-Gaussianity has been one of the most
important key factors in those algorithms. In this paper, we will show that max-
imizing non-Gaussianity is also very efficient, and superior to minimizing MSE,
in solving the double-talk-scenario AEC problem.

2 Notations

In this section, the notations are defined. It should be noted that the signals
including the filters whose notations we define here are the frequency-domain
counterparts. Scalars (including complex-valued ones), vectors, and matrices will
be denoted with normal lowercase, bold lowercase, and bold uppercase letters,
respectively. Also, all vectors will be column vectors.
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– (·)T: the transpose operator.
– (·)H: the Hermitian transpose operator.
– | · |: the absolute value of a number or variable.
– PΘ(z|Θ): a probability distribution family with respect to parameter(s) Θ.
– m: the number of microphones, the near-end talkers, the loudspeakers, or

the far-end talkers, which are all the same.
– N : the number of frames in short-time Fourier domain.
– Ẽ[·]: the expectation with respect to the empirical distribution, i.e. 1

N

∑N
n=1 ·.

– sfi [n]: the short-time Fourier transformed (STFT-ed) i-th NES, i.e. the
speech of the i-th near-end talker in f -th frequency bin.

– rfi [n]: the STFT-ed i-th reference signal, i.e. the signal sampled from the
i-th loudspeaker in f -th frequency bin.

– xfi [n]: the STFT-ed i-th microphone signal in f -th frequency bin.
– afij : the STFT-ed transfer filter from sj to the xi in f -th frequency bin.

Here we assume that the time-domain filter is time-invariant and it should
be noted that the ”short time” includes the whole filter length such that no
frame variable is applicable to this filter.

– hfij : the STFT-ed transfer filter from rj to the xi in f -th frequency bin.
Again, we assume that the time-domain filter is time-invariant and it should
be noted that the ”short time” includes the whole filter length such that no
frame variable is applicable to this filter.

Hence, their relation is

xfi [n] =
m∑
j=1

afijs
f
j [n] +

m∑
j=1

hfijr
f
j [n], i = 1, · · · ,m. (1)

Note that in such (rough) STFT-domain expressions, there is some error that
comes from the difference between the actual linear convolution and the circular
convolution in the STFT domain. This problem will be ignored in this paper by
assuming that the discrete Fourier transform (DFT) size is big enough to keep
this error negligible.

The (STFT-ed) parameters and signals that have to be learned are defined as
the following.

– ĥij : the estimate of hij .
– ĥf

i : the i-th column of (Ĥf )H.
– yfi [n]: the echo-canceled xfi [n] with respect to ĥij (j = 1, · · · ,m), i.e.

yfi [n] = xfi [n]−
m∑
j=1

ĥfijr
f
j [n]

= xfi [n]− (ĥf
i )

Hrf [n], i = 1, · · · ,m, (2)

and the ideal goal is

yfi [n] =
m∑
j=1

afijs
f
j [n], i = 1, · · · ,m. (3)
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3 Frequency-Domain Acoustic Echo Cancellation from
the Maximum Likelihood Perspective

The lengths of the filters to be learned depend on the reverberation times of the
room. The time-domain filters have counterparts in the T-F domain and thus
they can be learned in both domains. The approaches in both domains have been
compared in [2] for BSS where some of the comparisons also apply to AEC. The
main advantage of the T-F-domain approach is that it better handles longer filter
length by decomposing the problem into smaller problems since convolution in
the time domain (roughly) decomposes into bin-wise multiplication in the T-F
domain, and thus each filter component can be learned separately in the T-
F domain which typically results in reducing the amount of computation and
the convergence time. The algorithms that we propose are also T-F-domain
approaches.

3.1 Objective Function

ML Objective functions are derived using a group of symmetric and unimodal
probability density functions (PDFs). The PDFs are expressed in the following
form where z denotes a complex-valued dummy variable. Note that this is equiv-
alent to having two-dimensional joint PDFs where the two real-valued variables
are the real and the imaginary parts of z.

P(p,σ)(z|(p, σ)) =
1
Zp,σ

e−
1
σ |z|p , (4)

where Zp,σ is the normalization constant,

Zp,σ =
2πσ

2
pΓ ( 2

p )

p
, (5)

and Γ (·) is the gamma function,

Γ (z) =
∫ ∞

0
tz−1e−tdt. (6)

The positive parameters p and σ control the super-Gaussianity, which is char-
acterized by peakedness about mean and heavy tail, and the variance of the
PDF, respectively. Note that this PDF model is an extension of the generalized
Gaussian density (GGD) model to two dimensions and that the model satisfies
circularity which, in signal processing, is a common assumption for complex-
valued signals.

In Fig. 2, the PDFs are drawn with respect to some p values. It can be seen
that as p becomes smaller, the PDF increases in super-Gaussianity. For the short-
time frequency components of white Gaussian noise, the PDF with p = 2 is a
good match since the PDF becomes a two-dimensional independent Gaussian
distribution. For the short-time frequency components of speech, p being close
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Fig. 2. The PDF model in (4) with respect to different p values, (a) p = 2.0, (b) p = 1.0,
and (c) p = 0.5. The σ values are chosen such that the PDFs have unit variance.

to 1 is a good match. Hence in the scenario where local speech is present, the p
in the PDF should be close to 1.

Using the two-dimensional GGD, ML approach is taken with respect to xfi .
The probability distribution family of xfi is denoted as

Pĥf
i

(
xfi [n]|ĥf

i

)
=

1
Zp,σ

e−
1
σ

∣∣xf
i [n]−(ĥf

i )Hrf [n]
∣∣p

, (7)

with the parameters ĥf
i (= [hfi1, · · · , hfim]H). Note that the unknown parameters

to be learned are not p or σ but ĥf
i and that p and σ will be fixed a priori in

the algorithm.
The log-likelihood function is then

log
( N∏
n=1

Pĥf
i

(
xfi [n]|ĥf

i

))
=

N∑
n=1

log Pĥf
i

(
xfi [n]|ĥf

i

)
(8)

= − logZp,σ − 1
σ

N∑
n=1

∣∣yfi [n]
∣∣p. (9)

3.2 Algorithm

As it can be seen from (9), in each frequency bin, maximizing likelihood is
equivalent to minimizing the p-power of yfi [n], i.e.

CAEC ≡ Ẽ
[∣∣yfi [n]

∣∣p]
= Ẽ

[∣∣xfi [n]− (ĥf
i )Hrf [n]

∣∣p]. (10)

Please note that when p = 2, the corresponding cost function is equivalent
to MSE. Also, note that the result of optimizing the objective function is not
affected by the value of σ.

The gradient is

∂CAEC

∂(ĥfij)∗
= −p

2
Ẽ
[
(yfi [n])∗

∣∣yfi [n]
∣∣p−2(rfj [n])∗

]
, (11)
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and the Hessian is

∂2CAEC

∂ĥfij∂(ĥ
f
ij)∗

=
p2

4
Ẽ
[∣∣yfi [n]

∣∣p−2|rfj [n]|2
]
. (12)

In order to avoid matrix inversion in the algorithm, the Newton’s update is
derived with respect to each ĥfij instead of the vector ĥf

i . Then, the Newton’s
update with an additional learning rate μ (≤ 1) which helps the algorithm to
avoid diverging is

ĥfij ← ĥfij − μ
( ∂2CAEC

∂ĥfij∂(ĥ
f
ij)∗

)−1 ∂CAEC

∂(ĥfij)∗
(13)

= ĥfij + μ
2Ẽ

[
yfi [n]

∣∣yfi [n]
∣∣p−2(rfj [n])∗

]
pẼ

[∣∣yfi [n]
∣∣p−2∣∣rfj [n]

∣∣2] . (14)

For the details on the Newton’s update in the complex domain, please look
at [3,4].

4 Experiments

For simpler analysis of the proposed AEC algorithm, experiments will be con-
strained to cases where the number of foreground sounds and the number of
reference signals are 1. In addition, since the algorithm is dealing with each
microphone signal separately, it will be assumed that m equals 1.

In order to have better understanding of the proposed AEC algorithm, two
cases have been tested with various p values; that is, cases when the local sound,
or the time-domain counterpart of {s1i [n], · · · , sFi [n]}, is not only speech but
also Gaussian noise have been tested for the p values from 0.2 to 2.5 being
incremented by 0.1. Please note that the test of using MSE as the objective
function is included in this experiment since the proposed objective function is
equivalent to MSE when p = 2.

The following parameters have been chosen for the experiments:

– sampling rate: 8 kHz
– length of the time-domain signals: 12 seconds
– FFT size: 4096 taps (≈ 500 ms)
– window: Hanning window
– window shift size: 1024 taps
– filter length of the time-domain room impulse responses: 1600 taps (= 200

ms)

As the reference signal, clean speech signal has been used. Room impulse
responses were obtained by an image method [5] and then convolved with the
time-domain signals. It was assumed that no convolution takes place in the loud-
speaker. Before mixing, the powers of the signals have been matched to be equal.
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Performance was measured by the cross-correlation between the known target
signal (i.e. the perfectly echo-canceled signal) and the learned echo-canceled sig-
nal. Both of the signals are normalized such that their autocorrelations (with no
shift) are 1 and thus the maximum performance to be achieved is also 1 which
is the case when they exactly equal.

4.1 The Results When Local Sound Is Either Speech or Noise

The performance has been tested for various p values in the case when the local
sound is speech. The results are shown in Fig. 3(a). As it can be seen, the
performance is best for p being near 1 or slightly smaller and monotonically
degrades as the value of p increases. For comparison, the performance has also
been tested in the case when the local sound is white Gaussian noise. The results
are shown in Fig. 3(b). In this case, the performance is best for p being near 2.
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Fig. 3. The performance (in cross-correlation) of the proposed AEC algorithm for
various p values in cases when the local sound is either (a) speech or (b) noise

4.2 Maximum Likelihood p Values of the Local Sound Data

The results imply that the fixed p value that results in the best performance of
the AEC algorithm depends on the local sound signal. In order to have a better
understanding of their relationship, the ML parameters, p and σ, of the PDF
family (4) that correspond to the convolved local sound data in the previous
experiments have been learned in each frequency bin by using the MATLAB
function “fminbnd()” iteratively. Please note that the unknown parameters to
be learned are p and σ now and no filter coefficients are to be learned. The
results are shown in Fig. 4 for p values only since the σ values have no effect
on the proposed AEC algorithm as it was to be seen in (10). Fig. 4(a) and
Fig. 4(b) are the histograms of the 2049 (which is the number of frequency bins
that were used) ML p values with respect to the local speech and the local noise,
respectively. The optimum p values of the local speech are distributed around
less than 1 while the ones of the local noise are distributed around 2 or larger.
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Fig. 4. The histograms of the bin-wise ML p values of the PDF family in (4) with
respect to (a) the local speech and (b) the local noise

5 Conclusions

The p value that results in the best performance of the proposed AEC algorithm
tends to be around the ML p values of the two-dimensional GGD family with
respect to the local signal in the simulated data. Hence, it is shown, in double-
talk scenario, ML approach with super-Gaussian source priors (p < 2) provides
better AEC result than the approach of using MSE (p = 2). Convergence results
of the proposed algorithm will be shown in a longer version of this draft.
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Abstract. In this work, we propose and analyze a method to solve the problem 
of underdetermined blind source separation (and identification) that employs 
the ideas of sparse component analysis (SCA) and independent component 
analysis (ICA). The main rationale of the approach is to allow the possibility of 
reaching a method that is more robust with respect to the degree of sparseness 
of the involved signals and more effective in the use of information brought by 
multiple sensors. The ICA-based solution is tested with the aid of three repre-
sentative scenarios and its performance is compared with that of one of the 
soundest SCA techniques available, the DEMIXN algorithm. 

Keywords: Sparse component analysis, independent component analysis, blind 
identification, audio signal processing. 

1   Introduction 

The interrelated problems of blind source separation (BSS) and blind identification 
have been studied in the last years under a wide range of applications [1]. An em-
blematic instance of BSS is the Cocktail Party Problem (CPP), which fits very well 
the scope of this work. In the CPP, it is assumed that a group of people is gathered in 
a room and that a number of conversations are simultaneously carried out. It is also 
considered that a set of sensors (perhaps the pair of ears of a certain guest) is excited 
with different mixtures of their voices, and that there is a natural aim to separate these 
signals or to identify the mixing model. If the voices are supposed to be mutually 
independent, this problem can be treated within the classical independent component 
analysis (ICA) framework. Indeed, ICA generally leads to good results when the 
number of information sources is equal to or less than the number of sensors [1]. 

Things are different when the number of sources is greater than the number of  
sensors, i.e., in an underdetermined case. Such scenario is associated with the impos-
sibility of perfectly inverting the mixture model, which constitutes a problem per se 
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and, in addition to that, poses serious difficulties to the direct use of any measure 
based on mutual independence.  

When it is possible to rely on a priori information about the sources, very interest-
ing perspectives of dealing with the underdetermined BSS problem emerge. A clear 
example of this statement is the potential use of the hypothesis that, in the temporal or 
in a transformed domain, not all sources are always superposed when the mixture is 
considered. Several forms of this idea and the multifarious ways of employing it have 
originated the research field of sparse component analysis (SCA) [2]. Notice that this 
explanation evokes our initial example of the CPP: not all people talk, for instance, at 
the same time, which means that, for certain whiles, an eventual underdetermined 
mixing model may turn into a perfectly invertible model. This same idea may eventu-
ally hold in the context of another variable (e.g. frequency). 

In this paper, we explore BSS problems that are composed of mutually independ-
ent signals and, moreover, in which the notion of sparseness is relevant. In such  
context, we propose a novel approach to identify the mixture matrix by applying ICA 
to “locally well-determined mixtures” in the sparse domain. The proposal opens inter-
esting perspectives from two standpoints: 1) it brings the well-established ICA frame-
work to the context of SCA, which raises relevant points of connection between two 
important approaches to the BSS problem and 2) it allows an extension of the appli-
cability of existing SCA approaches insofar as the number of sources present in the 
“well-determined” mixtures is concerned. 

2   Sparse Component Analysis 

Sparse component analysis (SCA) is a tool employed to solve the blind source separa-
tion (BSS) problem under the assumption that the sources are sparse in some domain 
[2]. For instance, in audio applications, it has been observed that the involved signals 
typically show a certain degree of sparseness in the time-frequency domain, which 
means that there are time-frequency regions in which not all the sources contribute to 
the mixture. The relevance of this fact becomes clear when one considers, for in-
stance, the case of underdetermined mixtures, i.e., when there are more sources than 
sensors: in such case, with the aid of the a priori information concerning sparseness, 
it is possible to identify the mixing matrix. 

The first approaches based on this idea [3, 4, 5] attempted, in general, to identify 
the main directions in the global scatter plot by clustering all the data together. These 
methods, however, exhibit poor performances in regions in which there is source 
overlap. Instead of considering the global scatter plot, some alternative methods use 
information contained in local scatter plots. In such cases, an interesting possibility is 
to treat the problem within a principal component analysis (PCA) framework, having 
in mind the goal of identifying the mixture matrix by seeking regions in which only 
one source appears [6, 7]. 

It should be noted that these methods do not employ the idea of independent com-
ponent analysis (ICA), which is a very sound and useful tool in other BSS applica-
tions. In this work, we will analyze the implications of using ICA in sparse contexts 
and, moreover, we will consider its potential in performing identification even in the 
presence of more than one source, in contrast, for instance, with solutions like the 
PCA-based method discussed above, which require the existence of regions with a 
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single active source (which characterizes a single dominant problem [8]). It is also 
interesting to remark that, by allowing that situations with multiple dominant sources 
be considered, there arises a promising perspective of employing information brought 
by additional sensors to improve the identification performance. Having presented 
these ideas, let us turn our attention to a more detailed exposition of the method. 

3   Sparse Signals and ICA  

In accordance with the above exposed ideas, if the sources are mutually independent 
in some domain, it is possible to apply, at least locally, a classical ICA strategy to 
estimate the directions that form the mixing matrix. This ICA-based method will work 
properly whenever there be, in some time-frequency regions, a number of sources 
smaller than or equal to the number of sensors. In other words, due to sparseness, a 
globally underdetermined problem is turned into a locally standard separation prob-
lem. In order to illustrate the potential of the method, let us consider the effects of 
applying ICA to the vicinity of a point (t, f) in the time-frequency domain under four 
possible scenarios: 

1. The number of active sources is equal to the number of sensors: in such case, 
it is well-known that ICA leads effectively to the identification of the directions 
associated with the mixing matrix, as illustrated in Fig. 1. 

2. The number of active sources is smaller than the number of sensors: when 
the number of sources is smaller than the number of sensors, ICA tends to find 
the directions associated with all active sources, being the remaining degrees of 
freedom influenced by other factors like additive noise. It should be noted, how-
ever, that the directions not associated with active sources will vary considerably 
from one time-frequency region to another. Fig. 2 illustrates a situation of this 
sort, in which there are two sensors and a single active source.  

3. The number of sources is greater than the number of sensors: this originates a 
locally underdetermined problem, which means that probably some directions 
will be estimated with some degree of precision whereas others will not be found. 
The output of the separating system will not be composed of independent signals, 
and, in general, not even a perfect uncorrelatedness condition will be reached. In 
Fig. 3, we have an example with four sources and two sensors, an example in 
which no direction of the mixing matrix was precisely estimated. 

4. There are no active sources: In such case, we shall have, once more, available 
degrees of freedom that cannot be properly employed, which means that the out-
come of an ICA method will not possess a definite significance. Analogously to 
the second scenario, the directions obtained in these data blocks will vary consid-
erably. Fig. 4 illustrates a situation of this nature (with no sources and two  
sensors).  

Therefore, after applying ICA to several different time-frequency regions and dis-
carding the solutions that lead to highly correlated signals (as described in the third 
scenario), the set of estimates should be more concentrated around the values of the 
mixing directions, since the estimates that are not associated with sources will tend to 
be equally distributed among all possible directions.  
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Fig. 1. Two sources and two sensors Fig. 2. One source and two sensors 
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Fig. 3. Four sources and two sensors Fig. 4. No sources and two sensors 

4   Proposed Method 

In this work, we reach a sparse time-frequency domain by applying the Short-Time 
Fourier Transform (STFT) to the signals. This option is not the only possibility, but is 
an effective and widespread solution [9]. The method also assumes that the total 
number of sources is known a priori, although it is possible that, in future works, this 
demand be less stringent. In the tests we will carry out in this work, we shall consider 
exclusively a two-sensor case. 

In order to provide a clear and concise explanation of the proposed method, we 
will present it with the aid of the following algorithmic description. 

Step 1 – Obtain the time-frequency representation of each observed signal using the 
STFT, choosing appropriately the window size Nsamples and the overlap ratio between 
consecutive sample windows; 
Step 2 – Estimate the ICA for the neighborhood Ωt,f around each time-frequency point 
(t, f). The ICA algorithm should provide an estimate of the “local M x M mixing ma-
trix”, where M denotes the number of sensors. From this matrix, it is possible to esti-
mate the mixing directions associated with all sources using the following equation:  
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The validity of the obtained estimate depends, as discussed in the previous section, on 
the existence or absence of more than two active sources. This explains the inclusion 
of step 2.1. 

Step 2.1 – In order to avoid unreliable estimates, ICA solutions with an output cor-
relation coefficient greater than a certain threshold (typically 0.08) were discarded. 
This policy aims at rejecting directions obtained from undermodeled scenarios. 

Step 3 – After all directions are obtained, the final estimates of the mixing directions 
are determined by applying a clustering algorithm to the mass of estimates θ(t,f) that 
were not discarded in step 2.1. As it is assumed that the number of sources is a priori 
known, the well-known k-means algorithm was employed [10]. However, construc-
tive methods and, in fact, any effective tool could have been applied: this is not fun-
damentally related to the modus operandi of the proposal per se. 

The reader will notice that the method bears a certain degree of structural similarity 
with other approaches [6,7]: the main difference is exactly the use of ICA and some 
refinements conceived to aid the estimation process. This difference, notwithstanding, 
may open very relevant perspectives: we will discuss some of them in the following 
section, wherein the ICA-based method is tested. 

5   Simulation Results 

As mentioned in the previous section, we employ, in this work, a time-frequency 
representation given by the Short-Time Fourier Transform, which is evaluated con-
sidering a window of 512 samples and half-window overlap.  

The ICA method was the one proposed by Comon [12], which is based on the 
maximization of a kurtosis measure, there being also a pre-whitening step. The main 
reason for choosing this setup was its interesting tradeoff between performance and 
convergence rate. As the input data of the ICA algorithm are complex-valued, we 
have chosen to treat the real and imaginary parts as separate vector elements [real () 
imag ()]. In all cases, the proposed method was compared with the DEMIXN algo-
rithm [7], which is, in a certain sense, akin to it in some key methodological aspects, 
such as knowledge of the number of sources, use of clustering etc. To establish proper 
bases for comparison, the DEMIXN was also used with a window of 512 samples. 
The experimental scenario used in this work was very similar to that described in [7]: 
mixtures were built from a number of sources ranging from 2 to 15, being the mixing 
directions always uniformly distributed. The DEMIXN was run for scenarios of in-
creasing difficulty (with respect to the number of underlying sources) until it was 
considered that it ceased to work properly. For each number of sources N, twenty runs 
were performed and the angular mean error (AME) was computed for each of them. 
The sources were drawn from a set of 200 five-second duration excerpts of Polish 
voices, all of them sampled at 4 kHz1.  

                                                           
1 Available at http://mlsp2005.conwiz.dk/index.php@id=30.html 
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5.1   First Scenario 

The first scenario was built in accordance with the conditions described in [7]. In  
Fig. 5 (a), the spectrogram of a mixture of two voices is shown. Notice the presence 
of a contrast between darker regions (where the mixture signal is stronger) and lighter 
ones (where the mixture signal is weaker or absent), which is an indicative of the 
existence of a certain degree of sparseness. 

In Fig. 6, we have the evolution of the AME with respect to the number of sources 
(for an average of 20 trials, each using different voice samples randomly drawn from the 
total set). The curves associated with the proposed approach and with DEMIX show that 
the performance of both methods is compatible (in a scenario that was analyzed in [7]). 

In this case, the DEMIXN algorithm was unable to find the entire set of mixing di-
rections in 4% of the cases. This was caused by the algorithm having created two 
clusters related to the same direction: these cases were not taken into account in the 
process of calculating the average shown in Fig. 6. The ICA-based method, on the 
other hand, does not produce this kind of wrong result in any of the tests. As ex-
plained in [7], the DEMIXN converges up to 13 sources, but, for a higher number of 
sources, the algorithm does not find all clusters: the proposed technique, on the other 
hand, does not seem to be subject to this limitation. 

5.2   Second Scenario 

In the second scenario, we always include a uniform white noise as one of the 
sources. This inclusion can be justified as a robustness test, for this kind of source is 
non-sparse in the time-frequency domain. Particularly, in the situation in which we 
have more sources than sensors and one of the sources is non-sparse, it is neither 
possible to apply a classical ICA algorithm nor the typical SCA approaches. Fig. 5(b) 
shows the spectrogram of the mixture of one voice and the white noise source. 

In this situation, the proposed method does not experience a significant perform-
ance loss in any of the tests. On the other hand, DEMIXN does not find all directions 
in 40% of the cases, and, moreover, ceases to converge with 10 sources. Fig. 7 shows 
that, up to 9 sources, the proposed method and DEMIXN have close performances (in 
these cases, the latter also reaches acceptable results). The increase of the AMEs can 
be explained by the fact that the direction of the white noise is harder to find: if we 
discard this direction, the AME is close to that found in the first case. 

5.3   Third Scenario 

The third scenario is, in a certain sense, a variation of the second one. Instead of a 
white noise, which is not a particularly representative model for audio signals, the 
additional source is changed to one that has a broad spectrum and is present for a long 
period of time: the sound of a crowd clapping and screaming. Fig. 5 (c) shows the 
spectrogram of a mixture of this source and one voice.  

The results obtained for this case are, in a certain sense, similar to those obtained in 
the second scenario. The DEMIXN approach, which is strongly based on the assump-
tion that most of the time-frequency regions will have only one active source, fails in 
the task of finding the mixing directions in more than 10% of the trials. As shown in 
Fig. 7, this result is slightly better than that obtained for the second scenario, but is 
very different from the error level obtained in the first scenario.  
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(a) (b) (c) 

Fig. 5. Spectrogram of a mixture of (a) two voice sources, (b) one voice source and a white 
noise, and (c) one voice source and one crowd source 
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Fig. 6. Average AME of the algorithms in the 
first scenario 

Fig. 7. Average AME of the algorithms in the 
second (noise source) and third (crowd 
source) scenarios  

Even though there are regions in which only one source is active, the proposed 
method takes advantage of the ICA algorithm and can estimate the true angles from a 
richer set of time-frequency regions. 

6   Conclusions 

In this work, we proposed a new approach to the task of performing sparse component 
analysis in underdetermined contexts. The method is based on the idea of applying 
ICA to identify local determined mixtures in the time-frequency domain, which al-
lows the estimation of the mixing directions of the model as a whole. Such strategy is 
very interesting, since it combines two elements that bring useful a priori informa-
tion: the existence of a certain degree of sparseness and the hypothesis of mutual 
independence between sources in the transformed domain. This combination is par-
ticularly auspicious and valid for audio source separation. 

The results show that the ICA-based method was able to provide a performance 
level compatible with that of the DEMIXN in a scenario similar to one discussed in 
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[7], and, furthermore, was significantly robust in the presence of white noise or of 
audio sources with a reduced degree of sparseness. This, in our opinion, is indicative 
of the validity of conducting a more thorough study concerning the applicability of 
ICA as a tool for SCA in the context of audio sources. 

There are many perspectives for future work, among which we highlight the inves-
tigation of more efficient clustering methods - which could remove the need for a 
priori knowledge of the number of sources and improve the performance of the 
method as a whole -, the use of alternative ICA techniques and the application of 
different time-frequency representations - particularly via wavelet transforms -, and 
the analysis of the use of an ICA-based performance index (in step 2.1 of the algo-
rithm) instead of a correlation measure. 
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Abstract. We apply sparse, fast and flexible adaptive lapped orthog-
onal transforms to underdetermined audio source separation using the
time-frequency masking framework. This normally requires the sources
to overlap as little as possible in the time-frequency plane.

In this work, we apply our adaptive transform schemes to the semi-
blind case, in which the mixing system is already known, but the sources
are unknown. By assuming that exactly two sources are active at each
time-frequency index, we determine both the adaptive transforms and
the estimated source coefficients using �1 norm minimisation. We show
average performance of 12–13 dB SDR on speech and music mixtures,
and show that the adaptive transform scheme offers improvements in
the order of several tenths of a dB over transforms with constant block
length. Comparison with previously studied upper bounds suggests that
the potential for future improvements is significant.

1 Introduction

Our goal is to tackle the problem of audio source separation for underdetermined
and instantaneous mixtures. Specifically, given an observed two-channel mixture
x(n) = (x1(n), x2(n)), we aim to estimate all J > 2 simultanously active sources
s(n) = (s1(n), . . . , sJ (n)), assuming the mixture has been generated thus:

x(n) = As(n) , (1)

where A = (ai,j) is a 2 × J matrix with real-valued entries ai,j , the mixture
and source indices are i and j respectively, and the discrete-time index ranges
as 0 ≤ n < N .
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In the blind case only x(n) is known. If s(n) remains unknown but A is given,
then the problem is called semi-blind. If both A and s(n) are known, then we
can determine upper performance bounds; this ideal oracle estimation case is
useful for algorithm benchmarking purposes [10].

Underdetermined audio source separation is typically addressed by time-
frequency (TF) masking, which assumes that we can transform x(n) by a lin-
ear, invertible TF transform so that the sources overlap as little as possible [4].
State-of-the-art methods have the potential to yield sparser representations and
superior performance compared to non-adaptive transforms with constant block
lengths [9, 10]. Such methods include adaptive, dyadic lapped orthogonal trans-
forms (LOTs) [6] and adaptive, non-dyadic LOTs, which give better perfor-
mance in return for higher computational complexity [7]. We recently introduced
MPEG-like LOTs, which aim for a trade-off between improving computation
time, and decreasing artifacts at window boundaries and improving performance,
and evaluated them in oracle contexts [8]. In this paper, we extend this previous
work by evaluating them in semi-blind contexts.

2 Time-Frequency Masking

Let us denote by X(m) = (X1(m), X2(m)) the TF transform of x(n), and let
S(m) = (S1(m), . . . , SJ (m)) be the transform of s(n), where 0 ≤ m < N . We
assume that exactly two sources are active at each m because this gives better
performance than the simpler binary masking case which allows only one active
source [1, 10]. The set of both source indices contributing to X(m) is denoted
by Jm = {j : Sj(m) �= 0}, and is called the local activity pattern at m. Given a
particular Jm, Equation (1) then reduces to a determined system:

X(m) = AJmSJm(m) , (2)

where AJm is the 2×2 submatrix of A formed by taking columns Aj , and SJm(m)
is the subvector of S(m) formed by taking elements Sj(m), whenever j ∈ Jm.
Once Jm has been estimated for each m we estimate the sources according to
the following: {

Ŝj(m) = 0 if j /∈ Jm ,

ŜJm(m) = A−1
Jm
X(m) otherwise ,

(3)

where A−1
Jm

is the inverse of AJm [4]. Finally, we recover the estimated source
vector in the time domain ŝ(n) by using the inverse transform.

The assumption that exactly two sources are active at eachm can be modelled
probabilistically by assuming that the source coefficients Sj(m) follow a Lapla-
cian prior distribution, independently and identically for all j and m [1]. In the
semi-blind case, the maximum a posteriori solution of (2) is then equivalent to
minimising the "1 norm cost of the source coefficients [1] given by the following:

C(Ŝ) =
N−1∑
m=0

J∑
j=1

|Ŝj(m)| . (4)
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Then for an orthogonal transform, the estimated semi-blind activity patterns
are given by

Ĵ sb
m = arg min

Jm

J∑
j=1

|Ŝj(m)| , (5)

which depends implicitly on (3).

3 Adaptive Signal Expansions

Let us now describe how to construct an adapted LOT which better fulfills the
sparsity assumption of the sources. This entails forming a partition of the domain
{0, . . . , N − 1} of the mixture channels xi(n), that is,

λ = {(nk, ηk)} , (6)

such that
0 = n0 < n1 < · · · < nk < · · · < nK−1 = N − 1 , (7)

where K is the number of partition points. This segments the domain of xi(n)
into adjacent intervals Ik = {nk, . . . , nk+1 − 1} which should be relatively long
over durations which require good frequency resolution, and relatively short over
the durations requiring good time resolution. This is achieved by windowing
xi(n) with windows βλk (n), each of which is supported in {nk − ηk, . . . , nk+1 +
ηk+1 − 1}, thus partly overlapping with its immediately adjacent windows βλk−1
and βλk+1 by 2ηk and 2ηk+1 points respectively (see Fig. 1). The bell parameters

Fig. 1. Schematic representation of window βλ
k partly overlapping with its adjacent

windows βλ
k−1 and βλ

k+1

ηk and ηk+1 determine how quickly βλk rises and falls on its left and side right
sides. To avoid ‘double overlapping’, these are subject to the constraint

nk+1 − nk ≥ ηk+1 + ηk . (8)

Note that for η0 = ηK−1 = 0 appropriate modifications are needed [6].
For every partition λ we form its associated windows according to

βλk (n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r
(
n−(nk− 1

2 )
ηk

)
if nk − ηk ≤ n < nk + ηk ,

1 if nk + ηk ≤ n < nk+1 − ηk+1 ,

r
(

(nk+1− 1
2 )−n

ηk+1

)
if nk+1 − ηk+1 ≤ n < nk+1 + ηk+1 ,

0 otherwise ,

(9)
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where the bell function r(t) satisfies r2(t) + r2(−t) = 1 for −1 ≤ t ≤ 1, r(t) = 0
for t < −1 and r(t) = 1 for t > 1, where t is real-valued, and also satisfies various
regularity properties; in practice, we use a sine bell [6].

The local cosine basis associated with Ik is

Bλk =
{
βλk

√
2

nk+1 − nk cos
[
π

(
f +

1
2

)
n− (nk − 1

2 )
nk+1 − nk

]}
0≤f<nk+1−nk

, (10)

where the index m in Sect. 2 is now expressed as m = (k, f), where f indexes
the ‘frequency’. The basis Bλ spanning the space of signals of length N , for
the partition λ, is given by Bλ =

⋃K−1
k=0 Bλk . Our aim is to find, of all admissible

partitions λ ∈ Λ, the partition which determines the best orthogonal basis (BOB)
for representing signals of length N . The set of all candidate bases is called the
library and is given by L =

⋃
λ∈ΛB

λ.

4 Fast and Flexible Partitioning Schemes

For any additive function C, we can use dynamic programming to determine the
BOB which minimises C(Ŝ) over all Bλ ∈ L [3, 6]. Such algorithms jointly esti-
mate the local activity patterns Jm according to (5) and find the best orthogonal
basis which minimises the "1 norm given by (4) according to

λ̂ = argmin
λ∈Λ

C(Ŝ) . (11)

In previous work [7] we described a flexible segmentation (FS) partitioning
scheme which admits all possible partitions λ with some ‘resolution’ L, so that
if the signal length N is an integral multiple of L, then each partition point
can be written as nk = cL for c ≥ 0, and where ηk is subject only to the
condition (8). The FS library L is very large due to a combinatorial explosion
between the range of allowed interval lengths, interval onsets and bell parame-
ters, so the computation time is typically very high. To decrease this burden of
computational complexity, but still wishing to maintain highly flexible partition-
ing, we subsequently added some constraints to the FS scheme and introduced
the following MPEG-like partitioning schemes [8]:

Long-Short (LS). We restrict the range of allowable partitions to admit in-
tervals Ik of only two lengths, that is, a long interval of length LL and a
short interval of length LS = L, where LL is an integral multiple of LS , and
2ηk ∈ {LL, LS}. Apart from this restriction of interval lengths and bell pa-
rameters, there are no additional constraints, and LS is otherwise the same
as FS.

Window Shapes (WS). This is equivalent to LS with the additional con-
straint that if Ik is long, then at most one of ηk and ηk+1 is short. In other
words, the four different window shapes admitted (compared to five in LS)
correspond to a long window (2ηk = 2ηk+1 = LL), a short window (2ηk =
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2ηk+1 = LS), a long-short transition window (2ηk = LL, 2ηk+1 = LS), and
a short-long (2ηk = LS, 2ηk+1 = LL) transition window in the MPEG-4
framework.

Onset Times (OT). This is equivalent to LS with the additional constraint
if any interval Ik is long, then nk must satisfy nk = cLL for some integer
c = 0, . . . , N

LL
− 1.

WS/OT. This scheme imposes both the WS and OT constraints simultane-
ously.

WS/OT/Successive Transitions (WS/OT/ST). This scheme imposes the
WS/OT constraints in addition to disallowing adjacent transition windows,
i.e., a transition window must be adjacent to a long window and a short
window. This implements the MPEG-4 windowing scheme [5], with the ex-
ception that here, we have more freedom in choosing the bell function r(t).

Clearly, the sizes of the libraries become smaller as we impose more constraints.

5 Experiments and Results

We performed two sets of experiments to test our algorithms. Performance is
measured through the signal to distortion ratio (SDR) [10],

SDR [dB] = 10 log10

∑N−1
n=0

∑J
j=1 (sj(n))

2∑N−1
n=0

∑J
j=1 (ŝj(n)− sj(n))2

. (12)

In the first set of experiments, we applied our methods to twenty mixtures in
total (ten music mixtures, ten speech mixture), where each mixture each had
J = 3 sources at a sampling rate of 22.05 kHz, with a resolution of 16 bits per
sample, and of length N = 218 (approximately 11.9 s). The sources were mixed
according to following mixing matrix:

A =
(

0.21 0.95 0.64
0.98 0.32 0.77

)
. (13)

For each mixture, we performed semi-blind estimations of s(n) for each of the
LS, WS, OT, WS/OT and WS/OT/ST partitioning schemes, with long intervals
LL = 2c, where c ∈ {8, . . . , 11} (12 ms to 93 ms), and short intervals LS = 2c,
where n ∈ {4, . . . , 9} (0.73 ms to 23 ms). We exclude all long-short combinations
with LL ≤ LS. Results are presented in Table 1 where each entry is the aver-
age over the twenty different mixtures corresponding to a particular transform
scheme with given block lengths. We also compare the MPEG-like schemes to
the baseline fixed basis (FB) transform (where LL = LS and 2ηk = LL for all k)
and find that the maximum average SDR is 12.06 dB at LL = LS = 210.

For the second set of experiments, we indicate the performance achievable
on particular types of mixtures. We applied the best transform scheme as de-
termined by Table 1 (LS) to each instantanous mixture in the dev1 data set
of the Signal Separation Evaluation Campaign (SiSEC 2008)1. These optimal
1 Available online at http://sisec.wiki.irisa.fr/tiki-index.php
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Table 1. Average results for MPEG-like transforms for semi-blind separation on music
and speech mixtures (see text). The baseline (fixed basis, FB) transform scheme yields
maximum average SDR of 12.06 dB at LL = LS = 210.

Scheme LL

LS

24 25 26 27 28 29

LS

28 10.45 10.50 10.51 10.55 - -

29 11.72 11.71 11.72 11.72 11.79 -

210 12.14 12.10 12.19 12.16 12.23 12.29

211 11.70 11.59 11.73 11.77 11.92 12.34

WS

28 10.45 10.51 10.52 10.55 - -

29 11.76 11.71 11.74 11.74 11.80 -

210 12.16 12.14 12.18 12.16 12.23 12.28

211 11.62 11.66 11.69 11.75 11.91 12.22

OT

28 10.68 10.66 10.65 10.64 - -

29 11.83 11.83 11.85 11.85 11.83 -

210 12.07 12.07 12.07 12.06 12.15 12.19

211 11.65 11.56 11.60 11.61 11.86 12.29

WS/OT

28 10.68 10.67 10.66 10.64 - -

29 11.84 11.83 11.85 11.85 11.83 -

210 12.07 12.07 12.08 12.08 12.16 12.20

211 11.62 11.56 11.59 11.61 11.83 12.29

WS/OT/ST

28 10.69 10.68 10.67 10.64 - -

29 11.84 11.84 11.85 11.85 11.85 -

210 12.05 12.04 12.06 12.08 12.16 12.21

211 11.57 11.52 11.53 11.55 11.77 12.28

semi-blind results are presented in Table 2; also shown are oracle estimation re-
sults, where the LL and LS which give best results were determined in previous
work [8]. Oracle results are computed by jointly determining the local activity
patterns Jm and the best orthogonal basis Bλ ∈ L which maximise the SDR
given by (12), given knowledge of the reference sources [9].

6 Discussion

For the results in Table 1, the best average SDR is approximately 12.3 dB for
each transform scheme. Previous results demonstrated oracle performance of
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Table 2. Results for LS scheme for semi-blind and oracle separation on SiSEC 2008
data (see text)

Mixture J
Semi-blind Oracle

LL LS Av. SDR [dB] LL LS Av. SDR [dB]

3 Female Speakers 3 29 25 10.35 210 24 24.09

4 Female Speakers 4 211 29 7.04 210 24 18.61

3 Male Speakers 3 29 29 8.41 210 24 18.56

4 Male Speakers 4 210 29 5.62 210 24 14.37

Music with No Drums 3 210 27 16.33 210 24 34.26

Music with Drums 3 29 24 11.95 210 24 28.06

23–25 dB, but the differences between the two cases are not suprising; the or-
acle estimation criterion is the same as the performance measurement criterion
(SDR), whereas the semi-blind estimation criterion ("1 norm) is different.

The greatest variability in average SDR occurs with changing the long interval
length LL. The SDR improvements in the demonstrated range of 1–2 dB may
be significant in high fidelity applications. Varying LS or changing transform
scheme has a much smaller effect on performance, in contrast to previous oracle
results, where performance naturally decreases as the partitioning schemes get
more restrictive and their respective libraries becoming smaller.

In each case in Table 1, the best average SDR is achieved at the greatest
length for the short intervals (LS = 29). In contrast, Table 2 shows indvidual,
rather than average, results. Previous oracle results for the LS and WS schemes
show that the best average SDR was obtained at the least length for the short
intervals (LS = 24), where we suggested that a library which allows fine-grained
placement of the long windows improves performance [8]. The current "1 criterion
does not achieve this, but a semi-blind criterion which admits such fine-grained
placement will be a good step towards closing the performance gap between
semi-blind and oracle performance. This claim is strengthened by noting that
the average SDR improvement yielded by adaptive schemes compared to FB is
in the order of 0.3 dB in the semi-blind case, and 1–2 dB in oracle contexts.

7 Conclusions and Further Work

We demonstrated average SDR performance of 12–13 dB on mixtures of music
and speech signals by extending our adaptive signal decomposition schemes to
the semi-blind case. Table 1 suggests that optimal results are obtained when both
LL and LS are long, but this requires further investigation. Further work includes
extending this technique to the fully blind case. Preliminary experiments on
mixing matrix estimation with the SiSEC 2008 data sets using histogram-based
methods [2] have shown very promising results, and we intend to incorporate
that framework into our adaptive transform schemes.
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Abstract. In this paper, we study the validity of the assumption that
speech source signals exhibit lower dependency and therefore better sep-
arability with Independent Component Analysis algorithms than music
sources. In particular, we investigate some dependency measures in the
temporal and the time-frequency domains, resp. in the framework of in-
stantaneous and convolutive mixtures. Moreover, we test several ICA
methods, based on the above dependency measures, on the same source
signals. We experimentally show that speech and music sources tend to
have the same mean behaviour for excerpt durations above 20 ms, but
music signals provide more spread dependency measures and SIR values.
Lastly, we experimentally show that Gaussian nonstationary mutual in-
formation is better suited to audio signals than mutual information.

1 Introduction

Independent Component Analysis (ICA) [1] is the most investigated class of
methods to solve the Blind Source Separation (BSS) problem. Among the ap-
plications of BSS, audio processing is one of the major areas of interest. In this
paper, we aim to study the behaviour of dependency measures when applied to
speech or music source signals, with respect to the length of the signal recordings,
for linear instantaneous and frequency-domain convolutive mixtures. Indeed, one
generally assumes that, in the "cocktail party" problem, speech sources are in-
dependent and are thus separable thanks to ICA while, on the contrary, this is
not the case for music sources, because musicians play in a coherent way, thus
yielding dependent source signals [2].
A dependency measure, i.e. the mutual information, has been previously stud-

ied, only for speech sources, and only in the framework of linear instantaneous
mixtures [3]. The authors show that speech source signals are independent (resp.
have some dependencies) when source signal excerpts have long duration (resp.
short duration). However, the chosen estimator has larger bias and variance than
estimators developed more recently [4]. Moreover, [3] only provides mean val-
ues of the estimated mutual information and therefore omits the variance of
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this measure. One also finds some papers in the literature, e.g. [5], which study
the effects of the length of the time-frequency windows on the performance of
frequency-domain convolutive methods. However, [5] only investigates the above
effects as a function of the length of the impulse response of the mixing filters, for
speech signals. It therefore does not show any possible difference of performance
with respect to the nature of source signals. Moreover, the authors only measure
the source correlation, which does not correspond to the dependency measure
used in the tested ICA method.
As a consequence, in Sect. 2, we generalize [3] by computing the statistics

(mean values and variance) of two dependency measures of speech and music
sources (contrary to [3], we not only test the mutual information but also the
Gaussian nonstationary mutual information), and by applying ICA algorithms
to these signals. In Sect. 3, we extend the above procedure to the framework
of frequency-domain convolutive ICA which was studied in [5] in more specific
conditions. Conclusions are derived from this investigation in Sect. 4.

2 Independence and ICA Performance in Time Domain

Many ICA techniques achieve source separation by minimizing some depen-
dency measure between the estimated source signals. In this paper, we study
two classical measures, i.e. the zero-lag mutual information [1] and the Gaussian
nonstationary zero-lag mutual information [6], resp. defined as

I{s1, . . . , sN} = −E

{
log

Ps1(s1) . . .PsN (sN )
Ps1,...,sN (s1, . . . , sN )

}
(1)

and

GI{s1, . . . , sN} =
1
Q

Q∑
q=1

1
2

log
detdiag R̂s(q)

det R̂s(q)
, (2)

where E {.} stands for expectation, Ps1,...,sN and Psi (i ∈ {1 . . .N}) are resp.
the joint and marginal probability density functions of the sources and Q is
the number of disjoint time frames over which the source correlation matrices
R̂s(q) (q ∈ {1 . . .Q}) are computed. Note that we do not need to normalize the
signals, since the above measures do not depend on their scales. The separation
performance may be related to the value of these measures over the true source
signals, which is assumed to be near zero. The validity of this assumption depends
on the considered mixture. As explained in Sect. 1, while speakers at a "cocktail
party" tend to speak freely without attention to distant speakers, musicians
often play synchronous sounds at related frequency ratios as specified by the
rules of music harmony [2], regardless of the recording duration. Therefore, for
each of these types of signals, the dependency between such source signals should
intuitively be the same for all durations. One may also expect it to be larger for
music than for speech. We are going to study whether these intuitions are true.
We consider the audio BSS dataset [7], which consists of thirty pairs of speech

sources and thirty pairs of music sources, sampled at 22.05 kHz. These signals
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are resp. collected from English audio books read by different speakers and from
synchronized multitrack recordings. All pairs of signals are then split into disjoint
excerpts of equal durations, from 27 samples (5.7 ms) to 218 samples (11.9 s).
The mutual information is estimated via the software proposed1 in [4] and we
set the number Q of frames in (2) to Q = 8 for computing the Gaussian mutual
information. The above dependency measures are computed for each above-
defined excerpt.
Figure 1 shows the variations of the estimates of the Gaussian mutual informa-

tion, for one pair of speech signals, with respect to the index of the excerpt and
their time duration. The obtained values have a random behaviour over time.
However, when the excerpt length increases, the highest measures of dependency
significantly decrease. A similar behaviour has been observed for music sources
and for mutual information dependency measures. Therefore, for the sake of
brevity, it is not shown in Fig. 1. As a consequence, contrary to [3], we hereafter
always study both the mean values and the associated standard deviations (that
we consider as a spread measure) of these measures.
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Fig. 1. Variations over time of the Gaussian mutual information between two speech
signals in [7], computed for several lengths of test excerpt (left: 27 samples, center: 210

samples, right: 213 samples)

Figure 2 thus shows the mean values over all excerpts and all sources of
the estimated mutual information and Gaussian mutual information and their
above-defined spreads, vs excerpt length. In order to measure the variance of the
estimators, this experiment was also conducted for thirty pairs of independent
Gaussian white noise signals. These results show that both dependency measures
are much larger for audio sources than for independent noise signals, regardless
of their excerpt duration. This is partly due to the short-term periodicity of
some speech and music sounds [3]. The results also show that both dependency
measures span a larger range for music than for speech, but that they are similar
for both types of sources on average, except for short durations, i.e. below 20 ms
where there are higher for music. In this case, both mean measures of the depen-
dency are high, thus showing that the independence assumption is not fulfilled
for speech nor for music, which is in agreement with [2,3]. However, they signif-
icantly decrease when the excerpt time duration increases. This phenomenon is

1 Matlab code is accessible at http://www.klab.caltech.edu/~kraskov/MILCA/
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observed for all pairs of sources, except for one pair of electronically-generated
music sources whose mutual information keeps a high value for durations above
2 s due to repetitions of the same note samples over time. Similarly, keeping
high dependencies might be observed in a civilized dialogue situation with one
speaker being silent when the other speaks and vice-versa. Gaussian mutual in-
formation is significantly smaller (resp. slightly smaller or similar) and has a
significantly lower (resp. slightly lower or similar) variance than mutual infor-
mation for durations above (resp. below) 100 ms. These variances indicate that
the nonstationary Gaussian source model is more appropriate for audio sources
than the stationary non-Gaussian model.
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Fig. 2. Mutual information and Gaussian mutual information between the source sig-
nals in [7] and between Gaussian i.i.d. signals vs excerpt length. The plain lines and
the gray areas resp. denote the mean and the spread (one standard deviation) of the
measured values.

In order to show the influence of the dependency measures on the performance
of classical ICA methods, we consider the above excerpts, we mix them with the
identity matrix and we run the parallel version of FastICA [8]2 and the Pham-
Cardoso algorithm [6], since these methods are resp. based on non-Gaussian
stationary and Gaussian nonstationary dependency measures. The performance
index is the well-known Signal-to-Interference Ratio (SIR) [9]. Figure 3 shows the
performance of the above BSS methods, with respect to the excerpt length. Note
that in some cases, we found ill-conditioning problems with the Pham-Cardoso
algorithm: in the joint-diagonalization procedure of this BSS method, the inverse
mixing matrix is estimated in an iterative procedure. We found cases when the
determinant of R̂s(q) in (2) is equal to zero, thus making the iterative procedure
stop early and the final estimated separation matrices equal to its initial value.
Since it is initialized as the identity matrix (which is also our mixing matrix), the
2 FastICA matlab code is accessible at http://www.cis.hut.fi/projects/ica/
fastica/
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Performance of FastICA on speech sources
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Fig. 3. Performance of ICA methods on the source signals in [7], mixed by the identity
matrix. The plain lines correspond to mean SIR (in dB) while the gray areas show the
spread.

corresponding SIR is very large, yielding an aberrant value. These outliers are re-
moved in Fig. 3. The performance of FastICA and of the outlier-less version of the
Pham-Cardoso algorithm is in agreement with the above dependency measures,
except in the case of speech sources separated by the Pham-Cardoso algorithm,
since the performance slightly decreases for the longest durations. Indeed, when
the size of the excerpts decreases, the dependency between the sources increases
and the SIR obtained by the BSS methods significantly decrease. Since the mean
dependency measures between sources are high for short-duration excerpts, one
could expect the corresponding SIR to be low. Figure 3 shows that it is close to
20 dB, which still yields significant source enhancement. Lastly, except for the
shortest music source excerpts, the Pham-Cardoso algorithm yields the highest
mean SIR, which confirms the above comments on the dependency measures.
As a consequence of the above analysis, for the sake of brevity, we only study

the Gaussian mutual information measure and the corresponding Pham-Cardoso
BSS method below, since they are resp. more appropriate for speech and mu-
sic source signals than the non-Gaussian dependency estimators and the ICA
approaches based on these measures.

3 Independence and ICA Performance in Time-Frequency
Domain

As explained in Sect. 1, the performance of frequency-domain convolutive BSS
has been discussed in [5] by Araki et al. with respect to the time-frequency
window length of the time-frequency transform and the length of the mixing
filter impulse responses. Indeed, they show that the performance of frequency
approaches highly depends on the temporal width of the time-frequency win-
dows. Here, we extend to the time-frequency domain the procedure proposed
in Sect. 2. This work differs from [5] since Araki et al. only measured correla-
tion between sources (instead of the dependency measures used in their BSS
method) and did not consider the nature of source signals. However, they took
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into account the length of the impulse responses of the mixing filters, which is
not studied here, for the sake of brevity. As stated above, we only consider the
Gaussian mutual information, since it is more appropriate for audio sources than
the mutual information. We still use the signals [7] tested in the previous section
and we compute their short-time Fourier transform (STFT), defined as

Si(t, ω) =
1√
2π

∫ +∞

−∞
si(t′)h(t′ − t)e−jωt′dt′ i = 1, 2, (3)

where h(t′ − t) is a windowing function centered on time t. In these tests, the
length of this windowing function geometrically increases from 27 to 213 samples.
For each STFT window length, for each pair of source signals and for each
frequency bin, we compute the Gaussian mutual information. In Fig. 4, we show
the mean values and the spread of the considered dependency measure, over the
frequency bins, with respect to the length of the windowing function used in (3).
Like in Sect. 2, we carry out the same experiment for thirty pairs of independent
Gaussian white noises. Contrary to the previous analysis in time domain, here,
audio and noise mean dependency measures are of the same order of magnitude.
Moreover, the estimated dependency of the sources increases when the size of
h(.) increases. This phenomenon, explained in [5], can be summarized as follows:
when the STFT window size is high, the number of time-frequency samples
in each frequency bin is small and estimating correctly the statistics becomes
harder. However, even if all the mean dependency measure values decrease with
the STFT size, the ratio between music and speech mean dependency measures
(not presented here) significantly increases when the STFT size decreases. This
means that music sources present more dependencies than speech for low STFT
sizes. Lastly, music and speech sources provide a larger variance than white noise.
In particular, the largest variance is obtained with music source signals, which
is coherent with the results obtained in Sect. 2.
We then apply the Pham-Cardoso algorithm on each frequency bin of the time-

frequency transforms of the sources. In order to analyze the sensitivity of this
algorithm to dependency only, we do not generate "real" convolutive mixtures.
Indeed, the approximation of convolution by complex-valued multiplication in
each frequency bin also affects performance. We avoid measuring this effect by
actually generating mixtures from a complex-valued mixing matrix in each bin.
Since the considered ICA algorithm is equivariant, its performance does not de-
pend on the value of the chosen matrix. Therefore we simply choose the identity
matrix, as in Sect. 2. In order to handle the band-to-band permutation effects, we
compute the SIR on the output signals obtained for each frequency bin. Figure
5 shows the mean SIR, over all the frequency bins and the sets of sources, with
respect to the STFT window length. The results are in agreement with those in
Fig. 4: both classes of signals yield decreasing SIR when the STFT window size
increases, which is again in agreement with [5]. For the shortest STFT sizes, the
performance obtained with speech sources is higher than for music ones, which
is in agreement with the above analysis on dependency measures. Moreover, the
variance of the SIR obtained with speech sources is somewhat lower than the one
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Fig. 4. Gaussian mutual information between the time-frequency transforms of the
source signals in [7]. The plain lines correspond to mean value while the gray areas
show the spread.

obtained with music sources. Lastly, note that the mean SIR are much higher
than those obtained by frequency-domain convolutive ICA algorithms in the lit-
erature (which are generally around 10 dB). This is due to the band-to-band
permutation problem and to the length of the impulse response of the mixing
filters, which have been occulted here.
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Fig. 5. Performance of the Pham-Cardoso method for the source signals in [7], mixed
by the identity matrix in the framework of frequency domain convolutive BSS. The
plain lines correspond to the mean SIR (in dB) while the gray areas show the spread.

4 Conclusion

In this paper, we studied the validity of the independence assumption for speech
or music source mixtures, with respect to the excerpt size (resp. the STFT win-
dow size) in the time (resp. time-frequency) domain. Starting from previous work
stating that music sources are dependent [2] for short durations, we looked for
statistical differences between speech and music dependency measures in sev-
eral configurations. We finally showed that these classes of sources almost yield
the same mean behaviour for long excerpt durations and high STFT window
sizes. However, for both linear instantaneous and convolutive mixture models,
the variance of the dependency measures is significantly higher for music than for
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speech. Moreover, in the time domain, we showed that these classes of sources are
separable by ICA for long-enough durations while, for short-time excerpts, the
mean dependencies are high, which implies that ICA methods are not appropri-
ate in these cases, which is in agreement with [2,3]. This limitation may be solved
thanks to BSS methods not based on independence, e.g. [2,10]. Moreover, even if
the independence assumption is met, sparse algorithms often separate much bet-
ter speech and music sources than classical ICA methods (see e.g. [11]). It could
be interesting to compare the performance of sparse approaches with respect to
the degree of sparsity of the source signals, for several classes of sources.
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Abstract. The objective of this study is to analyze the limitations
of techniques for blind source separation (BSS) of convolved mixtures
based on time-frequency domain binary masking. In this study, initially,
the limitations of the spectrum masking technique as a function of the
reverberation time of the signals that compose the mixture to be sep-
arated are analyzed. When the ideal masks are known, a separation of
about 9 dB is obtained for the case of an environment with reverber-
ation time less than 300 ms. From this point on, as the reverberation
time increases, the signals that compose the mixture spread over the
time-frequency plane, progressively reducing the separation process per-
formance. Finally, a subjective test to measure the intelligibility of the
separated voice signals using an ideal binary mask is also proposed for
different reverberation times.

Keywords: Blind Source Separation, Time-Frequency Masking, Rever-
beration, Ideal Binary Mask, Speech Intelligibility.

1 Introduction

The purpose of this work is to analyze the limitations of the spectrum masking
technique in the time-frequency domain for blind source separation using mix-
tures of reverberate sounds. The initial approaches to blind source separation
did not consider the presence of delay and reverberation in the mixtures. Al-
though there are systems of blind separation of reverberated voice signals in real
environments, the performance of the algorithms still has much to be improved
[1]. Recently, some methods based on masking in the field of time-frequency have
been proposed [2,3]. The separation is based on non-overlapping spectrogram of
sources in the time-frequency domain. The concept of ideal binary mask was first
mentioned in [4], as computational auditory scene analysis (CASA) and after
proposed in [5].

In [5] was presented speech intelligibility tests and showed that estimated
masks that are very close to ideal improve speech intelligibility when extracted
from multisource mixtures or in reverberant mixtures [6]. Recent studies [7,8]
have shown that the application of the ideal binary masks improves the intelligi-
bility of speech masked by one or more interfering sounds. In many studies, it is
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assumed that the ideal masks are available. As it is very difficult or practically
impossible to estimated the ideal binary masks from real mixtures (due to noise
presence or in situations where the source signals are not available), it is very
important to analyze the effects of estimation errors on speech intelligibility. Rel-
atively few studies have addressed this question [8]. The result found in [7] shown
that the ideal binary mask is a effective technique to improve human speech in-
telligibility performance in the presence of competing voices. The ideal masking
specifies the time-frequency units, where the target signal energy is greater than
the interference signal energy. Ideal binary masking retains time-frequency re-
gions of a mixture where the target source is stronger (those assigned to a one in
the mask) and eliminates the time-frequency regions where interfering sources
are stronger (those assigned to a zero in the mask). The ideal binary mask is
generated by checking whether the SNR (signal-to-noise ratio) in each time-
frequency unit is greater than 0 dB [7]. In [7] is suggested that the SNR value
greater than −6 dB is a better criterion to estimate the ideal binary mask, at
least for improving speech intelligibility. The effects of the local SNR threshold
were also analyzed in [8] that show the existence of the plateau region near 100%
of the words identified correctly in the ineligibility tests, ranging from -20 to 5
dB. In [9] was derived the theory and the requirements to enable calculations of
the ideal binary mask using a directional system without the availability of the
source signals. The percentage of correct time-frequency units were measured for
three different environments: anechoic, low reverberation time (400ms) and high
reverberation time (1000 ms). In an anechoic room, the percentage of correct
time-frequency units is around 95%, when the masker is located at 180◦. Using
impulse responses from the low and the high reverberant room, the percentage
of correct time-frequency units is around 83% and 73%, respectively.

In this study the performance of the ideal binary masks for the voice signals sep-
aration is analyzed. The limitations of the spectrum masking techniques, used in
blind signals separation, considering different reverberation times are evaluated.
Real results obtained by measuring of room impulse response and signal record-
ings in rooms with different reverberation times are presented and discussed. The
voice signals intelligibility separated by a ideal binary mask for the case of con-
volved mixtures was also analyzed by the application of a subjective test.

2 Analysis of Non-ideal Binary Mask for Source
Separation in the Time-Frequency Domain

The performance of the ideal mask for separation of two source signals (with
sampling rate of 10000 kHz) from an artificial mixture, when errors were intro-
duced in the mask, has been analyzed. The errors were introduced at random,
and they were increased gradually (”bit by bit”). Before each increase of one
error bit, 1000 different masks were generated. The length frame of the ideal
masks had 512 samples (51.2 ms), so the maximum amount of error corresponds
to 256 samples. The size of the window (512 samples) was chosen based on
performance achieved in the tests shown in [2]. To evaluate the performance of
separated sources was used a signal-distortion measure (SDR) given by:
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SDR = 10log10

( ∑
k s

2
i (k)∑

k(si(k)− ŝi(k))2
)
, (1)

where si represents the original source signal i and ŝi represents the separated
source signal i.

In Figure 1, the signal-to-distortion ratio decreases when the number of errors
introduced into the ideal mask increases. The performance loss of the separation
process is measured as a function of the distance between the ideal mask and
the mask effectively used. The results show a performance loss of 3 dB when
approximately 10% of the first 256 bits of the mask are inverted. Despite the
performance loss of 3 dB, the signals obtained have good intelligibility. These
results are similar to those obtained in [8], where the score remained high, near
100% of the words identified correctly in the intelligibility tests and dropped
relatively fast thereafter. An error of 10% of the bits in estimating binary masks
is acceptable without compromising speech intelligibility [8].

Fig. 1. Mean signal-to-distortion ratio values obtained from the increase of the number
of errors introduced into the ideal mask. The ideal masks had frames with 512 samples,
so the maximum amount of error is 256 samples.

3 Limitations of Spectrum Masking Methods for
Reverberated Signals

The implications caused by the increase of reverberation time in the separation
process via masking techniques in the time-frequency domain were studied. Sev-
eral room impulse responses with different reverberation times were simulated.
The convolved mixtures were obtained artificiality. The reverberation time is
given in function of room volume and the absorption walls. Spectrograms ob-
tained in different rooms and with same reverberation time can be significantly
different. For example, a room of high volume and high absorption walls can have
its room reverberation time similar to that of a small volume and low absorption
walls. However, preliminary analysis for the above cases showed no difference in
performance of separation by ideal masks. The room impulse responses were
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Table 1. Reverberation times

Reflections Reverberation Times (ms)
One wall 33

Two Walls 40
Three Walls 182
Four Walls 290
Five Walls 980
Six Walls 1750

Double Dimensions 3900

simulated using a MatLab software developed by [10]. The dimensions of the
simulated room are 6,5 m x 3,25 m x 2,5 m, the sensor position is 2,0 m x 1,75
m x 1,0 m and the source position is 3,25 m x 1,75 m x 1,0 m. The following
room impulse responses were simulated: room impulse response in an anechoic
room, considering a reflection in just one wall, reflections on two walls, reflections
on three walls,reflections on four walls, reflections on five walls, reflection on all
walls, and impulse response in a room with double dimensions. The reverberation
times for each case mentioned above are shown in Table 1.

The separated signals quality was evaluated for the following situations: i)
use of the ideal mask on the source signals; ii) use of the mask, obtained in
an anechoic environment by DUET algorithm, on the source signals; iii) use
of the ideal mask on the signal mixture and iv) use of the mask, obtained in
an anechoic environment by DUET algorithm, on the signal mixtures. In the
first case, the ideal mask was applied directly on each source signal convolved
with a room impulse response of a specific source and sensor position. As shown
in Figure 2, the mean signal-distortion ratio is 12 dB. Increasing reverberation
time up to 300 ms, the signal-distortion ratio decreases 1 dB. In the third case,
the results were obtained by applying the ideal mask on the mixed signals and
considering different reverberation times, can be observed that the mean signal-
distortion ratio in an anechoic room is 9 db and for reverberation times less than
300 ms this measure is 8 dB, but the signals show good intelligibility. In the
second and fourth cases, the binary mask was obtained by the DUET algorithm
for an anechoic room (in this case were used two mixtures to obtain the mask)
and applied on the sources and signal mixtures. In these cases, can be verified
that for reverberation times less than 300 ms, the results are the same found in
the first and third cases. However, if the time reverberation is larger than 300
ms, the signal-distortion ratio show a low performance when compared with the
results found in the first and third case.

4 Real Recording in Reverberation Rooms

The reverberation effect for source separation using an ideal mask was analyzed.
Speech signals were recorded in two reverberations rooms with reverberation
times equal to approximately 100 ms and 1100 ms, respectively. The speakers
and microphones positions as well the room dimensions are shown in Figure 4.
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The signals were recorded with a sampling rate of 44.100 kHz and after the
signals were downsampled to 10.000 kHz. The duration time of each recording
was 45 seconds. The following signals were used: i) male voice (s1); ii) female
voice (s2); iii) music - the fifth symphony of Bethoven (s3) and iv) white noise
with a uniform distribution (s4). The ideal masks were extracted separately for
each signal from the recordings. The recordings were made as follows: first, the
source signals were recorded separately (to allow the ideal masks extraction) and
later, the signals were recorded in order to obtain the mixtures (2x2). The room
impulse responses were measured by using a time-stretched pulse - TSP [11].
The TSP signal used was given by [11]:

T (k) =

⎧⎨⎩ exp(jpk
2), 0 ≤ k < N/2,

1, k = N/2,
T ∗(N − k), N/2 < k < N,

(2)
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where p determines the stretch of the signal. The IDFT (inverse discrete Fourier
transform) of T (k) can be obtained by T−1(k) = 1/T (K), as detail in [11]. The
reverberation time (T60) was specified using the method proposed by [12].

The signal-distortion measures found in mixtures (2x2) of signals recorded
in room with different reverberation times (100 ms and 1100 ms) are shown in
table 2. By applying the ideal mask on a mixture with two speech signal voice
(male and female voices), the mean SDR decreases about 3 dB in the room with
reverberation time equal to 1100 ms. In the other situations proposed, the mean
SDR also decreases in the room with reverberation time equal to 1100ms: about
5 dB for mixture of the signals s1 (male voice) and s3 (music) and approximately
8 dB for mixture of the signals s1 (male voice) and s4 (white noise).

Table 2. Applying the ideal mask on a mixture of signals recorded in environments
with reverberation times equal to 100 and 1100 ms

Room 1: Reverberation time equal to 100 ms ŝa ŝb Mean

Mixture: s1 (male voice) and s2 (female voice) SDR(dB) 9 8 9
Mixture: s1 (male voice) and s3 (music) SDR (dB) 8 21 15

Mixture: s1 (male voice) and s4 (white noise) SDR (dB) 4 34 19

Room 2: Reverberation time equal to a 1100 ms ŝa ŝb Mean

Mixture: s1 (male voice) and s2 (female voice) SDR(dB) 8 4 6
Mixture: s1 (male voice) and s3 (music) SDR (dB) 8 11 10

Mixture: s1 (male voice) and s4 (white noise) SDR (dB) 4 18 11

5 Subjective Tests of Intelligibility of the Voice Signals
Separated Using an Ideal Masking for Convolved
Mixtures

The intelligibility of the voice signals separated using an ideal masking for
convolved mixtures are analyzed considering different reverberation times.The
database used for the tests is composed of sixteen sentences. The sentences
correspond to separate voice signals by applying the ideal mask on mixtures
with various reverberation times (anechoic, 33ms, 40ms, 182ms, 290ms, 980ms,
1750ms and 3900ms). The tests were carried out by 10 people, being handed a
questionnaire to fill during the test with necessary instructions. The tests were
conducted individually and each participant heard (by an earphone) the sixteen
sentences, the intelligibility of the sentence was analyzed and the phrase per-
ceived was written in the form. The intelligibility of the sentences was expressed
by the percentage of correct words defined by the ratio between the number of
words correctly perceived and quantity of words in the sentences. The results
show that the intelligibility of the signals decreases when the reverberation time
increases, as shown in Figure 4. The results are very similar to those obtained
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in the same test mentioned previously, but using objective measures (signal-
to-distortion), as shown in Figure 2. The subjective tests show a high rate of
correct words perceived (over 90 %) to separated signals from mixtures with
reverberation time less than 300 ms. In [13] the experiments showed the speech
intelligibility are degraded when the reverberation time increases. Three envi-
ronments: anechoic room, living room and conference room were designed to
simulate the effect of listening to the sentences in the presence of different levels
of reverberation. The reverberation times for the living room and the confer-
ence room are equals to 180 ms and 600 ms, respectively. Five people listening
three hundred of nonsense sentences spoken conversationally by a male talker.
The average percentage of correct words found is 80%, 75% and 67% for the
anechoic, living room and conference room, respectively. Other studies must be
conducted to find out how much of the drop in intelligibility is caused by the lack
of separation, and how much is caused by reverberation time (on clean speech)
itself.

Fig. 4. Subjective tests of intelligibility of voice signals separated by a spectral ideal
binary mask considering different reverberation times. The dotted curve shows the
average percentage of correct words. The lines at each point represent the standard
deviation of the results for each reverberation time.

6 Conclusions

In this work the distortions caused by the use of ideal masks in source separation
are analyzed. The results show that the quality and intelligibility of the signals
are perfectly acceptable in some situations. When the ideal masks was applied
directly on the source signal (original signal), the signal-distorting mean found
is 12 dB. In the case, that the ideal mask was applied in a artificially convolved
mixture with reverberation time less than 300 ms, the SDR average reduces to
8 dB, but the signal still remains intelligible. In subjective and objectives tests,
the results found show that intelligibility of the signals and the SDR ratios are
good to mixtures with reverberation time less than 300 ms.



628 G.F. Rodrigues and H.C. Yehia

References

1. Araki, S., Mukai, R., Makino, S., Nishikawa, T., Saruwatari, H.: The fundamental
limitation of frequency domain blind source separation for convolutive mixtures of
speech. IEEE Trans. on Speech and Audio Proc. 11(2), 109–116 (2003)

2. Yilmaz, O., Rickard, S.: Blind separation of speech mixtures via time-frequency
masking. IEEE Transactions on Signal Processing 7(52), 1830–1847 (2004)

3. Araki, S., Makino, S., Sawada, H., Mukai, R.: Underdetermined Blind Separation
of Convolutive Mixtures of Speech with Directivity Pattern based Mask and ICA.
In: Puntonet, C.G., Prieto, A.G. (eds.) ICA 2004. LNCS, vol. 3195, pp. 898–905.
Springer, Heidelberg (2004)

4. Hu, G., Wang, D.L.: Speech segregation based on pitch tracking and amplitude
modulation. In: Proc. IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics, pp. 79–82 (2001)

5. Roman, N., Wang, D.L., Brown, G.: Speech segregation based on sound localiza-
tion. J. Acoust. Soc. Am. 114, 2236–2252 (2003)

6. Roman, N., Wang, D.L.: Pitch-based monaural segregation of reverberant speech.
J. Acoust. Soc. Am. 120, 458–469 (2006)

7. Brungart, D., Chang, P., Simpson, B., Wang, D.L.: Isolating the energetic compo-
nent of speech-on-speech masking with ideal time-frequency segregation. J. Acoust.
Soc. Am. 120, 4007–4018 (2006)

8. Li, N., Loizou, P.C.: Factors influencing intelligibility of ideal binary-masked
speech: Implications for noise reduction. J. Acoust. Soc. Am. 123(3), 1673–1682
(2008)

9. Boldt, J.B., Kjems, U., Pedersen, M.S., Lunner, T., Wang, D.L.: Estimation of the
ideal binary mask using directional systems. In: Proceedings of the 11th Interna-
tional Workshop on Acoustic Echo and Noise Control - IWAENC (2008)
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Abstract. The blind separation of speech signals in reverberant envi-
ronments is a well-known problem for which many algorithms have been
developed. In this paper, we propose a novel initialization procedure
for those ICA algorithms that work in the time-frequency domain and
use the prewhitening of the observations. In comparison with classical
initializations, this method allows to reduce drastically the number of
permutations. The effectiveness of the proposed technique in realistic
scenarios is illustrated by means of simulations.

1 Introduction

In this paper, we address the problem of the blind separation of convolutive
speech mixtures assuming the same number of observations and sources. Among
the different approaches to solve this problem, we have focused in the one
which works in the time-frequency domain. It is well known that the convolutive
mixture model in time domain can be approximated as a set of parallel instan-
taneous mixing problems in the time-frequency domain. Each of these problems
can be solved by instantaneous ICA algorithms such as FastICA [1], JADE [2], or
algorithms based on the non-stationarity of signals [3,4]; separating the sources
for each frequency. However, the permutation ambiguity of the parallel ICA
solutions can degrade the estimation of the sources. Various methods have been
proposed to align the solutions, for instance, using the assumption of similarity
among the envelopes of the source signal waveforms [5] or the estimation of the
direction of arrival [6,7].

We propose a new initialization procedure for those ICA algorithms that use
the whitening of the observations in the time-frequency domain. This initializa-
tion exploits the local continuity of the demixing filter in the frequency domain
and our experiments show that it reduces drastically the number of permuted
solutions and also improves the quality of the separation with respect to several
evaluation criteria. Therefore, it could be used to alleviate the computational
burden of the algorithms that solve the permutation problem, although this
issue will not be discussed in this work.

The paper is structured as follows. We start presenting the signal model and
notation in Sect. 2. In Sect. 3, we describe a classical initialization that exploits

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 629–636, 2009.
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the continuity of the mixing system in the frequency domain. Then, in Sect.
4, we present the novel initialization method. Sect. 5 describes how we fix the
existing ambiguities, after the separation of the sources. Then, in Sect. 6, we
show the results of our simulations. Finally, we summarize the contributions of
this article in Sect. 7.

2 Signal Model and Notation

Consider the standard convolutive mixing model of N speech sources, sj(n), j =
1, · · · , N , in a noiseless situation

xi(n) =
N∑
j=1

∞∑
k=−∞

hij(k)sj(n− k), i = 1, · · · , N , (1)

where xi(n), i = 1, . . . , N are the N sensor signals and hij(n) is the impulse
response from source j to microphone i. By applying short-time Fourier trans-
form (STFT), we can convert the convolutive mixture to an instantaneous
mixture problem for each frequency f . Let Xi(f, t) and Si(f, t) be, repectively,
the STFT of xi(n) and si(n), and Hij(f) be the frequency response of the chan-
nel hij(n). From (1) we obtain

Xi(f, t) =
N∑
j=1

Hij(f)Sj(f, t), i = 1, · · · , N , (2)

which for can be rewritten, in matrix notation, as

X(f, t) = H(f)S(f, t) , (3)

where X(f, t) = [X1(f, t), . . . , XN(f, t)]T and S(f, t) = [S1(f, t), . . . , SN (f, t)]T ,
are the observation and source vectors for each time-frequency point, respec-
tively, and H(f) is the frequency response of the the mixing filter whose ele-
ments are Hij(f) = [H(f)]ij ∀i, j. The vector of outputs or estimated sources
Y(f, t) = [Y1(f, t), . . . , YN (f, t)]T can be obtained by pre-multiplying the obser-
vations by the separation matrix B(f), for each frequency f , i.e.

Y(f, t) = B(f)X(f, t) . (4)

There are many ICA algorithms in which the first processing stage consists
in whitening the observations in the time-frequency domain as

Z(f, t) = W(f)X(f, t) , (5)

where W(f) is chosen so as to enforce the covariance of Z(f, t) to be the identity
matrix CZ(f, t) = IN . Since the residual mixture after the whitening

Z(f, t) = U∗(f)HS(f, t) (6)
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is characterized by the unitary mixing matrix U∗(f), the separation matrix also
inherits this latter property U(f)−1 = U(f)H , and the outputs are

Y(f, t) = U(f)HZ(f, t) = B(f)X(f, t), (7)

where the overall separation system decomposes as

B(f) = U(f)HW(f) . (8)

According to a certain criterion, the optimal separation system Bo(f) yields
the source estimates

Y(f, t) = Bo(f)X(f, t) . (9)

3 Classical Initialization

The idea of exploiting the continuity of the frequency response of the mixing filter
and its inverse is not new. Many existing blind source separation algorithms
in the time-frequency domain (see for instance [8]), assume that the optimal
separating solution Bo(f), at the frequency f , is close to the optimal solution in
contiguous frequencies. Under this assumption, it seems reasonable to initialize
the separation system B(f) from the value of the optimal separation system at
the previous frequency, i.e., setting for f > 0

B(f) = Bo(f − 1) , (10)

before optimizing B(f) with an ICA algorithm. Unfortunately, (10) cannot be
directly applied in those algorithms which require the whitening of the obser-
vations. As we have seen in (8), these algorithms decompose the separation
system as the product of an unitary matrix and the whitening system. Due
to the variability of the sources spectra, even at contiguous frequencies, the
whitening matrices W(f) and W(f − 1) are different, so solving directly for
(U(f))H = Bo(f−1)W−1(f), in general, violates unitary assumption of (U(f)).

An alternative method to initialize from previous solutions while avoiding
the previously described problem consists in initially preprocessing the observa-
tions at frequency f by the optimal separation matrix determined for the pre-
vious frequency. This classical initialization technique, first, computes the new
observations

Xinic(f, t) = Bo(f − 1)X(f, t) , (11)

and then, determines matrix W(f) which whitens these new observations. Later,
the rotation matrix (U(f))H can be obtained by any preferred ICA method.
Therefore, this classical initialization method, consists in decomposing the over-
all separation matrix in the following three factors

B(f) = (U(f))H W(f)Bo(f − 1) . (12)
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4 Proposed Initialization

In order to exploit the continuity of the frequency response of the separating
filter, we propose to initialize the separation system B(f) from the its joint
closest value to a set of optimal separation systems already computed at nearby
frequencies. This leads to the following constrained minimization problem∑

i

αi ‖Bo(f − i)−B(f)‖2F s.t. (U(f))H U(f) = IN , (13)

where ‖·‖F denotes the Frobenius norm. The corresponding Lagrangian function
L is given by

L(U(f))=
∑
i

αi

∥∥∥Bo(f − i)−(U(f))HW(f)
∥∥∥2

F
−Tr

{
Λ

(
(U(f))H U(f) − I

)}
,

where Λ is the Hermitian matrix of multipliers. The minimization of the
Lagrangian is obtained solving for U(f) from the equation

∂L
∂(U(f))∗

=
∑
i

αi

(
W(f)W(f)HU(f)−W(f)Bo(f − i)H

)
−U(f)Λ = 0 .

Then, one obtains the desired solution

U(f) = QLQH
R , (14)

where QL and QR are, respectively, the left and right singular vectors of the
following factorization

[QL,D,QR] = svd

(
W(f)

∑
i

αiBo(f − i)H
)
. (15)

Since whitening constitutes an essential preprocessing stage of many ICA
algorithms, there are potentially a wide number of algorithms that can benefit
from our proposed initialization.

5 Avoiding the Indeterminacies

Due to the decoupled nature of the solutions across different frequencies, the
correspondence between the true sources and their estimates, in general suffers
from scaling, phase and ordering ambiguities. Thus, the vector of source esti-
mates can be approximately modeled as

Y(f, t) ≈ P(f)D(f)S(f, t) , (16)

where P(f) is a permutation matrix and D(f) is a diagonal matrix of complex
scalars. In sequel we describe how to avoid these ambiguities. The problem of
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permutation across frequencies is solved by a modified version of the solution
proposed in [9] but using the optimal pairing proposed in [10]. For each possible
frequency fk we set Y(1)(fk, t) = Y(fk, t), and sequentially correct the orde-
ring of the signals by premultiplying with the estimated permutation matrices
P(l)(fk) for fk = 1, . . . , nF at iteration l, i.e.

Y(l+1)(fk, t) = P(l)(fk)Y(l)(fk, t) . (17)

Then, provided that we did not achieve the convergence, which occurs when
P(l)(f) �= I for any frequency f , we increment the iteration index l = l + 1 and
restart the previous ordering procedure.

Let us denote Ỹj(fk, t) the logarithmic function

Ỹ
(l)
j (fk, t) = ln

(∣∣∣Y (l)
j (fk, t)

∣∣∣2)−〈
ln

(∣∣∣Y (l)
j (fk, t)

∣∣∣2)〉
t

, j = 1, · · · , N (18)

and the correlation matrix

C
(l)
ỸiỸj

(fk) =
nF∑
f=1
f �=fk

〈
Ỹ

(l)
i (fk, t)Ỹ

(l)
j (f, t)

〉
t

(19)

between Ỹ (l)
i (fk, t) and a function of the other estimated sources at other fre-

quencies. The estimation of the permutation at each frequency fk is obtained,
in the case of two sources, after the evaluation of the following statistic

d (fk)
(l) = C

(l−1)
Ỹ1Ỹ1

(fk) + C(l−1)
Ỹ2Ỹ2

(fk)− C(l−1)
Ỹ2Ỹ1

(fk)− C(l−1)
Ỹ1Ỹ2

(fk) . (20)

We set P(l)(fk) = I if d (fk)
(l) ≥ 0, and we set an antidiagonal permutation

otherwise. This procedure can be extended in a straightforward way for more
than two sources. After the alignment of the estimated sources, we enforce them
to absorb the corresponding diagonal coefficients of the separating system at
each frequency. This way we avoid the scaling and phase ambiguities.

6 Simulations

We simulated the 2 × 2 mixing system of Fig. 1 with the help of the image
technique. The Roomsim toolbox1 was used to determine the channel impulse
responses for the configuration of microphones and loudspeakers we propose in
Fig. 2. The two original speech sources were randomly chosen from male and
female speakers, in a database2 of 12 individual recordings of 5 s duration and
sampled at 10KHz. We computed the STFT using hanning windows of length
1024 samples and 90% overlap.
1 http://media.paisley.ac.uk/not campbell/Roomsim/
2 http://www.imm.dtu.dk/pubdb/p.php?4400
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Fig. 1. Impulse response of the considered filter
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Fig. 2. Microphone and loudspeaker positions for the simulated room recordings

We estimated the separation system Bo(f) by initializing the Thin-ICA sepa-
ration algorithm [11] with both the classical initialization of Sect. 3 and with the
proposed initialization of Sect. 4. After that, we fixed the ambiguities of Bo(f),
and then filtered the observations to obtain the time-domain estimated sources
y1(t) and y2(t). We first compared both initializations in terms of the number
of permutations that were necessary to align the estimated sources in the time-
frequency domain. Fig. 3 illustrates this number of permutations for the classical
initialization and the proposed method to initialize from a set of k = 1, 3, 5, 7, 9,
previous separating solutions. One can observe that the proposed initialization
reduces significatively the number of permutations with respect to the classical
initialization, and that the best result is obtained when the initialization is based
on the solution at the previous frequency.
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Fig. 3. Comparison of the number of permutations required to align the estimated
sources with the classical initialization and the proposed initialization based in the k
preceding separation solutions. Results were averaged over 23 different mixtures.

We also compared the initializations in terms of the quality of the estimated
sources. According to [12], each estimated source was decomposed into three
terms yi(t) = starget + einterf + eartif which, respectively, represent the target
source, the interference from other sources and a last component of artifacts.
This decomposition was done by the BSS EVAL toolbox, where we allowed the
time-invariant filtering mode by a 100 samples filter length. Then, we analyzed
three performance measures: the Source to Interferences Ratio (SIR), the Sources
to Artifacts Ratio (SAR) and the Source to Distortion Ratio (SDR) defined by

SIR = 10 log10
‖starget‖2
‖einterf‖2

, SAR = 10 log10
‖starget + einterf‖2

‖eartif‖2
,

SDR = 10 log10
‖starget‖2

‖einterf + eartif‖2
. (21)

Table 1 shows the average performance measures of the different initialization
techniques. These results evidence that the SIR is essentially not affected by the
initialization method. On the contrary, the proposed initialization improves the
SAR and SDR measures up to 8 dB in comparison with the classical method. This
suggests that the proposed initialization helps to reduce the artifacts or echoes
of the true sources introduced by the ICA algorithm. The best performance is
again obtained by the initialization from the previous solution.

Table 1. Comparison of the average SIR, SAR and SDR for different initializations

classic ini − 1 ini − 3 ini − 5 ini − 7 ini − 9

SIR (dB) 20.16 22.03 22.27 22.10 22.23 21.85
SAR (dB) 0.86 9.32 8.87 7.54 7.44 6.30
SDR (dB) 0.70 8.92 8.53 7.25 7.16 6.06
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7 Conclusions

We have proposed a novel initialization operation that can be used by any
ICA algorithm that uses a pre-whitening of the observations. This initializa-
tion exploits the continuity of the separating filter in the frequency domain, and
it compares favorably with respect to the classical initialization which exploits
the same property. Our simulation results evidence a remarkable reduction in
the number of permuted solutions and an improvement of the source estimates.
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Abstract. This paper presents a blind watermark detection scheme for additive 
watermark embedding model. The proposed estimation-correlation-based wa-
termark detector first estimates the embedded watermark by exploiting non-
Gaussian of the real-world audio signal and the mutual independence between 
the host-signal and the embedded watermark and then a correlation-based de-
tector is used to determine the presence or the absence of the watermark. For 
watermark estimation, blind source separation (BSS) based on underdetermined 
independent component analysis (UICA) is used. Low watermark-to-signal ra-
tio (WSR) is one to the limitations of blind detection for additive embedding 
model. The proposed detector uses two-stage processing to improve WSR at the 
blind detector; first stage removes the audio spectrum from the watermarked 
audio signal using linear predictive (LP) filtering and the second stage uses re-
sulting residue from the LP filtering stage to estimate the embedded watermark 
using BSS based on UICA. Simulation results show that the proposed detector 
performs significantly better than existing estimation-correlation-based detec-
tion schemes. 

Keywords: Audio Watermark Detection, Blind Source Separation, Mean-Field 
Approaches, Independent Component Analysis, Linear Predictive Coding. 

1   Introduction 

The spread spectrum (SS) based watermarking is one of the most representative of blind 
additive embedding (AE) model which relies on the theory of spread spectrum commu-
nication for information embedding and detection. More specifically, in case of SS-
based watermarking, the host signal acts as interference at the blind detector (the host 
signal, x, is not used during watermark detection process) and as the host signal has 
much higher energy than the watermark therefore host interference deteriorates detec-
tion performance at the blind detector (or detectors hereon unless otherwise states). 
Superior detection performance is one of the desirable features for blind AE model. 

Main motivation of this paper is to design a blind detector for SS-based water-
marking. Existing detectors for SS-based watermarking schemes are bounded by the 
host signal interference at the detector. The proposed detector intends to reduce the 
host signal interference by developing an estimation-correlation-based detection 
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framework. The proposed detector therefore consists of two stages: 1) watermark 
estimation stage, and, 2) watermark detection stage. Objective of watermark estima-
tion stage is to estimate embedded watermark which has higher watermark-to-signal-
ratio (WSR) than the watermarked audio. To accomplish this goal, blind source  
separation based on the underdetermined ICA (UICA) framework (i.e. ICA for more 
sources than sensors) is used for watermark estimation. To this end, we model the 
problem of blind watermark detection for AE as that of BSS for underdetermined 
mixtures. To ensure better WSR at the watermark estimation stage, the watermarked 
audio is pre-processed to remove correlation in audio signal using linear predictive 
(LP) filtering. It has been shown that the received watermarked signal is an underde-
termined linear mixture of the underlying independent sources obeying non-Gaussian 
distributions, therefore BSS based on the UICA framework can be used for the wa-
termark estimation [1]. Similarity measure based on correlation is then used to detect 
the presence or the absence of the embedded watermark in the estimated watermark. 
Performance of the proposed watermark detection scheme is evaluated using sound 
quality assessment material (SQAM) downloaded from [2]. Simulation results for the 
SQAM dataset show that the proposed scheme performs significantly better than 
existing estimation-correlation-based detection schemes [2] based on median filtering 
and Wiener filtering.  

2   Motivation 

Majority of existing SS-based watermarking schemes [3] use AE model to insert the 
watermark into the host audio. Mathematically, the SS-based watermark embedding 
process can be expressed as, 

,...,N,nw(n),x(n)y(n) 21=+=                                          (1) 

where y(n) is the watermarked audio signal in the marking space, x(n) the original 
signal in the marking space, and w(n) the watermark signal. It is reasonable to assume 
that x(n) and w(n) are zero-mean and independent and identically distributed (i.i.d.) 
random variables with variance, 2

xσ , and 2
wσ , respectively. It is assumed further that x 

and w are mutually independent. In the data hiding literature, the embedding model 
given by Eq. (1) is referred as blind AE, as embedder ignores the host signal informa-
tion during watermark embedding process.  

Adversary attacks or distortion due to signal manipulations, v, can be modeled as 
an additive channel distortion. Therefore, the watermarked audio signal subjected to 
adversary attacks or channel distortions, 

)()()( nnynyn ν+= ,                                                    (2) 

is processed at the detector to detect the presence or the absence of the embedded 
watermark. The basic additive embedding and correlation based detection framework 
is shown in Figure 1. 
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Fig. 1. Semantic diagram of the basic additive embedding and correlation based detection 
framework 

Correlation based detector is commonly used to detect the presence or the absence 
of the embedded watermark. The decision threshold, d, is obtained by correlating the 
received watermarked audio and the watermark sequence at the detector is given as,  
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where dw (= 2
wσ ) is the energy of the watermark, Ex{dx}= 0, and Ev{dv}= 0, where 

Ex{.} denotes expectation over random variable x.  
Let us assume no attack scenario, that is, v = 0 � d = dx + dw. Now according to 

the central limit theorem dx can be modeled as a Gaussian random variable, for a 
sufficiently large N. It is important to mention that detection performance of the cor-
relation-based detector depends on the decision threshold used. Let us assume that 
watermark detection threshold, T = dx /2. In this case, the probability of a false nega-
tive Pfn (the watermark is present, but the detector decides otherwise) equals the prob-
ability of a false positive Pfp (the watermark is not present but the detector decides 
otherwise), i.e., 
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1                                             (4) 

where erfc(·) is the complementary error function. Following observations can be 
made from the Eq. (4): 

1. Zero bit error probability is not achievable even in the absence of attack-
channel distortion, that is, v = 0. In addition, decoding bit error probability is a 
function of signal-to-watermark ratio (SWR = 1/WSR), here ( )wx dSWR /σ= . 

Therefore, the host audio acts as interference at the detector which deteriorates 
detection performance significantly as, 22

wx σσ >>  for most of the watermarking 

applications [3]. 
2. The false positive and the false negative probabilities decrease as the strength 

of watermark dw increases. However, the strength of the embedded watermark 
is bounded by the masking threshold the host audio signal which is estimated 
using human auditory system (HAS) [8]. 

3. The false positive and the false negative probabilities decrease as the strength 
of the host audio, �x, decreases. This can be achieved by applying whitening 
before correlation in the detection procedure. 
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It can be summarized that the detection performance of a blind detector for additive 
watermarking schemes is inherently bounded by the host-signal interference at the 
detector. The motivation behind this paper is to design a watermark detector for AE 
with improved watermark detection performance. Towards this end, the proposed 
detector uses the theory of ICA by posing watermark estimation as a blind source 
separation (BSS) problem from an underdetermined mixture of independent sources. 
The fundamentals of the ICA theory are briefly outlined in the following section fol-
lowed by the details of the proposed ICA-based detector. 

2.1   Independent Component Analysis 

The ICA is a statistical framework for estimating underlying hidden factors or com-
ponents of multivariate statistical data. In the ICA model, the data variables are as-
sumed to be linear or nonlinear mixtures of some unknown latent variables, and the 
mixing system is also unknown [4]. Moreover, these hidden variables are assumed to 
be non-Gaussian and mutually independent. The linear-statistical, static ICA genera-
tive model considered in this paper which is given as, 

NiVASX iii ,...,1:)()()( =+=                                             (5) 

where )(iX  represents N-realizations of m-dimensional random vector known as ob-
servation vector, )(iS  are the realizations of n1-dimensional source vector or the hidden 
variables, 1nmRA ×∈ is an unknown matrix also referred as mixing matrix, and )(iV  
represents realizations of the noise, independent of the underlying sources, )(iS .  

The mixtures in which number of observations (dimensionality of observation vec-
tor, )(iX ), m, is smaller than the number of sources (dimensionality of source vector 

)(iS ), n1, i.e. m < n1 is referred as underdetermined mixtures. In this paper, we will 
consider such mixtures to model blind watermark estimation problem using blind 
source separation (BSS) based on ICA framework. The BSS framework using ICA 
model tries to find a linear representation of the underlying sources, )(iS i= 1,…,n1 
which are statistically independent based on the observation only. In other words, the 
BSS framework intends to estimate the mixing matrix or the hidden sources )(iS  or 
both from the observation alone. As pointed out in many works such as in [1, 4] (and 
references therein) that the underdetermined mixtures cannot be linearly inverted due 
to bound on the rank of mixing matrix, which makes it even more difficult to estimate 
the underlying sources even if the mixing matrix is known. Therefore, the problem of 
extracting sources from the observation following underdetermined mixture model is 
nontrivial [4]. Recently, many researchers have proposed methods to solve BSS for 
underdetermined mixtures problem [1, 4, 5]. For example, Lathauwer et al in [5] have 
proposed BSS scheme based on multi-linear analysis and Hojen-Sorensen et. al. in [1] 
have proposed a statistical framework based on mean-field approaches to solve BSS 
for underdetermined mixtures.  

Before using BSS based on UICA can be used to estimate watermark from the wa-
termarked audio we need to verify, 1) watermarked audio is an underdetermine mixture 
of independent sources, and 2) the underlying sources obey non-Gaussian distribution. 
It can be observed from Eq. (1) that the AE model fits into underdetermined linear 
mixture model, therefore, BSS for underdetermined mixtures can be used to estimate 
the embedded watermark given that the underlying latent sources (x and w) satisfies 
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non-Gaussianity and independence constraints. This is a realistic assumption, as mul-
timedia data can be modeled using the non-Gaussian distribution [6]. Therefore, if 
embedded watermark obeys non-Gaussian distribution then BSS based on UICA can 
be used for watermark estimation from the watermarked signal [6].  

3   Watermark Detection 

This section provides an overview of the proposed blind watermark detection scheme 
from the received watermarked audio signal obtained by additive embedding. The 
proposed watermark detection scheme consists of two stages, 1) watermark estimation 
stage, and 2) watermark detection stage. It is mentioned earlier that the watermark 
estimation stage is further divided into two sub-stages 1.a) spectral removal stage, and 
1.b) source separation stage. 

3.1   Watermarking Estimation 

The goal of the watermark embedder is that embedded watermark should survive 
intentional and unintentional attacks, whereas the goal of the watermark detector is to 
detect embedded watermark with very low false rates in the presence of an active 
adversary and signal manipulations. In case of AE model low false rates are hard to 
achieve even in the absence of attach channel due to strong host interference. For 
detector performance analysis, existing correlation-based schemes, model the audio 
signal as a white Gaussian channel. Recent results in audio processing and compres-
sion community, however, show that samples of the real audio signals are highly 
correlated, which can be exploited to improve the detection performance by de-
correlating the input audio before detection. The proposed detection scheme achieves 
this goal by applying whitening or de-correlation before watermark estimation. Simu-
lation results presented in this paper show that the whitening before watermark esti-
mation using ICA improves detection performance significantly. This improvement 
can be attributed to the fact that whitening actually increases watermark to interfer-
ence ratio hence yields superior detection performance.  

To remove the correlation in the audio signal, an autoregressive modeling named 
linear predictive coding (LPC) [7] can be used. The LPC method approximates the 
original audio signal, x(n), as a linear combination of the past p audio samples, such 
that 

)()2()1()( 21 pnxanxanxanx p −++−+−≈ �                       (6) 

where the coefficients paaa �,, 21  are assumed to be constant over the selected audio 

segment. Rewriting Eq. (6) by including an error term e(n), that is,  

� =
+−=

p

i i neinxanx
1

)()()(                                                (7) 

where e(n) is an excitation or residual signal of x(n). Now using Eq. (7), Eq. (1) can 
be expressed as, 
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Likewise, watermark audio can also be expressed as,  

� =
+−=

p

k k nwknyany
1

)(~)()(                                              (9) 

where )(~ nw is the residual signal of the watermarked audio signal. We assume that, by 

the characteristics of the linear predictive analysis, )(~ nw has the characteristics of both 

e(n) and w(n) . We can consider the linear combination of the past audio sample as the 
estimate )(~ ny , defined as,  

)()(~
1

knyany
p

k k −= � =
                                           (10) 

Here prediction error, e(n), can be expressed as,  
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1
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p
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         (11) 

It can be observed from Eq. (11) that the estimate )(~ nw with the audio spectrum 

removed has the characteristics of both the excitation signal of the original audio x(n) 
and the watermark signal w(n).  

This method transforms the non-white watermarked audio signal to a whitened 
signal by removing the audio spectrum. It can be observed from Fig. 2 that the em-
pirical probability density function (pdf) of a small segment of the watermarked audio 
signal before LP filtering and the residual or error signal of the watermarked audio 
signal after LP filtering. The empirical pdf of the watermarked audio signal is clearly 
not smooth and has large variations due to voiced part. On the other hand, the empiri-
cal pdf of the residual signal has a smoother distribution and a smaller variance than 
the watermarked audio signal.  

It is important to mention that the LPC stage also improves WSR which ultimately 
improves the source separation performance of the BSS used for watermark estima-
tion. This is because, the watermark sequence is i.i.d., so de-correlation stage does not 
reduce its energy in the residual signal, whereas, de-correlation does reduce audio 
signal energy hence improving the WSR. 

 

Fig. 2. Empirical probability density functions before and after linear prediction filtering 
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Residual signal is the then used to estimate the hidden watermark using BSS based 
on UICA. For watermark estimation, probabilistic ICA method based on mean-field 
approaches is used. Superior source separation performance is the only motivation 
behind using of the probabilistic ICA presented in [1]. This is however not the limita-
tion of the proposed scheme, as any of the BSS scheme based on UICA can be used 
for watermark estimation from the residual signal. Estimated sources are then corre-
lated with the watermark, w, to determine the presence or the absence of the embed-
ded watermark. Fig. 3 shows the block diagram of the proposed audio watermark 
detection scheme. 

 

Fig. 3. Block diagram of the proposed watermark detection procedure 

 

Fig. 4. Watermark embedding procedure 

4   Experimental Results 

Detection performance of the proposed watermark estimation scheme is evaluated for 
the watermarked audio clips obtained using Eq. (1). In addition, detection perform-
ance of the proposed detector is also compared with existing estimation-correlation 
based watermark detection schemes based on median filtering, Wiener filtering, and 
ICA without LP filtering. Detection performance of these four watermark estimation-
correlation-based detection schemes is evaluated for watermarked audio obtained 
using blind AE model discussed in Section 4.1.1. Detection performance is evaluated 
in terms of the value of correlation coefficient. Here higher correlation value here 
indicates better detection and vice versa. 
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4.1   Watermark Embedding and Experimental Setup 

4.1.1   Watermark Embedding 
The binary message to be embedded is first modulated by a key-dependent random 
sequence. The watermark is then spectrally shaped in the frequency domain according 
to masking threshold estimated based on the human auditory system (HAS) 
ISO/MPEG-1 Audio Layer III model [8]. Motivation here is to design the weighting 
function that maximizes energy of the embedded watermark subject to a required 
acceptable distortion. Resulting watermark is then added into the original audio signal 
in the frequency domain which is then transformed to the time domain to obtain the 
watermarked audio. A semantic diagram of the audio watermark embedding scheme 
discussed above is shown in Fig. 4. 

4.1.2   Experimental Setup 
Simulation results presented in this section are based on the following system set-
tings: 1) 44. kHz sampled and 16 bits resolution audio signals are used as the host 
audio, 2) 1024-point watermark is then embedded into four consecutive non-
overlapping frames, 3) watermarked signal is first segmented into non-overlapping 
frames of 4096 samples each, then each frame is further segmented into four non-
overlapping sub-frames which are then applied to the ICA block to estimate the em-
bedded watermark after LPC filtering. For performance evaluation SQAM 
downloaded from [2] was used. 
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Fig. 5. Robustness performance: No Attack (top-left), AWGN Attack [5% noise power] (top-
right), MP3 Compression Attack [128 kbps] (bottom-left), and Bandpass Filtering Attack (bot-
tom-right)  

Table 1. Correlation value depending on detection methods using SQAM[2] database 

Audio File ICA ICA+LPC MEDIAN WIENER 
Bass47_1 0.449 0.775 0.315 0.046 
Gspi35_2 0.519 0.787 0.206 0.056 
Harp40_1 0.294 0.582 0.288 0.057 
Horn23_1 0.562 0.781 0.329 0.033 
Quar48_1 0.411 0.729 0.347 0.054 
Sopr44_1 
Trpt21_2 
Vioo10_2 

0.499 
0.480 
0.493 

0.771 
0.782 
0.751 

0.375 
0.466 
0.560 

0.055 
0.062 
0.067 
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4.2   Simulation Results 

Robustness performance of the proposed the proposed watermark estimation scheme 
is evaluated for the following attacks scenarios: 1) no adversary attack, 2) additive 
white Gaussian noise 3) MP3 compression (128 kbps) and 4) Bandpass filtering (2nd-
order Butterworth filter with cutoff frequencies 100 and 6000 Hz). 

Detection performance of the proposed estimation-correlation based detector 
scheme and the existing schemes for these attacks is given in Fig 5. It is observed 
from Fig. 5 that for four attack scenarios the proposed detector outperforms the exit-
ing detectors. In addition, detection performance of the watermark detectors under 
consideration for SQAM database is given in Table 1. It can be observed from both 
Fig. 5 and Table 1 that the proposed detector performs significantly better than its 
counterparts. Improved detection performance of the proposed detector can be attrib-
uted to its better host signal interference cancelation capability.  

5   Conclusion 

In this paper, we described a new framework for estimation-correlation based detec-
tion for additive embedding. The proposed blind detection method extracts the em-
bedded watermark signal suppressing the host signal interference at the detector. The 
proposed framework exploits mutual independence and non-Gaussianity of the audio 
signal and the embedded watermark to estimate the embedded watermark using BSS 
based UICA. Experimental results showed that the proposed detection scheme is 
robust to common signal processing attacks and performs significantly better than 
existing estimation-correlation based detection schemes. 
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Abstract. This paper deals with audio source separation using super-
vised non-negative matrix factorization (NMF). We propose a prior
model based on mixtures of Gamma distributions for each sound class,
which hyperparameters are trained given a training corpus. This formu-
lation allows adapting the spectral basis vectors of the sound sources
during actual operation, when the exact characteristics of the sources
are not known in advance. Simulations were conducted using a ran-
dom mixture of two speakers. Even without adaptation the mixture
model outperformed the basic NMF, and adaptation furher improved
slightly the separation quality. Audio demonstrations are available at
www.cs.tut.fi/~tuomasv.

1 Introduction

Separation of mixtures of sound sources has many applications in the computa-
tional analysis of audio, speech enhancement, and noise-robust speech recogni-
tion. Particularly, non-negative matrix factorization (NMF) and its extensions
have produced good results [1,2,3].

The signal model in non-negative spectrogram factorization approximates the
spectrum vector xt in frame t as a weighted sum of N basis vectors bn:

xt ≈
N∑
n=1

bngn,t, (1)

where gn,t is the gain of the nth component in frame t = 1, . . . , T .
The basis vectors and gains can be estimated by minimizing the error of the

approximation (1). In audio signal processing, the divergence

T∑
t=1

F∑
f=1

d(xt,f ,
∑
n

bn,fgn,t) (2)

where d(p, q) = p log(p/q) − p + q, has turned out to produce good results [1].
Here bn,f denotes the fth entry of bn, and f is the frequency index. The same
procedure can be derived from a maximum likelihood perspective

p(x1:T |b1:N , g1:T,1:N ) =
T∑
t=1

F∑
f=1

δ(xt,f −
N∑
n=1

snt,f )
N∏
n=1

p(snt,f |bn,fgn,t) (3)
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where each spectrogram entry xt,f equals the sum xt,f =
∑N

n=1 s
n
t,f of component

spectrograms snt,f having Poisson distribution p(snt,f |bn,fgn,t) = Po(snt,f ; bn,fgn,t)
[5,6]. The divergence (2) can be efficiently minimized using the multiplicative
update rules proposed in [7].

When training material of each source in isolation is available, NMF can be
used in “supervised mode”, i.e., to train class conditional basis spectra of each
source in advance [2,3,4]. In the training phase, all the training material of a
specific sound class is first concatenated into a single signal, and the spectrogram
of the resulting signal is then decomposed into a sum of components using NMF.
This results to a class specific set of basis vectors for each source. For the actual
separation, the trained basis vector sets of all the source classes are combined and
a mixture signal can then be processed using the learned spectra. The previous
studies have kept the basis vectors fixed and re-estimated the gains only.

In the real world scenarios, it is either not possible to have training material of
a particular target source, or the acoustic conditions in the training and actual
operation stages vary. In these situations, adaptive models may be advantageous.
One obvious possibility is to train prior distributions p(bn|Θ) instead of fixed
parameters b∗n. Rennie et al. [4] obtained better results in the separation of two
speakers by using prior distributions instead of fixed spectra. The computational
burden caused by prior distributions can be alleviated if appropriate conjugate
priors are chosen, so that one can retain the efficiency of the original NMF algo-
rithm in maximum a posterior (MAP) estimation [5] as explained in Section 2,
or in a full Bayesian treatment [6].

This paper discusses the supervised use of NMF where the basis vectors are
trained in advance using material where each sound class is present in isolation.
We propose here a practical procedure to estimate a Gamma mixture prior model
for basis vectors. Section 4 shows simulations using mixtures of two speakers,
where the proposed method is shown to outperform the existing ones.

2 Supervised Non-negative Spectrogram Factorization

The characteristics of acoustic sources in real environments are highly variable,
hence it is advantageous to have adaptive models that can capture these charac-
teristics. In a probabilistic framework, this can be accomplished by using prior
distributions for the basis vectors bn instead of fixing them. Formally, in the
training phase of supervised non-negative spectrogram factorisation, we ide-
ally wish to estimate class-conditional hyperparameters Θc for each source class
c = 1 . . . C by maximising the marginal log-likelihood:

L(Θc) =
∫
p(sc|bc, gc)p(bc|Θc)p(gc|Θc)dbcdgc (4)

where sc is a known spectrogram from a source class c, and bc and gc denote all
the basis vector and gains of class c, respectively. Then, the actual separation of
mixture spectrogram x is achieved via computation of

p(s1:C |x, Θ1:C)=
∫
δ(x1:T−

C∑
c=1

sc)

[
C∏
c=1

p(sc|bc, gc)p(bc|Θc)p(gc|Θc)

]
db1:Cdg1:C
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However, these integrals can be hard to evaluate and more practical approaches
are taken in practice, such as computing MAP estimates for bc and gc.

As a prior for basis vectors p(bc|Θc), one can use a Gamma distribution
G(bn,f ; kn,f , θn,f) for each element bn,f of each basis vector bn. In the MAP
framework with the Poisson observation model it results to minimizing the sum
of the divergence (2) and the penalty term

N∑
n=1

F∑
f=1

(kn,f − 1) log(bn,f)− bn,fθn,f (5)

which is the logarithm of the Gamma distribution [5], up to additive terms which
are independent of the basis vector entries.

A typical gain prior p(g|Θc) is an exponential distribution with rate parameter
λ which translates to the penalty term λ

∑
n

∑
t gn,t. Sparse prior for the gains

has been found to improve the separation quality [2].
During separation, when the basis vectors are fixed, the MAP estimation of

gains can be obtained by applying iteratively updates

rt = xt./
∑
n

bngn,t gn,t ← gn,t
rTbn

1Tbn + λ
, n = 1, . . . , N, (6)

where ./ denotes element-wise division and 1 is a all-one column vector. Similarly,
when the gains are fixed, the basis vectors can be updated via

bn,f ← kn,f − 1 + bn,f
∑

t(gn,txt,f/
∑

n′ gn′,tbn′,f )
1/θn,f +

∑
t gn,t

(7)

which is guaranteed to increase the posterior probability of the basis vectors
when kn,f ≥ 1 [5]. It is important to note that under this formalism, the basis
is adapted during the actual separation.

3 Training Mixture of Gamma Priors

In single channel source separation, when two or more sources overlap in time
and frequency, we have to use redundancy of the sources to achieve good sound
source separation. Redundancy in frequency can be used efficiently when basis
vectors correspond to entire spectra of sound events instead of just parts of
their spectra. Basis vectors corresponding to entire spectra can be trained by
restricting only one basis vector to be active in each frame.

We make two assumptions which allow us to train efficiently distributions of
basis vectors corresponding to entire spectra: 1) only one basis vector is active in
each frame, and 2) the training data can be normalized so that the normalized
observations correspond to observed basis vectors. The first assumption can be
viewed as an extreme case of sparseness whereas the second cancels out the effect
of gains in training basis vector priors. While this is omitting the variation in the
Poisson model, we find this procedure virtually identical to the more principled
approach where bc are considered as latent.
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A prior for the basis vectors based on the above assumptions can be trained
using a mixture model. In the sequel, we omit the class label c as each class is
learned separately. The model for a source class is

p(b|Θ) =
N∑
n=1

wn

F∏
f=1

G(bn,f ; kn,f , θn,f), (8)

where k, θ are the shape and scale parameters of individual Gamma distributions
and wn are the prior weights. All the hyperparameters are denoted as Θ =
(k, θ, w). We do not model the dependencies between frequency bins so that the
distribution of a mixture component is the product of its frequency marginals.

3.1 Training Algorithm

The observations are first preprocessed by normalizing each observation vector
bt so that the norm of log(bt + ε), where ε is a small fixed scalar, is unity.
The EM algorithm is initialized by running the k-means algorithm with random
initial clusters for 10 iterations using the normalized log-spectrum observations
to get cluster centroid vectors μn. Centroids of linear observations are then
calculated as μn,f = eμn,f − ε. From the linear cluster centroids we estimate
the initial Gamma distribution parameters as kn,f = μ2

n,f and θn,f = 1/μn,f .
This generates a Gamma distribution having mean μn,f and variance 1. Cluster
weights are set to wn = 1/N . The iterative estimation procedure is as follows:

1. Evaluate the posterior distribution zn,t that the nth cluster has generated
the tth observation as

zn,t =
wn

∏
f G(bt,f ; kn,f , θn,f )∑N

n′=1 wn′
∏

f G(bt,f ; kn′,f , θn′,f )
(9)

2. Re-estimate the mixture weights as

wn =
∑T

t=1 zn,t∑N
n′=1

∑T
t=1 zn′,t

. (10)

3. Re-estimate the shape parameters by solving

log(kn,f )− ψ(kn,f ) = log
(∑

t zn,tbt,f∑
t zn,t

)
−

∑
t

log(bt,f )zn,t (11)

using the Newton-Raphson method, where ψ(kn,f ) = Γ ′(kn,f )/Γ (kn,f) is
the digamma function. We used 10 iterations, and the previous estimates of
kn,f as initial values.

4. Re-estimate the scale parameters as

θn,f =
∑T

t=1 zn,tbt,f
kn,f

∑
t zn,t

. (12)
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The steps 1-4 are repeated for 100 iterations, or until the algorithm converges.
In order to prevent too narrow clusters, we found it advantageous to restrict the
variance of each cluster above a fixed minimum m after each iteration as follows.
The variance of each Gamma distribution is μn,fθ2n,f . For clusters for which the
variance is smaller than the minimum limit m, we calculate the ratio yn,f =
m/(μn,fθ2n,f ), and then modify the distribution parameters as θn,f ← θn,fyn,f
and kn,f ← kn,f/yn,f . The above procedure sets the variance of the cluster to m
without changing its mean. We also found it advantageous to keep the mixture
weights fixed for the first 90 iterations.

3.2 Alternative Gamma Prior Estimation Methods

In addition to the Gamma mixture model, we tried out alternative methods
for generating the priors. In general, one can generate a Gamma distribution
from fixed basis vectors bn,f obtained with NMF (or by any other algorithm)
by selecting arbitrary shape k, and then calculating the scale as θn,f = bn,f/k.
The mean of the resulting distribution equals bn,f and its variance b2n,f/k scales
quadratically with the mean.

In addition to direct training of the Gamma mixture model parameters,
we obtained good results by applying a Gaussian mixture model for the log-
spectrum observations and then deriving the corresponding Gamma mixture
model by matching the moments of each cluster. We calculated the log-spectrum
as log(bt+ ε) and then trained a Gaussian mixture model, which mean and vari-
ance are denoted as μn,f and σ2

n,f , respectively. The mean and variance of the

linear observations are μ̃n,f = eμn,f+σ2
n,f/2 and σ̃2

n,f = (eσ
2
n,f − 1)e2μn,f+σn,f ,

respectively. Gamma distributions of linear observations can be generated by
matching the mean and variance as kn,f = μ̃2

n,f/σ̃n,f and θn,f = σ̃n,f/μ̃n,f .

4 Simulations

We evaluated the performance of the proposed methods in separating signals
consisting of two speakers of different genders. We used the Grid corpus [8], which
consists of short sentences spoken by 34 speakers. We generated 300 random test
signals where three sentences spoken by a male speaker and a female speaker were
mixed. Each test signal was generated by concatenating random three sentences
of a random male speaker, concatenating random three sentences of a random
female speaker, and mixing the signals at equal power level.

The data representation is similar to the one used in [2]: the signals were first
filtered with a high-frequency emphasis filter, then windowed into 32 ms frames
using a Hamming window with 50 % overlap between adjacent frames. DFT was
used to calculate the spectrum of each frame, and the spectra were decimated
to 80-band Mel frequency scale by weighting and summing the DFT bins.

In the training phase we learned a model for both genders. We used leave-
one-out training where the model of a gender was trained by excluding each
test speaker at time from the training data, resulting in 18 male and 16 female
models in total. We used only every 10th sentence (in the alphabetical order) of
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the training data to keep the computation time reasonable. The purpose of the
leave-one-out training was to simulate a situation where the exact characteristics
of the target and interfering sources were not known in advance.

4.1 Training Algorithms

Four different algorithms were tested in training the priors:

– NMF estimates fixed priors using the sparse NMF algorithm [1] which uses
the divergence criterion (2). Sparseness factor which produced approximately
the best results was used (the optimal value was different in testing). In order
to test basis vector adaptation, Gamma distributions were generated using
the procedure explained in Section 3.2 with parameter k = 0.01.

– Gamma mixture model was trained using the algorithm in Section 3.1.
– Gaussian mixture model was trained using log-spectrum observations, and

the Gamma mixture model was generated as explained in Section 3.2.
– Gaussian mixture model was trained using linear-spectrum observations and

the Gamma mixture model was generated by matching the moments.

The above algorithms are denoted as NMF, Gamma, Gaussian-log, and Gaussian-
lin, respectively. All the algorithms were tested with 30 and 70 components per
speaker. We found that it is advantageous to control the variance of the trained
distributions by scaling their parameters as kn,f = kn,f/q and θn,f = θn,fq, which
retains the mean of the distribution but scales its variance by q. Value q = 0.1
produced approximately the best results. Normalizing each basis vector to unity
norm and scaling the distributions accordingly by multiplying the scale parameter
was also found to improve the results slightly.

4.2 Testing

In the test phase, the bases of male and female speakers obtained by a particular
training algorithm were concatenated. Each of the 300 test signals was processed
using sparse NMF by applying the update rules (6) and (7). Sparseness factor λ
which produced approximately best result was used.

All the algorithms were tested with fixed and adaptive bases: adaptive bases
used the distributions obtained from the training, whereas fixed based were
set equal to the mean of each prior distribution. The basis vectors in all the
algorithms were initialized with the mean of each prior distribution, and random
positive values were used to initialize the gains.

The basis vectors and gains were estimated using each test signal at time.
The weighted sum of male basis vectors in frame t is calculated as mt =∑

n∈M bngn,t, whereM is the set of male basis vectors. Similarly, the weighted
sum ft of female basis vectors is calculated using the set of female speaker basis
vectors. The male speaker spectrum m̂ in each frame is then reconstructed as

m̂t = xt. ∗mt./(mt + ft), (13)

where .∗ and denotes element-wise multiplication. Female spectra are obtained
as xt − m̂t.
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The quality of separation was measured by the signal-to-noise ratio of the
separated spectrograms. The SNRs were averaged over both the speakers in all
the test signals.

4.3 Results

The average signal-to-noise ratios of each of the tested algorithm are illustrated
in Table 1. The Gamma and Gaussian-log methods produce clearly better results
than NMF and Gaussian-lin. Adaptive bases increase the performance of Gamma
method, but for other methods the effect is small. A larger number of components
improves significantly the performance of all the methods except NMF.

Sparseness in testing was found to improve the quality of the separation
slightly. Figure 1 illustrates the performance of the Gamma method with dif-
ferent sparseness factors λ. Sparseness improved more clearly the performance
of the NMF training, but the results are omitted because of space limitation
restrictions. Figure 1 also illustrates the effect of scaling the variances of the
distributions. Value q = 0 corresponds to fixed priors, and larger values (adap-
tation) improve the quality slightly up to certain value of q.

All the parameters of the training algorithms were not completely optimized
for this application, so final judgment about the relative performance of Gamma
and Gauss-log methods cannot be made. However, the results show that these
models perform clearly better than NMF in training the basis vectors.

Table 1. Average signal-to-noise ratios of the tested methods in dB, obtained with
fixed and adaptive basis vectors and with either 30 or 70 components per source. The
best algorithm in each column is highlighted with bold face font.

30 components 70 components
method fixed adaptive fixed adaptive

NMF 5.68 5.71 5.57 5.55
Gamma 6.55 6.73 6.95 7.04

Gaussian-log 6.54 6.56 7.02 7.03
Gaussian-lin 3.34 3.27 3.75 3.71
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Fig. 1. The effect of the sparseness factor λ (left panel) and the distribution variance
scale q (right panel) on the average signal-to-noise ratio
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5 Conclusions

We have proposed the use of a Gamma mixture model in representing the ba-
sis vector distributions in supervised non-negative matrix factorization based
sound source separation. The proposed method is shown to produce better re-
sults than previous sparse NMF training. In addition to better separation quality,
the method also simplifies the training since there is no need to tune the sparse-
ness factor in NMF. Mixture model training also opens up new possibilities of
incorporating hidden state variables in the model, which allow modeling the
temporal dependency in the signals.
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Abstract. We propose a floral scent recognition system using ICA combined 
with correlation coefficients estimated by statistical analysis between floral 
scent and prescribed reference models. The proposed floral scent recognition 
system consists of three modules such as floral scent acquisition module using 
Metal Oxide Semiconductor (MOS) sensor array, entropy-based floral scent de-
tection module, and floral scent recognition module using ICA combined with 
correlation coefficients. To evaluate the proposed floral scent recognition sys-
tem, we implemented an individual floral scent recognition system using K-NN 
with PCA that are generally used in conventional electronic noses. In the ex-
perimental results, the proposed system achieves higher performance than tradi-
tional odor recognition methods. We confirmed that the proposed system is 
practical and effective. 

Keywords: Independent Component Analysis, Correlation Coefficient, Floral 
Scent Recognition, Electronic Nose. 

1   Introduction 

An electronic nose is an appliance consisting of an array of gas sensors coupled to a 
pattern recognition algorithm [1]. The most common types of sensor utilized elec-
tronic nose are Conducting polymer (CP) sensor, Metal oxide semiconductor (MOS) 
sensor, Surface acoustic wave (SAW) sensor, Quartz crystal microbalance (QCM) 
sensor, Optical sensor, and Metal oxide semiconductor field effect transistor  
(MOSFET) sensor [2]. The electronic nose has generated much recent worldwide 
interest for its potential to solve a wide variety of problems in food and environmental 
monitoring [3], beverage manufacturing [4], bioprocesses [5] and medical diagnostics 
[6]. Pattern recognition methods in electronic noses are usually based on parametric 
algorithms that use PCA (Principal Component Analysis), LDA (Linear Discrimina-
tion Analysis), ICA (independent component analysis), HCA (Hierarchical Cluster 
Analysis), and clustering algorithms such as k-means or non-parametric algorithms 
that use ANN (Artificial neural networks), GA (Genetic algorithms), and Fuzzy logic 
and fuzzy rules based algorithms [7]. 

In this paper, we propose an odor recognition method based on ICA combined with 
correlation coefficients; its performance is an improvement over traditional odor  
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recognition systems. We apply this proposal to a practical floral scent recognition 
system, verifying the potential of this application. The proposed floral scent recogni-
tion method includes a selection step to select the two floral scent models that has a 
maximum similarity. The maximum similarity is decided after calculating the average 
of the correlation coefficients of the individual sensors between feature vector from 
the floral scent input point of the floral scent input until the stable region and 12 types 
of reference models. We performed an individual floral scent recognition experiment 
using K-NN (K-Nearest Neighbor) with PCA recognition algorithm to evaluate per-
formance of the proposed method. 

2   Floral Scent Recognition System 

The three steps of the suggested floral scent recognition system using ICA combined 
with correlation coefficients are: 1) floral scent acquisition step using MOS sensor 
array, 2) entropy based floral scent detection step, and 3) floral scent recognition step 
using ICA combined with correlation coefficients. Figure 1 depicts the flow chart of 
the proposed system. The details of these steps are explained in the following sections. 

 

Fig. 1. Flow chart of floral scent recognition using ICA combined with correlation coefficients 

2.1   Floral Scent Acquisition Module Using MOS Sensor Array 

The MOS sensor has been developed as a chemical sensor. It analyzes specific odors 
in electrical appliances. The major advantages of MOS sensors are fast response and 
recovery times; these mainly depend on the temperature and the level of interaction 
between the sensor and gas. MOS sensors are small and relatively inexpensive to 
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fabricate. They consume lower power compared to other sensors, and can be inte-
grated directly into the measurement circuitry [8]. 

The proposed floral scent acquisition module has been developed using 16 MOS 
sensors (Table 1). It includes a heater, MCU (C8051F305) for 24bit AD conversion, 
data processing, and Bluetooth communication to deliver sensor data. 

Table 1. List of MOS(Metal Oxide Semiconductor) sensors 

NO SENSOR TARGETED GASES NO SENSOR TARGETED GASES 

1 TGS800 Air Contaminants 9 TGS2620 Alcohol 

2 TGS822 Alcohol 10 MICS2710 Nitrogen 

3 TGS825 Ammonia 11 MICS5131 Alcohol 

4 TGS826 Ammonia 12 MICS5132 Carbone Dioxide 

5 TGS833T Water Vapors 13 MICS5135 VOCs 

6 TGS880 Alcohol 14 SP-53 Ammonia 

7 TGS2602 Air Contaminants 15 MQ-3 Alcohol 

8 TGS2611 Methane 16 SP3s-AQ2 Air Contaminants 

 
Figure 2 shows the floral scent acquisition module using the MOS sensor array and 

an example of the acquisition process to scent rose oil. 
 

(a) (b) 

(c) 

Fig. 2. MOS sensor array (a), exterior of floral scent acquisition module (b) and example of 
acquisition process for rose oil scent (c) 

The measured 16-channel analog sensor signals are converted to digital signals via 
MCU and delivered to the Notebook via the Bluetooth channel defined by the serial 
profile. Sensor signal acquisition was performed by firmware programmed under 
Silicon Laboratories IDE environment at a sampling frequency of 17Hz/sensor. Sen-
sor signals were simultaneously measured for all sensing elements. Figure 3 (a) shows 
a simultaneously measured example using rose oil scent. 
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(a) 

 

(b) 

Fig. 3. Simultaneously measured example for rose oil scent (a) and Entropy change of frame (b) 

2.2   Entropy-Based Floral Scent Detection Module 

In the sensor array based electronic nose system, the pre-processing step that includes 
accurate detection of corresponding feature vector and a revision and conversion phase 
of detected feature vector is significant [7]. The floral scent detection module is 
needed, to detect the starting point of the floral scent input region, to extract the feature 
vector. We propose the floral scent detection module that applies Shannon’s entropy. 
The entropy of the frame in the individual sensor is defined in equation (1). A frame 
consists of 32 samples and has a 50% overlapped window. If the entropy of the n th 

frame, i.e. E(n), is more than the threshold value, the current frame is selected for the 
floral scent input point (by experimentation, the threshold value selected was 1.0). 

�
−

=
×−=

1

0
2 )(log)()(

L

l

lplpnE  (1) 

where parameter p(l) is the probability a specific range from the sensor response will 
occur in one frame. In equation (2), p(l) divides c(l) with S. 
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where c(l) is the occurrence frequency of each sample within one frame and S is the 
number of samples from the corresponding frame. l divides the whole sensor response 
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with range L. Figure 3 (b) is the entropy change graph of the frame in the measured 
floral scent. 512 samples/sensor, beginning 32 samples before the floral scent input 
point until 480 samples after the floral scent input point, are selected as the feature 
vector to execute recognition. The average detection error of this module is by less 
than 0.2 second [10]. 

2.3   Floral Scent Recognition Module 

Correlation coefficients measure the strength and direction of the linear association 
between two variables. We propose the floral scent recognition module using ICA 
combined with correlation coefficients that measure a linear association between the 
feature vector of floral scent input and reference models. The individual reference 
models for floral oils were constructed from an average of feature vectors which are 
selected by floral scent detection module. 

The proposed module calculates correlation coefficients of the individual sensor 
between feature vector from floral scent input point until the stable region and 12 
types of reference models in equation (3). Then, this module selects the two floral 
scent models with the maximum similarity to the calculated average of individual 
correlation coefficients in equation (4). We use two candidates that are selected the 
two floral scent models with the maximum similarity for ICA. The recognition result 
is decided by minimum Euclidean distance between the ICA feature vector of the 
floral scent input and ICA feature vectors of selected two candidates. 
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where k is the sensor channel number and 1� k �K (K=16) based on the 16 MOS sen-

sors. kiX  is the i th feature of the k th sensor from floral scent input and kiY  is the i th 

feature of the k th sensor from the reference model and 1� i �512. kX  is the average of 

the features from the k th sensor and kY  is the features average from the k th sensor.  
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where mS is the individual average of correlation coefficients of the m th  reference 

model and 1� m �12 (m is the total number of reference models).  
Figure 4 shows the correlation coefficients of individual sensors and the individ-

ual average of correlation coefficients between the feature vector of a specific Hyssop 
scent and 12 types of reference model. Most correlation coefficients from the sensor 
between specific Hyssop scent and Hyssop reference model appear highly correlated. 
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Fig. 4. Comparative chart of correlation coefficients by sensor and average correlation coefficients 

In the context of face recognition, Bartlett and Sejnowski first proposed to use ICA 
for face representation. They presented two different approaches to apply ICA to face 
recognition [9]. In the first approach (ICA Architecture I), the input face images are 
considered to be a linear mixture of an unknown set of statistically independent 
source images. The source images obtained in this architecture are spatially local and 
sparse in nature. In the second approach (ICA Architecture II), the representation 
coefficients are assumed to be statistically independent. So the goal of ICA Architec-
ture II is to find statistically independent coefficients for input data. In this architec-
ture, while mixing coefficient vectors are independent, source images tend to have 
global face appearance, as in the case of PCA. 

The proposed module works with the ICA Architecture I for a fair comparison 
with the PCA-based method. The feature representation of floral scents using ICA 
Architecture I is summarized as follows [11]. 

1) PCA is first performed using 12 types of reference models. And then the D  eigen-
vectors associated with the largest Eigen values are selected to consist of matrix E  
as mentioned in the above section.  

2) If we assume that the input floral scent is formed of a row vector of X , and then 
the PCA coefficients Y can be obtained as XEY = .  

3) ICA is performed on TE , where eigenvectors form the rows of this matrix. The 

independent basis floral scents in the rows of U  are computed as TWEU = .  

4) The ICA coefficients matrix },,,{ 21 NbbbB ⋅⋅⋅⋅=  for the linear combination of 

independent basis floral scent in U  is computed as follows. From XEY = , we get 
TYEX = . Since TWEU = and the assumption that W  is invertible, we 

get UWET 1−= . Therefore, we obtain the ICA coefficients matrix 1−= WYB  be-

cause of the relation BUUYWX == − )( 1 . 
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3   Experimental Results 

We implemented the floral scent recognition system using ICA combined with corre-
lation coefficients. Floral oils include Rose, Jasmine, Lavender, Lily, Musk, Rose-
mary, Sandalwood, Tulip, Vanilla, Chamomile, Hyssop, and Neroli. 

In the experiments, we used a database of floral scents consisting of 600 (50×12) 
measured floral scents for 12 types of floral oils. The individual reference model for 
floral oils was constructed from an average of 50 feature vectors, 512 samples/sensor. 
These 512 sample/sensor begin 32 samples before the floral scent input point until 
480 samples after the floral scent input point. The experiments include individual 
floral scent recognition systems using PCA, PCA combined correlation coefficients, 
ICA and proposed method. PCA and ICA were implemented with the 64 variables 
selected using reference models as a training set to check classification capability. 
Figure 5 shows the floral scent recognition rate of four different methods. The aver-
age recognition rate of PCA and ICA obtained were 71.3% and 74.7% respectively. 
The average recognition rate of PCA combined with correlation coefficients and ICA 
combined with correlation coefficients obtained were 92.3% and 94.3% respectively.  

 

Fig. 5. Comparative chart of four different recognition methods 

The floral scent recognition rate using ICA combined with correlation coeffi-
cients. For each of the tasks addressed, the percentage recognition obtained was above 
80%. Experimental results show that ICA performs approximately 2.7% higher than 
PCA and ICA combined with correlation coefficients performs approximately 2.0% 
higher than PCA combined with correlation coefficients. 

4   Conclusions 

This study proposed an electronic nose system consisting of 16 MOS sensors devel-
oped for the floral scent recognition system. We proposed floral scent recognition 
system using ICA combined with correlation coefficients for 12 floral oils. We im-
plemented individual floral scent recognition system using K-NN with PCA. This is 
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widely used in conventional electronic noses. We evaluated the performance of the 
proposed system. The proposed system performs better than traditional odor recogni-
tion methods. The proposed method improves the average recognition rate more than 
2.0%, compared to PCA combined with correlation coefficients. We confirm that the 
proposed system is practical and effective. Future work in this area includes investi-
gating an analysis of various smells. 
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Abstract. Ion-selective electrodes (ISE) offer a practical approach for
estimating ionic activities. Nonetheless, such devices are not selective,
i.e., the ISE response can be affected by interfering ions other than
the target one. With the aim of overcoming this problem, we propose
a Bayesian nonlinear source separation method for processing the data
acquired by an ISE array. The Bayesian framework permits us to easily
incorporate prior information such as the non-negativity of the sources
into the separation method. The effectiveness of our proposal is attested
by experiments using artificial and real data.

1 Introduction

Ion-selective electrodes (ISEs) are devices used for measuring the ionic activity,
a measure of effective concentration of an ion in aqueous solution [1]. In contrast
to more sophisticated analytical techniques, an ISE distinguishes itself because
of its low cost and its ease of manipulation. Nonetheless, a well-known problem
associated with an ISE regards its lack of selectivity [1,2], i.e., the ISE response
can be affected by interfering ions other than the target one.

One possible way to deal with the interference problem relies on the use of an
electrode array followed by a signal processing block designed for extracting the
relevant information from the acquired data. If, for instance, signal processing
blocks based on blind source separation (BSS) techniques are considered [3],
then one may skip almost totally1 the usual calibration stage, which, for an ISE
array, is extremely time-demanding and must be performed from time to time
due to the electrodes’ drift. However, there are several challenging points that
make difficult the design of a BSS method for this case. Firstly, the mixing model
associated with an ISE array is nonlinear. Secondly, in a real application, the
number of samples is usually reduced and the typical assumption of statistical
independence between the sources may be not realistic in some scenarios.
� L. T. Duarte is grateful to the CNPq (Brazil) for funding his PhD research. The

authors are grateful to Pierre Temple-Boyer, Jérôme Launay and Ahmed Benyahia
(LAAS-CNRS) for the support in the acquisition of the dataset used in this work.

1 Due to the usual scale indeterminacy of BSS methods, at least one calibration point
is necessary.

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 662–669, 2009.
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In this work, we propose a Bayesian nonlinear BSS algorithm in order to
overcome the above-mentioned difficulties. Our motivation is twofold. Firstly,
by relying on a Bayesian BSS framework, we can easily exploit prior information
other than the statistical independence [4,5]. For instance, the sources in our
problem are always non-negative. Secondly, elaborated sampling methods [6,7],
like the Gibbs’ sampler, allow an efficient implementation of a Bayesian inference
scheme even in high-dimensional and complex models as the one treated in this
work. Concerning the organization of the paper, we start, in Section 2, with
a description of the mixing model associated with an ISE array. In Section 3,
we describe the proposed Bayesian BSS method. In Section 4, experiments are
carried out. Finally, in Section 5, we state our conclusions.

2 Mixing Model

Let us consider the analysis of a solution containing ns different kinds of ions
via an array of nc ISEs. Due to the interference problem, the response yit of the
i-th ISE in the array at the instant t is dependent not only on the activity of its
target ion sit but also on the activities of the other ions in the solution, which
are represented by sjt. The Nicolsky-Eisenman (NE) equation [1] states that

yit = ei + di log
(
sit +

ns∑
j=1,j �=i

aijs
zi/zj

jt

)
, (1)

where ei is a constant, zj is the valence of the j -th ion and aij denotes the
selectivity coefficients. Finally, di = RT/ziF , where R is the gas constant, T the
temperature in Kelvin, and F the Faraday constant. In a matrix representation,
the data provided by the ISE array can be described as follows

Y = e · 11×nd
+ diag(d) log (A⊗z S) , (2)

where nd denotes the number of samples, Y ∈ Rnc×nd , e = [e1, . . . , enc ]T , d =
[d1, . . . , dnc ]T . Matrix A ∈ R

nc×ns
+ contains the selectivity coefficients aij . The

j -th row of the matrix S ∈ R
ns×nd
+ corresponds to the temporal evolution of the

activity of the j -th ion. Finally, z = [z1, . . . , zns ]T , and the operator ⊗z describes
the nonlinear transformation inside the log term in the NE model (see (1)). If the
valences zi are equal, then ⊗z results in a simple matrix multiplication and, thus,
(2) becomes a particular case of the class of post-nonlinear (PNL) models [8].

In view of a possible model inaccuracy and/or of the errors introduced by
the measurement system, a more realistic description of the ISE array is given
by X = Y + N, where N ∈ Rnc×nd represents the noise terms. We assume a
zero mean white Gaussian noise with covariance matrix C = diag([σ2

1 , . . . , σ
2
nc

]).
Finally, SNRi denotes the resulting signal-to-noise ratio at the ISE i.

3 Bayesian Source Separation Method

Given the mixing model description, we can now formulate the source separation
problem treated in this work: estimate the elements of S by using the ISE array
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response X and by assuming that the vector of valences z is known. Since we
envisage a blind method, all the parameters related to the mixing model (except
z) and the noise variance at each electrode are unknown and, thus, should be
estimated. Furthermore, as it will become clear later, there are other unknown
parameters, denoted by φ, which are related to the prior distributions assigned
to the sources. Henceforth, all these parameters will be represented by the vector
θ = [S,A,d, e,σ,φ] and we will adopt the following notation: θ−θq represents
the vector containing all elements of θ except θq.

A first step in the development of a Bayesian method concerns the definition of
prior distributions for each element of θ. Then, by relying on the model likelihood
and on the Bayes’ rule, one can obtain the posterior distribution of θ given X.
Finally, we use Markov Chain Monte Carlo methods to generate samples from the
posterior distribution. This permits us to approximate the Bayesian minimum
mean square error (MMSE) estimator [9] for θ in a straightforward manner. In
the sequel, we shall detail each of these steps.

3.1 Priors Definition

Ionic activities: The sources are assumed i.i.d. and mutually independent.
Also, since the sources represent ionic activities, it is natural to consider a
non-negative prior distribution. In this context, [4] has shown that a mod-
eling based on Gamma distributions provides a flexible solution, since it can
model from sparse to almost uniform sources. However, in this work, we adopt
a lognormal distribution2 for each source, i.e., p(sjt) = LogN (μsj , σ

2
sj

) since
one can find a conjugate prior3 for the estimation of the unknown parameters
φj = [μsj σ

2
sj

]. Indeed, this can be done by setting the priors p(μsj ) = N (μ̃sj , σ̃
2
sj

)
and p(1/σ2

sj
) = G(ασsj

, βσsj
), where μ̃sj , σ̃sj , ασsj

, βσsj
are hyperparameters.

Also, there is a practical argument behind the choice of a log-normal distribu-
tion. Ionic activities are expected to have a small variation in the logarithmic
scale. This particularity can be taken into account by the log-normal distribu-
tion, since such a distribution is nothing but a Gaussian distribution in the
logarithmic scale.

Selectivity coefficients: The parameters aij are also non-negative [1,2]. More-
over, it is rare to find a sensor whose response depends more on the interfering ion
than on the target one. Given that, we assume that aij is uniformly distributed
in [0, 1], i.e., p(aij) = U(0, 1).

Non-linear model parameters: Since the parameters di are related to physical
parameters, a priori, they could be known beforehand. For instance, at room
temperature, one has di = 0.059/zi, and the ISEs with such sensibility are said
to have a Nernstian response. However, in a practical scenario, due to the sensor
2 The following notation is used. N (μ, σ2), LogN (μ, σ2), G(α, β) and U(a, b) represent

the Gaussian, Lognormal, Gamma and Uniform distributions, respectively.
3 From the Bayes’ rule p(X/Y ) ∝ p(Y/X)p(X). Then p(X) is a conjugate prior with

respect to the likelihood p(Y/X) when p(X/Y ) and p(X) belong to the same family.
Conjugate priors ease the simulations conducted in a MCMC algorithm.
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fabrication process and to aging, an important deviation from this theoretical
value can be observed. In order to take into account this deviation, we apply a
Gaussian prior p(di) = N (μdi = 0.059/zi, σ2

di
), where σdi is an hyperparameter.

We assume that the elements of the vector d are statistically independent.

Offset parameters: In contrast to the parameters di, there is no theoretical
value for ei. However, this parameter usually [10] lies on the interval [.05, 0.35].
Hence, we can set p(ei) = N (μei = 0.20, σ2

ei
) where the variance σ2

ei
must be

defined so that the resulting prior goes toward a non-informative prior in this
interval (for instance, see [6] for a discussion on non-informative priors.). The
elements of the vector e are assumed mutually independent.

Noise variances: Finally, we assign inverse Gamma distributions for the noise
variances, i.e., p(1/σ2

i ) = G(ασi , βσi). By proceeding this way, one obtains a
conjugate pair, which eases the sampling step. Moreover, it is possible to set the
hyperparameters ασi and βσi to obtain a non-informative prior [4].

3.2 The Posterior Distribution

A first step to obtain the posterior of θ is to find the likelihood p(X|θ) associated
with the mixing model. From the assumption of i.i.d. Gaussian noise which is
also spatially uncorrelated, it asserts that

p(X|θ) =
nd∏
t=1

nc∏
i=1

Nxit

⎛⎝ei + di log

⎛⎝ ns∑
j=1

aijs
zi/zj

jt

⎞⎠ , σ2
i

⎞⎠ , (3)

where Nxik
(μ, σ2) is a Gaussian distribution in xik with parameters μ and σ2.

Having defined the likelihood p(X|θ) and the prior distribution p(θ), we can
use the Bayes’ rule to write the posterior distribution as p(θ|X) ∝ p(X|θ)p(θ).
Since the unknown variables of our problem are, by assumption, mutually in-
dependent (except S and φ), we can factorize p(θ|X) in the following manner

p(θ|X) ∝ p(X|θ) · p(S|φ) · p(φ) · p(A) · p(e) · p(d) · p(σ). (4)

With the posterior distribution in hand we can set an inference scheme. In this
work, we consider the Bayesian minimum mean square error (MMSE) estima-
tor [9] which is defined as θMMSE =

∫
θp(θ|X)dθ. The problem here is the

analytical resolution of this integral, which culminates in a complex task when
one deals with a high-dimensional problem with non-standard distributions [6].

A possible approach to overcome the calculation of the integral related to
θMMSE is to generate samples from the posterior distribution p(θ|X) and then
approximate the MMSE estimator using these samples. If, for instance, the gen-
erated samples are represented by θ1,θ2, . . . ,θM , then the MMSE estimator
can be approximated by θ̃MMSE = 1

M

∑M
i=1 θi. According to the law of large

numbers, θ̃MMSE = θMMSE as M → +∞. This important result gives the
theoretical foundation for the above described methodology, which is referred as
Monte Carlo integration [6]. In the next section, we apply this methodology to
the estimation problem treated in this work.
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3.3 Bayesian Inference through the Gibbs Sampler

The generation of samples from p(θ|X) is performed by the Gibbs sampler.
Given each conditional distribution p(θi|θ−θi ,X), the Gibbs sampler uses the
procedure described in Table 1 to generate a Markov Chain having p(θ|X) as
stationary distribution. Therefore, after a burn-in period, which is necessary for
the generated Markov Chain to reach its stationary distribution, the algorithm
given Table 1 provides samples from p(θ|X). Then, as discussed before, one can
use these samples to obtain the MMSE estimator of θ.

Table 1. Simulation of p(θ|X) through the Gibbs’ sampler

1. Initialize the actual samples θ0 = [θ0
1 , θ0

2 , . . . , θ0
N ];

2. For p = 1 to P do

θp
1 ∼ p(θ1|θp

−θ1
,X)

θp
2 ∼ p(θ2|θp

−θ2
,X)

...

θp
N ∼ p(θN |θp

−θN
,X)

end

The conditional densities p(θq|θp−θq
,X) are summarized in Tab 2. Due to

the reduced space, the derivation of these expressions is omitted here. It can
be noted that, because of the selected priors, we obtained conjugate pairs for
almost all parameters. As a consequence, the sampling in these cases becomes
straightforward. However, for p(sjt|θ−sjt ,X) and p(aij |θ−aij ,X), we obtained
the following non-standard distributions:

p(sjt|θ−sjt ,X) ∝ exp

[
nc∑
i=1

− 1
2σ2

i

(
xit − ei−

di log
(
aijs

zi/zj

jt +
ns∑

�=1,� �=j

ai�s
zi/z�

�t

))2

− (log(sjt)− μj)2
2σ2

j

]
1
sjt

�[0,+∞[, (5)

p(aij |θ−aij ,X) ∝ exp

[
− 1

2σ2
i

nt∑
t=1

(
xit − ei−

di log
(
aijs

zi/zj

jt +
ns∑

�=1,� �=j

ai�s
zi/z�

�t

))2]
�[0,1], (6)

where � denotes the indicator function. The sampling from these distributions
is conducted through the Metropolis-Hasting (MH) algorithm [6]. A truncated
Gaussian distribution was adopted as instrumental distribution.
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Table 2. Prior and conditional distributions of the Bayesian model parameters

θq p(θq|θ−θq ,X) Auxiliary parameters Prior p(θq)
sjk see Eq. (5) - LogN (μsj , σ2

sj
)

aij see Eq. (6) - U(0, 1)

N
(

μLj
σ̃2

sj
+μ̃sj

σ2
Lj

σ2
Lj

+σ̃2
sj

, μLj =
∑nd

t=1 log(sjt)

nd

μsj
σ2

Lj
σ̃2

sj

σ2
Lj

+σ̃2
sj

)
σ2

Lj
=

σ̃2
sj

nd

N (μ̃sj , σ̃2
sj

)

αPj = ασsj
+ nd/2

1/σ2
sj

G(αPj , βPj ) β−1
Pj

= 0.5
∑nd

t=1

(
log(sjt) − μsj

)2 − β−1
σsj

G(ασsj
, βσsj

)

N
(

μLdi
σ2

di
+μdi

σ2
Ldi

σ2
Ldi

+σ2
di

, μLdi
=

(∑nd
t=1(xit−ei)) log

⎛⎝∑ns
�=1 ai�s

zi
z�
�t

⎞⎠
⎛⎝ log

⎛⎝∑ns
�=1 ai�s

zi
z�
�t

⎞⎠⎞⎠2

di
σ2

Ldi
σ2

di

σ2
Ldi

+σ2
di

)
σ2

Ldi
= σ2

di

(
log

(∑ns
�=1 ai�s

zi
z�
�t

))−2 N (μdi , σ
2
di

)

N
(

μLei
σ2

ei
+μei

σ2
Lei

σ2
Lei

+σ2
ei

, μLei
=

∑nd
t=1

⎛⎝xit−di log

⎛⎝∑ns
�=1 ai�s

zi
z�
�t

⎞⎠⎞⎠
nd

ei σ2
Lei

σ2
ei

σ2
Lei

+σ2
ei

)
σ2

Lei
= σ2

ei
n−1

d

N (μei , σ
2
ei

)

αPi = ασi + nd
2

, β−1
Pi

= Ψ − β−1
σi

1/σ2
i G(αPi , βPi)

Ψ = 0.5
∑nd

t=1

⎛⎜⎝xit − ei − di log

⎛⎜⎝∑ns
�=1 ai�s

zi
z�
�t

⎞⎟⎠
⎞⎟⎠

2 G(ασi , βσi)

4 Experimental Results

We test our algorithm using artificial data and also in a real situation involving
an array constituted of electrodes of potassium (K+) and of ammonium (NH+

4 ).
The quality related to the estimation ŝi(t) (after scale normalization) of the
source si(t) is assessed using the following index: SIRi=10 log

(
E{si(t)2}

E{(si(t)−ŝi(t))2}

)
.

Experiments with artificial data: Aiming to define testing scenarios that are
as close as possible to real situations, we make use of the selectivity coefficients
database presented in [2]. Concerning the sources, we considered a set of nd = 900
samples endowed with a temporal structure, each sample being generated by a
lognormal distribution. In a first situation, we simulate an array of two electrodes
(nc = 2) (each one having a different ion as target) for estimating the activities
of NH+

4 andK+(ns = 2). As discussed in Section 2, one has a PNL model in this
situation given that the valences are equal (z1 = z2 = 1). The parameters of the
mixing system for this case were a12 = 0.3, a21 = 0.4, d1 = 0.056, d2 = 0.056,
e1 = 0.090, e2 = 0.105 and SNR1 = SNR2 = 18 dB. Concerning the Gibbs
sampler, 3000 iterations with a burn-in period of 1400 were conducted. The
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burn-in value was fixed empirically after a visual inspection of the chains and no
convergence monitoring strategy was applied. Our method was able to provide a
good estimate of the sources in this situation. The performance indexes for this
case were SIR1 = 19.84 dB, SIR2 = 18.75 dB and SIR = 19.29 dB.

We also analyze the more complicate case of estimating the activities of cal-
cium (Ca2+) and sodium (Na+) using an array of two ISEs (nc = 2 and ns = 2),
each one having a different ion as target. Since the valences are different now,
the mixing system is composed of a nonlinear mapping followed by component-
wise logarithm functions (see Eq. (1)). We consider the same source waveforms
of the last case and the mixing system parameters were a12 = 0.3, a21 = 0.4,
d1 = 0.026, d2 = 0.046, e1 = 0.090, e2 = 0.105 and SNR1 = SNR2 = 18 dB.
The performance indexes in this case were SIR1 = 14.96 dB, SIR2 = 17.37 dB
and SIR = 16.17 dB. Despite the performance deterioration with respect to the
first case, our method provided fair estimations for the sources. The number of
iterations for the Gibbs sampler was 5000 with a burn-in period of 2000.

Experiments with real data: We consider the analysis of a solution containing
K+ and NH+

4 through an array composed of one K+-ISE and one NH+
4 -ISE.

This situation is typical in water quality monitoring. The actual sources and the
data acquired (nd = 169) by the array are shown in the left and in the right side,
respectively, of Fig. 1. For the Gibbs’ sampler, we considered 3000 iterations and
a burn-in period of 1000. In Fig. 1, we plot the retrieved sources. The performance
indexes in this case were SIR1 = 25.10 dB, SIR2 = 23.69 dB, SIR = 24.39 dB.
Despite a small residual interference, mainly for the K+ activity, our method
was able to provide a good estimation even in this difficult scenario in which
the sources are dependent and only a reduced number of samples is available.
Conversely, this situation poses a problem to ICA-based methods. Indeed, the
performance of the PNL-ICA method proposed in [11] was poor in this case
(SIR1 = 7.67 dB, SIR2 = −0.33 dB, SIR = 3.67 dB).
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Fig. 1. Left: mixtures. Right: actual sources (dashed black) and estimations (after scale
normalization) provided by the Bayesian method (gray)
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5 Conclusion

In this work, we developed a MCMC-based Bayesian nonlinear BSS method
for processing the outputs of an array of ion-selective electrodes. The Bayesian
framework allowed us to consider prior information such as the non-negativity of
the sources and of the selectivity coefficients. Experiments with artificial and real
data attested the viability of our proposal. Moreover, given that in the Bayesian
formulation the independence hypothesis is not as important as in ICA methods,
our method could provide good estimations even in a scenario where the sources
were dependent and where only a reduced number of samples was available.

A first perspective of this work is related to the sources modeling. Indeed, we
assume i.i.d. sources which means that we are not taking advantage of the fact
that chemical sources do have a time-structure (they are usually slowly varying
signals). Also, there are other two points that deserve further investigation: 1)
the case where neither the number of ions in the solution nor their valences are
available. 2) Although widely used, the NE equation may be not precise in some
cases [12]. Therefore, by considering more precise models, one could obtain a
better separation and then work even when a very high precision is needed.
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Abstract. The multiuser separation problem in a multi-input multi-
output (MIMO) orthogonal frequency division multiplexing (OFDM)
system can be represented as an instantaneous blind source separation
(BSS) problem in complex domain. But reconstruction of multiuser sig-
nals suffers from permutation indeterminacy, amplitude scaling ambi-
guity and phase distortion which are inherent to complex BSS. This
paper presents a robust and precise solution to these problems in order
to reconstruct multiuser OFDM signals. It is based on the characteris-
tics introduced to transmitted OFDM symbols by convolutional encod-
ing at the transmitter. The accuracy of these characteristics is obtained
by optimizing the convolutional code. Despite the previous BSS-based
MIMO-OFDM multiuser signal reconstruction method, the proposed
method is independent of channel characteristics. Experimental results
show that even over channels with necessities required for efficiency of
the previous method, the proposed method concludes significantly better
performance.

Keywords: OFDM, MIMO systems, Blind source separation.

1 Introduction

Multiple-input multiple-output orthogonal frequency division multiplexing
(MIMO -OFDM) has recently drawn research and technology attention, and it
has been considered as a strong candidate for the next generation wireless com-
munication systems [1]. MIMO-OFDM systems have the advantage of increasing
reliability of wireless transmission because of their OFDM side, and they have
high data rate and capacity because of their MIMO side. Their spectral efficiency
is also increased more by deploying blind channel estimation.
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Blind Source Separation (BSS) [2,3] is separation of sources from mixed ob-
served data without any information about sources and mixing process, except
some assumptions that should be fulfilled [4]. The blind channel estimation and
multiuser detection in MIMO-OFDM systems using BSS has been proposed by
[5]. It has shown how the channel estimation in a MIMO-OFDM system can be
transferred into a set of standard BSS problems with complex mixing matrices,
that each problem is associated with one of orthogonal subcarriers. Although
the complex BSS [6] successfully separates different user signals at frequency
bin (FB) level, the recomposition of them suffers from permutation indetermi-
nacy, amplitude scaling ambiguity and phase distortion which theses challenging
problems are inherent to complex BSS.

It is assumed in [5] that adjacent MIMO channels are approximately cor-
related, and the correlation between adjacent FB tracks and their adjacent
separating matrices are used to solve the permutation and scaling problems
respectively. However, this assumption is not always true, and the method is not
robust enough to perfectly reconstruct multiuser signals. Moreover, since the
approximation error sequentially propagates across subcarriers, it is not precise.

This paper presents a channel independent method for reconstruction mul-
tiuser signals in a BSS-based blind MIMO-OFDM system. The proposed method
possesses not only robustness but preciseness because of deployment an opti-
mized convolutional encoder at the transmitter.

The organization of the paper is as follows. Section 2 briefly explains the BSS-
based multiuser separation in a MIMO-OFDM system, and Section 3 presents
the proposed method for reconstruction of multiuser data after separation by
BSS. Section 4 describes optimization of the convolutional code. Section 5 pro-
vides the simulation results, and finally, section 6 concludes the paper.

2 BSS-Based Multiuser Separation

Consider a MIMO-OFDM system with MT transmit and MR receive antennas.
S

(k)
i the N -length data symbol block at the ith user and time k is modulated

by a N -point IDFT, where S
(k)
i = [Si(0, k), Si(1, k), · · · , Si(N − 1, k)]T and

i = 1, 2, · · · ,MT . After adding the cyclic prefix (CP) to avoid inter-symbol in-
terference (ISI), the modulated signals are transmitted. The transmitted signals
pass through different propagation channels and are received by No.j antenna
at the receiver. After removal of the CP and demodulation by N -point DFT,
the received N -length data symbol block by the jth antenna at time k is

X
(k)
j =

MT∑
i=1

HjiS
(k)
i + Z

(k)
j (1)

where Z
(k)
j represents zero-mean white Gaussian noise. Hji is the diagonalN×N

matrix of channel gains between ith transmit antenna and jth receive antenna.
The received signal of m-th subcarrier at the j-th antenna is
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Xj(m, k) =
MT∑
i=1

Hji(m,m)Si(m, k) + Zj(m, k), (2)

where m = 0, · · · , N − 1. For all receive antennas at time k in vector notation

X(m) = H(m)S(m) + Z(m) (3)

where X(m) = [X1(m, k), X2(m, k), · · · , XMR(m, k)]T

S(m) = [S1(m, k), S2(m, k), · · · , SMT (m, k)]T

Z(m) = [Z1(m, k), Z2(m, k), · · · , ZMR(m, k)]T

H(m) =

⎛⎜⎜⎜⎝
H11(m,m) H12(m,m) · · · H1MT (m,m)
H21(m,m) H22(m,m) · · · H2MT (m,m)

...
...

. . .
...

HMR1(m,m) HMR2(m,m) · · · HMRMT (m,m)

⎞⎟⎟⎟⎠ .
The multiuser separation has been split into N BSS problems related to N

subcarriers. But even after successful separation at each subcarrier by complex
BSS, the permutation indeterminacy, amplitude scaling ambiguity and phase
distortion are problems remain to be solved by multiuser data reconstruction.

3 The Proposed Multiuser Signal Reconstruction Method

In the proposed method, the symbols of each user are convolutional encoded
before transmission. The encoded mth carrier of kth symbol of the ith user is

Si(m, k) =
∑Lc−1

l=0 c(l)Di(m− l, k) (4)

where Di(m, k) are symbols of the ith user, and Si(m, k) is encoded signal. Lc is
the length of the convolutional code and c(.) denotes its coefficients. The auto-
correlation of No.m FB track of ith encoded user frame can be obtained as:

RSim(0) = E
[|Si(m, k)|2] = c2(0) + · · ·+ c2(Lc − 1) (5)

where E[.] is the expectation with respect to k. Similarly, RSim(1) the correlation
between mth and m+ 1st FB tracks of the same ith user encoded symbol block
can be obtained as

RSim(1) = E [Si(m, k)S∗i (m+ 1, k)] = c(0)c(1) + · · ·+ c(Lc − 2)c(Lc − 1) (6)

where E[.] is the expectation with respect to k. Note that RSim(0) and RSim(1)
both are independent of input user signals, and they depend only on the coef-
ficients of the convolutional code. We respectively denote them as R0 and R1
hereafter. By applying the the proposed encoding, each FB track has a known
auto-correlation as well as there is a known nonzero cross-correlation value be-
tween the adjacent FB tracks of the same user. These two characteristics will be
respectively used for solving the amplitude scaling ambiguity and permutation
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indeterminacy at the receiver. The equal average phase of contiguous FB tracks
is also used to solve the phase distortion problem at the receiver. The accuracy
of the above characteristics is fulfilled by optimizing the encoder code as it has
been explained in section 4.

The MIMO-OFDM system described in section 2 is applied over encoded
multiuser symbols Si(m, k), and after solving the N complex BSS problems
related to N subcarriers in Eq.(3) the separated FB tacks are obtained as

Y (m) = W (m)X(m) (7)

where W (m) is the un-mixing matrix related to mth subcarrier.

3.1 Permutation Alignment

Since, different user signals are mutually independent, the correlation of FB
tracks of different users equals zero. So, for adjacent pth and p + 1st FB tracks
of transmitted multiuser symbol blocks,

E[Si(p, k)S∗l (p+ 1, k)] =

{
0 if i �= l,

R1 if i = l ,
(8)

where R1 is a nonzero known value from Eq.(6), and E[.] is the expectation with
respect to k. Two adjacent FB tracks recovered by complex BSS are as follows

Y ip = Aipe
jθip [Si(p, 1), Si(p, 2), . . . , Si(p,K)] (9)

Y l,p+1 = Al,p+1e
jθl,p+1 [Sl(p+ 1, 1), Sl(p+ 1, 2), . . . , Sl(p+ 1,K)] (10)

where i and l are unknown user ownership indices, Aip and Al,p+1 are unknown
scaling amplitudes , θip and θl,p+1 are unknown phase distortions and K is the
frame length. Using the Eq.(8), the cross-correlation of the above FB tracks will
be as follows

E[Y ipY
H
l,p+1] =

{
0 if i �= l,

R1AipAl,p+1e
(θip−θl,p+1) �= 0 if i = l.

(11)

As it is seen, the cross-correlation between adjacent FB tracks of the same user
is a nonzero value, while it is zero for adjacent FB tracks of different users. So, by
doing a correlation-based grouping in the sequence from No.1 FB to No.(N − 1)
FB, the permutation corrected multiuser symbols Ẏi(m, k) will be obtained.

3.2 Amplitude Scaling Correction

After permutation alignment, by having the prior knowledge about the auto-
correlation of each FB track R0 from Eq.(5), we can resolve the amplitude scaling
ambiguity. Consider the No.p FB track of ith user symbol block after permutation
alignment will be

Ẏ ip = Aipe
jθip [Si(p, 1), Si(p, 2), . . . , Si(p,K)], (12)
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where Aip and θip are respectively unknown amplitude scaling and phase dis-
tortion, and K is the frame length. The auto-correlation of the above complex
sequence is obtained as

φipip = E[Ẏ ipẎ
H

ip] = A2
ipR0 (13)

So, the amplitude scaling of Ẏ ip can be corrected by being multiplied by 1
Aip

=√
R0

φip
ip

. Thus the permutation and amplitude scaling corrected user symbol

Ÿi(m, k) will be obtained as follows

Ÿi(m, k) =

√
R0

φimim
Ẏi(m, k). (14)

3.3 Phase Distortion Removal

Next, we deal with unknown phase distortion of FB tracks. Consider two adjacent
pth and p + 1st FB tracks of the same user after permutation alignment and
complex scaling amplitude correction as

Ÿ ip = ejθip [Si(p, 1), Si(p, 2), . . . , Si(p,K)] (15)

Ÿ i,p+1 = ejθi,p+1 [Si(p+ 1, 1), Si(p+ 1, 2), . . . , Si(p+ 1,K)], (16)

where θip and θi,p+1 are unknown phase distortions, and K is the frame length.
Fortunately, since the code of the convolutional encoder is optimized to conclude
a zero phase for R1, the phase deviation of each FB track with respect to its
following one can be obtained as follows

φipi,p+1 = E[Ÿ ipŸ
H

i,p+1] = e(θip−θi,p+1)E[SipS
H
i,p+1] = e(θip−θi,p+1)R1. (17)

Since, the phase of R1 is zero,

ej(θip−θi,p+1) = ej�φ
ip
i,p+1 =

φipi,p+1

|φipi,p+1|
. (18)

Therefore by multiplying Ÿ i,p+1 by
φip

i,p+1

|φip
i,p+1|

, its phase deviation will be the same

as Ÿ ip. By doing this operation from No.1 FB to No.N − 1 FB, each FB track
is adjusted to its preceding FB track which was adjusted to its prior one. So,
the phase distortion of all FB tracks become θi1, that is a case similar to uncer-
tain carrier phase in single carrier system. The same unknown resultant phase
deviation for all symbols of the user can be eliminated by noncoherent detection
[7]. At this point all OFDM user signals have been reconstructed, and they are
ready to be transferred to user identification unit. Fig. 1 shows the complete
structure of the BSS-based MIMO-OFDM system which deploys the proposed
method of multiuser signal reconstruction.
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Fig. 1. The complete structure of BSS-based MIMO-OFDM system with the proposed
method of multiuser signal reconstruction

4 The Optimum Convolutional Code

The phase distortion removal is the most sensitive part of the method to the
convolutional code. Consequently the code is optimized to result in minimum
error in estimation of the average phase of R1. R1 can be accurately written as:

R1 =
∑Lc−2

l=0 c(l)c(l + 1) +E

[
lj �=li+1∑Lc−1

li=0
∑Lc−1

lj=0 c(li)c(lj)e
j(αli,k−αlj ,k)

]
(19)

=
∑Lc−2

l=0 c(l)c(l + 1)+
lj �=li+1∑Lc−1

li=0
∑Lc−1

lj=0 c(li)c(lj)E [cos(αij,k)]

+j
lj �=li+1∑Lc−1

li=0
∑Lc−1

lj=0 c(li)c(lj)E [sin(αij,k)] (20)

where E[.] is the expectation with respect to k, and αij,k = (αli,k − αlj ,k). c(.)
are coefficients of the code, and Lc is the code length. k = 1, 2, · · · ,K, where
K is the frame length. It can be shown that αij,k is the phase of a point in the
same constellation. Since, αij,k is the phase of one of the points of a symmetric
constellation with equal probability independent form li and lj , E [cos(αij,k)]
and E [sin(αij,k)] is taken as the same random variable x which tends to zero.
While the code is constant, the phase of R1 can be a function of x as follows

ϕ = 	R1(x) = Arctan

⎛⎜⎜⎝
lj �=li+1

x
∑Lc−1

li=0
∑Lc−1

lj=0 c(li)c(lj)∑Lc−2
l=0 c(l)c(l + 1) + x

lj �=li+1∑Lc−1
li=0

∑Lc−1
lj=0 c(li)c(lj)

⎞⎟⎟⎠ .
(21)

It can be shown that

lim
x→0

dϕ =

lj �=li+1∑Lc−1
li=0

∑Lc−1
lj=0 c(li)c(lj)∑Lc−2

l=0 c(l)c(l + 1)
dx. (22)
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Eq.(22) conveys that the estimation error of 	R1 is proportional to the fraction
part of the equation. Therefore, minimization of this fraction leads to minimum
error of phase estimation as well as optimum code coefficients. After simplifica-
tion of the fraction, the optimum convolutional code can be expressed as follows

[c(0), c(1), · · · , c(Lc − 1)] = argminc(.)

⎛⎜⎝
[∑Lc−1

l=0 c(l)
]2

∑Lc−1
l=0 c(l)c(l + 1)

⎞⎟⎠ (23)

Solving the above optimization problem lead us to a set of optimized codes with
an equivalent result. Note that the convolutional encoding of the symbols changes
their constellation map, and new constellation depends on the convolutional
code. To reduce the error probability in detection of demodulated symbols at the
receiver, among optimized codes we choose a code which concludes a symmetrical
constellation with as much as possible equiprobable points.

5 Simulation Results

The proposed method has been evaluated over random frequency selective fading
MIMO channels as well as realistic Rayleigh ones with exponential power delay
profiles. The additive noise is taken zero mean white Gaussian. The employed
configuration is a 4 × 4 MIMO system with monopolized transmit antennas
assigned for each user. All user signals are modulated by 4QPSK scheme. The
optimized code [13

1
2

1
6 ] is used for convolutional encoding at the transmitter.

The carrier frequency and system bandwidth are respectively 5 GHz and 20
MHz, and the resulting RMS delay is 50 ns. The number of subcarriers is set to
N = 64, and the cyclic prefix is 16. The synchronization is assumed perfect.

The bit error rate (BER) vs. signal to noise ratio (SNR) results have been
averaged over 1000 transmissions by using OFDM frames with the length of 2000
symbols per subcarrier. User signals are randomly generated for each experiment.
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Fig. 2. (a) Performances of the proposed method and the conventional one over
Rayleigh exponential fading channels. (b) Performance of the proposed method when
it uses the optimized convolutional code and when it uses some other codes.
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The BER vs. SNR result of the BSS based MIMO-OFDM system which deploys
the proposed data reconstruction has been compared with the result of one
which uses the method proposed in [5]. This comparison is over realistic Rayleigh
channels with exponential fading. The BSS method that is used for both methods
is ICA based on information maximization approach[8]. As it is seen in Fig. 2(a)
the efficiency of the proposed data reconstruction leads to higher performance
of MIMO-OFDM system. Fig. 2(b) compares the effect of optimized encoding
code with some other codes on the system performance. This comparison is
over independent random channels which do not fulfill the requirements of the
conventional method. Fig.2(b) conveys two points. One point is the independence
of the proposed method from channel, and the other one is the important role of
the optimized encoding code in near perfect efficiency of the proposed method. In
both Figures. 2(a) and 2(b), the curve without marks is for ideal reconstruction
of BSS separated signals, wherein their source signals are used.

6 Conclusion

A robust solution to permutation indeterminacy and complex scaling ambigu-
ity inherent to complex BSS for reconstruction of multiuser data in BSS based
MIMO-OFDM system has been proposed. The proposed method not only sig-
nificantly outperforms the previous method which requires correlated MIMO
channels, but also it makes the MIMO-OFDM system independent of channels
characteristics. By using the proposed method the MIMO-OFDM system is ca-
pable of recovering data even over random independent channels. The method
is robust because it depends only on the convolutional code, and since the code
is accurately optimized, it is precise too.
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Abstract. To improve the bit rate, the effectiveness of wireless trans-
mission systems and limit the effects of fading transmission channel, an
increased attention has recently been paid to MIMO systems. In fact,
Alamouti’s space-time block code is introduced in various wireless stan-
dards and systems. This manuscript deals with the problem of presence
identification as well as blind separation of Orthogonal Space-Time Block
Code (OSTBC) in the context of non data aided.

Keywords: MIMO channel, OSTBC, ICA, Alamouti’s code, BSS of un-
derdetermined mixture.

1 Introduction

In the last two decades, wireless communication systems become attractive eco-
nomical sectors and the most challenging technology issues facing worldwide en-
gineering institutions. In modern society, wireless communication systems and
gadgets are very important in our every day life. Wireless systems are the most
up-to-date technology and they can be found in various applications such as:
Remote control toys, Global Positioning System (GPS), Mobile phone, radio,
TV, satellite, robotics, etc.
The actual mobile phone standards such as, GSM (Global System for Mobile

communications), GPRS (General Packet Radio Service) and UMTS (Universal
Mobile Telecommunications System) can’t support a very high data rate. In addi-
tion, the transmission system reliability and the transmission quality dependmuch
on channel conditions. To improve the overall transmission performance using the
diversity of transmission channel,Multiple-InputMultiple Output (MIMO) trans-
mission systems have recently been introduced bymany researchers and engineers.
In fact, these systems have shown their abilities to tackle fading effects in multi-
path channels [13,4,8]. MIMO systems use Space-Time Block Coding (STBC) de-
signs. Various STBC systems can be designed. In the literature, STBC which have
orthogonal coding matrices are the most used ones and they are called the Orthog-
onal STBC (OSTBC). Recently, OSTBC have been introduced in recent wireless
standards such asWorldwide Interoperability forMicrowaveAccess (WiMax), and
IEEE Standard 802.16e for 2.5GHZ bands.
One possible solution to mitigate the multipath fading problem is based on

time or frequency diversity both at the transmitter and the receiver. The trans-
mit diversity approach previously proposed by Alamouti [1] seems to be the most
realistic scheme which is commonly used in MIMO systems.

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 678–685, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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When we are dealing with intercepted signals, problems become more chal-
lenging. This scenario can be found in various applications such as: Control of
civilian authorities over the radio-band frequency, the control of communication
quality, warfare, design of universal receiver, etc. For various reasons, this subject
is not well addressed in the literature [2,9]. In this manuscript, the identification
and the separation of OSTBC MIMO transmitted signals, in non data aided
context, are considered.

2 Mathematical Model and Background

In this manuscript, the two widely used OSTBC codes are considered:

– Alamouti’s code is an OSTBC2 (i.e. nT = 2). Recently, this code has been in-
troduced in many wireless communication standards and systems [14] (WiFi,
IEEE 802.11n, 4G, etc). Alamouti’s code can be implemented using the fol-
lowing coding matrix:

T ime

C =
−−−−−−→[
s1 −s∗2
s2 s∗1

] ↔ A1
↔ A2

(1)

– When nT = 3, the orthogonal space-time block code is denoted by OSTBC3.
Various OSTBC3 can be found in the literature [14,13]. In our study, one
of the most efficient codes is considered (i.e. it has the maximum ratio of
symbol number Ns = 3 to the transmission period L = 4):

T ime

C =

−−−−−−−−−−−−−−→⎡⎣ s1 0 s2 −s3
0 s1 s∗3 s∗2
−s∗2 −s3 s∗1 0

⎤⎦ ↔ A1
↔ A2
↔ A3

(2)

Let us denote by x(t), a nR × 1 complex vector, the signals received by an
antenna array and by s = (sj(t)) the signals emitted by nT transmitter antennas.
The relationship among the received signals and the emitted signals can be
represented by the following equation:

xi(t) =
nT∑
j=1

hij(t, τ)⊗ sj(t) + bi(t) (3)

Here ⊗ stands for the convolutive product, hij denotes the channel impulsive
response between the ith emitter and the jth transmitter, and b = (bi(t)) repre-
sents the noise vector. Hereinafter, many realistic assumptions are made:

– The transmitted signals are mutually independent signals.
– The noises and the signals are independent of each other.
– The noise b = (bi(t)) is a zero-mean complex additive white gaussian noise.
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– The channel parameters are unknown. However in many wireless applica-
tions, the channel can be considered as a quasi-stationary flat fading channel.
In this case, one can neglect the Inter-Symbol Interference (ISI) and simplify
the previous model (3) as following [4]:

xi =
nT∑
j=1

hijsi + bi =⇒ x = Hs + b (4)

– The receiver number nR can be higher or lower than the emitter number nS .
– The Symbol Rate (SR) and Carrier Wave Frequency (CWF) are unknown
but they can be estimated [5,10]. This subject is beyond the scope of this
manuscript, for further details please see [5,10] and their references.

– Using the previous assumption, the received signals can be over-sampled,
that means the number of samples per symbol is greater than one. In addition
a Carrier Frequency estimation error Δ f0 is introduced in our simulations.

– The emitted and received signals are not synchronize and a random demod-
ulation phase φ ∈ [0, 2π] is considered.

– An asynchronous reception scheme is assumed. In this case, the sampling
process is not necessarily synchronized with the symbol sequence.

3 Presence Detection of OSTBC Signals

The main idea of this manuscript consists in blindly separating OSTBC signals.
In order to reach our goal, the OSTBC coding matrices are taken into consid-
eration, this point is addressed in the next section. The latest statement means
that prior information about the transmitted OSTBC signals should be avail-
able. The priori information can be considered as a strong assumption. In order
to relax that assumption, we briefly describe here our new and simple approach
to detect the presence of an OSTBC in the mixed and observed signals.
In order to clarify the main idea, we assume that at most one Alamouti-

coded signal could be transmitted. The proposed approach can be generalized
to deal with similar OSTBC signals. For non-noisy Alamouti-coded signal the
eigenvectors of the observed signal covariance matrix RN×N = XXH = UΔUH

are given by the following relationship, see [12]:

u1 = X (s(1), s(2)) = (as(1) + be−jθs(2))eiψ1/
√
λ1 (5)

u2 = Y(s(1), s(2)) = (bs(1) − ae−jθs(2))eiψ2/
√
λ2 (6)

where s(1) =
[
s1 −s∗2 · · · sN−1 s

∗
N

]
and s(2) =

[
s2 s

∗
1 · · · sN s∗N−1

]
stand for

the vectors of the transmitted symbols, a, b, θ, ψ1 and ψ2 could be any number
satisfying the following constraint a2 + b2 = 1.
Fig. 1 shows the main scheme of our approach. In this scheme, a modified

cross-correlation matrix of the shifted eigenvectors is used:

Γτ =
1
N

[ N
2τ ]−1∑
i=0

τ−1∑
k=0

X2iτ+kY2iτ+τ+k + Y2iτ+kX2iτ+τ+k (7)



Underdetermined BSS of MISO OSTBC Signals 681

...

...

τ = 3

X = u1

Y = u2

X43
11X43

10X34
9X34

8X34
7X21

6X21
5X21

4X12
3X12

2X12
1

Y43
11Y43

10Y34
9Y34

8Y34
7Y21

6Y21
5Y21

4Y12
3Y12

2Y12
1

Fig. 1. The cross-correlation of an Alamouti’s sequence using 3 samples/symbol, syn-
chronization error (τ = 3). The maximum cross correlation value can only be obtained
if the two sequence are synchronized. Here, Xmn

k = X (sm, sn), Xnm
k = X (−s∗n, s∗m),

Ymn
k = Y(sm, sn), Ynm

k = Y(−s∗n, s∗m) and m < n.

where [ N2τ ] is the integer part of N
2τ . Using the previous definition, the cross-

correlation obviously becomes a function of the selected delay between the two
shifted eigenvectors, τ and the synchronization error represented by i = t0
. . .

[
N
2τ

] − 1, i.e. the number of missed samples. This 3D function is shown in
Fig. 2. The function maxima stands for the beginning of a symbol sequence. In
this case, the cross-correlation function can be used to reduce the synchroniza-
tion problem as well as to estimate the over-sampling ratio. Using that figure, it
can be shown that:

– Two consecutive maximum are separate by 8 samples. One can conclude that
the over-sampling ratio is 4 (i.e. 4 samples/symbol).

– The first maximum in Fig. 2 occurs at 5, that means we missed the beginning
of the symbol sequence by 5 samples.
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Fig. 2. Eigenvectors cross-correlation modified matrix defined by equation (7)

4 BSS of an Underdetermined Mixture of OSTBC Signals

In this section, the separation of underdetermined mixtures of OSTBC signals
is addressed. The separation is achieved using the Multi-User Kurtosis (MUK)
algorithm and the specific structure of OSTBC coding matrices.
In [7], the authors proposed aBSSalgorithmcalledMulti-UserKurtosis (MUK).

MUK achieve the separation by maximizing a contrast function based on the kur-
tosis. Since the ninetieth of the last century, similar contrast functions have been
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proposed separately by other authors [15,3], further details can be founded in [6].
Similar to previous algorithms, MUK consists of two major steps:

– Orthogonalization and Whiteness.
– Separation which is achieved by estimating a rotation matrix to maximize
the proposed contrast function.

In [7], the orthogonalization process is done using Gram-Schmidt algorithm.
By taken into consideration the structure of OSTBC signals, the orthogonaliza-
tion procedure can be improved. In our simulations at any iteration, the most
modified weight vector is considered and used to establish the weight orthogonal
matrix. Fig. 3 shows the effectiveness of the modified version. The comparison
shown in the previous figure is obtained by averaging 10000 randomly initialized
separations of an Alamouti’s coded signals by using only one observed signal. As
it was mentioned before, only two interesting OSTBC signals are considered in
this manuscript. The actual study can be straightforward generalized to consider
different OSTBC signals. Hereinafter, the transmission channel is assumed to be
a Multiple-Input-Single-Output channel (MISO).
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Fig. 3. Comparison between the original and the modified version of MUK

4.1 Extraction of an Alamouti’s Coded Signal

To transmit an Alamouti’s coded signal, two transmission antennas are needed.
In noise free channels, the output of the MISO transmission channel is given by
the following relationship:

x =
[
h1 h2

] [s1 −s∗2 s3 −s∗4 . . . s2N−1 s∗2N
s2 s∗1 s4 s∗3 . . . s2N s∗2N−1

]
=

⎡⎢⎢⎢⎢⎢⎣
h1s1 + h2s2
−h1s

∗
2 + h2s

∗
1

...
h1s2N + h2s2N−1
−h1s

∗
2N + h2s

∗
2N−1

⎤⎥⎥⎥⎥⎥⎦
T

Using the odd and the even components, the observed vector x can be split into
the following two vectors:

x′ =
[
x1 x3 . . . x2N−1
x∗2 x

∗
4 . . . x

∗
2N

]
=

[
h1 h2
h∗2 −h∗1

] [
s1 s3 . . . s2N−1
s2 s4 . . . s2N

]
(8)
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Without loss of generality, one can assume that transmitted symbols are Inde-
pendent and Identically Distributed (iid) [11]. It is obvious that the previous
transmission model is similar to an instantaneous complex mixture model.
Many simulations were conducted. Our experimental results show the effec-

tiveness of the new separation scheme. Fig. 4 shows the separation of a QAM16
transmitted signal using an Alamouti’s coding matrix.
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Fig. 4. Extraction of an Alamouti’s QAM-16 coded signals using one receiver

4.2 Extraction of an OSTBC3 Signal

The previous separation scheme can be easily modified to take into consideration
another OSTBC coding matrix. In fact, let us consider an OSTBC signal gen-
erated using the coding matrix of equation (2). The main key of our separation
scheme is to find the MISO channel and the Equivalent Virtual Instantaneous
mixture (EVI). Using equation (2), one can easily prove that an observed signal
of a MISO channel should satisfy the following relationship:

x =
[
h1 h2 h3

]⎡⎣ s1 0 s2 −s3 . . . s3N−2 0 s3N−1 −s3N
0 s∗1 s∗3 s∗2 . . . 0 s3N−2 s∗3N s∗3N−1
−s∗2 −s3 s∗1 0 . . . −s∗3N−1 −s3N s∗3N−2 0

⎤⎦

xT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
...

x4M−3
x4M−2
x4M−1
x4M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1s1 − h3s
∗
2

h2s1 + h3s3
h1s2 + h2s

∗
3 + h3s

∗
1

−h1s3 + h2s
∗
2

...
h1s3N−2 + h3s3N−1
h2s3N−2 + h3s3N

h1s3N−1 + h2s
∗
3N + h3s

∗
3N−2

−h1s3N + h2s
∗
3N−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
In this case, the observed vector could be divided into four sub-vectors using a
cyclic selection of its components:⎡⎢⎢⎣

x(1)
x(2)
x∗(3)
x(4)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
x1 x5 . . . x4M−3
x2 x6 . . . x4M−2
x∗3 x∗7 . . . x∗4M−1
x4 x8 . . . x4M

⎤⎥⎥⎦ =

⎡⎢⎢⎣
h1 −h3 0
h2 0 −h3
h∗3 h∗1 h∗2
0 h2 −h1

⎤⎥⎥⎦
⎡⎣s1 s4 . . . s3N−2
s∗2 s

∗
5 . . . s

∗
3N−1

s3 s6 . . . s3N

⎤⎦ = HS
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Fig. 5. Extraction of PSK4 symbols transmitted using an OSTBC3

Using the result of the previous section, one can make the sampling ratio ρ = 1
sample/symbol. If transmitted symbols are iid, then the previous model becomes
an EVI model. The separation is done using the modified version of MUK. Fig. 5
shows the separation result of a PSK4 modulated using OSTBC3. In order to
conduct that simulation, 2000 symbols, 4 transmission antennas and one receiver
are used. We should mention here, that the previous separation scheme can still
be applied to extract an OSTBC from a mixed modulated signals if its baud rate
is different than the other ones. The extraction of other signals can be conducted
using a deflation approach. With a high signal to noise ratio, good experimental
results are obtained. Due to the lack of space, the details of this part of study is
omitted. These points will be the goal of future studies.

5 Conclusion

In this manuscript, the identification, features extraction approach and an in-
formation retrieval method of an OSTBC signals are addressed. In fact, under
realistic assumptions, an identification approach based on the cross-correlation
of covariance matrix eigenvalues is proposed. In addition, a modified version of
Multi-User Kurtosis (MUK) is briefly discussed. Finally, an OSTBC extraction
scheme is considered. The new scheme uses the structure of the OSTBC coding
matrix and a modified version of MUK.
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Abstract. Sonar systems are very important for several military and
civil navy applications. Passive sonar signals are susceptible to cross-
interference from underwater acoustic sources (targets) present at diffe-
rent directions. In this work, a frequency-domain blind source separation
procedure is proposed aiming at reducing cross-interferences, which may
arise from adjacent signal source directions. As a consequence, target de-
tection and classification may both be performed on cleaner data and one
can expect an overall sonar efficiency improvement. As the underwater
acoustic environment is time-varying, time-frequency transformation is
performed using short-time windows. Original free of interference sources
are estimated using ICA algorithms over narrow-band frequency-domain
signals. It is shown that the proposed passive sonar signal processing ap-
proach attenuates in more than 10 dB the interference signals measured
from two nearby directions and reduces the common background noise
level in 7 dB.

Keywords: Passive Sonar, Spectral Analysis, BSS, Convolutive Mix-
tures, Interference Removal.

1 Introduction

If in a given operational condition exists more than one target to be detected,
acoustic signals measured at adjacent directions (bearings) may be corrupted
by cross-channel interference, contaminated by a background noise (from under-
water acoustic environment) and the self-noise (acoustic signals generated by
the own submarine in which the passive sonar system is located). Boths, target
detection and classification tasks, may suffer from this interference, which may
even provoke errors in important SO (Sonar Operator) decisions.

A narrow-band analysis (DEMON - Demodulation of Envelope Modulation
On Noise) [1] is used as a pre-processing step selecting only the frequency band of
interest for target characterization. DEMON is performed through Short-time
Fast Fourier Transform to deal with the non-stationarity of the passive sonar
signals.
� The authors would like to express their gratitude for the Brazilian Navy for providing

the experimental data used in this work and for CNPq and FAPERJ for the financial
support.
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Envisaging cross-channel interference removal, a frequency-domain signal sep-
aration procedure is proposed in this paper for a passive sonar system. Original
signal source estimation is then performed in frequency-domain using ICA (In-
dependent Component Analysis) over preprocessed signals. Thus, independent
components are extracted for each target.

2 Passive Sonar Systems

Passive sonar systems listen to sound radiated by a target using a hydrophone
array [2] and detect signals against the background noise, composed by the
ambient noise of the sea and the self-noise of the ship. After detection, the target
must be identified based on its radiated noise [1]. The system present aural and
visual information to the sonar operator, who will use this information to derive
his decision, in terms of target identification.

2.1 DEMON Analysis

The DEMON analysis (Demodulation of Envelope Modulation On Noise) is of-
ten applied to obtain information about the propulsion of the target [7]. By
demodulating the noise produced by cavitation propellers, it is possible to ob-
tain shaft rotation, along with the number of blades and even the number of
shafts of the target ship. This extracted information is extremely useful for the
identification task [1].

Figure 1 displays the bearing time information obtained from the passive sonar
system used in this work. The purpose of the bearing time analysis (beamform-
ing) is to detect the acoustic signals directions of arrival. For that, a Cylindrical
Hydrophone Array (CHA) is used in this work, allowing the system to perform
omnidirectional surveillance [3].

Fig. 1. Bearing time

The broadband noise from a propeller may be amplitude modulated at the
blade rate frequency and its harmonics. Typically, target identification is sup-
ported by a DEMON analysis [1]. This is a narrow-band analysis that is applied
on bearing information and helps the identification of the number of shafts, shaft
rotation frequency and the number of blades [4,5]. As they provide a detailed
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Fig. 2. Blocks diagram of DEMON analysis

knowledge of the threat’s radiated noise, narrow-band sonar systems usually
show good detection and classification capabilities [1,7].

Figure 2 shows a block diagram for classical DEMON analysis. Acquired time
signals are filtered by a bandpass filter, typically between 1 to 10 kHz, which
is the frequency band where cavitation is more evident. In sequence, signal is
squared as in a traditional demodulation scheme and a TPSW (Two Pass Split
Window) algorithm is used to estimate the mean of the background noise [1].

Using TPSW, it is possible to emphasize target signal peaks. Resampling is then
performed to reach the band frequency of interest, 0 to 25 Hz, that corresponds
to 0 to 1500 rpm. Finally, a Fast Fourier Transform (FFT) [6] is applied for each
acquisition, which is 160 second long in this case. As the acoustic signals are time-
variant due to modifications on the underwater acoustic scenario, here the FFT
algorithm is applied to short lengths of time, which are selected from a moving
Hanning-window (approximate length: 500 ms) applied to raw data.

As it has been already mentioned, contamination and interference may occur
in neighbour bearings. Interference produces inaccurate peak detection and har-
monics poorly definition. The self noise from the submarine may also produce in-
terference in target bearing making it even more difficult the detection procedure.

3 The Proposed Signal Separation Procedure

In this work is proposed a frequency-domain ICA (FD-ICA) method for inter-
ference removal in passive sonar systems. As illustrated in Figure 3, DEMON
analysis is initially performed over raw-data and frequency information from the
three directions are used as inputs for an ICA algorithm, producing the indepen-
dent (frequency-domain) components. Most of noise and non-relevant signals are
eliminated by DEMON, allowing more accurate estimation of the independent
components.

Fig. 3. Interference Removal in frequency domain
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A particular characteristic is that DEMON analysis is usually performed over
finite time-windows and the frequency components are estimated within these
windows. Aiming at reducing the random noise generated in time-frequency
transformation, an average spectrum is computed using frequency information
from these time-slots.

Frequency-domain ICA (FD-ICA) is closely related to the convolutive mixing
model [8],whichassumesthattheobservedsignalsaregeneratedbydelayedversions
of the sources. In the frequency-domain, convolutions are reduced to multiplica-
tions.A characteristicofFD-ICAis that themixingmatrix is frequency-dependent.
In this work, as we are dealing with a narrow frequency band (0 to 25 Hz), for sim-
plification, the mixing matrix is considered invariant in this band.

In ICA algorithms, the order and the amplitude of the estimated compo-
nents are random parameters and thus different initializations may lead to dif-
ferent scaling factors and ordering [8]. In the proposed approach, ICA algorithms
are executed after DEMON estimation at each time window, independent com-
ponents from a certain direction may appear in different ordering at adjacent
time-windows in this sequential procedure. Considering this, the short-time in-
dependent components must be reordered and normalized in amplitude. The
normalization is performed by converting signal amplitude into dB scale. The
reordering procedure is executed by computing the correlation between indepen-
dent components estimated from adjacent time slots. High correlation indicates
that these components are related to the same direction.

In the Section 4, experimental results obtained through the proposed ap-
proach are detailed. To estimate the independent components, JADE [10] and
the Newton-like [12] algorithms were used. A performance comparison between
these algorithms is presented.

3.1 Joint Approximate Diagonalization of Eigenmatrices

JADE (Joint Approximate Diagonalization of Eigenmatrices) [10] refers to one
principle of solving the problem of equal eigenvalues of cumulant tensor achie-
ving a diagonalization of the tensor through the eigenvalue decomposition. The
tensorial method is used to carry through the independent components analysis.
Tensors may be considered as a linear generalization of matrices or operators.
The second and fourth order cumulant tensors are used to search for signal
independence.

3.2 Multiplicative Newton-Like Algorithm for ICA

A multiplicative ICA algorithm was proposed by Akuzawa and Murata in [12].
Using the kurtosis as cost function, this method applies second-order optimiza-
tion (through a Newton-like algorithm) in the search for independent compo-
nents (instead of first-order gradient iterations used in most of ICA algorithms).

This algorithm does not require pre-whitening and thus operates directly over
the data. Some experimental results obtained in [13] indicate that Akuzawa’s
algorithm outperforms classical ICA algorithms such as FastICA [8] and JADE
in the presence of Gaussian noise.
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4 Experimental Results

Experimental data used in this work comprises signals acquired from a CHA
(sample frequency of 31,250 Hz). Initially, DEMON analysis is applied to raw
data as a pre-processing. Figure 4 shows typical DEMON displays from three
bearings. The horizontal axis represents the rotation scale (in rpm) while the
vertical axis corresponds to signal amplitude (in dB). The largest peak amplitude
reveals the speed of shaft rotation, while the subsequent harmonics indicate the
number of blades.

Two targets are present in this experimental run at directions 190o and 205o.
As illustrated in Figure 4, the frequency components after DEMON analysis
(here DEMON spectrums are composed by 512 frequency bins, spanning from
zero up to 1400 RPM) at 190o target (FA=148 RPM and its multiples) are mixed
together with information from the 205o direction (FB=119 RPM). The same
problem exists in the signal measured at bearing 205o. It was also observed that
both signals (190o and 205o) are contaminated by a third component (FC=305
RPM), that is the main frequency present at direction 076o. It is known from
the experimental setup that the last bearing (076o) contains information from
the noise radiated by the submarine where the hydrophones array is allocated. It
can also be verified that, signal measured at direction 076o presents interference
from target at 205o (FB).

The proposed narrow-band frequency-domain signal separation procedure was
applied to the underwater acoustic signals measured at directions 076o, 190o and
205o. A frequency-time display (demongram) for direction 190o is provided in
Figure 5. It can be depicted that an interference frequency component (FB) is
present during the observed interval (from 65 to 85 seconds) in raw data at
direction 1900 (Figure 5-a). Figure 5-b illustrates the frequency-time display for
the independent component related to the same direction and it can be observed
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Fig. 5. Time-frequency display at direction 1900 for (a) raw data and (b) short-time
frequency-domain independent component
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Fig. 6. Separated signals obtained for directions 076o through JADE (left) and Newton-
like (right) algorithms
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that the interference is removed and the second harmonic component highlighted
as a result of FD-ICA. In this plot, JADE algorithm was applied.

In the classical DEMON processing, the mean amplitude of the frequency
components obtained at each short-length time windows is calculated and a
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Fig. 8. Separated signals obtained for directions 205o through JADE (left) and Newton-
like (right) algorithms

mean frequency-amplitude plot is generated. The results (considering the mean
spectrums) obtained through JADE and the Newton-like algorithms are illus-
trated in Figures 6, 7 and 8 respectively for directions 076o, 190o and 205o. It
can be observed from these Figures that in the independent signals, obtained
through both algorithms, the cross-interference was significantly reduced.

For the Newton-like algorithm, it was also observed that the background noise
level (which can be estimated from the mean amplitude of the non-relevant fre-
quency components) was more significantly reduced when compared to JADE.
For direction 190o the estimated background noise levels are approximately -8dB
(raw-data), -12dB (FD-ICA / JADE) and -15dB (FD-ICA / Newton-like). Con-
sidering now direction 205o, the noise level was reduced from -7dB (raw-data)
up to -11dB (FD-ICA / JADE) and -30dB (FD-ICA / Newton-like). The cross-
interference peaks were also more severely attenuated at the independent com-
ponents estimated through the Newton-like algorithm. These results indicates
that the independent components estimation through the Newton-like algorithm
is more suitable for this application.

5 Conclusions

On passive sonar signals, target identification relies very much on narrow-band
frequency-domain information obtained through DEMON analysis. Signals ac-
quired at adjacent directions (bearings) may be corrupted by cross-channel in-
terference from multiple targets. In this work, Frequency-Domain Independent
Component Analysis (FD-ICA) was used to reduce this interference. The per-
formance obtained through two ICA algorithms, JADE and Newton-like, were
compared and it was observed that the Newton-like method presented better
results.
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Abstract. Channel estimation in the (2×1) Alamouti space-time block
coded systems can be performed blindly from the eigendecomposition
(or diagonalization) of matrices composed of the receive antenna output
4th-order cumulants. In order to estimate the channel, we will propose
to choose the cumulant matrix with maximum eigenvalue spread of
cumulant-matrix. This matrix is determined in closed form. Simulation
results show that the novel blind channel identification technique
presents a satisfactory performance and low complexity.

1 Introduction

A large number of Space Time Coding (STC) techniques have been proposed in
the literature to exploit spatial diversity in systems with multiple elements at
both transmission and reception (see, for instance, [1] and references therein).
The Orthogonal Space Time Block Coding (OSTBC) is remarkable in that it
is able to provide full diversity gain with linear decoding complexity [2,3]. The
basic premise of OSTBC is the encoding of the transmitting symbols into an
unitary matrix to spatially decouple their Maximum Likelihood (ML) detection,
which can be seen as a matched filter followed by a symbol-by-symbol detector.

The OSTBC scheme for MIMO systems with two transmit antennas is known
as the Alamouti code [2] and it is the only OSTBC capable of achieving full
spatial rate for complex constellations. The (2× 1) Alamouti coded systems are
attractive in wireless communications due to their simplicity and their ability to
provide maximum diversity gain while preserving the channel capacity. Because
of these advantages, the Alamouti code has been incorporated in the IEEE 802.11
and IEEE 802.16 standards [4].

Coherent detection in (2 × 1) Alamouti coded systems requires the
identification of a (2×2) unitary channel matrix. The transmission of data known
to the receiver, known as pilot or training symbols, is often used to perform

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 694–701, 2009.
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channel estimation required for a coherent detection of OSTBCs. However,
training symbols reduce the throughput and such schemes are inadequate when
the bandwidth is scarce. Strategies that avoid this limitation include the so-called
Differential STBC (DSTBC) [5] which is a signalling technique that generalizes
differential modulations to the transmission over MIMO channels. DSTBCs can
be incoherently decoded without the aid of channel estimates but they incur in
a 3 dB performance penalty when compared to coherent detection.

Training sequences can also be avoided by the use of blind channel
identification methods. In particular, this contribution focuses on blind channel
identification in (2 × 1) Alamouti coded systems using higher-order eigen-
based approaches. Under the assumption of independent symbol substreams, the
channel can be estimated from the eigendecomposition of matrices composed
of 2nd- or higher-order statistics (cumulants) of the received signal. The so-
called joint approximate diagonalization of eigenmatrices (JADE) method for
blind source separation via independent component analysis is optimal in that it
tries to simultaneously diagonalize a full set of 4th-order cumulant matrices. In
order to reduce the computational complexity, we propose to diagonalize a linear
combination of cumulant matrices, which is judiciously chosen by maximizing
its expected eigenvalue spread.

2 The (2 × 1) Alamouti Coding Scheme

Figure 1 shows the baseband representation of Alamouti OSTBC with two
antennas at the transmitter and one antenna at the receiver. Each pair of symbols
{s1, s2} is transmitted in two adjacent periods using a simple strategy: in the
first period s1 and s2 are transmitted from the first and the second antenna,
respectively, and in the second period −s∗2 is transmitted from the first antenna
and s∗1 from the second one, symbol (·)∗ denoting complex conjugation. In the
sequel, we assume that the symbol substreams are complex-valued, zero-mean,
stationary, non-Gaussian distributed and statistically independent; their exact
probability density functions are otherwise unknown.

The transmitted symbols (sources) arrive at the receiving antenna through
fading paths h1 and h2 from the first and second transmit antenna, respectively.
Hence, the signal received during the first and the second symbol period have the
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ŝ = ĤH · x

Compute Ĥ
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Fig. 1. Alamouti Coding Scheme
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form z1 = s1h1 + s2h2 + n1 and z2 = s∗1h2 − s∗2h1 + n2, respectively. The term
ni denotes the additive white Gaussian noise at symbol period i. By defining
the observation vector as x = [x1, x2]T = [z1, z∗2 ]T, symbol (·)T standing for the
transpose operator, the relationship between the observation vector x and the
source vector s = [s1, s2]T is given by

x = Hs + n (1)

where n = [n1, n
∗
2]

T is the noise vector and H represents the (2 × 2) channel
matrix

H =
[
h1 h2

]
=

[
h1 h2
h∗2 −h∗1

]
(2)

It is interesting to note that matrix H is unitary up to a scalar factor, i.e.,

HHH = HHH = ‖h‖2I2 (3)

where ‖h‖2 = |h1|2 + |h2|2 is the squared Euclidean norm of the channel vector,
I2 is the (2 × 2) identity matrix and (·)H is the Hermitian operator. It follows
that the transmitted symbols can be recovered, up to scale, as ŝ = ĤHx, where
Ĥ is a suitable estimate of the channel matrix. As a result, this scheme supports
ML detection based only on linear processing at the receiver. Consequently, the
correct detection of the transmitted symbols s requires the accurate estimation
of the channel matrix H from the received data x.

3 Blind Channel Estimation Based on Eigenvalue Spread

In this section, we will propose a novel higher-order eigen-based approach to
estimate the channel matrix in the (2 × 1) Alamouti system. For the sake of
simplicity, we restrict the exposition to zero-mean distributions and circular
statistics. Given a random vector x = [x1, x2] ∈ C2, its 2nd-order cumulants are
simply defined as cum(xi, x∗j ) = E[xix∗j ], and the 4th-order cumulants as

cum(xi, x∗j , xk, x
∗
� ) =

= E[xi, x∗j , xk, x
∗
� ]− E[xix∗j ]E[xkx∗� ]− E[xix∗� ]E[xjx∗k]− E[xixk]E[x∗jx

∗
� ] (4)

Given a matrix M ∈ C2×2

M =
[
m11 m12
m21 m22

]
(5)

the 4th-order cumulant matrix Q(4)(M) is defined as the (2 × 2) matrix with
components [6]

[Q(4)(M)]ij =
2∑

k,�=1

cum(xi, x∗j , xk, x
∗
� )m�k (6)
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Under a linear model like (1) with statistically independent sources and unitary
mixing matrix, the cumulant matrix takes the form Q(4)(M) = HΔ(M)HH.
Matrix Δ(M) being diagonal with

[Δ(M)]ii = ρihH
i Mhi (7)

where ρi = cum(si, s∗i , si, s
∗
i ) is the marginal 4th-order cumulant (kurtosis) of

the ith source, and hi represents the ith column of H. Therefore, the separating
matrix H diagonalizes Q(4)(M) for any M. Hence, the eigendecomposition
of (6) allows the identification of the remaining unitary part of H if the
eigenvalues of Q(4)(M) are different, i.e., if matrix Δ(M) contains different
entries: ρihH

i Mhi �= ρjhH
j Mhj , ∀i �= j. To increase robustness to eigenspectrum

degeneracy, a set {Q(4)(Mk)}mk=1, may be (approximately) jointly diagonalized.
The full set comprises m = 22 = 4 linearly independent (e.g., orthonormal)
matrices {Mk}mk=1. A simplified version of the algorithm is obtained by
considering the set of matrices verifying Q(4)(Mk) = λkMk. As there are only
2 such eigenmatrices, this version is, in theory, computationally more efficient.
However, the eigenmatrices depend on matrix H itself and they must also be
estimated from the data. JADE admits an efficient implementation in terms of
the Jacobi technique for matrix diagonalization. In Alamouti Coding Scheme,
the channel matrix is unitary, and can then be identified by this procedure.

3.1 Maximizing the Eigenvalue Spread

The performance of eigendecomposition-based methods depend on the eigenvalue
spread of the matrix to diagonalize because the eigenvectors associated with
equal eigenvalues can only be determined up to a unitary transformation [7]. For
the (2×1) Alamouti OSTBC, with the same kurtosis for s1 and s2, ρ = ρ1 = ρ2,
from equation (7) the eigenvalue spread of cumulant matrix Q(4)(M) is

L(M) = |ρ|∣∣hH
1 Mh1 − hH

2 Mh2
∣∣ (8)

In order to obtain the matrix Mopt that maximizes L(M) we will introduce the
following notation,

h̃ =

⎡⎢⎢⎣
|h1|2 − |h2|2

2h∗1h∗2
2h1h2

|h2|2 − |h1|2

⎤⎥⎥⎦ , m =

⎡⎢⎢⎣
m11
m21
m12
m22

⎤⎥⎥⎦ (9)

Substituting in (8), the eigenvalue spread takes the form

L(M) = |ρ||hH
1 Mh1 − hH

2 Mh2| =

|ρ||(|h1|2 − |h2|2)(m11 −m22) + 2(h1h2m21 + h∗1h
∗
2m12)| = |ρ||h̃Hm| (10)

Our objective is to find the vector m that maximizes the eigenvalue spread, i.e.,

mopt = arg max
||m|| = 1 |h̃

Hm| (11)
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The scalar product between h and m is maximum when m has the direction
and sense of h. Therefore, the optimum value is

mopt =
h̃

||h̃|| (12)

As a result, the optimum matrix is given by

Mopt =
1√

2 + 2|γ|2
[

1 γ
γ∗ −1

]
,where γ =

2h1h2

|h1|2 − |h2|2 (13)

Since this optimum matrix depends on the actual values of unknown channel
coefficients h1, h2, we propose to estimate parameter γ using 4th-order cross-
cumulants of the observations,

γ =
cum(x1, x

∗
2, x1, x

∗
2)

cum(x1, x∗2, x1, x∗1)
=

ρ2h2
1h

2
2

ρ(|h1|2 − |h2|2)h1h2
=

2h1h2

|h1|2 − |h2|2 (14)

Note that the parameter γ is used to weighted 4th-order cross-cumulants in
equation (6) and, therefore, errors in its estimation can degrade the performance
of the method proposed to identify the channel matrix H.

3.2 Blind Channel Estimation Based on Eigenvalue Spread
(BCEES)

To evaluate the the 4th-order cumulant function (6) in the optimum matrix M
given in equation (13) requires to compute sixteen 4th-order cross-cumulant.
According to the symmetric property of the cumulants, it can be reduced to
compute six fourth-order cross-cumulants. In this subsection, we will propose a
simplified approach which only consider to fourth-order cross cumulant matrices:

M1 =
[

1 0
0 0

]
, M2 =

[
0 0
1 0

]
(15)

For these two matrices, the cumulant sum given in equation (6) is reduced to
the computation of only one 4th-order cumulant matrix. Particularizing equation
(10) to these matrices, we can determine which of the two matrices provides the
maximum eigenvalue spread using to the following decision criterion

|γ| = L(M2)
L(M1)

=
2|h1||h2|

||h1|2 − |h2|2| =
2|h1||h2|

||h1|2 − |h2|2|
M1
≶
M2

1 (16)

In the practice, γ can be estimated using (14).

4 Experimental Results

This section reports several numerical experiments carried out to evaluate and
compare the performance of the blind channel estimation algorithms proposed
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Fig. 2. SER versus SNR for Rayleigh channels for a block size of 500 symbols

in this paper. The experiments have been performed on QPSK source symbols
coded with the Alamouti Scheme. The channel is assumed to remain constant
during the transmission of a block of K symbols and it has a Rayleigh
distribution. The cumulants are calculated by sample averaging over the symbols
of a block. Performance has been measured in terms of the Symbol Error Rate
(SER) of the source symbols estimated after channel identification. SER figures
are obtained by averaging over 105 independent blocks of symbols and channel
realizations.

Over this simulated scenario, the following techniques are compared:

– The method proposed by Beres et al. [8] corresponding to usem11 = 1,m12 =
m21 = m22 = 0 or m11 = 0,m12 = m21 = m22 = 2.

– The SOS-based approach proposed by Via et al. [9].
– The JADE algorithm proposed by Cardoso and Souloumiac [6].
– The novel method based on maximizing the eigenvalue spread proposed in

Subsection 3.1 using the theoretical γ.
– The novel method based on maximizing the eigenvalue spread proposed in

Subsection 3.1 using the estimated γ in equation (14).
– The BCEES technique proposed in Subsection 3.2, using the estimated γ in

equation (14).

As a bound of performance, we also present the SER obtained with Perfect
Channel Side Information (CSI).

Figure 2 shows the performance obtained with these methods for different
values of SNR. The 4th-order cumulants have been estimated using 500 symbols
of each observed signals. Note that the results obtained with the novel approaches
and JADE are very close to the Perfect CSI. Note, however, that for high SNRs
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Fig. 3. SER versus packet size for Rayleigh channels

the novel method with the estimated γ presents a flooring effect due to errors in
the estimation of γ.

Figure 3 shows the performance for different packet sizes at an SNR of 15
dB. The good performance of JADE, the novel approach with theoretical γ and
BCEES is apparent.

The decoding complexity of methods based on cumulant-matrix
diagonalization depends on two parameters: the number of cumulant matrices to
be computed and the size of the matrix to be diagonalized. Note that the load of
diagonalizing 2×2 matrices is very low because it can be used closed expressions
[10]. Table 1 summarizes these parameters for the approaches considered in
our simulations. Considering the computational load and the results presented
in Figure 2 and Figure 3, we conclude that BCEES presents a satisfactory
performance and low complexity.

Table 1. Computational load

Approach Number of cumulant matrices Size of the matrix to diagonalize
Beres et al., and Via et al. 1 2 × 2

JADE 4 3 × 3
Mopt 4 2 × 2

BCEES 2 2 × 2

5 Conclusion

This paper addresses the problem of blind channel identification in (2 × 1)
Alamouti coded system. In order to estimate the channel matrix, we have
proposed to diagonalize a linear combination of cumulant matrices, which is
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judiciously chosen by maximizing its expected eigenvalue spread. We have also
proposed a simplified approach, called BCEES, which presents a satisfactory
performance and low complexity since it needs to diagonalize a single cumulant
matrix.
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Abstract. This paper presents a novel ICA mixture model applied to the classi-
fication of different kinds of defective materials evaluated by impact-echo test-
ing. The approach considers different geometries of defects build from point 
flaws inside the material. The defects change the wave propagation between the 
impact and the sensors producing particular spectrum elements which are con-
sidered as the sources of the underlying ICA model. These sources and their 
corresponding transfer functions to the sensors make a signature of the reso-
nance modes for different conditions of the material. We demonstrate the model 
with several finite element simulations and real experiments. 

Keywords: ICA, ICA mixtures, Non-destructive evaluation, Impact-echo testing. 

1   Introduction 

This paper introduces the application of the independent component analysis mixture 
modeling (ICAMM) in non-destructive testing (NDT). Particularly, we apply 
ICAMM to NDT by impact-echo. In impact-echo testing, the response of a material 
(vibrations) excited by an impact is measured by a set of sensors located in its surface 
[1][2][3]. The approach is formulated from the linear system theory dividing the wave 
path propagation in two parts: impact to point flaws and point flaws to sensors. It is 
assumed that the set of point flaws build defective areas with different geometries, 
such as, cracks (small parallelepipeds), holes (cylinders), and multiple defects (com-
bination of cracks and holes). Depending on the kind of defective area, the spectrum 
measured by the sensors changes and this allow the kind of defect condition of the 
material to be discerned. 

The ICAMM [4][5] has recently emerged as a flexible approach to model arbitrary 
data densities using mixtures of multiple ICA models [6][7][8] with non-Gaussian 
distributions for the independent components (i.e., relaxing the restriction of model-
ling every component by a multivariate Gaussian density). ICAMM is a kind of 
nonlinear ICA technique that extends the linear ICA method by learning multiple ICA 
models and weighting them in a probabilistic manner [4]. In the NDT area, there are 
there are a few references of applying ICA algorithms [9][10][11], but there are not 
references of application of ICAMM. 

Recently, we classified impact-echo signals from defective materials using tempo-
ral and frequency features, and neural networks as classifiers [12], obtaining the best 
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results with the frequency features. In addition, we demonstrated in [13][14] that the 
ICA can be used to separate information of the defects in impact-echo testing. This 
work is focused in analyzing the signal spectra in order to exploit the resonant modes 
generated in the impact-echo experiment. A PCA procedure was applied to reduce 
dimensionality of the estimated spectrum for the multichannel configuration of the 
experiment. There is evidence that the first components of PCA retain essentially all 
of the useful information and this compression optimally removes noise and can be 
used to identify and classify unusual spectra [15][16]. 

We apply an ICAMM-based classifier [17], showing the impact-echo data fit into 
the developed ICAMM model. Results are included for different kinds of defective 
simulated models and laboratory specimens and other classifiers as LDA (Linear 
Discriminant Analysis) and MLP (Multi-Layer Perceptron) [18][19]. 

2   ICA Mixture Statement of the Problem 

Suitability of mixtures of ICA for a given problem of data analysis and classification 
can be approached from different perspectives. On one end, we have the least physical 
explanation: the ICA mixture learning underlies an estimation/modeling of the prob-
ability density of multivariate data [5]. The degrees of freedom afforded by mixtures 
of ICA suggest a good candidate for a broad class of problems. In the middle we have 
the interpretation of ICA as a way of learning some appropriate bases (usually called 
activation functions) which are more or less connected to actual behaviors implicit in 
the physical phenomena under analysis [20]. In the other end, there is the most physi-
cal explanation which tries to indentify where sources are originated and how they 
mix before arriving to the sensors, i.e. it tries to provide a physical interpretation of 
the linear mixture model. 

In this section we have made some effort from this later approach to model the data 
coming from the impact-echo inspection. It is clear the convenience to have as much 
knowledge as possible about the underlying physical phenomena, with the aim of 
making better interpretation of the results and the general performance of the method. 

Recently, we proposed an ICA model for the impact-echo problem [13][14]. This 
model considered the transfer functions between the impact location and point defects 
spread in a material bulk as “sources” for blind source separation. In this section, we 
formulate a new ICA model considering the resonance phenomenon involved in the 
impact-echo method. We extend this model to defects with different shapes, such as 
cracks or holes, and formulate the quality condition determination of homogeneous 
and defective materials as an ICA mixture problem. 

The signals measured by the sensors can be considered as a convolutive mixture of 
the input signal and the defects inside the material as shown in Fig. 1. 

In Fig. 1, there is one attack point that generates the wave 0( ) ( )r n p n= ; F internal 

focuses (point flaws) that generate the waves ( )    1, ,
j

f n j F= � ; and N  sensors that 

measure the waves ( )    1, ,
i

v n i N= � . To simplify, we note the impact as another 

focus; thus, ( )    0, ,f n j F
j

= � , being 0 0( ) ( )f n r n= . Linear propagation is assumed. 
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Fig. 1. Scheme of a material inspection by impact-echo using 4 sensors. Material with 11 inter-
nal focuses due to point flaws that build a crack-shape-like defect that is oriented in the plane 
xy (the path between the point flaws and the sensors is depicted only for a few focuses). 

Let us call ijR to the contribution to the spectrum of the signal recorded at sensor 

i , due to the focus j . We consider ijR  to be the observation vectors for an ICA 

model. This spectrum is obtained by the DFT computed on an interval of the signal 
( )ir n . Thus, 

ij ij jdiag � �= ⋅� �R H F
 
,    (1) 

where 
 

ijH : transfer function vector between the internal focuses 
1,j F= � and the sensors 1,i N= �  

jF : vector of spectra elements from the focuses jf , 1,j F= �  
 

The dimensionality of ijR depends on the number of spectral frequencies used to 

calculate the DFT. A proper number for the frequency resolution in this application 
was 1024. This resolution allows the spectra differences in the resonance modes be 
captured for different kinds of defective materials. However, there is redundant in-
formation in the spectra that we reduce with PCA, obtaining only the significant com-
ponents [21] 

( )PCA
ij ij j ij jdiag � �= ⋅ ⋅ = ⋅� �R P H F M F          (2) 

where P  is a unitary transformation provided by PCA that allows the observation 
vectors to be ordered by their powers. PCA finds a rotated orthogonal system such that 
the elements of the original vectors in the new coordinates become uncorrelated, so the 
redundancy induced by correlation is removed [7]. We assume the data are centred.  
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The equation (2) represents an ICA model for the sensor i  under the assumption of 
independence in the spectra components caused by the internal defective focuses 
[13][14]. In order to obtain a complete model of the multichannel impact-echo setup, 
we can write 

( )
11

( )

  

PCA
jj

j

PCA
Nj Nj

� �� �
� �� � = ⋅� �� �
� �� �� � � �

MR

F

R M

� �                      (3) 

The equation (3) consists of an over-determined ICA model. The spectral compo-
nents (sources) are considered to be constant for all the sensors. jF  models the effect 

produced in the sensors by a certain focus j  . In addition, values of jF  can be con-

sidered constant for close defect points and therefore they build a localized defective 
zone with a particular geometry. 

We apply again projection by PCA in order to reduce the ICA model of equation 
(3) to the square case [21], obtaining the following expression, 

(( )) 'PCA
j j j j j= ⋅ ⋅ = ⋅R P M F H F            (4) 

where the recovered sources ' 1 (( ))PCA
j j j

−= ⋅F H R  will be estimates of jF  up to scaling 

and permutation of the elements. 
Adding the contributions of all the focuses 1,j F= � , we obtain a model R for 

the inspected material as 

(( ))

1 1

F F
PCA

j j j
j j= =

= = ⋅� �R R H F                           (5) 

An underlying ICA model can be derived from equation (5), considering an 
amount of dependence between the spectra components for all the defective focuses. 
We can define j j= +F s a  where s  and ja  are vectors of independent and dependent 

random latent variables, respectively. Thus, we can write, 

( )
1 1 1

F F F

j j j j j
j j j= = =

= ⋅ + = ⋅ + ⋅ = ⋅ +� � �R H s a H s H a H s b       (6) 

The spectra obtained from materials with different kinds of defects inspected by 
impact-echo should correspond to different models following the equation (6),  
depending on the shape of the defective area. Consequently, we can formulate the 
problem of classification of materials with different quality condition inspected by 
impact-echo in the ICAMM framework. From (6), the spectra (observation vectors) 

( )kR  sensed in a multichannel impact-echo testing corresponding to a given material 

class kC ( 1 )k K= �  are the result of applying a linear transformation ( )kH  to a 

source vector ( )ks , whose elements are independent random variables, plus a bias 

vector ( )kb . Thus we can write the corresponding ICAMM expression, 
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( ) ( ) ( ) ( )    1, ,k k k k k K= ⋅ + =R H s b �  ,          (7) 

where 
( )kR : compressed spectra of the multichannel impact-echo setup 

for the defective material class k  
( )kH : mixture matrix for the defective material class k  

( )ks : compressed spectra from the focuses jf , 1,j F= �  for the 

defective material class k  
 
The set of classes in this application, for instance, can be: homogeneous, one-

defect, and multiple-defect materials. 

3   Results and Discussion 

The set of impact-echo signals were extracted from 3D finite element models and lab 
specimens of aluminium alloy series 2000. These models and specimens belonged to 
four classes: homogeneous, holes, cracks, and multiple-defects. The holes were cylin-
ders of φ =1 cm. oriented in the axis x or y, and the cracks were 1 mm. wide oriented 

in the planes xy, zy, or zx. The multiple-defect materials contained cracks and holes. 
The set of simulated signals came from the full transient dynamic analysis of 100 

3D finite element models. These models simulated parallelepiped-shape material of 
0.07x0.05x0.22 m. (width, height and length), which was supported at one third and 
two thirds of the block length (direction z). Simulated finite models corresponded to 
one class of homogeneous and eleven classes of inhomogeneous models. The dy-
namic response of the material structure (time-varying displacements in the structure) 
under the action of a transient load was estimated from the transient analysis. The 
impact-echo real experiments were performed on lab specimens of he same dimen-
sions of the models using the following equipment: i.) Instrumented impact hammer 
084A14 PCB, ii.) 7 accelerometers 353B17 PCB located surrounding the faces of the 
material, iii.) ICP signal conditioner F482A18, iv.) Data acquisition module 6067E, 
and v.) Notebook. The total of experiments were: 200 (homogeneous), 341 (holes), 
1044 (cracks), 276 (multiple-defects). 

After the acquisition stage the spectrum features were extracted with the following 
procedure: (1) DFT 1024 points per channel, (2) PCA on the spectrum per channel, 
(3) Selection of 20 components per channel for a total of 140 components (explained 
variance >=95%), (4) PCA on the 140 spectra components, (5) Selection of 50 com-
ponents (explained variance>=92%), (6) Classification with LDA using different 
number of components, (7) Selection of the number of components for the best classi-
fication with LDA, (8) Classification by MLP, and the ICAMM algorithm. Several 
Montecarlo simulations were made using this procedure dividing 70% of the data for 
training and 30% for testing. 

We applied the ICAMM algorithm in [17] using JADE [22] and a non-parametric 
kernel-based algorithm for the steps of ICA parameter updating. Fig. 2 shows a set of 
ICAMM parameters obtained during training for the impact-echo experiments using 
10 spectra components. 
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Fig. 2. Mixing matrixes and sources estimated for four different kinds of defective materials 
tested in impact-echo experiments 

Estimated mixing matrixes (represented in grey scale), and sources with their kur-
tosis values for the four classes of materials are depicted in Fig. 2. The differences in 
these parameters between the classes are clear showing the suitability of the ICAMM 
model to classify different kinds of defective materials inspected by impact-echo. 

The estimated sources represent linear combinations of the spectrum elements pro-
duced by the defects that activate different resonant modes of the material. In general, 
the pattern of the defects was detected independently of their orientation and dimen-
sion. These patterns seem related with the number of the point flaws that build the 
defects and the spatial relationship between the flaws. General results of classification 
accuracy were: ICAMM -nonparametric (82.7%), ICAMM -Jade (84%), MLP 
(80.3%), and LDA (79%). 

4   Conclusions 

A new ICA mixture model has been proposed for non destructive testing using im-
pact-echo. The material under evaluation is modeled as a linear system which de-
scribes the resonance modes involved in the wave propagation phenomenon of the 
impact-echo. A compressed and representative pattern of the spectra for the mul-
tichannel setup of the impact-echo has been obtained using ICAMM. This modeling 
allowed the spectra differences in the resonance modes were discerned for different 
kinds of defective materials in several simulations and lab experiments. 
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There are a range of future directions for this research, such as, to attempt the  
application in industrial contexts and to obtain higher insights into the sources and 
mixing matrix of the model in order to exploit all the information collected by the 
sensors. From these insights, an accurate localization of the defects and a 3D recon-
struction of the internal structure of the material can be attempted. 
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Abstract. We introduce a probabilistic extension of non-negative ma-
trix factorization (NMF) by considering binary coded images as a
probabilistic superposition of underlying continuous-valued elementary
patterns. We provide an appropriate algorithm to solve the related op-
timization problem with non-negativity constraints which represents an
extension of the well-known NMF-algorithm to binary-valued data sets.
We demonstrate the performance of our method by applying it to the
detection and characterization of hidden causes for failures during semi-
conductor wafer processing. We decompose binary coded (pass/fail)
wafer test data into underlying elementary failure patterns and study
their influence on the performance of single wafers during testing.

1 Introduction

Manufacturing a microchip requires hundreds of processing steps, depending on
the complexity of the final microchip. Lifetime, performance speed and other
quality aspects afford a set of specifications to be tailored to the intended ap-
plication field. The overall functionality of the completed chip is measured in
a test series after the last processing step. A chip is labeled pass, if it satisfies
all investigated test features, and fail otherwise. A disordered or miscalibrated
production line can cause the failure of a quality check of a whole series of chips.
The identification and characterization of such systematic errors is an acute
but nontrivial problem in semi-conductor manufacturing. While several individ-
ual root causes can be the responsible trigger for a dropped-out device, only the
overall pass / fail - information for the chip is available at any case. In this paper
we model the systematic part of errors by a superposition of individual failure
causes. A preliminary version of this technique has been presented recently in a
classification context [7].

Notation. Measurement data from N wafers constitute a binary N ×M data
matrix X, each row of which contains all M chips of one wafer aligned. Matrix
entry Xij contains the information whether chip j on wafer i has passed all
functionality tests (0), or failed at at least one of them (1). In the following, we
use Xi∗ to denote the i-th row and X∗j for the j-th column of X. Thus the rows
reflect the test signatures of each wafer across all chips and the columns contain
the test profiles of a specific chip across all wafers.

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 710–717, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a very popular technique for the
analysis of real-valued multivariate data sets which more than often show non-
negative entries only. In the context of Blind Source Separation (BSS), NMF is
intended to explain a data generating process as a strictly additive superposition
of nonnegative source modes. A nonnegative N ×M data matrix X is approxi-
mately decomposed into a N ×K weight matrix W and a K ×M matrix H of
underlying modes such that

X ≈WH (W,H ≥ 0). (1)

The number of modes K is usually chosen such that (N + M) · K ≤ N ·M .
The product WH can thus be regarded as a compressed version of the original
data X [1]. Technically, the task of a NMF can be formulated as an optimization
problem by minimizing a suitable cost function, such as the Euclidean distance

f(W,H) :=
1
NM

N∑
i=1

M∑
j=1

(Xij − [WH]ij)2 (2)

with respect to the non-negativity constraints W,H ≥ 0. However, this plain
cost function does not lead to unique solutions, hence additional constraints
need to be added. Constrained cost functions considering Kullback-Leibler- [1],
Bregman- [5] or Csiszár’s [3] divergences have been proposed in the literature.
Additional sparseness, smoothness or volume constraints to enforce solutions
with desired characteristics, as well as a variety of optimization techniques to
achieve the desired matrix decomposition have been discussed (see e.g. [2],[4] for
a survey).

Alternating Least Squares Algorithm for NMF. A very popular method
to minimize the squared Euclidean distance f(W,H) (eq. 2) is called Alternating
Least Squares procedure which iterates the following equations:

Solve for H in matrix equation
∂f

∂H
= 0. (3)

Set all negative elements in H to 0. (4)

Solve for W in matrix equation
∂f

∂W
= 0. (5)

Set all negative elements in W to 0. (6)

after random initialization of W(see e.g. [2]). ALS-procedures which properly
enforce non-negativity of W and H can be proven to converge towards a local
minimum of the cost function [2]. Unfortunately, the brute force projection onto
the nonnegative orthant after every optimization step can cause convergence
problems. In case of convergence, however, the projected ALS algorithm is ex-
tremely fast. Computing several runs using different random initializations thus
still outperforms other methods like gradient descent and multiplicative update
rules with respect to the required computational time and is very attractive for
NMF applications (see [4]).
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3 NMF for Binary Datasets

3.1 Defect Generating Model

Assuming a Poisson-distributed random variable with parameter λ, the proba-
bility of n events is given by e−λ λk

k! . We interprete a N ×M data matrix X as
a collection of N ·M realizations of such Poisson-distributed random variables,
each related with an individual parameter λij . Therefore, we distinguish between
the two cases whether there was no event at all or at least one event:

Xij

{
= 0 (’pass’, n = 0)
= 1 (’fail’, n ≥ 1)

with probability

{
e−λij

1− e−λij
. (7)

The assumption that the data was generated by several individual failure causes
is reflected in the relations between the parameters λij . We refer to an elementary
mode Hk∗ = (Hk1, . . . , HkM ) ≥ 0 as a M -dimensional row vector whose j-th
component Hkj expresses the probability that observation Xij is either 0 or 1.
Suppose that mode k is the only event that causes a 1 in X. Hkl < Hkm then
implies that it is more probable to get a 1 on position m than on l. We further
assume that the kth mode can vary its probability of occurrence. Therefore, we
add weighting factorsWik(≥ 0) such thatWrk < Wsk implies that the mode Hk∗
exerts a stronger influence on observation Xs∗ than on Xr∗. The final expression
for the probability of observing a zero on position (i,j) is

P (Xij = 0|Hkj ,Wik) = e−Wik·Hkj , (8)

if mode k is the only possible elementary event.
Next, we assume several individual modes Hk∗, k = 1, . . . ,K to contribute.

The contribution of mode k to observation i is denoted Wik. The overall proba-
bility in case of K causes is then

P (Xij = 0|H1j , . . . , HKj,Wi1, . . . ,WiK) =
K∏
k=1

e−Wik·Hkj . (9)

Summarizing, the conditional probabilities, given the hidden causes, read

P (Xij = 0|H,W) = e−[WH]ij , (10)

P (Xij = 1|H,W) = 1− e−[WH]ij . (11)

Note that this model is not symmetric in the two cases Xij = 0/1. The asym-
metry reflects the nature of the defect generating process. If there are several
causes for a defect, the probability for an object to be overall pass is the product
of the probabilities being pass given each single cause. On the other hand if one
source causes an event fail, the other sources cannot alleviate this state. Both
matrices W and H are nonnegative and are related to the binary matrix X as
described above. The challenge of finding these matrices can thus be viewed as
an extension of NMF for this kind of binary data sets.
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3.2 Bernoulli Likelihood

The Bernoulli likelihood is a natural choice for modeling binary data. Denoting
pij the probability that Xij = 1, the Bernoulli likelihood of one entry is

P (Xij |H,W) = p
Xij

ij (1 − pij)1−Xij (12)

leading to an overall (log-)likelihood

LL :=
N∑
i=1

M∑
j=1

Xij ln(1 − e−[WH]ij)− [WH]ij +Xij [WH]ij . (13)

In [6], a symmetric linear model is considered to approximate the Bernoulli pa-
rameter of a similar problem. The authors use an Expectation Maximization(EM)
- type approach to maximize a lower bound for the log-likelihood. Here, we pro-
pose a completely different strategy for the optimization. We combine an Alter-
nating Gradient Ascent (AGA) algorithm in the variables W and H together
with a preceding search for appropriate initial values in order to reduce the risk
of getting stuck in a local maximum.

3.3 Optimizing the Log-Likelihood

Alternating Gradient Ascent Algorithm. After an appropriate initializa-
tion of the parameter matrices W and H, an iterative gradient ascent scheme
for the log-likelihood (13) is given by

Wik ← Wik + ηW
∂LL

∂Wik
(14)

Hkj ← Hkj + ηH
∂LL

∂Hkj
. (15)

While one of the matrices is updated, the other one is kept fixed. Due to
the non-negativity constraints to all entries Wik, Hkj , the step size parameters
ηW and ηH have to be controlled carefully. Especially for small step sizes con-
vergence can be unduly slow. Even in the unconstrained case, gradient ascent
algorithms can only be guaranteed to find a local maximum for sufficiently small
ηW , ηH . Particularly the logarithm in eq. (13) can cause serious global conver-
gence problems by inducing local maxima to the log-likelihood function. Single
entries Xij = 1 with a small probability 1− e−[WH]ij may pin the optimization
algorithm. In the following, we derive a strategy how to find a ”good” starting
point for the Alternating Gradient Ascent algorithm.

Alternating Least Squares on a Simplified Problem. In order to obtain
suitable initial matrices W and H we preprocess a simplified version of the true
optimization task with a standard NMF algorithm. We introduce an auxiliary
variable α ∈]0, 1[ by setting

P (Xij = 1) = 0, if Xij = 0
P (Xij = 1) = α, if Xij = 1 for all i, j. (16)
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The variable α can be regarded an average probability P (Xij = 1) given the
observed realization was Xij = 1. For all (i, j) this can be summarized by

αXij = 1− e−[WH]ij ⇔ − ln(1− αXij) = [WH]ij (17)

Since the left hand side of the last equation is always nonnegative we recover a
standard NMF problem X′ ≈WH when substituting X ′ij =: − ln(1− αXij).

In the following we choose the squared Euclidean distance as a cost function

E(α,W,H) =
N∑
i=1

M∑
j=1

(ln(1− αXij) + [WH]ij)
2 (18)

and apply the Alternating Least Squares Algorithm as described in section 2 in
order to minimize (18) with respect to W ≥ 0 and H ≥ 0. The ALS-updates are
then given by

Hrs ← max{ε,−
N∑
i=1

[(WTW)−1WT ]ri ln(1− αXis)} (19)

Wlm ← max{ε,−
M∑
j=1

ln(1 − αXlj)[HT (HHT )−1]jm}. (20)

To avoid local minima of the cost function (18), the procedure is repeated using
different random initializations of H and W and only the solution with the
smallest Euclidean distance is retained.

Determining the Parameter α. Note that the global minimum of eq.(18) as a
function of α,W and H is given by E = 0 when α→ 0, W,H = 0 independently
from the data X. Thus, we determine the optimal α by the log-likelihood of the
estimated W(α),H(α). If the parameter α is chosen too small, the probabilities
P (Xij = 1) are consistently estimated too small and the related log-likelihood
will be small. On the other hand, a large α ≈ 1 leads to very large values [WH]ij
for any Xij = 1. Due to the matrix product this implies an increase of the whole
column H∗j and/or row Wi∗ at the expense of the reconstruction accuracy for
zeros in the same row and column (Xis = 0, Xrj = 0).

From simulations on toy data sets (see Section 4.1 for details), we observed
that the best obtained log-likelihood LL(X,W(α),H(α)) among several ran-
domly initialized runs resembles a concave function of α (see Figure 1). Thus,
a Golden Section Search procedure can be applied to obtain the optimal α in a
reasonable amount of trials and computational time.

4 Results

4.1 Toydata Example

First, we present the performance of the above algorithm on a constructed toy
data example.
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Fig. 1. Log-likelihood of the approximations computed by the ALS-method as a func-
tion of α for 10 random initializations. The best value is obtained for α = 0.87 in this
example. The horizontal line denotes the true log-likelihood.

1 2

3 4

1 2

3 4

1 2

3 4

Fig. 2. Left: 30 × 30 source patterns Hk∗ valued in [0, 1] (white:0, black:1). Center:
Reconstructions gained via ALS, Right: Maximum likelihood solutions.

A 1000× 900 binary data matrix X was created by setting the (i,j)-th entry to
1 with probability pij = 1− e[WH]ij (see Figure 3 for examples) fromK = 4 fixed
failure patterns H1∗, . . . ,H4∗ and a randomly generated 1000 × 4 coefficient ma-
trix W. We use three binary patterns (white: 0, black: 1) and one pattern of values
graded from zero in the center to one on the edges (see Figure 2,left hand side).

The simplified ALS-method yields quite good approximations of the original
source patterns in this example. After 1000 iterations refinement by Alternat-
ing Gradient Ascent, nearly perfect reconstruction of the original patterns is
achieved (see Figure 2). Note that in the images W and H are re-scaled such
that the maximum value in each pattern Hk∗ is given by one. The top row of
Figure 3 contains examples for randomly generated coefficients Wik, the second
row shows the corresponding binary images Xi∗. The last two rows contain the
estimated coefficients by the ALS-method and after refinement by Alternating
Gradient Ascent respectively.

4.2 Real World Example

The real world example shows a decomposition of M = 3043 wafers, each con-
taining M = 500 chips into K = 6 source patterns (see Figure 4). The data
stems from measurements which aim to identify latent structures and detect
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1 2 3 4
0

2

4

6

1 2 3 4
0

2

4

6

1 2 3 4
0

2

4

6

1 2 3 4
0

2

4

6

1 2 3 4
0

2

4

6

1 2 3 4
0

2

4

6

1 2 3 4
0

2

4

6

1 2 3 4
0

2

4

6

1 2 3 4
0

2

4

6

1 2 3 4
0

2

4

6

1 2 3 4
0

2

4

6

1 2 3 4
0

2

4

6

1 2 3 4
0

2

4

6

1 2 3 4
0

2

4

6

1 2 3 4
0

2

4

6

1 2 3 4
0

2

4

6

1 2 3 4
0

2

4

6

1 2 3 4
0

2

4

6

1 2 3 4
0

2

4

6

1 2 3 4
0

2

4

6

1 2 3 4
0

2

4

6

1 2 3 4
0

2

4

6

1 2 3 4
0

2

4

6

1 2 3 4
0

2

4

6

Fig. 3. Toydata examples. Top: Original coefficents Wi∗, Second row: Binary realiza-
tions Xi∗, Third row: Coefficients gained by ALS, Bottom: Coefficients after refinement
by Gradient Ascent.
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Fig. 4. Elementary modes H1∗, . . . ,H6∗ and contribution coefficients W∗1, . . . ,W∗6,
estimated from a real dateset comprising 3043 wafers and 500 chips

potential failure causes in an early stadion of the processing chain. A different
decomposition of the same dataset is shown in [7].

The estimated K = 6 source patterns H1∗, . . . ,H6∗ have clearly different
characteristics: One pattern of higher fail-probability on the upper side of the
wafer, a bead centered on the wafer, a ring of fails on the edge zone, two different
repeated structures, and defects concentrated on the bottom of the wafer were
detected. The related weight coefficients W∗1, . . . ,W∗6 store the activity of each
of the 6 putative modes on each wafer separately. This new representation of the
data contrasts wafers affected by the detected sources with untouched ones and
is intended to support the detection of potential error causes.
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5 Conclusion

We introduced a probabilistic framework to model systematic failure causes in
the microchip production. A new methodology was presented which utilizes an
extension of nonnegative matrix factorization to this kind of binary data sets.
An optimization technique was presented which maximizes a log-likelihood func-
tion using a fast alternating least squares algorithm followed by gradient ascent
refinement. The performance of the overall procedure was demonstrated on an
artificial and a real world dataset.
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Abstract. High-energy detectors operating in particle collider experi-
ments typically require efficient online filtering to guarantee that most
of the background noise will be rejected and valuable information will
not be lost. Among these types of detectors, calorimeters play an im-
portant role as they measure the energy of the incoming particles. In
practical designs, calorimeter exhibit some sort of nonlinear behavior. In
this paper, nonlinear independent component analysis (NLICA) meth-
ods are applied to extract relevant features from calorimeter data and
produce high-efficient neural particle discriminators for online filtering
operation. The study is performed for ATLAS experiment, one of the
main detectors of the Large Hadron Collider (LHC), which is a last gen-
eration particle collider currently under operational tests. A performance
comparison between different NLICA algorithms (PNL, SOM and Local
ICA) is presented and it is shown that all outperform the baseline dis-
criminator, that is based on classical statistical approach.

Keywords: NLICA, High-Energy Physics, Online Filtering, Feature Ex-
traction, Calorimeters.

1 Introduction

Modern high-energy physics experiments are large scale facilities in which numer-
ous physicists, engineers and technicians join together searching for the funda-
mental nature of mater. Particle colliders produce huge amounts of information
and thus, are often used to look for new physics channels. The Large Hadron
Collider (LHC) started its operational tests at CERN (European Center for Nu-
clear Research) and, when operating at full capacity (high luminosity), will be
colliding bunches of protons at every 25 ns for a wide research program. Al-
though a very high event rate is produced (approximately 106 interactions per
second), the interesting channels will rarely occur [1]. Considering this, a high-
efficient filtering (triggering) system is required to guarantee that most of the
background noise will be rejected and valuable information will not be lost. In
order to search for the Higgs particle and other new phenomena, a new energy
range will be explored by LHC.

Placed at one of the LHC collision points, the ATLAS experiment [2] is re-
sponsible for the selection of relevant signatures, which are immerse in huge

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 718–725, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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background noise. Due to LHC bunch crossing rate and high segmentation of
the detector, the total information generated at ATLAS will be near 60 TB/s
(1.5 MB/colision). Considering this amount of data, the filtering procedure must
be performed online within short latency time.

ATLAS filtering (trigger) system [2] comprises three sequential decision levels
(see Figure 1-a), in which the amount of non-relevant signals retained in tem-
porary memories is gradually reduced until final storage/rejection decision is
made. The first-level is implemented in hardware as very fast decision (within
2.5 ms) is required. The second-level (LVL2) and the event filter (EF) are both
implemented in software and processed in parallel by thousand of PC-like pro-
cessors [2]. The latencies for LVL2 and EF are respectively 40 ms and 4 s. The
particle discrimination procedure at LVL2 is split into feature extraction, where
relevant information is extracted from the measured signals, and hypothesis test-
ing, where particle discrimination is performed.

Hadronic

calorimeter

Electromagnetic

calorimeter

Muon

system

Inner

detector

LHC

tunnel

E1
E2
E3
H0

H1

H2

Pre-sampler

(a) (b)

Fig. 1. ATLAS detector (a) triggering system architecture and (b) sub-detectors

For LHC, interesting signatures can be found through decays that produce
electrons as final-state particles. Important information that guides electron
identification process is the energy deposition profile measured by the calorime-
ter, one of the ATLAS subdetectors (see Figure 1-b). The calorimeter sys-
tem is segmented into four electromagnetic (PS, E1, E2 and E3) and three
hadronic (H0, H1 and H2) layers, producing more than 100,000 readout chan-
nels. Hadronic jets present energy deposition profiles similar to electrons (highly
concentrated in the electromagnetic sections and almost no energy left in the
hadronic layers), forming a huge background noise for the experiment.

In practical calorimeter design, nonlinearities may arise [3]. Considering this,
the nonlinear independent component analysis (NLICA) model [4,5] is applied
in this work to extract, from calorimeter signals, relevant features for particle
discrimination. Identifying independent sources that form the energy deposi-
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tion profiles may help revealing subtle differences between signal (electrons) and
background noise (jets).

Calorimeter layers present different physical characteristics and cell granular-
ity, considering this, feature extraction is performed in a segmented way (at layer
level). The calorimeter signals from layer L (x(L) = [x1, ..., xK ]T ) are considered
to be generated through: x = F(s), where s = [s1, ..., sN ]T are the independent
sources and F(.) the nonlinear mixing mapping.

In this paper, different algorithms are used to extract features from calorime-
ter data envisaging optimum electron identification. The estimated segmented
nonlinear independent components are used to feed the input nodes of a super-
vised neural classifier, which produces electron/jet decision.

2 Segmented NLICA-Based Discriminators

Included in the feature extraction phase of the ATLAS online triggering system,
firstly calorimeter raw data is pre-processed and formatted into concentric energy
rings (see Figure 2). In the following, nonlinear independent components are
extracted from the ring signals in a segmented way (at layer level). For the
hypothesis testing phase, a supervised MLP neural network [6], fed from the
independent components, is used.

Electron/jet

decision

Calorimeter

raw data

Ring

Formatting

Neural

Classification

�
(PS)

�
(H2)

.

.

.
.
.
.

.

.

.

NLICA

NLICA

Fig. 2. Proposed Segmented NLICA-based classifiers

In this work, three NLICA algorithms were used to extract relevant features
from ring-formatted calorimeter data. More details concerning these algorithms
and the pre-processing procedure will be provided in the following.

2.1 Data Pre-processing

Electron/jet discrimination at ATLAS second-level trigger (LVL2) is based on
the energy deposition profiles measured by the calorimeters. The first-level pro-
vides for LVL2 information on the Regions of Interest (RoI), which are the
detector regions where relevant interactions may have occurred. A complete RoI
is described by approximately 1,000 calorimeter cells.

As proposed in [7], here the calorimeter information is formatted into concen-
tric rings through the following procedure: 1. In each calorimeter layer the most
energetic cell is considered as the first ring; 2. The next rings are sequentially
formed around the first one; 3. Ring signals are obtained by summing the energy
of the cells belonging to a given ring. The ring energy is normalized within each
layer.
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This procedure makes signal description independent from the impact point
in the detector, compacts RoI information by a factor of 10 (from 1000 cells
up to 100 rings) and preserves the energy deposition profile. Ring signals from
typical electron and jet are illustrated in Figure 3. One can see that the signals
present similar patterns and their discrimination is not a trivial task.
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Fig. 3. Ring-formatted signatures of typical (a) electron and (b) jet, calorimeter layers
are limited by vertical dotted lines

2.2 Post-nonlinear ICA Algorithm

The post-nonlinear (PNL) model [8] assumes that the observed signals are gen-
erated through a linear mixing followed by component-wise nonlinearities (cross-
channel nonlinearities are not allowed). The observed signals can be expressed
as [4]: x = F (As), where the nonlinear mapping is F (.) = [f1(.), f2(.), ..., fN (.)]T

(the number of sources N and sensors K is assumed to be the same). This model
is usually applied when the source signals propagate through a linear channel
and the nonlinearities are present on the sensors (which seems to be the case
for calorimeters). The nonlinear functions are usually estimated through neural
networks and the de-mixing matrix by a linear ICA algorithm [8].

In order to deal with high-dimensional data, here, as proposed in [9], a mod-
ified PNL model for the overdetermined case (when there exists more sensors
than sources) was used. As illustrated in Figure 4, a linear block B is added to
the standard PLN mixing model, allowing N<K.

s1

sN

... A B

f1

...
fN

x1

...
xK

Mixing system

D W

g1

...
gN

s1

sN

...

^

^(N x N) (K x N) (N x K) (N x N)

Demixing system

Fig. 4. Modified Post-Nonlinear mixing/de-mixing model

As the number of source signals may be unknown, in some cases, the esti-
mation of matrix D can only be solved approximately. In this work, Principal
Component Analysis (PCA) [5,6] is applied to estimate the number of nonlinear
independent components to be computed.
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2.3 Self-Organizing Map Based NLICA

One of the first attempts to perform nonlinear ICA was made through a Self
Organizing Map (SOM) [10]. The SOM [11] is an unsupervised trained neural
network, which learns a nonlinear mapping from the data and provides a topo-
logical organization of the input data set. SOM transforms a k-dimensional input
space into a discrete (generally bi-dimensional) characteristic map.

It can be proved that, the coordinates of the winner neuron in the map are
independent and roughly uniformly distributed [10]. To perform nonlinear ICA,
SOM is trained using as inputs the observed signals and the coordinates of the
winner vector correspond to the estimated independent components, which are
assumed to have uniform probability distribution function (pdf).

2.4 Local ICA

Local ICA [4,12] can be viewed as a compromise between linear and nonlinear
ICA. The purpose is to obtain better data representation when compared to
linear ICA (by exploring local characteristics of the dataset), while avoiding the
high computational cost of the nonlinear models.

In Local ICA model, a k-dimensional input space Q ⊂ Rk is divided into a fi-
nite number of subsets Qk, k = 1, ...,K, which satisfy: Q1 ∪ Q2 ∪ ... ∪ QK = Q.
Clustering is responsible for an overall nonlinear representation. Linear ICA mod-
els are applied to data belonging to each cluster (x(k)) in order to estimate the local
independent components s(k) = B(k)x(k), where B(k) is a local de-mixing matrix.

3 Experimental Results

The database used in this work was obtained through a Monte Carlo simulator
for proton-proton collisions that considers both detector characteristics (includ-
ing sensor and electronic noise) and first-level trigger effects [2]. The available
dataset, which comprises approximately 500,000 electron and 500,000 jet signa-
tures with energy spanning from 7 to 80 GeV, was equally split into development
and testing sets.

Discrimination performance was evaluated through both ROC (Receiver Op-
erating Characteristic) curve [13] and SP product. The SP is defined as [7]:
SP = [(Efe + Efj) ×

√
(Efe × Efj)]/2, where Efe and Efj are the detection

efficiencies respectively for electrons and jets. The threshold value that maxi-
mizes SP provides both high probability of detection (PD = Efe) and low false
alarm (PF = 1− Efj).

Considering the Local ICA implementation, several energy retention levels
through PCA were tested. Better discrimination performance was obtained while
retaining 75% of signal energy, and thus, dimensionality was reduced from 100
rings to 41 segmented principal components (SPCA). The same number of SPCA
was computed in the modified PNL model. To estimate the local independent
components, FastICA algorithm was applied, in a segmented way, to data clus-
tered into four groups (using more groups implies on a sparse representation).
As proposed in a previous work [14], SOM was used for the clustering proce-
dure. Figure 5-a illustrates the probabilities of occurrence for electrons and jets
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in these clusters. It can be observed from clusters composition that: group 1
concentrates most of typical electrons and group 4 typical jets; groups 2 and
3 are probably composed by signatures that are quite different from expected
patterns for both classes.

Bi-dimensional (square) maps were used in SOM-based NLICA. The number
of neurons (NH) in each map was chosen to minimize the mean error obtained
by approximating the input signals by the SOM weights. NH vary from 16 in
the hadronic layers up to 49 in the electromagnetic front layer.

A performance comparison between the proposed methods and algorithms
already implemented in the detector software platform (T2Calo and Neural
Ringer) is provided in Table 1. The baseline algorithm for electron/jet discrim-
ination used at ATLAS second-level trigger (T2Calo) [2] is based on classical
statistical analysis applied to parameters extracted from the energy deposition
profiles. The Neural Ringer [7] consists basically on a neural classifier operating
directly over the ring signals. One can see, from Table 1, that (Nonlinear and
Linear) ICA-based classifiers outperforms both T2Calo and Neural Ringer.
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Fig. 5. (a) Electron and jet probability of occurrence for different Local ICA clusters
and (b) ROC curves for different discriminators

Discrimination efficiency of NLICA and ICA based classifiers are also com-
pared in Figure 5-b. Analyzing the ROC curves, it was observed that, SOM
and modified PNL based feature extraction produced higher discrimination ef-
ficiency (SOM performs slightly better). It was also verified that linear ICA
outperforms local ICA, it is important to note that, in both implementations
the same ICA algorithm (FastICA) and PCA compaction level were used. From
this comparative analysis it is clear that NLICA feature extraction (SOM and
PNL) increases discrimination efficiency when compared to the linear model. It
was also observed that through Local ICA, poorer results (among nonlinear and
linear ICA implementations) were obtained. This indicates that, may be this
model does not describe properly the data set.

Table 1. SP products for different discriminators

SOM Mod. PNL Local ICA Linear ICA NeuralRinger T2Calo

0.977 0.972 0.957 0.969 0.870 0.852
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Fig. 6. Discrimination efficiencies in (a) energy (b) pseudorapidity (η)

For physics analysis, it is important to verify the proposed discriminators per-
formance for variations on parameters such as the energy level and the position
where the interaction occurred, which is expressed in terms of η and φ, axis of
ATLAS coordinates system [2]. It can be depicted from Figure 6-a that, through
NLICA feature extraction, high electron discrimination efficiency was achieved
for the full energy range, contrasting with T2Calo and Neural Ringer, which
produced lower performance (particularly for energy below 20 GeV). Consider-
ing the pseudorapidity (η), it can be observed in Figure 6-b that both T2Calo
and Neural Ringer presented poor performance around η = 1.5. In this region
exists a gap in calorimeter sensing elements. Through this gap pass maintenance
and communication cables to the inner detector. The proposed discriminator is
proved to be less influenced by the gap, producing high efficiency at this region.
The detector is symmetric in φ and thus, no significant performance variation
was observed in this axis. In these comparisons, results from the NLICA-SOM
method were used, as this approach presented highest discrimination perfor-
mance among NLICA implementations.

4 Conclusions

A novel signal processing procedure was proposed in this work for the ATLAS de-
tector second-level trigger (electron/jet channel). High-dimensional calorimeter
data was initially formatted into concentric energy rings, reducing signal dimen-
sionality by a factor of 10. Nonlinear independent components were extracted
from ring signals and used as inputs for a neural filter. Electron discrimination
efficiency of 99.1% was obtained for 1.6% jet misclassification, outperforming
the baseline discriminator.
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Abstract. In this paper we present a hybrid ICA-fuzzy adaptive algorithm for 
traffic flow separation and control in contemporary computer networks. Our 
approach is composed by an ICA Block corresponding to the gradient algorithm 
proposed by Bell and Sejnowski for the information maximization at the output 
of a neural network as well as a Fuzzy Control System Block. The ICA 
algorithm is used to separate the controllable to the non-controllable network 
traffic sources. Additionally, we developed a predictive fuzzy controller 
following the Takagi and Sugeno fuzzy modeling. The combination of blind 
separation and control algorithm is applied to real network traffic traces. 
Finally, we verify that the proposed ICA-fuzzy adaptive control algorithm 
yields prominent control performances for single buffer server network 
environments.  

Keywords: ICA, Traffic Separation, Network Traffic, Fuzzy Control, 
Prediction, Bell-Sejnowski algorithm, Independent Component Analysis. 

1   Introduction 

Nowadays, computer networks and the Internet have been facing an impacting 
transformation due to rapid growing of the number of real-time applications that 
require QoS (quality of service) guarantees. In order to attain the service demands of 
the network user QoS requirements, many strategies have been designed, capable of 
taking into account some particular statistical characteristics of the network traffic 
flows [1, 2]. These requirements and the additional flexibility of accommodating 
different traffic sources may cause serious congestion problems. Due to the 
fluctuation and burstiness of traffic flows within multimedia networks, traffic 
congestion can frequently occur, causing severe buffer overflow and QoS 
degradation. Therefore, an efficient congestion control mechanism is mandatory in 
order to overcome this problem. For this aim, the buffer length should be adequately 
controlled around a reference level [3]. 
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Precise network traffic modeling is an important issue regarding traffic congestion 
control. The more realistic is the traffic source model, the more accurate is the 
estimate of network behavior and so, more appropriate will be the service offered to 
the user. On the other hand, if the traffic model does not accurately represent the 
actual network traffic, one may overestimate or underestimate network performance.  

Many studies in fuzzy modeling have been carried out since the fuzzy theory was 
initially developed [4, 5]. The reason for these researches is due to the advantages of 
the fuzzy models of describing a given system over linear models. Besides a precise 
traffic modeling, it would be interesting if the network could separate the controllable 
(best-effort service) to the non-controllable network traffic flows. As a result, the QoS 
parameters of priority traffic flows could be guaranteed by decreasing the 
transmission rate of the best-effort service applications.   

In this work, we mixture two different traffic sources (controllable and non-
controllable) in order to study the capability of blind separation of the ICA algorithm 
proposed by Bell and Sejnowski in [6]. More specifically, we intend to evaluate the 
impact of such separation mechanism to the network performance as well as to an 
effective network traffic control mechanism. To this end, we introduce a novel TSK 
type fuzzy modeling in order to model the buffer queue size and the controllable source 
behavior, taking into account the nonlinear time-varying characteristics of network 
traffic flows. Our fuzzy model runs an adaptive clustering algorithm that divides the 
traffic data into several linear clusters by fuzzy interpolation, each one described by a 
TSK fuzzy model. In addition, a steepest descent algorithm is used to refine the 
obtained model and to improve the modeling accuracy. We propose an adaptive 
recursive fuzzy predictor, which predicts the future system behavior in order to 
overcome the long wait due to feedback delay and also, to solve the large bandwidth-
delay product caused by congestion problems. Further, an optimal regulation rate is 
calculated via the parameters of the fuzzy predictor for traffic control. 

Our traffic control strategy consist of: first, to separate the controllable and non-
controllable traffic flows through an ICA algorithm, second, to derive an optimal 
prediction buffer length estimate and next, to control the controllable input traffic 
rates so that the buffer length is maintained at a desired buffer level and minimization 
of buffer length variance occurs. 

2   Blind Network Traffic Separation  

We aim to verify the possibility of separating the controllable and non-controllable 
traffic sources of a mixture traffic trace, assuming they are mutually independent 
processes. This kind of mixture frequently occurs in computer networks and an exact 
separation is a difficult task [7, 8]. Moreover, we intend to evaluate the impact of the 
ICA algorithm of Bell and Sejnowski to the network performance.  

2.1   The Bell-Sejnowski Algorithm 

Independent component analysis (ICA) is a linear transformation in which the desired 
representation is the one that minimizes the statistical dependence of its components. 
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The Bell-Sejnowski (or Infomax) [6] algorithm finds such components by maximizing 
the network entropy. 

Let us assume that we have a given neural network of the type: � � ��� �� (1)

where � � 	
��  � 
��� is a conveniently preprocessed input vector, � is an � � � 
matrix containing weights, g is an invertible nonlinear monotonic function and � � 	���  � ���� is an output vector. The output entropy ���� can be calculated: 

���� � ���� � � ��� ����� �� � �� �
�! (2)

where ���� is the input entropy, � is the expectancy operator and ��" is the derivative 
of a given output # of �. This may be rewritten as: 

���� � ���� � ��$��� �$ � % �	�� �� ��
 (3)

The derivative of this expression is calculated as: 

&� ' (����(� � 	���)� � ((� *% �	�� �� ��
+ (4)

It was proved that if the function � is well chosen then this framework enables the 
estimation of the ICA model [9] and is equivalent to the maximum likelihood 
approach [10]. The selection of � has been called a “black art” in [6] but according to 
[9, 11] � � �,�- works well for super-Gaussian independent components. The 
gradient of the output of � � �,�-��.�� regarding the coefficients of � may be 
calculated yielding the entropy maximization learning rule given by: 

&� ' 	���)� / 0 � ��  (5)

or alternatively: 

&1�2 ' 345 1�2678 � / 0 
2 ��  (6)

3   ICA-Fuzzy Adaptive Predictive Flow Control  

The proposed Adaptive Fuzzy Regression Clustering with Covariance Resetting 
(AFRCCR) algorithm simultaneously defines the fuzzy subspace and find the 
parameters for the consequent parts of the TSK rules.  

3.1   AFRCCR TSK Fuzzy Modeling and Control 

The input traffic arrived at the multiplexer buffer belongs to two distinct traffic 
groups. One consists of the controllable traffic 9�:�, which can adjust its rate 
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according to the network condition status. The other group consists of the 
uncontrollable traffic ;�:�, which is delay-sensitive and has a higher priority than 
controllable type. Therefore, the controllable sources can only share the remaining 
link bandwidth left by the higher priority sources. 

Let <=
>�?�� ��?�@� =
>�0�� ��0�@�  � =
>�A�� ��A�@B, be a set of observations with 
>�#� C DE and ��:� C D, where A is the number of training data, 
>�:� �	
��:�� 
F�:��  � 
E�:�� the :-th input vetor, and ��:� the desired output for the 
input 
>�:�, with ? G : G A. In this work, as mentioned previously, the input vector 
consist of the past and current value of the buffer length and the regulation rate, and 
the output will be the �-step ahead of the buffer length value, e.g., 
>�:� �	H�: / I�� H�: / I � ?��  � H�:�� 9�: / J�� 9�: / J � ?��  � 9�:�� and y�:� �H�: � ��. 

Typically, a TSK fuzzy model consists of IF-THEN rules that have the following 
form:  D�K L5.H�: / I�.#M.N�� =O>��@  .,�� H�:� #M NPQ�� =O>PQ�� @ ,�� 9�:

/ J�.#M.NPQF� =O>PQF� @  ,�� 9�:� #M NPQRQF� =O>PQRQF� @ 
(7)

.....S-��.���:� � H��: � �� .....� TU� � T�� H�: / I� � V � TPQ�� H�:� 

....�WPQF� 9�: / J� � V � WPQRQF� 9�:� 

(8)

for # � ?� 0�  � X, where X is the number of IF-THEN rules, I � ? is the number of 
input buffer length values, J � ? is the number of input regulation rates (� � I � J �0 is the number of total inputs), N2�=O>2�@ is the fuzzy set of the #-th rule  
for 
2�:� with the adjustable parameter set with ? G Y G �, and T>��:� �=TU� � T�� �  � TPQ�� � WPQF� � WPQZ� �  � WPQRQF� @ is the parameter set in the consequente part 
for the :-th output. 

The prediction output of the fuzzy model is inferred as:  

�[�:� � H\�: � �� � ] H��: � ��1��:��̂_� ] 1��:��̂_�  (9)

where H��: � �� is the output of the #-th rule, 1��:� � `ab2_�E N2� cO>2�d 
2�:�e  is 

the #-th rule's firing strength, which is obtained as the minimum of the fuzzy 
membership degrees of all fuzzy variables. In (7) and (8), both the parameters of the 
premise parts (e.g., O>2�) and of the consequent parts (i.e., T>�) of the TSK fuzzy model 
are required to be identified. 

The FRCM (Fuzzy C-Regression Model) clustering algorithm proposed in [12] 
does not consider the spatial distribution of training data. We propose the AFRCCR 
algorithm which takes into account the training data distribution and consider both the 
regression error and the distance between the input data and the clusters. Hence, the 
cost function of the AFRCCR algorithm is defined as: 
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f � % % g�hF �i�h��h�Fj
h_�

^
�_�

 (10)

subject to 

% g�h � ?� 54i ? G : G A^
�_�

 (11)

where g�h is the firing strength of the #-th rule for the :-th training pattern, X is the 
number of fuzzy rules and A is the number of the training data. In (10), i�h is the error 
between the :-th desired output of the modeled system and the output of the #-th rule 

with the :-th input data, i.e., i�h � ��:� / 5� c
>�:�d ,>��:�e. In addition, ��h is the 

distance between the :-th input data and the center of #-th cluster �W��, i.e., ��h �
>�:� / W�, where # � ?� 0�  � X. 
To minimize f in (10) subject to (11), the Lagrange multiplier method is applied, 

the following equations are obtained:  

T>��: � ?� � T>��:� � =k��: � ?�
�: � ?�l�: � ?�@� c��: � ?� / 
�: � ?��T>��:�e 
(12)

and, 

k�: � ?� � k�:� / l�: � ?�k��:�
�: � ?�
�: � ?��k��:�? � l�: � ?�
�: � ?��k��:�
�: � ?�  (13)

where 
�: � ?� is the �: � ?�-th row of matrix m and 1�: � ?� is the �: � ?�-th 
diagonal element of matrix n��: � ?�. 

g�h � ? �0i�hF ��hF �o
] ? �0i�hF ��hF �o�̂_�  (14)

And the center of the #-th cluster �W�� is given by the following equation: 

W��:� � ] i�hF ��hF 
>�p�jq_�] i�hF ��hFjq_�  (15)

In practice, this recursive method of parameters T>��: � ?� estimation presents a 
high initial convergence rate. However, the algorithm gain is reduced when the 
elements of covariance matrix k become small latter than some iterations later. To 
avoid this problem, the covariance matrix is reseted periodically every 10 time units, 
so that is, the algorithm gain will not be reduced and a high convergence rate can be 
obtained. Furthermore, we apply a steepest descent algorithm to refine the obtained 
model and to improve the modeling accuracy according to [3]. 
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The optimal flow control rate 9r�:� is a function of the input vetor 
>�:�, the 
parameters of the consequent parts ,>��:� and the reference buffer level Hs by 
minimizing the following �-step ahead quadratic cost function:  

f�: � �� � � t?0 �H�: � �� / Hs�F � u0 9F�:�$vhw (16)

where u is a weighting factor and Hs is the reference buffer level. Explicitly, the rate 9r�:� is given by: 

9r�:� � WU�:�Hs / x% -��:�^
�_�

y% ,�2H�: / Y�P
2_U

� % W�2g�: / Y�R
2_�

z{ (17)

where 

WU�:� | ] -��:�W�U�̂_��] -��:�W�U�̂_� �F � u (18)

and 

-��:� � 1��:�] 1��:��̂_� d 1��:� � `ab2_�E N2� cO>2�d 
2�:�e (19)

4   Simulation Results 

In order to describe our simulation procedures of validating the proposed separating and 
control approaches, it is necessary to specify the uncontrollable and controllable sources. 
Two TCP/IP wide network traffic traces are used for our experimental investigation (dec-
pkt-1-512.tcp and dec-pkt-2-512.tcp of Digital Equipment Corporation) [14].  

In the simulations, the sampling time interval  S is chosen as }?0~M, the link 
capacity as ?��.:H���M�M, the maximum buffer size ���� as ?�} � ?�� and � as }?0~M. We considered two relevant past terms in equation (7) and (8), i.e., I � 0 and J � 0.  

For the estimation of the optimal traffic control rate 9r�:�, the desired level Hs was 
set to ��� of ���� , i.e., Hs, and the design parameter u was defined as . Table 1 
compares some network performance parameters resulting from the application of the 
proposed network traffic control procedure and without control, as well as, the 
queueing behavior considering the flow separation of a trace composed by different 
linear combinations of traffic flows represented by the mixing matrix N. That is, when N is given by: 

N � ���� ��0��0 ���� (20)

the input � of the system  in function of the original signals s is: 

� � �� � �
� � ��� M� � ��0 MF
F � ��0 M� � ��� MF  (21)

where the traffic trace � is composed of M� which is a controllable traffic flow and MF 
which is a non-controllable traffic flow.  
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Table 1. Results 

 
Original 
Traces 

Recovered 
Traces for: 

N � ���� ��0��0 ���� 
Recovered 
Traces for 

N � ���� ������ ���� 
Recovered 
Traces for 

N � ���� ������ ���� 
Buffer Mean 

(without control) 
1.10E+06 1.10E+06 1.25E+06 1.30E+06 

Buffer Mean 
(with control) 

4.79E+03 2.58E+03 1.32E+03 2.36E+03 

Buffer Variance 
(without control) 

3.63E+11 3.63E+11 2.74E+11 2.31E+11 

Buffer variance 
(with control) 

3.21E+08 1.10E+08 6.67E+07 1.26E+08 

Utilization 
(without control) 

99.9022 99.9021 99.95 99.95 

Utilization 
(with control) 

90.6696 95.1729 94.1407 99.6133 

Packet Loss Rate 
(without control) 

9.0304 8.9788 15.7405 22.9086 

Packet Loss Rate 
(with control) 

0 0 0 0 

 
Analyzing Table 1, we note that with the control approach the buffer length (buffer 

mean) is maintained below the desired level, which is ��} � ?��.H���M. In addition, 
the variance of the buffer length is decreased as well as the PLR (Packet Loss Rate) is 
reduced at the price of slightly decreasing network utilization. It can also be seen that 
the better the traffic flow separation the closer are the results using the recovered 
traces to those of using the original traffic sources. The traffic separation performance 
was verified by analyzing the correlation coefficient between the original and 
recovered traffic traces for different N values. In the simulations, we obtained the best 

traffic separation for � � ���� ��0��0 ����, resulting in a network performance similar to 

that with the original traffic traces when no control is applied. In this same case, by 
applying the proposed control, the lowest PLR is achieved.  

5   Conclusion 

A separation and control procedure based on ICA and fuzzy modeling was proposed. 
The major advantages of this approach are as follows. The proposed control algorithm 
provides a blind separation of controllable (Best-effort) and non-controllable (e.g. 
real-time applications) traffic flows as well as an efficient control rate control of the 
controllable traffic sources.  Particularly, we applied our control approach to a 
network link showing that we could control the traffic flow rates in order to maintain 
the desired buffer level. We also verified that ICA algorithm can be used to separate 
traffic flows for specific values of the matrix A. Accordingly, the simulation results 
showed that the variance of the queue size process and the byte loss rate were 
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decreased when compared to the case using the same server but without fuzzy control. 
Therefore, the proposed fuzzy model based adaptive fuzzy control algorithm can be 
seen as an important step towards a reliable, adaptive and QoS based control system 
for computer networks. 
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Abstract. This paper introduces the first community-based Signal Sep-
aration Evaluation Campaign (SiSEC 2008), coordinated by the authors.
This initiative aims to evaluate source separation systems following spec-
ifications agreed between the entrants. Four speech and music datasets
were contributed, including synthetic mixtures as well as microphone
recordings and professional mixtures. The source separation problem was
split into four tasks, each evaluated via different objective performance
criteria. We provide an overview of these datasets, tasks and criteria,
summarize the results achieved by the submitted systems and discuss
organization strategies for future campaigns.

1 Introduction

Large-scale evaluations are a key ingredient to scientific and technological matu-
ration by revealing the effects of different system designs, promoting common test
specifications and attracting the interest of industries and funding bodies. Re-
cent evaluations of source separation systems include the 2006 Speech Separation
Challenge1 and the 2007 Stereo Audio Source Separation Evaluation Campaign
[1]. The subsequent panel discussion held at the 7th International Conference on
Independent Component Analysis and Signal Separation (ICA 2007) resulted in
a set of recommendations regarding future evaluations, in particular:

– splitting the overall problem into several successive or alternative tasks,
– providing reference software and evaluation criteria for each task,
– considering toy data as well as real-world data of interest to companies,
– letting entrants specify all aspects of the evaluation collaboratively.

These general principles aim to facilitate the entrance of researchers addressing
different tasks and to enable detailed diagnosis of the submitted systems.
1 http://www.dcs.shef.ac.uk/~martin/SpeechSeparationChallenge.htm

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 734–741, 2009.
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This article introduces the 2008 community-based Signal Separation Evalua-
tion Campaign (SiSEC) as a tentative implementation of these principles. Due
to the variety of the submitted systems, we focus on the general outcomes of the
campaign and let readers refer to the website at http://sisec.wiki.irisa.fr/
for the details and results of individual systems. We describe the chosen datasets,
tasks and evaluation criteria in Section 2. We summarize the results and provide
bibliographical references to the submitted systems in Section 3. We conclude
and discuss organization strategies for future campaigns in Section 4.

2 Specifications

The datasets, tasks and evaluation criteria considered in the campaign were spec-
ified in a collaborative fashion. A few initial specifications were first suggested by
the organizers. Potential entrants were then invited to give their feedback and con-
tribute additional specifications using collaborative software tools (wiki, mailing
list). Although few people eventually took advantage of this opportunity, those
who did contributed a large proportion of the evaluation materials. All materials,
including data and code, are available at http://sisec.wiki.irisa.fr/.

2.1 Datasets

The data consisted of audio signals spanning a range of mixing conditions. The
channels xi(t) (1 ≤ i ≤ I) of each mixture signal were generally obtained as

xi(t) =
J∑

j=1

simg
ij (t) (1)

where simg
ij (t) is the spatial image of source j (1 ≤ j ≤ J) on channel i, that

is the contribution of this source to the mixture in this channel. Instantaneous
mixtures are generated via simg

ij (t) = aijsj(t), where sj(t) are single-channel
source signals and aij positive mixing gains. Convolutive mixtures are obtained
similarly from mixing filters aij(τ) via simg

ij (t) =
∑

τ aij(τ)sj(t − τ). Recorded
mixtures are acquired by playing each source at a time on a loudspeaker and
recording it over a set of microphones. Four distinct datasets were provided:

D1. Under-determined speech and music mixtures
This dataset consists of 36 instantaneous, convolutive and recorded stereo
mixtures of three to four audio sources of 10 s duration, sampled at 16 kHz.
Recorded mixtures were acquired in a chamber with cushion walls, using the
loudspeaker and microphone arrangement depicted in [1], while convolutive
mixtures were obtained with artificial room impulse responses simulating
the same arrangement. The distance between microphones was set to either
5 cm or 1 m and the room reverberation time (RT) to 130 ms or 250 ms. The
source signals include unrelated female or male speech and synchronized
percussive or non-percussive music.

D2. Determined and over-determined speech and music mixtures
Thisdataset includes21 four-channelrecordingsoftwoto fourunrelatedspeech
sources of 10 s duration, sampled at 16 kHz, acquired in four different rooms:
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two chamberswith cushion walls, an office roomand a conference room. Some
mixturesweredirectly recorded insteadof computedvia (1).Themicrophones
were placed either at a height of 1.25 m or at different heights, near the walls
or near the center and at a distance of about 5 cm or 1 m. The sources were
placed either randomly or at 1 m distance from the microphones. The dataset
also includes a 2-channel mixture of 2 speech sources recorded via cardioid mi-
crophones placed on either side of a dummy head.

D3. Head-geometry mixtures of two speech sources in real environments
This dataset consists of 648 two-channel convolutive mixtures of two unre-
lated speech sources of about 10 s, sampled at 16 kHz. The mixing filters
were real-world impulse responses from two rooms, an anechoic chamber
and an office room, measured by hearing aid microphones mounted on a
dummy head. The sources were placed in the horizontal plane at fixed dis-
tance from the head. In the anechoic chamber, the distance was set to 3 m
and the direction of arrival (DOA) varied over 360◦ in 20◦ steps. In the
office room, the distance was set to 1 m and the DOA varied over the front
180◦ hemisphere in 10◦ steps. All possible combinations of two different
DOAs were generated.

D4. Professionally produced music recordings
This dataset consists of two stereo music signals sampled at 44.1 kHz involv-
ing two and ten synchronized sources of 13 and 14 s duration, respectively.
The stereo spatial image of each source was generated by a combination of
professional recording and mixing techniques. Special effects applied to in-
dividual sources include chorus, distortion pads, vocoder, delays, parametic
equalization and dynamic multi-band compression.

All datasets except D2 include both test and development data generated in
a similar fashion, but from different source signals and source positions. The
true source signals and source positions underlying the test data were hidden to
the entrants, except for D3 where the source positions were provided as prior
information. The true number of sources was always available.

2.2 Tasks

The source separation problem was split into four tasks:

T1. Source counting
T2. Mixing system estimation
T3. Source signal estimation
T4. Source spatial image estimation

These tasks consists of finding, respectively: (T1) the number of sources J , (T2)
the mixing gains aij or the discrete Fourier transform aij(ν) of the mixing filters,
(T3) the single-channel source signals sj(t) and (T4) the spatial images simg

ij (t)
of the sources over all channels i. Entrants were asked to submit the results of
their system to T3 and/or T4 and on an optional basis to T1 and/or T2.

Reference software was provided to address tasks T1 and T2 over instanta-
neous mixtures [2] (R1) and tasks T3 and T4 either via binary masking (R2) or
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via lp-norm minimization [3] (R3). This software aims to facilitate entrance and
to provide baseline results for benchmarking purposes. Two oracle systems were
also considered for the benchmarking of task T4: ideal binary masking over a
short-time Fourier transform (STFT) [4] (O1) or over a cochleagram [5] (O2).
These systems require knowledge of the true source spatial images and provide
theoretical upper performance bounds for binary masking-based systems.

2.3 Evaluation Criteria

Although standard evaluation criteria exist for task T2 when the number of
sources is smaller than the number of sensors, there are no such criteria in a more
general setting so far. For instantaneous mixtures, the vector âj of estimated
mixing gains for a given source j was decomposed as

âj = acoll
j + aorth

j (2)

where acoll
j and aorth

j are respectively collinear and orthogonal to the true vector
of mixing gains aj and are computed by least squares projection. Accuracy was
then assessed via the mixing error ratio (MER) in decibels (dB)

MERj = 10 log10
‖acoll

j ‖2
‖aorth

j ‖2 (3)

where ‖.‖ is the Euclidean norm. This criterion allows arbitrary scaling of the
gains for each source. It is equal to +∞ for an exact estimate, 0 when the estimate
forms a 45◦ angle with the ground truth and −∞ when it is orthogonal. For
convolutive mixtures, the accuracy of estimated mixing filters for source j was
similarly assessed by computing the MER in each frequency bin ν between âj(ν)
and aj(ν) and averaging it over frequency. Since the sources can be characterized
only up to an arbitrary permutation, all possible permutations were tested and
the one maximizing the average MER was selected.

Tasks T3 and T4 were evaluated via the criteria in [6] and [1], respectively,
termed signal to distortion ratio (SDR), source image to spatial distortion ra-
tio (ISR), signal to interference ratio (SIR) and signal to artifacts ratio (SAR).
These criteria can be computed for any separation system and do not necessitate
knowledge of the unmixing filters or masks. The SDR for task T3 allows arbi-
trary filtering of the target source, while that for T4 allows no scaling or filtering
distortion, which is separately measured by the ISR. The signals were permuted
so as to maximize the average SIR. The resulting permutations were found to be
relevant and identical to that estimated from the MER, except in cases involving
much interference. For dataset D4, performance was also measured via a magni-
tude Signal-to-Error Ratio (mSER) between the true and estimated magnitude
STFTs of the source spatial images over each channel.

3 Results

The details and the results of the thirty submitted systems are available for
viewing and listening at http://sisec.wiki.irisa.fr/. The systems [7], [8],
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Table 1. Average MER for task T2 over the instantaneous mixtures of dataset D1

System [11] [7] [8] R1
MER 80.9 81.7 42.4 49.0

Table 2. Average performance for tasks T3 or T4 over the instantaneous mixtures of
dataset D1. Figures relate to T4 when the ISR is reported and to T3 otherwise.

System [12] [13] [3] [14] [15] [11]2 [16] [17] [9]2 [8] R2 R3 O1 02
SDR 9.8 14.0 11.7 11.3 7.8 10.7 12.6 6.8 6.23 5.5 8.8 11.1 10.7 8.1
ISR 18.2 24.1 22.9 20.1 16.4 21.9 11.4 17.5 22.7 20.0 14.4
SIR 14.9 20.6 18.5 16.9 17.3 18.6 18.5 16.8 11.63 12.9 18.6 18.4 21.6 17.4
SAR 11.4 15.4 13.2 12.8 8.8 11.9 13.2 7.7 9.03 8.2 9.6 12.3 11.5 9.1

Table 3. Average performance for tasks T3 or T4 over the convolutive/recorded mix-
tures of dataset D1. Figures relate to T4 when the ISR is reported and to T3 otherwise.

System
RT=130ms RT=250ms

SDR ISR SIR SAR SDR ISR SIR SAR
[18] 2.03 6.33 5.83 5.53 1.03 5.23 2.93 5.23

[19] 0.8 5.9 2.7 5.7 0.3 5.1 0.6 6.1
[20] 1.6 5.8 3.2 7.1 1.1 5.0 1.6 7.9
[10] 2.93 6.53 7.13 8.63 3.73 6.53 5.03 8.83

[21] -1.13 6.83 1.33 -1.13 6.63 1.53

[8] 3.3 6.7 4.3 7.9 3.1 6.2 3.9 8.4
O1 9.7 18.3 19.9 10.2 8.7 16.2 19.4 10.4
O2 6.9 12.1 16.5 7.6 6.6 11.5 16.0 7.9

Table 4. Average SIR for task T3 over dataset D2

System
Cushioned rooms Office/lab rooms Conference room
J = 2 J = 3 J = 4 J = 2 J = 3 J = 4 J = 2 J = 3 J = 4

[22] 14.4 16.3 8.9 14.1 5.7 -0.3 8.2 1.5 -2.3
[23] 5.3 12.8 9.0 19.63

[24] 3.9 4.3 0.9 6.9 2.6 -2.9 7.1 2.2 -0.6
I. Takashi 11.33 7.43 5.63 2.83

[25] 10.6 9.2 4.1 4.23 -0.4 -3.7 2.3 -1.2 -3.5
[26] 8.7 6.8 2.5 3.23 -1.3 -4.0 2.2 -1.3 -5.1

R1, [9] and [10] addressed task T1 without error. Summary performance figures
for other tasks are provided in Tables 1 to 6 and in Figure 1 after averaging
over all sources then over several mixtures. An analysis of each table is be-
yond the scope of this paper, due to the wide variety of prior knowledge and
computation resources used by different systems. We observe that the mixing
matrix estimation task is now solved for instantaneous mixtures, that the source

2 Variant or extension of the system presented in the bibliographical reference.
3 Figure computed by averaging over an incomplete set of mixtures or sources.
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Table 5. Average performance for task T4 over dataset D3

System Anechoic chamber Office room
SDR ISR SIR SAR SDR ISR SIR SAR

[19] 4.4 6.9 19.2 13.6 1.9 7.9 5.8 10.7
[19]2 4.7 7.0 19.3 14.3 2.2 8.4 5.9 11.2
[27] 1.4 6.7 6.1 10.7
O1 13.7 24.5 24.7 14.1 13.0 23.7 23.9 13.4
O2 11.0 20.1 19.9 11.7 10.6 19.8 19.6 11.3
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Fig. 1. Average SIR achieved by system [19] for task T4 over dataset D3 as a function
of the interference DOA for three target DOAs (plain: 0◦, dashed:40◦, dotted:80◦)

Table 6. Average performance for task T4 over dataset D4. The SIR quantifies inter-
ference from the target sources only, while the SAR includes that from other sources.

System
Tamy (J = 2) Bearlin (J = 10)

mSER SDR ISR SIR SAR mSER SDR ISR SIR SAR
[13] 6.0 4.5 10.0 8.9 8.6 4.2 -0.4 7.8 6.9 1.6
[16]2 6.8 5.9 10.2 8.8 10.7 4.9 3.8 9.7 8.3 4.8
[28] 9.5 8.6 17.3 16.4 9.5
[29] 8.4 7.7 16.5 15.4 8.4
[15]2 8.5 7.2 16.5 15.7 8.3 3.3 2.6 8.6 12.9 1.6
[30] 3.5 4.5 7.4 18.5 4.6 3.4 3.2 8.4 12.0 1.8
[31]2 9.3 8.3 15.1 23.5 8.0
[31]2 10.0 9.1 15.1 24.1 9.1
[31]2 5.73 5.43 9.83 17.73 5.23

O1 12.8 11.0 21.4 21.1 11.4 9.1 7.5 14.7 18.0 7.9
O2 9.0 8.0 14.5 15.1 8.9 -0.3 2.0 8.0 10.7 0.4

signal estimation task can now be addressed with a mean SIR around 20 dB
for instantaneous or anechoic mixtures and that the separation of monophonic
instruments from professional music recordings can also be achieved with a SIR
above 15 dB. Nevertheless, the separation of reverberant mixtures remains a
challenge for any number of sources and channels despite continued progress, as
illustrated by an average SIR around 6 dB for office recordings of three sources.
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4 Conclusion

We summarized the specifications and outcomes of the first community-based
Signal Separation Evaluation Campaign. We hope that this campaign fosters in-
terest for evaluation in the source separation community, so that more entrants
contribute feedback, datasets or code in the future. With thirty submissions but
three organizers only, the current organization scheme has reached its goal of at-
tracting many entrants, but failed to provide detailed analysis of the results. We
believe that increased participation from the community is key to maximizing
the benefits of future campaigns. We advocate the creation of a larger organiza-
tion committee with members dedicated to the evaluation of a particular dataset
or task and invite all willing researchers to become part of it.
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Abstract. In this paper, we propose a novel sparse source separation
method that can estimate the number of sources and time-frequency
masks simultaneously, even when the spatial aliasing problem exists. Re-
cently, many sparse source separation approaches with time-frequency
masks have been proposed. However, most of these approaches require in-
formation on the number of sources in advance. In our proposed method,
we model the phase difference of arrival (PDOA) between microphones
with a Gaussian mixture model (GMM) with a Dirichlet prior. Then
we estimate the model parameters by using the maximum a posteriori
(MAP) estimation based on the EM algorithm. In order to avoid one
cluster being modeled by two or more Gaussians, we utilize a sparse
distribution modeled by the Dirichlet distributions as the prior of the
GMM mixture weight. Moreover, to handle wide microphone spacing
cases where the spatial aliasing problem occurs, the indeterminacy of
modulus 2πk in the phase is also included in our model. Experimental
results show good performance of our proposed method.

Keywords: Dirichlet distribution, prior, number of sources, blind source
separation, sparse, spatial aliasing problem.

1 Introduction

Blind source separation (BSS) is an approach for estimating source signals that
uses only the mixed signal information observed at each microphone. The BSS
technique for speech dealt with in this paper has many applications, including
the hands-free teleconference systems and preprocessing for an automatic speech
recognizer.

Let us formulate the task. Suppose that Ns ≥ 2 speech sources s1, . . . , sNs are
convolutively mixed and observed at Nm microphones,

xj(t) =
∑Ns

i=1
∑

l hji(l) si(t− l), j=1, . . . , Nm, (1)
where hji(l) represents the impulse response from source i to microphone j.
Our goal is to obtain estimates yi of each source signal si from the microphone
observations xj without information about the number of sources Ns, the speech
sources si or the mixing process hji.

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 742–750, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Two approaches have been widely studied and employed to solve the BSS
problem: one is based on independent component analysis (ICA) (e.g., [1]) and
the other relies on the sparseness of source signals (e.g., [2]). In this paper, we fo-
cus on the latter approach, more specifically, the time-frequency mask approach
[2,3]. With the time-frequency mask approach, we classify the phase difference
of arrival (PDOA) between microphone observations, and separate each signal
by collecting the observation signal at time-frequency points in each cluster.

In previous work [2,3], to automatically find clusters, the number of sources
Ns is assumed to be known. However, in real situations we usually cannot obtain
information on the number of sources Ns in advance. Especially for an under-
determined case (Ns > Nm), the source counting is difficult, and few papers
have dealt with this problem. Moreover, when the microphone spacing is large,
the spatial aliasing problem occurs. This problem makes it difficult to classify
the PDOA because the phase has the indeterminacy of modulus 2πk in high
frequencies. [4] considered the spatial aliasing problem in a time-frequency mask
approach, however, the number of sources Ns should be known.

In this paper, we propose a novel sparse source separation method that can
estimate the number of sources and time-frequency masks simultaneously, even
when spatial aliasing occurs. We model the PDOA distribution with a Gaus-
sian mixture model (GMM) with a Dirichlet prior [5], and estimate the model
parameters by using the EM algorithm. In order to avoid one cluster being mod-
eled by two or more Gaussians, thus making it possible to estimate the number
of sources correctly, we propose utilizing a sparse distribution modeled by the
Dirichlet distribution as the prior of the GMM mixture weight. The authors
of [6,7] also derived the EM algorithm, however, they still needed to know the
number of sources Ns in advance. On the other hand, our proposed algorithm
does not require information on the source number, thanks to the weight prior.
Because the indeterminacy of 2πk in phase is modeled in our GMM, we can also
overcome the difficulty in the PDOA clustering even in a spatial aliasing case.

The experimental results with a wide microphone spacing (20 cm) show that
our proposed method can estimate the number of sources and can separate signals
by time-frequency masks obtained by the posterior probability for each cluster.

2 Mixing and Separation Processes

This paper employs a time-frequency domain approach. With an F -point short-
time Fourier transform (STFT), (1) is converted into:

xj(n, f) =
∑Ns

i=1 hji(f)si(n, f), (2)
where hji(f) is the frequency response from source i to microphone j, si(n, f)
is the STFT of a source si. f ∈ {0, 1

F fs, . . . ,
F−1
F fs} is a frequency (fs is the

sampling frequency) and n(= 0, · · · , N − 1) is a time-frame index.
In this paper, we assume the sparseness of the sources [2]:

xj(n, f) ≈ hji(f)si(n, f), (3)
where si(n, f) is a dominant source at the time-frequency slot (n, f). This is
approximately true for speech signals in the time-frequency domain [2,3].
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2.1 Separation Method

In this paper, we assume that hji(f) in (2) is modeled by an anechoic model
(e.g., eq. (13) of [3]), that is, the PDOA between microphones is given as:

arg
[
x1(n, f)
x2(n, f)

]
= 2πfτ(n, f) = 2πf

d cosϕ(n, f)
v

, (4)

where τ(n, f) = d cosϕ(n, f)/v is the time difference of arrival (TDOA), ϕ(n, f)
is the dominant source direction at the time-frequency (n, f), and d and v denote
the microphone spacing and the sound speed.

First, by assuming the source sparseness, we calculate the PDOA at each
time-frequency slot by the left-side of (4). Then, by considering the frequency
dependence in the PDOA, we classify the PDOA values in some way. For ex-
ample, if there is no spatial aliasing problem and we know the number of
sources, the k-means clustering algorithm can be applied to TDOA τ(n, f) =

1
2πf arg [x1(n, f)/x2(n, f)]. Our method, which considers the aliasing problem
and the unknown source number, is introduced in the following section.

Finally, we estimate the separated signals yi(n, f) with time-frequency masks
Mi(n, f), which extract time-frequency points of members in the i-th cluster:

yi(n, f) = x1(n, f)Mi(n, f). (5)

3 Proposed Method

3.1 Problems in PDOA Clustering

The first problem for the PDOA clustering is the spatial aliasing problem. As
can be seen in (4), when the frequency f or the microphone spacing d are large,
arg [x1(n, f)/x2(n, f)] = 2πfd cosϕ(n, f)/v exceeds ±π. However, since the arg
operation has the indefiniteness of modulus 2πk, (4) should be:

2πfτ(n, f) = arg
[
x1(n, f)
x2(n, f)

]
+ 2πk = o(n, f) + 2πk, (6)

where o(n, f) = arg [x1(n, f)/x2(n, f)], −π ≤ o(n, f) < π, and k is an integer.
Note that we can observe just o(n, f), and k is unknown when the source di-
rection ϕ is unknown. This is the spatial aliasing problem. Figure 1 gives an
example of the observed PDOA o(n, f) for a wide microphone spacing of 20 cm.
In the next subsection, k in (6) is considered as a hidden variable.

The second problem occurs when we apply a GMM fitting method for an
unknown number of mixtures. Figure 2 shows an example. Here we have two
clusters in the histogram (Fig. 2(a)). Figure 2(b) shows the fitting result of
GMM of eight Gaussians, to Fig. 2 (a). From Fig. 2(b), we can see that multiple
Gaussians are fit to each cluster. However, we expect just one Gaussian for each
peak, in order to estimate the number of sources by counting the number of
dominant Gaussians. In this paper, in order to avoid the case where one cluster
is modeled by two or more Gaussians, we propose utilizing a sparse distribution
for the prior of the GMM mixture weight parameter in the next subsection.



Stereo Source Separation and Source Counting 745

Fig. 1. Example PDOA for a microphone spacing of 20 cm and a sampling rate of 16
kHz. The PDOA for a source at 70◦ and a source at 150◦ are drawn individually for
illustrative purposes.

Fig. 2. Example GMM fitting result with and without prior. (a) Histogram of two
Gaussians, (b) estimated Gaussians of GMM without prior (φ = 1.0), (c) estimated
Gaussians of GMM with prior (φ = 0.9).

3.2 Probabilistic Model

To begin with, let us consider that we observe one source from one direction.
Hereafter, a notation onf = o(n, f) is utilized. Because the spatial aliasing issue
in (6) can be considered as a phase wrapping problem, we can model the PDOA
with a Gaussian distribution by considering the unwrapped data onf + 2πk. In
other words, the phase wrapping process can be modeled by summing the Gaus-
sians at intervals of 2π. That is, we assume that the PDOA follows a wrapped
Gaussian distribution [8],

p(onf ; μ, σ) =
Kf∑

k=−Kf

p(onf , k; μ, σ) =
Kf∑

k=−Kf

1√
2πσ2

exp
(−(onf + 2πk − 2πfμ)2

2σ2

)
,

(7)
where −π ≤ onf < π, μ gives us the expectation value of the TDOA τ of
the source, σ2 is the variance of the PDOA, and k is an integer to handle the
spatial aliasing (6). The value Kf is a frequency dependent integer, and it can
be determined if we know the microphone spacing d and the frequency f . If we
do not know d, we can set a sufficiently large value for Kf for all frequencies.
This model is inspired by a wrapped Gaussian model [8].
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In our observed mixture, we assume that there are a sufficient number of
source signals from different directions, where some are dominant and others are
much less dominant. Each source is modeled by (7). We also assume that the
PDOA for an observed mixture follows a Gaussian mixture model (GMM):

p(onf ;μm, σm) =
M∑

m=1

Kf∑
k=−Kf

αm√
2πσ2

m

exp
(−(onf + 2πk − 2πfμm)2

2σ2
m

)
. (8)

We prepare a sufficient numberM of Gaussians for our GMM model and estimate
the mean μm, variance σ2

m and weight αm for each Gaussian m.
In order to solve the second problem mentioned in Section 3.1, that is, in

order to model the observed PDOA data by allocating one Gaussian to each
source, we assume the sparseness of the source directions, where each direction
is dominated by at most one source. For this purpose, as the prior of the mixture
weight, we employ the Dirichlet distribution:

p(α) =
1

B(φ)

M∏
m

αφ−1
m , (9)

where α = {α1, · · · , αm, · · · , αM},
∑M

m αm = 1, 0 ≤ αm ≤ 1, and B(φ) is the
beta distribution (regularization term). When we set small hyper parameter φ
(φ < 1), the prior takes a larger value as the number of mixture weights whose
values are close to zero increases, which is desirable for representing the sparse-
ness of the source direction [5]. In addition, the Dirichlet distribution is known
to be a conjugate prior of the mixture weight [5], and it can be incorporated into
the GMM fitting approach in a computationally efficient manner.

Figure 2 (c) shows a GMM fitting result with prior ((9) with φ = 0.9) for the
distribution in Fig. 2 (a). In spite of utilizing eight Gaussians, we can see that
just two Gaussians are dominant in Fig. 2 (c). That is, using the prior, more
correct GMM fitting can be performed.

3.3 Cost Function Based on GMM

Let θ = {αm, μm, σm} be a model parameter set. The observations are o =
{o11, o12, · · · , onf , · · · , oNF } and power values a = {a11, a12, · · · , anf , · · · , aNF },
where anf = a(n, f) = |x1(n, f)|2. In the following, Gaussian indices m and k in
the PDOA model (8) are assumed not to be observed, and therefore dealt with
as hidden variables.

The cost function of the maximum a posteriori (MAP) estimation is defined
based on a log of a joint probability density function (pdf) as
L(θ) = log p(o, θ) = log p(o|θ) + log p(α) + const. (10)

=
N∑
n

F∑
f

f(anf ) log p(onf |θ) + log p(α) + const. (11)

=
N∑
n

F∑
f

f(anf ) log

⎛⎝ M∑
m

Kf∑
k=−Kf

p(m, k, onf |θ)
⎞⎠+log p(α)+const.,(12)
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where

p(m, k, onf |θ) =
αm√
2πσ2

m

exp
(−(onf + 2πk − 2πfμm)2

2σ2
m

)
. (13)

We disregarded the priors of the model parameters except for α in (10), and

f(anf ) = canf/
∑
n

∑
f

anf (14)

gives a power weight (anf = |x1(n, f)|2 in this paper) and controls the impor-
tance of the observation relative to the prior term (2nd term of (12)), where c
is a control parameter.

In (12), the mixture weight α follows the Dirichlet distribution (9) and
∑M

m αm
= 1, 0 ≤ αm ≤ 1 holds. For the sparse representation of the GMM, φ < 1 is
preferred for the Dirichlet distribution (9). Note that φ = 1 is equivalent to the
case without a prior for the mixture weight.

3.4 EM Algorithm

Here we derive an algorithm for estimating parameter θ by the EM algorithm.
The auxiliary function Q is given as

Q(θ|θt) = E
[
log p(onf ; θ)|onf ; θt

]
(15)

=
∑
n

∑
f

∑
m

∑
k

[
p(m, k|onf , θt)f(anf ) log p(m, k, onf |θ)

]
+ log p(α), (16)

where θt is the estimate of the parameters after the t-th iteration, and

p(m, k|onf , θt) =
p(m, k, onf |θt)∑

m

∑
k p(m, k, onf |θt)

. (17)

By setting ∂Q(θ|θt)
∂μm

= 0 and ∂Q(θ|θt)
∂σ2

m
= 0, we obtain

μt+1
m =

∑
n

∑
f

∑
k p(m, k|onf , θt)f(anf )(onf + 2πk)∑

n

∑
f

∑
k 2πfp(m, k|onf , θt)f(anf ) (18)

(σ2
m)t+1 =

∑
n

∑
f

∑
k p(m, k|onf , θt)f(anf )(onf + 2πk − 2πfμm)2∑

n

∑
f

∑
k p(m, k|onf , θt)f(anf )

. (19)

Moreover, by using the Lagrange multiplier method,
∑M

m αm = 1 and (14), the
mixture weight is obtained as follows:

αt+1
m =

1
c+M(φ− 1)

⎧⎨⎩∑
n

∑
f

∑
k

p(m, k|onf , θt)f(anf ) + (φ − 1)

⎫⎬⎭ . (20)

Since αm > 0, c > M(1− φ) must hold from (20).
In the E-step we calculate (17), then in the M-step the parameters θ are

calculated by using (18), (19) and (20). Sometimes αm < 0 occurs. In such a
case, we can factor out the corresponding Gaussian (by setting αm = ε, where ε
is a very small value) and recalculate the parameters.
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3.5 Source Counting

Thanks to the Dirichlet prior (9), most of the mixture weight parameter αm
becomes very close to zero and some have dominant values. Sometimes, some
weight parameters αm do not come to zero sufficiently because of very large
variance σm. So, we can determine the number of sources Ns by counting the
number of Gaussians whose parameters meet conditions αm ≥ ε and σm ≤ th,
where ε is a sufficiently small threshod value and th is an appropriate threshold
value. ε = 0.2 and th = π/3 degrees are used in this paper.

3.6 Source Separation

The time-frequency mask Mm(n, f) for the m-th separated source (see (5)) is
obtained by marginalizing the estimated pdf (17) with respect to k,

Mm(n, f) = p(m|onf , θ) =
Kf∑

k=−Kf

p(m, k|onf , θ). (21)

The separated signal is obtained by
ym(n, f) = x1(n, f)Mm(n, f) = x1(n, f)p(m|onf , θ). (22)

4 Experiments

4.1 Experimental Setup

We performed experiments with measured impulse responses hji in a room whose
reverberation time was 130 ms (see Fig. 9’s setup A of [4]). We utilized two
microphones whose spacing was 20 cm. The numbers of sources Ns were two and
three. Mixtures were made by convolving the measured room impulse responses
and 5-second English speech signals sampled at 16 kHz. The frame size F for
STFT was 1024 (64 ms), and the frame shift was 256 (16 ms).

In the EM algorithm, we utilized M = 8 Gaussians. From the microphone
spacing and sampling rate, the aliasing problem occured above 850 Hz. In our
implementation, Kf = K = 5 was utilized for all frequencies f . For the compar-
ison with an aliasing-unconsidered case, Kf = K = 0 for all frequencies f was
also tested. As the hyper parameter for (9), we utilized φ = 0.9 for our proposed
method and φ = 1.0 for a conventional EM algorithm that corresponds to the
case without any prior for the mixture weights. The number of iterations was
10, and the control parameter c for (14) was 5.

We evaluated the signal-to-interference ratio (SIR) as a separation perfor-
mance measure, and the signal-to-distortion ratio (SDR) as a sound quality
measure. Their definitions can be found in [3]. We calculated SIR and SDR val-
ues for the separated sources that are counted as the sources by the method in
Section 3.5. We conducted 20 trials with different speech source combinations
and location combinations, and then averaged the results.
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Fig. 3. Example spectra of (A)(B) sources, (C)(D) observations, (E)(F) separated sig-
nals. Ns = 2, φ = 0.9 and K = 5.

Table 1. Experimental results. Input SIR was 0.0 [dB] (Ns = 2), and −3.1 [dB]
(Ns = 3).

Accuracy of N̂s estimation [%] Performance [dB]
Ns φ K N̂s:1 2 3 4 5 6 7 8 Output SIR SDR
2 0.9 5 100 11.5 12.4

0.9 0 35 60 5 11.4 7.5
1.0 5 0 5 40 35 20 8.8 9.7

3 0.9 5 15 75 10 7.5 8.2
0.9 0 5 25 50 20 2.0 8.7
1.0 5 0 90 10 6.9 7.5

4.2 Results

Figure 3 shows the example spectra of sources, observations, and separated
sources for a two source case. The source directions were 70◦ and 150◦, whose ex-
ample PDOA is shown in Fig. 1. By comparing the source spectra Fig. 3 (A)(B)
and the separation spectra Fig. 3 (E)(F), it can be seen that the spatial aliasing
problem does not occur in most frequencies. However, it is also seen that at
the frequencies where the PDOA of two sources lap over each other, say around
1500, 3000, 4500, 6000, 7500 Hz (see Fig. 1), the signals are not separated well.
Such phenomena can be seen in the separated spectra Fig. 3 (E)(F).

Table 1 reports the experimental results. In the table, φ = 0.9 means the
results with sparse prior (9) and φ = 1.0 indicates the results without a prior.
K = 5 and K = 0 mean the spatial aliasing is considered and unconsidered,
respectively. The percentage values are shown where the method estimates the
number of sources as N̂s within 20 trials. The average separation performance
results, SIR and SDR in dB, are also reported.

From Table 1, we can see that with the prior (φ = 0.9) by considering the
aliasing (K = 5), the number of sources is almost perfectly estimated. On the
other hand, without the prior, the number of sources is overestimated, and the
accuracy rate was quite low.
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As for the separation performance, we obtained better performance by using
the prior (φ = 0.9) than without the prior (φ = 1.0) when K = 5. When we
did not consider the spatial aliasing, K = 0, the separation performance was of
course poor, especially when Ns = 3.

5 Conclusion

We proposed a speech source separation method that can estimate both the
number of sources and separation masks. We model the PDOA with a GMM,
where the phase indefiniteness in spatial aliasing cases is considered. We employ
the Dirichlet distribution as the prior of the GMM mixture weight to model
each cluster by a single Gaussian. Our experimental results show that the pro-
posed method can estimate the number of sources correctly. We also confirmed
that the proposed method gives good separation performance in a room with
reverberation time of 130 ms.

References

1. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley
& Sons, Chichester (2001)

2. Yilmaz, O., Rickard, S.: Blind separation of speech mixtures via time-frequency
masking. IEEE Trans. Signal Processing 52(7), 1830–1847 (2004)

3. Araki, S., Sawada, H., Mukai, R., Makino, S.: Underdetermined blind sparse source
separation for arbitrarily arranged multiple sensors. Signal Processing 77(8), 1833–
1847 (2007)

4. Sawada, H., Araki, S., Mukai, R., Makino, S.: Grouping separated frequency compo-
nents by estimating propagation model parameters in frequency-domain blind source
separation. IEEE Trans. Audio, Speech and Language Processing 15(5), 1592–1604
(2007)

5. Bishop, C.M.: Pattern recognition and machine learning. Springer, Heidelberg
(2008)

6. Mandel, M., Ellis, D., Jebara, T.: An EM algorithm for localizing multiple sound
sources in reverberant environments. In: Proc. Neural Info. Proc. Sys. (2006)

7. O’Grady, P., Pearlmutter, B.: Soft-LOST: EM on a mixture of oriented lines. In:
Puntonet, C.G., Prieto, A.G. (eds.) ICA 2004. LNCS, vol. 3195, pp. 430–436.
Springer, Heidelberg (2004)

8. Smaragdis, P., Boufounos, P.: Learning source trajectories using wrapped-phase
hidden markov models. In: Proc. of WASPAA 2005, pp. 114–117 (2005)



Blind Spectral-GMM Estimation for
Underdetermined Instantaneous Audio Source

Separation
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Abstract. The underdetermined blind audio source separation prob-
lem is often addressed in the time-frequency domain by assuming that
each time-frequency point is an independently distributed random vari-
able. Other approaches which are not blind assume a more structured
model, like the Spectral Gaussian Mixture Models (Spectral-GMMs),
thus exploiting statistical diversity of audio sources in the separation
process. However, in this last approach, Spectral-GMMs are supposed to
be learned from some training signals. In this paper, we propose a new
approach for learning Spectral-GMMs of the sources without the need of
using training signals. The proposed blind method significantly outper-
forms state-of-the-art approaches on stereophonic instantaneous music
mixtures.

1 Introduction

The problem of underdetermined Blind Source Separation (BSS) is to recover
single-channel source signals sn(τ), 1 ≤ n ≤ N , from a multichannel mixture
signal xm(τ), 1 ≤ m ≤M , with M < N . Taking the Short Time Fourier Trans-
form (STFT) Xm(t, f) of each channel xm(t) of the mixture, the instantaneous
mixing process is modeled in the time-frequency domain as:

X(t, f) = AS(t, f) (1)

where X(t, f) and S(t, f) denote respectively the column vectors [Xm(t, f)]Mm=1
and [Sn(t, f)]Nn=1, and A is the M ×N real-valued mixing matrix.

The underdetermined BSS problem is often addressed in a two step approach
where: first the mixing matrix is estimated, and then the source coefficients
are estimated with the Maximum A Posteriori (MAP) criterion given a sparse
source prior and the mixing matrix. Sources are then recovered using the inverse
� A part of this work was done while A. Ozerov was with KTH, Stockholm, Sweden.

T. Adali et al. (Eds.): ICA 2009, LNCS 5441, pp. 751–758, 2009.
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STFT. In the audio domain, sparse prior distributions are usually a Laplacian
[1], a generalized Gaussian [2], a Student-t [3], or a mixture of two Gaussians [4].

This approach however suffers from the following issues:

1. In each time-frequency point, the maximum number of nonzero sources is
usually assumed to be limited to the number M of channels [1,2].

2. The assumed nonzero sources are always theM neighboring directions which
points toward the direction of the observed mixture [5].

3. Each time-frequency coefficient is estimated independently of the others
without taking into account the structure of each source in the time-
frequency domain. In other words, the signal redundancy and structure are
not fully exploited.

In this paper we assume that A is known or has already been estimated [6],
and the columns are pairwise linearly independent. Issues two and three have
been addressed by the Statistically Sparse Decomposition Principle (SSDP)[5],
which exploit the correlation between the mixture channels and more recently,
the three issues have been addressed by the Local Gaussian Modeling (LGM)
[7], where time-frequency coefficients are modeled via Gaussian priors with free
variances. The third issue has been indeed partially addressed by SSDP and
LGM, which exploit the neighborhood of the time-frequency points, in order to
estimate the source distribution of the coefficients.

A more globally structured approach (to address these three issues) consists
in assuming a spectral model of the sources via Spectral Gaussian Mixture Mod-
els (Spectral-GMMs) [8,9]. This approach has been successfully used to separate
sources in the monophonic case (M = 1) [8,9], when sparse methods are unsuit-
able. However this approach is not blind because the models need to be learned
from some training sources which should have characteristics similar to those of
the sources to be separated. An EM algorithm could be used to learn GMMs
directly from the mixture [10,11], but this approach suffers from two big issues.
First, the number of Gaussians in the observation density grows exponentially
with the number of sources, which often leads to an intractable algorithm. Sec-
ond, the algorithm can be very slow and converges to a local maximum depending
on the initial values.

In this paper, we propose a framework to blindly learn Spectral-GMMs with
a linear complexity, provided that we have for each n-th source and for each
time-frequency point (t, f) the following two estimates:

1. an estimate S̃n(t, f) of the source coefficient Sn(t, f);
2. an estimate σ̃2

n,t(f) of the coefficient estimation squared error:

e2n,t(f)
	
=

∣∣∣S̃n(t, f)− Sn(t, f)
∣∣∣2 . (2)

The paper is organized as follows. In section 2, we describe the Spectral-GMM
source estimation method assuming known models. In section 3, we recall the
LGM source estimation method and show that, with this approach, we can also
provide the two above-mentioned estimates required by the proposed framework.
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In section 4, we describe our approach to blindly estimate Spectral-GMMs of
the sources, with a linear complexity EM algorithm. Finally, we evaluate the
performances of our approach on musical data in section 5.

2 Spectral-GMM Source Estimation

In this section, we briefly describe the principles of the Spectral-GMM source
estimation methods [9], that we extend to the multichannel case. The short
time Fourier spectrum S(t) = [S(t, f)]f 1 of source S at time t is modeled by
a multidimensional zero-mean complex valued K-states GMM with probability
density function (pdf) given by:

P (S(t)|λ) =
∑K

k=1
πkNc(S(t); 0̄,Σk) (3)

where Nc(S(t); 0̄,Σk)
	
=

∏
f

1
πσ2

k(f) exp
[
− |S(t,f)|2

σ2
k(f)

]
, λ

	
= {πk,Σk}k is a Spectral-

GMM of source S, πk being a weight of Gaussian k of GMM λ, and
Σk

	
=diag([σ2

k(f)]f ) is a diagonal covariance matrix of Gaussian k of GMM λ.
Provided that we know the Spectral-GMMs Λ = [λn]Nn=1 of the sources, the

separation is performed in the STFT domain with the Minimum Mean Square
Error (MMSE) estimator, which can be viewed as a form of adaptive Wiener
filtering:

Ŝ(t, f) =
∑
k

γk(t)Wk(f)X(t, f) (4)

where k
	
=[kn]Nn=1, and γk(t) is the state probability at frame t (

∑
k γk(t) = 1):

γk(t)
	
=P (k|X(t);A,Λ) ∝ πk

∏
f

Nc

(
X(t, f); 0̄,AΣk(f)AT

)
(5)

with X(t)
	
=[X(t, f)]f , Σk(f)

	
=diag([σ2

n,kn
(f)]Nn=1), and the Wiener filter is given

by:
Wk(f)

	
=Σk(f)AT

(
AΣk(f)AT

)−1
(6)

Thus, at each frame t, the source estimation is done in two steps:

1. decoding step, where the state probabilities γk(t) are calculated with equa-
tion (5);

2. filtering step, where the source coefficients are estimated by the weighted
Wiener filtering of equation (4).

In such an approach the models λn are usually learned separately [8] by maxi-
mization of the likelihoods P (S̄n|λn), where S̄n is the STFT of the training signal
for source sn. This maximization is achieved via the Expectation Maximization
(EM) algorithm [12] initialized by some clustering algorithm (e.g., K-means).
As we will see in section 5, the performances of this method can be very good.
However, it suffers from two big issues:
1 The notation [S(t, f)]f means a column vector composed of elements S(t, f), ∀f .
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– The approach requires availability of training signals, that are difficult to
obtain in most realistic situations [9].

– As the mixture state k is a combination of all the source states kn, 1 ≤ n ≤
N , the decoding step of equation (5) is of complexity O(KN ).

3 LGM Source Estimation

The LGM [7] is a method which consists in estimating local source variances
v(t, f) = [σ2

n(t, f)]Nn=1 in each time-frequency point and then estimating the
source coefficients with the MMSE estimator given by the Wiener filter:

S̃(t, f) = W(t, f)X(t, f) (7)

where W(t, f) = Σ̂(t, f)AT
(
AΣ̂(t, f)AT

)−1
, and Σ̂(t, f) is a diagonal matrix

whose entries are the estimated source variances: Σ̂(t, f) = diag (v̂(t, f)).
The LGM is based on the empirical local covariance matrix in the time-

frequency domain, which has already been used by mixing matrix estimation
methods [6,13] so as to select time-frequency regions where only one source is
supposed active, and which is defined by:

R̂x(t, f) =
∑
t′,f ′

w(t − t′, f − f ′)X(t′, f ′)XH(t′, f ′) (8)

where w is a bi-dimensional normalized window function which defines the neigh-
borhood shape, and H denotes the conjugate transpose of a matrix. If we assume
that each complex source coefficient Sn(t, f) in a time-frequency neighborhood
follows an independent (over time t and frequency f) zero-mean Gaussian distri-
bution with variance σ2

n(t, f), then the mixture coefficients in that neighborhood
follow a zero-mean Gaussian distribution with covariance matrix:

Rx(t, f) = AΣ(t, f)AT . (9)

The Maximum Likelihood (ML) estimate of source variances σ2
n (we drop the

(t, f) index for simplicity) is obtained by minimization of the Kullback-Leibler
(KL) divergence between the empirical and the mixture model covariances [14]:

Σ̂ = arg min
Σ=diag(v),v≥0

KL(R̂x|Rx), (10)

where KL(R̂x|Rx) is defined as:

KL(R̂x|Rx) =
1
2

(
tr

(
R̂xR−1

x

)
− log det

(
R̂xR−1

x

)
−M

)
. (11)

The LGM method [7] uses a global non-iterative optimization algorithm to
solve the problem of equation (10), which roughly consists of estimating variances
v by solving the linear system R̂x ≈ Rx with a sparsity assumption on the
variance vector v.
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The MMSE estimate of (S̃−S)(S̃− S)H is given by the covariance matrix of
S given X:

C
	
= E

[
(S̃− S)(S̃− S)H

∣∣∣X]
= (I−WA)Σ̂, (12)

where W is defined just after equation (7).
So the MMSE estimate of e2n,t(f) defined by equation (2) is given by the

corresponding diagonal element of matrix C(t, f):

σ̃2
n,t(f) = E

[∣∣∣S̃n(t, f)− Sn(t, f)
∣∣∣2∣∣∣∣X]

= C(t, f)n,n. (13)

4 Spectral-GMM Blind Learning Framework

The aim of the proposed framework is to learn the Spectral-GMM λn for each
source sn, provided that at each time-frequency point (t, f), we have an estimate
S̃n(t, f) of the source coefficient Sn(t, f) together with an estimate σ̃2

n,t(f) of the
squared error e2n,t(f) defined by equation (2).

The learning step is done for each source independently, so in the following
we drop the source’s index n for simplicity. Let us denote the error of source
estimation as Ẽ(t, f)

	
= S̃(t, f) − S(t, f). Now we assume that Ẽ(t) = [Ẽ(t, f)]f

is a realization of a Gaussian complex vector with zero mean and a diagonal
covariance matrix Σ̃t = diag([σ̃2

t (f)]f ), i.e., P (Ẽ(t)|Σ̃t) = Nc(Ẽ(t); 0̄, Σ̃t). The
relation:

S̃(t, f) = S(t, f) + Ẽ(t, f) (14)

can be interpreted as a single sensor source separation problem with mixture S̃
and sources S and Ẽ, where source Ẽ is modeled by Σ̃ = [Σ̃t]Tt=1, which is fixed,
and source S is modeled by GMM λ = {πk,Σk}Kk=1 that we want to estimate in
the ML sense, given the observed mixture S̃ and fixed model Σ̃. Thus, we are
looking for λ optimizing the following ML criterion:

λ = arg max
λ′
p(S̃|λ′, Σ̃). (15)

Algorithm 1 summarizes an Expectation-Maximization (EM) algorithm for
optimization of criterion (15) (see [9] for derivation). Initialization is done by
applying K-means clustering algorithm to the source estimate S̃.

Once we have learned the source models Λ = [λn]Nn=1, we could estimate the
sources with the procedure of section 2, but in that case the decoding step at each
frame t will still be of complexity O(KN ). In order to have a linear complexity
method, we do not calculate all the KN mixture state probabilities, but only the
K state probabilities of each source using γ(L+1)

kn
(t), where γ(L)

kn
(t) (defined by

equation (16) in algorithm 1) are the state probabilities of source Sn calculated
during the last iteration of algorithm 1. The source coefficients are then estimated
with the Wiener filter Wk∗(t)(f) of equation (6), with k∗(t) = [k∗n(t)]Nn=1 and
where k∗n(t) = arg maxk P (q(t) = k|S̃n, λ(L+1)

n , Σ̃n) is the most likely state of
model λ(L+1)

n at frame t, given S̃n(t, f) and Σ̃n.
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Algorithm 1. EM Algorithm for source Spectral-GMM estimation in ML sense
(index (l) in power denotes the parameters estimated at the lth iteration of the
algorithm)

1. Compute the weights γ
(l)
k (t) satisfying

∑
k γ

(l)
k (t) = 1 and

γ
(l)
k (t) � P (q(t) = k|S̃, λ(l), Σ̃) ∝ π

(l)
k Nc(S̃(t); 0̄, Σ

(l)
k + Σ̃t) (16)

where q(t) is the current state of GMM λ at frame t.
2. Compute the expected Power Spectral Density (PSD) for state k

〈|S(t, f)|2〉(l)

k
� ES

[
|S(t, f)|2

∣∣∣q(t) = k, S̃, λ(l), Σ̃
]

=

=
σ

2,(l)
k (f)σ̃2

t (f)

σ
2,(l)
k (f) + σ̃2

t (f)
+

∣∣∣∣∣ σ
2,(l)
k (f)

σ
2,(l)
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3. Re-estimate Gaussian weights

π
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1
T

∑
t

γ
(l)
k (t) (18)

4. Re-estimate covariance matrices
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∑
t

〈|S(t, f)|2〉(l)

k
γ

(l)
k (t)∑

t γ
(l)
k (t)

(19)

5 Experimental Results

We evaluate our method2 over music mixtures, with the number of sources N
varying from 3 to 6. For each N a mixing matrix was computed as described in
[15], given an angle of 50 − 5N degrees between successive sources, and ten in-
stantaneous mixtures were generated from different source signals of duration 10
s, sampled at 22.05 kHz. The STFT was computed with a sine window of length
2048 (93 ms). The performance measure used is the Signal-to-Distortion Ratio
(SDR) defined in [16]. The bi-dimensional window w defining time-frequency
neighborhoods of the LGM method was the outer product of two Hanning win-
dows with length 3 as in [7]. The Spectral-GMMs were learned with 30 iterations
of algorithm 1 using LGM parameters given by equations (7) and (13) as entries,
and the number K of states per GMM was chosen equal to 8, because it yielded
the best results in SDR. Figure 1 compares the average SDR achieved by the
proposed Spectral-GMM method, the LGM method presented in Section 3 and
the classical DUET [17]. The proposed algorithm outperforms DUET by more
than 5 dB in the 3 sources case and LGM by at least 2 dB whatever the num-
ber of sources. We also plotted the performance of the (oracle) Spectral-GMM
separation when models, with the same number K of states, are learned and
2 This method was also submitted to the 2008 Signal Separation Evaluation Campaign.
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Fig. 1. Source separation performance over stereo instantaneous musical mixtures.
STFT window length is 2048 (93 ms) and K = 8.

decoded using the original sources. We can notice that the performance of the
proposed method remains between 2 dB and 5 dB below the oracle performance,
and that this gap increases with the number of sources, showing the difficulty
to blindly learn Spectral-GMM when the number of sources is high. As for the
computational load, the MATLAB implementation of the proposed algorithm
on a 3.4 GHz CPU runs in 133 s in the 4 sources case, while it runs in 120 s for
LGM and in 2 s for DUET.

6 Conclusion

In this paper, we proposed a new framework for the blind audio source sepa-
ration problem in the multichannel instantaneous mixture case. In this frame-
work Spectral-GMM models of sources were blindly learned, i.e. without using
any other informations than the mixture and the mixing matrix, with an EM
algorithm having a linear O(N K) complexity, in contrast to some related state-
of-the-art methods having an exponential O(KN ) complexity. As opposed to the
other blind audio source separation methods, the proposed method exploits the
structure of each source in the time-frequency domain. The proposed method
outperforms the state-of-the-art methods tested by between 2 dB and 5 dB in
SDR. Further work include an extension of the method to the anechoic and
convolutive cases, evaluation of the robustness of the method by using mixing
matrices which are not perfectly estimated, and improvement of the method to
fill the gap between the blindly learned models and the oracle ones.
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Abstract. This paper describes the application of two time-domain convolutive 
blind source separation algorithms – the scaled natural gradient algorithm [1] 
and the spatio-temporal FastICA algorithm with symmetric orthogonality con-
straints [2] – to a portion of the determined and overdetermined acoustic data 
sets created for the 2008 Signal Separation Evaluation Campaign (SiSEC). As 
the 2008 SiSEC competition provides no ground truth data and thus no a priori 
method for numerical performance calculation, our approach to determining 
overall performance is a decoding of the contents of the recorded sources used 
to create the data through the two algorithms used. Information about the 
sources themselves, such as the instrumentation and structure of the musical se-
lections chosen, the qualities of the voices and written transcripts of what is 
spoken, and additional information about the signals extracted, are provided 
without our ever having heard the sources in isolation. A qualitative perform-
ance comparison of the two approaches is also provided.  

Keywords: Convolutive blind source separation, natural gradient, FastICA, 
speech separation. 

1   Introduction 

Convolutive blind source separation (BSS) is an interesting and promising approach 
for enhancing audio signals that have been linearly-mixed by physical processes such 
as acoustic propagation. When the number of sources being mixed is no greater than 
the number of sensors used to collect the individual mixtures, the separation problem 
is linear, such that multichannel filters can be used to extract estimates of each of the 
source signals in the mixtures. The convolutive BSS problem thus reduces to a mul-
tichannel adaptive filtering task, in which the coefficients of the adaptive filter are 
adapted according to the statistics of the extracted output signals. Numerous  
algorithms have been developed for the convolutive BSS task for these types of mix-
tures, such that it is nearly impossible to list all methods or types in a conference 
paper let alone carry out a fair comparison between competing algorithms. As a result, 
it can be extremely challenging to judge the performance of any one convolutive BSS 
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algorithm published in the scientific literature, particularly since the data used to illus-
trate algorithm performance are often collected by the developers of the algorithms 
being tested.  Such situations can lead to a positive bias in the reported results, even if 
such a bias is unintended.  

The 2008 Signal Separation Evaulation Campaign (SiSEC) attempts to overcome 
the limitations of past author-driven evaluations of convolutive BSS algorithms by 
establishing several candidate data sets for the scientific community to explore. For 
details on the SiSEC competition, the reader is encouraged to visit the SiSEC website 
[3]. The unique feature of the SiSEC campaign that makes it interesting to the BSS 
community is simple: The source data is initially made unavailable. Thus, although 
the mixtures and any separated results provided by the larger BSS community can be 
well-characterized by the Campaign developers, algorithm designers in the BSS 
community cannot rely on source data to tune their algorithms for best performance. 
This “blind” approach to algorithm evaluation means that members of the BSS com-
munity must find good BSS approaches that work independently of the data sets on 
which they might be applied. Unfortunately, the approach also provides little quantita-
tive data to help algorithm developers describe the results of their separation methods 
outside of simply making the audio files available for listening by others,  

In this paper, we report on the results of applying two different algorithms – the 
scaled natural gradient algorithm [1] and the spatio-temporal FastICA algorithm with 
symmetric orthogonality constraints [2] – to a portion of the determined and overde-
termined acoustic data sets created for the 2008 Signal Separation Evaluation Cam-
paign (SiSEC). To judge overall performance, we provide a careful description of the 
contents of the data sets as illuminated by the separation algorithms, which is the only 
quantitative data one can provide outside of the separated audio signals and the sepa-
ration system coefficients themselves in this situation. We also describe qualitative 
differences between the two approaches as applied to these data sets and point out 
specific features of the algorithms that allow them to function properly in the tested 
environments.   

2   Algorithm Settings 

We now describe the algorithm settings used in the evaluation process. Because of the 
“blind” nature of the evaluation process, we decided to not attempt to carefully tune the 
algorithms chosen for testing to each of the data sets. Instead, we chose specific pa-
rameter values for each of the two algorithms under test and kept these parameters the 
same for every data set. Since every data set used for testing was a four-microphone 
recording, we further chose not to tune the algorithms to the number of sources being 
extracted. Thus, each algorithm attempted to extract four sources from every data set, 
even in situations where there were only two or three underlying sources contained 
within the sensor data. Such a scenario is practical and realistic, as it is unlikely that 
one would know a priori how many sound sources are in an acoustic environment.  

The scaled natural gradient algorithm in [1] is a modified version of the truncated 
natural gradient algorithm in [3], in which a clever step size strategy is employed to 
allow scale-invariant adaptation of the algorithm parameters. The step size scaling 
used in the algorithm is based on the sums of the absolute values of the gradient  
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entries in the block-based algorithm. Further details about the algorithm can be found 
in [2]. For this algorithm, the following settings were used: 

• The signals were prewhitened using two stages of multichannel least-
squares linear prediction in a fashion identical to the decorrelation proc-
essing used in [2].  The lengths of the linear predictors in each stage was 
M = 400 taps.  

• The scaled natural gradient algorithms was then applied with the follow-
ing parameters:  L = 512 filter taps, mu = 0.45 as the step size, f(y) = 
sgn(y) as the algorithm nonlinearity, and “center-spike” initialization, in 
which the only non-zero taps are in the center-lag of the FIR filter at tap 
position L/2.  A One hundred iterations of the algorithm were used in 
each case. 

The spatio-temporal FastICA algorithm in [2] is a temporal extension of the well-
known FastICA algorithm of Hyvarinen and Oja, in which spatio-temporal prewhiten-
ing using multichannel least-squares is first performed. The algorithm employs a 
unique iterative method for maintaining paraunitary constraints on the associated 
multichannel adaptive filter coefficients of the separation system. Two version of the 
algorithm are provided in [2]; one with asymmetric deflationary-type constraints, and 
one with symmetric paraunitary constraints. For this algorithm,  the following settings 
were used: 

• The signals were prewhitened using two stages of multichannel least-
squares linear prediction. The lengths of the linear predictors in each 
stage was M = 400 taps.  

• The spatio-temporal FastICA iteration with symmetric paraunitary con-
straints was then applied with the following parameters:  L = 300 filter 
taps, f(y) = tanh(20y) as the algorithm nonlinearity, df(y)/dy = 
20sech2(20y) as the algorithm nonlinearity derivative, and “center-spike” 
initialization. Note that the tanh(.) nonlinearity is differentiable, a re-
quirement for the FastICA algorithm. One hundred iterations of the itera-
tion were used in each case. 

Both algorithms employed prewhitening as a processing stage, and they do not at-
tempt to restore a natural spectral characteristic to the extracted sources. In addition, 
ambient noise in the recordings can become emphasized due to the prewhitening proc-
ess. To mitigate these effects, two stages of linear filtering were applied to each of the 
extracted signals as a post-processing step to improve their spectral characteristics.  

1. A 201-tap FIR linear-phase bandpass filter designed using 
MATLAB’s fir1 command was applied to each extracted source. 
The cutoff frequencies for this filter were chosen to be 50Hz and 
7500Hz, in which the original sampling rate of all signals was 
16kHz.  

2. Two single-pole IIR filters were applied to the data – one causal, 
and one anti-causal.  The transfer function of the combined filter 
was H(z) = 0.2775 (1 – 0.85z-1)-1(1-0.85z)-1.  The resulting filter 
has a zero-phase response.   
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3   Separation Results: Source Content Discovery 

For our evaluations, we focused on the parra.zip data set within the 2008 SiSEC 
competition. This 23MB data set contains four-microphone recordings of two-, three-, 
and four-source mixtures as recorded in seven different rooms with different micro-
phone arrangements and source positions. Additional information about this data set 
can be found in [3], although “ground-truth” source signals have not been made avail-
able for this testing. The seven rooms shall be called Rooms 1, 2, 3, 4, 5, O, and C, in 
deference to the naming convention on the 2008 SiSEC website.   

After application of both the scaled natural gradient and the spatio-temporal Fas-
tICA with symmetric constraints to this data, we performed post-processing of each 
extracted signal as described previously. We then listened carefully to the resulting 
output signals. What follows is the information we obtained by carefully listening to 
the separated results from both algorithms.  

3.1   Rooms 1, 2 and 3 

Rooms 1 through 3 of the parra.zip data set were found to contain mixtures of re-
corded music. Each room contained the same recorded sources organized in the fol-
lowing way. The two-source mixtures contained Sources A and B; the three-source 
mixtures contained Sources A, B, and C; and the four-source mixtures contained 
Sources A through D. A careful description of each source now follows. 

Source A: The musical selection is that of a jazz piece, perhaps near the end of the 
song. The selection begins with a four-second segment of eight notes played in unison 
by a xylophone or vibraphone together with flute, along with string bass and drums 
accompaniment. This portion of the musical excerpt is played with a slow jazz swing 
feel. This portion is followed by six seconds of a flourish of notes from the flute, 
string bass, and drums, the latter played using brushes on what sounds like a snare 
drum. There is no regular time signature to the final six seconds of the excerpt.   

Source B: The musical selection is of a different jazz piece with four-piece instrumenta-
tion: alto saxophone, marimba or vibraphone, string bass, and a jazz drum set. The mu-
sical melody being played on alto saxophone is easily transcribable by someone trained 
in the musical arts, as is the accompaniment played on string bass. This musical selec-
tion has a time signature of 3/4, corresponding to a jazz waltz, and the tempo is 112 
bpm. The snare drum is being played with brushes, and the timing of the snare's beats is 
easily determined from plots of the signal. The very last note played by the saxophonist 
in the musical excerpt is joined by a chord played by the mallet instrument. 

Source C: This musical selection begins with approximately 0.8 seconds of silence, 
indicating that it may be at the beginning of a song. After this silence period, a fast 
jazz swing song is played, with a flurry of notes from an alto saxophone, string bass, 
marimba, and jazz drum set. The time signature of the song is 4/4 and the tempo is 
approximately 146 bpm. The notes being played on the alto saxophone are recogniz-
able and could be transcribed with enough effort. The timing of the marimba chords 
can also be determined readily. Exactly 6.8 seconds into the audio selection, the alto 
saxophonist quotes the first three measures of the well-known song, “In Walked 
Bud,” by Thelonious Monk. During this portion of the song, the drummer is heard 
playing the snare drum with drumsticks in a fast eighth-note syncopated pattern.   
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Source D: This musical selection is the hardest to determine, as it can only be found 
in the four-source mixtures in Rooms 1, 2, and 3. The song is again a jazz piece, with 
an alto saxophone as the lead instrument. This instrument is the only one that is 
clearly identified in the selection, and it may be a solo alto saxophone excerpt. The 
meter of the musical selection is not clear, indicating that it might be a solo jazz ca-
denza. Towards the end of the musical selection, the saxophonist plays several slurred 
notes in time at about 96 bpm. The notes being played on alto saxophone are recog-
nizable and could be transcribed by a trained musician.   

3.2   Rooms 4 and 5 

Rooms 4 and 5 of the parra.zip data set were found to contain mixtures of recorded 
voices speaking in the English language.  Each room contained the same recorded 
voices organized in the following way.  The two-source mixtures contained Voices A 
and B; the three-source mixtures contained Voices A, B, and C; and the four-source 
mixtures contained Voices A through D.  A careful description of each source now 
follows. 

Voice A:  This male talker has a voice with a lower register.  The words spoken are as 
follows:  

“The historical film moved her deeply. 
Canada was established only in 1867. 
There was another woman in the same group.   
You are elected an honorary member—“ 

Voice B: The female voice of this talker has a slightly soft character, and she is speak-
ing somewhat quickly.  The words spoken are as follows:  

“On the 200th day it was reopened.  
Standing 30 meters below ground level. 
Inverted pyramid in the shopping mall. 
Two hundred have not been displayed properly.  
At—“  

Voice C: This talker has a male voice with a soft character, and he speaks very 
quickly with almost no pause between sentences.  The words spoken are as follows:  

“She went on turning it around and around.  
They will be happy until it's bedtime.   
Maria didn't mind all the attention.  
You must be ready to listen to them.  
Matthew smiled and started to cheer up.  
The chi—“  

Voice D: This female talker speaks a bit slowly with a high degree of enunciation. 
The words spoken are as follows: 

“Debussey enjoyed the occasional hand bridge.  
Christmas decorations are going up this year. 
Executives should be good judges of character. 
Competitors should stay—“  
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3.3   Rooms C and O 

Rooms C and O of the parra.zip data set were found to contain mixtures of recorded 
sounds of various types.  Each room contained the same sounds organized in the fol-
lowing way.  The two-source mixtures contained Sources I and II; the three-source 
mixtures contained Sources I, II, and II; and the four-source mixtures contained 
Sources I through IV.  A careful description of each source now follows. 

Source I:  This source is that of a male talker speaking very slowly.  The slowness of 
the speech suggests that the audio may be artificially slowed-down, e.g. because of a 
resampling error.  The phrase spoken is as follows:  
 
 “Sea velkun mouwenston.  Soulen aih, ul, ow-“ 
 
A quick web search suggests that the language being spoken could be Dutch.  Using 
the Babelfish language translator, the above phrase with portions in English becomes  
 

 “(Sea) is possible sleeve barrel.  Soul music (aih, ul, ow-)”  

Source II: This source is a musical work, with alto saxophone, marimba, string bass, 
and drums. The time signature is 4/4, with a tempo of 56 bpm. The song begins with a 
three-note phrase that is played in similar time by all instruments and syncopated 
faster than the 4/4 time signature, followed by four beats of near silence.  The musical 
phrase ends with three saxophone notes in an ascending motif, with a single bass tone 
and four notes played by the marimba.  

Source III:  This source is a solo stringed instrument with high-tension strings, such 
as a banjo or mandolin, playing three collections of notes with pauses between them, 
in which the second collection closely matches that of the first.  The notes are clearly 
delineated to the point of being transcribable.  The highest pitch played is in the third 
collection of notes.  There does not appear to be a time signature to this musical piece. 

Source IV:  This source is the sound of a person typing on a computer keyboard or 
keypad.  The timing of each tap is readily heard, and the equalized signal produced by 
the separation algorithm provides sharp transients with which timing information of 
key strikes could be determined numerically.   

4   Qualitative Comparison of Algorithm Performance 

In this section, we compare qualitatively the performance of the scaled natural gradi-
ent algorithm and the spatio-temporal FastICA algorithm with symmetric constraints 
in separating the mixtures contained within the parra.zip data set.  Again, since no 
ground truth information about this data is available, we can only describe what we 
hear through careful listening of the signal outputs.   Issues such as the amount of 
distortion in the separated outputs is unknown at this time, because no “ground-truth” 
signals are available for numerical evaluation or listener training.  

From this listening, several features of the algorithms are apparent: 

1. Both algorithms are successful at extracting fewer sources from overdeter-
mined mixtures. In such cases, the remaining output signals largely contain 
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broadband noise or distant-sounding mixtures of the sources.  For example, 
when applying these algorithms to four-microphone recordings of mixtures 
of two sources, they produce four outputs, with two outputs containing each 
of the two sources and the other two outputs containing broadband noise or 
distant-sounding mixtures of the sources. It was quite easy to determine 
through listening to the output signals which of the outputs contained good 
estimates of the sources in these cases.  

2. Both algorithms produce unordered signal outputs. In other words, the ex-
tracted sources were not produced at a priori known output positions. This 
attribute is due to the symmetric nature in which these algorithms treat the 
separated outputs.  

3. The same source type was typically extracted at the same output channel for 
different-order mixtures. In other words, if Voice A was extracted on Output 
Channel 2 for the two-source mixtures in Room 3, then Voice A would be 
extracted on Output Channel 2 for the three- and four-source mixtures. This 
attribute strongly suggests that the physical positions of the sources did not 
change in the two-source, three-source, and four-source mixtures within any 
one room when the data was collected.   

4. Both algorithms performed best in separating speech signal mixtures. This 
fact is largely due to the choice of nonlinearity for each algorithm, which has 
been optimized for heavy-tailed source distributions such as speech.  

5. The scaled natural gradient algorithm appeared to out-perform the spatio-
temporal FastICA algorithm overall. This result is at best an educated guess, 
ashis result is a bit surprising, as the scaled natural gradient algorithm is de-
signed to separate only those sources for which the algorithm nonlinearity 
guarantees local stability, and the choice f(y) = sgn(y) is designed for impul-
sive sources. We expected the spatio-temporal FastICA algorithm to perform 
better in the case of music mixtures, as the statistics of music is not necessar-
ily impulsive and FastICA should work for arbitrary source types.  Perhaps 
the good performance of scaled natural gradient in these cases is due to the 
choice of music, as jazz has a sparse musical form.  

5   Conclusions 

In this paper, we have described numerical experiments on convolutive blind source 
separation performed on acoustic data taken from the 2008 Signal Separation Evalua-
tion Campaign. Two algorithms have been applied to this data – the scaled natural 
gradient algorithm [1] and the spatio-temporal FastICA algorithm with symmetric 
constraints [2].  Using these algorithms, we have carefully described what we believe 
the sources to be within these data. Not having access to the underlying ground truth 
recordings, we cannot be sure of the correctness of our conclusions, but we are 
highly-confident that we have gotten these source descriptions right. Moreover, we 
describe the attributes of the algorithms’ performances in these scenarios, indicating 
that the scaled natural gradient algorithm is preferable overall in this task. We look 
forward to the numerical evaluations promised by the SiSEC organizers as well as the 
opportunity to interact with others who competed in this data challenge. 
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Abstract. Proportional variance dependency among the frequency
components is characteristic of natural signals and has been utilized
in frequency-domain blind source separation to solve the permutation
problem. In order to increase robustness in such methods, overall mea-
sures have been preferred to the measures between directly neighboring
frequency components. The overall variance dependency pattern in the
fullband, however, can vary by signals and is difficult to be modeled,
whereas in smaller subbands the proportional variance dependency is
more definite. Here, a novel permutation correction method that utilizes
the proportional variance dependency in small subbands is proposed. A
windowed likelihood function that uses source priors with internal vari-
ance dependency is employed as the measure of permutation correction.
This method not only shows robust separation performance but also is
computation-wise very efficient.

1 Introduction

Blind source separation (BSS), which is also known as blind signal separation,
refers to a set of problems that aim to separate individual source signals from
their mixtures where the mixing process and the original source signals are un-
known and only the observed signal mixtures are available. Generally, the un-
known mixing process can be expressed as the following:

xjt =
∑
i

ajit ∗ sit + njt (1)

where sit denotes the i-th source signal, ajit denotes the filter from sit to the
j-th microphone, ∗ denotes convolution, njt denotes the noise signal which is
either sensor noise or ambient noise, and xjt denotes the mixed signal that is
observed in the j-th sensor.

Independent component analysis (ICA) is one of the most popular algorith-
mic methods that have been very successful in the field of BSS [1, 2]. A major
assumption in ICA is that the source signals are statistically independent and
thus the original signals can be recovered by exploiting the independence among
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them. In the simplest form of ICA, the mixing process is assumed instanta-
neous, the noise signals are neglected, and the number of source signals is at
most the number of sensor signals. In this setting, given that there are at most
one Gaussian-distributed source signal, ICA can separate the original source
signals from their mixtures up to some scaling and permutation.

In most practical situations, however, where there are time delay and reverber-
ation, the process of source mixing is not instantaneous but convolutive. Solving
such convolutive BSS problem in the time domain has been very challenging and
thus many researchers have tackled the problem in the time-frequency (T-F) do-
main. The advantage of the T-F domain approach is that, given that the frame
length of the short time Fourier transform (STFT) is long enough to cover the re-
verberation time, the convolutive BSS problem decomposes into a set of smaller
(frequency) bin-wise separation problems where the bin-wise mixing process can
be approximated to an instantaneous one. And thus the complex-valued ICA al-
gorithms designed for instantaneous mixtures can be applied yielding excellent
bin-wise separation.

In bin-wise separation approaches, however, the inherent permutation inde-
terminacy of ICA gives rise to permutation disorder along the frequency bins
and thus additional algorithmic methods follow. Inter-frequency covariance of
the absolute values [3], direction of arrival (DOA) estimation [4], or dominance
measure [5] have been used to solve the permutation problem. Meanwhile, in a
way of avoiding the permutation problem, a multidimensional approach termed
independent vector analysis (IVA) has been proposed [6, 7]. IVA employs mul-
tivariate source priors and thus applies a multivariate objective function for
the separation such that the frequency components automatically align. In this
draft, a novel method is proposed for the correction of the permutation disorder.
A sliding multivariate likelihood function that is closely related to IVA is applied
as the objective function. Simulation results demonstrate the strength and the
effectiveness of the approach.

2 Notations

In this section, the notations are defined. It should be noted that the signals
and the filters being defined here are the T-F-domain ones. Scalars (including
complex-valued ones), vectors, and matrices will be denoted with normal lower-
case, bold lowercase, and bold uppercase letters, respectively.

– (·)T: the transpose operator.
– (·)H: the Hermitian transpose operator.
– (·)−1: the matrix inverse operator.
– | · |: either the absolute value of a scalar or the cardinality of a set.

– ‖ · ‖p: Lp norm of a vector, i.e. ‖z‖p =
(|z1|p + |z2|p + · · · ) 1

p .
– N : the number of frames in the short-time Fourier domain.
– F : the number of frequency bins.
– Ẽ[·]: the expectation with respect to the empirical distribution, i.e. 1

N

∑N
n=1 ·.

– sfi [n]: the STFT-ed i-th source signal in the f -th bin.
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– sf [n]: the column vector whose i-th component is sfi [n].
– xfj [n]: the STFT-ed j-th microphone signal in the f -th bin.
– xf [n]: the column vector whose j-th component is xfj [n].
– Af : the mixing matrix in the f -th bin. Here we assume that the impulse

responses are time-invariant.
– Qf : the pre-whitening matrix in the f -th bin.

Hence, their relation is

xf [n] = Afsf [n], (2)

The signals and filters that have to be learned are denoted as the following.

– Wf : the estimate of the inverse of Af .
– wf

i : the i-th row of Wf .
– ŝfi [n]: the estimate of sfi [n] with respect to wf

i .

Hence,

ŝfi [n] = wf
i x

f [n]. (3)

3 Prior Art and Motivations

The IVA approach is illustrated in Fig. 1 in a 2 × 2 mixing case. In the figure,
the unknown bin-wise mixing process which includes the source signals and the
mixing matrices is bracketed and the frequency components of each estimated
source signal are grouped together representing a multivariate signal. Instead
of applying ICA algorithms bin-wise and correcting the permutation disorder
afterwards, IVA deals with the frequency components together as a multivariate
signal where there is internal dependency among the components. Thus, using
probabilistic approach, multivariate probability density functions (PDFs) are
employed as the source priors instead of uni-variate PDFs.

As many ICA algorithms employ fixed representative source priors, e.g. Laplace
distribution for time-domain speech and other super-Gaussian-distributed signals,
IVA algorithms have employed certain super-Gaussian-distributed multivariate
PDFs that show proportional variance dependency of the complex-valued com-
ponents [8]. However, it is usually difficult to choose a proper source prior for IVA
because the complicated dependency among the components has to be captured
efficiently in the source prior. And that, since the fast Fourier transform (FFT)
frame size needs to be large enough to cover the lengths of the impulse responses,
it results in high dimensionality of the source signals. In Fig. 2, the normalized
covariance matrix of the magnitudes of the frequency components are shown for
two pieces of speech and a piece of music. As it can be seen, the dependency types
are complicated and they even differ among speeches. Hence, when the source sig-
nal is unknown, errors in the fixed source priors are inevitable and such errors can
degrade the separation performance of IVA.
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Fig. 1. The approach of independent vector analysis (IVA) for solving the permutation
problem

Fig. 2. The covariance matrices of (a) a male speech, (b) a female speech, and (c) a
piece of music where the acoustic signals were 12 seconds long

Instead of using fixed source priors, we can also use ones that are able to
adapt to various types of probability densities as the mixture of multivariate
Gaussians [9]. In this case, however, huge number of data points is essential for
learning the unmixing matrices and the parameters of the source priors.

The permutation correction methods also provided reasonable solutions to
the permutation problem. However, they also suffer from drawbacks. The DOA
method depends much on the robustness of the DOA estimator and its perfor-
mance easily degrades when the source signals are located in close directions or
when the recording environment is reverberant such that the reflections hinder
the DOA estimation. In the magnitude covariance or dominance measure meth-
ods, the base measure needs pair-wise computation. When using this measure
for adjoining pairs only, the permutations can easily flip especially in such bins
where the signals are ill separated or where the signal data is statistically ill
behaved. Once flipped in the middle, wrong permutations are likely to follow.
Thus, as an overall measure, the pair-wise measures are often evaluated and
combined for all possible pairs of frequency signals. However, the overall compu-
tation is heavy and inefficient. In addition and more importantly, not all pairs of
frequency components show variance dependency or similar dominance patterns.
In Fig. 3, which is a closer look of Fig. 2, it can be seen that significant number
of pairs of frequency components do not show proportional variance dependency.
A number of pairs even show inversely proportional variance dependency.
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Fig. 3. A closer look of Fig. 2

4 Proposed Permutation Correction Method

Usually, in acoustic signals, there are several types of inter-frequency dependency
patterns to be seen. Among those, proportional variance dependency is the key
factor that has been modeled in the source priors of the previously proposed IVA
methods. With respect to proportional variance dependency there are roughly
two types. One is the dependency among harmonic frequency components, and
the other is the one among neighboring frequency components.

Since the number of harmonic patterns can be infinitely large, it becomes
intractable to employ a representative model that captures the harmonic struc-
ture of an unknown acoustic signal. On the meanwhile, the dependency pattern
in small subbands (as opposed to fullband or large subbands) is relatively less
random. In Fig. 3, it can be seen that most of the normalized covariance compo-
nents that are sufficiently close to the diagonal have positive values for all three
acoustic signals. This implies, in sufficiently small subbands, the proportional
inter-frequency variance-dependency is more definite and stronger.

By taking this into account in the permutation problem, it will be advanta-
geous to apply likelihood functions over sliding subbands. The following are the
fullband source priors (of normalized signals) that have been proposed in IVA
framework [6,8, 9]:

f(z) =
1
Z

e−
1
σ ‖z‖

1
m
p , (4)

f(z) =
1
Z

e−
(∑

k
1

σk
‖zek

bk
‖2
)
, (5)

f(z) =
∑
k

πk
1
Zk

e−zHDkz. (6)

where z = [z1, z2, · · · , zF ]T is a multivariate dummy variable denoting the fre-
quency components of a source, Z and Zk are normalization factors, σ and σk
are the coefficients that control the variance in the PDFs, Dk is the inverse of
the k-th covariance matrix in a multivariate Gaussian mixture model, and πk is
the state probability of the k-th multivariate distribution. As mentioned earlier,
these source priors are characterized by capturing the proportional variance de-
pendency among the frequency components, and they can be employed as the
subband source priors, too. Here in this paper, the results by the spherically
symmetric Laplace distribution ( (4) when p = 2 and m = 1 ) will be shown.
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5 Algorithm Description

In large, the algorithm is composed of three parts.

5.1 Bin-Wise ICA Separation

For the bin-wise ICA separation, the FastICA algorithm for complex-valued sig-
nals is applied [10]. FastICA algorithm spatially pre-whitens the signals and
constrains the unmixing matrices Wf ’s to be orthogonal such that the output
signals are uncorrelated. Assuming xf ’s are spatially pre-whitened by the fol-
lowing equation

xf = Qfxfold, (7)

the algorithm is written as

wf
i ← Ẽ

[
G′

(|ŝfi |2) + |ŝfi |2G′′
(|ŝfi |2)]wf − μẼ

[
xf (ŝfi )

∗G′
(|ŝfi |2)] (8)

with the symmetric decorrelation of

Wf ← (
Wf (Wf )H

)−1
Wf . (9)

For the nonlinearity function G(·), the following was chosen:

G(z) =
√
z. (10)

5.2 Permutation Correction

As from the previous discussion, the (normalized) subband log-likelihood func-
tion with the source prior in (4) is employed as the measure of permutation
correction:

LS = − 1
σ

∑
i

Ẽ

⎡⎣√∑
f∈S

(ŝfi )2

⎤⎦ +
∑
f∈S

log
∣∣ det(Wf )

∣∣ (11)

where S denotes the set of the bins in a sliding subband. Note that the second
term in the right-hand-side of the likelihood function can be ignored since the
FastICA algorithm that is used for the bin-wise separation constrains the un-
mixing matrices to be orthogonal. The size of the subband that is chosen in this
draft is fixed around 40 Hz. The permutation in the f -th bin is determined such
that it maximizes the measure LS in (11) where S = {f − |S|+ 1, · · · , f} .

5.3 Scaling Correction

In frequency-domain BSS, other than the permutation problem, the scaling prob-
lem which includes the phase ambiguity arises because of the scaling indetermi-
nacy of ICA. Here, the minimal distortion principle [11] is applied to fix the
scaling problem. After all unmixing matrices Wf ’s are learned, the diagonal of
(WfQf )−1 is multiplied to the left of WfQf [8]:

Wf
final ← diag

(
(WfQf )−1)WfQf . (12)
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6 Experiments

The BSS algorithm has been applied to 2 × 2 speech separation problems. The
mixed speech signals were synthetic signals generated in a simulated room envi-
ronment. In generating synthetic data, 12-second-long clean speech signals were
used. Also, 4096-point FFT and a 4096-tab long Hanning window with the shift
size of 512 samples were chosen.

The geometric configuration of the simulated room environment is depicted
in Fig. 4(a). We set the room size to 7 m × 5 m× 2.75 m and set all heights of
the microphone and source locations to 1.5 m. A reverberation time of 200 ms
was chosen and the corresponding reflection coefficients were set to 0.57 for
every wall, floor, and ceiling. Clean speech signals were convolved with room
impulse responses that were obtained by an image method [12] using this room
configuration. Various 2 × 2 case simulations (Fig. 4(b)) were carried out. The
separation performance was measured by the signal to interference ratio (SIR)
in dB. The separation performance of the proposed algorithm was compared
with the separation performance of an IVA algorithm that uses the same kind of
source prior except that the source prior is overall. Thus the objective function
of the compared method is equal to the measure in (11) where S = {1, · · · , F}.
In order to have similar conditions in the algorithms, the FastIVA algorithm [8]
that also keeps the output data uncorrelated and uses approximated Newton
update optimization method is employed for comparison. The results are shown
in Fig. 4(c).
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Fig. 4. The experimental results are shown in this figure

7 Discussion

The idea of using a sliding subband likelihood function is advantageous in that it
is computation-wise very efficient. Also, it can be adopted in the IVA framework
to yield subband-wise IVA algorithms. Furthermore, in the sliding subbands,
not only the maximum likelihood approach but also other machine learning or
decision making techniques can be employed. More extensive work will be shown
in a longer version of this draft.
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Abstract. Underdetermined source separation is often carried out by
modeling time-frequency source coefficients via a fixed sparse prior. This
approach fails when the number of active sources in one time-frequency
bin is larger than the number of channels or when active sources lie
on both sides of an inactive source. In this article, we partially address
these issues by modeling time-frequency source coefficients via Gaussian
priors with free variances. We study the resulting maximum likelihood
criterion and derive a fast non-iterative optimization algorithm that finds
the global minimum. We show that this algorithm outperforms state-of-
the-art approaches over stereo instantaneous speech mixtures.

1 Introduction

Underdetermined source separation is the problem of recovering the single-
channel source signals sj(t), 1 ≤ j ≤ J , underlying a multichannel mixture
signal xi(t), 1 ≤ i ≤ I, with I < J . The mixing process can be modeled in the
time-frequency domain via the Short-Term Fourier Transform (STFT) as

x(n, f) = A(f)s(n, f) (1)

where s(n, f) is the vector of source STFT coefficients in time-frequency bin
(n, f), x(n, f) is the vector of mixture STFT coefficients in that bin, and A(f)
is a complex mixing matrix. This problem can be addressed by first estimating
the mixing matrices then computing the Maximum A Posteriori (MAP) source
coefficients given some prior distribution and inverting the STFT. For audio
data, a common sparse prior such as the Laplacian [1], a mixture of Gaussians
[2] or a generalized Gaussian [3], is usually assumed for all source coefficients.
This model suffers from two issues. Firstly, a maximum number of I nonzero
coefficients can often be recovered in each time-frequency bin, with the J − I
remaining coefficients being estimated as zero [1,3]. Secondly, the corresponding
columns of the mixing matrix must point towards the closest directions to the
observed mixture direction. A proof is given in [4] for a Laplacian prior.

In this paper, we aim to overcome both issues in the popular setting of stereo
(I = 2) instantaneous mixtures, where the mixing matrices A(f) are equal to
the same real-valued matrix A for all f . We assume that A is known and that its
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columns are pairwise linearly independent, i.e. the sources have different direc-
tions. We build upon the Statistically Sparse Decomposition Principle (SSDP)
presented in [4], which addresses the second issue using the correlation between
the mixture channels but provides poor separation performance due to time-
domain modeling and constraining of the number of nonzero sources per bin.

The structure of the paper is as follows. We apply the SSDP to the time-
frequency domain in Section 2 and prove that it implicitly assumes a local Gaus-
sian source model in Section 3. In Section 4, we extend this model to a larger
number of nonzero sources and derive a new source separation algorithm. We
evaluate its performance on speech data in Section 5 and conclude in Section 6.

2 Time-Frequency Statistically Sparse Decomposition

The SSDP is based on the empirical multichannel covariance matrix of the mix-
ture over short time frames. In the time-frequency domain, we define this quan-
tity over the neighborhood of each time-frequency bin (n, f) instead as

R̂xx(n, f) =
1∑

n′,f ′ w(n′ − n, f ′ − f)
∑
n′,f ′

w(n′ − n, f ′ − f)x(n′, f ′)x(n′, f ′)H

(2)
where w is a bi-dimensional window specifying the shape of the neighborhood
and H denotes the conjugate transpose of a matrix. In the rest of the paper,
bin indexes (n, f) are dropped for the sake of legibility. The quantity (2) has
long been exploited by mixing matrix estimation methods, e.g. [5,6], to obtain
accurate direction estimates by selecting the bins where a single source is active.
These bins are characterized by the fact that the cross-correlation between the
mixture channels, also termed interchannel coherence, is high.

More generally, the cross-correlation is higher when the active sources have
close directions. This fact can be exploited for source separation as follows. Let
us assume that the number of active sources in each time-frequency bin is equal
to two. For each pair of source indexes (j1, j2), the empirical covariance matrix
of these sources may be defined as [4]

R̂sj1j2sj1j2
= A−1

j1j2
R̂xx (A−1

j1j2
)T (3)

where Aj1j2 is the 2 × 2 matrix composed of the columns Aj of A indexed by
j ∈ {j1, j2} and T denotes transposition. The best pair of active sources may be
selected via the SSDP [4]

(ĵ1, ĵ2) = arg min
j1,j2

|R̂sj1 sj2
|√

R̂sj1sj1
R̂sj2sj2

(4)

with R̂sjk
sjl

denoting the (k, l)-th entry of R̂sj1j2sj1j2
. The source STFT coeffi-

cients are then estimated by local mixing inversion as{
ŝĵ1 ĵ2(n, f) = A−1

ĵ1 ĵ2
x(n, f)

ŝj(n, f) = 0 for all j /∈ {ĵ1, ĵ2}.
(5)
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3 Interpretation as Constrained Local Gaussian Modeling

This algorithm admits the following probabilistic interpretation. Let us assume
that the source coefficients follow independent zero-mean Gaussian priors over
the neighborhood of each time-frequency bin (n, f) whose variances vj depend
on that bin. This assumption appears well suited to audio signals, which are
typically non-sparse over small time-frequency regions but non-stationary hence
sparse over larger regions. Given this model, the mixture coefficients in a given
neighborhood follow a zero-mean Gaussian prior with covariance matrix

Rxx = ADiag(v)AT . (6)

where the operator Diag applied to a vector denotes the diagonal matrix whose
entries are those of the vector. The log-likelihood of the source variances is equal
up to a constant to minus the Kullback-Leibler (KL) divergence KL(R̂xx|Rxx)
between the empirical and expected mixture covariances [7]1 with

KL(R̂|R) =
1
2
[tr(R−1R̂)− log det(R−1R̂)]− 1. (7)

Assuming that at most two sources have nonzero variance, their indexes and
variances may be estimated in the Maximum Likelihood (ML) sense by

(ĵ1, ĵ2, v̂ĵ1 ĵ2) = arg min
j1,j2,vj1j2≥0

KL(R̂xx|Rxx). (8)

The KL divergence is invariant under invertible linear transforms. When applied
to A−1

j1j2
, this property yields

KL(R̂xx|Rxx) = KL(R̂sj1j2sj1j2
|Diag(vj1j2)) (9)

=
1
2

[
R̂sj1 sj1

vj1
+
R̂sj2sj2

vj2
− log

R̂sj1sj1
R̂sj2sj2

− |R̂sj1sj2
|2

vj1vj2

]
− 1.

(10)

By finding the zeroes of the partial derivatives of this expression with respect to
vj1 and vj2 , we get⎧⎪⎨⎪⎩

v̂j1 = R̂sj1sj1
and v̂j2 = R̂sj2 sj2

(ĵ1, ĵ2) = arg min
j1,j2
−1

2
log

(
1− |R̂sj1sj2

|2
R̂sj1 sj1

R̂sj2sj2

)
.

(11)

This criterion is equivalent to (4), hence the SSDP does estimate the two sources
with nonzero variance in the ML sense. In addition, the ML variances of these
sources are equal to the diagonal entries of the empirical source covariance ma-
trix. It can also be shown that the MAP source coefficients given the ML source
variances are obtained via (5).
1 This relation holds provided that R̂xx has full rank. We consider the KL divergence

because of its well-known invariance and nonnegativity properties. However it can
be shown from the expression of the log-likelihood that the following derivations
remain true otherwise.
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4 Minimally Constrained Local Gaussian Modeling

While the SSDP allows the separation of sources not pointing to close directions,
the number of nonzero source coefficients that can be estimated in each time-
frequency bin remains constrained to two. The above probabilistic interpretation
provides a natural way of relaxing this constraint by assuming that the source
coefficients follow independent zero-mean Gaussian priors over the neighborhood
of each time-frequency bin, whose variances vj are free. This model has been
exploited in the context of determined mixtures, albeit with the different goal of
estimating the mixing matrix given estimates of the source variances [7]. In the
under-determined context, ML variance estimates are obtained by

v̂ = arg min
v≥0

KL(R̂xx|Rxx) (12)

and MAP source coefficients are classically derived via the Wiener filter

ŝ(n, f) = Diag(v̂)AT (ADiag(v̂)AT )−1 x(n, f). (13)

The above vector minimization problem may be solved via standard iterative
optimization techniques based on the gradient. However these methods are com-
putationally intensive and the result may be a local minimum or one of several
possible global minima. We avoid these issues by characterizing the minima. We
show below that global minima with three or more nonzero entries satisfy the
equality Rxx = ((R̂xx), where ( denotes the real part of a complex matrix. If no
vector satisfies this equality, the global minima consequently have two nonzero
entries and can be obtained via the SSDP as shown in Section 3. This suggests
an efficient way of computing the global minima: find the vectors v ≥ 0 such
that Rxx = ((R̂xx) and, if none exists, apply the SSDP instead. We also study
below the cases where several solutions arise and propose minimal constraints to
select a single solution. The reader is advised to skip the proofs of the following
lemmas on first reading and to proceed directly with the details of Algorithm 1
at the end of this section.

Lemma 1. The KL divergence criterion is always larger thanKL(R̂xx|((R̂xx))
and equal to that value if and only if Rxx = ((R̂xx).

Proof. Since the mixing matrix A is real-valued, Rxx is real-valued and admits a
real-valued square root R1/2

xx . The matrix R−1/2
xx R̂xxR

−1/2
xx is Hermitian, hence

using the commutativity of the trace tr(R−1
xxR̂xx) = tr(R−1/2

xx R̂xxR
−1/2
xx ) =

tr(R−1/2
xx ((R̂xx)R−1/2

xx ) = tr(R−1
xx((R̂xx)). By combining this equality with (7),

we get KL(R̂xx|Rxx) = KL(((R̂xx)|Rxx) + log det(R̂−1
xx((R̂xx)). The second

term of this equation does not depend on v, while the first term is nonnega-
tive and equal to zero if and only if Rxx = ((R̂xx) by property of the KL
divergence. 	

Lemma 2. If v is a local minimum of the criterion with K ≥ 3 nonzero entries
vj1 , . . . , vjK , then v is a global minimum and satisfies Rxx = ((R̂xx).
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Proof. The gradient of the criterion is given by

∂KL(R̂xx|Rxx)
∂vj

= 〈E,AjAT
j 〉 where E =

1
2
[R−1

xx(Rxx −((R̂xx))R−1
xx ] (14)

and 〈., .〉 is the Euclidean dot product over the space S2(R) of real-valued sym-
metric 2×2 matrices. If v is a local extremum, the gradient is zero for all entries
vj that are not boundaries of the optimization domain. Hence E is orthogonal
to the matrices AjAT

j , j ∈ {j1, j2, j3}.
Let us consider the 3× 3 matrix Bj1j2j3 whose columns consist of the upper

triangular entries of the latter matrices:

Bj1j2j3 =

⎛⎝ A2
1j1

A2
1j2

A2
1j3

A2
2j1

A2
2j2

A2
2j3

A1j1
A2j1

A1j2
A2j2

A1j3
A2j3

⎞⎠ . (15)

By computing and factoring the determinant of Bj1j2j3 , we get

detBj1j2j3 = detAj1j2 detAj2j3 detAj3j1 . (16)

Since the columns Aj of A are pairwise linearly independent, all the terms of
this equation are nonzero and the columns of Bj1j2j3 form a basis of R3. This is
equivalent to AjAT

j , j ∈ {j1, j2, j3}, being a basis of S2(R).
We deduce from the above results that E = 0 hence Rxx = ((R̂xx). Therefore

v is a global minimum of the criterion according to lemma 1. 	

Lemma 3. The matrix equality Rxx = ((R̂xx) can be equivalently rewritten as

Bj1...jK vj1...jK = ŵ (17)

where vj1...jK is the vector of nonzero entries of v,

Bj1...jK =

⎛⎝ A2
1j1

. . . A2
1jK

A2
2j1

. . . A2
2jK

A1j1
A2j1

. . . A1jK
A2jK

⎞⎠ and ŵ =

⎛⎜⎝ R̂x1x1

R̂x2x2

((R̂x1x2)

⎞⎟⎠ . (18)

Proof. From (6), Rxx = ((R̂xx) is equivalent to
∑K

k=1 vjk
Ajk

AT
jk

= ((R̂xx).
By rearranging the upper triangular terms of this matrix equality into vectors,
this is in turn equivalent to (17). 	

Lemma 4. With J ≥ 4 sources, if the criterion admits a global minimum with
K ≥ 3 nonzero entries, then there exists a global minimum with K ≤ 3 nonzero
entries. Moreover, if A is nonnegative and there is a global minimum with K = 3
nonzero entries, then there are several global minima with K ≤ 3 nonzero entries.

Proof. Let v be a global minimum of the criterion with K ≥ 4 nonzero entries.
According to lemma 2 and its proof, v satisfies (17) and Bj1...jK has rank 3. The
null space of Bj1...jK is therefore of dimension K − 3 > 0. Let z be a vector such
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that zj1...jK �= 0 belongs to that null space and zj = 0 for all j /∈ {j1, . . . , jK}.
We define the vector v′ as

v′ = v − vjl

zjl

z with l = arg min
k,zjk

�=0

vjk

|zjk
| . (19)

The entries of this vector are given by v′jk
= vjk

− vjl
zjk
/zjl

. Clearly, v′j = 0
for all j /∈ {j1, . . . , jK} and v′jl

= 0. If zjk
and zjl

have different signs, then
zjk
/zjl
≤ 0 and v′jk

≥ vjk
≥ 0. If zjk

and zjl
have the same sign, then v′jk

= vjk
−

vjl
|zjk
|/|zjl

| ≥ 0 given (19). Hence v′ has nonnegative entries and at most K−1
positive entries. In addition, Bj1...jl−1jl+1...jK v′j1...jl−1jl+1...jK

= Bj1...jK v′j1...jK
=

Bj1...jK vj1...jK − vjl
/zjl

Bj1...jKzj1...jK = ŵ − vjl
/zjl

0 = ŵ. This shows that v′

is a global minimum of the criterion with K ′ ≤ K − 1 nonzero entries. By
recurrently applying the above construction, we find a global minimum v′′ with
K ′′ ≤ 3 nonzero entries.

Let us now assume that A is nonnegative and K ′′ = 3. We denote by j1, j2, j3
the nonzero entries of v′′ and by j4 any other index. Since the matrix Bj1j2j3j4

is nonnegative and all its 3× 3 submatrices have rank 3, the non-null vectors of
its null space have no zero entry and both positive and negative entries. Let z′

be a vector such that z′j1j2j3j4 �= 0 belongs to that null space, z′j4 < 0 and z′j = 0
for all j /∈ {j1, j2, j3, j4}. We define the vector v′′′ as

v′′′ = v′′ − v
′′
jl

z′jl

z′ with l = arg min
k,z′jk

>0

v′′jk

z′jk

. (20)

Similarly to above, it can be proved that v′′′ is a global minimum of the criterion
with K ′′′ ≤ 3 nonzero entries indexed by some j ∈ {j1, j2, j3, j4} and j �= jl. 	

Lemma 4 shows that ML estimation of the source variances is an ill-posed prob-
lem with J ≥ 4 sources. Appropriate constraints must be set over the source
variances in order to obtain a unique solution. While probabilistic hyperpriors
may model flexible constraints, the resulting MAP solution may not match any
of the ML solutions, so that the benefit of characterizing ML solutions is lost.
Instead, we select the sparsest ML solution: we restrict the optimization domain
to vectors with K ≤ 3 nonzero entries and select the ML solution with minimum
lp norm ‖v̂‖p [3] in case several ML solutions can be found in this domain.

Given these constraints and the characterization of ML source variances in
Section 3 and lemma 3, we perform source separation in each time-frequency bin
(n, f) via the following fast global optimization algorithm.

Algorithm 1

1. Compute the empirical mixture covariance R̂xx in (2) and derive the vector
ŵ in (18).

2. Compute the candidate source variances vj1j2j3 = B−1
j1j2j3

ŵ for all triplets
of source indexes {j1, j2, j3}, with Bj1j2j3 defined in (15).

3. If some candidates have positive entries only, then they are solutions of the
ML estimation problem. Select the one with minimum lp norm among these
and derive the MAP source coefficients via (13).
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4. Otherwise, compute the empirical source covariance matrices R̂sj1j2sj1j2
=

A−1
j1j2

R̂xx (A−1
j1j2

)T for all pairs of source indexes {j1, j2}. Select the ML pair
via (4) and estimate the MAP source coefficients via (5).

5 Experimental Results

We evaluated this algorithm over the speech data in [8]. The number of sources
J was varied from 3 to 6. For each J , a nonnegative mixing matrix was computed
from [9], given an angle of 50− 5J degrees between successive sources, and ten
instantaneous mixtures were generated from different source signals resampled at
8 kHz. The STFT was computed with a sine window of length 512 (64 ms). The
bi-dimensional window w defining time-frequency neighborhoods was chosen as
the outer product of two rectangular or Hanning windows with variable length.
The lp norm exponent was set to p → 0 [3]. The results were evaluated via the
Signal-to-Distortion Ratio (SDR) defined in [10]. The best results were achieved
for w chosen as the outer product of two Hanning windows of length 3. The
computation time was then between 1.8 and 3.7 times the mixture duration
depending on J , using Matlab on a 1.2 GHz dual core CPU.

Figure 1 compares the average SDR achieved by the proposed algorithm, the
time-frequency domain SSDP in Section 2 and two state-of-the-art algorithms:
lp norm minimization [3] and DUET [11]. The proposed algorithm outperforms
all other algorithms whatever the number of sources. Nevertheless, it should
be noted that its performance remains about 10 dB below the theoretical upper
bound obtained by local mixing inversion (5) given the best pair of active sources
[8] and 11 dB below the theoretical upper bound obtained by Wiener filtering
(13) given the true sources variances.

This algorithm was submitted to the 2008 Signal Separation Evaluation Cam-
paign with the same parameters, except a STFT window length of 1024 and step
size of 256. Mixing matrices were estimated via the software in [6].

3 4 5 6
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15
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SD
R

 (
dB

)

local Gaussian modeling
frequency−domain SSDP
l
p
−norm minimization

binary masking

Fig. 1. Source separation performance over stereo instantaneous speech mixtures
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6 Conclusion

In this paper, we proposed a new source separation algorithm for stereo instan-
taneous mixtures based on the modeling of source STFT coefficients via local
Gaussian priors with minimally constrained variances. This algorithm can esti-
mate up to three nonzero source coefficients in each bin, as opposed to two for
state-of-the-art methods, and provides improved separation performance. This
suggests that local mixture covariance can be successfully exploited for under-
determined source separation in addition to mixing matrix estimation. Further
work includes the generalization of this algorithm to convolutive mixtures with
I ≥ 2 channels. A larger improvement is expected, since up to I(I+1)/2 nonzero
source coefficients could be estimated in each time-frequency bin. Local nongaus-
sian source priors could also be investigated.
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Guérin, Alexandre 98
Guillet, Francois 25
Guo, Bin 670
Gutch, Harold W. 259
Gutmann, Michael 507

Haddad, Diego B. 211, 267
Hansen, Lars Kai 540
Hazan, Aurélien 171
Hoffmann, Eugen 581



784 Author Index

Hong, Kwang-Seok 654
Hori, Gen 42
Hosseini, Shahram 322
Hung, Yeung Sam 395
Hyvärinen, Aapo 195, 507, 515

Iglesia, Daniel 274, 694
Igual, Jorge 451, 702
Ilin, Alexander 66

Jutten, Christian 419, 532, 557, 662

Kalker, Antonius A.C.M. 589
Karhunen, Juha 66
Karp, Elina 427
Kayabol, Koray 499
Keck, Ingo R. 435
Khosravy, Mahdi 670
Kim, Dong-Ju 654
Kinney, Charles E. 589
Kohl, Florian 443
Kolossa, Dorothea 443, 581
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