
On the Expressive Power of Restriction and Priorities in
CCS with Replication

Jesús Aranda1,�, Frank D. Valencia2, and Cristian Versari3

1 LIX École Polytechnique and Universidad del Valle Colombia
2 CNRS and LIX École Polytechnique

3 Università di Bologna

Abstract. We study the expressive power of restriction and its interplay with
replication. We do this by considering several syntactic variants of CCS! (CCS
with replication instead of recursion) which differ from each other in the use
of restriction with respect to replication. We consider three syntactic variations
of CCS! which do not allow the use of an unbounded number of restrictions:
CCS−!ν

! is the fragment of CCS! not allowing restrictions under the scope of a
replication. CCS−ν

! is the restriction-free fragment of CCS!. The third variant is
CCS−!ν

!+pr which extends CCS−!ν
! with Phillips’ priority guards.

We show that the use of unboundedly many restrictions in CCS! is necessary
for obtaining Turing expressiveness in the sense of Busi et al [8]. We do this by
showing that there is no encoding of RAMs into CCS−!ν

! which preserves and
reflects convergence. We also prove that up to failures equivalence, there is no
encoding from CCS! into CCS−!ν

! nor from CCS−!ν
! into CCS−ν

! . As lemmata
for the above results we prove that convergence is decidable for CCS−!ν

! and that
language equivalence is decidable for CCS−ν

! . As corollary it follows that con-
vergence is decidable for restriction-free CCS. Finally, we show the expressive
power of priorities by providing an encoding of RAMs in CCS−!ν

!+pr.

1 Introduction

As for other language-based formalisms (e.g., logic, formal grammars, λ-calculus, etc)
a fundamental part of the research in process calculi involves the study of the expres-
siveness of syntactic fragments or variants of a given process calculus.

Process calculi provide a language in which the structure of terms represents the
structure of processes together with a transition relation to represent computational
steps. Consider for example CCS [15]. The parallel composition term P |Q, which is
built from the terms P and Q represents the process that results from the parallel exe-
cution of the processes P and Q. The restriction (νx)P represents a process P with a
private/local/restricted/bound resource x–e.g., a location, a link, or a name. Processes
with infinite behaviour are often specified with recursive expressions of the form μX.P
which behaves as P [μX.P/X], i.e., P with the (free) occurrences of X replaced by
μX.P . A transition semantics dictates that if P may have a transition into P ′ by per-
forming an action α, written P

α−→ P ′, then P | Q
α−→ P ′ | Q and if α does not

involve x also (νx)P α−→ (νx)P ′.
� The work of Jesús Aranda has been supported by COLCIENCIAS (Instituto Colombiano para

el Desarrollo de la Ciencia y la Tecnologı́a ”Francisco José de Caldas”) and INRIA Futurs.

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 242–256, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On the Expressive Power of Restriction and Priorities in CCS with Replication 243

Classifying Criteria. One natural approach to comparing expressiveness of two given
process calculus variants is by comparing them wrt some standard process equivalence
� . If there exists a computable function (encoding) [[·]] from the terms of a variant C
into the terms of another variant C′ such that for every P in C we have P � [[P]], we
say that C′ is at least as expressive as C up to �.

Another way of classifying the variants of a given calculus is by considering the
complexity or decidability of a fundamental property of processes. For example, the
decidability of convergence (the existence of a terminating computation) or divergence
(the existence of a non-terminating computation).

The CCS! Calculus. The CCS! calculus [7] is a variant of CCS which instead of
using recursive expressions to specify infinite behaviour uses processes of form !P.
The replicated process !P can be thought of as abbreviating the parallel composition
P | P | . . . of an unbounded number of P processes. In [8] it is shown that CCS! is
less expressive than CCS wrt (weak) bisimilarity. It is also shown that convergence is
undecidable for CCS! while divergence, unlike for CCS, is decidable.

Turing Expressiveness and Convergence in CCS!. A remarkable expressiveness result
in [8] states that, in spite of its being less expressive than CCS, CCS! is in fact Turing
powerful. This is done by encoding Random Access Machines (RAMs) [16]. The fun-
damental property of the encoding is that it preserves (and reflects) convergence; i.e.,
the RAM converges if and only if its encoding converges.

The CCS! encoding of RAMs in [8] uses an unbounded number of restrictions arising
from having restriction operators under the scope of a replication operator as for exam-
ple in !(νx)P . Similarly, the CCS encoding of RAMs in [7] involves also an unbounded
number of restrictions arising from having restrictions under the scope of recursive ex-
pressions as for example in μX.(νx)(P | X). One then may wonder if the generation
of unboundedly many names is necessary for Turing Expressiveness.

This Work. In this paper we study the expressiveness of restriction and its interplay
with replication. We do this by considering two syntactic fragments of CCS!, namely
CCS−!ν

! and CCS−ν
! which differ from CCS! in the occurrences of restriction under the

scope of replication. These fragments and a variant of CCS!, CCS−!ν
!+pr, as well as our

classification criteria are described and motivated below.
Although different in nature, our work was inspired by the study of decidable classes

(wrt satisfiability) of formulae involving the occurrence of existential quantifiers under
the scope of universal quantification. E.g., Skolem showed that the class of formulae
of the form ∀y1 . . . yn∃z1 . . . zmF , where F is quantifier-free formula, is undecidable
while from Gödel we know that its subclass ∀y1y2∃z1 . . . zmF is decidable [5].

The CCS! Variants. As explained above CCS! allows processes with restriction under
the scope of replication and hence they can generate an unbounded number of restricted
names. In order to allow only processes with a number of restricted names bounded by
their size, we consider CCS−!ν

! which represents the CCS! fragment which does not
allow restrictions under the scope of replications. To illustrate the expressiveness of
CCS−!ν

! take for example P = (νk)(νu)(k̄ | !(k.a.(k̄ | ū)) | k.!(u.b)) which uses only
two restricted names. The reader familiar with CCS can verify that the set of (maxi-
mal) finite sequences of visible actions performed by P corresponds to the context-free

244 J. Aranda, F.D. Valencia, and C. Versari

language anbn. A similar but slightly more complex example involves a CCS−!ν
! proc-

ess with only five restricted names whose set of (maximal) finite sequences of visible
actions corresponds to the context-sensitive language anbncn–see [2].

Now, one may wonder whether a process that uses only a number of restricted names
bounded by its size, can be encoded, perhaps by introducing some additional non-
restricted names, into one which uses none. For this purpose we shall also consider
the restriction-free fragment of CCS!, which shall denote as CCS−ν

! .
Finally, we may also wonder whether some other natural process construct can re-

place the use in CCS! of unboundedly many restrictions in achieving Turing expres-
siveness. For this purpose we shall consider CCS−!ν

!+pr which is CCS−!ν
! extended with

Phillips’ priority guards construct [17].

Classifying Criteria. Our main comparison criteria for the above variants are the decid-
ability of convergence and their relative expressiveness wrt failures equivalence [6,15].

As mentioned before, convergence is a fundamental property of processes and its
preservation and reflection are also fundamental properties of the encoding of RAMs
in CCS!. Furthermore, we choose it over divergence because the former is undecidable
for CCS! while the latter is already known to be decidable for CCS!.

Failures equivalence is a well-established notion of process equivalence and we
choose it over other equivalences because of its sensitivity to convergence. In fact un-
like failures equivalence, other standard equivalences for observable behaviour such as
weak-bisimilarity, must testing, trace equivalence and language equivalence may actu-
ally equate a convergent process with a non-convergent one. This claim about sensitivity
to convergence will be shown later on in the paper (Section 3) once we fix our notation.

Contributions. Our main contributions are the following:

– We show that convergence is decidable for CCS−!ν
! and thus that there is no (com-

putable) encoding, which preserves and reflects convergence, of RAMs using only
a bounded number of restricted names. We do this by encoding CCS−!ν

! into Petri
Nets. Thus convergence is also decidable for the fragment of CCS with no restric-
tions within recursive expressions, here refered to as CCS−μν , because of the con-
vergence preserving and reflecting encoding into CCS−!ν

! given in [12].
– We show that, up to failures equivalence, CCS! is strictly more expressive than

CCS−!ν
! and, similarly, that CCS−!ν

! is strictly more expressive than CCS−ν
! . Thus

up to failures equivalence, we cannot encode a process with an unbounded num-
ber of restrictions into one with a bounded number of restrictions, nor one with a
bounded number of restrictions into a restriction-free process.

– We show that adding Phillips’ priority guards to CCS−!ν
! renders the resulting cal-

culus capable of encoding RAMs. Furthermore, unlike the encoding into CCS! and
just like the encoding into CCS, the encoding of RAMs into CCS−!ν

!+pr preserves
and reflects both convergence and divergence. This bears witness to the expressive
power of Phillips’ priority guards.

The classification of the various fragments mentioned above are summarized in
Figure 1. The undecidability of convergence and decidability of divergence for CCS!

as well as the undecidability of both divergence and convergence for CCS were shown
in [7,8]. The other results are derived from the work here presented.

On the Expressive Power of Restriction and Priorities in CCS with Replication 245

Fig. 1. A (crossed) arrow from C to C′ represents the (non) existence of an encoding from C
into C′ preserving and reflecting failures equivalence. Convergence is/isn’t decidable for each
C in/outside the inner rectangle. Divergence is/isn’t decidable for each C in/outside the outer
rectangle.

2 The Calculi

CCS processes can perform actions or synchronize on them. These actions can be either
offering port names for communication, or the so-called silent action τ. We presuppose
a countable set N of port names, ranged over by a, b, x, y . . . and their primed versions.
We then introduce a set of co-names N = {a | a ∈ N} disjoint from N . The set
of labels, ranged over by l and l′, is L = N ∪ N . The set of actions Act , ranged
over by α and β, extends L with a new symbol τ. Actions a and a are thought of as
complementary, so we decree that a = a. We also decree that τ = τ .

The CCS! processes [7] are defined as in CCS except that recursive expressions are
replaced by replication expression of the form !P .

Definition 1. Processes in CCS! are built from names by the following syntax:

P, Q . . . := 0 | α.P | P + Q | P | Q | (νa)P | !P (1)

Convention 1. We use Σi∈IPi where I = {i1 . . . in}, to denote Pi1 + . . . + Pin ., the
order of the summands being insignificant. We use Πi∈IPi, where I = {i1 . . . in}, to
denote Pi1 | . . . | Pin . Both Σi∈IPi and Πi∈IPi are assumed to be 0 if I = ∅. The
names a and ā in P are said to be bound in (νa)P . The bound names of P , bn(P),
are those with a bound occurrence in P , and the free names of P , fn(P), are those
with an not bound occurrence in P . The set of names of P , n(P), is then given by
fn(P) ∪ bn(P). We use (νa1 . . . an)P as an abbreviation of (νa1)(νa2) . . . (νan)P.

Process expressions are endowed with meaning by using the labeled transitions of the
form P

α−→ Q which intuitively says that P may perform α and evolve into Q. Sim-
ilarly, P

s=⇒ Q, where s ∈ L∗, means that P can evolve into Q after zero or more
transitions labeled with the elements of s without considering τ moves. Formally,

Definition 2. The labeled transition relation
·−→ is given by the rules in Table 1. Define

s=⇒, with s = α1. . . . αn ∈ L∗, as (τ−→)∗ α1−→ (τ−→)∗ . . . (τ−→)∗ αn−→ (τ−→)∗. For the
empty sequence s = ε,

s=⇒ is defined as (τ−→)∗.

246 J. Aranda, F.D. Valencia, and C. Versari

Table 1. The labeled semantics of CCS!

PREF
α.P

α−→ P
RES

P
α−→ P ′

(ν a)P
α−→ (ν a)P ′

if α �∈ {a, a}

SUM1
P

α−→ P ′

P + Q
α−→ P ′ SUM2

Q
α−→ Q′

P + Q
α−→ Q′

PAR1
P

α−→ P ′

P | Q α−→ P ′ | Q
PAR2

Q
α−→ Q′

P | Q α−→ P | Q′

COM
P

l−→ P ′ Q
l−→ Q′

P | Q τ−→ P ′ | Q′ REP
P | !P α−→ P ′

!P
α−→ P ′

Intuition and Basic Ideas. We shall now give some intuition and state some conventions
on process expressions. We shall concentrate on the expressions !P and (νx)R and their
interplay because they are central to our work.

The process P | Q represents the parallel execution of P and Q. Intuitively, P | Q
may perform either an action performed by P , an action performed by Q, or if P and Q
perform complementary actions (and thus synchronize), a τ action. Thus, a.P | ā.Q

a−→
P | ā.Q, a.P | ā.Q

ā−→ a.P | Q, and a.P | ā.Q
τ−→ P | Q.

The restriction process (νa)P behaves as P except that it can offer neither a nor
ā to its environment. One may think of (νa)P as a local declaration of name a in P
and thus can be used to restrict the possible synchronization (interactions) of a proc-
ess. For example, (νa)(a.P | ā.Q) may not perfom a or ā though –crucially– it may
perform a τ action resulting from the synchronization over the actions a and ā. Thus
(νa)(a.P | ā.Q)
 α−→ for α ∈ {a, ā} but (νa)(a.P | ā.Q) τ−→ (νa)(P | Q).

Replication is the only means to specify infinite behaviour in CCS!. The replication
!P behaves as P | P | . . . | !P ; unboundedly many P ′s in parallel.

We can use restriction under the scope of replication to specify an unbounded number
of local names. It should be clear from the intuition above that (νa)P should behave
exactly as (νb)(P [b/a]) where b is not free in P and P [b/a] is the process that results
from replacing in P every free occurrence of a with b renaming bound names wherever
needed to avoid capture (α-conversion). Thus, for example !(νa)P can be viewed as

(νa1)P [a1/a] | (νa2)P [a2/a] | . . . | !(νa)P

thus allowing the declaration of unboundedly many different restricted names
a1, a2, As previously mentioned in the introduction, this sort of unbounded gen-
eration of restricted names appears to be crucial in the encodings of Turing-powerful
formalisms.

The Sub-calculi. To understand the above-mentioned interplay between restriction and
replication we shall consider two calculi which arise from syntactic constraints over
CCS!. Namely, CCS−!ν

! and CCS−ν
! .

Definition 3 (CCS−!ν
! and CCS−ν

!). The processes of CCS−!ν
! are those CCS! proc-

esses which do not have occurrences of a process of the form (νx)P within a process

On the Expressive Power of Restriction and Priorities in CCS with Replication 247

of the form !R. The processes of CCS−ν
! are those CCS! processes with no occurrences

of processes of the form (νx)P .

3 Convergence, Failures and Related Notions

In this section we shall introduce the notions we shall consider as classifying criteria,
namely convergence and failures equivalence, as well as some other related notions.

Following [4], we say that a process generates a sequence of non-silent actions s if it
can perform the actions of s in a finite maximal sequence of transitions. More precisely:

Definition 4 (Sequence and language generation). The process P generates a se-
quence s ∈ L∗ if and only if there exists Q such that P

s=⇒ Q and Q
 α−→ for any
α ∈ Act . Define the language of (or generated by) a process P , L(P), as the set of all
sequences P generates. We say that P and Q are language equivalent, written P ∼L Q,
iff L(P) = L(Q).

We recall the notion of failure following [15]. We need the following notion:

Definition 5. We say that P is stable iff P
 τ−→.

Intuitively we say that a pair 〈e, L〉, with e ∈ L∗ and L ⊆ L, is failure of P if P can
perform e and thereby reach a state in which no further action (including τ) is possible
if the environment will only allow actions in L.

Definition 6 (Failures). A pair 〈e, L〉, where e ∈ L∗ and L ⊆ L, is a failure of P iff

there is P ′ such that: (1) P
e=⇒ P ′, (2) P ′
 l−→ for all l ∈ L, and (3) P ′ is stable.

Define Failures(P) as the set of failures of a process P . We say that P and Q are
failures equivalent, written P ∼F Q iff Failures(P) = Failures(Q).

We recall the notions of convergence and divergence following [7,8]. Intuitively, a proc-
ess converges if it can reach a stable process after a sequence of τ moves. A process is
deemed divergent iff it can perform an infinite sequence of τ moves.

Definition 7 (Convergence and Divergence). We say that P is convergent iff there is
a stable process Q such that P (τ−→)∗Q. We say that P is divergent iff P (τ−→)ω, i.e.,
there exists an infinite sequence P = P0

τ−→ P1
τ−→

We conclude this section by stating relations between the above notions which we shall
use in the following sections.

3.1 Some Basic Properties of Failures

We claimed in the introduction that unlike other standard notions such as weak bisimi-
larity, must testing and trace equivalence, failures equivalence never equates a conver-
gent process with a non-convergent one. In fact,

Proposition 1. Suppose that P ∼F Q. Then P is convergent iff Q is convergent.

248 J. Aranda, F.D. Valencia, and C. Versari

To justify the rest of the above claim, take P = τ.!a.0 and P ′ =!τ.0. Clearly P
converges but P ′ does not, however they are both language equivalent. Now take Q =
τ.!τ.0 + τ.0 and Q′ =!τ.0. Thus Q converges but Q′ does not. It can be verified that Q
and Q′ are equated by these standard equivalences.

We shall use the fact that failures equivalence implies language equivalence.

Proposition 2. ∼F ⊆ ∼L.

4 Decidability of Convergence in CCS−!ν
!

In this section we show the decidability of convergence for CCS−!ν
! by a reduction to

the same problem for a fragment of Petri Nets.

4.1 Convergence-Invariant Properties in Fragments of CCS−!ν
!

Notice that decidability of convergence in CCS−!ν
! can be reduced to the decidability of

convergence in CCS−ν
! .

Proposition 3. For every P in CCS−!ν
! one can effectively construct a CCS−ν

! process
P ′, such that P converges if only if P ′ converges.

Proof. (Outline) First α-convert P so that each bound name in P is replaced with a
unique bound name. Then remove from the resulting process each occurrence of a
“(νx)”. Let P ′ be the resulting restriction-free process. One can verify that P ′ con-
verges iff P converges. ��
Consequently, in what follows we reduce the convergence problem for CCS−ν

! to con-
vergence problem in Petri nets.

In order to simplify the reduction to Petri Nets, we shall consider the fragment
CCS−ν

s! of those CCS−ν
! processes in which replication can only be applied to prefix

or summation processses.

Proposition 4. For every CCS−ν
! process P , one can effectively construct a CCS−ν

s!

process Q such that P converges iff Q converges.

Proof. (Outline) Systematically replace in P every occurrence of the form !!R with !R,
!(Q|Q′) with !Q | !Q′, and !0 with 0. The resulting process converges iff P converges.

Finitely Branching Transition System. In order to prove the decidability of convergence,
we shall make use of an alternative but equivalent definition (up to failures equivalence)
of the transition relation for CCS!. The equivalent definition can be obtained by replac-
ing Rule Rep in Table 1 with the rules in Table 2.

One can verify that the resulting transition relation is finitely-branching. This is es-
sential for being able to provide an effective Petri net construction for any given CCS−ν

s!

process.

On the Expressive Power of Restriction and Priorities in CCS with Replication 249

Table 2.

REPL1
P

α−→ P ′

!P
α−→ P ′ | !P

REPL2
P

α−→ P ′ P
α−→ P ′′

!P
τ−→ P ′ | P ′′ | !P

4.2 The Reduction to Petri Nets

Here we shall provide a (Unlabelled Place/Transition) Petri Net semantics for CCS−ν
s!

which considers only the τ moves. For these Petri Nets convergence is decidable [11].

Definition 8 (Petri Nets). A Petri net is a 3-tuple (S, T, m0), where S is a set of places,
T is a set of transitions Mfin(S) ×Mfin(S) with Mfin(S) being a finite multiset of S
called a marking. The (non-empty) multiset m0 is the initial marking; for each place s
∈ S, there are m0(s) tokens.

A transition (c, p) is written in the form c =⇒ p. A transition is enabled at a marking
m if c ⊆ m. The execution of the transition produces the marking m′ = (m \ c) ⊕ p
(where \ and ⊕ are the difference and the union operators on multisets). This is written
as m � m′. If no transition is enable at m we say that m is a dead marking.

We say that the Petri net (S, T, m0) converges iff there exists a dead marking m′

such that m0(�)∗m′.

Intuitively, we will associate to each CCS−ν
s! a Petri net so that:

– Places are identified as syntactic components reachable from P ,
– Markings are descriptions of processes reachable from P through τ -actions. The

places and tokens in the marking represent different syntactic components and their
number of occurrences in the process described.

– Transitions represent the τ -actions enabled to be performed at certain process. In-
put places correspond to the components in the process involved in the τ -action
and Output places are the components to be enabled once the τ -action has been
executed.

Given a Petri net for P the elements of Sub(P) below will be the syntactic compo-
nents represented by places in the Petri net.

Definition 9. Define Sub(P), where P ∈ CCS−ν
s! , as Sub(0) = {0}, Sub(Σi∈IPi) =

{Σi∈IPi} ∪ (
⋃

i∈I Sub(Pi)), Sub(α.P) = {α.P} ∪ Sub(P), Sub(!P) = {!P} ∪
Sub(P) , Sub(P | Q) = Sub(P) ∪ Sub(Q).

Sub(P) denotes the set all null, replicated, summation, prefix processes occurring in P.
Since a process P may have several parallel occurrences of an element in Sub(P) we
use a multi-set Occur(P) take into account its number of occurrences.

Definition 10 (Occurrence). Let P ∈ CCS−ν
s! . The multiset of processes which occur

in P, Occur(P), is given by the following rule: Occur(P) = Occur(Q) ⊕ Occur(R)
if P = Q | R else Occur(P) = {P}. Furthermore, we say that Q is an occurrence
of a process P if and only if Q ∈ Occur(P).

250 J. Aranda, F.D. Valencia, and C. Versari

Occur(P) associates to a CCS−ν
s! process P the multiset of its immediate parallel com-

ponents (occurrences) and will be identified as the marking of P in the Petri net.
We are now ready to define our Petri net encoding of CCS−ν

s! processes.

Definition 11 (Nets for CCS−ν
s!). Given a CCS−ν

s! process P , we define its Petri net
NP = (S, T, m0) where S = {Q | Q ∈ Sub(P)}, m0 = Occur(P) and T =
T1 ∪ T2 where: T1 = {{P} =⇒ Occur(P ′)| P

τ−→ P ′} and T2 = {{P, Q} =⇒
Occur(P ′) ⊕ Occur(Q′)|P α−→ P ′ and Q

α−→ Q′}.
Clearly, given P , NP can be effectively constructed—here we use the finite-branching
nature of the alternative transition semantics in Section 4.1.

Roughly speaking, the set of transitions T represents the possible τ moves to be
performed and the initial marking Occur(P) is the one which identifies the process P .
In particular:

– T1 : this type of transition reflects a τ move coming from one of the components, it
is referred as P , going to the process P ′. Notice as a token representing P is con-
sumed and the tokens representing P ′, there might be more than one component,
are added, in this way the transition reflects the evolution from the component P
into the process P ′ .

– T2 : this type of transition reflects the τ -actions resulting from the synchronisation
of two components P and Q, as a result of the synchronisation the processes P ′ and
Q′ are reached, in this case, a token associated to both P and another one associated
to Q are consumed, the tokens representing P ′ and Q′ are added.

Wee can now state the correctness of the encoding of CCS−ν
! into Petri nets.

Lemma 1 (Convergence-invariance property between CCS−ν
! and Petri nets)

For any CCS−ν
s! process P , P converges if and only if the Petri net NP converges.

Since convergence is decidable for Petri nets [11], we conclude from the above lemma
and our effective construction of Petri Nets that convergence is also decidable for
CCS−ν

s! . Thus, from Propositions 3 and 4, we obtain the following corollary.

Theorem 2. Convergence is a decidable property for CCS−!ν
! processes.

5 Decidability of Language Equivalence in CCS−ν
!

We now prove that decidability of language equivalence for CCS−ν
! . The crucial ob-

servation is that up to language equivalence every occurrence of a replicated process
!R in a CCS−ν

! process can be replaced with !τ.0 if R can perform at least an action,
otherwise it can be replaced with 0. More precisely, let P [Q/R] the process that results
from replacing in P every occurrence of R with Q.

Proposition 5. Let P be a CCS−ν
! process and suppose that !R occurs in P . Then

L(P) = L(P [Q/!R]) where Q =!τ.0 if there exists α s.t., R
α−→ else Q = 0.

On the Expressive Power of Restriction and Priorities in CCS with Replication 251

Given any R in CCS! one can effectively decide whether there exists α such that R
α−→

(This can be proven using the alternative finitely-branching presentation of the tran-
sition relation in Section 4.1). We can then use the above proposition for proving the
following statement.

Lemma 2. Let P be a CCS−ν
! process. One can effectively construct a process P ′ such

that L(P) = L(P ′) and P ′ is either !τ.0 or a replication-free CCS−ν
! process.

Proof. (Sketch.) Notice that we can use systematically Proposition 5 to transform any
CCS−ν

! process P into an language equivalent process Q whose replicated occurrences
are all of the form !τ.0. Now a !τ.0 can occur either in a parallel composition, a sum-
mation or prefix process. Observe that (1) P | !τ.0 ∼L !τ.0, (2) !τ.0 | P ∼L !τ.0, (3)
α.!τ.0 ∼L !τ.0, (4) P+!τ.0 ∼L P , (5) !τ.0+P ∼L P. One can apply (1-5) from left to
right to systematically transform Q into the process P ′ as required in the lemma. ��
From the above lemma, we conclude that every CCS−ν

! process can be effectively trans-
formed into a language equivalent finite-state process. Hence,

Theorem 3. Given P and Q in CCS−ν
! , the question of whether L(P) = L(Q) is

decidable.

6 Impossibility Results for Failure-Preserving Encodings in CCS!,
CCS−!ν

! and CCS−ν
!

In this section, we shall state the impossibility results about the existence of computable
encodings from CCS! into CCS−!ν

! and from CCS−!ν
! into CCS−ν

! which preserve and
reflect failures equivalence. The separation results follow from our previous decidability
results and the undecidability results in the literature.

The non-existence of failure-preserving encoding from CCS! into CCS−!ν
! follows

from Proposition 1, Theorem 2 and the undecidability of convergence for CCS! [8].

Theorem 4. There is no computable function [[·]] : CCS! → CCS−!ν
! s.t [[P]] ∼F P.

To state the non-existence of failure-preserving encoding from CCS−!ν
! into CCS−ν

!

we appeal to the undecidability of language equivalence for BPP processes [9,14]. BPP
processes form a subset of restriction-free CCS processes. Now we can use the encoding
of [12] to transform a restriction-free CCS processes into CCS−!ν

! —the encoding is
correct up to failures equivalence (see [3]). We can therefore conclude, with the help of
Proposition 2, that language-equivalence for CCS−!ν

! processes is undecidable.

Proposition 6. Given P and Q in CCS−!ν
! , the problem of whether P ∼L Q is unde-

cidable.

From the above proposition, the decidability of language equivalence for CCS−ν
! (The-

orem 3) and Propositions 1 and 2 we can conclude the following.

Theorem 5. There is no computable function [[·]] : CCS−!ν
! → CCS−ν

! s.t. [[P]] ∼F P.

Remark 1. We can use the encoding of [12] to transform any CCS process which uses
no restriction within recursive expression into a failures equivalent CCS−!ν

! process [3].
Thus, from Proposition 1 and Theorem 2 we can conclude that convergence is also
decidable for CCS with no restriction within recursive expressions.

252 J. Aranda, F.D. Valencia, and C. Versari

7 Expressiveness of Priorities

In this section we add Phillips’ priority guards [17] to CCS−!ν
! . We shall refer to the

resulting calculus as CCS−!ν
!+pr. This calculus corresponds to Phillips’ Calculus of Pri-

ority Guards (CPG) with replication rather than recursion and no restrictions within the
scope of replication—hence it cannot use an unbounded number of restrictions.

We show that CCS−!ν
!+pr turns out to be Turing powerful in the sense of Busi et al

[8] (i.e., preserving and reflecting convergence), thus bearing witness to computational
expressiveness of priority guards. Recall that from the previous sections CCS!, and even
CCS, cannot encode Turing machines, in the sense above, without using an unbounded
number of restrictions (Theorem 2 and Remark 1).

7.1 CCS−!ν
!+pr

In CPG there are two sets of names: N which corresponds to the set of names used to
represent the visible actions in CCS−!ν

! and a set of priority names U . Each set has a
set of complementary actions : N̄ and Ū , where Std = N ∪ N̄ (the standard visible
actions), Pri = U ∪ Ū (the priority actions), Vis = Std ∪ Pri (the visible actions),
and Act = Vis ∪ τ (all actions). We let a, b, . . . range over N ∪ U ; u, v, . . . over Pri ;
λ, . . . over Vis ; and α, β, . . . over Act. Also S, T , . . . range over finite subsets of Vis ,
and U , V , . . . over finite subsets of Pri .

The syntax of processes in CCS−!ν
!+pr is like that of CCS−ν

! , except for the summations
which now take the form of priority-guarded summations: Σi∈ISi : αi.Pi where I
and each Si are finite. The meaning of the priority guard S : α is that α can only be
performed if the environment does not offer any action in S̄

⋂
Pri (see [17] for details).

Labelled Transition and Offers

We recall the set off (P) of “higher priority” actions “offered” by P .

Definition 12 (Offers). Let P be a CCS−!ν
!+pr process and u ∈ Pri . The relation P off u

(P offers u) is given by the rules in Table 3 . We define off (P) = {u ∈ Pri : P off u}.
Finally, we say that P eschews U iff off (P) ∩ Ū = ∅.

The transitions are conditional on offers from the environment. Intuitively, a transition
of the form P

α−→U P ′ means that P may perform α as long as the environment does

not offer ū for any u ∈ U (i.e., the environment ”eschews” U). E.g. a : b.P
b−→{a} P

means that a : b.P may perform b as long as the environment does not offer a. Thus,

Table 3.

M + S : u.P + N off u if u /∈ S
P off u

P | Q off u

Q off u

P | Q off u
P off u

(νa) P off u
if a �= name(u)

P off u

!P off u

On the Expressive Power of Restriction and Priorities in CCS with Replication 253

Table 4. An operational semantics for CCS−!ν
!+pr

SUM M + S : α.P + N
α−→S∩Pri P if α ∈ S ∩ Pri

PAR1

P
α−→U P ′ Q eschews U

P | Q α−→U P ′ | Q
PAR2

Q
α−→U Q′ P eschews U

P | Q α−→U P | Q′

REACT
P

λ−→U1 P ′ Q
λ−→U2 Q′ P eschews U2 Q eschews U1

P | Q τ−→U1∪U2 P ′ | Q′

REP
P | !P α−→U P ′

!P
α−→U P ′

RES
P

α−→U P ′ if α /∈ {a, a}
(ν a)P

α−→U−{a,a} (ν a)P ′

SUM
Σi∈Iαi.Pi

aj−→ Pj

if j ∈ I

a : b.P | b.Q could evolve into P | Q however the system a : b.P | b.Q | a could
not evolve into P | Q | a as the presence of a prevents the execution of b and thus
the τ -action resulting from (b, b) communication. This capability of processes to test
the presence or the absence of a channel ready to be performed will be fundamental to
represent the test for zero in the encoding of RAMs in CCS−!ν

!+pr presented in the next
subsection. Transitions are determined by the rules in Table 4.

Convention 6. We write P
α−→∅ P ′ as P

α−→ P ′ (i.e., α is not constrained on of-
fers from the environment thus corresponding to a standard CCS! transition). Thus, the
notions of divergence and convergence for CCS−!ν

!+pr are obtained as in Definition 7 by

replacing
τ−→ with

τ−→∅.

7.2 Encoding RAMs in CCS−!ν
!+pr

A RAM can be seen as a program consisting of a finite sequence of instructions labeled
with numbers (1 : I1), (2 : I2) . . . , (m : Im) which modify the values of a finite set of
non-negative registers r1, . . . , rn. The instructions are either Incr(rj) which adds 1 to
the contents of register rj and goes to the next instruction, or DecJump(rj, l) which
tests the register rj value, if it is not zero then decreases it by 1 and goes to the next
instruction, otherwise jumps to instruction l.

A state of a RAM is given by (i, c1, . . . , cn) where i is the program counter indi-
cating the next instruction to be executed, and c1, . . . , cn are the current values of the
registers r1, . . . , rn (resp.). Given a program its computation proceeds by executing the
instructions as indicated by the program counter. The execution stops when the program
counter reaches the value m +1 where m is the label of the last instruction; in this case
we say that the program terminates.

The Encoding. A register rj with value cj (written rj : cj) is modeled by a correspon-
ding number of processes of the form uj .

254 J. Aranda, F.D. Valencia, and C. Versari

�(rj : cj)� =
cj∏

1

uj

The program counter is modeled with the absence of pi (i.e., the action pi is eschwed
by the encoding) indicating that the i-th instruction is the next to be executed. The initial
value of the program counter is 1 so by using

∏m+1
i=2 pi we indicate the absence of p1.

The increasing instruction is modelled with a process �(i : Incr(rj))� which is
guarded by a τ -action which is only performed when there is an absence of pi.

�(i : Incr(rj))� = !({pi} : τ.(pi | pi+1 | uj))

Once activated, the instruction increases the register rj by offering uj , and goes to
the next instruction by both disallowing the current one by offering pi and allowing the
next one by performing pi+1 so that pi+1 can be consumed.

The decreasing instruction is defined similarly. In addition we consider the absence
of uj to test for zero.

�(i : DecJump(rj, l))� =!({pi} : uj .(pi | pi+1))|!({pi, uj} : τ.(pi | pl))

The encoding of a RAM is given below. Without loss of generality we assume that
initially the RAM has all its registers set to zero and its program counter is 1.

Definition 13. Let R be a RAM with program instructions (1 : I1), . . . , (m : Im) and
registers r1, . . . , rn. We define its encoding into CCS−!ν

!+pr as:

�R� = (νp1, . . . , pm+1, u1, . . . , un)(
∏m

i=1�(i : Ii)� |
∏n

i=1�(ri : 0)� | ∏m
i=2 pi)

The correctness of the encoding is stated as follows (see the extended version [3]).

Theorem 7. Let R be a RAM with program instructions (1 : I1), . . . , (m : Im) and
registers r1, . . . , rn. Then, R terminates if and only if [[R]] converges. Furthermore, R
does not terminate if and only if [[R]] diverges.

As corollary we obtain that convergence and divergence are undecidable for CCS−!ν
!+pr.

8 Concluding Remarks and Related Work

The most closely related works are [7,8] and they were already discussed in the in-
troduction. In [12] the authors study replication and recursion in CCS focusing on the
role of restriction and name scoping. In particular they show that CCS! is equivalent to
CCS with recursion with static scoping. The standard CCS is shown to have dynamic
scoping precisely because the use of restriction within recursive definitions. However,
if no restriction appears within recursive expressions then there is no distinction be-
tween static and dynamic scoping. Hence, if no restriction is allowed within recursive
expressions then we know from [12] that CCS can be encoded in CCS!, without res-
triction under replication, while preserving and reflecting convergence. As for the other
direction, clearly νX.(P |X) behaves as !P . Nevertheless, if recursion is required to be
prefix guarded, it is not clear how to produce an encoding which preserves and reflects
convergence—without appealing to the decidability results for CCS! here presented.

On the Expressive Power of Restriction and Priorities in CCS with Replication 255

Consider e.g., E = νX.(P |α.X) and !P . If α = τ then E does not converge and !P
may—take P = a.0. If α
= τ then E may converge and !P may not—take P = τ.0.

The authors in [10] also pointed out the role of restriction in the expressiveness of
CCS. They showed that strong bisimilarity is decidable for restriction-free CCS, in
contrast with the undecidability result for CCS [18]. It is not clear to us how to relate
strong bisimilarity with convergence or failures equivalence.

The authors of [1] studied a fragment of the asynchronous π-calculus with restricted
forms of bound name generation. A closely related result in of [1] is the decidability
of the control reachability problem for restriction-free asynchronous π-calculus. This
implies the decidability of the same problem for the restriction-free fragment of asyn-
chronous CCS! (i.e., only 0 can be prefixed with an output action). It is not obvious how
to relate control reachability to failures equivalence or convergence. Also it is not clear
how to encode our CCS! fragment into restriction-free asynchronous CCS!.

In [13] a Petri net semantics is proposed for a subset of CCS without restriction
and with guarded choice. Also in [18] it was shown that the subset studied in [13] can
not be extended significantly. These works also presuppose guarded recursion in their
fragments which seem crucial for their Petri net constructions. We do not restrict our
Petri net construction to guarded sums. Furthermore, as explained above, it is not clear
how to translate CCS! into CCS with guarded recursion while preserving convergence.

In [20] the authors show the decidability of convergence for a restriction-free cal-
culus for the compositional description of chemical systems, called CFG which seems
closely related to CCS. The calculus, however, presupposes guarded summation and
guarded recursion and thus, as argued before, it is not clear how to encode CCS! into
such a calculus while preserving convergence.

In [17] it was shown that priorities add expressive power to CCS by modelling elec-
toral systems that cannot be modelled in CCS. Also [19] studies two process algebras
enriched with different priority mechanisms. The work reveals the gap between the two
prioritised calculi and the two non prioritised ones by modeling electoral systems. Both
works state the impossibility of the existence of an encoding subject to certain struc-
tural requirements such as homomorphism wrt parallel composition and name invari-
ance. Our derived impossibility result about the non-existence of convergent preserving
encodings makes no structural assumptions on the encodings. Finally, we claim that our
expressivity results involving priorities are also held by using other priority approaches
as they provide the capability of processes to know if another process is ready to per-
form a synchronisation on some channel or not.

Acknowledgments. We would like to thank Ian Phillips and Uwe Nestmann for insight-
ful discussions on the topics here studied. We are also grateful to Jorge A. Pérez and
the anonymous reviewers for their remarks and suggestions.

References

1. Amadio, R., Meyssonnier, C.: On decidability of the control reachability problem in the
asynchronous π−calculus. Nordic Journal of Computing 9(2) (2002)

2. Aranda, J., Giusto, C.D., Nielsen, M., Valencia, F.D.: CCS with replication in the chom-
sky hierarchy: The expressive power of divergence. In: Shao, Z. (ed.) APLAS 2007. LNCS,
vol. 4807, pp. 383–398. Springer, Heidelberg (2007)

256 J. Aranda, F.D. Valencia, and C. Versari

3. Aranda, J., Valencia, F., Versari, C.: On the expressive power of restriction and priorities in
ccs with replication. Technical report, l’École Polytechnique (2008), http://www.lix.
polytechnique.fr/Labo/Jesus.Aranda/publications/trccs.pdf

4. Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: Decidability of bisimulation equivalence for proc-
esses generating context-free languages. J. ACM 40(3), 653–682 (1993)

5. Borger, E., Gradel, E., Gurevich, Y.: The Classical Decision Problem. Springer, Heidelberg
(1994)

6. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential proc-
esses. Journal of the ACM 31(3), 560–599 (1984)

7. Busi, N., Gabbrielli, M., Zavattaro, G.: Replication vs. recursive definitions in channel based
calculi. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 133–144. Springer, Heidelberg (2003)

8. Busi, N., Gabbrielli, M., Zavattaro, G.: Comparing recursion, replication, and iteration in
process calculi. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004.
LNCS, vol. 3142, pp. 307–319. Springer, Heidelberg (2004)

9. Christensen, S.: Decidability and Decomposition in Process Algebras. PhD thesis, Edinburgh
University (1993)

10. Christensen, S., Hirshfeld, Y., Moller, F.: Decidable subsets of ccs. Comput. J. 37(4), 233–
242 (1994)

11. Esparza, J., Nielsen, M.: Decidability issues for petri nets. Technical report, BRICS RS-94-8
(1994)

12. Giambiagi, P., Schneider, G., Valencia, F.D.: On the expressiveness of infinite behavior and
name scoping in process calculi. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987,
pp. 226–240. Springer, Heidelberg (2004)

13. Goltz, U.: Ccs and petri nets. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 334–
357. Springer, Heidelberg (1990)

14. Hirshfeld, Y.: Petri nets and the equivalence problem. In: Meinke, K., Börger, E., Gurevich,
Y. (eds.) CSL 1993. LNCS, vol. 832, pp. 165–174. Springer, Heidelberg (1994)

15. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)
16. Minsky, M.: Computation: finite and infinite machines. Prentice-Hall, Englewood Cliffs

(1967)
17. Phillips, I.: Ccs with priority guards. J. Log. Algebr. Program. 75(1), 139–165 (2008)
18. Taubner, D.: Finite representation of CCS and TCSP programs by automata and Petri nets.

In: Taubner, D.A. (ed.) Finite Representations of CCS and TCSP Programs by Automata and
Petri Nets. LNCS, vol. 369. Springer, Heidelberg (1989)

19. Versari, C., Busi, N., Gorrieri, R.: On the expressive power of global and local priority in
process calculi. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703,
pp. 241–255. Springer, Heidelberg (2007)

20. Zavattaro, G., Cardelli, L.: Termination problems in chemical kinetics. In: van Breugel, F.,
Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 477–491. Springer, Heidelberg
(2008)

http://www.lix.polytechnique.fr/Labo/Jesus.Aranda/publications/trccs.pdf
http://www.lix.polytechnique.fr/Labo/Jesus.Aranda/publications/trccs.pdf

	On the Expressive Power of Restriction and Priorities in CCS with Replication
	Introduction
	The Calculi
	Convergence, Failures and Related Notions
	Some Basic Properties of Failures

	Decidability of Convergence in $CCS^{-!\nu}_{!}$
	Convergence-Invariant Properties in Fragments of $CCS^{-!\nu}_{!}$
	The Reduction to Petri Nets

	Decidability of Language Equivalence in $CCS^{-\nu}_{!}$
	Impossibility Results for Failure-Preserving Encodings in $CCS_{!}$, $CCS^{-!\nu}_{!}$ and $CCS^{-\nu}_{!}$
	Expressiveness of Priorities
	$CCS^{-!\nu}_{!+pr}$
	Encoding RAMs in $CCS^{!\nu}_{!+pr}

	Concluding Remarks and Related Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

