

Lecture Notes in Computer Science 5504
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Luca de Alfaro (Ed.)

Foundations
of Software Science and
Computational Structures

12th International Conference, FOSSACS 2009
Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2009
York, UK, March 22-29, 2009
Proceedings

13

Volume Editor

Luca de Alfaro
University of California
School of Engineering
Dept. of Computer Engineering
1156 High Street MS: SOE3, Santa Cruz, CA 95064, USA
E-mail: luca@soe.ucsc.edu

Library of Congress Control Number: 2009922287

CR Subject Classification (1998): F.3, F.1, F.4, D.3, D.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-00595-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-00595-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12632343 06/3180 5 4 3 2 1 0

Foreword

ETAPS 2009 was the 12th instance of the European Joint Conferences on The-
ory and Practice of Software. ETAPS is an annual federated conference that was
established in 1998 by combining a number of existing and new conferences. This
year it comprised five conferences (CC, ESOP, FASE, FOSSACS, TACAS), 22
satellite workshops (ACCAT, ARSPA-WITS, Bytecode, COCV, COMPASS,
FESCA, FInCo, FORMED, GaLoP, GT-VMT, HFL, LDTA, MBT, MLQA,
OpenCert, PLACES, QAPL, RC, SafeCert, TAASN, TERMGRAPH, and
WING), four tutorials, and seven invited lectures (excluding those that were spe-
cific to the satellite events). The five main conferences received 532 submissions
(including 30 tool demonstration papers), 141 of which were accepted (10 tool
demos), giving an overall acceptance rate of about 26%, with most of the con-
ferences at around 25%. Congratulations therefore to all the authors who made
it to the final programme! I hope that most of the other authors will still have
found a way of participating in this exciting event, and that you will all continue
submitting to ETAPS and contributing towards making it the best conference
on software science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2009 was organised by the University of York in cooperation with

� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST)

VI Foreword

and with support from ERCIM, Microsoft Research, Rolls-Royce, Transitive,
and Yorkshire Forward.

The organising team comprised:

Chair Gerald Luettgen
Secretariat Ginny Wilson and Bob French
Finances Alan Wood
Satellite Events Jeremy Jacob and Simon O’Keefe
Publicity Colin Runciman and Richard Paige
Website Fiona Polack and Malihe Tabatabaie.

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Vladimiro Sassone (Southampton, Chair), Luca de Alfaro (Santa Cruz), Roberto
Amadio (Paris), Giuseppe Castagna (Paris), Marsha Chechik (Toronto), Sophia
Drossopoulou (London), Hartmut Ehrig (Berlin), Javier Esparza (Munich), Jose
Fiadeiro (Leicester), Andrew Gordon (MSR Cambridge), Rajiv Gupta (Arizona),
Chris Hankin (London), Laurie Hendren (McGill), Mike Hinchey (NASA God-
dard), Paola Inverardi (L’Aquila), Joost-Pieter Katoen (Aachen), Paul Klint
(Amsterdam), Stefan Kowalewski (Aachen), Shriram Krishnamurthi (Brown),
Kim Larsen (Aalborg), Gerald Luettgen (York), Rupak Majumdar (Los Ange-
les), Tiziana Margaria (Göttingen), Ugo Montanari (Pisa), Oege de Moor (Ox-
ford), Luke Ong (Oxford), Catuscia Palamidessi (Paris), George Papadopoulos
(Cyprus), Anna Philippou (Cyprus), David Rosenblum (London), Don Sannella
(Edinburgh), João Saraiva (Minho), Michael Schwartzbach (Aarhus), Perdita
Stevens (Edinburgh), Gabriel Taentzer (Marburg), Dániel Varró (Budapest),
and Martin Wirsing (Munich).

I would like to express my sincere gratitude to all of these people and or-
ganisations, the Programme Committee Chairs and PC members of the ETAPS
conferences, the organisers of the satellite events, the speakers themselves, the
many reviewers, and Springer for agreeing to publish the ETAPS proceedings.
Finally, I would like to thank the Organising Chair of ETAPS 2009, Gerald
Luettgen, for arranging for us to hold ETAPS in the most beautiful city of York.

January 2009 Vladimiro Sassone, Chair
ETAPS Steering Committee

Preface

The present volume contains the proceedings of the 12th International Con-
ference on the Foundations of Software Science and Computations Structures
(FOSSACS) 2009, held in York, UK, March 22-25, 2009. FOSSACS is an event
of the Joint European Conferences on Theory and Practice of Software (ETAPS).
The previous 11 FOSSACS conferences took place in Lisbon (1998), Amsterdam
(1999), Berlin (2000), Genoa (2001), Grenoble (2002),Warsaw (2003), Barcelona
(2004), Edinburgh (2005), Vienna (2006), Braga (2007), and Budapest (2008).

FOSSACS presents original papers on foundational research with a clear sig-
nificance to software science. The Programme Committee (PC) invited submis-
sions on theories and methods to support analysis, synthesis, transformation and
verification of programs and software systems.

This proceedings volume contains 30 regular papers, as well as the abstracts
of two invited talks. The first invited talk, “Temporal Reasoning About Program
Executions”, was by Rajeev Alur, the FOSSACS 2009 invited speaker. The sec-
ond invited talk, “Facets of Synthesis: Revisiting Church’s Problem”, was by
Wolfgang Thomas, one of the two unifying ETAPS 2009 invited speakers.

We received 122 abstracts and 102 full paper submissions; of these, 30 were
selected for presentation at FOSSACS and inclusion in the proceedings. The
selection process was performed by the PC in the course of a two-week electronic
meeting. The PC members, and the external experts they consulted, wrote a total
of over 400 paper reviews, and the discussion phase of the meeting involved
several hundred messages. I was very impressed by the work done by the PC
members, and by the external experts, both before and during the PC meeting.
The competition was particularly fierce, and many good papers could not be
accepted.

We sincerely thank all the authors of papers submitted to FOSSACS 2009.
Moreover, we would like to thank the members of the PC for their excellent
job during the selection process, as well as all the sub-reviewers for the expert
help and reviews they provided. Through the phases of submission, evaluation,
and production of the proceedings we relied on the invaluable assistance of the
EasyChair system; we are very grateful to its developer Andrei Voronkov, and to
all its maintainers. Last but not least, we would like to thank the ETAPS 2009
Organizing Committee chaired by Gerald Luettgen and the ETAPS Steering
Committee chaired by Vladimiro Sassone for their efficient coordination of all
the activities leading up to FOSSACS 2009.

January 2009 Luca de Alfaro

Conference Organization

Programme Chair

Luca de Alfaro

Programme Committee

Parosh Abdulla Uppsala University
Roberto Amadio Paris Diderot University
Jos Baeten Eindhoven University of Technology
Lúıs Caires New University of Lisbon
Luca de Alfaro (Chair) UC Santa Cruz and Google
Javier Esparza Technical University of Munich
Kousha Etessami University of Edinburgh
Marcelo Fiore University of Cambridge
Cédric Fournet Microsoft Research
Dan Ghica University of Birmingham
Radha Jagadeesan DePaul University
Alan Jeffrey Bell Labs
Marcin Jurdziński University of Warwick
Naoki Kobayashi Tohoku University
Barbara König University of Duisburg-Essen
Ugo Montanari University of Pisa
Catuscia Palamidessi INRIA and École Polytechnique
Prakash Panangaden McGill University
Amir Pnueli New York University
Jean-François Raskin University of Brussels (ULB)
Grigore Rosu University of Illinois Urbana-Champaign
Davide Sangiorgi University of Bologna
Carolyn Talcott SRI International

External Reviewers

Suzana Andova
Jesus Aranda
Eugene Asarin
Philippe Audebaud
Gergei Bana
Massimo Bartoletti
Josh Berdine
Martin Berger

Nathalie Bertrand
Karthikeyan Bhargavan
Stefano Bistarelli
Simon Bliudze
Filippo Bonchi
Michele Boreale
Richard Bornat
Artur Boronat

X Organization

Patricia Bouyer
Tomas Brazdil
Franck van Breugel
Thomas Brihaye
Sander H.J. Bruggink
Roberto Bruni
Mikkel Bundgaard
Marzia Buscemi
Zining Cao
Felice Cardone
Krishnendu Chatterjee
Konstantinos Chatzikokolakis
Feng Chen
James Cheney
Yannick Chevalier
Pierre Clairambault
Hubert Comon-Lundh
Brendan Cordy
Ricardo Corin
Andrea Corradini
Véronique Cortier
Pieter Cuijpers
Deepak D’Souza
Arnaud da Costa
Vincent Danos
Stéphanie Delaune
Stéphane Demri
Josée Desharnais
Dino Distefano
Laurent Doyen
Steven Eker
Constantin Enea
Zoltan Esik
Marco Faella
John Fearnley
Jerome Feret
Gianluigi Ferrari
Carla Ferreira
Andrzej Filinski
Emmanuel Filiot
Riccardo Focardi
Wan Fokkink
Luca Fossati
Sibylle Froeschle
David de Frutos-Escrig

Andrew Gacek
Fabio Gadducci
Pierre Ganty
Simon Gay
Gilles Geeraerts
Raffaela Gentilini
Sonja Georgievska
Giorgio Ghelli
Sergio Giro
Gregor Gößler
Jens Chr. Godskesen
Andy Gordon
Alexey Gotsman
Jean Goubault-Larrecq
Davide Grohmann
Serge Haddad
Esfandiar Haghverdi
Jerry den Hartog
Masahito Hasegawa
Tobias Heindel
Lukas Holik
Hans Hüttel
Atsushi Igarashi
Kazuhiro Inaba
Yoshinao Isobe
Neil Jones
Raman Kazhamiakin
Bruce Kapron
Delia Kesner
Jeroen Ketema
Stefan Kiefer
Vijay Anand Korthikanti
Pavel Krcal
Jörg Kreiker
Steve Kremer
Jean Krivine
Ralf Kuesters
Alexander Kurz
Salvatore La Torre
James Laird
Yassine Lakhnech
Ivan Lanese
S�lawomir Lasota
Luciano Lavagno
Ranko Lazić

Organization XI

Jean-Jacques Levy
Alberto Lluch Lafuente
Christof Loeding
Michele Loreti
Dorel Lucanu
Denis Lugiez
Michael Luttenberger
Bas Luttik
Ian Mackie
Pasquale Malacaria
Louis Mandel
Giulio Manzonetto
Nicolas Markey
Jasen Markovski
Ian Mason
Thierry Massart
Richard Mayr
Guy McCusker
Annabelle McIver
Massimo Merro
Antoine Meyer
Marino Miculan
Dale Miller
Yasuhiko Minamide
Larry Moss
Till Mossakowski
Mohammad Reza Mousavi
Gopalan Nadathur
Uwe Nestmann
Zhaozhong Ni
Koki Nishizawa
Gethin Norman
Luke Ong
Simona Orzan
Luca Padovani
Miguel Palomino
Jochen Pfalzgraf
Andrew Phillips
Sylvan Pinsky
Nir Piterman
Andrei Popescu
Rosario Pugliese
Shaz Qadeer
Paola Quaglia

António Ravara
Michel Reniers
Tamara Rezk
Noam Rinetzky
Eike Ritter
Michal Rutkowski
Sylvain Salvati
Alexis Saurin
Lutz Schröder
Stefan Schwoon
Traian Serbanuta
Olivier Serre
Natalia Sidorova
Jakob Grue Simonsen
Alex Simpson
Anu Singh
Scott Smith
Pawel Sobocinski
Ian Stark
Kohei Suenaga
Eijiro Sumii
Andrzej Tarlecki
David Teller
Paul van Tilburg
Andrea Turrini
Nikos Tzevelekos
Frank Valencia
Hugo Vieira
Maria Grazia Vigliotti
Erik de Vink
Tomáš Vojnar
Oskar Wibling
Thomas Wilke
Hongseok Yang
Wang Yi
Anna Zaks
Eugen Zalinescu
Marina Zanella
Hans Zantema
Gianluigi Zavattaro
Sami Zhioua
Wieslaw Zie�lonka

Table of Contents

Invited Talks

Facets of Synthesis: Revisiting Church’s Problem . 1
Wolfgang Thomas

Temporal Reasoning about Program Executions . 15
Rajeev Alur

Semantics

Least and Greatest Fixpoints in Game Semantics . 16
Pierre Clairambault

Full Abstraction for Reduced ML . 32
Andrzej S. Murawski and Nikos Tzevelekos

Logics and Bisimulation Games for Concurrency, Causality and
Conflict . 48

Julian Gutierrez

Logics and Automata

Separating Graph Logic from MSO . 63
Timos Antonopoulos and Anuj Dawar

On the Completeness of Dynamic Logic . 78
Daniel Leivant

Dependency Tree Automata . 92
Colin Stirling

On Global Model Checking Trees Generated by Higher-Order Recursion
Schemes . 107

Christopher Broadbent and Luke Ong

Algebras

A Kleene Theorem for Polynomial Coalgebras . 122
Marcello Bonsangue, Jan Rutten, and Alexandra Silva

Coalgebraic Hybrid Logic . 137
Rob Myers, Dirk Pattinson, and Lutz Schröder

XIV Table of Contents

A Description of Iterative Reflections of Monads
(Extended Abstract) . 152

Jǐŕı Adámek, Stefan Milius, and Jǐŕı Velebil

Automata Theory

Tighter Bounds for the Determinisation of Büchi Automata 167
Sven Schewe

Lower Bounds on Witnesses for Nonemptiness of Universal Co-Büchi
Automata . 182

Orna Kupferman and Nir Piterman

Interrupt Timed Automata . 197
Beatrice Bérard and Serge Haddad

Parameter Reduction in Grammar-Compressed Trees 212
Markus Lohrey, Sebastian Maneth, and Manfred Schmidt-Schauß

Processes and Models

The Calculus of Handshake Configurations . 227
Luca Fossati and Daniele Varacca

On the Expressive Power of Restriction and Priorities in CCS with
Replication . 242

Jesús Aranda, Frank D. Valencia, and Cristian Versari

Normal Bisimulations in Calculi with Passivation . 257
Serguëı Lenglet, Alan Schmitt, and Jean-Bernard Stefani

Reactive Systems, Barbed Semantics, and the Mobile Ambients 272
Filippo Bonchi, Fabio Gadducci, and Giacoma Valentina Monreale

Security

On the Foundations of Quantitative Information Flow 288
Geoffrey Smith

Cryptographic Protocol Composition via the Authentication Tests 303
Joshua D. Guttman

Bisimulation for Demonic Schedulers . 318
Konstantinos Chatzikokolakis, Gethin Norman, and David Parker

Table of Contents XV

Probabilistic and Quantitative Models

On Omega-Languages Defined by Mean-Payoff Conditions 333
Rajeev Alur, Aldric Degorre, Oded Maler, and Gera Weiss

Minimal Cost Reachability/Coverability in Priced Timed Petri Nets 348
Parosh Aziz Abdulla and Richard Mayr

Delayed Nondeterminism in Continuous-Time Markov Decision
Processes . 364

Martin R. Neuhäußer, Mariëlle Stoelinga, and Joost-Pieter Katoen

Concurrency, σ-Algebras, and Probabilistic Fairness 380
Samy Abbes and Albert Benveniste

Synthesis

Synthesis from Component Libraries . 395
Yoad Lustig and Moshe Y. Vardi

Realizability of Concurrent Recursive Programs . 410
Benedikt Bollig, Manuela-Lidia Grindei, and Peter Habermehl

Program Analysis and Semantics

Beyond Shapes: Lists with Ordered Data . 425
Kshitij Bansal, Rémi Brochenin, and Etienne Lozes

Interprocedural Dataflow Analysis over Weight Domains with Infinite
Descending Chains . 440

Morten Kühnrich, Stefan Schwoon, Jǐŕı Srba, and Stefan Kiefer

Realizability Semantics of Parametric Polymorphism, General
References, and Recursive Types . 456

Lars Birkedal, Kristian Støvring, and Jacob Thamsborg

Author Index . 471

Facets of Synthesis: Revisiting Church’s Problem

Wolfgang Thomas

RWTH Aachen University, Lehrstuhl Informatik 7, Aachen, Germany
thomas@informatik.rwth-aachen.de

Abstract. In this essay we discuss the origin, central results, and some
perspectives of algorithmic synthesis of nonterminating reactive pro-
grams. We recall the fundamental questions raised more than 50 years
ago in “Church’s Synthesis Problem” that led to the foundation of the
algorithmic theory of infinite games. We outline the methodology devel-
oped in more recent years for solving such games and address related
automata theoretic problems that are still unresolved.

1 Prologue

The objective of “synthesis” is to pass from a specification to a program realizing
it. This is a central task in computer science, and – unfortunately or fortunately,
depending on the point of view – its solution cannot in general be automatized.
However, there are classes of specifications for which algorithmic synthesis is
possible. In the present paper we deal with a fundamental class of this kind,
the regular specifications for nonterminating reactive programs. In another ter-
minology, this amounts to the solution of infinite two-person games where the
winning condition is given by a regular ω-language. The central problem on these
games (Church’s Problem [4,5]) and the first solutions (Büchi and Landweber
[3], Rabin [22]) date back decades by now. Starting from this pioneering work,
the algorithmic theory of infinite games grew into a very active area of research,
and a fascinating landscape of models and algorithmic solutions is developing,
covering, for example, timed games, weighted games, games over infinite state
spaces, distributed games, stochastic games, concurrent games, and multiplayer
games. Rather than trying an overview of these areas we return in this paper to
the fundamentals. In an informal style addressing a general audience1, we dis-
cuss three issues. First, we recall the problem, its connection with infinite games,
and explain some of its historical context in mathematics (more precisely, set
theory). Then the main techniques for solving infinite games are outlined. Fi-
nally, we discuss some questions around the concept of uniformization that are
directly connected with the original problem and seem worth further study.

1 We assume, however, that the reader knows the basic concepts about automata and
logics over infinite words, like Büchi automata and monadic second-order logic over
the structure (N, +1); see [13] as a reference.

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 1–14, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 W. Thomas

2 Church’s Problem

An instance of the synthesis problem is the description of a desired relation
R(X,Y) between inputs X (say, from a domain D) and outputs Y (say, from
a domain D′). From the description of R we want to construct a program P ,
computing a function fP : D → D′ such that

∀X ∈ D R(X, fP(X))

At the “Summer Institute of Symbolic Logic” at Cornell in 1957, Alonzo Church
posed the following problem in [4] (see also [5]):

Given a requirement which a circuit is to satisfy, we may suppose the
requirement expressed in some suitable logistic system which is an exten-
sion of restricted recursive arithmetic. The synthesis problem is then to
find recursion equivalences representing a circuit that satisfies the given
requirement (or alternatively, to determine that there is no such circuit).

Church considers the case that the input X is an infinite sequence X0X1 . . .
of data (of a finite domain, we consider just bits in this paper) from which in an
on-line mode the output sequence Y = Y0Y1 . . . (again consisting of bits) has to
be generated. The desired program is here a “circuit” (which amounts to a finite
automaton); it has to produce the output bit Yi from the input bits X0 . . . Xi.

The relation R(X,Y) between inputs and outputs can be identified with an
ω-language LR. We associate with each pair (X,Y) = (X0X1X2 . . . , Y0Y1Y2 . . .)
of sequences the ω-word

X∧Y := X0Y0X1Y1X2Y2 . . .

and let LR = {X∧Y |R(X,Y)}. A relation R is called regular if the associated
ω-language LR is regular, i.e. definable by a Büchi automaton or by a monadic
second-order formula (MSO-formula) ϕ(X,Y) over the structure (N,+1). As
solutions we use finite automata with output, more precisely Mealy automata.
Over a finite state-space S and with input alphabet Σ1 and output alphabet Σ2,
a Mealy automaton is equipped with a transition function σ : S×Σ1 → S and an
output function τ : S×Σ1 → Σ2; in our case we setΣ1 = Σ2 = {0, 1}. Given such
an automaton A, the definition of the computed function fA : {0, 1}ω → {0, 1}ω
is obvious.

Let us state Church’s Problem in precise words for this case of MSO-definable
relations and programs in the format of Mealy automata. (Other cases will be
addressed later in this paper.)

Church’s Problem: Given an MSO-formula ϕ(X,Y), defining the relation
Rϕ ⊆ {0, 1}ω × {0, 1}ω, decide whether there is a Mealy automaton A
such that ∀XRϕ(X, fA(X)) holds and – if yes – construct such a Mealy
automaton from ϕ.

Facets of Synthesis: Revisiting Church’s Problem 3

A dozen years later, Büchi and Landweber [3] solved this problem; Rabin
[22] provided independently an alternative solution. The result established an
ideal scenario within computer science: For the MSO-definable specifications, we
can algorithmically check realizability, and we can in this case algorithmically
construct a program (more precisely, an automaton) realizing the specification.
In the context of construction of reactive systems, we view the Mealy automaton
provided by a solution as a finite-state controller that behaves correctly for any
behaviour of the environment as represented by input sequences. Since many
interesting specifications are in fact regular, this result has great potential for
practical applications. (One has to admit, however, that in order to realize this
potential more work is necessary regarding the computational complexity of the
algorithms involved.) Before we sketch the main ideas that enter the solution
of Church’s Problem, we introduce a simple connection of the problem with the
theory of infinite games and underlying motivations from set theory.

3 Infinite Games, Determinacy, and Set Theory

A treatment of Church’s Problem in the framework of infinite games was first
proposed by McNaughton in an unpublished technical report [17], based on work
of Gale and Stewart [12]. With each ω-language L ⊆ {0, 1}ω one associates an
infinite game G(L). (If L is regular, we say that the game G(L) is regular.) It
is played between two players. Due to the symmetry between them, we prefer
to name them Player 1 and Player 2 rather than “Input” and “Output”. The
players choose bits in alternation (where Player 1 starts), forming a sequence
� = X0Y0X1Y1X2Y2 . . . which is called “play” in this context. Player 2 wins the
play � if � ∈ L, otherwise Player 1 wins �. A strategy for Player 2 is a function f :
{0, 1}+ → {0, 1}, mapping a finite sequence X0X1 . . . Xi to the next chosen bit
Yi. A strategy f induces canonically a function fω : {0, 1}ω → {0, 1}ω mapping
a sequence X0X1 . . . to a sequence Y0Y1 . . . If for each sequence X0X1 . . . the
play X0Y0X1Y1 . . . resulting from applying f belongs to L, f is called winning
strategy for Player 2. So winning strategies capture the type of function that are
asked for in Church’s Problem (disregarding however the aspect of finite-state
computability). Analogously, one introduces strategies and winning strategies g
for Player 1. Now we have g : Y0 . . . Yi−1 �→ Xi, so g : {0, 1}∗ → {0, 1}. We
say that g is a winning strategy g for Player 1 if for each Y0Y1 . . . the sequence
X0Y0X1Y1 . . . obtained by applying g does not belong to L.

By this formulation one introduces some symmetry into the model, which is
not present in the formulation as given by Church. In the mathematical theory
of infinite games this symmetry is a dominating aspect. The main question in
the theory is the following problem: Given L, can we show that either Player
1 or Player 2 has a winning strategy? In this case one calls the game G(L)
determined. Determinacy is the dichotomy

∃ strategy f ∀X X∧fω(X) ∈ L ∨ ∃ strategy g ∀Y gω(Y)∧Y �∈ L

Determinacy may at first seem a superfluous aspect in the study of Church’s
Problem. It looks useless to know that a specification – say modeling the

4 W. Thomas

relation between a program and its environment – can either be realized by
the program or that the complement of it can be realized by the environment.
However, there are several good reasons to address determinacy. In this section
we discuss a first such motivation from set theory (and the reader not interested
in historical connections can skip this discussion). Later we treat also other uses
of determinacy.

Given an ω-language L, we consider a slightly modified game G∗(L), since
in this case the connection to set theory comes in very naturally. Here Player 1
picks finite sequences of bits (rather than single bits) when it is his turn, whereas
Player 2 stays with picking single bits. We write G∗∗(L) if both players pick finite
sequences of bits in each move (this is the so-called Banach-Mazur game).

Let us focus on G∗(L). Intuition tells us that for a “very large” set L it will be
much easier to guarantee a winning strategy for Player 2 than for a “very small”
set L. Now the question of comparing sizes of infinite sets is at the heart of
Cantor’s set theory. In fact, Cantor conjectured in his “Continuum Hypothesis”
CH a dichotomy: that each set L ⊆ {0, 1}ω is either “very small” (and he meant
“being at most countable” by this) or “very large” (meaning that its cardinality
is the same as that of the full space {0, 1}ω). Often, CH is formulated as the
claim that between the cardinalities |N| and |R| there are no further cardinalities;
since |{0, 1}ω| = |R|, this claim is equivalent to the one formulated above.

Cantor could not show this dichotomy – and today we know that CH is
indeed independent of the standard set theoretical assumptions as formulated
in the axiom system ZFC. However, the so-called Cantor-Bendixson Theorem
shows that CH is true at least for all “closed” sets L. A set L ⊆ {0, 1}ω is closed
if one can infer X ∈ L from the condition that infinitely many finite prefixes w
of X have an extension wZ in L. One calls L open if its complement L is closed.

Wenow state theCantor-BendixsonTheoremand see that it amounts to a game-
theoretic dichotomy, namely that for an open setL the gameG∗(L) is determined.
The statement of the theorem refers to a geometric view of the space {0, 1}ω, in
the sense that we consider {0, 1}ω as the set of all infinite paths through the binary
tree T2 (where 0 means “branch left” and 1 means “branch right”).

A pattern of paths as indicated in Figure 1 below we call tree copy; it is given
by infinitely many branching points (bullets in the figure), such that from each
of the two sons (circles in the figure) of a branching point, a finite path to a
next branching point exists. We say that a set L ⊆ {0, 1}ω allows a tree copy if

Fig. 1. A tree copy

Facets of Synthesis: Revisiting Church’s Problem 5

there is a tree copy such that each path passing through infinitely many of its
branching points belongs to L. Obviously a set L that allows a tree copy must
have the same cardinality as {0, 1}ω. Using this simplifying terminology (instead
of the official one involving “perfect sets”), the Cantor-Bendixson Theorem says:
Each closed set L is either at most countable or allows a tree copy.

Let us infer that for open K, the game G∗(K) is determined. By the Cantor-
Bendixson Theorem we know that L := K is either countable or allows a tree
copy. In the first case, Player 2 can apply a diagonalization method: He uses an
enumeration Z0, Z1, . . . of L and chooses his i-th bit in a way to make the result-
ing play different from Zi. Then the play will be outside L and hence inK, so this
is a winning strategy for Player 2 in G∗(K). In the second case, Player 1 refers
to the tree copy of L and chooses his bit sequences in a way to remain inside this
tree copy (he always moves “to the next branching point”). Then the play will
be in L and hence outside K, so this is a winning strategy for Player 1 in G∗(K).

For the games G(L), determinacy is not so easily connected with cardinalities
of sets. Nevertheless, topological notions (such as “open” and “closed”) are the
key for showing determinacy results. The fundamental result, due to Martin,
rests on the notion of Borel set: An ω-language is Borel if it can be built from
open and closed sets in an at most countable (possibly transfinite) sequence
of steps, where each single step consists of a countable union or a countable
intersection of already constructed sets. Martin’s Theorem now says that for a
Borel set L, the game G(L) is determined (see e.g. [16]). As will be explained
later, all regular games are Borel and hence determined.

For the Banach-Mazur games G∗∗(L), nice connections can again be drawn
to concepts of richness of sets (like “co-meager”); a recent in-depth analysis of
the determinacy problem is Grädel’s work [11].

4 Solving Infinite Games

In this section we give a very brief sketch of the techniques that enter (known)
solutions of Church’s Problem, using game-theoretic terminology. For a detailed
development see e.g. the tutorial [25].

4.1 From Logic to Games on Graphs

The start is a conversion of the originally logical problem into an automata
theoretic one, by a transformation of the given MSO-formula ϕ into an equiv-
alent ω-automaton. Here we apply the well-known results due to Büchi [2] and
McNaughton [18] that allow to convert an MSO-formula into an equivalent (non-
deterministic) Büchi automaton, and then a Büchi automaton into an equivalent
(deterministic) Muller automaton. 2 A Büchi automaton has a designated set F
of final states; and a run is accepting if some state of F occurs infinitely often in
2 It should be noted that in the early days of automata theory, the conversion of

regular expressions or logical formulas into automata was called “synthesis” and the
converse “analysis” (see e.g. the introction of [1]).

6 W. Thomas

it. The run of a Muller automaton with finite state set Q is accepting if the set
of states visited infinitely often in it belongs to a predefined collection F ⊆ 2Q

of state sets.
We can easily build this automaton in a way that the processing of letters Xi

contributed by Player 1 is separated from the processing of letters Yi contributed
by Player 2, in the sense that the state set Q is partitioned into two sets Q1 (from
where bits of Player 1 are read) and Q2 (from where bits of Player 2 are read).
Thus a run of the automaton switches back and forth between visits to Q1- and
to Q2-states. Since the acceptance of a play by the automaton refers only to the
visited states, we may drop the input- and output-letters for our further analysis
and identify a play with a state sequence through the automaton. The resulting
structure is also called game arena or game graph: We imagine that the two
Players 1 and 2 build up a path in alternation – Player 1 picks a transition from
a state in Q1, similarly Player 2 from a state in Q2. The winning condition (for
Player 2) is now no more a logic formula but a very simple requirement, namely
that the states visited infinitely often in a play form a set in the predefined
collection F . Referring to this “Muller winning condition”, we speak of a Muller
game over a finite graph G.

For solving Church’s Problem, it is now sufficient to decide whether for plays
beginning in the start state of the graph, Player 2 has a winning strategy, and
in this case to construct such a strategy in the form of a Mealy automaton. Due
to the deletion of the transition labels, the Mealy automaton now maps a finite
play prefix from Q∗ to a “next state” from Q. For a vertex v the play � starting
from v is won by Player 2 iff

for some F ∈ F : ∃ωi �(i) ∈ F ∧ ¬∃ωi �(i) �∈ F

(here ∃ω is the quantifier “there exist infinitely many”). From this form of the
winning condition it is easy to see that the set Lv of plays won by Player 2 from
v is Borel, and in fact a Boolean combination of countable intersections of open
sets. Hence the Muller game over G with start vertex v is determined.

We add some methodological remarks.

1. The main effect of this transformation is the radical simplification of the
winning condition from a possibly complex logical formula to the requirement
that a play visits certain states infinitely often and others only finitely often.
This simplification is made possible by distinguishing finitely many different
“game positions” in the form of the automaton states. As mentioned, we can
infer that a game as presented in Church’s Problem is determined. The cost
to be payed for this simplicity is the high number of states; it is known that
in the length of (MSO-) formulas this number grows at a rate that cannot
be bounded by an elementary function.

2. It should be noted that all known solutions of Church’s Problem involve
this reduction from logic to automata (or graphs). In model-checking, similar
remarks apply when the linear-time logic LTL is considered; on the other
hand, CTL-model-checking proceeds directly by an induction on formulas,
which is one reason for its efficiency. It would be interesting to know logics of

Facets of Synthesis: Revisiting Church’s Problem 7

substantial expressive power that allow a similar approach for the solution
of games.

3. The introduction of game graphs has another advantage: In modelling reac-
tive systems, it is usually convenient to describe the interaction between a
controller and its environment by a game graph, adding a specification in the
form of a winning condition (then as an ω-language over the respective state
set Q). In practice this winning condition may not be a Muller condition but
again an MSO-formula or LTL-formula ϕ, defining an ω-language L ⊂ Qω.
In this case one can also apply the above-mentioned transformation of ϕ into
a Muller automaton (call its state set S), obtaining a game graph over the
vertex set S ×Q, now together with a Muller condition (this condition just
refers to the S-components of visited states).

4.2 Parity Games

The direct solution of Muller games (as presented in the difficult original paper
[3]) is rather involved. It is helpful to pass to a different kind of game first, called
parity game, and then solve this parity game. As for the Muller winning condi-
tion, also the parity winning condition is a Boolean combination of statements
that certain states are visited infinitely often. But instead of a collection F of
state sets, a uniform coloring of vertices by a finite list of colors is used. We
take here natural numbers as colors. A play � is won by Player 2 iff the highest
color visited infinitely often during � is even. This amounts to the disjunction
over the following statements for all even i ≤ k: Color i is visited infinitely often
but each color j > i only finitely often. This winning condition was proposed
first by Mostowski [19], and it has a precursor in the “difference hierarchy” in
Hausdorff’s Grundzüge der Mengenlehre [14], introduced there to structure the
levels of the Borel hierarchy (see also [24]).

Technically, one reduces Muller games to parity games in the following sense:
For a game graph G and a collection F , defining a Muller winning condition,
one constructs a new graph G′ with an appropriate coloring c such that each
play � in G induces a corresponding play �′ in G′ with the following property:
Player 2 wins � under the Muller condition w.r.t. F iff Player 2 wins �′ under the
parity condition w.r.t. c. In the standard construction of G′, using the “latest
appearance record”, one introduces memory about the visited vertices ofG in the
order of their last visits. Thus a vertex of G′ is basically a permutation of vertices
in G (the leading entry being the current vertex of G); so the transformation
G �→ G′ involves a serious blow-up. However, the solution of parity games is much
easier than that of Muller games. In particular, memoryless winning strategies
suffice for the respective winner; i.e. strategies that do not involve memory on
the past of a play but just depend on the respective currently visited vertex.

As a preparation for the solution of parity games, one considers a very simple
winning condition, called reachability condition. We are given a set F of “target
vertices”, and Player 2 wins the play � if a vertex from F occurs in �. To solve
a reachability game means to compute those vertices v from which Player 2 has
a strategy to force a visit in F .

8 W. Thomas

This problem has a straightforward solution: Over the (finite) vertex set Q,
one computes, for i = 0, 1, 2, . . ., the set A2

i (F) of those states from which Player
2 can guarantee a visit in F within i steps. Obviously A2

0(F) = F , and we have
v ∈ A2

i+1(F) iff one of the two following cases holds:

– v ∈ Q2 and one edge connects v with a vertex in A2
i (F),

– v ∈ Q1 and each edge from v leads to a vertex in A2
i (F).

We have A2
0(F) ⊆ A2

1(F) ⊆ A2
2(F) . . . and set A2(F) =

⋃
iA

2
i (F); this set is

obtained at some stage i0. Clearly from each vertex in A2(F), Player 2 has a
winning strategy by taking edges which decrease the distance to F with each
step (and it is also easy to see that a memoryless strategy suffices). To show that
the construction is complete, we verify that from each vertex outside A2(F) the
other player (1) has a winning strategy. Thus we show that reachability games are
determined. This use of determinacy is a general method: To show completeness
of a game solution one verifies a determinacy claim.

How is this done for a reachability game? From the construction of the A2
i (F)

it is clear that for each v in the complement of A2(F) one of the following cases
holds:

– v ∈ Q2 \A2(F) and hence no edge leads from v to some A2
i (F); so each edge

from v leads to a vertex again outside A2(F),
– v ∈ Q1 \ A2(F) and hence not each edge leads from v to some A2

i (F); so
some edge from v leads to a vertex outside A2(F).

Clearly this yields a strategy for Player 1 to avoid visiting A2(F) from outside
A2(F), and hence to avoid visiting F ; so we have a winning strategy for Player 1.

The set A2(F) as constructed above for the set F is often called the “attractor
of F (for Player 2)”. As it turns out, an intelligent iteration of this construction
basically suffices also for the solution of parity games. The determinacy claim
even holds without the assumption that the game graph is finite: In a parity
game over the game graph G, for each vertex v one of the two players has a
memoryless winning strategy for the plays starting from v. If G is finite, one can
decide who wins and compute a memoryless winning strategy ([7]).

The idea to show this is by induction on the number of used colors, and the
rough course of the induction step is as follows: Let Q be the set of vertices and
W1 be the set of vertices from which Player 1 has a memoryless winning strategy.
We have to show that from each vertex in Q\W1, Player 2 has a memoryless win-
ning strategy. Consider the set Ck of vertices having the maximal color k. We as-
sume that k is even (otherwise one has to switch the players). The case Ck ⊆W1
gives us a game graph Q\W1 without color k; applying the induction hypothesis
to this set we easily get the claim. Otherwise consider Ck \W1 and define its
attractor A for Player 2, restricted to Q \W1. (For the case of an infinite game
graph, the inductive definition of A2(F) mentioned above has to be adapted,
involving a transfinite induction.) Now the vertex set Q \ (W1 ∪ A) defines a
game graph without color k, so by induction hypothesis there exists a division
into two sets U1, U2 from where Player 1, respectively Player 2 has a memoryless

Facets of Synthesis: Revisiting Church’s Problem 9

winning strategy. It turns out that U1 must be empty and that on A∪U2, which
is the complement of W1, Player 2 has a memoryless winning strategy.

Over finite game graphs, also the effectiveness claims can be shown; it is open
whether the decision who wins a parity game from a given vertex v is possible
in polynomial time.

5 Model-Checking and Tree Automata Theory

We have mentioned two motivations for the question of determinacy, a historical
one in set theory, and a technical one regarding the completeness of winning
strategies. In this section we address a third type of motivation, originating in
logic. In this case determinacy reflects the duality between “true” and “false”. We
indicate very briefly two kinds of application. Details can be found, e.g., in [13].

5.1 Model-Checking

Model-Checking is the task of evaluating a formula ϕ in a structure S. It is well-
known that the evaluation can be explained in terms of a finite game between
the players Proponent (aiming at showing truth of the formula) and Opponent
(aiming at the converse). The duality between the connectives ∨,∧ and between
the quantifiers ∃, ∀ is reflected in the rules: For example, when treating ϕ1 ∨ ϕ2
then Proponent picks one of ϕ1, ϕ2 for which the evaluation continues, and when
a formula ϕ1∧ϕ2 is treated, then Opponent picks one of ϕ1, ϕ2. Proponent wins
a play if it ends at an atomic formula which is true in S. Then S satisfies ϕ
iff in this finite “model-checking game” Proponent has a winning strategy (and
falsehood means that Opponent has a winning strategy).

The modal µ-calculus is a logic involving least and greatest fixed points rather
than quantifiers; the formulas are interpreted in transition graphs in the form
of Kripke structures. Even for finite Kripke structures, the appropriate model-
checking game turns out to be infinite, since the semantics depends on infinite
paths when fixed point operators enter. As first shown in [8], the model-checking
game for the µ-calculus is in fact a parity game; the game graph is a product
of the considered structure S and the collection SF(ϕ) of subformulas of the
given formula ϕ. Thus the open problem about polynomial time solvability of
the µ-calculus model-checking poblem reduces to the (again open) problem of
polynomial time solvability of parity games.

An extension of the µ-calculus model-checking game to a “quantitative µ-
calculus” was developed in [9].

5.2 Tree Automata

A very strong decidability result of logic is Rabin’s Tree Theorem, saying that
the MSO-theory of the infinite binary tree is decidable [21]. Rabin’s method for
showing this was a transformation of MSO-formulas (interpreted over the binary
tree T2) into finite tree automata working over labelled infinite trees (where
each node of T2 gets a label from a finite alphabet Σ). These tree automata are

10 W. Thomas

nondeterministic, and a run is a labelling of the input tree nodes with automaton
states such that a natural compatibility with the input tree and the automaton’s
transition relation holds. As acceptance condition for a given run one can require
that on each path of the run, a parity condition is satisfied. In this case we speak
of a parity tree automaton.

The main problem of this approach is to show complementation for parity tree
automata. For this the determinacy of parity games (in the version over infinite
game graphs) can be used. In fact, the acceptance of a labelled tree t by a parity
tree automaton A can be captured in terms of a parity game GA,t between
two players called “Automaton” and “Pathfinder”. The infinite game graph is
a kind of product of t and A. Then A accepts t iff Automaton has a winning
strategy in GA,t. The complementation proof (following [10]) starts with the
negation of the statement “A accepts t”, i.e. in game-theoretical terms with the
statement “Automaton does not have a (memoryless) winning strategy in GA,t”.
By memoryless determinacy of parity games, this means that Pathfinder has a
memoryless winning strategy in GA,t. From this winning strategy it is possible
to build (in fact, independently of the given tree t) a new tree automaton B as
the complement automaton for A.

There are further results that belong to the very tight connection between
infinite games and automata on infinite trees. In particular, the solution of parity
games over finite graphs is reducible to the emptiness problem for parity tree
automata and conversely.

Let us comment on the application of tree automata for the solution of games.
This use of tree automata appears in Rabin’s approach to Church’s Problem
(developed in [22]). The idea is to code a strategy of Player 2 by a labelling of
the nodes of the infinite binary tree: The root has no label, the directions left and
right represent the bits chosen by Player 1, and the labels on the nodes different
from the root are the bits chosen by Player 2 according to the considered strategy.
When Player 1 chooses the bits b0, . . . , bk, he defines a path to a certain node; the
label b of this node is then the next choice of Player 2. Now the paths through
a labelled tree t capture all plays that are compatible with Player 2’s strategy
coded by t. Using analogous constructions to those explained in Section 3 above,
one can build a parity tree automaton A that checks whether t codes a winning
strategy. Deciding non-emptiness of A thus allows to decide whether Player 2
wins the given game. By Rabin’s “Basis Theorem” we even know that in this
case some regular tree is accepted by A. This regular tree can then be interpreted
as a finite-state winning strategy for Player 2.

6 On Uniformization

A class R of binary relations R ⊆ D×D′ is uniformizable by functions in a class
F if for each R ∈ R there is a function f ∈ F such that

– the graph of f is contained in R,
– the domains of R and f coincide.

Facets of Synthesis: Revisiting Church’s Problem 11

D′

D

R

f

Fig. 2. Uniformization

Two well-known examples from recursion theory and from automata theory
are concerned with the recursively enumerable, respectively the rational rela-
tions; here we have the “ideal” case that the graphs of the required functions
are precisely of the type of the given relations.

Recall that a partial function from N to N is recursive iff its graph is recur-
sively enumerable. The Uniformization Theorem of recursion theory says that a
binary recursively enumerable relation R is uniformizable by a function whose
graph is again recursively enumerable, i.e. by a (partial) recursive function f . A
computation of f(x) works as follows: Enumerate R until a pair (y, z) is reached
with x = y, and in this case produce z as output.

A binary rational relation is defined (for instance) by a finite nondeterminis-
tic two-tape automaton that scans a given word pair (u, v) asynchronously, i.e.
with two reading heads that move independently from left to right over u, re-
spectively v. Rational relations are uniformizable by rational functions, defined
as the functions whose graph is a rational relation (see e.g. [6]).

Church’s Problem is a variant of the uniformization problem. It asks for the
decision whether an MSO-definable relation is uniformizable by a Mealy automa-
ton computable function. In the context of determinacy, the problem is extended
to the question whether for an MSO-definable relation R ⊆ {0, 1}ω × {0, 1}ω,
either R itself or the complement of its inverse is uniformizable by a Mealy
computable function.

There are numerous variants of this problem, either in the unilateral version
(as in Church’s Problem) or in the determinacy version. For both parameters,
the class R of relations and the class F of uniformizing functions, there are
several other interesting options.3

Let us first mention some natural classes of functions. A Mealy automaton
computable function f : {0, 1}ω → {0, 1}ω is continuous (in Cantor’s topology):
Each bit of f(X) only depends on a finite prefix of X . If the i-th bit of f(X)
only depends on X0, . . . , Xi then we call f causal. One can show that a function
is Mealy automaton computable iff it is causal and its graph is MSO-definable.

3 In the monograph [26] of Trakhtenbrot and Barzdin one finds an early account of
these matters.

12 W. Thomas

The proof rests on the equivalence between MSO-logic and finite automata over
finite words (the Büchi-Elgot-Trakhtenbrot-Theorem). Note that there are MSO-
definable functions that are not causal and not even continuous (a trivial example
is the function that maps a bit-sequence with infinitely many 1’s to 1ω and all
other sequences to 0ω).

A more restricted concept of MSO-definability refers to the fact that a strategy
f : {0, 1}+ → {0, 1} can be captured by the language

Lf := {X0 . . .Xi ∈ {0, 1}+ | f(X0 . . . Xi) = 1}
of finite words. We say that a strategy is MSO-definable if Lf is. For MSO-logic
this is compatible with the definition given above: A strategy f is MSO-definable
iff the graph of the associated causal function fω is MSO-definable.

A slightly more extended class of functions (over the causal ones) is given
by the condition that the i-th bit of f(X) only depends on the bits X0, . . . , Xj
where i < j and j − i ≤ k for some constant k; we then say that f is of delay
k. In game-theoretic terms, this means that Player 2 can lag behind Player 1
by k moves. The dual type of function g is called “shift k” (where the i-th bit
of g(Y) depends on Y0, . . . , Yj with j < i and i − j < k). It is not difficult to
show a determinacy result for MSO-definable relations by finite-state computable
functions of delay k, respectively shift k. Hosch and Landweber [15] proved the
interesting result that it is decidable whether for an MSO-definable relation the
associated game is won by Player 2 with a strategy of bounded delay (by some
k), and they also showed that in this case a finite-state winning strategy can be
constructed.

Not much is known about more general strategies. One natural option is to
consider strategies that induce functions f : {0, 1}ω → {0, 1}ω with linearly in-
creasing delay, respectively linearly increasing shift. A function of the first type is
the “division by 2” of sequences, mapping X0X1X2X3X4 . . . to X0X2X4 . . .; an
example of the second type is the “double function” X0X1 . . . �→ X0X0X1X1
Note that gsm-mappings (functions computable by generalized sequential ma-
chines) are finite-state computable functions of linearly increasing shift. These
functions seem interesting for uniformization or determinacy problems on more
general relations than the MSO-definable ones.

Regarding Church’s Problem for other classes of relations, let us first consider
relations that are first-order definable rather than MSO-definable. There are
two natural versions of first-order logic, denoted FO(+1) and FO(<), where in
brackets we exhibit the available arithmetical signature. (A technical point to be
mentioned is that we cannot pass from a relation R to the associated ω-language
LR as explained in Section 2, since the even and the odd positions of an ω-
sequence cannot be distinguished in FO(+1) and FO(<). So we consider a pair
(X,Y) of bit sequences as an ω-word (X0, Y0), (X1, Y1), . . . over the alphabet
{0, 1} × {0, 1}.) In [23], it was shown that a determinacy theorem holds for
the FO(+1)-, respectively the FO(<)-definable relations, and that appropriate
winning strategies exist which are again FO(+1)-, respectively FO(<)-definable.

There are also interesting logics for which the analogous result fails. We give
an example for the unilateral case as addressed in Church’s Problem. Consider

Facets of Synthesis: Revisiting Church’s Problem 13

Presburger arithmetic, the first-order theory of addition over N. We present a
formula ϕ(X,Y) of Presburger arithmetic such that in the game associated with
Rϕ there is a winning strategy for Player 2, however not a Presburger definable
one. First we write down in Presburger arithmetic a formula ϕsqu(X) which says
that X is the set Squ of squares (use the fact that the distances of successive
squares increase by 2). Now one invokes the fact that multiplication is FO-
definable in (N,+, Squ) ([20]). Hence also each arithmetical set is FO-definable
in (N,+, Squ); pick such a set M which is not recursive, and let ϕM (y) its FO-
definition in (N,+, Squ). Write ϕM (X, y) for the formula where the predicate
symbol for Squ is replaced by X . Now consider the following Presburger formula
over (N,+):

ϕ(X,Y) := (ϕsqu(X)→ ∀y(Y (y)↔ ϕM (X, y)))

Clearly there is a winning strategy for Player 2 in the game defined by ϕ, e.g.
with Y = M for arbitrary X . As the case X = Squ shows, the strategy f cannot
be recursive. Thus the language Lf coding f is not recursive, so it cannot be
Presburger definable.

It seems to this author that a comprehensive theory of effective determinacy
and uniformization over infinite words is only in its beginnings. Although this
question is raised from a theoretical point of view, results obtained in this re-
search are likely to be interesting also in the context of the synthesis of controllers
or reactive programs.

References

1. Büchi, J.R.: Weak second-order arihmetic and finite automata. Z. Math. Logik
Grundlagen Math. 6, 66–92 (1960)

2. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Nagel,
E., et al. (eds.) Proc. 1960 International Congress on Logic, Methodology and
Philosophy of Science, pp. 1–11. Stanford University Press (1962)

3. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Trans. Amer. Math. Soc. 138, 367–378 (1969)

4. Church, A.: Applications of recursive arithmetic to the problem of circuit synthesis.
In: Summaries of the Summer Institute of Symbolic Logic, vol. I, pp. 3–50. Cornell
Univ., Ithaca (1957)

5. Church, A.: Logic, arithmetic, and automata. In: Proc. Int. Congr. Math. 1962,
Inst. Mittag-Leffler, Djursholm, Sweden, pp. 23–35 (1963)

6. Eilenberg, S.: Automata, Languages, and Machines, vol. A. Academic Press, New
York (1974)

7. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus, and determinacy. In: Proc.
32nd FoCS 1991, pp. 368–377. IEEE Comp. Soc. Press, Los Alamitos (1991)

8. Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model checking for fragments of the
µ-calculus. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 385–396.
Springer, Heidelberg (1993)

9. Fischer, D., Grädel, E., Kaiser, L.: Model checking games for the quantitative µ-
Calculus. In: Albers, S., Weil, P. (eds.) Proc. STACS 2008, pp. 301–312 (2008)

10. Gurevich, Y., Harrington, L.: Trees, automata, and games. In: Proc. 14th ACM
Symp. on the Theory of Computing, pp. 60–65. ACM Press, New York (1982)

14 W. Thomas

11. Grädel, E.: Banach-Mazur games on graphs. In: Proc. FSTTCS 2008 (2008),
http://drops.dagstuhl.de/portals/FSTTCS08

12. Gale, D., Stewart, F.M.: Infinite games with perfect information. Ann. Math. Stud-
ies 28, 245–266 (1953)

13. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002)

14. Hausdorff, F.: Grundzüge der Mengenlehre, Leipzig (1914)
15. Hosch, F.A., Landweber, L.H.: Finite delay solutions for sequential conditions. In:

Nivat, M. (ed.) Proc. ICALP 1972, pp. 45–60. North-Holland, Amsterdam (1972)
16. Kechris, A.S.: Classical Descriptive Set Theory. Springer, New York (1995)
17. McNaughton, R.: Finite-state infinite games, Project MAC Rep., MIT, Cambridge,

Mass (September 1965)
18. McNaughton, R.: Testing and generating infinite sequences by a finite automaton.

Inf. Contr. 9, 521–530 (1966)
19. Mostowski, A.W.: Regular expressions for infinite trees and a standard form of

automata. In: Skowron, A. (ed.) SCT 1984. LNCS, vol. 208, pp. 157–168. Springer,
Heidelberg (1984)

20. Putnam, H.: Decidability and essential undecidability. JSL 22, 39–54 (1957)
21. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.

Trans. Amer. Math. Soc. 141, 1–35 (1969)
22. Rabin, M.O.: Automata on infinite objects and Church’s Problem. Amer. Math.

Soc., Providence (1972)
23. Rabinovich, A., Thomas, W.: Logical Refinements of Church’s Problem. In: Du-

parc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 69–83. Springer,
Heidelberg (2007)

24. Selivanov, V.: Fine hierarchies and Boolean terms. J. Smb. Logic 60, 289–317 (1995)
25. Thomas, W.: Solution of Church’s Problem: A tutorial. In: Apt, K., van Rooij, R.

(eds.) New Perspectives on Games and Interaction. Texts on Logic and Games,
vol. 5, pp. 211–236. Amsterdam Univ. Press

26. Trakhtenbrot, B.A., Barzdin, Y.M.: Finite Automata. Behavior and Synthesis.
North-Holland, Amsterdam (1973)

http://drops.dagstuhl.de/portals/FSTTCS08

Temporal Reasoning about Program Executions

Rajeev Alur

University of Pennsylvania

While temporal verification of programs is a topic with a long history, its tradi-
tional basis —semantics based on word languages— is ill-suited for modular rea-
soning about procedural programs. We address this inadequacy by defining the
semantics of procedural (potentially recursive) programs in terms of languages
of nested words and developing a framework for temporal reasoning around it.
This generalization has two benefits. First, this style of reasoning naturally uni-
fies Manna-Pnueli-style temporal reasoning with Hoare-style reasoning about
structured programs. Second, it allows verification of “non-regular” properties
of specific procedural contexts—for example, “if a procedure acquires a lock, then
the same invocation releases it before returning.” In this talk, we will first dis-
cuss the Nested Word Temporal Logic, a temporal logic for infinite nested words,
and argue that it is the “right” logic for temporal reasoning about procedural
programs based on theoretical results about decidability of the propositional
fragment and first-order expressive-completeness. Then, we will present, sound
and relatively complete, proof rules for a variety of classes of properties such as
local safety, local response, global safety, and staircase reactivity.

This talk is based on joint work reported in the following publications:

1. Adding nesting structure to words, full version under journal review (with
P. Madhusudan).

2. First-order and temporal logics for nested words, Logical Methods in Com-
puter Science (LMCS) 4(4: 11), 2008 (with M. Arenas, P. Barcelo, K. Etes-
sami, N. Immerman, and L. Libkin).

3. Temporal reasoning for procedural programs, Pennsylvania State University
Technical Report CSE-08-015, 2008 (with S. Chaudhuri).

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, p. 15, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Least and Greatest Fixpoints
in Game Semantics

Pierre Clairambault

PPS, Université Paris 7
pierre.clairambault@pps.jussieu.fr

Abstract. We show how solutions to many recursive arena equations
can be computed in a natural way by allowing loops in arenas. We then
equip arenas with winning functions and total winning strategies. We
present two natural winning conditions compatible with the loop con-
struction which respectively provide initial algebras and terminal coal-
gebras for a large class of continuous functors. Finally, we introduce an
intuitionistic sequent calculus, extended with syntactic constructions for
least and greatest fixed points, and prove it has a sound and (in a certain
weak sense) complete interpretation in our game model.

1 Introduction

The idea to model logic by game-theoretic tools can be traced back to the work
of Lorenzen [21]. The idea is to interpret a formula by a game between two
players O and P, O trying to refute the formula and P trying to prove it. The
formula A is then valid if P has a winning strategy on the interpretation of A.
Later, Joyal remarked [18] that it is possible to compose strategies in Conway
games [8] in an associative way, thus giving rise to the first category of games and
strategies. This, along with parallel developments in Linear Logic and Geometry
of Interaction, led to the more recent construction of compositional game models
for a large variety of logics [3,23,9] and programming languages [17,4,22,5].

We aim here to use these tools to model an intuitionistic logic with induction
and coinduction. Inductive/coinductive definitions in syntax have been defined
and studied in a large variety of settings, such as linear logic [6], λ-calculus
[1] or Martin-Löf’s type theory [10]. Motivations are multiple, but generally
amount to increasing the expressive power of a language without paying the
price of exponential modalities (as in [6]) or impredicativity (as in [1] or [10]).
However, less work has been carried out when it comes to the semantics of such
constructions. Of course we have the famous order-theoretic Knaster-Tarski fixed
point theorem [25], the nice categorical theory due to Freyd [12], set-theoretic
models [10] (for the strictly positive fragment) or PER-models [20], but it seems
they have been ignored by the current trend for intensional models (i.e. games
semantics, GoI . . .). We fix this issue here, showing that (co)induction admits a
nice game-theoretic model which arises naturally if one enriches McCusker’s [22]
work on recursive types with winning functions inspired by parity games [24].

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 16–31, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Least and Greatest Fixpoints in Game Semantics 17

In Section 2, we first recall the basic definitions of the Hyland-Ong-Nickau
setting of game semantics. Then we sketch McCusker’s interpretation of recursive
types, and show how most of these recursive types can be modelled by means
of loops in the arenas. For this purpose, we define a class of functors called
open functors, including in particular all the endofunctors built out of the basic
type constructors. We also present a mechanism of winning functions inspired by
[16], allowing us to build a category Gam of games and total winning strategies.
In section 3, we present µLJ , the intuitionistic sequent calculus with least and
greatest fixpoints that we aim to model. We briefly discuss its proof-theoretic
properties, then present its semantic counterpart: we show how to build initial
algebras and terminal coalgebras to most positive open functors. Finally, we use
this semantic account of (co)induction to give a sound and (weakly) complete
interpretation of µLJ in Gam.

2 Arena Games

2.1 Arenas and Plays

We recall briefly the now usual definitions of arena games, introduced in [17].
More detailed accounts can be found in [22,14]. We are interested in games with
two participants: Opponent (O, the environment) and Player (P, the program).
Possible plays are generated by directed graphs called arenas, which are semantic
versions of types or formulas. Hence, a play is a sequence of moves of the ambient
arena, each of them being annotated by a pointer to an earlier move — these
pointers being required to comply with the structure of the arena. Formally, an
arena is a structure A = (MA, λA,�A) where:

– MA is a set of moves,
– λA : MA → {O,P} × {Q,A} is a labelling function indicating whether a

move is an Opponent or Player move, and whether it is a question (Q) or an
answer (A). We write λOPA for the projection of λA to {O,P} and λQAA for
its projection on {Q,A}. λA will denote λA where the {O,P} part has been
reversed.

– �A is a relation between MA + {	} to MA, called enabling, satisfying:
• 	 � m =⇒ λA(m) = OQ;
• m �A n ∧ λQAA (n) = A =⇒ λQAA (m) = Q;
• m �A n ∧m �= 	 =⇒ λOPA (m) �= λOPA (n).

In other terms, an arena is a directed bipartite graph, with a set of distinguished
initial moves (m such that 	 �A m) and a distinguished set of answers (m such
that λQAA = A) such that no answer points to another answer. We now define
plays as justified sequences over A: these are sequences s of moves of A, each
non-initial move m in s being equipped with a pointer to an earlier move n in
s, satisfying n �A m. In other words, a justified sequence s over A is such that
each reversed pointer chain sφ(0) ← sφ(1) ← . . .← sφ(n) is a path on A, viewed
as a directed bipartite graph.

18 P. Clairambault

The role of pointers is to allow reopenings in plays. Indeed, a path on A may
be (slightly naively) understood as a linear play on A, and a justified sequence
as an interleaving of paths, with possible duplications of some of them. This
intuition is made precise in [15]. When writing justified sequences, we will often
omit the justification information if this does not cause any ambiguity. � will
denote the prefix ordering on justified sequences. If s is a justified sequence on
A, |s| will denote its length.

Given a justified sequence s on A, it has two subsequences of particular in-
terest: the P-view and O-view. The view for P (resp. O) may be understood as
the subsequence of the play where P (resp. O) only sees his own duplications.
In a P-view, O never points more than once to a given P-move, thus he must
always point to the previous move. Concretely, P-views correspond to branches
of Böhm trees [17]. Practically, the P-view �s� of s is computed by forgetting
everything under Opponent’s pointers, in the following recursive way:

– �sm� = �s�m if λOPA (m) = P ;
– �sm� = m if 	 �A m and m has no justification pointer;
– �s1ms2n� = �s�mn if λOPA (n) = O and n points to m.

The O-view �s� of s is defined dually. Note that in some cases — in fact if s
does not satisfies the visibility condition introduced below — �s� and �s� may
not be correct justified sequences, since some moves may have pointed to erased
parts of the play. However, we will restrict to plays where this does not happen.
The legal sequences over A, denoted by LA, are the justified sequences s on
A satisfying the following conditions:

– Alternation. If tmn � s, then λOPA (m) �= λOPA (n);
– Bracketing. A question q is answered by a if a is an answer and a points

to q. A question q is open in s if it has not yet been answered. We require
that each answer points to the pending question, i.e. the last open question.

– Visibility. If tm � s and m is not initial, then if λOPA (m) = P the justifier
of m appears in �t�, otherwise its justifier appears in �t�.

2.2 The Cartesian Closed Category of Innocent Strategies

A strategy σ on A is a prefix-closed set of even-length legal plays on A. A
strategy is deterministic if only Opponent branches, i.e. ∀smn, smn′ ∈ σ, n =
n′. Of course, if A represents a type (or formula), there are often many more
strategies on A than programs (or proofs) on this type. To address this issue we
need innocence. An innocent strategy is a strategy σ such that

sab ∈ σ ∧ t ∈ σ ∧ ta ∈ LA ∧ �sa� = �ta� =⇒ tab ∈ σ

We now recall how arenas and innocent strategies organize themselves into a
cartesian closed category. First, we build the product A × B of two arenas A
and B:

MA×B = MA +MB

λA×B = [λA, λB]
�A×B = �A + �B

Least and Greatest Fixpoints in Game Semantics 19

We mention the empty arena I = (∅, ∅, ∅), which will be terminal for the
category of arenas and innocent strategies. We mention as well the arena ⊥ =
(•, • �→ OQ, (, •)) with only one initial move, which will be a weak initial object.
We define the arrow A⇒ B as follows:

MA⇒B = MA +MB

λA⇒B = [λA, λB]

m �A⇒B n⇔

⎧⎪⎪⎨⎪⎪⎩
m �= 	 ∧m �A n
m �= 	 ∧m �B n
	 �B m ∧ 	 �A n
m = 	 ∧ 	 �B n

We define composition of strategies by the usual parallel interaction plus
hiding mechanism. If A, B and C are arenas, we define the set of interac-
tions I(A,B,C) as the set of justified sequences u over A, B and C such that
u�A,B ∈ LA⇒B , u�B,C ∈ LB⇒C and u�A,C ∈ LA⇒C . Then, if σ : A ⇒ B and
τ : B ⇒ C, we define parallel interaction:

σ||τ = {u ∈ I(A,B,C) | u�A,B ∈ σ ∧ u�B,C ∈ τ}

Composition is then defined as σ; τ = {u�A,C | u ∈ σ||τ}. It is associative and
preserves innocence (a proof of these facts can be found in [17] or [14]). We also
define the identity on A as the copycat strategy (see [22] or [14] for a definition)
on A ⇒ A. Thus, there is a category Inn which has arenas as objects and
innocent strategies on A⇒ B as morphisms from A to B. In fact, this category
is cartesian closed, the cartesian structure given by the arena product above and
the exponential closure given by the arrow construction. This category is also
equipped with a weak coproduct A+B [22], which is constructed as follows:

MA+B = MA +MB + {q, L,R}
λA+B = [λA, λB, q �→ OQ,L �→ PA,R �→ PA]

m �A+B n⇔

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
m,n ∈MA ∧m �A n
m, n ∈MB ∧m �B n
m = 	 ∧ n = q
(m = q ∧ n = L) ∨ (m = q ∧ n = R)
(m = L ∧ 	 �A n) ∨ (m = R ∧ 	 �B n)

2.3 Recursive Types and Loops

Let us recall briefly the interpretation of recursive types in game semantics, due
to McCusker [22]. Following [22], we first define an ordering � on arenas as
follows. For two arenas A and B, A�B iff

MA ⊆MB

λA = λB�MA

�A = �B ∩ (MA + {	} ×MA)

20 P. Clairambault

This defines a (large) dcpo, with least element I and directed sups given by
the componentwise union. If F : Inn → Inn is a functor which is continuous
with respect to �, we can find an arena D such that D = F (D) in the usual
way by setting D =

⊔∞
n=0 F

n(I). McCusker showed [22] that when the functors
are closed (i.e. their action can be internalized as a morphism (A ⇒ B) →
(FA⇒ FB)), and when they preserve inclusion and projection morphisms (i.e.
partial copycat strategies) corresponding to �, this construction defines minimal
invariants [12]. Note that the crucial cases of these constructions are the functors
built out of the product, sum and function space constructions.

We give now a concrete and new (up to the author’s knowledge) description of
a large class of continuous functors, that we call open functors. These include
all the functors built out of the basic constructions, and allow a rereading of
recursive types, leading to the model of (co)induction.

Open Arenas. Let T be a countable set of names. An open arena is an
arena A with distinguished question moves called holes, each of them labelled
by an element of T. We denote by �X the holes annotated by X ∈ T. We
will sometimes write �PX to denote a hole of Player polarity, or �OX to denote a
hole of Opponent polarity. If A has holes labelled by X1, . . . , Xn, we denote it
by A[X1, . . . , Xn]. By abuse of notation, the corresponding open functor we are
going to build will be also denoted by A[X1, . . . , Xn] : (Inn× Innop)n → Inn.

Image of Arenas. If A[X1, . . . , Xn] is an open arena and B1, . . . , Bn,
B′

1, . . . , B
′
n are arenas (possibly open as well), we build a new arena A(B1, B

′
1,

. . . , Bn, B
′
n) by replacing each occurrence of �PXi

by Bi and each occurrence of
�OXi

by B′
i. More formally:

MA(B1,B′
1,...,Bn,B′

n) = (MA \ {�X1 , . . . ,�Xn}) +
n∑
i=1

(MBi +MB′
i
)

λA(B1,B′
1,...,Bn,B′

n) = [λA, λB1 , λB′
1
, . . . , λBn , λB′

n
]

m �A(B1,B′
1,...,Bn,B′

n) p⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

m �A �PXi
∧ 	 �Bi p

m �A �OXi
∧ 	 �B′

i
p

	 �Bi m ∧�PXi
�A p

	 �B′
i
m ∧�OXi

�A p
m �Bi p
m �B′

i
p

m �A p
Note that in this definition, we assimilate all the moves sharing the same hole
label �Xi and with the same polarity. This helps to clarify notations, and is
justified by the fact that we never need to distinguish moves with the same hole
label, apart from when they have different polarity.

Image of Strategies. If A is an arena, we will, by abuse of notation, denote by
IA both the set of initial moves ofA and the subarena of A with only these moves.
Let A[X1, . . . , Xn] be an open arena, B′

1, B1, . . . , B
′
n, Bn and C′

1, C1, . . . , C
′
n, Cn

be arenas. Consider the application ξ defined on moves as follows:

Least and Greatest Fixpoints in Game Semantics 21

ξ(x) =
{�Xi if x ∈

⋃
i∈{1,...,n} (IB′

i
∪ IBi ∪ IC′

i
∪ ICi)

x otherwise

and then extended recursively to an application ξ∗ on legal plays as follows:

ξ∗(sa) =
{
ξ∗(s) if a is a non-initial move of Bi, B′

i, Ci or C′
i

ξ∗(s)ξ(a) otherwise

ξ∗ erases moves in the inner parts of B′
i, Bi, C

′
i, Ci and agglomerates all the

initial moves back to the holes. This way we will be able to compare the resulting
play with the identity on A[X1, . . . , Xn]. Now, if σi : Bi → Ci and τi : C′

i → B′
i

are strategies, we can now define the action of open functors on them by stating:

s ∈ A(σ1, τ1, . . . ,σn, τn)⇔

⎧⎨⎩
∀i ∈ {1, . . . , n}, s�Bi⇒Ci

∈ σi
∀i ∈ {1, . . . , n}, s�C′

i
⇒B′

i
∈ τi

ξ∗(s) ∈ idA[X1,...,Xn]

Proposition 1. For any A[X1, . . . , Xn], this defines a functor A[X1, . . . , Xn] :
(Inn× Innop)n → Inn, which is monotone and continuous with respect to �.

Proof (Proof sketch). Preservation of identities and composition are rather di-
rect. A little care is needed to show that the resulting strategy is innocent: this
relies on two facts: First, for each Player move the three definition cases are
mutually exclusive. Second, a P-view of s ∈ A(σ1, τ1, . . . ,σn, τn) is (essentially)
an initial copycat appended with a P-view of one of σi or τi, hence the P-view
of s determines uniquely the P-view presented to one of σi, τi or idA[X1,...,Xn].

Example. Consider the open arena A[X] = �X ⇒ �X . For any arena B, we
have A(B) = B ⇒ B and for any σ : B1 → C1 and τ : C2 → B2, we have
A(σ, τ) = τ ⇒ σ : (B2 ⇒ B1)→ (C2 ⇒ C1), the strategy which precomposes its
argument by τ and postcomposes it by σ.

Loops for Recursive Types. Since these open functors are monotone and
continuous with respect to �, solutions to their corresponding recursive equa-
tions can be obtained by computing the infinite expansion of arenas (i.e. infinite
iteration of the open functors). However, for a large subclass of the open func-
tors, this solution can be expressed in a simple way by replacing holes with a
loop up to the initial moves. Suppose A[X1, . . . , Xn] is an open functor, and i
is such that �Xi appears only in non-initial, positive positions in A. Then we
define an arena µXi.A as follows:

MµXi.A = (MA \�Xi)
λµXi.A = λA�MµXi.A

m �µXi.A n⇔
{
m �A n
m �A �Xi ∧ 	 �A n

A simple argument ensures that the obtained arena is isomorphic to the one
obtained by iteration of the functor. For this issue we take inspiration from

22 P. Clairambault

Laurent [19] and prove a theorem stating that two arenas are isomorphic in the
categorical sense if and only if their set of paths are isomorphic. A path in A
is a sequence of moves a1, . . . , an such that for all i ∈ {1, . . . , n − 1} we have
ai �A ai+1. A path isomorphism between A and B is a bijection φ between
the set of paths of A and the set of paths on B such that for any non-empty
path p on A, φ(ip(p)) = ip(φ(p)) (where ip(p) denotes the immediate prefix of
p). We have then the theorem:

Theorem 1. Let A and B be two arenas. They are categorically isomorphic if
and only if there is a path isomorphism between their respective sets of paths.

Now, it is clear by construction that, if A[X] is an open functor such that �X
appears only in non-initial positive positions in A, the set of paths of

⊔∞
n=0A

n(I)
and of µX.A are isomorphic. Therefore µX.A is solution of the recursive equation
X = A(X), and when A[X] is closed and preserves inclusions and projections,
µX.A defines as well a minimal invariant for A[X]. But in fact, we have the
following fact:

Proposition 2. If A[X] is an open functor, then it is closed and preserves in-
clusions and projections. Hence µX.A is a minimal invariant for A[X].

This interpretation of recursive types as loops preserves finiteness of the arena,
and as we shall see, allows to easily express the winning conditions necessary to
model induction and coinduction.

2.4 Winning and Totality

A total strategy on A is a strategy σ : A such that for all s ∈ σ, if there is a
such that sa ∈ LA, then there is b such that sab ∈ σ. In other words, σ has a
response to any legal Opponent move. This is crucial to interpret logic because
the interpretation of proofs in game semantics always gives total strategies: this
is a counterpart in semantics to the cut elimination property in syntax. To model
induction and coinduction in logic, we must therefore restrict to total strategies.
However, it is well-known that the class of total strategies is not closed under
composition, because an infinite chattering can occur in the hidden part of the
interaction. This is analogous to the fact that in λ-calculus, the class of strongly
normalizing terms is not closed under application: δ = λx.xx is a normal form,
however δδ is certainly not normalizable. This problem is discussed in [2,16] and
more recently in [7]. We take here the solution of [16], and equip arenas with
winning functions: for every infinite play we choose a loser, hence restricting to
winning strategies has the effect of blocking infinite chattering.

The definition of legal plays extends smoothly to infinite plays. Let LωA denote
the set of infinite legal plays over A. If s ∈ LωA, we say that s ∈ σ when for all
s � s, s ∈ σ. We write LA = LA+LωA. A game will be a pair A = (A,GA) where
A is an arena, and GA is a function from infinite threads on A (i.e. infinite legal
plays with exactly one initial move) to {W,L}. The winning function GA extends
naturally to potentially finite threads by setting, for each finite s:

Least and Greatest Fixpoints in Game Semantics 23

GA(s) =
{
W if |s| is even ;
L otherwise.

Finally, GA extends to legal plays by saying that GA(s) = W iff GA(t) = W for
every thread t of s. By abuse of notation, we keep the same notation for this
extended function. The constructions on arenas presented in section 2.2 extend
to constructions on games as follows:

– GA×B(s) = [GA,GB] (indeed, a thread on A×B is either a thread on A or a
thread on B) ;

– GA+B(s) = W iff all threads of s�A are winning for GA and all threads of s�B

are winning for GB .
– GA⇒B(s) = W iff if all threads of s�A are winning for GA, then GB(s�B) = W .

It is straightforward to check that these constructions commute with the ex-
tension of winning functions from infinite threads to potentially infinite legal
plays. We now define winning strategies σ : A as innocent strategies σ : A
such that for all s ∈ σ, GA(s) = W . Now, the following proposition is satisfied:

Proposition 3. Let σ : A ⇒ B and τ : B ⇒ C be two total winning strategies.
Then σ; τ is total winning.

Proof (Proof sketch.). If σ; τ is not total, there must be infinite s in their parallel
interaction σ||τ , such that s�A,C is finite. By switching, we have in fact |s�A |
even and |s�C | odd. Thus GA(s�A) = W and GC(s�C) = L. We reason then by
disjunction of cases. Either GB(s�B) = W in which case GB⇒C(s�B,C) = L and
τ cannot be winning, or GB(s�B) = L in which case GA⇒B(s�A,B) = L and σ
cannot be winning. Therefore σ; τ is total.

σ; τ must be winning as well. Suppose there is s ∈ σ; τ such that GA⇒C(s) = L.
By definition of GA⇒C , this means that GA(s�A) = W and GC(s�C) = L. By
definition of composition, there is u ∈ σ||τ such that s = u�A,C . But whatever
the value of GB(u�B) is, one of σ or τ is losing. Therefore σ; τ is winning.

It is clear from the definitions that all plays in the identity are winning. It is
also clear that all the structural morphisms of the cartesian closed structure
of Inn are winning (they are essentially copycat strategies), thus this defines a
cartesian closed category Gam of games and innocent total winning strategies.

3 Fixpoints

3.1 µLJ: An Intuitionistic Sequent Calculus with Fixpoints

Formulas. S ::= S ⇒ T | S ∨ T | S ∧ T | µX.T | νX.T | X | � | ⊥
A formula F is valid if for any subformula of F of the form µX.F ′,

(1) X appears only positively in F ′,
(2) X does not appear at the root of F ′ (i.e. X appears at least under a ∨ or a

⇒ in the abstract syntax tree of F ′).

24 P. Clairambault

(2) corresponds to the restriction to arenas where loops allow to express recursive
types, whereas (1) is the usual positivity condition. We could of course hack
the definition to get rid of these restrictions, but we choose not to obfuscate
the treatment for an extra generality which is neither often considered in the
literature, nor useful in practical examples of (co)induction.

Derivation Rules. We present the rules with the usual dichotomy.

Identity group

ax
A � A

Γ � A ∆,A � B
Cut

Γ,∆ � B

Structural group

Γ,A,A � B
C

Γ,A � B
Γ � B

W
Γ,A � B

Γ,A,B,∆ � C
γ

Γ,B,A,∆ � C

Logical group

Γ,A � B
⇒r

Γ � A⇒ B

Γ � A ∆,B � C
⇒l

Γ,∆,A⇒ B � C
⊥l

Γ,⊥ � A
�r

Γ � �

Γ � A Γ � B
∧r

Γ � A ∧B

Γ,A � C ←−∧l
Γ,A ∧B � C

Γ,B � C −→∧l
Γ,A ∧B � C

Γ � A ←−∨r
Γ � A ∨B

Γ � B −→∨r
Γ � A ∨B

Γ,A � C ∆,B � C
∨l

Γ,∆,A ∨B � C

Fixpoints

Γ � T [µX.T/X]
µr

Γ � µX.T
T [A/X] � A

µl
µX.T � A

T [νX.T/X] � B
νl

νX.T � B
A � T [A/X]

νr
A � νX.T

Note that the µl, νl and νr rules are not relative to any context. In fact,
the general rules with a context Γ at the left of the sequent are derivable from
these ones (even if, for µl and νr, the construction of the derivation requires an
induction on T), and we stick with the present ones to clarify the game model.
Cut elimination on the ⇒,∧,∨ fragment is the same as usual. For the reduction
of µ and ν, we need an additional rule to handle the unfolding of formulas. For
this purpose, we add a new rule [T] for each type T with free variables. This
method can already be found in [1] for strictly positive functors: no type variable
appears on the left of an implication. From now on, T [A/X] will be abbreviated

Least and Greatest Fixpoints in Game Semantics 25

T (A). This notation implies that, unless otherwise stated, X will be the variable
name for which T is viewed as a functor. In the following rules, X appears only
positively in T and only negatively in N :

Functors

A � B
[T]

T (A) � T (B)

A � B
[N]

N(B) � N(A)

The dynamic behaviour of this rule is to locally perform the unfolding. We give
some of the reduction rules. These are of two kinds: the rules for the elimination
of [T], and the cut elimination rules. Here are the main cases:

π

A � B
[T](X �∈ FV (T))

T � T

� ax
T � T

π

A � B
[X]

A � B

�
π

A � B

π

A � B
[N ⇒ T]

N(A) ⇒ T (A) � N(B) ⇒ T (B)

�

π

A � B
[N]

N(B) � N(A)

π

A � B
[T]

T (A) � T (B)
⇒l

N(A) ⇒ T (A),N(B) � T (B)
⇒r

N(A) ⇒ T (A) � N(B) ⇒ T (B)

π

A � B
[µY.T]

µY.T (A) � µY.T (B)

�

π

A � B
[T [µY.T (B)/Y]]

T (A)[µY.T (B)/Y] � T (B)[µY.T (B)/Y]
µr

T (A)[µY.T (B)/Y] � µY.T (B)
µl

µY.T (A) � µY.T (B)

We omit the rule for ν, which is dual, and for ∧ and ∨, which are simple pairing
and case manipulations. Note also that most of these cases have a counterpart
where T is replaced by negative N , which has the sole effect of π being a proof
of B � A instead of A � B in the expansion rules. With that, we can express the
cut elimination rule for fixpoints:

π1

Γ � T [µX.T/X]
µr

Γ � µX.T

π2

T [A/X] � A
µl

µX.T � A
Cut

Γ � A

�

26 P. Clairambault

π1

Γ � T [µX.T/X]

π2

T [A/X] � A
µl

µX.T � A
[T]

T [µX.T/X] � T [A/X]
Cut

Γ � T [A/X]

π2

T [A/X] � A
Cut

Γ � A

We skip once again the rule for ν, which is dual to µ. We choose consciously
not to recall the usual cut elimination rules nor the associated commutation
rules, since they are not central to our goals. µLJ , as presented above, does not
formally eliminate cuts since there is no rule to reduce the following (and its
dual with ν):

π1

T (A) � A
µl

µX.T � A
π2

Γ,A � B
Cut

Γ, µX.T � B
This cannot be reduced without some prior unfolding of the µX.T on the left.
This issue is often solved [6] by replacing the rule for µ presented here above by
the following:

T (A) � A Γ,A � B
µ′

Γ, µX.T � B
With the corresponding reduction rule, and analogously for ν. We choose here
not to do this, first because our game model will prove consistency without
the need to prove cut elimination, and second because we want to preserve the
proximity with the categorical structure of initial algebras / terminal coalgebras.

3.2 The Games Model

We present the game model for fixpoints. We wish to model a proof system,
therefore we need our strategies to be total. The base arenas of the interpretation
of fixpoints will be the arenas with loops presented in section 2.3, to which
we will adjoin a winning function. While the base arenas will be the same for
greatest and least fixpoints, they will be distinguished by the winning function:
intuitively, Player loses if a play grows infinite in a least fixpoint (inductive)
game, and Opponent loses if this happens in a greatest fixpoint (coinductive)
game. The winning functions we are going to present are strongly influenced by
Santocanale’s work on games for µ-lattices [24]. A win open functor is a functor
T : (Gam×Gamop)n → Gam such that there is an open functor T [X1, . . . , Xn]
such that for all games A1, . . . ,A2n of base arenas A1, . . . , A2n, the base arena
of T(A1, . . . ,A2n) is T (A1, . . . , An). In other terms, it is the natural lifting of
open functors to the category of games. By abuse of notation, we denote this by
T[X1, . . . , Xn], and T [X1, . . . , Xn] will denote its underlying open functor.

Least and Greatest Fixpoints in Game Semantics 27

Least Fixed Point. Let T[X1, . . . , Xn] be a win open functor such that �X1

appears only positively and at depth higher than 0 in T [X1, . . . , Xn]. Then we
define a new win open functor µX1.T[X2, . . . , Xn] as follows:

– Its base arena is µX1.T [X2, . . . , Xn] ;
– If A3, . . . ,A2n ∈ Gam, GµX1.T(A3,...,A2n)(s) =W iff

• There is N ∈ N such that no path of s takes the external loop more that
N times, and ;

• s is winning in the subgame inside the loop, or more formally:
GT(I,I,A3,...,A2n)(s�T(I,I,A3,...,A2n)) =W .

Greatest Fixed Point. Dually, if the same conditions are satisfied, we define
the win open functor νX1.T[X1, . . . , Xn] as follows:

– Its base arena is µX1.T [X2, . . . , Xn] ;
– If A3, . . . ,A2n ∈ Gam, GνX1.T(A3,...,A2n)(s) =W iff

• For any N ∈ N, there is a path of s crossing the external loop more than
N times, or ;

• s is winning in the subgame inside the loop, or more formally:
GT(I,I,A3,...,A2n)(s�T(I,I,A3,...,A2n)) =W .

It is straightforward to check that these are still functors, and in particular
win open functors. There is one particular case that is worth noticing: if T[X] has
only one hole which appears only in positive position and at depth greater than
0, then µX.T is a constant functor, i.e. a game. Moreover, theorem 1 implies
that it is isomorphic in Inn to T(µX.T). It is straightforward to check that this
isomorphism iT : T(µX.T) → µX.T is winning (it is nothing but the identity
strategy), which shows that they are in fact isomorphic in Gam. Then, one can
prove the following theorem:

Theorem 2. If T[X] has only one hole which appears only in positive position
and at depth greater than 0, then the pair (µX.T, iT) defines an initial algebra
for T[X] and (νX.T, i−1

T
) defines a terminal coalgebra for T[X].

Proof. We give the proof for initial alebras, the second part being dual. Let (A,σ)
another algebra of T[X]. We need to show that there is a unique σ† : µX.T ⇒ B
such that

T(µX.T)
T(σ†) ��

iT ��

T(B)
σ
��

µX.T
σ†

�� B

commutes. The idea is to iterate σ:

. . .
T
3(σ)�� T3(B)

T
2(σ) �� T2(B)

T(σ) �� T(B) σ �� B

28 P. Clairambault

and somehow to take the limit. In fact we can give a direct definition of σ†:

σ(1) = σ

σ(n+1) = Tn(σ); σ(n)

σ† = {s ∈ LµX.T⇒B | ∃n ∈ N∗, s ∈ σ(n)}

This defines an innocent strategy, since when restricted to plays of µX.T, these
strategies agree on their common domain. This strategy is winning. Indeed, take
an infinite play s ∈ σ†. Suppose s�µX.T

is winning. By definition of GµX.T, this
means that there is N ∈ N such that no path of s�µX.T

takes the external loop
more than N times. Thus, s ∈ LTn(I)⇒B. But this implies that s ∈ σ(n), and
σ(n) is a composition of winning strategies thus winning, therefore s is winning.
Moreover, σ† is the unique innocent strategy making the diagram commute:
suppose there is another f making this square commute. Since T(µX.T) and
µX.T have the same set of paths, iT is in fact the identity, thus we have T(f); σ =
f . By applying T and post-composing by σ, we get:

T2(f); T(σ); σ = T(f); σ = f

And by iterating this process, we get for all n ∈ N:

Tn+1(f); Tn(σ); . . . ; T(σ); σ = f

Thus:
Tn+1(f); σ(n) = f

Now take s ∈ f , and let n be the length of the longest path in s. Since T[X] has
no hole at the root, no path of length n can reach B in Tn+1(B), thus s ∈ σ(n),
therefore s ∈ σ†. The same reasoning also works for the other inclusion. Likewise,
if σ : B → T(B), we build a unique σ‡ : B → νX.T making the coalgebra diagram
commute.

3.3 Interpretation of µLJ

Interpretation of Formulas. As expected, we give the interpretation of valid
formulas. ��� = I �A⇒ B� = �A� ⇒ �B�

�⊥� = ⊥ �X� = �X
�A ∨B� = �A� + �B� �µX.T � = µX.�T �
�A ∧B� = �A�× �B� �νX.T � = νX.�T �

Interpretation of Proofs. As usual, the interpretation of a proof π of a sequent
A1, . . . , An � B will be a morphism �π� : �A1� × . . . × �An� −→ �B�. The
interpretation is computed by induction on the proof tree. The interpretation of
the rules of LJ is standard and its correctness follows from the cartesian closed
structure of Gam. Here are the interpretations for the fixpoint and functor rules:�

��
π

Γ � T [µX.T/X]
µr

Γ � µX.T

�
�� = �π�; i�T�

�
��

π

T [A/X] � A
µl

µX.T � A

�
�� = �π�†

Least and Greatest Fixpoints in Game Semantics 29

�
��

π

T [νX.T/X] � B
νl

νX.T � B

�
�� = i−1

�T�; �π�
�
��

π

A � T [A/X]
νr

A � νX.T

�
�� = �π�‡

�
��

π

A � B
[T]

T (A) � T (B)

�
�� = �T �(�π�)

We do not give the details of the proof that this defines an invariant of reduction.
The main technical point is the validity of the interpretation of the functor rule;
more precisely when the functor is a (least or greatest) fixpoint. Given that, we
get the following theorem.

Theorem 3. If π � π′, then �π� = �π′�.
In particular, this proves the following theorem which is certainly worth noticing,
because µLJ has large expressive power. In particular, it contains Gödel’s system
T [13].

Theorem 4. µLJ is consistent: there is no proof of ⊥.

Proof. There is no total strategy on the game ⊥.

Completeness. When it comes to completeness, we run into the issue that the
total winning innocent strategies are not necessarily finite, hence the usual de-
finability process does not terminate. Nonetheless, we get a definability theorem
in an infinitary version of µLJ . Whether a more precise completeness theorem is
possible is a subtle point. First, we would need to restrict to an adequate subclass
of the recursive total winning strategies (for example, the Ackermann function is
definable in µLJ). Then again, the problem to find a proof whose interpretation
is exactly the original strategy would be highly non-trivial: if σ : µX.T ⇒ A, we
have to guess an invariant B, a proof π1 of T (B) � B and a proof π2 of B � A
such that �π1�†; �π2� = σ. Perhaps it would be more feasible to look for a proof
whose interpretation is observationally equivalent to the original strategy, which
would be very similar to the universality result in [17].

4 Conclusion and Future Work

We have successfully constructed a games model of a propositional intuitionistic
sequent calculus µLJ with inductive and coinductive types. It is striking that the
adequate winning conditions on legal plays to model (co)induction are almost
identical to those used in parity games to model least and greatest fixpoints, to
the extent that the restriction of our winning condition to paths coincides exactly
with the winning condition used in [24]. It would be worthwile to investigate
this connection further: given a game viewed as a bipartite graph along with
winning conditions for infinite plays, under which assumptions can these winning
conditions be canonically lifted to the set of legal plays on this graph, viewed as
an arena? Results in this direction might prove useful, since they would allow to

30 P. Clairambault

import many game-theoretic results into game semantics, and thus programming
languages.

This work is part of a larger project to provide game-theoretic models to total
programming languages with dependent types, such as COQ or Agda. In these
settings, (co)induction is crucial, since they deliberately lack general recursion.
We believe that in the appropriate games setting, we can push the present results
further and model Dybjer’s Inductive-Recursive[11] definitions.

Acknowledgements. We would like to thank Russ Harmer, Stephane Gimenez
and David Baelde for stimulating discussions, and the anonymous referees for
useful comments and suggestions.

References

1. Abel, A., Altenkirch, T.: A predicative strong normalisation proof for a lambda-
calculus with interleaving inductive types. In: Coquand, T., Nordström, B., Dybjer,
P., Smith, J. (eds.) TYPES 1999. LNCS, vol. 1956, pp. 21–40. Springer, Heidelberg
(2000)

2. Abramsky, S.: Semantics of interaction: an introduction to game semantics. In:
Semantics and Logics of Computation, pp. 1–31 (1996)

3. Abramsky, S., Jagadeesan, R.: Games and full completeness for multiplicative lin-
ear logic. J. Symb. Log. 59(2), 543–574 (1994)

4. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full Abstraction for PCF. Info. &
Comp. (2000)

5. Abramsky, S., Kohei, H., McCusker, G.: A fully abstract game semantics for general
references. In: LICS, pp. 334–344 (1998)

6. Baelde, D., Miller, D.: Least and greatest fixed points in linear logic. In: Dershowitz,
N., Voronkov, A. (eds.) LPAR 2007. LNCS, vol. 4790, pp. 92–106. Springer, Hei-
delberg (2007)

7. Clairambault, P., Harmer, R.: Totality in Arena Games (submitted, 2008)
8. Conway, J.H.: On Numbers and Games. AK Peters, Ltd. (2001)
9. De Lataillade, J.: Second-order type isomorphisms through game semantics. Ann.

Pure Appl. Logic 151(2-3), 115–150 (2008)
10. Dybjer, P.: Inductive sets and families in Martin-Löfs Type Theory and their set-

theoretic semantics: An inversion principle for Martin-Lös type theory. Logical
Frameworks 14, 59–79 (1991)

11. Dybjer, P.: A general formulation of simultaneous inductive-recursive definitions
in type theory. J. Symb. Log. 65(2), 525–549 (2000)

12. Freyd, P.: Algebraically complete categories. In: Proc. 1990 Como Category Theory
Conference, vol. 1488, pp. 95–104. Springer, Heidelberg (1990)

13. Godel, K.: Über eine bisher noch nicht bentzte Erweiterung des finiten Standpunk-
tes. Dialectica (1958)

14. Harmer, R.: Innocent game semantics. Lecture notes (2004)
15. Harmer, R., Hyland, J.M.E., Melliès, P.-A.: Categorical combinatorics for innocent

strategies. In: LICS, pp. 379–388 (2007)
16. Hyland, J.M.E.: Game semantics. Semantics and Logics of Computation (1996)
17. Hyland, J.M.E., Ong, C.H.L.: On full abstraction for PCF: I, II, and III. Inf.

Comput. 163(2), 285–408 (2000)

Least and Greatest Fixpoints in Game Semantics 31

18. Joyal, A.: Remarques sur la théorie des jeux à deux personnes. Gaz. Sc. Math. Qu.
(1977)

19. Laurent, O.: Classical isomorphisms of types. Mathematical Structures in Com-
puter Science 15(5), 969–1004 (2005)

20. Loader, R.: Equational theories for inductive types. Ann. Pure Appl. Logic 84(2),
175–217 (1997)

21. Lorenzen, P.: Logik und Agon. Atti Congr. Internat. di Filosofia (1960)
22. McCusker, G.: Games and full abstraction for FPC. Inf. Comput. 160(1-2), 1–61

(2000)
23. Melliès, P.-A.: Asynchronous games 4: A fully complete model of propositional

linear logic. In: LICS, pp. 386–395 (2005)
24. Santocanale, L.: Free µ-lattices. J. Pure Appl. Algebra 168(2-3), 227–264 (2002)
25. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Jour-

nal of Mathematics 5(2), 285–309 (1955)

Full Abstraction for Reduced ML

Andrzej S. Murawski� and Nikos Tzevelekos

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Abstract. We present the first effectively presentable fully abstract
model for Stark’s Reduced ML, the paradigmatic higher-order program-
ming language combining call-by-value evaluation and integer-valued ref-
erences. The model is constructed using techniques of nominal game
semantics. Its distinctive feature is the presence of carefully restricted
information about the store in plays, combined with conditions concern-
ing the participants’ ability to distinguish reference names. This leads to
an explicit characterization of program equivalence.

1 Introduction

Reduced ML is a programming language introduced by Stark [22] as part of
his investigations into generative aspects of programming languages. It com-
bines higher-order functions with integer references and is defined simply by
extending the call-by-value λ-calculus with primitives for integer and reference
manipulation. Despite its economy, Reduced ML manages to embody several
important paradigms (imperative programming, functional programming, call-
by-value evaluation, scope extrusion), which makes it an attractive object for
theoretical study. On the other hand, research into it offers wide scope for appli-
cability, as Reduced ML is intimately related to Standard ML [15] and, in fact,
has been designed with faithfulness to the latter in mind.

The first steps in the semantic analysis of Reduced ML were taken by Stark,
who has identified a matching categorical framework and considered example
categories, albeit without a general full abstraction result1. Further progress was
possible with the arrival of game semantics [4,9,19]. Although the first papers
concerned call-by-name computation, attention soon turned to the call-by-value
framework [8,6]. In particular, Abramsky and McCusker presented a fully ab-
stract model for a language called RML [6], which is essentially Reduced ML ex-
tended with the “bad-variable” constructor mkvar. Its presence is a consequence
of adopting Reynolds’s principle of modelling references as objects with read
and write methods [21]. Thus, mkvar allows one to define terms of reference type
that need not correspond to actual memory locations. Unfortunately, this affects

� Supported by an EPSRC Advanced Research Fellowship (EP/C539753/1).
1 A denotational model of a programming language is fully abstract iff equality of

denotations coincides with program equivalence. Programs are equivalent iff they
can be used interchangeably without observable differences.

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 32–47, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Full Abstraction for Reduced ML 33

the induced notion of program equivalence, so the full abstraction result of [6]
does not apply to Reduced ML. More precisely, it can fail at types containing
occurrences of int ref. Typical counterexamples are the failures of equivalences
between x := !x and () (the terminating command), or between x := 1;x := 1 and
x := 1. In the former case the terms are inequivalent in RML, because x may
be instantiated with a mkvar-object whose reading or writing method diverges,
or causes side effects. Similarly, in the latter case, an assignment to a mkvar-
object might trigger a side effect that effectively allows one to count how many
assignments took place.

The “bad-variable” phenomenon, also present in the call-by-name setting, has
inspired subsequent developments in game semantics. It turned out that, in the
call-by-name framework, it could be circumvented by employing suitably crafted
(pre)orders on plays [14,18], but no result of this kind has been reported for
call-by-value. However, an alternative and general approach to dealing with bad
variables seems to have emerged in the form of nominal game semantics [10,2,23].
Nominal game semantics advocates a departure from Reynolds’s modelling rule
and stipulates that reference types be modelled by names rather than objects.
Using this approach, Laird showed a full abstraction result for a call-by-value
language λν! with storable names rather than integers [10]. λν! turns out more
expressive than Reduced ML in its ability to distinguish reference names and,
consequently, the obvious adaptation of the model to Reduced ML results in a
failure of full abstraction. This can be illustrated by the terms2

f : int ref → unit � letn1 = ref 0 in letn2 = ref 0 in ((fn1); (n2 := !n1);n2) : int ref.

and f : int ref → unit � letn = ref 0 in (fn);n : int ref, which are equivalent in Re-
duced ML, but inequivalent3 in λν!. This is because a λν!-context can detect the
difference between n1 from n2 by storing the names and subsequently comparing
them. In contrast, as our results confirm, the same effect cannot be achieved by
a context belonging to Reduced ML.

Previous research into ML-like languages has also produced fully abstract
game models for more significant extensions of Reduced ML, notably languages
with higher-order references [3,23]. The first of these models suffers from the
“bad-variable” problem outlined above. The second one, while adaptable to
Reduced ML, leans rather too heavily on quotienting in order to achieve full
abstraction (information on local state and store update is too explicit in the
intensional model and leads to substantial undesirable distinctions). Therefore,
it does not lead to an explicit characterization of program equivalence, which is
obtained in the present paper.

Our point of departure is the observation that, although a Reduced ML pro-
gram will in general not be able to keep track of all the names it encounters dur-
ing the course of interaction with another program, at any given execution point
there is a subset of such names that the program may have access to. In game
2 let x = M in N stands for the Reduced ML term (λx.N)M .
3 Strictly speaking, the terms are not in λν!, but the scenario can be easily recast in

λν! by replacing ref 0 with νn.n.

34 A.S. Murawski and N. Tzevelekos

semantics, using the notion of P-view, we can describe this set conservatively as
one consisting of names that occur in the current P-view as well as those that the
program created itself. We call such names P-available. Intuitively, whenever a
program returns a name, it will be P-available. A corresponding condition inside
our model will be called P-availability.

As a consequence, since a program cannot have access to reference names
that are not P-available, its immediate behaviour will be independent of the
associated values kept in the store, because the program is simply unable to
read them. This leads us to found our game model on justified sequences with
partial information about the store, restricted to P-available names. Note that
this form of representation also conveys the idea that the program might depend
on former (possibly outdated) values of currently unavailable references, recorded
when the references were still available.

Unfortunately, P-availability and partiality of store alone do not yet suffice to
establish a definability result. As our example demonstrates, a Reduced ML con-
text may be unable to distinguish some occurrences of names introduced by the
environment. In game semantics, we can capture this oversight in concrete terms:
two (occurrences of) such names are indistinguishable to the program iff they
have never occurred within the same P-view. Consequently, regardless of whether
such occurrences are the same or not, the program’s behaviour should remain
the same. We formalize this observation via a saturation condition, called blind-
ness, and show that any finitary strategy subject to all the conditions discussed
above is definable, i.e. is a denotation of a Reduced ML term. This naturally
leads to a fully abstract model via the usual intrinsic quotient construction.

To obtain a more accessible account of program equivalence we next examine
the structure of the quotient in more detail. Crucially, we observe that blind
strategies are determined uniquely by plays in which the environment provides
a fresh name each time the name cannot be related by the program to any
existing names. We call such plays strict. Then, by symmetrizing the model, we
eventually obtain an explicit characterization of equivalence: terms of Reduced
ML are equivalent iff they induce the same mutually strict complete protoplays
(complete plays where O plays only O-available names and in which stores are
restricted to mutually available names).

For example, each of the two terms introduced above generates the following
such plays

∗ n
(n1,0)
1 ∗(n1,k) n

(n2,k)
2 ,

where k ranges over the set of integers. Hence, the terms are indeed equivalent.

Notes. A long version with proofs is available from the authors’ webpages. We
are grateful to Jim Laird for email discussions.

2 Reduced ML

Reduced ML is the call-by-value λ-calculus over the ground types unit, int, int ref
augmented with basic commands (termination, divergence), primitives for inte-

Full Abstraction for Reduced ML 35

u, Γ � () : unit u, Γ � Ω : unit
i ∈ Z

u, Γ � i : int
l ∈ u

u, Γ � l : int ref
(x : θ) ∈ Γ
u, Γ � x : θ

u, Γ � M1 : int u, Γ � M2 : int
u, Γ � M1 ⊕ M2 : int

u, Γ � M : int u, Γ � N0 : θ u, Γ � N1 : θ
u, Γ � if M then N1 else N0 : θ

u, Γ � M : int ref
u, Γ � !M : int

u, Γ � M : int ref u, Γ � N : int
u, Γ � M :=N : unit

u, Γ � M : int
u, Γ � ref M : int ref

u, Γ � M : θ → θ′ u, Γ � N : θ
u, Γ � MN : θ′

u, Γ ∪ {x : θ} � M : θ′

u, Γ � λxθ.M : θ → θ′

Fig. 1. Syntax of Reduced ML

ger arithmetic (constants, zero-test, binary integer functions) and reference ma-
nipulation (locations, dereferencing, assignment, memory allocation). The typing
rules are given in Figure 1, where L stands for a countable set of locations, u for
a finite subset of L, and ⊕ for binary integer functions (e.g. +, −, ∗, =). Their
precise choice is to some extent immaterial: for the full abstraction argument
to hold it suffices to be able to compare integer variables with integer constants
and act on the result. The same can be said about the lack of recursion, which
can be added without affecting our results. Note that we did not include refer-
ence equality testing, because it is expressible [20]. For instance, one can define
eq : int ref → int ref → int as

λxint ref .λyint ref . let vx = ref !x in
let vy = ref !y in
let b = ref 0 in

(x := 0; y := 1; (if !x = 1 then b := 1 else ());x := !vx; y := !vy; !b)

In the above and in what follows, we write M ;N for the term (λzθ.N)M , where
z does not occur in N and θ matches the type of M .

To define the operational semantics of Reduced ML, we need to introduce a
notion of store. A store will simply be a function from a finite set of locations to
Z. We write s(l �→ i) for the store obtained by updating s so that l is mapped
to i (this may extend the domain of s). Given a store s : {l1, · · · , ln} → Z and
a term M we say that the pair (s,M) is compatible iff all locations occurring in
M are from {l1, · · · , ln}. We say that a term is canonical if it is either (), an
integer constant, a location, a variable or a λ-abstraction. The big-step reduction
rules are given as judgements of the shape s,M ⇓ s′, V , where (s,M), (s′, V) are
compatible, dom s ⊆ dom s′ and V is canonical. We present them in Figure 2,
where we let l range over locations. Most rules take the form

M1 ⇓ V1 M2 ⇓ V2 · · · Mn ⇓ Vn
M ⇓ V

which is meant to abbreviate

s1,M1 ⇓ s2, V1 s2,M2 ⇓ s3, V2 · · · sn,Mn ⇓ sn+1, Vn
s1,M1 ⇓ sn+1, V

.

36 A.S. Murawski and N. Tzevelekos

V is canonical
s, V ⇓ s, V

M ⇓ 0 N0 ⇓ V
if M thenN1 else N0 ⇓ V

i �= 0 M ⇓ i N1 ⇓ V
if M thenN1 else N0 ⇓ V

M1 ⇓ i1 M2 ⇓ i2
M1 ⊕ M2 ⇓ i1 ⊕ i2

M ⇓ λx.M ′ N ⇓ V ′ M ′[V ′/x] ⇓ V
MN ⇓ V

s,M ⇓ s′, i l �∈ dom s′

s, ref M ⇓ s′(l �→ i), l
s, M ⇓ s′, l s′(l) = i

s, !M ⇓ s′, i
s, M ⇓ s′, l s′, N ⇓ s′′, i
s, M :=N ⇓ s′′(l �→ i), ()

Fig. 2. Big-step operational semantics of Reduced ML

In particular, this means that the ordering of the hypotheses is significant. We
shall write Γ �M : θ iff ∅, Γ �M : θ can be derived using the rules of Figure 1.
Similarly, �M : θ is shorthand for ∅, ∅ �M : θ. Given �M : unit we write M ⇓
iff ∅,M ⇓ s, () for some store s.

Definition 1. We say that the term-in-context Γ �M1 : θ approximates Γ �
M2 : θ (written Γ �M1�∼M2) iff C[M1] ⇓ implies C[M2] ⇓ for any context C[−]
such that � C[M1], C[M2] : unit. Two terms-in-context are equivalent if one
approximates the other (written Γ �M1 ∼= M2).

The only difference between our definition of Reduced ML and Stark’s is the
presence of Ω, the divergent constant without a reduction rule. Thanks to it,
we can define �∼ and reason about ∼= in a more concise way. At the same time,
program equivalence of Ω-free Reduced ML terms remains unaffected, because
C[M] ⇓, where M is Ω-free, is equivalent to ∅, C′[M] ⇓ s′, 0 where C′[−] ≡
letx = ref 0 inC[x := 1/Ω][M]; !x and s′ is a state.

3 Nominal Game Semantics

We begin this section with a brief review of the fundamentals of nominal game
semantics [2,11,24]. Let us fix a countably infinite set A, the set of atoms, the
elements of which we denote by a, b, c, n and variants. In nominal game semantics
two participants play a game by exchanging moves that might involve atoms.
However, when employing such moves, we are not interested in what exactly
the names are, though we would like to know how they relate to names that
have already been in play. Hence, the objects of study are rather the induced
equivalence classes with respect to name-invariance. Since we want all game-
semantic notions and constructions to be compatible with name-invariance, their
obvious adaptations would repeatedly have to include conditions that enforce
closure under name-renamings. Fortunately, this overhead can be dealt with
robustly using the language of nominal set theory [7].

Definition 2. Let us write PERM(A) for the group of finite permutations of
A. A nominal set X is a set |X | (usually written X) equipped with a group

Full Abstraction for Reduced ML 37

action of PERM(A)4. Moreover, each x ∈ X must have finite support, that is,
there exists a finite set S ⊆ A such that, for all permutations π, (∀a ∈ S. π(a) =
a) =⇒ π · x = x.

Finite support is closed under intersection, and hence each element x of a nominal
set has a least support ν(x), which we call the support of x. Intuitively, ν(x)
is the set of names “involved” in x. Accordingly, we say that a is fresh for x
if a /∈ ν(x). Clearly, A is a nominal set by taking π · a = π(a), for each π and
a. More interestingly, so is the set A∗ of finite lists of atoms with permutations
acting elementwise. IfX and Y are nominal sets then so is their cartesian product
X×Y , with permutations acting componentwise, and their disjoint union X�Y .
Moreover, X ′ ⊆ X is a nominal subset of X if X ′ is closed under permutation
actions, these acting as on X . Then we can define R ⊆ X × Y to be a nominal
relation iff R a nominal subset of X×Y . A nominal function is a function which
is also a nominal relation.

In game semantics a particular strengthening of the notion of support, called
strong support, has turned out necessary to guarantee correct behaviour under
strategy composition (see [24] for motivation and a detailed explanation of its
significance). Here we consider an even stronger notion of support, one in which
the support of each element can be linearly ordered in a canonical, nominal
manner. A nominal set X is called a linear nominal set if, for each element
x of X , there exists a linear order <x on ν(x) such that, for all a, b ∈ A, a <x b
implies π(a) <π·x π(b) for any permutation π 5. It is easy to check that all el-
ements in a linear nominal set have strong support. For example, the nominal
set A∗ is linear, whereas Pfin(A) is not. A nominal subset of a linear nominal
set is itself linear. Moreover, by straightforward manipulations of the orderings
available for linear X,Y we can render the nominal sets X × Y and X � Y
linear.

Finally, in nominal sets we can define atom-abstractions. The form of ab-
straction we will be using is that of complete support abstraction, that is, for a
nominal set X and x ∈ X , we define [x] to be {y ∈ X | ∃π. y = π · x}.

3.1 Nominal Arenas

Here we present nominal arenas (and prearenas), which are essentially the call-
by-value arenas of Honda and Yoshida [8] cast inside the theory of nominal sets.

Definition 3. An arena A = (MA, IA,�A, λA) is given by:

– a linear nominal set MA of moves,
– a nominal subset IA ⊆MA of initial moves,
– a nominal justification relation �A⊆MA × (MA \ IA),
– a nominal labelling function λA : MA → {O,P} × {Q,A} ;

4 A group action of PERM(A) on X is a function · : PERM(A) × X → X such
that, for all x ∈ X and π, π′ ∈ PERM(A), π · (π′ · x) = (π ◦ π′) · x and id · x = x,
where id is the identity permutation.

5 Equivalently, the relation {(a, b, x) | a, b ∈ A, x ∈ X, a <x b} is nominal.

38 A.S. Murawski and N. Tzevelekos

satisfying, for each m,m′ ∈MA, the conditions:

– m ∈ IA =⇒ λA(m) = (P,A) ,
– m �A m′ ∧ λQAA (m) = A =⇒ λQAA (m′) = Q ,
– m �A m′ =⇒ λOPA (m) �= λOPA (m′) .

The role of λA is to label moves as Opponent or Proponent moves and as Ques-
tions or Answers. The simplest arena is 0 = (∅, ∅, ∅, ∅). Other “flat” arenas are
1, Z and A, defined by M1 = I1 = {∗}, MZ = IZ = Z, MA = IA = A.

We take advantage of the following constructions on arenas. By ĪA we denote
MA \ IA, by λ̄A the OP -complement of λA; iA and iB range over initial moves
in the respective arenas.

MA⊗B = (IA × IB) � IA � IB
IA⊗B = IA × IB
λA⊗B = [((iA, iB), PA), λA 	 IA, λB 	 IB]
�A⊗B = {((iA, iB),m) | iA �A m or iB �B m} ∪ (�A	 IA

2
) ∪ (�B	 IB

2
)

MA⇒B = {∗} � IA � IA �MB

IA⇒B = {∗}
λA⇒B = [(∗, PA), (iA, OQ), λ̄A 	 IA, λB]
�A⇒B = {(∗, iA), (iA, iB)} ∪ �A ∪ �B

The types of Reduced ML will be interpreted by arenas in the following way:
�unit� = 1, �int� = Z, �int ref� = A and �θ1 → θ2� = �θ1�⇒ �θ2�. Although types
are interpreted by arenas, the actual games will be played in prearenas, which
are defined in the same way as arenas with the exception that initial moves are
O-questions. For given arenas A,B we can construct a prearena A→ B by

MA→B =MA �MB λA→B = [(iA, OQ) ∪ (λ̄A 	 IA) , λB]
IA→B = IA �A→B = {(iA, iB)}∪ �A ∪ �B .

Typing judgements Γ � θ, where Γ = {x1 : θ1, · · · , xn : θn}, will eventually be
interpreted by strategies for the prearena �θ1� ⊗ · · · ⊗ �θn� → �θ� (if n = 0 we
take the left-hand side to be 1), which we shall denote by �Γ � θ�.

3.2 Plays

Analogously to the definition of store in Section 2, in this section a store will be
a partial function S : A ⇀ Z such that domS is finite.

A basic justified sequence in a prearena A is a finite sequence s of moves of
A satisfying the following conditions: the first move must be initial, but all other
moves m must be equipped with a pointer to an earlier occurrence of another
move m′ such that m′ �A m (we then say that m′ justifies m; if m is an answer,
we might also say that m answers m′). A justified sequence in A is a basic
justified sequence s in which each move is, in addition, decorated with a store to
yield a move-with-store, typically denoted by mS . Given a justified sequence s,

Full Abstraction for Reduced ML 39

we write s for the underlying basic justified sequence. It should be clear that,
similarly to the set of finite sequences of moves, the set of justified sequences can
be viewed as a (not necessarily linear) nominal set with permutations preserving
the pointer structure, but acting on moves as in A and on stores by permuting
the domain.

Below we define the notions of O-view �s� and P-view �s� of a justified
sequence, using o and p to range over O-moves and P-moves respectively. We
write s′ � s if s′ is a prefix of s and use �even if s′ is of even length.

�ε� = ε �ε� = ε
�s oS� = �s� oS �s pS� = �s� pS

�s oS t pS′ � = �s� oSpS′ �s pS t oS′ � = �s� pSoS′

A name in s is said to be introduced by player X (X ∈ {O,P}) iff its first
occurrence in s is in (the support of) an X-move. Names introduced by X in s
will be referred to as X-names in s and denoted with X(s). We define the set
AvX(s) of X-available names after s by:

AvO(s) = O(s) ∪ ν(�s�) AvP(s) = P(s) ∪ ν(�s�) .

Definition 4. A justified sequence is legal iff it satisfies the following conditions.

Alternation. No two adjacent moves belong to the same player.
Bracketing. The justifier of each answer is the most recent unanswered ques-

tion.
Visibility. For any tmS � s, the justifier of m is in �tmS� if m is an O-move

and in �tmS� otherwise.
Frugality. For any tmS � s, domS ⊆ ν(tmS).

The set of legal justified sequences will be denoted by LA.

Note that legal sequences contain those of [11]. Because of frugality, the support
of a legal sequence is that of its underlying basic sequence, and therefore LA is
a linear nominal set. Our model will be based on still more restrictive plays.

Definition 5. A legal sequence s is a play iff it satisfies the following two
conditions.

P-availability. For each s′pS �even s and any a ∈ A, if a ∈ ν(p) ∩ ν(s′) then
a ∈ AvP(s′).

P-storage. For any s′mS � s, domS = AvP(s′mS).

The set of plays over prearena A will be denoted by PA.

Note that the two conditions are biased towards P. Equivalently, P-availability
can be restated as: for any s′pS �even s and any a ∈ ν(p), if a ∈ O(s′) then
a ∈ ν(�s′�). It is worth observing that, given s ∈ PA, we have AvP(s) = ν(�s�).

40 A.S. Murawski and N. Tzevelekos

3.3 Strategies

Definition 6. A strategy σ on a prearena A, written σ : A, is a set of equiv-
alence classes [s] of even-length plays of A satisfying

Even-prefix closure. If [soSpS
′
] ∈ σ then [s] ∈ σ ,

Determinacy. If [spS1
1], [s′pS2

2] ∈ σ and [s] = [s′] then [spS1
1] = [s′pS2

2] .

Next we show how strategies can be composed. First, following [11], let us define
an endofunction γ on justified sequences that restricts a given justified sequence
to a frugal one by removing from the stores the atoms violating it. Now, let
γ′ be an analogous partial function enforcing P-storage, i.e. γ′ will remove O-
names violating P-storage (it is undefined when the domain of any of the stores
involved contains an insufficient supply of atoms, i.e. some of the P-available
names required are missing).

Now we turn to defining a suitable notion of interaction between plays. Given
arenas A, B, C, let u be a sequence mS1

1 · · ·mSk

k of moves from MA +MB +
MC with store, equipped with pointers such that no C-move has a pointer to
an A-move and vice versa. We define u 	 A,B to be u in which all C-moves
are suppressed along with associated pointers. u 	 B,C is defined analogously.
u 	 A,C is defined similarly with the caveat that, if there was a pointer from
a C-move to a B-move which in turn had a pointer to an A-move, we add a
pointer from the C-move to the A-move. By u≤mi we mean the initial segment
of u ending in mSi

i .

Definition 7. u is an interaction sequence of A, B, C iff γ′(u 	 A,B) ∈ PA→B,
γ′(u 	 B,C) ∈ PB→C and the following conditions hold:

– P(u 	 A,B) ∩ P(u 	 B,C) = ∅;
– O(u 	 A,C) ∩ (P(u 	 A,B) ∪ P(u 	 B,C)) = ∅;
– for each u′ � u ending in a move-with-store mS,

domS = (O(u′ 	 A,C) ∩ ν(�u′ 	 A,C�)) ∪ P(u′ 	 A,B) ∪ P(u′ 	 B,C);
– for each u′ � u ending in mSm′S′

, if m′ is:
• a P -move in A→ B then S′(a) = S(a) for all a ∈ domS′\AvP(u′ 	 A,B);
• a P -move in B → C then S′(a) = S(a) for all a ∈ domS′\AvP(u′ 	 B,C);
• an O-move in A→ C then S′(a)=S(a) for all a∈domS′ \AvP(u′ 	 A,C).

The set of all interaction sequences of A,B,C will be denoted by Int(A,B,C).

The first two conditions ensure that name-privacy is not broken under composi-
tion; the third one imposes an extended notion of P -availability for sequences;
and the fourth set of conditions ensures that participants do not change parts
of the store inaccessible to them. It can be shown that, if u ∈ Int(A,B,C) then
γ(u 	 A,C) ∈ PA→C . Two strategies σ : A → B and τ : B → C can now be
composed as follows

σ;τ = {[γ(u 	 A,C)] | u ∈ Int(A,B,C), [γ′(u 	 A,B)] ∈ σ, [γ′(u 	 B,C)] ∈ τ}.

Full Abstraction for Reduced ML 41

Associativity of composition can be established using similar arguments to those
in [11]6. Using the standard definition of the identity strategy one can then obtain
a category of arenas and games. Next we shall define its lluf subcategory that
will be used to prove the full abstraction result.

Given a non-empty justified sequence s, let us write s− for s without its last
element. The following definition aims to capture plays that differ by renamings
of names that O introduces in the P-view.

Definition 8

– Given a prearena A, s ∈ PA, a ∈ O(s) and an O-move o in s, we say that a
is P-new at o in s iff a ∈ ν(o) and a /∈ ν(�s≤o�−).

– Given A, s, a, o as above and b ∈ A, we say that a is renameable for b
at o in s provided b /∈ P(s) and, for any s′ � s, if o occurs in �s′� then
b /∈ ν(�s′�).

– Under the assumptions above, we define the renaming (a b)o · s of s by
induction on the subsequences of s7:

(a b)o · ε = ε (a b)o · (tmS) =

{
((a b)o · t) ((a b) ·mS) o ∈ �tmS�
((a b)o · t)mS o /∈ �tmS�

where (a b) is the permutation swapping a with b. We write s r∼ s′ iff s can
be obtained from s′ through a sequence of renamings.

Observe that, if a is P-new at m in s, a need not be fresh for s<m (the converse
holds, though, as long as a ∈ ν(m)). A play s in which every a that is P-new at
m in s is also fresh at s<m will be called strict.

Example 9. Let A = A → (A⇒ 1),

s1 = n
(n1,0)
1 ∗(n1,1) n

(n1,2),(n2,3)
2 ∗(n1,4),(n2,5) n

(n1,6),(n3,7)
3 ∗(n1,8),(n3,9)

and

s2 = n
(n1,0)
1 ∗(n1,1) n

(n1,2),(n3,3)
3 ∗(n1,4),(n3,5) n

(n1,6),(n3,7)
3 ∗(n1,8),(n3,9) .

Then n2 is P-new at the third move (also n2) in s1, n2 is renameable for n3 at
that move and (n2 n3)n2 · s1 = s2. Note also that (n3 n2)n3 · s2 = s1, where the
subscript n3 stands for the third move of s2, and that s1 is strict, whereas s2 is
not.

In general it can be shown that renamings are reversible, so r∼ is an equivalence
relation. Observe that, for any play s, there exists a strict play s′ (determined
uniquely up to atom-abstraction) such that s r∼ s′. We write s̃ for [s′].

Definition 10. A strategy σ : A is blind iff [s] ∈ σ and s r∼ s′ imply [s′] ∈ σ.

Since the identity strategy is blind and blind strategies compose we obtain a cat-
egory G of arenas and blind strategies. Observe that blind strategies are uniquely
determined by the underlying strict positions (via renamings).
6 In fact, strategies in our framework can be regarded as compact representations of

a class of strategies from [11], namely those independent of P-unavailable names.
7 We write o ∈ s to mean that the distinguished occurrence of o is present in s.

42 A.S. Murawski and N. Tzevelekos

4 Properties of G
Henceforth, when writing σ : A we shall mean a blind strategy on A. Following [2]
and [11], G can be shown equivalent to the Klesli category of another category
G′ equipped with a strong monad T . More precisely, G′ is a lluf subcategory
of G consisting of total single-threaded strategies [11] such that store values
introduced in the first move cannot be modified in the next two moves. The
strong monad T takes an arena A to A⊥ given by

MA⊥ = {∗1, ∗2}+MA IA⊥ = {∗1}
λA⊥ = [{(∗1, PA), (∗2, OQ)}, λA] �A⊥ = {(∗1, ∗2), (∗2, iA)}∪ �A .

Moreover, one can show that G′ has finite products and T -exponentials, i.e., for
any arenaA, there is a natural bijection between G′(A⊗B, TC) and G′(A,B⇒C).
That is to say, G′ is λc-model [16], which gives a canonical interpretation of the
call-by-value λ-calculus in the associated Kleisli category, i.e., equivalently, the
category G. To interpret the remaining constructs of Reduced ML in G, we follow
Stark by showing the existence of special morphisms, as described in Chapter 5
of [22]. We list those related to reference manipulation below (as morphisms in
G rather than in G′

T).

get = {[ε], [n(n,i)i(n,i)]} : A → Z set = {[ε], [(n, i)(n,i
′)∗(n,i)]} : A⊗ Z → 1

Memory allocation is interpreted using the strategies new i = {[ε], [∗n(n,i)]} : 1 →
A. As a consequence, we conclude that G is a model of Reduced ML in the sense
of Stark8. This lets us interpret any term-in-context Γ � M : θ with a strategy
�Γ �M : θ� : �Γ � θ�.
Example 11. The two terms from the introduction are interpreted (in G) by the
strategies given respectively (through even-prefix closure) by the plays below.

∗ n
(n1,0)
1 ∗(n1,k) n

(n1,k),(n2,k)
2 ∗ n(n,0) ∗(n,k) n(n,k)

Conformance to Stark’s framework guarantees Computational Soundness and
Adequacy [22].

Definition 12

– σ : A is finitary iff it is finite.
– σ : A is strongly deterministic iff, for any s ∈ PA such that [s] ∈ σ, we

have P(s) = ∅.
– A strategy σ : A is innocent iff, [sp], [t] ∈ σ, to ∈ PA, �s� = �to� im-

plies the existence of [top′] ∈ σ such that [�sp�] = [�top′�] (note that inno-
cence implies blindness). An innocent strategy σ : A is finitarily innocent iff
vf(σ) = {[�s�] | s ∈ PA, [s] ∈ σ} : A is finite.

8 Strictly speaking, the cartesian closure requirement from [22] is not satisfied, but it
turns out too strong: T -exponentials suffice for the author’s subsequent results [2].

Full Abstraction for Reduced ML 43

Using two factorizations we can show that any finitary blind strategy in a
denotable9 prearena is definable. The first one eliminates violations of strong
determinism with the help of new0 (corresponding to ref 0). The second one
factors out non-innocence (also using new0). Finally, we prove a direct defin-
ability result for finitarily innocent strongly deterministic strategies. We discuss
the innocent factorization in more detail below, as it involves the key novelties
of our framework.

Lemma 13. Let σ : 1 → A be a finitary strongly deterministic blind strategy.
There exists a finitarily innocent strongly deterministic strategy σ̇ : A → A such
that new0; σ̇ = σ.

The standard way [5] of proving such results is to store the history of play
using the additional A component. This is impossible in our case, because atoms
cannot be stored. However, given a play s, we can try to store a numerical
representation of [s] instead. Recall that the set of moves of an arena is a linear
nominal set, i.e. there is a canonical ordering of atoms in any move. Hence, in any
legal sequence, atoms can also be ordered in a canonical way according to their
order of appearance and, if they were introduced in the same move, using the
canonical ordering associated with that move. Consequently, we can represent
[s] as an integer by representing atoms in s with integers that correspond to
their position in the associated canonical order and by encoding such a sequence
as an integer. Let us write #(s) for such an encoding. In particular we have
#(s1) = #(s2) iff [s1] = [s2].

Unfortunately, this is not yet sufficient for a successful factorization through
an innocent strategy because, given �soS� and #(s), it will in general be im-
possible to extract soS (or [soS]) due to the fact that o might contain O-names
occurring in s, but not in �soS�. As a result, given #(s) and �soS�, we may
then be unable to relate some names in o with those of s, which will prevent us
from reconstructing [soS]. Note, however, that given #(s) and �soS� we can still
determine s̃oS in absence of P-names. Furthermore, since σ is blind and strongly
deterministic (in particular plays satisfy P-availability), we can uniquely iden-
tify pS

′
such that soSpS

′ ∈ σ (though not necessarily the whole of soSpS
′
), by

referring10 to s̃oS and σ. Analogously, we can also deduce s̃oSpS′ . Thus, the
familiar factorization technique can be employed provided that, instead of #(s),
the argument will rely on #(s̃), where #(s̃) stands for #(s′) and s′ is a strict
play such that s′ r∼ s (by previous remarks the code is independent of the exact
choice of s′).

Thanks to the definability result for finitary blind strategies, we can define a
fully abstract model of Reduced ML in the usual way by quotienting G by the
induced intrinsic preorder defined below.

Definition 14. Suppose σ1,σ2 : 1 → A. We define σ1 ≤ σ2 to hold iff, for any
ρ : A→ 1, σ1; ρ �= {[ε]} implies σ2; ρ �= {[ε]}.
9 1 → �θ�, where θ is a Reduced ML type.

10 Recall that blind strategies are generated by their strict plays.

44 A.S. Murawski and N. Tzevelekos

It is common to refer to the above preorder as testing σi with ρ, where σi; ρ �=
{[ε]} is regarded as a successful outcome.

Theorem 15. Given Reduced ML terms � M1 : θ, � M2 : θ, we have �
M1�∼M2 iff � �M1� ≤ � �M2�.

5 Program Equivalence Explicitly

Let σ1,σ2, ρ be as in the definition of ≤. Note that during composition of σi with
ρ there is a full symmetry between O-names and P-names, i.e. names which are
O-names in σi are viewed as P-names in ρ, and vice versa. This can be contrasted
with the general case of composition, where both strategies may regard a name
as an O-name during composition, though not a P-name. This symmetry of roles
means that, because plays of ρ satisfy P-availability, a successful outcome can
only be reached by interaction with a play of σi that satisfies the dual condition
of O-availability : for each s′oS �odd s and any a ∈ A, if a ∈ ν(o) ∩ ν(s′) then
a ∈ AvO(s′).

Similarly, whenever the play s engages with ρ successfully, the O-passivity
condition holds: for each s′pSoS

′ � s and any a ∈ A, if a ∈ P(s′pS) \ AvO(s′pS)
then S(a) = S′(a). This time this is due to the definition of composition, which
stipulates that the part of store irrelevant to one of the strategies must be copied.
This means that the plays of σi that “matter” must necessarily meet the above
condition. Finally, whenever σi; ρ �= {[ε]}, the play witnessing this is complete,
i.e. all of its questions are answered.

Definition 16. A play is relevant iff it is complete, satisfies O-availability and
O-passivity. We write rel(σ) for the set of relevant plays of σ.

We can represent relevant plays more succinctly by restricting the associated
stores to mutually available names (both O- and P-available). The outcome is
not a play any more, though it remains a legal justified sequence. We call such
sequences protoplays and let γ′′ be the obvious operation on justified sequences
that simply erases the O-unavailable names in stores. Although some information
about σ is seemingly lost by applying γ′′ to rel(σ), the missing values turn out
inessential for testing. By O-passivity, the lost values of O-unavailable names
can be uniquely retrieved in O-moves, by copying values from the preceding P-
moves. However, more surprisingly, it does not matter what values such names
have in P-moves either. This is because the names are then P-unavailable for
ρ and, during composition, are dealt with uniformly by propagation as long as
they remain unavailable.

Finally, we take advantage of the fact that the test ρ is a blind strategy.
Recall that blind strategies are uniquely determined by their strict plays, i.e.
plays in which O-names fresh in the P-view must be genuinely fresh at the point
of introduction. Consequently, if one wants to check if σi passes the ρ test, we
can take advantage of the fact that any contribution from ρ will originate from
a strict play. Let s′′ = γ′′(s′) (s′ ∈ rel(σ)) be a protoplay generated by σi.
To test whether s′′ represents a renaming of a strict play from ρ, it suffices to

Full Abstraction for Reduced ML 45

“refresh” P-names in s′′ and try to match it with that the strict play. The desired
refreshing operation (for P-names using O-views) is entirely dual to renamings
introduced in Definition 8, though it needs to be defined on protoplays to be
correct. For two protoplays s, s′, we write s ∼

r
s′ iff s can be obtained from s′ by

a series of dual renamings. A protoplay is dually strict iff any P-name fresh
in the O-view is fresh at the point of introduction. Given σ : A, let σ̂ be the
following set of equivalence classes of protoplays σ̂ = {[s] | s is dually strict, s′ ∈
rel(σ), s ∼

r
γ′′(s′)}. We can then show the following result.

Lemma 17. Given σ1,σ2 : 1→ A, σ1 ≤ σ2 iff σ̂1 ⊆ σ̂2.

Observe that σ̂, like σ, is saturated under renamings (extended to act on pro-
toplays). This makes it possible to simplify the above result along the following
lines. We call a protoplay mutually strict iff it is both strict and dually strict.
Note that by using r∼ and ∼

r
(in any order) we can convert a protoplay to a

mutually strict protoplay, unique up to atom-abstraction. Given σ : A, let ̂̂σ be
{[s] | s is mutually strict, s′ ∈ rel(σ), s (r∼;∼

r
) γ′′(s′)}.

Theorem 18. Given σ1,σ2 : 1→ A, σ1 ≤ σ2 iff ̂̂σ1 ⊆ ̂̂σ2.

It follows that terms of Reduced ML are equivalent iff they induce the same
mutually strict protoplays.

Thus we have shown that program equivalence and approximation in Reduced
ML can be captured explicitly, which is the first result of this kind for Reduced
ML. The characterization immediately implies that equivalence is decidable for
finitary strategies and that the fully abstract model of Reduced ML is effectively
presentable.

Our results identify mutually strict protoplays as an appealing object for
future study and, indeed, our fully abstract model can be presented in a more
direct way by founding the games on them. It has to be said, though, that
composition of such plays is quite intricate, because they cannot be combined by
parallel composition with hiding: although this kind of interaction is sufficient to
test plays, composition in general lacks the convenient duality between O-names
and P-names. Consequently, in order to compose mutually strict protoplays, one
has to allow for renamings before synchronization and follow with dual renamings
afterwards. We intend to present an account of this procedure in the full version
of the paper.

In this submission however we have chosen to present the model gradually:
starting from the intuitive framework in which full information about the store
is available we successively imposed a series of restrictions. We believe this leads
to a more informative presentation and decomposes the difficulties involved in
dealing with mutually strict protoplays into smaller arguments. For instance,
the correctness proof of compositionality of mutually strict protoplays (for the
algorithm sketched above) draws on insights obtained from all of our compo-
sitionality proofs (P-availability, P-storage, blindness) as well as the argument
behind the explicit characterization.

46 A.S. Murawski and N. Tzevelekos

We hope to bring our results to bear on the on-going research into algorithmic
aspects of game models [1] and to contribute new methods of reasoning about
program equivalence in Reduced ML. This direction has been pursued using
logical relations in [20]. However, there are limits to what can be achieved, as
program equivalence of finitary Reduced ML (finite types) is already undecidable
at second order, due to a similar result for Reduced ML with mkvar in [17].

References

1. Abramsky, S., Ghica, D.R., Murawski, A.S., Ong, C.-H.L.: Applying game seman-
tics to compositional software modeling and verification. In: Jensen, K., Podelski,
A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 421–435. Springer, Heidelberg (2004)

2. Abramsky, S., Ghica, D.R., Murawski, A.S., Ong, C.-H.L., Stark, I.D.B.: Nominal
games and full abstraction for the nu-calculus. In: Proc. of LICS, pp. 150–159
(2004)

3. Abramsky, S., Honda, K., McCusker, G.: Fully abstract game semantics for general
references. In: Proc. of LICS, pp. 334–344 (1998)

4. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Information
and Computation 163, 409–470 (2000)

5. Abramsky, S., McCusker, G.: Linearity, sharing and state: a fully abstract game
semantics for Idealized Algol with active expressions. In: Algol-like languages,
Birkhaüser, pp. 297–329 (1997)

6. Abramsky, S., McCusker, G.: Call-by-value games. In: Nielsen, M. (ed.) CSL 1997.
LNCS, vol. 1414, pp. 1–17. Springer, Heidelberg (1998)

7. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable bind-
ing. Formal Aspects of Computing 13, 341–363 (2002)

8. Honda, K., Yoshida, N.: Game-theoretic analysis of call-by-value computation. In:
Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS,
vol. 1256, pp. 225–236. Springer, Heidelberg (1997)

9. Hyland, J.M.E., Ong, C.-H.L.: On Full Abstraction for PCF. Information and
Computation 163(2), 285–408 (2000)

10. Laird, J.: A game semantics of local names and good variables. In: Walukiewicz, I.
(ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 289–303. Springer, Heidelberg (2004)

11. Laird, J.: A game semantics of names and pointers. Annals of Pure and Applied
Logic 151, 151–169 (2008)

12. McCusker, G.: Games for recursive types. BCS Distinguished Dissertation. Cam-
bridge University Press, Cambridge (1998)

13. McCusker, G.: Games and full abstraction for FPC. Information and Computa-
tion 160(1-2), 1–61 (2000)

14. McCusker, G.: On the semantics of Idealized Algol without the bad-variable con-
structor. In: Proc. of MFPS. ENTCS, vol. 83 (2003)

15. Milner, R., Tofte, M., Harper, R.: The Definition of Standard ML. MIT Press,
Cambridge (1990)

16. Moggi, E.: Notions of computation and monads. Information and Computation 93,
55–92 (1991)

17. Murawski, A.S.: Functions with local state: regularity and undecidability. Theo-
retical Computer Science 338(1/3), 315–349 (2005)

Full Abstraction for Reduced ML 47

18. Murawski, A.S.: Bad variables under control. In: Duparc, J., Henzinger, T.A. (eds.)
CSL 2007. LNCS, vol. 4646, pp. 558–572. Springer, Heidelberg (2007)

19. Nickau, H.: Hereditarily sequential functionals. In: Matiyasevich, Y.V., Nerode, A.
(eds.) LFCS 1994. LNCS, vol. 813, pp. 253–264. Springer, Heidelberg (1994)

20. Pitts, A.M., Stark, I.D.B.: Operational reasoning for functions with local state. In:
Higher-Order Operational Techniques in Semantics, pp. 227–273. CUP (1998)

21. Reynolds, J.C.: The essence of Algol. In: de Bakker, J.W., van Vliet, J. (eds.)
Algorithmic Languages, pp. 345–372. North Holland, Amsterdam (1978)

22. Stark, I.D.B.: Names and Higher-Order Functions. PhD thesis, University of Cam-
bridge (1995)

23. Tzevelekos, N.: Full abstraction for nominal general references. In: Proc. of LICS,
pp. 399–410 (2007)

24. Tzevelekos, N.: Nominal game semantics. D.Phil. thesis, University of Oxford
(2008)

Logics and Bisimulation Games for
Concurrency, Causality and Conflict

Julian Gutierrez

LFCS. School of Informatics. University of Edinburgh
Informatics Forum, 10 Crichton Street, Edinburgh, EH8 9AB, UK

J.E.Gutierrez@ed.ac.uk

Abstract. Based on a simple axiomatization of concurrent behaviour
we define two ways of observing parallel computations and show that in
each case they are dual to conflict and causality, respectively. We give a
logical characterization to those dualities and show that natural fixpoint
modal logics can be extracted from such a characterization. We also study
the equivalences induced by such logics and prove that they are decid-
able and can be related with well-known bisimulations for interleaving
and noninterleaving concurrency. Moreover, by giving a game-theoretical
characterization to the equivalence induced by the main logic, which is
called Separation Fixpoint Logic (SFL), we show that the equivalence
SFL induces is strictly stronger than a history-preserving bisimulation
(hpb) and strictly weaker than a hereditary history-preserving bisimula-
tion (hhpb). Our study considers branching-time models of concurrency
based on transition systems and petri net structures.

Keywords: Modal and temporal logics, Bisimulation games, Be-
havioural equivalences, Concurrent and reactive systems, Petri nets.

1 Introduction

In [12] Milner and Hennessy studied an algebraic characterization of concur-
rent systems and defined a formal way of comparing different processes through
the equivalence induced by such an axiomatization. They called it observational
equivalence. They also gave a logical characterization to the same concepts and
showed their correspondence with the axiomatization when interpreted using a
simple modal logic with an interleaving model of concurrency. This work led to
the definition of a well-known bisimulation equivalence for interleaving concur-
rency, namely the one induced by the Hennessy-Milner Logic (HML).

However, when studying concurrency at a more fundamental semantic level,
partial order models should be considered, different axiomatizations must be
defined, and finer bisimulation equivalences have to be taken into account. A
natural question immediately arises, that is, what exactly is the new relationship
between concurrency in the models (a model independence) and concurrency in
the logical languages (a logical independence). The answer to this question is

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 48–62, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Logics and Bisimulation Games for Concurrency, Causality and Conflict 49

not unique since it depends on the models and axiomatizations that are being
considered. Therefore, one would like them to be as general as possible.

In this paper an alternative answer for this question is put forward. Our
results are relative to a surprisingly simple axiomatization of concurrent be-
haviour for a category of transition systems with independence introduced by
Winskel and Nielsen (see [16] or Section 2). This axiomatization was pioneered by
Mazurkiewicz for trace languages [14] and has been used ever since to understand
the properties of several models of concurrency with partial order semantics, also
called independence models [16]. Such axioms define local properties of the be-
haviour of a concurrent system and can be used to generate what is called the
“concurrency diamonds” in some noninterleaving models of concurrency. Our
results are also extended to a class of safe Petri net structures.

In particular, we study the relationships between model independence and
logical independence purely based on observable dualities between concurrency
and conflict, on the one hand, and concurrency and causality on the other. The
logical characterization of these dualities relies on geometrical properties en-
forced by an algebraic axiomatization of concurrent events. At a semantic level,
we develop a notion of locality called support sets which allows the recognition
of independent events (Section 3). At a logical level we define both modal op-
erators sensitive to causal information and a parallel conjunction that allows
one to separate off concurrent events while avoiding those in conflict. This basic
modal logic is then extended with fixpoint operators so as to express tempo-
ral properties of concurrent systems (Section 4). The final outcome is a fixpoint
modal logic, which we call Separation Fixpoint Logic (SFL). A set of application
examples for SFL are given at the end of this section.

We also study the equivalence induced by SFL and some sublogics of it (Sec-
tion 5). These sublogics can be obtained from SFL by restricting syntactically the
interplay between the dualities we have defined. This strongly eases the analysis
of the relationships between concurrency, causality and conflict. Four SFL frag-
ments are considered. The first one is Kozen’s modal mu-calculus, Lµ. This SFL
sublogic help us show that SFL can deal equally well with both interleaving and
noninterleaving models of concurrency. Since the mu-calculus is a natural logical
language for interleaving concurrent systems (and SFL includes it), nothing is
lost with respect to the main interleaving approaches to concurrency.

However, the problem of observing concurrency and nondeterminism, as stud-
ied by Milner and Hennessy in [12] for interleaving systems, can be refined to
a problem of observing concurrency, causality and conflict in a noninterleaving
context. As a consequence, more specialized bisimulation equivalences have been
introduced so as to analyse independence models. We study some of those equiv-
alences and focus our attention on the two strongest equivalences presented in
[7,10], namely the hereditary history-preserving bisimulation (hhpb) [13] and the
plain history-preserving bisimulation (hpb) [10].

The second sublogic we consider is a Separation modal mu-calculus, SLµ. It
extends the previous fragment by allowing the distinction between concurrency
and conflict. We show that the equivalence induced by SLµ cannot be compared

50 J. Gutierrez

with any of the bisimulations we consider here. The third case is a Causal modal
mu-calculus, CLµ. It takes full account of causality and concurrency and induces
an hp bisimulation equivalence. Although hpb captures some features of concur-
rent computation, it has been argued that it is actually an equivalence of only
causality [9]. As a consequence, stronger equivalences such as hhpb have been de-
fined in order to capture aspects of true-concurrency rather than only causality.
Therefore, in fourth place we consider the full SFL and compare the equiva-
lence it induces with the stronger hhpb. Using game-theoretical arguments, we
prove that the bisimulation equivalence for SFL is strictly stronger than hpb
and strictly weaker than hhpb (Section 6). Since hhpb is undecidable, even on
finite systems, the equivalence induced by SFL ranks at the top of the decidable
equivalences for true-concurrency according to discriminating power (see [10] or
completed hierarchy in [7]). This feature makes the equivalence induced by SFL
an interesting candidate for an equivalence of true concurrency. Finally, some
concluding remarks and related work are given in Section 7.

2 An Independence Model and Axioms of Concurrency

A Transition System with Independence (TSI) [16] is a simple extension of a La-
belled Transition System (LTS), where independent transitions can be explicitly
recognised. A TSI is a structural, branching-time and noninterleaving model of
concurrency. Formally, a TSI T is a structure (S, T,Σ, I), where S is a finite set
of states, T ⊆ S ×Σ × S is a transition relation, Σ is a set of action labels, and
I ⊆ T × T is an irreflexive and symmetric relation on independent transitions,
i.e., on concurrent transitions. The binary relation ≺ on transitions defined by

(s, a, s1) ≺ (s2, a, q)⇔
∃b.(s, a, s1)I(s, b, s2) ∧ (s, a, s1)I(s1, b, q) ∧ (s, b, s2)I(s2, a, q)

expresses when two transitions represent two occurrences of the same event (the
same action in different interleavings). Such a relation can be used to generate
a “concurrency diamond”, as shown in Fig. 1.

s1• b
���

�
s◦
a ����

b
���

� I q•
s2•

a

����

Fig. 1. A concurrency diamond for a I b. Concurrent transitions are recognized by the
I symbol inside the square. The initial state of the TSI is marked by the circle ◦.

Moreover, ∼ is the least equivalence relation that includes ≺, i.e., the reflex-
ive, symmetric and transitive closure of ≺. The equivalence relation ∼ is used
to group all events that represent the same action in the TSI, and therefore,
considers all occurrences of events of an action in all its possible interleavings.
Additionally, the I relation is subject to the following axioms:

Logics and Bisimulation Games for Concurrency, Causality and Conflict 51

– A1. (s, a, s1) ∼ (s, a, s2)⇒ s1 = s2
– A2. (s, a, s1)I(s, b, s2)⇒ ∃q.(s, a, s1)I(s1, b, q) ∧ (s, b, s2)I(s2, a, q)
– A3. (s, a, s1)I(s1, b, q)⇒ ∃s2.(s, a, s1)I(s, b, s2) ∧ (s, b, s2)I(s2, a, q)
– A4. (s, a, s1) ≺ ∪ � (s2, a, q)I(w, b, w′)⇒ (s, a, s1)I(w, b, w′)

Intuitively, A1 states that from any state of the system, the execution of an
action leads always to a unique future state. A2 (resp. A3) says that if two
independent actions can be executed in parallel (resp. one after the other), they
can also be executed one after the other (resp. in parallel). Finally, A4 ensures
that the relation I between transitions is well defined. Roughly speaking A4
says that if actions a and b are independent, then all the transitions that are
occurrences of the action a are independent of all the transitions that are oc-
currences of the action b. Having said that, we can give an alternative, more
intuitive, definition for axiom A4. Let I(t) be the set {t′ | tIt′}. Then, axiom
A4 is equivalent to the following expression: A4. t1 ∼ t2 ⇒ I(t1) = I(t2).

Notation 2.1. Given a transition t = (s1, a, s2), also written as s1
a−→ s2, s1 is

the source, src(t) = s1; s2 the target, trg(t) = s2; and a the label of t, lbl(t) = a.

3 Local Dualities in Independence Models

We present two ways in which concurrency can be regarded as a dual concept to
conflict and causality, respectively. These two ways of observing concurrency will
be called immediate concurrency and linearized concurrency. Whereas immedi-
ate concurrency is dual to conflict, linearized concurrency is dual to causality.

The intuitions behind these two observations are the following. Consider a
concurrent system, say, a TSI, and any two different transitions ti and tj with
the same source node, i.e., src(ti) = src(tj). These two transitions are either
immediately concurrent, and therefore belong to I, or dependent, in which case
they must be in conflict. Similarly, consider any two transitions ti and tj where
trg(ti) = src(tj). Again, these two transitions can either belong to I, in which
case they are concurrent, yet have been linearized, or they do not belong to
I, and therefore are causally dependent. In both cases, the two conditions are
exclusive and there are no other possibilities.

Definition 3.1. Two transitions ti and tj , such that trg(ti) = src(tj), are lin-
early concurrent iff tiItj . We write ti tj for such a relation.

Dually, causally dependent transitions can be defined.

Definition 3.2. Two transitions ti and tj , such that trg(ti) = src(tj), are
causally dependent iff ¬(tiItj). We write ti ≤ tj for such a relation.

This duality is defined locally with respect to a state s, such that trg(ti) = s =
src(tj), of the underlying independence model. The previous definitions will be
used to give the semantics of the modal operators of SFL. Now, we turn our
attention to the duality between immediate concurrency and conflict.

52 J. Gutierrez

Definition 3.3. Two transitions ti and tj , such that src(ti) = src(tj), are im-
mediately concurrent iff tiItj . We write ti ⊗ tj for such a relation.

Dually, transitions in conflict can be defined as follows.

Definition 3.4. Two transitions ti and tj , such that src(ti) = src(tj), are in
conflict iff ¬(tiItj). We write ti#tj for such a relation.

3.1 Separation and Support Sets for Local Reasoning

The definitions of immediate concurrency and conflict can be used to recognize
sets where every transition is concurrent with each other and therefore can all
be executed in parallel. We call these sets as conflict-free sets of transitions.

Definition 3.5. A conflict-free set of transitions, denoted by cf(E), is a set of
transitions E such that ∀ti, tj ∈ E. src(ti) = src(tj) ∧ (ti �= tj ⇒ ti ⊗ tj).
As we want to specify the existence of actual concurrent behaviour, we strengthen
the definition of conflict-free sets of transitions given above. Notice that Defini-
tion 3.5 allows the existence of empty and singleton sets, which do not show any
actual concurrent behaviour (or even any behaviour at all).

Definition 3.6. An effective conflict-free set of transitions is a conflict-free set
of transitions E such that |E| ≥ 2.

So, in order to do local reasoning on concurrent processes of an independence
model, we want to recognize effective conflict-free sets given an arbitrary set of
transitions at some state s of the independence model. In particular, the set of
all transitions t such that src(t) = s, will be called the maximal set of transitions
at s. Now, we introduce a notion of locality called support sets that is used to
define the semantics of SFL formulae in the following section.

Definition 3.7. A support set is either a maximal set of transitions or a non-
empty conflict-free set of transitions.

Given an independence model, the set of all its support sets is denoted by P.
Notice that once one has non-empty conflict-free sets of transitions that are not
singleton sets, i.e. effective conflict-free sets of transitions, to do local reason-
ing on sets of concurrent actions becomes easier since they can be separated
or decomposed into smaller sets, where every transition is, as well, concurrent
with each other. Finally, the following definitions are useful when defining the
semantics of some SFL operators in the next section:

E � R def= E ⊆ R, provided that, cf(E) and ¬∃t ∈ (R \ E). ∀te ∈ E. t⊗ te
P1 � P2

def= P1 ∪ P2, provided that, P1 ∩ P2 = ∅ ∧ P1 �= ∅ ∧ P2 �= ∅
The first definition, E � R, characterizes support sets E that contain only con-
current transitions and cannot be made any bigger with respect to R; the second
definition, P1 � P2, formalizes the notion of separation for local reasoning used
here. Such a definition resembles the notion of separation as used in Separation
Logic [19], i.e., as disjointness of sets of independent resources.

Logics and Bisimulation Games for Concurrency, Causality and Conflict 53

4 Separation Fixpoint Logic

Definition 4.1. Separation Fixpoint Logic (SFL) has formulae φ built from a
set Var of variables Y,Z, ... and a set L of labels a, b, ... by the following grammar:

φ ::= Z | ¬φ1 | φ1 ∧ φ2 | 〈K〉cφ1 | 〈K〉ncφ1 | φ1 ∗ φ2 | µZ.φ1

where Z ∈ Var, K ⊆ L, and µZ.φ1 has the restriction that any free occurrence
of Z in φ1 must be within the scope of an even number of negations.

Informally, the meaning of these operators is the following. “∧” and “¬” are
the usual boolean operators, “〈K〉c” (resp. “〈K〉nc”) asserts at the fact that there
is in the set of actions K a causally dependent (resp. a non-causally dependent
or linearly concurrent) transition that can be performed; as defined in Section
3, such a transition is always either causally dependent or linearly concurrent
w.r.t. the last transition that has been executed. φ1∗φ2 specifies that there exists
a partition in the support set (i.e., a partition of the actions in the set to be
considered) with which both formulae φ1 and φ2 can hold in parallel. This does
not necessarily mean that both formulae hold in parallel everywhere because the
operator “∗” has a local meaning. Finally, “µ” is simply a least fixpoint operator.

Derived operators are defined in the familiar way: φ1 ∨ φ2
def= ¬(¬φ1 ∧ ¬φ2),

φ1 � φ2
def= ¬(¬φ1 ∗ ¬φ2), [K]c φ1

def= ¬〈K〉c¬φ1, [K]nc φ1
def= ¬〈K〉nc¬φ1 and

νZ.φ1
def= ¬µZ.¬φ1 [¬Z/Z]. The following abbreviations are also useful: ff def=

µZ.Z, tt def= ¬ff, 〈K〉φ1
def= 〈K〉cφ1 ∨ 〈K〉ncφ1, [K]φ1

def= [K]c φ1 ∧ [K]nc φ1. Also,
sometimes we write [−]φ for [L]φ and [−K]φ for [L −K]φ, and similarly for
the other box (“[]”) and diamond (“〈 〉”) operators.

4.1 Denotation of SFL Formulae

Definition 4.2. A TSI-based SFL model M is a Transition system with in-
dependence T = (S, T,Σ, I) together with a valuation V : Var → 2S, where
S = S ×P×A is the set of tuples (s, P, ta) of states s ∈ S, support sets P ∈ P
in the TSI T, and transitions ta ∈ A = T ∪ {tε}, where a is an action label in
Σ ∪ {ε}. The denotation ‖φ‖T

V of an SFL formula φ in the model M = (T,V) is
a subset of S, given by the following rules (omitting the superscript T):

‖Z‖V = V(Z)
‖¬φ‖V = S − ‖φ‖V
‖φ1 ∧ φ2‖V = ‖φ1‖V ∩ ‖φ2‖V
‖〈K〉cφ‖V = {(s, P, ta) | ∃b ∈ K. ∃s′ ∈ S. ta ≤ s

b−→ s′ ∈ P ∧ (s′, P ′, tb) ∈ ‖φ‖V}
‖〈K〉ncφ‖V = {(s, P, ta) | ∃b ∈ K. ∃s′ ∈ S. ta � s

b−→ s′ ∈ P ∧ (s′, P ′, tb) ∈ ‖φ‖V}
‖φ1 ∗ φ2‖V = {(s, P, ta) | ∃P1, P2. P1�P2�P∧(s, P1, ta)∈‖φ1‖V∧(s, P2, ta)∈‖φ2‖V}

where P ′ is the maximal set at s′. A tuple (s, P, ta) of a model M is called
a process. An initial process is a tuple (s, P, tε), where s is the initial state of
the TSI T, P is the maximal set at s, and tε is the empty transition, such that

54 J. Gutierrez

for all t whose source node is the initial state, tε ≤ t. Notice that since the
third component of every process denotes the last action that has been made, an
initial process requires the definition of the empty transition tε. Also, since an
initial state defines a unique initial process, and vice-versa, the two terms and
notations are interchangeable.

Given the usual restriction on free occurrences of variables, imposed in order
to obtain monotone operators in the complete lattice P(S) = 2S, it is possible
to define the denotation of the fixpoint operator µZ.φ(Z) in the standard way,
according to the Knaster-Tarski fixpoint theorem:

‖µZ.φ(Z)‖V =
⋂{Q ∈ P(S) | ‖φ‖V[Z:=Q] ⊆ Q}

where V [Z := Q] is the valuation V ′ which agrees with V save that V ′(Z) = Q.
Since positive normal form is assumed henceforth, the semantics of the dual
boolean, modal, structural and fixpoint operators can be given in the usual way.

A Petri Net Semantics. The logical characterization defined previously using
a TSI model can also be given using other independence models. As an example
of this, it is shown how to give a Petri net semantics for SFL, but analogous
procedures can be followed with other independence models.

A labelled net N is a tuple (P, T,A,F , Σ), where P is a set of places, T is a
set of transitions and A is a relation between places and transitions such that
A ⊆ (P ×T)∪(T×P), and F is a labeling function, F : T → Σ, from transitions
to a finite set of action labels Σ. Places and transitions are called nodes. Given a
node n, •n = {x | (x, n) ∈ A} is the preset of n and n• = {y | (n, y) ∈ A} is the
postset of n. A marking M of N is a mapping such that M ⊆ P . A marking M
enables a transition t iff •t ⊆M . If t is enabled at M , then t can occur, and its
occurrence leads to a successor marking M ′, where M ′ = (M \ •t)∪ t•. The nets
considered here are safe Petri nets [16]. All safe nets are finite systems. Given a
1-safe labelled net with an initial marking, the set of all reachable markings is
fixed and can be constructed with the occurrence net.

We call a reachable marking M as a state s of the system N, and S as
the set of all possible reachable markings or states of the system. Since in this
model transitions represent actions rather than events (as in the TSI case), every
transition is annotated with a particular marking M to recognize which event
they refer to. Therefore we can write tMa for the event of the action or transition
t with label a at state s = M , i.e., whenever •t ⊆ M and F(t) = a. Support
sets for nets are defined as for TSIs considering that src(tMa) = M (to define
conflict-free sets of transitions) and the maximal set at a state s = M is the
set {t | •t ⊆ M}. Finally, the dualities used to give the denotation to SFL
formulae in a model M = (N,V) are defined as for TSIs provided that the I
relation on events in the net model is defined for any two events tMa and tNb of
the transitions ta and tb, respectively, whenever there is a marking such that ta
and tb are enabled at such marking and •ta ∩ •tb = ∅. With this information the
set of processes S and the valuation V can be defined, and the net model M for
SFL is straightforward.

Logics and Bisimulation Games for Concurrency, Causality and Conflict 55

4.2 Applications

A Temporal Logic. SFL can express all usual temporal properties, such as, live-
ness, safety, fairness, and so on. These properties are equally handled in both
interleaving and noninterleaving models of concurrency.

A Process Logic. SFL can differentiate concurrency from nondeterminism using
two different local dualities. Consider these concurrent systems: P = a.0 ‖ b.0
and Q = a.b.0 + b.a.0. P and Q are behaviourally equivalent in an inter-
leaving context (since they are strongly bisimilar [12]), but different from a
true-concurrency point of view (since they are not history-preserving bisimilar
[10]). Such a difference can be captured in these two ways: with the formulae
φ = 〈a〉tt ∗ 〈b〉tt or ψ = 〈a〉c〈b〉nctt, which are both true in P but not in Q.

A Petri Net Logic. SFL can express properties of net systems by defining proper-
ties of the localities and synchronization mechanisms. In order to do so, it is use-
ful to define a derived operator that allows one to perform a causal step that may
require resource from separate localities so as to proceed (a strongly causal step).
Consider the derived operator: 〈a〉scφ

def= 〈a〉ctt ∧ µZ.〈a〉φ ∨ (〈a〉tt ∗ 〈−a〉Z). Ex-
pressing that a property p eventually holds in a causal line can be easily defined as
φ = µZ.p∨〈−〉scZ. The result of evaluating this formula corresponds to finding a
“line” in the net to some state where p holds, even though separate resource may
be needed. These kinds of properties can be further studied with the structural
operators of SFL. For instance, the formula φ = µZ.p ∨ 〈−〉scZ ∗ µY.q ∨ 〈−〉scY
not only states that properties p and q hold eventually in two causal lines, but
also that such causal lines have an independent source.

A Resource-Sensitive Logic. The parallel conjunction of SFL can also be used
to define data structures, such as, lists and trees, à la Reynolds [19], but using a
temporal specification approach. In SFL independent transitions can be treated
as resources, allowing indirectly the specification of independent localities in
the model. For instance, let φ = µZ.〈nil〉ctt ∨ (〈data〉ctt ∗ 〈−〉cZ). Formula φ
represents an abstraction of a finite list structure where all nodes in the list
causally depend on the previous one (a sequential structure), whereas its data
and pointers are spatially separated and thus can be regarded as independent.
Since our approach is not proof-theoretic, there is not a “frame rule” similar to
the one defined for Separation Logic and concurrent extensions of it [6,11,19].

A Logic for Multi-Agent Systems (MAS). MAS, such as those specified with log-
ics like ATL [1] can be studied using SFL. In order to express properties of MAS,
define a set Γ of agents, a labeling function B on sets of transitions, and a map-
ping A that assigns transitions to agents, subject to the restriction that if t1 ∼ t2
then A(t1) = A(t2). For simplicity, we write 〈K〉γ for 〈B(A−1(γ))〉, and simi-
larly for the other modal operators. The formula ψ = [−]β 〈−〉αncµZ.φ ∨ 〈−〉αc Z
expresses that there is an agent α (the system) that can satisfy φ regardless
the behaviour of an adversarial agent β (the environment).1 Informally, ψ says
1 I thank Bradfield for the IFML version of this example. A−1 is the inv. func. of A.

56 J. Gutierrez

“whatever you (the environment) do, I (the system) can get to φ, though I may
first have to do some things that do not depend on what you did.”

5 Logical and Concurrent Equivalences

We now turn our attention to the study of the relationships between model inde-
pendence and logical independence. We do so by relating well-known equivalences
for concurrency, namely hpb [10] and hhpb [13], with the equivalences induced
by different SFL sublogics where the interplay between concurrency and conflict,
and concurrency and causality is restricted syntactically. The reader is referred
to [10,13] or [5] for a detailed description of the history-preserving bisimulations
not proposed in this paper (hpb and hhpb), but studied in the following sections.
Due to lack of space, in most cases, proofs are omitted or simply sketched.

Definition 5.1. (SFL equivalence ∼SFL). Two processes P and Q of two
independence models T1 and T2, respectively, are SFL-equivalent, P ∼SFL Q,
iff for every SFL formula φ in FSFL, P |=T1 φ ⇔ Q |=T2 φ, where FSFL is the
set of all fixpoint-free closed formulae of SFL.

Remark 5.1. Similar definitions can be made for the equivalences of the SFL
sublogics we present here.

Remark 5.2. In order to obtain an exact match between finitary modal logic and
bisimulation, all models considered in this paper are image-finite [12].

5.1 SFL, HML and the Modal Mu-Calculus

The first SFL sublogic is obtained from SFL by disabling its sensitivity to both
dualities. On the one hand, insensitivity to the duality between concurrency
and causality can be captured by considering only modalities without subscript,
using the abbreviations for modalities given previously in Section 4. On the
other hand, insensitivity to the duality between concurrency and conflict can be
captured by considering the ∗-free SFL sublanguage. The resulting logic has the
following syntax: φ ::= Z | ¬φ1 | φ1 ∧ φ2 | 〈K〉φ1 | µZ.φ1. This SFL syntactic
fragment is the modal ∗-free fragment of SFL.

Proposition 1. The modal ∗-free fragment of SFL is Kozen’s mu-calculus, Lµ.

Proof. By computing the semantics of the derived operators of this sublogic. %&
Remark 5.3. This SFL sublogic cannot recognize elements in I and therefore
sees TSIs as plain LTSs, or what is equivalent, TSIs with an empty I relation.
As a consequence, although using an independence model, it is possible to retain
in SFL all the joys of a logic with an interleaving model, and so, nothing is lost
with respect to the main interleaving approaches to concurrency.

Regarding logical and concurrent equivalences, it is now easy to see that Milner’s
strong bisimulation [12], ∼b, the equivalence induced by modal logic is captured
by the fixpoint-free fragment of this SFL sublogic, which we can denote by ∼Lµ.
Hence, the relation ∼Lµ ≡ ∼b follows from Proposition 1 and the fact that modal
logic characterises bisimulation on finite models.

Logics and Bisimulation Games for Concurrency, Causality and Conflict 57

5.2 A Separation Modal Mu-Calculus

The second sublogic is the Separation modal mu-calculus, SLµ. This logic is
obtained from SFL by allowing only the recognition of the duality between con-
currency and conflict by using its structural operator. The syntax of SLµ is
φ ::= Z | ¬φ1 | φ1 ∧ φ2 | 〈K〉φ1 | φ1 ∗ φ2 | µZ.φ1. We write ∼SLµ for the
equivalence induced by this SFL sublogic. It is easy to see that SLµ is more
expressive than Lµ in independence models simply because SLµ includes Lµ
and can differentiate concurrency from nondeterminism. However, the following
counter-examples show that ∼SLµ and ∼hpb, in general, do not coincide.

Proposition 2. Neither ∼hpb ⊆ ∼SLµ nor ∼SLµ ⊆ ∼hpb.

Proof. The two systems on the right (in Fig. 2) are hpb and yet can be distin-
guished by the formula φ = 〈a〉〈c〉tt ∗ 〈b〉〈d〉tt. On the other hand, the systems
on the left are not hpb and cannot be differentiated by any SLµ formula. %&

• b
����◦

a ����

b
����
I •
• a

����

• •b�� b �� •
I

◦
a

��

b
�� •

a

��

•
•b

		��
• b

����

c

��

• I ◦
a����

b
		��

a ����

b
����
I •

•a

����
• a

����

d
���� •

•
•b

		��
• b

����

c

��

• I ◦
a����

b
		��

a ����

b
����
I •

•
d

��
a

����
• a

����

•
Fig. 2. Systems used for defining the equivalence induced by Separation Lµ

There are two reasons for the mismatch between ∼hpb and ∼SLµ. The first one
(related with the two systems on the left in Fig. 2) is that ∼hpb, unlike ∼SLµ,
recognizes the pattern “an action a followed by both a concurrent action b and
a causally dependent action b”. The second reason, which is related with the
systems on the right, is that ∼hpb cannot recognize some forms of conflict that
SLµ can capture. For instance, the fact that even though two actions can be
performed in parallel, it is also possible that the execution of one of them affects
(prevents) the execution of transitions that depends on the other.

5.3 A Causal Modal Mu-Calculus

The third fragment to be considered is the Causal modal mu-calculus, CLµ. This
sublogic is obtained from SFL by allowing only the recognition of the duality
between concurrency and causality throughout the modal operators of the logic.
Its syntax is φ ::= Z | ¬φ1 | φ1 ∧ φ2 | 〈K〉cφ1 | 〈K〉ncφ1 | µZ.φ1. Clearly, CLµ
is also more expressive than Lµ in independence models because of the same
reasons given for SLµ. The naturality of CLµ for expressing causal properties
is demonstrated by the equivalence it induces in any model, written as ∼CLµ,
which coincides with a history-preserving bisimulation, ∼hpb, [10].

58 J. Gutierrez

Theorem 1. ∼CLµ≡∼hpb

Proof. The proof goes by showing the two inclusions separately, ∼hpb ⊆ ∼CLµ
and ∼CLµ ⊆ ∼hpb. The first inclusion, ∼hpb ⊆ ∼CLµ, can be proved by induction
on CLµ formulae, called FCLµ. For any two processes P and Q that belong to
TSIs T1 and T0, respectively, if P ∼hpb Q then for all φ in FCLµ, P |=T1 φ ⇔
Q |=T0 φ. The induction only requires (simplified) processes P = (p, ta) and
Q = (q, ta), which are binary tuples in S × A of a TSI-model M, because CLµ
only considers maximal sets and therefore support sets can be disregarded.

The second inclusion, ∼CLµ ⊆ ∼hpb, is shown by contradiction. Suppose that
for all φ in FCLµ we have that P |=T1 φ ⇔ Q |=T0 φ and P �∼hpb Q. The
contradiction comes from the fact that even though processes P and Q satisfy
the same CLµ formulae, there would be a transition in one of the processes that
cannot be simulated by the other process in an hpb way, i.e., concurrent actions
matched only with concurrent ones so as to keep the bisimulation synchronous,
which is impossible. More precisely, synchrony in an hp bisimulation means that
the last transition chosen in T1 (resp. in T2) is concurrent with the former
transition also chosen in T1 (resp. in T2) iff the same pattern holds in the last
two transitions chosen in T2 (resp. in T1). %&

Corollary 1. ∼CLµ is decidable.

Proof. Follows from Theorem 1 and the fact that ∼hpb is decidable. %&

5.4 The Full Separation Fixpoint Logic

Although the equivalence induced by SFL is analysed in the following section
using game-theoretical arguments, we first present a simple result that relates
∼SFL with ∼hhpb, without using any game-theoretical machinery. Consider the
counter-example presented in [8] (or the TSI representation of it), which is used
there to disprove the coincidence between hpb and hhpb in free-choice systems.
Due to lack of space such a counter-example is not reported here. Although the
systems presented in [8] (in Figure 1) are not hhp bisimilar, they cannot be
distinguished by any SFL formula. This result shows that in general ∼hhpb does
not coincide with ∼SFL. However, the precise relation between ∼hhpb and ∼SFL
is to be defined in the following section. For now, we have the following result:

Proposition 3. ∼SFL �⊆ ∼hhpb

6 Bisimulation Games

Based on some of the results of the previous section, we give a game-theoretical
characterization of the equivalence SFL induces by defining a Bisimulation Game
for it. A knowledge on basic concepts about bisimulation games is assumed. An
introduction to Bisimulation games can be found in [21].

The games presented here conservatively extend the hp bisimulation game,
and therefore usual games for modal logics, i.e., classical bisimulation. We prove
that these bisimulation games, which we call independence hp bisimulation

Logics and Bisimulation Games for Concurrency, Causality and Conflict 59

(ihpb) games, characterize the equivalence induced by SFL. Most importantly, it
is shown that the ihp bisimulation games induce an equivalence relation for con-
current systems that is strictly stronger than hpb and strictly weaker than hhpb.
Remarkably, whereas ihpb games are decidable, hhpb games are undecidable in
finite models. These features make ihpb games, and consequently the equivalence
induced by SFL, an interesting candidate for an equivalence of true-concurrency.
A hierarchy of true concurrent equivalences can be found in [7].

Definition 6.1. A linearized concurrent run is any sequence of transitions
r = t0, ..., tn of an independence model T such that s r−→ s′ for some states s and
s′ in T. The set of linearized concurrent runs of a structure T with respect to an
initial state s can be written as cRunss(T). An empty run is written as r = ε.
The last transition of the sequence r = t0, ..., tn is denoted by last(r) = tn.

Remark 6.1. Any play of an (h)hp bisimulation game corresponds exactly to a
pair of linearized concurrent runs in the structures at hand.

Before presenting the games for SFL, let us introduce a final definition that is
related with the role of support sets as locally identifiable sets of concurrent
transitions (conflict-free sets of transitions).

Definition 6.2. Two sets P1 and P2 are said to be history-preserving isomor-
phic with respect to a transition t iff there exists a bijection B between them
such that for every (ti, tj) ∈ B, if t ≤ ti (resp. t ti) then t ≤ tj (resp. t tj).
Definition 6.3. (Independence history-preserving bisimulation Games). Con-
sider the standard bisimulation game for modal logics. There are two play-
ers, Spoiler and Duplicator, and a pair of structures T1 and T2 with initial
states/processes P and Q, respectively. A configuration of a play in the game is
a pair (r1, r2), where r1 ∈ cRunsP (T1) and r2 ∈ cRunsQ(T2). R is an indepen-
dence history-preserving bisimulation between T1 and T2 if:

1. The initial configuration is (ε, ε). Therefore (ε, ε) ∈ R
2. (Rule for hp bisimulation). Let (r1, r2) be the current configuration, thus

(r1, r2) ∈ R. Spoiler chooses one of the two systems, say T1 (T2), and picks
a transition t1 (t2) that is enabled at r1 (r2). Duplicator has to respond by
executing a transition t2 (t1) in the opposite structure T2 (T1) such that the
two extended linearized concurrent runs stay synchronous. Synchrony means
that whenever last(r1) ≤ t1 (resp. last(r1) t1) then last(r2) ≤ t2 (resp.
last(r2) t2). The new configuration of the play is (r1.t1, r2.t2), and hence
(r1.t1, r2.t2) ∈ R.

3. (Additional rule for ihp bisimulation). Before Spoiler chooses a transition
t1 (t2) from the enabled ones at r1 (r2), he can also choose a non-empty
conflict-free subset of them to be the new set of enabled transitions P1 (P2)
of size n. Duplicator must choose a history-preserving isomorphic set P2 (P1)
with respect to last(r2) (last(r1)) in the opposite structure T2 (T1).

If the play continues forever or Spoiler cannot make a move, then Duplicator
wins. Otherwise Spoiler wins. The two structures are ihp bisimilar iff Duplicator
has a winning strategy for every play in the game.

60 J. Gutierrez

Lemma 1. If P ∼SFL Q, then Duplicator has a winning strategy for every play
in the independence history-preserving bisimulation game G(T1,T2, P,Q).

Proof. By constructing a winning strategy for Duplicator based on the fact that
P ∼SFL Q. Since CLµ induces an hp bisimulation and the ihpb game conserva-
tively extends the hpb game, w.l.o.g. we can consider only the case when Spoiler
plays Rule 3 of the ihpb game. %&

Lemma 2. If Duplicator has a winning strategy for every play in the indepen-
dence history-preserving bisimulation game G(T1,T2, P,Q), then P ∼SFL Q.

Proof. By contradiction suppose that Duplicator has a winning strategy and
P �∼SFL Q. There are two cases. Suppose that Spoiler cannot make a move. This
means that both P |=T1 [−] ff and Q |=T2 [−] ff only, which is a contradiction.
The other case is when Duplicator wins in an infinite play. For the same reasons
given previously, w.l.o.g., it is possible to consider only the case when Spoiler
uses the Rule 3 of the ihpb game. But, this case also leads to a contradiction. %&

The previous two Lemmas give a full game-theoretical characterization to the
equivalence induced by SFL.

Theorem 2. P ∼SFL Q iff Duplicator has a winning strategy for every play in
the independence history-preserving bisimulation game G(T1,T2, P,Q).

Theorem 3. ∼ihpb ≡ ∼SFL is decidable on finite systems.

Proof. An independence history-preserving bisimulation game is a two-player
zero-sum perfect-information (infinite) game, thus it is determined. Moreover,
the length of the game is bounded. Duplicator wins when Spoiler cannot make
a move or when a finite set of repeated configurations is visited infinitely often.
In either case all possible winning strategies can be computed and therefore
decidability follows. %&

The previous results let us relate ∼hhpb with ∼SFL using game-theoretical ar-
guments. Since both bisimulation games, namely the one for hhpb one and the
one for ihpb, are conservative extensions of the hp bisimulation game, they can
be compared just by looking at their additional rules with respect to the hpb
game. So, consider the game-theoretical definition of hhpb as presented in [15].
We will describe the hhpb rule that extends the hpb game in the style used here.

Definition 6.4. (Hereditary history-preserving bisimulation Games). An hhp
bisimulation game is just as an hp bisimulation game, as presented in Definition
6.3 (only Rules one and two), adding the following rule:

– (Additional rule for hhp bisimulation). Alternatively to a forwards move,
having chosen one of the two systems, say T1, Spoiler can choose a transition
ti that is backwards enabled at r1 with respect to a previous configuration
(w1, w2), i.e., a transition ti that is concurrent with every transition t after
w1, where w1 is obtained from r1 by using the “diamond axioms” to push

Logics and Bisimulation Games for Concurrency, Causality and Conflict 61

ti to the end, and then deleting ti, and symmetrically for w2. Duplicator
must respond by choosing (deleting) the corresponding tj in w2. The new
configuration of the game is that obtained by deleting both transitions ti
and tj from the history of the game.

Now, only by showing that the additional rule for the hhpb game is at least as
powerful as the additional rule for the ihpb game, and taking into account that
∼hhpb and ∼SFL do not coincide, by Proposition 3, we have:

Theorem 4. ∼hhpb ⊂ ∼SFL

7 Concluding Remarks and Related Work

We have given a logical characterization to the dualities that can be found when
analysing locally the relationships between concurrency and conflict as well as
concurrency and causality. This characterization aims at defining relationships
between model independence and logical independence. Our study led to several
positive results with respect to the equivalences induced by a number of modal
logics whose denotations are based on these dualities.

Related Work: At a philosophical level, this study is similar to that in [3,5], a
work primarily on mathematical logic using game logics for concurrency where
model independence is captured explicitly with the use of Henkin quantifiers.
At a more practical level, this work can be related to logics with partial order
semantics at large. These logics, in the simplest cases, are given denotations that
consider the one-step interleaving semantics of a particular independence model.
Therefore no new logical constructions have to be introduced. The problem is
that the explicit notion of independence in the models is completely lost. Thus,
the usual approach is to introduce logical operators that somehow capture the
independence in the models. In most cases that kind of logical independence is
actually a sequential interpretation of concurrency based on the introduction of
past operators sensitive to concurrent actions and a mixture of forwards and
backwards reasoning (which usually leads to several undecidable results). A sur-
vey of logics of this kind can be found in [17]. Other logics with partial order
semantics can be found in [2,15], but the literature has many more references.

Also, the work here presented can be related to logics for local reasoning.
In particular, the use of separation properties to do local reasoning has been
investigated elsewhere and applied in other settings [4,6,11,18,19,20]. However,
as said before, apart from [3,5] the main motivation for this paper is different
from all the examples given above, since we actually want to distill the relation-
ships between model and logical independence so as to understand the semantic
foundations of concurrent computations.

Acknowledgements. I am grateful to Julian Bradfield for helpful discussions.
I thank Ian Stark and Colin Stirling for comments on a preliminary version of
this paper. I also thank the referees for their comments.

62 J. Gutierrez

References

1. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002)

2. Alur, R., Peled, D., Penczek, W.: Model-Checking of Causality Properties. In:
LICS, pp. 90–100. IEEE Computer Society, Los Alamitos (1995)

3. Bradfield, J.: Truth and Games: Essays in Honour of Gabriel Sandu. In: Aho,
T., Pietarinen, A. (eds.) Acta Philosophica Fennica. Independence: Logics and
Concurrency, vol. 78, pp. 47–70. Phil. Soc. of Finland (2006)

4. Bradfield, J., Esparza, J., Mader, A.: A Causal Fixpoint Logic. Unpub. (1997)
5. Bradfield, J., Fröschle, S.: Independence-Friendly Modal Logic and True Concur-

rency. Nord. J. Comput. 9(1), 102–117 (2002)
6. Brookes, S.: A semantics for concurrent separation logic. In: Gardner, P., Yoshida,

N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 16–34. Springer, Heidelberg (2004)
7. Fecher, H.: A Completed Hierarchy of True Concurrent Equivalences. Inf. Process.

Lett. 89(5), 261–265 (2004)
8. Fröschle, S.: The Decidability Border of Hereditary History Preserving Bisimilarity.

Inf. Process. Lett. 93(6), 289–293 (2005)
9. Fröschle, S., Hildebrandt, T.: On Plain and Hereditary History-Preserving Bisimu-

lation. In: Kuty�lowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS,
vol. 1672, pp. 354–365. Springer, Heidelberg (1999)

10. Glabbeek, R., Goltz, U.: Refinement of Actions and Equivalence Notions for Con-
current Systems. Acta Inf. 37(4/5), 229–327 (2001)

11. Hayman, J., Winskel, G.: Independence and Concurrent Separation Logic. In:
LICS, pp. 147–156. IEEE Computer Society, Los Alamitos (2006)

12. Hennessy, M., Milner, R.: Algebraic Laws for Nondeterminism and Concurrency.
J. ACM 32(1), 137–161 (1985)

13. Joyal, A., Nielsen, M., Winskel, G.: Bisimulation from Open Maps. Inf. Com-
put. 127(2), 164–185 (1996)

14. Mazurkiewicz, A.: Trace Theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
APN 1986. LNCS, vol. 255, pp. 279–324. Springer, Heidelberg (1987)

15. Nielsen, M., Clausen, C.: Games and Logics for a Noninterleaving Bisimulation.
Nord. J. Comput. 2(2), 221–249 (1995)

16. Nielsen, M., Winskel, G.: Models for Concurrency. In: Handbook of Logic in Com-
puter Science, vol. 4, pp. 1–148. Oxford University Press, Oxford (1995)

17. Penczek, W.: Branching Time and Partial Order in Temporal Logics. In: Time and
Logic: A Computational Approach, pp. 179–228. UCL Press (1995)

18. Pym, D., Tofts, C.: A Calculus and Logic of Resources and Processes. Formal Asp.
Comput. 18(4), 495–517 (2006)

19. Reynolds, J.: Separation Logic: A Logic for Shared Mutable Data Structures. In:
LICS, pp. 55–74. IEEE Computer Society, Los Alamitos (2002)

20. Sims, É.-J.: Extending Separation Logic with Fixpoints and Postponed Substitu-
tion. Theor. Comput. Sci. 351(2), 258–275 (2006)

21. Stirling, C.: Modal and Temporal Properties of Processes. Springer, Heidelberg
(2001)

Separating Graph Logic from MSO

Timos Antonopoulos and Anuj Dawar

University of Cambridge Computer Laboratory, Cambridge CB3 0FD, UK
{timos.antonopoulos,anuj.dawar}@cl.cam.ac.uk

Abstract. Graph logic (GL) is a spatial logic for querying graphs intro-
duced by Cardelli et al. It has been observed that in terms of expressive
power, this logic is a fragment of Monadic Second Order Logic (MSO),
with quantification over sets of edges. We show that the containment is
proper by exhibiting a property that is not GL definable but is definable
in MSO, even in the absence of quantification over labels. Moreover, this
holds when the graphs are restricted to be forests and thus strengthens in
several ways a result of Marcinkowski. As a consequence we also obtain
that Separation Logic, with a separating conjunction but without the
magic wand, is strictly weaker than MSO over memory heaps, settling
an open question of Brochenin et al.

1 Introduction

Graph Logic (GL) was introduced by Cardelli et al. [2] as a query language
on labelled directed graphs, modelled on spatial logic. It extends the first-order
logic of such graphs (with quantification over vertices, edges and labels) with
a spatial connective: thus, a formula (ϕ|ψ) is true in a graph G if, and only if,
G can be decomposed into two subgraphs G1 and G2 such that G1 |= ϕ and
G2 |= ψ. Here, when we say that G is decomposed into G1 and G2, we mean
that these two graphs may share vertices but not edges.

It is easy to see that any formula of GL can be translated into an equivalent
formula of second-order logic in which the second-order quantifiers are restricted
to sets of edges. This is a version of monadic second-order logic (MSO) known as
MS2 in the works of Courcelle (see [4]) and also as guarded second order logic or
GSO (see [8]). The expressive power and complexity of GL were systematically
investigated in [6], where it was shown that, like MSO, GL can express complete
problems at every level of the polynomial hierarchy. Moreover, when we restrict
ourselves to labelled graphs that code words in the natural way, then GL can
(just like MSO) define exactly the regular languages. A conjecture that was left
open in [6] was that the containment of GL in MS2 is strict, i.e. that there is a
property of graphs definable in MS2 that is not definable in GL.

Marcinkowski [9] settled this conjecture positively. The property he constructs
crucially relies on the presence of an unbounded set of labels in the graphs
considered, and on the ability of formulas of GL and (an enhanced) monadic
second-order logic, which he calls MSO+ to quantify over labels. This reliance
on label-quantification is something Marcinkowski calls a “win on technicalities”

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 63–77, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

64 T. Antonopoulos and A. Dawar

and he explicitly leaves open the more fundamental question of whether GL
without quantification over labels, which he calls GL−, is strictly weaker than
MSO. We settle this question in this paper. To be precise, we show that there
is a property of unlabelled, directed forests that is expressible in MSO but not
in GL. Since, on forests, one can replace quantification over sets of edges with
quantification overs sets of vertices, this yields the stronger result that GL does
not even contain MS1.

As a corollary, we obtain a result concerning separation logic (SL), a logic of
assertions used in Hoare-style proof systems [10]. Brochenin et al. [1] consider the
expressive power of SL(∗), which is separation logic with a separating conjunction
(∗) but without the magic wand (−∗) and conjecture that it is properly contained
in MSO. Since SL is essentially the same as GL over structures known as memory
heaps, and since the forests we use to separate GL from MSO can be coded as
such heaps, a direct consequence of our proof is a positive resolution of this
conjecture.

The MSO-definable property of forests that we demonstrate is not definable
in GL is the following: a forest contains a tree in which the number of leaves is a
multiple of 3. The use of forests rather than trees is crucial to the proof and thus
the question of whether there is a regular tree language that is not definable in
GL remains open. We show that a natural candidate, the class of binary trees
with an even number of leaves, is definable in GL. Indeed, any regular binary tree
language accepted by a bottom-up automaton that is the product of two-state
automata can be defined in GL.

In the rest of the paper, we first introduce, in Section 2, the logics we deal
with. In Section 4 we investigate the power of GL on trees by showing that
a certain class of regular tree languages is included in those definable in GL.
Section 3 presents the main result, while Section 5 explores the consequences for
separation logic.

2 Background and Preliminaries

Graph Logic was introduced in [2] as a logic for querying graphs. It is based on a
view of graphs as terms in a suitable algebra, involving a composition operator.
Thus, the graphs are built up from single edges by repeated compositions. In the
present paper, we treat the logic instead as an extension of the ordinary first-
order logic of graphs, with the composition operator appearing in the formulas.
The two views are equivalent, as discussed in [6]. We assume familiarity with
the syntax and semantics of first-order logic (FO).

2.1 Graph Logic

Fix a set X of vertex names. A graph G consists of a finite set E of edges, and an
incidence map IG : E → X ×X that associates with each edge a pair of vertices
that we call its endpoints. It is easy to see that any such graph can be seen as a
finite, directed, unlabelled graph (with no isolated nodes) in the usual sense. We

Separating Graph Logic from MSO 65

will briefly consider the case of edge labels below. The syntax of Graph Logic
can then be specified as follows.

Definition 2.1 (GL Syntax). Let V be a countable set of vertex variables. A
GL formula is defined to be one of the following for ti ∈ X ∪ V , and x ∈ V and
for GL formulas ϕi:

ϕ := 0 | � | E(t1, t2) | t1 = t2 | ¬ϕ1 | ϕ1 ∧ ϕ2 | ϕ1|ϕ2 | ∃x ϕ1.

This appears at first sight to be an extension of first-order logic with one extra
formula formation rule: ϕ1|ϕ2. However, the interpretation of the atomic formu-
las is different from the usual rules for FO. To be precise, E(t1, t2) is true in a
graph G just in case G consists of a single edge e whose end points are named
by the terms t1 and t2. To define the semantics of the composition operator, we
need to first define graph composition.

Let G1 and G2 be two graphs with edge sets E1 and E2 and incidence maps
I1 and I2 respectively. The graph G = G1 | G2 is defined to be the graph whose
edge set and incidence map are the disjoint unions E1 � E2 and I1 � I2. Note
that G1 and G2 may share vertices. The semantics of the formula ϕ1|ϕ2 is now
defined by saying G |= (ϕ1|ϕ2) just in case G = G1 | G2 for some G1 and G2
such that G1 |= ϕ1 and G2 |= ϕ2. Formally, the semantics is as given below.

Definition 2.2 (GL Semantics). Let G be a graph with edge set E and inci-
dence map I. Also let α : V → X be an assignment of vertex names to variables.
We write α̂ for the extension of α to the domain X ∪ V by letting α̂(x) = x for
all x ∈ X. The semantics for the Boolean connectives are defined as usual. The
following holds for the rest of the GL constructs.

(G,α) |= 0 iff E = ∅,
(G,α) |= � for any graph G,
(G,α) |= E(t1, t2) iff E = {e} and I(e) = (α̂(t1), α̂(t2)),
(G,α) |= t1 = t2 iff α̂(t1) = α̂(t2),
(G,α) |= ϕ1|ϕ2 iff there exist G1, G2 s.t. G = G1|G2 and (Gi, α) |= ϕi,
(G,α) |= ∃x ϕ1 iff there is an a ∈ X s.t. (G, α̂[x �→ a]) |= ϕ1,

where α̂[x �→ a] denotes the map that agrees with α̂ at all values other than x
and maps x to a.

In spite of the variance in the interpretation of atomic formulas, it is not difficult
to prove that every FO formula on finite graphs can be translated into a formula
of GL. In particular, an atomic FO formula of the form E(a, b) asserting the
existence of an edge between vertices a and b is equivalent to the GL formula
(E(a, b)|�). In turn, every GL formula can be translated into one of second-order
logic (see [6] for details).

The monadic second-order logic (MSO) of graphs comes in two variants, called
MS1 and MS2 by Courcelle [4]. Both extend FO with second-order quantifiers
that can quantify over sets. In the case of MS1, this second-order quantification
is limited to sets of vertices, while MS2 allows quantification over sets of edges.

66 T. Antonopoulos and A. Dawar

To be precise MS1 extends FO with a countable set Z of second-order variables.
For every Z ∈ Z and term t, Z(t) is an atomic formula and for every formula ϕ,
∃Zϕ is also a formula. The latter is satisfied by a graph G just in case there is
a set A ⊆ X of vertices such that ϕ is true in G when all free occurrences of Z
are interpreted by the set A. Similarly, MS2 allows atomic formulas Z(t1, t2) and
quantifiers ∃Zϕ. The latter is true in a graph G just in case there is a set A ⊆ E
of edges such that ϕ is true in G when all free occurrences of Z are interpreted
by the set A.

It is not difficult to see that each formula of GL can be translated into an
equivalent formula of MS2. It is not the case that GL can be translated into MS1
and in Section 6 we construct an example exhibiting this. The question left open
from [6] and [9] is whether there is a sentence of MS2 that is not equivalent to
any sentence of GL. This is the question we answer in the present paper.

Apart from Section 6, we are concerned in this paper with graphs that are
trees or forests. On such graphs, MS2 is no more expressive than MS1. Indeed,
since each vertex has at most one incoming edge, there is an easily definable
one-to-one map from edges to vertices that allows us to replace quantification
over edges with quantification over vertices. Thus, for our purposes, it makes
sense to speak just of MSO, without distinguishing the two varieties. We will
simply speak about comparing GL and MSO.

In the intended applications of GL, graphs do not just consist of sets of edges,
but also come with labels. There are two ways in which labels can be introduced
into the language of GL. If the set of possible labels is a fixed finite set Σ, we
may regard each σ ∈ Σ as defining a set of edges Eσ with associated incidence
relation I : Eσ → X ×X . The logic then allows atomic formulas Eσ(t1, t2) for
each σ ∈ Σ. On the other hand, if the set of labels is unbounded, we include in
the language the set Σ and a countable set of label variables L. A graph now is
a set of edges E together with an incidence relation I : X × Σ ×X . We allow
atomic formulas Eσ(t1, t2) for each σ ∈ Σ∪L and also allow equality testing and
quantification over labels. Thus, for σ, τ ∈ Σ∪L, we have atomic formulas σ = τ
and for any formula ϕ, we can form the formula ∃lϕ for l ∈ L. Marcinkowski [9]
termed this extended logic GL+ and proved that it was strictly weaker than
MSO+, the corresponding extension of MS2. Our result strengthens his. In the
rest of this paper, we will not be concerned with GL+ or MSO+.

Regular Languages. The case of bounded alphabets Σ includes many interest-
ing applications of MSO. For instance, Σ-labelled graphs which consist of a
single path from a source s to a terminal t can be identified with words over
the alphabet Σ. It is well known, by results of Büchi, Elgot and Trakhtenbrot
(see [7]) that in this case MSO can define exactly the regular languages. It was
shown in [6] that the same is true of GL. The correspondence between MSO
and finite automata extends further to Σ-labelled trees, and it remains an open
question (see [9]) whether GL can express all regular tree languages. In Section 6,
we show that one suggested candidate for separation—the class of binary trees
with an even number of leaves—is definable in GL. Indeed, any binary tree lan-
guage accepted by a bottom-up deterministic two-state automaton is shown to be

Separating Graph Logic from MSO 67

definable. However, if the graphs are forests rather than trees, our main result
in Section 3 proves that GL is strictly weaker than MSO.

Recall the following. A deterministic bottom-up tree automaton is a tuple
A = (Σ, δ2, δ1, q1, Q,Qf), where Σ is the alphabet, Q the set of states, q1 ∈ Q
the initial state, Qf ⊆ Q the set of accepting states and δ1 : Q × Σ → Q and
δ2 : Q×Σ×Q×Σ → Q are two transition functions. Given a Σ-labelled binary
tree, the automaton A assigns a state in Q to each node of the tree. The leaves
are assigned the initial state q1. Each node a with one child is assigned δ1(q,σ)
where σ is the label on the edge leaving a and q is the state assigned to its child.
Similarly, each node a with two children is assigned δ2(q,σ, q′,σ′) where σ and
σ′ are the labels on the two edges leaving a and q and q′ are the states assigned
to its two children. A accepts a tree T if the state assigned to the root of T is
in Qf .

2.2 GL Games

The main tool for proving non-expressibility of a property in FO or MSO is
Ehrenfeucht-Fräıssé Games (see [7]). Such games have also been adapted to
spatial logics (see [5]). Here we present an adaptation of the game for GL.

A GL Game is played by two players, Spoiler and Duplicator, and consists
of k rounds, for some k ∈ N. The game is played on two graphs F and G with
the initial position being 〈(F, c̄), (G, c̄)〉 for some tuple c̄ of vertex names. The
position at a round i ≤ k is defined to be a pair of structures with distinguished
vertices 〈(F i, ā), (Gi, b̄)〉 where ā = a1, . . . , ap and b̄ = b1, . . . , bp are tuples of
vertex names extending c̄, and F i and Gi are subgraphs of F and G respectively.

At the beginning of the ith round, Spoiler chooses one of the two structures
(F i, ā) or (Gi, b̄) and makes either a colouring move or a first order move. Sup-
pose, without loss of generality, that Spoiler chooses (F i, ā). For a first order
move, he chooses a vertex ap′ in F i and Duplicator must respond with a vertex
bp′ in Gi. The position at the next round is 〈(F i, ā, ap′), (Gi, b̄, bp′)〉.

If he chooses to play a colouring move, Spoiler finds two graphs F i1 and F i2
such that F i = F i1|F i2 . Duplicator must respond with two graphs Gi1 and Gi2 such
that Gi = Gi1|Gi2. Spoiler then decides whether the position at the next round
is 〈(F i1 , ā), (Gi1, b̄)〉 or 〈(F i2 , ā), (Gi2, b̄)〉. In general, when describing a colouring
move, we will say that Spoiler has coloured the edges in F i1 white and those in
F i2 black and Duplicator has responded by colouring Gi1 white and Gi2 black.

The game ends after k rounds, or if one of the two graphs in some position is
empty or consists of a single edge. Let h : X ⇀ X be the partial map defined
by aj �→ bj. Spoiler wins if one of the following three conditions holds, and
Duplicator wins in all the other cases.

1. Exactly one of the graphs is empty.
2. One of the graphs is a single edge, with both endpoints in the domain of h

and h is not an isomorphism between the two graphs.
3. The mapping h is not one-to-one.

We define the quantifier rank of a GL formula, by counting first-order quan-
tifiers and composition operators equally. To be precise, the quantifier rank of a

68 T. Antonopoulos and A. Dawar

GL formula ϕ is rank(ϕ) which is defined as usual for the Boolean connectives
and as follows for the rest:

If ϕ = 0,�, t1 = t2, E(t1, t2) then rank(ϕ) = 0.
If ϕ = ϕ1|ϕ2 then rank(ϕ) = max(rank(ϕ1), rank(ϕ2)) + 1.
If ϕ = ∃x ϕ1 then rank(ϕ) = rank(ϕ1) + 1.

The proof of the following lemma then follows the standard methods for
Ehrenfeucht-Fräıssé games.

Lemma 2.3 ([6]). If Duplicator has a winning strategy for the k-round game
on graphs F and G with initial position 〈(F, c̄), (G, c̄)〉, then for any GL formula
ϕ with rank(ϕ) ≤ k and using only names from c̄, it holds that

F |= ϕ if, and only if, G |= ϕ.

The main use of this lemma is to show that some property P is not expressible in
GL. This can be formulated as in the following corollary. Since we are interested
in properties that are invariant under the choice of vertex names, we can restrict
ourselves to games in which c̄ is empty in the initial position.

Corollary 2.4. A property P is inexpressible in GL, if and only if for each
k ∈ N, there exist structures Fk and Gk, such that Fk ∈ P and Gk /∈ P , and
Duplicator has a winning strategy for the k-round GL played game on 〈Fk, Gk〉.

We write F ≡GL
k G to denote that F and G cannot be distinguished by any

sentence ϕ of GL with rank(ϕ) ≤ k. Similarly, F ≡MSO
k G denotes that F and G

agree on all MSO sentences with quantifier rank at most k. A translation of GL
formulas to MSO is given in [6] that takes a GL formula of quantifier rank k to
an MSO formula of rank at most 2k + 1. From this, Lemma 2.5 below follows.

Lemma 2.5. For any k ∈ N, and graphs G,H, if G ≡MSO
2k+1 H then G ≡GL

k H.

Disjoint Unions. We will often make use of constructions involving disjoint
unions of graphs as well as unions disjoint apart from a fixed number of named
vertices. We make these notions precise and fix notation here. Recall that we
are primarily interested in properties of graphs that are invariant under isomor-
phisms or, equivalently, invariant under renaming of vertices. Given graphs G
and H , we write G⊕H for the disjoint union of G and H . This is a graph G′|H
for a graph G′ that is isomorphic to G but shares no vertices with H . For a
fixed tuple ā of vertex names, we write G⊕ā H for the graph G′|H where G′ is
obtained from G by renaming all vertices apart from those in ā to be distinct
from any vertex in H . In other words, G ⊕ā H is a graph obtained from the
disjoint union of G and H while identifying vertices in ā. For an indexed family
{Gi | i ∈ I} of graphs, we write

⊕
i∈I Gi to denote the disjoint union of all the

graphs in the family. For a natural number n, we also write n ·G for the graph⊕
1≤i≤nGi where each Gi is isomorphic to G.

Separating Graph Logic from MSO 69

3 Separating GL from MSO

In this section we present the main result, namely that there are properties of
forests that are expressible in MSO but not in GL. The property in question is
that one of the trees in the forest has a number of leaves that is a multiple of
three. To see that this property is MSO definable, note that there is a simple 3-
state deterministic bottom-up tree automaton that checks whether a given tree
T has a number of leaves that is a multiple of three. Thus, there is an MSO
sentence θ that defines this class of trees. Since we can also construct an MSO
formula path(x, y) that asserts that there is a path from x to y, we can use this
to obtain a formula that asserts the existence of a root x such that the tree of
nodes reachable from x satisfies θ.

We begin with a simple intuitive example to illustrate why the colouring move
in a GL game involves a loss of information for Spoiler, which Duplicator can
exploit in a way that she cannot in the corresponding MSO game. Consider two
graphs, G1 and G2. Let G = G1⊕G2 and let G′ be G1⊕v G2 for some vertex v.
On a game played on 〈G,G′〉, if Spoiler plays a colouring move that splits either
graph into G1 and G2, it is clear that Duplicator has a winning response unless
the vertex v was previously chosen. Thus, information on how the original graph
(G or G′) was connected has been lost.

This simple example illustrates the idea behind the construction of the two
forests on which the game will be played. The forests we consider consist of a
single comb—i.e. a binary tree consisting of a simple path with other simple paths
branching off from it—and a large number of disjoint simple paths. These simple
paths act as noise which allow Duplicator, in response to a suitable colouring
move by Spoiler, to remove some of the branches of the comb (thereby changing
the number of leaves) and hide them among the noise. We now proceed to a
more detailed description of the construction.

Definition 3.1. A fork is a node in a binary tree that has two distinct children.
A comb is a binary tree where for any two distinct forks v1 and v2, either v1

is an ancestor of v2 or v2 is an ancestor of v1.

Let C be a comb, and r its root. As long as there is at least one fork in C, there
exist two leaves t, t′ such that the path from r to either of them contains all the
forks of C. Fix t to be one of those leaves and call the path from r to t, the spine
of the comb C. Each fork a of C, has one child on the spine of C while the other
is a vertex that is the root of a subtree consisting of a simple path to a leaf b.
For each fork a, we call the path from a to b, a tooth of the comb C. Note that
the number of leaves of a comb is one more than the number of teeth.

Let n, s ∈ N. We write Cn,s for the comb with n teeth where the length of
each tooth, as well as the distance between any two successive forks is s. We
also define C−i

n,s, for 1 ≤ i ≤ n, to be the comb Cn,s with the i-th tooth missing.
That is, the distance between the (i− 1)st fork and the next one is 2s. Finally,
let Sn denote a string (i.e. a tree consisting of a single path) of length n.

70 T. Antonopoulos and A. Dawar

Suppose a, a′ are successive forks in the spine of a comb. Then the substring
of the spine with endpoints a, a′ is called a segment. A block of a comb is a
segment with endpoints a, a′, together with the tooth attached to a′.

The following lemma states some easy consequences of the fact that MSO can
only define regular languages when restricted to strings.

Lemma 3.2. For each k ∈ N, there exist s, n, l ∈ N, such that:

1. for every w > s and every m, Sw ≡MSO
k Sw+ms,

2. for every t > n, and every m, Ct−2l,ms ≡MSO
k Ct+2,ms.

Lemma 3.2 essentially gives specific periodic properties for the sizes of strings
and of combs of constant segment length, with respect to ≡MSO

k -equivalence, for
any k ∈ N. One consequence we can derive is that Cn,s ≡MSO

k C−i
n+1,s, for any n

and the s given by the lemma, since Ss ≡MSO
k S2s and the comb C−i

n+1,s can be
seen as Cn,s with its ith segment of length s replaced by a segment of length 2s.

The next lemma can be proved by a standard application of Ehrenfeucht-
Fräıssé games and appears in [3] for general structures A and B.

Lemma 3.3. For any k ∈ N, there is λ ∈ N, such that if A is the disjoint union
of λ pairwise ≡MSO

k -equivalent structures, and B is the disjoint union of λ + 1
such structures, each ≡MSO

k -equivalent to the ones in A, then A ≡MSO
k B.

Before giving the details of the construction, we consider an example. Consider
two forests F1 ∼= Cn,s⊕λ ·Ss, and F2 ∼= Cn+1,s⊕λ ·Ss. That is, each one consists
of the disjoint union of a comb with a large number of strings. Suppose that,
in the GL game played on this pair of structures for '(k − 1)/2(moves, Spoiler
plays a colouring move on F1, by colouring the comb Cn,s in black, and the set
of disjoint strings λ · Ss in white. Then Duplicator can respond by colouring for
some 1 ≤ i ≤ n, the subgraph C−i

n+1,s in black and the λ copies of Ss together
with the remaining tooth of the comb in white, as shown in the figure below. By
Lemmas 3.2 and 3.3, whichever the pair of graphs on which Spoiler chooses to
continue the game, they are ≡MSO

k -equivalent. Since ≡MSO
k -equivalence implies

≡GL
(k−1)/2�, this means that Duplicator has a winning strategy for the rest of the

game. This shows that using the colouring move to distinguish the comb from
the noise, which would have been the right move for Spoiler in the MSO game
on this pair of structures, is a losing move in the GL game. Extending this idea,
we show that by taking the comb to be big enough and by adding enough noise,
we can ensure that Spoiler has no good moves.

Let F be the class of forests in which some tree has 0 (mod 3) leaves. In what
follows, we show that for any k ∈ N, there exist two forests F and G, such that
F ∈ F , G /∈ F , and Duplicator wins the k-round game on F and G. We proceed
with the details of the construction of these two forests.

Fix k ∈ N and let s and n be as given by Lemma 3.2 for k, and λ as given
by Lemma 3.3 for k. By Lemma 3.2, for every w ∈ N there is a w′ ∈ {1, . . . , 2s}
with Sw ≡MSO

k Sw′ (indeed, either w ≤ 2s and we can take w = w′ or we can find
a suitable w′ and m such that w = w′ +ms). We define N =

∏
1≤i,j≤2s(i + j).

Separating Graph Logic from MSO 71

︷ ︸︸ ︷

λ

︷ ︸︸ ︷
s

︷
︸
︸

︷

s

︷ ︸︸ ︷

λF1

F2

Note that this has the property that (i + j) | N (i.e. i + j divides N) for all
i, j ≤ 2s.

Let fk = (25 ·λsN)k ·6n ·λ ·26N −1. We define the forests F and G as follows.

F = Cfk,N ⊕
⊕

2s+1≤i≤3s(λ · 23sk · Si),
G = Cfk+2,N ⊕

⊕
2s+1≤i≤3s(λ · 23sk · Si).

The collection of strings
⊕

2s+1≤i≤3s(λ · 23sk · Si) in both graphs, is called
noise, and each individual string from that collection is called a noise-string.

By Lemma 2.5, for each � ≥ 3, and for any two graphs H1 and H2, H1 ≡MSO

H2 implies that H1 ≡GL
(−1)/2� H2. In the following, to simplify notation we show

that for any k ≥ 1, Duplicator can win the '(k − 1)/2(-round GL game on F
and G. To show that F ≡GL

(k−1)/2� G, we establish that Duplicator can maintain
the following condition in the '(k − 1)/2(-round game on F and G.

If the game position after i rounds is (Fi, ā) and (Gi, b̄), then one of the
two conditions below holds, for k′ = k − i:
1. (Fi, ā) ≡MSO

k′ (Gi, b̄), or
2. Fi = F ′ ⊕c1,c2 F ′ and Gi = G′ ⊕d1,d2 G′, where:

(a) (F ′, c1, c2) ∼= (Cfk′ ,N , r, t)⊕
⊕

2s+1≤i≤3s(λ · 23sk′ · Si),
(b) (G′, d1, d2) ∼= (Cfk′+2,N , r, t)⊕

⊕
2s+1≤i≤3s(λ · 23sk′ · Si),

(c) no element of ā is in F ′ and no element of b̄ is in G′,
(d) (F ′, c1, c2) ≡MSO

k′ (G′, d1, d2).

Notice that for any i≤'(k−1)/2(, (Fi, ā)≡MSO
k−i (Gi, b̄) implies (Fi, ā)≡GL

(k−1)/2�−i
(Gi, b̄). The condition above states that at each round i of the game, either both
graphs are≡MSO

k′ -equivalent, and thus Duplicator wins the game, or the following
holds. In both graphs Fi and Gi after i rounds, there exist subgraphs F ′ and G′

respectively, each composed of a large enough comb and enough noise-strings.
Furthermore the complements of these graphs F ′ and G′ inside Fi and Gi, are
≡MSO
k′ -equivalent.

72 T. Antonopoulos and A. Dawar

Duplicator has a reply to any move Spoiler makes whenever condition (1)
holds, namely (Fi, ā) ≡MSO

k′ (Gi, b̄). We need to show, that if (2) holds, Duplicator
has a response that maintains the condition. We proceed by induction on the
number of rounds. In the beginning of the game, (2) holds by construction.

Suppose then that at some round i, (2) holds. Suppose furthermore that
Spoiler makes a first order move, and chooses a vertex in one of the two graphs.
If he chooses a vertex in F ′ or G′, Duplicator can reply since F ′ ≡MSO

k′ G′. The
subgraphs guaranteeing the condition (2) can then be found. Assume then that
Spoiler picks a vertex v in F ′ or G′, and by symmetry, assume that he does so
in F ′. Then two subgraphs ensuring the condition (2) holds, can also be found,
for k′ − 1. The details are omitted.

Consider the case where Spoiler makes a colouring move. As the arguments
are similar for both cases, we assume that Spoiler colours the graph Gi. Each
noise-string in Gi of length h receives one of 2h possible colourings c, i.e. a
labelling of each of the edges as either black or white. Since there are, in general,
many more noise-strings of length h than this, some colouring may be repeated
many times. We will call the most frequently occurring colouring c (or any one
of them if there is a tie), the primary colouring of the noise-strings of length h.

A colouring move of Spoiler is considered in cases, depending on how he
colours the subgraph F ′ or G′. We give an outline of the main procedure that
Duplicator applies as a reply to many of Spoiler’s moves. We denote with C
the subgraph inside F ′ that is isomorphic to the comb Cfk′ ,N , and similarly
we denote with D the respective subgraph isomorphic to Cfk′+2,N of G′. The
remaining subgraphs in F ′ and G′ comprising the set of noise-strings are denoted
by FS and GS respectively.

The graph Fi (resp. Gi) comprises the subgraphs C, FS and F ′ (resp. D, GS
and G′). Since FS ∼= GS and F ′ ≡MSO

k′ G′, Duplicator has a reply to the way
Spoiler colours GS and G′. For the response to the colouring of D, Duplica-
tor proceeds as follows. She defines vertices c3, c4 and d3, d4 in (C, c1, c2) and
(D, d1, d2) respectively, so that:

(C, c1, c2) = (C1, c1, c3)⊕c3 (C2, c3, c4)⊕c4 (C3, c4, c2),
(D, d1, d2) = (D1, d1, d3)⊕d3 (D2, d3, d4)⊕d4 (D3, d4, d2),

for some C1, C2, C3 and D1, D2, D3, such that C1 ≡MSO
k D1 and C3 ≡MSO

k D3.
Furthermore, she ensures the following for C2 and D2. Given a choice of ver-
tices d3 and d4, either the black and the white components of D1 and D3 are
disconnected from the black and the white ones in D2 respectively or not. In
the first case, Duplicator ensures the same for c3, c4 and also makes sure that
all the black and white components in D2 appear in C2 in equal numbers, and
C2 contains additional components that appear more than λ times in the graphs
C1, C3 and FS , and thus also more than λ times in D1,D3 and GS , by definition.
The resulting white and black subgraphs of F ′ and G′ are therefore respectively
≡MSO
k -equivalent (and therefore ≡MSO

k′ -equivalent).
In the second case, Duplicator ensures that the spine of C2 is ≡MSO

k -equivalent
to the whole ofD2, and the teeth of C2 are split into white and black components

Separating Graph Logic from MSO 73

that appear more than λ times in C1,C3 and FS , and the splitting is such that
the resulting components from the teeth of C2 are disconnected from the spine
of C2. Again, the resulting white (respectively black) subgraphs of F ′ and G′

are ≡MSO
k -equivalent (and therefore ≡MSO

k′ -equivalent).
As was stated above, the argument for the colouring moves of Spoiler, is

considered in cases, depending on how Spoiler chooses to colour the subgraphs
D and GS . In all cases considered except one, Duplicator can guarantee that
condition (1) holds in the next stage, that is (Fi+1, ā) ≡MSO

k′−1 (Gi+1, b̄). The one
exception is the case where Spoiler colours in black some part of a segment in
D, that is longer than s edges and furthermore: for all h ∈ [2n + 1, 3n], the
noise-strings of length h are primarily coloured black; no substring of a segment,
larger than s edges is coloured white in D by Spoiler; and Spoiler colours at
most 8 · λ · s ·N blocks in D using both colours.

We omit the details of the argument, which lead us to the following theorem.

Theorem 3.4. The class of forests that contain a tree with 0 (mod 3) number
of leaves, is not definable in GL.

4 GL on Binary Trees

It is known that GL is as expressive as MSO on words, and we have shown in the
previous section that it is strictly weaker on some classes of graphs, in particular
forests. A natural question that arises is whether GL is as expressive as MSO on
trees, especially as the latter is a widely studied logic of trees. We are not able
to settle this question, but we do show that GL can be more expressive than
expected. In particular, the property of a tree having an even number of leaves is
expressible in GL. Note that, we do not know how to extend this to forests—i.e.
to show that use of the modulus 3 in Theorem 3.4 is essential. Nor do we know
how to express in GL that a tree has a number of leaves that is a multiple of 3.
Thus, a gap remains between Theorem 3.4 and Corollary 4.2 below.

We consider binary trees, where each vertex has at most two children.

Theorem 4.1. Any binary tree language accepted by a bottom-up deterministic
automaton with 2 states, is definable in GL.

Proof. Suppose that A = (Σ, δ2, δ1, q1, Q,Qf) is a deterministic bottom-up bi-
nary tree automaton with 2 states, i.e. Q = {q1, q2}. We show how to construct
a formula that defines the class of binary trees in which A assigns q1 to the root.
We do this just for binary trees where the root is a fork. The result then easily
extends to general binary trees, since such a tree consists of the composition of
a tree with a fork root and a simple word, and the behaviour of the automaton
on words is known to be expressible in GL.

Let T be the class of binary trees T such that A assigns the state q1 to all the
leaves and the root of T , and assigns the state q2 to all the forks of T other than
the root. Suppose there is a GL formula ψ defining the class of forests where
each tree in the forest is in T . Before defining this formula ψ explicitly, we show
how it can be used to define the class of trees accepted by A.

74 T. Antonopoulos and A. Dawar

In particular, we show that for any tree T , T |= (ψ | ψ) if, and only if, the
state assigned to the root of T by A is q1. For the only if direction assume that
T |= (ψ | ψ). Then it can be split into two forests F1 and F2, where each one
satisfies ψ. Then, the root and the leaves of each tree in F1 and F2, is assigned
the state q1, and since all roots have two children, if a tree T1 in F1 is connected
to a tree T2 in F2 within the tree T , then the root of one is the same vertex as
the leaf of the other. Therefore, A assigns q1 to the root of T .

For the if direction, suppose that the root of a tree T is assigned the state q1
by A. For each fork x in T to which A assigns the state q1, define the subtree
rooted at x and whose leaves are the closest descendants to x that are either
leaves or forks to which A assigns the state q1. By definition, all forks other than
the root in such a tree, are assigned the state q2 by A. We define F1 and F2
to be two forests, each containing the subtrees defined above, such that no two
such subtrees that are connected in T , are both in the same forest. According
to the above, Fi |= ψ, and therefore T |= (ψ | ψ).

We now give an explicit definition of the formula ψ that is used in the ar-
gument above. Recall that T is the class of binary trees T such that A assigns
the state q1 to all the leaves and the root of T , and assigns the state q2 to all
the forks of T other than the root. The formulas root(x) and leaf(x) are used
to identify roots and leaf vertices respectively, in first order logic. Finally, the
formula fork(x) expresses in FO that the vertex x is a fork, and one-child(x)
expresses in FO that the vertex x has a single child.

Any path between two vertices x and y, where x and all vertices in that path
apart from y, are non-forks, is called a unary branch. On a unary branch, a tree
automaton works as a word automaton, and uses only the transition function
δ1. On words we know that GL and MSO are equi-expressive, so let the formula
ϕqi,qj for qi, qj ∈ {q1, q2} be the GL formula that defines the class of words on
which the automaton A, starting with state qi at the first vertex, assigns the
state qj at the last one.

The vertices x and y in some tree T , with x an ancestor of y, are the endpoints
of a unary branch if and only if (T, x, y) |= unaryBranch(x, y), where:

Path(x, y) = root(x) ∧ one-child(x) ∧ ¬root(y) ∧ leaf(y)∧
∧∀z (z �= x ∧ z �= y → ¬root(z) ∧ one-child(z)),

unaryBranch(x, y) = one-child(x) ∧ (leaf(y) ∨ fork(y)) ∧ (Path(x, y) | �)∧
∧∀z (z �= y ∧ (Path(x, z)|Path(z, y)|�)→ one-child(z)).

We present the following formulas that assist with defining the GL formula ψ.

unary-q2qj(x) = ∃y (fork(y) ∧ unaryBranch(x, y) ∧ (Path(x, y) ∧ ϕq2,qj | �)),
unary-q1qj(x) = ∃y (leaf(y) ∧ unaryBranch(x, y) ∧ (Path(x, y) ∧ ϕq1,qj | �)),

unary-qi(x) = one-child(x) ∧ (unary-q1qi(x) ∨ unary-q2qi(x)),
state-q2(x) = (fork(x) ∧ ¬root(x)) ∨ unary-q2(x),
state-q1(x) = (leaf(x) ∨ root(x)) ∨ unary-q1(x).

The formula unary-q2qj(x) expresses that x is the top vertex of a unary branch
to some y, a descendant of x, that is a fork, and furthermore that on this unary

Separating Graph Logic from MSO 75

branch, if the automaton A starts at state q2 at y, it will reach the state qj
at x. The case is similar for the formula unary-q1qj(x), but in this case y is
a leaf and the automaton reaches qj at x if it starts with state q1 at y. The
formula unary-qj(x) is simply the disjunction of the two formulas above. Finally,
the formula state-q1(x) holds at some vertex if it is a leaf, a root or if it is the
top vertex of a unary branch, where A reaches q1 according to the assumptions
stated above. Similarly for state-q2(x) applying to forks that are not roots.

We show that for any vertex x in any tree T in the class T , (T, x) |= state-qi(x)
if, and only if, the state qi is assigned to the vertex x by A. Now define

ϕq1(x, y, z) =
∨
δ(qi,σ,qj ,σ′)=q1(state-qi(y) ∧Eσ(x, y) ∧ state-qj(z) ∧ Eσ′(x, z)),

fork-roots = ∀x (root(x) → fork(x)),
ψ = 0 ∨

(
fork-roots ∧ ∀x

(
(∃y, z (y �= z) ∧ ϕq1(x, y, z))↔ root(x)

))
.

Notice that for any forest F , F |= ψ if and only if for every tree T in F ,
T |= ψ. This is because ψ expresses that a combination of states and symbols
that lead to the state q1, occurs at a fork if and only if this fork is the root of the
tree it belongs to. Furthermore, whether a vertex satisfies any of the formulas
given above, depends only on the tree the vertex belongs to.

Thus, we are left with the following claim to prove, the proof of which is
omitted due to lack of space.

Claim. For any tree T , T |= ψ if, and only if, T ∈ T .

Corollary 4.2. The class of binary trees with an even number of leaves is GL
definable.

5 Separation Logic

Separation Logic (SL) is a logic for analyzing programs that involve pointer
variables for memory management, introduced by Reynolds and widely studied
since then (see [10]). We give a brief account here, and refer to [1] for details.

The structures on which Separation Logic works, consist of a partial function
representing the memory heap of a program. Let Loc be a countable set of
locations, namely memory addresses and let Var be a set of variables.

Definition 5.1 ([1]). A memory state is a pair (s, h) such that s : Var → Loc
and h is a partial function of type h : Loc ⇀ Loc. The function s is the store
and the function h is the heap of the memory state.

When the domains of two partial functions h1 and h2 are disjoint, this fact is
denoted by h1⊥h2, and their disjoint union is denoted by h1 ∗ h2. The syntax of
a Separation Logic formula is inductively defined as:

ψ := x = y | x ↪→ y | ψ1 ∧ ψ2 | ¬ψ1 | ∃x.ψ1(x) | ψ1 ∗ ψ2 | ψ1 −∗ψ2,

where x, y ∈ Var and ψ1, ψ2 are SL formulas. The semantics of the non-obvious
connectives is given below.

76 T. Antonopoulos and A. Dawar

(s, h) |= x ↪→ y ⇔ h(s(x)) = s(y),
(s, h) |= ψ1 ∗ ψ2 ⇔ there are h1, h2 such that h = h1 ∗ h2

and (s, hi) |= ψi, i ∈ {1, 2},
(s, h) |= ψ1 −∗ψ2 ⇔ for any h′ disjoint from h such that

(s, h′) |= ψ1, (s, h ∗ h′) |= ψ2.

Note that if a formula ϕ does not have any free variables then (s, h) |= ϕ if, and
only if, (s′, h) |= ϕ for all s′. In this case we simply write h |= ϕ.

In [1], the syntactic fragment SL(∗) is considered, in which the conjunction
operation, ∗, is present but its adjoint the magic wand, −∗, is absent. They show
that this logic is decidable by a translation to MSO. They conjecture that the
inclusion of SL(∗) in MSO in terms of expressive power is strict.

We can associate with a heap h the graph Gh consisting of the set of edges
(x, y) such that h(y) = x. It is straightforward to see that for every sentence ϕ
of SL(∗) there is a sentence ϕ∗ of GL such that Gh |= ϕ∗ if, and only if, h |= ϕ.
Note, in particular, that for every forest G there is an h such that G ∼= Gh.

Say that a location l is a leaf of h if h(l) is defined and there is no l′ such
that h(l′) = l. Define a component C of h to be a connected component of the
graph Gh. Then the following is a consequence of Theorem 3.4.

Theorem 5.2. There is no sentence θ of SL such that h |= θ if, and only if,
some component of h has 0 (mod 3) leaves.

As a consequence, we resolve the conjecture of Brochenin et al. [1].

Corollary 5.3. SL(∗) is strictly less expressive than MSO on memory states.

6 GL Is Not Included in MS1

As we noted in Section 2, the expressive power of GL is included in MS2, that
is monadic second-order logic of graphs with quantification over sets of edges.
Theorem 3.4 shows that this inclusion is proper. Furthermore, since the separa-
tion is shown on a class of graphs where the expressive power of MS1 and MS2
coincide, this shows that MS1 � GL. We now note that, in general, GL � MS1.
In particular, we show this over the class of labelled graphs with two edge labels.

Recall that in an ordinary undirected graph G = (V,E) a Hamiltonian cycle
is a cycle that visits every vertex in V exactly once. It is not difficult to write a
sentence µ of MS2 that defines those graphs that contain a Hamiltonian cycle.
However it is known that this property is not definable in MS1, even on ordered
graphs (see [7, Cor. 6.3.5]). It is not known whether or not Hamiltonicity of
unordered graphs is definable in GL (indeed, this was an open quesion posed
in [6]), but we are able to show that in the presence of a second edge label,
which acts as a successor relation, it is definable. To explain the construction,
note that in GL, once we select a set of edges using a composition operator, we
are able to say that they form a cycle, but we cannot say in the subformula that
the cycle visits all vertices, since some may have been lost in the decomposition.
The presence of the successor relation allows us to assert that all vertices are
still present.

Separating Graph Logic from MSO 77

Theorem 6.1. GL is not included in MS1.

Proof. We consider a vocabulary with two edge labels S and E and two constants
s and t. We restrict ourselves to graphs in which the S edges form a simple path
from s to t. This condition is easily expressed by a GL sentence succ. Now, let
cycle be the GL sentence that defines the graphs in which the E-edges form a
simple cycle. Then the following sentence

(succ ∧ cycle ∧ ∀x[∃y(S(y, x) ∨ S(x, y))→ ∃y(E(y, x) ∨E(x, y))] | ∀x, y¬S(x, y))

defines the class of such graphs that contain a Hamiltonian cycle.

References

1. Brochenin, R., Demri, S., Lozes, É.: On the almighty wand. In: Kaminski, M.,
Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 323–338. Springer, Heidelberg
(2008)

2. Cardelli, L., Gardner, P., Ghelli, G.: A spatial logic for querying graphs. In: Wid-
mayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.)
ICALP 2002. LNCS, vol. 2380, pp. 597–610. Springer, Heidelberg (2002)

3. Compton, K.J.: A logical approach to asymptotic combinatorics II: Monadic
second-order properties. J. Comb. Theory, Ser. A 50(1), 110–131 (1989)

4. Courcelle, B.: The expression of graph properties and graph transformations in
monadic second-order logic. In: Rozenberg, G. (ed.) Handbook of Graph Gram-
mars, pp. 313–400. World Scientific, Singapore (1997)

5. Dawar, A., Gardner, P., Ghelli, G.: Adjunct elimination through games in static
ambient logic(Extended abstract). In: Lodaya, K., Mahajan, M. (eds.) FSTTCS
2004. LNCS, vol. 3328, pp. 211–223. Springer, Heidelberg (2004)

6. Dawar, A., Gardner, P., Ghelli, G.: Expressiveness and complexity of graph logic.
Inf. Comput. 205(3), 263–310 (2007)

7. Ebbinghaus, H.-D., Flum, J.: Finite Model Theory, 2nd edn. Springer, Heidelberg
(1999)

8. Grädel, E., Hirsch, C., Otto, M.: Back and forth between guarded and modal logics.
ACM Trans. Comput. Log. 3(3), 418–463 (2002)

9. Marcinkowski, J.: On the expressive power of graph logic. In: Ésik, Z. (ed.) CSL
2006. LNCS, vol. 4207, pp. 486–500. Springer, Heidelberg (2006)

10. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS, pp. 55–74. IEEE Computer Society, Los Alamitos (2002)

On the Completeness of Dynamic Logic

Daniel Leivant

Computer Science Department,
Indiana University,

Bloomington, IN 47405, USA
leivant@cs.indiana.edu

Abstract. The impossibility of semantically complete deductive calculi for log-
ics for imperative programs has led to the study of two alternative approaches
to completeness: “local” semantic completeness on the one hand (Cook’s rela-
tive completeness, Harel’s Arithmetical completeness), and completeness with
respect to other forms of reasoning about programs, on the other. However, local
semantic completeness is problematic on several counts, whereas proof theoretic
completeness results often involve ad hoc ingredients, such as formal theories for
the natural numbers.

The notion of inductive completeness, introduced in [18], provides a generic
proof theoretic framework which dispenses with extraneous ingredients, and
yields local semantic completeness as a corollary.

Here we prove that (first-order) Dynamic Logic for regular programs (DL) is
inductively complete: a DL-formula ϕ is provable in (the first-order variant of)
Pratt-Segerberg deductive calculus DL iff ϕ, is provable in first-order logic from
the inductive theory for program semantics. The method can be adapted to yield
the schematic relative completeness of DL: if S is an expressive structure, then
every formula true in S is provable from the axiom-schemas that are valid in S.
Harel’s Completeness Theorem falls out then as a special case.

Keywords: Dynamic logic, inductive completeness, relative completeness, arith-
metical completeness.

1 Introduction

1.1 Background

Logics of programs inherently exceed first-order logic, because program semantics is
defined in terms of iterative processes, which can be formalized using second-order
formulas [15], existential fixpoints [3], or explicit reference to the natural numbers (e.g.
[6]), but not by a first-order theory. Consequently, the delineation of logics of programs
cannot parallel the characterization of first-order logic by soundness and completeness
for general (“uninterpreted”) validity.

The early attempts to refer instead to local completeness, i.e. completeness with
respect to one structure at a time, led to Cook’s Relative Completeness Theorem. How-
ever, notwithstanding the persistent centrality of Cook’s relative completeness [5] in
research on logics of programs, that notion has foundational and practical drawbacks

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 78–91, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On the Completeness of Dynamic Logic 79

[17]. For one, relative completeness fails to demarcate the boundaries of logics of pro-
grams: there are, for example, proper extensions of Hoare’s Logic that are sound and
relatively complete!

An alternative approach is to match logics of programs with formalisms for explicit
reasoning about programs, such as second-order logic. A common objection to second-
order logic, that it is non-axiomatizable for its intended semantics, is off the mark here:
On the one hand there are natural proof calculi for second-order logic that are sound
and complete for a natural non-standard semantics (Henkin’s structures); on the other
hand, the same objection applies to arithmetic! Indeed, it turns out that Hoare’s Logic
matches second-order logic with first-order set-existence, and Dynamic Logic matches
second-order logic with “computational” (i.e. strict-Π1

1) set-existence [15,17].
Here we consider an approach dual to explicit second-order rendition of program se-

mantics, namely an implicit but first-order rendition. We consider the inductive defini-
tion of program semantics, and invoke the well-known framework of first-order theories
for such definitions [13,14,7,19,8]. We show that Dynamic Logic matches reasoning
about programs in the inductive theory for regular programs.

Since this approach is strictly first-order, it is particularly accessible conceptually and
expositorily, and directly amenable to automated theorem proving tools. It also meshes
generically with the long-standing tradition of defining program semantics inductively.
Whenever an inductive definition is given for a programming language, one obtains
the corresponding first-order inductive-definition theory, and can tackle the question of
completeness of a proposed logic of programs for that theory.

A match between Dynamic Logic and inductive theories was observed already by the
Hungarian school of “nonstandard dynamic logic” (see e.g. [6,23]). However, the first-
order theories they considered invoke the natural numbers as an auxiliary data-type. Our
present approach calls for no such extraneous data-types, and is more generic, in that it
applies directly to all programming constructs with inductively defined semantics, even
when they lack a simple iterative definition in terms of the natural numbers.

1.2 Regular Programs

Regular programs distill and separate the essential components of imperative programs,
and are therefore particularly amenable to logical analysis. Given a vocabulary V (i.e.
“similarity type”, “signature”), the atomic V -programs are assignments x := t of
V -terms to variables, and tests ?ϕ, where ϕ is a quantifier-free V -formula.1 Com-
pound V -programs are generated from atomic V -programs by composition, union,
and Kleene’s ∗ (nondeterministic iteration). Deterministic while programs are defin-
able in terms of regular programs: (if ϕ then α else β) is an abbreviation for
(?ϕ); α ∪ (?¬ϕ); β, and (while ϕ do α) for (?ϕ; α)∗; ?(¬ϕ). We refer to [11] for
background and detail.

Given a V -structure S , the states are the S-environments, i.e. partial functions from
the set of variables to elements of S. Each V -program α is interpreted semantically as a
binary relation over states, denoted

α−→, or
α−→
S

when S is not obvious from the context.

1 Our discussion below remains unchanged if tests are generalized to arbitrary first-order for-
mulas. Tests for arbitrary DL formulas, known as “rich tests”, can also be accommodated with
minor changes.

80 D. Leivant

These relations are defined by recurrence on α: η
x:=t−→η′ iff η′ = η[x← [[t]]η]; η

?ϕ−→η′ iff

η′ = η and S, η |= ϕ;
α;β−→ is the composition of

α−→ and
β−→;

α∪β−→ is the union of
α−→

and
β−→; and

α∗
−→ is the (α−→)∗, i.e. the reflexive-transitive closure of

α−→.

1.3 Dynamic Logic Formulas

Given a vocabulary V , the DL V-formulas are generated inductively, just like first-order
V-formulas, but with the added clause: If ϕ is a formula, and α a program, then [α]ϕ is
a formula. The operator 〈α〉, dual to [α], can be defined by 〈α〉ϕ ≡df ¬[α]¬ϕ.

The common convention, of not distinguishing between (assignable) program vari-
ables on the one hand and logical variables on the other, lightly complicates the in-
teraction of assignments and quantifiers: We must posit that a quantifier cannot bind a
variable that is assigned-to in its scope. For example, ∀x [x := 1](x = 1) is not a legal
DL formula, whereas ∀x [y := x](y = x) is. Also, the definition of “free occurrence of
variable x in formula ϕ” is amended to exclude x occurring in the scope of the modal
operators [α] and 〈α〉, when x is assigned-to in α.2

The definition of the satisfaction relation S, η |= ϕ is as usual by recurrence on ϕ.
In particular, S, η |= [α]ϕ iff S, η′ |= ϕ whenever η

α−→η′. Consequently, S, η |= 〈α〉ϕ
iff S, η′ |= ϕ for some environment η′ where η

α−→η′.

1.4 Complexity

The set of valid DL formulas is highly complex. In fact, even DL formulas of a seem-
ingly modest appearance have a decision problem more complex than that of first-order
arithmetic:

Proposition 1
1. The validity problem for DL formulas is Π1

1.

2. Even the validity problem for formulas of the form ∃x.[α]ϕ, where α is a determin-
istic program and ϕ is quantifier-free, is Π1

1-hard.

Proof. (1) is easy, and proved in [11, Theorem 13.1], where (2) is also stated and
proved, but for ϕ first-order and α non-deterministic. On closer inspection the proof
there, which uses aΠ1

1-hard tiling problem, yields the result with ϕ quantifier-free.
However, already basic properties of Π1

1 easily imply the refinement stated here
(with α deterministic). Recall that everyΠ1

1 formulaϕ is equivalent over N to a formula
of the form

∀f ∃x. g(x) = 0 (1)

where f ranges over unary functions, and g is defined uniformly from f by primitive-
recursion. More precisely, ifDg is the conjunction of the recurrence equations defining
g from f , and u the variables free inDg, then (1) is expressed by

∀f, g (D̄g → ∃x. g(x) = 0) (2)

where D̄g is the universal closure ofDg.

2 This issue is central to [12], but is inconsequential here.

On the Completeness of Dynamic Logic 81

The truth of (2) in N is equivalent to the validity in all structures (over the vocabulary
in hand) of the informal statement

D̄g ∧ (∀v.“f(v) is the denotation of a numeral”) → ∃x. g(x) = 0 (3)

where the numerals are the terms 0, s(0), s(s(0)) (with s intended to denote the suc-
cessor function).3

Now, with p intended to denote the predecessor function, let ψ be the conjunction of
the three formulas

p(0) = 0
∀y p(s(y)) = y

and ∀y, w (p(y) = p(w) ∧ y �= 0 ∧ w �= 0 → y = w)

Thus, if ψ holds in a structure, and N is the program

z := f(v); while z �= 0 do z := p(z) end

thenN terminates in k steps iff f(v) is the denotation of the numeral sk(0). Therefore,
(3) can be expressed in DL as

D̄g ∧ ψ ∧ (∀v. 〈N〉true) → ∃x g(x) = 0 (4)

Since v and z are the only variables inN , quantifiers over other variables commute with
[N], and so (4) can be converted into an equivalent formula of the form stated in the
Proposition.

1.5 Axiomatics

One way of addressing the challenge presented by of Proposition 1 is to consider an in-
finitary deductive system. So-called omega-rules go back to the 1930’s and their adap-
tation to logics of programs is due to Mirkowska [20]. In [11, Theorem 14.7] that proof
is adapted to Dynamic Logic.

Since no effective axiomatization of DL can be complete for validity, the dual task
is all the more interesting: articulate a natural axiomatization of DL, and delineate it
in terms of a familiar deductive system. This is analogous to the situation with Hoare’s
Logic: the validity problem for Partial-correctness assertions is Π0

2-complete [11, The-
orem 13.5], implying that Hoare’s Logic is not complete for validity, and that alternative
completeness properties are needed to delineate the logic and explicate its significance.

A natural deductive calculus DL for Dynamic Logic is obtained by augmenting first-
order logic with the rules of Table 1. This formalization is due primarily to Pratt [22,9].
The assignment rule is Hoare’s, and the others are related to Segerberg’s Propositional
Dynamic Logic for regular programs [24]. This is closely related to the formalism 14.12
of [11], with the Convergence Rule omitted. Note that the quantifier rules of first-order
logic can never be used to instantiate a variable x in an assignment x := t, due to our
syntactic restriction above on the formation of DL formulas.

3 The denotations of the numerals form a copy of N in a structure satisfying Peano’s Third and
Fourth Axioms, which we could include here trivially. However, (3) remains true in structures
that identify the values of some distinct numerals!

82 D. Leivant

Table 1. Pratt-Segerberg’s Dynamic Logic

First-order logic

Modality: Generalization:
� ϕ

� [α]ϕ

Distribution: [α](ϕ→ψ) → ([α]ϕ→ [α]ψ)

Atomic Programs: Assignment: [x := t] ϕ ↔ {t/x}ϕ
t free for x in ϕ

Basic constructs: Test: [?χ]ϕ ↔ (χ→ϕ)

Composition: [α; β]ϕ ↔ [α][β]ϕ

Union: [α ∪ β]ϕ ↔ [α]ϕ ∧ [β]ϕ

Iteration: Invariance (Folding):
� ϕ → [α] ϕ
� ϕ → [α∗] ϕ

Unfolding: [α∗]ϕ → ϕ ∧ [α][α∗]ϕ

From the Invariance Rule we obtain the Schema of Induction:

ψ ∧ [α∗](ψ → [α]ψ) → [α∗]ψ)

Indeed, taking ϕ ≡ ψ ∧ [α∗](ψ → [α]ψ), we have � ϕ→ [α]ϕ using the remaining
axioms and rules, and so ϕ→ [α∗]ϕ by Iteration. The Induction template above readily
follows.

Also, the converse of the Unfolding Schema is easily provable: Taking ψ ≡ ϕ ∧
[α;α∗]ϕ, we have � ψ → [α]ψ, by Unfolding and the modality rules, yielding ψ →
[α∗]ψ by Invariance, while [α∗]ψ → [α∗]ϕ by Iteration and modality rules.4

A V-theory is a set of closed first-order V-formulas. Given a V-theory T we write
DL(T) for the deductive formalism DL augmented with the formulas in T as axioms.
We refer to T as the background theory.

A straightforward induction on proofs establishes the soundness of DL:

Theorem 1. (Soundness of DL) Let T be a V-theory, ϕ a DL V-formula. Suppose
DL(T) � ϕ. Then ϕ is true in every model of T.

2 Inductive Completeness

2.1 Inductive Definition of Program Semantics

Generic methods for associating to a given collection of inductive (i.e. generative) def-
initions first-order inductive theories are well-known. The inductive definition of the
semantics of regular programs has a particularly simple form, using atomic production
rules, i.e. natural-deduction inferences with atomic premises and conclusion, as follows.

4 Note that this argument uses Invariance for modal formulas, and is not available when the
Invariance Rule is restricted to first-order formulas.

On the Completeness of Dynamic Logic 83

For a list x = (x1, . . . , xn) of variables, let P[x] consist of the regular V -programs
with all assigned variables among x1 . . . xn. Note that if α is such a program, then so
are all its subprograms. Given a V -structure S , each program α ∈ P[x] defines a 2n-
ary relation [[α]]S on the universe |S| of S , that holds between a, b ∈ |S|n iff α has a
complete execution that starts with x bound to a, and terminates with x bound to b.

For n � 1, let V̂ n be the expansion of the underlying vocabulary V with 2n-ary
relational identifiers Mnα for each α ∈ P[x]. The intent is that Mnα denotes, in each V -
structure S , the relation [[α]]S above. We omit the superscript n throughout when in no
danger of confusion.

An inductive definition of [[α]], uniform for all V -structures, is given by generative
clauses that can be rendered by the following atomic rule-templates, which can be con-
strued as natural-deduction rules.

ASSIGNMENT Mxi:=t[x](u,ui←t)
where ui←t is u1 . . . ui−1, t[u], ui+1 . . . un

TEST
ϕ[u]

M?ϕ(u,u)

COMPOSITION
Mβ(u,w) Mγ(w,v)

Mβ;γ(u,v)

BRANCHING
Mβ(u,v)
Mβ∪γ(u,v)

Mγ(u,v)
Mβ∪γ(u,v)

ITERATION
Mβ∗(u,u)

Mβ(u,w) Mβ∗(w,v)
Mβ∗(u,v)

2.2 Expressing Program Properties

It is easy to see that, modulo the intended reading of the identifiers Mα, the expressive
power of the V̂ -formulas is identical to the expressive power of DL formulas over the
base vocabulary V . To avoid clutter we posit that all programs are in P[x], i.e. all
assigned-variables are among x1 . . . xn.

Each DL V -formula ϕ can be expressed as a V̂ -formula ϕ�, defined by structural
recurrence on ϕ. For ϕ modal-free we take of course ϕ� to be ϕ itself. If ϕ is [α]ϕ0,
then ϕ� is ∀v1 . . . vn Mα(x,v) → {v/x}ϕ�0. Finally, we let � commute with the first-
order logical operations; for instance, (ϕ0 ∧ ϕ1)� is ϕ�0 ∧ ϕ

�
1, and (∀uϕ)� is ∀u(ϕ�)

(recall that assigned-to variables are not quantified.)
Conversely, each V̂ -formula ψ is expressible as a DL V -formula ψ�, defined by

structural recurrence on ψ. If ψ is a V -formula, we defined ψ� to be ψ. If ψ is Mα(t, s)
then ψ� is x = t → 〈α〉(x = s). Again, we let � commute with connectives and
quantifiers.

84 D. Leivant

Observe that these interpretations are sound in the following sense.

Theorem 2. For every V -structure S, if Ŝ is the V̂ -expansion of S in which each Mα
is interpreted as the denotational semantics of α, then for every DL V -formula ϕ, Ŝ |=
ϕ↔ ϕ�, and for every V̂ -formula ψ, Ŝ |= ψ ↔ ψ�.

Since Ŝ is trivially conservative over S for DL V -formulas, we conclude

Corollary 1. For every DL formula ϕ, S |= ϕ iff Ŝ |= ϕ�.

We prove below (Proposition 4) that the equivalenceϕ↔ ϕ�� is in fact provable in DL.

2.3 The Inductive Theory of Regular Programs

The generative rules above, for inductively defining program semantics, bound the in-
terpretation of the relation-identifiers Mα from below. Bounding inductively generated
sets from above, namely as the minimal relations closed under the generative clauses, is
a second-order condition which has no first-order axiomatization (except for degener-
ated cases). However, we can approximate that delineation as the minimal one among
a given collection of definable relations. Namely, the deconstruction template for Mα
states that Mα is contained in every definable relation closed under the generative rules
for Mα. This is analogous to the familiar deconstruction for the set N of natural numbers:
With N as unary relational-identifier, the generative clauses are

N(0) and
N(x)
N(s(x))

yielding the Deconstruction template

N(x) ϕ[0]

ϕ[z]
· · ·
ϕ[sz]

ϕ[x]

(assumption ϕ[z] is discharged,
z not free in other open assumptions)

that is, the natural-deduction rule of induction on N [19].
Analogously, the DECONSTRUCTION Rule for the iteration construct ∗ should be

Mβ∗(s, t) ϕ[u,u]

Mβ(u,w) ϕ[w,v]
· · ·

ϕ[u,v]
ϕ[s, t]

(assumptions Mβ(u,w) and ϕ[w,v] are discharged,
u,v,w not free in other open assumptions)

The formula ϕ above is the eigen-formula of the inference.

On the Completeness of Dynamic Logic 85

A related, more practical, rule is

INVARIANCE Mβ∗(s, t)

Mβ(u,w)
· · ·

ψ[u]→ ψ[w]
ψ[s]→ ψ[t]

(assumption Mβ(u,w) is discharged
u,w not free in other open assumptions)

Put differently,
∀u,w ψ[u] ∧ Mβ(u,w)→ ψ[w]
∀y, z ψ[y] ∧ Mβ∗(y, z) → ψ[z]

However, we have

Proposition 2. The rules DECONSTRUCTION and INVARIANCE are equivalent.

Proof. Posit DECONSTRUCTION, and assume the premises of INVARIANCE. Then the
three premises of DECONSTRUCTION hold with ϕ[x,y] taken as ψ[x]→ψ[y]. We thus
obtain ψ[s]→ψ[t], as required.

Conversely, posit INVARIANCE, and assume the premises of DECONSTRUCTION.
Then the premises of INVARIANCE hold with ψ[x] taken to be ¬ϕ[x, t]. Thus
INVARIANCE yields ψ[s] → ψ[t], i.e. ϕ[t, t] → ϕ[s, t]. Since we have ϕ[t, t] by the
second premise of DECONSTRUCTION (recall that u is not free in assumptions), we
obtain ϕ[s, t], as required.

Note that deconstruction rules for the remaining program constructs are degenerate, in
the sense that they are equivalent to explicit definitions. For example, the Deconstruc-
tion of composition, combined with the Composition Rule, yield an explicit definition
of Mβ;γ . More generally, Mα can be explicitly defined in terms of components of α, for
all non-loop programs α:

• Mxi:=t(u,v) ↔ (vi = t[u] ∧
∧
j �=i vj = uj).

• M?ϕ(u,v) ↔ (ϕ ∧ v = u)
• Mβ;γ(u,v)↔ ∃w Mβ(u,w) ∧ Mγ(w,v)
• Mβ∪γ(u,v) ↔ Mβ(u,v) ∨ Mγ(u,v)

We write Indn for the inductive theory given by the universal closure of the formulas
above (recall that our Mα’s are for programs α with variables among x1, . . . , xn). We
omit the superscript n when in no danger of confusion.

2.4 Inductive Soundness of DL

Clearly, the deductive calculus DL is semantically sound (Theorem 1). Only slightly
less trivial is the observation that it is sound for Ind:

Theorem 3. If DL(T) � ϕ then T + Ind � ϕ�.

Proof. Induction on proofs in DL(T).

86 D. Leivant

Consider, for example, an instance of the INVARIANCE Rule, deriving ψ → [α∗] ψ
from ψ → [α] ψ. By IH we have

T + Ind � ψ�[u] ∧ Mα(u,v) → ψ�[v]

which by the INVARIANCE Rule of Ind yields

T + Ind � ψ�[u] ∧ Mα∗(u,v) → ψ�[v]

For another example, consider the Generalization rule, deriving � [α]ϕ from � ϕ.
By IH the premise implies the provability in T+ Ind of ϕ�, from which the provability
of ([α]ϕ)�, i.e. Mα(x,u)→ {u/x}ϕ�, follows trivially.

2.5 Inductive Completeness of DL

The main interest in the inductive theory Ind is its relation to DL, namely the inductive
completeness of DL:

Theorem 4. For all V -theories T, if ϕ is a DL V -formula, and T + Ind � ϕ�, then
DL(T) � ϕ.

The proof of Theorem 4 will use the interpretation ψ �→ ψ� defined above.

Proposition 3. Let T be a V -theory, and ψ a V̂ -formula. If T + Ind � ψ, then
DL(T) � ψ�.

Proof. The proof is by induction on natural-deduction derivations of T + Ind. More
precisely, if ϕ is provable in T+ Ind from assumptions Γ , then ϕ� is provable from Γ �

in DL(T).
It is easy to verify that the rules of Ind translate correctly. Consider, for example, the

Iteration rules. If ψ is Mβ∗(u,u) then ψ� is x = u → 〈β∗〉x = u, which is readily
provable in DL using Unfolding. To tackle the second Iteration rule of Ind, suppose
that ψ is Mβ∗(u,u), and is derived from Mβ(u,w) and Mβ∗(w,u). Assume now that
the premises translate correctly, i.e. the formulas

x = u → 〈β〉x = w (5)

and
x = w → 〈β∗〉x = v (6)

are given. From (6) we get

〈β〉 x = w → 〈β〉 〈β∗〉x = v

which readily yields in DL

〈β〉 x = w → 〈β∗〉x = v

Combined with (5) we get ψ�.
It is also easy to verify that the inference rules of first order logic preserve the

translation.

On the Completeness of Dynamic Logic 87

Lemma 1. Let x be the assigned-to variables in a DL-formula ϕ ≡ ϕ(x). The follow-
ing is provable in DL.

[α]ϕ ↔ ∀v (〈α〉 (x = v) → ϕ(v))

The proof is straightforward by induction on α. Only the iteration case α = β∗ is
non-trivial.

Proposition 4. For all DL-formulas ϕ the following is provable in DL:

(ϕ�)� ↔ ϕ

Proof. We use structural induction on ϕ. The only non-trivial case is where ϕ is of the
form [α]ψ. Then

(ϕ�)� ≡ (∀v (Mα(x,v)→ ϕ�(v)))�

↔ ∀v (〈α〉(x = v)→ ϕ��(v))
↔ [α]ϕ�� (Lemma 1)
↔ [α]ϕ(v) (IH and the Distribution Rule)

Proof of Theorem 4. Suppose T+ Ind � ϕ�. Then, by Proposition 3, DL(T) � (ϕ�)�,
from which DL(T) � ϕ follows by Proposition 4.

Note that this proof is different from the proof of the corresponding result for Hoare’s
Logic [18, Theorem 2.4], stating the soundness and completeness of Hoare’s Logic for
a theory Ind0, obtained by restricting the Deconstruction Rule to eigen-formulas ϕ in
the vocabulary V . However, the latter theorem can be obtained from the proof presented
here, using the conservation theorem [16, Theorem 7], which states that Dynamic Logic
is conservative over Hoare’s Logic when Invariance is restricted to first-order formulas.

3 Relative Completeness and Arithmetical Completeness

3.1 Failure of Relative Completeness for Termination Assertions

Relative completeness in the sense of Cook fails for DL, since there is no way to infer
that a termination assertion of the form 〈α∗〉true is true in a given structure from any
collection of first-order formulas true in the structure. This reflects a gap between the
semantics of program convergence, which is anchored in the intended data (e.g. N),
and the semantics of data in the background theory, which might include non-standard
elements. To illustrate, consider the termination assertion

P → 〈 (x := p(x))∗〉 (x=0) (7)

where P is some finite axiomatization of arithmetic,5 that includes the definition of p
as cut-off predecessor: p(0) = 0, p(s(x)) = x. Since there are non-standard models

5 Take, for example, Peano’s Arithmetic with induction up to some fixed level Σn in the arith-
metical hierarchy.

88 D. Leivant

of P , with elements that are not denotations of numerals, the assertion (7) is not valid.
It follows that (7), although trivially true in the intended structure, cannot be proved in
any DL formalism which is sound for all structures, such as DL.

This remains true even if we augment DL with axioms for inductive data, such as
Peano’s Arithmetic, since the semantics of program convergence will remain different
from the semantics of counting in the grafted first-order theory.

Of course, (7) can be proved by induction on the formula

ϕ[n] ≡ (x = n̄)→ 〈 (x := p(x))∗〉 (x=0)

but ϕ is not a first-order formula, and so this instance of induction is not part of the
background theory. As long as the background theory has no direct access to modal
formulas, it cannot be used to derive termination assertions whose truth depends on the
inductive data in hand.

3.2 Schematic Relative Completeness

The remarks above suggest a way to modify Cook’s notion of relative completeness, so
as to apply to Dynamic Logic. Define a V-schema to be a closed first-order formula ϕ
in V augmented with additional identifiers (place-holders) for relations. For example,
the Schema of Induction over N is

P (0) ∧ (∀x P (x)→P (s(x))) → ∀x P (x)

Here 0 and s (denoting the successor function) are part of the given vocabulary, whereas
P is a new, unary, place-holder. Note that a V -formula is trivially also a V -schema.

A DL-instance of a schema ϕ is the result of replacing in ϕ each such place-holder
identifier, of arity k say, by a k-ary DL-predicate, i.e. λx1 . . . xk. ψ, where ψ is a DL-
formula (and bound variables in ψ are renamed to avoid scoping clashes). For example,
if ψ[u, v, w] is a formula with variables u, v, w free, then the instance of Induction for
λv.ψ is

ψ[u, 0, w] ∧ (∀x ψ[u, x, w]→ψ[u, s(x), w]) → ∀x ψ[u, x, w]

A schema ϕ is true in a V -structure S if it is true regardless of the interpretation
of each k-ary place-holders as a k-ary relation over the universe |S| of S; i.e., if it is
true in every expansion of S . For example, the schema of induction above is true in
the structure N (with zero and successor). If S is a V -structure, then the schematic
theory of S consists of the V -schemas true in S. We write DL(S) for the formalism DL
augmented with all DL-instances of schemas true in S .

We continue to refer to Cook’s notion of expressiveness: a V -structure S is expres-
sive if for every program α there is a V -formula ξα equivalent in S to 〈α〉(x = v).

Theorem 5. DL is (schematic) relatively complete in the following sense: for every
expressive structure S and DL formula ϕ, if S |= ϕ, then ϕ is provable in DL(S).

A proof of Theorem 5 will be given elsewhere. The core idea is to emulate the proof
above of Theorem 4, with the formulas ξα replacing Mα. Each formula ξβ∗ satisfies the

On the Completeness of Dynamic Logic 89

Iteration Rule for β, read as a schema, and so the schematic theory of a structure makes
it possible to use the formulas ξα in place of Mα.

In [18, §2.5] we showed that Cook’s notion of relative completeness is the local
projection (to expressive structures) of the inductive completeness theorem proved there
for Hoare’s Logic. Analogously, Theorem 5 provides a notion of relative completeness
which is the projection of inductive completeness of DL.

3.3 Arithmetical Completeness

The termination of imperative programs is commonly proved by the Variance Method:
one attaches to each instance of a looping construct in the program (such as a while
loop or a recursive procedure) a parameter ranging over the field A of a well-founded
relation �, and shows that each cycle reduces that parameter under �:

� ϕ ∧ a=x→ 〈α〉ϕ ∧ a � x
� ϕ ∧A(x) → 〈α∗〉ϕ

(a not assigned-to in α)

Taking � to be the natural order on N, the Variance Rule yields the Convergence
Rule of [10]:

� ϕ(sx) → 〈α〉ϕ(x)
� ϕ(x) ∧N(x) → 〈α∗〉ϕ(0)

(x not assigned-to in α
N interpreted as N)

Note that this rule fuses the interpretation of counting in the background theory and
in the program semantics, thus forcing the numeric variables to range precisely over
the natural numbers. In particular, the rule is sound only for structures in which N is
interpreted as N, structures dubbed arithmetical in [10].

The rationale of [10] for the Convergence Rule was ostensibly to establish a com-
pleteness property for DL, analogous to Cook’s Relative Completeness Theorem for
Hoare-style logics. However, Cook’s notion of relative completeness is itself problem-
atic, and the arithmetic completeness of [10] faces additional pitfalls. One is the fact that
the Convergence Rule is sounds only for a special class of structures, which is itself not
first-order axiomatizable.

Also, whereas Hoare’s Logic for Partial-correctness assertions is based on a formal
separation between rules for programs (Hoare’s rules) and rules for data (the back-
ground theory), the essential feature of the Convergence Rule is that it fuses the two.
When programs and data are fused, and programs and their semantics are codable by
data (as is the case in arithmetic structures), the very rationale for factoring out rules
for programs from axioms for data is weakened, and one might arguably reason directly
about programs in a first-order theory, as done for example in [1]. Needless to say, prov-
ing program termination by the Variance Method is of immense practical importance,
and our contention is simply that it is a mathematical tool (referring to particular struc-
tures, i.e. well-orderings) rather than a logical principle. The misfit of the Convergence
Rule in the rest of the axiomatics of DL is indeed manifest in the rather arbitrary choice
of the natural numbers as inductive measure.

90 D. Leivant

The schematic relative completeness of DL clarifies the status of the Convergence
Rule, and more generally of the notion of arithmetical completeness. As observed
above, our ability to use induction on N to prove termination (and more complex) as-
sertions in DL is hindered by the restriction of induction to first-order formulas. By
referring to data-induction as a schema, which can be instantiated to any DL formula,
we recover the freedom of action that we have in reasoning about DL formulas, and
which Harel’s Convergence Rule is providing in an ad hoc fashion, and only for arith-
metical structures. Indeed, the Convergence Rule is merely a syntactic variant of the
schema of induction for N. The reference to N, however, is off target, as our result
on schematic relative completeness shows: when Mα∗ is expressed in a structure by a
first-order formula ξα, as it should in an expressive structure, then Invariance (or —
equivalently — Induction) for ξα is the relevant true schema, and there is no need to
invoke the natural numbers.

True, schematic relative completeness refers to valid schemas of the structure in
hand, and recognizing these is complete-Π1

1 (for the natural numbers). But the entire
framework of Cook’s relative completeness is highly non-effective to begin with.

4 Summary and Directions

Our inductive theories provide a generic framework for explicit reasoning about pro-
grams (i.e. without using the modal operators of logics of programs). They build
directly on the inductive definition of program semantics, as opposed to frameworks
proposed in the past, based on natural numbers (see e.g. [25]). This approach provides
a close match between the semantic definition of programming languages, a specifica-
tion languages for program behavior, and formal verification theories for them. Corre-
spondingly, the notion of inductive completeness establishes a natural match between a
proposed (modal) logic of programs and the programming language to which it refers.

Moreover, inductive theories for programming languages provide a setting in which
tools of automated deduction can be applied directly, notably various methods for iden-
tifying inductive assertions in proofs.

The methods and results presented here can be applied to richer programming
paradigms, such as recursive procedures, parallelism, and object-oriented programming
(compare [21] and [2]). Of course, programming constructs that use dynamic memory
allocation, say recursive procedures with local variables, would require more expres-
sive logical constructs, such as relations with undetermined arities (or, equivalently,
direct reference to lists or streams). However, these do not seem to raise any conceptual
difficulty. In particular, we would expect to obtain inductively complete logics for pro-
gramming languages for which relative completeness (even for Hoare’s logic, let alone
Dynamic Logic) is excluded by [4].

References

1. Andreka, H., Nemeti, I., Sain, I.: A complete logic for reasoning about programs via non-
standard model theory, Parts I and II. Theoretical Computer Science 17, 193–212, 259–278
(1982)

2. Beckert, B., Platzer, A.: Dynamic logic with non-rigid functions. In: Furbach, U., Shankar,
N. (eds.) IJCAR 2006. LNCS, vol. 4130, pp. 266–280. Springer, Heidelberg (2006)

On the Completeness of Dynamic Logic 91

3. Blass, A., Gurevich, Y.: The underlying logic of Hoare logic. Current Trends in Theoretical
Computer Science, 409–436 (2001)

4. Clarke, E.: Programming language constructs for which it is impossible to obtain good
Hoare-like axioms. J. ACM 26, 129–147 (1979)

5. Cook, S.A.: Soundness and completeness of an axiom system for program verification. SIAM
J. Computing 7(1), 70–90 (1978)

6. Csirmaz, L.: Programs and program verification in a general setting. Theoretical Computer
Science 16, 199–210 (1981)

7. Feferman, S.: Formal theories for transfinite iterations of generalized inductive definitions
and some subsystems of analysis. In: Intuitionism and Proof Theory, pp. 303–326. North-
Holland, Amsterdam (1970)

8. Feferman, S., Sieg, W.: Iterated inductive definitions and subsystems of analysis. In: Iterated
Inductive Definitions and Subsystems of Analysis: Recent Proof-Theoreitc Studies. LNM,
vol. 897, pp. 16–77. Springer, Berlin (1981)

9. Harel, D., Meyer, A., Pratt, V.: Computability and completeness in logics of programs. In:
Proceedings of the ninth symposium on the Theory of Computing, Providence, pp. 261–268.
ACM, New York (1977)

10. Harel, D.: First-Order Dynamic Logic. LNCS, vol. 68. Springer, Heidelberg (1979)
11. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
12. Honsell, F., Miculan, M.: A natural deduction approach to dynamic logics. In: Berardi, S.,

Coppo, M. (eds.) TYPES 1995. LNCS, vol. 1158, pp. 165–182. Springer, Heidelberg (1996)
13. Kreisel, G.: Generalized inductive definitions. Reports for the seminar on foundations of

analysis, Stanford, vol. 1 §3 (1963)
14. Kreisel, G.: Mathematical logic. In: Saaty, T. (ed.) Lectures on Modern Mathematics, vol. III,

pp. 95–195. John Wiley, New York (1965)
15. Leivant, D.: Logical and mathematical reasoning about imperative programs. In: Conference

Record of the Twelfth Annual Symposium on Principles of Programming Languages, pp.
132–140. ACM, New York (1985)

16. Leivant, D.: Partial correctness assertions provable in dynamic logics. In: Walukiewicz, I.
(ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 304–317. Springer, Heidelberg (2004)

17. Leivant, D.: Matching explicit and modal reasoning about programs: A proof theoretic delin-
eation of dynamic logic. In: Twenty-first Symposium on Logic in Computer Science (LiCS
2006), Washington, pp. 157–166. IEEE Computer Society Press, Los Alamitos (2006)

18. Leivant, D.: Inductive completeness of logics of programs. In: Proceedings of the Workshop
on Logical Frameworks and Meta-Languages (to appear, 2008)

19. Martin-Löf, P.: Hauptsatz for the intuitionistic theory of iterated inductive definitions. In:
Fenstad, J.E. (ed.) Proceedings of the Second Scandinavian Logic Symposium, pp. 63–92.
North-Holland, Amsterdam (1971)

20. Mirkowska, G.: On formalized systems of algorithmic logic. Bull. Acad. Polon. Sci. 19,
421–428 (1971)

21. Nishimura, H.: Arithmetical completeness in first-order dynamic logic for concurrent pro-
grams. Publ. Res. Inst. Math. Sci. 17, 297–309 (1981)

22. Pratt, V.: Semantical considerations on Floyd-Hoare logic. In: Proceedings of the seventeenth
symposium on Foundations of Computer Science, Washington, pp. 109–121. IEEE Computer
Society, Los Alamitos (1976)

23. Sain, I.: An elementary proof for some semantic characterizations of nondeterministic Floyd-
Hoare logic. Notre Dame Journal of Formal Logic 30, 563–573 (1989)

24. Segerberg, K.: A completeness theorem in the modal logic of programs (preliminary report).
Notics of the American Mathematical Society 24(6), A–552 (1977)

25. Szalas, A.: On strictly arithmetical completeness in logics of programs. Theoretical Com-
puter Science 79(2), 341–355 (1991)

Dependency Tree Automata

Colin Stirling

School of Informatics
Informatics Forum

University of Edinburgh
cps@inf.ed.ac.uk

Abstract. We introduce a new kind of tree automaton, a dependency
tree automaton, that is suitable for deciding properties of classes of terms
with binding. Two kinds of such automaton are defined, nondeterministic
and alternating. We show that the nondeterministic automata have a
decidable nonemptiness problem and leave as an open question whether
this is true for the alternating version. The families of trees that both
kinds recognise are closed under intersection and union. To illustrate the
utility of the automata, we apply them to terms of simply typed lambda
calculus and provide an automata-theoretic characterisation of solutions
to the higher-order matching problem.

Keywords: Tree automata, binding terms, typed lambda calculus.

1 Introduction

A standard method for solving problems over families of terms is to show that
the solutions are tree recognisable: that is, that there is a tree automaton that
accepts a term if, and only if, it is a solution to the problem [4]. In such a case,
terms are built out of a finite family of (graded) symbols, that is symbols with
an arity, which are naturally represented as trees. A tree automaton involves a
finite set of states and a finite set of transitions. It traverses a term bottom-up or
top-down labelling it with states according to the transitions and if it succeeds
then the term is accepted.

Many logical and computational notations employ binders such as ∃x, µX , λx,
a(x) from first-order logic, fixed-point logic, lambda calculus, π-calculus, and so
on. Although each term of such a notation can be represented as a finite tree, to
represent families of such terms may require an infinite alphabet: as illustrated
by the following formulas ∀z.∃f1 . . . ∃fn.fn(fn−1(. . . (f1(z)) . . .)) for all n ≥ 0.
Although there is research in extending standard automata to infinite alphabets,
see the survey [9], it does not cover the specific case caused by binding.

We introduce a new type of tree automaton, a dependency tree automaton,
for recognising terms with binding. To maintain a finite alphabet, terms are rep-
resented as finite trees which also have an extra binary relation ↓ between their
nodes that represents binding: an idea partly inspired by nested automata which
also employ a binary relation ↓ between nodes representing nesting such as calls

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 92–106, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Dependency Tree Automata 93

and returns [1,2]. Two kinds of dependency tree automaton are defined, nonde-
terministic and alternating. We show that the nonemptiness problem, whether
a given automaton accepts at least one tree, is decidable for nondeterministic
automata. However, we are unable to show this for the alternating automata
and we are also unable to determine whether they are more expressive than
nondeterministic automata. The families of trees that both kinds of automata
recognise are closed under intersection and union. To illustrate the utility of
the automata, we apply them to terms of simply typed lambda calculus and
use alternating automata to provide an automata-theoretic characterisation of
solutions to the higher-order matching problem.

In Section 2 we define binding trees and the two kinds of dependency tree
automaton and show decidability of nonemptiness for the nondeterministic case.
We also illustrate how the nondeterministic automata can be used to recognise
normal form terms of simply typed lambda calculus of a fixed type. In Section 3,
we apply the alternating dependency tree automata to higher-order matching.
The proof of characterisation is presented in Section 4.

2 Dependency Tree Automata

In this section we introduce binding trees and dependency tree automata that
operate on them.

Definition 1. Assume Σ is a finite graded alphabet where each element s ∈ Σ
has an arity ar(s) ≥ 0. Moreover, Σ consists of three disjoint sets Σ1 that are
the binders which have arity 1, Σ2 are (the bound) variables and Σ3 are the
remaining symbols. A binding Σ-tree is a finite tree where each node is labelled
with an element of Σ together with a binary relation ↓ (representing binding).
If node n in the tree is labelled with s and ar(s) = k then n has precisely k
successors in the tree, the nodes n1, . . . , nk. Also, if a node n is labelled with a
variable in Σ2 then there is a unique node b labelled with a binder occurring above
n in the tree such that b ↓ n. For ease of exposition we also assume the following
restrictions on Σ-trees: if node n is labelled with a binder then n1 is labelled with
an element of Σ2∪Σ3 and if n is labelled with an element of Σ2∪Σ3 and ni is a
successor then it is labelled with a binder. Let TΣ be the set of binding Σ-trees.

Definition 2. A dependency Σ-tree automaton A = (Q,Σ, q0, ∆) where Q is a
finite set of states, Σ is the finite alphabet, q0 ∈ Q is the initial state and ∆ is a
finite set of transition rules each of which has one of the following three forms.

1. qs⇒ (q1, . . . , qk) where s ∈ Σ2 ∪Σ3, ar(s) = k, q, q1, . . . , qk ∈ Q
2. qs⇒ q′s′ where s ∈ Σ1, s′ ∈ Σ3 and q, q′ ∈ Q
3. (q′, q)s⇒ q1x where s ∈ Σ1, x ∈ Σ2 and q′, q, q1 ∈ Q

Definition 3. A run of A = (Q,Σ, q0, ∆) on t ∈ TΣ is a (Σ × Q)-tree whose
nodes are pairs (n, q) where n is a node of t and q ∈ Q labelled (s, q) if n is
labelled s in t which is defined top-down with root (ε, q0) where ε is the root of
t. Consider a node (n, q) labelled (s, q) of a partial run tree which does not have

94 C. Stirling

successors. If s ∈ Σ2 ∪ Σ3 and qs ⇒ (q1, . . . , qk) ∈ ∆ then the successors of
(n, q) are the nodes (ni, qi), 1 ≤ i ≤ k. If s ∈ Σ1, n1 is labelled s′ ∈ Σ3 and
qs ⇒ q′s′ ∈ ∆ then (n1, q′) is the successor of (n, q). If s ∈ Σ1, n1 is labelled
x ∈ Σ2, m ↓ n1 in t, (m, q′) occurs above or at (n, q) and (q′, q)s ⇒ q1x ∈ ∆
then (n1, q1) is the successor of (n, q). A accepts the Σ-tree t iff there is a run
of A on t such that if (n, q) is a leaf then n is a leaf of t. Let TΣ(A) be the set
of Σ-trees accepted by A.

A dependency tree automaton A has a finite set of states Q and transitions ∆
(which can be nondeterministic). A run of A on a Σ-tree t adds an additional Q
labelling to (a subtree of) t: so it is a (Σ×Q)-tree. It starts with (ε, q0) where ε
is the root of t and q0 is the initial state of A. Subsequent nodes are derived by
percolating states down t. The state at a node that is labelled with a variable
not only depends on the state of its immediate predecessor but also on the state
of the node that labels its binder. This introduces non-local dependence in the
automaton (hence the name). A run on t is accepting if it is complete in the
sense that each node of t is labelled with an element of Q: if (n, q) is a leaf of
the run tree then n is a leaf of t.

Dependency tree automata were partly inspired by nested word and tree au-
tomata [1,2] which are also an amalgam of a traditional automaton and a binary
relation ↓ on nodes of the (possibly infinite) word or tree. However, in that set-
ting ↓ represents nesting such as provided by bracketing and useful for modelling
procedure calls and returns. Nesting involves natural restrictions on the relation
↓ such as “no-crossings”: if m1 ↓ m2 and n1 ↓ n2 and m1 is above n1 then either
m2 is above n1 or n2 is above m2. Such restrictions are not appropriate when
modelling binding, for instance as with a formula ∀f.∃x.φ(f(x)).

A fundamental exemplar of binding is terms of the simply typed lambda
calculus. Simple types are generated from a single base type 0 using the binary
→ operator1:A→ B is the type of functions fromA toB. Assuming→ associates
to the right, if type A �= 0 then it has the form A1 → . . . → An → 0, written
(A1, . . . , An,0) here. The order of 0 is 1 and the order of (A1, . . . , An,0) is k+1
where k is the maximum of the orders of the Ais.

Terms of the simply typed λ-calculus (in Church style) are built from a count-
able set of typed variables x, y, . . . and constants a, f, . . . (each variable and
constant has a unique type).

Definition 4. The smallest set T of simply typed terms is:

1. if x (f) has type A then x : A ∈ T (f : A ∈ T),
2. if t : B ∈ T and x : A ∈ T then λx.t : A→ B ∈ T ,
3. if t : A→ B ∈ T and u : A ∈ T then (tu) : B ∈ T .

The order of a typed term is the order of its type. In a sequence of unparenthe-
sized applications, we adopt the usual convention that application associates to
the left, so tu1 . . . uk is ((. . . (tu1) . . .)uk). The usual definitions of free and bound
1 For simplicity, we assume just one base type: everything that is to follow can be

extended to the case of arbitrary many base types.

Dependency Tree Automata 95

variable occurrences and when a typed term is closed are assumed. Moreover, we
assume the standard definitions and properties of α-equivalence, β-reduction, η-
reduction and βη-equivalence, =βη, such as strong normalization of β-reduction:
see, for instance, Barendregt [3].

Fact 1. Every simply typed λ-calculus term is βη-equivalent to a unique term
(up to α-equivalence) in η-long form as follows,

1. if t : 0 then it is u : 0 where u is a constant or a variable, or u t1 . . . tk where
u : (B1, . . . , Bk,0) is a constant or a variable and each ti : Bi is in η-long
form,

2. if t : (A1, . . . , An,0) then t is λy1 . . . yn.t′ where each yi : Ai and t′ : 0 is in
η-long form.

Throughout, we write λz1 . . . zm for λz1 . . . λzm. A term is in normal form if it
is in η-long form.

Definition 5. For any type A and set of constants C, TA(C) is the set of closed
terms in normal form of type A whose constants belong to C.

Example 1. The monster type M = ((((0,0),0),0),0,0) has order 5. Assume
x1 : (((0,0),0),0), x2 : 0 and zi : (0,0) for i ≥ 1. The following family of terms
in normal form λx1x2.x1(λz1.x1(λz2 . . . x1(λzn.zn(zn−1(. . . z1(x2)) . . .)) . . .)) for
n ≥ 0 belong to TM (∅). Even to write down this subset of terms up to α-
equivalence requires an alphabet of unbounded size. More technically, M is
known not to be finitely generable [6]. However, there is a straightforward rep-
resentation of this family of terms as binding Σ-trees (when dummy λs are
added to fulfil the restrictions in Definition 1). Nodes are labelled with binders
λx1x2, λz, λ, or with variables x1, z of arity 1 and x2 of arity 0: in linear form
λx1x2.x1(λz.x1(λz . . . x1(λz.z(λ.z(. . . λ.z(λ.x2)) . . .)) . . .)) where there is an edge
↓ from the node labelled λx1x2 to each node labelled x1 or x2, and an edge ↓
from the first node labelled λz to the last node labelled z, and so on. There are
no edges ↓ from nodes labelled with the empty binder λ. Given such a represen-
tation of normal form terms in TM (∅), dependency tree automata can be defined
that recognize subsets: there is a simple deterministic two state automaton that
recognizes the subset which have an even number of occurrences of x1. %&

Fact 2. For any type A and finite C, there is a finite Σ such that every t∈TA(C)
up to α-equivalence is representable as a binding Σ-tree (with dummy λs).

The nonemptiness problem for classical (bottom-up or top-down) nondetermin-
istic tree automata, whether a given automaton accepts at least one tree, is
decidable in linear time. Also, the set of families of trees that are recognizable
is regular (which implies closure under complement and intersection) [4].

Theorem 1. Assume A, A1 and A2 are dependency Σ-tree automata.

1. The nonemptiness problem, given A is TΣ(A) �= ∅?, is decidable.
2. Given A1 and A2, there is an A such that TΣ(A) = TΣ(A1) ∩ TΣ(A2).
3. Given A1 and A2, there is an A such that TΣ(A) = TΣ(A1) ∪ TΣ(A2).

96 C. Stirling

Proof. Assume A = (Q,Σ, q0, ∆) is a Σ-tree automaton and Σ = Σ1 ∪Σ2 ∪Σ3
where Σ1 are the binders, Σ2 the variables and Σ3 the other symbols. Let ‖ t ‖
be the height of the Σ-tree t and |S| be the size of the finite set S. We show that
if TΣ(A) �= ∅ then A accepts a Σ-tree t such that ‖ t ‖≤ (|Σ1||Q|+1)(|Σ||Q|+1).
If A accepts t and ‖ t ‖> l(|Σ||Q|+ 1) then in the accepting run of A on t there
are l nodes of t, n1, . . . , nl with the same label in Σ and labelled with the same
state q ∈ Q such that each ni occurs above nj when i < j. Let B(i, j), where
1 ≤ i < j ≤ l, be the set of pairs binders a ∈ Σ1 and states q′ ∈ Q such
that there is a node n′ between ni and nj (excluding nj) labelled with a and
q′ in the successful run of A on t such that there is an edge n′ ↓ n′′ where n′′

is nj or occurs below it in t. Also, let U(i) be the set of pairs binders a ∈ Σ1
and states q ∈ Q such that there is a node n′ above ni in t labelled with a
and q in the successful run of A on t. Clearly, if B(i, j) ⊆ U(i) then there is
a smaller Σ-tree t′ which is accepted by A: the subtree at node ni is replaced
with the subtree at nj and any edge n′ ↓ n′′ where n′′ is nj or below it and n′

is between ni and nj (excluding nj) is replaced with an edge n ↓ n′′ where n
is the node above ni labelled with the same binder and state as n′. Clearly, if
A accepts t then it accepts t′. By simple counting, there must be an i, j with
1 ≤ i < j ≤ (|Σ1||Q| + 1) such that B(i, j) ⊆ U(i). Therefore, nonemptiness
is decidable. The other parts of the theorem follow from the usual product and
disjoint union of automata (which here includes the binding relations). %&

We do not know if the families of trees recognized by these automata are closed
under complement.

Definition 6. An alternating dependency Σ-tree automaton A = (Q,Σ, q0, ∆)
is as in Definition 2 except for the first clause for transitions which now is

1. qs⇒ (Q1, . . . , Qk) where s ∈ Σ2∪Σ3, ar(s) = k, q ∈ Q and Q1, . . . , Qk ⊆ Q.

Definition 7. A run of alternating dependency Σ-automaton A = (Q,Σ, q0, ∆)
on t ∈ TΣ is a (Σ × Q)-tree whose nodes are pairs (n, α) where n is a node
of t and α ∈ Q∗ is a sequence of states, labelled (s, q) if n is labelled s in t
and α = α′q which is defined top-down with root (ε, q0) where ε is the root of t.
Consider a node (n, α) labelled (s, q) of a partial run tree which does not have suc-
cessors. If s ∈ Σ2 ∪Σ3 and qs⇒ (Q1, . . . , Qk) ∈ ∆ then the successors of (n, α)
are {(ni, αq′) | 1 ≤ i ≤ k and q′ ∈ Qi}. If s ∈ Σ1, n1 is labelled s′ ∈ Σ3 and
qs ⇒ q′s′ ∈ ∆ then (n1, αq′) is the successor of (n, α). If s ∈ Σ1, n1 is labelled
x ∈ Σ2, m ↓ n1 in t, (m,α′q′) occurs above or at (n, α) and (q′, q)s ⇒ q1x ∈ ∆
then (n1, αq1) is the successor of (n, α). A accepts the Σ-tree t iff there is a run
of A on t such that if (n, αq) is a leaf labelled (s, q) of the run tree then either s
has arity 0 or qs⇒ (∅, . . . , ∅) ∈ ∆. Let TΣ(A) be the set of Σ-trees accepted by A.

A run of an alternating automaton on a Σ-tree t is itself a tree built out of the
nodes of t and sequences of states Q+. There can be multiple copies of nodes of t
within a run because a transition applied to a node n qs⇒ (Q1, . . . , Qk) spawns
individual copies at ni for each state in Qi. These automata are alternating as

Dependency Tree Automata 97

the Qis can be viewed as conjuncts
∧
q∈Qi

q and nondeterminism provides the
disjuncts.

Classically, nondeterministic and alternating tree automata accept the same
families of trees and the nonemptiness problem for alternating automata is de-
cidable in exponential time [4]. We do not know whether nondeterministic de-
pendency tree automata are as expressive as the alternating automata. Also, it
is an open question whether the nonemptiness problem for alternating depen-
dency tree automata is decidable. However, the families of trees recognized by
the alternating automata are closed under intersection and union using a similar
argument to Theorem 1.

Despite these open expressiveness and algorithmic questions, we shall show
that alternating dependency tree automata do have an interesting application.

3 Application of Dependency Automata

We apply alternating dependency tree automata to higher-order matching.

Definition 8. A matching problem in simply typed lambda calculus is an equa-
tion v = u where v, u : 0 are in normal form and u is closed. The order of the
problem is the maximum of the orders of the free variables x1, . . . , xn in v. A
solution is a sequence of terms t1, . . . , tn such that v{t1/x1, . . . , tn/xn} =β η u
where v{t1/x1, . . . , tn/xn} is the simultaneous substitution of ti for each free
occurrence of xi in v for i : 1 ≤ i ≤ n.

Given a matching problem v = u, one question is whether it has a solution:
can v be pattern matched to u? The motivation here is a different question: is
there an automata-theoretic characterization of the set of solutions of a matching
problem? Comon and Jurski define (almost classical) bottom-up tree automata
that characterize all solutions to a 4th-order problem [5]: the slight elaboration
is the use of �A symbols standing for arbitrary typed subterms of type A. The
authors describe two problems with extending their automata beyond the 4th-
order case. The first is how to guarantee only finitely many states. States of their
automata are constructed out of observational equivalence classes of terms due
to Padovani [8]. Up to a 4th-order problem, one only needs to consider finitely
many terms. With 5th and higher orders, this is no longer true and one needs to
quotient the potentially infinite terms into their respective observational equiv-
alence classes in order to define only finitely many states: however as Padovani
shows this procedure is, in fact, equivalent to the matching problem itself [8]. The
second problem is how to guarantee that the alphabet has finite size. As we saw
with the monster type in Example 1, fifth-order terms may (essentially) contain
infinitely many different variables. In [14], we overcame the first problem but
not the second: relative to a fixed finite alphabet, the set of solutions over that
alphabet to a matching problem is tree automata recognizable. The proof relies
on a similar technology to that used here (a game-theoretic characterisation of
matching). We now overcome the second problem using alternating dependency
tree automata.

98 C. Stirling

Definition 9. Assume u : 0 and w : A are closed terms in normal form and
x : (A,0). An interpolation problem P has the form xw = u. The type of problem
P is that of x and the order of P is the order of x. A solution of P of type B is
a closed term t : B in normal form such that tw =β u. We write t |= P if t is a
solution of P .

Because terms are in η-long form, β-equality and β η-equality coincide (for in-
stance, see [15] for a recent account).

Conceptually, interpolation is simpler than matching because there is a single
variable x that appears at the head of the equation. If v = u is a matching
problem with free variables x1 : A1, . . . , xn : An where v and u are in normal
form, then its associated interpolation problem is x(λx1 . . . xn.v) = u where
x : ((A1, . . . , An,0),0). This appears to raise order by 2 as with the reduc-
tion of matching to pairs of interpolation equations in [10]. However, we only
need to consider potential solution terms (in normal form with the right type)
λz.zt1 . . . tn where each ti : Ai is closed and so cannot contain z: we say that
such terms are canonical.

Proposition 3. A matching problem has a solution iff its associated interpola-
tion problem has a canonical solution.

Proof. Assume v = u is a matching problem with x1 : A1, . . . , xn : An as free
variables and where v and u are in normal form. If it has a solution t1, . . . , tn
where each ti is in normal form, then v{t1/x1, . . . , tn/xn} =β u. Clearly, it
therefore follows that λz.zt1 . . . tn(λx1 . . . xn.v) =β v{t1/x1, . . . , tn/xn} =β u.
Conversely, if λz.zt1 . . . tn is a canonical solution to its associated interpolation
problem x(λx1 . . . xn.v) = u then t1, . . . , tn solves the problem v = u. %&

In the literature there are slight variant definitions of matching. Statman de-
scribes the problem as a range problem [11]: given v : (A1, . . . , An, B) and
u : B where both u and v are closed, are there terms t1 : A1, . . . , tn : An
such that vt1 . . . tn =β η u? If B = (A1, . . . , Am,0) is of higher type then u in
normal form is λx′1 . . . x′m.w. Therefore, we can consider the matching problem
(vx1 . . . xn)c1 . . . cm = w{c1/x′1, . . . , cm/x′m} where the ci’s are new constants
that cannot occur in a solution term. In [8] a matching problem is a family of
equations v1 = u1, . . . , vm = um to be solved uniformly: they reduce to a single
equation fv1 . . . vm = fu1 . . . um where f is a constant of the appropriate type.

Example 2. The matching problem x1(λz.x1(λz′.za)) = a from [5] is 4th-order
where z, z′ : (0,0) and x1 : (((0,0),0),0). Its associated interpolation problem
is x(λx1.x1(λz.x1(λz′.za))) = a with x : (((((0,0),0),0),0),0). A canonical
solution has the form λx.x(λy.y(λy1

1 . . . y(λy
k
1 .s) . . .)) where s is the constant a

or one of the variables yj1, 1 ≤ j ≤ k. %&

Definition 10. If P is xw = u then CP is the set of constants that occur in u
together with one fresh constant b : 0.

Fact 4. Let C be any set of constants and let P be an interpolation problem of
type B. If t |= P and t ∈ TB(C) then there is a t′ ∈ TB(Cp) such that t′ |= P .

Dependency Tree Automata 99

@

����
��
��
�

���
��

��
��

�

t w

Fig. 1. An interpolation tree

Given a potential solution term t in normal form to the interpolation problem P ,
xw = u, there is the tree in Figure 1. If x : (A,0) then the explicit application
operator @ : ((A,0), A,0) has its expected meaning: @tw = tw. Our goal is
to define an alternating dependency tree automaton that accepts the tree in
Figure 1 when t is a solution of P . By Fact 4 we can assume that any such
solution term t only contains constants in the finite set CP . Moreover, we assume
the following representation of binders and variables. A binder λy is such that
either y is empty and therefore is a dummy λ and can not bind a variable
occurrence or y = y1 . . . yk and λy can only then bind variable occurrences of
the form yi, 1 ≤ i ≤ k. Consequently, in the binding tree representation if n ↓ m
and n is labelled λy1 . . . yk then m is labelled yi for some i.

In general the right term u of an interpolation problem may contain bound
variables: for instance, x(λz.z) = f(λx1x2x3.x1x3)a has order 3 where x has type
((0,0),0) and f : (((0,0),0,0,0),0,0) assuming x2 : 0. For ease of exposition,
as it simplifies the presentation considerably, we restrict ourselves to the case
where there are no such variables: this is discussed further in Section 5.

Definition 11. Assume u : 0 is closed and does not contain bound variables.
The set of subterms of u, Sub(u), is defined inductively: if u = a : 0 then Sub(u)
= {u} and if u = fu1 . . . uk then Sub(u) =

⋃
1≤i≤kSub(ui) ∪ {u}.

Given P , we assume a simple finite alphabet Σ (containing CP , the constants
in w, @ and suitable λys and variable occurrences).

Example 3. In the case of Example 2, there is the finite syntax where Σ1 =
{λx, λy, λy′, λx1, λz, λz

′, λ}, Σ2 = {x, y, y′, x1, z, z
′} and Σ3 = {a, b,@}. %&

The states of our dependency tree automaton are based on Ong [7] (which is a dif-
ferent setting, with a fixed infinite λ-term built out of a fixed finite alphabet and
an alternating parity automaton). To give intuition, consider a game-theoretic
understanding (such as with game-semantics) of Figure 1 where t = λz.zt1 . . . tn
and w = λx.w′ as pictured in Figure 2. In the game, play jumps around the in-
terpolation tree. It starts at @ and proceeds down from λz to z and then jumps
to λx of w (as it labels the subterm that would replace z in a β-reduction). It
then proceeds down w and eventually may reach xj , in which case it jumps to
the jth successor of z in t labelled with λy and then play proceeds in t and may
eventually reach yk and so jump to the kth successor of xj in w and so on. The
question is how to capture jumping within a tree automaton. This we do using
variable assumptions as in [14]: Ong calls them “variable profiles” in his setting.

100 C. Stirling

@

����
��
��
��

��	
		

		
		

	

λz

��

λx

��
z

��
��

��
��

�

��

xj

��
��
��
��
�

��
��

��
��

��
λy

��

λw

��
yk

��
��
��
��

��

wm

��
λ

��

Fig. 2. Game-theoretic view

Definition 12. Assume Σ is the alphabet for P , xw = u, and R = Sub(u).
Relative to R, for each variable z ∈ Σ2 the set of z assumptions, Γ (z) is defined
inductively: if z : 0 then Γ (z) = {(z, r, ∅) | r ∈ R}; if z : (A1, . . . , Ak,0) then
Γ (z) = {(z, r, Γ) | r ∈ R, Γ ⊆

⋃
1≤i≤k

⋃
x:Ai∈Σ2

Γ (x)}. A mode is a pair (r, Γ)
where r ∈ R and Γ ⊆

⋃
z∈Σ2

Γ (z).

A variable assumption is an abstraction from a sequence of moves in a game. For
instance (z, u, {(xj, r1, {(yk, r2, {(wm, r3, ∅)})})}) abstracts from the play pic-
tured in Figure 2: the subterms ri of u represent what is left of u that still needs
to be achieved in order for tw =β u.

A mode is a pair (r, Γ) where r ∈ R and Γ is a set of variable assumptions.
Because R is finite and Σ is fixed, there can only be boundedly many different
modes (r, Γ): modes are the states of our automaton.

Definition 13. Assume P is xw = u, Σ is its alphabet and R = Sub(u). The
dependency tree automaton is AP = (Q,Σ, q0, ∆) where Q is the set of modes
(ri, Γi), q0 = (u, ∅) and the transition relation ∆ is defined on nodes of the
binding Σ-tree by cases on Σ.

1. (u, ∅)@⇒ ({(u, Γ)}, {(u, Γ1)}) if Γ = {(z, u, Γ1)}
2. ((r, Γ), (r′, Γ ′))λy ⇒ (r′, Σ)xi if (xi, r′, Σ) ∈ Γ
3. (fr1 . . . rk, Γ)λy ⇒ (fr1 . . . rk, ∅)f
4. (a, ∅)λy ⇒ (a, ∅)
5. (r, Γ)xj ⇒ (Q1, . . . , Qk) if Qi = {(r′, Γ ′) | (yi, r′, Γ ′) ∈ Γ} for each i : 1 ≤
i ≤ k and ar(xj) = k > 0

6. (fr1 . . . rk, ∅)f ⇒ ({(r1, ∅)}, . . . , {(rk, ∅)})

Dependency Tree Automata 101

The root of the interpolation tree labelled @ has two successors t of the form
λz.zt1 . . . tn and w. The automaton starts with state (u, ∅) at @ and then a single
z variable assumption (z, u, Γ1) is chosen. The state at node labelled λz is then
(u, {(z, u, Γ1)}) and (u, Γ1) at the other successor of @. Assume the current state
is (r′, Γ ′) at node n of the interpolation tree labelled λy. If n1 is labelled with
variable xi and m ↓ n1 then m is labelled λx1 . . . xk for some k and the state
above (r′, Γ ′) at m has the form (r, Γ) where Γ is a set of assumptions for each
xj , 1 ≤ j ≤ k. One of the xi assumptions, (xi, r′, Σ) where the right term r′ is as
in the state at n is chosen and state (r′, Σ′) labels n1. If n1 is labelled f then for
the automaton to proceed from node n to n1, r′ must have the form fr1 . . . rk.
In which case n1 is labelled with state (r′, ∅). Similarly, if n1 is labelled with the
constant a : 0 then r′ must be a and Γ ′ = ∅. If the state is (r, Γ) at node n of the
interpolation tree and n is labelled xj with arity k > 0 then Γ consists of sets
of yi assumptions, 1 ≤ i ≤ k for some y (reflecting when play would return to
successors of n: for instance, in Figure 2 play jumps from xj to λy and returns
to xjs kth successor if it reaches yk and there can be multiple occurrences of
yk meaning that there could be further returns jumps). For each yi assumption
(yi, r′, Γ ′) the automaton spawns a copy at ni with state (r′, Γ ′). Finally, if the
state is (fr1 . . . rk, ∅) at node n of the interpolation tree labelled with f then the
automaton proceeds down each successor ni with state (ri, ∅).
Theorem 2. Assume P is xw = u, Σ is the alphabet and AP is the dependency
Σ-tree automaton in Definition 13. For any canonical Σ-term t, AP accepts the
tree @tw iff t |= P .

4 Proof of Theorem 2

The proof of Theorem 2 employs a game-theoretic interpretation of an interpo-
lation tree as illustrated in Figure 2 and developed in [14]. (It avoids questions,
answers and justification pointers of game-semantics [7] and uses iteratively de-
fined look-up tables.)

Assume P is the problem xw = u, Σ is the alphabet, R = Sub(u) and t is a
potential solution term. We define the game G(t, P) played by one participant,
player ∀, the refuter who attempts to show that t is not a solution of P . The
game is played on the Σ-binding tree @tw of Figure 1.

Definition 14. N is the set of nodes of the binding tree @ tw labelled with ele-
ments of Σ = Σ1∪Σ2∪Σ3 and S is the set {[x] |x ∈ R∪{∀, ∃}} of game-states.
[∀] and [∃] are the final game-states. Let N1 be the subset of nodes N whose
labels belong to Σ1 (the binders). For each i ≥ 1, the set of look-up tables Θi is
iteratively defined: Θ1 = {θ1} where θ1 = ∅ and Θi+1 is the set of partial maps
from N1 → (

⋃
s∈Σ1

Nar(s) ×
⋃
j≤iΘj).

Definition 15. A play of G(t, P) is a finite sequence n1q1θ1, . . . , nlqlθl of posi-
tions where each ni ∈ N , each qi ∈ S and ql is final and each θi ∈ Θi is a look-up
table. For the initial position n1 is the root of the interpolation tree labelled @,
q1 = [u] where u is the right term of P and θ1 is the empty look-up table. Player
∀ loses the play if the final state is [∃], otherwise she wins the play.

102 C. Stirling

The game G(t, P) appeals to a finite set of states S comprising goal states [r],
r ∈ R, and final states, [∀], winning for the refuter, and [∃], losing for the
refuter. The central feature of a play of G(t, P), as depicted in Figure 2, is that
repeatedly control may jump from a node of t to a node of w and back again.
Therefore, as play proceeds, one needs an account of the meaning of free variables
in subtrees. A free variable in a subtree of t (a subtree of w) is associated with
a subtree of w (a subtree of t). This is the role of the look-up table θk ∈ Θk
at position k ≥ 1. If n is labelled λy1 . . . ym and θk(n) is defined then it is of
the form ((n1, . . . , nm), θj) which tells us that any node m labelled yi such that
n ↓ m is associated with the subtree rooted at node ni: that subtree may itself
contain free variables, hence, the presence of a previous look-up table θj .

Current position is n[r]θ. Next position by cases on label at node n:

1. @ then n1[r]θ′ where θ′ = θ{((n2), θ)/n1}
2. λy then n1[r]θ
3. a : 0 if r = a then n[∃]θ else n[∀]θ
4. f : (B1, . . . , Bk,0) if r = fr1 . . . rk then ∀ chooses j ∈ {1, . . . , k} and nj [rj]θ else

n[∀]θ
5. yj : 0 if m ↓ n and θ(m) = ((m1, . . . , ml), θ′) then mj [r]θ′

6. yj : (B1, . . . , Bk,0) if m ↓ n and θ(m) = ((m1, . . . , ml), θ′) then mj [r]θ′′ where
θ′′ = θ′{((n1, . . . , nk), θ)/mj}

Fig. 3. Game moves

Definition 16. If the current position in G(t, P) is n[r]θ and [r] is not final
then the next position is determined by a unique move in Figure 3 according to
the label at node n.

At the initial node labelled @, play proceeds to its first successor labelled λz
and the look-up table is updated as its other successor is associated with λz.
Later, if play reaches a node labelled z (bound by initial successor of root) then
it jumps to the second successor of the root node. Standard updating notation
is assumed: γ{((m1, . . . ,mk), γ′)/n} is the partial function similar to γ except
that γ(n) = ((m1, . . . ,mk), γ′) where n will be labelled λy1 . . . yk for some y.
If play is at a node labelled λy, where y can be empty, then it descends to its
successor. At a node labelled with the constant a : 0, the refuter loses if the goal
state is [a] and wins otherwise. At a node labelled with a constant f with arity
more than 0, ∀ immediately wins if the goal state is not of the form [fr1 . . . rk].
Otherwise ∀ chooses a successor j and play moves to its jth successor. If play
is at node n labelled with variable yj : 0 and θ(m) = ((m1, . . . ,ml), θ′) when
m ↓ n then play jumps to mj and θ′ becomes the look-up table. If n is labelled
yj : (B1, . . . , Bk,0) and θ(m) = ((m1, . . . ,ml), θ′) when m ↓ n then play jumps
to mj which is labelled λx1 . . . xk for some x and the look-up table is θ′ together
with the association of ((n1, . . . , nk), θ) to mj .

Definition 17. Player ∀ loses the game G(t, P) if she loses every play of it and
otherwise she wins the game.

Dependency Tree Automata 103

Lemma 1. Player ∀ loses G(t, P) iff t |= P .

Proof. Given P : A, xw = u and t : A either t |= P or t �|= P . Because the
simply typed λ-calculus is strongly normalizing, it follows that there is an m
such that tw reduces to normal form using at most m β-reductions (whatever
the reduction strategy). For any position n[r]θ of a play of G(t, P) we say that
it m-holds (m-fails) if r = ∃ (r = ∀) and when not final, by cases on the label
at n(where look-up tables become delayed substitutions and we elide between
nodes, subtrees and terms)

– @ then n1n2 =β r (n1n2 �=β r) and n1n2 normalizes with m β-reductions
– λ then n1θ =β r (n1θ �=β r) and n1θ normalizes with m β-reductions
– λy1 . . . yk then n1θ =β r (n1θ �=β r) and n1θ normalizes with (m − k) β-

reductions
– f then nθ =β r (nθ �=β r) and nθ normalizes with m β-reductions
– yj : 0 if n′ ↓ n and θ(n′) = ((n1, . . . , nl), θ′) then njθ′ =β r (njθ′ �=β r) and
njθ

′ normalizes with m β-reductions
– yj : (B1, . . . , Bk,0) if n′ ↓ n and θ(n′) = ((n1, . . . , nl), θ′) then t′ =β r

(t′ �=β r) where t′ = (njθ′)n1θ . . . nkθ and t′ normalizes with m β-reductions

Initially, play is at n labelled @ with state [u] and the empty look-up table:
therefore, as either tm =β u or tm �=β u it follows that for some m, either n[u]θ1
m-holds or m-fails. The following invariants are easy to show by case analysis.

1. If n[r]θ m-holds (m-fails), n labels λy1 . . . yk and n′[r′]θ′ is the next position
then it (m− k)-holds ((m− k)-fails)

2. If n[r]θ m-holds (m-fails), n labels λ and n′[r′]θ′ is the next position then it
m-holds (m-fails)

3. If n[r]θ m-holds and n labels f and n′[r′]θ′ is any next position then it
m′-holds for m′ ≤ m

4. If n[r]θ m-fails and n labels f then some next position n′[r′]θ′ m′-fails for
some m′ ≤ m

5. If n[r]θ m-holds (m-fails) and n labels yj and n′[r′]θ′ is the next next position
then it m-holds (m-fails)

From these invariants it follows first that if a non-final positionm-holds then any
next position m′-holds for some m′ ≤ m and second if a non-final position n[r]θ
m-fails then there is a next position that m′-fails for some m′ ≤ m. Moreover,
there cannot be an infinite sequence of positions (as the indexm strictly decreases
with a move at a node labelled λy1 . . . yk, k > 0, and must be 0 at a node labelled
with a constant a : 0). Therefore, the result follows. %&

In the following we let p ∈ G(t, P) abbreviate that p is a position in some play of
G(t, P). If such a position p is at a node labelled with a variable then we identify
the earlier position at the node labelled with its binder when the value of that
binder in the look-up table at p is defined.

Definition 18. Assume p1 = n1q1θ1, . . . , pl = nlqlθl is a play of G(t, P) and
nj is labelled with a variable. Position pi is a parent of pj iff ni ↓ nj and
θi(ni) = θj(ni).

104 C. Stirling

Fact 5. If p ∈ G(t, P) is at a node labelled with a variable then there is a unique
q ∈ G(t, P) that is the parent of p.

We now extend the notion of a successor in a tree to positions in a play.

Definition 19. Assume p1 = n1q1θ1, . . . , pl = nlqlθl is a play of G(t, P), node
nm is a successor of nk (so, for some j, nm = nkj) and 1 ≤ k < m < l. Position
pm succeeds position pk if either m = k+ 1 or nk is labelled @, or nk is labelled
with a variable and pk+1 is the parent of pm−1.

Proposition 6. Assume p1 = n1q1θ1, . . . , pl = nlqlθl is a play of G(t, P) and pm
is a position with m < l. There is a unique subsequence of positions pi1 , . . . , pik
such that i1 = 1, ik = m and for all j : 1 ≤ j < k position pij+1 succeeds pij and
for any c if nic ↓ nij then pic is the parent of pij .

Proof. Assume that p1 = n1q1θ1, . . . , pl = nlqlθl is a play of G(t, P) and pm is a
position with m < l. Consider the branch of the interpolation tree from the root
labelled @ to nm. We now pick out the subsequence of positions at these nodes
backwards starting with pm at nm. Suppose pij+1 is given. If nij+1 is labelled xi,
f or a then pij is pij+1−1. If nij is labelled λy and its immediate predecessor is
f then pij is also pij+1−1. If nij is labelled λy and its immediate predecessor is
xi and pl is the parent of pij+1−1 then pij is pl−1. The argument that if nic ↓ nij
then pic is the parent of pij is also straightforward. %&

Definition 20. If p = n[r]θ ∈ G(t, P) and n is labelled yj then its associated
variable assumption, V (p), is defined by induction on the type of yj. If yj : 0
then V (p) = (yj , r, ∅). If yj : (B1, . . . , Bk,0) and p′ is the next position after p
then V (p) = (yj , r, Γ) where Γ = {V (q) | q ∈ G(t, P) and p′ is the parent of q}.

Definition 21. If p = n[r]θ ∈ G(t, P) then M(p) is the mode at node n associ-
ated with p defined by cases on the label at n (and which uses Definition 20). If
@, f or a then M(p) = (r, ∅). If yj and V (p) = (yj , r, Γ) then M(p) = (r, Γ). If
λy then M(p) = (r, Γ) where Γ = {V (q) | q ∈ G(t, P) and p is the parent of q}.

Theorem 2 is a corollary (via Lemma 1) of the following result.

Theorem 3. Assume P is xw = u, Σ is the alphabet and AP is the dependency
Σ-tree automaton in Definition 13. For any canonical Σ-term t, ∀ loses G(t, P)
iff AP accepts the tree @tw.

Proof. Assume ∀ loses G(t, P). We show that there is a successful run of AP on
@tw via Proposition 6 and Definition 21. More precisely, the successful run
tree is built in such a way that for any of its nodes (n, α(r, Γ)) there is a
play p1 = n1q1θ1, . . . , pl = nlqlθl of G(t, P) and a position pm with m < l
such that if pi1 , . . . , pik is the subsequence identified in Proposition 6 then
the branch from the root to (n, α(r, Γ)) consists of nodes n′1, . . . , n′k where
n′j = (nij ,M(pi1) . . .M(pij)), 1 ≤ j ≤ k. Initially this is true as (n1, (u, ∅))

Dependency Tree Automata 105

is the root node of the run tree when n1[u]θ1 is the initial position (of any play).
It is now an easy exercise to show that there is always an application of a transi-
tion rule of AP of Definition 13 to a nonterminal node (n, α(r, Γ)) that preserves
this property.

For the other direction assume ∀ wins G(t, P) but there is a successful run of
AP on @tw. There is a winning play p1 = n1[r1]θ1, . . . , pl = nl[rl]θl of G(t, P)
for ∀. So, nl−1 is labelled a : 0 or f : (B1, . . . , Bk,0) and rl−1 �= a or rl−1 �=
fr1 . . . rk because rl = ∀. Let pm be the earliest position in this play such
that there are positions pi1 , . . . , pik of Proposition 6 such that there is a branch
of the successful run tree of AP on @tw consisting of nodes n′1, . . . , n

′
k−1 with

n′ij = (nij , αj(rij , Γj)) for some αj and Γj , 1 ≤ j < k but no successor of n′k−1 of
the form (nm, α(rm, Γ)). We know that there is such a position pm, 1 < m < l,
because the root of the run tree has the form (n1, (r1, ∅)) and by the transition
rules 3 and 4 of Definition 13 there cannot be a node of a successful run tree
(nl−1, α(rl−1, Γ)) for any α and Γ . A case analysis on the label at node nm
shows that if there is such a position pm then there is an even earlier position
with this property which is a contradiction. %&

5 Conclusion

We introduced nondeterministic and alternating dependency tree automata for
recognising terms with binding. Decidability of nonemptiness is shown for the
nondeterministic automata. There are significant open questions for the alter-
nating automata: are they more expressive than the nondeterministic automata
and is their nonemptiness problem decidable? We also provided an application
of the alternating automata to characterise solutions to a higher-order matching
problem. We need to see if there are other applications of these automata.

To save space, we assumed that a right term u in an interpolation problem
does not contain bound variables. We handle them as in [14,13] by including new
corresponding constants which are not allowed to occur in solution terms. If u is
f(λx1x2x3.x1x3)a then c1, c2 and c3 are included where each ci has the same type
as xi. Definition 11 is refined to only allow closed subterms of base type by re-
placing bound variables by their corresponding constants: for u above we include
a, c1(c3) and c3. A new kind of variable assumption is included, a triple of the
form (zi, r, c) where c is one of the new constants and look-up tables are extended
to include entries of the form θm(z) = c. Transition rules for the automaton and
the game moves are extended accordingly. For instance, in 4 of Figure 3 there is
also the case when rj = λx1 . . . xm.r

′ and nj is labelled λy1 . . . ym: so the next
position is nj[r′{c1/x1, . . . , cm/xm}]θ′ where θ′ = θ{c1/y1, . . . , cm/ym}.

References

1. Alur, R., Madhusudan, P.: Adding nested structure to words. In: H. Ibarra, O.,
Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 1–13. Springer, Heidelberg (2006)

2. Alur, R., Chaudhuri, S., Madhusudan, P.: Languages of nested trees. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 329–342. Springer, Heidelberg
(2006)

106 C. Stirling

3. Barendregt, H.: Lambda calculi with types. In: Abramsky, S., Gabbay, D.,
Maibaum, T. (eds.) Handbook of Logic in Computer Science, vol. 2, pp. 118–309.
Oxford University Press, Oxford (1992)

4. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S.,
Tommasi, M.: Tree Automata Techniques and Applications. Draft Book (2002),
http://l3ux02.univ-lille3.fr/tata/

5. Comon, H., Jurski, Y.: Higher-order matching and tree automata. In: Nielsen, M.
(ed.) CSL 1997. LNCS, vol. 1414, pp. 157–176. Springer, Heidelberg (1998)

6. Joly, T.: The finitely generated types of the lambda calculus. In: Abramsky, S.
(ed.) TLCA 2001. LNCS, vol. 2044, pp. 240–252. Springer, Heidelberg (2001)

7. Ong, C.-H.L.: On model-checking trees generated by higher-order recursion
schemes. In: Procs. LICS 2006, pp. 81–90 (2006); (Longer version available from
Ong’s web page, 55 pages (preprint, 2006)

8. Padovani, V.: Decidability of fourth-order matching. Mathematical Structures in
Computer Science, vol. 10(3), pp. 361–372 (2001)

9. Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In:
Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006)

10. Schubert, A.: Linear interpolation for the higher-order matching problem. In:
Bidoit, M., Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT 1997.
LNCS, vol. 1214, pp. 441–452. Springer, Heidelberg (1997)

11. Statman, R.: Completeness, invariance and λ-definability. The Journal of Symbolic
Logic 47, 17–26 (1982)

12. Stirling, C.: Higher-order matching and games. In: Ong, L. (ed.) CSL 2005. LNCS,
vol. 3634, pp. 119–134. Springer, Heidelberg (2005)

13. Stirling, C.: A game-theoretic approach to deciding higher-order matching. In:
Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4052, pp. 348–359. Springer, Heidelberg (2006)

14. Stirling, C.: Higher-order matching, games and automata. In: Procs. LICS 2007,
pp. 326–335 (2007)

15. Støvring, K.: Higher-order beta matching with solutions in long beta-eta normal
form. Nordic Journal of Computing 13, 117–126 (2006)

http://l3ux02.univ-lille3.fr/tata/

On Global Model Checking Trees Generated by
Higher-Order Recursion Schemes

Christopher Broadbent and Luke Ong

Oxford University Computing Laboratory

Abstract. Higher-order recursion schemes are systems of rewrite rules on typed
non-terminal symbols, which can be used to define infinite trees. The Global
Modal Mu-Calculus Model Checking Problem takes as input such a recursion
scheme together with a modal µ-calculus sentence and asks for a finite repre-
sentation of the set of nodes in the tree generated by the scheme at which the
sentence holds. Using a method that appeals to game semantics, we show that for
an order-n recursion scheme, one can effectively construct a non-deterministic
order-n collapsible pushdown automaton representing this set. The level of the
automaton is strict in the sense that in general no non-deterministic order-(n−1)
automaton could do likewise (assuming the requisite hierarchy theorem). The
question of determinisation is left open. As a corollary we can also construct an
order-n collapsible pushdown automaton representing the constructible winning
region of an order-n collapsible pushdown parity game.

Keywords: Recursion Scheme, Model Checking, Game Semantics, Collapsible
Pushdown Automaton, Parity Game.

1 Introduction

Whilst local model checking asks whether a property holds at the root of a structure, a
global model checking algorithm is designed to return a finite representation of the set
of states in a structure at which a property holds.

Our own focus is on model checking modal µ-calculus properties of (possibly infi-
nite) ranked trees generated by higher-order recursion schemes, which are systems of
rewrite rules on typed non-terminals. A number of results exist concerning the local
version [13,14] and it turns out that for an order-n recursion scheme the local problem
is n-EXPTIME complete [14]. The computationally intensive part of our algorithm for
the global result in fact consists of solving a local version of the problem. We have to
compute the winning region of a finite parity game arising from Ong’s method [14]. Al-
gorithms for solving such games from a given node usually follow the global paradigm
and compute the winning region in the process.

Owing to equivalences between recursion schemes and various flavours of higher-
order pushdown automata (PDA) [13,10], the present work is very much related to
computing winning regions of parity games played over the configuration graphs of
such automata. Cachat and Serre independently showed that the winning regions of
parity games over 1-PDA and prefix-recognizable graphs are regular [16,2]. Piterman
and Vardi [15] have also presented a generalisation of automata-theoretic techniques

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 107–121, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

108 C. Broadbent and L. Ong

used to solve the local problem over these graphs to obtain the same result. (Indeed
we borrow an aspect of their method with what we call in the sequel ‘the versatile
automaton’.) It was subsequently discovered by Carayol et al. that the winning regions
of order-n pushdown parity games are regular and that the problem is n-EXPTIME
complete [4]. As a corollary to this they show that the global model checking problem
for order-n recursion schemes satisfying a syntactic constraint called ‘safety’ can be
solved in n-EXPTIME, with solution represented by a deterministic order-n pushdown
automaton.

An analogous approach to general recursion schemes would require a regular charac-
terisation of the winning region of a collapsible pushdown parity game [10], as provided
by Serre1. The approach we consider here, however, does not go via collapsible push-
down parity games. Despite the difference in method, our final result is similar insofar
as our algorithm represents the required set of tree nodes using an order-n collapsible
pushdown automaton (CPDA). There is an unfortunate difference, however, in that our
CPDA is non-deterministic. Even if this diminishes the practical utility of the output
of our algorithm, our result nevertheless establishes that the µ-calculus definable node-
sets of trees generated by order-n recursion schemes can themselves be generated by
an order-n recursion scheme. In doing so we show how two different incarnations of a
game-semantic approach to the Local Problem [14,10] can be merged.

As a corollary we are able to characterise the configurations with constructible stacks
that are winning in a collapsible pushdown parity game using a CPDA. Constructible
stacks are represented by sequences of stack operations that generate them. This resem-
bles a similar result by Carayol and Slaats for (non-collapsible) PDA [5], although our
version lacks the canonicity exhibited in op. cit.

An Outline Proof of the Local Problem. Space constraints limit the degree to which
we can introduce apparatus from Ong’s original paper [14] but we try to refer to a
section of the long version for the reader interested in more details.

Fix a space of types formed from a single ground type o and the arrow-constructor→.
The order and arity of a type are given their standard definitions. An order-n recursion
scheme ([14], Sec. 1.2) is a 5-tuple 〈Σ,N ,V ,R,S〉 whereΣ is a finite ranked alphabet
with a symbol of arity k given the order-1 type of arity k; N is a finite set of non-
terminals assigned types of order no greater than n; V is a finite set of typed variables;
S ∈ N is a distinguished ‘initial symbol’ with type o and R is a finite set of rewrite
rules of the form Fζ1 . . . ζm → t(ζ1, . . . , ζm) where F ∈ N and ζ1, . . . , ζm ∈ V ;
Fζ1, . . . , ζm has type o as does the term t(ζ1, . . . , ζm), which is formed from variables
ζ1, . . . , ζm, non-terminals from N and Σ-symbols. There should be precisely one rule
for each non-terminal. The value-tree �G� defined by a recursion scheme G is the tree
with nodes labelled in Σ that is the limit of the recursion scheme as it unfolds from S
([14], p. 7).

Given a µ-calculus sentence φ and a recursion scheme G, the local problem asks
whether φ holds at the root of �G�. Ong’s proof of decidability for this [14] makes use
of ideas from innocent game semantics [11] via the notion of traversal. A traversal is
a sequence of nodes obeying certain rules in an infinite lambda term λ(G), called the

1 Private communication with Olivier Serre, 7 October 2008.

On Global Model Checking Trees Generated by Higher-Order Recursion Schemes 109

computation tree, which represents the recursion scheme G ([14], Sec. 2). The manner
in which a traversal hops around the computation tree can be viewed as both a form
of evaluation of the scheme (linear head reduction) and a manifestation of its game-
semantic denotation.

Thanks to Emerson and Jutla [7], we can convert the µ-calculus sentence φ to an
alternating parity tree automaton (APT) B, which we refer to as the property APT,
such that B has an accepting run-tree on the value-tree �G� generated by G just in case
�G� � φ.2 We can map accepting run-trees to accepting traversal trees (and vice versa),
where the latter allow B to jump over λ(G) according to the rules for traversals ([14],
Definition 2.11). We can then simulate such traversal trees using a traversal simulating
APT C that reads λ(G) in a ‘normal’ top-down manner ([14], Sec. 3). Since λ(G) is
regular, as witnessed by a finite graph Gr(G) ([14], p. 51), it can be decided whether C
accepts λ(G) and this gives the result.

Overview. Fix a ranked alphabet Σ, a tree-generating recursion scheme G and a µ-
calculus sentence φ. Let B be the property APT associated with φ. The Global Model-
Checking Problem asks for a finite representation of the set of nodes in the Σ-labelled
tree �G� at which φ holds. We explicate a method that, given an order-n recursion
scheme, constructs an n-CPDA word acceptor that accepts precisely these nodes, where
nodes are represented in the standard way as strings over a ‘directions alphabet’.

We actually establish a slightly stronger result than we need. We provide a finite
representation of the set of ordered pairs (q, α), where q is a state of B and α is a
node of �G�, such that B accepts the subtree of �G� rooted at α starting from state q.
The solution to the Global Model-Checking Problem for G and φ is then provided by
restricting this set to those pairs of the form (q0, α), where q0 is the initial state of B.

The construction begins with what we describe as the versatile property APT, B⊥,
which is able to navigate to an arbitrary node in �G� before proceeding to adopt the
behaviour of B starting at an arbitrary state q. Since B⊥ is just an ordinary APT, there
exists a traversal-simulating APT C⊥ forB⊥. We can thus move on to consider the finite
parity game GG,C⊥ induced by C⊥ and the computation graph Gr(G) of G. The two
players of parity games are named Éloı̈se and Abelard. Éloı̈se can be viewed as trying
to establish a µ-calculus formula whilst Abelard is trying to refute it. We can use a
standard algorithm to find the winning region of GG,C⊥ and thereby label with a symbol
‘W ’ the nodes of GG,C⊥ from which Éloı̈se has a winning strategy. The annotated graph
is called GW

G,C⊥ .

Since GW
G,C⊥ is induced (in part) by Gr(G), it makes sense to speak of traversals over

GW
G,C⊥ . Consider the set of traversals of GW

G,C⊥ travelling only over nodes labelled with

W and halting at a node corresponding to a point where B⊥ starts to simulate B from
state q at node n of the tree. It turns out that this set, when projected to the Σ-labelled
nodes, corresponds to the set of ordered pairs (q, α) that we want to finitely represent.
Since we can program an n-CPDA to navigate traversals of Gr(G) [10], we can also
program it to navigate the traversals of GW

G,C⊥ in the set. This provides the requisite
n-CPDA word acceptor.

2 For an introduction to the modal µ-calculus and parity automata / games we direct the reader
to Bradfield and Stirling’s survey [1].

110 C. Broadbent and L. Ong

2 The Versatile Property APT and Its Simulation

f1

a2 f3

a4 f5

a6 f7

a8 ...

Fig. 1. A Value Tree

By convention the nodes of a (ranked and ordered) Σ-
labelled tree, T : dom(T) −→ Σ (say), are represented
in the standard way by strings in Dir∗ where Dir = N,
so that dom(T) ⊆ Dir∗; elements of Dir ∪ {ε} (ε the
empty string) are referred to as directions. Thus the label
of a node α is T (α) (e.g. �G�(α) means the label of
the node α in a value-tree �G�). A path p in a tree is
viewed as a sequence of nodes such that the successor of
an element of a sequence is its child. The trace trace(p)
of a path p = (pi)i∈I is the sequence (T (pi))i∈I . For a node r of a tree T we write Tr
for the maximal subtree of T rooted at r.

An APT that operates over a Σ-labelled tree T is a 5-tuple 〈Σ,Q, δ, q0, Ω 〉 consist-
ing of a finite-set Q of control-states, transition function δ : (Σ × Q) → B+((Dir ∪
{ε})×Q) (where B+(S) is the set of positive boolean formulae with set of atoms S),
initial state q0 ∈ Q and priority function Ω : Q → N. Whilst reading a node u of
T in state q the automaton will pick a minimal set S ⊆ ((Dir ∪ {ε}) × Q) satisfying
δ(T (u), q), and for each (i, q′) ∈ S will spawn an automaton in state q′ reading the
ith child of u, the ε-child of a node being itself. A run-tree of the APT is an unranked
(dom(T) × Q)-labelled tree representing such a branching run starting in state q0 at
the root of T . It is deemed accepting if the Q-projection q1 q2 . . . of the trace of every
path satisfies the parity condition meaning that max({Ω(q) : q ∈ inf(q1 q2 . . .)}) is
even, where inf(σ) is the set of states occurring infinitely often in σ.

Suppose that the property APT B has initial state q0 so that B = 〈Σ,Q, δ, q0, Ω 〉.
A template for an APT is a quadruple B = 〈Σ,Q, δ,Ω 〉 with Q a finite set such that
for any q ∈ Q it is the case that Bq = 〈Σ,Q, δ, q, Ω 〉 is an APT. We may view B as
representing the family of automata: B = { Bq : q ∈ Q }.

Consider a ranked and ordered tree T . It is possible to construct an automaton B⊥
that can behave as any member of B acting on any ranked and ordered subtree of T .
We call this automaton the versatile property APT for B. The versatile APT traverses
the tree T starting at its root whilst in a kind of ‘nascent state’ ⊥. Once it reaches the
desired node r of the tree, it switches into the required state q and starts behaving as
though it were Bq. We call this point q-initialisation.

Definition 1. Let B = 〈Σ,Q, δ,Ω 〉 be a template for an APT. The versatile automa-
ton B⊥ for B is the APT B⊥ given by:

B⊥ =
〈
Σ,Q � {⊥}, δ⊥,⊥, Ω⊥〉

where δ⊥ extends δ by the rule: δ⊥ : (⊥, f) �→
∨

1≤i≤ar(f)(i,⊥)∨
∨
q∈Q(ε, q) andΩ⊥

extends Ω with Ω⊥(⊥) := −1.

So the APT B⊥ has an ‘initialisation phase’ during which it is in state ⊥.

Definition 2. Let t be a run-tree of the versatile APT B⊥ on a Σ-labelled tree T . Let
t⊥ be the unique path in t consisting of precisely the nodes associated with ⊥.

On Global Model Checking Trees Generated by Higher-Order Recursion Schemes 111

Let p be the unique path in T corresponding to the path in t of the form t⊥ β where
β is a node in t with label (α, q) such that q ∈ Q, the state space of the template B (i.e.
q �= ⊥). We then say that q-initialization occurs at (the path) p or at (the node) β. We
call the path t⊥ the initialisation phase of the automaton (during the run t).

λ1

@2

λφ3

φ4

λ5

@6

λφ7

φ8

λ9...

λx10

f11

λ12

a13

λ14

x15

λx16

f17

λ18

a19

λ20

x21

Fig. 2. A Computation Tree

(f1,⊥)

(f3,⊥)

(f3, q1) q1-initialization

(a4, q1) (a4, q2) (f5, q2)

(a6, q1) (a6, q2) ...

Fig. 3. A Run-Tree of a Versatile APT

The following lemma summarises the signifi-
cance of B⊥.

Lemma 1. Let B⊥ be a versatile automaton and
let T be a Σ-labelled tree. Given a state q of B
and a node r of T , it is the case that Bq accepts
Tr if and only if B⊥ has an accepting run-tree on
T with q-initialisation taking place at r.

Example 1. We use the following automaton as
our working example. It acts on trees with nodes
labelled by f and a with arities 2 and 0 re-
spectively. It has state space {q0, q1, q2} each of
which is given priority 2.

(f, q0) �→ (1, q1) ∧ (2, q1) (a,) �→ t
(f, q1) �→ (1, q1) ∧ (1, q2) ∧ (2, q1)

We additionally use as an example the recursion
scheme with initial non-terminal S : o, non-
terminal F : (o → o) → o and rules: S →
F (fa) and Fφ → φ(F (fa)). The scheme’s
value tree and computation tree are illustrated in
Figures 1 and 2 respectively.

Example 2. The versatile APT for the property
APT in Example 1 has state space {q0, q1, q2} ∪
{⊥}with⊥ the initial state. All states of the form
qi have priority 2 but ⊥ has priority −1. Its tran-
sition function is given by:

(f, q0) �→ (1, q1) ∧ (2, q1) (f,⊥) �→ (1,⊥) ∨ (2,⊥) ∨
∨

0≤i≤2(ε, qi)
(f, q1) �→ (1, q1) ∧ (1, q2) ∧ (2, q1) (a, q) �→ t

with t the positive boolean formula that is always true (i.e. the empty conjunction) and
f is that which is always false (i.e. the empty disjunction).

A run-tree of this versatile APT on the value tree in Figure 1 is given in Figure 3.

Traversals and the Versatile APT. Now consider a Σ-labelled tree �G� generated by
some higher-order recursion scheme G. Let us fix a versatile APT B⊥ that can run on
Σ-labelled trees.

We now make use of the notions of traversals and the traversal tree of an APT
on the computation tree λ(G) of the recursion scheme. We speak interchangeably of

112 C. Broadbent and L. Ong

traversals over the computation graph Gr(G), which unravels to form λ(G). The Path-
Traversal Correspondence Theorem from the proof of the decidability of the Local
Model-Checking Problem ([14], Thm. 7) ensures that the following definition is well-
defined, which for any node α in �G� gives the corresponding node αΛ in λ(G):

Definition 3. Let α = a1 . . . am (with ai ∈ Dir for 1 ≤ i ≤ m) be a node in �G�. Let
tα be a traversal of λ(G) and for 1 ≤ i ≤ m + 1 let us name vi the i-th occurrence
of a terminal-labelled node in tα. Suppose that v1 bears the same label as the root of
�G� and for i ≥ 2, �G�(a1 . . . ai−1) = �λ(G)�(vi) (where a1 . . . ai−1 is a node in
�G�). Further assume that for 1 ≤ i ≤ m the successor of vi−1 in tα is its ai-th child
in λ(G). We define αΛ to be vm+1.

(λ1,⊥)

(@2,⊥)

(λφ3,⊥)

(φ4,⊥)

(λx16,⊥)

(f17,⊥)

(λ20,⊥)

(x21,⊥)

(λ5,⊥)

(@6,⊥)

(λφ7,⊥)

(φ8,⊥)

(λx10,⊥)

(f11,⊥)

(f11, q1) q1-initialization

(λ12, q1)

(a13, q1)

(λ12, q2)

(a13, q1)

(λ14, q2)

(x15, q2)

(λ9, q2)...

Fig. 4. A Traversal Tree of a Versatile APT

Note that αΛ also makes sense when speak-
ing of traversals over Gr(G) except that in
this case it should be viewed as a particular
instance of a Gr(G)-node in a traversal.

We can also speak of q-initialisation in a
traversal tree of B⊥ in a completely anal-
ogous way – q-initialisation is the point in
the traversal at which the automaton switches
from being in state ⊥ to being in state q. We
illustrate in Figure 4 a traversal tree of the
versatile APT in Example 2 on the compu-
tation tree in Figure 2.

Now we make use of the traversal-
simulating APT C⊥ associated with B⊥ (in
the sense of Ong ([14], sec. 3)). The essential
property of C⊥ is that it is possible to convert
an accepting traversal tree of B⊥ on λ(G)
into an accepting run-tree of C⊥ on λ(G) and
conversely an accepting run-tree of C⊥ can
be converted into an accepting traversal tree
of B⊥.

Each state s of C⊥ includes a component
sim(s) which is the state of B⊥ that is being
simulated. Similarly for a sequence of states
σ = (si)i∈X we write sim(σ) to denote the
sequence (sim(si))i∈X . In contrast to B⊥,
however, the transition function of C⊥ maps ⊥-states to boolean formulae that are not
necessarily disjunctions so that it can both guess how the simulated traversal will evolve
as well as later verify these guesses. As a result q-initialization cannot be considered
unique for C⊥ and so we adjust the definition appropriately.

Definition 4. Let t be a run-tree of C⊥ on λ(G) and q be a state of B. For a finite path
p in λ(G) (starting at the root), we say that an instance of q-initialisation occurs at p
if there exists some path t⊥ in t such that sim(trace(t⊥)) consists only of ⊥ and β is
some node such that t⊥ β is also a path in t with the projection of trace(t⊥) onto the

On Global Model Checking Trees Generated by Higher-Order Recursion Schemes 113

(λ1,⊥∅)

(@2,⊥∅)

(λφ3,⊥{θ}) (λx16,⊥∅θ)

(f17,⊥{θ′})

(λ20,⊥{θ′})

(x21,⊥{θ′}θ′)

(φ4,⊥{θ}θ)

(λ5,⊥∅θ′)

(@6,⊥∅)

(λφ7,⊥{θ1})

(φ8,⊥{θ1}θ1)

(λx10,⊥∅θ1)

(f11,⊥{θ′
1})

(f11, q1{θ′
1}) corresponding q1-initialization

Part of a run-tree of the traversal-simulating APT on λ(G). The
states of the traversal-simulating automaton are either of the form qθ
or qSθ where q represents the property APT state being simulated and
S and θ describe how the automaton has guessed the traversal being
simulated should evolve ([14], Sec. 3). The fragment of the run-tree
illustrated here is precisely the fragment that corresponds to the frag-
ment of the traversal tree illustrated to the right.

(λ1,⊥)

(@2,⊥)

(λφ3,⊥)

(φ4,⊥)

(λx16,⊥)

(f17,⊥)

(λ20,⊥)

(x21,⊥)

(λ5,⊥)

(@6,⊥)

(λφ7,⊥)

(φ8,⊥)

(λx10,⊥)

(f11,⊥)

(f11, q1)

corresp. q1-initialization

The part of the
traversal tree up
to the point of q-
initialisation.

The traversal associated with the two diagrams above is:

λ1 @2 λφ3

0

φ4

1

λx16

1

f17 λ20

2

x21

1

λ5

1

@6 λφ7

0

φ8

1

λx10

1

f11

which has P -View:

λ1 @2 λφ3

0

φ4

1

λ5

1

@6 λx10

1

f11 .

The path corresponding to this P -view in the traversal-simulating APT run-tree has been highlighted.

Fig. 5. An illustration of Lemma 2

114 C. Broadbent and L. Ong

nodes of λ(G) equal to p and β labelled (s, α) where α is the last node in p and s is a
state of C⊥ such that sim(s) = q.

Given a sequence of nodes s := (α1, p1) . . . (αm, pm) in Gr(G) × QC⊥ let us write
πGr(G)(s) to mean α1, . . . , αm and πNDup

Gr(G)(s) to mean the largest subsequence of
πGr(G)(s) whose adjacent elements are pairwise distinct. Given a traversal t we write
�t� to denote its P -view ([14], Def. 2.5) which is a subsequence of t of a certain game-
semantic significance.

Lemma 2. Let α be a node in �G� and q be a state of B. The following are equivalent:

1. Property APT Bq ∈ B accepts �G�α.
2. The APT B⊥ has an accepting traversal tree t with q-initialisation occurring at αΛ.
3. There exists a finite subtree Tα of a run-tree of C⊥, all of whose nodes are associ-

ated with states simulating⊥. For some traversal tα on λ(G) ending in αΛ it is the
case that

{πNDup
Gr(G)(p) : p is a path in Tα} = {�πGr(G)(s)� : s is an initial segment of tα} .

In particular there is a maximal branch b in Tα such that �πNDup
Gr(G)(b)� = �tα�.

Moreover, Tα can be extended to an accepting run-tree of C⊥ such that
q-initialisation occurs on the tip of b.

Proof. The equivalence of 1 and 2 is given by the Path-Traversal Correspondence Theo-
rem of Ong ([14], Thm 7). The equivalence of 2 and 3 is given by the inter-translations
between traversal trees of B⊥ and run-trees of C⊥ given in op. cit. (Sec 4 and 5) to-
gether with the result from that same paper ([14], Prop. 6) stating that there is a 1 − 1
correspondence between P -views of traversals and paths in the computation tree. This
is illustrated in Figure 5. %&

3 The Versatile Parity Game

We now move on to consider the parity game induced by C⊥ acting on Gr(G). Let us
call this parity game the versatile parity game GG,C⊥ . To retain a simple description,
we assume that C⊥ is presented in such a form that the image of its transition function
consists of just pure disjunctions and pure conjunctions. Let us write

C⊥ := 〈ΛG, QC⊥ , δC⊥ , p0C⊥ , ΩC⊥〉

for the traversal-simulating automaton in such a form. This means that every element
in the image of δC⊥ can be written as

∧
i∈I(di, pi) or

∨
i∈I(di, pi).

Definition 5. LetN be the set of nodes in Gr(G) and letQC⊥ be the state space of C⊥.
The versatile parity game is the parity game played on a directed graph with nodes in
N ×QC⊥ such that:

On Global Model Checking Trees Generated by Higher-Order Recursion Schemes 115

1. The start node of the game is (n0, p0C⊥) where n0 is the root of Gr(G).
2. There is an edge from (n, p) to (n′, p′) just in case

δC⊥(l, p) =
∧
i∈I

(di, pi) or δC⊥(l, p) =
∨
i∈I

(di, pi)

where l is the label of n and for some i ∈ I , pi = p′ and n′ is the dith child of n.
Note that we may have di = ε (the automaton does not move in the tree), in which
case n′ = n.

3. A game node (n, p) is owned by Éloı̈se if it is mapped by δC⊥ onto a
∨

-formula
and is owned by Abelard if it is mapped onto a

∧
-formula.

4. The only nodes in the game are those reachable from its start node.
5. The priority of a node (n, p) is ΩC⊥(p).

We write GG,C⊥ to denote this parity game and let us write legalMove((n, p), (n′, p′))
if there is an edge from (n, p) to (n′, p′).

We refer to a run-tree of C⊥, whose nodes associated with a
∨

-state must have a unique
child, as strategies for Éloı̈se in the game GG,C⊥ . Such a strategy is termed winning
just in case it is an accepting run-tree. A finite subtree of a strategy is called a partial
strategy.

By the definition of a traversal-simulating APT we may assume the following w.l.o.g:

Lemma 3

1. Suppose that (n, p) is a node in GG,C⊥ such that the label of n is either an @ symbol
or a variable φ. It is then the case that (n, p) is owned by Abelard and n′ �= n for
every (n′, p′) such that legalMove((n, p), (n′, p′)) if and only if there exists some
(n′, p′) such that n �= n′ and legalMove((n, p), (n′, p′)).

2. A game node (n, p) with n labelled by a terminal f ∈ Σ and sim(p) = ⊥ is owned
by Éloı̈se. The successor nodes of (n, p) include nodes of the form:
(a) (n, pq) with sim(pq) = q for each q ∈ Q, the state space of B.
(b) (ni, pi) for 1 ≤ i ≤ ar(f) where ni is the ith child of n and sim(pi) = ⊥.

3. Any node (n, p) in GG,C⊥ such that the label of n is a λ-node is owned by Éloı̈se.

We can extend the notion of traversal on Gr(G) (or λ(G)) to GG,C⊥ . Such traversals
must respect the edge-relation of GG,C⊥ in the sense that they could be ‘reassembled’
into a tree embeddable in GG,C⊥ .

Definition 6. Consider a finite sequence of nodes (n1, p1), . . . , (nm, pm) in GG,C⊥

such that an element (ni, pi) might be endowed with an integer labelled pointer to
an element (nj , pj) for 1 ≤ j < i. We say that such a sequence is a traversal of GG,C⊥

just in case all of the following conditions hold:

1. (n1, p1) is the initial node of GG,C⊥ (so n1 will have label λ).
2. The sequence n1, . . . , nm together with pointers is a traversal of Gr(G), which we

refer to as the underlying traversal.

116 C. Broadbent and L. Ong

3. Suppose that the traversal includes an instance of

. . . (n, p) . . . (n′, p′)

i

. . .

where n′ is a λ-node, or . . . (n, p) (n′, p′) . . . where n is a λ-node and (n′, p′)
may or may not source a pointer.

We require that there is a path from (n, p) to (n′, p′) in GG,C⊥ . Note that this
path will necessarily be of the form

(n, p), (s1, p1), . . . , (sl, pl), (sl+1, pl+1), . . . , (sk, pk), (n′, p′)

for some l, k ∈ N such that for all 1 ≤ i ≤ l we have the label of si being the label
of n and for all l + 1 ≤ j ≤ k we have the label of sj being the label for n′.

4. Every occurrence of (ni, pi) such that ni is an @ or a variable node is owned by
Abelard.

Our definition of traversal respects the rules of GG,C⊥ , equivalently the transition func-
tion of C⊥, in the following sense:

Lemma 4. For every traversal t of GG,C⊥ there exists a partial strategy T for Éloı̈se in
GG,C⊥ such that

{πNDup
Gr(G)(trace(r)) : r is a path in T }={�πGr(G)(s)� : s is an initial segment of t} .

Traversals of GG,C⊥ consisting of nothing but nodes (n, p) with sim(p) = ⊥ are partic-
ularly pleasant because nodes associated with a terminal f ∈ Σ never occur in imme-
diate succession; they also allow access to arbitrary children of the f labelled node in
Gr(G). We are also interested in such traversals that then finish with a node (n, p) with
sim(p) = q for q ∈ Q, the state space of B.

Definition 7. A ⊥-traversal of GG,C⊥ is a traversal of GG,C⊥ consisting entirely of
nodes (n, p) that satisfy sim(p) = ⊥. If q is a state of B, then a q-tipped traversal of
GG,C⊥ is a traversal of the form s (n, p) where s is a ⊥-traversal but sim(p) = q.

Using known algorithms (such as Jurdziński’s [12]) we can compute the winning region
for Éloı̈se of finite parity games. We may thus effectively annotate with the symbol ‘W ’
the states of GG,C⊥ from which Éloı̈se has a winning strategy. Let us write GW

G,C⊥ for
this annotated game and refer to it as the decorated game. We interchangeably refer to
traversals as being over GG,C⊥ and GW

G,C⊥ . A traversal of GW
G,C⊥ containing only nodes

annotated with W is referred to as a winning traversal. In particular, the following
lemma is useful to us and comes as a corollary to Lemmas 3 and 4 together with the
fact that a partial strategy labelled everywhere with W can be extended to a winning
strategy:

Lemma 5. Let α be a node in �G� and q a state of the APT template B, and let tα be a
winning q-tipped traversal tα in GW

G,C⊥ whose final element is of the form (αΛ, p) (and

sim(p) = q). There is a minimal partial strategy Tα for Éloı̈se on GW
G,C⊥ that can be

extended to a winning strategy (accepting run-tree of C⊥ on λ(G)) satisfying

On Global Model Checking Trees Generated by Higher-Order Recursion Schemes 117

{πNDup
Gr(G)(trace(r)) : r is a path in Tα} = {�πGr(G)(s)� : s initial segment of tα} .

In particular there is a maximal branch b in Tα such that

πNDup
Gr(G)(trace(b)) = �πGr(G)(tα)�

with the tip of b being the sole node to be given a label (n, p) where sim(p) = q.

Note that αΛ is well-defined as used above due to the second observation in Lemma 3,
which ensures that during the initialization phase of a traversal of GG,C⊥ one can leave
a terminal node in any direction and the only time at which an ε-transition may be made
at a terminal node is to q-initialize.

We now make the following claim:

Lemma 6. Let α be a node in �G� and q a state of the property APT template B. TFAE:

1. Property APT Bq ∈ B accepts �G�α.
2. There exists a winning q-tipped traversal in GW

G,C⊥ whose final element is of the

form (αΛ, p) (and sim(p) = q).

The proof from 2 to 1 just consists of combining Lemmas 5 and 2. To go in the other
direction, we use the second equivalence in Lemma 5 and then use Ong’s construction
of an accepting run tree of C⊥ from the accepting traversal tree of B⊥ ([14], Sec. 5).
We appeal to observations concerning @ and variable nodes in GW

G,C⊥ made in Lemma
3 to ensure that Abelard owns the @ and variable elements of the q-tipped traversal.

4 Construction of an n-CPDA Recogniser

Let us formally consider what it means to have an automaton as a solution to the Global
Model-Checking Problem for a tree generated by a higher-order recursion scheme.

Definition 8. Let B be a template for an APT with state space QB and let G be a
higher-order recursion scheme. Let n ∈ N be the maximal rank of any terminal occur-
ring in G and let Dir(Σ) = {1, . . . , n} be the corresponding set of directions (so that
nodes in �G� are denoted by elements in Dir(Σ)∗).

Now let A be an automaton (of any type) that reads (finite) words over the alphabet
Dir(Σ) with a finite state-set QA (and possibly additional memory of some kind such
as a stack). We say that A is an automaton-solution to the Global Model Checking
Problem (GMCP) for (the tree generated by) G with respect to B just in case it can be
endowed with a mapQ : QA −→ QB ∪{⊥} such that the following set equality holds
for every state q ∈ QB:

{w ∈ Dir(Σ)∗ : Bq accepts �G�w} = {w ∈ Dir(Σ)∗ : ∃s ∈ ctl(w) .Q(s) = q}

where ctl(w) is the set of control states of A that are reachable on reading word w.3

In particular if we have an APT Bq0 (with initial state q0) then we can represent the set
of subtrees of �G� accepted by Bq0 with an automaton-solutionA to the Global Model-

3 The ⊥ label of a state in A allows one to avoid a state in A being associated with any element
of B. That is, Q could be viewed as a partial function from A to B.

118 C. Broadbent and L. Ong

Checking Problem which is given final states {s ∈ QA : Q(s) = q0} and the standard
acceptance condition for finite strings.

An order-n pushdown automaton (n-PDA) is an automaton equipped with a stack
of (n − 1)-stacks where a 1-stack contains only atoms and a (k + 1)-stack is a stack
of k-stacks. For m ≥ 2 an order-m push operation copies the top-most (m − 1)-stack
whilst an order-m pop operation discards it. The order-1 push and pop are the standard
pushdown operations acting on the top-most 1-stack. We write top1 to denote the top-
most element of the top-most 1-stack. An order-n collapsible pushdown automaton
(n-CPDA) [10] has an n-stack that allows a pointer from any atomic element (stack
symbol) to a k-stack below it (where 1 ≤ k < n). It has a collapse operation that
discards the stack’s contents above the target of top1 ’s pointer.

We claim that an order-n collapsible pushdown automaton (n-CPDA) can be a solu-
tion to the GMCP for an order-n recursion scheme. Moreover we claim that it is possible
to effectively construct the requisite n-CPDA from B (or Bq) and G. We adapt the au-
tomaton CPDA(G) introduced by Hague et al. [10] that is able to compute traversals of
Gr(G) so that instead it computes winning traversals of GW

G,C⊥ . Its direction at terminal
symbols is guided by reading a node α of �G� (which is just a word in Dir(Σ)∗). By
Lemma 6 this enables the automaton to fulfil the task demanded of it.

Theorem 1. LetG be an order-n recursion scheme and B a property APT template. We
can construct an n-CPDA that is a solution to the associated Global Model Checking
Problem in n-EXPTIME. The constructed automaton has n-exponential size.

Note that deciding whether an n-CPDA accepts a given finite-word turns out to be
(n − 1)-EXPTIME complete in the size of the n-CPDA. We can establish this by first
showing the emptiness problem to be (n− 1)-EXPTIME complete.

In general an (n−1)-CPDA cannot provide a solution to GMCP for order-n schemes
unless (n− 1)-CPDA are equi-expressive with n-CPDA.

Lemma 7. Let G be a (non-deterministic) order-n recursion scheme that generates
a finite-word language L over an alphabet Σ. There exists a deterministic order-n
recursion scheme G′ generating a ranked and ordered tree together with a µ-calculus
sentence φ such that the language L′ := {α ∈ Dir∗ : �G�α � φ } can be viewed as
being over an alphabetΣ′ with Σ ⊆ Σ′ and

L′ Σ := {w ∈ Σ∗ : w is the maximal Σ-sub-sequence of an element of L′ } = L

Proof. Let G be a non-deterministic order-n recursion scheme generating a finite word
language L over a finite alphabet Σ. The elements of Σ can be viewed as terminals of
arity 1 and we also have an end-of-string marker e �∈ Σ with arity 0. The rules ofG will
be of the form Fiζ

i
1 . . . ζ

i
mi

−→ ti1 | . . . | tiki
for each non-terminal Fi where i

ranges in 1 ≤ i ≤ N (say). LetK be the least integer with ki ≤ K for all 1 ≤ i ≤ N .
We form a deterministic recursion schemeG′ that generates a single tree. The ranked

alphabet Γ used byG′ consists of two arity-0 terminals e and b together with a terminal
h of arity |Σ|+K . Let σ : Σ −→ { i : 1 ≤ i ≤ |Σ| } be some bijection.

We give G′ a terminal F ′
i for every terminal Fi in G such that F ′

i has the same type
as Fi. We take the initial non-terminal ofG′ to be S′; we further provide a non-terminal
Cc with type o→ o for each c ∈ Σ. The rules of G′ are as follows:

On Global Model Checking Trees Generated by Higher-Order Recursion Schemes 119

F ′
i ζ
i
1 . . . ζ

i
mi
−→ h b . . . b︸ ︷︷ ︸

|Σ| times

ti1
�
. . . tiki

�
b . . . b︸ ︷︷ ︸

(K−ki) times

Cc x −→ h b . . . b︸ ︷︷ ︸
σ(c)−1 times

x b . . . b︸ ︷︷ ︸
|Σ|−σ(c) times

b . . . b︸ ︷︷ ︸
K times

for 1 ≤ i ≤ N and c ∈ Σ, where til
�

(1 ≤ l ≤ ki) is formed from til by replacing each
occurrence of a terminal c ∈ Σ with a non-terminal Cj . Note that the end-of-string
marker e is never replaced as our convention leaves it out of Σ.

Let α be a node of �G�. Let us identify Σ with the first |Σ| directions {1, . . . , |Σ|}
of h. By the construction of G′ fromG we have �G�(α) = e if and only if α Σ ∈ L.
The µ-calculus formula φ asserting a node is labelled with e then gives the result. %&

The languageL′ in the above Lemma is the set that should be recognised by the solution
to the GMCP forG′ and φ. If an n-CPDA can recognise L′, then there must exist an n-
CPDA that can recogniseL′ Σ . There exists a hierarchy theorem of Damm [6] for PDA
and modulo the assumption of a similar theorem for CPDA we obtain the following:

Theorem 2. Assuming that the CPDA generated word-languages form a strict hierar-
chy, there exists an order-n recursion scheme G and a µ-calculus sentence φ such that
nom-CPDA with m < n can be a solution to the corresponding GMCP.

5 Winning Region of a Collapsible Pushdown Game

We characterise the constructible winning region of a collapsible pushdown parity game
in terms of the sequences of stack operations that can generate the winning configura-
tions. We refer to the automaton-generator of the underlying digraph as a collapsible
pushdown system (CPDS) and its configuration graph as a CPDS graph.

Some stacks cannot be constructed by operations on the empty-stack: [[a] [a] [b]].

The Unravelling of a CPDS Graph and Winning Condition APT. The unravelling
of a CPDS graph G is a tree unrav(G) formed by labelling each node (q, s) (q a control
state and s a stack) of the configuration graph with (q, top1 s) and then unfolding from
the initial configuration. We can view this tree as being ranked and ordered by giving
a label (q, a) an arity equal to the size of the set { (q′, θ) : (q, a, q′, θ) ∈ ∆ }, where
∆ ⊆ Q × Γ × Q × Opn is the transition relation and Opn the set of order-n stack
operations. We make the tree ordered by placing a linear order on the set.

For any CPDS parity game with underlying CPDS graph G the ownership O(q) and
priorityΩ(q) of a configuration (q, s) are given entirely by q. We can thus [7] construct
an APT B that, for a given node r in unrav(G) corresponding to a configuration (q, s) in
G, accepts unrav(G)r if and only if Éloı̈se has a winning strategy from (q, s). Whenever
B reads a node labelled (q, a), it transitions to a state with priorityΩ(q) that is a

∨
state

if O(q) is Abelard and
∧

otherwise. We call B the winning condition APT (WCAPT).

The Versatile CPDS Parity Game. Let us fix an n-CPDS parity game A. We convert
it to a game A0, which by analogy with the work in previous sections is referred to as

120 C. Broadbent and L. Ong

the versatile CPDS parity game. The gameA0 extendsA with a single control state 0.
The priority and owner of 0 does not matter and so may be arbitrarily selected.

We make 0 the initial control state ofA0. Whilst in control state 0, Éloı̈se is allowed
to perform arbitrary stack operations whilst remaining at 0. She may also opt at any
point to transition from 0 into a control state q of A without performing any stack
operation. After doing so, play proceeds as in A. Consider the set:

S0 := {(0, θ) : θ a stack operation} ∪ {(q, id) : q a control state ofA}

where id is the stack operation that leaves the stack unchanged. Let G0 be the underly-
ing CPDS-graph of A0. The directions emanating from a node r in unrav(G0) having
label (0, a), for any stack symbol a, are in 1− 1 correspondence with S0. We may thus
label a direction of such a node r with θ if this direction corresponds to a transition
(0, θ) and q (q a control state of A) if it corresponds to a transition (q, id).

Consider a finite path p = p0 p1 . . . pm p′m in unrav(G0), where p0 is the root
of the tree, with trace of the form (0, a1) (0, a2) . . . (0, am) (q, am) such that q is a
control state of A. The node p′m is represented as a string of directions, but this string
can be represented by a string of the form θ1 . . . θm q. The final element p′m of p
will correspond to a configuration (q, s) in G0 where s is a stack produced from the
empty stack by performing the composite operation θ1; . . . ; θm. Conversely, for any
sequence of stack operations followed by a control state q of A there must exist a node
in unrav(G0) represented by this sequence which corresponds to a configuration (q, s)
with s formed by the sequence of stack operations starting at the empty stack.

Éloı̈se has a winning strategy from such a configuration (q, s) in A if and only
if she has a winning strategy from (q, s) in A0, since the games proceed identically
from this configuration. Let us write B0 for the WCAPT of A0. Suppose further that
s can be formed from the empty stack by a sequence θ1 . . . θm of stack operations.
It follows that (q, s) is a winning configuration in A if and only if B0 accepts the tree
unrav(G0)θ1 ... θm q, viewing θ1 . . . θm q as a string of directions – i.e. a node.

The Constructible Winning Region of an n-CPDS Parity Game. It has been shown
by Hague et al. [10] that the unravelling of a CPDS graph can be generated by a deter-
ministic n-CPDA and consequently by a (deterministic) order-n recursion scheme. Let
G0 be such a recursion scheme for our n-CPDS parity game A0. Let us apply Theo-
rem 1 to generate a solution D for the GMCP with G0 and the property expressed by
B0. We then restrict D to form an automaton D− that only accepts words of the form
θ1 . . . θm q that are also accepted by D. The automaton D− witnesses the following:

Theorem 3. Let A be an n-CPDS parity game with stack operations Opn and control
states Q. We can construct in n-EXPTIME an n-CPDA that recognises a subset L of
(Opn)

∗Q such that Éloı̈se has a winning strategy from a configuration (q, s) with s
constructible (via operations in Opn) from the empty stack, if and only if for every
operation sequence θ1; . . . ; θm generating s from the empty stack, θ1 . . . θm q ∈ L.

Given any configuration (q, s) with constructible stack swe can thus determine whether
it is a winning configuration by picking any operation sequence θ1 . . . θm witnessing
the constructibility of s and deciding whether θ1 . . . θm q is accepted by the automaton.

On Global Model Checking Trees Generated by Higher-Order Recursion Schemes 121

Further Directions. A pressing question is whether one can construct a more succinct
and deterministic n-CPDA providing a solution to the GMCP for the trees in question.

Theorem 3 is weak as it stands. Carayol and Slaats [5] have shown that constructible
n-PDS (non-collapsible) parity game winning regions are ‘n-regular’ [3,9] and admit a
canonical representation. An analogous result for CPDS games would be good.

Acknowledgements. We acknowledge the use of William Blum’s pstring.sty and
Frank Drewes’ graph.sty packages, and thank Olivier Serre and Matthew Hague for
useful discussions, and the anonymous referees for helpful and thorough comments.

References

1. Bradfield, J., Stirling, C.P.: Modal logics and mu-calculi: an introduction. In: Handbook of
Process Algebra, pp. 293–332. Elsevier, North-Holland (2001)

2. Cachat, T.: Uniform solution of parity games on prefix-recognizable graphs. In: Proc. VISS.
ENTCS, vol. 68. Elsevier, Amsterdam (2002)

3. Carayol, A.: Regular sets of higher-order pushdown stacks. In: Jedrzejowicz, J., Szepi-
etowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 168–179. Springer, Heidelberg (2005)

4. Carayol, A., Hague, M., Meyer, A., Ong, C.-H.L., Serre, O.: Winning regions of higher-
order pushdown games. In: Proc. LICS, pp. 193–204. IEEE Computer Society, Los Alamitos
(2008)

5. Carayol, A., Slaats, M.: Positional strategies for higher-order pushdown parity games. In:
Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 217–228. Springer,
Heidelberg (2008)

6. Damm, W.: The IO- and OI -hierarchy. Theoretical Computer Science 20, 95–207 (1982)
7. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy. In: Proc. FOCS,

pp. 368–377. IEEE computer society, Los Alamitos (1991)
8. Engelfriet, J.: Iterated pushdown automata and complexity classes. In: Proc. STOC, pp. 365–

373. ACM, New York (1983)
9. Frantani, S.: Automates à piles de piles...de piles. PhD thesis (2005)

10. Hague, M., Murawski, A.S., Ong, C.-H.L., Serre, O.: Collapsible pushdown automata and
recursion schemes. In: Proc. LICS. IEEE Computer Society, Los Alamitos (2008)

11. Hyland, M., Ong, C.-H.L.: On full abstraction for PCF: I, II and III. Information and compu-
tation 163(2), 285–408 (2000)

12. Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H., Tison, S.
(eds.) STACS 2000. LNCS, vol. 1770, p. 290. Springer, Heidelberg (2000)

13. Knapik, T., Niwinski, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In: Nielsen,
M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 205–222. Springer, Heidelberg
(2002)

14. Ong, C.-H.L.: On model-checking trees generated by higher-order recursion schemes. In:
IEEE Computer Society, IEEE Computer Society, Los Alamitos (2006); Journal version,
users.comlab.ox.ac.uk/luke.ong/publications/ntrees.pdf

15. Piterman, N., Vardi, M.Y.: Global model-checking of infinite-state systems. In: Alur, R.,
Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 387–400. Springer, Heidelberg (2004)

16. Serre, O.: Note on winning positions on pushdown games with ω-regular conditions. Infor-
mation Processing Letters 85, 285–291 (2003)

17. Stirling, C.P.: Bisimulation, model checking and other games. In: Notes for the Mathfit in-
structional meeting on games and Computation (1997)

users.comlab.ox.ac.uk/luke.ong/publications/ntrees.pdf

A Kleene Theorem for Polynomial Coalgebras

Marcello Bonsangue1,2, Jan Rutten2,3, and Alexandra Silva2,�

1 LIACS - Leiden University
2 Centrum voor Wiskunde en Informatica (CWI)

3 Vrije Universiteit Amsterdam (VUA)

Abstract. For polynomial functors G, we show how to generalize the
classical notion of regular expression to G-coalgebras. We introduce a
language of expressions for describing elements of the final G-coalgebra
and, analogously to Kleene’s theorem, we show the correspondence be-
tween expressions and finite G-coalgebras.

1 Introduction

Regular expressions were first introduced by Kleene [8] to study the properties
of neural networks. They are an algebraic description of languages, offering a
declarative way of specifying the strings to be recognized and they define exactly
the same class of languages accepted by deterministic (and non-deterministic)
finite state automata: the regular languages. The correspondence between regular
expressions and (non-)deterministic automata has been widely studied and a
translation between these two different formalisms is presented in most books
on automata and language theory [10,6].

Formally, a deterministic automaton consists of a set of states S equipped
with a transition function δ : S → 2× SA determining for each state whether or
not it is final and assigning to each input symbol a next state.

Deterministic automata can be generalized to coalgebras for an endofunctor
G on the category Set. A coalgebra is a pair (S , g) consisting of a set of states
S and a transition function g : S → GS , where the functor G determines the
type of the dynamic system under consideration and is the base of the theory of
universal coalgebra [14]. The central concepts in this theory are homomorphism
of coalgebras, bisimulation equivalence and final coalgebra. These can be seen,
respectively, as generalizations of automata homomorphism, language equiva-
lence and the set of all languages. In fact, in the case of deterministic automata,
the functor G would be instantiated to 2× IdA and the usual notions would be
recovered. In particular, note that the final coalgebra for this functor is precisely
the set 2A∗

of all languages over A [15].
Given the fact that coalgebras can be seen as generalizations of determinis-

tic automata, it is natural to investigate whether there exists an appropriate

� Partially supported by the Fundação para a Ciência e a Tecnologia, Portugal, under
grant number SFRH/BD/27482/2006.

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 122–136, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Kleene Theorem for Polynomial Coalgebras 123

notion of regular expression in this setting. More precisely: is it possible to de-
fine a language of expressions that represents precisely the behaviour of finite
G-coalgebras, for a given functor G?

In this paper, we show how to define such a language for coalgebras of polyno-
mial functors G (a functor is polynomial if it is built inductively from the identity
and constant functors, using product, coproduct and exponential). We introduce
a language of expressions for describing elements of the final G-coalgebra (Sec-
tion 3). Analogously to Kleene’s theorem, we show the correspondence between
expressions and finite G-coalgebras. In particular, we show that every state of a
finite G-coalgebra corresponds to an expression in the language (Section 4) and,
conversely, we give a compositional synthesis algorithm which transforms every
expression into a finite G-coalgebra (Section 5).

Related Work. Regular expressions have been originally introduced by
Kleene [8] as a mathematical notation for describing languages recognized by
deterministic finite automata. In [15], deterministic automata, the sets of formal
languages and regular expressions are all presented as coalgebras of the functor
2× IdA (where A is the alphabet, and 2 is the two element set). It is then shown
that the standard semantics of language acceptance of automata and the assign-
ment of languages to regular expressions both arise as the unique homomorphism
into the final coalgebra of formal languages. The coalgebra structure on the set
of regular expressions is determined by their so-called Brzozowski derivatives [4].
In the present paper, the set of expressions for the functor F (S) = 2×SA differs
from the classical definition in that we do not have Kleene star and full concate-
nation (sequential composition) but, instead, the least fixed point operator and
action prefixing. Modulo that difference, the definition of a coalgebra structure
on the set of expressions in both [15] and the present paper is essentially the
same. All in all, one can therefore say that standard regular expressions and their
treatment in [15] can be viewed as a special instance of the present approach.
This is also the case for the generalization of the results in [15] to automata
on guarded strings [11]. Finally, the present paper extends the results in our
FoSSaCS’08 paper [3], where a sound and complete specification language and a
synthesis algorithm for Mealy machines is given. Mealy machines are coalgebras
of the functor (B × Id)A, where A is a finite input alphabet and B is a finite
meet semilattice for the output alphabet.

2 Preliminaries

We give the basic definitions on polynomial functors and coalgebras and intro-
duce the notion of bisimulation.

First we fix notation on sets and operations on them. Let Set be the category
of sets and functions. Sets are denoted by capital letters X ,Y , . . . and functions
by lower case f , g, The collection of functions from a set X to a set Y
is denoted by Y X . Given functions f : X → Y and g : Y → Z we write
their composition as g ◦ f . The product of two sets X ,Y is written as X × Y ,

124 M. Bonsangue, J. Rutten, and A. Silva

with projection functions X X ×Y
π1�� π2 �� Y .The set 1 is a singleton set

typically written as 1 = {∗} and it can be regarded as the empty product. We
define X + Y as the set X � Y � {⊥,�}, where � is the disjoint union of sets,

with injections X
κ1 �� X � Y Y

κ2�� . Note that the set X + Y is different
from the classical coproduct of X and Y, because of the two extra elements
⊥ and �. These extra elements will later be used to represent, respectively,
underspecification and inconsistency in the specification of some systems. The
intuition behind the need of these extra elements will become clear when we
present our language of expressions and concrete examples, in Section 5.3, of
systems whose type involves +.

Polynomial Functors. In our definition of polynomial functors we will use
constant sets equipped with an information order. In particular, we will use
join-semilattices. A (bounded) join-semilattice is a set B equipped with a binary
operation ∨B and a constant ⊥B ∈ B , such that ∨B is commutative, associative
and idempotent. The element ⊥B is neutral w.r.t. ∨B . As usual, ∨B gives rise
to a partial ordering ≤B on the elements of B :

b1 ≤B b2 ⇔ b1 ∨B b2 = b2

Every set S can be transformed into a join-semilattice by taking B to be the set
of all finite subsets of S with union as join.

We are now ready to define the class of polynomial functors. They are functors
G : Set → Set, built inductively from the identity and constants, using ×, +
and (−)A. Formally, the class PF of polynomial functors on Set is inductively
defined by putting:

G:: = Id | B | G + G | G ×G | GA

where B is a finite join-semilattice and A is a finite set.
Typical examples of polynomial functors are D = 2× IdA and P = (1+ Id)A.

These functors, which we shall later use as our running examples, represent,
respectively, the type of deterministic and partial deterministic automata. It
is worth noting that although when we mentioned the type of deterministic
automata in the introduction, we did not made explicit that the set 2 was a join
semilattice, which is in fact the case. Also the set of classical regular expressions
has a join-semilattice structure, which provides also intuition for the differences
in our definition of polynomial functors, when compared with [13,7], in the use of
a join-semilattice as constant and in the definition of +. If we want to generalize
regular expressions to polynomial functors then we must guarantee that they
also have such structure, namely by imposing it in the constant and + functors.
For the × and (−)A we do not need to add extra elements because the semilattice
structure is compositionally inherited.

Next, we give the definition of the ingredient relation, which relates a poly-
nomial functor G with its ingredients, i.e. the functors used in its inductive
construction. We shall use this relation later for typing our expressions.

A Kleene Theorem for Polynomial Coalgebras 125

Let � ⊆ PF × PF be the least reflexive and transitive relation such that

G1 �G1 ×G2, G2 �G1 ×G2, G1 �G1 + G2, G2 �G1 + G2, G �GA

Here and throughout this document we use F�G as a shorthand for 〈F ,G〉 ∈ �.
If F �G, then F is said to be an ingredient of G. For example, 2, Id , IdA and
D itself are all the ingredients of the deterministic automata functor D .

Coalgebras. For a functor G on Set, a G-coalgebra is a pair (S , f) consisting
of a set of states S together with a function f : S → GS . The functor G, together
with the function f , determines the transition structure (or dynamics) of the G-
coalgebra [14]. Deterministic automata and partial automata are, respectively,
coalgebras for the functors D = 2× IdA and P = (1 + Id)A.

A G-homomorphism from a G-coalgebra (S , f) to a G-coalgebra (T , g) is a
function h:S → T preserving the transition structure, i.e., such that g ◦ h =
Gh ◦f . A G-coalgebra (Ω,ω) is said to be final if for any G-coalgebra (S , f) there
exists a unique G-homomorphism [[·]] : S → Ω. For every polynomial functor
G there exists a final G-coalgebra (ΩG , ωG) [14]. For instance, as we already
mentioned in the introduction, the final coalgebra for the functor D is the set of
languages 2A∗

over A, together with a transition function d : 2A∗ → 2× (2A∗
)A

defined as d(φ) = 〈φ(ε), λaλw .φ(aw)〉. Here ε denotes the empty sequence and
aw denotes the word resulting from prefixing w with the letter a. The notion of
finality will play a key role later in providing a semantics to expressions.

Let (S , f) and (T , g) be two G-coalgebras. We call a relation R ⊆ S × T a
bisimulation [1] if there exists a map e : R → GR such that the projections π1
and π2 are coalgebra homomorphisms, i.e. the following diagram commutes.

S

f

��

R
π2 ��π1��

∃e
��

T

g

��
GS GR

Gπ1

��
Gπ2

�� GT

We write s ∼G t whenever there exists a bisimulation relation containing (s , t)
and we call ∼G the bisimilarity relation. We shall drop the subscript G whenever
the functor G is clear from the context. For G-coalgebras (S , f) and (T , g) and
s ∈ S , t ∈ T , it holds that if s ∼ t then [[s]] = [[t]].

3 A Language of Expressions for Polynomial Coalgebras

In this section we generalize the classical notion of regular expressions to poly-
nomial coalgebras. We start by introducing an untyped language of expressions
and then we single out the well-typed ones via an appropriate typing system,
associating expressions to polynomial functors.

Let A be a finite set, B a finite join-semilattice and X a set of fixpoint vari-
ables. The set of all expressions is given by the following grammar:

ε :: = ∅ | x | ε⊕ ε | µx .γ | b | l(ε) | r(ε) | l [ε] | r [ε] | a(ε)

126 M. Bonsangue, J. Rutten, and A. Silva

where γ is a guarded expression given by:

γ :: = ∅ | γ ⊕ γ | µx .γ | b | l(ε) | r(ε) | l [ε] | r [ε] | a(ε)

A closed expression is an expression without free occurrences of fixpoint variables
x . We denote the set of guarded and closed expressions by Exp.

Intuitively, expressions denote elements of the final coalgebra. The expressions
∅, ε1⊕ ε2 and µx . ε will play a similar role to, respectively, the empty language,
the union of languages and the Kleene star in classical regular expressions for
deterministic automata. The expressions l(ε), r(ε), l [ε], r [ε] and a(ε) refer to
the left and right hand-side of products and sums (i.e., represent projections
and injections), and function application, respectively. We shall soon illustrate,
by means of examples, the role of these expressions.

Our language does not have any operator denoting intersection or complement
(it only includes the sum operator ⊕). This is a natural restriction, very much in
the spirit of Kleene’s regular expressions for deterministic finite automata. We
will prove that this simple language is expressive enough to denote exactly all
finite coalgebras.

Next, we present a typing assignment system for associating expressions to
polynomial functors. This will associate with each functor G the expressions ε ∈
Exp that are valid specifications of G-coalgebras. The typing proceeds following
the structure of the expressions and the ingredients of the functors.

We type expressions ε using the ingredient relation, as follows:

� ∅ : F � G � b : B � G � x : G � G

� ε : G � G

� ε : Id � G

� ε1 : F � G � ε2 : F � G

� ε1 ⊕ ε2 : F � G

� ε : G � G

� µx .ε : G � G

� ε : F1 � G

� l(ε) : F1 × F2 � G

� ε : F2 � G

� r(ε) : F1 × F2 � G

� ε : F � G

� a(ε) : FA � G

� ε : F1 � G

� l [ε] : F1 + F2 � G

� ε : F2 � G

� r [ε] : F1 + F2 � G

This type system is simple and most rules are self-explanatory. However, for
full clarification some remarks should be made. (1) Intuitively, ε : F �G means
that ε is an element (up to bisimulation) of F (ΩG). (2) As expected, there is
a rule for each expression construct. The extra rule involving Id � G reflects
the isomorphism between the final coalgebra ΩG and G(ΩG). (3) Only fixpoints
at the outermost level of the functor are allowed. This does not mean however
that we disallow nested fixpoints. For instance, µx . a(x ⊕ µy. a(y)) would be
a well-typed expression for the functor D of deterministic automata, as it will
become clear below, when we will present more examples of well-typed and non-
well-typed expressions. (4) The presented type system is decidable (expressions
are of finite length and the system is recursive).

A Kleene Theorem for Polynomial Coalgebras 127

We can now formally define the set of G-expressions: well-typed expressions
associated with a polynomial functor G.

Definition 1 (G-expressions). Let G be a polynomial functor and F an in-
gredient of G. We denote by ExpF�G the following set:

ExpF�G = {ε ∈ Exp | � ε : F �G} .

We define the set ExpG of well-typed G-expressions by ExpG�G .

For the functor D , examples of well-typed expressions include r(a(0)), l(1) ⊕
r(a(l(0))) and µx .r(a(x)) ⊕ l(1). The expressions l [1], l(1) ⊕ 1 and µx .1 are
examples of non well-typed expressions, because the functor D does not involve
+, the subexpressions in the sum have different type, and recursion is not at the
outermost level (1 has type 2�D), respectively.

Let us instantiate the definition of expressions to the functors of deterministic
automata D = 2× IdA and partial automata P = (1 + Id)A.

Example 2 (Deterministic expressions). Let A be a finite set of input actions
and let X be a set of (recursion or) fixpoint variables. The set of deterministic
expressions is given by the following BNF syntax. For a ∈ A and x ∈ X :

ε:: = ∅ | x | r(a(ε)) | l(1) | l(0) | ε⊕ ε | µx .ε

where ε is closed and occurrences of fixpoint variables are within the scope of
an input action.

It is easy to see that the closed (and guarded) expressions generated by the
grammar presented above are exactly the elements of ExpD . One can easily see
that l(1) and l(0) are well-typed expressions for D = 2×IdA because both 1 and
0 are of type 2�D . For the expression r(a(ε)) note that a(ε) has type IdA�D
as long as ε has type Id �D . And the crucial remark here is that, by definition
of �, ExpId�G = ExpG . Intuitively, this can be explained by the fact that for a
polynomial functor G, if Id is one of the ingredients of G, then it is functioning
as a pointer to the functor being defined:

G = . . . Id�� . . .

Therefore, ε has type Id�D if it is of type D�D , or more precisely, if ε ∈ ExpD ,
which explains why the grammar above is correct.

At this point, we should remark that the syntax of our expressions differs from
the classical regular expressions in the use of µ and action prefixing a(ε) instead
of star and full concatenation. We shall prove later that these two syntactically
different formalisms are equally expressive (Theorems 5 and 6).

Without additional explanation we present next the syntax for the expressions
in ExpP .

128 M. Bonsangue, J. Rutten, and A. Silva

Example 3 (Partial automata expressions). Let A be a finite set of input actions
and X be a set of (recursion or) fixpoint variables. The set of partial expressions
is given by the following BNF syntax. For a ∈ A and x ∈ X :

ε:: = ∅ | x | a(ε) | a↑ | ε⊕ ε | µx .ε

where ε is closed and occurrences of fixpoint variables are within the scope of
an input action. For simplicity, a↑ and a(ε) abbreviate a(l [∗]) and a(r [ε]).

We have now defined a language of expressions which gives us an algebraic
description of systems. In the remainder of the paper, we want to present a
generalization of Kleene’s theorem for polynomial coalgebras (Theorems 5 and
6). Recall that, for regular languages, the theorem states that a language is
regular if and only if it is recognized by a finite automaton.

3.1 Expressions Are Coalgebras

In this section, we show that the set of G-expressions for a given polynomial
functor G has a coalgebraic structure λG : ExpG → G(ExpG) . We proceed
by induction on the ingredients of G. More precisely we are going to define a
function

λF�G : ExpF�G → F (ExpG)

and then set λG = λG�G . Our definition of the function λF�G will make use of
the following.

(i) We define a constant EmptyF�G ∈ F (ExpG) by induction on the syntactic
structure of F :

EmptyId�G = ∅
EmptyB�G = ⊥B

EmptyF1×F2�G = 〈EmptyF1�G ,EmptyF2�G〉
EmptyF1+F2�G = ⊥
EmptyFA�G = λa.EmptyF�G

(ii) We define PlusF�G : F (ExpG)× F (ExpG) → F (ExpG) by induction on the
syntactic structure of F :

PlusId�G(ε1, ε2) = ε1 ⊕ ε2
PlusB�G(b1, b2) = b1 ∨B b2
PlusF1×F2�G(〈ε1, ε2〉, 〈ε3, ε4〉) = 〈PlusF1�G(ε1, ε3),PlusF2�G(ε2, ε4)〉
PlusF1+F2�G(κi(ε1), κi(ε2)) = κi(PlusFi�G(ε1, ε2)), i ∈ {1, 2}
PlusF1+F2�G(κi(ε1), κj (ε2)) = � i , j ∈ {1, 2} and i �= j
PlusF1+F2�G(x ,�) = PlusF1+F2�G(�, x) = �
PlusF1+F2�G(x ,⊥) = PlusF1+F2�G(⊥, x) = x
PlusFA�G(f , g) = λa. PlusF�G(f (a), g(a))

A Kleene Theorem for Polynomial Coalgebras 129

Now we have all we need to define λF�G . This function will be defined by
double induction on the maximum number N (ε) of nested unguarded occurrences
of µ-expressions in ε and on the length of the proofs for typing expressions. We
define N (ε) as follows:

N (∅) = N (b) = N (a(ε)) = N (l(ε)) = N (r(ε)) = N (l [ε]) = N (r [ε]) = 0
N (ε1 ⊕ ε2) = max{N (ε1), N (ε2)} N (µx .ε) = 1 + N (ε)

For every ingredient F of a polynomial functor G and expression ε ∈ ExpF�G ,
λF�G(ε) is defined as follows:

λF�G(∅) = EmptyF�G

λF�G(ε1 ⊕ ε2) = PlusF�G(λF�G(ε1), λF�G (ε2))
λG�G(µx .ε) = λG�G(ε[µx .ε/x])
λId�G(ε) = ε for G �= Id
λB�G(b) = b
λF1×F2�G(l(ε)) = 〈λF1�G(ε),EmptyF2�G〉
λF1×F2�G(r(ε)) = 〈EmptyF1�G , λF2�G(ε)〉
λF1+F2�G(l [ε]) = κ1(λF1�G(ε))
λF1+F2�G(r [ε]) = κ2(λF2�G(ε))

λFA�G(a(ε)) = λa′.

{
λF�G(ε) a = a′

EmptyF�G otherwise

Here, ε[µx .ε/x] denotes syntactic substitution, replacing every free occurrence
of x in ε by µx .ε.

In order to see that the definition of λF�G is well-formed, note the interplay
between the two inductions: the length of the typing proof of the arguments
in the recursive calls is strictly decreasing, except in the case of µx .ε; but, in
this case we have that N (ε) = N (ε[µx .ε/x]), which can easily be proved by
(standard) induction on the syntactic structure of ε, since ε is guarded (in x),
and it guarantees that N (ε[µx .ε/x])< N (µx .ε). Also note that clause 4 of the
above definition overlaps with clauses 1 and 2 (by taking F = Id). However,
they give the same result and thus the definition is correct.
Definition 4. We can now define, for each polynomial functor G, a G-coalgebra

λG : ExpG → G(ExpG)

by putting λG = λG�G .
This means that we can define the subcoalgebra generated by an expression
ε ∈ ExpG , by repeatedly applying λG , which seems to be the correspondent of
half of Kleene’s theorem — the language represented by a given regular expres-
sion can be recognized by a finite state automaton. However, it is important
to remark that the subcoalgebra generated by an expression ε ∈ ExpG by re-
peatedly applying λG is, in general, infinite. Take for instance the deterministic
expression ε1 = µx . r(a(x ⊕ µy. r(a(y)))) and observe that:

λD (ε1) = 〈0, ε1 ⊕ µy. r(a(y))〉
λD (ε1 ⊕ µy. r(a(y))) = 〈0, ε1 ⊕ µy. r(a(y)) ⊕ µy. r(a(y))〉

...

130 M. Bonsangue, J. Rutten, and A. Silva

As one would expect, all the new states are bisimilar and can be identified.
However, the function λD does not make any state identification and thus yields
an infinite coalgebra.

The observation that the set of expressions has a coalgebra structure will be
crucial for the proof of the generalized Kleene theorem, as will be shown in the
next two sections.

4 Expressions Are Expressive

Having a G-coalgebra structure on ExpG has two advantages. First, it provides
us, by finality, directly with a natural semantics because of the existence of a
(unique) homomorphism [[·]] : ExpG → ΩG , that assigns to every expression ε
an element [[ε]] of the final coalgebra ΩG .

The second advantage of the coalgebra structure on ExpG is that it lets us
use the notion of G-bisimulation to relate G-coalgebras (S , g) and expressions
ε ∈ ExpG . If one can construct a bisimulation relation between an expression ε
and a state s of a given coalgebra, then the behaviour represented by ε is equal
to the behaviour determined by the transition structure of the coalgebra applied
to the state s . This is the analogue of computing the language L(r) represented
by a given regular expression r and the language L(s) accepted by a state s of
a finite state automaton and checking whether L(r) = L(s).

The following theorem states that the every state in a finite G-coalgebra can
be represented by an expression in our language. This generalizes half of Kleene’s
theorem: if a language is accepted by a finite automaton then it is regular. The
generalization of the other half of the theorem (if a language is regular then it
is accepted by a finite automaton) will be presented in Section 5.

Theorem 5. Let G be a polynomial functor and (S , g) a G-coalgebra. If S is
finite then there exists for any s ∈ S an expression εs ∈ ExpG such that εs ∼ s
(which implies [[εs]] = [[s]]).

Proof. We construct, for a state s ∈ S , an expression εs ∼ s . If G = Id ,
εs = ∅. Otherwise we proceed in the following way. Let S = {s1, s2, . . . , sn},
where s1 = s . We associate with each state si a variable xi ∈ X and an equation
εi = µxi .γ

G
g(si), where γG

g(si) is defined as follows. For F � G and s ′ ∈ FS , the
expression γF

s′ ∈ ExpF�G is defined by induction on the structure of F :

γId
s = xs γB

b = b

γF1×F2
〈s,s′〉 = l(γF1

s)⊕ r(εF2
s′)

γF1+F2
κ1(s)

= l [γF1
s] γF1+F2

κ2(s)
= r [γF2

s]

γF1+F2
⊥ = ∅ γF1+F2

� = l [∅]⊕ r [∅]

γFA

f =
⊕

a∈A a(γF
f (a))

Note that the choice of l [∅] ⊕ r [∅] to represent inconsistency is arbitrary but
canonical, in the sense that any other expression involving sum of l [ε1] and r [ε2]
will be bisimilar.

A Kleene Theorem for Polynomial Coalgebras 131

Next, we eliminate all free occurrences of x1, . . . , xn from the system of equa-
tions ε1 = µx1.γ

G
g(s1), . . . , εn = µxn .γ

G
g(sn) by first replacing xn by εn in the

equations for ε1, . . . , εn−1. Next, we replace xn−1 by εn−1 in the equations for
ε1, . . . , εn−2. Continuing in this way, we end up with an equation ε1 = ε, where
ε no longer contains any free variable. We then take εs = ε.

Moreover, s ∼ εs , because the relation RG = {〈εs , s〉 | s ∈ S} is a bisimulation
(for every functor G). Due to space restrictions we omit the proof of this fact,
which can be found in [2].

Let us illustrate the construction above by some examples. Consider the following
deterministic automaton over a two letter alphabet A = {a, b}, whose transition
function is depicted in the following picture (��������	
�����s represents that the state s is
final):

��������s1 a ��

b
�� ����������������s2

a,b

��

Now define ε1 = µx1. ε and ε2 = µx2. ε
′ where

ε = l(0)⊕ r(b(x1)⊕ a(x2)) ε′ = l(1)⊕ r(a(x2)⊕ b(x2))

Substituting x2 by ε2 in ε1 then yields

ε1 = µx1. l(0)⊕ r(b(x1)⊕ a(ε2)) ε2 = µx2. l(1)⊕ r(a(x2)⊕ b(x2))

By construction we have s1 ∼ ε1 and s2 ∼ ε2.
As another example, take the following partial automaton, also over a two

letter alphabet A = {a, b}:

��������q1
a �� ��������q2

a
��

In the graphical representation of a partial automaton (S , p) we omit transitions
for which p(s)(a) = κ1(∗). In this case, this happens for both states for the input
letter b.

We define ε1 = µx1. ε and ε2 = µx2. ε
′ where ε = ε′ = b↑⊕a(x2). Substituting

x2 by ε2 in ε1 then yields

ε1 = µx1. b↑ ⊕ a(ε2) ε2 = µx2. b↑ ⊕ a(x2)

Again we have s1 ∼ ε1 and s2 ∼ ε2.

5 Finite Systems for Expressions

We now give a construction to prove the converse of Theorem 5, that is, we
describe a synthesis process that produces a finite G-coalgebra from an arbitrary
regular G-expression ε. The states of the resulting G-coalgebra will consist of a
finite subset of expressions, including an expression ε′ such that ε ∼G ε

′.

132 M. Bonsangue, J. Rutten, and A. Silva

5.1 Formula Normalization

We saw in Section 3.1 that the set of expressions has a coalgebra structure. We
observed however that the subcoalgebra generated by an expression is in general
infinite.

In order to guarantee the termination of the synthesis process we need to
identify some expressions. In fact, as we will formally show later, it is enough to
identify expressions that are provably equivalent using only the following axioms:

(Idempotency) ε⊕ ε = ε
(Commutativity) ε1 ⊕ ε2 = ε2 ⊕ ε1
(Associativity) ε1 ⊕ (ε2 ⊕ ε3) = (ε1 ⊕ ε2)⊕ ε3
(Empty) ∅ ⊕ ε = ε

This group of axioms gives to the set of expressions the structure of a join-
semilattice. One easily shows that if two expressions are provably equivalent
using these axioms then they are bisimilar (soundness).

For instance, it is easy to see that the deterministic expressions

r(a(∅)) ⊕ l(1)⊕ ∅ ⊕ l(1) and r(a(∅)) ⊕ l(1)

are equivalent using the equations (Idempotency) and (Empty).
We thus work with normalized expressions in order to eliminate any syntactic

redundancy present in the expression: in a sum, ∅ can be eliminated and, by
idempotency, the sum of two syntactically equivalent expressions can be simpli-
fied. The function normG : ExpG → ExpG encodes this procedure. We define it
by induction on the expression structure as follows:

normG(∅) = ∅
normG(ε1 ⊕ ε2) = plus(rem(flatten(normG(ε1)⊕ normG(ε2))))
normG(µx .ε) = µx .ε
normB (b) = b
normG1×G2(l(ε)) = l(ε)
normG1×G2(r(ε)) = r(ε)
normG1+G2(l [ε]) = l [ε]
normG1+G2(r [ε]) = r [ε]
normGA(a(ε)) = a(ε)

Here, the function plus takes a list of expressions [ε1, . . . , εn] and returns the
expression ε1 ⊕ . . . ⊕ εn (plus applied to the empty list yields ∅), rem removes
duplicates in a list and flatten takes an expression ε and produces a list of
expressions by omitting brackets and replacing ⊕-symbols by commas:

flatten(ε1 ⊕ ε2) = flatten(ε1) · flatten(ε2)
flatten(∅) = []
flatten(ε) = [ε], ε ∈ {b, a(ε1), l(ε1), r(ε1), l [ε1], r [ε1], µx .ε1}

In this definition, · denotes list concatenation and [ε] the singleton list containing
ε. Note that any occurrence of ∅ in a sum is eliminated because flatten(∅) = [].

For example, the normalization of the two deterministic expressions above
results in the same expression: r(a(∅)) ⊕ l(1).

A Kleene Theorem for Polynomial Coalgebras 133

Note that normG only normalizes one level of the expression and still distin-
guishes the expressions ε1 ⊕ ε2 and ε2 ⊕ ε1. To simplify the presentation of the
normalization algorithm, we decided not to identify these expressions, since it
does not influence termination. In the examples below, this situation will never
occur.

5.2 Synthesis Procedure

Given an expression ε ∈ ExpG we will generate a finite G-coalgebra by applying
repeatedly λG : ExpG → ExpG and normalizing the expressions obtained at
each step. We will use the function ∆, which takes an expression ε ∈ ExpG and
returns a G-coalgebra, and which is defined as follows:

∆G(ε) = (dom(g), g) where g = DG({normG(ε)}, ∅)

Here, dom returns the domain of a finite function and DG applies λG , starting
with state normG(ε), to the new states (after normalization) generated at each
step, repeatedly, until all states in the coalgebra have their transition structure
fully defined. The arguments of DG are two sets of states: sts ⊆ ExpG , the states
that still need to be processed and vis ⊆ ExpG , the states that already have
been visited (synthesized). For each ε ∈ sts , DG computes λG(ε) and produces
an intermediate transition function (possibly partial) by taking the union of all
those λG(ε). Then, it collects all new states appearing in this step, normalizing
them, and recursively computes the transition function for those.

DG(sts , vis) =
{
∅ sts = ∅
trans ∪DG(newsts , vis ′) otherwise

where trans = {〈ε, λG(ε)〉 | ε ∈ sts}
sts ′ = collectStatesG(π2(trans))
vis ′ = sts ∪ vis
newsts = sts ′ \ vis ′

Here, collectStatesG : GExpG → PExpG is a function that collects and normal-
izes the G-expressions appearing in a structured state λG(ε) ∈ GExpG . We can
now formulate the converse of Theorem 5.

Theorem 6. Let G be a polynomial functor. For every ε ∈ ExpG , ∆G(ε) =
(S , g) is such that S is finite and there exists s ∈ S with ε ∼ s.

Proof. First note that ε ∼ normG(ε) and normG(ε) ∈ S , by the definition of
∆G and DG . For space reasons, we omit the proof that S is finite, i.e. that
DG({normG(ε)}, ∅) terminates (details can be found in [2]).

5.3 Examples

In this subsection we will illustrate the synthesis algorithm presented above. For
simplicity, we will consider deterministic and partial automata expressions over
A = {a, b}.

134 M. Bonsangue, J. Rutten, and A. Silva

Let us start by showing the synthesised automata for the most simple deter-
ministic expressions – ∅, l(0) and l(1).

��������∅
a,b

�� ������� l(0)
a,b ����������∅

a,b
�� ������� !"#$%&'(l(1)

a,b ����������∅
a,b

��

It is interesting to make the parallel with the traditional regular expressions and
remark that the first two automata recognize the empty language {} and the
last the language {ε} containing only the empty word.

An important remark is that the automata generated are not minimal (for
instance, the automata l(0) and ∅ are bisimilar). Our goal has been to generate
a finite automaton from a regular expression. From this the minimal automaton
can always be obtained by identifying bisimilar states.

For an example of an expression containing fixpoints, consider ε=µx . r(a(l(0)
⊕ l(1)⊕ x)). One can easily compute the synthesised automaton:

)* +,-. /0µx . r(a(l(0)⊕ l(1)⊕ x)) a ��

b

��
)* +,-. /012 3456 78l(0)⊕ l(1)⊕ ε

a
��

b ����������∅
a,b

��

and observe that it recognizes the language aa∗. Here, the role of the join-
semilattice structure is also visible: l(0)⊕ l(1)⊕ε specifies that the current state
is both final and non-final. Because 1 ∨ 0 = 1 the state is set to be final.

As a last example of deterministic expressions consider ε1 = µx . r(a(x ⊕
µy. r(a(y)))). Applying λD to ε1 one gets the following (partial) automaton:

)* +,-. /0µx . r(a(x ⊕ µy. r(a(y)))) a ��

b

��
)* +,-. /0ε1 ⊕ µy. r(a(y)) ��������∅

Calculating λD (ε1 ⊕ µy. r(a(y)))(a) yields 〈0, ε1 ⊕ µy. r(a(y)) ⊕ µy. r(a(y))〉.
When applying collectStatesG , the expression ε1⊕µy. r(a(y))⊕µy. r(a(y)) will
be normalized to ε1 ⊕ µy. r(a(y)), which is a state that already exists. Remark
here the role of norm in guaranteeing termination. Without normalization, one
would get the following infinite coalgebra (ε2 = µy. r(a(y))))):

)* +,-. /0µx . r(a(x ⊕ µy. r(a(y)))) a ��

b

����
���

���
���

���
��

)* +,-. /0ε1 ⊕ ε2 a ��

b
��

)* +,-. /0ε1 ⊕ ε2 ⊕ ε2 a ��

b
�����

���
���

���
�

. . .

��������∅
a,b

��

Let us now see a few examples of synthesis for partial automata expressions,
where we will illustrate the role of ⊥ and �. As before, let us first present the
corresponding automata for simple expressions – ∅, a↑, a(∅) and a↑ ⊕ b↑.

A Kleene Theorem for Polynomial Coalgebras 135

��������∅ a,b �� ⊥ !"#$%&'(a↑ b �� ⊥ ������� a(∅) a ��

b

����������∅ a,b �� ⊥
)* +,-. /0a↑ ⊕ b↑

In the graphical representation of a partial automata (S , p), whenever g(s)(a) ∈
{⊥,�} we represent a transition, but note that ⊥ �∈ S and � �∈ S (thus, the
square box) and have no defined transitions.

Here, one can now observe how ⊥ is used to encode underspecification, work-
ing as a kind of deadlock state. Note that in the first three expressions the
behaviour for one or both of the inputs is missing, whereas in the last expression
the specification is complete. The element � is used to deal with inconsistent
specifications. For instance, consider the expression a↑ ⊕ b↑ ⊕ a(a↑ ⊕ b↑). All
inputs are specified, but note that at the outermost level input a appears in two
different sub-expressions – a↑ and a(a↑⊕ b↑) – specifying at the same time that
input a leads to successful termination and that it leads to a state where a↑⊕b↑
holds, which is contradictory, giving rise to the following automaton.

)* +,-. /0a↑ ⊕ b↑ ⊕ a(a↑ ⊕ b↑) a �� �

6 Conclusions

We have presented a generalization of Kleene’s theorem for polynomial coalge-
bras. More precisely, we have introduced a language of expressions for polynomial
coalgebras and we have shown that they constitute a precise syntactic descrip-
tion of deterministic systems, in the sense that every expression in the language
is bisimilar to a state of a finite coalgebra and vice-versa (Theorems 5 and 6).

The language of expressions presented in this paper can be seen as an alterna-
tive to the classical regular expressions for deterministic automata and to KAT
expressions [11] and as a generalization of previous work of the authors on Mealy
machines [3].

As was pointed out by the referees of the present paper, Theorem 5 is closely
related to the well known fact that, for polynomial functors, an element in a finite
subcoalgebra of the final coalgebra can be characterised as a “finite tree with
loops”. This could in turn give rise to a different language of expressions ε:: =
x | µx .ε | σ(ε1, ..., εn), where σ is an n-ary operation symbol in the signature
corresponding to a polynomial functor (e.g., if GX = 1 + X + X + X 2 then the
signature has one constant, two unary and one binary operation symbol). This
alternative approach might seem simpler than the one taken in this paper but
does not provide an operator for combining specifications as our ⊕ operator,
and, more importantly, will not allow for an easy and modular axiomatization of
bisimulation. Providing such a complete finite axiomatization generalizing the
results presented in [9,5] is subject of our current research. This will provide a
generalization of Kleene algebra to polynomial coalgebras.

Further, we would like to deal with non-deterministic systems (which amounts
to include the powerset in our class of functors) and probabilistic systems.

136 M. Bonsangue, J. Rutten, and A. Silva

In our language we have a fixpoint operator, µx .ε, and action prefixing, a(ε),
opposed to the use of star E∗ and sequential composition E1E2 in classical
regular expressions. We would like to study in more detail the precise relation
between these two (equally expressive) syntactic formalisms. Ordinary regular
expressions are closed under intersection and complement. We would like to
study whether a similar result can be obtained for our language.

Coalgebraic modal logics (CML) [12] have been presented as a general theory
for reasoning about transition systems. The connection between our language
and CML is also subject of further study.

Acknowledgements. The authors are grateful to Dave Clarke, Helle Hansen,
Clemens Kupke, Yde Venema and the anonymous referees for useful comments.

References

1. Aczel, P., Mendler, N.: A Final Coalgebra Theorem. In: Dybjer, P., Pitts, A.M.,
Pitt, D.H., Poigné, A., Rydeheard, D.E. (eds.) Category Theory and Computer
Science. LNCS, vol. 389, pp. 357–365. Springer, Heidelberg (1989)

2. Bonsangue, M., Rutten, J., Silva, A.: Regular expressions for polynomial coalge-
bras. CWI Technical report E0703 (2007)

3. Bonsangue, M., Rutten, J., Silva, A.: Coalgebraic logic and synthesis of mealy
machines. In: Amadio, R. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 231–245.
Springer, Heidelberg (2008)

4. Brzozowski, J.A.: Derivatives of regular expressions. Journal of the ACM 11(4),
481–494 (1964)

5. Ésik, Z.: Axiomatizing the equational theory of regular tree languages (extended
abstract). In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp.
455–465. Springer, Heidelberg (1998)

6. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation, 3rd edn. Addison-Wesley Longman Publishing Co., Inc.,
Boston (2006)

7. Jacobs, B.: Many-sorted coalgebraic modal logic: a model-theoretic study.
ITA 35(1), 31–59 (2001)

8. Kleene, S.: Representation of events in nerve nets and finite automata. Automata
Studies, 3–42 (1956)

9. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. In: Logic in Computer Science, pp. 214–225 (1991)

10. Kozen, D.: Automata and Computability. Springer, New York (1997)
11. Kozen, D.: On the coalgebraic theory of Kleene algebra with tests. Technical

Report, Computing and Information Science, Cornell University (March 2008),
http://hdl.handle.net/1813/10173

12. Kurz, A.: Coalgebras and Their Logics. SIGACT News 37(2), 57–77 (2006)
13. Rößiger, M.: Coalgebras and modal logic. ENTCS, 33 (2000)
14. Rutten, J.: Universal coalgebra: a theory of systems. TCS 249(1), 3–80 (2000)
15. Rutten, J.: Automata and coinduction (an exercise in coalgebra). In: Sangiorgi,

D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 194–218. Springer,
Heidelberg (1998)

http://hdl.handle.net/1813/10173

Coalgebraic Hybrid Logic

Rob Myers1, Dirk Pattinson1,�, and Lutz Schröder2,��

1 Department of Computing, Imperial College London
2 DFKI Bremen and Department of Computer Science, Universität Bremen

Abstract. We introduce a generic framework for hybrid logics, i.e. modal log-
ics additionally featuring nominals and satisfaction operators, thus providing the
necessary facilities for reasoning about individual states in a model. This frame-
work, coalgebraic hybrid logic, works at the same level of generality as coalge-
braic modal logic, and in particular subsumes, besides normal hybrid logics such
as hybrid K, a wide variety of logics with non-normal modal operators such as
probabilistic, graded, or coalitional modalities and non-monotonic conditionals.
We prove a generic finite model property and an ensuing weak completeness re-
sult, and we give a semantic criterion for decidability in PSPACE. Moreover, we
present a fully internalised PSPACE tableau calculus. These generic results are
easily instantiated to particular hybrid logics and thus yield a wide range of new
results, including e.g. decidability in PSPACE of probabilistic and graded hybrid
logics.

Introduction

The ability to represent and reason about individuals is a core feature of many for-
malisms in the field of logic-based knowledge representation. Individuals may be per-
sons, parts of the human body, or even positions in a strategic game. Reasoning about
individuals is a prominent feature in description logics [3], and is supported by a num-
ber of reasoning engines, including Fact, Racer and Pellet [33,19,31]. Both description
logics and the associated reasoning tools are based on relational models, usually Kripke
structures with a fixed number of relations. While this is adequate for a large number of
applications, description logics can neither formulate nor reason about statements of a
non-relational nature, such as assertions involving quantitative uncertainty (‘The likeli-
hood that John is a son of Mary is greater than 23 %’) or non-monotonic conditionals
(‘John normally goes to work on Mondays’ — unless e.g. he decides to call in sick).

Features of this kind are usually catered for by specific logics, such as probabilistic
modal logic [20] or conditional logic [14], neither of which admits a semantics in terms
of Kripke structures. On the other hand, these logics cannot be used off the shelf in
most applications in knowledge representation, as they lack facilities to represent and
reason about individuals. Of course, one may opt to study extensions of these logics
on a case-by-case basis. However, we can do better: both probabilistic modal logic and
conditional logic, as well as many others including coalition logic [26], graded modal

� Partially supported by EPSRC grant EP/F031173/1.
�� Work performed as part of the DFG project Generic Algorithms and Complexity Bounds in

Coalgebraic Modal Logic (SCHR 1118/5-1).

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 137–151, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

138 R. Myers, D. Pattinson, and L. Schröder

logic [18], and logics for counterfactual reasoning [22], as well as most description log-
ics naturally fit under the umbrella of coalgebraic modal logic [24]. On the semantical
side, this is achieved by replacing the notion of model of a particular logic by coalge-
bras for an endofunctorT on sets. As we illustrate by means of examples, the semantics
of particular logics then arises by instantiating the framework with a concrete endofunc-
tor T . This opens the road for a uniform treatment of a large class of modal logics. In
particular, reasoning about individuals in coalgebraic logic is tantamount to extending
a large class of logics simultaneously.

This is the starting point of this paper. We introduce coalgebraic hybrid logic, that
is, an extension of coalgebraic logics with both nominals (that denote individual states)
and satisfaction operators (which are used to formulate assertions concerning specific
individuals) in the same way that hybrid logic [2] extends the modal logicK . Our main
results are concerned with completeness and complexity of coalgebraic hybrid logics.
We do not treat the downarrow binder ↓, as hybrid logics involving ↓ are known to be
undecidable, even in the special case of relational (Kripke) semantics [1]. As we are
working in a general framework, these statements are formulated in terms of abstract
coherence conditions that relate the syntax (modal operators and proof rules) and the
semantics, which is abstractly given in terms of coalgebras. Conceptually, we show that
the same coherence conditions that give rise to completeness and complexity results
in the non-hybrid case also guarantee completeness and (the same) complexity bounds
for the hybrid extension. In more detail, we prove completeness of hybrid coalgebraic
logics both with respect to a Hilbert-style proof calculus in Section 2 and a cut-free se-
quent system 3. We exploit the latter to show that the satisfiability problem is decidable
in polynomial space by means of backward proof search in Section 4 before we give
a purely semantical account of complexity in Section 5. As the coherence conditions
that guarantee completeness and complexity are already known to hold for a large class
of logics, instantiations of the general framework give rise to a number of new results
concerning particular logics:

– Both hybrid conditional logic and hybrid probabilistic logic are complete and de-
cidable in PSPACE

– Moreover, graded hybrid logic is decidable in polynomial space with numbers
coded in binary, and these results immediately carry over to a setting with role
hierarchies, giving a new (tight) PSPACE upper bound for the description logic
ALCHOQ over the empty TBox.

– The semantic analysis yields previously unknown PSPACE-upper bounds for Pres-
burger hybrid logic [16] and a version of probabilistic modal logic featuring linear
inequalities [17].

In a nutshell, the addition of nominals and satisfaction operators greatly increases the
expressive power of (coalgebraic) modal logics and is still decidable in PSPACE, i.e.
the same complexity class as the modal logic K . In particular, the ability to cater for
a large number of logical features, such as quantitative uncertainty and non-monotonic
conditionals in the coalgebraic framework offers a new (coalgebraic) perspective on
description logics, with the vision of being able to represent a large class of concepts of
information-theoretic relevance in a single framework.

Coalgebraic Hybrid Logic 139

1 Syntax and Semantics of Coalgebraic Hybrid Logic

To make our treatment parametric in the concrete syntax of any given modal logic,
we fix a modal similarity type Λ consisting of modal operators with associated arities
throughout. For given countably infinite and disjoint sets P of propositional variables
and N of nominals, the set F(Λ) of hybrid Λ-formulas is given by the grammar

F(Λ) , φ, ψ ::= p | i | φ ∧ ψ | ¬φ | ♥(φ1, . . . , φn) | @iφ

where p ∈ P, i ∈ N and ♥ ∈ Λ is an n-ary modal operator. We use the standard defi-
nitions for the other propositional connectives→,↔,∨. The set of nominals occurring
in a formula φ is denoted by N(φ), and the nesting depth of modal operators (excluding
satisfaction operators) by rank(φ). A formula of the form @iφ is called an @-formula.
Semantically, nominals i denote individual states in a model, and an @-formula @iφ
stipulates that φ holds at i.

To reflect parametricity in the particular underlying logic also semantically, we equip
hybrid logics with a coalgebraic semantics extending the standard coalgebraic seman-
tics of modal logics [24]: we fix throughout a Λ-structure consisting of an endofunctor
T : Set → Set on the category of sets, together with an assignment of an n-ary pred-
icate lifting �♥� to every n-ary modal operator ♥ ∈ Λ, i.e. a set-indexed family of
mappings (�♥�X : P(X)n → P(TX))X∈Set that satisfies

�♥�X ◦ (f−1)n = (Tf)−1 ◦ �♥�Y
for all f : X → Y . In categorical terms, [[♥]] is a natural transformationQn → Q◦T op

whereQ : Setop → Set is the contravariant powerset functor.
In this setting, T -coalgebras play the roles of frames. A T -coalgebra is a pair (C, γ)

where C is a set of states and γ : C → TC is the transition function. If clear from the
context, we identify a T -coalgebra (C, γ) with its state space C. A (hybrid) T -model
(C, γ, π) consists of a T -coalgebra (C, γ) together with a hybrid valuation π, i.e. a map
P ∪ N → P(C) that assigns singleton sets to all nominals i ∈ N. We often identify the
singleton set π(i) with its unique element.

The semantics of F(Λ) is a satisfaction relation |= between states c ∈ C in hybrid
T -modelsM = (C, γ, π) and formulas φ ∈ F(Λ), inductively defined as follows. For
x ∈ N ∪ P and i ∈ N, put

c,M |= x iff c ∈ π(x) c,M |= @iφ iff π(i),M |= φ.

Modal operators are interpreted using their associated predicate liftings, that is,

c,M |= ♥(φ1, . . . , φn) ⇐⇒ γ(c) ∈ �♥�C(�φ1�M , . . . , �φn�M)

where ♥ ∈ Λ n-ary and �φ�M = {c ∈ C | M, c |= φ} denotes the truth-set of φ
relative to M . A formula φ is satisfiable if it is satisfied in some state in some model,
and valid, written |= φ, if it is satisfied in all states in all models.

The distinguishing feature of the coalgebraic approach to hybrid and modal logics is
the parametricity in both the logical language and the notion of frame: concrete instan-
tiations of the general framework, in other words a choice of modal operators Λ and a
Λ-structure T , capture the semantics of a wide range of modal logics, as witnessed by
the following examples.

140 R. Myers, D. Pattinson, and L. Schröder

Example 1

1. The hybrid version of the modal logic K , hybridK for short, has a single unary
modal operator �, interpreted over the structure given by the powerset functor P that
takes a set X to its powerset P(X) and ���X(A) = {B ∈ P(X) | B ⊆ A}. It is clear
that P-coalgebras (C, γ : C → P(C)) are in 1-1 correspondence with Kripke frames,
and that the coalgebraic definition of satisfaction specialises to the usual semantics of
the box operator.

2. Graded hybrid logic has modal operators ♦k ‘in more than k successors, it holds
that’. It is interpreted over the functor B that takes a set X to the set B(X) of multisets
over X , i.e. maps B : X → � ∪ {∞}, by [[♦k]]X(A) = {B ∈ B(X) |

∑
x∈AB(x)}.

This captures the semantics of graded modalities over multigraphs [15], which are
precisely the B-coalgebras. Unlike in the modal case [27], the multigraph seman-
tics does not engender the same notion of satisfiability as the more standard Kripke
semantics of graded modalities, as the latter validates all formulas ¬♦1i, i ∈ N.
One can however polynomially encode Kripke semantics into multigraph semantics:
a graded hybrid formula φ, w.l.o.g. an @-formula, is satisfiable over Kripke frames iff
φ ∧
∧
j∈N(φ) @j

∧
n<rank(φ)�n0

∧
i∈N(φ) ¬♦1i, where �k is defined as ¬♦k¬ and �n0

denotesn boxes, is satisfiable over multigraphs. Thus, our completeness and complexity
results for multigraph semantics derived below transfer to Kripke semantics. In partic-
ular they apply to many description logics, which commonly feature both nominals and
graded modal operators (qualified number restrictions).

3. Probabilistic hybrid logic, the hybrid extension of probabilistic modal logic [21],
has modal operators Lp ‘in the next step, it holds with probability at least p that’, for
p ∈ [0, 1]∩�. It is interpreted over the functorDω that maps a setX to the set of finitely-
supported probability distributions on X by putting [[Lp]]X(A) = {P ∈ Dω(X) |
PA ≥ p}. Coalgebras forDω are just Markov chains. A simple valid formula of hybrid
probabilistic logic is Lpi ∧ Lqj → Lqi ∨ L1(¬(i ∧ j)), i, j ∈ N.

4. Hybrid CK , the hybrid extension of the basic conditional logic CK , has a single
binary modal operator ⇒, written in infix notation. Hybrid CK is interpreted over the
functor Cf that maps a set X to the set of P(X) → P(X), whose coalgebras are
selection function models [14], by putting [[⇒]]X(A,B) = {f : P(X) → P(X) |
f(A) ⊆ B}.

2 A Generic Complete Hilbert System

We proceed to present a Hilbert-system for coalgebraic hybrid logics, and prove its
soundness and its weak completeness over finite models, provided that the logic at hand
satisfies certain coherence conditions between the axiomatisation and the semantics
— in fact the same conditions as in the modal case, which are easily verified local
properties that can be verified without reference to T -models and are already known to
hold for a large variety of logics [24,27]. We recall notation from earlier work:

Notation 2. For a set or multiset Σ of formulas and a set O of operators, we write OΣ
or O(Σ) for the set or multiset of formulas arising by prefixing elements of Σ with ex-
actly one operator from O; e.g. Λ(Σ) = {♥(φ1, . . . , φn) | ♥ ∈ Λ n-ary, φ1, . . . , φn ∈

Coalgebraic Hybrid Logic 141

Σ} and @Σ := {@i | i ∈ N})(Σ) = {@iφ | i ∈ N, φ ∈ Σ}. Moreover, Prop(Σ)
denotes the set of propositional combinations of Σ-formulas. For a propositional for-
mula φ ∈ Prop(P ∪ N), we write κ |= φ if κ : P ∪ N → 2 = {⊥,�} is a satisfying
valuation for φ, and X, τ |= φ if φ evaluates to � in the boolean algebra P(X) under
a hybrid valuation τ : P ∪ N → P(X). For ψ ∈ Prop(Λ(P ∪ N)), the interpretation
�ψ�TX,τ of ψ in the boolean algebra P(TX) under τ is the inductive extension of the
assignment �♥(p1, . . . , pn)�TX,τ = �♥�X(τ(p1), . . . , τ(pn)). We write TX, τ |= ψ if
�ψ�TX,τ = TX , and t |=TX,τ ψ if t ∈ �ψ�TX,τ .

Proof systems for coalgebraic logics are most conveniently described in terms of one-
step rules, for which the announced coherence conditions take the following form.

Definition 3. A one-step rule over Λ is an n+ 1-tuple r = (Γ1, . . . , Γn, Γ0), written

Γ1 . . . Γn
Γ0

,

where Γ0 ⊆ Λ(P) ∪ ¬Λ(P) and Γ1, . . . , Γn ⊆ P ∪ ¬P. The rule Γ1 . . . Γn/Γ0 is one-
step sound if TX, τ |=

∨
Γ0 whenever X, τ |=

∨
Γi for all i = 1, . . . , n. A set R

of one-step rules is one-step (cut-free) complete if whenever TX, τ |=
∨
∆ for ∆ ⊆

Λ(P) ∪ ¬Λ(P) then
∨
∆ is propositionally entailed by formulas

∨
Γ0σ (∆ ⊇ Γ0 is a

super-sequent of a single sequent Γ0) where Γ1 . . . Γn/Γ0 is inR and σ : P→ Prop(P)
is a substitution such thatX, τ |=

∨
Γiσ for all i.

Example 4. One-step cut-free complete rule sets, which can just be inherited from the
corresponding modal systems, for graded and probabilistic logics, conditional logics,
and many others are found in [28,25]. We recall that the one-step cut-free complete rule
set for (hybrid)K consists of the rules

¬a1, . . . ,¬an, b
¬�a1, . . . ,¬�an,�b

(n ≥ 0)

A set R of one-step rules now gives rise to a Hilbert-system HR by adjoining the con-
gruence rule (replacement of equivalents under modal operators), propositional tautolo-
gies, modus ponens, uniform substitution, standard axioms for satisfaction operators @i
stating that @i commutes with all propositional connectives (¬@i⊥, ¬@iφ ↔ @i¬φ,
@i(φ ∧ ψ) ↔ (@iφ ∧ @iψ)) and that i ∼ j :≡ @ij defines an equivalence relation on
nominals (@ii, @ij ↔ @ji, @ik ∧@jp→ @ip), the @-generalisation rule a/@ia, and
the axioms

(in) i ∧ φ→ @iφ
(mob) @ip→ (♥(q1, . . . , qn) ↔ ♥(@ip ∧ q1, . . . ,@ip ∧ qn))

called @-introduction (in) and make-or-break (mob), respectively. We write HR � φ if
φ is derivable in this system. The (mob) axiom captures the fact that the truth set of an
@-formula is either empty or the whole model; in the case of hybridK , it is deductively
equivalent to the standard back axiom @iφ→ �@iφ.

From @-introduction one easily derives @-elimination i ∧ @ia → a. Moreover, the
(mob) axiom readily generalises to any @-formula in place of @ip. Hence we can derive
a relativised congruence rule

142 R. Myers, D. Pattinson, and L. Schröder

(@cong)
φ→ ((a1 ↔ b1) ∧ · · · ∧ (an ↔ bn))
φ→ (♥(a1, . . . , an)↔ ♥(b1, . . . , bn))

(φ @-formula)

It is clear that HR is sound if all rules inR are one-step sound. For the remainder of the
section, we assume that R is one-step complete and proceed to prove weak complete-
ness of HR over finite models by extending the finite model construction of [27], i.e. by
constructing a model for a consistent formula φ whose states are maximally consistent
subsets of a suitable finite closure of φ.

In the following, let Σ be a finite and closed set of formulas, i.e. closed under sub-
formulas (where we count i as a subformula of @iρ), negation, and @i for i ∈ N(Σ),
where we identify ¬¬φ with φ, ¬@iφ with @i¬φ, and @i@jφ with @jφ. Denote by
@Σ the set of @-formulas in Σ. Fix a maximally HR-consistent subset K of @Σ. Let
S denote the set of atoms, i.e. maximally HR-consistent subsets of Σ, and let SK be
the set ofK-atoms, i.e. atoms containingK .

Lemma 5. Let φ ∈ Prop(P), and let σ be aΣ-substitution. ThenK → φσ is derivable
iff SK , τ |= φ, where τ is the P(SK)-valuation τ(a) = {A ∈ SK | σ(a) ∈ A}.

We define a hybrid P(SK)-valuation π in the standard way by π(a) = {A | a ∈ A} for
a ∈ P ∪ N(Σ), and taking π(i) to be an arbitrary singleton set otherwise.

Lemma 6. The valuation τ is hybrid, i.e. τ(i) is a singleton for each i ∈ N(Σ), namely
τ(i) = {Ki}, where Ki = {φ ∈ Σ | @iφ ∈ K}.

Call a coalgebra (SK , ξ) coherent if for all ♥(φ1, . . . , φn) ∈ Σ, A ∈ SK ,

ξ(A) ∈ [[♥]](φ̂1, . . . , φ̂n) ⇐⇒ ♥(φ1, . . . , φn) ∈ A

where φ̂ = {A ∈ SK | φ ∈ A}. Making crucial use of the relativised congruence rule
(@-cong), one proves

Lemma 7 (Relativised existence lemma). There exists a coherent coalgebra (SK , ξ).

It is then straightforward to establish

Lemma 8 (Truth lemma). If (SK , ξ) is coherent, thenA |=(SK ,ξ,π) φ iff φ ∈ A for all
φ ∈ Σ, A ∈ SK .

Theorem 9 (Weak completeness of HR over finite models). Every HR-consistent
hybrid formula φ is satisfiable in a T -model with at most 2|φ| states.

The above theorem establishes weak completeness of the Hilbert calculus not only for
hybridK , but also for graded and probabilistic hybrid logic and hybrid CK , as well as
hybrid versions of many other modal logics treated e.g. in [27,28].

3 Hybrid Sequent Calculi and Cut Elimination

We now introduce a sound and complete sequent calculus for coalgebraic hybrid logics.
Completeness of the calculus, initially with the cut-rule, is proved using completeness

Coalgebraic Hybrid Logic 143

of the Hilbert system of the previous section by showing that both provability predicates
coincide. Subsequently, we prove cut elimination.

The sequent calculus shares one characteristic trait with the tableaux calculus studied
in [6]: sequents are composed of @-prefixed formulas. As a consequence, the sequent
calculus presented here can be understood as (the dual of) a labelled tableau [34] by
reading an @-prefixed formula @iφ as a labelled sequent i : φ. As universal validity
of φ ∈ F(Λ) is equivalent to validity of @tφ for some t ∈ N which doesn’t occur in
φ, this suffices to obtain completeness. The main difference between our calculus and
those found in the literature is its modularity: it comes about by extending a standard,
cut-free sequent calculus for the underlying logic by means of proof rules for nominals
and satisfaction operators. We first consider a sequent calculus with the cut-rule and
relegate cut-elimination to the next section. We begin by fixing our notation regarding
sequent calculi; in the tradition of the sequent calculus literature, we denote formulas
by capital letters A,B, . . . for the next two sections.

Definition 10. If Σ ⊆ @F(Λ) is a set of formulas, a Σ-sequent is a finite multiset of
formulas in Σ. We write S(Σ) for the set of Σ-sequents, and S for the set of @F(Λ)-
sequents. If Γ,∆ ∈ S, then Γ,∆ denotes their multiset union, and we identify the
singleton sequent {A} with A for A ∈ @F(Λ). We put rank(Γ) = max{rank(A) |
A ∈ Γ}.

By virtue of the above definition, all elements of a sequent are necessarily @-prefixed
formulas. As the modal logics we consider are extensions of classical propositional
logic, it is most convenient to use a right-handed (or Gentzen-Schütte) calculus where a
sequent intuitively stands for the disjunction of its elements. The rules for propositional
reasoning and reasoning about names then take the following form:

(Ax) @t¬A,@tA,Γ (Ref) @tt, Γ (@�) @t�, Γ

(¬¬)
@tA,Γ

@t¬¬A,Γ
(∧)

@tA,Γ @tB,Γ
@t(A ∧B), Γ

(¬∧)
@t¬A,@t¬B,Γ
@t¬(A ∧B), Γ

(At)
@tA,Γ

@s@tA,Γ

(Sd)
@s¬A,Γ

@t¬@sA,Γ
(Eq)

Γ [t := i]
@t¬i, Γ

In the above, s, t ∈ N, A,B ∈ @F(Λ), and Γ ∈ S(@F(Λ)).
In combination with a setR of one-step sound one-step rules, which we fix through-

out, we obtain the following notion of derivability.

Definition 11. The set ofR-derivable sequents is the least set that

– contains all instances of (Ax), (Ref) and (@�)
– is closed under the rules (¬¬), (∧), (¬∧), (At), (Sd) and (Eq)
– is closed under the rules

144 R. Myers, D. Pattinson, and L. Schröder

(R)
@nΓ1σ,@tΓ0σ, ∆ . . . @nΓkσ,@tΓ0σ, ∆

@tΓ0σ, ∆
(n /∈ Γ0σ, . . . , Γkσ, ∆)

where Γ1, . . . , Γk/Γ0 ∈ R, σ is a substitution and ∆ ∈ S. In the side condition,
n /∈ Σ denotes that the nominal n does not occur in the sequent Σ. The instances
of the rule schema (R) are called modal rules and the remaining rules are referred
to as static rules.

We write GR � Γ if Γ is R-derivable and GR for the above set of rules. If Γ is
R-derivable with additional help of the cut-rule

(cut)
Γ,@tA ∆,@t¬A

Γ,∆

then this is denoted by GRC � Γ . We write GR �n Γ if there exists a proof tree with
end sequent Γ where (R) has been applied at most n times on any branch.

Proposition 12 (Soundness).
∨
Γ is valid whenever GRC � Γ .

The completeness of GRC is witnessed by the fact that every proof in the (complete)
system HR can be simulated. More precisely:

Theorem 13. Let HR � A. Then for every t /∈ A, GRC � @tA.

Together with the completeness theorem for the Hilbert-system, we obtain complete-
ness as an easy corollary.

Theorem 14. LetR be one-step complete. Then for every Γ ∈ S, GRC � Γ whenever
|=
∨
Γ .

Our main motivation for introducing the system GR is to determine the complexity of
the satisfiability problem by means of proof search. Hence, completeness of GRC is
insufficient, as the use of the cut-rule leads to an infinite search space. Our next goal is
therefore cut-elimination.

Cut elimination is subject to a number of structural properties that are readily estab-
lished inductively. We begin with the inversion lemma.

Lemma 15 (Inversion Lemma). All static rules of GR are invertible, i.e. if
Γ1 . . . Γk/Γ0 is a static rule of GR, then GR �k Γ0 iff GR �k Γi for all i = 1, . . . , n
and all k ≥ 0.

It is easy to see that weakening is also admissible, and moreover does not increase the
number of applications of (R) in a proof tree.

Concerning the admissibility of cut and contraction, we adapt the standard double
induction method [32] and use an additional outermost induction on the modal depth of
the endsequent. The key point here is to observe that an instance of cut or contraction
in the principal sequent of an instance of (R) can be eliminated by virtue of one-step
cutfree completeness using a different instance of (R).

Theorem 16. Contraction and cut are admissible in GR, that is GR �n Γ,A whenever
GR �n Γ,A,A, and GR �n Γ,∆ whenever GR �n Γ,A and GR �n ∆,¬A, for all
Γ,∆ ∈ S and all A ∈ @F(Λ).

The proof establishes moreover that neither cut elimination nor contraction increase the
number of applications of (R) along any branch of the proof tree.

Coalgebraic Hybrid Logic 145

4 Complexity of Proof Search

While cutfreeness is clearly essential to establish complexity bounds by means of proof
search, the duplication of the conclusion in the application of the sequent version of a
one-step rule remains a further potential source of non-termination. We now proceed to
show that the height of a proof tree in the sequent calculus of Section 3 can be bounded
polynomially in the size of the endsequent. As a consequence, we obtain a polynomial
space bound for proof search, and – dually – for the satisfiability problem.

Definition 17. A pseudo-subformula of Γ is of the form B or ¬B for a subformula
B of A with @tA ∈ Γ . The set of pseudo-subformulas of Γ is denoted by PSF(Γ).
A core formula of Γ is a formula @tA such that t ∈ N(Γ) and A can be obtained
from B ∈ PSF(Γ) by means of a sequence of renamings that only affect nominals in
N(Γ), formally A = B[i1 := j1] . . . [in := jn] where i1, . . . , in, j1, . . . , jk ∈ N(Γ)
and N(Γ) =

⋃
{N(A) | A ∈ Γ}.

Lemma 18. Let GR � Γ . Then the collection of formulas appearing on any branch of
a proof tree of Γ contains at most |PSF(Γ)| · |N(Γ)|2 core formulas.

The previous lemma allows us to argue that we can eliminate branches of the proof tree
in case they do not add new core formulas.

Theorem 19. Let GR � Γ . Then Γ has a proof where at most |N(Γ)|2 · |PSF(Γ)| ·
rank(Γ) instances of (R) are applied on every branch.

For the proof of this theorem, we adopt the technique of [8] and attach a label (t → n)
to an instance of the rule (R) as in Definition 11. Note that the modal depth of the
formula decreases when we move from conclusion to premise. We next show that it
suffices to consider applications of (R) where either a new core formula is introduced
or a new nominal which is used higher up in the branch. In this situation, the collection
of labels (t→ n) forms a forest with at most |N(Γ)|2 · |PSF(Γ)| leaves by Lemma 18,
as every leaf corresponds to an application of (R) that either introduces a new core
formula or has empty premise. As the modal depth decreases with each application of
(R), this gives an overall bound of |N(Γ)|2 · |PSF(Γ)| ·rank(Γ) on the number of times
(R) was applied.

This bound on the proof depth implies that proof search is in PSPACE, provided the
rules are such that the set of possible premises of rule applications can be computed
from the conclusions in nondeterministic polynomial time. We adapt the treatment of
[28] to the sequent format of one-step rules used here. Recall that a nondeterministic
polynomial time multivalued (NPMV) function [9] is a function f : Σ∗ → P∆∗, where
Σ and∆ are alphabets, such that there exists a polynomial p such that |y| ≤ p(|x|) for
all y ∈ f(x), where | · | denotes size, and the graph {(x, y) | y ∈ f(x)} of f is in NP .
With a view to implementing proof search on an alternating turing machine [13], this
leads to the following definition.

Definition 20. Let sequents be represented in Σ∗ for a finite alphabet Σ. The rule set
R is tractable if there are NPMV functions f : Σ∗ → P(Σ∗) and g : Σ∗ → P(Σ∗)
such that {{Γ1, . . . , Γn} | Γ1, . . . , Γn/Γ ∈ GR} = {g(x) | x ∈ f(Γ)} for all Γ ∈ S.

146 R. Myers, D. Pattinson, and L. Schröder

This allows us to formulate the main result of the present section as follows:

Theorem 21. LetR be one-step sound, one-step cut-free complete and tractable. Then
satisfiablity of A ∈ F(Λ) is in PSPACE .

Example 22. As all hybrid logics of Example 1 have previously [28,25] been equipped
with rule sets satisfying the assumptions of Theorem 21, they are decidable in polyno-
mial space. In the case of hybrid K , this re-proves a known result [2]. The PSPACE-
bounds for graded and probabilistic hybrid logic and for hybrid CK are new.

5 Shallow Models and PSPACE Algorithms

Next, we establish a semantics-based criterion for a hybrid logic to be decidable in
PSPACE, thus complementing the sequent calculus based approach above by a method
that applies also to logics for which no tractable cut-free axiomatisation is known. To
this end, we extend the shallow model construction of [29] to the hybrid case. The
extension is quite non-trivial for two reasons: shallow models are now forest-shaped
rather than tree-shaped; and moreover they are not perfect forests in that they may
have loops into the roots. The coalgebraic constructions require the novel concept of
fragments, i.e. models based on partial coalgebras. We assume thatΛ is equipped with a
size measure, thus inducing a size measure | · | on F(Λ), with numbers coded in binary.
As we now leave the sequent calculus context, we return to designating formulas by
small greek letters.

Definition 23. A model satisfies a setK of @-formulas if its states satisfyK . A formula
φ isK-satisfiable if it is satisfiable in some model satisfyingK , andK-valid if it is valid
in all models satisfyingK .

Let φ be satisfied in a model M . Then φ is K-satisfiable, where K is the set of @-
formulas satisfied in M . Moreover, φ is satisfiable iff @tφ is satisfiable for t fresh.
Thus, we assume w.l.o.g. that φ is an @-formula. Then K entails φ, so that we can
forget about φ and concentrate on models satisfying K . In the following we fix a finite
closed set Σ and a maximally satisfiable set K ⊆ @Σ, and we put N = N(Σ). For
i ∈ N , we putKi = {ρ | @iρ ∈ K} as in Section 2.

Definition 24. A hybrid formula is @-free if it does not contain occurrences of @. A set
of @-formulas is @-eliminated if it consists of formulas @iρ with ρ @-free. For ρ ∈ Σ,
ρ[K] denotes the @-free formula obtained by replacing every subformula @iχ of ρ not
contained in further occurrences of @ by � if @iχ ∈ K , and by ⊥ otherwise. The
@-eliminated form K[K] ofK is the @-eliminated set {@iρ[K] | @iρ ∈ K}.

Lemma 25 (@-Elimination). A model satisfiesK iff it satisfiesK[K].

By @-elimination, we may henceforth assume that K is @-eliminated and hence that
theKi are @-free. We wish to construct a model which satisfiesK and which is shallow
in the following sense:

Definition 26. A supporting Kripke frame of a T -model (C, γ, π) is a Kripke frame
(C,R) such that γ(c) ∈ T {d | cRd} ⊆ TC for all c ∈ C. A T -model of K is shallow

Coalgebraic Hybrid Logic 147

if it has a supporting Kripke frame which is a forest of depth at most the rank ofK up
to loops into the roots, and whose roots have names in N .

We now introduce the crucial notion of fragment:

Definition 27. A K-fragment is a partial T -model, i.e. a triple F = (C, γ, π) consist-
ing of the same data as a T -model except that γ : C → TC is a partial map, with
Ki ∈ C for all i ∈ N , such that γ is undefined precisely on the Ki and π(i) = {Ki}
for i ∈ N . We defineK-fragmentary satisfaction c |=KF ρ of ρ ∈ Σ in c ∈ C by

Ki |=KF ρ iff ρ ∈ Ki

for i ∈ N , and by the usual recursive clauses for the other states. We put [[ρ]]KF =
{c | c |=KF ρ}. We say that F is a shallow K-fragment model of ρ ∈ Σ if F has a
supporting Kripke frame (defined in analogy to Definition 26) which is, up to possible
isolated statesKi, a tree with root r of depth at most the rank of ρ such that r |=KF ρ.

Lemma 28. Every @-freeK-satisfiable ψ ∈ Prop(Σ) has an exponentially branching
shallowK-fragment model.

The proof is largely analogous to the modal shallow model theorem [29], the crucial
point being that one need not yet define the coalgebra structure on the named statesKi.

Definition 29. Let κ : N → (V ∪ N) → 2 be an N -indexed family of valuations
for V ∪ N , where V ⊆ P. A one-step (κ-)model (X, τ, t) over V consists of a set
X , a hybrid P(X)-valuation τ for V ∪ N , and t ∈ TX (such that τ(i) ⊆ τ(a) iff
κ(i)(a) = � for all i ∈ N, a ∈ V). A one-step N -pair (η, ψ) over V consists of
formulas ψ ∈ Prop(Λ(V ∪ N)) and η ∈ Prop(V ∪ N). We say that (X, τ, t) is a
one-step (κ-)model of (η, ψ) if X, τ |= η and t |=TX,τ ψ. The pair (η, ψ) is one-step
(κ-)satisfiable if it has a one-step (κ-)model, and one-step satisfiable over (X, τ) if it
has a one-step model of the form (X, τ, t).

Lemma 30. A one-step N -pair (η, ψ) over V is one-step κ-satisfiable for
κ : N → (V ∪N)→ 2 iff it is one-step κ-satisfiable over the set

X = {ι : V ∪N → 2 | ι |= η; ι(i) = � ⇒ ι(a) = κ(i)(a) for all i ∈ N, a ∈ V },

equipped with the (hybrid) valuation τ(b) = {ι ∈ X | ι(b) = �} for all b ∈ V ∪N .

Definition 31. For x ∈ X and a hybrid P(X)-valuation τ for V ∪ N , where V ⊆ P,
we put Thτ (x) ≡

∧
x∈τ(a) a ∧

∧
x/∈τ(a) ¬a, where a ranges over V ∪N .

Theorem 32. The (satisfiable) set K is satisfiable in an exponentially branching
shallow T -model.

In the proof, one constructs a forest-shaped model with rootsKi. One generates suitable
exponential-size one-step models according to Lemma 30 that induce the coalgebra
structure on the Ki, and then attaches shallow K-fragments obtained from Lemma 28
at the arising successor states, merging identically named states throughout the process.

This construction informs the design of a decision procedure for satisfiability of a
hybrid formula φ. The algorithm first performs a non-deterministic reduction to satisfi-
ability ofK ⊆ @Σ as above and @-elimination, and then reduces satisfiability ofK to

148 R. Myers, D. Pattinson, and L. Schröder

fragmentaryK-satisfiability of certain formulas ψ ∈ Prop(Σ). The latter is decided by
the following recursive procedure.

Algorithm 33 (Check fragmentaryK-satisfiability of ψ ∈ Prop(Σ))

1. Decomposeψ ≡ ψ0σ with ψ0 ∈ Λ(V)∪¬Λ(V) and σ aΣ-substitution for V ⊆ P.
2. Recursively compute the propositional theory η ∈ Prop(V ∪ N), N = N(Σ), of

σ as the disjunction of all maximal conjunctive clauses χ over V ∪N (i.e. for each
b ∈ V ∪N , χ contains either b or ¬b) such that χσ is fragmentarilyK-satisfiable.

3. Check that (η, ψ0) is one-step κ-satisfiable, where for i ∈ N and a ∈ V , κ(i)(a) =
� iff @iσ(a) ∈ K .

In the implementation of this algorithm (and analogously in the reduction step that
precedes it), one cannot keep the whole (potentially exponential-sized) formula η in
memory at once. Instead, read access to η by the one-step satisfiability checking proce-
dure queries whether individual conjunctive clauses χ belong to η. Since the recursion
depth is bounded by rank(ψ), such an implementation will run in PSPACE if one-step
satisfiability checking can be performed in polynomial space. The exact definition of
the relevant decision problem is the following:

Definition 34. The strict one-step satisfiability problem is to decide whether a one-
step N -pair (η, ψ) over V is one-step κ-satisfiable for a given κ : N → (V ∪N)→ 2,
where the input size is defined to be |ψ|, and η is represented as a disjunctive set of
maximal conjunctive clauses over V ∪ N and stored on an input tape (which does not
count towards space consumption). The lax one-step satisfiability problem is the same
decision problem, but with input size |(η, ψ)|.

We thus have

Theorem 35. If strict one-step satisfiability is in PSPACE, then the satisfiability prob-
lem of L is in PSPACE.

In concrete applications, the above condition may be established either directly or with
the help of a local small model property:

Definition 36. The one-step polysize model property (OSPMP) holds if there is a poly-
nomial p such that every one-step κ-satisfiable pair (η, ψ), κ : N → (V ∪N)→ 2, has
a one-step κ-model (X, τ, t) such that |X | ≤ p(|ψ|+ |N |).

Theorem 37. Under the OSPMP, strict one-step satisfiability is in PSPACE iff lax one-
step satisfiability is in PSPACE.

Example 38. In all hybrid logics of Example 1 (and many others), strict one-step sat-
isfiability is in PSPACE, which reproves the PSPACE upper bounds of Example 22.
This is established in each case in essentially the same way as in the purely modal ver-
sion as carried out in [29]. In most examples, this involves application of Theorem 37,
with the crucial step being the proof of the OSPMP (lax one-step satisfiability is typi-
cally even in NP [27]), the only essential change w.r.t. the modal case being that states
with names in N are retained in the construction of small submodels of given one-step

Coalgebraic Hybrid Logic 149

models. This applies moreover to the extension of probabilistic hybrid logic with linear
inequalities [17], which is thus newly established to be in PSPACE.

One notable case that requires a direct proof that strict one-step satisfiability is in
PSPACE is graded hybrid logic. Although this, too, is largely analogous to the modal
case, we briefly sketch the argument for the sake of illustration. Thus, let (η, ψ) be a
one-stepN -pair over V in graded hybrid logic, and let κ : N → (V ∪N)→ 2. One-step
satisfiability of ψ over given (X, τ) amounts to solvability of a system of integer linear
inequalities [27] whose coefficients occur in ψ. Such a system is solvable iff it has a
solution whose components are of size at most p(|ψ|), where p is a polynomial [23]. By
Lemma 30, a non-deterministic algorithm which traverses a multiset over η, regarded
as a set of maximal conjunctive clauses χ, by successively guessing the multiplicity of
each χ and adding up the multiplicity for each a ∈ V ∪ N in order to finally check
satisfaction of ψ, decides one-step κ-satisfiability of (η, ψ); the algorithm clearly uses
polynomial space in |ψ|. This establishes the new result that graded hybrid logic is in
PSPACE with numbers coded in binary.

These arguments extend straightforwardly to the hybrid extension of Presburger
modal logic [16], which in generalisation of graded modalities features linear inequali-
ties between satisfaction multiplicities of formulas. It is equally straightforward to add
multiple agents, or multiple roles in description logic parlance, and role hierarchies, i.e.
inclusion axioms between roles. In summary, we obtain the new result that Presburger
hybrid logic with role hierarchies is in PSPACE. This logic is substantially stronger than
e.g. the description logic ALCHOQ, which features role hierarchies, nominals, and
qualified number restrictions but not linear inequalities or satisfaction operators, so that
as a corollary we obtain that concept satisfiability over the empty TBox inALCHOQ is
in PSPACE, a tight upper bound. According to the description logic complexity naviga-
tor [35], this bound was previously unknown (a PSPACE upper bound for the sublogic
ALCOQ, which excludes role hierarchies, is proved for unary coding of numbers, and
claimed to extend to binary coding, in [4]). Note that Presburger-type logics and proba-
bilistic logics with linear inequalities [17] are presently not amenable to syntactic com-
plexity analysis, e.g. using the sequent calculus method presented above, as no cut-free
axiomatisation is known.

6 Conclusions and Related Work

There is quite a large variety of different proof calculi for hybrid logics: one sees fully
internalised [30] and labelled calculi [7], as well as natural deduction systems [10].
Apart from the fact that the results of this paper are applicable to a much larger variety
of logics, the construction of the sequent calculus introduced in Section 3 is canonical,
in the sense that the hybrid sequent rules correspond to a system of cut-free sequent
rules for the non-hybrid system, which raises hopes that the same rules might also serve
in even more expressive logical systems. The analysis of the sequent calculus is comple-
mented by a semantic analysis which confirms the syntactic PSPACE bounds and yields
new ones where the syntactic approach has not reached (yet); the precise relationship
between the semantics-based algorithms and proof search remains to be explored in
detail. The hybrid proof search algorithms will be integrated into the generic reasoner

150 R. Myers, D. Pattinson, and L. Schröder

CoLoSS [11]. Our complexity results allow inferring identical complexity bounds for a
coalgebraic modal logic and its hybrid companion from the same set of conditions. In
the more restrictive realm of relational semantics, one also has so-called transfer results
that in particular allow inferring the complexity of a hybrid logic from that of its modal
companion [5,12]. Coalgebraic transfer results are the subject of future investigation.

Acknowledgments. The authors wish to thank Erwin R. Catesbeiana for detailed expla-
nations of his views on consistent formulas.

References

1. Areces, C., Blackburn, P., Marx, M.: A road-map on complexity for hybrid logics. In: Flum,
J., Rodrı́guez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 307–321. Springer, Hei-
delberg (1999)

2. Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., Wolter, F., van Benthem, J. (eds.)
Handbook of Modal Logics. Elsevier, Amsterdam (2006)

3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The
Description Logic Handbook. Cambridge University Press, Cambridge (2003)

4. Baader, F., Milicic, M., Lutz, C., Sattler, U., Wolter, F.: Integrating description logics and
action formalisms for reasoning about web services. LTCS-Report LTCS-05-02, Dresden
University of Technology (2005),
http://lat.inf.tu-dresden.de/research/reports.html

5. Bezhanishvili, N., ten Cate, B.: Transfer results for hybrid logic. Part 1: the case without
satisfaction operators. J. Logic Comput. 16, 177–197 (2006)

6. Blackburn, P., Marx, M.: Tableaux for quantified hybrid logic. In: Egly, U., Fermüller, C.
(eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 38–52. Springer, Heidelberg (2002)

7. Bolander, T., Blackburn, P.: Termination for hybrid tableaus. J. Logic Comput. 17, 517–554
(2007)

8. Bolander, T., Braüner, T.: Tableau-based decision procedures for hybrid logic. J. Log. Com-
put. 16(6), 737–763 (2006)

9. Book, R., Long, T., Selman, A.: Quantitative relativizations of complexity classes. SIAM J.
Computing 13, 461–487 (1984)

10. Braüner, T.: Natural deduction for first-order hybrid logic. J. Logic, Language and Informa-
tion 14, 173–198 (2005)

11. Calin, G., Myers, R., Pattinson, D., Schröder, L.: CoLoSS: The coalgebraic logic satisfia-
bility solver (system description). In: Methods for Modalities, M4M-5. ENTCS. Elsevier,
Amsterdam (to appear, 2008)

12. ten Cate, B.: Model theory for extended modal languages. PhD thesis, University of Amster-
dam, ILLC Dissertation Series DS-2005-01 (2005)

13. Chandra, A., Stockmeyer, L.: Alternation. J. ACM 28, 114–133 (1981)
14. Chellas, B.: Modal Logic. Cambridge University Press, Cambridge (1980)
15. D’Agostino, G., Visser, A.: Finality regained: A coalgebraic study of Scott-sets and multisets.

Arch. Math. Logic 41, 267–298 (2002)
16. Demri, S., Lugiez, D.: Presburger modal logic is PSPACE-complete. In: Furbach, U.,

Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 541–556. Springer, Heidelberg
(2006)

17. Fagin, R., Halpern, J.Y.: Reasoning about knowledge and probability. J. ACM 41, 340–367
(1994)

18. Fine, K.: In so many possible worlds. Notre Dame J. Formal Logic 13, 516–520 (1972)

http://lat.inf.tu-dresden.de/research/reports.html

Coalgebraic Hybrid Logic 151

19. Haarslev, V., Möller, R., van der Straeten, R., Wessel, M.: Extended query facilities for racer
and an application to software-engineering problems. In: Description Logics, DL 2004, pp.
148–157 (2004)

20. Heifetz, A., Mongin, P.: Probabilistic logic for type spaces. Games and Economic Behav-
ior 35, 31–53 (2001)

21. Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Inform. Comput. 94, 1–28
(1991)

22. Mares, E.: Relevant Logic: A Philosophical Interpretation. Cambridge University Press,
Cambridge (2004)

23. Papadimitriou, C.: On the complexity of integer programming. J. ACM 28, 765–768 (1981)
24. Pattinson, D.: Coalgebraic modal logic: Soundness, completeness and decidability of local

consequence. Theoret. Comput. Sci. 309, 177–193 (2003)
25. Pattinson, D., Schröder, L.: Admissibility of cut in coalgebraic logics. In: Coalgebraic Meth-

ods in Computer Science, CMCS 2008. ENTCS, vol. 203, pp. 221–241. Elsevier, Amsterdam
(2008)

26. Pauly, M.: A modal logic for coalitional power in games. J. Logic Comput. 12, 149–166
(2002)

27. Schröder, L.: A finite model construction for coalgebraic modal logic. J. Log. Algebr.
Prog. 73, 97–110 (2007)

28. Schröder, L., Pattinson, D.: PSPACE reasoning for rank-1 modal logics. In: Logic in Com-
puter Science, LICS 2006, pp. 231–240. IEEE, Los Alamitos (2006); Full version to appear
in ACM TOCL

29. Schröder, L., Pattinson, D.: Shallow models for non-iterative modal logics. In: Dengel, A.R.,
Berns, K., Breuel, T.M., Bomarius, F., Roth-Berghofer, T.R. (eds.) KI 2008. LNCS (LNAI),
vol. 5243, pp. 324–331. Springer, Heidelberg (2008)

30. Seligman, J.: Internalization: The case of hybrid logics. J. Logic Comput. 11, 671–689 (2001)
31. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL rea-

soner. J. Web Semantics (2006)
32. Troelstra, A., Schwichtenberg, H.: Basic Proof Theory. Cambridge University Press, Cam-

bridge (1996)
33. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description. In: Fur-

bach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 292–297. Springer,
Heidelberg (2006)

34. Tzakova, M.: Tableau calculi for hybrid logics. In: Murray, N.V. (ed.) TABLEAUX 1999.
LNCS, vol. 1617, pp. 278–292. Springer, Heidelberg (1999)

35. Zolin, E.: The description logic complexity navigator (2007),
http://www.cs.man.ac.uk/˜ezolin/dl

http://www.cs.man.ac.uk/~ezolin/dl

A Description of Iterative Reflections of Monads
(Extended Abstract)

Jǐŕı Adámek1, Stefan Milius1, and Jǐŕı Velebil2,�

1 Institute of Theoretical Computer Science, Technical University,
Braunschweig, Germany

adamek@iti.cs.tu-bs.de, mail@stefan-milius.eu
2 Faculty of Electrical Engineering, Czech Technical University of Prague,

Czech Republic
velebil@math.feld.cvut.cz

Abstract. For ideal monads in Set (e. g. the finite list monad, the finite
bag monad etc.) we have recently proved that every set generates a free
iterative algebra. This gives rise to a new monad. We prove now that this
monad is iterative in the sense of Calvin Elgot, in fact, this is the iterative
reflection of the given ideal monad. This shows how to freely add unique
solutions of recursive equations to a given algebraic theory. Examples:
the monad of free commutative binary algebras has the monad of binary
rational unordered trees as iterative reflection, and the finite list monad
has the iterative reflection given by adding an absorbing element.

1 Introduction

The semantics of recursive definitions is a topic at the heart of theoretical com-
puter science. Iterative theories of Calvin Elgot are a well-established formalism
in which recursive equation systems can be solved. So far, iterative theories
were considered over arbitrary signatures [9,10] or arbitrary endofunctors [3]
but without studying the effect of equational laws on given operations. For ex-
ample, Elgot et al. described in [10] the free iterative theory on a signature Σ as
the theory RΣ of all rational Σ-trees (that is, Σ-trees with only finitely many
subtrees up to isomorphism). The free iterative theory can be thought of as the
closure of the theory formed by all Σ-terms under unique solutions of recursive
equations. In our present paper we attend to the influence that equations have
on iteration. This topic is relevant e. g. for process algebra where processes are
defined recursively and operations on processes typically satisfy equational laws
such as associativity, commutativity or idempotency. Let us consider the simple
case of one binary operation: by the above result the free iterative theory is the
theory of rational binary trees. What happens if the operation is required to
be commutative? The answer is simple: the free iterative theory consists of all
rational non-ordered binary trees. This has been known before since commuta-
tivity can be expressed by working with algebras for an endofunctor H , and in
� The third author acknowledges the support of the Grant Agency of the Czech Re-

public under the Grant No. 201/06/664.

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 152–166, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Description of Iterative Reflections of Monads 153

that case the free iterative theory was described in [2] as follows: one applies the
given equations to rational Σ-trees possibly infinitely often. Next question: what
happens if the given binary operation is required to be associative? That is, the
theory we start with is the theory of finite lists. It follows from our results in the
present paper that the free iterative theory is just the extension of the finite-list
theory by a single absorbing element. (Informally, for every infinite binary tree
one gets, by applying the associative law infinitely often, the complete binary
tree viz. the unique solution of x ≈ x ·x.) The same answer is true for a commu-
tative and associative binary operation, in other words, for the finite-bag theory.
Last question: what about an idempotent binary operation? We cannot provide
an answer to this question because the corresponding theory is not ideal, and we
have only iterative reflections for ideal theories—in fact, the question makes no
sense for general theories.

We are going to work with finitary monads M rather than equational
theories—recall that the underlying functor M of the monad assigns to every
set X the free algebra MX on X for the given equational theory, and that the
inclusion of generators forms a natural transformation η : Id → M . Elgot [9]
called M ideal if M is a coproduct of Id and a subfunctor M ′ such that η is one
of the coproduct injections, and the monad multiplication µ : MM → M has
a restriction to µ′ : M ′M → M ′; in the language of theories that means that
the presentation of M by operations modulo equations is such that the property
of a term not being equivalent to a variable is preserved by substitution. Com-
mutativity and associativity of a binary operation are examples of equational
specifications yielding ideal monads, idempotency is not.

We already know that every ideal monad has an iterative reflection; this states
in category-theoretic terms that unique solutions of guarded recursive equations
can be added freely to the given monad. This was proved in [5] under much
less restrictive side conditions than those required below. However, a concrete
description of the iterative reflection was missing: we proved that for a given
ideal monad M every object X generates a free iterative algebra M̂X , and thus,
we obtain a new monad M̂. Here we prove that M̂ is iterative and that it is the
desired iterative reflection of M.

Although the statement “the iterative reflection is the monad of free iterative
algebras” may sound almost tautological, we have not found an easy proof. In
fact, the proof presented in our paper is not only technically involved, it also
requires at one point that every strong epimorphism be split—this forces us to
restrict our attention to monads in categories such as sets or vector spaces. In
contrast, the existence of iterative reflections was proved for ideal monads in all
extensive locally finitely presentable categories, see [5].

In this extended abstract we omit most of the technical details and provide
only sketches of proofs. The full details can be found in [6].

2 Ideal and Iterative Monads

In this section we recall the concepts introduced by Calvin Elgot [9] in the lan-
guage of monads in lieu of algebraic theories used originally. Recall first that

154 J. Adámek, S. Milius, and J. Velebil

a functor is called finitary if it preserves filtered colimits. Throughout this sec-
tion M = (M,η, µ) denotes a finitary monad on a category A (that is, the
underlying endofunctor M is finitary). Recall further that given another monad
M = (M,η, µ), a monad morphism is a natural transformation h : M →M such
that h · η = η and h · µ = µ · (h ∗ h).

Assumption 2.1. Throughout the paper we assume that the base category A
is locally finitely presentable and has split strong epimorphisms. More detailed,
we assume that (1) A has colimits, (2) for every strong epimorphism e : X → Y
there exists m : Y → X with e · m = id (where “strong” means the diagonal
fill-in property w. r.ṫ. all monomorphisms), and (3) A has a set Afp of finitely
presentable objects (i. e., their hom-functors are finitary) whose closure under
filtered colimits is all of A.

For example, the categories of sets and many-sorted sets satisfy the above as-
sumptions, with Afp formed by all finite sets. For every field K the category
VecK of vector spaces on K also satisfies (1)–(3) and Afp is formed by the finite-
dimensional spaces. Finally, every algebraic lattice A considered as a category
fulfills (1)–(3); the finitely presentable objects are the compact elements.

Notation 2.2. The category of (Eilenberg-Moore) algebras for the monad M is
denoted by AM. Recall that its objects are algebras a : MA→ A for the functor
M such that a · ηA = id and a ·Ma = a · µA. And the morphisms of AM are the
usual M -algebra homomorphisms, i. e. h is a homomorphism from an algebra
(A, a) to (B, b) if h · a = b ·Mh.

Definition 2.3. (C. Elgot [9]) An ideal monad consists of a finitary monad
M = (M,η, µ), a finitary subfunctor m : M ′ ↪→M such that M = M ′ + Id with
injections m and η, and a natural transformation µ′ : M ′M →M ′ such that the
square below commutes:

M ′M
µ′

��

mM
��

M ′

m
��

MM µ
�� M

(2.1)

Definition 2.4. Let M be an ideal monad.
(1) By a (finitary) equation morphism we mean a morphism e : X →M(X+

Y), where X is a finitely presentable object (of variables) and Y is an arbitrary
object (of parameters).

(2) We call e guarded provided that it factorizes through the summandM ′(X+
Y) + Y of M(X + Y) =M ′(X + Y) +X + Y :

X
e ��

e0
���

����� M(X + Y)

M ′(X + Y) + Y

[mX+Y ,ηX+Y ·inr]

��

(2.2)

A Description of Iterative Reflections of Monads 155

Remark 2.5. Recall that if A = Set, then for every finitary monad M there exists
an equational presentation such that M is the associated free-algebra monad.
That is, for every set Z we can consider MZ as the set of all terms with the free
variables in Z modulo the given equations.

(1) If X = { x1, . . . , xn } then the equation morphism e can be regarded as
the system of recursive equations

x1 ≈ t1(x1, . . . , xn, p1, . . . , pk)
...

xn ≈ tn(x1, . . . , xn, p1, . . . , pk)

whose right-hand sides ti = e(xi) are M-terms in the variables from X and
parameters p1, . . . , pk ∈ Y .

(2) The concept of a guarded equation morphism forbids equations such as
x1 ≈ x1. Evelyn Nelson [14] introduced iterative algebras for a signature in
which guarded systems of equations have unique solutions—see also the related
concept by Jerzy Tiuryn [15]:

Definition 2.6. We say that the algebra (A, a) for the ideal monad M is it-
erative provided that every guarded equation morphism e : X → M(X + A)
with parameter object Y = A has a unique solution, i. e., a unique morphism
e† : X → A for which

e† = a ·M [e†, idA] · e . (2.3)

Remark 2.7. For every ideal monad M the following was proved in [5]:
(1) Iterative algebras form a full subcategory of AM; the reason why we con-

sider the usual homomorphisms as the “right” morphisms of iterative algebras
is that homomorphisms automatically preserve solutions.

(2) Every object X generates a free iterative M-algebra which we denote by
M̂X with the structure and the universal arrow given by ρX : MM̂X → M̂X
and η̂X : X → M̂X . In other words, the forgetful functor of the category of
iterative M-algebras has a left adjoint X �→ (M̂X, ρX).

(3) We obtain a new monad M̂ = (M̂, η̂, µ̂) and a monad morphism κ : M → M̂
with the components κX = ρX ·Mη̂X . We also proved that the ideal monad
M has an iterative reflection—and in the present paper we prove that this is
κ : M → M̂.

In [5] we assumed that the base category is extensive, and therefore we worked
with ideal (rather than guarded) equation morphisms. However, all the results re-
main valid under our present assumption. In particular, our proof of the existence
of an iterative reflection (Theorem 2.13) contained in Remark 2.14 uses split epi-
morphisms and does not use extensivity. The proof is based on the fact (proved
in [5]) that iterative algebras are closed under limits—by inspecting the proof
one sees immediately that this is true for iterativity based, as in Definition 2.6
above, on guarded equation morphisms. Also extensivity plays no rôle here.

Examples 2.8. We mention some well-known ideal monads M in Set for which
a description of the free iterative M-algebra M̂X on X is known, see [5].

156 J. Adámek, S. Milius, and J. Velebil

(1) The monad MX=X∗ of finite lists in X whose M-algebras are monoids.
A free iterative algebra is described in [5]: one adds to X∗, the monoid of finite
lists with concatenation, an absorbing element ⊥; this means that the binary
operation is extended by w⊥=⊥=⊥w for all lists w. Shortly: M̂X=X∗+{⊥ }.

(2) The monad M assigning to a set X the set of finite trees with leaves
labelled in X . The M-algebras are precisely the Σ-algebras for the signature
Σ of one n-ary operation symbol for every natural number n = 1, 2, 3, The
free iterative algebra was described by Evelyn Nelson [14] using the concept of
rational tree of Susanna Ginali [12], meaning a tree with finitely many subtrees
up to isomorphism: M̂X consists of all finitely branching rational trees with
leaves labelled in X .

(3) Analogously, let MX consist of all finite non-ordered binary trees on X ,
so M is the monad of commutative binary algebras. In this case M̂X consists of
all rational non-ordered binary trees on X , see [2].

(4) The monad M assigning to a set X the set of finite bags (= multisets) in
X has as algebras the commutative monoids. A free iterative algebra, as proved
in [14], is M̂X = MX + {⊥ } where ⊥ is an absorbing element.

(5) The monad MX = X × Σ∗ of free unary algebras with operations from
the set Σ has the free iterative algebras M̂X = (X × Σ∗) + Σp where Σp =
Σ∗(Σ∗)ω are the words in Σ which are eventually periodic, see [14]. For example,
M̂X = X × N + 1 in case Σ = { 0 }.

(6) The monad MX = X×NΣ of free unary algebras with commuting opera-
tions from the set Σ (i. e., a(b(x)) = b(a(x)) for all a, b ∈ Σ) has the free iterative
algebras M̂X = (X × NΣ) + {⊥ } where ⊥ is a fixed point of all operations.
In case of two operations this was pointed out to us by Bruno Courcelle, and a
detailed proof is presented in [5]. The general case is completely analogous.

(7) For every finitary endofunctor H we have described in [3] a free iterative
monad on H as the monad of free iterative algebras for the functor H . Moreover,
a free iterative H-algebra on the object Y is given as the colimit of all finite
coalgebras for H(−) + Y . We know from Michael Barr [8] that H-algebras are
precisely the monadic algebras for the free monad M on H , and it is not difficult
to prove that iterative algebras for the functorH in the sense of [3] (see Definition
2.5 and Theorem 4.4) are precisely the iterative algebras for M as defined in 2.6.
Thus, the free iterative monad on H is the monad M̂. Special cases include (2)
above for HX =

∐
n∈N

Xn, (3) for HX = {{ x, y } | x, y ∈ X } and (5) above for
HX = X ×Σ. In [3] we called M̂ the rational monad of H .

Remark 2.9. In contrast to Example 2.8(4), the monad Pfin of finite subsets is
not ideal: consider x �= y in X and a function f : X → X ′ with f(x) = f(y).
Then { x, y } ∈ PfinX \ ηX [X] but Pfinf{ x, y } ∈ ηX′ [X ′].

Definition 2.10. [9] An ideal monad M is called iterative if every guarded equa-
tion morphism e : X →M(X+Y) has a unique solution w. r. t. M, which means
a morphism e† : X →MY such that the equation e† = µY ·M [e†, ηY] · e holds.

A Description of Iterative Reflections of Monads 157

Proposition 2.11. [5] An ideal monad M is iterative if and only if all of its free
algebras (MX,µX) are iterative algebras.

Example 2.12. The monad M̂X = X×N+1 of 2.8(5) is iterative: its free algebras
are the free algebras on one unary operation σ extended by a unique fixed point
of σ. In general, an algebra for M̂ is an algebra with a unary operation with a
chosen fixed point of that operation, see [4]. So there exist many algebras for M̂
that are not iterative, e. g., all those with more than one fixed point for σ. In
fact, in an iterative algebra the equation x ≈ σ(x) must have a unique solution.

Definition 2.13. Suppose we have two ideal monads M = (M,η, µ,M ′,m, µ′)
and M = (M,η, µ,M

′
,m, µ′). By an ideal monad morphism we understand a

monad morphism h : (M,η, µ) → (M,η, µ) such that there exists a domain-
codomain restriction h′ : M ′ →M

′
of h with m · h′ = h ·m (which is necessarily

unique, recall that m is a monomorphism).

Notation 2.14. In the category of all finitary monads on A we now consider
(a) the non-full subcategory of all ideal monads and ideal monad morphisms,
denoted by FMid(A) and (b) its full subcategory of all iterative monads IFM(A).

3 A Characterization of Free Iterative Algebras

Assumption 3.1. Throughout the rest of the paper M denotes an ideal monad
on A.

Remark 3.2. In [3] we described for every endofunctor H of a locally finitely
presentable category, the free iterative H-algebra on an object Y as a colimit
of the diagram EqY of all flat equation morphisms, i. e., morphisms e : X →
HX+Y with X finitely presentable. The connecting morphisms of that diagram
EqY are simply the coalgebra homomorphisms for the endofunctor H(−) + Y .
The fact that EqY is a filtered diagram whose colimit is the free iterative H-
algebra on Y turned out to be the basic step for describing the rational monad
of H , see Example 2.8(7). The proof of this fact was technically rather involved.

In the present section we prove the analogous result for algebras for an ideal
monad M: we form the diagram of all guarded equation morphisms e : X →
M(X+Y) with X finitely presentable, but unfortunately, in lieu of coalgebra ho-
momorphisms forM((−)+Y) we need more general “solution homomorphisms”
here. To make sure that EqY is a filtered diagram we need the restrictive side
condition that strong epimorphisms split.

Notation 3.3. Given an equation morphism e : X → M(X + Y), every mor-
phism h : Y → Y ′ yields a new equation morphism (by changing parameters)

h • e ≡ X
e ��M(X + Y)

M(X+h)
��M(X + Y ′).

In particular, use the universal arrow η̂Y : Y → M̂Y of Remark 2.7 to turn every
“abstract” equation morphism e : X → M(X + Y) into a “concrete” equation
morphism η̂Y • e : X → M(X + M̂Y) in the free iterative algebra (M̂Y, ρY).

158 J. Adámek, S. Milius, and J. Velebil

The latter has, whenever e is guarded, a unique solution in M̂Y which, by abuse
of notation, we denote by e† : X → M̂Y . Thus, for every guarded equation
morphism e : X →M(X + Y) we define e† by

e† = ρY ·M [e†, η̂Y] · e. (3.1)

Definition 3.4. Let e : X → M(X + Y) and f : X ′ → M(X ′ + Y) be guarded
equation morphisms. By a solution homomorphism is meant a morphism h :
X → X ′ in A for which the equation f † · h = e† : X → M̂Y holds.

Notation 3.5. For every object Y we denote by EQY the category of all guarded
equation morphisms with parameter object Y and all solution homomorphisms.

We also denote by EqY : EQY → A the forgetful functor assigning to e : X →
M(X + Y) the object X .

Example 3.6. Whenever h : X → X ′ is a coalgebra homomorphism, i. e., when-
ever we have f · h = M(h+ Y) · e, then h is a solution homomorphism. Indeed,
f † · h = e† follows from the uniqueness of solutions since f † · h solves e. To see
this consider the diagram below:

X
h ��

e

��

X ′ f†
��

f

��

M̂Y

#$ ��!"
f†·h

M(X + Y)
M(h+Y)

�� M(X ′ + Y)
M [f†,η̂Y]

��
MM̂Y

ρY

��

'(��%&
M [f†·h,η̂Y]

The right-hand square commutes by (3.1), the left-hand one by assumption and
the upper and lower parts obviously do. So the outside of the diagram commutes,
showing that f † · h is a solution of e as desired.

Remark 3.7. In the coalgebraic construction of the free iterative monad on an
endofunctor H in [3] we used the category EQY of all flat equation morphisms.
This category is trivially filtered because it is closed under finite colimits in the
category of all coalgebras, and so the corresponding forgetful functor EqY is a
filtered diagram whose colimit yields the object assignment of the desired free
iterative monad on H .

Our present setting is more subtle: here we cannot work with coalgebra homo-
morphism (for M((−) + Y)) because they are insufficient to relate all equations
with the same solution in the corresponding diagram. To see this we consider
the example of a signature with one binary operation ∗. The associated free
monad on that signature is the finite binary tree monad M. Now let, just in this
example, EQ′

Y denote the category of guarded equation morphisms and coalge-
bra homomorphisms. Consider the two recursive equations (trees are written as
terms here)

x ≈ x ∗ y and x ≈ (x ∗ y) ∗ y

A Description of Iterative Reflections of Monads 159

which give rise to two different equation morphism e, f : { x } →M({ x }+{ y }).
These two equations specify the same rational binary tree on { y }:

∗

∗
��
��

y
��
��

∗

∗
��
��

y
��
��

∗

y
��
��

However, the above two equations will lead to two distinct elements in the colimit
of the diagram given by the forgetful functor on EQ′

Y—this is due to the fact that
any morphism in EQ′

Y preserves the height of the binary trees on the right-hand
side of recursive equations.

Lemma 3.8. The category EQY is filtered.

Theorem 3.9. The free iterative algebra M̂Y is a filtered colimit of the diagram
EqY : EQY → A of all guarded equation morphisms in Y , shortly, M̂Y =
colimEqY .

The overall structure of the proof is somewhat similar to the structure of the
proof of Theorem 3.3 in [3]. However, the technical details are different and more
involved.

Sketch of Proof. We denote by M̃Y a colimit of the filtered diagram EqY in A
with colimit morphisms e� : X → M̃Y for all e : X →M(X+Y) in EQY . We first
turn M̃Y into an M-algebra. Recall that since A is locally finitely presentable,
the object MM̃Y is a colimit of the canonical diagram of all morphisms p :
P → MM̃Y with P finitely presentable. Thus, we can define a morphism ρ̃Y :
MM̃Y → M̃Y by specifying its composites ρ̃Y · p with any p : P →MM̃Y with
P finitely presentable. Since M is finitary and X is finitely presentable, for every
p there exists e : X → M(X + Y) in EQY and a morphism p0 : P →MX such
that p =Me� · p0. Now denote by �p, e� the guarded equation morphism

P +X
[p0,η]

��MX
Me ��MM(X + Y)

µ
��M(X + Y) M inr ��M(P +X + Y).

One then proves that the morphisms �p, e�� · inl : P → M̃Y are independent of
the choice of p0, and that they form a cocone of the canonical diagram. Thus,
there exists a unique morphism ρ̃Y : MM̃Y → M̃Y such that ρ̃Y ·p = �p0, e�� · inl
holds for all p as above. One can now prove that ρ̃Y is the structure morphism
of an M-algebra.

Next consider for a finitely presentable object Y the trivial guarded equation
morphism ηY+Y · inr : Y →M(Y + Y) and let η̃Y = (ηY+Y · inr)� : Y → M̃Y .

160 J. Adámek, S. Milius, and J. Velebil

Observe that the morphisms e† : X → M̂Y (e in EQY) form a cocone of the
diagram EqY , thus, there exists a unique morphism i : M̃Y → M̂Y such that
i · e� = e† holds for all e in EQY . One now proves that i : (M̃Y, ρ̃Y)→ (M̂Y, ρY)
is a homomorphism of M-algebras such that i · η̃Y = η̂Y .

Using this property of i one then verifies that for each finitely presentable
object Y and for each e : X →M(X+Y) in EQY the colimit injection e� : X →
M̃Y is the unique morphism such that e� = ρ̃Y ·M [e�, η̃Y] ·e. And this fact is the
crucial ingredient for the verification that the M-algebra (M̃Y, ρ̃Y) is iterative.

For this verification suppose that e : X →M(X+M̃Y) is a guarded equation
morphism with a factor e0 : X →M ′(X + M̃Y)+ M̃Y . Since M ′ is finitary, the
objectM ′(X+M̃Y)+M̃Y is a colimit ofM ′(X+EqY)+EqY . Since X is finitely
presentable, we can choose some equation morphism f : V →M(V +Y) in EQY
and a factorizationw′ : X →M ′(X+V)+V such that e0 = (M ′(X+f �)+f �)·w′.
For w = [mX+V , ηX+V · inr] · w′ define the equation morphism e by

X+V
[w,η·inr]

��M(X + V)
M(η+f)

��M(MX +M(V +Y))
µ·Mcan

��M(X + V + Y).

It is not difficult to prove that e is guarded, whence an object of EQY . Now let
e† = e� · inl : X → M̃Y . One then verifies that e† is a unique solution of e in the
algebra M̃Y .

Since M̂Y is a free iterative algebra on Y we obtain a unique M-algebra
homomorphism j : M̂Y → M̃Y such that j · η̂Y = η̃Y . Then we immediately
have i · j = id, and to see that j · i = id it is sufficient to establish j · i · e� = e�

for all e in EQY . This completes the proof for finitely presentable objects Y ,
and the result also readily extends to arbitrary objects Y by using the canonical
diagram with colimit Y . %&

4 Rational Equation Morphisms

In this section we prove that iterative algebras have a stronger property of solving
equations than stated in their definition. More precisely, it is our goal to show
that every iterative algebra for M is also an iterative algebra for M̂. As an
example consider the monad M of finite binary trees, for which an algebra is
a set A with a binary operation. The algebra A is iterative iff every guarded
system of equations

xi ≈ ti(x1, . . . , xn, a1, . . . , ak) i = 1, . . . , n

where each ti is a finite binary tree on { xi | i = 1, . . . n } + { aj | j = 1, . . . , k }
has a unique solution. However, in lieu of finite trees we can as well take rational
infinite trees on the right-hand sides. That is, in lieu of equation morphisms of
the form e : X →M(X +A) we are allowed to consider all e : X → M̂(X +A),
where M̂ is the monad of free iterative M-algebras (as constructed in Section 3).

Definition 4.1. By a rational equation morphism is meant a morphism : X →
M̂(X + Y) with X finitely presentable.

A Description of Iterative Reflections of Monads 161

The concept of a solution in an iterative M-algebra is based on the following

Notation 4.2. For an iterative M-algebra (A, a) we denote by â : M̂A→ A the
unique homomorphism extending the identity:

â · ρA = a ·Mâ and â · η̂A = id. (4.1)

This is just the counit of the adjunction between the category of iterative al-
gebras for M and the category A. In other words, (A, â) is the corresponding
algebra for the monad M̂. In particular, for the free iterative algebras (M̂Y, ρY) of
Theorem 3.9 the corresponding homomorphism ρ̂Y is the monad multiplication
µ̂Y : M̂M̂Y → M̂Y .

Definition 4.3. By a solution of a rational equation morphism e : X → M̂(X+
A) in an iterative M-algebra (A, a) is meant a morphism e‡ such that e‡ =
â · M̂ [e‡, A] · e holds.

Remark 4.4. In order to state the theorem about unique solutions of rational
equation morphisms e, we need to introduce the concept of e being guarded.
This would be easy if we knew that the monad M̂ is ideal. Although this is
actually true, and we prove this below (see Theorem 5.5), we are in no position
for proving this now. In lieu of the desired equality M̂ = M̂ ′ + Id, we will now
simply introduce a (seemingly arbitrary) subfunctor m̂ : M̂ ′ → M̂ of M̂ , and
relate our concept of guarded equation morphism to M̂ ′—for distinction from
the “real thing” we call this notion “weakly guarded” equation morphism. At
the end of our paper we will indeed verify M̂ = M̂ ′ + Id.

Notation 4.5.

1. We denote by ρ : MM̂ → M̂ the natural transformation whose components
are the algebra morphisms ρY : MM̂Y → M̂Y of the free iterative M-
algebras M̂Y , see Remark 2.7.

2. The monad M̂ = (M̂, η̂, µ̂) of free iterative M-algebras has the unit η̂ given by
universal morphisms of Remark 2.7 and the multiplication µ̂ with µ̂Y = ρ̂Y ,
see Notation 4.2.

Remark 4.6. Recall from [7] that in every locally finitely presentable category
every morphism can be factorized as a strong epimorphism followed by a
monomorphism.

Definition 4.7. We define the subfunctor M̂ ′ of M̂ to be the image of the nat-
ural transformation ρ ·mM̂ : M ′M̂ → M̂ . More precisely, for every object X we
have a strong epimorphism γX and a monomorphism m̂X such that

ρX ·mM̂X = m̂X · γX (4.2)

holds. Obviously, γ : M ′M̂ → M̂ ′ and m̂ : M̂ ′ → M̂ are natural transformations
with m̂ · γ = ρ ·mM̂ .

162 J. Adámek, S. Milius, and J. Velebil

Definition 4.8. A rational equation morphism e : X → M̂(X + Y) is called
weakly guarded if it factorizes through [m̂X+Y , η̂X+Y · inr] : M̂ ′(X + Y) + Y →
M̂(X + Y) as shown below:

X
e ��

e′
����

���
���

���
M̂(X + Y)

M̂ ′(X + Y) + Y

[m̂,η̂·inr]

��

(4.3)

Theorem 4.9. In every iterative M-algebra every weakly guarded rational equa-
tion morphism has a unique solution.

Sketch of Proof. This result generalizes Theorem 4.6 of [3]. Suppose we are given
an iterative M-algebra (A, a) and a weakly guarded rational equation morphism
e as in (4.3). Since γX+A : M ′M̂(X+A)→ M̂ ′(X+A) is a strong epimorphism
we have, by Assumption 2.1, a morphism s : M̂ ′(X + A) →M ′M̂(X + A) with
γX+A · s = id. We define e0 = (s+A) · e′ : X →M ′M̂(X + A) +A. Now apply
Theorem 3.9 and use the fact that M ′ is finitary to see that M ′M̂(X+A)+A =
colim(M ′EqX+A + A). Thus, by the finite presentability of X , there exists an
object g : W →M(W+X+A) in EQX+A and a factorizationw′ : X →M ′W+A
of e0 through the colimit injection M ′g� + A, i. e., e0 = (M ′g� + A) · w′. Let
w = (mW + A) · w′ : X → MW + A and define an equation morphism 〈e〉 :
W +X →M(W +X +A) in EQA by its components as follows

W

g

��

X

w

��

M(W +X +A)

M [inl·ηW ,w,inr]
��

M(MW +A)

M [M inl,η·inr]
��

MW +A

[M inl,η·inr]
��

MM(W +X +A)
µ

�� M(W +X +A)

One readily proves that 〈e〉 is a guarded equation morphism, and therefore
there exists a unique solution 〈e〉† : W +X→A. Now let e‡= 〈e〉† · inr : X→A.
The technical part of the proof is the verification that e‡ is a unique solution
of e. %&

5 The Iterative Reflection

We are ready to prove that for every ideal monad M the monad M̂ of free iterative
algebras (see Remark 2.7) is the free iterative reflection. More detailed:

A Description of Iterative Reflections of Monads 163

(1) M̂ = M̂ ′ + Id with coproduct injections m̂ (Definition 4.7) and η̂,
(2) the multiplication µ̂ has a restriction µ̂′ : M̂ ′M̂ → M̂ ′,
(3) every guarded equation morphism e : X → M̂(X+A) has a unique solution,
(4) the natural transformation

κ ≡ M
Mη̂

��MM̂
ρ

��M̂ (5.1)

is an ideal monad morphism, and
(5) κ has the following universal property: for every ideal monad morphism

λ : M → S, where S is an iterative monad, there exists a unique ideal monad
morphism λ : M̂ → S with λ · κ = λ.

We have to leave (1) to the end and prove the other properties first. We will
use the same terminology as in Section 4: in (3) we speak about weakly guarded
equation morphisms meaning those with a factorization as in (4.3). In (4) and (5)
we use the following notion of weakly ideal monads.

Definition 5.1

1. A weakly ideal monad consists of a finitary monad M = (M,η, µ), a finitary
subfunctor m : M ′ ↪→ M , and a natural transformation µ′ such that the
square (2.1) commutes.

2. Suppose we have two weakly ideal monads M = (M,η, µ,M ′,m, µ′) and M =
(M,η, µ,M

′
,m, µ′). By a weakly ideal monad morphism we understand a

monad morphism h : (M,η, µ) → (M,η, µ) such that there exists a domain-
codomain restriction h′ : M ′ →M

′
of h with m · h′ = h ·m.

3. A weakly ideal monad is called weakly iterative if every weakly guarded equa-
tion morphism has a unique solution.

Lemma 5.2. The monad M̂ of free iterative algebras for M is weakly ideal.

Proof. We only need to supply the restriction µ̂′ : M̂ ′M̂ → M̂ ′ of the monad
multiplication µ̂ : M̂M̂ → M̂ . Then M̂ = (M̂, η̂, µ̂, M̂ ′, m̂, µ̂′) is a weakly ideal
monad.

Observe first that the diagram

M ′M̂M̂
mM̂M̂ ��

M ′µ̂
��

MM̂M̂

Mµ̂

��

ρM̂
��
M̂M̂

µ̂

��

#$��!"
m̂M̂ ·γM̂

M ′M̂
mM̂

�� MM̂ ρ
�� M̂'(��%&

m̂·γ

commutes. In fact, the left-hand square commutes by naturality of m, the rest
follows from Notation 4.5 and Equation (4.2). Thus, by diagonal fill-in there
exists a unique natural transformation µ̂′ : M̂ ′ → M̂ such that the diagram

164 J. Adámek, S. Milius, and J. Velebil

M̂ ′M̂M̂
γM̂

�� ��

M ′µ̂
��

M̂ ′M̂

m̂M̂
��

µ̂′

���
�
�
�
�
�
�
�
�

M ′M̂

γ

��

M̂M̂

µ̂

��

M̂ ′ ��
m̂

��
M̂

(5.2)

commutes. The lower triangle shows that µ′ is the required restriction of µ
(cf. (2.1)). %&

Lemma 5.3. The monad M̂ of free iterative algebras for M is weakly iterative.

Proof. It is trivial to see that Proposition 2.11 extends to weakly ideal monads.
Then the desired result follows from Theorem 4.9. %&

Theorem 5.4

1. The natural transformation κ : M → M̂ is a weakly ideal monad morphism.
2. Let S be an iterative monad. For every weakly ideal monad morphism λ :

M → S there exists a unique weakly ideal monad morphism λ : M̂ → S with
λ = λ · κ.

Sketch of Proof. We omit the proof of item 1 and we sketch the proof of item 2.
For every object Y , we show that SY is an iterative M-algebra. In fact, since

λ : M → S is a monad morphism we obtain an M-algebra µSY ·λSY : MSY → SY .
Suppose that e : X → M(X + SY) is a guarded equation morphism. Then we
form an equation morphism e with respect to the iterative monad S as follows:

X
e �� M(X + SY)

λ∗(ηS
X+SY)

�� S(SX + SY)
µS ·Scan

�� S(X + Y) .

It is not difficult to see that e is guarded, and that there is a 1-1 correspondence
between solutions of e in the algebra SY and solutions of e with respect to S.
Since the latter exists uniquely, so does the former. Now the freeness of M̂Y
as an iterative algebra implies the existence of a unique homomorphism λY of
M-algebras from (M̂Y, ρY) to (SY, µSY · λSY) such that λY · η̂Y = ηSY . One then
proves that λ is a weakly ideal monad morphism with λ = λ · κ, and that λ is
uniquely determined. %&

Theorem 5.5. The iterative reflection of an ideal monad M is the monad M̂ of
free iterative M-algebras.

Proof. In view of the preceding results this amounts to proving that M̂ = M̂ ′+Id
with injections m̂ and η̂.

It is known that every weakly ideal monad S has an ideal coreflection c : S∗ →
S and S∗ is iterative whenever S is weakly iterative (see [3], Proposition 6.7). More

A Description of Iterative Reflections of Monads 165

detailed: let S be weakly ideal with the corresponding subfunctor s : S′ ↪→ S.
Then for the functor S∗ = S′ + Id there is a structure of a monad S∗ with
unit inr : Id → S′ + Id and multiplication µ∗ : S∗S∗ → S∗ such that the
morphism c = [s, η] : S′ + Id → S is a weakly ideal monad morphism from S∗

to S. Moreover, every weakly ideal monad morphism from an ideal monad into
S uniquely factorizes through c. We now apply this to S = M̂: we obtain an
iterative monad M̂∗ = (M̂ ′ + Id, inr, µ̂∗) and a weakly ideal monad morphism
c = [m̂, η̂] : M̂∗ → M̂. We prove that c is an isomorphism—this implies the
desired statement M̂ = M̂ ′ + Id.

Since M is an ideal monad, the weakly ideal monad morphism κ : M → M̂
factorizes as κ = c · κ∗ for an ideal monad morphism κ∗ : M → M̂∗. By the
universal property of Theorem 5.4 we obtain an ideal monad morphism d : M̂ →
M̂∗ such that d · κ = κ∗. Then we get c · d · κ = κ from which we immediately
conclude that c · d = id. Now, d · c is an ideal monad endomorphism on the ideal
coreflection M̂ ′+Id of M̂ . Thus, the equality c·d·c = c proves that d·c = id. This
establishes that M̂ is a coproduct of M̂ ′ and Id with injections m̂ : M̂ ′ → M̂
and η̂ : Id→ M̂ as desired. %&

Corollary 5.6. The full embedding of the category IFM(A) of iterative monads
to the category FMid(A) of ideal monads has a left adjoint.

6 Conclusions and Future Research

For every ideal monad M of Set we proved that the monad M̂ of free iterative
Eilenberg-Moore algebras for M is iterative. In fact, M̂ is the iterative reflection
of M. We thus derive a number of examples of iterative monads, cf. Examples 2.8:

1. For the finite list monadMX = X∗ we obtain the iterative reflection M̂X =
X∗ ∪ {⊥} where ⊥ is an absorbing element.

2. Analogously, for the finite bag monad M we have M̂X =MX ∪{⊥} where
⊥ is an absorbing element.

3. For the finite tree monad M, the reflection is the monad M̂ of rational trees.
4. An analogous example works for non-ordered finite trees: here M̂ is the

monad of rational unordered trees. This follows from results in [2].
5. The iterative reflection of the unary algebra monad MX = X × Σ∗ is the

monad M̂X = X ×Σ∗ +Σ∗(Σ∗)ω .

Although the existence of iterative reflections was established in [5] for all ideal
monads on extensive, locally finitely presentable categories, in the present pa-
per we restricted our attention to monads in Set-like categories. The reason was
purely technical: at two stages, in the proofs of Lemma 3.8 and Theorem 4.9, we
needed the hypothesis that every strong epimorphism splits. We do not know
whether our results hold in general extensive, locally finitely presentable cate-
gories. And for the development of our paper those results seem indispensable.
The generalization of our results to a larger collection of base categories is there-
fore left as an open problem.

166 J. Adámek, S. Milius, and J. Velebil

In the future we intend to work on a connection of our results to iteration as
applied in process algebra.

Acknowledgment. We are grateful to one referee who suggested several im-
provements of the presentation of our paper.

References

1. Adámek, J., Börger, R., Milius, S., Velebil, J.: Iterative algebras: How iterative are
they? Theory Appl. Categ. 19, 61–92 (2008)

2. Adámek, J., Milius, S.: Terminal coalgebras and free iterative Theories. Inform. and
Comput. 204, 1139–1172 (2006)

3. Adámek, J., Milius, S., Velebil, J.: Iterative algebras at work. Math. Structures
Comput. Sci. 16.6, 1085–1131 (2006)

4. Adámek, J., Milius, S., Velebil, J.: Elgot algebras. Logical Methods Comput.
Sci. 2(5:4), 31 (2006)

5. Adámek, J., Milius, S., Velebil, J.: Iterative reflections of monads. Math. Structures
Comput. Sci. (accepted for publication)

6. Adámek, J., Milius, S., Velebil, J.: A description of iterative reflections of monads,
http://www.stefan-milius.eu

7. Adámek, J., Rosický, J.: Locally presentable and accessible categories. Cambridge
University Press, Cambridge (1994)

8. Barr, M.: Coequalizers and free triples. Math. Z. 116, 307–322 (1970)
9. Elgot, C.C.: Monadic computation and iterative algebraic theories. In: Rose, H.E.,

Shepherdson, J.C. (eds.) Logic Colloquium 1973. North-Holland Publishers, Ams-
terdam (1975)

10. Elgot, C.C., Bloom, S., Tindell, R.: On the algebraic structure of rooted trees. J.
Comput. System Sci. 16, 361–399 (1978)

11. Gabriel, P., Ulmer, F.: Lokal präsentierbare Kategorien. Lecture N. Math., vol. 221.
Springer, Berlin (1971)

12. Ginali, S.: Regular trees and the free iterative theory. J. Comput. System Sci. 18,
228–242 (1979)

13. Mac Lane, S.: Categories for the working mathematician, 2nd edn. Springer, Hei-
delberg (1998)

14. Nelson, E.: Iterative algebras. Theoret. Comput. Sci. 25, 67–94 (1983)
15. Tiuryn, J.: Unique fixed points vs. least fixed points. Theoret. Comput. Sci. 12,

229–254 (1980)

http://www.stefan-milius.eu

Tighter Bounds for the
Determinisation of Büchi Automata�

Sven Schewe

University of Liverpool
sven.schewe@liverpool.ac.uk

Abstract. The introduction of an efficient determinisation technique
for Büchi automata by Safra has been a milestone in automata theory.
To name only a few applications, efficient determinisation techniques
for ω-word automata are the basis for several manipulations of ω-tree
automata (most prominently the nondeterminisation of alternating tree
automata) as well as for satisfiability checking and model synthesis for
branching- and alternating-time logics. This paper proposes a deter-
minisation technique that is simpler than the constructions of Safra,
Piterman, and Muller and Schupp, because it separates the principle
acceptance mechanism from the concrete acceptance condition. The prin-
ciple mechanism intuitively uses a Rabin condition on the transitions; we
show how to obtain an equivalent Rabin transition automaton with ap-
proximately (1.65 n)n states from a nondeterministic Büchi automaton
with n states. Having established this mechanism, it is simple to develop
translations to automata with standard acceptance conditions. We can
construct standard Rabin automata whose state-space is bilinear in the
size of the input alphabet and the state-space of the Rabin transition au-
tomaton, or, for large input alphabets, contains approximately (2.66 n)n

states, respectively. We also provide a flexible translation to parity au-
tomata with O(n!2) states and 2n priorities based on a later introduction
record, and hence connect the transformation of the acceptance condition
to other record based transformations known from the literature.

1 Introduction

Automata over infinite words have been introduced by Büchi in his proof that
the monadic second-order logic of one successor (S1S) is decidable [1]. Büchi au-
tomata are an adaptation of finite automata to languages over infinite sequences.
They differ from finite automata only with respect to their acceptance condi-
tion: While finite runs of finite automata are accepting if a final state is visited
at the end of the run, an infinite run of a Büchi automaton is accepting if a
final state is visited infinitely many times. Unfortunately, this close relationship
between finite and Büchi automata does not imply that automata manipulations

� This work was partly supported by the EPSRC through the grand EP/F033567/1
Verifying Interoperability Requirements in Pervasive Systems.

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 167–181, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

168 S. Schewe

for Büchi automata are equally simple as those for finite automata [2]. In particu-
lar, Büchi automata are not closed under determinisation: While a simple subset
construction suffices to efficiently determinise finite automata [2], deterministic
Büchi automata are strictly less expressive1 than nondeterministic Büchi au-
tomata. Determinisation therefore requires automata with more involved accep-
tance mechanisms [3,4,5], such as automata with Muller’s subset condition [6,7]
or Rabin’s [3,4] accepting pair condition. Also, an nΩ(n) lower bound for the de-
terminisation of Büchi automata has been established [8] even if we allow for Mul-
ler objectives, which implies that a simple subset construction cannot suffice.

The development of determinisation techniques for Büchi automata was in-
spired by the problem of synthesising reactive systems [9,10], a problem originally
introduced by Church [9] in 1962: Given a relation R ⊆ (2I)ω × (2O)ω repre-
sented by a Büchi automaton (or an S1S or LTL formula), we want to find a
function p : (2I)ω → (2O)ω such that (π, p(π)) ∈ R satisfies the relation for
all infinite sequences π ∈ (2I)ω. Church’s problem was solved independently by
Rabin [11], and Büchi and Landweber [12,13] in 1969. Since their seminal works,
the relation [14] between finite automata over infinite structures [11] and finite
games of infinite duration [12,13] became apparent.

Determinisation is a key ingredient in these proofs. Rabin’s extension of the
correspondence between automata and monadic logic to the case of trees [11], for
example, builds on McNaughton’s determinisation theorem [7], and Muller and
Schupp’s [4] efficient nondeterminisation technique for alternating tree automata
is closely linked to the determinisation of nondeterministic word automata. In-
deed, the standard technique to nondeterminise an alternating automatonAwith
a memoryless acceptance conditions (such as a parity or Rabin automata [15]) is
to enrich the input tree with a (guessed) memoryless strategy. Nondeterminising
A can then be reduced to determinise the resulting universal automaton [4,14],
and projecting away the strategy. Improved determinisation techniques thus
have a considerable impact in automata theory and its application to mod-
ule checking [16], satisfiability checking [1,11,17,18], and open synthesis [10].

Contribution. This paper contributes a determinisation technique for Büchi
automata that simplifies the constructions of Safra [3] and Piterman [5] by sepa-
rating the principle data structure of the algorithm — the history trees proposed
in Section 3 — from the acceptance mechanism. It is my believe that this sep-
arations eases teaching and understanding the principles, but it also provides
better bounds on the size of the resulting automata.

The central advancement of the proposed method over the previous leading
determinisation techniques [3,4,5] is that we abandon the introduction of explicit
names for the nodes. One positive effect of this decision is that it yields a leaner
and simpler core data structure: The number hist(n) of history trees for Büchi
automata with n states is in o

(
(1.65n)n

)
. We use this observation to construct a

deterministic Rabin automaton with only hist(n) states whose pairs are defined

1 Deterministic Büchi automata cannot, for example, recognise the simple ω-regular
language that consists of all infinite words that contain only finitely many a’s.

Tighter Bounds for the Determinisation of Büchi Automata 169

on the transitions. As Rabin tree automata have a memoryless accepting run if
they accept a tree [15], this implies a hist(n) bound on the size of a program
that solves Church’s problem as well as an l · hist(n) bound on the size of an
ordinary deterministic Rabin automata on alphabets with l letters.

If we want the size of the Rabin automaton to be independent of the alphabet
size, or if we want to construct a deterministic parity automaton because of the
computational advantages attached to parity objectives, we have to add memory
to the history trees. The required amount of memory depends on the acceptance
mechanism. For Rabin automata, it suffices to store the acceptance information
from the last transition, which only leads to a minor blow-up of the state-space
to o
(
(2.66n)n

)
states.

For parity automata, we turn to the proved method of keeping a record of the
most recent relevant events in the tradition of later [19] and index appearance
records [4]: We store (an abstraction of) the order in which the nodes of the
current history tree have been introduced in a later introduction record.

The separation of concerns allows us to phrase our procedure as a nondeter-
ministic determinisation technique: While the update rule for history trees is
strict, the update rule for the later introduction record offers some leeway. This
leeway is likely to reduce the size of a deterministic automaton in practice.

Waving this advantage, we still yield a determinisation procedure similar to
Piterman’s [5], but with an improved complexity analysis (O(n!2) vs. O(nn n!)).
However, a reviewer has pointed me to unpublished work of Liu and Wang [20],
who independently2 improved Piterman’s complexity analysis to a similar bound.

Organisation of the Paper. In the following section, we recapitulate the dif-
ferent types of automata used in this paper. Section 3 then introduces history
trees, which serve as the main data structure used in the proposed determinisa-
tion techniques, transitions between them, and a principle approach to exploit
this data structure in an efficient determinisation technique. Finally, we use this
blueprint of a determinisation technique in Sections 4 and 5 to devise different
translations from nondeterministic Büchi tree automata to deterministic Rabin
automata, and one to deterministic parity automata, respectively.

2 Preliminaries — Rabin, Parity and Büchi Automata

Nondeterministic Rabin automata are used to represent ω-regular languages
L ⊆ Σω = ω → Σ over a finite alphabetΣ. A nondeterministic Rabin automaton
A = (Σ,Q, I, δ, {(Ai, Ri) | i ∈ J}) is a five tuple, consisting of a finite alphabet
Σ, a finite set Q of states with a non-empty subset I ⊆ Q of initial states, a
transition function δ : Q×Σ → 2Q that maps states and input letters to sets of
successor states, and a finite family {(Ai, Ri) ∈ 2Q × 2Q | i ∈ J} of Rabin pairs.

2 I was not aware of the unpublished work of Liu and Wang [20] when writing this
paper. While their improvement of Piterman’s analysis was submitted after the
acceptance of this paper, I would like to point out that their work is older.

170 S. Schewe

Nondeterministic Rabin automata are interpreted over infinite sequences α :
ω → Σ of input letters. An infinite sequence ρ : ω → Q of states of A is called
a run of A on an input word α if the first letter ρ(0) ∈ I of ρ is an initial state,
and if, for all i ∈ ω, ρ(i+ 1) ∈ δ

(
ρ(i), α(i)

)
is an α(i)-successor state of ρ(i).

A run ρ : ω → Q is accepting if, for some index i ∈ J , some state q ∈ Ai in the
acceptance set Ai of the Rabin pair (Ai, Ri), but no state q′ ∈ Ri from the reject-
ing setRi of this Rabin pair appears infinitely often in ρ. (∃i ∈ J. inf (ρ)∩Ai �= ∅∧
inf (ρ)∩Ri = ∅ for inf (ρ) = {q ∈ Q | ∀i ∈ ω ∃j > i such that ρ(j) = q}). A word
α : ω → Σ is accepted by A if A has an accepting run on α, and the set L(A) =
{α ∈ Σω | α is accepted by A} of words accepted by A is called its language.

For technical convenience we also allow for finite runs q0q1q2 . . . qn with
δ
(
qn, α(n)

)
= ∅. Naturally, no finite run satisfies the Rabin condition; finite runs

are therefore rejecting, and have no influence on the language of an automaton.
Two particularly simple types of Rabin automata are of special interest: parity

(or Rabin chain) and Büchi automata. We call a Rabin condition a Rabin chain
condition if J is an initial sequence of the natural numbers ω, and if Ri ⊂ Ai
and Ai ⊂ Ri+1 holds for all indices. The Rabin chain condition is nowadays
usually referred to by the term parity condition, because it can be represented
by a priority function pri : Q → ω that maps a state q to 2i + 2 (called the
priority of q) if it appears in Ai but not in Ri, and to 2i + 1 if it appears in
Ri but not in Ai−1. A run ρ of A then defines an infinite trace of priorities,
and the parity of the lowest priority occurring infinitely often determines if ρ is
accepting. That is, ρ is accepting if min(inf (pri(ρ))) is even. We denote parity
automata A = (Σ,Q, I, δ, pri), using this priority function. Büchi automata
are even simpler: they are Rabin automata with only one accepting pair (F, ∅)
that has an empty set of rejecting states (or, likewise, parity automata with a
priority function pri whose codomain is {0, 1}. A Büchi automaton is denoted
A = (Σ,Q, I, δ, F), and the states in F are called final states.

A Rabin, parity, or Büchi automaton is called deterministic, if it has a single
initial state and its transition function is deterministic. (That is, if |δ(q,σ)| ≤ 1
holds true for all states q ∈ Q and all input letters σ ∈ Σ of the automata A.)

3 Büchi Determinisation

The determinisation technique discussed in this section is a variant of Safra’s [3]
determinisation technique, and the main data structure — the history trees pro-
posed in the first subsection — can be viewed as a simplification of Safra trees [3].

3.1 History Trees

History trees are an abstraction of the possible initial sequences of runs of a
Büchi automaton A on an input word α. They can be viewed as a simplification
and abstraction of Safra trees [3]. The main difference between Safra trees and
the simpler history trees introduced in this paper is the omission of explicit
names for the nodes.

Tighter Bounds for the Determinisation of Büchi Automata 171

a, b, c, d, e, f, g

b, e, f c d, g

e f g

0 1 2

0 1 0

Fig. 1. Example History Tree. The labels of the children of every node are disjoint,
and their union is a strict subset of their parent’s label. The label of the root node
contains the reachable states of the Büchi automaton A on the input seen so far.

An ordered tree T ⊆ ω∗ is a finite prefix and order closed subset of finite
sequences of natural numbers. That is, if a sequence τ = t0, t1, . . . tn ∈ T is in
T , then all sequences s0, s1, . . . sm with m ≤ n and, for all i ≤ m, si ≤ ti, are
also in T . For a node τ ∈ T of an ordered tree T , we call the number of children
of τ its degree, denoted by degT (τ) = |{i ∈ ω | τ · i ∈ T }|.

A history tree (cf. Figure 1) for a given nondeterministic Büchi automaton
A = (Σ,Q, I, δ, F) is a labelled tree 〈T, l〉, where T is an ordered tree, and
l : T → 2Q � {∅} is a labelling function that maps the nodes of T to non-empty
subsets of Q, such that

– the label of each node is a proper superset of the union of the labels of its
children, and

– the labels of different children of a node are disjoint.

We call a node τ the host node of a state q, if q ∈ l(τ) is in the label of τ , but
not in the label of any child of τ .

Our estimation of the number of history trees for a given Büchi automaton
draws from an estimation of Temme [21] (in the representation of Friedgut,
Kupferman, and Vardi [22]) for the number of functions from a set with n ele-
ments onto a set with βn elements, where β ∈]0, 1[is a positive rational number
smaller than 1: For the unique positive real number x that satisfies βx = 1−e−x,
and for a = − lnx+β ln(ex−1)− (1−β)+(1−β) ln

(1−β
β

)
, the number of these

functions is in [(1+o(1))M(β)n]n forM(β) =
(
β

1−β
)1−β

e(a−β). This simplifies to

m(x) =
1
ex

(ex − 1)β(x)

for β(x) = 1−e−x

x andm(x) = M
(
β(x)

)
when using ea−β = 1

ex (ex−1)β
(1−β
β

)1−β ,
where x can be any strictly positive real number.

To estimate the number hist(n) of history trees for Büchi automata with
n states, the number order (m) of trees with m nodes can be estimated by 4m.
(More precisely, order (m) = (2m−2)!

m!(m−1)! is the (m−1)-st Catalan number [5].) The

172 S. Schewe

a

b

c d

e

f g

Fig. 2. Relevant Fragment of a Büchi Automaton. This figure captures all tran-
sitions for an input letter σ from the states in the history tree from Figure 1. The
double lines indicate that the states c, f , and g are final states.

number of history trees with m nodes for a Büchi automaton with n states is the
product of the number order (m) of ordered trees with m nodes and functions
from the set of n states onto the set ofm nodes (if the root is mapped to all states
of A), plus the functions the automata states to a set with (m + 1) elements.
Together with the estimation from above, we can numerically estimate

hist(n) ∈ sup
x>0

O
(
m(x) · 4β(x)) ⊂ o((1.65n)n

)
.

3.2 History Transitions

For a given nondeterministic Büchi automaton A = (Σ,Q, I, δ, F), history tree
〈T, l〉, and input letter σ ∈ Σ, we construct the σ-successor 〈T̂ , l̂〉 of 〈T, l〉 in
four steps. (An example transition for the history tree shown in Figure 1 for the
σ-transition of an automaton A shown in Figure 2 is described in Figures 3–6.)

In a first step (shown in Figure 3), we construct the labelled tree 〈T ′, l′ : T ′ →
2Q〉 such that

– τ ∈ T ′ ⊃ T is a node of T ′ if, and only if, τ ∈ T is in T or τ = τ ′ · degT (τ ′)
is formed by appending the degree degT (τ ′) of a node τ ′ ∈ T in T to τ ′,

– the label l′(τ) = δ(l(τ),σ) of an old node τ ∈ T is the set δ(l(τ),σ) =⋃
q∈l(τ) δ(q,σ) of σ-successors of the states in the label of τ , and

– the label l′(τ · degT (τ ′)) = δ(l(τ),σ)∩F of a new node τ · degT (τ) is the set
of final σ-successors of the states in the label of τ .

After this step, each old node is labelled with the σ-successors of the states
in its old label, and every old node τ has spawned a new sibling τ ′ = τ · deg(τ),
which is labelled with the final states l′(τ ′) = l′(τ)∩F in the label of its parent τ .

The new tree is not necessarily a history tree: (1) nodes may be labelled with
an empty set (like node 000 of Figure 3), (2) the labels of siblings do not need to
be disjoint (f and g are, for example, in the intersection of the labels of nodes
2 and 3 in Figure 3), and (3) the union of the children’s labels do not need to
form a proper subset of their parent’s label (the union of the labels of node 20
and 21, for example, equals the label of node 2 in Figure 3).

Tighter Bounds for the Determinisation of Büchi Automata 173

a, b, c, d, e, f, g

b, c, d d e, f, g c, f, g

b b, c c d e, f f, g

c f

0 1 2 3

0 1 2 0 0 1

0 0 0

Fig. 3. First Step of the History Transition. This figure shows the tree resulting
from the history tree of Figure 1 for the Büchi automaton and transition from Figure 2
alter the first step of the history transition. Every node of the tree from Figure 3 has
spawned a new child, whose label may be empty (like the label of node 10) if no final
state is reachable upon the read input letter from any state in the label of the parent
node. (States printed in red are deleted from the respective label in the second step.)

a, b, c, d, e, f, g

b, c, d e, f, g

b c e, f g

c f

0
1

2 3

0 1 2 0 0 1

0 0 0

Fig. 4. Second Step of the History Transition. This figure shows the labelled tree
that results from the second step of the history transition. the states from the labels of
the tree shown in Figure 3 that also occur in the label of an older sibling (like the state
f from the old label of the node 21) or in the label of an older sibling of an ancestor of
the node (like the state d from the old label of the node 10) are deleted from the label.
In this tree, the labels of the siblings are pairwise disjoint, but may be empty, and the
union of the label of the children of a node are not required to form a proper subset of
their parent’s label. (The nodes colour coded red are deleted in the third step.)

174 S. Schewe

a, b, c, d, e, f, g

b, c, d e, f, g

b c

0 2

0 1

Fig. 5. Third Step of the History Transition. The nodes with (a) an empty label
(nodes 000, 02, 1, 10 and 3 from the tree shown in Figure 4) and (b) the descendants of
nodes whose children’s labels decomposed their own label (nodes 010, 20, 200 and 21)
have been deleted from the tree. The labels of the siblings are pairwise disjoint, and
form a proper subset of their parent’s label, but the tree is not order closed. The nodes
that are renamed when establishing order closedness in the final step are depicted in
red. Node 01 is the only accepting node (indicated by the double line): Its siblings have
been removed due to (b), and, different to node 2, node 01 is stable.

In the second step, property (2) is re-established. We construct the tree
〈T ′, l′′ : T ′ → 2Q〉, where l′′ is inferred from l′ by removing all states in the
label of a node τ ′ = τ · i and all its descendants if it appears in the label l′(τ · j)
of an older sibling (j < i). In Figure 3, the states that are deleted by this rule are
depicted in red, and the tree resulting from this deletion is shown in Figure 4.

Properties (1) and (3) are re-established in the third transformation step. In
this step, we construct the tree 〈T ′′, l′′ : T ′′ → 2Q〉 by (a) removing all nodes τ
with an empty label l′′(τ) = ∅, and (b) removing all descendants of nodes whose
label is disintegrated by the labels of its descendants from T ′. (We use l′′ in spite
of the type mismatch, strictly speaking we should use its restriction to T ′′.) The
part of the tree that is deleted during the third step is depicted in red in Figure 4,
and the tree resulting from this transformation step is shown in Figure 5.

We call the greatest prefix and order closed subset of T ′′ the set of stable
nodes and the stable nodes whose descendants have been deleted due to rule (b)
accepting. In Figure 5, the unstable node 2 is depicted in red, and the accepting
leaf 01 is marked by a double line. (Note that only leaves can be accepting.)

The tree resulting from this transformation satisfies the properties (1)–(3),
but it is no longer order closed. The tree from Figure 5, for example, has a
node 2, but no node 1. In order to obtain a proper history tree, the order
closedness is re-established in the final step of the transformation. We construct
the σ-successor 〈T̂ , l̂ : T̂ → 2Q � {∅}〉 of 〈T, l〉 by “compressing” T ′′ to a an
order closed tree, using the compression function comp : T ′′ → ω∗ that maps
the empty word ε to ε, and τ · i to comp(τ) · j, where j = |{k < i | τ ·k ∈ T ′′}| is
the number of older siblings of τ · i. For this function comp : T ′′ → ω∗, we simply
set T̂ = {comp(τ) | τ ∈ T ′′} and l̂(comp(τ)) = l′′(τ) for all τ ∈ T ′′. The nodes

Tighter Bounds for the Determinisation of Büchi Automata 175

a, b, c, d, e, f, g

b, c, d e, f, g

b c

0 1

0 1

Fig. 6. Final Step of the History Transition. The history tree that results from the
complete history transition, has the shape and labelling of the tree from Figure 5, but
the former node 2 has been renamed to 1 in order to re-establishing order closedness.

that are renamed during this step are exactly those which are unstable. In our
example transformation this is node 2 (depicted in red in Figure 5).

Figure 6 shows the σ-successor for the history tree of Figure 1 and an au-
tomaton with σ-transitions as shown in Figure 2.

3.3 Deterministic Acceptance Mechanism

For a nondeterministic Büchi automaton A = (Σ,Q, I, δ, F), we call the history
tree 〈T0, l0〉 = 〈{ε}, ε �→ I〉 that contains only the empty word and maps it to
the initial states I of A the initial history tree.

For an input word α : ω → Σ we call the sequence 〈T0, l0〉, 〈T1, l1〉, . . . of
history trees that start with the initial history tree 〈T0, l0〉 and where, for every
i ∈ ω, 〈Ti, li〉 is followed by α(i)-successor 〈Ti+1, li+1〉 the history trace or α. A
node τ in the history tree 〈Ti+1, li+1〉 is called stable or accepting, respectively,
if it is stable or accepting in the α(i)-transition from 〈Ti, li〉 to 〈Ti+1, li+1〉.

Proposition 1. An ω-word α is accepted by a nondeterministic Büchi automa-
ton A if, and only if, there is a node τ ∈ ω∗ such that τ is eventually always
stable and always eventually accepting in the history trace of α.

Proof. For the “if” direction, let τ ∈ ω∗ be a node that is eventually always stable
and always eventually accepting, and let i0 < i1 < i2 < . . . be an ascending chain
of indices such that τ is stable for the α(j)-transitions from 〈Tj , lj〉 to 〈Tj+1, lj+1〉
for all j ≥ i0, and accepting for the α(i−1)-transition from 〈Ti−1, li−1〉 to 〈Ti, li〉
for all indices i in the chain.

By definition of the σ-transitions, for every j ∈ ω, the finite automaton Aj =
(Σ,Q, lij (τ), δ, F) has, for every state q ∈ lij+1(τ), a run ρqj on the finite word
α(ij)α(ij+1)α(ij+2) . . . α(ij+1 − 1) that contains an accepting state and ends
in q. Also, A = (Σ,Q, I, δ, F) read as a finite automaton has, for every state
q ∈ li0(τ), a run ρq on the finite word α(0)α(1)α(2) . . . α(i0 − 1) that ends in q.
Let us fix such runs, and define a tree T ⊆ Q∗ that contains, besides the empty
word and the initial states, a node iq0 of length 2 if q0 is in lij+1(τ) and i is the

176 S. Schewe

first letter of ρq0 , and a node iq0q1q2 . . . qkqk+1 of length k+1 > 2 if iq0q1q2 . . . qk
is in T , qk+1 is in lik+1(n) and qk is the first letter of ρqk+1

k . By construction, T
is an infinite tree with finite branching degree, and therefore contains an infinite
path iq0q1q2 . . . by König’s Lemma. By construction, ρq0ρq10 ρ

q2
1 . . . is a run of A

on α that visits some accepting state infinitely many times.
To demonstrate the “only if” direction, let us fix an accepting run, ρ = q0q1 . . .

of A on an input word α. Then we can define the sequence ϑ = τ0τ1 . . . of
nodes such that, for the history trace 〈T0, l0〉, 〈T1, l1〉, . . ., τi is the host node of
qi ∈ li(τi) for the history tree 〈Ti, li〉. Let l be the shortest length |τi| of these
nodes that occurs infinitely many times.

It is easy to see that the initial sequence of length l of the nodes in ϑ eventually
stabilises: Let i0 < i1 < i2 < . . . be an infinite ascending chain of indices such
that the length |τj | ≥ l of the j-th node is not smaller than l for all j ≥ i0, and
equal to l = |τi| for all indices i ∈ {i0, i1, i2, . . .} in this chain. This implies that
τi0 , τi1 , τi2 , . . . is a descending chain when the single nodes τi are compared by
lexicographic order, and hence almost all τi := π are equal. This also implies
that π is eventually always stable.

Let us assume that π is accepting only finitely many times. Then we can
chose an index i from the chain i0 < i1 < i2 < . . . such that τj = π holds for all
indices j ≥ i, and π is not accepting for any j ≥ i. (Note that every time the
length of τj is reduced to l, τj is unstable, which we excluded, or accepting, which
violates the assumption.) But now we can pick an index i′ > i such that qi′ ∈ F
is a final state, which, together with τi′ = π, implies that π is accepting for(
〈Ti′−1, li′−1〉, α(i′ − 1), 〈Ti′ , li′〉

)
. (Note that qi′ is in the label of π · degTi′−1

(π)
in the labelled tree 〈T ′

i′−1, l
′
i′−1〉 resulting from the first step of the σ-transition

of history trees.) � %&

4 From Nondeterministic Büchi Automata to
Deterministic Rabin Automata

In this section, we discuss three determinisation procedures for nondeterminis-
tic Büchi automata. First we observe that the acceptance mechanism from the
previous section already describes a deterministic automaton with a Rabin con-
dition, but the Rabin condition is on the transitions. This provides us with the
first corollary:

Corollary 1. For a given nondeterministic Büchi automaton with n states, we
can construct a deterministic Rabin transition3 automaton with o

(
(1.65n)n

)
states and 2n − 1 accepting pairs that recognises the language L(A) of A. %&

3 A transition automaton records the history of transitions in addition to the history of
states. For such a history of transitions, we can translate the acceptance condition
1 : 1 by using the nodes as index set, and (Aτ , Rτ) where Aτ are the transitions
where τ is accepting, and Rτ are the transitions where τ is unstable as Rabin pairs.

Tighter Bounds for the Determinisation of Büchi Automata 177

To see that the number of accepting pairs is bounded by 2n − 1, note that the
labels of siblings are disjoint, and that the label of every node contains a state
not in the label of any of its children. Thus, the number of ancestors and their
older siblings of every node is strictly smaller than n. Thus, a node i0i1i2 . . . in
can be represented by a sequence of i0 0’s followed by a 1, followed by i1 0’s and
so on, such that every node that can be accepting is representable by a sequence
of strictly less than n 0’s and 1’s.

There are two obvious ways to transform an automaton with a Rabin condition
on the transitions to an automaton with Rabin conditions on the states. The
first option is to “postpone” the transitions by one step. The new states are
(with the exception of one dedicated initial state q̂0) pairs, consisting of a state
of the transition automaton and the input letter read in the previous round.
Thus, if the deterministic Rabin transition automaton has the run ρ on an input
word α, then the resulting ordinary deterministic Rabin automaton has the run
ρ′ = q̂0,

(
ρ(0), α(0)

)
,
(
ρ(1), α(1)

)
,
(
ρ(2), α(2)

)
,

Corollary 2. For a given nondeterministic Büchi automaton A with n states
over an alphabet with l letters, we can construct a deterministic Rabin automaton
with l ·o

(
(1.65n)n

)
states and 2n−1 accepting pairs that recognises the language

L(A) of A. %&

Given that the alphabets tend to be small in practice — in particular compared
to (1.65n)n — a blow-up linear in the alphabet size is usually acceptable. How-
ever, an alphabet may, in principle, have up to 2n

2
distinguishable letters, and

the imposed bound is not very good for extremely large alphabets. (Two letters
σ1 and σ2 can be considered equivalent or indistinguishable for a Büchi automa-
ton A = (Σ,Q, I, δ, F) if δ(q,σ1) = δ(q,σ2) holds true for all states q ∈ Q of
the automaton A.) As an alternative to preserving one input letter in the state-
space, we enrich the history trees with information about which node of the
resulting tree was accepting or unstable in the third step of the transition.

To estimate the number of different enriched history trees with n nodes, we
have to take into account that the unstable and accepting nodes are not arbi-
trarily distributed over the tree: Only leaves can be accepting, and if a node of
the tree in unstable, then all of its descendants and all of its younger siblings
are unstable, too. Furthermore, only stable nodes can be accepting and the root
cannot be unstable. (An unstable root implies that the Büchi automaton has
no run for this word. Instead of allowing for an unstable root, we use a partial
transition function.)

The number eOrder(n) of ordered trees enriched with this information can be
recursively computed using the following case distinction: If the eldest child 0 of
the root is unstable, then all nodes but the root are unstable. Hence, the number
of trees of this form is order (n) = (2n−2)!

n!(n−1)! . For the case that the eldest child 0
of the root is stable, there are eOrder(n− 1) trees where the size of the sub-tree
rooted in 0 is n−1, and eOrder(i) ·eOrder(n− i) trees where the sub-tree rooted
in 0 contains i ∈ {1, . . . , n−2} nodes. (Every tree can be uniquely defined by the
tree rooted in 0, and the remaining tree. The special treatment of the case that

178 S. Schewe

0 has no younger siblings is due to the fact that the root cannot be accepting if
it has a child.) Thus, we have eOrder(1) = 2 (as a leaf, the root can be accepting
or stable but not accepting), and

eOrder (n) = eOrder(n− 1) + order (n) +
n−2∑
i=1

eOrder(i)eOrder (n− 1)

for n ≥ 2. A numerical analysis4 of this sequence shows that eOrder(n) < 6.738n.
This allows for an estimation of the number eHist(n) of enriched history trees
for a Büchi automaton with n states similar to the estimation of the number
hist(n) of history trees:

eHist(n) ∈ sup
x>0

O
(
m(x) · 6.738β(x)) ⊂ o((2.66n)n

)
.

Corollary 3. Given a nondeterministic Büchi automaton A with n states, we
can construct a deterministic Rabin automaton with o

(
(2.66n)n

)
states and

2n − 1 accepting pairs that recognises the language L(A) of A. %&

5 From Nondeterministic Büchi Automata to
Deterministic Parity Automata

From a practical point of view, it is often preferable to trade state-space for sim-
pler acceptance conditions. Algorithms that solve Rabin games, for example, are
usually exponential in the index, while the index of the constructions discussed
in the previous sections is exponential in the size to the Büchi automaton we
want to determinise.

While a reasonable index has been a side product of previous determinisation
techniques [3,4,5], the smaller state-spaces resulting from the determinisation
techniques discussed in Sections 3 and 4 are partly paid for by a higher index.

Traditional techniques for the transformation of Muller and Rabin or Streett
to parity acceptance conditions use later [19] and index appearance records [4],
respectively. However, using index (or later) appearance records would result in
an exponential blow-up of the state-space, and hence in a doubly exponential
construction. We therefore introduce the later introduction record as a record
tailored for ordered trees.

A later introduction record (LIR) stores the order in which the nodes of the
ordered trees have been introduced. For an ordered tree T with m nodes, a later
introduction record is a sequence τ1, τ2, . . . τm that contains the nodes of T , such
that every node appears after its parent and older siblings.

To analyse the effect of adding a later introduction record to a history tree
on the state-space, we slightly change the representation: We represent the tree
structure of a tree with m nodes and its later introduction record by a sequence

4 eOrder(n+1)
eOrder(n)

is growing, and
(

eOrder(n+1)
eOrder(n)

)(
1 + 2

n

)
is falling for growing n ≥ 2.

Tighter Bounds for the Determinisation of Büchi Automata 179

of m − 1 integers i2, i3, . . . im, such that ij points to the position < j of the
parent of node τj in the later introduction record τ1, τ2, . . . τm. (The root τ1 has
no parent.) There are (m− 1)! such sequences.

The labelling function of a history tree 〈T, l〉 whose root is labelled with
the complete set Q of states of the Büchi automaton can be represented by a
function from Q onto {1, . . . ,m} that maps each state q ∈ Q to the positions
of its host node in the LIR. Let t(n,m) denote the number of trees and later
introduction record pairs for such history trees with m nodes and n = |Q| states
in the label of the root. First, t(n, n) = (n − 1)!n! holds: There are (n − 1)!
ordered-tree / LIR pairs, and n! functions from a set with n elements onto itself.
For every m ≤ n, a coarse estimation5 provides t(n,m − 1) ≤ 1

2 t(n,m). Hence,∑n
i=1 t(n, i) ≤ 2(n− 1)!n!.
Likewise, the labelling function of a history tree 〈T, l〉 whose root is labelled

with the complete set Q of states of the Büchi automaton can be represented by
a function from Q onto {1, . . . ,m} that maps each state q ∈ Q to the positions
of its host node in the LIR, or to 0 if the state is not in the label of the root. Let
t′(n,m) denote the number of history tree / LIR pairs for such history trees with
m nodes for a Büchi automaton with n states. We have t′(n, n− 1) = (n− 2)!n!
and, by an argument similar to the one used in the analysis of t, we also have
t′(n,m− 1) ≤ 1

2 t
′(n,m) for every m < n, and hence

∑n−1
i=1 t

′(n, i) ≤ 2(n− 2)!n!.

Proposition 2. For a given nondeterministic Büchi automaton A with n states,
we can build a deterministic parity automaton with O(n!2) states and 2n prior-
ities that recognises the language L(A) of A.

Proof. We construct a deterministic parity automaton, whose states consist of
the history tree / LIR pairs, and an explicitly represented priority. The priority
is determined by the position i of the first node in the previous LIR that is either
unstable or accepting in the σ-transition: If it is accepting, the priority is 2i, if it
is unstable, the priority is 2i−1. If no node is unstable or accepting, the priority
is 2n+1. The automaton has at most the priorities {2, 3, . . . , 2n+1} and O(n!2)
states — O

(
(n− 1)!n!

)
history tree / LIR pairs times 2n priorities.

Let α be a word in the language L(A) of A. Then there is by Proposition 1 a
node τ that is always eventually accepting and eventually always stable in the
history tree, and will hence eventually always remain in the same position p in
the LIR and be stable. (A stable node can only move further to the front of
the LIR, which can only happen finitely many times.) From that time onward,
no node with a smaller position p′ < p is deleted (this would result τ to move
further to the front of the record), nor is the node τ on position p unstable.
Hence, no odd number < 2p occurs infinitely many times. Also from that time

5 If we connect functions by letting a function g from Q onto {1, . . . , m − 1} be the
successor of a function f from Q onto {1, . . . , m} if there is an index i ∈ {1, . . . , m−1}
such that g(q) = i if f(q) = m and g(q) = f(q) otherwise, then the functions onto m
have (m−1) successors, while every function onto m−1 has at least two predecessors.
Hence, the number of labelling functions growth at most by a factor of m−1

2
, while

the number of ordered tree / LIR pairs is reduced by a factor of m − 1.

180 S. Schewe

onward, the node τ is accepting infinitely many times, which results in visiting
a priority ≤ 2p by our prioritisation rule. Hence the smallest number occurring
infinitely many times is even.

Let, on the other hand, 2i be the dominating priority of the run of our deter-
ministic parity automaton. Then eventually no lower priority than 2i appears,
which implies that all positions ≤ i remain unchanged in the LIR, and the re-
spective nodes remain stable from that time onward. Also, the node that is from
that time onward on position i is accepting infinitely many times, which implies
by Proposition 1 that α is in the language L(A) of A. %&
While the separation of concerns does not generate the same theoretical benefit
with respect to state-space reduction when we construct parity automata instead
of Rabin automata, the practical advantage might be comparable. While the
update rule for history trees is strict, the update rule for LIR’s is much less so:
The only property of LIR updates used in the proof of Proposition 2 is that
the position of accepting positions is reduced, and strictly reduced if there was
an unstable node on a smaller position of the previous LIR. This leaves much
leeway for updating the LIR — any update that satisfies this constraint will do.

Usually only a fragment of the state-space is reachable, and determinisation
algorithms tend to construct the state-space of the automaton on the fly. The
simplest way to exploit the leeway in the update rule for LIR’s is to check if
there is a suitable LIR such that a state with an appropriate history tree / LIR
pair has already been constructed. If this is the case, then we can, depending
on the priority of that state, turn to this state or construct a new state that
differs only in the priority, which allows us to ignore the new state in the further
expansion of the state-space. It is my belief that such a nondeterministic deter-
minisation procedure will result in a significant state-space reduction compared
to any deterministic rule.

References

1. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Pro-
ceedings of the International Congress on Logic, Methodology, and Philosophy
of Science, 1960, Berkeley, California, USA, pp. 1–11. Stanford University Press
(1962)

2. Rabin, M.O., Scott, D.S.: Finite automata and their decision problems. IBM Jour-
nal of Research and Development 3, 115–125 (1959)

3. Safra, S.: On the complexity of ω-automata. In: Proceedings of the 29th Annual
Symposium on Foundations of Computer Science (FOCS 1988), White Plains, New
York, USA, pp. 319–327. IEEE Computer Society Press, Los Alamitos (1988)

4. Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by nondetermin-
istic automata: new results and new proofs of the theorems of Rabin, McNaughton
and Safra. Theoretical Computer Science 141, 69–107 (1995)

5. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
parity automata. Journal of Logical Methods in Computer Science 3 (2007)

6. Muller, D.E.: Infinite sequences and finite machines. In: Proceedings of the 4th
Annual Symposium on Switching Circuit Theory and Logical Design (FOCS 1963),
Chicago, Chicago, Illinois, USA, pp. 3–16. IEEE Computer Society Press, Los
Alamitos (1963)

Tighter Bounds for the Determinisation of Büchi Automata 181

7. McNaughton, R.: Testing and generating infinite sequences by a finite automaton.
Information and Control 9, 521–530 (1966)

8. Yan, Q.: Lower bounds for complementation of omega-automata via the full au-
tomata technique. Journal of Logical Methods in Computer Science 4 (2008)

9. Church, A.: Logic, arithmetic and automata. In: Proceedings of the International
Congress of Mathematicians, Institut Mittag-Leffler, Djursholm, Sweden, 1962
(Stockholm 1963), 15–22 August, pp. 23–35 (1962)

10. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings of the
16th Annual ACM Symposium on Principles of Programming Languages (POPL
1989), Austin, Texas, USA, pp. 179–190. ACM Press, New York (1989)

11. Rabin, M.O.: Decidability of second order theories and automata on infinite trees.
Transaction of the American Mathematical Society 141, 1–35 (1969)

12. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Transactions of the American Mathematical Society 138, 295–311 (1969)

13. Büchi, J.R., Landweber, L.H.: Definability in the monadic second-order theory of
successor. Journal of Symbolic Logic 34, 166–170 (1969)

14. Wilke, T.: Alternating tree automata, parity games, and modal µ-calculus. Bulletin
of the Belgian Mathematical Society 8 (2001)

15. Emerson, E.A.: Automata, tableaux and temporal logics. In: Parikh, R. (ed.) Logic
of Programs 1985. LNCS, vol. 193, pp. 79–88. Springer, Heidelberg (1985)

16. Kupferman, O., Vardi, M.: Module checking revisited. In: Grumberg, O. (ed.) CAV
1997. LNCS, vol. 1254, pp. 36–47. Springer, Heidelberg (1997)

17. Emerson, E.A., Jutla, C.S.: Tree automata, µ-calculus and determinacy. In: Pro-
ceedings of the 32nd Annual Symposium on Foundations of Computer Science
(FOCS 1991), San Juan, Puerto Rico, pp. 368–377. IEEE Computer Society Press,
Los Alamitos (1991)

18. Schewe, S., Finkbeiner, B.: Satisfiability and finite model property for the
alternating-time µ-calculus. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp.
591–605. Springer, Heidelberg (2006)

19. Gurevich, Y., Harrington, L.: Trees, automata, and games. In: Proceedings of the
14th Annual ACM Symposium on Theory of Computing (STOC 1982), San Fran-
cisco, California, USA, pp. 60–65. ACM Press, New York (1982)

20. Liu, W., Wang, J.: A tigher analysis of Piterman’s Büchi determinization. Infor-
mation Processing Letters (submitted, 2009)

21. Temme, N.M.: Asymptotic estimates of Stirling numbers. Studies in Applied Math-
ematics 89, 233–243 (1993)

22. Friedgut, E., Kupferman, O., Vardi, M.Y.: Büchi complementation made tighter.
International Journal of Foundations of Computer Science 17, 851–867 (2006)

Lower Bounds on Witnesses for Nonemptiness of
Universal Co-Büchi Automata

Orna Kupferman1 and Nir Piterman2,�

1 Hebrew University
2 Imperial College London

Abstract. The nonemptiness problem for nondeterministic automata on infinite
words can be reduced to a sequence of reachability queries. The length of a shortest
witness to the nonemptiness is then polynomial in the automaton. Nonemptiness
algorithms for alternating automata translate them to nondeterministic automata.
The exponential blow-up that the translation involves is justified by lower bounds
for the nonemptiness problem, which is exponentially harder for alternating au-
tomata. The translation to nondeterministic automata also entails a blow-up in the
length of the shortest witness. A matching lower bound here is known for cases
where the translation involves a 2O(n) blow up, as is the case for finite words or
Büchi automata.

Alternating co-Büchi automata and witnesses to their nonemptiness have appli-
cations in model checking (complementing a nondeterministic Büchi word automa-
ton results in a universal co-Büchi automaton) and synthesis (an LTL specification
can be translated to a universal co-Büchi tree automaton accepting exactly all the
transducers that realize it). Emptiness algorithms for alternating co-Büchi automata
proceed by a translation to nondeterministic Büchi automata. The blow up here is
2O(n log n), and it follows from the fact that, on top of the subset construction, the
nondeterministic automaton maintains ranks to the states of the alternating automa-
ton. It has been conjectured that this super-exponential blow-up need not apply to
the length of the shortest witness. Intuitively, since co-Büchi automata are memo-
ryless, it looks like a shortest witness need not visit a state associated with the same
set of states more than once. A similar conjecture has been made for the width of
a transducer generating a tree accepted by an alternating co-Büchi tree automaton.
We show that, unfortunately, this is not the case, and that the super-exponential
lower bound on the witness applies already for universal co-Büchi word and tree
automata.

1 Introduction

Finite automata on infinite objects were first introduced in the 60’s. Motivated by deci-
sion problems in mathematics and logic, Büchi, McNaughton, and Rabin developed a
framework for reasoning about infinite words and trees [2,11,16]. The framework has
proven to be very powerful. Automata, and their tight relation to second-order monadic
logics were the key to the solution of several fundamental decision problems in mathe-
matics and logic [17]. Indeed, for many highly expressive logics, it is possible to translate

� Supported by the UK EPSRC project Complete and Efficient Checks for Branching-Time
Abstractions (EP/E028985/1).

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 182–196, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Lower Bounds on Witnesses for Nonemptiness of Universal Co-Büchi Automata 183

a formula in the logic to an automaton accepting exactly all the models satisfying the for-
mula. The formula is then satisfiable iff the language of the automaton is not empty. Thus,
decidability can be reduced to the emptiness problem.

Today, automata on infinite objects are used for specification and verification of non-
terminating systems [18,9,19]. The emptiness problem plays a key role also in these more
modern applications. Two important examples are model checking and synthesis. Model
checking a system with respect to a specification is reduced to checking the emptiness of
the product of the system with an automaton accepting exactly all models that violate the
specification [19]. Synthesis of a reactive system that satisfies a desired specification is
reduced to checking the emptiness of a tree automaton accepting all possible strategies
that realize the specification [15].

In the case of finite nondeterministic automata on finite words, the emptiness problem
is simple: The automaton accepts some word if there is a path from an initial state to an
accepting state (c.f., [4]). Thus, the automaton is viewed as a graph, its alphabet is ignored,
and emptiness is reduced to reachability in finite graphs. An important and useful outcome
of this simplicity is the fact that when the language of the automaton is not empty, it is
easy to return a witness to the nonemptiness — a word v that labels a path from an initial
state to a final states. Clearly, reachability may be checked only along simple paths, thus
the length of a witness is bounded by the number of states of the automaton.

The case of finite nondeterministic automata on infinite words is similar. Acceptance
in such automata depends on the set of states that a run visits infinitely often. For ex-
ample, in the Büchi acceptance condition, some states are designated as accepting, and
in order for a run to be accepting it has to visit at least one of these states infinitely of-
ten. Nonemptiness is slightly more complicated, but again, the automaton is viewed as
a graph, its alphabet is ignored, and emptiness is reduced to a sequence of reachability
queries in finite graphs. Now, the witness to the nonemptiness is a word of the form v ·uω,
where the word v labels a path from an initial state to some accepting state, and the word
u labels a path from this accepting state to itself. Since both v and u are extracted from
reachability queries on the graph, their lengths are bounded by the number of states of the
automaton.1 For acceptance conditions more complicated than Büchi, the emptiness test
is more involved, but still, as long as we consider nondeterministic automata, emptiness
can be reduced to a sequence of reachability queries on the graph of the automaton, and
a nonempty automaton has a witness of the form v · uω for v and u polynomial in the
number of states of the automaton.

Alternating automata enrich the branching structure of the automaton by combining
universal and existential branching. In the presence of alternation, we can no longer ig-
nore the alphabet when reasoning about emptiness. Indeed, the different copies of the
automaton have to agree on the letters they read on the same position of the word. The
standard solution is to remove alternation by translating the automaton to an equiva-
lent nondeterministic automaton, and checking the emptiness of the latter. This simple
solution is optimal, as the exponential blow-up that the translation involves is justified
by lower bounds for the nonemptiness problem, which is exponentially harder in the
alternating setting (c.f., NLOGSPACE vs. PSPACE for nondeterministic vs. alternating
automata on finite words).

1 In fact, it can be shown that even the sum of their lengths is bounded by the number of states of
the automaton [6].

184 O. Kupferman and N. Piterman

The translation to nondeterministic automata also entails an exponential blow-up in
the length of the shortest witness. Can this blow up be avoided? A negative answer for
this question is known for alternating automata on finite words and alternating Büchi
automata. There, removing alternation from an alternating automaton with n states results
in a nondeterministic automaton with 2O(n) states [3,12], and it is not hard to prove a
matching lower bound [1]. Note also that a polynomial witness would have led to the
nonemptiness problem being in NP, whereas it is known to be PSPACE-complete.

Things become challenging when the removal of alternation involves a super-
exponential blow up. In particular, emptiness algorithms for alternating co-Büchi au-
tomata proceed by a translation to nondeterministic Büchi automata, and the involved
blow up is 2O(n logn). Alternating co-Büchi automata have been proven useful in model
checking (complementing a nondeterministic Büchi word automaton results in a uni-
versal co-Büchi automaton) and synthesis (an LTL specification can be translated to a
universal co-Büchi tree automaton accepting exactly all the transducers that realize it
[8,5]). In the case of model checking, the witness to the nonemptiness is a computation
that violates the property. In the case of synthesis, the witness is a system that realizes
the specification). Thus, we clearly seek shortest witnesses.

The 2O(n logn) blow up follows from the fact that, on top of the subset construction, the
nondeterministic automaton maintains ranks to the states of the alternating automaton. It
has been conjectured that this super-exponential blow-up need not apply to the length
of the shortest witness. Intuitively, since co-Büchi automata are memoryless, it seems
as if a shortest witness need not visit a state associated with the same set of states more
than once. This intuition suggests that a shortest witness need not be longer than 2O(n). A
similar conjecture has been made for the width of a transducer2 generating a tree accepted
by an alternating co-Büchi tree automaton [8].

In this paper we show that, unfortunately, this is not the case, and the super-exponential
blow-up in the translation of alternating co-Büchi automata to nondeterministic Büchi au-
tomata is carried over to a super-exponential lower bound on the witness to the nonempti-
ness. In fact, the lower bound applies already for universal co-Büchi automata. We start
with the linear framework. There, we show that for every odd integer n ≥ 1, there exists
a universal co-Büchi word automaton An with n states such that the shortest witness to
the nonemptiness of An has a cycle of length n+1

2 !.
In the branching framework, the witness to the nonemptiness is a transducer that gen-

erates a tree accepted by the automaton. The linear case trivially induces a lower bound on
the size of such a transducer. In the branching framework, however, it is interesting to con-
sider also the width of the witness transducer. In particular, the LTL synthesis algorithm in
[8], which is based on checking the nonemptiness of a universal co-Büchi tree automaton,
is incremental, and it terminates after k iterations, with k being an upper bound on the
width of a transducer generating a tree accepted by the automaton. The bound used in [8]
is super-exponential, and has been recently tightened to 2n(n!)2 [14,10]. It is conjectured
in [8] that the bound can be improved to 2O(n). As in the word case, the intuition is con-
vincing: The alternating automaton may send a set of states to a subtree of the input tree,
in which case the subtree should be accepted by all the states in the set. The memoryless
nature of the co-Büchi condition suggests that if in an accepting run of the automaton the

2 Essentially, the width of a transducer is the number of different states that the transducer may
be at after reading different input sequences of the same length.

Lower Bounds on Witnesses for Nonemptiness of Universal Co-Büchi Automata 185

same set of states is sent to different subtrees, then there is also an accepting run on a
tree in which these subtrees are identical. Thus, we do not need more than 2n different
subtrees in a single level of the input tree. We show that, unfortunately, this intuition fails,
and there is a lower bound of n+1

2 ! on the width of the transducer. Formally, we show
that for every odd integer n ≥ 1, there exists a universal co-Büchi tree automaton Bn
with n states such that every tree accepted by Bn is such that, all levels beyond a finite
prefix have at least n+1

2 ! different subtrees. Thus, the minimal width of a transducer that
generate a tree accepted by Bn has width at least n+1

2 !.
Our constructions use a very large alphabet. Indeed, the alphabet of the automata An

and Bn has n+1
2 ! letters. In the case of words, the word accepted by the automaton is a

cycle consisting of all these letters ordered in some fixed order (say, lexicographically).
The case of trees is similar. We were not able to reduce the size of the alphabet. While
the question of a smaller alphabet is very interesting, it is of less practical importance:
Constructions for removal of alternation introduce an exponential alphabet in an interme-
diate step (where the exponent is quadratic in the number of states). The larger alphabet
is discarded at a later stage but the degree of nondeterminism induced by it remains in
the resulting nondeterministic automaton. Furthermore, the size of the alphabet does not
play a role in these constructions, and obviously does not play a role when checking the
emptiness of a nondeterministic automaton.

2 Universal Co-Büchi Word Automata

A word automaton is A = 〈Σ,Q, δ,Qin, α〉, where Σ is the input alphabet,Q is a finite
set of states, δ : Q×Σ → 2Q is a transition function,Qin ⊆ Q is a set of initial states,
and α is an acceptance condition that defines a subset of Qω.

Given an input word w = σ0 · σ1 · · · in Σω, a run of A on w is a word r = q0, q1, . . .
in Qω such that q0 ∈ Qin and for every i ≥ 0, we have qi+1 ∈ δ(qi,σi); i.e., the run
starts in the initial state and obeys the transition function. Since the transition function
may specify many possible transitions for each state and letter,A may have several runs
on w. A run is accepting iff it satisfies the acceptance condition α. We consider here
the Büchi acceptance condition, where α ⊆ Q is a subset of Q. For a run r, let inf(r)
denote the set of states that r visits infinitely often. That is, inf(r) = {q ∈ Q : qi =
q for infinitely many i ≥ 0}. A run r is accepting iff inf(r) ∩ α �= ∅. That is, r is
accepting if some state in α is visited infinitely often. The co-Büchi acceptance condition
dualizes the Büchi condition. Thus, again α is a subset of Q, but a run r is accepting if
inf(r) ∩ α = ∅. Thus, r visits all the states in α only finitely often.

If the automaton A is nondeterministic, then it accepts an input word w iff it has an
accepting run on w. If A is universal, then it accepts w iff all its runs on w are accept-
ing. The language of A, denoted L(A) is the set of words that A accepts. Dualizing a
nondeterministic Büchi automaton (NBW, for short) amounts to viewing it as a universal
co-Büchi automaton (UCW, for short). It is easy to see that by dualizing A, we get an
automaton that accepts its complementary language.

In [7], Kupferman and Vardi analyze runs of UCW in terms of a ranking function one
can associate with their run DAG. In the rest of this section, we describe their analysis.

Let A = 〈Σ,Q,Qin, δ, α〉 be a universal co-Büchi automaton with α. Let |Q| = n.
The runs of A on a word w = σ0 · σ1 · · · can be arranged in an infinite DAG (directed
acyclic graph)G = 〈V,E〉, where

186 O. Kupferman and N. Piterman

– V ⊆ Q× IN is such that 〈q, l〉 ∈ V iff some run ofA on w has ql = q. For example,
the first level of G contains the verticesQin × {0}.

– E ⊆
⋃
l≥0(Q×{l})× (Q×{l+ 1}) is such that E(〈q, l〉, 〈q′, l + 1〉) iff 〈q, l〉 ∈ V

and q′ ∈ δ(q,σl).

Thus,G embodies exactly all the runs of A on w. We call G the run DAG of A on w. We
say that a vertex 〈q, l〉 in G is an α-vertex iff q ∈ α. We say that G is accepting if each
path p in G contains only finitely many α-vertices. It is easy to see that A accepts w iff
G is accepting.

Let [2n] denote the set {0, 1, . . . , 2n}. A ranking for G is a function f : V → [2n]
that satisfies the following conditions:

1. For all vertices 〈q, l〉 ∈ V , if f(〈q, l〉) is odd, then q �∈ α.
2. For all edges 〈〈q, l〉, 〈q′, l + 1〉〉 ∈ E, we have f(〈q′, l+ 1〉) ≤ f(〈q, l〉).

Thus, a ranking associates with each vertex in G a rank in [2n] so that ranks along paths
decrease monotonically, and α-vertices cannot get an odd rank. Note that each path in
G eventually gets trapped in some rank. We say that the ranking f is an odd ranking if
all the paths of G eventually get trapped in an odd rank. Formally, f is odd iff for all
paths 〈q0, 0〉, 〈q1, 1〉, 〈q2, 2〉, . . . in G, there is l ≥ 0 such that f(〈ql, l〉) is odd, and for
all l′ ≥ l, we have f(〈ql′ , l′〉) = f(〈ql, l〉). Note that, equivalently, f is odd if every path
of G has infinitely many vertices with odd ranks.

We now analyze the form of accetping run DAGs. The following three lemmata relate
to DAGs induced by words accepted byA. Consider a (possibly finite) DAG G′ ⊆ G. We
say that a vertex 〈q, l〉 is finite in G′ iff only finitely many vertices in G′ are reachable
from 〈q, l〉. We say that a vertex 〈q, l〉 is α-free in G′ iff all the vertices in G′ that are
reachable from 〈q, l〉 are not α-vertices. Note that, in particular, 〈q, l〉 is not an α-vertex.

We define an infinite sequence of DAGs G0 ⊇ G1 ⊇ G2 ⊇ G3 ⊇ . . . as follows.

– G0 = G.
– G2i+1 = G2i \ {〈q, l〉 | 〈q, l〉 is finite in G2i}.
– G2i+2 = G2i+1 \ {〈q, l〉 | 〈q, l〉 is α-free in G2i+1}.

Lemma 1. For every i ≥ 0, there exists li such that for all l ≥ li, there are at most n− i
vertices of the form 〈q, l〉 in G2i.

Lemma 1 implies that G2n is finite, and G2n+1 is empty.
Each vertex 〈q, l〉 in G has a unique i ≥ 1 such that 〈q, l〉 is either finite in G2i or

α-free in G2i+1. This induces a function f : V → [2n] defined as follows.

f(〈q, l〉) =
[

2i If 〈q, l〉 is finite in G2i.
2i+ 1 If 〈q, l〉 is α-free in G2i+1.

Lemma 2. For every two vertices 〈q, l〉 and 〈q′, l′〉 in G, if 〈q′, l′〉 is reachable from
〈q, l〉, then f(〈q′, l′〉) ≤ f(〈q, l〉).

Lemma 3. For every infinite path in G, there exists and a vertex 〈q, l〉 such that all the
vertices 〈q′, l′〉 on the path that are reachable from 〈q, l〉 have f(〈q′, l′〉) = f(〈q, l〉).

Lower Bounds on Witnesses for Nonemptiness of Universal Co-Büchi Automata 187

We can now conclude with Theorem 1 below.

Theorem 1. [7] The DAG G is accepting iff it has an odd ranking.

Proof. Assume first that there is an odd ranking for G. Then, every path in G eventually
gets trapped in some odd rank. Hence, as α-vertices cannot get this rank, the path visits
α only finitely often, and we are done.

For the other direction, note that Lemma 2, together with the fact that a vertex gets
an odd rank only if it is α-free, imply that the function f described above is a ranking.
Lemma 3 then implies that the ranking is odd. %&

3 Lower Bound on Length of Accepted Words

In this section we construct, for every odd n ≥ 1, a UCW An with n states such that
the shortest words accepted by A have a cycle of length n+1

2 !. The alphabet Σn of An
has n+1

2 ! letters, and there is an ordering ≤ of all the letters in Σn such that An accepts

exactly all words vuω, where v ∈ Σ∗
n and u ∈ (Σn)

n+1
2 ! has all the letters inΣn ordered

according to ≤.
Formally, given an odd n ≥ 1, let An = 〈Σn, Qn, δn, Qn, αn〉, where

– Let Πn be the set of permutations on {1, 3, 5, . . . , n} (the odd members of
{1, . . . , n}), and let ≤ be the lexicographic ordering3 on the members of Πn. Then,
Σn ⊆ Πn × Πn is such that 〈π, π′〉 ∈ Σn iff π′ is the (cyclic) successor of
π in the order ≤. Thus, each letter of Σn is a pair 〈π, π′〉 of permutations, such
that π′ is the successor of π in the lexicographic order of Πn. Note we refer to
the order in a cyclic way, thus 〈n . . . 31, 13 . . . n〉 is a letter in Σn. For example,
Π5 = {135, 153, 315, 351, 513, 531} andΣ5 = {〈135, 153〉, 〈153, 315〉, 〈315, 351〉,
〈351, 513〉, 〈513, 531〉, 〈531, 135〉}. Note that each permutation inΠn contributes to
Σn one letter, thus |Σn| = |Πn| = n+1

2 !.
– Qn = {1, . . . , n}.
– Consider a permutation π ∈ Πn. An even-extension of π is a permutation σ of
{1, 2, 3, . . . , n} obtained from π by using π for the odd positions and inserting in
each even position e the even number e. For example, if π = 153, then σ = 12543.

Let π and π′ be such that 〈π, π′〉 ∈ Σn, and let σ = i1 · · · in and σ′ = j1 · · · jn
be the even extensions of π and π′. Then, for every 1 ≤ k ≤ n, we define

δn(ik, 〈π, π′〉) =
{
{j1, . . . , jk} if k is odd
{j1, . . . , jk−1} if k is even.

That is, when a state h ∈ Qn reads 〈π, π′〉, it checks its location in σ (this is the
k for which h = ik) and sends copies to all states in smaller (or equal, if k is odd)
locations in σ′ (these are the states h′ for which h′ = jk′ for k′ smaller than (or equal
to) k. Note that for all even k’s, we have δn(ik, 〈π, π′〉) = δn(ik−1, 〈π, π′〉).

For example, δ5(3, 〈135, 153〉) = {1, 2, 5}. Indeed, the location of 3 in 12345 is
3 and the states located in the first three positions in 12543 are 1, 2, and 5. The other
transitions on the letter 〈135, 153〉 are defined similarly:

3 The proof stays valid with every ordering.

188 O. Kupferman and N. Piterman

• δ5(1, 〈135, 153〉) = δ5(2, 〈135, 153〉) = {1},
• δ5(3, 〈135, 153〉) = δ5(4, 〈135, 153〉) = {1, 2, 5}, and
• δ5(5, 〈135, 153〉) = {1, 2, 3, 4, 5}.

– αn = {i | i is even}. Thus, every infinite run of An has to visit only finitely many
even states.

Note that for every word v ∈ Σω, the run DAG of An on v has all the states in Qn
appearing in every level of the DAG. This follows from the set of initial states ofAn being
Qn and the fact that for every letter a = 〈π, π′〉 ∈ Σn, there exists one state q in Qn (q
is last number in π) for which the transition from q on a contains all the states in Qn.

Let u be the word in (Σn)
n+1

2 ! that contains all the letters in Σn ordered lexi-
cographically. For example, when n = 5, we have that u = 〈135, 153〉 〈153, 315〉
〈315, 351〉〈351, 513〉 〈513, 531〉〈531, 135〉. We prove that An accepts the word uω. It
follows that An accepts vuω for every word v ∈ Σ∗.

Lemma 4. uω ∈ L(An).

Proof. Consider the run DAG G of An on uω. In Figure 1, we describe the accepting
run DAG of A5 on uω. As argued above, each level l of G consists of all the vertices in

Fig. 1. The accepting run of A5 on uω

Lower Bounds on Witnesses for Nonemptiness of Universal Co-Büchi Automata 189

Qn × {l}. We arrange the vertices of G in columns numbered 1 to n. In the level that
reads 〈π, π′〉, we arrange the vertices according to the position of the state component of
each vertex in the even extension σ of π. For example, when we read 〈135, 153〉 in level
0, we consult the even extension 12345 of 135 and put the vertex 〈1, 0〉 in Column 1 (the
leftmost), put 〈2, 0〉 in Column 2, and so on. Since u contains all the letters inΣn ordered
lexicographically, the letter to be read in the next level is 〈π′, π′′〉, and the vertices are
arranged in columns in this level according to π′. By the definition of δn, the above
implies that the edges in G go from columns to smaller or equal columns. Accordingly,
all α-vertices appear in even columns and all other vertices appear in odd columns.

We prove that G has an odd ranking. For that, we prove, by induction on i, that the
vertices in Column i, for 1 ≤ i ≤ n, get rank i (independent of their level).

By definition, the set of successors of a vertex in Column 1 is a singleton containing
the next vertex in Column 1. As all vertices in this column are not α-vertices, they are
all α-free and they get rank 1. The set of successors of vertices in Column 2 is again
a singleton containing only the next vertex in Column 1. Since vertices in Column 2
are α-vertices, they do not get rank 1. In the DAG G2, however, these vertices have no
successors. Thus, they are finite, and get rank 2.

The induction step is similar: the DAG Gi contains only vertices in Columns i to n.
When i is odd, the vertices in Column i are α-free, and get rank i. When i is even, the
vertices in Column i are finite, and get rank i too. %&

Consider two letters 〈π1, π
′
1〉 and 〈π2, π

′
2〉 in Σn. We say that 〈π1, π

′
1〉 and 〈π2, π

′
2〉 are

gluable if π′1 = π2. Otherwise, 〈π1, π
′
1〉 and 〈π2, π

′
2〉 are non-gluable. We say that loca-

tion i ∈ IN is an error in w if letters i and i+ 1 in w are non-gluable. A word w is bad
if w has infinitely many errors. The definition of non-gluable is extended to finite words
in the obvious way. Consider a word v ∈ Σ∗

n. We denote by first(v) the permutation
π ∈ Πn such that the first letter of v is 〈π, π′〉, for the (lexicographic) successor π′ of π.
Similarly, we denote by last(v) the permutation π′ such that the last letter of v is 〈π, π′〉
for the predecessor π of π′. Given an even-extension σ = i1 · · · in of a permutation, we
say that the state ik is the k-th state appearing in σ.

Consider a fragment of a run that starts in permutation π and ends in permutation π′.
That is, the fragment reads the word v, the permutation π is first(v), and the permutation
π′ is last(v). We arrange the states in Qn according to their order in the even extensions
σ and σ′ of π and π′. In the following lemma, we show that if q is the k-th state in σ,
q′ is the k′-th state in σ′, and k′ ≤ k, then q′ is reachable from q in this run fragment.
Furthermore, if k′ < k then q′ is reachable from q along a run that visits α.

Lemma 5. Consider an infinite word σ0σ1 · · · and a run DAG G of An on it. Let l be a
level of G, let l′ > 0 be an integer, and let v = σl · · ·σl+l′ be the subword of length l′

read at the level l. Let k and k′ be such that k is odd and 1 ≤ k′ ≤ k ≤ n. Let q be
the k-th state in the even extension of first(v), and let q′ be the k′-th state in the even
extension of last(v). Then, the vertex 〈q′, l + l′〉 is reachable from the vertex 〈q, l〉 of G.
Moreover, if l′ > 1 and k′ < k, then 〈q′, l+ l′〉 is reachable from 〈q, l〉 along a path that
visits α.

Proof. We start with the first part of the lemma and prove it by induction on l′ (that is, the
length of v). For l′ = 1, the lemma follows from the definition of the transition function.
For the induction step, consider a word v = wa. Let first(w) = π1, last(w) = π2 and

190 O. Kupferman and N. Piterman

a = 〈π3, π4〉. Let i1 · · · in, j1 · · · jn, c1 · · · cn, and d1 · · · dn be the even extensions of π1,
π2, π3, and π4, respectively.

Consider the run DAG G ofAn on the input word. By the induction hypotheses, which
holds for w, we know that for every odd k and for all k′ ≤ k, the vertex 〈jk′ , l + |w|〉 is
reachable from the vertex 〈ik, l〉. We consider now the edges of G reading the last letter
a. We distinguish between two cases. If π2 = π3, the lemma follows from the definition
of the transition function. If π2 �= π3, consider the state ck appearing in the k-th position
in even extension of π3. Let m be such that jm = ck. We again distinguish between
two cases. If m ≤ k, the lemma follows from the definition of the transition function. If
m > k, then there exist m′ ≤ k and m′′ > k such that cm′′ = jm′ . By the induction
hypothesis, 〈jm′ , l+ |w|〉 is reachable from 〈ik, l〉. As jm′ = cm′′ , the transition of cm′′

reading 〈π3, π4〉 implies that for every k′ < m′′ (and in particular for every k′ < k) the
vertex 〈dk′ , l + |w|+ 1〉 is reachable from 〈ik, l〉.

We now prove the second part of the lemma. By the first part, the vertex
〈jk−1, l + l′ − 1〉 is reachable from 〈ik, l〉. As k is odd, k − 1 is even, thus, by the def-
inition of an even-extension, ck−1 = k − 1, thus 〈ck−1, l + l′ − 1〉 is an α-vertex. By
the definition of the transition function, for every k′ < k − 1, there is an edge from
〈ck−1, l + l′ − 1〉 to 〈dk′ , l + l′〉. It follows that there is a path that visits α from 〈ik, l〉
to 〈dk′ , l + l′〉. %&

We use this result to show that bad words cannot be accepted by An. Indeed, whenever
there is a mismatch between the permutations, we find a state that reduces its position
in the permutations. This state, gives rise to a fragment that visits α. If this happens
infinitely often, we get a run that visits α infinitely often.

Lemma 6. Every bad word u is rejected by An.

Proof. We start with the case that u = vwω . Assume that |w| > 1. Otherwise, we replace
w by w · w. By the definition of bad words, the word wω contains two successive letters
〈π1, π

′
1〉 and 〈π2, π

′
2〉 such that π′1 �= π2. Let l be a level in the run DAG of An on vwω

such that l > |v| is such that 〈π1, π
′
1〉 is being read in level l − 1 and 〈π2, π

′
2〉 is being

read in level l. Note that 〈π1, π
′
1〉 is then being read again at level l + |w| − 1.

We show that there exists a vertex 〈q, l + |w|〉 reachable from 〈q, l〉 such that the path
from 〈q, l〉 to 〈q, l + |w|〉 visits an α-vertex. SinceAn is universal, the block of |w| levels
of G that starts in level l repeats forever, thus it follows that G has a path with infinitely
many α-vertices.

Let w′ be the word read between levels l and l + |w|. Note that w′ is w shifted so
that first(w′) = π2, and last(w′) = π′1. Let σ = i1, . . . , in and σ′ = j1, . . . , jn be the
even-extensions of π2 and π′1, respectively. Since π2 �= π′1, there exists some odd k and
k′ such that ik = jk′ and k′ < k. Let q be the state ik = jk′ . The state q satisfies the
conditions of Lemma 5 with respect to level l and length l′ = |w|: it is the k-th state in
first(w′) for an odd k, and it is also the k′-th state in last(w′). Hence, since |w′| > 1 and
k′ < k, we have that 〈q, l + |w|〉 is reachable from 〈q, l〉 along a path that visits α.

Consider some bad word u ∈ Σω such that u does not have a cycle. It follows that u
can be partitioned to infinitely many finite subwords that are non-gluable. Consider two
such subwordsw1 andw2. As w1 andw2 are non-gluable there exists some k and k′ such
that k′ < k and the k-th state in last(w1) is the k′-th state in first(w). There are infinitely
many subwords, we use Ramsey’s Theorem to find infinitely many points that have the

Lower Bounds on Witnesses for Nonemptiness of Universal Co-Büchi Automata 191

same k and k′. This defines a new partition to finite subwords. By using Lemma 5 we
can show that the run on w contains a path with infinitely many visits to α. %&

Corollary 1. The language of An is {vuω | v ∈ Σ∗
n}.

In Figure 2, we describe a rejecting run of An on vω where v is obtained from u
by switching the order of the letters 〈315, 351〉 and 〈351, 513〉. The pair 〈153, 315〉
and 〈351, 513〉 is non-gluable. In the run DAG G, the state 1 satisfies the conditions of
Lemma 5 with l = 2 and l′ = 6. To see this, note that the subword of vω of length 6 that is
read at level 2 is w = 〈351, 513〉〈315, 351〉 〈513, 531〉 〈531, 135〉 〈135, 153〉〈153, 315〉,
with first(w) = 351 and last(w) = 315. The state 1 is the 5-th state in the even ex-
tension 32541 of first(w), thus k = 5, and is the 3-rd state in the even extension 32145
of last(w), thus k′ = 3. As promised in the lemma, the vertex 〈1, 8〉 is reachable from
the vertex 〈1, 2〉 via a path that visits the α-vertex 〈2, 3〉 — the rejecting path that is
highlighted in bold in the figure.

Fig. 2. The rejecting run of A5 on (〈135, 153〉〈153, 315〉〈351, 513〉〈315, 351〉〈513, 531〉
〈531, 135〉)ω

192 O. Kupferman and N. Piterman

We can now conclude with the statement of the lower bound for the linear case.

Theorem 2. There is a n+1
2 ! lower bound on the length of a witness accepted by a UCW

with n states.

Proof. Consider the sequence of UCWs A1,A3, . . . defined above. By the above, the
language ofAn is {vuω | v ∈ Σ∗

n}, where u is the word in (Σn)
n+1

2 ! that contains all the
letters inΣn ordered lexicographically. Thus, the length of witnesses is at least n+1

2 !. %&

4 Universal Co-Büchi Tree Automata

Given an alphabet Σ and a set D of directions, a Σ-labeled D-tree is a pair 〈T, τ〉,
where T ⊆ D∗ is a tree over D and τ : T → Σ maps each node of T to a letter
in Σ. A transducer is a labeled finite graph with a designated start node, where the
edges are labeled by D and the nodes are labeled by Σ. A Σ-labeled D-tree is regular
if it is the unwinding of some transducer. More formally, a transducer is a tuple T =
〈D,Σ, S, sin, η, L〉, where D is a finite set of directions, Σ is a finite alphabet, S is a
finite set of states, sin ∈ S is an initial state, η : S ×D → S is a deterministic transition
function, and L : S → Σ is a labeling function. We define η : D∗ → S in the standard
way: η(ε) = sin, and for x ∈ D∗ and d ∈ D, we have η(x·d) = η(η(x), d). Intuitively, a
Σ-labeledD-tree 〈D∗, τ 〉 is regular if there exists a transducer T = 〈D,Σ, S, sin, η, L〉
such that for every x ∈ D∗, we have τ(x) = L(η(x)). We denote by Ts the transducer
〈D,Σ, S, s, η, L〉, i.e., the transducer T with s as initial state. Given a transducer T , let
reach0(T) = {sin} and let reachi+1(T) =

⋃
s∈reachi(T)

⋃
d∈D{η(s, d)}. The width

of T is the minimal j such that |reachi(T)| = j for infinitely many i. That is, starting
from some i0, we have that |reachi(T)| ≥ j for all i ≥ i0. Note that while the width
of an infinite tree generated by a transducer is unbounded, the width of a transducer is
always bounded by its number of states.

Auniversalco-Büchi treeautomaton(UCT,forshort) isa tupleA=〈Σ,D,Q,Qin, δ, α〉,
whereΣ,Q,Qin, andα are as in UCW,D is a set of directions, and δ : Q×Σ → 2(D×Q)

is a transition function. When the language ofA is not empty, it accepts a regularΣ-labeled
D-tree [16,13]. It is convenient to consider runs ofA on transducers.

Consider a transducer T = 〈D,Σ, S, sin, η, L〉. A run of A on T can be arranged in
an infinite DAG G = 〈V,E〉, where

– V ⊆ S ×Q× IN.
– E ⊆

⋃
l≥0(S×Q×{l})× (S×Q×{l+1}) is such thatE(〈s, q, l〉, 〈s′, q′, l + 1〉)

iff there is d ∈ D such that (d, q′) ∈ δ(q, L(s)) and η(s, d) = s′.

The run DAG G is accepting iff every path in it has only finitely many vertices in
S × α × IN. A transducer is accepted by A if its run DAG is accepting. In the sequel we
restrict attention to binary trees, i.e.,D = {0, 1} and T = {0, 1}∗. All our ideas apply to
larger branching degrees as well.

5 Lower Bound on Width of Accepted Transducers

In [8], it is shown that if a UCT with n states is not empty, then it accepts a transducer of
width bounded by (2n!)n2n3n(n+1)/n!. An improved upper bound for determinization

Lower Bounds on Witnesses for Nonemptiness of Universal Co-Büchi Automata 193

shows that the width reduces to 2n(n!)2 [14,10]. It is conjectured in [8] that this bound
can be tightened to 2O(n). Intuitively, it is conjectured there that if a UCT is not empty,
then different states of a transducer it accepts that are visited by the same set of states of
the UCT can be merged.

In this section we construct, for every odd n ≥ 1, a UCT Bn with n states such that
the language of Bn is not empty and yet the width of a transducer accepted by Bn is at
least n+1

2 !.
We extend the ideas in Section 3 to a tree automaton. The basic idea is to create a

mismatch between the permutation the automaton has to send to the left successor of a
node and the permutation the automaton has to send to the right successor. Doing so, we
force the input tree to display all possible permutations in one level. Thus, the minimal
width of a transducer generating such a tree is n+1

2 !.
Recall the alphabet Σn defined in Section 3. We reuse this alphabet in the context of

a tree. Whenever we refer to a letter 〈π, π′〉 ∈ Σn we assume that π′ is the successor
of π according to the lexicographic order. Consider a letter 〈π, π′〉 ∈ Σn and a node
x labeled by 〈π, π′〉. Intuitively, when the automaton Bn reads the node x, it “sends”
the permutation π′ to the left successor of x and it “sends” the permutation π (i.e., the
same permutation) to the right successor of x. Consider a Σn-labeled binary tree 〈T, τ〉.
Consider a node x and its two successors x · 0 and x · 1. Let τ(x) be 〈πx, π′x〉, τ(x · 0)
be 〈πx0, π′x0〉, and τ(x · 1) be 〈πx1, π′x1〉. We say that the node x is good if πx0 = π′x
and πx1 = πx. That is, the left successor of x is labeled by the successor permutation
π′x (paired with its successor permutation) and the right successor of x is labeled by the
same permutation πx (paired with its successor permutation). A tree 〈T, τ 〉 is good if all
vertices x ∈ T are good. Given a permutation π there is a unique good tree whose root
is labeled by 〈π, π′〉. We denote this tree by 〈T, τπ〉.

Lemma 7. For every permutation π, the width of a transducer that generates 〈T, τπ〉 is
n+1

2 !.

Proof. We can construct a transducer generating 〈T, τπ〉 with n+1
2 ! states. Indeed, the

states of such a transducer are the letters of Σn. The 0-successor of a state 〈π, π′〉 is the
unique state 〈π′, π′′〉, for the successor π′′ of π′, and its 1-successor is 〈π, π′〉.

Let π0, . . . , πn+1
2 ! be an enumeration of all permutations according to the lexico-

graphic order. For simplicity we assume that π = π0. We can see that 〈π0, π1〉 appears
in every level in 〈T, τπ〉. By induction, 〈πi, πi+1〉 appears for the first time in 〈T, τπ〉 in
level i−1. It follows that 〈πi, πi+1〉 appears in 〈T, τπ〉 in all levels above i−1. In partic-
ular, in all levels after n+1

2 !, all permutations appear. It follows that |reachj(T)| ≥ n+1
2 !

for all transducers T that generate 〈T, τπ〉 and j ≥ n+1
2 !. %&

Corollary 2. Every transducer T that generates a tree that has a subtree 〈T, τπ〉, for
some permutation π, has width at least n+1

2 !.

We now defineBn as a UCT variant of the UCWAn constructed in Section 3. Essentially,
every transducer accepted by Bn generates a tree that contains 〈T, τπ〉 as a subtree, for
some permutation π of all the letters in Σn.

Let Bn = 〈Σn, {0, 1}, Qn, δn, Qn, αn〉, whereQn = {1, . . . , n}, αn={i | i is even},
and δ : Qn ×Σn → 2{0,1}×Qn is as follows. Let 〈π, π′〉 ∈ Σn and let σ = i1 · · · in and
σ′ = j1 · · · jn be the even extensions of π and π′. Then, for every 1 ≤ k ≤ n, we define

194 O. Kupferman and N. Piterman

δn(ik, 〈π, π′〉) =
{
{(0, j1), . . . , (0, jk), (1, i1), . . . , (1, ik)} if k is odd
{(0, j1), . . . , (0, jk−1), (1, i1), . . . , (1, ik−1)} if k is even

When going left, Bn treats the pair 〈π, π′〉 like the UCW An treats it. When going
right, Bn mimics the same concept, this time, without changing the permutation. From
state q ∈ Qn, our automaton checks the location of q in σ and sends copies to all states
in smaller (or equal, if k is odd) locations in σ′ in direction 0 and all states in smaller (or
equal) locations in σ in direction 1.

Consider a transducer T = 〈D,Σn, S, sin, η, L〉 accepted by Bn. Given a permutation
π, we say that π′ is the 0-successor of π for the successor π′ of π according to the
lexicographic order (i.e., the unique π′ such that 〈π, π′〉 ∈ Σn) and we say that π is the
1-successor of π. Consider a path p = s0, a0, s1, a1, . . . ∈ (S × D)ω , where si+1 =
η(si, ai). We say that p is good if for all i ≥ 0 we have L(si+1) is the ai-successor of
L(si). We say that p is bad otherwise4. If p is bad, every location i ∈ IN such that L(si)
is not the ai−1-successor of L(si−1) is called an error in p.

Consider a transducer T = 〈D,Σn, S, sin, η, L〉 and an infinite path p =
s0, a0, s1, a1, . . . ∈ (S × D)ω , where si+1 = η(si, ai). Consider a sub-path v =
sl, al, . . . , sl′−1, al′−1, sl′ . We denote by first(v) the permutation π ∈ Πn such that
〈π, π′〉 = L(sl). We denote by last(v) the permutation π′′ ∈ Πn such that L(sl′−1) =
〈π, π′〉 and π′′ = π if al′−1 = 1 and π′′ = π′ if al′−1 = 0. That is, the last permutation
read in v is determined by the last direction p takes in v.

Let G be the DAG run of Bn on T , p = s0, a0, s1, a1, . . . an infinite path in T , and
v = sl, al, . . . , sl′−1, al′−1, sl′ a sub-path of p. Consider the part of G consisting of all
nodes in levels l to l′ that read the states sl, . . . , sl′ . Let π be first(v) and π′ be last(v).
We arrange the states in Q according to their order in the even extensions σ and σ′ of π
and π′. The following lemma is the tree variant of Lemma 5. It shows that if q is the k-th
state in σ and q′ is the k′-th state in σ′, then k′ ≤ k implies that q′ is reachable from q in
this part of the run. Furthermore, if k′ < k then q′ is reachable from q along a run that
visits α. The proof is identical to that of Lemma 5.

Lemma 8. Consider a transducer T = 〈D,Σn, S, sin, η, L〉 and the DAG run G of Bn
on it. Let p = s0, a0, s1, a1, . . . be a path in T and let v = sl, al . . . , sl′−1, al′−1, sl′ be
a sub-path of p. Let q be the k-th state in the even extension of first(v) for an odd k,
and let q′ be the k′-th state in the even extension of last(v), for k′ ≤ k. Then, the vertex
〈sl′ , q′, l′〉 inG is reachable from the vertex 〈sl, q, l〉. Moreover, if l′− l > 1 and k′ < k,
then a path connecting 〈sl, q, l〉 to 〈sl′ , q′, l′〉 visits α.

The following Lemma resembles Lemma 6. It shows that in a transducer accepted by Bn,
every path has only finitely many errors.

Lemma 9. For every path p in a transducer T ∈ L(Bn), the path p contains finitely
many errors.

Proof. Let G be an accepting run of Bn on T = 〈D,Σn, S, sin, η, L〉. Assume that
p = s0, a0, s1, a1, . . ., where si+1 = η(si, ai), is a path in T with infinitely many errors.
Let sl0 , sl1 , . . . denote the error locations in p. By definition, for every m ≥ 0 we have

4 Notice that the definition of bad here is slightly different from the definition of bad in Section 3.

Lower Bounds on Witnesses for Nonemptiness of Universal Co-Büchi Automata 195

L(slm) is not the alm−1-successor of L(slm−1). With every index lm we associate a
triplet 〈πm, π′m, dm〉 such that L(slm−1) = 〈π, π′〉 and πm is the alm−1-successor of
π (i.e., π′ if alm−1 = 0 and π otherwise), L(slm) = 〈π′m, π′′′〉, and dm = alm−1.
That is, we record the permutation π′m labeling slm , the unmatching πm, which is the
alm−1-successor of the label of slm−1, and the direction that takes from slm−1 to slm .
There are infinitely many errors and finitely many triplets. There is a triplet 〈π, π′, d〉
associated with infinitely many indices. We abuse notations and denote by sl0 , sl1 , . . . the
sub-sequence of locations associated with 〈π, π′, d〉. Without loss of generality, assume
that for allm ≥ 0 we have lm+1 − lm > 1.

For m,m′ ≥ 0 such that m �= m′, let vm,m′ denote the sub-path of p that starts in
slm and ends in slm′ . Then π′ = first(vm,m′) and π = last(vm,m′). By assumption π′

is not the d-successor of π. Let σ = i1, . . . , in be the even extension of the d-successor
of π and let σ′ = j1, . . . , jn be the even extension of π′. Then there exists some odd k
and k′ such that jk = ik′ and k′ < k. Let q be the state jk = ik′ . The state q satisfies
the condition of Lemma 8 with respect to vm,m′ : it is the k-th state in first(vm,m′) for
an odd k, and it is also the k′-th state in last(vm,m′). Hence, since lm′ − lm > 1 and
k′ < k, the node 〈slm′ , q, lm′〉 in G is reachable from the node 〈slm , q, lm〉 along a path
that visits α.

For every two different integersm andm′ we identify one such state qm,m′ . By Ram-
sey’s Theorem, there exist a state q and a sequence l′0, l

′
1, . . . such that for every m ≥ 0

the sub-path vl′m,l′m+1
connects state q to itself with a path that visits α. We have found a

path in G that visits α infinitely often. %&

We now show that every tree generated by T contains 〈T, τπ〉 for some π as a subtree.

Lemma 10. For every T ∈ L(Bn), there exists a permutation π and a state s reachable
from sin such that the transducer Ts generates 〈T, τπ〉.

Proof. We add an annotation to the edges in T . Every edge s′ = η(s, a) such that s′ is
an error in a path that contains s and s′ is annotated by 1. Every other edge is annotated
by 0. According to Lemma 9, every path in T is annotated by finitely many 1’s.

We say that a state s is 1-free in T iff all the edges in T that are reachable from s are
not labeled by 1. It is enough to find one such state s. Assume by contradiction that no
such state s exists. We construct by induction a path that is labeled by infinitely many
1’s.5

By assumption, sin is not 1-free. Hence there is some state s1 reachable from sin and
a direction a1 such that the edge from s1 to η(s1, a1) is annotated by 1. By induction the
path from sin to η(si, ai) has at least i edges annotated by 1. By assumption η(si, ai) is
not 1-free. There exists a node si+1 reachable from η(si, ai) and a direction ai+1 such
that the edge from si+1 to η(si+1, ai+1) is annotated by 1. It follows that the path from
sin to η(si+1, ai+1) has at least i+ 1 edges annotated by 1. In the limit, we get a path in
T that has infinitely many edges labeled 1. In contradiction to Lemma 9.

It follows that there exists a state s in T such that s is 1-safe. As s is 1-safe, the subtree
generated by Ts contains no errors. Let π be the permutation such that L(s) = 〈π, π′〉.
Then Ts generates 〈T, τπ〉. %&

5 Notice the resemblance to the definition of α-free in Section 2. Indeed, the proof of the existence
of a 1-free state follows closely the similar proof in [7].

196 O. Kupferman and N. Piterman

We can now conclude with the statement of the lower bound for the branching case.

Theorem 3. There is a n+1
2 ! lower bound on the width of a transducer accepted by a

UCT with n states.

Proof. Consider the sequence of UCTs B1,B3, . . . defined above. For every permutation
π, the transducer that generates 〈T, τπ〉 is accepted by Bn. By Lemma 10 and Corollary 2,
every transducer accepted by Bn is of width at least n+1

2 !. %&

References

1. Brzozowski, J.A., Leiss, E.: Finite automata and sequential networks. TCS 10, 19–35 (1980)
2. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc. Int. Congress

on Logic, Method, and Philosophy of Science. 1960, pp. 1–12. Stanford Univ. Press (1962)
3. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981)
4. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and

Computation, 2nd edn. Addison-Wesley, Reading (2000)
5. Kupferman, O., Piterman, N., Vardi, M.Y.: Safraless compositional synthesis. In: Ball, T.,

Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 31–44. Springer, Heidelberg (2006)
6. Kupferman, O., Sheinvald-Faragy, S.: Finding shortest witnesses to the nonemptiness of au-

tomata on infinite words. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137,
pp. 492–508. Springer, Heidelberg (2006)

7. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM ToCL 2(2),
408–429 (2001)

8. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Proc. 46th FOCS, pp. 531–540
(2005)

9. Kurshan, R.P.: Computer Aided Verification of Coordinating Processes. Princeton Univ. Press,
Princeton (1994)

10. Liu, W.: A tighter analysis of Piterman determinization construction (2007),
http://nlp.nudt.edu.cn/˜lww/pubs.htm

11. McNaughton, R.: Testing and generating infinite sequences by a finite automaton. I&C 9, 521–
530 (1966)

12. Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. TCS 32, 321–330 (1984)
13. Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by nondeterministic au-

tomata: New results and new proofs of theorems of Rabin, McNaughton and Safra. TCS 141,
69–107 (1995)

14. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity au-
tomata. LMCS 3(3), 5 (2007)

15. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. 16th POPL, pp. 179–
190 (1989)

16. Rabin, M.O.: Decidability of second order theories and automata on infinite trees. Transaction
of the AMS 141, 1–35 (1969)

17. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer Science,
pp. 133–191 (1990)

18. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification.
In: Proc. 1st LICS, pp. 332–344 (1986)

19. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. I&C 115(1), 1–37 (1994)

http://nlp.nudt.edu.cn/~lww/pubs.htm

Interrupt Timed Automata

Beatrice Bérard1,� and Serge Haddad2,�

1 Université Pierre & Marie Curie, LIP6/MoVe, CNRS UMR 7606, Paris, France
Beatrice.Berard@lip6.fr

2 Ecole Normale Supérieure de Cachan, LSV, CNRS UMR 8643, Cachan, France
Serge.Haddad@lsv.ens-cachan.fr

Abstract. In this work, we introduce the class of Interrupt Timed Au-
tomata (ITA), which are well suited to the description of multi-task sys-
tems with interruptions in a single processor environment. This model
is a subclass of hybrid automata. While reachability is undecidable for
hybrid automata we show that in ITA the reachability problem is in 2-
EXPSPACE and in PSPACE when the number of clocks is fixed, with a
procedure based on a generalized class graph. Furthermore we consider
a subclass ITA− which still describes usual interrupt systems and for
which the reachability problem is in NEXPTIME and in NP when the
number of clocks is fixed (without any class graph). There exist languages
accepted by an ITA− but neither by timed automata nor by controlled
real-time automata (CRTA), another extension of timed automata. How-
ever we conjecture that CRTA is not contained in ITA. So, we combine
ITA with CRTA in a model which encompasses both classes and show
that the reachability problem is still decidable.

Keywords: Hybrid automata, timed automata, multi-task systems, in-
terruptions, decidability of reachability.

1 Introduction

Context. The model of timed automata (TA), introduced in [1], has proved very
successful due to the decidability of the emptiness test. A timed automaton
consists of a finite automaton equipped with real valued variables, called clocks,
which evolve synchronously with time, during the sojourn the states. When a
discrete transition occurs, clocks can be tested by guards, which compare their
values with constants, and reset. The decidability result was obtained through
the construction of a finite partition of the state space into regions, leading to
a finite graph which is time-abstract bisimilar to the original transition system,
thus preserving reachability.

Hybrid automata have subsequently been proposed as an extension of timed
automata [14], with the aim to increase the expressive power of the model. In this
model, clocks are replaced by variables which evolve according to a differential
� Work partly supported by project DOTS (ANR-06-SETI-003).

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 197–211, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Beatrice.Berard@lip6.fr
Serge.Haddad@lsv.ens-cachan.fr

198 B. Bérard and S. Haddad

equation. Furthermore, guards consist of more general constraints on the vari-
ables and resets are extended into (possibly non deterministic) updates. However,
since reachability is undecidable for this model, many classes have been defined,
between timed and hybrid automata, to obtain the decidability of this problem.
Examples of such classes are multi-rate or rectangular automata [2], some sys-
tems with piece-wise constant derivatives [3], controlled real-time automata [9],
integration graphs [11], o-minimal hybrid systems [12,13], some updatable timed
automata [6] or polygonal hybrid systems [4].

Contribution. In this paper, we define a subclass of hybrid automata, called
Interrupt Timed Automata (ITA), well suited to the description of multi-task
systems with interruptions in a single processor environement. In an ITA, the
finite set of control states is organized according to interrupt levels, ranging
from 1 to n, with exactly one active clock for a given level. The clocks from
lower levels are suspended and those from higher levels are not yet defined.
On the transitions, guards are linear constraints using only clocks from the
current level or the levels below and the relevant clocks can be updated by
linear expressions, using clocks from lower levels. For a transition increasing the
level, the newly relevant clocks are reset. This model is rather expressive since
it combines variables with rate 1 or 0 (usually called stopwatches) and linear
expressions for guards or updates.

While the reachability problem is well known to be undecidable for automata
with stopwatches [10,8,7], we prove that for ITA, it belongs to 2-EXPSPACE.
The procedure significantly extends the classical region construction of [1] by
associating with each state a family of orderings over linear expressions. Fur-
thermore, we define a slight restriction of the model, leading to a subclass ITA−
for which reachability can be decided in NEXPTIME. Furthermore when the
number of clocks is fixed, the complexity is greatly reduced for both classes:
PSPACE (resp. NP) for ITA (resp. ITA−).

We also investigate the expressive power of the class ITA, in comparison with
the original model of timed automata and also with the more general controlled
real-time automata (CRTA) proposed in [9]. In CRTA, clocks are also organized
into a partition (according to colours) and may have different rates, but all
active clocks in a given state have identical rate. We prove that there exist timed
languages accepted by ITA (and also ITA−) but not by a CRTA (resp. not by
a TA). We conjecture that the classes ITA and CRTA are incomparable, which
leads us to define a combination of the two models, the CRTA part describing
a basic task at an implicit additional level 0. For this extended model denoted
by ITA+ (with ITA+

− as a subclass), we show that reachability is still decidable
with the same complexity.

Outline. In section 2, we define ITA and study its expressive power. Section 3
is devoted to the decidability of the reachability problem and section 4 extends
the results for the models combining ITA and CRTA.

Interrupt Timed Automata 199

2 Interrupt Timed Automata

2.1 Definitions and Examples

The sets of natural numbers, rational numbers and real numbers are denoted
respectively by N, Q and R, with Q≥0 (resp. R≥0) for the set of non negative
rational (resp. real) numbers.

Let X be a set of clocks. A linear expression over X is a term of the form∑
x∈X axx + b where b and the axs are in Q. We denote by C+(X) the set of

constraints obtained by conjunctions of atomic propositions of the form C �(0,
where C is a linear expression and �(is in {<,≤,≥, >}. The subset of C+(X)
where linear expressions are restricted to the form x+ b, for x ∈ X and b ∈ Q is
denoted by C(X). An update over X is a conjunction of the form

∧
x∈X x := Cx

where Cx is a linear expression. We denote by U+(X) the set of updates over X
and by U(X) the subset of U+(X) where for each clock x, the linear expression
Cx is either x (value unchanged) or 0 (clock reset).

A clock valuation is a mapping v : X �→ R and we denote by 0 the valuation
assigning the value 0 to all clocks. The set of all clock valuations is RX and we
write v |= ϕ when valuation v satisfies the clock constraint ϕ. For an element d
of R≥0, the valuation v+d is defined by (v+d)(x) = v(x)+d, for each clock x in
X . For a linear expression C =

∑
x∈X axx+b, the real number v[C] is defined by∑

x∈X axv(x) + b. For an update u defined by
∧
x∈X x := Cx, the valuation v[u]

is defined by v[u](x) = v[Cx] for x in X . The linear expression C[u] is obtained
by substituting in C every x by Cx.

The model of ITA is based on the principle of multi-task systems with in-
terruptions, in a single processor environment. We consider a set of tasks with
different priority levels, where a higher level task represents an interruption for
a lower level task. At a given level, exactly one clock is active with rate 1, while
the clocks for tasks of lower levels are suspended, and the clocks for tasks of
higher levels are not yet activated.

Definition 1 (Interrupt Timed Automaton). An interrupt timed automa-
ton is a tuple A = (Σ,Q, q0, F,X, λ,∆), where Σ is a finite alphabet, Q is
a finite set of states, q0 is the initial state, F ⊆ Q is the set of final states,
X = {x1, . . . , xn} consists of n interrupt clocks, the mapping λ : Q �→ {1, . . . , n}
associates with each state its level and ∆ ⊆ Q× [C+(X)×(Σ∪{ε})×U+(X)]×Q
is the set of transitions.

We call xλ(q) the active clock in state q. Let q
ϕ,a,u−−−→ q′ in ∆ be a transition

with k = λ(q) and k′ = λ(q′). The guard ϕ contains only clocks from levels less
than or equal to k: it is a conjunction of constraints of the form

∑k
j=1 ajxj+b �(

0. The update u is of the form ∧ni=1xi := Ci with:

– if k′ < k, i.e. the transition decreases the level, then Ci is of the form∑i−1
j=1 ajxj + b or Ci = xi for 1 ≤ i ≤ k′ and Ci = xi otherwise;

– if k′ ≥ k then Ci is of the form
∑i−1
j=1 ajxj + b or Ci = xi for 1 ≤ i ≤ k,

Ci = 0 if k < i ≤ k′ and Ci = xi if i > k′.

200 B. Bérard and S. Haddad

Thus, clocks from levels higher than the target state are ignored, and when newly
relevant clocks appear upon increasing the level, they are reset.

Definition 2 (Semantics of an ITA). The semantics of an ITA A is defined
by the transition system TA = (S, s0,→). The set S of configurations is {(q, v) |
q ∈ Q, v ∈ RX}, with initial configuration (q0,0). An accepting configuration
of TA is a pair (q, v) with q in F . The relation → on S consists of two types of
steps:

Time steps: Only the active clock in a state can evolve, all other clocks are
suspended. For a state q with active clock xλ(q), a time step of duration d is

defined by (q, v) d−→ (q, v′) with v′(xλ(q)) = v(xλ(q)) + d and v′(x) = v(x) for
any other clock x.

Discrete steps: A discrete step (q, v) a−→ (q′, v′) occurs if there exists a transi-
tion q

ϕ,a,u−−−→ q′ in ∆ such that v |= ϕ and v′ = v[u].

Remarks. Observe that in state q the only relevant clocks are {xk}k≤λ(q) since
any other clock will be reset before being tested for the first time in the future.
We have not stated this feature more explicitely in the definition for the sake of
simplicity.

Concerning updates, if we allow a slight generalization, substituting xi :=∑i−1
j=1 ajxj + b by xi :=

∑i
j=1 ajxj + b, it is easy to simulate a two-counter

machine with a three clocks-ITA, thus implying undecidability of reachability
for the model.
A timed word is a finite sequence (a1, t1) . . . (ap, tp) ∈ (Σ×R≥0)∗, where the ti’s
form a non decreasing sequence. A timed language is a set of timed words. For
a timed language L, the corresponding untimed language, written Untime(L),
is the projection of L on Σ∗. For an ITA A, a run is a path in TA from the
initial to an accepting configuration such that time steps alternate with discrete
steps: (q0, v0)

d1−→ (q0, v′0)
a1−→ (q1, v1) · · ·

dn−→ (qn−1, v
′
n−1)

an−−→ (qn, vn), with
v0 = 0. The sequence t1, . . . , tn of absolute dates associated with this run is
ti =

∑i
j=1 dj and a timed word accepted by A is obtained by removing from the

q0, 1 q1, 2 q2, 2
x1 < 1, a, x2 := 0 x1 + 2x2 = 1, b

Fig. 1. An ITA A1 with two interrupt levels

q0, 1 q1, 2
x1 > 0, a, x2 := 0

x2 = x1, a, x2 := 0

Fig. 2. An ITA A2 for L2

Interrupt Timed Automata 201

sequence (a1, t1) . . . (an, tn) the pairs such that ai = ε. We denote by L(A) the
set of timed words accepted by A. ITL denotes the family of timed languages
accepted by an ITA.

We end this paragraph with two examples of ITA. In the figures, the level of a
state is indicated beside its name. For the automaton A1 in Fig. 1, state q0 is the
initial state with level 1. States q1 and q2 are on level 2, and q2 is the final state.
There are two interrupt clocks x1 and x2.Entering state q1 at time 1−τ for some
τ , clock x1 is suspended and state q2 is reached at time 1−τ+t with 1−τ+2t = 1.
The language accepted by A1 is thus L1 = {(a, 1 − τ)(b, 1 − τ/2) | 0 < τ ≤ 1}.
The ITA in Fig. 2 also has two levels and two interrupt clocks x1 and x2. It
accepts L2 = {(a, τ)(a, 2τ) . . . (a, nτ) | n ∈ N, τ > 0}.

2.2 Expressive Power of ITA

We now compare the expressive power of ITA with classical Timed Automata
(TA) and Controlled Real-Time Automata (CRTA) [9].

Recall that a Timed Automaton is a tuple A = (Σ,Q, q0, F,X,∆), where Σ
is a finite alphabet, Q is a finite set of states, q0 is the initial state, F ⊆ Q is the
set of final states, X is a set of clocks and ∆ ⊆ Q× [C(X)×(Σ∪{ε})×U(X)]×Q
is the set of transitions.

Since all clocks evolve with rate 1, the only difference from ITA in the def-
inition of semantics concerns a time step of duration d, which is defined by
(q, v) d−→ (q, v + d).

CRTA extend TA with the following features: the clocks and the states are
partionned according to colors belonging to a set Ω and with every state is
associated a rational velocity. When time elapses in a state, the set of active
clocks (i.e. with the color of the state) evolve with rate equal to the velocity of
the state while other clocks remain unchanged. For sake of simplicity, we now
propose a slightly simplified version of CRTA.

Definition 3. A CRTA A = (Σ,Q, q0, F,X, up, low, vel, λ,∆) on a finite set Ω
of colors is defined by:

- Σ is the alphabet of actions,
- Q is a set of states, q0 ∈ Q is the initial state, F is the set of final states,
- X is a set of clocks, up and low are mappings which associate with each clock
respectively an upper and a lower bound, vel : Q �→ Q is the velocity mapping,
- λ : X ∪Q �→ Ω is the coloring mapping and
- ∆ is the set of transitions. A transition in ∆ has guards in C(X) with constants
in Q and updates in U(X) (i.e. only reset). The lower and upper bound mappings
satisfy low(x) ≤ 0 ≤ up(x) for each clock x ∈ X, and low(x) ≤ b ≤ up(x) for
each constant such that x �(b is a constraint in A.

The original semantics of CRTA is rather involved in order to obtain decidabil-
ity of the reachability problem. It ensures that entering a state q in which clock x

202 B. Bérard and S. Haddad

is active, the following conditions on the clock bounds hold : if vel(q) > 0 then
x ≥ low(x) and if vel(q) < 0 then x ≤ up(x). Instead (and equivalently) we
add a syntactical restriction which ensures this behaviour. For instance, if a
transition with guard ϕ and reset u enters state q with vel(q) < 0 and if x is the
only clock such that ω(x) = ω(q), then we replace this transition by two other
transitions: the first one has guard ϕ ∧ x > up(x) and adds x := 0 to the reset
condition u, the other has guard ϕ ∧ x ≤ up(x) and reset u. In the general case
where k clocks have color ω(q), this leads to 2k transitions. With this syntactical
condition, again the only difference from ITA concerns a time step of duration
d, defined by (q, v) d−→ (q, v′), with v′(x) = v(x) + vel(q)d if ω(x) = ω(q) and
v′(x) = v(x) otherwise.

We denote by TL (resp. CRTL) the family of timed languages accepted by
TA (resp. CRTA), with TL strictly contained in CRTL.

Proposition 1

1. There exists a language in ITL which is not in TL.
2. There exists a language in ITL whichis not in CRTL.

Proof. To prove the first point, consider the ITA A1 in Fig. 1. Suppose, by
contradiction, that L1 is accepted by some timed automaton B in TA (possibly
with ε-transitions) and let d be the granularity of B, i.e. the gcd of all rational
constants appearing in the constraints of B (thus each such constant can be
written k/d for some integer k). Then the word w = (a, 1 − 1/d)(b, 1 − 1/2d)
is accepted by B through a finite path. Consider now the automaton B′ in TA,
consisting of this single path (where states may have been renamed). We have
w ∈ L(B′) ⊆ L(B) = L and B′ contains no cycle. Using the result in [5], we can
build a timed automaton B′′ without ε-transition and with same granularity d
such that L(B′′) = L(B′), so that w ∈ L(B′′). The accepting path for w in B′′

contains two transitions : p0
ϕ1,a,r1−−−−−→ p1

ϕ2,b,r2−−−−→ p2. After firing the a-transition,
all clock values are 1 − 1/d or 0, thus all clock values are 1 − 1/2d or 1/2d
when the b-transition is fired. Let x �(c be an atomic proposition appearing in
ϕ2. Since the granularity of B′′ is d, the �(operator cannot be = otherwise the
constraint would be x = 1/2d or x = 1− 1/2d. If the constraint is x < c, x ≤ c,
x > c, or x ≥ c, the path will also accept some word (a, 1 − 1/d)(b, t) for some
t �= 1− 1/2d. This is also the case if the constraint ϕ2 is true. We thus obtain a
contradiction with L(B′′) ⊆ L, which ends the proof.

To prove the second point, consider the language L2={(a, τ)(a, 2τ) . . . (a, nτ) |
n ∈ N, τ > 0} defined above, accepted by the ITA A2 in Fig. 2. This language
cannot be accepted by a CRTA (see [9]).

Note that we do not yet know of a language accepted by an automaton in TA
(or CRTA) but not by an automaton in ITA. However, we conjecture that these
classes are incomparable.

Interrupt Timed Automata 203

3 Reachability Is Decidable in ITA

3.1 General Case

Similarly to the decision algorithm for reachability in TA (and in CRTA), the
procedure for an ITA A is based on the construction of a (finite) class graph
which is time abstract bisimilar to the transition system TA. However the con-
struction of classes is much more involved than in the case of TA. More precisely,
it depends on the expressions occurring in the guards and updates of the au-
tomaton (while in TA it depends only on the maximal constant occurring in
the guards). We associate with each state q a set of expressions Exp(q) with
the following meaning. The values of clocks giving the same ordering of these
expressions correspond to a class. In order to define Exp(q), we first build a
family of sets {Ei}1≤i≤n. Then Exp(q) =

⋃
i≤λ(q) Ei. Finally in proposition 3

we show how to build the class graph which decides the reachability problem.
We first introduce an operation, called normalization, on expressions relative

to some level. As explained in the construction below, this operation will be used
to order the respective values of expressions at a given level.

Definition 4 (Normalization). Let C =
∑
i≤k aixi + b be an expression over

Xk = {xj | j ≤ k}, the k-normalization of C, norm(C, k), is defined by:

– if ak �= 0 then norm(C, k) = xk + (1/ak)(
∑
i<k aixi + b);

– else norm(C, k) = C.

Since guards are linear expressions with rational constants, we can assume that
in a guard C �(0 occurring in a transition outgoing from a state q with level k,
the expression C is either xk +

∑
i<k aixi + b (by k-normalizing the expression

and if necessary changing the comparison operator) or
∑
i<k aixi + b.

Construction of {Ek}k≤n. The construction proceeds top down from level n to
level 1 after initializing Ek = {xk, 0} for all k. As we shall see below, when
handling the level k, we add new terms to {Ei}1≤i≤k.
– At level k, first for every expression αxk+

∑
i<k aixi+b (with α ∈ {0, 1}) oc-

curring in a guard of an edge leaving a state of level k, we add −
∑
i<k aixi−b

to Ek.
– Then we iterate the following procedure until no new term is added to any
Ei for 1 ≤ i ≤ k.
1. Let q

ϕ,a,u−−−→ q′ with λ(q′) ≥ k and λ(q) ≥ k. Let C ∈ Ek, then we add
C[u] to Ek.

2. Let q
ϕ,a,u−−−→ q′ with λ(q′) ≥ k and λ(q) < k. Let C,C′ ∈ Ek, then we

compute C′′ = norm(C[u] − C′[u], λ(q)). Let us write C′′ as αxλ(q) +∑
i<λ(q) aixi + b with α ∈ {0, 1}. Then we add −

∑
i<λ(q) aixi − b to

Eλ(q).

Proposition 2. The construction procedure of {Ek}k≤n terminates and the size
of every Ek is bounded by B2n(n−k+1)+1 where B is the maximum between 2 and
the number of edges of the ITA.

204 B. Bérard and S. Haddad

Proof. Given some k, we prove the termination of the stage relative to k. Observe
that the second step only adds new expressions to Ek′ for k′ < k. Thus the
two steps can be ordered. Let us prove the termination of the first step of the
saturation procedure. We denote E0

k ≡ Ek at the beginning of this stage and
Eik ≡ Ek after the insertion of the ith item in it. With each added item C[u] can
be associated its father C. Thus we can view Ek as an increasing forest with
finite degree (due to the finitess of the edges). Assume that this step does not
terminate. Then we have an infinite forest and by König lemma, it has an infinite
branch C0, C1, . . . where Ci+1 = Ci[ui] for some update ui such that Ci+1 �= Ci.
Observe that the number of updates that change the variable xk is either 0 or
1 since once xk disappears it cannot appear again. We split the branch into two
parts before and after this update or we still consider the whole branch if there is
no such update. In these (sub)branches, we conclude with the same reasonning
that there is at most one update that change the variable xk−1. Iterating this
process, we conclude that the number of updates is at most 2k−1 and the length
of the branch is at most 2k. Thus the final size of Ek is at most E0

k ×B2k

since
the width of the forest is bounded by B.

In the second step, we add at most B × (|Ek| × (|Ek| − 1))/2 to Ei for every
i < k. This concludes the proof of termination.

We now prove by a painful backward induction that as soon as n ≥ 2, |Ek| ≤
B2n(n−k+1)+1. We define pk ≡ |Ek|.
Basis case k = n
pn ≤ p0n × B2n

where p0n is the number of guards of the outgoing edges from
states of level n. Thus:
pn ≤ B ×B2n

= B2n+1 = B2n(n−n+1)+1

which is the claimed bound.
Inductive case
Assume that the bound holds for k < j ≤ n. Due to the second step of the
procedure, we have:
p0k ≤ B +B × ((pk+1 × (pk+1 − 1))/2 + · · ·+ (pn × (pn − 1))/2)
p0k ≤ B +B × (B2n(n−k)+1+2 + · · ·+B2n+1+2)
p0k ≤ B × (n− k + 1)×B2n(n−k)+1+2

p0k ≤ B ×Bn ×B2n(n−k)+1+2 (here we use B ≥ 2)
p0k ≤ B2n(n−k)+1+n+3

pk ≤ B2n(n−k)+1+2k+n+3

Let us consider the term δ = 2n(n−k+1) + 1− 2n(n−k)+1 − 2k − n− 3
δ ≥ (2n−1 − 1)2n(n−k)+1 − (2k + n+ 2)
δ ≥ (2n−1 − 1)2n(n−k)+1 − (2n−1 + 2n)
δ ≥ (2n−1 − 1)2n(n−k)+1 − 2n+1 ≥ 0
Thus: pk ≤ B2n(n−k)+1+2k+n+3 ≤ B2n(n−k+1)+1

which is the claimed bound.

Interrupt Timed Automata 205

Proposition 3. The reachability problem for ITA is decidable and belongs to
2-EXPSPACE and to PSPACE when the number of clocks is fixed.

Proof.
Class definition. Let A be an ITA, the decision algorithm is based on the
construction of a (finite) class graph which is time abstract bisimilar to the
transition system TA. A class is a syntactical representation of a subset of reach-
able configurations. More precisely, it is defined as a pair R = (q, {3k}1≤k≤λ(q))
where q is a state and 3k is a total preorder over Ek.

The class R describes the set of valuations:

[[R]]= {(q, v) | ∀k ≤ λ(q) ∀(g, h) ∈ Ek, g[v] ≤ h[v] iff g 3k h}

Observe that the number of classes is bounded by:

|Q| · 3B2(n
2)+1

where n is the number of clocks of A and B is defined in proposition 2.
As usual, there are two kinds of transitions in the graph, corresponding to

discrete steps and time steps.

Discrete step. Let R = (q, {3k}1≤k≤λ(q)) and R′ = (q′, {3′
k}1≤k≤λ(q′)) be two

classes. There is a transition R e−→ R′ for a transition e : q
ϕ,a,u−−−→ q′ if there is

some (q, v) ∈[[R]] and (q′, v′) ∈[[R′]] such that (q, v) e−→ (q′, v′). In this case, for
all (q, v) ∈[[R]] there is a (q′, v′) ∈[[R′]] such that (q, v) e−→ (q′, v′). This can be
decided as follows.

Firability condition. Write ϕ =
∧

1≤j≤J′ Cj ≤ 0 ∧
∧
J′+1≤j≤J ¬(Cj ≤ 0). By

definition of an ITA, for every j, Cj = αxλ(q)+
∑
i<λ(q) aixi+b (with α ∈ {0, 1}).

By construction C′
j = −

∑
i<λ(q) aixi − b ∈ Eλ(q). If j ≤ J ′ then we require that

αxλ(q) 3k C′
j . If j > J ′ then we require that ¬(αxλ(q) 3k C′

j).

Successor definition. R′ is defined as follows. Let k ≤ λ(q′) and g′, h′ ∈ Ek.

1. Either k ≤ λ(q), by construction, g′[u], h′[u] ∈ Ek then g′ 3′
k h

′ iff g′[u] 3k
h′[u].

2. Or k > λ(q), letD = g′[u]−h′[u] =
∑
i≤λ(q) cixi+d, and C = norm(D,λ(q)),

and write C = αxλ(q) +
∑
i<λ(q) aixi + b (with α ∈ {0, 1}). By construction

C′ = −
∑
i<λ(q) aixi − b ∈ Eλ(q).

When cλ(q) ≥ 0 then g′ 3′
k h

′ iff C′ 3λ(q) αxλ(q).
When cλ(q) < 0 then g′ 3′

k h
′ iff αxλ(q) 3λ(q) C′.

By definition of [[]],

– ∀(q, v) ∈[[R]], if there exists (q, v) e−→ (q′, v′) then the firability condition is
fulfilled and (q′, v′) belongs to [[R′]].

– If the firability condition is fulfilled then ∀(q, v) ∈[[R]] there exists (q′, v′) ∈
[[R′]] such that (q, v) e−→ (q′, v′).

206 B. Bérard and S. Haddad

Time step. Let R = (q, {3k}1≤k≤λ(q)).
The time successor Post(R) = (q, {3′

k}1≤k≤λ(q)) of R is defined as follows.

For every k′ < λ(q) 3′
k=3k. Let ∼=3λ(q) ∩ 3−1

λ(q) be the equivalence relation
induced by the preorder. On equivalence classes, this (total) preorder becomes
a (total) order. Let V be the equivalence class containing xλ(q).

1. Either V = {xλ(q)} and it is the greatest equivalence class. Then3′
λ(q)=3λ(q)

(thus Post(R) = R).
2. Either V = {xλ(q)} and it is not the greatest equivalence class. Let V ′ be the

next equivalence class. Then 3′
λ(q) is obtained by merging V and V ′, and

preserving 3λ(q) elsewhere.
3. Either V is not a singleton. Then we split V into V \ {xλ(q)} and {xλ(q)}

and “extend” 3λ(q) by V \ {xλ(q)} 3′
λ(q) {xλ(q)}.

By definition of [[]], ∀(q, v) ∈[[R]], there exists d > 0 such that (q, v+d) ∈ Post(R)
and ∀0 ≤ d′ ≤ d, (q, v + d′) ∈ R ∪ Post(R).

The initial state of this graph is defined by the class R0 with [[R0]] containing
(q0,0) which can be straightforwardly determined. The reachability problem is
then solved by a non deterministic search of a path in this graph (without build-
ing it) leading to the complexity stated in the proposition. When the number
of clocks is fixed the length of this path is at most exponential w.r.t. the size of
the problem leading to a PSPACE procedure.

Example. We illustrate this construction of a class automaton for the automa-
ton A1 from section 2 (see figure 3, where dashed lines indicate time successors).

In this case, we obtain E1 = {x1, 0, 1} and E2 = {x2, 0,− 1
2x1 + 1

2}. In state
q0, the only relevant clock is x1 and the initial class is R0 = (q0, Z0) with
Z0 : x1 = 0 < 1. Its time successor is R1

0 = (q0, Z1
0) with Z1

0 : 0 < x1 < 1.
Transition a leading to q1 can be taken from both classes, but not from the next
time successors R2

0 = (q0, 0 < x1 = 1) and R3
0 = (q0, 0 < 1 < x1).

Transition a switches from R0 to R1 = (q1, Z0, x2 = 0 < 1
2), because x1 = 0,

and from R1
0 to R1

1 = (q1, Z1
0 , x2 = 0 < − 1

2x1 + 1
2). Transition b is fired from

those time successors for which x2 = − 1
2x1 + 1

2 .
A geometric view is given below, with a possible trajectory: first the value of

x1 increases from 0 in state q0 (horizontal line) and, after transition a occurs,
its value is frozen in state q1 while x2 increases (vertical line) until reaching the
line x2 = − 1

2x1 + 1
2 . The light gray zone is (0 < x1 < 1, 0 < x2 < − 1

2x1 + 1
2),

associated with q1.

x1

x2

0 1

1
2

Interrupt Timed Automata 207

R0

R1
0

R2
0

R3
0

R1
q1, Z0

0 < x2 < 1
2

q1, Z0

0 < x2 = 1
2

q2, Z0

0 < x2 = 1
2

q2, Z0

0 < 1
2

< x2

R1
1

q1, Z
1
0

0 < x2 < − 1
2
x1 + 1

2

q1, Z
1
0

0 < x2 = − 1
2
x1 + 1

2

q2, Z
1
0

0 < x2 = − 1
2
x1 + 1

2

q2, Z
1
0

0 < − 1
2
x1 + 1

2
< x2

a

a

b

b

Fig. 3. The class automaton for A1

3.2 A Simpler Model

In practice, the clock associated with some level measures the time spent in this
level or more generally the time spent by some tasks at this level. Thus when
going to a higher level, this clock is “frozen” until returning to this level. The
following restriction of the ITA model takes this feature into account.

Definition 5. The subclass ITA− of ITA is defined by the following restriction
on updates. For a transition q

ϕ,a,u−−−→ q′ of an automaton A in ITA− (with
k = λ(q) and k′ = λ(q′)), the update u is of the form ∧ni=1xi := Ci with:

– if k′ < k, u = ∧ni=1xi := xi i.e. no updates;
– if k′ ≥ k then Ck is of the form

∑k−1
j=1 ajxj + b or Ck = xk, Ci = 0 if

k < i ≤ k′ and Ci = xi otherwise.

Observe that the automata of figures 1 and 2 belong to ITA−. So the expres-
siveness results of proposition 1 still hold for ITA−.

It turns out that the reachability problem for ITA− can be solved more effi-
ciently.

Proposition 4. The reachability problem for ITA− belongs to NEXPTIME and
to NP when the number of clocks is fixed.

Proof. Let A = (Σ,Q, q0, F,X, λ,∆) be an ITA−. In the sequel, the level of a
transition is the level of its source state. Let E = |∆| be the number of transitions
and given a fixed run, let mk be the number of occurrences of transitions of
level k.

208 B. Bérard and S. Haddad

Assume that there is a run ρ from (q0, v0) to some configuration (qf , vf). We
build a run ρ′ from (q0, v0) to (qf , vf) which fulfills:

– m′
1 ≤ (E + 1)2

– ∀k m′
k+1 ≤ (E + 1)2(m′

k + 1)

Thus
∑n
k=1m

′
k = O(E2n).

We iteratively modify the run ρ by considering the transitions of level k from
1 to n. For the basis case k = 1, we consider in the run ρ the subsequence
(e1, · · · , ep) of transitions in ∆ of level 1 which update x1. Observe that if ei = ej
for some i < j, we can remove the subrun between these two transitions, because
x1 is the only relevant clock before the firing of ei (or ej). Thus we obtain a run
with at most E such transitions. Now we consider a subsequence (e′1, · · · , e′r)
of transitions of level 1 occurring between two of these transitions (or before
the first or after the last). Observe that if e′i = e′j for some i < j, we can
replace the subrun between these two transitions by a time step corresponding
to the difference of values of x1. Indeed, since there is no update, the clock value
after the second transition is greater than or equal to the value after the first
transition. Thus we obtain a run with at most (E + 1)2 transitions of level 1
(including at most E(E + 1) transitions without update).

Assume that the bound holds at levels less than k+1 and consider the subrun
between two consecutive transitions of level less than k + 1 (or before the first
or after the last). By definition of ITA−, the values of clocks x1, . . . , xk are
unchanged during this subrun. Thus for two occurrences of the same transition
of level k+1, the update of xk+1 is the same. So we can apply the same reasoning
as for the basis case, thus leading to the claimed bound.

The decision procedure is as follows. It non deterministically guesses a path in
the ITA− whose length is less than or equal to the bound. In order to check that
this path yields a run, it builds a linear program whose variables are {xji}, where
xji is the value of clock xi after the jth step, and {dj} where dj is the amount
of time elapsed during the jth step, when j corresponds to a time step. The
equations and inequations are deduced from the guards and updates of discrete
transitions in the path and the delay of the time steps. The size of this linear
program is exponential w.r.t. the size of the ITA−. As a linear program can be
solved in polynomial time [15], we obtain a procedure in NEXPTIME. If the
number of clocks is fixed the number of variables is now polynomial w.r.t. the
size of the problem.

4 Combining ITA and CRTA

We finally define an extended class denoted by ITA+, including a set of clocks
at an implicit additional level 0, corresponding to a basic task described as in a
CRTA.

Definition 6 (ITA+). An extended interrupt timed automaton is a tuple A =
(Q, q0, F,X � Y,Σ,Ω, λ, up, low, vel,∆), where:

Interrupt Timed Automata 209

– Q is a finite set of states, q0 is the initial state and F ⊆ Q is the set of final
states.

– X = {x1, . . . , xn} consists of n interrupt clocks and Y is a set of basic clocks,
– Σ is a finite alphabet,
– Ω is a set of colours, the mapping λ : Q � Y �→ {1, . . . , n} � Ω associates

with each state its level or its colour, with xλ(q) the active clock in state q
for λ(q) ∈ N and λ(y) ∈ Ω for y ∈ Y ,

– up and low are mappings from Y to Q with the same constraints of CRTA
(see definition 3), and vel : Q �→ Q is the clock rate with λ(q) /∈ Ω ⇒
vel(q) = 1

– ∆ ⊆ Q× [C+(X ∪Y)× (Σ ∪{ε})×U+(X ∪Y)]×Q is the set of transitions.
Let q

ϕ,a,u−−−→ q′ in ∆ be a transition.
1. The guard ϕ is of the form ϕ1 ∧ ϕ2 with the following conditions. If
λ(q) ∈ N, ϕ1 is an ITA guard on X and otherwise ϕ1 = true. Constraint
ϕ2 is a CRTA guard on Y (also possibly equals to true).

2. The update u is of the form u1 ∧ u2 fullfilling the following conditions.
Assignments from u1 update the clocks in X with the constraints of ITA
when λ(q) and λ(q′) belong to N. Otherwise it is a global reset of clocks
in X. Assignments from u2 update clocks from Y , like in CRTA.

Any ITA can be viewed as an ITA+ with Y empty and λ(Q) ⊆ {1, . . . , n}, and
any CRTA can be viewed as an ITA+ with X empty and λ(Q) ⊆ Ω. Class ITA+

combines both models in the following sense. When the current state q is such
that λ(q) ∈ Ω, the ITA part is inactive. Otherwise, it behaves as an ITA but
with additional constraints about clocks of the CRTA involved by the extended
guards and updates. The semantics of ITA+ is defined as usual but now takes
into account the velocity of CRTA clocks.

Definition 7 (Semantics of ITA+). The semantics of an automaton A in
ITA+ is defined by the transition system TA = (S, s0,→). The set S of config-
urations is {(q, v) | q ∈ Q, v ∈ RX∪Y }, with initial configuration (q0,0). An
accepting configuration of TA is a pair (q, v) with q in F . The relation → on
S consists of time steps and discrete steps, the definition of the latter being the
same as before:

Time steps: Only the active clocks in a state can evolve, all other clocks are
suspended. For a state q with λ(q) ∈ N (the active clock is xλ(q)), a time

step of duration d is defined by (q, v) d−→ (q, v′) with v′(xλ(q)) = v(xλ(q)) + d
and v′(x) = v(x) for any other clock x. For a state q with λ(q) ∈ Ω (the
active clocks are Y ′ = Y ∩ λ−1(λ(q))), a time step of duration d is defined
by (q, v) d−→ (q, v′) with v′(y) = v(y) + vel(q)d for y ∈ Y ′ and v′(x) = v(x)
for any other clock x.

Discrete steps: A discrete step (q, v) a−→ (q′, v′) occurs if there exists a transi-
tion q

ϕ,a,u−−−→ q′ in ∆ such that v |= ϕ and v′ = v[u].

210 B. Bérard and S. Haddad

init wait log

out

I, 1

y=0,p y<1∧z<6,ok

y≤1∧z=6,to,z:=0

z=50,rs,z:=0,y:=0

y≤1∧z<6,er,y:=0 y<1∧z<6,i,x1:=0

x1<3∨z<3,cont,y:=0

x1≥3∧z≥3,rs,y:=0,z:=0

In order to illustrate the interest of the combined models, an example of a
(simple) login procedure is described in the figure above as a TA with inter-
ruptions at a single level. First it immediately displays a prompt and arms a
time-out of 1 t.u. handled by clock y (transition init

p−→ wait). Then either the
user answers correctly within this delay (transition wait ok−→ log) or he/she an-
swers incorrectly or let time elapse, both cases with transition wait er−→ init, and
the system prompts again. The whole process is controlled by a global time-out
of 6 t.u. (transition wait to−→ out) followed by a long suspension (50 t.u.) before
reinitializing the process (transition out rs−→ init). Both delays are handled by
clock z. At any time during the process (in fact in state wait), a system inter-
rupt may occur (transition wait i−→ I). If the time spent (measured by clock x1)
during the interrupt is less than 3 t.u. or the time already spent by the user is
less than 3, the login process resumes (transition I cont−−−→ init). Otherwise the
login process is reinitialized allowing again the 6 t.u. (transition I rs−→ init). In
both cases, the prompt will be displayed again. Since invariants are irrelevant
for the reachability problem we did not include them in the models. Of course,
in this example state wait should have invariant y ≤ 1 ∧ z ≤ 6 and state out
should have invariant z ≤ 50.

We extend the decidability and complexity results of the previous models
when combining them with CRTA. Class ITA+

− is obtained in a similar way by
combining ITA− with CRTA. Proofs are omitted here.

Proposition 5

1. The reachability problem for ITA+ is decidable and belongs to 2-EXPSPACE
and is PSPACE-complete when the number of interrupt clocks is fixed.
2. The reachability problem for ITA+

− belongs to NEXPTIME and is PSPACE-
complete when the number of interrupt clocks is fixed.

5 Conclusion

We have proposed a subclass of hybrid automata, called ITA. An ITA describes
a set of tasks, executing at interrupt levels, with exactly one active clock at

Interrupt Timed Automata 211

each level. We prove that the reachability problem is decidable in this class,
with a procedure in 2-EXPSPACE. We also consider restrictions on this class,
that make the complexity of decision lower (in NEXPTIME). We show that
these results still hold for a combination of ITA with the class CRTA. When the
number of clocks is fixed, the complexity bound is the same as the one of TA
and even better in case of ITA−. Whether the classes TA or CRTA are contained
in ITA and whether ITA− is a strict subclass of ITA are open questions.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126, 183–235 (1994)

2. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P., Nicollin, X.,
Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical Computer Science 138, 3–34 (1995)

3. Asarin, E., Maler, O., Pnueli, A.: Reachability Analysis of Dynamical Systems
having Piecewise-Constant Derivatives. Theoretical Computer Science 138, 35–66
(1995)

4. Asarin, E., Schneider, G., Yovine, S.: Algorithmic Analysis of Polygonal Hybrid
Systems, Part I: Reachability. Theoretical Computer Science 379(1-2), 231–265
(2007)

5. Bérard, B., Diekert, V., Gastin, P., Petit, A.: Characterization of the expressive
power of silent transitions in timed automata. Fundamenta Informaticae 36, 145–
182 (1998)

6. Bouyer, P.: Forward analysis of updatable timed automata. Formal Methods in
System Design 24(3), 281–320 (2004)

7. Brihaye, T., Bruyère, V., Raskin, J.-F.: On Model-Checking Timed Automata with
Stopwatch Observers. Information and Computatiion 2004(3), 408–433 (2006)

8. Cassez, F., Larsen, K.G.: The impressive power of stopwatches. In: Palamidessi, C.
(ed.) CONCUR 2000. LNCS, vol. 1877, pp. 138–152. Springer, Heidelberg (2000)

9. Demichelis, F., Zielonka, W.: Controlled timed automata. In: Sangiorgi, D., de
Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 455–469. Springer, Hei-
delberg (1998)

10. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid
automata? Journal of Computer and System Sciences 57, 94–124 (1998)

11. Kesten, Y., Pnueli, A., Sifakis, J., Yovine, S.: Decidable Integration Graphs. Infor-
mation and Computation 150(2), 209–243 (1999)

12. Lafferriere, G., Pappas, G.J., Yovine, S.: A new class of decidable hybrid systems.
In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp.
137–151. Springer, Heidelberg (1999)

13. Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computations for
families of linear vector fields. Journal of Symbolic Computation 32(3), 231–253
(2001)

14. Maler, O., Manna, Z., Pnueli, A.: From Timed to Hybrid Systems. In: Huizing,
C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS,
vol. 600, pp. 447–484. Springer, Heidelberg (1992)

15. Roos, C., Terlaky, T., Vial, J.-P.: Theory and Algorithms for Linear Optimization.
An Interior Point Approach. Wiley-Interscience, John Wiley & Sons Ltd., West
Sussex (1997)

Parameter Reduction in Grammar-Compressed Trees

Markus Lohrey1, Sebastian Maneth2, and Manfred Schmidt-Schauß3

1 Universität Leipzig, Institut für Informatik, Germany
2 NICTA and University of New South Wales, Australia

3 Johann Wolfgang Goethe-Universität Frankfurt, Institut für Informatik, Germany
lohrey@informatik.uni-leipzig.de, sebastian.maneth@nicta.com.au,

schauss@cs.uni-frankfurt.de

Abstract. Trees can be conveniently compressed with linear straight-line
context-free tree grammars. Such grammars generalize straight-line context-free
string grammars which are widely used in the development of algorithms that exe-
cute directly on compressed structures (without prior decompression). It is shown
that every linear straight-line context-free tree grammar can be transformed in
polynomial time into a monadic (and linear) one. A tree grammar is monadic
if each nonterminal uses at most one context parameter. Based on this result,
a polynomial time algorithm is presented for testing whether a given nondeter-
ministic tree automaton with sibling constraints accepts a tree given by a linear
straight-line context-free tree grammar. It is shown that if tree grammars are non-
deterministic or non-linear, then reducing their numbers of parameters cannot be
done without an exponential blow-up in grammar size.

1 Introduction

The current massive increase in data volumes motivates the development of algorithms
on compressed data, like for instance compressed strings, trees, and graphs. The general
goal is to construct algorithms that work directly on compressed data, without prior
decompression. Considerable amount of work has been done concerning algorithms
that execute on compressed strings, see [13] for a survey. In this field, a popular succinct
string representation are context-free grammars which generate exactly one string. It
can be statically guaranteed that only one string is generated, by restricting to acyclic
grammars with exactly one production per nonterminal. Such grammars are known as
straight-line programs, briefly SLPs. Since an SLP with n productions may generate a
string of length 2n, an SLP can be seen as a compressed representation of the generated
string. Some of the nice features of SLPs are:

– Many dictionary based compression schemes, like for instance LZ78 and LZ77 can
be converted efficiently into SLPs, see, e.g., [13] for further details.

– SLPs are based on context-free grammars and are apt for concise and clean mathe-
matical proofs.

– For many algorithmic problems, SLPs allow efficient algorithms that avoid prior
decompression. The most studied example in this context is the pattern matching
problem for compressed strings, see the references in [13].

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 212–226, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Parameter Reduction in Grammar-Compressed Trees 213

Due to these appealing properties, it is natural to generalize SLPs to other more complex
data structures. For trees, this is done in [3,11]. In this context, a tree is represented by
a context-free tree grammar that generates exactly one tree. Such grammars are called
straight-line context-free tree grammars, briefly SLCF tree grammars in [3,11]. They
generalize the sharing of repeated subtrees in a tree as it is well-known from DAGs
(directed acyclic graphs) to the sharing of repeated subpatterns in a tree (a subpattern
is a connected subgraph of the tree). In the context of commonly used XML docu-
ments, experiments show that SLCF tree grammars can give approximately 2-3 times
higher compression ratios [3] than DAGs [2] when compressing document tree struc-
tures. Since sharing of patterns in an SLCF tree grammar can occur along the paths of
a tree, it is possible to have a grammar of size O(n)1 that generates a tree of height 2n;
this is not possible with a DAG (the DAG has the same height as its represented tree).
More dramatically, an SLCF tree grammar of size O(n) can even generate a full binary
tree of height 2n, which has 22n

many nodes. Hence, double exponential compression
rates can be achieved.

The downside of such extreme compression capabilities is that arbitrary SLCF tree
grammars do not inherit some of the nice algorithmic properties of (string) SLPs. For
instance, whereas evaluating a given automaton on an SLP representation of a string
can be done in polynomial time [13], this problem becomes PSPACE-complete for tree
automata and SLCF tree grammars [11]. This motivates the investigation of restricted
classes of SLCF tree grammars. Linearity is one of these restrictions: a context-free
tree grammar is linear if every context parameter occurs at most once in every right-
hand side. Note that our tree compression algorithm BPLEX [3] generates a small linear
SLCF tree grammar for a given input tree. It can be checked in polynomial time whether
two linear SLCF tree grammars generate the same tree [3,14]. This result generalizes
a corresponding result for (string) SLPs of Plandowski [12]. It remains open whether
polynomial time equality testing is also possible for non-linear SLCF tree grammars.

Another useful restriction on SLCF tree grammars is k-boundedness (for some
fixed k): a context-free tree grammar is k-bounded if every nonterminal uses at most
k context parameters; 1-bounded grammars are also called monadic. In this paper we
study the impact of the various restrictions on SLCF tree grammars with respect to
compression. Our main result is the following: a given linear SLCF tree grammar can
be transformed in polynomial time into an equivalent linear and monadic SLCF tree
grammar (Theorem 7). In other words, for the purpose of compression by linear gram-
mars, one parameter is already enough; the corresponding linear monadic grammars
offer the same kind of compression as linear SLCF tree grammars. Linear monadic
SLCF tree grammars are also used in [9,10,14], where they are called singleton tree
grammars. We present two algorithmic applications of Theorem 7: it can be tested in
polynomial time whether a given tree automaton accepts the tree given by a linear SLCF
tree grammar (Corollary 9). This solves our main open problem from [11], where we
could only present a polynomial time algorithm for linear k-bounded SLCF tree gram-
mars (when k is a fixed constant). Our second application generalizes Corollary 9 to tree
automata with equality and disequality constraints between sibling nodes [1,4]. These
are bottom-up tree automata which can test whether the subtrees rooted at children of

1 The size of a grammar is defined as the sum of the sizes of all right-hand sides of productions.

214 M. Lohrey, S. Maneth, and M. Schmidt-Schauß

the current node are equal or not equal. Their recognized languages are closed under
Boolean operations and are strictly more general than regular tree languages (for a re-
cent generalization see [5]). The running time of this second polynomial time algorithm
is much worse than the running time stated in Corollary 9 for ordinary tree automata;
therefore we state the two results separately.

In Section 7 we show that Theorem 7 does not extend to larger classes of grammars.
First, we consider nondeterministic linear SLCF tree grammars, i.e., acyclic grammars
(no recursion) which may have several productions for each nonterminal. Such gram-
mars represent finite sets of trees. We give an example of a linear and n-bounded non-
deterministic SLCF tree grammar for which every equivalent k-bounded such grammar
(k < n) must be exponentially larger. Using a straightforward extension of our proof
of Theorem 7, we show that this exponential blow-up is also the worst case. Next,
we consider non-linear SLCF tree grammars. We present an example of a non-linear n-
bounded SLCF tree grammar of sizeO(n) for which every equivalent k-bounded SLCF
tree grammar (k < n) has size at least 2n−k.

A full version of this paper including all proofs will appear.

2 Trees and SLCF Tree Grammars

A ranked alphabet is a pair (F, rank), where F is a finite set of function symbols and
rank : F → IN assigns to each α ∈ F its rank. Let Fi = {α ∈ F | rank(α) = i}
and F≥i =

⋃
j≥i Fj . Symbols in F0 are called constants. We fix a ranked alphabet

(F, rank) in the following. An F-labeled ordered tree t (or ground term over F) is a
pair t = (domt, λt), where (i) domt ⊆ IN∗ is finite, (ii) λt : domt → F, (iii) if
w = vv′ ∈ domt, then also v ∈ domt, and (iv) if v ∈ domt and λt(v) ∈ Fn, then
vi ∈ domt if and only if 1 ≤ i ≤ n. The edge relation of t is implicitly given as
{(v, vi) ∈ domt × domt | v ∈ IN∗, i ∈ IN}. The size of t is |t| = |domt|. We identify
an F-labeled tree t with a term in the usual way: if λt(ε) = α ∈ Fi, then this term
is α(t1, . . . , ti), where tj is the term associated with the subtree of t rooted at node j.
The set of all F-labeled trees is T (F). Let us fix a countable set Y = {y1, y2, . . .} of
(formal context-) parameters (below we also use a distinguished parameter z �∈ Y).
The set of all F-labeled trees with parameters from Y ⊆ Y is T (F, Y). Formally, we
consider parameters as new constants and define T (F, Y) = T (F ∪ Y). The tree t ∈
T (F, Y) is linear, if every parameter y ∈ Y occurs at most once in t. For trees t ∈
T (F, {y1, . . . , yn}), t1, . . . , tn ∈ T (F, Y), by t[y1/t1 · · · yn/tn] we denote the tree that
is obtained by replacing in t every yi-labeled leaf with ti (1 ≤ i ≤ n). A context is a
tree C ∈ T (F,Y ∪ {z}), in which the distinguished parameter z appears exactly once.
Instead of C[z/t] we write briefly C[t]. When talking about algorithms on trees, we
assume the RAM model of computation, and we assume that trees are given by the
standard pointer representation.

For further consideration, let us fix a countable infinite set Ni of symbols of rank i
with Fi ∩ Ni = ∅. Hence, every finite subset N ⊆

⋃
i≥0 Ni is a ranked alphabet. A

context-free tree grammar (over F) is a triple G = (N,P, S), where (i) N ⊆
⋃
i≥0 Ni

is a finite set of nonterminals, (ii) P (the set of productions) is a finite set of pairs of
the form (A → t), where A ∈ N and t ∈ T (F ∪ N, {y1, . . . , yrank(A)}), and (iii)

Parameter Reduction in Grammar-Compressed Trees 215

S ∈ N ∩N0 is the start nonterminal of rank 0. We assume that every nonterminalB ∈
N \{S} as well as every terminal symbol from F occurs in the right-hand side t of some
production (A → t) ∈ P . For a production (A → t) ∈ P with A ∈ N ∩ Nn, we also
write A(y1 . . . , yn)→ t(y1, . . . , yn) in order to emphasize that rank(A) = n. The size
|G| of G is |G| =

∑
(A→t)∈P |t|. Let us define the derivation relation⇒G on T (F∪N,Y)

as follows: s ⇒G s′ if there exist a production (A → t) ∈ P with rank(A) = n,
a context C ∈ T (F ∪ N,Y ∪ {z}), and trees t1, . . . , tn ∈ T (F ∪ N,Y) such that
s = C[A(t1, . . . , tn)] and s′ = C[t[y1/t1 · · · yn/tn]]. Let L(G) = {t ∈ T (F) | S ⇒∗

G
t} ⊆ T (F). We consider several subclasses of context-free tree grammars:

– G is linear, if for every production (A→ t) ∈ P the term t is linear.
– G is non-erasing, if t �∈ Y for every production (A→ t) ∈ P .
– G is non-deleting, if for every production (A → t) ∈ P , each of the parameters
y1, . . . , yrank(A) appears in t.

– G is productive, if it is non-erasing and non-deleting.
– G is k-bounded (for k ∈ IN), if rank(A) ≤ k for everyA ∈ N .
– G is monadic if it is 1-bounded.

Finally, a straight-line context-free tree grammar (SLCF tree grammar) is a context-
free tree grammar G = (N,P, S), where (i) for every A ∈ N there is exactly one
production (A → tA) ∈ P with left-hand side A and (ii) the relation {(A,B) ∈
N × N | B occurs in tA} is acyclic; we call the reflexive transitive closure of this
relation the hierarchical order of G. Conditions (i) and (ii) ensure that L(G) contains
exactly one tree, which we denote with val(G). Alternatively, for every term t ∈ T (F∪
N, {y1, . . . , yn}) we can define a term valG(t) ∈ T (F, {y1, . . . , yn}) by induction on
the hierarchical order as follows, where 1 ≤ i ≤ n, f ∈ Fm, and A ∈ N ∩ Nm:

– valG(yi) = yi
– valG(f(t1, . . . , tm)) = f(valG(t1), . . . , valG(tm))
– valG(A(t1, . . . , tm)) = valG(tA)[y1/valG(t1) · · · ym/valG(tm)]

Finally, let valG(A) = valG(A(y1, . . . , yrank(A))) and val(G) = valG(S). SLCF tree
grammars generalize string generating straight-line programs [13] in a natural way to
trees. The following example shows that SLCF tree grammars may lead to doubly expo-
nential compression ratios; thus, they can be exponentially more succinct than DAGs.

Example 1. Let the (non-linear) monadic SLCF tree grammar Gn consist of the produc-
tions S → A0(a),Ai(y1)→ Ai+1(Ai+1(y1)) for 0 ≤ i < n, andAn(y1)→ f(y1, y1).
Then val(Gn) is a complete binary tree of height 2n+ 1. Thus, |val(Gn)| = 2 · 22n − 1.

On the other hand, it is not difficult to show that for a linear SLCF tree grammar G
one has |val(G)| ≤ 2O(|G|). Thus, linear SLCF tree grammars have at most expo-
nential compression ratios, just like DAGs, which can be seen as 0-bounded SLCF
tree grammars. But even linear SLCF tree grammars can be exponentially more suc-
cinct than DAGs: the linear SLCF tree grammar Gn with the productions S → A0(a),
Ai(y1) → Ai+1(Ai+1(y1)) for 0 ≤ i < n, and An(y1) → f(y1) generates a monadic
tree of height 2n + 1. The minimal DAG for this tree is the tree itself and thus has size
2n + 1. The following result was shown in [3].

216 M. Lohrey, S. Maneth, and M. Schmidt-Schauß

Theorem 2. There exists a polynomial time algorithm that tests for two given linear
SLCF tree grammars G andH, whether val(G) = val(H).

It is open whether Theorem 2 can be generalized to non-linear SLCF tree grammars.
In [3] we could only prove a PSPACE upper bound for the equality problem for non-
linear SLCF tree grammars.

3 Tree Automata

Let F be a ranked alphabet. A nondeterministic tree automaton (over F), NTA for short,
is a tuple A = (Q,∆,F), where (i) Q is a finite set of states, (ii) F ⊆ Q is the set of
final states, and (iii) ∆ is a set of transitions of the form (q1, . . . , qrank(f), f, q), where

f ∈ F and q1, . . . , qrank(f), q ∈ Q. We define the mapping ∆̃ : T (F)→ 2Q inductively
as follows, where n ≥ 0, f ∈ Fn, and t1, . . . , tn ∈ T (F):

∆̃(f(t1, . . . , tn)) = {q ∈ Q | ∃(q1, . . . , qn, f, q) ∈ ∆ : q1 ∈ ∆̃(t1), . . . , qn ∈ ∆̃(tn)}

The language defined by A is L(A) = {t ∈ T (F) | ∆̃(t) ∩ F �= ∅}. The size of the
NTA A = (Q,∆,F) is defined as |A| =

∑
(q1,...,qn,f,q)∈∆(n · log |Q|+ log |F|).

A nondeterministic tree automaton with sibling-constraints (over F), NTAC for
short, is a tuple A = (Q,∆,F), where Q and F are as for NTAs and ∆ is a set of
transitions of the form (E,D, q1, . . . , qrank(f), f, q), whereE,D ⊆ {1, . . . , rank(f)}2
are disjoint relations such thatD is irreflexive, f ∈ F, and q1, . . . , qrank(f), q ∈ Q. The
relation E (resp.D) is a set of equality (resp. disequality) constraints between siblings.
We define the mapping ∆̃ : T (F) → 2Q inductively as follows, where n ≥ 0, f ∈ Fn,
and t1, . . . , tn ∈ T (F):

∆̃(f(t1, . . . , tn)) = {q ∈ Q | ∃(E,D, q1, . . . , qn, f, q) ∈ ∆ :

q1 ∈ ∆̃(t1), . . . , qn ∈ ∆̃(tn), ∀(i, j) ∈ E : ti = tj , ∀(i, j) ∈ D : ti �= tj}

Again, the language defined by A is L(A) = {t ∈ T (F) | ∆̃(t) ∩ F �= ∅}. The size of
the NTAC A is |A| =

∑
(E,D,q1,...,qn,f)∈∆(n2 + n · log |Q|+ log |F|).

4 Normal Forms for Linear SLCF Tree Grammars

In this section, we only deal with linear SLCF tree grammars. It is easy to see that
a linear SLCF tree grammar G = (N,P, S) can be transformed in linear time into
an equivalent linear and non-deleting SLCF tree grammar: if for a production A →
tA (with rank(A) = n) the parameters yi1 , . . . , yik ∈ {y1, . . . , yn} do not occur in
tA, then we can reduce the rank of A to n − k. Moreover, if A occurs in a right-
hand side tB at position v ∈ domtB , then we remove from tB the subtrees rooted at
positions vi1, . . . , vik. We now produce an equivalent non-deleting grammar in one
pass through G: starting from the leaves of the hierarchical order of G, we reduce the
rank of each nonterminalA and store with it the indices of removed parameters (so that

Parameter Reduction in Grammar-Compressed Trees 217

in later occurrences of A we know which subtrees to remove). Note that the size of the
new grammar is at most |G|.

Now, let G be a linear and non-deleting SLCF tree grammar. Again it is easy to
see that G can be transformed in linear time into an equivalent linear and productive
SLCF tree grammar: we remove each production with right hand side y1, and apply the
removed productions in all remaining right-hand sides. As before, this can be done in
one pass through the grammar G, and the resulting grammar has size at most |G|.

A linear SLCF tree grammar G = (N,P, S) is in Chomsky normal form (CNF) if it
is productive, and for every production (A→ tA) ∈ P with rank(A) = n, the term tA
has one of the following two forms:

(a) f(y1, . . . , yn) with f ∈ Fn
(b) B(y1, . . . , yi−1, C(yi, . . . , yj−1), yj , . . . , yn) with B,C ∈ N , 1 ≤ i ≤ j ≤ n+ 1.

The proof of the following proposition is a straightforward extension of the correspond-
ing construction for context-free string grammars.

Proposition 3. Let G = (N,P, S) be a linear and productive SLCF tree grammar over
F and let r be the maximal rank in N ∪ F. We can construct in time O(r · |G|) a linear
SLCF tree grammar G′ = (N ′, P ′, S) in CNF such that N ′ ⊇ N , |N ′| ≤ 2 · |G|, G′ is
k′-bounded, k′ ≤ 2r − 1, and valG′(A) = valG(A) for all A ∈ N .

For macro grammars, a normal form similar to CNF exists (called IO standard form
in [7, Definition 3.1.7]), where the nonterminal C in the second type (b) can even be
assumed to be the first argument of B (for us this does not work, because in CNF the
parameters have to occur in the order y1, . . . , yrank(A) in the right-hand side for A).
Macro grammars are similar to context-free tree grammars except that they generate
strings. Since in an SLCF tree grammar, every nonterminal has exactly one production,
it is not difficult to see that the derivation order (IO or OI, see e.g. [4] for a definition)
does not matter for SLCF tree grammars. It is also known that for arbitrary linear and
non-deleting context-free tree grammars the derivation order again does not matter [8].

Example 4. Consider the linear and productive SLCF tree grammar with the two pro-
ductions S → X(X(a, b), X(b, a)) and X(y1, y2) → h(i(y1), i(y2)). An equivalent
linear SLCF tree grammar in CNF consists of the following productions:

S → X0(X1) X(y1, y2) → Y (I(y1), y2)
X0(y1) → X(y1, X2) Y (y1, y2) → H(y1, I(y2))

X1 → X3(A) A→ a

X2 → X4(B) B → b

X3(y1) → X(y1, B) I(y1) → i(y1)
X4(y1) → X(y1, A) H(y1, y2) → h(y1, y2).

Linear SLCF tree grammars in CNF can be stored more efficiently than ordinary SLCF
tree grammars: if we know the rank of each (non)terminal, then for a right-hand side
B(y1, . . . , yi, C(yi+1, . . . , yj), yj+1, . . . , ym) (resp. f(y1, . . . , yn)) we only need to

218 M. Lohrey, S. Maneth, and M. Schmidt-Schauß

store the triple (B,C, i) (resp. the symbol f) which has size O(log k) if the gram-
mar is k-bounded. We call this new representation of a CNF grammar its triple nota-
tion. From a given linear SLCF tree grammar G, we can construct an equivalent linear
SLCF tree grammar in CNF in time O(r · |G|) (where r is again the maximal rank of
(non)terminals) which needs only space O(log(r) · |G|) in triple notation.

5 Parameter Reduction in Linear SLCF Tree Grammars

In this section our main result is proved. We show that a given linear SLCF tree grammar
can be made monadic in polynomial time.

A skeleton tree of rank n ≥ 0 is a linear tree s ∈ T (N0 ∪ N1 ∪ F≥2, {y1, . . . , yn}),
such that every parameter yi (1 ≤ i ≤ n) occurs in s and the following additional
properties are satisfied.

(a) The tree s does not contain a subtree of the formX(Y (t)) forX,Y ∈ N1.
(b) For every subtree f(t1, . . . , tm) of s with f ∈ F≥2 there exist at least two distinct

i ∈ {1, . . . ,m} such that ti contains a parameter from {y1, . . . , yn}.

In our construction, a skeleton tree will store the branching structure (with respect to
those leaf nodes that are parameters) of the tree generated by a certain nonterminal, i.e.,
the information on how the paths from the root to parameters branch. Nonterminals of
rank 1 in a skeleton tree represent those tree parts that are in between two branching
nodes in this branching structure. The crucial point about skeleton trees is that their size
can be bounded polynomially. For the following lemma, it is important that a skeleton
tree only contains function symbols of rank ≥ 2.

Lemma 5. Let r be the maximal rank of a symbol from F. A skeleton tree s of rank
n ≥ 1 contains at most 2(r · n− r + 1) many nodes.

Let G = (N,P, S) be a linear SLCF tree grammar. By Proposition 3 we may assume
that G is in CNF. The set of nonterminalsN is a finite subset of

⋃
i≥0 Ni. We now define

in a bottom-up process, for every nonterminal A of rank n ≥ 1, a skeleton tree skA of
rank n. Simultaneously, we construct a new linear and monadic SLCF tree grammar
G′ = (N ′, P ′, S). Consider a productionA→ tA from P and let n = rank(A).

Case 1. tA = f(y1, . . . , yn), where f ∈ Fn: if n ≤ 1, then we add the production
A(y1, . . . , yn) → tA to P ′ and set skA = A(y1, . . . , yn). If n ≥ 2, then we set skA =
tA and do not add any new productions to P ′.

Case 2. tA = B(y1, . . . , yi−1, C(yi, . . . , yj−1), yj , . . . , yn), where i ≤ j and the trees
skB , skC are already constructed. In a first step we define the tree

s = skB[yi/skC [y1/yi, y2/yi+1, . . . , yj−i/yj−1],
yi+1/yj, yi+2/yj+1, . . . , yn+i−j+1/yn]. (1)

But this tree is not necessarily a skeleton tree; it may locally violate the conditions (a)
and (b) on skeleton trees. Hence, we apply a contract-operation to s which yields the

Parameter Reduction in Grammar-Compressed Trees 219

Y

Z

s

XskB

skC

Fig. 1. Contract-1

f

· · · · · ·
Y1 Ym

γ1 γk
γm

t

X

t

Fig. 2. Contract-2

skeleton tree skA. Moreover, as a side effect, the contract-operation adds new produc-
tions and nonterminals to G′. The contract-operation works in two steps:

Contract-1. Assume that s contains a subtree of the form Y (Z(t)). There can be only
one subtree of this form in s, see the left tree in Figure 1. We now do the following:

1. Add a fresh nonterminalX ∈ N1 of rank 1 to N ′.
2. Add the productionX(y1)→ Y (Z(y1)) to P ′.
3. Replace the subtree Y (Z(t)) byX(t).

Contract-2. After contract-1, s can only violate condition (b) for skeleton trees. Hence,
assume that s contains a subtree of the form f(t1, . . . , tm) such that f ∈ F≥2 and there
is exactly one k ∈ {1, . . . ,m} such that tk contains a parameter from {y1, . . . , yn}, say
yp. Again there can be only one subtree of this form in s. Moreover, this case may only
occur, if C has rank 0. In the following consideration, it is useful to set ε(t) = t for an
arbitrary term. Hence, ε is just the identity function on all terms.

Since condition (a) is already satisfied, every subtree t (� �= k) is of the form γ(Y)
with Y ∈ N0 and γ ∈ {ε} ∪ N1, whereas tk can be written as γk(t), where γk ∈
{ε}∪N1 and t is a tree that does not start with a non-terminal of rank 1. We now do the
following:

1. Add a fresh nonterminalX ∈ N1 of rank 1 to N ′.
2. Add to P ′ the production

X(y1)→ f(γ1(Y1), . . . , γk−1(Yk−1), γk(y1), γk+1(Yk+1), . . . , γm(Ym)).

3. Replace the subtree

f(γ1(Y1), . . . , γk−1(Yk−1), γk(t), γk+1(Yk+1), . . . , γm(Ym))

of s byX(t).

After this operation, another contract-1 operation might be necessary (if the new subtree
X(t) is below an N1-labeled node). The resulting tree is the skeleton tree skA.

Note that the SLCF tree grammar G′ is linear, productive, and monadic. The follow-
ing lemma can be shown by induction on the hierarchical order of G.

Lemma 6. For every nonterminal A of G we have valG(A) = valG′(skA).

220 M. Lohrey, S. Maneth, and M. Schmidt-Schauß

Theorem 7. Let r be the maximal rank of a symbol from F. From a given linear and
k-bounded SLCF tree grammar G = (N,P, S) we can construct in time O(k · r · |G|) a
linear, productive, and monadic SLCF tree grammar G′ = (N ′, P ′, S) of size O(r · |G|)
such thatN ∩ (N0∪N1) ⊆ N ′ and valG′(A) = valG(A) for everyA ∈ N ∩ (N0∪N1).

Proof. Using the constructions from Section 4, we first transform G into a linear CNF
grammarH with O(|G|) many nonterminals. This needs timeO(max{k, r} · |G|). Now
we construct for every nonterminal A of H the skeleton tree skA and simultaneously
the linear and monadic SLCF tree grammarH′. In order to construct the tree s in Equa-
tion (1), we have to copy the already constructed skeleton trees skB and skC (since
we may need these trees in later steps), which by Lemma 5 needs time O(k · r). The
construction of skA from s needs at most three contraction steps, each of which re-
quires O(1) many pointer operations. Moreover, in every contraction step we add to
H′ a production of size at most O(r). Hence, the total size of H′ is O(r · |G|) and the
construction takes time O(k · r · |G|). We obtain the final grammar G′ by adding to H′

every nonterminalA ∈ N ∩ (N0 ∪ N1), which does not already belong to H′, together
with the production A → skA. By Lemma 6 we have valG′(A) = valG(A). Note that
in general G′ is not in CNF, and that it might contain useless productions. %&

Finite unions of linear monadic SLCF tree grammars are studied e.g. in [10] under the
name singleton tree grammar (STG). They are, by Theorem 7, polynomially equivalent
to finite unions of linear SLCF grammars and hence their results can be applied for
linear grammars.

Example 8. We transform the linear CNF grammar constructed in Example 4 into an
equivalent linear monadic SLCF tree grammar. We start with the set of productions
P ′ = {A→ a,B → b, I(y1) → i(y1)} (see case 1) and the following skeleton trees:

skA = A, skB = B, skI = I(y1), skH = h(y1, y2).

Next, forX and Y we obtain without contract operations:

skY = h(y1, I(y2)), skX = h(I(y1), I(y2))

Let us now construct skX4 , skX3 , skX2 , skX1 , skX0 , and skS in this order:

– construction of skX4 : For the tree s in (1) we obtain s = h(I(y1), I(A)). With
contract-2, we obtain the new productionC(y1)→ h(I(y1), I(A)) and the skeleton
tree skX4 = C(y1).

– Construction of skX3 : we get s = h(I(y1), I(B)). With contract-2, we obtain the
new productionD(y1)→ h(I(y1), I(B)) and the skeleton tree skX3 = D(y1).

– Construction of skX2 : we get s = C(B). Thus, we do not add a new production to
P ′ and set skX2 = C(B).

– Construction of skX1 : we get s = D(A). Again, we do not add a new production
to P ′ and set skX1 = D(A).

– Construction of skX0 : we get s = h(I(y1), I(C(B))). A first contract-1 operation
adds the productionE(y1) → I(C(y1)) to P ′ and updates s to s=h(I(y1), E(B)).
Now, we have to apply another contract-2 operation, which adds the production
F (y1) → h(I(y1), E(B)) to P ′. We set skX0 = F (y1).

Parameter Reduction in Grammar-Compressed Trees 221

– Construction of skS . We set s = F (D(A)). Hence, we add to P ′ the production
G(y1)→ F (D(y1)) and set skS = G(A).

Thus, an equivalent linear and monadic SLCF tree grammar contains the following
productions:

S → G(A) C(y1) → h(I(y1), I(A)) F (y1)→ h(I(y1), E(B))
A→ a D(y1) → h(I(y1), I(B)) G(y1)→ F (D(y1))
B → b E(y1) → I(C(y1)) I(y1)→ i(y1)

6 Applications to Tree Automata Evaluation

In [11], we have shown how to check for (i) a given NTA A with n states and (ii) a
given linear and k-bounded SLCF tree grammar G in time O(|G| · |A| · nk+1), whether
val(G) ∈ L(A). If the automaton is a deterministic bottom-up tree automaton then time
O(|G| · |A| · nk) suffices. Together with Theorem 7 we obtain the following.

Corollary 9. For a given NTAA with n states and a given linear and k-bounded SLCF
tree grammar G such that r is the maximal rank of a terminal symbol from F, we can
check in time O(r · |G| · (k + |A| · n2)), whether val(G) ∈ L(A).

We may assume that r, k ≤ |G| in Corollary 9, since we assume for context-free
tree grammars that every (non)terminal occurs in a right-hand side. Moreover, we can
eliminate states from an NTA that do not occur in transition tuples. Hence, n ≤ |A|.
Thus, the time bound in Corollary 9 can be replaced by O(|G|3 + |G|2 · |A|3). Hence,
val(G) ∈ L(A) can be checked in polynomial time. In the rest of this section, we extend
this result to tree automata with sibling-constraints.

Theorem 10. The problem of checking val(G) ∈ L(A) for a given linear SLCF tree
grammar G and a given NTACA can be solved in polynomial time.

Proof. By Theorem 7 we can assume that G = (N,P, S) is linear and monadic. More-
over, we can assume that all productions in P are of one of the following 4 types:

– A→ f(A1, . . . , An) for A,A1 . . . , An ∈ N0 and f ∈ Fn
– A→ B(C) for A,C ∈ N0 and B ∈ N1
– A(y) → f(A1, . . . , Ai−1, y, Ai, . . . , An) for A ∈ N1, A1, . . . , An ∈ N0, f ∈

Fn+1
– A(y) → B(C(y)) for A,B,C ∈ N1

Let A = (Q,∆,F) be an NTAC. We will compute for every A ∈ N0 ∩ N the set of
states ∆̃(valG(A)). Consider such a nonterminalA ∈ N0 ∩N .

Case 1. The production for A is of the form A → f(A1, . . . , An). Assume that for
every 1 ≤ i ≤ n, the set of states ∆̃(valG(Ai)) is already computed. Using Theorem 2,
we can find out in polynomial time which of the trees valG(Ai) (1 ≤ i ≤ n) are equal or
disequal. Using this information, it is straightforward to compute the set ∆̃(valG(A)).

Case 2. The production for A is of the formA→ B(C). This case requires more work.
Assume that the set of states ∆̃(valG(C)) is already computed. Define a straight-line
context-free string grammar GB as follows:

222 M. Lohrey, S. Maneth, and M. Schmidt-Schauß

– The set of nonterminals is N1 ∩N , i.e., the nonterminals of G of rank 1.
– The set of terminal symbols is Σ = {[A1, . . . , Ai−1, y, Ai, . . . , An, f] |
f ∈ Fn+1, A1, . . . , An ∈ N0 ∩N, 1 ≤ i ≤ n+ 1}.

– If (X(y) → Y (Z(y))) ∈ P , then GB contains the production X → ZY ; if
(X(y) → f(A1, . . . , Ai−1, y, Ai, . . . , An)) ∈ P , then GB contains the produc-
tionX → [A1 . . . , Ai−1, y, Ai, . . . , An, f]. These are all productions of GB .

– The start nonterminal of GB is B.

The string generated by GB represents the outcome of a partial derivation from the
nonterminal B in the tree grammar G, where the derivation process is stopped as soon
as a nonterminal of rank 0 is reached.

Example 11. Let G contain the following four productions for nonterminals of rank
one:B(y)→ B1(B1(y)),B2(y)→ f(A2, A2, y, A3),B1(y)→ B2(B3(y)),B3(y) →
g(A1, y, A1). HereA1, A2, A3 are nonterminals of rank 0. Then, the SLCF string gram-
mar GB consists of the productions B → B1B1, B2 → [A2, A2, y, A3, f], B1 →
B3B2, and B3 → [A1, y, A1, g] and generates the string

val(GB) = [A1, y, A1, g] [A2, A2, y, A3, f] [A1, y, A1, g] [A2, A2, y, A3, f].

This string represents the following tree:

A1

y

A1

g

A3

A2

A2

f

A1

A1

g

A3

A2

A2

f

For a nonterminal X ∈ N0 ∩ N of rank 0, let s(X) = |valG(X)| be the number
of nodes of the generated tree; this number can be computed in polynomial time. For
a terminal symbol [A1, . . . , Ai−1, y, Ai, . . . , An, f] ∈ Σ of the string grammar GB
let s([A1, . . . , Ai−1, y, Ai, . . . , An, f]) = 1 + s(A1) + · · · + s(An). The mapping
s : Σ → N is extended to Σ∗ in the natural way: s(a1 · · · an) = s(a1) + · · · + s(an)
for a1, . . . , an ∈ Σ. Finally, for a position 0 ≤ p ≤ |val(GB)| let s(p) = s(C) +
s(val(GB)[: p]), where w[: k] is the prefix of length k of the string w. Also the value
s(p) can be computed for a given position p in polynomial time by first constructing in
polynomial time an SLCF string grammar for the prefix val(GB)[: p]. Then the number
s(val(GB)[: p]) can be easily computed bottom-up. The value s(p) is the size of a
certain subtree of valG(A) = valG(B)[y/valG(C)], namely the subtree that is obtained
by going p steps up (towards the root) from the unique occurrence of y in valG(B)(y).

Let us next determine the set NB,0 ⊆ N0 ∩ N of all nonterminals of rank 0 that
appear in terminal symbols of val(GB): If X → [A1, . . . , Ai−1, y, Ai, . . . , An, f] is a
production of GB , then set NX,0 = {A1, . . . , An}. If X → Y Z is a production of GB ,
then set NX,0 = NY,0 ∪NZ,0. In this way we can compute the set NB,0 in polynomial
time. Let {k1, k2, . . . , km} = {s(X) | X ∈ NB,0}, where k1 < k2 < · · · < km.
Also this enumeration can be computed in polynomial time. We now compute a certain
splitting of the string val(GB). More precisely, for every 1 ≤ i ≤ m we compute
the largest position (i.e. highest position in the tree) 0 ≤ pi ≤ |val(GB)| such that

Parameter Reduction in Grammar-Compressed Trees 223

s(pi) ≤ ki. This position pi can be computed in polynomial time with binary search
(using the fact that s(p) can be computed in polynomial time for a given p).

Example 11 (continued). Assume that s(C) = s(A1) = 2, s(A2) = 7 and s(A3) = 9.
Then, we obtain k1 = 2, k2 = 7, and k3 = 9, as well as s(0) = 2, s(1) = 7, s(2) = 31,
s(3) = 36, and s(4) = 60. Thus, p1 = 0, p2 = p3 = 1.

From the list 0 ≤ p1 ≤ p2 ≤ · · · ≤ pm ≤ |val(GB)|, we remove every position pi
such that s(pi) �= ki or pi = |val(GB)|. Let 0 ≤ p′1 < p′2 < · · · < p′ < |val(GB)| be
the resulting list. In our example, we only keep p′1 = 0 and p′2 = 1. This list defines
our splitting of val(GB). More precisely, we compute in polynomial time the symbols
ai = val(GB)[p′i + 1] ∈ Σ (w[p] is the p-th symbol of the string w) and SLCF string
grammars G0, . . . ,G such that

val(GB) = val(G0) a1 val(G1) a2 · · · val(G−1) a val(G). (2)

Recall that every prefix of val(GB) represents a tree with a unique occurrence of the
parameter y (if this prefix is the empty string then the tree is just y). For 0 ≤ i ≤ � let
ti(y) be the tree represented by the prefix val(G0) a1 · · · val(Gi−1) ai (thus t0(y) = y)
and let ui(y) be the tree represented by the prefix val(G0) a1 · · · val(Gi−1) aival(Gi).
We compute the set of states Pi = ∆̃(ti[y/valG(C)]) and Qi = ∆̃(ui[y/valG(C)])
successively. We start with P0 = ∆̃(valG(C)); recall that this set is already computed.

Computing the set Pi from Qi−1 (i > 0) is straightforward: assume that ai =
[A1, . . . , Aj−1, y, Aj , . . . , An, f]. From (2) we can easily compute a monadic SLCF-
tree grammar for the tree ui−1[y/valG(C)]. Hence, using Theorem 2, we can check in
polynomial time, whether the tree ui−1[y/valG(C)] equals some valG(Aj). Using this
information, we can compute in polynomial time the set of states Pi from Qi−1.

In order to compute Qi from Pi, one has to note that when walking down from
the root of ui(y) to the unique occurrence of y for |val(Gi)| steps, then the current
subtree is never equal to one of its sibling nodes. Hence, for every terminal symbol
a = [A1, . . . , Aj−1, y, Aj+1, . . . , An, f] that occurs in the grammar Gi we can compute
a transition mapping δa : Q → 2Q as follows, where q ∈ Q (recall that the sets
∆̃(valG(Ak)) for k ∈ {1, . . . , n} \ {j} are already computed):

δa(q) ={q′ ∈ Q | ∃(E,D, q1, . . . , qj−1, q, qj+1, . . . , qn, f, q
′) ∈ ∆ :

∀k ∈ {1, . . . , n} \ {j} : qk ∈ ∆̃(valG(Ak)),
∀(k,m) ∈ E : k = m ∨ (k �= j �= m ∧ valG(Ak) = valG(Am)),
∀(k,m) ∈ D : k = j ∨m = j ∨ (k �= j �= m ∧ valG(Ak) �= valG(Am))}.

Using the mappings δa and the SLCF string grammar Gi, we can compute Qi from Pi
easily in polynomial time. %&

7 Adding Nondeterminism or Non-linearity
If we relax condition (i) of the definition of SLCF tree grammars to (i’) P contains
for every A ∈ N at least one production with left-hand side A (but keep the acyclic-
ity condition (ii)) then we obtain nondeterministic SLCF tree grammars (NSLCF tree
grammars). Such grammars generate finite sets of trees, which by the following exam-
ple may contain double-exponentially many trees.

224 M. Lohrey, S. Maneth, and M. Schmidt-Schauß

Example 12. For n ≥ 1, let the linear, productive, and monadic NSLCF tree grammar
Gn consist of the productions S → A0(a), Ai(y1) → Ai+1(Ai+1(y1)) for 0 ≤ i < n,
An(y1)→ f(y1), andAn(y1)→ g(y1). Then L(Gn) consists of all monadic trees with
2n many internal nodes, each of which is labeled f or g. Thus |L(Gn)| = 22n

.

We now want to show that given a linear and productive NSLCF tree grammar G, we
can, in general, not obtain an equivalent monadic grammar of size |G|O(1). In fact,
there is a family Gn (n ≥ 1) of linear and productive NSLCF tree grammars such that
any monadic, linear, and productive NSLCF tree grammar that generates L(Gn) is of
size 2O(|Gn|1/2). Thus, for nondeterministic grammars an exponential blow-up cannot
be avoided when going to monadic grammars. Later we show that this is the worst
case blow-up and that in fact any linear and non-deleting NSLCF tree grammar can be
transformed into an equivalent monadic one which is at most exponentially larger.

Example 13. For n ≥ 1, let the symbol fn be of rank n and define the linear and
productive NSLCF tree grammar Gn (of size O(n2)) with the following productions:

S → A0(a, . . . , a)
Ai(y1, . . . , yn)→ Ai+1(f(y1), . . . , f(yn)) for 0 ≤ i < n
Ai(y1, . . . , yn)→ Ai+1(g(y1), . . . , g(yn)) for 0 ≤ i < n
An(y1, . . . , yn)→ fn(y1, . . . , yn)

Then Ln = L(Gn) consists of all trees fn(t, t, . . . , t) where t is a monadic tree with n
many internal nodes, each of which is labeled f or g.

Lemma 14. Let n ≥ 1, k < n, and let G be a linear, non-deleting, and k-bounded
NSLCF grammar such that L(G) = Ln is the set from Example 13. Then |G| ≥ 2n.

Proof. Assume that G is a linear, non-deleting, and k-bounded NSLCF tree grammar
such that k < n and L(G) = Ln. W.l.o.g. we can assume that every nonterminal of
G appears in a successful derivation of G. Let P (fn) be the set of all productions of
the form A → t, where t contains a subtree of the form fn(t1, . . . , tn). Clearly, since
G is non-deleting, every right-hand side of a production from P (fn) contains a unique
such subtree. Moreover, in every successful derivation of G, a production from P (fn)
has to be applied exactly once. We claim that |P (fn)| ≥ 2n. Consider a production
(A→ t) ∈ P (fn) and consider the unique subtree in t of the form fn(t1, . . . , tn). Since
rank(A) ≤ k < n and G is linear, there exists an i ∈ {1, . . . , n} such that ti does not
contain a parameter, i.e., ti ∈ T (F ∪N). Assume that two different terminal trees can
be derived from ti. Then we can derive with G a tree, where the root has two different
subtrees, a contradiction. Hence, from ti we can generate exactly one tree. We denote
this tree by τ [A→ t], since it can be associated with the production (A→ t) ∈ P (fn).
Hence, for every successful derivation S ⇒∗

G s, where the production (A → t) ∈
P (fn) is applied (exactly once), we must have s = fn(τ [A → t], . . . , τ [A → t]).
Since we can generate 2n many terminal trees from S and in each derivation exactly
one production from P (fn) is applied, it follows that |P (fn)| ≥ 2n. %&

For arbitrary linear context-free tree grammars (thus, with recursion and nondetermin-
ism), the number of parameters gives rise to a hierarchy of languages which is strict at

Parameter Reduction in Grammar-Compressed Trees 225

each level. In fact, the family of languages that can be used to prove the strictness of
this hierarchy is similar to the one of Example 13.

Example 15. For n ≥ 1, let fn be a symbol of rank n and A be a nonterminal of
rank n. Define the linear and productive context-free tree grammar Gn with the produc-
tions S → A(a, . . . , a), A(y1, . . . , yn)→ A(f(y1), . . . , f(yn)), and A(y1, . . . , yn) →
fn(y1, . . . , yn). Then L′

n = L(Gn) consists of all trees fn(t, t, . . . , t) where t is a
monadic tree of the form fm(a) for somem ≥ 0.

The proof of the following lemma is similar to the one of Lemma 14.

Lemma 16. Let n ≥ 1 and k < n. The set L′
n from Example 15 cannot be generated

by a linear, non-deleting, and k-bounded context-free tree grammar.

By the following theorem, the lower bound from Lemma 14 can be matched by an upper
bound. The proof of this result is similar to the proof of Theorem 7.

Theorem 17. For a given linear NSLCF tree grammar G = (N,P, S) we can construct
in time 2O(|G|) a linear and monadic NSLCF tree grammar G′ = (N ′, P ′, S) of size
2O(|G|) such that L(G′) = L(G).

One might also think about extending Theorem 7 to non-linear SLCF tree grammars.
But results from [11] make such an extension quite unlikely: it is PSPACE-complete to
check whether a deterministic bottom-up tree automaton accepts val(G), where G is a
given (non-linear) SLCF tree grammar. If we restrict this problem by requiring G to be
k-bounded for a fixed constant k, then it becomes P-complete. Here is an explicit ex-
ample showing that Theorem 7 cannot be extended to non-linear SLCF tree grammars.

Example 18. For n ≥ 1, let the symbol fn be of rank n, let g have rank 2, and let 0 and
1 have rank 0. Define the productive (but non-linear) SLCF tree grammar Gn with the
following productions, where Ai is a nonterminal of rank i (1 ≤ i ≤ n):

S → g(A1(0), A1(1))
Ai(y1, . . . , yi) → g(Ai+1(y1, . . . , yi, 0), Ai+1(y1, . . . , yi, 1)) for 1 ≤ i < n
An(y1, . . . , yn) → fn(y1, . . . , yn)

Then val(Gn) results from a complete binary g-tree of height n by replacing the k-th
leaf (0 ≤ k ≤ 2n − 1) by the tree fn(b1, . . . , bn), where b1b2 · · · bn is the binary
representation of k. The size of Gn is O(n2).

Lemma 19. Let n ≥ 1, k < n, and let G be a k-bounded SLCF tree grammar such
that val(G) = val(Gn), where Gn is the SLCF tree grammar of Example 18. Then
|G| ≥ 2n−k.

Proof. Let Tn be the set of all occurrences of subterms of the form fn(t1, . . . , tn)
that occur in right-hand sides of G. We claim that |Tn| ≥ 2n−k. Consider a term
fn(t1, . . . , tn) ∈ Tn. Since G is k-bounded, at most k parameters can occur among
the terms t1, . . . , tn. During the derivation, each of these parameters may be either
substituted by the constant 0 or 1. Hence, from each fn(t1, . . . , tn) ∈ Tn, we can
obtain during the derivation at most 2k different trees of the form f(b1, . . . , bn) with
b1, . . . , bn ∈ {0, 1}. Since val(Gn) contains 2n such subtrees, we get |Tn| ≥ 2n−k. %&

226 M. Lohrey, S. Maneth, and M. Schmidt-Schauß

Clearly, Lemma 19 implies that without an exponential blow-up, we cannot reduce
the number of parameters in any non-linear SLCF tree grammar to a constant. But
we cannot even reduce the number of parameters from n to ε · n (where ε < 1 is a
constant) without an exponential blowup. For arbitrary context-free tree grammars with
OI derivation order it is proved in Theorem 6.5 of [6] that the number of parameters
gives rise to a hierarchy that is proper at each step (even for the string yield languages).

Acknowledgments. The first author is supported by the DFG research project Algo-
rithms on compressed data (ALKODA). We would like thank Christian Mathissen for
pointing out a mistake in a previous version of the contract-2 operation.

References

1. Bogaert, B., Tison, S.: Equality and disequality constraints on direct subterms in tree au-
tomata. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp. 161–171.
Springer, Heidelberg (1992)

2. Buneman, P., Grohe, M., Koch, C.: Path queries on compressed XML. In: VLDB 2003, pp.
141–152. Morgan Kaufmann, San Francisco (2003)

3. Busatto, G., Lohrey, M., Maneth, S.: Efficient memory representation of XML document
trees. Information Systems 33(4–5), 456–474 (2008)

4. Comon-Lundh, H., Dauchet, M., Gilleron, R., Jacquemard, F., Löding, C., Lugiez, D., Tison,
S., Tommasi, M.: Tree automata techniques and applications (2007),
http://www.grappa.univ-lille3.fr/tata

5. Comon-Lundh, H., Jacquemard, F., Perrin, N.: Tree automata with memory, visibility and
structural constraints. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 168–182.
Springer, Heidelberg (2007)

6. Engelfriet, J., Rozenberg, G., Slutzki, G.: Tree transducers, L systems, and two-way ma-
chines. J. Comp. Syst. Sci. 20, 150–202 (1980)

7. Fischer, M.: Grammars with macro-like productions. PhD thesis, Harvard University, Mas-
sachusetts (May 1968)

8. Fujiyoshi, A., Kasai, T.: Spinal-formed context-free tree grammars. Theory Comput.
Syst. 33(1), 59–83 (2000)

9. Gascón, A., Godoy, G., Schmidt-Schauß, M.: Context matching for compressed terms. In:
LICS 2008, pp. 93–102. IEEE Computer Society Press, Los Alamitos (2008)

10. Levy, J., Schmidt-Schauß, M., Villaret, M.: Bounded second-order unification is NP-
complete. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 400–414. Springer, Hei-
delberg (2006)

11. Lohrey, M., Maneth, S.: The complexity of tree automata and XPath on grammar-compressed
trees. Theor. Comput. Sci. 363(2), 196–210 (2006)

12. Plandowski, W.: Testing equivalence of morphisms on context-free languages. In: van
Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 460–470. Springer, Heidelberg (1994)

13. Rytter, W.: Grammar compression, LZ-encodings, and string algorithms with implicit input.
In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142,
pp. 15–27. Springer, Heidelberg (2004)

14. Schmidt-Schauß, M.: Polynomial equality testing for terms with shared substructures. Tech-
nical Report 21, Institut für Informatik, J. W. Goethe-Universität Frankfurt am Main (2005)

http://www.grappa.univ-lille3.fr/tata

The Calculus of Handshake Configurations

Luca Fossati1,2,� and Daniele Varacca2

1 Dip. di Informatica - Università di Torino, Italia
fossati@di.unito.it

2 PPS - CNRS & Univ. Paris Diderot, France

Abstract. Handshake protocols are asynchronous protocols that enforce several
properties such as absence of transmission interference and insensitivity from
delays of propagation on wires. We propose a concurrent process calculus for
handshake protocols . This calculus uses two mechanisms of synchronization:
rendez-vous communication à la CCS, and shared resource usage. To enforce the
handshake discipline, the calculus is endowed with a typing system.

We provide an LTS semantics of the calculus and show that typed processes
denote handshake protocols. We give the calculus another semantics in terms of a
special kind of Petri nets called handshake Petri nets. We show that this semantics
is complete and fully abstract with respect to weak bisimilarity.

Keywords: Handshake protocols, Petri nets, process calculus, types.

1 Introduction

Asynchronous circuits are used to design systems where the local activity of each sub-
unit is not restrained by some global condition, like the long time intervals imposed by
a system clock. When designing such systems, one has to face several questions. How
do we know when a message we sent has reached its destination so that we can use
the same channel again, i.e. how can we avoid transmission interference? How can we
ensure the correct behavior regardless of computational speeds of single modules and
propagation delays over wires, i.e. how can we enforce delay-insensitivity?

Handshake protocols try to answer these questions by imposing an interactive com-
munication discipline. In particular, the protocols require that after a circuit has sent a
message on a channel, it has to wait for a confirmation that the message was received
before sending again on the same channel. This requirement alone is enough to rule out
transmission interference. For their simplicity and efficiency, handshake protocols have
been employed by enterprises like Philips and Sun in the development of a series of
VLSI chips [9].

The first attempts to formalize delay-insensitive protocols and their properties em-
ployed trace sets [17]. In particular, the first model to specifically address the handshake
case was given in [18]. Trace models have been able to neatly formalize the properties
of handshake protocols which ensure delay-insensitivity, but so far they have failed in
representing correctly their composition [4].

� Corresponding author.

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 227–241, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

228 L. Fossati and D. Varacca

To overcome this limitation, we propose an alternative approach to modeling hand-
shake protocols: we propose a process calculus inspired by Robin Milner’s Calculus of
Communicating Systems (CCS) [13]. Similarly to CCS, our calculus defines concur-
rent processes that communicate via rendez-vous channels. However, in order to ensure
the handshake discipline, the calculus features another synchronization mechanism, by
means of shared resources, reminiscent of coordination languages like Linda [7]. Also,
the calculus is endowed with a linear typing system, inspired by [11,19]. These design
choices allow to express the external behavior of a handshake protocol, along with a
more complex internal behavior.

We say that this is the first independent syntactical description of the handshake
behavior, as our handshake configurations are independent from any semantical inter-
pretation while the handshake behavior is ensured by the typing system. This was not
the case in previous process algebras for handshake protocols [18,10], where only pro-
cesses whose trace semantics satified the handshake behavior were considered, thus
processes were trace sets and inevitably suffered from the compositionality problems
observed in the underlying trace model.

We then compare our calculus and the trace model by defining, for each configu-
ration, the corresponding set of quiescent traces, i.e. the traces corresponding to com-
putations that may not be extended with an output event. We show that this quiescent
trace semantics is sound w.r.t. Van Berkel’s definition [18]. By means of an example, we
show that quiescent trace equivalence is not a congruence w.r.t. parallel composition.
This confirms the intuition that trace models of handshake protocols are not informa-
tive enough, and their branching structure needs to be taken into account. Indeed weak
bisimilarity is a congruence for our calculus.

To show the expressive power of the calculus, we give it a Petri net semantics, where
the handshake discipline is imposed by restricting a net’s external structure. We studied
this model in details in a previous work [6], where we showed that it captures precisely
the behavior of a protocol, in the sense that there is a protocol for each net and a net
(possibly with an infinite number of places and/or transitions) for each protocol. In this
work we show that there is a correspondence between handshake processes and finite
Petri nets, in the sense that for each finite handshake Petri net, there is a weakly bisimilar
process.

The graphical approach to the formal analysis of asynchrony is not a new one
([1],[12],. . .). In particular Dan Ghica developed a language for asynchronous hard-
ware design by taking inspiration from the Geometry of Interaction and handshake cir-
cuits [8]. However his goal was to improve previous hardware design languages [18,3]
and not to capture all handshake behaviors.

The paper is structured as follows. In Section 2 we recall the first formalization of
handshake protocols as we introduce the notion of handshake language. In Section 3,
we present syntax, operational semantics and type system of our calculus. We show
that the set of quiescent traces of a typed configuration is a handshake language. We
show that weak bisimilarity is a congruence, while quiescent trace semantics is not.
In Section 4, we present handshake Petri nets, with some examples to show how they
work. In Section 5, we present the interpretation of the calculus into handshake nets,
and we show that it is fully abstract with respect to weak bisimilarity. To conclude, we

The Calculus of Handshake Configurations 229

show the universality of the semantics, by showing that every bisimilarity class of finite
handshake nets is denoted by a process.

2 Handshake Protocols

In this section we recall the background properties of handshake protocols and introduce
the notion of handshake language.

Definition 1. A handshake structure is a pair 〈Ports, d〉, where Ports is a finite set of
ports and the function d : Ports→ {!, ?} determines a direction for each port, active or
passive.

As we shall see, active ports are allowed to start a communication, while passive ports
are initially waiting. For the rest of this section let 〈Ports, d〉 be a handshake structure.
For each port a, there are two possible messages: a (input message), and ā (output mes-
sage). Let t be a finite trace on the alphabet of messages ∪a∈Ports{a, ā}. t is a handshake
trace on 〈Ports, d〉 if for all a ∈ Ports:

– t� {a, ā} = āaāa . . . when d(a) =!;
– t� {a, ā} = aāaā . . . when d(a) =?;

Given a set of traces S we write S ≤ for its prefix-closure. Let σ be a set of handshake
traces, s ∈ σ≤ is passive in σ if and only if there is no extension of s in σ obtained by
appending an output message: ∀s ·m ∈ σ≤, m is an input message. We write Pas(σ) for
the set of passive traces in σ≤.

We define rPorts as the smallest binary relation which is closed by reflexivity, transi-
tivity and concatenation and such that for any distinct ports a, b ∈ Ports:

1. ab̄ rPorts b̄a;
2. āb̄ rPorts b̄ā;
3. ab rPorts ba

We say that s reorders t in Ports if s rPorts t.
Let s be a handshake trace and a ∈ Ports. We write a xPorts s if sa is still a handshake

trace. Finally:

Definition 2. A handshake language σ on 〈Ports, d〉 is a non-empty set of finite hand-
shake traces on 〈Ports, d〉 such that:

1. Pas(σ) ⊆ σ (closed under passive prefixes);
2. (t ∈ σ ∧ s rPorts t)⇒ s ∈ σ (reorder closed);
3. (s ∈ σ≤ ∧ a xPorts s) ⇒ s · a ∈ σ≤ (receptive).

Closedness under passive prefixes, rather than under any prefix as it is usually the case
for trace semantics, allows us to represent may&must nondeterminism. We want to rep-
resent systems which are able not only to make an exclusive choice between two out-
puts, but also to choose between sending an output and not doing anything.

The intuition is thus that a trace in a handshake language represents a quiescent
execution of a protocol, that is an execution that ends in a state in which the system may

230 L. Fossati and D. Varacca

decide to wait for more inputs before sending any output. By definition, after a passive
trace the system cannot do anything but receiving. Then all passive traces correspond
to quiescent executions.

Reorder-closedness says that a message m′ cannot “block” a message m′′ on a dif-
ferent channel unless m′ is an input and m′′ an output. The intuition is that inputs may
carry necessary information and thus may block, while the transmission of an output
may require informations and can thus be blocked.

Finally, receptiveness means that whenever it is the environment’s turn to send a
message, the system must be ready to accept it.

Definition 2 is like VanBerkel’s original definition of handshake process [18] without
data-passing. No satisfactory definition of composition for handshake languages exists.
In particular the definition given by VanBerkel is not associative, as shown by the first
author [4] using a counter-example by Roscoe [16].

In the following sections, handshake languages will be used as a yardstick against
which to measure the correctness of other descriptions of handshake protocols.

3 The Calculus

In this section we provide the formal definition for our Calculus of Handshake Configu-
rations (CHC). We stress that we do not model data-passing as we are only interested in
the communication protocol. The calculus is endowed with two communication mech-
anisms. Besides the external communication via rendez-vous channels, there is also a
form of internal communication, invisible to the outside, where actions may require
resources in order to be performed and may release resources for other actions to use.
This is necessary to model internal synchronizations between different ports of the same
system. However, different systems shall communicate only through channels.

3.1 Syntax and Operational Semantics

We consider a set A of channels denoted by a, b1, and a set R of resources denoted
by r, k. The syntax of the calculus uses three syntactic categories: threads, processes
and handshake configurations. Threads are purely sequential and allow prefixing while
processes are parallel compositions of threads. The prefixes are input and output actions
on a finite set of resources. As we will see later, input actions release resources and
output actions use resources. Let ∆ ⊆ A:

act ::= a{r1,...,rn} | ā{r1,...,rn} Actions
T ::= 0 | act.T | Rec T Threads

P,Q ::= T | P | Q | P \ ∆ Processes

A handshake configuration is composed of a process P along with a multiset of re-
sources S for internal synchronization. A configuration can be open or closed:

M ::= �P, S � | 〈P, S 〉 Open and closed configurations

1 We will use channels to model ports, but we prefer to keep the conceptual difference between
the two notions.

The Calculus of Handshake Configurations 231

�a{r1 ,...,rn}.T, S �
a−→ �T, S + {r1, . . . , rn}�

(inev)
�T · Rec T, S �

e−→ �T ′, S ′�
�Rec T, S �

e−→ �T ′, S ′�
(rec)

�ā{r1 ,...,rn }.T, S + {r1, . . . , rn}� ā−→ �T, S �
(outev)

M
e−→ M′ ch(e) � ∆

M \ ∆ e−→ M′ \ ∆
(res)

M
e−→ M′

M | N e−→ M′ | N
(par1)

M
ā−→ M′ N

a−→ N′

M | N τ−→ M′ | N′
(par2)

P ≡ P′ �P′, S �
e−→ �Q′, S ′� Q ≡ Q′

�P, S �
e−→ �Q, S ′�

(struct)
�P, S �

e−→ �Q, S ′�
〈P, S 〉 e−→ 〈Q, S ′〉

(closure)

Fig. 1. Labeled transition semantics

Intuitively, open configurations represent systems under construction, whose resources
are still accessible to the environment. Closed configurations represent completed sys-
tems and can only communicate via handshake channels.

The operational semantics is given in terms of an LTS over handshake configurations.
Labels are channels with their polarity, plus the unobservable label:

e ::= ā | a | τ a ∈ A

Given an observable label, the function ch returns the channel on which it occurred. For-
mally: ch(ā) = ch(a) = a for any channel a. The definition of the operational semantics
is simplified thanks to the congruence (≡) between processes:

P | Q ≡ Q | P Rec 0 ≡ 0

Let res(P) be the set of resources of a process P. As meta-notation, we define sequential
composition of threads T · T ′:
(act.T) · T ′ = act.(T · T ′) T · T ′ = T ′ (T ≡ 0) (Rec T) · T ′ = Rec T (T � 0)

and we extend process operators to configurations:

�P1, S 1� | �P2, S 2� = �P1 | P2, S 1 + S 2� �P, S � \ ∆ = �P \ ∆, S �
〈P1, S 1〉 | 〈P2, S 2〉 = 〈µ1(P1) | µ2(P2), µ1(S 1) + µ2(S 2)〉 〈P, S 〉 \ ∆ = 〈P \ ∆, S 〉

where + denotes the union of multisets and µ1 : res(P1) ∪ S 1 → R1 and µ2 : res(P2) ∪
S 2 → R2 are injective functions between resources such that R1 and R2 are disjoint and
all the resources they contain are fresh. Moreover µ(S) is the point-to-point application
of the function µ to the multiset S , while µ(P) is the process obtained from P by renam-
ing any label occurrence according to µ. This guarantees that two closed configurations
can only communicate via channels .

232 L. Fossati and D. Varacca

a ∈ A
0�!a

(ax)
T�!a

RecT�!a
(rec)

T�?a
ā{r1 ,...rn}.T�!a

(outpref)
T�!a

a{r1 ,...rn}.T�?a
(inpref)

P � Γ′ Q � Γ′′ ∀a ∈ Dom(Γ′) ∩ Dom(Γ′′), Γ′(a) � Γ′′(a)
(P | Q) \ (Dom(Γ′) ∩ Dom(Γ′′)) � Γ′ � Γ′′ (par)

P � Γ
�P, S � � Γ

(oconf)
P � Γ
〈P, S 〉 � Γ (cconf)

Fig. 2. Handshake types

Note that we do not define the parallel composition of an open and a closed config-
uration. The idea is that we may combine two different parts of a system (in the con-
struction stage) or two completed systems (for interaction), but we may not combine a
system under construction with a completed one.

The derivation rules for the operational semantics are shown in Figure 1. When an
input occurs, a set of resources becomes available; while an output requires a set of
resources in order to occur, then the used resources disappear. The other rules are quite
standard. Note however that the operational distinction between open and closed config-
urations comes from the two distinct cases of composition given above. In the parallel
composition of open configurations, one side may influence the other by modifying a
shared resource, as no renaming takes place. This is not possible for closed configura-
tions, as renaming prevents the sharing of resources.

A sequence of transitions M0
e0−→M1 . . .Mn

en−→M is denoted M0
t−� M, where t =

e0 . . . en. The string t is called the strong trace of the sequence, while the weak trace is
the restriction of t to the labels other than τ. Strong (∼) and weak (≈) bisimilarity are
also defined as usual [13] on the labeled transition system for CHC.

3.2 Typing System

A type Γ is a partial function from channel names to {!, ?}. We will use the shorthand
notation !a or ?a to describe a type defined on channel a, and commas to join types. We
say that a is active in Γ when Γ(a) =! and we say it is passive when Γ(a) =?.

Let Γ′ and Γ′′ be two types and let a be a channel. Let us define the function Γ′�Γ′′ :
(Dom(Γ′)\Dom(Γ′′)) ∪ (Dom(Γ′′)\Dom(Γ′))→ {!, ?} such that:

– Γ′ � Γ′′(a) = Γ′(a), when a ∈ Dom(Γ′)\Dom(Γ′′);
– Γ′ � Γ′′(a) = Γ′′(a), when a ∈ Dom(Γ′′)\Dom(Γ′).

Typing judgements are of the form T � Γ, P � Γ, M � Γ, where T is a thread, P
a process, M a configuration and Γ a type. The typing rules are shown in Figure 2.
The empty thread is active: this models receptiveness, because a thread of passive type

The Calculus of Handshake Configurations 233

must always be able to perform another input. The following three rules guarantee that
threads are alternating on each channel. The parallel composition of two processes is
allowed only if threads on the same channel have dual types. These channels must then
be restricted so that no other process can communicate on them. This models the point-
to-point communication discipline of handshake protocols. Note that resources do not
play any role in the typing.

The following results show the intuition behind the typing system.

Lemma 3 (Reduction). Let M be a configuration such that M � Γ. Then:

– M
a−→ ⇐⇒ Γ(a) =?;

– M
ā−→ ⇒ Γ(a) =!;

– M
e−→ M′ ∧ e � τ ⇒ M′ � Γ′ s.t. Dom(Γ′) = Dom(Γ) ∧

∀b ∈ Dom(Γ), b � ch(e)↔ Γ(b) = Γ′(b);
– M

τ−→ M′ ⇒ M′ � Γ;

Corollary 4 (Subject Reduction). Let M � Γ and M
s−� M′ then there is a type Γ′

such that M′ � Γ′.

3.3 Examples

As a first example, we show a configuration representing the OR handshake protocol.

OR = 〈a{r1}.Rec ā{r2}.a
{r1}.0 | Rec b̄{r1}.b

{r2}.0 | Rec c̄{r1}.c
{r2}.0, ∅〉

We have that OR�?a, !b, !c. When a request on the passive port a arrives, the resource
r1 becomes available and this enables OR to send a request on either active port b, c. An
acknowledge to this last request enables an acknowledge to the first one. The second
configuration represents the MIX protocol.

MIX = 〈b{k1}.Rec b̄{k2}.b
{k1}.0 | c{k1}.Rec c̄{k2}.c

{k1}.0 | Rec d̄{k1}.d
{k2}.0, ∅〉

We have that MIX �?b, ?c, !d. Each time an environment request arrives (on either pas-
sive port b, c), the component MIX handshakes on its active port d and after completion
it acknowledges to the first request. If, by the time the handshake on the active port is
complete, the environment has sent a request on the other port, MIX chooses nondeter-
ministically which request to acknowledge first.

The two protocols can be composed in parallel, communicating on the common
ports. We have (OR | MIX) \ {b, c}�?a, !d.

3.4 Soundness

In this section we show that typed CHC configurations indeed define handshake lan-
guages, using the weak traces of the labeled transition semantics.

Each feature of the calculus plays a role in modeling the handshake discipline. Let us
see informally how. First of all, handshake languages alternate input and output on the
same port. This is enforced by the typing system. The reorder closure is guaranteed by

234 L. Fossati and D. Varacca

the fact that different ports are on different parallel threads. The only reordering that is
in general not allowed is when an input blocks an output. An input can block an output
because an output may need resources that will only be provided by the input. Finally,
receptiveness is guaranteed by the fact that inputs do not need resources, and can always
occur, provided that the alternation with the corresponding outputs is respected.

In order to denote handshake languages we consider the weak traces of the transition
sequences of a configuration. If we considered the traces of all transition sequences, the
denoted languages would always be prefix closed and some handshake languages would
excape us. To characterize the larger class of languages closed under passive prefixes,
we consider only the traces of the quiescent transition sequences.

A configuration M is quiescent if it cannot (weakly) perform an output, i.e. if there is

no transition sequence of the form M
(τ)∗−� ā−→, for any channel a. A transition sequence

M
t−� M′ is quiescent if M′ is.

Definition 5. Let M be a handshake configuration. We define HL(M) to be the set of
weak traces of all the quiescent transition sequences which start from M.

Let M be a configuration and Γ a type such that M � Γ. The handshake structure
HS (Γ) = 〈PortsΓ, dΓ〉 is defined by setting PortsΓ = Dom(Γ) and dΓ = Γ.

Proposition 6 (Soundness). Let M be a handshake configuration, such that M � Γ.
Then HL(M) is a handshake language on the handshake structure HS (Γ).

We observe, however, that the other direction, the fact that each language is the de-
notation of some configuration, cannot be established. This is due to the presence of
non recursive handshake languages which could never be captured by finite configura-
tions. It would still be interesting to characterize the class of handshake languages that
correspond to CHC configurations. We leave this as future work.

3.5 Compositionality

Open configurations can communicate via shared resources, but this is not directly ob-
servable in the labeled transition semantics. Thus we cannot expect a labeled equiva-
lence to be fully congruent for them. However weak bisimilarity is a congruence with
respect to composition of closed configurations:

Proposition 7. Let M1,M2,N be closed handshake configurations such that M1,M2 �
Γ, N�Γ′ and (M1 | N)\∆�Γ�Γ′, (M2 | N)\∆�Γ�Γ′, where ∆ = Dom(Γ)∩Dom(Γ′).
Then M1 ≈ M2 implies (M1 | N) \ ∆ ≈ (M2 | N) \ ∆.

This is consistent with our intepretation of resources as internal means of communica-
tion. Our main goal was to describe the externally observable behavior of a system and
we do so by considering only those configurations whose resources cannot be accessed
by the environment.

In Section 2 we talked about the difficulty of finding a good definition of composition
for handshake languages. This intuition is confirmed as “quiescent trace equivalence”
is not a congruence. Consider the following processes:

P1 = c̄{r1,r2}.c
{}.0 | b̄{r3,r1}.b

{r1}.Rec b̄{r1}.b
{r1}.0 | (d̄{r3,r2}.d

{r3}.0 | d{}.d̄{}.d{}.0) \ {d}
P2 = c̄{r1}.c

{}.0 | Rec b̄{r1}.b
{r1}.0 .

The Calculus of Handshake Configurations 235

Consider the closed configurations M1 = 〈P1, {r1, r2, r3}〉 and M2 = 〈P2, {r1, r2, r3}〉.
They are both interpreted as the same handshake language:

HL(M1) = {c̄, c̄c, b̄, b̄bc̄, b̄bc̄c, b̄bb̄, . . .} = HL(M2)

however, if we compose them with N = 〈b{}.Rec b̄{}.b{}.0 | c{k}.0 | ā{k}.a{}.0, ∅〉we obtain
two configurations with different interpretations:

HL((M1 | N) \ {b, c}) = {ε, ā, āa} HL((M2 | N) \ {b, c}) = {ā, āa}

Therefore the parallel composition of CHC configurations cannot be used to define
the composition of handshake languages. In order to compose handshake protocols,
some more knowledge on the branching structure is needed. CHC provides a suitable
formalism to study this structure.

4 Handshake Petri Nets

We argued that not all handshake languages can be represented by CHC configurations,
as, for instance, there are non recursive handshake languages. To show the expressive
power of our calculus, we provide an alternative semantics of CHC based on Petri nets.
In [6], we studied a Petri net representation of handshake protocols, called handshake
Petri net, and we showed that all handshake languages can have a, possibly infinite,
handshake Petri net representation. In this paper we show that every finite handshake
Petri net is weakly bisimilar to a CHC configuration.

In this section we introduce handshake Petri nets. The present definition is slightly
different from the one in [6], but the results of that paper carry over. We assume some
basic knowledge on Petri nets, which we will use in their standard graphical represen-
tation [15]. Throughout the paper we will consider Petri nets in their unsafe version,
where places are allowed to contain several tokens at the same time. This is not just for
convenience. Unsafe nets are necessary to carry out our construction.

4.1 Definition

Handshake Petri nets are Petri nets with a special “external interface”, reflecting the
structure of handshake ports. We define handshake ports in two phases. We first define
the static structure of ports, and then we specify the markings.

Let G be a Petri net and let NO and NI be a partition of its nodes (places and transi-
tions). The elements of NO will be called output transitions / places while the elements
of NI will be called input transitions / places. We give an inductive definition of a static
handshake port a = 〈G,NO,NI〉 as follows:

– (Basic cases) NO and NI contain no transition;
– (Inductive cases) let a′ = 〈G′,N′O,N′I 〉 be a static port:
• (input prefixing) given a place p ∈ N′I with no outgoing arcs, a is obtained from

a′ by adding an input transition t and an arc from p to t;

236 L. Fossati and D. Varacca

���
��

�

���
��

�

��������•
I

��
I

��

���
��

�

������ ��������
O

��
O

����������
I

��
I

��

���
��

�

������ ��������
O

�� 	
O

���
��������

������

Fig. 3. A passive port (I is for input and O is for output)

• (output prefixing) given a place p ∈ N′O with no outgoing arcs and a place
p′ ∈ N′I with exactly one outgoing arc, a is obtained from a′ by adding an
output transition t, an arc from p to t and an arc from t to p′;
• (alternation) given a place p ∈ N′O and a transition t ∈ N′I with no outgoing

arcs, a is obtained from a′ by adding an arc from t to p.

Let a′ be a static port and let p be a place of (the Petri net of) a′ such that if p is an
input place, p has an outgoing arc. Let a be the net obtained from a′ either by adding
one token to p or by keeping a′ with no tokens, then a is a handshake port. Moreover, if
a is as a′ (no tokens) or if p is an output place we say that a is an active port, otherwise
we say that a is a passive port.

Let G be a Petri net, G′ a subgraph of G and a = 〈G′,NO,NI〉 a port s.t. :

– a place of G′ may only be connected to transitions of G′;
– a transition t ∈ NO of G′ may only have outgoing arcs to places of G′;
– a transition t ∈ NI of G′ may only have incoming arcs from places of G′.

then a is a handshake port of G. Figure 3 shows an example of a passive handshake
port of some net. The arrows without source or target indicate the way the port may
connect to the rest of the net. The statical structure imposes alternation between the
firings of input and output transitions. It is also ensured that, if an input place may ever
contain a token, then it must have an outgoing arc to an input transition (receptiveness).
Finally, by allowing a port to contain several input and output transitions we are able
to model each event separately. For instance, two distinct input transitions may connect
differently to the rest of the net, thus providing different resources.

Definition 8. The pair H = 〈GH , PortsH〉 is a handshake Petri net (hpn) just when GH

is a Petri net and PortsH a set of disjoint handshake ports of GH.

Let H = 〈GH , PortsH〉 and let t (p) be a transition (place) of GH . Then t (p) is internal
of H if it is neither of input nor of output (in some port a of H).

4.2 Composition

A linkage between an active port a ∈ PortsH and a passive port b ∈ PortsH of an hpn
H = 〈GH , PortsH〉 is the hpn L(H, a, b) = 〈GH,a,b, PortsH\{a, b}〉, where GH,a,b is the
net obtained by adding two fresh places p1 and p2 to GH and arcs from each output
transition of a to p1, from p1 to each input transition of b, from each output transition
of b to p2 and from p2 to each input transition of a.

We call link of L(H, a, b), denoted link(H, a, b) , the graph consisting of the graphs of
a and b plus p1, p2 and any arc connecting them to transitions of a or b. Figure 4 shows
an example of link between an active port (left) and a passive port (right).

The Calculus of Handshake Configurations 237

����
����

��

...
���
��

����� �������� �����

���
��

����������

����
���

���
... �������� ��������•

!!��� ��������
""���

��������•
!!��� ��������

""��������
���

��

...

##���
����������

������
����

����������� � �

##���
��� � � ...

$$��������

Fig. 4. Example of composition of ports

Definition 9. Let H1 = 〈G1, Ports1〉 and H2 = 〈G2, Ports2〉 be two handshake Petri
nets. Let {a1, . . .an} ⊆ Ports1 ∪ Ports2 be a set of active handshake ports and let
{b1, . . .bn} ⊆ Ports1 ∪ Ports2 be a set of passive handshake ports, such that for 1 ≤
i ≤ n, ai ∈ Ports1 if and only if bi ∈ Ports2. Then:

H1 ‖{(a1,b1),...(an ,bn)} H2

=

L(. . . L(〈G1 +G2, Ports1 ∪ Ports2〉, a1, b1), . . .an, bn)

is the composition of H1 with H2 by linking the pairs (a1, b1), . . . (an, bn).

It is easy to see that the composition of two hpns is well-defined and associative.

4.3 Observational Properties of hpns

Let us label a (ā) each input (output) transition of port a, for any a ∈ PortsH , and τ

each internal transition of H. We write H
l→ H′ (which reads H l-reduces to H′) if a

transition labeled l is enabled in GH and its firing leads to the hpn H′. Seen as labeled
transition systems, hpns naturally inherit many definitions that we gave for CHC. Two of
these are strong (∼) and weak (≈) bisimilarity. The generality of these definitions allow
us to go as far as saying that an hpn is (weakly or strongly) bisimilar to a handshake
configuration.

Another inherited definition is that of the function HL, which is identical to the one
we gave in Section 3.4 for a handshake configuration. However, we still need to adapt
HS . Let H = 〈GH , PortsH〉 be an hpn and let dH : PortsH → {!, ?} be the function
which maps each port a to !, when a is active in H, or to ?, when it is passive. We define
HS (H) = 〈PortsH , dH〉.
Proposition 10. [6] Let H be a handshake Petri net, then HL(H) is a handshake lan-
guage on the handshake structure HS (H).

Proposition 11. [6] Let σ be a handshake language on a handshake structure 〈P, d〉.
Then there is an hpn Hσ such that HS (Hσ) = 〈P, d〉 and HL(Hσ) = σ.

Note that, for the last result, the net Hσ may contain an infinite number of internal places
and transitions. This is unavoidable as languages are in general not recursive and thus
not finitely representable. Figure 5 shows two simple examples of handshake protocols:
OR and MIX described in Section 3.3.

238 L. Fossati and D. Varacca

���
��

��

���
����������•

!!��� ��������
""���

��������•
!!��� ��������

""���
��

%%�
��

��������
��

&&

##���

''��
��
��
��
��

##��� �������� ��

%%�
��

��������•
((��� ��������

''��
�

%%�
��

%%�
��

��

��������•
((��� ��������

''��
�))���

���������� ��������•
((��� ��������

''��
�

��������•
((��� ��������

''��
�

��������

))����������

��

��

))���

))���
))���

Fig. 5. OR (left) and MIX (right) handshake components

5 Full Abstraction and Definability

In this section we relate the calculus CHC with its Petri nets model . We only sketch the
constructions, the detailed proofs are available on the extended version [5].

5.1 Full Abstraction

Let M be a handshake configuration, such that M � Γ. We can assume M = 〈P, S 〉 and
define the hpn �M�Γ by cases of P. The definitions for open configurations are identical,
��P, S ��Γ = �〈P, S 〉�Γ.

Let P = 0. Then Γ =!a for some channel a. Now, define a port which contains a
single output place p holding a token and call it a as the channel. Let G be the Petri net
which contains p plus an internal place q, labeled r, for each r ∈ S , where q contains as
many tokens as there are occurrences of r in S . Then �M�Γ is the hpn 〈G, {a}〉.

Let P = a{r1,...rn}.P′. Then the last applied typing rule is (inpref), then Γ =?a and
P′�!a. Let �〈P′, S 〉�!a = 〈G′, Ports′〉. By construction, Ports′ = {a} where a is an
active port. Let p′ be the place of a with a token. Let’s extend a by adding a fresh input
place p, a fresh input transition t labeled a and arcs from p to t and from t to p′, then by
removing the token from p′ and putting a token into p. Finally let’s add arcs from t to
any place labeled ri, for 1 ≤ i ≤ n. If any of these places does not exist yet, add it anew.
We thus obtain a graph G. Then �M�Γ = 〈G, {a}〉. The case of the output prefix is dual.

Let P = RecP′. Then Γ =!a and P′�!a, for some channel a. Let �〈P′, S 〉�!a =

〈G′, Ports′〉. By construction, Ports′ = {a} where a is also the active port associated to
channel a. Let p be the place of a which holds a token. If p has an incoming arc or if
any other place in a has two incoming arcs, �〈P, S 〉�Γ = �〈P′, S 〉�!a. Otherwise a must
contain a place p′ with no outgoing arcs, by construction. Note that both p and p′ must
be output places, also by construction. Then replace p and p′ by a place q obtained by
“joining” them. In particular, q must be the new source of p’s outgoing arc and the new
target of p′’s incoming arc. Call G the graph so obtained. Then �〈P, S 〉�Γ = 〈G, {a}〉.

The Calculus of Handshake Configurations 239

Let P = (P′ | P′′) \ ∆. We construct �〈P, S 〉�Γ in three steps. First let �〈P′, S 〉�∆Γ1

be obtained from �〈P′, S 〉�Γ1 by renaming each port a such that (a, a) ∈ ∆, as a!

when Γ1(a) =! and as a? when Γ1(a) =?. Define analogously �〈P′′, S 〉�∆Γ2
. Then let

〈G′, Ports〉 = �〈P′, S 〉�∆Γ1
‖{(a! ,a?)|a∈∆} �〈P′′, S 〉�∆Γ2

. Then, for any two distinct places p
and p′ of G′ labeled by the same resource r do the following: substitute p and p′ by
a single place also labeled by r, having all the arcs of both p and p′; note also that by
construction, p and p′ contained the same number of tokens k, then put k tokens in the
new place as well. Let G be the net so obtained. Then �M�Γ = 〈G, Ports〉.

The semantics is well defined and fully abstract with respect to weak bisimilarity:

Lemma 12. Let M be a configuration such that M �Γ. Then �M�Γ as defined above is
a handshake Petri net and M ≈ �M�Γ .

Theorem 13 (Full Abstraction). Let M and M′ be two configurations such that M�Γ
and M′ � Γ′. Then M ≈ M′ ⇐⇒ �M�Γ ≈ �M′�Γ′ .

5.2 Definability

For each finite hpn there is a weakly bisimilar handshake configuration:

Theorem 14 (Definability). Let H = 〈G, Ports〉 be a handshake Petri net. Then there
are a closed handshake configuration M and a handshake type Γ, such that M � Γ and
�M�Γ ≈ H.

We present here a simplified construction of the configuration associated to H. The idea
is that each port a of the net H can be modeled by a thread Proc(a,H), inductively on
the structure of the port.

Each internal transition t is first unfolded as a link between two ports and then asso-
ciated to a process. Let t have incoming arcs from internal places labeled r1, . . . ri and
outgoing arcs to internal places labeled ri+1, . . . rn. Then t is unfolded as follows:

��������
r1

���
��

��
��

��
�

��������
��������

t

r1

���
��

��
� �������� ...

...
ri+1

������

rn
��

 ��������

ri

��

���
��

���������� ��

���
�� rn

��

ri+1 **!!!!!!!!!!! ��������
�������� ri

++"""""" �������� ��������•
!!��� ��������

""���
��������•

!!��� ��������
""���

##���
����������

##���
��

where r1, . . . rn are place labels. . Then let H be a hpn, u(H) is the hpn obtained from H
by unfolding each of its internal transitions. It can be shown that H ≈ u(H).

For each internal transition t, let lt be a fresh label associated to it. Consider the
following process.

Proc(t,H) = (Rec l̄t{r1,...ri}.lt.0 | l{ri+1,...rn}
t .Rec l̄t.l

{ri+1,...rn}
t .0) \ {lt}

240 L. Fossati and D. Varacca

Then we define

Proc(H) = Proc(a1,H) | . . . | Proc(an,H) | Proc(t1,H) | . . . | Proc(tm,H)

where a1, . . . an are the ports of H and t1, . . . tm are the internal transitions of H. Then
let Con f (H) = 〈Proc(H), S H〉, where S H is the multiset of labels of internal places of
H with a token and a label appears in S H as many times as the number of tokens in the
corresponding place. Finally let ch(Ports) be the set of names of ports in Ports, then
ΓH : ch(Ports) → {!, ?} is the function which associates ! to its active ports’ names
and ? to its passive ports’ names. It can be shown that �Con f (H)�ΓH ≈ u(H). Thus
�Con f (H)�ΓH ≈ H.

6 Conclusions

We presented the calculus CHC which describes handshake protocols of communica-
tion. We have given it an lts semantics and a Petri nets semantics in terms of handshake
Petri nets. We have shown that every finite handshake Petri net corresponds to a closed
configuration of the calculus.

We have argued that a branching semantics is necessary to understand handshake
protocols, as the trace model cannot properly define composition. The calculus and the
two semantics provide the necessary framework to formally study handshake protocols.

Our original aim had been to devise a typing system for CCS, that would ensure the
handshake discipline. After many attempts, we came to believe that such typing system
would be cumbersome, if at all possible. Consider in particular the MIX component
defined in Section 4.3. It is essentially characterized by a form of inclusively disjunctive
causality: The request sent on the active port causally depends on either of the requests
received on the passive ports. However, if both are received, it cannot be established
which of the two is actually the cause. This is in contrast with the fact that CCS can be
modeled using safe occurrence nets (which correspond to stable event structures), where
this kind of causality cannot be represented. Therefore we decided to use a second,
different form of communication, in the form of shared resources.

As usual, a result opens new directions to inspect. We would like to characterize
the handshake languages that are described by CHC configurations (and thus by finite
nets). We would also like to study restrictions on the language or the types to char-
acterize behavioral classes of protocols: deterministic, positional, free choice, etc. It
would be interesting to extend the calculus with mobility primitives, like the ones of
the π-calculus, and study its expressive power. We also would like to use the calculus
to specify and prove the correctness of specific protocols.

Acknowledgments. We thank Roberto Amadio, Catuscia Palamidessi and Frank Valen-
cia for their useful comments. We thank an anonymous referee for spotting a mistake
in a previous version of our proofs. The first author would like to thank Simona Ronchi
della Rocca, Felice Cardone, Pierre-Louis Curien for their valuable inputs and support.
The second author acknowledges the support of the ANR project ParSec: ANR-06-
SETI-010-02.

The Calculus of Handshake Configurations 241

References

1. Abramsky, S., Gay, S., Nagarajan, R.: Interaction categories and the foundations of types
concurrent programming. In: Proc. of the 1994 Marktoberdorf Summer School on Deductive
Program Design, pp. 35–113. Springer, Heidelberg (1996)

2. Arun-Kumar, S., Hennessy, M.: An efficiency preorder for processes. Acta Informatica 29(9),
737–760 (1992)

3. Bardsley, A.: Balsa: an asynchronous circuit synthesis system. Master’s thesis. Department
of Computer Science, University of Manchester (1998)

4. Fossati, L.: Modeling the Handshake Protocol for Asynchrony. PhD thesis, Dip. di Informat-
ica, Univ. di Torino & Lab. Preuves Programmes et Systèmes (PPS), Univ. Paris 7 (2009)

5. Fossati, L., Varacca, D.: The calculus of handshake configurations (extended version) (2008),
http://www.di.unito.it/~fossati/

6. Fossati, L., Varacca, D.: A Petri net model of handshake circuits. In: Proc. of First Interna-
tional Workshop on Interactive Concurrency Experience, ICE 2008. ENTCS. Elsevier, Am-
sterdam (to be published, 2008), http://www.di.unito.it/~fossati/

7. Gelernter, D.: Generative communication in Linda. ACM Transactions on Programming Lan-
guages and Systems 7(1), 80–112 (1985)

8. Ghica, D.R.: Geometry of synthesis: a structured approach to VLSI design. In: Proc. of POPL
2007, pp. 363–375. ACM Press, New York (2007)

9. http://www.handshakesolutions.com/
10. Josephs, M., Udding, J., Yantchev, Y.: Handshake algebra. Technical Report SBU-CISM-

93-1, School of Computing, Information Systems and Mathematics, South Bank University,
London (1993)

11. Kobayashi, N., Pierce, B., Turner, D.: Linearity and the π-calculus. ACM Transactions on
Programming Languages and Systems 21(5), 914–947 (1999)

12. Mackie, I.: The geometry of interaction machine. In: Proc. of POPL 1995, pp. 198–208.
ACM Press, New York (1995)

13. Milner, R.: Communication and Concurrency, 2nd edn. Prentice-Hall, Englewood Cliffs
(1991)

14. Milner, R., Sangiorgi, D.: Techniques for “weak bisimulation up-to”. Revised version of a
paper that appeared in: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630. Springer,
Heidelberg (1992); available on Sangiorgi’s webpage

15. Reisig, W.: Petri Nets: An Introduction. Monographs in Theoretical Computer Science. An
EATCS Series, vol. 4. Springer, Heidelberg (1985)

16. Roscoe, A.W.: Unbounded nondeterminism in CSP. Journal of Logic and Computation 3(2),
131–172 (1993); Previously appeared in Two Papers on CSP, tech. monograph PRG-67, Ox-
ford University Computing Laboratory(July 1988)

17. Udding, J.: Classification and Composition of Delay-Insensitive Circuits. PhD thesis, De-
partment of Math. and C.S., Eindhoven University of Technology, Eindhoven (1984)

18. Van Berkel, K.: Handshake Circuits: an Asynchronous Architecture for VLSI Design. Cam-
bridge International Series on Parallel Computation, vol. 5. Cambridge University Press,
Cambridge (1993)

19. Yoshida, N., Honda, K., Berger, M.: Linearity and bisimulation. In: Nielsen, M., Engberg, U.
(eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 417–433. Springer, Heidelberg (2002)

http://www.di.unito.it/~fossati/
http://www.di.unito.it/~fossati/
http://www.handshakesolutions.com/

On the Expressive Power of Restriction and Priorities in
CCS with Replication

Jesús Aranda1,�, Frank D. Valencia2, and Cristian Versari3

1 LIX École Polytechnique and Universidad del Valle Colombia
2 CNRS and LIX École Polytechnique

3 Università di Bologna

Abstract. We study the expressive power of restriction and its interplay with
replication. We do this by considering several syntactic variants of CCS! (CCS
with replication instead of recursion) which differ from each other in the use
of restriction with respect to replication. We consider three syntactic variations
of CCS! which do not allow the use of an unbounded number of restrictions:
CCS−!ν

! is the fragment of CCS! not allowing restrictions under the scope of a
replication. CCS−ν

! is the restriction-free fragment of CCS!. The third variant is
CCS−!ν

!+pr which extends CCS−!ν
! with Phillips’ priority guards.

We show that the use of unboundedly many restrictions in CCS! is necessary
for obtaining Turing expressiveness in the sense of Busi et al [8]. We do this by
showing that there is no encoding of RAMs into CCS−!ν

! which preserves and
reflects convergence. We also prove that up to failures equivalence, there is no
encoding from CCS! into CCS−!ν

! nor from CCS−!ν
! into CCS−ν

! . As lemmata
for the above results we prove that convergence is decidable for CCS−!ν

! and that
language equivalence is decidable for CCS−ν

! . As corollary it follows that con-
vergence is decidable for restriction-free CCS. Finally, we show the expressive
power of priorities by providing an encoding of RAMs in CCS−!ν

!+pr.

1 Introduction

As for other language-based formalisms (e.g., logic, formal grammars, λ-calculus, etc)
a fundamental part of the research in process calculi involves the study of the expres-
siveness of syntactic fragments or variants of a given process calculus.

Process calculi provide a language in which the structure of terms represents the
structure of processes together with a transition relation to represent computational
steps. Consider for example CCS [15]. The parallel composition term P |Q, which is
built from the terms P and Q represents the process that results from the parallel exe-
cution of the processes P and Q. The restriction (νx)P represents a process P with a
private/local/restricted/bound resource x–e.g., a location, a link, or a name. Processes
with infinite behaviour are often specified with recursive expressions of the form µX.P
which behaves as P [µX.P/X], i.e., P with the (free) occurrences of X replaced by
µX.P . A transition semantics dictates that if P may have a transition into P ′ by per-
forming an action α, written P

α−→ P ′, then P | Q α−→ P ′ | Q and if α does not
involve x also (νx)P α−→ (νx)P ′.

� The work of Jesús Aranda has been supported by COLCIENCIAS (Instituto Colombiano para
el Desarrollo de la Ciencia y la Tecnologı́a ”Francisco José de Caldas”) and INRIA Futurs.

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 242–256, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On the Expressive Power of Restriction and Priorities in CCS with Replication 243

Classifying Criteria. One natural approach to comparing expressiveness of two given
process calculus variants is by comparing them wrt some standard process equivalence
4 . If there exists a computable function (encoding) [[·]] from the terms of a variant C
into the terms of another variant C′ such that for every P in C we have P 4 [[P]], we
say that C′ is at least as expressive as C up to 4.

Another way of classifying the variants of a given calculus is by considering the
complexity or decidability of a fundamental property of processes. For example, the
decidability of convergence (the existence of a terminating computation) or divergence
(the existence of a non-terminating computation).

The CCS! Calculus. The CCS! calculus [7] is a variant of CCS which instead of
using recursive expressions to specify infinite behaviour uses processes of form !P.
The replicated process !P can be thought of as abbreviating the parallel composition
P | P | . . . of an unbounded number of P processes. In [8] it is shown that CCS! is
less expressive than CCS wrt (weak) bisimilarity. It is also shown that convergence is
undecidable for CCS! while divergence, unlike for CCS, is decidable.

Turing Expressiveness and Convergence in CCS!. A remarkable expressiveness result
in [8] states that, in spite of its being less expressive than CCS, CCS! is in fact Turing
powerful. This is done by encoding Random Access Machines (RAMs) [16]. The fun-
damental property of the encoding is that it preserves (and reflects) convergence; i.e.,
the RAM converges if and only if its encoding converges.

The CCS! encoding of RAMs in [8] uses an unbounded number of restrictions arising
from having restriction operators under the scope of a replication operator as for exam-
ple in !(νx)P . Similarly, the CCS encoding of RAMs in [7] involves also an unbounded
number of restrictions arising from having restrictions under the scope of recursive ex-
pressions as for example in µX.(νx)(P | X). One then may wonder if the generation
of unboundedly many names is necessary for Turing Expressiveness.

This Work. In this paper we study the expressiveness of restriction and its interplay
with replication. We do this by considering two syntactic fragments of CCS!, namely
CCS−!ν

! and CCS−ν
! which differ from CCS! in the occurrences of restriction under the

scope of replication. These fragments and a variant of CCS!, CCS−!ν
!+pr, as well as our

classification criteria are described and motivated below.
Although different in nature, our work was inspired by the study of decidable classes

(wrt satisfiability) of formulae involving the occurrence of existential quantifiers under
the scope of universal quantification. E.g., Skolem showed that the class of formulae
of the form ∀y1 . . . yn∃z1 . . . zmF , where F is quantifier-free formula, is undecidable
while from Gödel we know that its subclass ∀y1y2∃z1 . . . zmF is decidable [5].

The CCS! Variants. As explained above CCS! allows processes with restriction under
the scope of replication and hence they can generate an unbounded number of restricted
names. In order to allow only processes with a number of restricted names bounded by
their size, we consider CCS−!ν

! which represents the CCS! fragment which does not
allow restrictions under the scope of replications. To illustrate the expressiveness of
CCS−!ν

! take for example P = (νk)(νu)(k̄ | !(k.a.(k̄ | ū)) | k.!(u.b)) which uses only
two restricted names. The reader familiar with CCS can verify that the set of (maxi-
mal) finite sequences of visible actions performed by P corresponds to the context-free

244 J. Aranda, F.D. Valencia, and C. Versari

language anbn. A similar but slightly more complex example involves a CCS−!ν
! proc-

ess with only five restricted names whose set of (maximal) finite sequences of visible
actions corresponds to the context-sensitive language anbncn–see [2].

Now, one may wonder whether a process that uses only a number of restricted names
bounded by its size, can be encoded, perhaps by introducing some additional non-
restricted names, into one which uses none. For this purpose we shall also consider
the restriction-free fragment of CCS!, which shall denote as CCS−ν

! .
Finally, we may also wonder whether some other natural process construct can re-

place the use in CCS! of unboundedly many restrictions in achieving Turing expres-
siveness. For this purpose we shall consider CCS−!ν

!+pr which is CCS−!ν
! extended with

Phillips’ priority guards construct [17].

Classifying Criteria. Our main comparison criteria for the above variants are the decid-
ability of convergence and their relative expressiveness wrt failures equivalence [6,15].

As mentioned before, convergence is a fundamental property of processes and its
preservation and reflection are also fundamental properties of the encoding of RAMs
in CCS!. Furthermore, we choose it over divergence because the former is undecidable
for CCS! while the latter is already known to be decidable for CCS!.

Failures equivalence is a well-established notion of process equivalence and we
choose it over other equivalences because of its sensitivity to convergence. In fact un-
like failures equivalence, other standard equivalences for observable behaviour such as
weak-bisimilarity, must testing, trace equivalence and language equivalence may actu-
ally equate a convergent process with a non-convergent one. This claim about sensitivity
to convergence will be shown later on in the paper (Section 3) once we fix our notation.

Contributions. Our main contributions are the following:

– We show that convergence is decidable for CCS−!ν
! and thus that there is no (com-

putable) encoding, which preserves and reflects convergence, of RAMs using only
a bounded number of restricted names. We do this by encoding CCS−!ν

! into Petri
Nets. Thus convergence is also decidable for the fragment of CCS with no restric-
tions within recursive expressions, here refered to as CCS−µν , because of the con-
vergence preserving and reflecting encoding into CCS−!ν

! given in [12].
– We show that, up to failures equivalence, CCS! is strictly more expressive than

CCS−!ν
! and, similarly, that CCS−!ν

! is strictly more expressive than CCS−ν
! . Thus

up to failures equivalence, we cannot encode a process with an unbounded num-
ber of restrictions into one with a bounded number of restrictions, nor one with a
bounded number of restrictions into a restriction-free process.

– We show that adding Phillips’ priority guards to CCS−!ν
! renders the resulting cal-

culus capable of encoding RAMs. Furthermore, unlike the encoding into CCS! and
just like the encoding into CCS, the encoding of RAMs into CCS−!ν

!+pr preserves
and reflects both convergence and divergence. This bears witness to the expressive
power of Phillips’ priority guards.

The classification of the various fragments mentioned above are summarized in
Figure 1. The undecidability of convergence and decidability of divergence for CCS!
as well as the undecidability of both divergence and convergence for CCS were shown
in [7,8]. The other results are derived from the work here presented.

On the Expressive Power of Restriction and Priorities in CCS with Replication 245

Fig. 1. A (crossed) arrow from C to C′ represents the (non) existence of an encoding from C
into C′ preserving and reflecting failures equivalence. Convergence is/isn’t decidable for each
C in/outside the inner rectangle. Divergence is/isn’t decidable for each C in/outside the outer
rectangle.

2 The Calculi

CCS processes can perform actions or synchronize on them. These actions can be either
offering port names for communication, or the so-called silent action τ.We presuppose
a countable setN of port names, ranged over by a, b, x, y . . . and their primed versions.
We then introduce a set of co-names N = {a | a ∈ N} disjoint from N . The set
of labels, ranged over by l and l′, is L = N ∪ N . The set of actions Act , ranged
over by α and β, extends L with a new symbol τ. Actions a and a are thought of as
complementary, so we decree that a = a. We also decree that τ = τ .

The CCS! processes [7] are defined as in CCS except that recursive expressions are
replaced by replication expression of the form !P .

Definition 1. Processes in CCS! are built from names by the following syntax:

P,Q . . . := 0 | α.P | P +Q | P | Q | (νa)P | !P (1)

Convention 1. We use Σi∈IPi where I = {i1 . . . in}, to denote Pi1 + . . . + Pin ., the
order of the summands being insignificant. We use Πi∈IPi, where I = {i1 . . . in}, to
denote Pi1 | . . . | Pin . Both Σi∈IPi and Πi∈IPi are assumed to be 0 if I = ∅. The
names a and ā in P are said to be bound in (νa)P . The bound names of P , bn(P),
are those with a bound occurrence in P , and the free names of P , fn(P), are those
with an not bound occurrence in P . The set of names of P , n(P), is then given by
fn(P) ∪ bn(P). We use (νa1 . . . an)P as an abbreviation of (νa1)(νa2) . . . (νan)P.

Process expressions are endowed with meaning by using the labeled transitions of the
form P

α−→ Q which intuitively says that P may perform α and evolve into Q. Sim-
ilarly, P

s=⇒ Q, where s ∈ L∗, means that P can evolve into Q after zero or more
transitions labeled with the elements of s without considering τ moves. Formally,

Definition 2. The labeled transition relation
·−→ is given by the rules in Table 1. Define

s=⇒, with s = α1. . . . αn ∈ L∗, as (τ−→)∗ α1−→ (τ−→)∗ . . . (τ−→)∗ αn−→ (τ−→)∗. For the
empty sequence s = ε,

s=⇒ is defined as (τ−→)∗.

246 J. Aranda, F.D. Valencia, and C. Versari

Table 1. The labeled semantics of CCS!

PREF
α.P

α−→ P
RES

P
α−→ P ′

(ν a)P α−→ (ν a)P ′
if α �∈ {a, a}

SUM1
P

α−→ P ′

P + Q
α−→ P ′ SUM2

Q
α−→ Q′

P + Q
α−→ Q′

PAR1
P

α−→ P ′

P | Q
α−→ P ′ | Q

PAR2

Q
α−→ Q′

P | Q
α−→ P | Q′

COM
P

l−→ P ′ Q
l−→ Q′

P | Q
τ−→ P ′ | Q′ REP

P | !P α−→ P ′

!P α−→ P ′

Intuition and Basic Ideas. We shall now give some intuition and state some conventions
on process expressions. We shall concentrate on the expressions !P and (νx)R and their
interplay because they are central to our work.

The process P | Q represents the parallel execution of P and Q. Intuitively, P | Q
may perform either an action performed by P , an action performed byQ, or if P andQ
perform complementary actions (and thus synchronize), a τ action. Thus, a.P | ā.Q a−→
P | ā.Q, a.P | ā.Q ā−→ a.P | Q, and a.P | ā.Q τ−→ P | Q.

The restriction process (νa)P behaves as P except that it can offer neither a nor
ā to its environment. One may think of (νa)P as a local declaration of name a in P
and thus can be used to restrict the possible synchronization (interactions) of a proc-
ess. For example, (νa)(a.P | ā.Q) may not perfom a or ā though –crucially– it may
perform a τ action resulting from the synchronization over the actions a and ā. Thus
(νa)(a.P | ā.Q) � α−→ for α ∈ {a, ā} but (νa)(a.P | ā.Q) τ−→ (νa)(P | Q).

Replication is the only means to specify infinite behaviour in CCS!. The replication
!P behaves as P | P | . . . | !P ; unboundedly many P ′s in parallel.

We can use restriction under the scope of replication to specify an unbounded number
of local names. It should be clear from the intuition above that (νa)P should behave
exactly as (νb)(P [b/a]) where b is not free in P and P [b/a] is the process that results
from replacing in P every free occurrence of a with b renaming bound names wherever
needed to avoid capture (α-conversion). Thus, for example !(νa)P can be viewed as

(νa1)P [a1/a] | (νa2)P [a2/a] | . . . | !(νa)P

thus allowing the declaration of unboundedly many different restricted names
a1, a2, As previously mentioned in the introduction, this sort of unbounded gen-
eration of restricted names appears to be crucial in the encodings of Turing-powerful
formalisms.

The Sub-calculi. To understand the above-mentioned interplay between restriction and
replication we shall consider two calculi which arise from syntactic constraints over
CCS!. Namely, CCS−!ν

! and CCS−ν
! .

Definition 3 (CCS−!ν
! and CCS−ν

!). The processes of CCS−!ν
! are those CCS! proc-

esses which do not have occurrences of a process of the form (νx)P within a process

On the Expressive Power of Restriction and Priorities in CCS with Replication 247

of the form !R. The processes of CCS−ν
! are those CCS! processes with no occurrences

of processes of the form (νx)P .

3 Convergence, Failures and Related Notions

In this section we shall introduce the notions we shall consider as classifying criteria,
namely convergence and failures equivalence, as well as some other related notions.

Following [4], we say that a process generates a sequence of non-silent actions s if it
can perform the actions of s in a finite maximal sequence of transitions. More precisely:

Definition 4 (Sequence and language generation). The process P generates a se-
quence s ∈ L∗ if and only if there exists Q such that P

s=⇒ Q and Q � α−→ for any
α ∈ Act . Define the language of (or generated by) a process P , L(P), as the set of all
sequencesP generates. We say thatP andQ are language equivalent, written P ∼L Q,
iff L(P) = L(Q).

We recall the notion of failure following [15]. We need the following notion:

Definition 5. We say that P is stable iff P � τ−→.

Intuitively we say that a pair 〈e, L〉, with e ∈ L∗ and L ⊆ L, is failure of P if P can
perform e and thereby reach a state in which no further action (including τ) is possible
if the environment will only allow actions in L.

Definition 6 (Failures). A pair 〈e, L〉, where e ∈ L∗ and L ⊆ L, is a failure of P iff

there is P ′ such that: (1) P
e=⇒ P ′, (2) P ′ � l−→ for all l ∈ L, and (3) P ′ is stable.

Define Failures(P) as the set of failures of a process P . We say that P and Q are
failures equivalent, written P ∼F Q iff Failures(P) = Failures(Q).

We recall the notions of convergence and divergence following [7,8]. Intuitively, a proc-
ess converges if it can reach a stable process after a sequence of τ moves. A process is
deemed divergent iff it can perform an infinite sequence of τ moves.

Definition 7 (Convergence and Divergence). We say that P is convergent iff there is
a stable process Q such that P (τ−→)∗Q. We say that P is divergent iff P (τ−→)ω, i.e.,
there exists an infinite sequence P = P0

τ−→ P1
τ−→

We conclude this section by stating relations between the above notions which we shall
use in the following sections.

3.1 Some Basic Properties of Failures

We claimed in the introduction that unlike other standard notions such as weak bisimi-
larity, must testing and trace equivalence, failures equivalence never equates a conver-
gent process with a non-convergent one. In fact,

Proposition 1. Suppose that P ∼F Q. Then P is convergent iff Q is convergent.

248 J. Aranda, F.D. Valencia, and C. Versari

To justify the rest of the above claim, take P = τ.!a.0 and P ′ =!τ.0. Clearly P
converges but P ′ does not, however they are both language equivalent. Now take Q =
τ.!τ.0 + τ.0 and Q′ =!τ.0. Thus Q converges but Q′ does not. It can be verified that Q
and Q′ are equated by these standard equivalences.

We shall use the fact that failures equivalence implies language equivalence.

Proposition 2. ∼F ⊆ ∼L.

4 Decidability of Convergence in CCS−!ν
!

In this section we show the decidability of convergence for CCS−!ν
! by a reduction to

the same problem for a fragment of Petri Nets.

4.1 Convergence-Invariant Properties in Fragments of CCS−!ν
!

Notice that decidability of convergence in CCS−!ν
! can be reduced to the decidability of

convergence in CCS−ν
! .

Proposition 3. For every P in CCS−!ν
! one can effectively construct a CCS−ν

! process
P ′, such that P converges if only if P ′ converges.

Proof. (Outline) First α-convert P so that each bound name in P is replaced with a
unique bound name. Then remove from the resulting process each occurrence of a
“(νx)”. Let P ′ be the resulting restriction-free process. One can verify that P ′ con-
verges iff P converges. %&

Consequently, in what follows we reduce the convergence problem for CCS−ν
! to con-

vergence problem in Petri nets.
In order to simplify the reduction to Petri Nets, we shall consider the fragment

CCS−ν
s! of those CCS−ν

! processes in which replication can only be applied to prefix
or summation processses.

Proposition 4. For every CCS−ν
! process P , one can effectively construct a CCS−ν

s!
process Q such that P converges iff Q converges.

Proof. (Outline) Systematically replace in P every occurrence of the form !!R with !R,
!(Q|Q′) with !Q | !Q′, and !0 with 0. The resulting process converges iff P converges.

Finitely Branching Transition System. In order to prove the decidability of convergence,
we shall make use of an alternative but equivalent definition (up to failures equivalence)
of the transition relation for CCS!. The equivalent definition can be obtained by replac-
ing Rule Rep in Table 1 with the rules in Table 2.

One can verify that the resulting transition relation is finitely-branching. This is es-
sential for being able to provide an effective Petri net construction for any given CCS−ν

s!
process.

On the Expressive Power of Restriction and Priorities in CCS with Replication 249

Table 2.

REPL1
P

α−→ P ′

!P α−→ P ′ | !P
REPL2

P
α−→ P ′ P

α−→ P ′′

!P τ−→ P ′ | P ′′ | !P

4.2 The Reduction to Petri Nets

Here we shall provide a (Unlabelled Place/Transition) Petri Net semantics for CCS−ν
s!

which considers only the τ moves. For these Petri Nets convergence is decidable [11].

Definition 8 (Petri Nets). A Petri net is a 3-tuple (S, T,m0), where S is a set of places,
T is a set of transitionsMfin(S)×Mfin(S) withMfin(S) being a finite multiset of S
called a marking. The (non-empty) multiset m0 is the initial marking; for each place s
∈ S, there are m0(s) tokens.

A transition (c, p) is written in the form c=⇒ p. A transition is enabled at a marking
m if c ⊆ m. The execution of the transition produces the markingm′ = (m \ c) ⊕ p
(where \ and⊕ are the difference and the union operators on multisets). This is written
asm �m′. If no transition is enable atm we say thatm is a dead marking.

We say that the Petri net (S, T,m0) converges iff there exists a dead marking m′

such thatm0(�)∗m′.

Intuitively, we will associate to each CCS−ν
s! a Petri net so that:

– Places are identified as syntactic components reachable from P ,
– Markings are descriptions of processes reachable from P through τ -actions. The

places and tokens in the marking represent different syntactic components and their
number of occurrences in the process described.

– Transitions represent the τ -actions enabled to be performed at certain process. In-
put places correspond to the components in the process involved in the τ -action
and Output places are the components to be enabled once the τ -action has been
executed.

Given a Petri net for P the elements of Sub(P) below will be the syntactic compo-
nents represented by places in the Petri net.

Definition 9. Define Sub(P), where P ∈ CCS−ν
s! , as Sub(0) = {0}, Sub(Σi∈IPi) =

{Σi∈IPi} ∪ (
⋃
i∈I Sub(Pi)), Sub(α.P) = {α.P} ∪ Sub(P), Sub(!P) = {!P} ∪

Sub(P) , Sub(P | Q) = Sub(P) ∪ Sub(Q).

Sub(P) denotes the set all null, replicated, summation, prefix processes occurring in P.
Since a process P may have several parallel occurrences of an element in Sub(P) we
use a multi-set Occur(P) take into account its number of occurrences.

Definition 10 (Occurrence). Let P ∈ CCS−ν
s! . The multiset of processes which occur

in P, Occur(P), is given by the following rule:Occur(P) =Occur(Q) ⊕ Occur(R)
if P = Q | R else Occur(P) = {P}. Furthermore, we say that Q is an occurrence
of a process P if and only if Q ∈ Occur(P).

250 J. Aranda, F.D. Valencia, and C. Versari

Occur(P) associates to a CCS−ν
s! process P the multiset of its immediate parallel com-

ponents (occurrences) and will be identified as the marking of P in the Petri net.
We are now ready to define our Petri net encoding of CCS−ν

s! processes.

Definition 11 (Nets for CCS−ν
s!). Given a CCS−ν

s! process P , we define its Petri net
NP = (S, T,m0) where S = {Q | Q ∈ Sub(P)}, m0 = Occur(P) and T =
T1 ∪ T2 where: T1 = {{P} =⇒ Occur(P ′)| P τ−→ P ′} and T2 = {{P,Q} =⇒
Occur(P ′)⊕Occur(Q′)|P α−→ P ′ and Q

α−→ Q′}.

Clearly, given P , NP can be effectively constructed—here we use the finite-branching
nature of the alternative transition semantics in Section 4.1.

Roughly speaking, the set of transitions T represents the possible τ moves to be
performed and the initial markingOccur(P) is the one which identifies the process P .
In particular:

– T1 : this type of transition reflects a τ move coming from one of the components, it
is referred as P , going to the process P ′. Notice as a token representing P is con-
sumed and the tokens representing P ′, there might be more than one component,
are added, in this way the transition reflects the evolution from the component P
into the process P ′ .

– T2 : this type of transition reflects the τ -actions resulting from the synchronisation
of two componentsP andQ, as a result of the synchronisation the processesP ′ and
Q′ are reached, in this case, a token associated to both P and another one associated
to Q are consumed, the tokens representing P ′ and Q′ are added.

Wee can now state the correctness of the encoding of CCS−ν
! into Petri nets.

Lemma 1 (Convergence-invariance property between CCS−ν
! and Petri nets)

For any CCS−ν
s! process P , P converges if and only if the Petri netNP converges.

Since convergence is decidable for Petri nets [11], we conclude from the above lemma
and our effective construction of Petri Nets that convergence is also decidable for
CCS−ν

s! . Thus, from Propositions 3 and 4, we obtain the following corollary.

Theorem 2. Convergence is a decidable property for CCS−!ν
! processes.

5 Decidability of Language Equivalence in CCS−ν
!

We now prove that decidability of language equivalence for CCS−ν
! . The crucial ob-

servation is that up to language equivalence every occurrence of a replicated process
!R in a CCS−ν

! process can be replaced with !τ.0 if R can perform at least an action,
otherwise it can be replaced with 0. More precisely, let P [Q/R] the process that results
from replacing in P every occurrence of R with Q.

Proposition 5. Let P be a CCS−ν
! process and suppose that !R occurs in P . Then

L(P) = L(P [Q/!R]) where Q =!τ.0 if there exists α s.t., R
α−→ else Q = 0.

On the Expressive Power of Restriction and Priorities in CCS with Replication 251

Given anyR in CCS! one can effectively decide whether there exists α such thatR
α−→

(This can be proven using the alternative finitely-branching presentation of the tran-
sition relation in Section 4.1). We can then use the above proposition for proving the
following statement.

Lemma 2. Let P be a CCS−ν
! process. One can effectively construct a process P ′ such

that L(P) = L(P ′) and P ′ is either !τ.0 or a replication-free CCS−ν
! process.

Proof. (Sketch.) Notice that we can use systematically Proposition 5 to transform any
CCS−ν

! process P into an language equivalent processQ whose replicated occurrences
are all of the form !τ.0. Now a !τ.0 can occur either in a parallel composition, a sum-
mation or prefix process. Observe that (1) P | !τ.0 ∼L !τ.0, (2) !τ.0 | P ∼L !τ.0, (3)
α.!τ.0 ∼L !τ.0, (4) P+!τ.0 ∼L P , (5) !τ.0+P ∼L P. One can apply (1-5) from left to
right to systematically transformQ into the process P ′ as required in the lemma. %&
From the above lemma, we conclude that every CCS−ν

! process can be effectively trans-
formed into a language equivalent finite-state process. Hence,

Theorem 3. Given P and Q in CCS−ν
! , the question of whether L(P) = L(Q) is

decidable.

6 Impossibility Results for Failure-Preserving Encodings in CCS!,
CCS−!ν

! and CCS−ν
!

In this section, we shall state the impossibility results about the existence of computable
encodings from CCS! into CCS−!ν

! and from CCS−!ν
! into CCS−ν

! which preserve and
reflect failures equivalence. The separation results follow from our previous decidability
results and the undecidability results in the literature.

The non-existence of failure-preserving encoding from CCS! into CCS−!ν
! follows

from Proposition 1, Theorem 2 and the undecidability of convergence for CCS! [8].

Theorem 4. There is no computable function [[·]] : CCS! → CCS−!ν
! s.t [[P]] ∼F P.

To state the non-existence of failure-preserving encoding from CCS−!ν
! into CCS−ν

!
we appeal to the undecidability of language equivalence for BPP processes [9,14]. BPP
processes form a subset of restriction-free CCS processes. Now we can use the encoding
of [12] to transform a restriction-free CCS processes into CCS−!ν

! —the encoding is
correct up to failures equivalence (see [3]). We can therefore conclude, with the help of
Proposition 2, that language-equivalence for CCS−!ν

! processes is undecidable.

Proposition 6. Given P and Q in CCS−!ν
! , the problem of whether P ∼L Q is unde-

cidable.

From the above proposition, the decidability of language equivalence for CCS−ν
! (The-

orem 3) and Propositions 1 and 2 we can conclude the following.

Theorem 5. There is no computable function [[·]] : CCS−!ν
! → CCS−ν

! s.t. [[P]] ∼F P.
Remark 1. We can use the encoding of [12] to transform any CCS process which uses
no restriction within recursive expression into a failures equivalent CCS−!ν

! process [3].
Thus, from Proposition 1 and Theorem 2 we can conclude that convergence is also
decidable for CCS with no restriction within recursive expressions.

252 J. Aranda, F.D. Valencia, and C. Versari

7 Expressiveness of Priorities

In this section we add Phillips’ priority guards [17] to CCS−!ν
! . We shall refer to the

resulting calculus as CCS−!ν
!+pr. This calculus corresponds to Phillips’ Calculus of Pri-

ority Guards (CPG) with replication rather than recursion and no restrictions within the
scope of replication—hence it cannot use an unbounded number of restrictions.

We show that CCS−!ν
!+pr turns out to be Turing powerful in the sense of Busi et al

[8] (i.e., preserving and reflecting convergence), thus bearing witness to computational
expressiveness of priority guards. Recall that from the previous sections CCS!, and even
CCS, cannot encode Turing machines, in the sense above, without using an unbounded
number of restrictions (Theorem 2 and Remark 1).

7.1 CCS−!ν
!+pr

In CPG there are two sets of names: N which corresponds to the set of names used to
represent the visible actions in CCS−!ν

! and a set of priority names U . Each set has a
set of complementary actions : N̄ and Ū , where Std = N ∪ N̄ (the standard visible
actions), Pri = U ∪ Ū (the priority actions), Vis = Std ∪ Pri (the visible actions),
and Act = Vis ∪ τ (all actions). We let a, b, . . . range over N ∪ U ; u, v, . . . over Pri ;
λ, . . . over Vis ; and α, β, . . . over Act. Also S, T , . . . range over finite subsets of Vis ,
and U , V , . . . over finite subsets of Pri .

The syntax of processes in CCS−!ν
!+pr is like that of CCS−ν

! , except for the summations
which now take the form of priority-guarded summations: Σi∈ISi : αi.Pi where I
and each Si are finite. The meaning of the priority guard S : α is that α can only be
performed if the environment does not offer any action in S̄

⋂
Pri (see [17] for details).

Labelled Transition and Offers

We recall the set off (P) of “higher priority” actions “offered” by P .

Definition 12 (Offers). Let P be a CCS−!ν
!+pr process and u ∈ Pri . The relation P off u

(P offers u) is given by the rules in Table 3 . We define off (P) = {u ∈ Pri : P off u}.
Finally, we say that P eschews U iff off (P) ∩ Ū = ∅.

The transitions are conditional on offers from the environment. Intuitively, a transition
of the form P

α−→U P
′ means that P may perform α as long as the environment does

not offer ū for any u ∈ U (i.e., the environment ”eschews” U). E.g. a : b.P b−→{a} P
means that a : b.P may perform b as long as the environment does not offer a. Thus,

Table 3.

M + S : u.P + N off u if u /∈ S
P off u

P | Q off u

Q off u

P | Q off u
P off u

(νa) P off u
if a �= name(u)

P off u

!P off u

On the Expressive Power of Restriction and Priorities in CCS with Replication 253

Table 4. An operational semantics for CCS−!ν
!+pr

SUM M + S : α.P + N
α−→S∩Pri P if α ∈ S ∩ Pri

PAR1

P
α−→U P ′ Q eschews U

P | Q
α−→U P ′ | Q

PAR2

Q
α−→U Q′ P eschews U

P | Q
α−→U P | Q′

REACT
P

λ−→U1 P ′ Q
λ−→U2 Q′ P eschews U2 Q eschews U1

P | Q
τ−→U1∪U2 P ′ | Q′

REP
P | !P α−→U P ′

!P α−→U P ′

RES
P

α−→U P ′ if α /∈ {a, a}
(ν a)P α−→U−{a,a} (ν a)P ′

SUM
Σi∈Iαi.Pi

aj−→ Pj

if j ∈ I

a : b.P | b.Q could evolve into P | Q however the system a : b.P | b.Q | a could
not evolve into P | Q | a as the presence of a prevents the execution of b and thus
the τ -action resulting from (b, b) communication. This capability of processes to test
the presence or the absence of a channel ready to be performed will be fundamental to
represent the test for zero in the encoding of RAMs in CCS−!ν

!+pr presented in the next
subsection. Transitions are determined by the rules in Table 4.

Convention 6. We write P
α−→∅ P

′ as P
α−→ P ′ (i.e., α is not constrained on of-

fers from the environment thus corresponding to a standard CCS! transition). Thus, the
notions of divergence and convergence for CCS−!ν

!+pr are obtained as in Definition 7 by

replacing
τ−→ with

τ−→∅.

7.2 Encoding RAMs in CCS−!ν
!+pr

A RAM can be seen as a program consisting of a finite sequence of instructions labeled
with numbers (1 : I1), (2 : I2) . . . , (m : Im) which modify the values of a finite set of
non-negative registers r1, . . . , rn. The instructions are either Incr(rj) which adds 1 to
the contents of register rj and goes to the next instruction, or DecJump(rj, l) which
tests the register rj value, if it is not zero then decreases it by 1 and goes to the next
instruction, otherwise jumps to instruction l.

A state of a RAM is given by (i, c1, . . . , cn) where i is the program counter indi-
cating the next instruction to be executed, and c1, . . . , cn are the current values of the
registers r1, . . . , rn (resp.). Given a program its computation proceeds by executing the
instructions as indicated by the program counter. The execution stops when the program
counter reaches the valuem+1 wherem is the label of the last instruction; in this case
we say that the program terminates.

The Encoding. A register rj with value cj (written rj : cj) is modeled by a correspon-
ding number of processes of the form uj .

254 J. Aranda, F.D. Valencia, and C. Versari

�(rj : cj)� =
cj∏
1

uj

The program counter is modeled with the absence of pi (i.e., the action pi is eschwed
by the encoding) indicating that the i-th instruction is the next to be executed. The initial
value of the program counter is 1 so by using

∏m+1
i=2 pi we indicate the absence of p1.

The increasing instruction is modelled with a process �(i : Incr(rj))� which is
guarded by a τ -action which is only performed when there is an absence of pi.

�(i : Incr(rj))� = !({pi} : τ.(pi | pi+1 | uj))

Once activated, the instruction increases the register rj by offering uj , and goes to
the next instruction by both disallowing the current one by offering pi and allowing the
next one by performing pi+1 so that pi+1 can be consumed.

The decreasing instruction is defined similarly. In addition we consider the absence
of uj to test for zero.

�(i : DecJump(rj, l))� =!({pi} : uj .(pi | pi+1))|!({pi, uj} : τ.(pi | pl))

The encoding of a RAM is given below. Without loss of generality we assume that
initially the RAM has all its registers set to zero and its program counter is 1.

Definition 13. Let R be a RAM with program instructions (1 : I1), . . . , (m : Im) and
registers r1, . . . , rn. We define its encoding into CCS−!ν

!+pr as:

�R� = (νp1, . . . , pm+1, u1, . . . , un)(
∏m
i=1�(i : Ii)� | ∏ni=1�(ri : 0)� | ∏mi=2 pi)

The correctness of the encoding is stated as follows (see the extended version [3]).

Theorem 7. Let R be a RAM with program instructions (1 : I1), . . . , (m : Im) and
registers r1, . . . , rn. Then, R terminates if and only if [[R]] converges. Furthermore, R
does not terminate if and only if [[R]] diverges.

As corollary we obtain that convergence and divergence are undecidable for CCS−!ν
!+pr.

8 Concluding Remarks and Related Work

The most closely related works are [7,8] and they were already discussed in the in-
troduction. In [12] the authors study replication and recursion in CCS focusing on the
role of restriction and name scoping. In particular they show that CCS! is equivalent to
CCS with recursion with static scoping. The standard CCS is shown to have dynamic
scoping precisely because the use of restriction within recursive definitions. However,
if no restriction appears within recursive expressions then there is no distinction be-
tween static and dynamic scoping. Hence, if no restriction is allowed within recursive
expressions then we know from [12] that CCS can be encoded in CCS!, without res-
triction under replication, while preserving and reflecting convergence. As for the other
direction, clearly νX.(P |X) behaves as !P . Nevertheless, if recursion is required to be
prefix guarded, it is not clear how to produce an encoding which preserves and reflects
convergence—without appealing to the decidability results for CCS! here presented.

On the Expressive Power of Restriction and Priorities in CCS with Replication 255

Consider e.g., E = νX.(P |α.X) and !P . If α = τ then E does not converge and !P
may—take P = a.0. If α �= τ then E may converge and !P may not—take P = τ.0.

The authors in [10] also pointed out the role of restriction in the expressiveness of
CCS. They showed that strong bisimilarity is decidable for restriction-free CCS, in
contrast with the undecidability result for CCS [18]. It is not clear to us how to relate
strong bisimilarity with convergence or failures equivalence.

The authors of [1] studied a fragment of the asynchronous π-calculus with restricted
forms of bound name generation. A closely related result in of [1] is the decidability
of the control reachability problem for restriction-free asynchronous π-calculus. This
implies the decidability of the same problem for the restriction-free fragment of asyn-
chronous CCS! (i.e., only 0 can be prefixed with an output action). It is not obvious how
to relate control reachability to failures equivalence or convergence. Also it is not clear
how to encode our CCS! fragment into restriction-free asynchronous CCS!.

In [13] a Petri net semantics is proposed for a subset of CCS without restriction
and with guarded choice. Also in [18] it was shown that the subset studied in [13] can
not be extended significantly. These works also presuppose guarded recursion in their
fragments which seem crucial for their Petri net constructions. We do not restrict our
Petri net construction to guarded sums. Furthermore, as explained above, it is not clear
how to translate CCS! into CCS with guarded recursion while preserving convergence.

In [20] the authors show the decidability of convergence for a restriction-free cal-
culus for the compositional description of chemical systems, called CFG which seems
closely related to CCS. The calculus, however, presupposes guarded summation and
guarded recursion and thus, as argued before, it is not clear how to encode CCS! into
such a calculus while preserving convergence.

In [17] it was shown that priorities add expressive power to CCS by modelling elec-
toral systems that cannot be modelled in CCS. Also [19] studies two process algebras
enriched with different priority mechanisms. The work reveals the gap between the two
prioritised calculi and the two non prioritised ones by modeling electoral systems. Both
works state the impossibility of the existence of an encoding subject to certain struc-
tural requirements such as homomorphism wrt parallel composition and name invari-
ance. Our derived impossibility result about the non-existence of convergent preserving
encodings makes no structural assumptions on the encodings. Finally, we claim that our
expressivity results involving priorities are also held by using other priority approaches
as they provide the capability of processes to know if another process is ready to per-
form a synchronisation on some channel or not.

Acknowledgments. We would like to thank Ian Phillips and Uwe Nestmann for insight-
ful discussions on the topics here studied. We are also grateful to Jorge A. Pérez and
the anonymous reviewers for their remarks and suggestions.

References

1. Amadio, R., Meyssonnier, C.: On decidability of the control reachability problem in the
asynchronous π−calculus. Nordic Journal of Computing 9(2) (2002)

2. Aranda, J., Giusto, C.D., Nielsen, M., Valencia, F.D.: CCS with replication in the chom-
sky hierarchy: The expressive power of divergence. In: Shao, Z. (ed.) APLAS 2007. LNCS,
vol. 4807, pp. 383–398. Springer, Heidelberg (2007)

256 J. Aranda, F.D. Valencia, and C. Versari

3. Aranda, J., Valencia, F., Versari, C.: On the expressive power of restriction and priorities in
ccs with replication. Technical report, l’École Polytechnique (2008), http://www.lix.
polytechnique.fr/Labo/Jesus.Aranda/publications/trccs.pdf

4. Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: Decidability of bisimulation equivalence for proc-
esses generating context-free languages. J. ACM 40(3), 653–682 (1993)

5. Borger, E., Gradel, E., Gurevich, Y.: The Classical Decision Problem. Springer, Heidelberg
(1994)

6. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential proc-
esses. Journal of the ACM 31(3), 560–599 (1984)

7. Busi, N., Gabbrielli, M., Zavattaro, G.: Replication vs. recursive definitions in channel based
calculi. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 133–144. Springer, Heidelberg (2003)

8. Busi, N., Gabbrielli, M., Zavattaro, G.: Comparing recursion, replication, and iteration in
process calculi. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004.
LNCS, vol. 3142, pp. 307–319. Springer, Heidelberg (2004)

9. Christensen, S.: Decidability and Decomposition in Process Algebras. PhD thesis, Edinburgh
University (1993)

10. Christensen, S., Hirshfeld, Y., Moller, F.: Decidable subsets of ccs. Comput. J. 37(4), 233–
242 (1994)

11. Esparza, J., Nielsen, M.: Decidability issues for petri nets. Technical report, BRICS RS-94-8
(1994)

12. Giambiagi, P., Schneider, G., Valencia, F.D.: On the expressiveness of infinite behavior and
name scoping in process calculi. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987,
pp. 226–240. Springer, Heidelberg (2004)

13. Goltz, U.: Ccs and petri nets. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 334–
357. Springer, Heidelberg (1990)

14. Hirshfeld, Y.: Petri nets and the equivalence problem. In: Meinke, K., Börger, E., Gurevich,
Y. (eds.) CSL 1993. LNCS, vol. 832, pp. 165–174. Springer, Heidelberg (1994)

15. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)
16. Minsky, M.: Computation: finite and infinite machines. Prentice-Hall, Englewood Cliffs

(1967)
17. Phillips, I.: Ccs with priority guards. J. Log. Algebr. Program. 75(1), 139–165 (2008)
18. Taubner, D.: Finite representation of CCS and TCSP programs by automata and Petri nets.

In: Taubner, D.A. (ed.) Finite Representations of CCS and TCSP Programs by Automata and
Petri Nets. LNCS, vol. 369. Springer, Heidelberg (1989)

19. Versari, C., Busi, N., Gorrieri, R.: On the expressive power of global and local priority in
process calculi. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703,
pp. 241–255. Springer, Heidelberg (2007)

20. Zavattaro, G., Cardelli, L.: Termination problems in chemical kinetics. In: van Breugel, F.,
Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 477–491. Springer, Heidelberg
(2008)

http://www.lix.polytechnique.fr/Labo/Jesus.Aranda/publications/trccs.pdf
http://www.lix.polytechnique.fr/Labo/Jesus.Aranda/publications/trccs.pdf

Normal Bisimulations in Calculi with Passivation

Serguëı Lenglet1, Alan Schmitt2, and Jean-Bernard Stefani2

1 Université Joseph Fourier, Grenoble, France
2 INRIA Grenoble-Rhône-Alpes, France

Abstract. Behavioral theory for higher-order process calculi is less well
developed than for first-order ones such as the π-calculus. In particu-
lar, effective coinductive characterizations of barbed congruence, such as
the notion of normal bisimulation developed by Sangiorgi for the higher-
order π-calculus, are difficult to obtain. In this paper, we study bisim-
ulations in two simple higher-order calculi with a passivation operator,
that allows the interruption and thunkification of a running process. We
develop a normal bisimulation that characterizes barbed congruence, in
the strong and weak cases, for the first calculus which has no name re-
striction operator. We then show that this result does not hold in the
calculus extended with name restriction.

1 Introduction

Motivation. A natural notion of behavioral equivalence for process calculi is
barbed congruence. Informally, two processes are barbed-congruent if they be-
have in the same way (i.e., have the same reductions and the same observables)
when placed in similar, but arbitrary, contexts. Due to this quantification on con-
texts, barbed congruence is unwieldy to use in proofs of equivalence, or to serve
as a basis for automated verification tools. One is thus lead to study coinduc-
tive characterizations of barbed congruence, typically in the form of bisimilarity
relations. For first-order process calculi, such as the π-calculus and its variants,
the resulting behavioral theory is well developed, and one can in general readily
define bisimilarity relations that characterize barbed congruence.

For higher-order process calculi, the situation is less satisfactory. Simple
higher-order calculi, such as HOπ [10,11], have a well-studied behavioral the-
ory. For HOπ, Sangiorgi has defined context and normal bisimilarity relations,
which both are sound with respect to barbed congruence (i.e. are included in
barbed congruence) and sometimes complete (i.e. they contain barbed congru-
ence), leading to a full characterization. However, context bisimilarity still in-
volves some quantification over test contexts. For instance, when assessing the
equivalence of two processes which consist only of the output of a message on a
communication channel a, context bisimilarity needs to consider every interact-
ing system that is capable of doing an input on channel a. Normal bisimilarity
improves context bisimilarity by requiring only a single test context. E.g., in the
case of two emitting processes, as above, normal bisimilarity only requires to
compare the behavior of the two processes when placed in parallel with a sin-
gle particular receiving process. Furthermore, context and normal bisimilarities

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 257–271, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

258 S. Lenglet, A. Schmitt, and J.-B. Stefani

characterize barbed congruence both in the strong case (where internal steps are
observable), and in the weak case (where internal steps are not observable).

Unfortunately, HOπ is not expressive enough to faithfully model concurrent
systems with dynamic reconfiguration or strong mobility capabilities. For in-
stance, a running HOπ process cannot be stopped, which prevents the faithful
modeling of process failures, of online process replacement, or of strong process
mobility. It is for this reason that we have seen the emergence of process calculi
with (forms of) process passivation. Process passivation allows a named process
to be stopped and its state captured at any time during its execution. The Kell
calculus [13] and Homer [5] are examples of higher-order process calculi with
passivation. The behavioral theory of these calculi is less understood than the
one for HOπ, whose proof techniques and relations do not carry over. No sound
and complete characterization of barbed congruence has been found in the weak
case for these calculi. Importantly, no relation akin to normal bisimilarity has
been developed.

Contributions. To pinpoint issues that arise in the development of a behavioral
theory for higher-order calculi with passivation, and to show that they arise
from the interplay between passivation and restriction, we consider in this pa-
per two calculi with passivation, which are simpler than both Homer and the
Kell calculus, and which differ merely in the presence of restriction. The first
one, called HOP, extends HOcore with passivation and sum. HOcore is a mini-
mal higher-order concurrent calculus without restriction that has recently been
studied in [7]. As a first contribution, we show that HOP admits a sound and
complete form of normal bisimulation, in both the strong and weak cases. The
second calculus, called HOπP, extends HOπ with passivation. As a second con-
tribution, we show that with HOπP a large class of tests does not suffice to build
a sound normal bisimulation. This casts some doubt as to whether a suitable
notion of normal bisimilarity, that is with finite testing, can be found for HOπP,
and therefore for Homer and the Kell calculus.

Summary. In Section 2, we define HOπP and recall the previous works on be-
havioral equivalences in the Kell calculus and Homer. We define in Section 3 a
sound and complete normal bisimilarity for HOP. We show in Section 4 that
this relation is not suitable for HOπP. We discuss related work in Section 5, and
Section 6 concludes the paper. The paper only contains proof sketches for some
results. Complete proofs can be found in [8].

2 Bisimulations in HOπP

Studying proof techniques for establishing contextual equivalence in calculi such
as Homer and the Kell calculus has been the main motivation for this work.
Instead of working directly in one of these calculi, we consider a simpler calculus,
HOπP (for Higher-Order π with Passivation), which extends the HOπ calculus
studied in [11] with a passivation operator, and which exhibits the same technical
difficulties encountered in Homer and Kell.

Normal Bisimulations in Calculi with Passivation 259

Variables, names:
m, n, m, n, . . .: first-order names and co-names
a, b, a, b, . . .: higher-order names and co-names
x, y: first or higher-order names
X, Y : process variables

Agents:
P, Q, R, S: Processes
F, G: Abstractions
C, D: Concretions
A, B: Agents

Actions:
τ : Internal action
l ∈ {m, m, . . .} ∪ τ : first-order actions
α ∈ {m, m, . . .} ∪ τ ∪ {a, a, . . .}: first or higher-order actions
Syntax:
P ::= 0 | X | P | P | l.P | a(X)P | a〈P 〉P | νx.P | !P | a[P]

Fig. 1. Meta-Variables and Syntax of HOπP

2.1 Syntax and Transition Semantics

Meta-variables and syntax of HOπP are given Figure 1. We add localities a[P]
to the HOπ constructs. These are passivation units. As long as no passivation
occurs, a locality a[P] is a transparent evaluation context: the process P may
evolve and communicate freely with processes outside of a, independently of
their position in the locality tree. At any time, passivation may be triggered and
the process a[P] becomes a concretion 〈P 〉0. Passivation may thus occur as an
internal τ step only if there is a receiver on a ready to receive the contents of the
locality. The receiver may then choose to spawn, forward, or discard the process.

Name restriction νx.P makes the name x private to process P . We write
bn(P) (resp. fn(P)) for the bound names (resp. free names) of P . Message input
a(X)P binds the variable X in P . We write fv(P) for the free process variables
of a process P . A process P is said to be closed if fv(P) = ∅. We identify
processes up to α-conversion of names and variables. Structural congruence ≡ is
the smallest congruence verifying the following laws.

P | (Q | R) ≡ (P | Q) | R P | Q ≡ Q | P P | 0 ≡ P νx.νy.P ≡ νy.νx.P

νx.0 ≡ 0 !P ≡ P |!P νx.(P | Q) ≡ P | νx.Q (x /∈ fn(P))

We now give an informal account of the labeled transition semantics (LTS)
α−→ of the calculus. There are three kinds of transitions: first-order transition,
higher-order input, and higher-order output. In a first-order transition P l−→ Q,
processes may evolve towards processes by an internal action τ , or by a first-
order input or output (labeled by the corresponding name or co-name). In the
higher-order input P a−→ F = (X)Q, P evolves towards an abstraction F , which
states that it may receive a process R on name a to continue as Q{R/X}. In
the higher-order output P a−→ C = νx̃.〈R〉S, P evolves towards a concretion
C, which states that it may send process R on name a and continue as S, and
the scope of names x̃ (such that x̃ ⊆ fn(R)) has to be expanded to encompass
the recipient of R. We call the set x̃ the bound names of C, written bn(C).
A higher-order communication takes place when a concretion interacts with an

260 S. Lenglet, A. Schmitt, and J.-B. Stefani

abstraction. We define a pseudo-application operator • between F and C above
by F • C ∆= νx̃.(Q{R/X} | S) (with fn(Q) ∩ x̃ = ∅).

Let the set of agents, written A, be the set of all processes, abstractions,
and concretions. We extend restriction, parallel composition, and locality to
all agents. Let F = (X)P be an abstraction, we then have νx.F = (X)νx.P
and a[F] = (X)a[P]. If X /∈ fv(Q), then F | Q = (X)(P | Q) and Q | F =
(X)(Q | P). Let C = νỹ.〈Q〉R be a concretion and x /∈ ỹ. If x ∈ fn(Q), then
νx.C = νx, ỹ.〈Q〉R, otherwise νx.C = νỹ.〈Q〉νx.R. If ỹ ∩ fn(P) = ∅, then C |
P = νỹ.〈Q〉(R | P) and P | C = νỹ.〈Q〉(P | R). If a �∈ ỹ, then a[C] = νỹ.〈Q〉a[R].

The LTS rules are given in Figure 2, with the exception of the symmetric
rules for LTS-Par, LTS-FO, and LTS-HO.

According to rule LTS-Loc, a locality a[P] becomes a concretion when P
outputs a message and becomes a concretion. Since the bound names of a con-
cretion are extruded “by need” to encompass the receiving process, their scope
may thus cross locality boundaries.

Remark 1. Passivation in HOπP can be seen as objective, as it requires a receiver
on the locality’s name to result in a silent τ step.

l.P
l−→ P LTS-Prefix a(X)P a−→ (X)P LTS-Abstr

a〈Q〉P a−→ 〈Q〉P LTS-Concr
P

α−→ A

P | Q
α−→ A | Q

LTS-Par

P
α−→ A α /∈ {x, x}
νx.P

α−→ νx.A
LTS-Restr

P |!P α−→ A

!P α−→ A
LTS-Replic

P
m−→ P ′ Q

m−→ Q′

P | Q
τ−→ P ′ | Q′ LTS-FO

P
a−→ F Q

a−→ C

P | Q
τ−→ F • C

LTS-HO

P
α−→ A

a[P] α−→ a[A]
LTS-Loc a[P] a−→ 〈P 〉0 LTS-Passiv

Fig. 2. Labeled Transition System for HOπP

2.2 Strong Behavioral Equivalences

Barbed congruence is a uniform definition of process equivalence among process
calculi based on the reduction relation −→ (defined as −→ ∆=≡ τ−→≡), the observ-
able actions of a process, called barbs, and contexts. In HOπP, a process P has
a barb µ = x | x, written P ↓µ, iff we have P

µ−→. Contexts are processes with
a hole �; filling a context � with a process P gives a process written �{P}.

Normal Bisimulations in Calculi with Passivation 261

Definition 1. A relation R on closed processes is a strong barbed bisimulation
iff R is symmetric, and P R Q implies:

– If P ↓µ then Q ↓µ
– If P −→ P ′, then there exists Q′ such that Q −→ Q′ and P ′ R Q′.

Processes P and Q are strongly barbed congruent, written P ∼b Q, iff for all
contexts �, there exists a strong barbed bisimulation R such that �{P} R �{Q}.

The universal quantification over contexts makes barbed congruence difficult
to use in practice. Sangiorgi introduced context bisimilarity for HOπ [11] as
an LTS-based alternative to barbed congruence. Context bisimilarity is sound,
i.e. is included in barbed congruence. In the weak case, there exists a version
(”early non delay”) of the bisimilarity which is also complete, i.e. contains barbed
congruence, and therefore is a characterization of weak barbed congruence (see
[10] for further details). We write B for the strong context bisimilarity of HOπ
(see [11] for the definition). Using this bisimilarity with HOπP leads to a relation
which is not sound: there exist HOπP processes related by B which are not strong
barbed congruent. Consider the following processes:

P0 = a〈0〉!m.0 Q0 = a〈m.0〉!m.0

Processes P0 and Q0 are related by B: the difference between the emitted mes-
sages is shadowed by the continuation !m.0. They cannot be distinguished by a
HOπ context, but are distinguished by an HOπP context which may discard the
message continuations: � = b[�] | a(X)X | b(X)0. With a communication on a
followed by passivation/communication on b, we have �{P0} −→ b[!m.0] | 0 |
b(X)0 −→ 0. It can only be matched by �{Q0} −→ b[!m.0] | m.0 | b(X)0 −→
m.0. The two resulting processes have different barbs, therefore P0 and Q0 are
not barbed congruent. Hence relation B is not sound with HOπP.

In a concretion νx̃.〈R〉S, the emitted process R may be sent outside a locality
b while the continuation S stays in b. If the passivation on b is triggered, S
may be destroyed (as with P0 and Q0) or put in a different context. Hence the
passivation may separate the processes R and S and put them in totally different
contexts, which is not possible in a calculus without passivation. As in the Kell
calculus and Homer, we address this issue by testing messages and continuations
in different evaluation contexts �. These contexts, when applied to concretions,
take into account the fact that a message and its continuation are separated:
in the definition of a[C] for some concretion C, the message part of C is put
outside the locality whereas the continuation part remains inside. The grammar
of HOπP evaluation contexts is:

� ::= � | νx.� | � | P | P | � | a[�]

Early strong context bisimulation for HOπP is defined as follows:

Definition 2. A relation R on closed processes is an early strong context bisim-
ulation iff R is symmetric and P R Q implies fn(P) = fn(Q) and:

262 S. Lenglet, A. Schmitt, and J.-B. Stefani

– For all P l−→ P ′, there exists Q′ such that Q l−→ Q′ and P ′ R Q′.
– For all P a−→ F , for all closed concretions C, there exists G such that Q a−→ G

and F • C R G • C.
– For all P a−→ C, for all closed abstractions F , there exists D such that Q a−→ D

and for all closed evaluation contexts �, we have F • �{C} R F • �{D}.

Early strong context bisimilarity, written ∼, is the largest early strong context
bisimulation.

Example 1. The two processes m.0 |!a[m.0] |!a[0] and !a[m.0] |!a[0] are strong
early context bisimilar.

The main difference with B is the additional evaluation context � in the con-
cretion case, that is similar to the Homer path contexts [5] or Kell calculus
applicative contexts [13]. We also add the condition fn(P) = fn(Q) since two
equivalent processes with different free names may be distinguished with scope
extrusion outside localities, as is illustrated in Section 4 and further developed
in [8]. Early strong context bisimilarity is a suitable relation, since we have the
following characterization result, which we prove with the technique used for the
Kell calculus, namely proving directly a substitution lemma.

Theorem 1. We have P ∼ Q iff P ∼b Q.

2.3 Weak Behavioral Equivalences

We now give results for the weak case, where we abstract from internal actions.
We write =⇒ the reflexive and transitive closure of −→. The definition of (weak)
barbed congruence, written ≈b, is given by changing the two clauses of Defini-
tion 1 to:

– If P ↓µ then Q =⇒↓µ
– If P −→ P ′, then there exists Q′ such that Q =⇒ Q′ and P ′ R Q′.

The soundness proof method used for Kell (and Theorem 1) does not work
with weak relations (see [8] for details). As in Homer [4], we can use Howe’s
method [6], a systematic soundness proof technique, to show that input-early
weak delay bisimulation, an early relation with a late condition in the output
case, is sound. The use of such a delay relation is required to apply Howe’s
method. Let ⇒ be the reflexive and transitive closure of τ−→ and define weak
delay transitions by τ⇒ ∆=⇒ and α⇒ ∆=⇒ α−→ for α �= τ .

Definition 3. A relation R on closed processes is an input-early weak (delay)
bisimulation iff R is symmetric and P R Q implies fn(P) = fn(Q) and:

– For all P l−→ P ′, there exists Q′ such that Q l⇒ Q′ and P ′ R Q′.
– For all P a−→ F , for all closed concretions C and all closed evaluation contexts
�, there exists G such that Q a⇒ G and �{F} • C R �{G} • C.

– For all P a−→ C, there exists D such that Q a⇒ D and for all closed abstrac-
tions F and evaluation contexts �, we have F • �{C} R F • �{D}.

Normal Bisimulations in Calculi with Passivation 263

Input-early weak delay bisimilarity, written ≈ie, is the largest input-early weak
delay context bisimulation.

The additional context in the abstraction case is required for technical rea-
sons, see [8] for details. Notice that input-early bisimilarity is a delay relation
since silent steps are not allowed after a visible action. Consequently, input-early
bisimilarity is sound but likely not complete.

Theorem 2. If P ≈ie Q, then P ≈b Q.

For the time being, the characterization of weak barbed congruence in HOπP
remains an open problem. In the next section, we show that this is due to the
interaction between passivation and name restriction.

3 Normal Bisimilarity in HOP

In this section, we develop a full behavioral theory for HOP, a calculus with
passivation but without restriction: we define context and normal bisimilarities
which characterize barbed congruence in both strong and weak cases. HOP (for
Higher Order with Passivation) is the calculus obtained by removing restriction
from HOπP (Figure 1) and adding a sum operator (to obtain the characterization
result, since + is needed to show the completeness of HO bisimilarity and requires
restriction to be faithfully encoded). The LTS rules for HOP are as in Figure 2,
with the addition of the rule

P
α−→ A

P +Q α−→ A
LTS-Sum

and of its symmetric rule. The structural congruence rules for HOP, also written
≡, is the smallest congruence that verifies the following laws.

P | (Q | R) ≡ (P | Q) | R P | Q ≡ Q | P P | 0 ≡ P

P + (Q+R) ≡ (P +Q) +R P +Q ≡ Q+ P P + 0 ≡ P !P ≡ P |!P

Even without restriction, HOP remains quite expressive since it is an extension
of the Turing-complete HOcore calculus defined in [7].

3.1 HO Bisimulation

The definition of strong barbed congruence is identical to Definition 1. We now
give an LTS-based characterization of strong barbed congruence.

As pointed out in Section 2.2, a message and its continuation may be put
in different contexts because of passivation. Moreover, they are completely in-
dependent since they no longer share private names, as there is no restriction.
Instead of keeping them together, we can now study them separately and still
have a sound and complete bisimilarity. We propose the following bisimulation,
called HO bisimulation, similar to the higher-order bisimulation given by Thom-
sen for Plain CHOCS [14]. For an abstraction F = (X)Q and a process P , we
write F ◦ P for the process Q{P/X}.

264 S. Lenglet, A. Schmitt, and J.-B. Stefani

Definition 4. A relation R on closed processes is an early strong HO bisimu-
lation iff R is symmetric and P R Q implies:

– For all P l−→ P ′, there exists Q′ such that Q l−→ Q′ and P ′ R Q′.
– For all P a−→ F , for all closed processes R, there exists G such that Q a−→ G

and F ◦ R R G ◦ R.
– For all P a−→ 〈R〉S, there exists R′, S′ such that Q a−→ 〈R′〉S′, R R R′,
S R S′.

Early strong HO bisimilarity, written .∼, is the largest early strong HO bisimu-
lation.

In the following we also use the late counterpart of HO bisimilarity, written .∼l,
which is obtained by replacing the input case by:

– For all P a−→ F , there exists G such that Q a−→ G and for all closed processes
R, F ◦ R R G ◦ R.

We show later that early and late HO bisimilarities coincide (as in HOπ). Using
the same proof technique as for HOπP, we prove that .∼l is sound and complete.

Theorem 3. We have P .∼l Q iff P and Q are strong barbed congruent.

Unlike HOπP, we are able to characterize barbed congruence also in the weak
case. We define early weak (non-delay) HO bisimulation as:

Definition 5. A relation R on closed processes is an early weak HO bisimula-
tion iff R is symmetric and P R Q implies:

– For all P l−→ P ′, there exists Q′ such that Q l⇒ τ⇒ Q′ and P ′ R Q′.
– For all P a−→ F , for all closed processes R, there exist G, Q′ such that Q a⇒ G,
G ◦ R τ⇒ Q′, and F ◦ R R Q′.

– For all P a−→ 〈R〉S, there exist R′, S′′, S′ such that Q a⇒ 〈R′〉S′′, S′′ τ⇒ S′,
R R R′, and S R S′.

Early weak HO bisimilarity, written
.≈, is the largest early weak HO bisimulation.

We define late weak HO bisimilarity, written
.≈l, by replacing the input clause

by:

– For all P a−→ F , there exists G such that Q a⇒ G and for all closed processes
R, there exists Q′ such that G ◦ R τ⇒ Q′ and F ◦ R R Q′.

Since there is no universal quantification in the concretion case, early and input-
early versions of the bisimulation coincide. Besides, the bisimilarity condition on
messages makes Howe’s method work with this bisimulation:

Theorem 4. If P
.≈ Q, then P and Q are weak barbed congruent.

As in π-calculus [12], we prove completeness on image-finite processes. A process
P is image finite iff for all l and α, the set {P ′|P l⇒ τ⇒ P ′}∪{A|P α⇒ A} is finite.

Normal Bisimulations in Calculi with Passivation 265

Theorem 5. Let P,Q be image finite processes. If P,Q are weak barbed congru-
ent, then they are early weak HO bisimilar.

We note that the definitions of higher-order bisimulations are easier to use since
there is no universal quantification in the concretion case. In the following sub-
section, we show that the one in the abstraction case is not necessary.

3.2 Normal Bisimulation

In this section, we define a sound and complete bisimulation for the strong and
weak cases without any universal quantification, similar to HOπ normal bisim-
ulation [11]. Sangiorgi first defined it in the weak case, and then Cao extended
it to the strong case [1].

In the message input case, HOπ normal bisimulation tests abstractions with
only one trigger m.0, where m is a fresh name. This testing is not sufficient in
HOP. Consider the following processes:

P1
∆=!a[X] |!a[0] Q1

∆= X | P1

Let Pm
∆= P1{m.0/X}, Qm ∆= Q1{m.0/X}, Pm,n ∆= P1{m.n.0/X}, and Qm,n

∆=
Q1{m.n.0/X}, where m,n do not occur in P1, Q1.

We first prove that Pm
.∼l Qm. Since the other transitions are easily matched,

we consider only the move Qm
m−→ 0 | Pm. It can only be matched by a replicated

locality a[m.0]; we have Pm
m−→ a[0] | Pm. The two resulting processes 0 | Pm

and a[0] | Pm are immediately bisimilar, due to the presence of !a[0] in Pm.
Consequently we have Pm

.∼l Qm.
However we have Pm,n � .∼l Qm,n. Indeed, the transition Qm,n

m−→ n.0 | Pm,n ∆=
Q′
m,n can only be matched by Pm,n

m−→ a[n.0] | Pm,n ∆= P ′
m,n. Processes P ′

m,n and

Q′
m,n are not HO bisimilar: by passivation of locality a[n.0], we have P ′

m,n
a−→

〈n.0〉Pm,n, which can only be matched by Q′
m,n

a−→ 〈m.n.0〉Q′
m,n or Q′

m,n
a−→

〈0〉Q′
m,n. The emitted processes are not pairwise HO bisimilar, consequently we

have P ′
m,n �

.∼l Q′
m,n.

One could argue that the weakness of the distinguishing power of the trig-
ger m.0 is due to the fact that localities are completely transparent, thus the
provenance of a message may not be directly observed. However, the existence of
localities around a message has indirect effects, when passivation transforms an
evaluation context (the locality) into a message that may be discarded. Triggers
of the form m.n.0 allow the observation of an evaluation context (there is an
emission on m) that disappears (there is no further emission on n), thus the
presence of enclosing localities.

We now generalize this idea to show that it may be used to pinpoint the
position of a process variable in the locality tree. Suppose we have P{m.n.0/X}
bisimilar to Q{m.n.0/X}, with m,n not occurring in P,Q. Suppose further that
P

m−→ P ′ is matched by Q m−→ Q′. The processes P ′, Q′ may now perform one
and only one n−→ transition from the single process n.0. Now suppose that n.0

266 S. Lenglet, A. Schmitt, and J.-B. Stefani

is in a locality a in P ′. Passivation of this locality results in a concretion whose
message R is such that R n−→. The process Q′ has to match these transitions
with Q′ a−→ 〈R′〉S′ such that R .∼l R′. Since R n−→, we have R′ n−→; it is possible if
and only if the single occurrence of n.0 in Q′ was in a locality a. With the same
argument on R,R′, we prove that the locality hierarchies around n.0 in P ′ and
Q′ are the same. This result is formalized by the following lemma:

Lemma 1. Let P,Q such that fv(P,Q) ⊆ {X} and m,n two names which
do not occur in P,Q. Suppose we have P{m.n.0/X} .∼l Q{m.n.0/X} and
P{m.n.0/X} m−→ P ′{m.n.0/X}{n.0/Y } ∆= Pn matched by Q{m.n.0/X} m−→
Q′{m.n.0/X}{n.0/Y } ∆= Qn with Pn

.∼l Qn.
There exists k ≥ 0, a1, . . . ak, P1 . . . Pk+1, Q1 . . .Qk+1 such that either Pn ≡

n.0 | P1 and Qn ≡ n.0 | Q1 or

Pn ≡ a1[. . . ak−1[ak[n.0 | Pk+1] | Pk] | Pk−1 . . .] | P1

Qn ≡ a1[. . . ak−1[ak[n.0 | Qk+1] | Qk] | Qk−1 . . .] | Q1

and for all 1 ≤ j ≤ k + 1, Pj
.∼l Qj.

The lemma allows us to decompose Pn, Qn in bisimilar sub-processes. For
instance, if we have Pn ≡ a[b[n.0 | P3] | P2] | P1 with Pn

.∼l Qn, then
Qn ≡ a[b[n.0 | Q3] | Q2] | Q1 with P1

.∼l Q1, P2
.∼l Q2, and P3

.∼l Q3.
Notice that we do not decompose the initial processes P and Q themselves, but
this result is enough to prove the following theorem:

Theorem 6. Let P,Q two processes such that fv(P,Q) ⊆ {X} and m,n two
names which do not occur in P,Q. If P{m.n.0/X} .∼l Q{m.n.0/X}, then for
all closed processes R, we have P{R/X} .∼l Q{R/X}

We sketch the proof of Theorem 6 to explain how Lemma 1 is used.

Proof (Sketch). We show that the symmetric closure of relation

R∆= {(P{R/X}, Q{R/X}) | P{m.n.0/X} .∼l Q{m.n.0/X},m, n not in P,Q}

is a late HO bisimulation. It is done by case analysis on the transition performed
by P{R/X}. Suppose we have P{R/X} l−→ P ′{R′/Xi}{R/X}, i.e. a copy of R
(at position Xi) performs a transition R l−→ R′. Occurence Xi is in an evaluation
context, so we have P{m.n.0/X} m−→ P ′{n.0/Xi}{m.n.0/X} = P ′

n, matched by
Q{m.n.0/X} m−→ Q′{n.0/Xj}{m.n.0/X} = Q′

n with P ′
n
.∼l Q′

n. As Xj is also in

an evaluation context, we have Q{R/X} l−→ Q′{R′/Xj}{R/X}. We now have to
prove that P ′{R′/Xi}{m.n.0/X} .∼l Q′{R′/Xj}{m.n.0/X}.

Lemma 1 allows us to write P ′
n ≡ a1[. . . ak[n.0 | Pk+1] | Pk . . .] | P1 and

Q′
n ≡ a1[. . . ak[n.0 | Qk+1] | Qk . . .] | Q1 with (Pr), (Qr) pairwise bisimilar

processes for r ∈ {1 . . . k + 1}. Since Pk+1
.∼l Qk+1 and .∼l is sound, we have

ak[R′ | Pk+1]
.∼l ak[R′ | Qk+1]. By induction on r ∈ {k . . . 1}, we prove that

ar[. . . ak[R′ | Pk+1] | Pk . . .] | Pj .∼l ar[. . . ak[R′ | Qk+1] | Qk . . .] | Qj , obtaining
P ′{R′/Xi}{m.n.0/X}

.∼l Q′{R′/Xj}{m.n.0/X} (for r = 1) as needed. %&

Normal Bisimulations in Calculi with Passivation 267

Using this result we define a normal bisimulation for HOP:

Definition 6. A relation R on closed processes is a strong normal bisimulation
iff R is symmetric and P R Q implies :

– For all P l−→ P ′, there exists Q′ such that Q l−→ Q′ and P ′ R Q′.
– For all P a−→ F , there exists G such that Q a−→ G and for two names m,n

which do not occur in processes P,Q, we have F ◦ m.n.0 R G ◦ m.n.0.
– For all P a−→ 〈R〉S, there exists R′, S′ such that Q a−→ 〈R′〉S′, R R R′ and
S R S′.

Strong normal bisimilarity, written .∼n, is the largest strong normal bisimulation.

As a corollary of Theorem 6, we have

Corollary 1. .∼l=
.∼n=

.∼.

By definition, we have .∼l⊆ .∼⊆ .∼n. The inclusion .∼n⊆ .∼l is a consequence of
Theorem 6.

Weak normal bisimilarity that coincides with weak HO bisimilarity may also
be defined.

Definition 7. A relation R on closed processes is a weak normal simulation iff
R is symmetric and P R Q implies:

– For all P l−→ P ′, there exists Q′ such that Q l⇒ τ⇒ Q′ and P ′ R Q′.
– For all P a−→ F , there exists G such that Q a⇒ G and for two names m,n

which do not occur in processes P,Q, there exists Q′ such that G ◦ m.n.0 τ⇒
Q′ and F ◦ m.n.0 R Q′.

– For all P a−→ 〈R〉S, there exists R′, S′′, S′ such that Q a⇒ 〈R′〉S′′, S′′ τ⇒ S′,
R R R′ and S R S′.

Weak normal bisimilarity, written
.≈n, is the largest weak normal bisimulation.

Theorem 7.
.≈n=

.≈=
.≈l

The proof technique is similar to the strong case one and relies on weak versions
of Theorem 6 and Lemma 1. Hence in a calculus with passivation and without
restriction, we can define a suitable bisimulation without any universal quantifi-
cation in the strong and weak cases. We show in the next section that the result
on abstractions does not hold in HOπP.

4 Abstraction Equivalence in HOπP

In this section, we present a counter-example to show that a simplification sim-
ilar to the one of Section 3.2 is not possible in HOπP. We prove that testing a
large sub-class of HOπP processes (the abstraction-free processes) is not enough
to guarantee bisimilarity of abstraction. Note that these counter-examples only

268 S. Lenglet, A. Schmitt, and J.-B. Stefani

depend on the interaction between the scope extrusion of restriction and pro-
cess duplication, and not on whether passivation or message provenance are
directly observable. More complex counter-examples, where scope extrusion is
not needed, are presented in [8].

In the following, we omit the trailing zeros to improve readability; in an agent
definition,m stands for m.0. We also write νab.P for νa.νb.P . Let 0m

∆= νx.x.m.
Process 0m cannot perform any transition, like 0, but it has a free name m. We
define the following abstractions:

(X)P ∆= (X)νnb.(b[X | νm.a〈0m〉(m | n | m.m.p)] | n.b(Y)(Y | Y))

(X)Q ∆= (X)νmnb.(b[X | a〈0〉(m | n | m.m.p)] | n.b(Y)(Y | Y))

The two abstractions differ in the process emitted on a and in the position of
name restriction on m (inside or outside hidden locality b). An abstraction-free
process is a process built with the regular HOπP syntax (Figure 1) but without
message input a(X)P .

We recall that ∼ is the early strong context bisimilarity (Definition 2).

Lemma 2. Let R be an abstraction-free process. We have (X)P ◦ R ∼ (X)Q ◦
R.

Since R is abstraction-free, it cannot receive the message emitted on a; conse-
quently R cannot interact with P or Q. Passivation of locality b and transitions
from R in (X)P ◦ R are easily matched by the same transitions in (X)Q ◦ R.

Let Pm,R = νnb.(b[R | m | n | m.m.p] | n.b(Y)(Y | Y)), F be an abstraction,
and � be an evaluation context such that m /∈ fn(�, F). We now prove that
(X)P ◦ R a−→ νm.〈0m〉Pm,R is matched by (X)Q ◦ R a−→ 〈0〉νm.Pm,R, i.e. that
we have νm.(F ◦ 0m | �{Pm,R}) ∼ F ◦ 0 | �{νm.Pm,R}. Since m /∈ fn(�, F),
there is no interaction between F,� and Pm,R, and the inert process 0m does not
interfere either. Hence the possible transitions from νm.(F ◦ 0m | �{Pm,R}) are
only from F,�, R, and internal actions in Pm,R, and are matched by the same
transitions in F ◦ 0 | �{νm.Pm,R}.

Abstractions (X)P and (X)Q may have different behaviors with an argument
which may receive on a, like a(Z)q, where q is a first-order name such that p �= q.
By communication on a, we have (X)Q ◦ a(Z)q τ−→ νmnb.(b[q | m | n | m.m.p] |
n.b(Y)(Y | Y)) ∆= Q1. Since Q1 may perform a

q−→ transition, it can only be
matched by (X)P ◦ a(Z)q τ−→ νnb.(b[νm.(q | m | n | m.m.p)] | n.b(Y)(Y | Y)) ∆=
P1. Notice that in P1, the restriction on m remains inside hidden locality b.

After synchronization on n and passivation/communication on b, we have
Q1(

τ−→)2νmnb.(q | q | m | m | m.m.p | m.m.p) ∆= Q2 (the process inside b in Q1

is duplicated). After two synchronizations on m, we have Q2(
τ−→)2νmnb.(q | q |

p | m.m.p) ∆= Q3, and Q3 may perform a
p−→ transition. These transitions cannot

be matched by P1. Performing the duplication, we have P1(
τ−→)2νnb.(νm.(q | m |

m.m.p) | νm.(q | m | m.m.p)) ∆= P2. Each copied sub-process q | m | m.m.p of
P2 has its own private copy of m, and we can no longer perform any transition

Normal Bisimulations in Calculi with Passivation 269

to have the observable p. More generally, the sequence of transitions Q1(
τ−→)4

p−→
cannot be matched by P1, consequently Q1 and P1 (and therefore (X)Q ◦ a(Z)q
and (X)P ◦ a(Z)q) are not bisimilar.

The previous example shows that testing abstractions with abstraction-free
processes (such as m.n.0) is not enough to distinguish them. This example relies
heavily on the chosen “by need” scope extrusion (restrictions are extruded out-
side localities along with messages), which is also used in Homer or Kell. Such
scope extrusion has unusual consequences: the example can be adapted to show
that 0 and 0m are not equivalent. Using a different definition of scope extrusion,
for instance by considering name restriction to be a fresh name generator, is
unfortunately not a solution: we present in [8] other counter-examples which do
not rely on scope extrusion yet show that testing a large class of finite processes
is not sufficient to derive abstractions equivalence. Whether one can define a
normal-like bisimilarity in HOπP that only uses a finite number of tests remains
an open issue.

5 Related Work

Sangiorgi studies behavioral equivalences for HOπ in [11]. We reviewed his work
earlier in the paper.

The Kell calculus [13] and Homer [5] are two higher-order calculi with passiva-
tion in which bisimulations have been defined and which share common concepts,
like hierarchical localities, local names, objective passive and active process mo-
bility. The calculi differ in how they handle communication. In the Kell calculus,
communications are only local: processes may communicate only if they are in
the same locality or in direct parent-child localities. In the strong case, a sound
and complete early context bisimulation has been defined. In Homer, a process
may passivate or send a message to an arbitrary nested sub-locality, but the
interactions are not allowed in the other way: a process in a sub-locality cannot
send a message to a process in a parent one. In [4], the authors define an input
early context bisimulation which is late in the message output case and early in
the message input case. The relation is shown to be sound in the weak (delay)
case, and sound and complete in the strong case. The definition is similar to
the HOπP one except it features an additional quantification on so-called path
contexts.

The Seal calculus [3] allows a process mobility similar to the passivation fea-
ture: localities may be stopped, duplicated, and moved up and down in the
locality hierarchy. Mobility is less flexible than in Homer or Kell since a process
inside a locality cannot be dissociated from the locality boundary. The authors
define a bisimilarity, called Hoe bisimilarity, for the Seal calculus, which is sim-
ilar to the normal bisimulation for HOπ in the message output case. However,
Hoe bisimilarity is sound in the strong and weak cases but not complete.

Mobile Ambients [2] is also a higher-order calculus with hierarchical locali-
ties. Unlike previous calculi, mobility in Mobile Ambients is subjective: localities
move by themselves, without any acknowledgment from their environment. In

270 S. Lenglet, A. Schmitt, and J.-B. Stefani

[9], Merro and Zappa Nardelli define a context bisimilarity which characterizes
barbed congruence in the weak case. A normal bisimulation without universal
quantification has yet to be found.

6 Conclusion

Behavioral theory in calculi with passivation (like the Kell calculus or Homer) is
less developed than the HOπ one. They are equipped with a sound and complete
context bisimulation in the strong case only, which features additional tests on
contexts in the message output case. This additional complexity comes from the
interference between name restriction and passivation.

In HOP, a calculus with passivation but without name restriction, we have
similar results on bisimulations as in Sangiorgi’s HOπ. First, we have a simple
higher-order bisimulation which characterizes barbed congruence. In a message
output, the message and the continuation are considered separately, since they
do not share private names and passivation may put them in different contexts.
Early and late higher-order bisimulations coincide.

We also have a normal bisimulation without any universal quantification which
coincides with higher-order bisimulation. In the case of HOπ, normal bisimula-
tion comes from an encoding of higher-process in a first-order, which is not
possible in HOP. Instead, normal bisimulation in HOP relies on some means (a
process m.n.0) to observe locality hierarchies and to decompose abstractions in
bisimilar sub-processes. Both higher-order and normal bisimilarities are defined
in the weak and strong cases.

We have shown that we cannot adapt this proof technique to the calculus
with restriction. As proved in Section 4, testing any abstraction-free processes
is not enough to establish abstractions equivalence. We conjecture that in a
calculus featuring passivation and name restriction, we cannot define a sound
and complete strong bisimilarity with fewer tests than in Definition 2.

Acknowledgments

We are grateful to Samuel Hym, Jorge A. Pérez, and Davide Sangiorgi for their
helpful comments on an earlier draft of the paper.

References

1. Cao, Z.: More on bisimulations for higher order π-calculus. In: Aceto, L.,
Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 63–78. Springer,
Heidelberg (2006)

2. Cardelli, L., Gordon, A.D.: Mobile ambients. In: Nivat, M. (ed.) FOSSACS 1998.
LNCS, vol. 1378, p. 140. Springer, Heidelberg (1998)

3. Castagna, G., Vitek, J., Zappa Nardelli, F.: The Seal Calculus. Information and
Computation 201(1) (2005)

4. Godskesen, J.C., Hildebrandt, T.: Extending howe’s method to early bisimulations
for typed mobile embedded resources with local names. In: Ramanujam, R., Sen,
S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 140–151. Springer, Heidelberg (2005)

Normal Bisimulations in Calculi with Passivation 271

5. Hildebrandt, T., Godskesen, J.C., Bundgaard, M.: Bisimulation congruences for
Homer — a calculus of higher order mobile embedded resources. Technical Report
ITU-TR-2004-52, IT University of Copenhagen (2004)

6. Howe, D.J.: Proving congruence of bisimulation in functional programming lan-
guages. Information and Computation 124(2) (1996)

7. Lanese, I., Pérez, J.A., Sangiorgi, D., Schmitt, A.: On the expressiveness and de-
cidability of higher-order process calculi. In: 23rd Annual IEEE Symposium on
Logic in Computer Science (LICS). IEEE Computer Society, Los Alamitos (2008)

8. Lenglet, S., Schmitt, A., Stefani, J.B.: Normal bisimulations in process calculi with
passivation. Technical Report RR 6664, INRIA (2008),
http://sardes.inrialpes.fr/papers/files/RR-6664.pdf

9. Merro, M., Zappa Nardelli, F.: Behavioral theory for mobile ambients. Journal of
the ACM 52(6) (2005)

10. Sangiorgi, D.: Expressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms. PhD thesis, Department of Computer Science, University of
Edinburgh (1992)

11. Sangiorgi, D.: Bisimulation for higher-order process calculi. Information and Com-
putation 131(2) (1996)

12. Sangiorgi, D., Walker, D.: The Pi-Calculus: A Theory of Mobile Processes. Cam-
bridge University Press, Cambridge (2001)

13. Schmitt, A., Stefani, J.B.: The Kell Calculus: A Family of Higher-Order Distributed
Process Calculi. In: Priami, C., Quaglia, P. (eds.) GC 2004. LNCS, vol. 3267, pp.
146–178. Springer, Heidelberg (2005)

14. Thomsen, B.: Plain chocs: A second generation calculus for higher order processes.
Acta Informatica 30(1) (1993)

http://sardes.inrialpes.fr/papers/files/RR-6664.pdf

Reactive Systems, Barbed Semantics,
and the Mobile Ambients�

Filippo Bonchi1,2, Fabio Gadducci1, and Giacoma Valentina Monreale1

1 Dipartimento di Informatica, Università di Pisa, Italy
2 Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands

Abstract. Reactive systems, proposed by Leifer and Milner, represent a
meta-framework aimed at deriving behavioral congruences for those spec-
ification formalisms whose operational semantics is provided by rewriting
rules. Despite its applicability, reactive systems suffered so far from two
main drawbacks. First of all, no technique was found for recovering a
set of inference rules, e.g. in the so-called SOS style, for describing the
distilled observational semantics. Most importantly, the efforts focused
on strong bisimilarity, tackling neither weak nor barbed semantics.

Our paper addresses both issues, instantiating them on a calculus
whose semantics is still in a flux: Cardelli and Gordon’s mobile ambients.

While the solution to the first issue is tailored over our case study,
we provide a general framework for recasting (weak) barbed equivalence
in the reactive systems formalism. Moreover, we prove that our pro-
posal captures the behavioural semantics for mobile ambients proposed
by Rathke and Sobociński and by Merro and Zappa Nardelli.

1 Introduction

Reactive systems [1] were proposed by Leifer and Milner as an abstract formalism
for specifying the dynamics of a computational device. Indeed, the usual specifi-
cation technique is based on a reduction system: a set, representing the possible
states of the device; and a relation among these states, usually inductively de-
fined, representing the possible evolutions of the device. Despite the advantage
of conveying the semantics with relatively few compact rewriting rules, freely in-
stantiated and contextualized, the main drawback of reduction-based solutions
is poor compositionality, since the dynamic behaviour of arbitrary standalone
terms can be interpreted only by inserting them in appropriate contexts, where
a reduction may take place. The theoretical appeal of reactive systems is their
ability to distill labelled transition systems (LTSs), hence, behavioural equiva-
lences, for devices specified by a reduction system. The idea is simple: whenever
a device specified by a term C[P], i.e., by a subterm P inserted into a (unary)
context C[−], may evolve to a state Q, the associated labelled transition system

has a transition P
C[−]−−→ Q, i.e., the state P evolves into Q with a label C[−].

� Partly supported by the EU FP6-IST IP 16004 SEnSOria and carried out during
the first author’s tenure of an ERCIM “Alain Bensoussa” Fellowship Programme.

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 272–287, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Reactive Systems, Barbed Semantics, and the Mobile Ambients 273

If all contexts are admitted, the resulting semantics is called saturated seman-
tics, and the resulting strong bisimilarity on the derived LTS is a congruence.
Clearly, it becomes unfeasible to check the bisimulation game. Hence, it is neces-
sary to consider a subset of contexts guaranteeing that the distilled behavioural
semantics is a congruence. Such a set, the “minimal” contexts allowing a reduc-
tion to occur, was identified in [1] by the categorical notion of relative pushout :
the resulting strong bisimilarity is a congruence, even if it often does not coin-
cide with the saturated one. Semi-saturated equivalences [2,3] were introduced
for recovering saturated semantics. The bisimulation game becomes asymmetric,
and a minimal context may be matched by any context. They capture saturated
semantics, yet slashing the number of transitions that need to be checked.

Several attempts were made to encode specification formalisms (Petri
nets [4,5], logic programming [2], etc.) as reactive systems, either hoping to
recover the standard observational equivalence, whenever such a behavioural se-
mantics exists (CCS [6], pi-calculus [7], etc.), or trying to distill a meaningful
semantics. The results are not yet fully satisfactory. On the one-side, bisimilar-
ity via minimal contexts is usually too fine-grained. On the other side, saturated
semantics are often too coarse, and for e.g. CCS the standard strong bisimilar-
ity is strictly included in the saturated one. The situation is potentially worse
for weak saturated semantics. Intuitively, since in weak semantics the observer
can not check for the occurrence of reductions, all systems are observationally
equivalent.

Barbs were introduced by Milner and Sangiorgi [8] for addressing this kind
of problem. Intuitively, a barb is just a predicate on the states of a system, and
barbed equivalences add the check of such predicates in the bisimulation game.
The flexibility of the definition allows for recasting a wide variety of observa-
tional, bisimulation-based equivalences. Theoretically, the main contribution of
our paper is the introduction of suitable notions of barbed and weak barbed sat-
urated semantics for reactive systems, and their characterization via transition
systems labelled with minimal contexts, by exploiting the semi-saturated game.

The results above may have potentially far reaching consequences over the
usability for the reactive system formalism. However, their adequacy has to be
properly established, by checking it against suitable case studies. To this end,
we instantiate our proposal over a calculus whose observational semantics is still
in a flux, namely, the calculus of mobile ambients, proposed by Cardelli and
Gordon [9]. We proceed as follows. First of all, we consider a minimal context
semantics for ambients, as distilled in [10] by means of a graphical encoding.
Another drawback of reactive systems is that such distilled semantics are usually
not in a standard form. So, we propose an alternative, yet equivalent presentation
of that LTS, by means of a set of SOS rules. This is a first step toward a possible
overcoming of the problem, but here we use such a characterization to establish
that the resulting LTS is the same as the one previously proposed by Rathke
and Sobociński [11]. This is pivotal in proving our main practical result, namely,
that barbed and weak barbed semi-saturated semantics for mobile ambients do

274 F. Bonchi, F. Gadducci, and G.V. Monreale

capture the strong and weak barbed congruences for the calculus, as proposed by
Rathke and Sobociński [11] and by Merro and Zappa Nardelli [12], respectively.

The paper is organized as follows. Section 2 recalls the basic notions of reactive
systems, while Section 3 similarly introduces the main definitions concerning
mobile ambients. Section 4 presents the LTS for ambients that we synthesized
in [10], introduces a novel characterization of it by means of SOS rules, and
finally proves its equivalence with the LTS proposed by Rathke and Sobociński
in [11]. Section 5 presents the technical core of the paper, the introduction of
barbed and weak barbed saturated semantics for reactive systems, and offers a
labelled characterization by means of their semi-saturated counterparts. Finally,
Section 6 proves that the two barbed semi-saturated bisimilarities we introduced
capture the barbed congruences proposed so far for mobile ambients.

2 Reactive Systems

This section summarizes the main results concerning (the theory of) reactive
systems (RSs) [1]. The formalism aims at deriving labelled transition systems
(LTSs) and bisimulation congruences for a system specified by a reduction se-
mantics, and it is centered on the concepts of term, context and reduction rules:
contexts are arrows of a category, terms are arrows having as domain 0, a special
object that denotes groundness, and reduction rules are pairs of (ground) terms.

Definition 1 (Reactive System). A reactive system C consists of

1. a category C;
2. a distinguished object 0 ∈ |C|;
3. a composition-reflecting subcategory D of reactive contexts;
4. a set of pairs R ⊆

⋃
I∈|C| C(0, I)×C(0, I) of reduction rules.

Intuitively, reactive contexts are those in which a reduction can occur. By
composition-reflecting we mean that d′ ◦ d ∈ D implies d, d′ ∈ D. Note that
the rules have to be ground, i.e., left-hand and right-hand sides have to be terms
without holes and, moreover, with the same codomain.

The reduction relation is generated from the reduction rules by closing them
under all reactive contexts. Formally, the reduction relation is defined by taking
P � Q if there is 〈l, r〉 ∈ R and d ∈ D such that P = d ◦ l and Q = d ◦ r.

Thus the behaviour of a RS is expressed as an unlabelled transition system.
In order to obtain a LTS, we can plug a term P into some context C[−] and

observe if a reduction occurs. In this case we have that P
C[−]−−→. Categorically

speaking, this means that C[−] ◦ P matches d ◦ l for some rule 〈l, r〉 ∈ R and
some reactive context d. This situation is formally depicted by diagram (i) in
Fig. 1: a commuting diagram like this is called a redex square.

Definition 2 (Saturated Transition System). The saturated transition sys-
tem (sts) is defined as follows

– states: arrows P : 0 → I in C, for arbitrary I;
– transitions: P

C[−]→SAT Q if C[P]� Q.

Reactive Systems, Barbed Semantics, and the Mobile Ambients 275

I4

I2

C[−] �����
I3

d�����

0
P

������
l

������

I4

I2

C[−] �����
e

�� I5

g
��

I3
f

		

d�����

0
P

������
l

������

I6

I2

e′ �����
e

�� I5

h

��

I3
f

		

f′�����
I4

I6

g′ �����
I5

g
��

h

		

(i) (ii) (iii) (iv)

Fig. 1. Redex Square and RPO

Note that C[P] is a stand-in for C[−] ◦P : the same notation is chosen in Defini-
tions 3 and 6 below, in order to allows for an easier comparison with the process
calculi notation, to be adopted in the following sections.

Definition 3 (Saturated Bisimulation). Saturated bisimilarity ∼S is the
largest symmetric relation R such that whenever P RQ then ∀C[−]

– if C[P]� P ′ then C[Q]� Q′ and P ′RQ′.

It is obvious that∼S is a congruence. Indeed, it is the coarsest symmetric relation
satisfying the bisimulation game on � that is also a congruence.

Note that sts is often infinite-branching since all contexts allowing reduc-
tions may occur as labels. Moreover, it has redundant transitions. For example,

consider the term a.0 of CCS. We have both the transitions a.0
a.0|−→SAT 0|0 and

a.0
P |a.0|−→SAT P | 0 | 0, yet P does not “concur” to the reduction. We thus need a

notion of “minimal context allowing a reduction”, captured by idem pushouts.

Definition 4 (RPO, IPO). Let the diagrams in Fig. 1 be in a category C,
and let (i) be a commuting diagram. A candidate for (i) is any tuple 〈I5, e, f, g〉
making (ii) commute. A relative pushout (RPO) is the smallest such candidate,
i.e., such that for any other candidate 〈I6, e′, f ′, g′〉 there exists a unique mor-
phism h : I5 → I6 making (iii) and (iv) commute. A commuting square such as
diagram (i) of Fig. 1 is called idem pushout (IPO) if 〈I4, c, d, idI4〉 is its RPO.

Hereafter, we say that a RS has redex RPOs (IPOs) if every redex square has
an RPO (IPO) as candidate. For a better understanding of these two notions,
we refer the reader to [2]. For the aim of this paper it is enough to know that
the former notion is more restrictive than the latter.

Definition 5 (IPO-Labelled Transition System). The IPO-labelled tran-
sition system (ITS) is defined as follows

– states: P : 0→ I in C, for arbitrary I;

– transitions: P
C[−]→IPO d ◦ r if d ∈ D, 〈l, r〉 ∈ R, and (i) in Fig. 1 is an IPO.

In other words, if inserting P into the context C[−] matches d ◦ l, and C[−] is
the “smallest” such context, then P transforms to d ◦ r with label C[−].

Bisimilarity on ITS is referred to as IPO-bisimilarity (∼I). Leifer and Milner
have shown that if the RS has redex RPOs, then it is a congruence.

276 F. Bonchi, F. Gadducci, and G.V. Monreale

Proposition 1. In a reactive system having redex-RPOs, ∼I is a congruence.

Clearly, ∼I⊆∼S . In [2,3] the first author, with König and Montanari, shows that
this inclusion is strict for many formalisms and introduces semi-saturation.

Definition 6 (Semi-Saturated Bisimulation). Semi-saturated bisimilarity
∼SS is the largest symmetric relation R such that whenever P RQ then

– if P
C[−]→IPO P

′ then C[Q]� Q′ and P ′RQ′.

Proposition 2. In a reactive system having redex-IPOs, ∼SS=∼S.

3 Mobile Ambients

This section shortly recalls the finite, communication-free fragment of mobile
ambients (MAs) [9], its reduction semantics and behavioural equivalences.

Fig. 2 shows the syntax of the calculus. We assume a set N of names ranged
over by m,n, u, Besides the standard constructors, we included a set of pro-
cess variables X = {X,Y, . . .}, and a set of name variables V = {x, y, . . .}.
Intuitively, an extended process x[P]|X represents an underspecified process,
where either the process X or the name of the ambient x[−] can be further
instantiated. These are needed for the presentation of the LTSs in Section 4.

We let P,Q,R, . . . range over the set P of pure processes, containing neither
process nor name variables; while Pε, Qε, Rε, . . . range over the set Pε of well-
formed processes, i.e., such that no process or ambient variable occurs twice.

We use the standard definitions for the set of free names of a pure process
P , denoted by fn(P), and for α-convertibility, with respect to the restriction
operators (νn). We moreover assume that fn(X) = fn(x[0]) = ∅. We also
consider a family of substitutions, which may replace a process/name variable
with a pure process/name, respectively. Substitutions avoid name capture: for a
pure process P , the expression (νn)(νm)(X |x[0]){m/x,n[P] /X} corresponds to
the pure process (νp)(νq)(n[P]|m[0]), for names p, q �∈ {m} ∪ fn(n[P]).

The semantics of the calculus exploits a structural congruence, denoted by ≡,
which is the least equivalence on pure processes that satisfies the axioms shown
in Fig. 3. We assume that the structural congruence defined on processes over
the extended syntax is induced by the same set of rules shown in Fig. 3.

The reduction relation, denoted by �, describes the evolution of pure pro-
cesses over time. It is the smallest relation closed under the congruence ≡ and
inductively generated by the set of axioms and inference rules shown in Fig. 4.

A strong barb o is a predicate over the states of a system, with P ↓o denoting
that P satisfies o. In MAs, P ↓n denotes the presence at top-level of a unrestricted
ambient n. Formally, for a pure process P , P ↓n if P ≡ (νA)(n[Q]|R) and n �∈ A,
for some processes Q and R and a set of restricted names A. A pure process P
satisfies the weak barb n (denoted as P ⇓n) if there exists a process P ′ such that
P �∗ P ′ and P ′ ↓n, where �∗ is the transitive and reflexive closure of �.

Reactive Systems, Barbed Semantics, and the Mobile Ambients 277

P ::= 0, n[P], M.P, (νn)P, P1|P2, X, x[P] M ::= in n, out n, open n

Fig. 2. (Extended) Syntax of mobile ambients

if P ≡ Q then P |R ≡ Q|R P |0 ≡ P
if P ≡ Q then (νn)P ≡ (νn)Q (νn)(νm)P ≡ (νm)(νn)P
if P ≡ Q then n[P] ≡ n[Q] (νn)(P |Q) ≡ P |(νn)Q if n /∈ fn(P)
if P ≡ Q then M.P ≡ M.Q (νn)m[P] ≡ m[(νn)P] if n �= m
P |Q ≡ Q|P (νn)M.P ≡ M.(νn)P if n /∈ fn(M)
(P |Q)|R ≡ P |(Q|R) (νn)P ≡ (νm)(P{m/n}) if m /∈ fn(P)

Fig. 3. Structural congruence

n[in m.P |Q]|m[R]� m[n[P |Q]|R] if P � Q then (νn)P � (νn)Q
m[n[out m.P |Q]|R]� n[P |Q]|m[R] if P � Q then n[P]� n[Q]
open n.P |n[Q]� P |Q if P � Q then P |R� Q|R

Fig. 4. Reduction relation on pure processes

Definition 7 (Reduction Barbed Congruences [11,12]). Strong reduction
barbed congruence ∼= is the largest symmetric relation R such that whenever
P RQ then

– if P ↓n then Q ↓n;
– if P � P ′ then Q� Q′ and P ′RQ′;
– ∀C[−], C[P]RC[Q].

Weak reduction barbed congruence ∼=W is the largest symmetric relation R such
that whenever P RQ then

– if P ↓n then Q ⇓n;
– if P � P ′ then Q�∗ Q′ and P ′RQ′;
– ∀C[−], C[P]RC[Q].

Labelled characterization of reduction barbed congruences over MAs processes
are presented by Rathke and Sobociński for the strong case [11], and by Merro
and Zappa Nardelli for the weak one [12].

The main result of this paper is the proposal of a novel notion of barbed
saturated bisimilarity over reactive systems, both for the strong and weak case,
that is able to capture the two behavioural semantics for MAs defined above.

4 Labelled Transition Systems for Mobile Ambients

In this section we first recall the IPO-transition system for MAs, previously
proposed in [10], and then we introduce a SOS presentation for it. Finally, we

278 F. Bonchi, F. Gadducci, and G.V. Monreale

(Tau)
P�Q

P
−−→Q

(Out)
P≡(νA)(out m.P1|P2) m�∈A

P
m[x[−|X1]|X2]−−−−−−−−→(νA)(m[X2]|x[P1|P2|X1])

(In)
P≡(νA)(in m.P1|P2) m�∈A

P
x[−|X1]|m[X2]−−−−−−−−→(νA)m[x[P1|P2|X1]|X2]

(OutAmb)
P≡(νA)(n[out m.P1|P2]|P3) m�∈A

P
m[−|X1]−−−−→(νA)(m[P3|X1]|n[P1|P2])

(InAmb)
P≡(νA)(n[in m.P1|P2]|P3) m�∈A

P
−|m[X1]−−−−→(νA)(m[n[P1|P2]|X1]|P3)

(Open)
P≡(νA)(open n.P1|P2) n�∈A

P
−|n[X1]−−−−→(νA)(P1|P2|X1)

(CoIn)
P≡(νA)(m[P1]|P2) m�∈A

P
−|x[in m.X1|X2]−−−−−−−−−−→(νA)(m[x[X1|X2]|P1]|P2)

(CoOpen)
P≡(νA)(n[P1]|P2) n�∈A

P
−|open n.X1−−−−−−−→(νA)(P1|X1|P2)

Fig. 5. The LTS D

discuss the relationship between our SOS LTS and the LTS for MAs proposed
by Rathke and Sobociński in [11]. Note that we implicitly assume that all the
LTSs that we define are closed with respect to structural congruence.

4.1 An IPO-LTS for Mobile Ambients

This section presents the ITS D for MAs proposed in [10]. The inference rules
describing this LTS are obtained from an analysis of a LTS over (processes as)
graphs, derived by the borrowed context mechanism [13], which is an instance of
the theory of RSs [14]. The labels of the transitions are unary contexts, i.e., terms
of the extended syntax with a hole −. Note that they are minimal contexts, that
is, they represent the exact amount of context needed by a system to react. We
denote them by Cε[−]. The formal definition of the LTS is presented in Fig. 5.

The rule Tau represents the τ -actions modeling internal computations. Notice
that the labels of the transitions are identity contexts composed of just a hole
−, while the resulting states are processes over MAs standard syntax.

The other rules in Fig. 5 model the interactions of a process with its envi-
ronment. Note that both labels and resulting states contain process and name
variables. We define the LTS DI for processes over the standard syntax of MAs
by instantiating all the variables of the labels and of the resulting states.

Definition 8. Let P,Q be pure processes and let C[−] be a pure context. Then,

we have that P
C[−]−−→DI Q if there exists a transition P

Cε[−]−−→D Qε and a substitu-
tion σ such that Qεσ = Q and Cε[−]σ = C[−].

In the above definition we implicitly consider only ground substitutions. More-
over, we recall that the substitutions do not capture bound names.

The rule Open models the opening of an ambient provided by the environ-
ment. In particular, it enables a process P with a capability open n at top level,
for n ∈ fn(P), to interact with a context providing an ambient n containing
some process X1. Note that the label −|n[X1] of the rule represents the minimal
context needed by the process P for reacting. The resulting state is the process
over the extended syntax (νA)(P1|X1|P2), where X1 represents a process pro-
vided by the environment. Note that the instantiation of the process variable X1

Reactive Systems, Barbed Semantics, and the Mobile Ambients 279

with a process containing a free name that belongs to the bound names in A is
possible only α-converting the resulting process (νA)(P1|X1|P2) into a process
that does not contain that name among its bound names at top level.

The rule CoOpen instead models an environment that opens an ambient of
the process. The rule InAmb enables an ambient of the process to migrate into
a sibling ambient provided by the environment, while in the rule In both the
ambients are provided by the environment. In the rule CoIn an ambient provided
by the environment enters an ambient of the process. The rule OutAmb models
an ambient of the process exiting from an ambient provided by the environment,
while in the rule Out both ambients are provided by the environment.

The LTS D does not conform to the so-called SOS style [15]: indeed, the
premises of the inference rules are just constraints over the structure of the
process, as typical of the LTSs distilled by IPOs. In the next section we propose
an alternative, yet equivalent set of rules in SOS style, which allows an easier
comparison between our proposal and the one by Rathke and Sobociński.

4.2 A SOS Presentation for the IPO-LTS

This section proposes a SOS presentation for the ITS D shown in the previous
section. The SOS LTS S is directly obtained from the LTS D and it coincides
with this last one. The rules of the LTS S are shown in Fig. 6.

The rules in the first two rows of Fig. 6 model internal computations. They
are indeed obtained from the first rule in Fig. 5. In particular, since this last rule
exactly derives the same transition relation of the reduction relation over MAs,
we replace it with the reduction rules labelled with the identity context −. So,
we obtain the axioms modelling the execution of the capabilities of the calculus,
and a structural rule for each ambient, parallel and restriction operators.

Also the remaining rules in Fig. 6, modelling the interactions of a process with
its environment, are obtained from the other rules in Fig. 5. In particular, for each
of these rules we derive three rules. First, we determine the axiom by considering
the minimal process needed by the reduction to occur. For e.g. the rule In of
the LTS D, the minimal process allowing the reduction is in m.P1. Therefore,

we determine the axiom in m.P1
x[−|X1]|m[X2]−−−−−−−−→ m[x[P1|X1]|X2]. The next step

consists in determining the relative structural rules in SOS style. So, as far as the

rule In of the LTS D is concerned, we have that if P
x[−|X1]|m[X2]−−−−−−−−→ Pε, then for the

process P |Q there is a transition labelled x[−|X1]|m[X2] leading to the process Pε
with the process Q inside the ambient x, that is, P |Q x[−|X1]|m[X2]−−−−−−−−→ Pε{Q|X1/X1}.
Instead, if P

x[−|X1]|m[X2]−−−−−−−−→ Pε and m �= a, then (νa)P
x[−|X1]|m[X2]−−−−−−−−→ (νa)Pε.

Theorem 1. Let P be a pure process and let Cε[−] be a context. Then, P
Cε[−]−−→D

Qε if and only if P
Cε[−]−−→S Qε.

As for ITS D, also for LTS S we define the LTS SI for pure processes by
instantiating all the variables of the labels and of the resulting states.

280 F. Bonchi, F. Gadducci, and G.V. Monreale

(InTau) (OutTau) (OpenTau)

n[in m.P |Q]|m[R]
−−→m[n[P|Q]|R] m[n[out m.P |Q]|R]

−−→n[P |Q]|m[R] open n.P |n[Q]
−−→P |Q

(TauAmb) (TauPar) (TauRes)

P
−−→P ′

n[P]
−−→n[P ′]

P
−−→P ′

P |Q−−→P ′|Q
P

−−→P ′

(νa)P
−−→(νa)P ′

(In) (InPar) (InRes)

in m.P1
x[−|X1]|m[X2]−−−−−−−−−→m[x[P1|X1]|X2]

P
x[−|X1]|m[X2]−−−−−−−−−→Pε

P |Qx[−|X1]|m[X2]−−−−−−−−−→Pε{Q|X1/X1
}

P
x[−|X1]|m[X2]−−−−−−−−−→Pε a�=m

(νa)P
x[−|X1]|m[X2]−−−−−−−−−→(νa)Pε

(InAmb) (InAmbPar) (InAmbRes)

P
x[−|X1]|m[X2]−−−−−−−−−→Pε

n[P]
−|m[X2]−−−−−→Pε{n/x,0/X1

}
P

−|m[X2]−−−−−→Pε

P |Q−|m[X2]−−−−−→Pε|Q
P

−|m[X2]−−−−−→Pε a�=m

(νa)P
−|m[X2]−−−−−→(νa)Pε

(CoIn) (CoInPar) (CoInRes)

m[P1]
−|x[in m.X1|X2]−−−−−−−−−−−→m[x[X1|X2]|P1]

P
−|x[in m.X1|X2]−−−−−−−−−−−→Pε

P |Q−|x[in m.X1|X2]−−−−−−−−−−−→Pε|Q
P

−|x[in m.X1|X2]−−−−−−−−−−−→Pε a�=m

(νa)P
−|x[in m.X1|X2]−−−−−−−−−−−→(νa)Pε

(Out) (OutPar) (OutRes)

out m.P1
m[x[−|X1]|X2]−−−−−−−−−→m[X2]|x[P1|X1]

P
m[x[−|X1]|X2]−−−−−−−−−→Pε

P |Qm[x[−|X1]|X2]−−−−−−−−−→Pε{Q|X1/X1
}

P
m[x[−|X1]|X2]−−−−−−−−−→Pε a�=m

(νa)P
m[x[−|X1]|X2]−−−−−−−−−→(νa)Pε

(OutAmb) (OutAmbPar) (OUtAmbRes)

P
m[x[−|X1]|X2]−−−−−−−−−→Pε

n[P]
m[−|X2]−−−−−→Pε{n/x,0/X1

}
P

m[−|X2]−−−−−→Pε

P |Qm[−|X2]−−−−−→Pε{Q|X2/X2
}

P
m[−|X2]−−−−−→Pε a�=m

(νa)P
m[−|X2]−−−−−→(νa)Pε

(Open) (OpenPar) (OpenRes)

open n.P1
−|n[X1]−−−−−→P1|X1

P
−|n[X1]−−−−−→Pε

P |Q−|n[X1]−−−−−→Pε|Q
P

−|n[X1]−−−−−→Pε a�=n

(νa)P
−|n[X1]−−−−−→(νa)Pε

(CoOpen) (CoOpenPar) (CoOpenRes)

n[P1]
−|open n.X1−−−−−−−−→P1|X1

P
−|open n.X1−−−−−−−−→Pε

P |Q−|open n.X1−−−−−−−−→Pε|Q
P

−|open n.X1−−−−−−−−→Pε a�=n

(νa)P
−|open n.X1−−−−−−−−→(νa)Pε

Fig. 6. The LTS S

4.3 Equivalence between LTSs

We now show that LTS SI defined on processes over the standard syntax of MAs
coincides with the LTS for MAs proposed by Rathke and Sobociński in [11].

Reactive Systems, Barbed Semantics, and the Mobile Ambients 281

α Cα
ε [−] α Cα

ε [−]
in m x[−|X1]|m[X2] [out m] m[−|X2]
[in m] −|m[X2] open n −|n[X1]
[in m] −|x[in m.X1|X2] open n −|open n.X1

out m m[x[−|X1]|X2] τ −

Fig. 7. Correspondence between the labels of the LTS C and the ones of the LTS S

Their LTS is organized into three components: the process-view LTS C, the
context-view LTS A, and the combined LTS CA. The labels of the LTS CA
have the shape α ↓)M , where α is derived by LTS C, and)M by LTS A. In a

transition P
α↓ �M−−→CA Q, the label α identifies the minimal context needed by the

pure process P to react, while)M is a list of pure processes and ambient names,
representing an instantiation of the context components. Therefore, since the
labels of our LTS S are precisely the minimal contexts needed by a system to
react, we establish a one-to-one correspondence between the labels α of LTS C
and the labels Cε[−] of our LTS S. Fig. 7 shows this correspondence: Cαε [−]
denotes the label of our LTS S corresponding to the label α of their LTS C.

In the label α ↓)M the list)M represents an instantiation for the components
of the context identified by α. Therefore, since the contexts identified by the α’s
correspond to the contexts representing our labels, the list)M of α ↓)M contains
as many elements as the variables of the label Cα[−]. In particular,)M contains
k processes if and only if k process variables occur in Cα[−], and analogously,
)M contains h ambient names if and only if h name variables occur in Cα[−].

To better understand their relationship, we informally discuss an example
showing how a transition in LTS SI corresponds to a transition in LTS CA.

Example 1. Consider the pure process P = in m.P1, for some process P1. Ac-

cording to In rule in Fig. 6, P
x[−|X1]|m[X2]−−−−−−−−→S m[x[P1|X1]|X2]. If we consider a

substitution σ = {P2/X1 ,
n /x,

P3 /X2}, where P2, P3 are processes and n is an

ambient name, we have P
n[−|P2]|m[P3]−−−−−−−−→SI m[n[P1|P2]|P3].

Consider now CA. According to In rule of [11], P inm−→C λXxY.m[x[P1|X]|Y],
where X , Y and x are variables representing the components provided by
the context. In particular, X and Y are process variables and x is a name
variable. Consider the instantiation for context components induced by sub-
stitution σ, namely,)M : P2, n, P3. According to rule Inst of [11], we obtain

λXxY.m[x[P1|X]|Y]
�M↓−→A m[n[P1|P2]|P3] and, by applying Cλ rule of [11],

P
inm↓ �M−−−−→CA m[n[P1|P2]|P3]. Therefore, both LTSs have a transition leading the

process P to m[n[P1|P2]|P3].

Theorem 2. Let P be a pure process. If P
α↓ �M−−→CA Q, then there is a unique

(up-to ≡) substitution σ s.t. P
Cα

ε [−]σ−−−→SI Q. Vice versa, if P
C[−]−−→SI Q, then there

are α and a unique (up-to ≡) tuple)M s.t. C[−] = Cα[−] and P
α↓ �M−−→CA Q.

282 F. Bonchi, F. Gadducci, and G.V. Monreale

5 Barbed Semantics for Reactive Systems

Several attempts were made to encode specification formalisms (Petri nets [4,5],
logic programming [2], CCS [16,17], λ-calculus [18,19], asynchronous π-calculus
[20], fusion calculus [21], etc.) as RSs, either hoping to recover the standard ob-
servational equivalences, whenever such a behavioural semantics exists (CCS [6],
π-calculus [7], etc.), or trying to distill a meaningful semantics. Unfortunately,
IPO semantics is usually too fine-grained, and MAs are no exception.

On the other hand, saturated semantics are often too coarse. For example,
the CCS processes ω = τ.Ω and Θ = τ.Ω + a.Ω are saturated bisimilar [8], yet
not strong bisimilar. This problem becomes potentially serious when considering
weak semantics. Intuitively, two systems are saturated bisimilar if they cannot
be distinguished by an external observer that, in any moment of their execution,
can insert them into some context and observe a reduction. However, since in
weak semantics reductions cannot be observed, all systems are equivalent.

Barbs were introduced for overcoming these problems [8]. This section proposes
a notion of barbed saturated bisimilarity for RSs, showing that it is efficiently char-
acterized through the IPO-transition systems by exploiting the semi-saturated
game: Section 5.1 studies the strong case; Section 5.2, the weak one.

5.1 Barbed Saturated Bisimilarity

Barbed bisimilarity was introduced for CCS [8], using barbs ↓a and ↓ā that
represented the ability of a process to perform an input, respectively an output,
on channel a. As for MAs, ↓n means that an ambient n occurs at top level.

More generally, barbs are predicates over the states of a system. We then fix
in the following a family O of barbs, and we write P ↓o if P satisfies o ∈ O.

Definition 9 (Barbed Bisimilarity, Barbed Congruence). A symmetric
relation R is a barbed bisimulation if whenever P RQ then

– if P ↓o then Q ↓o;
– if P � P ′ then Q� Q′ and P ′RQ′.

Barbed bisimilarity ∼B is the largest barbed bisimulation; barbed congruence
5B is the largest congruence contained in ∼B.

Barbed congruence is clearly a congruence, but there is no guarantee that it is
also a bisimulation. In this paper, we consider a different notion of behavioural
equivalence that is both a bisimulation and a congruence.

Definition 10 (Barbed Saturated Bisimulation). A symmetric relation R
is a barbed saturated bisimulation if whenever P RQ then ∀C[−]

– if C[P] ↓o then C[Q] ↓o;
– if C[P]� P ′ then C[Q]� Q′ and P ′RQ′.

Barbed saturated bisimilarity ∼BS is the largest barbed saturated bisimulation.

Reactive Systems, Barbed Semantics, and the Mobile Ambients 283

It is easy to see that ∼BS is the largest barbed bisimulation that is also a
congruence, and that it is finer than 5B (the largest congruence contained into
barbed bisimilarity). Intuitively, in the former case the external observer can
plug systems into contexts at any step of their execution, while in the latter the
observer can contextualize systems only at the beginning. The former observer
is more powerful than the latter, thus proving that ∼BS is indeed finer than 5B.

It is our opinion that ∼BS is more appropriate, in order to model concurrent
interactive systems embedded in an environment that continuously changes. And
while in several formalisms the two notions coincide [22], for MAs the standard
behavioural equivalence ∼= (Definition 7) is clearly an instance of ∼BS .

Most importantly, though, barbed saturated bisimilarity can be efficiently
characterized through the IPO-transition system via the semi-saturated game.

Definition 11 (Barbed Semi-Saturated Bisimulation). A symmetric re-
lation R is a barbed semi-saturated bisimulation if whenever P RQ then

– ∀C[−], if C[P] ↓o then C[Q] ↓o;
– if P

C[−]→IPO P
′ then C[Q]� Q′ and P ′RQ′.

Barbed semi-saturated bisimilarity ∼BSS is the largest barbed semi-saturated
bisimulation.

Proposition 3. In a reactive system having redex-IPOs, ∼BSS=∼BS.

Reasoning on ∼BSS is easier than on ∼BS , because instead of looking at the
reductions in all contexts, we consider only IPO-transitions. Even if barbs are
still quantified over all contexts, for many formalisms (as for MAs) it is actually
enough to check if P ↓o implies Q ↓o, since this condition implies that ∀C[−], if
C[P] ↓o then C[Q] ↓o. Barbs satisfying this property are called contextual barbs.

Definition 12 (Contextual Barbs). A barb o is a contextual barb if when-
ever P ↓o implies Q ↓o then ∀C[−], C[P] ↓o implies C[Q] ↓o.

5.2 Weak Barbed Saturated Bisimilarity

This section introduces weak barbed (semi-)saturated bisimilarity. We begin by
recalling weak barbs. A state P satisfies the weak barb o (written P ⇓o) if there
exists a state P ′ such that P �∗ P ′ and P ′ ↓o.

Definition 13 (Weak Barbed Saturated Bisimulation). A symmetric re-
lation R is a weak barbed saturated bisimulation if whenever P RQ then ∀C[−]

– if C[P] ⇓o then C[Q] ⇓o;
– if C[P]�∗ P ′ then C[Q]�∗ Q′ and P ′RQ′.

Weak barbed saturated bisimilarity ∼WBS is the largest weak barbed saturated
bisimulation.

284 F. Bonchi, F. Gadducci, and G.V. Monreale

Definition 14 (Weak Barbed Semi-Saturated Bisimulation). A symmet-
ric relation R is a weak barbed semi-saturated bisimulation if whenever P RQ
then

– ∀C[−], if C[P] ↓o then C[Q] ⇓o;
– if P

C[−]→IPO P
′ then C[Q]�∗ Q′ and P ′RQ′.

Weak barbed semi-saturated bisimilarity ∼WBSS is the largest weak barbed semi-
saturated bisimulation.

Proposition 4. In a reactive system having redex-IPOs, ∼WBSS=∼WBS.

Now we introduce weak contextual barbs. Analogously to the strong case, for
those formalisms whose barbs are weakly contextual the first condition of Defi-
nition 14 becomes simpler: indeed, it suffices to check if P ↓o implies Q ⇓o.

Definition 15 (Weak Contextual Barbs). A barb o is a weak contextual
barb if whenever P ↓o implies Q ⇓o then ∀C[−], C[P] ↓o implies C[Q] ⇓o.

6 Labelled Characterizations of Barbed Congruences

This section proposes a labelled characterization of both strong and weak reduc-
tion barbed congruence for MAs, presented in Section 3. Indeed, MAs can be
seen as a reactive system, with pure processes (up-to structural congruence) as
ground terms: as shown in [10], pure processes must first be encoded into graphs,
and the reduction semantics simulated by graph rewriting. We can then apply
the borrowed contexts technique for distilling IPOs, which is proved to be an
instance of the reactive system construction. The resulting ITS is the one that
we presented in Section 4. Therefore, we can apply the notions of (weak) barbed
saturated and semi-saturated bisimilarities, shown in the previous section, in
order to capture those two behavioural semantics of MAs.

The first step is stated by the proposition below.

Proposition 5. Strong reduction barbed congruence over MAs ∼= coincides with
barbed saturated bisimilarity ∼BS. Similarly, weak reduction barbed congruence
over MAs ∼=W coincides with weak barbed saturated bisimilarity ∼WBS.

As shown in Section 5, we can efficiently characterize (weak) barbed saturated
bisimilarity through the IPO-transition system, and the semi-saturated game.
We can then characterize strong and weak reduction barbed congruence over
MAs by instantiating Definitions 10 and 14, respectively, with the ITS SI .

Moreover, the quantification over all contexts can be removed from the first
condition of the definition of (semi-)saturated bisimulation.

Proposition 6. MAs barbs are both strong and weak contextual barbs.

We then obtain a simpler definition of (weak) semi-saturated bisimilarity.

Reactive Systems, Barbed Semantics, and the Mobile Ambients 285

Definition 16 (Barbed Semi-Saturated Bisimulations for MAs). A sym-
metric relation R is a barbed semi-saturated bisimulation for MAs if whenever
P RQ then

– if P ↓n then Q ↓n;
– if P

C[−]−−→SI P
′ then C[Q]� Q′ and P ′RQ′.

Barbed semi-saturated bisimilarity ∼BSSMA is the largest barbed semi-saturated
bisimulation.

A symmetric relation R is a weak barbed semi-saturated bisimulation for
MAs if whenever P RQ then

– if P ↓n then Q ⇓n;
– if P

C[−]−−→SI P
′ then C[Q]�∗ Q′ and P ′RQ′.

Weak barbed semi-saturated bisimilarity ∼WBSSMA is the largest weak barbed semi-
saturated bisimulation.

We finally introduce the main characterization theorem of the paper.

Theorem 3. Barbed semi-saturated bisimilarity for MAs ∼BSSMA coincides with
strong reduction barbed congruence ∼=. Similarly, weak barbed semi-saturated
bisimilarity ∼WBSSMA coincides with weak reduction barbed congruence ∼=W .

It is easy to note that the two statements of the theorem above follow from
Proposition 5, and from Proposition 3 and 4, respectively.

6.1 On Observing Ambient Migration

An alternative labelled characterization of weak reduction barbed congruence
is presented in [12] by Merro and Zappa Nardelli. However, the bisimulation
that they propose is not defined in the standard way. They indeed note that in
MAs the ability of a (restricted) ambient to migrate is unobservable, therefore
in order to take this phenomenon into account they propose a modification of
the usual definition of bisimulation. On the contrary, Rathke and Sobociński use
instead in [11] the ordinary bisimilarity for characterizing the strong reduction
barbed congruence. However, they are forced to add a set of what they call
Honda-Tokoro rules, in order to account for the same phenomenon about am-
bient migrations. We remark that in our proposal we are never able to observe
migrations of private ambients, thanks to the use of semi-saturations: this is
shown by the following example for the weak semi-saturated case.

Example 2. Let us consider the example below, originally proposed in [12], which
illustrates two weak reduction barbed congruent processes

P = (νn)n[in k.0] and Q = 0

286 F. Bonchi, F. Gadducci, and G.V. Monreale

The two processes P and Q are distinguished by the standard weak equiv-
alence over our LTS SI , since P can interact with a context −|k[R], while 0
cannot. The weak barbed semi-saturated bisimulation instead does not observe
the migration of the private ambient n. The transition P

−|k[R]−−−→SI (νn)k[n[0]|R]
is indeed matched by 0|k[R]�∗ 0|k[R]. Moreover, since (νn)k[n[0]|R] and 0|k[R]
are weak barbed semi-saturated equivalent, also P and Q are so.

7 Conclusions and Future Work

The main issues of this paper have been the introduction of barbed bisimilarities
in reactive systems, and their exploitation for recasting the semantics of MAs.

In particular, we proposed the novel notions of barbed and weak barbed satu-
rated bisimilarity over reactive systems, showing that they can be efficiently char-
acterized through the IPO-transition systems by employing the semi-saturated
game. We applied the framework to MAs, proving that it can capture the strong
and the weak reduction barbed congruence for MAs, proposed by Rathke and
Sobociński [11], and by Merro and Zappa Nardelli [12], respectively.

We thus obtained a labelled characterization for these barbed congruences,
exploiting the ITS previously proposed in [10]. However, as it is typical of the
LTSs distilled by IPOs, its presentation is far from standard. Therefore, we
proposed an alternative, yet equivalent presentation for our ITS using SOS rules,
which simplifies our proofs and furthermore allows for an easier comparison
between our proposal and that one presented by Rathke and Sobociński in [11].

We consider such a presentation a first step towards solving the problem of
synthesizing a set of SOS rules for describing the ITS distilled from a reactive
system. Indeed, we are quite pleased by the parametric structure of the rules
that we obtained, and we hope that we will be able to lift it to the instance of
RPO adopted in graph rewriting, namely, borrowed contexts [13].

Finally, as discussed in Section 6, we recall that an alternative, labelled charac-
terization of the strong reduction barbed congruence is presented in [11]. Rathke
and Sobociński use there the standard bisimilarity to capture the congruence,
but they are forced to add a set of Honda-Tokoro rules to deal with the unobserv-
ability of ambient migrations. Our solution instead accounts for this phenomenon
by the use of the barbed semi-saturated bisimulation. It is true however that the
proposal in [11] does not need any additional observation, while in our approach
the choice of the right notion of barb is left to the ingenuity of the researcher.
As a future work we would like to extend our solution by considering an auto-
matically derived notion of barb, in the style of [23] and [24].

References

1. Leifer, J., Milner, R.: Deriving bisimulation congruences for reactive systems. In:
Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer,
Heidelberg (2000)

2. Bonchi, F., König, B., Montanari, U.: Saturated semantics for reactive systems. In:
Logic in Computer Science, pp. 69–80. IEEE Computer Society, Los Alamitos (2006)

Reactive Systems, Barbed Semantics, and the Mobile Ambients 287

3. Bonchi, F.: Abstract Semantics by Observable Contexts. PhD thesis, Department
of Informatics, University of Pisa (2008)

4. Milner, R.: Bigraphs for petri nets. In: Desel, J., Reisig, W., Rozenberg, G. (eds.)
Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 686–701. Springer,
Heidelberg (2004)

5. Sassone, V., Sobociński, P.: A congruence for Petri nets. In: Petri Nets and Graph
Transformation. ENTCS, vol. 127, pp. 107–120. Elsevier, Amsterdam (2005)

6. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

7. Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

8. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992.
LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992)

9. Cardelli, L., Gordon, A.: Mobile ambients. TCS 240(1), 177–213 (2000)
10. Bonchi, F., Gadducci, F., Monreale, G.V.: Labelled transitions for mobile ambi-

ents (as synthesized via a graphical encoding). In: Expressiveness in Concurrency.
ENTCS. Elsevier, Amsterdam (forthcoming, 2008)

11. Rathke, J., Sobociński, P.: Deriving structural labelled transitions for mobile am-
bients. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201,
pp. 462–476. Springer, Heidelberg (2008)

12. Merro, M., Zappa Nardelli, F.: Behavioral theory for mobile ambients. Journal of
the ACM 52(6), 961–1023 (2005)

13. Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to
graph rewriting with borrowed contexts. Mathematical Structures in Computer
Science 16(6), 1133–1163 (2006)

14. Sassone, V., Sobociński, P.: Reactive systems over cospans. In: Logic in Computer
Science, pp. 311–320. IEEE Computer Society, Los Alamitos (2005)

15. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic
and Algebraic Programming 60-61, 17–139 (2004)

16. Milner, R.: Pure bigraphs: Structure and dynamics. Information and Computa-
tion 204(1), 60–122 (2006)

17. Bonchi, F., Gadducci, F., König, B.: Process bisimulation via a graphical encoding.
In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT
2006. LNCS, vol. 4178, pp. 168–183. Springer, Heidelberg (2006)

18. Milner, R.: Local bigraphs and confluence: Two conjectures. In: Expressiveness in
Concurrency. ENTCS, vol. 175, pp. 65–73. Elsevier, Amsterdam (2007)

19. Di Gianantonio, P., Honsel, F., Lenisa, M.: RPO, second-order contexts, and λ-
calculus. In: Amadio, R. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 334–349.
Springer, Heidelberg (2008)

20. Jensen, O., Milner, R.: Bigraphs and transitions. In: Principles of Programming
Languages, pp. 38–49. ACM Press, New York (2003)

21. Grohmann, D., Miculan, M.: Reactive systems over directed bigraphs. In: Caires,
L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 380–394.
Springer, Heidelberg (2007)

22. Fournet, C., Gonthier, G.: A hierarchy of equivalences for asynchronous calculi. In:
Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp.
844–855. Springer, Heidelberg (1998)

23. Honda, K., Yoshida, N.: On reduction-based process semantics. TCS 151(2), 437–
486 (1995)

24. Rathke, J., Sassone, V., Sobocinski, P.: Semantic barbs and biorthogonality. In: Seidl,
H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 302–316. Springer, Heidelberg (2007)

On the Foundations of Quantitative Information Flow

Geoffrey Smith

School of Computing and Information Sciences,
Florida International University, Miami, FL 33199, USA

smithg@cis.fiu.edu

Abstract. There is growing interest in quantitative theories of information flow
in a variety of contexts, such as secure information flow, anonymity protocols, and
side-channel analysis. Such theories offer an attractive way to relax the standard
noninterference properties, letting us tolerate “small” leaks that are necessary in
practice. The emerging consensus is that quantitative information flow should be
founded on the concepts of Shannon entropy and mutual information. But a useful
theory of quantitative information flow must provide appropriate security guar-
antees: if the theory says that an attack leaks x bits of secret information, then x
should be useful in calculating bounds on the resulting threat. In this paper, we
focus on the threat that an attack will allow the secret to be guessed correctly
in one try. With respect to this threat model, we argue that the consensus defini-
tions actually fail to give good security guarantees—the problem is that a random
variable can have arbitrarily large Shannon entropy even if it is highly vulnerable
to being guessed. We then explore an alternative foundation based on a concept
of vulnerability (closely related to Bayes risk) and which measures uncertainty
using Rényi’s min-entropy, rather than Shannon entropy.

1 Introduction

Protecting the confidentiality of sensitive information is one of the most fundamental
security issues:

– In secure information flow analysis [1] the question is whether a program could
leak information about its high (i.e. secret) inputs into its low (i.e. public) outputs.

– In anonymity protocols [2] the question is whether network traffic could reveal
information to an eavesdropper about who is communicating.

– In side-channel analysis [3] the question is whether the running time or power
consumption of cryptographic operations could reveal information about the secret
keys.

A classic approach is to try to enforce noninterference, which says that low outputs are
independent of high inputs; this implies that an adversary can deduce nothing about the
high inputs from the low outputs.

Unfortunately, achieving noninterference is often not possible, because sometimes
we want or need to reveal information that depends on the high inputs. In an election
protocol, for example, the individual votes should be secret, but of course we want to
reveal the tally of votes publicly. And in a password checker, we need to reject an in-
correct password, but this reveals information about what the secret password is not. A

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 288–302, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On the Foundations of Quantitative Information Flow 289

variety of approaches for dealing with these sorts of deliberate violations of noninter-
ference are currently being explored; see Sabelfeld and Sands [4] for a survey.

One promising approach to relaxing noninterference is to develop a quantitative the-
ory of information flow that lets us talk about “how much” information is being leaked,
and perhaps allowing us to tolerate “small” leaks. Such a quantitative theory has long
been recognized as an important generalization of noninterference (see for example
Denning [5, Chapter 5] and Gray [6]) and there has been much recent work in this
area, including the works of Clark, Hunt, Malacaria, and Chen [7,8,9,10,11] Clark-
son, Myers, and Schneider [12], Köpf and Basin [3], Chatzikokolakis, Palamidessi, and
Panangaden [2,13], Lowe [14], and Di Pierro, Hankin, and Wiklicky [15].

In this paper, we consider the foundations of quantitative information flow. The basic
scenario that we imagine is a program (or protocol) that receives some high input H
and produces some low output L. An adversary A, seeing L, might be able to deduce
something about H. We would like to quantify the amount of information in H (A’s
initial uncertainty), the amount of information leaked to L, and the amount of unleaked
information about H (A’s remaining uncertainty). These quantities intuitively ought to
satisfy the following slogan:

“initial uncertainty = information leaked + remaining uncertainty”.

Of course, for a definition of quantitative information flow to be useful, it must be
possible to show that the numbers produced by the theory are meaningful with respect
to security—if the theory says that an attack leaks x bits of secret information, then x
should be useful in calculating bounds on the resulting threat. A natural first step along
these lines is to show that a leakage of 0 corresponds to the case of noninterference. But
this is just a first step—we also must be able to show that differences among nonzero
leakage values have significance in terms of security. This is the key issue which we
explore in this paper.

We begin in Section 2 by establishing our conceptual framework—we consider a
deterministic or probabilistic program c that receives a high input H, assumed to satisfy
a publicly-known a priori distribution, and produces a low output L.

In Section 3, we review definitions of quantitative information flow found in the liter-
ature; we note an emerging consensus toward a set of definitions based on information-
theoretic measures such as Shannon entropy and mutual information.

Section 4 then explores the consensus definitions with respect to the security guar-
antees that they support. After reviewing a number of security guarantees that have
appeared in the literature, we focus our attention on one specific threat model: the prob-
ability that adversary A can guess the value of H correctly in one try. With respect to
this threat model, we argue that the consensus definitions actually do a poor job of mea-
suring the threat; briefly, the problem is that the Shannon entropy H(X) of a random
variable X can be arbitrarily high, even if the value of X is highly vulnerable to being
guessed.

Because of these limitations of the consensus definitions, in Section 5 we propose
an alternative foundation for quantitative information flow. Our definitions are based
directly on a concept of vulnerability, which is closely related to Bayes risk. The vul-
nerability V (X) is simply the maximum of the probabilities of the values of X; it is the
worst-case probability that an adversary could correctly guess the value of X in one try.

290 G. Smith

Using vulnerability, we propose to use min-entropy, defined byH∞(X) = − logV (X),
as a better measure for quantitative information flow. (Min-entropy is an instance of
Rényi entropy [16].)

It should be acknowledged that our observations about the limitations of Shannon
entropy as a measure of uncertainty are not entirely new, having appeared in recent re-
search on anonymity protocols, notably in papers by Tóth, Hornák, and Vajda [17] and
by Shmatikov and Wang [18]; they also propose the use of min-entropy as an alterna-
tive. But these papers do not address information flow generally, considering only the
narrower question of how to quantify an adversary’s uncertainty about who is commu-
nicating in a mix network. In the literature on quantitative information flow, we believe
that the ideas we propose have not previously appeared—see for instance the recent
high-profile papers of Malacaria [10] and Köpf and Basin [3].

In Section 5, we also develop techniques (based on Bayesian inference) for calcu-
lating conditional vulnerability and conditional min-entropy, for both deterministic and
probabilistic programs. And we illustrate the reasonableness of our definitions by con-
sidering a number of examples.

Finally, Section 6 discusses some future directions and concludes.
A preliminary discussion of the ideas in this paper—restricted to deterministic pro-

grams and not using min-entropy—was included as a part of an invited talk and subse-
quent invited tutorial paper at the TGC 2007 Workshop on the Interplay of Programming
Languages and Cryptography [19].

2 Our Conceptual Framework

The framework that we consider in this paper aims for simplicity and clarity, rather than
full generality. We therefore restrict our attention to total programs c with just one input
H, which is high, and one output L, which is low. (Thus we do not consider the case of
programs that receive both high and low inputs, or programs that might not terminate.)
Our goal is to quantify how much, if any, information in H is leaked by program c to L.
More precisely, our question is how much information about H can be deduced by an
adversary A who sees the output L.

We further assume that there is an a priori, publicly-known probability distribution
on H. We therefore assume that H is a random variable with a finite space of possible
values H. We denote the a priori probability that H has value h by P [H = h], and we
assume that each element h of H has nonzero probability. Similarly, we assume that
L is a random variable with a finite space of possible values L, and with probabilities
P [L = �]. We assume that each output � ∈ L is possible, in that it can be produced by
some input h ∈ H.

In general, program c could be deterministic or it could be probabilistic. We consider
these two cases separately.

2.1 Deterministic Programs

If c is a deterministic program, then the output L is a function of the input H; that is,
c determines a function f : H → L such that L = f(H). Now, following Köpf and
Basin [3], we note that f induces an equivalence relation ∼ onH:

On the Foundations of Quantitative Information Flow 291

h ∼ h′ iff f(h) = f(h′).

(In set theory, ∼ is called the kernel of f .) Hence program c partitions H into the
equivalence classes of ∼. We letH denote the equivalence class f−1(�):

H = {h ∈ H | f(h) = �}.

Notice that there are |L| distinct equivalence classes, since we are assuming that each
output � ∈ L is possible. The importance of these equivalence classes is that they bound
the knowledge of the adversaryA: if A sees that L has value �, thenA knows only that
the value of H belongs to the equivalence class H. How much does this equivalence
class tell A about H?

In one extreme, the function determined by c is a constant function, with just one
possible value �. In this case ∼ has just one equivalence classH, which is equal to H.
Hence there is no leakage of H and noninterference holds.

In the other extreme, the function determined by c is one-to-one. Here the equiva-
lence classes of ∼ are all singletons, and we have total leakage of H. Note however
that, given �, adversary A might not be able to compute the equivalence class H effi-
ciently; thus we are adopting a worst-case, information theoretic viewpoint, rather than
a computational one.

As an intermediate example, suppose that H is a 32-bit unsigned integer, with range
0 ≤ H < 232. The program

L := H & 037

copies the last 5 bits of H into L. (Here 037 is an octal constant, and & denotes bitwise
“and”.) In this case, ∼ has 25 = 32 equivalence classes, each of which contains 227

elements. Intuitively, c leaks 5 bits (out of 32) of H.

2.2 Probabilistic Programs

More generally, the program cmight be probabilistic. In this case, each value of H could
lead to more than one value of L, which means that c may not give a partition ofH.

Following [2], we can model a probabilistic program c using a matrix whose rows
are indexed byH and whose columns are indexed by L, where the (h, �) entry specifies
the conditional probability P [L = �|H = h]. Notice that each row of this matrix must
sum to 1. Also notice that in the special case where c is deterministic, each row will
have one entry equal to 1 and all others equal to 0.

3 Existing Definitions of Quantitative Information Flow

Given (deterministic or probabilistic) program c, which may leak information from H to
L, we want to define how much information c leaks. In the literature, such definitions are
usually based on information-theoretic measures, such as Shannon entropy [20,21,22].

First we briefly review some of these measures. Let X be a random variable whose
set of possible values is X . The Shannon entropyH(X) is defined by

H(X) =
∑
x∈X

P [X = x] log
1

P [X = x]
.

292 G. Smith

(Throughout we assume that log denotes logarithm with base 2.) The Shannon entropy
can be viewed intuitively as the “uncertainty about X”; more precisely it can be under-
stood as the expected number of bits required to transmit X optimally.

Given two (jointly distributed) random variables X and Y, the conditional entropy
H(X|Y), intuitively the “uncertainty about X given Y”, is

H(X|Y) =
∑
y∈Y

P [Y = y]H(X|Y = y)

where

H(X|Y = y) =
∑
x∈X

P [X = x|Y = y] log
1

P [X = x|Y = y]
.

Note that if X is determined by Y, thenH(X|Y) = 0.
The mutual information I(X;Y), intuitively the “amount of information shared be-

tween X and Y”, is
I(X;Y) = H(X)−H(X|Y).

Mutual information turns out to be symmetric: I(X;Y) = I(Y;X).
The guessing entropy G(X) is the expected number of guesses required to guess X

optimally; of course the optimal strategy is to guess the values of X in nonincreasing
order of probability. If we assume that X’s probabilities are arranged in nonincreasing
order p1 ≥ p2 ≥ . . . ≥ pn, then we have

G(X) =
n∑
i=1

ipi.

Now we consider how these entropy concepts can be used to quantify information
leakage. Recalling the slogan

initial uncertainty = information leaked + remaining uncertainty

we have three quantities to define. For the initial uncertainty about H, the entropy
H(H) seems appropriate. For the remaining uncertainty about H, the conditional en-
tropy H(H|L) seems appropriate. Finally, for the information leaked to L, the entropy
H(L) might appear appropriate as well, but this cannot be correct in the case where c is
probabilistic. For in that case, Lmight get positive entropy simply from the probabilistic
nature of c, even though there is no leakage from H. So we need something different.

Rearranging the slogan above, we get

information leaked = initial uncertainty − remaining uncertainty.

This suggests that the information leaked to L should beH(H)−H(H|L), which is just
the mutual information I(H;L).

If, however, we restrict to the case where c is deterministic, then we know that L is
determined by H. In that case we haveH(L|H) = 0 which implies that

I(H;L) = I(L;H) = H(L)−H(L|H) = H(L).

On the Foundations of Quantitative Information Flow 293

So, in the case of deterministic programs, the mutual information I(H;L) can be sim-
plified to the entropyH(L).

We can apply these definitions to some example programs. If we assume that H is a
uniformly-distributed 32-bit integer, with range 0 ≤ H < 232, then we get the following
results:

Program H(H) I(H;L) H(H|L)
L := 0 32 0 32
L := H 32 32 0

L := H & 037 32 5 27
Turning to the research literature, the definitions we have described:

– initial uncertainty =H(H)
– information leaked = I(H;L)
– remaining uncertainty =H(H|L)

seem to be the emerging consensus. Clarke, Hunt, and Malacaria [7,8,9,10] use these
definitions, although they also address the more general case where the program c
receives both high and low input. Köpf and Basin [3] use these definitions in their
study of side-channel attacks, but they consider only the deterministic case. (They also
consider guessing entropy and marginal guesswork in addition to Shannon entropy.)
Chatzikokolakis, Palamidessi, and Panangaden [2] also use these definitions in their
study of anonymity protocols. However, they are especially interested in situations
where it is unreasonable to assume an a priori distribution on H; this leads them to
emphasize the channel capacity, which is the maximum value of I(H;L) over all dis-
tributions on H. Finally, the framework of Clarkson, Myers, and Schneider [12] is a
significant extension of what we have described here, because they consider the case
when the adversaryA has (possibly mistaken) beliefs about the probability distribution
on H. But in the special case whenA’s beliefs match the a priori distribution, and when
the expected flow over all experiments is considered (see Section 4.4 of their paper),
then their approach reduces to using the above definitions.

4 Security Guarantees with the Consensus Definitions
Given the consensus definitions of quantitative information flow described in Section 3,
we now turn our attention to the question of what security guarantees these definitions
support.

A first result along these lines is proved in [8]; they show, for deterministic programs,
that H(L) (the “information leaked”) is 0 iff c satisfies noninterference. This is good,
of course, but it is only a sanity check—it establishes that the zero/nonzero distinction
is meaningful, but not that different nonzero values are meaningful.

Really the key question with respect to security is whether the value ofH(H|L) (the
“remaining uncertainty”) accurately reflects the threat to H.

One bound that seems promising in justifying the significance ofH(H|L) is given by
Clark, Hunt, and Malacaria [7] based on work by Massey [23]. It states that the guessing
entropyG(H|L), which is the expected number of guesses required to guess H given L,
satisfies

G(H|L) ≥ 2H(H|L)− 2 + 1 (1)

provided thatH(H|L) ≥ 2. For example, consider the program discussed above,

294 G. Smith

L := H & 037

where H is uniformly distributed with range 0 ≤ H < 232. Here we haveH(H|L) = 27,
since each equivalence class contains 227 elements, uniformly distributed. So by (1) we
have

G(H|L) ≥ 225 + 1

which is quite an accurate bound, since the actual expected number of guesses is

227 + 1
2

.

But note however that when we assess the threat to H, the adversary’s expected number
of guesses is probably not the key concern. The problem is that even if the expected
number of guesses is huge, the adversary might nonetheless have a significant proba-
bility of guessing the value of H in just one try.

A result that addresses exactly this question is the classic Fano inequality, which
gives lower bounds, in terms of H(H|L), on the probability that adversary A will fail
to guess the value of H correctly in one try, given the value of L. Let Pe denote this
probability. The Fano inequality is

Pe ≥
H(H|L)− 1
log(|H| − 1)

. (2)

Unfortunately this bound is extremely weak in many cases. For example, on the pro-
gram

L := H & 037

the Fano inequality gives

Pe ≥
27− 1

log(232 − 1)
≈ 0.8125

But this wildly understates the probability of error, since here the adversary has no
knowledge of 27 of the bits of H, which implies that

Pe ≥
227 − 1

227 ≈ 0.9999999925

One might wonder whether the Fano inequality could be strengthened, but (as we will
illustrate below) this is not in general possible.

Fundamentally, the problem is that H(H|L) is of little value in characterizing the
threat that the adversary, given L, could guess H. We demonstrate this claim through
two key examples. Assume that H is a uniformly distributed 8k-bit integer with range
0 ≤ H < 28k, where k ≥ 2. HenceH(H) = 8k.

The first example is the program

if H mod 8 = 0 then
L := H

else
L := 1

(3)

On the Foundations of Quantitative Information Flow 295

Since this program is deterministic, its information leakage is just H(L). Notice that
the else branch is taken on 7/8 of the values of H, namely those whose last 3 bits are
not all 0. Hence

P [L = 1] =
7
8

and
P [L = 8n] = 2−8k

for each n with 0 ≤ n < 28k−3. Hence we have

H(L) =
7
8

log
8
7

+ 28k−32−8k log 28k ≈ k + 0.169

This implies that
H(H|L) ≈ 7k − 0.169

suggesting that about 7/8 of the information in H remains unleaked. But, since the
then branch is taken 1/8 of the time, the adversary can guess the value of H at least
1/8 of the time! (We remark that this example shows that the Fano inequality cannot in
general be strengthened significantly—here the Fano inequality says that the probability
of error is at least

7k − 1.169
log(28k − 1)

which is close to 7/8 for large k.)
The second example (using the same assumptions about H) is the program

L := H & 07k−11k+1 (4)

where 07k−11k+1 is a binary constant; this program copies the last k + 1 bits of H into
L. Hence we have

H(L) = k + 1

and
H(H|L) = 7k − 1.

Here notice that, given L, the adversary’s probability of guessing H is just 1/27k−1.
The key point to emphasize here is that, under the consensus definitions, program (4)

is actually worse than program (3), even though program (3) leaves H highly vulnerable
to being guessed, while program (4) does not. The conclusion is that, with respect to this
threat model, the consensus definitions do a poor job of measuring the threat: H(H|L)
does not support good security guarantees about the probability that H could be guessed.

5 An Alternative Foundation: Vulnerability and Min-entropy

The limitations of the consensus definitions noted in Section 4 lead us now to explore al-
ternative definitions of quantitative information flow, with the goal of finding a measure
supporting better security guarantees with respect to the probability that the adversary
could guess H in one try.

Rather than inventing a new measure and then trying to prove that it implies good se-
curity guarantees, why not define a measure of remaining uncertainty directly in terms
of the desired security guarantees? To this end, we propose the concept of vulnerability:

296 G. Smith

Definition 1. Given a random variable X with space of possible values X , the vulner-
ability of X, denoted V (X), is given by

V (X) = max
x∈X

P [X = x].

The vulnerability V (X) is thus the worst-case probability that an adversary A could
guess the value of X correctly in one try. It is clearly a rather crude measure, because
it depends only on the maximum probability in the distribution of X, focusing on the
single probability that brings the greatest risk. Limiting to a single guess might seem
unreasonable, of course. But notice that withm guesses the adversary can succeed with
probability at mostmV (X). This implies (very roughly speaking) that if the vulnerabil-
ity withm guesses is “significant”, wherem is a “practical” number of tries, then V (H)
must itself be “significant”.

Vulnerability is a probability, so its value is always between 0 and 1. But to quantify
information flow, we would like to measure information in bits. We can convert to an
entropy measure by mapping V (X) to

log
1

V (X)
.

This, it turns out, gives a measure known as min-entropy:

Definition 2. The min-entropy of X, denotedH∞(X), is given by

H∞(X) = log
1

V (X)
.

As far as we know, min-entropy has not previously been used in quantitative information
flow. But, as noted in Section 1, it has been used to measure the anonymity provided
by mix networks [17,18]. Also, Cachin [24] discusses its relevance in cryptographic
guessing attacks.

Min-entropy is the instance of Rényi entropy [16]

Hα(X) =
1

1− α log

(∑
x∈X

P [X = x]α
)

obtained when α = ∞. Notice that if X is uniformly distributed among n values, then
V (X) = 1/n and H∞(X) = logn. Hence Shannon entropy H(X) and min-entropy
H∞(X) coincide on uniform distributions. But, in general, Shannon entropy can be
arbitrarily greater than min-entropy, since H(X) can be arbitrarily high even if X has a
value with a probability close to 1.

We propose to use H∞(H) as our measure of initial uncertainty. To measure the
remaining uncertainty, we first consider conditional vulnerability, which gives the ex-
pected probability of guessing X in one try, given Y:

Definition 3. Given (jointly distributed) random variables X and Y, the conditional
vulnerability V (X|Y) is

V (X|Y) =
∑
y∈Y

P [Y = y]V (X|Y = y)

On the Foundations of Quantitative Information Flow 297

where
V (X|Y = y) = max

x∈X
P [X = x|Y = y].

We now show that V (H|L) is easy to calculate for probabilistic programs c, given the
a priori distribution on H and the matrix of conditional probabilities P [L = �|H = h].
In fact, V (H|L) is simply the complement of the Bayes risk Pe.

First we note that by Bayes’ theorem we have

P [H = h|L = �]P [L = �] = P [L = �|H = h]P [H = h].

Now we have

V (H|L) =
∑
∈L

P [L = �]V (H|L = �)

=
∑
∈L

P [L = �] max
h∈H

P [H = h|L = �]

=
∑
∈L

max
h∈H

P [H = h|L = �]P [L = �]

=
∑
∈L

max
h∈H

P [L = �|H = h]P [H = h].

It should be noted that [13] proposes Bayes risk as a measure of protection in anonymity
protocols, and also includes essentially the same calculation as above.

We next observe that the calculation of V (H|L) becomes simpler in the special case
where program c is deterministic. For in that case H is partitioned into |L| equivalence
classesH, where

H = {h ∈ H | P [L = �|H = h] = 1}.
Hence we have

V (H|L) =
∑
∈L

max
h∈H

P [L = �|H = h]P [H = h]

=
∑
∈L

max
h∈H�

P [H = h].

Finally, we note that in the special case where c is deterministic and H is uniformly
distributed, the conditional vulnerability becomes very simple indeed:

V (H|L) =
∑
∈L

max
h∈H�

P [H = h]

=
∑
∈L

(1/|H|)

= |L|/|H|

Thus in this case all that matters is the number of equivalence classes. (We remark that
Lowe [14] focuses on a quantity analogous to |L| in quantifying information flow in a
process calculus, even though his approach is not probabilistic.)

298 G. Smith

We now defineH∞(H|L), which will be our measure of remaining uncertainty:

Definition 4. The conditional min-entropyH∞(X|Y) is

H∞(X|Y) = log
1

V (X|Y)
.

Note that this definition of conditional min-entropy is not the same as the one given by
Cachin [24, p. 16], but it is equivalent to the one proposed by Dodis et al. [25].

We now propose the following definitions:

– initial uncertainty =H∞(H)
– remaining uncertainty =H∞(H|L)
– information leaked = H∞(H)−H∞(H|L)

Note that our measure of remaining uncertainty,H∞(H|L), gives an immediate security
guarantee:

V (H|L) = 2−H∞(H|L).

Thus the expected probability that the adversary could guess H given L decreases expo-
nentially with H∞(H|L).

Also note that calculating the information leakage is easy in the case where c is
deterministic and H is uniformly distributed:

Theorem 1. If c is deterministic and H is uniformly distributed, then the information
leaked is log |L|.

Proof. Here we have V (H) = 1/|H| and V (H|L) = |L|/|H|, so

H∞(H)−H∞(H|L) = log |H| − log(|H|/|L|) = log |L|. %&

Let us now revisit example programs (4) and (3) from Section 4 using our new defini-
tions. Because these programs are deterministic and H is uniformly distributed, we only
need to focus on |H| and |L|. Note that |H| = 28k, so the initial uncertaintyH∞(H) is
8k, as before.

On program (4), we get the same values as before. We have |L| = 2k+1, which
implies that the information leaked is k + 1 and the remaining uncertainty is 7k − 1.

But on program (3), we have |L| = 28k−3 + 1, which implies that the information
leaked is about 8k−3 and the remaining uncertainty is about 3. Thus our new measures
hugely increase the leakage ascribed to this program.

It is interesting to compare program (3) with a program that always leaks all but the
last 3 bits of H:

L := H | 07 (5)

(Here | denotes bitwise “or”.) For this program, |L| = 28k−3, so it is ascribed almost
exactly the same leakage as program (3). Notice that while both of these programs make
H highly vulnerable, the threats are different: with program (3), the adversaryA learns
H completely 1/8 of the time, and learns very little 7/8 of the time; with program (5),
in contrast,A never learns H completely, but always learns it to within 8 possible values.

On the Foundations of Quantitative Information Flow 299

Is it reasonable to ascribe the same leakage to programs (3) and (5)? That seems hard to
answer without further assumptions. For instance, ifA is allowed several guesses, rather
than just one, then program (5) is clearly worse. On the other hand, if a wrong guess
would trigger an alert, then program (3) might be worse, since thenA knows whether it
knows H or not, and could choose to make a guess only when it knows. These examples
suggest the difficulty of measuring a range of complex threat scenarios precisely using
a single number; still, we feel that one-guess vulnerability is a sufficiently basic concern
to serve as a generally useful foundation.

As another example, consider a password checker, which tests whether H (assumed
uniformly distributed) is equal to some particular value and assigns the result to L. Since
|L| = 2, we get a leakage of 1 here.

We remark that Köpf and Basin [3] briefly consider worst-case entropy measures
in addition to the “averaging” measures (like G(H|L)) used in the rest of their paper.
Specifically, they define the minimum guessing entropy by

Ĝ(H|L) = min
∈L

G(H|L = �).

But this measure is not very useful, as shown by the password checker example—the
password checker splitsH into 2 equivalence classes, one of which is a singleton. Hence
the minimum guessing entropy is 1. This measure thus judges a password checker to be
as bad as a program that leaks H completely.

As a final example, consider an election system. Suppose that we have an election
between candidates A and B with k voters, whose individual votes are represented by
the k-bit random variable H. We (unrealistically) assume that each voter independently
votes for either A or B with probability 1/2, which implies that H is uniformly dis-
tributed over 2k values. The election system reveals into L the tally of votes received
by candidateA, which means that L ranges over {0, 1, 2, . . . , k}. Here the initial uncer-
tainty is k and the leakage is log(k + 1). And the conditional vulnerability is

V (H|L) =
k + 1
2k

some of whose values are shown in the following table:

k 1 2 3 4 5 6
V (H|L) 1 3/4 1/2 5/16 3/16 7/64

So the adversary’s ability to guess the individual votes decreases exponentially with k.
We conclude this section with a curious result, whose significance is unclear (to me,

at least). In the case of a deterministic program c and uniformly-distributed H, it turns
out that our new definition of information leakage exactly coincides with the classical
notion of the channel capacity of c.

Theorem 2. If c is deterministic and H is uniformly distributed, then the information
leaked, log |L|, is equal to the channel capacity of c.

Proof. In the deterministic case, the channel capacity is the maximum value of H(L)
over all distributions on H. This maximum is log |L|, since L has |L| possible values and
we can put a distribution on H that makes them all equally likely. (This observation is
also made in [11].) Curiously, this will typically not be a uniform distribution on H. %&

300 G. Smith

But perhaps this result is just a coincidence—it does not generalize to the case of prob-
abilistic programs.

6 Conclusion

In this paper, we have focused on one specific, but natural, threat model: the expected
probability that an adversary could guess H in one try, given L. We have argued that
the consensus definitions of quantitative information flow do poorly with respect to
this threat model, and have proposed new definitions based on vulnerability and
min-entropy.

We mention some important future directions. First, the reasonableness of our defi-
nitions should be further assessed, both in terms of their theoretical properties and also
by applying them in various specific threat scenarios. Also the definitions need to be
generalized to model explicitly allowed flows, such as from low inputs to low outputs
or (perhaps) from the secret individual votes in an election to the public tally. It would
seem that this could be handled through conditional min-entropy.

Second, the possibility of enforcing quantitative information flow policies through
static analysis needs to be explored; in the case of the standard measures there has been
progress [9], but it is unclear whether min-entropy can be handled similarly. The results
presented in Section 5 on how to calculate vulnerability seem encouraging, especially in
the important special case of a deterministic program cmapping a uniformly-distributed
H to an output L. For there we found that the leakage is simply log |L|. This fact seems
to give insight into the difference between the cases of password checking and binary
search. For in a password checker, we test whether a guess g is equal to the secret pass-
word. If the test comes out true, we know that the password is g; if it comes out false,
we know only that the password is not g. Hence such a guess splits the spaceH into two
equivalence classes, {g} andH−{g}. This implies that any tree of guesses of height k
can give only k+ 1 equivalence classes, which means that the vulnerability of the pass-
word increases slowly. In contrast, in binary search we compare the size of a guess g with
the secret, discovering which is larger. Hence (with a well-chosen guess) we are able to
split the spaceH into two equivalence classes of roughly equal size. This implies that a
tree of guesses of height k can give 2k equivalence classes, which means that the vul-
nerability of the secret increases very rapidly. These examples do raise concerns about
compositionality, however, because the tests g = H and g ≤ H both have a leakage of 1
under our definitions, even though sequences of these tests behave so differently.

Finally, it would be valuable (but challenging) to integrate the information-theoretic
viewpoint used here with the computational complexity viewpoint used in
cryptography.

Acknowledgments

I am grateful to Rafael Alpı́zar, Zesheng Chen, Pasquale Malacaria, Ziyuan Meng,
Andrew Myers, Catuscia Palamidessi, and the anonymous reviewers for helpful dis-
cussions of this work. This work was partially supported by the National Science Foun-
dation under grants HRD-0317692 and CNS-0831114.

On the Foundations of Quantitative Information Flow 301

References

1. Sabelfeld, A., Myers, A.C.: Language-based information flow security. IEEE Journal on Se-
lected Areas in Communications 21(1), 5–19 (2003)

2. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity protocols as noisy chan-
nels. Information and Computation 206, 378–401 (2008)

3. Köpf, B., Basin, D.: An information-theoretic model for adaptive side-channel attacks. In:
Proceedings 14th ACM Conference on Computer and Communications Security, Alexandria,
Virginia (2007)

4. Sabelfeld, A., Sands, D.: Dimensions and principles of declassification. In: Proceedings 18th
IEEE Computer Security Foundations Workshop (June 2005)

5. Denning, D.: Cryptography and Data Security. Addison-Wesley, Reading (1982)
6. Gray III, J.W.: Probabilistic interference. In: Proceedings 1990 IEEE Symposium on Security

and Privacy, Oakland, CA, pp. 170–179 (May 1990)
7. Clark, D., Hunt, S., Malacaria, P.: Quantitative analysis of the leakage of confidential data.

Electronic Notes in Theoretical Computer Science 59(3) (2002)
8. Clark, D., Hunt, S., Malacaria, P.: Quantitative information flow, relations and polymorphic

types. Journal of Logic and Computation 18(2), 181–199 (2005)
9. Clark, D., Hunt, S., Malacaria, P.: A static analysis for quantifying information flow in a

simple imperative language. Journal of Computer Security 15, 321–371 (2007)
10. Malacaria, P.: Assessing security threats of looping constructs. In: Proceedings 34th Sympo-

sium on Principles of Programming Languages, Nice, France, pp. 225–235 (January 2007)
11. Malacaria, P., Chen, H.: Lagrange multipliers and maximum information leakage in different

observational models. In: Proc. PLAS 2008: ACM SIGPLAN Workshop on Programming
Languages and Analysis for Security, Tucson, Arizona, USA, pp. 135–146 (June 2008)

12. Clarkson, M., Myers, A., Schneider, F.: Belief in information flow. In: Proceedings 18th
IEEE Computer Security Foundations Workshop, Aix-en-Provence, France, pp. 31–45 (June
2005)

13. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Probability of error in information-
hiding protocols. In: Proceedings 20th IEEE Computer Security Foundations Symposium,
pp. 341–354 (2007)

14. Lowe, G.: Quantifying information flow. In: Proceedings 15th IEEE Computer Security
Foundations Workshop, Cape Breton, Nova Scotia, Canada, pp. 18–31 (June 2002)

15. Di Pierro, A., Hankin, C., Wiklicky, H.: Approximate non-interference. In: Proceedings 15th
IEEE Computer Security Foundations Workshop, Cape Breton, Nova Scotia, Canada, pp.
1–17 (June 2002)

16. Rényi, A.: On measures of entropy and information. In: Proceedings of the 4th Berkeley
Symposium on Mathematics, Statistics and Probability 1960, pp. 547–561 (1961)

17. Tóth, G., Hornák, Z., Vajda, F.: Measuring anonymity revisited. In: Liimatainen, S., Virtanen,
T. (eds.) Proceedings of the Ninth Nordic Workshop on Secure IT Systems, Espoo, Finland,
pp. 85–90 (2004)

18. Shmatikov, V., Wang, M.H.: Measuring relationship anonymity in mix networks. In: WPES
2006: Proceedings of the 5th ACM workshop on Privacy in Electronic Society, Alexandria,
Virginia, pp. 59–62 (2006)

19. Smith, G.: Adversaries and information leaks (Tutorial). In: Barthe, G., Fournet, C. (eds.)
TGC 2007. LNCS, vol. 4912, pp. 383–400. Springer, Heidelberg (2008)

20. Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27,
379–423 (1948)

302 G. Smith

21. Gallager, R.G.: Information Theory and Reliable Communication. John Wiley and Sons, Inc.,
Chichester (1968)

22. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. John Wiley & Sons,
Inc., Chichester (2006)

23. Massey, J.L.: Guessing and entropy. In: Proceedings 1994 IEEE International Symposium on
Information Theory, p. 204 (1994)

24. Cachin, C.: Entropy Measures and Unconditional Security in Cryptography. PhD thesis,
Swiss Federal Institute of Technology (1997)

25. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. SIAM Journal of Computing 38(1), 97–139
(2008)

Cryptographic Protocol Composition
via the Authentication Tests�

Joshua D. Guttman

The MITRE Corporation
guttman@mitre.org

http://eprint.iacr.org/2008/430

Abstract. Although cryptographic protocols are typically analyzed in
isolation, they are used in combinations. If a protocol Π1, when analyzed
alone, was shown to meet some security goals, will it still meet those goals
when executed together with a second protocol Π2? Not necessarily:
for every Π1, some Π2s undermine its goals. We use the strand space
“authentication test” principles to suggest a criterion to ensure a Π2

preserves Π1’s goals; this criterion strengthens previous proposals.
Security goals for Π1 are expressed in a language L(Π1) in classi-

cal logic. Strand spaces provide the models for L(Π1). Certain homo-
morphisms among models for L(Π) preserve the truth of the security
goals. This gives a way to extract—from a counterexample to a goal
that uses both protocols—a counterexample using only the first protocol.
This model-theoretic technique, using homomorphisms among models to
prove results about a syntactically defined set of formulas, appears to be
novel for protocol analysis.

Protocol analysis usually focuses on the secrecy and authentication properties
of individual, finished protocols. There is a good reason for this: Each security
goal then definitely either holds or does not hold. However, the analysis is more
reusable if we know which results will remain true after combination with other
protocols, and perhaps other kinds of elaborations to the protocol.

In practice, every protocol is used in combination with other protocols, of-
ten with the same long-term keys. Also, many protocols contain messages with
“blank slots.” Higher level protocols piggyback on them, filling the blank spots
with their own messages. We want to find out when the goals that hold of a
protocol on its own are preserved under combination with other protocols, and
when these blanks are filled in.

Two Results on Composition. Two existing results, both within the Dolev-
Yao model [12], are particularly relevant. We showed [17] that if two protocols
manipulate disjoint sets of ciphertexts, then combining the protocols cannot un-
dermine their security goals. A careful, asymmetric formulation of this “disjoint
encryption” property allowed us to show that one protocol Π1 may produce

� Supported by MITRE-Sponsored Research.

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 303–317, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

304 J.D. Guttman

ciphertexts—in a broad sense including digital certificates as well as Kerberos-
style tickets—consumed by another protocol Π2, without Π2 undermining any
security goal of Π1. The relation between Π1 and Π2 is asymmetric in that
security goals of Π2 could be affected by the behavior of Π1, but not conversely.

Our result concerned only protocols that completely parse the messages they
receive to atomic values, leaving no unstructured blank slots. A second limita-
tion was to cover protocols using only atomic keys, not keys produced (e.g.) by
hashing compound messages. A recent result by Delaune et al. [8] lifts these two
limitations, but only in the symmetric case (akin to our Def. 9, clause 4). It
applies only when neither protocol produces ciphertexts that may be consumed
by the other, and hence when neither protocol could affect goals achieved by the
other alone. Their method appears not to extend beyond this symmetric case.

One goal of this paper is an asymmetric result covering blank slots and com-
pound keys.

Our Approach. Protocol executions—more specifically, the parts carried out
by the rule-abiding, “regular” participants, but not the adversary—form objects
we call skeletons [11]. A skeleton is realized if it contains enough protocol be-
havior so that, when combined with some adversary behavior, it can occur. If
additional regular behavior is needed for a possible execution, then it is unreal-
ized.

We introduce a new first order language L(Π) to describe skeletons of each
protocol Π . Skeletons containing regular behaviors of Π provide a semantics, a
set of models, for formulas of L(Π). Security goals are closed formulas G ∈ L(Π)
of specific forms. A skeleton A is a counterexample to G when A is realized, but
A satisfies G’s negation, A |= ¬G.

When Π1 and Π2 are protocols, L(Π1) is a sublanguage of L(Π1 ∪Π2), and
the security goals G1 of L(Π1) are some the goals of L(Π1 ∪Π2). The skeletons
of Π1 are those skeletons of Π1 ∪Π2 in which only Π1 activity occurs.

We will define a syntactic relation between Π1 and Π2, called strong disjoint
encryption, that ensures goals G1 ∈ L(Π1) are preserved. If anyΠ1∪Π2-skeleton
is a counterexample to G1 ∈ L(Π1), we want to extract a Π1-skeleton A1 which
is a counterexample to G1. Thus, Π1 alone already undermines any goal that
Π1, Π2 undermine jointly. The language L(Π), the definition of strong disjoint-
ness, and this result are the contributions of this paper.

The authentication test principles [10] suggest the definition of strong disjoint
encryption, in two parts. First, Π2 should not create encryptions of forms spec-
ified in Π1; i.e. Π2 should have no creation conflicts. Second, if a Π2 execution
receives a value only inside encryptions specified in Π1, it should not re-transmit
the value outside these encryptions; i.e. there should be no extraction conflicts.

We find Π1-counterexamples from Π1 ∪ Π2-counterexamples in two steps.
First, we omit all non-Π1 behavior. Second, we generalize: we remove all en-
crypted units not specified in Π1 by inserting blank slots in their place. Each of
these operations preserves satisfaction of ¬G1. When Π1, Π2 has strong disjoint-
ness, they yield realized Π1 skeletons from realized Π1 ∪ Π2 skeletons. Hence,
they preserve counterexamples.

Cryptographic Protocol Composition via the Authentication Tests 305

xˆekc � TPM

•
�

I ˆK ˆxˆekc � I ˆK ˆxˆekc� PCA

•
�

� {|aic|}EK �{|aic|}EK •
�

�aicˆkeyrec •
��

STORE
aicˆkeyrec � •

ekc = [[ekc MFˆEK]]sk(MF) aic = [[aic I ˆK ˆx]]sk(PCA)

keyrec = {|aikrec K, K−1|}SRK

Fig. 1. Modified Anonymous Identity Protocol

This reasoning is model-theoretic, characteristically combining two elements.
One is the algebraic relations (embeddings and restrictions, homomorphisms,
etc.) among the structures interpreting a logic. The second concerns syntax, often
focusing on formulas of particular logical forms. A familiar example, combining
these two ingredients, is the fact that a homomorphism between two structures
for first order logic preserves satisfaction for atomic formulas.

A second goal of this paper is to illustrate this model-theoretic approach to
security protocols.

Structure of This Paper. We first give an example certificate distribution
protocol called MAIP. Section 1 gives background on strand spaces, including
authentication tests. The goals of MAIP are formalized in L(Π), introduced
(along with its semantics) in Section 2. Multiprotocols and strong disjointness
are defined in Section 3. Section 4 gives the main results, and concludes.

Example: Anonymous Identities in Trusted Computing. A certificate
distribution protocol (see Fig. 1) for “anonymous identity keys” is used with
Trusted Platform Modules (TPMs). A Privacy Certificate Authority (PCA) cre-
ates a certificate aic binding a key K to a temporary name I. K is a public
signature verification key. The certificate authorizes the signing key K−1 to sign
requests on behalf of the holder of I [4].

Since the PCA knows nothing about the origin of a request, it transmits aic
encrypted under key EK. The TPM manufacturer MF certifies in ekc that the
matching private decryption key EK−1 resides within a TPM. If the request
did not originate from this TPM, the certificate will never be decrypted, while
otherwise that TPM will protect K−1 and use it according to certain rules. In
particular, the TPM emits K,K−1 encrypted with a storage key SRK that only
it possesses; this key record can be reloaded and used later.

We have omitted some details, and added a “blank slot” parameter x, which
may be used to restrict the use of the aic. For instance, x can determine when
the certificate expires, or it can limit its use to specific later protocols.

306 J.D. Guttman

[[m]]sk(A) refers to m accompanied by a digitally signed hash, created with
a signature key held by A. The tags ekc, aic, and aikrec are bitpatterns that
distinguish units containing them from other cryptographically prepared values.

Security Goals of MAIP. MAIP has three main goals. They should hold
whenever an aic, keyrec pair is successfully stored for future use. First, the PCA
should have produced aic, and transmitted it encrypted with some EK. Second,
the TPM should have received aic encrypted with this EK, and retransmitted it in
the clear. These goals are authentication goals, since they assert that uncompro-
mised (regular) principals executed certain actions. The third is a confidentiality
goal, stating that the private part K−1 of the AIK should never be observed,
unprotected by encryption. Making our assumptions explicit, we get:

Whenever 1. STORE gets a message using parameters I,K, x,PCA, SRK;
2. sk(MF), sk(PCA), SRK−1 are used only in accordance with MAIP;
3. K,K−1 are generated only once,

then, for some public key EK,
1. A PCA run using the parameters I,K, x,PCA,EK reached step 2;
2. A TPM run using the parameters I,K, x,PCA,EK, SRK reached step 3;
3. K−1 is never observed, unprotected by encryption.

Since the definitions of the protocol’s roles are fixed, the goals do not need to say
anything about the forms of the messages. They say only how far the role has
progressed, and with what parameters. The unlinkability of K to a particular
EK matches the classical existential quantifier used here.

MAIP and Other Protocols. A certificate distribution protocol like MAIP,
on its own, is precisely useless.

MAIP becomes useful only if principals executing other protocols generate
messages signed with K−1, and accept messages verified with K, accompanied
by a matching aic. For instance, a message signed with K−1 could be used to
request access to network services, as is now widely done with Kerberos. More
ambitiously, the aic could be regarded as a check-signing certificate from a bank’s
PCA. Then K−1 can be used to sign on-line checks that are anonymous to the
payee, but guaranteed by the bank (Fig. 2). The blank slots g, a may be filled
with formatted data representing the goods offered and amount to be paid.

C �Nmˆgˆa �Nmˆgˆa
M

•
�

aicˆchk � aicˆchk� •
�
•
�

aicˆendorsed� aicˆendorsed� B

•
�
�����

�[[pd chk]]sk(B) �[[pd chk]]sk(B) •
�

chk = [[chk I ˆM ˆaˆNm ˆhash(g)]]K−1 endorsed = [[ndrs chk]]sk(M)

Fig. 2. AIC-based check cashing

Cryptographic Protocol Composition via the Authentication Tests 307

Unfortunately, the symmetric criterion for combining protocols [8] says noth-
ing about how to construct such secondary protocols, since aic is a cryptographic
unit that must be shared between the protocols. Our asymmetric criterion [17]
does not apply, since MAIP, like many protocols, contains a blank slot x.

A criterion for safe composition should guide protocol designers to construct
suites that work together. Our criterion says to avoid encryption creation con-
flicts and extraction conflicts. The protocol must not create anything unifying
with the aic, ekc, and keyrec message formats, or with an aic encrypted with a
public key. It must not extract anything that unifies with an aic from an en-
crypted item such as {|aic|}EK. Creating and extracting units of these forms must
remain the exclusive right of the primary protocol MAIP.

Our criterion of strongly disjoint encryption (Def. 9, Thm. 2) indicates that
these are the only constraints on secondary protocols to interoperate with MAIP.

1 Messages, Protocols, Skeletons

Let A0 be an algebra equipped with some operators and a set of homomorphisms
η : A0 → A0. We call members of A0 atoms.

For the sake of definiteness, we will assume here that A0 is the disjoint union
of infinite sets of nonces, atomic keys, names, and texts. The operator sk(a) maps
names to (atomic) signature keys, and K−1 maps an asymmetric atomic key to
its inverse, and a symmetric atomic key to itself. Homomorphisms η are maps
that respect sorts, and act homomorphically on sk(a) and K−1.

LetX is an infinite set disjoint from A0; its members—called indeterminates—
act like unsorted variables. A is freely generated from A0∪X by two operations:
encryption {|t0|}t1 and tagged concatenation tag t0ˆt1, where the tags tag are
drawn from some set TAG. For a distinguished tag nil , we write nil t0ˆt1 as
t0ˆt1 with no tag. In {|t0|}t1 , a non-atomic key t1 is a symmetric key. Members
of A are called messages.

A homomorphism α = (η, χ) : A → A consists of a homomorphism η on atoms
and a function χ : X → A. It is defined for all t ∈ A by the conditions:

α(a) = η(a), if a ∈ A0 α({|t0|}t1) = {|α(t0)|}α(t1)
α(x) = χ(x), if x ∈ X α(tag t0ˆt1) = tag α(t0)ˆα(t1)

Indeterminates x serve as blank slots, to be filled by any χ(x) ∈ A. This A has
the most general unifier property, which we will rely on. That is, suppose that
for v, w ∈ A, there exist α, β such that α(v) = β(w). Then there are α0, β0, such
that α0(v) = β0(w), and whenever α(v) = β(w), then α and β are of the forms
γ ◦ α0 and γ ◦ β0. Messages are abstract syntax trees in the usual way:

1. Let � and r be the partial functions such that for t = {|t1|}t2 or t = tag t1ˆt2,
�(t) = t1 and r(t) = t2; and for t ∈ A0, � and r are undefined.

2. A path p is a sequence in {�, r}∗. We regard p as a partial function, where
〈〉 = Id and cons(f, p) = p ◦ f . When the rhs is defined, we have: 1. 〈〉(t) = t;
2. cons(�, p)(t) = p(�(t)); and 3. cons(r, p)(t) = p(r(t)).

3. p traverses a key edge in t if p1(t) is an encryption, where p = p1
�〈r〉�p2.

4. p traverses a member of S if p1(t) ∈ S, where p = p1
�p2 and p2 �= 〈〉.

308 J.D. Guttman

5. t0 is an ingredient of t, written t0 � t, if t0 = p(t) for some p that does not
traverse a key edge in t.1

6. t0 appears in t, written t0 6 t, if t0 = p(t) for some p.

A single local session of a protocol at a single principal is a strand, containing a
linearly ordered sequence of transmissions and receptions that we call nodes. In
Fig. 1, the vertical columns of nodes connected by double arrows⇒ are strands.

A message t0 originates at a node n1 if (1) n1 is a transmission node; (2)
t0 � msg(n1); and (3) whenever n0 ⇒+ n1, t0 �� msg(n0).

Thus, t0 originates when it was transmitted without having been either re-
ceived or transmitted previously on the same strand. Values assumed to originate
only on one node in an execution—uniquely originating values—formalize the
idea of freshly chosen, unguessable values. Values assumed to originate nowhere
may be used to encrypt or decrypt, but are never sent as message ingredients.
They are called non-originating values. For a non-originating value K, K �� t
for any transmitted message t. However, K 6 {|t0|}K � t possibly, which is why
we distinguish � from 6. See [18,11] for more details.

In the tree model of messages, to apply a homomorphism, we walk through,
copying the tree, but inserting α(a) every time an atom a is encountered, and
inserting α(x) every time that an indeterminate x is encountered.

Definition 1. Let S be a set of encryptions. A message t0 is found only within
S in t1, written t0 7S t1, iff for every path p such that p(t1) = t0, either (1) p
traverses a key edge or else (2) p traverses a member of S before its end.

Message t0 is found outside S in t1, written t0 †S t1, iff not (t0 7S t1). %&

Equivalently, t0 †S t1 iff for some path p, (1) p(t1) = t0, (2) p traverses no key
edge, and (3) p traverses no member of S before its end. Thus, t0 � t1 iff t0 †∅ t1.

E.g. aic †∅ {|aic|}EK, although aic 7S1 {|aic|}EK, where S1 = { {|aic|}EK }. The
TPM transforms aic, transmitting a t such that aic †S1 t, namely t = aicˆkeyrec.

Protocols. A protocol Π is a finite set of strands, representing the roles of the
protocol. Three of the roles of the MAIP are the strands shown in Fig. 1. Their
instances result by replacing I,K, etc., by any name, asymmetric key, etc., and
replacing x by any (possibly compound) message. The fourth role is the listener
role Lsn[y] with a single reception node in which y is received. The instances
of Lsn[y] are used to document that values are available without cryptographic
protection. For instance, Lsn[K] would document that K is compromised. Every
protocol contains the role Lsn[y].

Indeterminates represent messages received from protocol peers, or passed
down as parameters from higher-level protocols. Thus, we require:

If n1 is a node on ρ ∈ Π , with an indeterminate x6 msg(n1),
then ∃n0, n0 ⇒∗ n1, where n0 is a reception node and x � msg(n0).

1 � was formerly called the “subterm” relation [18], causing some confusion. A key
is not an ingredient in its ciphertexts, but an aspect of how they were prepared, so
K �� {|t|}K unless K � t. Also, � ∩ (A0 × A0) = IdA0 , so e.g. a �� sk(a).

Cryptographic Protocol Composition via the Authentication Tests 309

So, an indeterminate is received as an ingredient before appearing in any other
way. The initial node on the TPM AIC role in Fig. 1 shows x being received
from the higher level protocol that has invoked the TPM activity.

A principal executing a role such as the PCA’s role in MAIP may be partway
through its run; for instance, it may have executed the first receive event without
“yet” having executed its second event, the transmission node.

Definition 2. Node n is a role node of Π if n lies on some ρ ∈ Π.
Let nj be a role node of Π of the form n1 ⇒ . . .⇒ nj ⇒ Node mj is an

instance of nj if, for some homomorphism α, the strand of mj, up to mj, takes
the form: α(n1)⇒ . . .⇒ α(nj) = mj. %&
That is, messages and their directions—transmission or reception—must agree
up to node j. However, any remainders of the two strands beyond node j are
unconstrained. They need not be compatible. When a protocol allows a principals
to decide between different behaviors after step j, based on the message contents
of their run, then this definition represents branching [14,16]. At step j, one
doesn’t yet know which branch will be taken.

Skeletons. A skeleton A consists of (possibly partially executed) role instances,
i.e. a finite set of nodes, nodes(A), with two additional kinds of information:

1. A partial ordering 3A on nodes(A);
2. Finite sets uniqueA, nonA of atomic values assumed uniquely originating and

respectively non-originating in A.

nodes(A) and 3A must respect the strand order, i.e. if n1 ∈ nodes(A) and n0 ⇒
n1, then n0 ∈ nodes(A) and n0 3A n1. If a ∈ uniqueA, then a must originate at
most once in nodes(A). If a ∈ nonA, then a must originate nowhere in nodes(A),
though a or a−1 may be the key encrypting some e6 msg(n) for n ∈ nodes(A).

A is realized if it is a possible run without additional activity of regular par-
ticipants; i.e., for every reception node n, the adversary can construct msg(n)
via the Dolev-Yao adversary actions,2 using as inputs:

1. all messages msg(m) where m ≺A n and m is a transmission node;
2. any atomic values a such that a �∈ (nonA∪uniqueA), or such that a ∈ uniqueA

but a originates nowhere in A.

A homomorphism α yields a partial function on skeletons. We apply α to the
messages on all nodes of A, as well as to the sets uniqueA and nonA. We regard α
as a homomorphism from A to α(A), when this is defined. However, α must not
identify K ∈ nonA with any atom that is an ingredient in any message in A, or
identify a ∈ uniqueA with another atom if this would give α(a) two originating
nodes in α(A). A homomorphism α always acts as a bijection between nodes(A)
and nodes(α(A)). In [11] we use a compatible although more inclusive notion of
homomorphism, since the action on nodes is not always bijective.
2 The Dolev-Yao adversary actions are: concatenating messages and separating the

pieces of a concatenation; encrypting a given plaintext using a given key; and de-
crypting a given ciphertext using the matching decryption key.

310 J.D. Guttman

Authentication Tests. The core proof method in the strand space framework
is the authentication test idea [11,10].3 The idea concerns a realized skeleton A
and a value c. If c was found only within a set of encryptions S, up to some point,
and is later found outside S, then this “test” must be explained or “solved.”
Solutions are of two kinds: Either a key is compromised, so the adversary can
create an occurrence of c outside S, or else a regular strand has a transmission
node m1 where, for all earlier nodes m0 ⇒+ m1,

c 7S msg(m0), but c †S msg(m1).

Since there are only finitely many roles in Π , unification on their nodes can find
all candidates for regular solution nodes m1. We formalize this using cuts.

Definition 3. Let c be an atom or an encryption, and S be a set of encryptions.
Cut(c, S,A), the test cut for c, S in A, is defined if ∃n1 ∈ nodes(A) such that
c †S msg(n1). In this case,

Cut(c, S,A) = {n ∈ nodes(A) : ∃m.m 3A n ∧ c †S msg(m)}. %&

For instance, in any skeleton A containing a full run of the TPM role, its fourth
node n4 is in the cut Cut(aic, S,A) for every S, since n4 transmits aic outside
every encryption. Letting A0 be the skeleton containing all the activity in Fig. 1,
with the visually apparent ordering, the third TPM node n3 ∈ Cut(aic, ∅,A) but
n3 �∈ Cut(aic, S1,A) where S1 = { {|aic|}EK }. In all m 3A0 n3, aic 7S1 msg(m).

Definition 4. U = Cut(c, S,A) is solved if for every 3A-minimal m1 ∈ U :

1. either m1 is a transmission node;
2. or there is a listener node m = Lsn[t] with m ≺A m1, and either

(a) c = {|t0|}t1 and t1 = t, or else
(b) for some {|t0|}t1 ∈ S, t is the corresponding decryption key t = t−1

1 . %&
In the skeleton A0 from Fig. 1, the cut Cut(aic, S1,A) is solved by n4. The cut
Cut(aic, ∅,A) is solved by the second PCA node, which transmits {|aic|}EK, which
means that it occurs outside the empty set at this point.

In MAIP, these are the two important cuts. In skeleton A0, they are solved by
regular strands emitting the aic (clause 1) in new forms, but in other skeletons
they could be solved by a listener node m = Lsn[privk(PCA)] (clause 2a), or, for
S1, by m′ = Lsn[EK−1] (clause 2b). In skeletons in which EK−1 and privk(PCA)
are non-originating, then the TPM and PCA strands offer the only solutions.

Theorem 1 ([10]).

1. If every well-defined cut in A is solved, A is realized.
2. If A is realized, then A has an extension A′, obtained by adding only listener

nodes, in which every well-defined cut is solved.

Clauses 1 and 2 assert completeness [10, Prop. 5], and soundness [10, Props. 2,3],
respectively.
3 A fine point is that [11] worked in a framework without indeterminates X, while [10]

established its completeness result for a stronger framework including them.

Cryptographic Protocol Composition via the Authentication Tests 311

2 The Goal Language L(Π)

L(Π) is a language for talking about executions of a protocol Π . We use type-
writer font x, m, etc. for syntactic items including metasymbols such as Φ, RhoJ.

Definition 5. L(Π) is the classical quantified language with vocabulary:

Variables (unsorted) ranging over messages in A and nodes;
Function symbols sk, inv for the functions on A0;
Predicate symbols equality u = v, falsehood false (no arguments), and:

– Non(v), Unq(v), and UnqAt(n, v);
– DblArrw(m, n) and Prec(m, n);
– One role predicate RhoJ for each role ρ ∈ Π and each j with 1 ≤ j ≤

length(ρ). The predicate RhoJ(m, v1, . . . , vi) for the jth node on ρ has
as arguments: a variable m for the node, and variables for each of the i
parameters that have appeared in any of ρ’s first j messages. %&

Suppose for the moment that a message value v is associated with each variable
v, and the nodes m,n are associated with the variables m, n. Then the predicates
Non(v), Unq(v), and UnqAt(n, v) are (respectively) true in a skeleton A when v
is assumed non-originating in nonA; when v is assumed uniquely originating in
uniqueA; and when v is assumed uniquely originating in uniqueA and moreover
originates at the node n in A. The predicates DblArrw(m, n) and Prec(m, n) are
(respectively) true in a skeleton A when the node m lies immediately before the
node n, i.e. m⇒ n; and when m ≺A n.

Role predicate RhoJ(m, v1, . . . , vi) is true in a skeleton A when m is the jth

node of an instance of role ρ, with its parameters (in some conventional order)
instantiated by the associated values v1, . . . , vi. The role predicates are akin to
the role state facts of multiset rewriting [13].

In particular, since every protocol Π contains the listener role Lsn[y], L(Π)
always has a role predicate Lsn1(m, x), meaning that m is the first node on a
listener strand receiving message x. It is used to express confidentiality goals.

The MAIP TPM role has four role predicates; the first two are:

– maip tpm1(m, x), meaning that m is a reception node not preceded by any
other on its strand, and the message received is on node m is just the pa-
rameter x, as dictated by the definition of the MAIP TPM role;

– maip tpm2(m, x, i, k, f, e), meaning that m lies on the second position on its
strand after a node m′ such that maip tpm1(m′, x), andm transmits message:
iˆkˆxˆ[[ekc f ˆe]]sk(f). These are not independent; a valid formula is:

maip tpm2(m2, x, i, k, f, e) ⊃ ∃m1 . DblArrw(m1, m2) ∧ maip tpm1(m1, x).

If Π1 is a subprotocol of Π in the sense that every role of Π1 is a role of Π , then
L(Π1) is a sublanguage of L(Π).

Two ingredients are conspicuously missing from L(Π). First, L(Π) has no
function symbols for the constructors of A, namely encryption and concate-
nation. Second, L(Π) has no function which, given a node, would return the
message sent or received on that node. We omitted them for two reasons.

312 J.D. Guttman

∀m, I, K, x, PCA, MF, SRK .

if Store1(m, I, K, x, PCA, SRK) (Φ1)
∧ Non(skMF) ∧ Non(skPCA) ∧ Non(SRK) (Φ2)
∧ Unq(K) ∧ Unq(inv(K)) (Φ3)
then ∃n1, n2, EK .

Pca2(n1, I, K, x, PCA, EK) ∧ Tpm4(n2, I, K, x, PCA, EK, SRK).

∀m, n, I, K, x, PCA, MF, SRK . if Φ1 ∧ Φ2 ∧ Φ3 ∧ Lsn1(n, inv(K)) then false.

Fig. 3. Authentication and confidentiality goals in L(Π)

First, the security goals we want to express need not be explicit about the
forms of the messages sent and received. They need only refer to the underlying
parameters. The definition of the protocol determines uniformly what the partic-
ipants send and receive, as a function of these parameters. Moreover, assertions
about compound messages embedded within parameters would provide artificial
ways to construct counterexamples to our protocol independence theorem.

Second, L(Π) should be insensitive to the notational specifics of the protocol
Π , describing the goals of the protocol without prejudicing the message syntax.

However, to reason axiomatically about protocols, we would work within an
expanded language L′(Π) with message constructors for encryption and con-
catenation, and with a function to extract the message sent or received on a
node. Goals would still be expressed in the sublanguage L(Π1).

What Is a Security Goal? A security goal is either an authentication or a
confidentiality property. An authentication goal requires a peer to have executed
some behavior. A confidentiality goal requires some desired secret t not be shared
as a parameter of another strand. Usually, this is a listener strand Lsn[t], so the
goal ensures that t can never be transmitted unencrypted, in plaintext.4

Definition 6

1. A security claim is a conjunction of atomic formulas of L(Π).
2. Suppose that G0 is Φ ⊃ ∃v0 . . . vj . (Ψ1 ∨ . . . ∨ Ψk), where Φ and each Ψi is a

security claim. Suppose that, for every variable n over nodes occurring free
in G0, some conjunct of Φ is a role predicate RhoJ(n, u, . . . , w). Then the
universal closure G of G0 is a security goal of Π.

3. G is an authentication goal if k > 0 and a confidentiality goal if k = 0. %&
We identify the empty disjunction

∨
i∈∅ Ψi with false. We identify the unit

conjunction
∧
i∈{1} Φi with its sole conjunct Φi, and

∨
i∈{1} Φi with Φi.

As examples, we formalize the authentication and confidentiality goals of Sec-
tion 1 as two separate goals in Fig. 3. The authentication goal has a unit disjunc-
tion, i.e. Ψ1 is everything inside the existential quantifier, and the confidentiality
goal uses the vacuous disjunction false, where k = 0.
4 We consider only “full disclosure” goals, rather than “partial information” goals,

in which a party learns that some values of t are possible, but not others. On the
relation between full disclosure goals and partial information goals, see e.g. [3,7].

Cryptographic Protocol Composition via the Authentication Tests 313

Semantics. The semantics for L(Π) are classical, with each structure a skeleton
for the protocol Π . This requirement builds the permissible behaviors of Π
directly into the semantics without requiring an explicit axiomatization.

Definition 7. Let A be a skeleton for Π. An assignment σ for A is a function
from variables of L(Π1) to A ∪ nodes(Π). Extend σ to terms of L(Π) via the
rules: σ(sk(t)) = sk(σ(t)), σ(inv(t)) = (σ(t))−1.

Satisfaction A,σ |= Φ is defined via the standard Tarski inductive clauses for
the classical first order logical constants, and the base clauses:

A,σ |= u = v iff σ(u) = σ(v);
A,σ |= Non(v) iff σ(v) ∈ nonA;
A,σ |= Unq(v) iff σ(v) ∈ uniqueA;
A,σ |= UnqAt(m, v) iff σ(m) ∈ nodes(A), and σ(v) ∈ uniqueA, and

σ(v) originates at node σ(m);
A,σ |= DblArrw(m, n) iff σ(m),σ(n) ∈ nodes(A), and σ(m) ⇒ σ(n);
A,σ |= Prec(m, n) iff σ(m) ≺A σ(n);

and, for each role ρ ∈ Π and index j on ρ, the predicate RhoJ(m, v1, . . . , vk)
obeys the clause

A,σ |= RhoJ(m, v1, . . . , vk) iff σ(m) ∈ nodes(A), and
σ(m) is an instance of the jth node on role ρ,
with the parameters σ(v1), . . . ,σ(vk).

We write A |= Φ when A,σ |= Φ for all σ. %&

When n is a variable over nodes, although σ(n) �∈ nodes(A) is permitted, in that
case, whenever φ(n) is an atomic formula, A,σ �|= φ(n).

In protocols where there are two different roles ρ, ρ′ that differ only after their
first j nodes—typically, because they represent different choices at a branch point
after the jth node [16,14]—the two predicates RhoJ and Rho′J are equivalent.

Lemma 1. If φ is an atomic formula and A, σ |= φ, then α(A), α ◦ σ |= φ.
If α is injective, and if φ is an atomic formula other than a role predicate

RhoJ, and if α(A), α ◦ σ |= φ, then A, σ |= φ. %&

3 Multiprotocols, Disjointness, and Authentication Tests

Given a primary protocol Π1, as well as a protocol Π which includes it, we have
written Π in the form Π1 ∪Π2, but this is imprecise. We distinguish the nodes
of Π1 from nodes of Π that do not belong to Π1.

Definition 8

1. (Π,Π1) is a multiprotocol if Π,Π1 are protocols, and every role of Π1 is a
role of Π.

2. Role node nj is primary if it is an instance of a node of Π1 (Def. 2). Role
node n2 is secondary if it is an instance of a node of Π, but it is not primary.

314 J.D. Guttman

3. Instances of encryptions e1 R-related to role nodes of Π1 are in ER(Π1):

ER(Π1) = {α(e1) : ∃n1 . R(e1,msg(n1)) ∧ n1 is a role node of Π1}. %&

Below, we use the cases � and 6 for R, i.e. E�(Π1) and E�(Π1).
E�(Π1) �= {e : ∃n1, α . e 6 msg(α(n1)) ∧ n1 is a role node of Π1}, since the

latter contains all encryptions, whenever any role of Π1 uses an indeterminate
(blank slots). E�(Π1) requires that an encryption is syntactically present in a
roles of Π1, not instantiated from an indeterminate. The more näıve general-
ization of [17] would be useless for protocols with indeterminates. Refining the
definition was easy, but proving it correct required a new method.

The secondary nodes of (Π,Π1) do not form a protocol. Π1 contains the
listener role, so listener nodes are primary, not secondary. However, (Π1∪Π2, Π1)
is a multiprotocol. Its secondary nodes are some of the instances of role nodes
of Π2, namely, those that are not also instances of role nodes of Π1.

Strong Disjointness. To ensure that a Π does not interfere with the goals
of Π1, we control how the secondary nodes transform encryptions. To create
an encryption is one way to transform it, or another way is to extract some
ingredient—such as a smaller encryption or a nonce or key—from inside it.

Definition 9

1. If any e ∈ E�(Π1) originates on a secondary transmission node n2, then n2
is an encryption creation conflict.

2. A secondary transmission node n is an extraction conflict if t1 †S msg(n)
for some S ⊆ E�(Π1) where t1 � e ∈ S, and:

(∃m. m⇒+ n ∧ e � msg(m)) ∧ (∀m. m⇒+ n ⊃ t1 7S msg(m)).

3. Π,Π1 has strongly disjoint encryption (s.d.e.) iff it has neither encryption
creation conflicts nor extraction conflicts.

4. Π1 and Π2 are symmetrically disjoint if, letting Π = Π1 ∪Π2, both Π,Π1
and Π,Π2 have s.d.e. %&

Creation conflicts and extraction conflicts are the two ways that Π could create
new ways to solve authentication tests already present inΠ1. Thus, s.d.e. ensures
that only Π1 solutions are needed for the tests in a Π1 skeleton.

Strong disjointness is a syntactic property, even though its definition talks
about all strands of the protocols Π and Π1. We can check it using unification,
as, in Figs. 1–2, we can quickly observe that the check-cashing protocol never
creates an ekc, aic, or keyrec, and never extracts an aic from an encryption.
Protocol analysis tools such as CPSA [11] can be programmed to check for it.

4 Protocol Independence

For any goal G1 ∈ L(Π1), we want to squeeze a Π1-counterexample A1 out of a
Π-counterexample B. We do this in two steps: First, we restrict B to its primary

Cryptographic Protocol Composition via the Authentication Tests 315

nodes B |̀Π1. Then, we remove all non-primary encryptions e2 �∈ E�(Π1) from
B |̀ Π1, by replacing them with indeterminates. In the reverse direction, this
is a homomorphism. I.e., there is a A1 and a homomorphism α such that no
secondary encryptions e2 appear in A1, and B |̀Π1 = α(A1). We call this second
step “removal.”

Definition 10. Let {ei}i∈I be the indexed family of all secondary encryptions
appearing in a Π-skeleton B, without repetitions, and let {xi}i∈I be an indexed
family of indeterminates without repetitions, none of which appear in B.

The homomorphism α that maps xi �→ ei, and is the identity for all atoms
and all indeterminates not in {xi}i∈I is a removal for B. %&

For a removal α, there are As with B = α(A). To compute a canonical one, for
each n ∈ nodes(B), we walk the tree of msg(n) from the top. We copy structure
until we reach a subtree equal to any ei, when we insert xi instead. The resulting
A is the result of the removal α for B. The result of α for a node m ∈ B means
the n ∈ nodes(A) such that α(n) = m.

Lemma 2. Let Π,Π1 be a multiprotocol, with G1 ∈ L(Π1) a Π1 security goal.

1. If B |= ¬G1, then B |̀Π1 |= ¬G1.
2. Let α be a removal for B with result A.

(a) If α(n) is a primary node, then n is a primary node for the same role.
(b) If φ is a role predicate and B, α ◦ σ |= φ, then A, σ |= φ.
(c) If B |= ¬G1, then A |= ¬G1.

The definition of strong disjointness (Def. 9) implies, using Thm. 1:

Lemma 3. Let Π,Π1 have s.d.e., and let α be a removal for B |̀Π1 with result
A. If B is a realized Π-skeleton, then A is a realized Π1-skeleton.

The essential idea here is to show that a solution to a primary cut lies on a
primary node, which will be preserved in the restriction, and then again preserved
by the removal. From the two preceding results, we obtain our main theorem:

Theorem 2. Let Π,Π1 have s.d.e., and let G1 ∈ L(Π1) be a security goal. If
A |= ¬G1 and is realized, then for some realized Π1-skeleton A1, A1 |= ¬G1.

Thm. 2 implies, for instance, that the check-cashing protocol of Fig. 2 preserves
the goals of MAIP.

Conclusion. Our result Thm. 2 uses a new, model-theoretic approach. It com-
bines reasoning about the logical form of formulas—the security goals G—with
operations on the structures that furnish models of these formulas. These oper-
ations are restriction, homomorphisms, and removals. The authentication tests
suggest the definition of strong disjointness (Def. 9).

Thm. 2 simplifies establishing that two protocols combine to achieve their
goals. Goals of the joint protocol Π expressed in L(Π1) may be verified

316 J.D. Guttman

without reference to Π \ Π1. Second, our composition result can also be read
as a prescription—or a heuristic—for protocol design. Protocols can be built
from subprotocols that provide some of the intermediate cryptographic values
that they require. Thm. 2 gives the constraints that a protocol designer must
adhere to, in enriching an existing suite of protocols. His new operations must
be strongly disjoint from the existing protocols, regarded as a primary protocol.

Related Work. An outstanding group of articles by Datta, Derek, Mitchell,
and Pavlovic, including [9], concern protocol derivation and composition. The
authors explore a variety of protocols with common ingredients, showing how
they form a sort of family tree, related by a number of operations on protocols.

Our definition of multiprotocol covers both [9]’s parallel composition and its
sequential composition. Refinement enriches the message structure of a protocol.
Transformation moves information between protocol messages, either to reduce
the number of messages or to provide a tighter binding among parameters.

Despite their rich palette of operations, their main results are restricted to
parallel and sequential composition [9, Thms. 4.4, 4.8]. Each result applies to
particular proofs of particular security goals G1. Each proof relies on a set Γ of
invariant formulas thatΠ1 preserves. If a secondary protocolΠ2 respects Γ , then
G1 holds of the parallel composition Π1∪Π2 (Thm. 4.4). Thm 4.8, on sequential
composition, is more elaborate but comparable. By contrast, our Thm. 2 is one
uniform assertion about all security goals, independent of their proofs. It ensures
that Π2 will respect all usable invariants of Π1. This syntactic property, checked
once, suffices permanently, without looking for invariants to re-establish.

Universal composability [6] is a related property, although expressed in a very
different, very strong, underlying model. It is often implemented by randomly
choosing a tag to insert in all messages of a protocol, this tag being chosen at ses-
sion set-up time. Thus, the symmetric disjointness of any two sessions, whether
of the same or of different protocols, holds with overwhelming probability.

Andova, et al. [1] study sequential and parallel composition, using tags or
distinct keys as implementation strategies, as in our [17]. They independently
propose a definition [1, Def. 25] like the symmetric definition of [8].

Related but narrower problems arise from type-flaw attacks, situations in
which a participant may parse a message incorrectly, and therefore process it in
inappropriate ways [19]. Type flaw attacks concern a single protocol, although
a protocol that may be viewed with different degrees of explicit tagging.

Future Work. Is there a theorem like Thm. 2 for the refinement and transfor-
mation operations [9]? For specific, limited formulations, the answer should be
affirmative, and the model-theoretic approach is promising for establishing that
answer. Such a result would provide a strong guide for protocol design.

Acknowledgments. I am grateful to Stéphanie Delaune and to my colleagues
Leonard G. Monk, John D. Ramsdell, and F. Javier Thayer. An extremely
perceptive anonymous referee report from CSF provoked a radical reworking.
MITRE release number: 07-0029.

Cryptographic Protocol Composition via the Authentication Tests 317

References

1. Andova, S., Cremers, C.J.F., Gjøsteen, K., Mauw, S., Mjølsnes, S.F., Radomirović,
S.: Sufficient conditions for composing security protocols. Information and Com-
putation (2007)

2. Backes, M., Maffei, M., Unruh, D.: Zero-knowledge in the applied pi-calculus and
automated verification of the Direct Anonymous Attestation protocol. In: IEEE
Symposium on Security and Privacy (2008)

3. Backes, M., Pfitzmann, B.: Relating cryptographic and symbolic key secrecy. In:
Proceedings of 26th IEEE Symposium on Security and Privacy (May 2005)

4. Balacheff, B., Chen, L., Pearson, S., Plaquin, D., Proudler, G.: Trusted Computing
Platforms: TCPA Technology in Context. Prentice Hall PTR, NJ (2003)

5. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: ACM
Conference on Communications and Computer Security (CCS) (2004)

6. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS, IACR 2000/067 (October 2001)

7. Canetti, R., Herzog, J.: Universally composable symbolic analysis of mutual au-
thentication and key-exchange protocols. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 380–403. Springer, Heidelberg (2006)

8. Cortier, V., Delaitre, J., Delaune, S.: Safely composing security protocols. In:
Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 352–363.
Springer, Heidelberg (2007)

9. Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: A derivation system and composi-
tional logic for securityprotocols. Journal ofComputerSecurity 13(3), 423–482 (2005)

10. Doghmi, S.F., Guttman, J.D., Thayer, F.J.: Completeness of the authentication
tests. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 106–
121. Springer, Heidelberg (2007)

11. Doghmi, S.F., Guttman, J.D., Thayer, F.J.: Searching for shapes in cryp-
tographic protocols. In: Grumberg, O., Huth, M. (eds.) TACAS 2007.
LNCS, vol. 4424, pp. 523–537. Springer, Heidelberg (2007), Extended version,
http://eprint.iacr.org/2006/435

12. Dolev, D., Yao, A.: On the security of public-key protocols. IEEE Transactions on
Information Theory 29, 198–208 (1983)

13. Durgin,N.,Lincoln,P.,Mitchell,J.,Scedrov,A.:Multisetrewritingandthecomplexity
of bounded security protocols. Journal of Computer Security 12(2), 247–311 (2004)

14. Fröschle, S.: Adding branching to the strand space model. In: Proceedings of EX-
PRESS 2008. Electronic Notes in Theoretical Computer Science. Elsevier, Amster-
dam (2008)

15. Goguen, J.A., Meseguer, J.: Order-sorted algebra I. Theoretical Computer Sci-
ence 105(2), 217–273 (1992)

16. Guttman, J.D., Herzog, J.C., Ramsdell, J.D., Sniffen, B.T.: Programming cryp-
tographic protocols. In: De Nicola, R., Sangiorgi, D. (eds.) TGC 2005. LNCS,
vol. 3705, pp. 116–145. Springer, Heidelberg (2005)

17. Guttman, J.D., Thayer, F.J.: Protocol independence through disjoint encryption.
In: Proceedings of 13th Computer Security Foundations Workshop. IEEE Com-
puter Society Press, Los Alamitos (2000)

18. Guttman, J.D., Thayer, F.J.: Authentication tests and the structure of bundles.
Theoretical Computer Science 283(2), 333–380 (2002)

19. Heather, J., Lowe, G., Schneider, S.: How to prevent type flaw attacks on secu-
rity protocols. In: Proceedings of 13th Computer Security Foundations Workshop.
IEEE Computer Society Press, Los Alamitos (2000)

http://eprint.iacr.org/2006/435

Bisimulation for Demonic Schedulers�

Konstantinos Chatzikokolakis1, Gethin Norman2, and David Parker2

1 Eindhoven University of Technology
2 Oxford Computing Laboratory

Abstract. Bisimulation between processes has been proven a successful method
for formalizing security properties. We argue that in certain cases, a scheduler
that has full information on the process and collaborates with the attacker can
allow him to distinguish two processes even though they are bisimilar. This phe-
nomenon is related to the issue that bisimilarity is not preserved by refinement.
As a solution, we introduce a finer variant of bisimulation in which processes
are required to simulate each other under the “same” scheduler. We formalize
this notion in a variant of CCS with explicit schedulers and show that this new
bisimilarity can be characterized by a refinement-preserving traditional bisimi-
larity. Using a third characterization of this equivalence, we show how to verify
it for finite systems. We then apply the new equivalence to anonymity and show
that it implies strong probabilistic anonymity, while the traditional bisimulation
does not. Finally, to illustrate the usefulness of our approach, we perform a com-
positional analysis of the Dining Cryptographers with a non-deterministic order
of announcements and for an arbitrary number of cryptographers.

1 Introduction

Process algebra provides natural models for security protocols in which non-
determinism plays an essential role, allowing implementation details to be abstracted
([1,2,3]). In this setting, security properties are often stated in using equivalence rela-
tions, with bisimulation commonly used. Its application takes two distinct forms. In the
first, the protocol is shown to be bisimilar to a specification which satisfies the required
security property, then since the protocol and specification are equivalent, we conclude
that the protocol satisfies the property. An example is the formalization of authenticity
in [2], in which A sends a messagem and B wants to ensure that it receivesm and not
a different message from some other agent. In the specification, we allow B to test the
received message against the realm (as ifB knew it beforehand). Showing the protocol
is bisimilar to the specification ensures B receives the correct message.

The second form is substantially different: we establish a bisimulation relation be-
tween two distinct instances of the protocol. From this, we conclude that the instances
are indistinguishable to the attacker, that is the difference between the two instances
remains hidden from the attacker. An example of this approach is the formalization of

� This work was carried out while Konstantinos Chatzikokolakis was visiting Oxford Univer-
sity. Chatzikokolakis wishes to thank Marta Kwiatkowska for giving him the opportunity to
collaborate with her group. Authors Norman and Parker where supported in part by EPSRC
grants EP/D077273/1 and EP/D07956X/2.

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 318–332, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Bisimulation for Demonic Schedulers 319

secrecy in [2]. If P (m) is a protocol parametrized by a messagem, and we demonstrate
that P (m) and P (m′) are bisimilar, then the message remains secret. Another example
is privacy in voting protocols ([4]). The votes of A and B remain private if an instance
of the protocol is bisimilar to the instance in which A and B have exchanged votes.

In this paper we focus on the second use of bisimulation and we argue that, in the
presence of a scheduler who has full view of the process, an attacker could actually
distinguish bisimilar processes. The reason is that, in the definition of bisimulation,
non-determinism is treated in a partially angelic way. Letting ∼ denote bisimilarity,
when P∼Q one requires that if P can make a transition α to P ′, then Q can make a
transition α to some Q′ such that Q∼Q′ (and vice-versa). In this definition, there are
two implicit quantifiers, the second being existential:

for all transitions P
α−→ P ′

there exists a transition Q
α−→ Q′ s.t. P ′ ∼ Q′

In other words,Q is not forced to simulate P , it only has to have the possibility to do so.
For P andQ to remain indistinguishable in the actual execution, we have to count on the
fact that the scheduler ofQ will guide it in a way that simulates P , that is the scheduler
acts in favour of the process. In security, however, we want to consider the worst case
scenario, thus we typically assume that the scheduler collaborates with the attacker. A
“demonic” scheduler in the implementation ofQ can choose to do something different,
allowing the attacker to distinguish the two processes.

Consider the simple example of an agent broadcasting a message m on a network,
received by agents A and B and then acknowledged (with each agent including its
identity in the acknowledgement). We can model this protocol as:

P (m) = (νc)(c̄〈m〉.c̄〈m〉 | A | B) where A = c(x).a and B = c(x).b

Clearly, P (m) ∼ P (m′), but does m remain secret? Both instances can perform two
visible actions, a and b, the order of which is chosen non-deterministically. The in-
distinguishability of the two processes relies on the schedulers of P (m) and P (m′)
choosing the same order for the visible actions. If, however, one scheduler chooses a
different order, then we can distinguish m from m′ through on the output of the pro-
tocol. This could be the case, for example, if an operation is performed upon reception
whose execution time is message dependent.

This consequence of angelic non-determinism can be also formulated in terms of
refinement, where Q refines P if it contains “less” non-determinism. While an imple-
mentation of a protocol is a refinement of it, bisimulation need not be preserved by re-
finement, thus security properties might no longer hold in the implementation, an issue
often called the “refinement paradox” ([5,6]). In the example above, P (m) and P (m′)
could be implemented by (νc)(c̄〈m〉.c̄〈m〉 | c(x).a.c(x).b) and (νc)(c̄〈m′〉.c̄〈m′〉 |
c(x).b.c(x).a) respectively which can be distinguished. Note that, in the specification-
based use of bisimulation this issue does not appear: as the protocol and specification
are bisimilar, the implementation will be a refinement of the specification which is usu-
ally enough to guarantee the required security property.

It should be noted that classical bisimulation does offer some control over non-
determinism as it is closed under contexts and contexts can restrict available actions.

320 K. Chatzikokolakis, G. Norman, and D. Parker

More precisely, bisimulation is robust against schedulers that can be expressed through
contexts. However, contexts cannot control internal choices, like the selection of the
first receiver in the above example. The example could be rewritten to make this selec-
tion external, however, for more complex protocols this solution becomes challenging.
Also, when using contexts, it is not possible to give some information to the scheduler,
without making the corresponding action visible, that is, without revealing it to an ob-
server. This could be problematic when, for example, verifying a protocol in which the
scheduler, even if he knows some secret information, has no possibility to communicate
it to the outside.

In this paper we propose an approach based on a variant of bisimulation, called
demonic bisimulation, in which non-determinism is treated in a purely demonic way. In
principle, we would like to turn the existential quantifier into a universal one, but this
is too restrictive and the relation would not even be reflexive. Instead we require Q to
simulate a transition α of P , not under any scheduler but under the same scheduler that
produced α:

for all schedulers S, if P
α−→ P ′

then under the same scheduler S: Q
α−→ Q′ with P ′ ∼ Q′

Note that, in general, it is not possible to speak about the “same” scheduler, since dif-
ferent processes have different choices. Still, this is reasonable if the processes have a
similar structure (as in the case of P (m) and P (m′)), in this paper we give a framework
that allows us to formalize this concept. The basic idea is that we can choose the sched-
uler that can break our property, however we must test both processes under the same
one. This requirement is both realistic, as we are interested in the indistinguishability of
two processes when put in the same environment, and strong, since it leaves no angelic
non-determinism.

To formalize demonic bisimulation we use a variant of probabilistic CCS with ex-
plicit schedulers, which was introduced in [7] to study the information that a scheduler
has about the state of a process. This calculus allows us to speak of schedulers indepen-
dently from processes, leading to a natural definition of demonic bisimulation. Then,
we discuss how we can view a scheduler as a refinement operator that restricts the non-
determinism of a process. We define a refinement operator, based on schedulers, and we
show that demonic bisimilarity can be characterized as a refinement-preserving classi-
cal bisimilarity, for this type of refinement. Afterwards, we give a third characterization
of demonic bisimilarity, that allows us to obtain an algorithm to verify finite processes.
Finally, we apply the demonic bisimulation to the analysis of anonymity protocols and
show that demonic bisimulation, in contrast to the classical one, implies strong proba-
bilistic anonymity. This enables us to perform a compositional analysis of the Dining
Cryptographers protocol demonstrating that it satisfies anonymity for an arbitrary num-
ber of cryptographers.

2 Preliminaries

We denote byDisc(X) the set of all discrete probability measures overX , and by δ(x)
(called the Dirac measure on x) the probability measure that assigns probability 1 to

Bisimulation for Demonic Schedulers 321

{x}. We will also denote by
∑
i[pi]µi the probability measure obtained as a convex

sum of the measures µi.
A simple probabilistic automaton is a tuple (S, q, A,D) where S is a set of states,

q ∈ S is the initial state, A is a set of actions andD ⊆ S×A×Disc(S) is a transition
relation. Intuitively, if (s, a, µ) ∈ D, also written s

a−→ µ, then there is a transition from
the state s performing the action a and leading to a distribution µ over the states of the
automaton. A probabilistic automatonM is fully probabilistic if from each state of M
there is at most one transition available. An execution α of a probabilistic automaton is
a (possibly infinite) sequence s0a1s1a2s2 . . . of alternating states and actions, such that
q = s0, and for each i : si

ai+1−→ µi and µi(si+1) > 0. A scheduler of a probabilistic
automatonM = (S, q, A,D) is a function ζ : exec∗(M) �→ D where exec∗(M) is the
set of finite executions of M , such that ζ(α) = (s, a, µ) ∈ D implies that s is the last
state of α. The idea is that a scheduler selects a transition among the ones available in
D and it can base its decision on the history of the execution. A scheduler induces a
probability space on the set of executions ofM .

IfR is a relation over a set S, then we can lift the relation to probability distributions
over S using the standard weighting function technique (see [8] for details). If R is an
equivalence relation then the lifting can be simplified: µ1 R µ2 iff for all equivalence
classes E ∈ S/R, µ1(E) = µ2(E). We can now define simulation and bisimulation for
simple probabilistic automata.

Definition 1. Let (S, q, A,D) be a probabilistic automaton. A relation R ⊆ S × S is
a simulation iff for all (s1, s2) ∈ R, a ∈ A: if s1

a−→ µ1 then there exists µ2 such that
s2

a−→ µ2 and µ1 R µ2. A simulationR is a bisimulation if it is also symmetric (thus,
it is an equivalence relation). We define�,∼ as the largest simulation and bisimulation
on S respectively.

CCS with Internal Probabilistic Choice. Let a range over a countable set of channel
names and let α stand for a, ā or τ . The syntax of CCSp is:

P,Q ::= a.P | P | Q | P +Q |
∑
i piPi | (νa)P | !a.P | 0

The term
∑
i piPi represents an internal probabilistic choice, all the remaining oper-

ators are from standard CCS. We will also use the notation P1 +p P2 to represent a
binary sum

∑
i piPi with p1 = p and p2 = 1 − p. Finally, we use replicated input

instead of replication or recursion, as this simplifies the presentation. The semantics of
CCSp is standard and has been omitted due to space constraints. The full semantics can
be found in the report version of this paper ([9]). We denote this transition system by
−→c to distinguish it from other transition systems defined later in the paper.

3 A Variant of CCSp with Explicit Scheduler

In this section we present a variant of CCSp in which the scheduler is explicit, in the
sense that it has a specific syntax and its behaviour is defined by the operational se-
mantics of the calculus. This calculus was proposed in [7]; we will refer to it as CCSσ .
Processes in CCSσ contain labels that allow us to refer to a particular sub-process. A

322 K. Chatzikokolakis, G. Norman, and D. Parker

I ::= 0 I | 1 I | ε label indexes

L ::= lI labels

P, Q ::= processes
L:α.P prefix

| P | Q parallel
| P + Q nondeterm. choice
| L:

∑
i piPi internal prob. choice

| (νa)P restriction
| !L:a.P replicated input
| L:0 nil

S, T ::= scheduler
L.S schedule single action

| (L, L).S synchronization
| if L label test

then S
else S

| 0 nil

CP ::= P ‖ S complete process

Fig. 1. The syntax of CCSσ

scheduler also behaves like a process, using however a different and much simpler syn-
tax, and its purpose is to guide the execution of the main process using the labels that
the latter provides.

3.1 Syntax

Let a range over a countable set of channel names and l over a countable set of atomic
labels. The syntax of CCSσ , shown in Figure 1, is the same as the one of CCSp except
for the presence of labels. These are used to select the subprocess which “performs”
a transition. Since only the operators with an initial rule can originate a transition, we
only need to assign labels to the prefix and to the probabilistic sum. We use labels of
the form ls where l is an atomic label and the index s is a finite string of 0 and 1,
possibly empty. Indexes are used to avoid multiple copies of the same label in case of
replication. As explained in the semantics, each time a process is replicated we relabel
it using appropriate indexes. To simplify the notation, we use base labels of the form
l1, . . . , ln, and we write ia.P for li :a.P .

A scheduler selects a sub-process for execution on the basis of its label, so we use
l.S to represent a scheduler that selects the process with label l and continues as S. In
the case of synchronization we need to select two processes simultaneously, hence we
need a scheduler of the form (l1, l2).S. We will use Sl to denote a scheduler of one of
these forms (that is, a scheduler that starts with a label or pair of labels). The if-then-
else construct allows the scheduler to test whether a label is available in the process (in
the top-level) and act accordingly. A complete process is a process put in parallel with a
scheduler, for example l1 :a.l2 :b ‖ l1.l2. We define P , CP to be the sets of all processes
and all complete CCSσ processes respectively. Note that for processes with an infinite
execution path we need schedulers of infinite length.

3.2 Semantics for Complete Processes

The semantics of CCSσ is given in terms of a probabilistic automaton whose state space
is CP and whose transitions are given by the rules in Figure 2. We denote the transitions
by −→s to distinguish it from other transition systems.

ACT is the basic communication rule. In order for l :α.P to perform α, the scheduler
should select this process for execution, so the scheduler needs to be of the form l.S.

Bisimulation for Demonic Schedulers 323

ACT
l:α.P ‖ l.S

α−→s δ(P ‖ S)
RES P ‖ Sl

α−→s µ α �= a, a

(νa)P ‖ Sl
α−→s (νa)µ

SUM1
P ‖ Sl

α−→s µ

P + Q ‖ Sl
α−→s µ

PAR1
P ‖ Sl

α−→s µ

P | Q ‖ Sl
α−→s µ | Q

COM
P ‖ l1

a−→s δ(P ′ ‖ 0) Q ‖ l2
a−→s δ(Q′ ‖ 0)

P | Q ‖ (l1, l2).S
τ−→s δ(P ′ | Q′ ‖ S)

PROB
l:
∑

i piPi ‖ l.S
τ−→s

∑
i piδ(Pi ‖ S)

REP
!l:a.P ‖ l.S

α−→s δ(ρ0P | !l:a.ρ1P ‖ S)

IF1
l ∈ tl(P) P ‖ S1

α−→s µ

P ‖ if l then S1 else S2
α−→s µ

IF2
l /∈ tl(P) P ‖ S2

α−→s µ

P ‖ if l then S1 else S2
α−→s µ

Fig. 2. The semantics of complete CCSσ processes. SUM1 and PAR1 have corresponding right
rules SUM2 and PAR2, omitted for simplicity.

After this execution the complete process will continue as P ‖ S. The RES rule models
restriction on channel a: communication on this channel is not allowed by the restricted
process. We denote by (νa)µ the measure µ′ such that µ′((νa)P ‖ S) = µ(P ‖ S)
for all processes P and µ′(R ‖ S) = 0 if R is not of the form (νa)P . SUM1 models
nondeterministic choice. If P ‖ S can perform a transition to µ, which means that
S selects one of the labels of P , then P + Q ‖ S will perform the same transition,
i.e. the branch P of the choice will be selected and Q will be discarded. For example
l1 :a.P + l2 :b.Q ‖ l1.S a−→s δ(P ‖ S). Note that the operands of the sum do not have
labels, the labels belong to the subprocesses of P and Q. In the case of nested choices,
the scheduler must select the label of a prefix, thus resolving all the choices at once.

PAR1, modelling parallel composition, is similar: the scheduler selects P to perform
a transition on the basis of the label. The difference is that in this caseQ is not discarded;
it remains in the continuation. µ | Q denotes the measure µ′ such that µ′(P | Q ‖ S) =
µ(P ‖ S). COM models synchronization. If P ‖ l1 can perform the action a andQ ‖ l2
can perform ā, then (l1, l2).S can synchronize the two by scheduling both l1 and l2
at the same time. PROB models internal probabilistic choice. Note that the scheduler
cannot affect the outcome of the choice, it can only schedule the choice as a whole
(this is why a probabilistic sum has a label) and the process will move to a measure
containing all the operands with corresponding probabilities.

REP models replicated input. This rule is the same as in CCS, with the addition of
a re-labeling operator ρi. The reason for this is that we want to avoid ending up with
multiple copies of the same label as the result of replication, since this would create
ambiguities in scheduling as explained in Section 3.3. ρiP appends i ∈ {0, 1} to the
index of all labels of P , for example: ρils :α.P = lsi :α.ρiP and similarly for the other
operators. Note that we relabel only the resulting process, not the continuation of the
scheduler: there is no need for relabeling the scheduler since we are free to choose the
continuation as we please.

Finally if-then-else allows the scheduler to adjust its behaviour based on the labels
that are available in P . tl(P) gives the set of top-level labels of P and is defined as:
tl(l : α.P) = tl(l :

∑
i piPi) = tl(!l : a.P) = tl(l : 0) = {l} and as the union of the

324 K. Chatzikokolakis, G. Norman, and D. Parker

top-level labels of all sub-processes for the other operators. Then if l then S1 else S2
behaves like S1 if l is available in P and as S2 otherwise.

A process is blocked if it cannot perform a transition under any scheduler. A sched-
uler S is non-blocking for a process P if it always schedules some transition, except
when P itself is blocked.

3.3 Deterministic Labelings

The idea in CCSσ is that a syntactic scheduler will be able to completely resolve the
nondeterminism of the process, without needing to rely on a semantic scheduler at the
level of the automaton. To achieve this we impose a condition on the labels of CCSσ
processes. A labeling for P is an assignment of labels to the subprocesses of P that
require a label. A labeling for P is deterministic iff for all schedulers S there is at
most one transition of P ‖ S enabled at any time, in other words the corresponding
automaton is fully probabilistic. In the rest of the paper, we only consider processes
with deterministic labelings.

A simple case of deterministic labelings are the linear ones, containing pairwise dis-
tinct labels (a more precise definition of linear labelings requires an extra condition and
can be found in [10]). It can be shown that linear labelings are preserved by transitions
and are deterministic. However, the interesting case is that we can construct labelings
that are deterministic without being linear. The usefulness of non-linear labelings is
that they limit the power of the scheduler, since the labels provide information about
the current state and allow the scheduler to choose different strategies through the use
of if-then-else. Consider, for example, the following process whose labeling is deter-
ministic but not linear:

l :(1ā.R1 +p 1ā.R2) | 2a.P | 3a.Q (1)

Since both branches of the probabilistic sum have the same label l1, the scheduler cannot
resolve the choice between P and Q based on the outcome of the probabilistic choice.
Another use of non-linear labeling is the encoding of “private” value passing ([7]):

l :c(x).P ∆=
∑
i l :cvi.P [vi/x] l : c̄〈v〉.P ∆= l :cv.P

This is the usual encoding of value passing in CCS except that we use the same label in
all the branches of the nondeterministic sum. Thus, the reception of a message is visible
to the scheduler, but not the received value.

4 Demonic Bisimulation

As discussed in the introduction, classical bisimulation treats non-determinism in a
partially angelic way. In this section we define a strict variant of bisimulation, called
demonic bisimulation, which treats non-determinism in a purely demonic way. We
characterize this equivalence in two ways, first in terms of schedulers, then in terms
of refinement.

Bisimulation for Demonic Schedulers 325

4.1 Definition Using Schedulers

An informal definition of demonic bisimulation was already given in the introduction:
P is demonic-bisimilar toQ, written P ∼D Q if for all schedulers S, if P

α−→ P ′ then
under the same scheduler S:Q

α−→ Q′ with P ′ ∼D Q. To define demonic bisimulation
concretely, we need a framework that allows a single scheduler to be used with different
processes. CCSσ does exactly this: it gives semantics to P ‖ S for any process P and
scheduler S (of course, S might be blocking for some processes and non-blocking for
others).

If µ is a discrete measure on P , we denote by µ ‖ S the discrete measure µ′ on CP
such that µ′(P ‖ S) = µ(P) for all P ∈ P and µ′(P ‖ S′) = 0 for all S′ �= S (note
that all transition rules of Fig. 2 produce measures of this form).

Definition 2 (Demonic bisimulation). An equivalence relation R on P is a demonic
bisimulation iff for all (P1, P2) ∈ R, a ∈ A and all schedulers S: if S is non-blocking
for P1 and P1 ‖ S α−→ µ1 ‖ S′ then the same scheduler S is non-blocking for P2 and
P2 ‖ S α−→ µ2 ‖ S′ with µ1 R µ2. We define demonic bisimlarity ∼D as the largest
demonic bisimulation on P .

Consider again the example of the introduction. We define:

A = 1c(x).2a B = 3c(x).4b P (m) = (νc)(5c〈m〉.6c〈m〉 | A | B)

Note thatP (m), P (m′) share the same labels. This choice of labels states that whenever
a scheduler chooses an action in P (m), it has to schedule the same action in P (m′).
Then it is easy to see that P (m) ∼D P (m′). A scheduler that selects A first in P (m)
will also selectA first in P (m′), leading to the same order of actions. Under this defini-
tion, we do not rely on angelic non-determinism for P (m′) to simulate P (m), we have
constructed our model in a way that forces a scheduler to perform the same action in
both processes. Note that we could also choose to put different labels in c〈m〉, c〈m′〉,
hence allowing them to be scheduled in a different way. In this case ∼D will no longer
hold, exactly because we can now distinguish the two processes using an if-then-else
scheduler that depends on the message. Finally we perform a usual sanity check:

Proposition 1. ∼D is a congruence.

4.2 Characterization Using Refinement

Another way of looking at schedulers is in terms of refinement: a process Q refines P
if it contains “less” non-determinism. A typical definition is in terms of simulation: Q
refines P ifQ � P . For example, a is a refinement of a+bwhere the non-deterministic
choice has been resolved. Thus, a scheduler can be seen as a way to refine a process
by resolving the non-determinism. For example, l1 :a can be seen as the refinement of
l1 :a+ l2 : b under the scheduler l1. Moreover, partial schedulers can be considered as
resolving only part of the non-determinism. For example, for the process 1a.(3c+4d)+
2b, the scheduler l1 will resolve the first non-deterministic choice but not the second.

It has been observed that many security properties are not preserved by refinement,
a phenomenon often called the “refinement paradox”. If we define security properties

326 K. Chatzikokolakis, G. Norman, and D. Parker

ϕ0(P) = P (2)

ϕλ.S(λ:α.P) = λ:α.ϕS(P) (3)

ϕλ.S(P + Q) = ϕλ.S(P) + ϕλ.S(Q) (4)

ϕλ.S((νa)P) = (νa)ϕλ.S(P) (5)

ϕl.S(l:
∑

i piPi) = l:
∑

i piϕS(Pi) (6)

ϕλ.S(P | Q) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λ:α.ϕS(P ′ | Q) if ϕλ(P) α−→c δ(P ′)
λ:
∑

i piϕS(Pi | Q) if ϕλ(P) τ−→c

∑
i[pi]δ(Pi)

λ:τ.ϕS(P ′ | Q′) if λ = (l1, l2) and

ϕl1(P) a−→c δ(P ′), ϕl2(Q) a−→c δ(Q′)

(7)

ϕl.S(!l:a.P) = l:a.ϕS(ρ0P | !l:: a.ρ1P) (8)

ϕS(P) =

{
ϕS1(P) if l ∈ tl(P) where S = if l then S1 else S2

ϕS2(P) if l /∈ tl(P)
(9)

ϕS(P) = 0 if none of the above is applicable (e.g. ϕl1(l2 :α.P) = 0) (10)

Fig. 3. Refinement of CCSσ processes under a scheduler. The symmetric cases for the parallel
operator have been omitted for simplicity.

using bisimulation this issue immediately arises. For example, a|b is bisimilar to a.b+
b.a but if we refine them to a.b and b.a respectively, they are no longer bisimilar. Clearly,
if we want to preserve bisimilarity we have to refine both processes in a consistent
way. In this section, we introduce a refinement operator based on schedulers. We are
then interested in processes that are not only bisimilar, but also preserve bisimilarity
under this refinement. We show that this stronger equivalence coincides with demonic
bisimilarity.

With a slight abuse of notation we extend the transitions −→c (the traditional tran-
sition system for CCSp) to CCSσ processes, by simply ignoring the labels, which are
then only used for the refinement. Let S be a finite scheduler and P a CCSσ process.
The refinement of P under S, denoted by ϕS(P), is a new CCSσ process. The function
ϕS : P → P is defined in Figure 3. Note that ϕS does not perform transitions, it only
blocks the transitions that are not enabled by S. Thus, it reduces the non-determinism of
the process. The scheduler might be partial: a scheduler 0 leaves the process unaffected
(2). Thus, the resulting process might still have non-deterministic choices. A prefix is
allowed in the refined process only if its label is selected by the scheduler (3), otherwise
the refined process is equal to 0 (10). Case (4) applies the refinement to both operands.
Note that, if the labeling is deterministic, at most one of the two will have transitions
enabled. The most interesting case is the parallel operator (7). There are three possi-
ble executions for P | Q. An execution of P alone, of Q alone or a synchronization
between the two. The refined version enforces the one selected by the scheduler (the
symmetric cases have been omitted for simplicity). This is achieved by explicitly pre-
fixing the selected action, for example l1 :a | l2 :b refined by l1 becomes l1 :a.(0 | l2 :b).
If P performs a probabilistic choice, then we have to use a probabilistic sum instead of
an action prefix. The case of !P (8) is similar to the prefix (3) and the rest of the cases
are self-explanatory.

Bisimulation for Demonic Schedulers 327

ACT
l:α.P

l:α−→a δ(P)
RES P

l:α−→a µ α �= a, a

(νa)P l:α−→a (νa)µ

SUM1 P
l:α−→a µ

P + Q
l:α−→a µ

PAR1 P
l:α−→a µ

P | Q
l:α−→a µ | Q

COM
P

l1:a−→a δ(P ′) Q
l2:a−→a δ(Q′)

P | Q
(l1,l2):τ−→ a δ(P ′ | Q′)

PROB
l:
∑

i piPi
l:τ−→a

∑
i piδ(Pi)

REP
!l:a.P

l:a−→a δ(ρ0P | !l:a.ρ1P)

Fig. 4. Semantics for CCSσ processes without schedulers. SUM1 and PAR1 have corresponding
right rules SUM2 and PAR2, omitted for simplicity.

The intention behind the definition of φS is to refine CCSσ processes: φS(P) con-
tains only the choices of P that are selected by the scheduler S. We now show that the
result is indeed a refinement:

Proposition 2. For all CCSσ processes P and schedulers S: φS(P) � P
Note that � is the simulation relation on P wrt the classical CCS semantics −→c.
Also, let ∼ be the bisimilarity relation on P wrt −→c. A nice property of this type of
refinement is that it allows one to refine two processes in a consistent way. This enables
us to define a refinement-preserving bisimulation.

Definition 3. An equivalence relationR onP is an R-bisimulation iff for all (P1, P2) ∈
R and all finite schedulers S: ϕS(P1) ∼ ϕS(P2). We denote by ∼R the largest R-
bisimulation.

Note that P1 ∼R P2 implies P1 ∼ P2 (for S = 0). We now show that processes
that preserve bisimilarity under this type of refinement are exactly the ones that are
demonic-bisimilar.

Theorem 1. The equivalence relations ∼R and ∼D coincide.

5 Verifying Demonic Bisimilarity for Finite Processes

The two characterizations of demonic bisimilarity, given in the previous section, have
the drawback of quantifying over all schedulers. This makes the verification of the
equivalence difficult, even for finite state processes. To overcome this difficulty, we
give a third characterization, this one based on traditional bisimilarity on a modified
transition system where labels annotate the performed actions. We then use this charac-
terization to adapt an algorithm for verifying probabilistic bisimilarity to our settings.

5.1 Characterization Using a Modified Transition System

In this section we give a modified semantics for CCSσ processes without schedulers.
The semantics are given by means of a simple probabilistic automaton with state space

328 K. Chatzikokolakis, G. Norman, and D. Parker

P , displayed in Figure 4 and denoted by −→a. The difference is that now the labels
annotate the actions instead of being used by the scheduler. Thus, we have actions of
the form λ : α where λ is l or (l1, l2), and α is a channel, an output on a channel
or τ . Note that, in the case of synchronization (COM), we combine the labels l1, l2
of the actions a, a and we annotate the resulting τ action by (l1, l2). All rules match
the corresponding transitions for complete processes. Since no schedulers are involved
here, the rules IF1 and IF2 are completely removed.

We can now characterize demonic bisimilarity using this transition system.

Definition 4. An equivalence relationR on P is an A-bisimulation iff

i) it is a bisimulation wrt −→a, and
ii) tl(P1) = tl(P2) for all non-blocked P1, P2 ∈ R

We define∼A as the largest A-bisimulation on P .

Theorem 2. The equivalence relations ∼D and ∼A coincide.

Essentially, we have encoded the schedulers in the actions of the transition system−→a.
Thus, if two processes perform the same action in −→a it means that they perform the
same action with the same scheduler in −→s. Note that the relation ∼A is stricter that
the classical bisimilarity. This is needed because schedulers have the power to check
the top-level labels of a process, even if this label is not “active”, that is it does not
correspond to a transition. We could modify the semantics of the if-then-else operator,
in order to use the traditional bisimilarity in the above theorem. However, this would
make the schedulers less expressive. Indeed, it can be shown ([7]) that for any semantic
scheduler (that is, one defined on the automaton) of a CCSp process P , we can create
a syntactic scheduler that has the same behaviour on P labeled with a linear labeling.
This property, though, is lost under the modified if-then-else.

5.2 An Algorithm for Finite State Processes

We can now use ∼A to verify demonic bisimilarity for finite state processes. For this,
we adapt the algorithm of Baier ([11]) for probabilistic bisimilarity. The adaptation is
straightforward and has been omitted due to space constraints. The only interesting part
is to take into account the additional requirement of ∼A that related non-blocked pro-
cesses should have the same set of top-level labels. This can be done in a pre-processing
step where we partition the states based on their top-level labels. More details can be
found in the report version of this paper ([9]). The algorithm has been implemented and
used to verify some of the results of the following section.

6 An Application to Security

In this section, we apply the demonic bisimulation to the verification of anonymity
protocols. First, we formalize anonymity in terms of equivalence between different in-
stances of the protocol. We then show that this definition implies strong probabilistic
anonymity, which was defined in [12] in terms of traces. This allows us to perform an
easier analysis of protocols by exploiting the algebraic properties of an equivalence.
We perform such a compositional analysis on the Dining Cryptographers protocol with
non-deterministic order of announcements.

Bisimulation for Demonic Schedulers 329

6.1 Probabilistic Anonymity

Consider a protocol in which a set A of anonymous events can occur. An event ai ∈ A
could mean, for example, that user i performed an action of interest. In each execution,
the protocol produces an observable event o ∈ O. The goal of the attacker is to de-
duce ai from o. Strong anonymity was defined in [12], here we use this definition in a
somewhat informal way, a more formal treatment is available in the report version of
the paper ([9]).

Definition 5 (strong anonymity). A protocol is strongly anonymous iff for all sched-
ulers, for all ai, aj ∈ A and all o ∈ O, the probability of producing o when ai is
selected is equal to the probability of producing o when aj is selected.

Let Proti be the CCSσ process modelling the instance of the protocol when ai occurs.
Typically, the selection of anonymous event is performed in the beginning of the pro-
tocol (for example a user i decides to send a message) and then the protocol proceeds
as Proti. Thus, the complete protocol is modelled by Prot

∆= l :
∑
i pi Proti. The

observable events correspond to the traces of Prot. We can now give a definition of
strong anonymity based on demonic bisimulation:

Definition 6 (equivalence based anonymity). A protocol satisfies anonymity iff for all
anonymous events ai, aj ∈ A : Proti ∼D Protj .

The idea behind this definition is that, if Proti, P rotj are demonic-bisimilar, they
should behave in the same way under all schedulers, thus producing the same obser-
vation. Indeed, we can show that the above definition implies Def. 5.

Proposition 3. If Proti ∼D Protj for all i, j then the protocol satisfies strong proba-
bilistic anonymity (Def. 5)

It is worth noting that, on the other hand, Proti ∼ Protj does not imply Def. 5, as we
see in the next section.

6.2 Analysis of the Dining Cryptographers Protocol

The problem of the Dining Cryptographers is the following: Three cryptographers dine
together. After the dinner, the bill has to be paid by either one of them or by another
agent called the master. The master decides who will pay and then informs each of
them separately whether he has to pay or not. The cryptographers would like to find out
whether the payer is the master or one of them. However, in the latter case, they wish
to keep the payer anonymous.

The Dining Cryptographers Protocol (DCP) solves the above problem as follows:
each cryptographer tosses a fair coin which is visible to himself and his neighbour to
the right. Each cryptographer checks the two adjacent coins and, if he is not paying,
announces agree if they are the same and disagree otherwise. However, the paying
cryptographer says the opposite. It can be proved that the master is paying if and only
if the number of disagrees is even ([13]).

330 K. Chatzikokolakis, G. Norman, and D. Parker

CryptPi
∆= 1,ici(coin1).2,ici(coin2).3,iouti〈coin1 ⊗ coin2〉

Crypti
∆= 1,ici(coin1).2,ici, (coin2).3,iouti〈coin1 ⊗ coin2 ⊗ 1〉

Coini
∆= l4,i :((5,ic̄i〈0〉 | 6,ic̄i⊕1〈0〉) +0.5 (5,ic̄i〈1〉 | 6,ic̄i⊕1〈1〉))

Proti
∆= (νc)(CryptPi | ∏j �=i Cryptj | ∏n−1

j=0 Coinj)

Fig. 5. Encoding of the dining cryptographers protocol

We model the protocol, for the general case of a ring of n cryptographers, as shown
in Figure 5. The symbols ⊕,⊗ represent the addition modulo n and modulo 2 (xor)
respectively. Crypti, CryptPi model the cryptographer i acting as non-payer or payer
respectively. Coini models the i-th coin, shared between cryptographers i and i ⊕ 1.
Finally, Proti is the instance of the protocol when cryptographer i is the payer, and
consists of CryptPi, all other cryptographers as non-payers, and all coins. An external
observer can only see the announcements outi〈·〉. As discussed in [12], DCP satisfies
anonymity if we abstract from their order. If their order is observable, on the contrary,
a scheduler can reveal the identity of the payer to the observer by forcing the payer
to make his announcement first, or by selecting the order based on the value of the
coins.

In CCSσ we can be precise about the information that is revealed to the scheduler. In
the encoding of Fig. 5, we have used the same labels on both sides of the probabilistic
choice in Coini. As a consequence, after performing the choice, the scheduler cannot
use an if-then-else to find out which was the outcome, so his decision will be indepen-
dent of the coin’s value. Similarly, the use of private value passing (see Section 3.3)
guarantees that the scheduler will not see which value is transmitted by the coin to the
cryptographers. Then we can show that for any number of cryptographers:

Proti ∼D Protj ∀1 ≤ i, j ≤ n (11)

For a fixed number of cryptographers, (11) can be verified automatically using the al-
gorithm of Section (5.2). We have used a prototype implementation to verify demonic
bisimilarity for a very small number of cryptographers (after that, the state space be-
comes too big). However, using the algebraic properties of ∼D we can perform a com-
positional analysis and prove (11) for any number of cryptographers. This approach is
described in the report version of the paper.

This protocol offers a good example of the difference between classical and de-
monic bisimulation. Wrt the −→s transition system, Proti, P rotj are both bisimilar
and demonic-bisimilar, and strong anonymity holds. Now let Coin′i be the same as
Coini but with different labels on the left-hand and right-hand side, meaning that now a
scheduler can depend its behaviour on the value of the coin. The resulting Prot′i, P rot

′
j

processes are no longer demonic-bisimilar and strong-anonymity is violated. However,
classic bisimulation still holds, showing that it fails to capture the desired security
property.

Bisimulation for Demonic Schedulers 331

7 Related Work

Various works in the area of probabilistic automata introduce restrictions to the sched-
uler to avoid violating security properties ([14,15,16]). Their approach is based on di-
viding the actions of each component of the system in equivalence classes (tasks). The
order of execution of different tasks is decided in advance by a so-called task scheduler.
The remaining nondeterminism within a task is resolved by a second demonic sched-
ule. In our approach, the order of execution is still decided non-deterministically by a
demonic scheduler, but we impose that the scheduler will make the same decision in
both processes.

Refinement operators that preserve various security properties are given in [17,18].
In our approach, we impose that the refinement operator should preserve bisimilarity,
obtaining a stronger equivalence.

In the probabilistic setting, a bisimulation that quantifies over all schedulers is used in
[19]. In this work, however, the scheduler only selects the action and the remaining non-
determinism is resolved probabilistically (using a uniform distribution). This avoids the
problem of angelic non-determinism but weakens the power of the scheduler.

On the other hand, [20] gives an equivalence-based definition of anonymity for the
Dining Cryptographers, but in a possibilistic setting. In this case the scheduler is clearly
angelic, since anonymity relies on a non-deterministic selection of the coins. Our def-
inition is the probabilistic counterpart of this work, which was problematic due to the
angelic use of non-determinism.

8 Conclusion and Future Work

We introduced a notion of bisimulation where processes are required to simulate each
other under the same scheduler. We characterized this equivalence in three different
ways: using syntactic schedulers, using a refinement operator based on schedulers and
using a modified transition system where labels annotate the actions. We applied this
notion to anonymity showing that strong anonymity can be defined in terms of equiv-
alence, leading to a compositional analysis of the dining cryptographers with non-
deterministic order of announcements.

As future work, we want to investigate the effect of angelic non-determinism to other
process equivalences. Many of them are defined based on the general schema: when P
does an action of interest (passes a test, produces a barb, etc) then Q should be able
to match it, employing an existential quantifier. Moreover, we would like to investigate
models in which both angelic and demonic non-determinism are present. One approach
would be to use two separate schedulers, one acting in favour and one against the pro-
cess, along the lines of [21].

References

1. Roscoe, A.W.: Modelling and verifying key-exchange protocols using CSP and FDR. In:
Proc. CSFW, pp. 98–107. IEEE Computer Soc. Press, Los Alamitos (1995)

2. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi calculus. Informa-
tion and Computation 148, 1–70 (1999)

332 K. Chatzikokolakis, G. Norman, and D. Parker

3. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: Proceed-
ings of POPL 2001, pp. 104–115. ACM, New York (2001)

4. Kremer, S., Ryan, M.D.: Analysis of an electronic voting protocol in the applied pi calculus.
In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 186–200. Springer, Heidelberg (2005)

5. McLean: A general theory of composition for a class of “possibilistic” properties. IEEETSE:
IEEE Transactions on Software Engineering 22 (1996)

6. Roscoe, B.: CSP and determinism in security modelling. In: Proc. of 1995 IEEE Symposium
on Security and Privacy. IEEE Computer Society Press, Los Alamitos (1995)

7. Chatzikokolakis, K., Palamidessi, C.: Making random choices invisible to the scheduler. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 42–58. Springer,
Heidelberg (2007)

8. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. PhD
thesis, MIT (1995)

9. Chatzikokolakis, K., Norman, G., Parker, D.: Bisimulation for demonic schedulers. Technical
report (2009), http://www.win.tue.nl/˜kostas/

10. Chatzikokolakis, K.: Probabilistic and Information-Theoretic Approaches to Anonymity.
PhD thesis, Ecole Polytechnique, Paris (2007)

11. Baier, C.: Polynomial-time algorithms for testing probabilistic bisimulation and simulation.
In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 50–61. Springer, Hei-
delberg (1996)

12. Bhargava, M., Palamidessi, C.: Probabilistic anonymity. In: Abadi, M., de Alfaro, L. (eds.)
CONCUR 2005. LNCS, vol. 3653, pp. 171–185. Springer, Heidelberg (2005)

13. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient untrace-
ability. Journal of Cryptology 1, 65–75 (1988)

14. Canetti, R., Cheung, L., Kaynar, D., Liskov, M., Lynch, N., Pereira, O., Segala, R.: Task-
structured probabilistic i/o automata. In: Proceedings the 8th International Workshop on Dis-
crete Event Systems (WODES 2006), Ann Arbor, Michigan (2006)

15. Canetti, R., Cheung, L., Kaynar, D.K., Liskov, M., Lynch, N.A., Pereira, O., Segala, R.:
Time-bounded task-PIOAs: A framework for analyzing security protocols. In: Dolev, S. (ed.)
DISC 2006. LNCS, vol. 4167, pp. 238–253. Springer, Heidelberg (2006)

16. Garcia, F.D., van Rossum, P., Sokolova, A.: Probabilistic anonymity and admissible sched-
ulers, arXiv:0706.1019v1 (2007)

17. Jürjens, J.: Secrecy-preserving refinement. In: Oliveira, J.N., Zave, P. (eds.) FME 2001.
LNCS, vol. 2021, p. 135. Springer, Heidelberg (2001)

18. Mantel, H.: Possibilistic definitions of security - an assembly kit. In: CSFW, pp. 185–199
(2000)

19. Lincoln, P., Mitchell, J., Mitchell, M., Scedrov, A.: A probabilistic poly-time framework for
protocol analysis. In: Proceedings of the 5th ACM Conference on Computer and Communi-
cations Security, pp. 112–121. ACM Press, New York (1998)

20. Schneider, S., Sidiropoulos, A.: CSP and anonymity. In: Martella, G., Kurth, H., Montolivo,
E., Bertino, E. (eds.) ESORICS 1996. LNCS, vol. 1146, pp. 198–218. Springer, Heidelberg
(1996)

21. Chatzikokolakis, K., Knight, S., Panangaden, P.: Epistemic strategies and games on concur-
rent processes. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková,
M. (eds.) SOFSEM 2008. LNCS, vol. 4910. Springer, Heidelberg (2008)

http://www.win.tue.nl/~kostas/

On Omega-Languages Defined
by Mean-Payoff Conditions

Rajeev Alur1, Aldric Degorre2, Oded Maler2, and Gera Weiss1

1 Dept. of Computer and Information Science, University of Pennsylvania, USA
{alur,gera}@cis.upenn.edu

2 CNRS - Verimag, University of Grenoble, France
{aldric.degorre,oded.maler}@imag.fr

Abstract. In quantitative verification, system states/transitions have associated
payoffs, and these are used to associate mean-payoffs with infinite behaviors. In
this paper, we propose to define ω-languages via Boolean queries over mean-
payoffs. Requirements concerning averages such as “the number of messages lost
is negligible” are not ω-regular, but specifiable in our framework. We show that,
for closure under intersection, one needs to consider multi-dimensional payoffs.
We argue that the acceptance condition needs to examine the set of accumulation
points of sequences of mean-payoffs of prefixes, and give a precise characteriza-
tion of such sets. We propose the class of multi-threshold mean-payoff languages
using acceptance conditions that are Boolean combinations of inequalities com-
paring the minimal or maximal accumulation point along some coordinate with a
constant threshold. For this class of languages, we study expressiveness, closure
properties, analyzability, and Borel complexity.

1 Introduction

In algorithmic verification of reactive systems, the system is modeled as a finite-state
transition system (possibly with fairness constraints), and requirements are captured as
languages of infinite words over system observations [8, 9]. The most commonly used
framework for requirements is the class of ω-regular languages. This class is expressive
enough to capture many natural requirements, and has well-understood and appealing
theoretical properties: it is closed under Boolean operations, it is definable by finite au-
tomata (such as deterministic parity automata or nondeterministic Büchi automata), it
contains Linear Temporal Logic LTL, and decision problems such as emptiness, lan-
guage inclusion are decidable [10, 11].

The classical verification framework only captures qualitative aspects of system be-
havior, and in order to describe quantitative aspects, for example, consumption of re-
sources such as CPU and energy, a variety of extensions of system models, logics, and
automata have been proposed and studied in recent years [1, 3, 5, 7]. The best known,
and the most relevant to our work, approach is as follows: a payoff (or a cost) is as-
sociated with each state (or transition) of the model, the mean-payoff of a finite run is
simply the average of the payoffs of all the states in the run, and the mean-payoff of an
infinite run is the limit, as n goes to infinity, of the mean-payoff of the prefix of length
n. The notion of mean-payoff objectives was first studied in classical game theory, and

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 333–347, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

334 R. Alur et al.

more recently in verification literature [5, 6, 12]. Most of this work is focused on com-
puting the optimal mean-payoff value, typically in the setting of two-player games, and
the fascinating connections between the mean-payoff and parity games.

In this paper, we propose and study ways of defining languages of infinite words
based on the mean-payoffs. As a motivating example, suppose 1 denotes the condition
that “message is delivered” and 0 denotes the condition that “message is lost.” A behav-
ior of the network is an infinite sequence over {0, 1}. Requirements such as “no mes-
sage is ever lost” (always 1), “only finitely many messages are lost” (eventually-always
1), and “infinitely many messages are delivered” (infinitely-often 1), are all ω-regular
languages. However, the natural requirement that “the number of lost messages is neg-
ligible” is not ω-regular. Such a requirement can be formally captured if we can refer
to averages. For this purpose, we can associate a payoff with each symbol, payoff 0
with message lost and payoff 1 with message delivered, and require that mean-payoff
of every infinite behavior is 1. As this example indicates, using mean-payoffs to de-
fine acceptance conditions can express meaningful, non-regular, and yet analyzable,
requirements.

The central technical question for this paper is to define a precise query language
for mapping mean-payoffs of infinite runs into Boolean answers so that the resulting
class of ω-languages has desirable properties concerning closure, expressiveness, and
analyzability. The obvious candidate for turning mean-payoffs into acceptance criteria
is threshold queries of the form “is mean-payoff above (or below) a given threshold
t”. Indeed, this is implicitly the choice in the existing literature on decision problems
related to mean-payoffmodels [5,6,12]. A closer investigation indicates that this is not
a satisfactory choice for queries.

First, closure under intersection requires that we should be able to model multiple
payoff functions. For this purpose, we define d-payoff automata, where d is the dimen-
sion of the payoffs, and each edge is annotated with a d-dimensional vector of payoffs.
We prove that expressiveness strictly increases with the dimension. From the appli-
cations point of view, multi-payoffs allow to model requirements involving multiple
quantities. Because we allow unbounded dimensions, one can also add coordinates that
model weighted sums of the quantities, and put bounds on these coordinates too.

Second, the limit of the mean-payoffs of prefixes of an infinite run may not exist.
This leads us to consider the set of accumulation points corresponding to a run. For
single-dimensional payoffs, the set of these points is an interval. For multi-dimensional
payoffs, we are not aware of existing work on understanding the structure of accumu-
lation points. We establish a precise characterization of the structure of accumulation
points: a set can be a set of accumulation points of a run of a payoff automaton if and
only if it is closed, bounded, and connected.

Third, if we use mp to refer to the mean-payoff of a run, and consider four types of
queries of the form mp < t, mp ≤ t, mp > t, and mp ≥ t, where t is a constant, we
prove that the resulting four classes of ω-languages have incomparable expressiveness.
Consequently acceptance condition needs to support combination of all such queries.

After establishing a number of properties of the accumulation points of multi-
dimensional payoff automata, we propose the class of multi-threshold mean-payoff lan-
guages. For this class, the acceptance condition is a Boolean combination of constraints

On Omega-Languages Defined by Mean-Payoff Conditions 335

of the form “is there an accumulation point whose ith projection is less than a given
threshold t”. We show that the expressive power of this class is incomparable to that of
the class of ω-regular languages, that this class is closed under Boolean operations and
has decidable emptiness problem. We also study its Borel complexity.

2 Definitions

2.1 Multi-payoff Automata

Multi-payoff automata are defined as automata with labels, called payoffs, attached to
transitions. In this paper, payoffs are vectors in a finite dimensional Euclidean space.

Definition 1 (d-Payoff automaton). A d-payoff automaton, with d ∈ N, is a tuple
〈A,Q, q0, δ,w〉 where A and Q are finite sets, representing the alphabet and states of
the automaton, respectively; q0 ∈ Q is an initial state; δ ∈ Q × A→ Q is a total transi-
tion function (also considered as a set of transitions (q, a, δ(q, a))) and w : δ→ Rd is a
function that maps each transition to a d-dimensional vector, called payoff.

Note that we consider only deterministic complete automata.

Definition 2. The following notions are defined for payoff automata:

– A finite run of an automaton is a sequence of transitions of the following type:
(q1, a1, q2)(q2, a2, q3) . . . (qi, ai, qi+1). An infinite run is an infinite sequence of tran-
sitions such that any prefix is a finite run.

– We denote by λ(r) the word of the symbols labelling the successive transitions of
the run r, i.e. λ((q1, a1, q2) · · · (qn, an, qn+1)) = a1 · · ·an.

– A run is initial if q1 = q0.
– By runA(u) we denote the initial run r in A such that u = λ(r)
– A cycle is a run (q1, a1, q2)(q2, a2, q3) . . . (qi, ai, qi+1) such that q1 = qi+1. A cycle is

simple if no proper subsequence is a cycle.
– For a word or run u, u�n denotes the prefix of length n of u, and u[n] the nth element

of u.
– The payoff of a finite run r is payoff(r) =

∑|r|
i=1 w(r[i]).

– The mean-payoff of a run r is mp(r) = payoff(r)/|r|.
– A subset of the states of an automaton is strongly connected if, for any two elements

of that subset, there is a path from one to the other.
– A strongly connected component (SCC) is a strongly connected subset that is not

contained in any other strongly connected subset.
– A SCC is terminal if it is reachable and there is no path from the SCC to any other

SCC.

2.2 Acceptance

In the literature, the mean-payoff value of a run is generally associated to the “limit”
of the averages of the prefixes of the run. As that limit does not always exist, stan-
dard definitions only consider the lim inf of that sequence (or sometimes lim sup) and,

336 R. Alur et al.

more specifically, threshold conditions comparing those quantities with fixed constants
[2,4,5,12]. As that choice is arbitrary, and more can be said about the properties of that
sequence than the properties of just its lim inf or even lim sup, in particular when d > 1,
we choose to consider the entire set of accumulation points of that sequence.

A point x is an accumulation point of the sequence x0, x1, . . . if, for every open set
containing x, there are infinitely many indices such that the corresponding elements of
the sequence belong to the open set.

Definition 3. We denote by Acc(xn)∞n=1 the set of accumulation points of the sequence
(xn)∞n=1. If r is a run of a d-payoff automaton A, AccA(r) = Acc(mp(r�n))∞n=1, and for a
word w, AccA(w) = AccA(run(w)).

Example 1. Consider the 2-payoff automaton

b/
(
0, 0
)

a/
(
0, 0
)

b/
(
1, 0
)

a/
(
1, 0
)

b/
(
1, 1
)

a/
(
1, 1
)

where edges are annotated with expression of the form σ/v meaning that the symbol σ
triggers a transition whose payoff is v. Let w =

∏∞
i=0 a2i−1b be an infinite word where b’s

are isolated by sequences of a’s with exponentially increasing lengths. The set AccA(w)
is the triangle

(6/7, 4/7)

(3/7, 2/7)

(5/7, 1/7)

as we show next. By direct calculation we get that limn→∞mp(w�
∑3n

i=0 2i) = (6/7, 4/7),
limn→∞mp(w�

∑3n+1
i=0 2i) = (3/7, 2/7), and limn→∞mp(w�

∑3n+2
i=0 2i) = (5/7, 1/7). Fur-

thermore, for every n ∈ N, j ∈ {0, 1, 2} and k ∈ {0, . . . , 23n+ j+1}, the vector mp(w �
k +
∑3n+ j

i=0 2i) is in the convex hull of mp(w�
∑3n+ j

i=0 2i) and mp(w�
∑3n+ j+1

i=0 2i) and the
maximal distance between points visited on this line goes to zero as n goes to infin-
ity. Together, we get that the points to which the mean-payoff gets arbitrarily close
are exactly the points on the boundary of the above triangle. Similarly, if we choose
the word w′ =

∏∞
i=0 a3i−1b, we get that AccA(w′) is the boundary of the triangle

(4/13, 3/13), (10/13, 1/13), (12/13, 9/13).
�

On Omega-Languages Defined by Mean-Payoff Conditions 337

We say that a word or run is convergent, whenever its set of accumulation points is a
singleton, i.e. when its sequence of mean payoffs converges. For instance, periodic runs
are convergent because the mean-payoffs of the prefixes r�n of an infinite run r = r1rω2
converge to the mean-payoff of the finite run r2, when n goes to infinity.

Definition 4. An infinite run r is accepted by a d-payoff automaton A with condition F,
where F is a predicate on 2R

d
, if and only if F(AccA(r)). An infinite word u is accepted

if and only if run(u) is accepted. We denote by L(A, F) the language of words accepted
by A with condition F. In the following, we call mean-payoff language, any language
accepted by a d-payoff automaton with such a condition. If d is one and F(S) is of the
form extr S �� C where extr ∈ {inf, sup}, �� ∈ {<,≤, >,≥}, and C is a real constant; we
say that F is a threshold condition.

Example 2. For the 1-payoff automaton

a/1 b/0

let the acceptance condition F(S) be true iff S = {0}. This defines the language of words
having negligibly many a’s.
�

3 Expressiveness

3.1 Comparison with ω-Regular Languages

Before proving specific results on the class of mean-payoff languages, we show that it
is incomparable with the class of ω-regular languages. In this context, we call specifi-
cation types incomparable if each type of specification can express properties that are
not expressible in the other type. Incomparability of mean-payoff and ω-regular speci-
fications is, of course, a motivation for studying mean-payoff languages.

We will need the following ad-hoc pumping lemma for ω-regular languages.

Lemma 1 (Pumping lemma). Let L be an ω-regular language. There exists p ∈ N
such that, for each w = u1w1u2w2 . . . uiwi · · · ∈ L such that |wi| ≥ p for all i, there are
sequences of finite words (xi)i∈N, (yi)i∈N, (zi)i∈N such that, for all i, wi = xiyizi, |xiyi| ≤ p
and |yi| > 0 and for every sequence of pumping factors (ji)i∈N ∈ NN, the pumped word
u1x1y j1

1 z1u2x2y j2
2 z2 . . . uixiy

ji
i zi . . . is in L.

Proof. Similar to the proof of the pumping lemma for finite words.
�
Proposition 1. There exists a mean-payoff language, defined by a 1-payoff automaton
and a threshold acceptance condition, that is not ω-regular.

Proof. Consider the 1-payoff automaton

a/2 b/ − 1

We show that L = {w| inf mpA(w) ≤ 0} is not regular. For any p, the word w = (apb2p)ω

is in that language. Assuming, towards contradiction, that the language is regular and

338 R. Alur et al.

using the pumping Lemma 1 on w, we can select as factors wi the sequences of a an
choose ji = 2 to obtain a word w′ that should be in L. But since mpA(w′) is a singleton
bigger than zero, w′ does not satisfy the acceptance condition and therefore is not in L,
a contradiction.
�
Proposition 2. There exists an ω-regular language that is not a mean-payoff language.

Proof. Let L = (a∗b)ω. We will show that, in any payoff automaton, we can find two
words u1 and u2, u1 having infinitely often b and u2 having eventually only a, and such
that Acc(u1) = Acc(u2). Then obviously no general mean-payoff acceptance condition
can distinguish those two words although u1 ∈ L and u2 � L.

Let us construct the counter-example. Suppose A is a payoff automaton recognizing
L with some predicate F. Let ca be a cycle such that λ(ca) contains only a’s and cb a
cycle such that λ(cb) contains at least one b, both starting in some state q in a terminal
strongly connected component of A, and let p be an initial run leading to q.

The mean-payoffs of the run r = p
∏∞

i=1 ci
acb, which should be accepted, converge to

mpA(ca), which is also the mean-payoff of pcωa , which should be rejected but has to be
accepted by A, since it has the same mean-payoff as r.
�

3.2 Topology of Mean-Payoff Accumulation Points

In this section we discuss the structure of the set of accumulation points. In particular we
characterize the sets that are the accumulation points of some run of a payoff automaton.

If S is a strongly connected component of an automaton, and C is the set of simple
cycles in S , then we denote by ConvHull(S) the convex hull of {mp(c)|c ∈ C}.
Theorem 1. Let r be an infinite run of a d-payoff automaton, then Acc(r) is a closed,
connected and bounded subset of Rd.

Proof.
Closed: True for any set of accumulation points: let (an) be a sequence in a topological
space, and (xn) ∈ Acc(an)∞n=1 be a sequence of accumulation points converging to a
point x. For any xi, we can choose a sub-sequence (ain) converging to xi. Now we
can construct a sub-sequence of elements that converges to x: for every i, take the first
element aif (i) of ain which is at a distance smaller than 2−i from xi such that f (i) > f (i−1).
Then the sequence (aif (i))i∈N converges to x.

Bounded: As we are speaking of a sequence of averages of the (finite) set of payoffs, it
is clear that the sequence of mean-payoffs remains in the convex hull of that set, which
is bounded.

Connected: Proof by contradiction. Suppose there exists two disjoint open sets O1 and
O2 such that Acc(r) ⊆ O1 ∪ O2. Let d be the distance between O1 and O2. As those
sets are open and disjoint, d > 0. But the vector between two successive averages is
payoff(r� n)/n − payoff(r� n − 1)/n − 1 = (1/n)(payoff(r� n − 1)) + w(r[n]) − n/(n −
1) payoff(r�n−1)) = (1/n)(w(r[n])−mp(r�n)), whose norm is smaller than ∆/n, where
∆ = max{‖w(t) − w(t′)‖|t, t′ ∈ δ}. If a run has accumulations points in both O1 and O2,
then there exist n > ∆/d such that the nth step is in O1 and the (n + 1)th in O2. The

On Omega-Languages Defined by Mean-Payoff Conditions 339

distance between those two points has to be both greater than d and smaller than ∆/n,
which is not possible.
�

As a remark, we can say more than boundedness: indeed a run eventually comes into a
SCC it never leaves. The contribution of the payoffs of the SCC becomes then dominant
as n goes to the infinity. Even better, actually, the contribution of the simple cycles of
that SCC is dominant. Thus the set of accumulation points is included in the convex
hull of the simple cycles of the SCC.

The following theorem is a converse to Theorem 1.

Theorem 2. For every non-empty, closed, bounded and connected set D ⊂ Rd, there is
a d-payoff automaton and a run r of that automaton such that Acc(r) = D.

Proof. Take any automaton with a reachable SCC such that D is contained in the convex
hull of the cycles of the SCC.

For every integer n > 0, let {Oi,n : i = 1, . . . , ln} be a finite coverage of D by open
sets of diameter smaller than 1/n. Such a coverage exists, for example, by covering D
by spheres of diameter 1/n.

Suppose p is a finite initial run going into the SCC. For every n and every i, we can
prolong p with a suffix c such that mp(pc) ∈ On,i and pc is in the SCC (form the end
of p onwards). For that, we need c to be long enough and have the right proportions of
simple cycles. Furthermore, as mp(pc� l + 1) −mp(pc� l) becomes smaller when l goes
to infinity, we can make the distance of mp(pc� l) from D converge to zero when l goes
to infinity.

As the set (On,i)n,i∈N×N is countable, we can construct recursively the successive suf-
fixes c1,1, c1,2, . . . , c2,1, c2,2, . . . such that mp(pc1,1c1,2 . . .2,1 c2,2 . . . cn,i) is in On,i, and
such that for every l, mp(p

∏
ji∈N×N c ji� l) is at a distance smaller than K/l from D.

Let x ∈ D. Then for every n, x ∈ On,i for some i, thus for every n, the sequence
of mean-payoffs comes within a radius 1/n from x, which means x is an accumulation
point. Conversely, if y � D, as D is closed, it is at a distance δ > 0 from D, moreover
there exist a l such that mp(pc� l) never exits a radius ε < δ around D and therefore
the sequence of mean-payoff will never come in a radius δ − ε from y. So y is not an
accumulation point. We conclude that AccA(r) is exactly D.
�

Actually, like for Theorem 1, a careful examination of the proof reveals that a stronger
statement is true. Specifically, it is easy to verify that any closed, bounded and connected
set contained in any of the SCC of an automaton is the set of accumulation points of
some run of that automaton.

3.3 Comparison of Threshold Mean-Payoff Languages

We study mean-payoff languages where the minimum and maximum of the set of ac-
cumulation points are compared with a given threshold. We assume, without loss of
generality, that the threshold is zero because changing the threshold is equivalent to an
affine transformation of the payoffs. We show that the different threshold languages are
incomparable in expressive power.

340 R. Alur et al.

Definition 5. We denote by L�� the class of mean-payoff languages accepted by a 1-
payoff automaton with the condition min Acc(w) �� 0, where �� is <, >,≤ or ≥.

Note that these languages are the winning conditions used to define mean-payoff games,
e.g. in [12], because min Acc(w) = lim infn→∞mpA(w� n). We do not need to discuss
the class of languages defined as complements of these conditions because L> is co L≤
and L≥ is co L<, where co L�� is the set of languages defined as sets of words that do
not satisfy min Acc(w) �� 0 for some automaton.

Theorem 3. The classes L<, L≤,L≥ and L> are incomparable.

Proof. We begin by showing that L< and L≤ are incomparable. Consider the automaton

a/ − 1 b/0

and the language L = {w|min Acc(w) < 0}. Suppose, towards contradiction, that there
exists an automaton A′ accepting L with a L≤ condition. Consider ca and cb two cycles
in A′, labelled respectively with a word in a(a + b)i and with b j for some integers i
and j, and start from a same reachable state q (two such cycles exist at least in any
terminal strongly connected component). Let p be a finite initial run ending at q. As
pcωa is a run of A′ which should be accepted, it is necessary that payoffA′ (ca) ≤ 0, and
as pcωb should not be accepted, it is necessary that payoffA′(cb) > 0. For all k, the run
p(cack

b)ω should be accepted. So it is necessary that for all k, payoffA′ (cack
b) ≤ 0. Thus

payoffA′ (ca)+ k payoffA′ (cb) ≤ 0, which is possible if and only if payoffA′ (cb) ≤ 0 and
contradicts payoffA′ (cb) > 0. Thus L cannot be accepted by a L≤ condition.

Conversely, consider the automaton

a/1 b/0

with the language L defined by the L≤ acceptance condition. Towards contradiction,
assume that A′ is an automaton accepting L with the L< acceptance contradiction. If
ca, cb and p are defined in A′, the same way as before, we should have payoffA′ (ca) ≥ 0
and payoffA′ (cb) < 0. For all k, the run p(cack

b) should be rejected, so it is necessary that
payoffA′ (cack

b) ≥ 0. Thus for all k, payoffA′(ca) + k payoffA′ (cb) ≥ 0, which is possible
if and only if payoffA′ (cb) ≥ 0 and contradicts payoffA′ (cb) < 0. Therefore L cannot be
expressed by a L< condition.

These counter examples can be adapted for proving that any class with strict inequal-
ity symbol is incomparable to any class with a weak inequality symbol. It remains to
prove the incompatibility of L< and L> and that of L≤ and L≥.

Consider the language L defined by the automaton

a/ − 1 b/1

(denoted by A) with the L≤ acceptance condition. Suppose, towards contradiction, that
A′ is an automaton defining the same language with a L≥ condition. Choose two cy-
cles ca and cb starting from two states qa and qb in a same terminal strongly con-
nected component of A′, such that ca is labelled by al and cb is labelled by bm for
some l and m, an initial run p going to qb and two runs uab and uba going from qa

to qb and from qb to qa, respectively. Because pubacωa should be accepted and pcωb

On Omega-Languages Defined by Mean-Payoff Conditions 341

should be rejected, we must have payoffA′(cb) < 0 and payoffA′ (ca) ≥ 0. Consider
r = p

∏
i∈N c2il

b ubac2im
a uab. Then mpA(λ(p

∏n
i=0 c2il

b ubac2im
a uab)) converges to 0 as n goes

to infinity, thus λ(r) ∈ L, and therefore r should be accepted by A′ with the L≥ con-
dition. But mpA′3

(word(p
∏n

i=0 c2il
b ubac2im

a uabc2n+1l
b)) converges to a negative limit, thus r

cannot be accepted by A′3 with the L≥ condition, leading to contradiction.
Conversely, consider the language L, defined with the same automaton, but with the

L≥ condition. Suppose A′ is an automaton defining the same L with the L≤ condi-
tion. We can choose two cycles ca and cb starting from two states qa and qb in a same
terminal strongly connected component of A′ such that ca is labelled by al and cb is
labelled by bm for some l and m, an initial run p going to qb and two runs uab and uba

going from qa to qb and from qb to qa. Then we should have payoffA′ (cb) ≤ 0 and
payoffA′ (ca) > 0 (because pubacωa should be rejected and pcωb should be accepted).

Consider r = p
∏

i∈N ubac2im
a uabc2i l

b . Then mpA3
(λ(p(

∏n
i=0 ubac2im

a uabc2il
b)ubac2n+1m

a)) con-
verges to a negative limit as n goes to infinity, thus λ(r) � L, and therefore r should
be rejected by A′ with the L≤ condition. But mpA′ (λ(p

∏n
i=0 ubac2im

a uabc2i l
b)) converges

to 0, thus r is accepted by A′ with the L≤ condition, which contradicts the fact that it
recognizes L.

We have thus established the incomparability of L≥ and L≤. As L< and L> are the
classes of the complements of languages in respectively L≥ and L≤, it also implies the
incomparability of the latter pair.
�
The incompatibility of threshold classes shows how arbitrary the choice of only one
of them as a standard definition would be. This suggests definition of a larger class
including all of them.

3.4 Mean-Payoff Languages in the Borel Hierarchy

For a topological space X, we denote by Σ0
1 the set of open subsets by and Π0

1 the set
of closed subsets. The Borel hierarchy is defined inductively as the two sequences (Σ0

α)
and (Π0

α), where Σ0
α = (

⋃
β<α Π

0
β)σ, and Π0

α = (
⋃
β<α Σ

0
β)δ, where α and β are ordinals

and (•)σ, (•)δ denote closures under countable intersections and unions, respectively.
We consider the standard topology over Aω with the base {wAω : w ∈ A∗}, i.e. a

subset of Aω is open if and only if it is a union of sets, each set consists of all possible
continuations of a finite word.

Theorem 4. The following facts hold: L≤ ⊂ Π0
2 , L≤ � Σ0

2 , L< ⊂ Σ0
3 and L< � Π

0
3 .

Proof. – Let L ∈ L≤, then there exists d ∈ N, a 1-payoff automaton A such that
L = {w ∈ Aω|min(AccA(w)) ≤ 0}. Therefore we can write L as

L =
⋂

N∈N
{w ∈ Aω|∀m ∈ N∃n > m mpA(w�n) < 1/N)}

=
⋂

N∈N,m∈N

⋃

n>m

{w ∈ Aω|mpA(w�n) < 1/N)}.

For any N and m the condition mpA(w�n) < 1/N) is independent of the suffix past
the nth symbol of w and therefore the set {w ∈ Aω|mpA(w� n) < 1/N)} is clopen.
We get that L≤ ∈ Π0

2 .

342 R. Alur et al.

– We prove L> � Π
0
2 , which is the same as L≤ � Σ0

2 because L> = co L≤. Let L be the
set of words on alphabet A = {a, b} having more than negligibly many b. We already
demonstrated that L ∈ L>. Suppose L ∈ Π0

2 . Then L =
⋂

i∈N LiAω for some family
of languages of finite words Li. We can assume without loss of generality that the
words of Li have all length i. For all m, the word wm = (

∏m−1
j=1 a2 j

b)(a2m
b)ω ∈ L

(as it is ultimately periodic with a period where the proportion of b is not 0). For
the word w =

∏∞
j=1 a2 j

b, it means that any prefix w� i of length i is in Li. This is a
contradiction, because w � L.

– For the two last items of the theorem: Chatterjee exhibited in [2] a Π0
3 -hard lan-

guage in L≥. He also established that this class is included in Π0
3 . As L≥ = co L<,

that proves what we need.
�

3.5 Dimensionality

In this section we analyze closure properties of mean-payoff languages defined by au-
tomata with a fixed dimension.

The following lemma shows that, for any d, the class of mean-payoff languages
definable by d-payoff automata is not closed under intersection.

Lemma 2. If d1 and d2 are two integers, then there exists L1 and L2, two mean-payoff
languages of dimensions d1 and d2 such that L1 and L2 contain only convergent words
and L1 ∩ L2 is not definable as a dimension d mean-payoff language with d < d1 + d2.

Proof. Let A = {a1, . . . , ad1 } and B = {b1, . . . , bd2 } be two disjoint alphabets. Let A1

be the one-state d1-payoff automaton on alphabet A ∪ B, such that the payoff of the
transition (q0, ai, q0) is 1 on the ith coordinate and 0 in the other coordinates and the
payoff of the transition (q0, bi, q0) is 0. And let A2 be the d2-payoff one-state automaton
defined similarly by swapping a and b.

Let Li be the language defined on Ai by predicate Fi, testing equality with the single-
ton {li}, where li is in the simplex defined by the di+1 different payoffs of the transitions
of Ai. In the proof of Theorem 2 we establish that the Li are not empty.

Let w ∈ (A + B)ω, then w is in L1 if and only if the proportion of ai in every prefix
tends to the ith coordinate of l1, and it is in L2 if and only if the proportion of bi in every
prefix tends to the ith coordinate of l2.

Then for w to be in L1∩L2, it is necessary that the proportion of every symbols tends
to either a coordinate of l1, if that symbol is a ai, or a coordinate of l2, if it is a bi.

Now suppose L1∩L2 is recognized by a d-payoff automaton with d < d1+d2. Choose
one terminal strongly connected component of A and consider for every symbol a of
the alphabet a cycle labeled by a word in a∗, starting at some state qa. Let also be p an
initial run going to qa and for every pair of symbols a, b a path uab going from qa to qb.

Only looking at the runs in the language p{ua1ac∗auaa1 |a ∈ A ∪ B}ω, it is possible to
converge to any proportion of the symbols of A ∪ B, and thus have runs whose labeling
word is in L. But as the payoffs are in dimension d, and the number of symbols is
d1+d2 > d, that language also contains runs converging to different symbol proportions
but still having the same mean-payoff limit. Those runs are accepted by A but are not
labeled by a word in L.
�

On Omega-Languages Defined by Mean-Payoff Conditions 343

Next, we prove that the intersection of two languages of dimensions d1 and d2 is a
language of dimension d1 + d2. This will be proved constructively, by showing that
the intersection language is the language defined on the product automaton with the
“product” condition. Before going to the statement of the lemma, we need to define
what those products are.

Definition 6. If F1 and F2 are predicates on 2R
d1 and 2R

d2 , we denote by F1 � F2 the
predicate on 2R

d1+d2 which is true for X ⊆ Rd1+d2 if and only if F1(p1(X)) and F2(p2(X)),
where p1 is the projection on the d1 first coordinates and p2 on the d2 last.

Definition 7 (Weighted automata product). If A1 = 〈A,Q1, q1
0, δ1,w1〉 is a d1-payoff

automaton and A2 = 〈A,Q2, q2
0, δ2,w2〉, a d2-payoff automaton, then we define A1 ⊗

A2 = 〈A,Q1 × Q2, (q1
0, q

2
0), δ1⊗2,w1⊗2〉, the product of A1 and A2, a (d1 + d2)-payoff

automaton such that

– δ1⊗2 = {((q1, q2), a, (q′1, q
′
2))|(q1, a, q′1) ∈ δ1 ∧ (q2, a, q′2) ∈ δ2 ∧ a ∈ A},

– w1⊗2 : δ1⊗2 → Rd1+d2 is such that if w1(q1, a, q′1) = (x1, . . . xd1) and w2(q2, a, q′2) =
(y1, . . . yd2), then w((q1, q2), a, (q′1, q

′
2)) = (x1, . . . xd1 , y1, . . . yd2).

But before we state the theorem, we need the following lemma:

Lemma 3. If r is a run of a d-payoff automaton A and p is a projection from Rd to Rd′ ,
with d′ < d, then Acc(p(mpA(r�n))) = p(Acc(mpA(r�n)))

Proof. Let x′ ∈ Acc(p(mpA(r�n))). For any i ∈ N, p(mpA(r�n)) eventually comes into
a distance 1/i from x′, for some index ni. For j > i mpA(r�n j) remains in B(x′, 1/i)×K
(where K is a compact ofRd−d′), as this product is compact, it has at least one accumula-
tion point. Thus the distance from x′ to p(Acc(mpA(r�n))) is 0. But Acc(mpA(r�n)) is
a closed set and p, being a projection, is continuous, so p(Acc(mp(r�n))) is closed too,
which means x′ ∈ p(Acc(mpA(r�n))), and so Acc(p(mp(r�n))) ⊆ p(Acc(mpA(r�n))).

Conversely, if x′ ∈ p(Acc(mpA(r � n))) a sub-sequence mpA(r � ni) converges to
a x such that x′ = p(x), and thus p(mpA(r� ni)) converges to x′, which means x′ ∈
Acc(p(mp(r�n))). We conclude that Acc(p(mpA(r�n))) = p(Acc(mpA(r�n))).
�
Now we have all the needed tools, we can characterize the intersection of two mean-
payoff languages as another mean-payoff language defined on an automaton whose di-
mension is known.

Proposition 3. For any two d1-payoff and d2-payoff automata A1 and A2 and any
two predicates F1 and F2 on respectively 2R

d1 and 2R
d2 , the following equality holds:

L(A1, F1) ∩ L(A2, F2) = L(A1 ⊗A2, F1 � F2).

Proof. Suppose u ∈ Aω, then the sequence of mean-payoffs of run r of u in A1 ⊗A2 are
the projections by p1 and p2 of the sequence of mean-payoffs of some runs r1 and r2 in
A1 and r2 in A2 whose labeling is u. And conversely, if u has runs r1 and r2 in A1 and
r2 in A2, then it has a run r in A1 ⊗A2 whose sequence of mean-payoffs projects by p1

and p2 onto those of r1 and r2.
If r, r1, and r2 are such runs (the payoffs of r projecting on those of r1 and r2), then

using lemma 3, we find that AccA (r1) = Acc(p1(mp(r� n))) = p1(Acc(mp(r� n))) and
that AccA(r2) = Acc(p2(mp(r�n))) = p2(Acc(mp(r�n))).

344 R. Alur et al.

But by definition (F1 � F2)(Acc(mp(r � n))) holds iff F1(p1(Acc(mp(r � n)))) and
F2(p2(Acc(mp(r�n)))) hold, thus it holds iff F1(AccA1 (r1)) and F2(AccA2 (r2)) hold.

From that we deduce that a word is in L(A ⊗ A, F1 � F2) if and only if it is both in
L(A1, F1) and L(A2, F2).
�

4 An Analyzable Class of Mean-Payoff Languages

4.1 The Class of Multi-threshold Mean-Payoff Languages

As a candidate for a class of mean-payoff languages that is closed under complementa-
tion and includes all the expected standard mean-payoff language classes, we propose
the following definition.

Definition 8. A language L is a multi-threshold mean-payoff language (denoted by L ∈
Lmt) if it is the mean-payoff language defined on some d-payoff automaton A, with a
predicate F such that F(S) is a Boolean combination of threshold conditions on pi(S)
where pi is the projection along the ith coordinate.

Example 3. Consider the automaton given in Example 1 and the multi-threshold mean-
payoff language L = {w|min p1(Acc(w)) > .1∧max p1(Acc(w)) < .9∧min p2(Acc(w))
> .1 ∧ max p2(Acc(w)) < .9}. For the word w, defined in Example 1, the set of accu-
mulation points is shown to be a triangle that is contained in the box {x|.1 < p1(x) <
.9 ∧ .1 < p2(x) < .9} and therefore w ∈ L.

Geometrically, multi-threshold acceptance conditions can be visualized as specifying
constraints on the maximal and minimal projection of Acc(w) on the axes. Since we
can extend the payoff vectors by adding a coordinate whose values are a linear combi-
nation of the other coordinates, also threshold constraints involving minimal and maxi-
mal elements of the projection of Acc(w) on other lines are expressible, as shown in the
following example.

Example 4. Assume that, with the automaton given in Example 1, we want to accept the
words w such that Acc(w) is contained in the triangle (.2, .2)−(.8, .2)−(.2, .8). We can do
so by extending the dimension of the payoffs and renaming (0, 0) �→ (0, 0, 0), (1, 0) �→
(1, 0, 1), and (1, 1) �→ (1, 1, 2). Namely, by adding a coordinate whose value is the sum
of the other two coordinates. Then, L = {w|min p1(Acc(w)) > .2 ∧ min p2(Acc(w)) >
.2 ∧max p3(Acc(w)) < 1} is the wanted language.

4.2 Closure under Boolean Operations

We prove here that Lmt is in fact the Boolean closure of L� � L< ∪ L≤ ∪ L> ∪L≥.

Theorem 5. Lmt is closed under Boolean operations and any language in Lmt is a
Boolean combination of languages in L�.

Proof. Closure by complementation: let L be a Lmt language, defined on some au-
tomaton A by a predicate P. w ∈ L iff P(AccA(w)). So w ∈ Lc iff w � L, that is iff

On Omega-Languages Defined by Mean-Payoff Conditions 345

¬P(AccA(w)). But ¬P is also a Boolean combination of threshold conditions, thus Lc

is a Lmt language.
Closure by intersection: let L1 and L2 be two Lmt languages defined respectively on

the automata A and A by the predicates P1 and P2. Then L1 ∩ L2 = L(A ⊗A, P1 � P2)
(Theorem 3). It is easy to see that P1 � P2 is still a Boolean combination of thresholds,
and thus L(A ⊗A, P1 � P2) is in Lmt.

The other Boolean operations can be written as a combination of complementation
and intersection.

Now we show, by induction on height of the formula of a predicate, that any Lmt

language is a Boolean combination of L� languages.
We can, without loss of generality, suppose that every threshold concerns a different

coordinate (if a coordinate has several thresholds, we can duplicate that coordinate,
keeping the same values, and the language will remain the same). We can also assume
that the predicate is written only with combinations of conjunctions and negations of
thresholds.

– If the height is 0, that means that the condition is only one threshold on a multi-
payoff automaton. The recognized language is the same as that of the automaton
projected on the tested coordinate, so it is in L�.

– If the predicate is ¬P, then the recognized language is the complement of L(A, P),
which is a Boolean combination of Lmt languages of lesser height.

– If the predicate is P = P1 ∧ P2, let us call Ai, a copy of A whose payoffs are
projected on the subspace tested in Pi. Then A is isomorphic to A1 ⊗A2. Further-
more, as the set of coordinates that are tested in P1 and P2 are disjoint, their exists
some P′1 and P′2 with the same heights as P1 and P2, such that P = P′1 � P′2. Thus
L = L(A1, P′1) ∩ L(A2, P′2) (Theorem 3), which is a Boolean combination of Lmt

languages of lesser height.
�

4.3 Decidability

Theorem 6. The emptiness of a language of Lmt is decidable.

Proof. We can assume the predicate of acceptance is written in disjunctive normal form
(if not, we can find an equivalent DNF formula). Then we can see that a run is accepted
whenever its set of accumulation points satisfies at least one of the disjuncts, and in a
disjunct, every literal has to be satisfied. If we know how to check if a literal is satisfied,
then this provides an obvious decision algorithm for one run.

Then it is easy to see that there are two types of literal. Some say that there must exist
an accumulation point whose tested coordinate is greater or smaller than the threshold,
we call those existential literals. The other literals say that every accumulation point
should have the tested coordinate above or below the threshold, those we call universal
literals.

For checking the emptiness of L(A, F), we propose the following algorithm: Try,
for every a disjunct of F and every reachable SCC C of A, to compute P(C),the convex
hull of the payoffs of its transitions, then compute C′ the intersection of P(C) with every
universal literal, and finally check whether it intersects with every existential literal of

346 R. Alur et al.

the disjunct. If it does, then return true, else loop. If you exhausted the combinations,
return false.

If this algorithm returns true, because C′ is a convex polyhedron included in C and in-
tersecting with every existential literal, we can construct D which is connected, closed,
included in C′, and intersects with every existential literal (take for instance the convex
hull of a family consisting in one point in every intersection of C′ with an existential
literal). We can see that F(D) holds. Then, Theorem 2 says there exist a run r such that
AccA(r) = D, and thus there exist a word which that run and therefore is in L(A, F).

If that algorithm returns false, for every reachable SCC C, if you choose a closed
connected subset D of P(C) (as Theorem 1 says sets of accumulation points have to
be), then for every disjunct, D either is not completely included in some universal literal,
either does not intersect with some existential literal. In both case, D does not make the
disjunct true. So F holds for no set of accumulation points of a run of A, which implies
that L(A, F) is empty.
�

5 Summary and Future Directions

We proposed a definition ofω-languages using Boolean combination of threshold pred-
icates over mean-payoffs. This type of specifications allows to express requirements
concerning averages such as “no more than 10% of the messages are lost” or “the
number of messages lost is negligible”. The later is not expressible by ω-regular re-
quirements. We showed that if closure under intersection is needed, multi-dimensional
payoffs have to be considered. For runs of d-payoff automata, we studied acceptance
conditions that examine the set of accumulation points and characterized those sets as
all closed, bounded and connected subsets of Rd .

The class of multi-threshold mean-payoff languages was proposed, using acceptance
conditions that are Boolean combinations of inequalities comparing the minimal or
maximal accumulation point along some coordinate with a constant threshold. We stud-
ied expressiveness, closure properties, analyzability, and Borel complexity.

Possible direction for future include extension to non-deterministic automata, and
the study of multi-mean-payoff games.

Acknowledgments

This research was partially supported by NSF grants CNS 0524059 and CPA 0541149,
and the French Minalogic project Athole.

References

1. Alur, R., Kanade, A., Weiss, G.: Ranking automata and games for prioritized requirements.
In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 240–253. Springer, Heidel-
berg (2008)

2. Chatterjee, K.: Concurrent games with tail objectives. Theor. Comput. Sci. 388(1-3), 181–
198 (2007)

On Omega-Languages Defined by Mean-Payoff Conditions 347

3. Chatterjee, K., de Alfaro, L., Henzinger, T.: The complexity of quantitative concurrent parity
games. In: Proceedings of the 17th ACM-SIAM Symposium on Discrete Algorithms, pp.
678–687 (2006)

4. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. In: Kaminski, M., Mar-
tini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer, Heidelberg (2008)

5. Chatterjee, K., Henzinger, T., Jurdziński, M.: Mean-payoff parity games. In: Proceedings of
the 20th Annual Symposium on Logic in Computer Science, pp. 178–187. IEEE Computer
Society Press, Los Alamitos (2005)

6. Gimbert, H., Zielonka, W.: Deterministic priority mean-payoff games as limits of discounted
games. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4052, pp. 312–323. Springer, Heidelberg (2006)

7. Kupferman, O., Lustig, Y.: Lattice automata. In: Cook, B., Podelski, A. (eds.) VMCAI 2007.
LNCS, vol. 4349, pp. 199–213. Springer, Heidelberg (2007)

8. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems: Specification.
Springer, Heidelberg (1991)

9. Pnueli, A.: The temporal logic of programs. In: 18th IEEE Symposium on the Foundations
of Computer Science (FOCS 1977), pp. 46–57 (1977)

10. Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of Theoretical
Computer Science, vol. B, pp. 133–191. Elsevier, Amsterdam (1990)

11. Vardi, M., Wolper, P.: Reasoning about infinite computations. Information and Computa-
tion 115(1), 1–37 (1994)

12. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theoretical Com-
puter Science 158, 343–359 (1996)

Minimal Cost Reachability/Coverability in Priced
Timed Petri Nets

Parosh Aziz Abdulla1 and Richard Mayr2

1 Uppsala University, Sweden
2 University of Edinburgh, UK

Abstract. We extend discrete-timed Petri nets with a cost model that assigns to-
ken storage costs to places and firing costs to transitions, and study the minimal
cost reachability/coverability problem. We show that the minimal costs are com-
putable if all storage/transition costs are non-negative, while even the question of
zero-cost coverability is undecidable in the case of general integer costs.

1 Introduction

Petri nets are one of the most widely used models for the study and analysis of concur-
rent systems. Furthermore, several different models have been introduced in
[1,7,14,13,4,9,6] which extend the classical model by introducing timed behaviors.

We consider Timed Petri Nets (TPNs) in which each token has an ‘age’ represented
by a natural number [1,7]. A marking of the net is a mapping which assigns a multiset
of natural numbers to each place. The multiset represents the numbers and ages of the
tokens in the corresponding place. Each arc of the net is equipped with an interval
defined by two natural numbers (or ω). A transition may fire iff its input places have
tokens with ages satisfying the intervals of the corresponding arcs. Tokens generated
by transitions will have ages in the intervals of the output arcs. In fact, this model is a
generalization of the one in [7], since the latter only allows generating tokens of age 0.

In parallel, there have been several works on extending the model of timed automata
[2] with prices (weights) (see e.g., [3,11,5]). Weighted timed automata are suitable mod-
els for embedded systems, where we have to take into consideration the fact that the
behavior of the system may be constrained by the consumption of different types of
resources. Concretely, weighted timed automata extend classical timed automata with a
cost function C that maps every location and every transition to a nonnegative integer
(or rational) number. For a transition, C gives the cost of performing the transition. For
a location, C gives the cost per time unit for staying in the location. In this manner, we
can define, for each run of the system, the accumulated cost of staying in locations and
performing transitions along the run.

We study a natural extension of TPNs, namely Priced TPNs (PTPNs). We allow
the cost function to map transitions and places of the Petri net into vectors of integers
(of some given length k). Again, for a transition, C gives the cost of performing the
transition; while for a place, C gives the cost per time unit per token in the place. We
consider the cost-optimal problem for PTPNs where, given an initial marking M0 and
a set F of final markings, the task is to compute the minimal accumulated cost of a
run that reaches F fromM0. We consider two variants of the problem: the reachability

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 348–363, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Minimal Cost Reachability/Coverability in Priced Timed Petri Nets 349

problem in which F is a single marking; and the coverability problem in which F is
an upward closed set of markings. Since the set of costs within which we can reach a
set F from a setM0 is upward closed (regardless of the form of F), the cost-optimality
problem can be reduced, using the construction of Valk and Jantzen [17], to the cost
threshold problem. In the latter, we are given a cost vector v, and we want to check
whether it is possible to reach F fromM0 with a cost that does not exceed v.

We also consider two models related to PTPNs. The first, called Priced Petri Nets
(PPNs), is a priced extension of classical (untimed) Petri nets, and is a special case of
PTPNs. The other model is an (interesting and nontrivial) extension of classical Petri
nets, in which a fixed place p and a fixed transition t are connected by a so called
inhibitor arc. In this case, the transition t can fire only if p is empty. It has been shown
that the reachability problem for Petri nets with one inhibitor arc is decidable [15].

For the above mentioned models, we show a number of (un)decidability results. First,
we recall that the reachability problem is undecidable for TPNs [16], which immedi-
ately implies that the cost threshold reachability problem is undecidable for PTPNs.
With this undecidability result in mind, the two natural (and simpler) problems to con-
sider are the cost threshold coverability problem for PTPNs, and the cost threshold
reachability problem for PPNs. We prove that cost threshold coverability problem is
decidable for PTPNs with non-negative costs (where all components of the cost vectors
are non-negative). We show that this gives in a straightforward manner also a proof
of the decidability of the coverability problem for Petri nets with one inhibitor arc.
Furthermore, we show that the cost threshold reachability problem for PPNs and the
reachability problem for Petri nets with one inhibitor arc are reducible to each other.
These results show a close (and surprising) relationship between our models and that of
Petri nets with one inhibitor arc. Finally, we show that if we allow negative costs then
even the cost threshold coverability problem for PPNs becomes undecidable.

2 Preliminaries

2.1 Priced Timed Petri Nets

The timed Petri net model (TPN) defined by Escrig et al. [7,16] is an extension of
Petri nets where tokens have integer ages measuring the time since their creation, and
transition arcs are labeled with time-intervals (whose bounds are natural numbers or ω)
which restrict the ages of tokens which can be consumed and produced. We extend this
model to priced timed Petri nets (PTPN) by assigning multidimensional costs to both
transitions (action costs) and places (storage costs). Each firing of a discrete transition
costs the assigned cost vector. The cost of a timed transition depends on the marking.
Storing k1 tokens for k2 time units on a place with cost vector v costs k1 ∗ k2 ∗ v.

Let N denote the non-negative integers and Nk and Nkω the set of vectors of dimension
k over N and N ∪ {ω}, respectively (ω represents the first limit ordinal). We use a set
Intrv of intervals N× Nω. We view a multisetM over A as a mappingM : A �→ N.

Given a set A with an ordering3 and a subset B ⊆ A,B is said to be upward closed
in A if a1 ∈ B, a2 ∈ A and a1 3 a2 implies a2 ∈ B. Given a set B ⊆ A, we define the
upward closure B ↑ to be the set {a ∈ A| ∃a′ ∈ B : a′ 3 a}.

350 P.A. Abdulla and R. Mayr

Definition 1. A Priced Timed Petri Net (PTPN) is a tuple N = (P, T, In,Out ,C)
where P is a finite set of places, T is a finite set of transitions, In,Out are partial
functions from T × P to Intrv and C : P ∪ T → Zk is the cost function assigning
(multidimensional, and possibly also negative) firing costs to transitions and storage
costs to places.

If In(t , p) (respectively Out(t , p)) is defined, we say that p is an input (respectively
output) place of t. Let max denote the maximal finite number ∈ N appearing on the
time intervals of the given PTPN.

A marking M of N is a finite multiset over P × N. It defines the numbers and
ages of tokens in each place in the net. We identify a token in a marking M by the
pair (p, x) representing its place and age inM . Then,M((p, x)) defines the number of
tokens with age x in place p. Abusing notation, we define, for each place p, a multiset
M(p) over N where M(p)(x) = M((p, x)). We sometimes denote multisets as lists.
For a marking M of the form [(p1, x1) , . . . , (pn, xn)] we use M+1 to denote the
marking [(p1, x1 + 1) , . . . , (pn, xn + 1)]. For PTPN, let ≤ denote the partial order
on markings given by multiset-inclusion.

Transitions. We define two transition relations on the set of markings: timed and dis-
crete. The timed transition relation increases the age of each token by one. Formally,
M1 →time M2 iffM2 = M+1

1 .
We define the discrete transition relation→D as

⋃
t∈T −→t, where−→t represents

the effect of firing the discrete transition t. More precisely, M1 −→t M2 if the set
of input arcs {(p, I)| In(t , p) = I} is of the form {(p1, I1), . . . , (pk, Ik)}, the set of
output arcs {(p, I)| Out(t , p) = I} is of the form {(q1,J1), . . . , (q,J)}, and there
are multisets b1 = [(p1, x1) , . . . , (pk, xk)] and b2 = [(q1, y1) , . . . , (q, y)] over
P × N such that the following holds:

- b1 ≤M1 andM2 = (M1 − b1) + b2
- xi ∈ Ii, for i : 1 ≤ i ≤ k and yi ∈ Ji, for i : 1 ≤ i ≤ �
We say that t is enabled in M if such a b1 exists. A transition t may be fired only if
for each incoming arc, there is a token with the right age in the corresponding input
place. These tokens will be removed when the transition is fired. The newly produced
tokens have ages which are chosen nondeterministically from the relevant intervals on
the output arcs of the transition.

We write−→=→time ∪ →D to denote all transitions,
∗−→ to denote the reflexive-

transitive closure of −→ and →+
D to denote the transitive closure of →D. It is easy to

extend
∗−→ to sets of markings. We define Reach(M) := {M ′ |M ∗−→M ′} as the set

of markings reachable fromM .

The cost of computations. A computation σ := M1 −→ M2 −→ . . . −→ Mn

is a sequence of transitions, and also denoted by M1
σ−→ Mn. The cost of a discrete

transition t is defined as Cost(M −→t M
′) := C(t) and the cost of a timed transition is

defined as Cost(M →time M
+1) :=

∑
p∈P |M(p)| ∗C(p). The cost of a computation

σ is the sum of all transition costs, i.e., Cost(σ) :=
∑n−1
i=1 Cost(Mi −→Mi+1).

If the prices are ignored in PTPN then the model becomes equivalent to the timed
Petri nets of [7,16], except that we also allow the creation of tokens with nonzero ages.

Minimal Cost Reachability/Coverability in Priced Timed Petri Nets 351

2.2 Priced Petri Nets

Priced Petri Nets (PPN) are a simple extension of standard Petri nets (i.e., without token
clocks and time constraint arcs) by adding prices and transition delays. Later we will
show that PPN are a weaker model than PTPN (Lemma 3), but most undecidability
results hold even for the weaker PPN model (Theorem 14).

Definition 2. A Priced Petri Net (PPN) is a tuple N = (P, T, T0, T1, In,Out ,C)
where P is a finite set of places, T = T0 � T1 is a disjoint union of the sets of instanta-
neous transitions and timed transitions, In,Out : T → {0 , 1}P , andC : P ∪T → Zk

is the cost function assigning (multidimensional) firing costs to transitions and storage
costs to places.

The markings M : P → N and the firing rules are exactly as in standard Petri nets.
Transition t is enabled at marking M iff M ≥ In(t) (componentwise), and firing t
yields the markingM − In(t) + Out(t).

The cost of an instantaneous transition t ∈ T0 is defined as Cost(M1 −→t M2) :=
C(t) and the cost of a timed transition t ∈ T1 is defined by Cost(M1 −→t M2) :=
C(t) +

∑
p∈P M(p) ∗ C(p). As before, the cost of a computation is the sum of all

transition costs in it.

2.3 The Priced Reachability/Coverability Problem

We study the problem of computing the minimal cost for reaching a marking in a given
target set from the initial marking.

COST-THRESHOLD

Instance: A PTPN (or PPN) N with an initial markingM0, a set of final markings F
and a vector v ∈ Nkω .

Question: Does there exist a marking Mf ∈ F and a computation M0
σ−→ Mf s.t.

Cost(σ) ≤ v ?

We call this problem cost-threshold-coverability if F is upward-closed, and cost-thres-
hold-reachability if F is a single marking, i.e., F = {Mf} for a fixed markingMf .

Lemma 3. The cost threshold reachability/coverability problem for PPN is polynomial
time reducible to the cost threshold reachability/coverability problem for PTPN.

If all costs are non-negative (i.e., in Nk rather than Zk) then the standard componentwise
ordering on costs is a well-order and thus every upward-closed set of costs has finitely
many minimal elements. Furthermore, if we have a positive instance of cost-threshold
with some allowed cost v then any modified instance with some allowed cost v′ ≥
v will also be positive. Thus the set of possible costs in the cost-threshold problem
is upward-closed. In this case the Valk-Jantzen Theorem [17] implies that the set of
minimal possible costs can be computed iff the Cost-Threshold problem is decidable.

Theorem 4. (Valk & Jantzen [17]) Given an upward-closed set V ⊆ Nk, the finite set
Vmin of minimal elements of V is computable iff for any vector v ∈ Nkω the predicate
v↓ ∩ V �= ∅ is decidable.

352 P.A. Abdulla and R. Mayr

COMPUTING MINIMAL POSSIBLE COSTS

Instance: A PTPN (or PPN) N with C : P ∪ T → Nk, initial marking M0, and a set
of final markings F .

Question: Compute the minimal possible costs of reaching F , i.e., the finitely many
minimal elements of {v ∈ Nk | ∃Mf ∈ F,σ.M0

σ−→Mf ∧ Cost(σ) ≤ v}.

2.4 Petri Nets with Control-States and Petri Nets with One Inhibitor Arc

Several other versions of Petri nets will be used in our constructions. We define Petri
nets with an extra finite control. This does not increase their expressive power, since
they can easily be encoded into standard Petri nets with some extra places. However,
for some constructions, we need to make the distinction between infinite memory and
finite memory in Petri nets explicit.

A Petri net with control-states (cPN) is a tuple N = (P,Q, T, In,Out) where P
is a finite set of places, Q a finite set of control-states, T a finite set of transitions and
In,Out : T → Q × NP .

A marking is a tuple (q,M) where q ∈ Q and M : P → N. A transition t with
In(t) = (q1 ,M1) and Out(t) = (q2 ,M2) is enabled at marking (q,M) iff q1 = q and
M1 ≤M . If t fires then the resulting marking is (q2,M −M1 +M2).

The reachability problem for Petri nets is decidable [12] and a useful generalization
to sets of markings was shown by Jančar [10].

Theorem 5. ([10]) Given a cPN, we can use a simple constraint logic to describe prop-
erties of markings (q,M). Any formulaΦ in this logic is a boolean combination of pred-
icates of the following form: q = qi (the control-state is qi),M(pi) ≥ k, orM(pi) ≤ k,
where k ∈ N. In particular, the logic can describe all upward-closed sets of markings.
Given an initial marking and a constraint logic formula Φ, it is decidable if there exists
a reachable marking that satisfies Φ.

A Petri Net with One Inhibitor Arc [15] is defined as an extension of cPN. We fix a
place p and a transition t, which are connected by a so-called inhibitor arc (p, t), and
modify the firing rule for t such that t can only fire if place p is empty. Decidability of
the reachability problem for Petri nets with one inhibitor arc has been shown in [15].
This result can be extended to the case where one place inhibits several transitions.

Lemma 6. The reachability problem for Petri nets with many inhibitor arcs (p, t1), . . . ,
(p, tk) which all connect to the same place p can be reduced to the reachability problem
for Petri nets with just one inhibitor arc.

3 Decidability for Non-negative Costs

Theorem 7. The cost-threshold coverability problem is decidable for PTPN with non-
negative costs.

Consider an instance of the problem. Let N = (P, T, In,Out ,C) be a PTPN with
C(P ∪ T) ⊆ Nk, M0 the initial marking, F an upward-closed target set (represented
by the finite set Fmin of its minimal elements) and v = (v1, . . . , vk) ∈ Nkω.

First, for every i, if vi = ω then we replace vi by 0 and set the i-th component of
the cost functionC ofN to 0, too. This does not change the result of the cost-threshold

Minimal Cost Reachability/Coverability in Priced Timed Petri Nets 353

problem. So we can assume without restriction that v = (v1, . . . , vk) ∈ Nk and let
b := max1≤i≤k vi ∈ N. Let max ∈ N be the maximal finite constant appearing on time
intervals of the PTPN N .

Our proof has two parts. In part 1 we construct a cPN N ′ that simulates the behavior
of the PTPNN w.r.t. discrete transitions. In part 2 we define an operation g on markings
of N ′ which encodes the effect of timed transitions in N .

Construction (part 1). We now construct the cPN N ′ = (P ′, Q, T ′, In ′,Out ′) that
encodes discrete transitions of N .

The set of places P = {p1, . . . , pn} of N can be divided into two disjoint subsets
P = P1 � P0 where ∀p ∈ P0. C(p) = 0 and ∀p ∈ P1. C(p) > 0. We call the places in
P0 free-places and the places in P1 cost-places. Let m := |P1|. Without restriction let
p1, . . . , pm be cost-places and pm+1, . . . , pn be free-places.

The places of N ′ are defined as P ′ := {p(j, x) | pj ∈ P ∧ 0 ≤ x ≤ max + 1}.
The index x is used to encode the age of the token. So if in N there is a token of age
x on place pj then in N ′ there is a token on place p(j, x). The number of tokens on
place p(j,max + 1) in N ′ encodes the number of tokens with ages > max on pj inN .
This is because token ages> max cannot be distinguished from each other inN . In the
following we always consider equivalence classes of markings of N by identifying all
token ages > max .

The set of control-states Q of N ′ is defined as a tuple Q = Q′ × R, where Q′ =
{0, . . . , b}{1,...,m}×{0,...,max+1}. The intuition is that for every cost-place p(j, x) ofN ′

the number of tokens on p(j, x) is partly stored in the control-state q(j, x) of Q′ up-
to a maximum of b, while only the rest is stored on the place p(j, x) directly. So if
place p(j, x) contains y ≥ b tokens then this is encoded as just y − b tokens on place
p(j, x) and a control-state q with q(j, x) = b. If place p(j, x) contains y ≤ b tokens
then this is encoded as 0 tokens on place p(j, x) and a control-state q with q(j, x) = y.
Furthermore,R = {0, . . . , b}k and is used to store the remaining maximal allowed cost.

A marking M ′ of N ′ is given as M ′ = ((q, r),M ′′) where (q, r) ∈ Q and M ′′ :
{1, . . . , n} × {0, . . . ,max + 1} → N. For every r ∈ R we define a mapping fr of
markings ofN to markings ofN ′. Given a markingM ofN , letM ′ = ((q, r),M ′′) :=
fr(M) be defined as follows.

– q(j, x) = min{M((pj , x)), b} for 1 ≤ j ≤ m, 0 ≤ x ≤ max
– M ′′(j, x) = max{0,M((pj, x)) − b} for 1 ≤ j ≤ m, 0 ≤ x ≤ max
– q(j,max + 1) = min{

∑
x>max M((pj , x)), b} for 1 ≤ j ≤ m

– M ′′(j,max + 1) = max{0,
∑
x>max M((pj , x)) − b} for 1 ≤ j ≤ m

– M ′′(j, x) = M((pj , x)) for j > m, 0 ≤ x ≤ max
– M ′′(j,max + 1) =

∑
x>max M((pj , x)) for j > m

This ensures that token numbers up-to b on cost-places are encoded in the control-state
and only the rest is kept on the cost-places themselves. Free-places are unaffected. The
parameter r ∈ R assigns the allowed remaining cost, which is independent of M ,
but also stored in the finite control of M ′. The initial marking M ′

0 of N ′ is defined
as M ′

0 = fv(M0). The upward-closed set of final markings F of N is represented
by the finite set Fmin of its minimal elements. We also represent the upward-closed
set of final markings F ′ of N ′ by the finite set F ′

min of its minimal elements. Let

354 P.A. Abdulla and R. Mayr

F ′
min :=

⋃
0≤r≤v fr(Fmin), i.e., we take the union over all possibilities of remaining

allowed (unused) cost r.
The Petri net N ′ only encodes the effect of discrete transitions of the PTPN N ′ (the

effect of timed transitions will be handled separately). The set T ′ of transitions of N ′

is defined as follows. Let t ∈ T . We say that a pair of functions I,O : {1, . . . , n} ×
{0, . . . ,max + 1} → {0, 1} are compatible with t iff ∀pj ∈ P = {p1, . . . , pn}

– If In(t , pj) is defined then ∃=1x ∈ In(t , pj) ∩ {0 , . . . ,max + 1} s.t. I(j, x) = 1
and I(j, x′) = 0 for every x′ �= x. Otherwise I(j, x) = 0 for all x.

– If Out(t , pj) is defined then ∃=1x ∈ Out(t , pj)∩{0 , . . . ,max +1} s.t.O(j, x) =
1 and I(j, x′) = 0 for every x′ �= x. Otherwise O(j, x) = 0 for all x.

The set of all these compatible pairs of functions represents all possible ways of choos-
ing the age of tokens consumed/produced by t out of the specified time intervals. All
ages> max are lumped together under max +1, since they are indistinguishable inN .

Then for every combination of matrices v1, v3 ∈ {0, 1}{1,...,m}×{0,...,max+1} and
v2, v4 ∈ {0, 1}{1,...,n}×{0,...,max+1} and every pair of functions I,O : {1, . . . , n} ×
{0, . . . ,max+1} → {0, 1}which are compatible with t and every control-state (q, r) ∈
Q we have a transition t′ ∈ T ′ with In(t ′) = ((q, r), I ′) and Out(t ′) = ((q ′, r ′),O ′)
iff the following conditions are satisfied.

– (v1,0) + v2 = I and (v3,0) + v4 = O
– q ≥ v1
– q′ = q − v1 + v3 ∈ Q′ (in particular, every component of q′ is ≤ b).
– r′ = r − C(t) ≥ 0 (the cost of t is deducted from the remaining allowed cost).
– I ′(p(j, x)) = v2(j, x) for 1 ≤ j ≤ n, 0 ≤ x ≤ max + 1
– O′(p(j, x)) = v4(j, x) for 1 ≤ j ≤ n, 0 ≤ x ≤ max + 1

The choice of the v1, v2, v3, v4 encodes all possible ways of splitting the effect of the
transition on places between the part which is encoded in the finite control and the part
remaining on the places. Consume v1 from the finite control and v2 from the real places.
Produce v3 in the finite control and v4 on the real places. Note that v1, v3 have a smaller
dimension than v2, v4, because they operate only on cost-places. So v1, v3 are extended
from dimension {1, . . . ,m}× {0, . . . ,max +1} to {1, . . . , n}×{0, . . . ,max +1} by
filling the extra entries (the free places) with zero to yield (v1,0) and (v3,0) which can
be combined with v2, v4. The transitions cannot guarantee that cost-places are always
properly stored up-to b in the finite control. E.g., if b = 7 there could be reachable mark-
ings where a cost-place holds 5 tokens, but only 3 are encoded in the finite control while
2 remain on the place. However, proper encodings as described above are always possi-
ble. Our constructions will ensure that such non-standard encodings as in this example
do not change the final result. Intuitively, the reason is the following. Non-standard en-
codings differ from proper encodings by having more tokens on the real cost-places and
fewer encoded in the finite control. However, at key points (i.e., where timed transitions
happen) our constructions enforce that the real cost-places are empty, thus filtering out
the computations with non-standard encodings. Furthermore, by forcing the cost-places
to be empty, we ensure that all contents of cost-places are encoded in the finite con-
trol and that they are below the bound b. This makes it possible to deduct the correct
place-costs during timed transitions (see Construction (part 2) below).

Minimal Cost Reachability/Coverability in Priced Timed Petri Nets 355

Lemma 8. Let M1,M2 be markings of N . Then there is a computation σ using only
discrete transitions s.t. M1

σ−→ M2 with Cost(σ) ≤ v if and only if in N ′ there are

computations σ′ where fr(M1)
σ′
−→ fr′(M2) for every r, r′ with v ≥ r and r′ =

r − Cost(σ) ≥ 0.

Proof. Directly from the construction ofN ′ and induction over the lengths of σ,σ′. %&

Construction (part 2). The cPN N ′ only encodes the behavior of N during discrete
transitions. It does not encode the effect of timed transitions, nor the place-costs of
delays. A crucial observation is that, in computations of N , since the maximal allowed
cost v is bounded by b (componentwise), the maximal number of tokens on any cost-
place must be ≤ b before (and thus also after) every timed transition, or else the cost
would exceed the limit v. Since in N ′ token numbers on cost-places are encoded in
the finite control up-to b, we can demand without restriction that in N ′ all cost-places
are empty before and after every simulated timed transition. These simulated timed
transitions are not encoded into N ′ directly, but handled in the following construction.

We define a (non-injective) function g on markings of N ′ which encodes the effect
of a timed transition. For technical reasons we restrict the domain of g to markings of
N ′ which are empty on all cost-places. Let ((q, r),M) be a marking ofN ′ whereM is
empty on all cost-places. The marking ((q′, r′),M ′) := g(((q, r),M)) is defined by

– q′(j, 0) = 0 for 1 ≤ j ≤ m. (No token has age 0 after time has passed.)
– q′(j, x + 1) = q(j, x) for 1 ≤ j ≤ m, 0 ≤ x < max . (All tokens age by 1.)
– q′(j,max + 1) = q(j,max) + q(j,max + 1) for 1 ≤ j ≤ m.
– M ′(j, 0) = 0 for 1 ≤ j ≤ n. (No token has age 0 after time has passed.)
– M ′(j, x+ 1) = M(j, x) for 1 ≤ j ≤ n, 0 ≤ x < max . (All tokens age by 1.)
– M ′(j,max + 1) =M(j,max) +M(j,max + 1) for 1 ≤ j ≤ n.
– r′ = r −

∑m
j=1
∑max+1
x=0 q(j, x) ∗ C(pj) (Deduct the correct place costs).

– r ≤ v. (Costs above the limit v are not allowed.)
– M(j, x) = 0 for 1 ≤ j ≤ m. (All cost-places are empty inM and thus also inM ′.)

The last two conditions ensure that g is only defined for r ≤ v and markings where all
cost-places are empty. Also g is not injective, since ages> max are encoded as max+1.

Lemma 9. LetM1,M2 be markings ofN . ThenM1 →time M2 with Cost(M1 →time

M2) ≤ v if and only if in N ′ we have fr′(M2) = g(fr(M1)) for every r, r′ with v ≥ r
and r′ = r − Cost(M1 →time M2) ≥ 0.

Proof. Since Cost(M1 →time M2) ≤ v, the content of the cost-places in M1 and M2
is below b. Thus the cost places are completely encoded in the finite control in fr(M1)
and fr′(M2), while the cost-places themselves are empty. Therefore the remaining cost
r′ is computed correctly, and depends only on the finite control. The rest follows directly
from the definition of N ′ and g. %&

Lemma 10. The following three conditions are equivalent.

356 P.A. Abdulla and R. Mayr

1. The PTPN N withM0, F and v is a positive instance of cost-threshold.
2. There exist markingsM1, . . . ,Mj−1 and A1, . . . , Aj of N with Mi

σi−→ Ai+1 and
Ai →time Mi and Aj ∈ F where σi consists only of discrete transitions and∑j−1
i=0 Cost(σi) +

∑j−1
i=1 Cost(Ai →time Mi) ≤ v.

3. There exist markings M ′
0 = fv(M0) and M ′

1, . . . ,M
′
j−1 and A′

1, . . . , A
′
j of N ′

with M ′
i

σ′
i−→ A′

i+1 andM ′
i = g(A′

i) and A′
j ∈ F ′.

Proof. Conditions 1. and 2. are equivalent by definition. For the equivalence of 2. and
3. let r0 = v, ai+1 = ri − Cost(σi) and ri = ai − Cost(Ai →time Mi). Then
M ′
i = fri(Mi) and A′

i = fai(Ai). The proof follows directly from Lemmas 8 and 9.

In the following we consider an extended notion of computations of N ′ which contain
both normal transitions of N ′ and applications of function g.

Let F i be the set of markingsM ′ ofN ′ where: (1)M ′ can reach F ′ via an extended
computation that starts with an application of function g and contains i applications
of function g (i.e., i encoded timed transitions), and (2) M ′ is 0 on all cost-places,
i.e., M ′((j, x)) = 0 for 1 ≤ j ≤ m and all x. The set Gi is defined analogously,
except that the extended computation must start with a normal transition of N ′. We
have G0 = {M ′ = (0,x) | M ′ ∗−→ M ′′ ∈ F ′} and Gi = {M ′ = (0,x) | M ′ ∗−→
M ′′ = (0,x′) ∈ F i} for i > 0, and F i+1 = g−1(Gi) for i ≥ 0.

Since F is upward-closed w.r.t. the (multiset-inclusion) order on markings of N , the
set F ′ is upward-closed w.r.t. the order on markings of N ′. Therefore, all sets F i and
Gi are upward-closed w.r.t. the free-places (i.e., their projection on the free-places),
by monotonicity of Petri nets and the monotonicity of function g. Furthermore, the
markings in F i andGi are all zero on the cost-places. So F i andGi can be characterized
by their finitely many minimal elements. The finitely many minimal elements of G0

(resp. Gi) can be computed from F ′ (resp. F i) by generalized Petri net reachability
(Theorem 5) and the Valk-Jantzen Theorem (Theorem 4) applied to the Petri netN ′.

The step from Gi to F i+1 encodes the effect of a timed transition. Let Gimin be
the finite set of minimal elements of Gi. We compute the finite set F i+1

min of minimal
elements of F i+1 as F i+1

min := g−1(Gimin). Even though g is not injective, g−1(Gimin)
is still finite, because Gimin is finite and every marking in Gimin contains only finitely
many tokens. Finally, letH l :=

⋃
i≤l F

i. Now we can prove the main theorem.

Proof. (of Theorem 7) Given the instance of cost-threshold, we construct the Petri N ′

and the sets of markings H l for l = 0, 1, 2, The markings in H l are all empty
on the cost-places, but the sets H l are upward-closed w.r.t. the free-places. Thus, by
Dickson’s Lemma [8], the construction converges atHy for some finite index y. By the
construction of F i we obtain that the set Hy contains all markings which are empty
on the cost-places and which can reach F ′ via some extended computation that begins
with an application of function g and costs at most v.

Thus, by Lemma 10, the instance of cost-threshold is positive iffM ′
0 = fv(M0) can

reachHy∪F ′ by normal transitions in Petri netN ′. This is decidable by Theorem 5. %&

It was shown in [15] that reachability, and thus also coverability, is decidable for Petri
nets with one inhibitor arc. However, our result on PTPN also yields a more direct proof
of decidability of the coverability problem.

Minimal Cost Reachability/Coverability in Priced Timed Petri Nets 357

Corollary 11. Given a Petri net with one inhibitor arc, an initial marking M0 and an
upward-closed set of final markings F , it is decidable ifM0 →∗ F .

Proof. We reduce the coverability problem for a Petri net with one inhibitor arc N to
the cost threshold problem for a PPN N ′ which is constructed as follows. Let (p, t)
be the inhibitor arc. We remove the inhibitor arc, make t a timed transition and all
other transitions instantaneous transitions. Place p has cost 1 while all other places
and transitions have cost 0. In N ′, any computation with cost 0 has the property that
transition t is only used if place p is empty. Therefore, in N ′ the set F is reachable with
cost 0 iff the set F is reachable in N .

Furthermore, by Lemma 3, the cost threshold problem for PPN is reducible to the
cost threshold problem for PTPN. Since F is upward-closed and all costs are non-
negative the problem is decidable by Theorem 7. %&

Now we consider the cost-threshold reachability problem. This is the case where F is
not upward-closed, but a fixed marking, i.e., F = {Mf}.

Theorem 12. The cost-threshold reachability problem is undecidable for PTPN, even
if all costs are zero.

Proof. Directly from the undecidability of the reachability problem for TPN [16]. %&

However, for the simpler PPN model, the cost-threshold reachability problem is equiva-
lent to the reachability problem for Petri nets with one inhibitor arc. The reduction from
Petri nets with one inhibitor arc to the cost-threshold reachability problem for PPN is
similar to the construction in Corollary 11. Now we show the other direction.

Theorem 13. The cost-threshold reachability problem for PPN is decidable.

Proof. Consider a PPN N = (P, T, T0, T1, In,Out ,C), cost v, initial marking M0
and a target marking Mf . We construct a Petri net N ′ = (P ′, Q, T ′, In ′,Out ′), with
inhibitor arcs (p0, t) (for many different transitions t, but always the same place p0),
an initial markingM ′

0 and markingsM ′
f , M̂f s.t. M ′

0 →∗ M ′
f → M̂f in N ′ iff N is a

positive instance of cost-threshold.

Construction. Let v = (v1, . . . , vk) ∈ Nkω. First, for every i, if vi = ω then we replace
vi by 0 and set the i-th component of the cost function C of N to 0, too. This does not
change the result of the cost-threshold problem. Thus we can assume without restriction
that v = (v1, . . . , vk) ∈ Nk. Let b := max1≤i≤k vi ∈ N.

The set of places P = {p1, . . . , pn} of N can be divided into two disjoint subsets
P = P1 � P0 where ∀p ∈ P0. C(p) = 0 and ∀p ∈ P1. C(p) > 0. We call the places in
P0 free-places and the places in P1 cost-places. Let m := |P1|. Without restriction let
p1, . . . , pm be cost-places and pm+1, . . . , pn be free-places.

The set of control-states Q of N ′ is defined as a tuple Q = Q′ × R, where Q′ =
{0, . . . , b}m. The intuition is that for every cost-place pj the number of tokens on pj is
partly stored in the j-th component of Q′ up-to a maximum of b, while only the rest is
stored on the place directly. So if place pj contains x ≥ b tokens then this is encoded
as just x − b tokens on place pj and a control-state where the j-th component is b. If

358 P.A. Abdulla and R. Mayr

place pj contains x ≤ b tokens then this is encoded as just 0 tokens on place pj and a
control-state where the j-th component is x. Furthermore,R = {0, . . . , b}k and is used
to store the remaining maximal allowed cost of the computation.

Let P ′ := P ∪ {p0}. The extra place p0 will be used to store the sum of all cost-
places. So every markingM ′ of N ′ will satisfy the invariantM ′(p0) =

∑
p∈P1

M ′(p).
In particularM ′(p0) = 0 ⇔ ∀p ∈ P1.M

′(p) = 0.
The set T ′ of transitions of N ′ is defined as follows. Let t ∈ T0. Then for every

combination of vectors v1, v3 ∈ Nm and v2, v4 ∈ Nn and every control-state (q, r) ∈ Q
we have a transition t′ ∈ T ′ with In(t ′) = ((q, r), I) and Out(t ′) = ((q ′, r ′),O)
iff the following conditions are satisfied. (The intuition for the vectors v1, v2, v3, v4 is
to model all possible ways of splitting the consumption/production of tokens by the
transition between tokens encoded in the finite control and tokens present on the real
places; similarly as in Construction (part 1) of the proof of Theorem 7.)

– (v1,0) + v2 = In(t), and (v3,0) + v4 = Out(t)
– q ≥ v1
– q′ = q − v1 + v3 ≤ (b, . . . , b)
– r′ = r − C(t) ≥ 0
– I(pj) = v2(pj) for j ≥ 1 and I(p0) =

∑m
i=1 v2(pi)

– O(pj) = v4(pj) for j ≥ 1 and O(p0) =
∑m
i=1 v4(pi)

Let t ∈ T1. Then for every combination of vectors v1, v3 ∈ Nm and v2, v4 ∈ Nn and
every control-state (q, r) ∈ Q we have a transition t′ ∈ T ′ with In(t ′) = ((q, r), I)
and Out(t ′) = ((q ′, r ′),O) and inhibitor arc (p0, t′) iff the following conditions hold.

– (v1,0) + v2 = In(t), and (v3,0) + v4 = Out(t)
– q ≥ v1
– q′ = q − v1 + v3 ≤ (b, . . . , b)
– r′ = r − C(t)−

∑m
i=1 qi ∗ C(pi) ≥ 0

– I(pj) = v2(pj) for j ≥ 1 and I(p0) =
∑m
i=1 v2(pi) = 0

– O(pj) = v4(pj) for j ≥ 1 and O(p0) =
∑m
i=1 v4(pi)

Finally, for every (q, r) ∈ Q′, we add another transition t′ to T with In(t ′) = ((q, r),0)
and Out(t ′) = ((q,0),0). This makes it possible to set the remaining allowed cost to
zero at any time.

For every r ∈ R we define a mapping fr of markings ofN to markings ofN ′. Given
a markingM of N , letM ′ := fr(M) be defined as follows.M ′ = ((q, r),M ′′) where
qi = min{M(pi), b} for 1 ≤ i ≤ m andM ′′(pi) = max{0,M(pi)−b} for 1 ≤ i ≤ m
and M ′′(pi) = M(pi) for i > m and M ′′(p0) =

∑m
i=1M

′′(pi). This ensures that
token numbers up-to b on cost-places are encoded in the control-state and only the rest
is kept on the cost-places themselves. Free-places are unaffected. The parameter r ∈ R
assigns the allowed remaining cost, which is independent of M , but also stored in the
finite control ofM ′. The initial markingM ′

0 of N ′ is defined asM ′
0 = fv(M0) and the

final marking is defined as M̂f = f0(Mf).

Proof of correctness. Assume that there is a computation σ of N of the form M0 →
M1 → M2 → · · · → Mf such that Cost(σ) ≤ v. Then there is a corresponding

computation σ′ in N ′ of the form M ′
0 → M ′

1 → M ′
2 → · · · → M ′

f → M̂f such that

Minimal Cost Reachability/Coverability in Priced Timed Petri Nets 359

M ′
i = fri(Mi), where ri = v − Cost(M0 → · · · → Mi) and M̂f = f0(Mf). The

step M ′
f → M̂f uses the special transition that sets the remaining allowed cost to zero.

The crucial observation is that whenever a timed transition Mi
t−→ Mi+1 is used in σ

then the number of tokens on every cost-place pj in Mi is ≤ b, because Cost(σ) ≤ v.
Therefore, inM ′

i every cost-place pj is empty, since all the≤ b tokens are encoded into
the finite control. Thus M ′

i(p0) = 0 and the inhibitor arc (p0, t) does not prevent the

transition from M ′
i

t−→ M ′
i+1. Furthermore, the remaining allowed cost ri is always

non-negative, because, by our assumption, v ≥ Cost(σ). Thus the cost restrictions do
not inhibit transitions in σ′ either. Finally, we apply the special transition which sets the
remaining allowed cost to zero and thus we reach M̂f as required.

In order to show the other direction, we need a reverse mapping g from markings
M ′ of N ′ to markings M of N . For M ′ = ((q, r,M ′′) we define M = g(M ′) as
follows. For cost-places pj (with 1 ≤ j ≤ m) we have M(pj) = M ′′(pj) + qj . For
free-places pj (with j > m) we have M(pj) = M ′′(pj). Assume now that we have a

computation σ′ of N ′ of the form M ′
0 → M ′

1 → M ′
2 → · · · → M ′

f → M̂f . Without
restriction we can assume that the special transition which sets the remaining allowed
cost to zero is used exactly only in the last step M ′

f → M̂f , because the set of possible
computations is monotone increasing in the allowed remaining cost. In the special case
where the remaining allowed cost is already 0 in M ′

f we have M ′
f = M̂f . There then

exists a computation σ of N of the form M0 → M1 → M2 → · · · → Mf such that
Mi = g(M ′

i) and Cost(M0 → · · · → Mi) = v − ri, where M ′
i = ((q, ri),M ′′

i) (for

some q ∈ Q′). The crucial argument is about the timed-transition stepsM ′
i

t−→M ′
i+1.

The inhibitor arc (p0, t) in N ′ ensures that M ′
i(p0) = 0. Thus all cost-places pj are

empty in M ′
i and only the part up-to b which is encoded in the finite control part q

remains. Therefore, we deduct the correct cost C(t)+
∑m
i=1 qi∗C(pi) from ri to obtain

ri+1 and so we maintain the above invariant by Cost(M0 → · · · →Mi+1) = v− ri+1.
So we obtain Cost(M0 → · · · →Mf) = v − rf ≥ 0 and thus Cost(σ) ≤ v.

Finally, since all the inhibitor arcs inN ′ connect to the same place p0, the reachabil-
ity problem for N ′ can be reduced to the reachability problem for some Petri net with
just one inhibitor arc by Lemma 6, and this is decidable by [15]. %&

4 Undecidability for Negative Costs

The cost threshold coverability problem for PTPN is undecidable if negative transition
costs are allowed. This holds even for the simpler PPN and one-dimensional costs.

Theorem 14. The cost threshold problem for PPN N = (P, T, T0, T1, In,Out ,C) is
undecidable even if C(P) ⊆ N and C(T) ⊆ Z≤0 and F is upward-closed.

Proof. We prove undecidability of the problem through a reduction from the control-
state reachability problem for 2-counter machines. We recall that a 2-counter machine
M , operating on two counters c0 and c1, is a triple (Q, δ, qinit), where Q is a finite set
of control states, δ is a finite set of transitions, and qinit ∈ Q is the initial control-
state. A transition r ∈ δ is a triple (q1, op, q2), where op is of one of the three forms
(for i = 0, 1): (i) ci++ which increments the value of ci by one; (ii) ci−− which

360 P.A. Abdulla and R. Mayr

decrements the value of ci by one; or (iii) ci = 0? which checks whether the value of ci
is equal to zero. A configuration γ ofM is a triple (q, x, y), where q ∈ Q and x, y ∈ N.
The configuration gives the control-state together with the values of the counters c0
and c1. The initial configuration cinit is (qinit , 0, 0). The operational semantics ofM is
defined in the standard manner. In the control-state reachability problem, we are given
a counter machine M and a (final) control-state qF , and check whether we can reach a
configuration of the form (qF , x, y) (for arbitrary x and y) from γinit .

Given an instance of the control-state reachability problem for 2-counter machines,
we derive an instance of the cost threshold coverability problem for a PPN with only
non-negative costs on places and only non-positive costs on transitions; and where the
threshold vector is given by (0) (i.e., the vector is one-dimensional, and its only com-
ponent has value 0). We define the PPNN = (P, T, T0, T1, In,Out ,C) as follows. For
each control-state q ∈ Qwe have a place q ∈ P . A token in the place q indicates thatM
is in the corresponding control-state. For each counter ci we have a place ci ∈ P with
C(ci) = 1. The number of tokens in the place ci gives the value of the corresponding
counter. We define the set F as (qF , 0, 0) ↑. Increment and decrement transitions are
simulated in a straightforward manner. For a transition r = (q1, ci++, q2) ∈ δ there
is a transition r ∈ T0 such that In(r) = {q1}, Out(r) = {q2 , ci}, and C(t) = 0.
For a transition r = (q1, ci−−, q2) ∈ δ there is a transition r ∈ T0 such that In(r) =
{q1 , ci}, Out(r) = {q2}, and C(t) = 0. The details of simulating a zero testing tran-
sition r = (q1, ci = 0?, q2) are shown in Figure 1. The main idea is to put a positive
cost on the counter places ci and c1−i. If the system ‘cheats’ and takes the transition
from a configuration where the counter value ci is positive (the corresponding place
is not empty), then the transition will impose a cost which cannot be compensated in
the remainder of the computation. Since the other counter c1−i also has a positive cost,
we will also pay an extra (unjustified) price corresponding to the number of tokens in
c1−i. Therefore, we use a number of auxiliary places and transitions which make it
possible to reimburse unjustified cost for tokens on counter c1−i. The reimbursement
is carried out (at most completely, but possibly just partially) by cycling around the to-
kens in c1−i. Concretely, we have three transitions tr1, t

r
2, t

r
3 ∈ T0 and two transitions

tr4, t
r
5 ∈ T1. Furthermore, we have three extra places pr1, p

r
2, p

r
3 ∈ P . The costs are given

byC(tr2) = −2,C(pr3) = 2,C(c1−i) = C(c1−i) = 1; while the cost of the other places
and transitions are all equal to 0. Intuitively,N simulates the transition r by first firing
the transition tr4 which will add a cost which is equal to the number of tokens in ci and
c1−i. Notice that the (only) token in the place qi has now been removed. This means
that there is no token in any place corresponding to a control-state in M and hence the
rest of the net has now become passive. We observe also that tr4 puts a token in pr1. This
token will enable the next phase which will make it possible to reclaim the (unjustified)
cost we have for the tokens in the place c1−i. Let n be the number of tokens in place
c1−i. Then, firing tr4 costs n. We can now fire the transition tr2 m times, wherem ≤ n,
thus movingm tokens from c1−i to pr3 and gaining 2m (i.e., paying−2m). Eventually,
tr1 will fire enabling tr3. The latter can fire k times (where k ≤ m) moving k tokens
back to c1−i. The places pr3 and c1−i will now containm− k resp. n+ k −m tokens.
Finally, the transition tr5 will fire, costing 2(m − k) + (n + k − m) = n + m − k,
moving a token to q2, and resuming the “normal” simulation of M . The total cost �

Minimal Cost Reachability/Coverability in Priced Timed Petri Nets 361

1 4 1
2

2

1
2

3

1

1

2 5 2 3

Fig. 1. Simulating zero testing in a PPN. Timed transitions are filled. The cost of a place or
transition is shown only if it is different from 0.

for the whole sequence of transitions is n − 2m + n + m − k = 2n − m − k. This
means 0 ≤ � and that � = 0 only if k = m = n, i.e., all the tokens of c1−i are moved
to pr3 and back to c1−i. In other words, we can reimburse all the unjustified cost (but
not more than that). This implies correctness of the construction as follows. Suppose
that the given instance of the control-state reachability problem has a positive answer.
Then there is a faithful simulation in N (which will eventually put a token in the place
qF). In particular, each time we perform a transition which tests the value of counter ci,
the corresponding place is indeed empty and hence we pay no cost for it. We can also
choose to reimburse all the unjustified cost paid for counter c1−i. Recall that all tran-
sitions are instantaneous except the ones which are part of simulations of zero testing
(the ones of the form tr4 and tr5). It follows that the computation has an accumulated
cost equal to 0. On the other hand, suppose that the given instance of the control-state
reachability problem has a negative answer. Then the only way for N to put a token in
qF is to ‘cheat’ during the simulation of a zero testing transition (as described above).
However, in such a case either m < n or k < n. In either case, the accumulated cost
for simulating the transition is positive. Since simulations of increment and decrement
transition have zero costs, and simulations of zero testing transitions have non-negative
costs, the extra cost paid for cheating cannot be recovered later in the computation. This
means that the accumulated cost for the whole computation will be strictly positive, and
thus we have a negative instance of the cost threshold coverability problem. %&

Corollary 15. The cost threshold problem for PTPN N = (P, T, T0, T1, In,Out ,C)
is undecidable even if C(P) ⊆ N and C(T) ⊆ Z≤0 and F is upward-closed.
Proof. Directly from Theorem 14 and Lemma 3. %&

5 Conclusion

We have considered Priced Timed Petri nets (PTPN), which is an extension of discrete-
timed Petri nets with a cost model. We have shown decidability of the priced cover-
ability problem when prices of places and transitions are given as vectors of natural
numbers. On the other hand, allowing negative costs, even the priced coverability prob-
lem becomes undecidable even for the simpler model of Priced Petri Nets (PPNs) which
is an extension of the the classical model of Petri nets with prices.

362 P.A. Abdulla and R. Mayr

The (un)decidability results of can be extended in several ways, using constructions
similar to the ones provided in the paper. For instance, if we consider a model where we
allow control-states and where the place-costs depend on the control-state, then the cov-
erability problem is undecidable for PPNs even if there are no costs on the transitions.
In fact, the result can be shown using a simplified version of the proof of Theorem 14.
The idea is to use the control-state to avoid paying wrongly-paid costs for the counter
which is not currently tested for zero. Furthermore, if all place-costs are 0, then the
cost threshold reachability/coverability problem can be encoded into the standard Petri
net problems, even if transition-costs can be negative. Finally, if all places have non-
positive costs then everything is still decidable, even for general integer transition costs.
The reason is that, instead of negative place costs, we could in every time-passing phase
‘cycle’ the tokens on cost-places at most once through negative transitions. Since the
costs are negative, there is an ‘incentive’ to do this cycling fully.

A challenging problem which we are currently considering is to extend our results
to the case of dense-timed Petri nets.

References

1. Abdulla, P.A., Nylén, A.: Timed Petri Nets and BQOs. In: Colom, J.-M., Koutny, M. (eds.)
ICATPN 2001. LNCS, vol. 2075, pp. 53–70. Springer, Heidelberg (2001)

2. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126, 183–235
(1994)

3. Alur, R., Torre, S.L., Pappas, G.J.: Optimal paths in weighted timed automata. In: Di
Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp.
49–62. Springer, Heidelberg (2001)

4. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems using time
Petri nets. IEEE Trans. on Software Engineering 17(3), 259–273 (1991)

5. Bouyer, P., Brihaye, T., Bruyère, V., Raskin, J.-F.: On the optimal reachability problem of
weighted timed automata. Formal Methods in System Design 31(2), 135–175 (2007)

6. Bowden, F.D.J.: Modelling time in Petri nets. In: Proc. Second Australian-Japan Workshop
on Stochastic Models (1996)

7. de Frutos Escrig, D., Ruiz, V.V., Alonso, O.M.: Decidability of Properties of Timed-Arc Petri
Nets. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp. 187–206.
Springer, Heidelberg (2000)

8. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with n distinct
prime factors. Amer. J. Math. 35, 413–422 (1913)

9. Ghezzi, C., Mandrioli, D., Morasca, S., Pezzè, M.: A unified high-level Petri net formalism
for time-critical systems. IEEE Trans. on Software Engineering 17(2), 160–172 (1991)

10. Jančar, P.: Decidability of a temporal logic problem for Petri nets. Theoretical Computer
Science 74, 71–93 (1990)

11. Larsen, K.G., Behrmann, G., Brinksma, E., Fehnker, A., Hune, T., Pettersson, P., Romijn, J.:
As cheap as possible: Efficient cost-optimal reachability for priced timed automata. In: Berry,
G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, p. 493. Springer, Heidelberg
(2001)

12. Mayr, E.: An algorithm for the general Petri net reachability problem. SIAM Journal of
Computing 13, 441–460 (1984)

Minimal Cost Reachability/Coverability in Priced Timed Petri Nets 363

13. Merlin, P., Farber, D.: Recoverability of communication protocols - implications of a theo-
retical study. IEEE Trans. on Computers, COM 24, 1036–1043 (1976)

14. Razouk, R., Phelps, C.: Performance analysis using timed Petri nets. In: Protocol Testing,
Specification, and Verification, pp. 561–576 (1985)

15. Reinhardt, K.: Reachability in Petri nets with inhibitor arcs. In: Proc. RP 2008, 2 nd Work-
shop on Reachability Problems (2008)

16. Ruiz, V.V., Gomez, F.C., de Frutos Escrig, D.: On non-decidability of reachability for timed-
arc Petri nets. In: Proc. 8th Int. Workshop on Petri Net and Performance Models (PNPM
1999), Zaragoza, Spain, 8-10 October 1999, pp. 188–196 (1999)

17. Valk, R., Jantzen, M.: The residue of vector sets with applications to decidability problems
in Petri nets. Acta Inf., 21 (1985)

Delayed Nondeterminism in
Continuous-Time Markov Decision Processes	

Martin R. Neuhäußer1,2, Mariëlle Stoelinga2, and Joost-Pieter Katoen1,2

1 MOVES Group, RWTH Aachen University, Germany
2 FMT Group, University of Twente, The Netherlands

Abstract. Schedulers in randomly timed games can be classified as to whether
they use timing information or not. We consider continuous-time Markov deci-
sion processes (CTMDPs) and define a hierarchy of positional (P) and history-
dependent (H) schedulers which induce strictly tighter bounds on quantitative
properties on CTMDPs. This classification into time abstract (TA), total time (TT)
and fully time-dependent (T) schedulers is mainly based on the kind of tim-
ing details that the schedulers may exploit. We investigate when the resolution
of nondeterminism may be deferred. In particular, we show that TTP and TAP
schedulers allow for delaying nondeterminism for all measures, whereas this does
neither hold for TP nor for any TAH scheduler. The core of our study is a trans-
formation on CTMDPs which unifies the speed of outgoing transitions per state.

1 Introduction

Continuous-time Markov decision processes (CTMDPs) which are also known as con-
trolled Markov chains, have originated as continuous-time variants of finite-state prob-
abilistic automata [1], and have been used for, among others, the control of queueing
systems, epidemic, and manufacturing processes. The analysis of CTMDPs is mainly
focused on determining optimal schedulers for criteria such as expected total reward
and expected (long-run) average reward, cf. the survey [2].

As in discrete-time MDPs, nondeterminism in CTMDPs is resolved by schedulers.
An important criterion for CTMDP schedulers is whether they use timing information
or not. For time-bounded reachability objectives, e.g., timed schedulers are optimal [3].
For simpler criteria such as unbounded reachability or average reward, time-abstract
(TA) schedulers will do. For such objectives, it suffices to either abstract the timing in-
formation in the CTMDP (yielding an “embedded” MDP) or to transform the CTMDP
into an equivalent discrete-time MDP, see e.g., [4, p. 562] [2]. The latter process is com-
monly referred to as uniformization. Its equivalent on continuous-time Markov chains,
a proper subclass of CTMDPs, is pivotal to probabilistic model checking [5].

The main focus of this paper is on defining a hierarchy of positional (P) and history-
dependent (H) schedulers which induce strictly tighter bounds on quantitative properties
on CTMDPs. This hierarchy refines the notion of generic measurable schedulers [6].
An important distinguishing criterion is the level of detail of timing information the

	 Supported by the NWO projects QUPES (612.000.420) and FOCUS/BRICKS (642.000.505)
(MOQS) and by the EU grants IST-004527 (ARTIST2) and FP7-ICT-2007-1 (QUASIMODO).

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 364–379, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Delayed Nondeterminism in Continuous-Time Markov Decision Processes 365

schedulers may exploit, e.g., the delay in the last state, total time (TT), or all individual
state residence times (T).

In general, the delay to jump to a next state in a CTMDP is determined by the ac-
tion selected by the scheduler on entering the current state. We investigate under which
conditions this resolution of nondeterminism may be deferred. Rather than focusing on
a specific objective, we consider this delayed nondeterminism for generic (measurable)
properties. The core of our study is a transformation —called local uniformization— on
CTMDPs which unifies the speed of outgoing transitions per state. Whereas classical
uniformization [7,8,9] adds self-loops to achieve this, local uniformization uses auxil-
iary copy-states. In this way, we enforce that schedulers in the original and uniformized
CTMDP have (for important scheduler classes) the same power, whereas classical loop-
based uniformization allows a scheduler to change its decision when re-entering a state
through the added self-loop. Therefore, locally uniform CTMDPs allow to defer the
resolution of nondeterminism, i.e., they dissolve the intrinsic dependency between state
residence times and schedulers, and can be viewed as MDPs with exponentially dis-
tributed state residence times.

In particular, we show that TTP and TAP schedulers allow to delay nondeterminism
for all measures. As TTP schedulers are optimal for time-bounded reachability objec-
tives, this shows that local uniformization preserves the probability of such objectives.
Finally, we prove that TP and TAH schedulers do not allow for delaying nondetermin-
ism. This results in a hierarchy of time-dependent schedulers and their inclusions. More-
over, we solve an open problem in [3] concerning TAP schedulers.

The paper is organized as follows: Sec. 2 introduces CTMDPs and a general notion of
schedulers which is refined in Sec. 3. In Sec. 4, we define local uniformization and prove
its correctness. Sec. 5 summarizes the main results and Sec. 6 proves that deferring
nondeterministic choices induces strictly tighter bounds on quantitative properties.

2 Continuous-Time Markov Decision Processes

We consider CTMDPs with finite sets S ={s0,s1, . . .} and Act={α,β , . . .} of states
and actions; Distr(S) and Distr(Act) are the respective sets of probability
distributions.

Definition 1 (Continuous-time Markov decision process). A continuous-time
Markov decision process (CTMDP) is a tuple C = (S ,Act,R,ν) where S and Act
are finite, nonempty sets of states and actions, R : S × Act×S → �≥0 is a three-
dimensional rate matrix and ν ∈ Distr(S) is an initial distribution.

s0 s1

s2

s3

s4

β ,2 α,2 γ,1
γ,1

α,1
α,1

β ,3 β ,1

Fig. 1. A well-formed CTMDP

If R(s,α,s′) = λ and λ > 0, an α-transition leads
from state s to state s′. λ is the rate of an exponen-
tial distribution which defines the transition’s de-
lay. Hence, it executes in time interval [a,b] with
probability ηλ

(
[a,b]

)
=
∫ b

a λ e−λ t dt; note that ηλ
directly extends to the Borel σ -field B(�≥0). Fur-
ther, Act(s) = {α ∈ Act|∃s′ ∈S . R(s,α,s′)> 0}
is the set of enabled actions in state s and

366 M.R. Neuhäußer, M. Stoelinga, and J.-P. Katoen

E(s,α) = ∑s′∈S R(s,α,s′) is its exit rate under action α . A CTMDP is well-formed
if Act(s) �= /0 for all s ∈S . As this is easily achieved by adding self-loops, we restrict
to well-formed CTMDPs. The time-abstract branching probabilities are captured by a

matrix P where P(s,α,s′) = R(s,α ,s′)
E(s,α) if E(s,α) > 0 and P(s,α,s′) = 0 otherwise.

Example 1. If α is chosen in state s0 of the CTMDP in Fig. 1, we enter state s1 after a
delay which is exponentially distributed with rate R(s0,α,s1) = E(s0,α) = 1. For state
s1 and action α , a race decides which of the two α-transitions executes; in this case, the
sojourn time of state s1 is exponentially distributed with rate E(s1,α) = 3. The time-

abstract probability to move to state s3 is R(s1,α ,s3)
E(s1,α) = 1

3 .

2.1 The Probability Space

In a CTMDP C = (S ,Act,R,ν), a finite path π of length n (denoted |π | = n) is a

sequence π = s0
α0,t0−−−→ s1

α1,t1−−−→ ·· · αn−1,tn−1−−−−−→ sn where si ∈ S , αi ∈ Act and ti ∈ �≥0.
With π [k] = sk and δ (π ,k) = tk we refer to its k-th state and the associated sojourn time.
Accordingly, ∆(π) = ∑n−1

k=0 tk is the total time spent on π . Finally, π↓= sn denotes the

last state of π and π [i..k] is the path infix si
αi,ti−−→ ·· · αk−1,tk−1−−−−−→ sk. The path π is built by a

state and a sequence of combined transitions from the set Ω = Act×�≥0×S : It is the
concatenation s0 ◦m0 ◦m1 · · · ◦mn−1 where mi = (αi,ti,si+1) ∈ Ω . Thus Pathsn(C) =
S ×Ω n yields the set of paths of length n in C and analogously, Paths	(C), Pathsω(C)
and Paths(C) denote the sets of finite, infinite and all paths of C . We use abs(π) =
s0

α0−→ s1
α2−→ ·· · αn−1−−−→ sn to refer to the time-abstract path induced by π and define

Pathsn
abs(C) accordingly. For simplicity, we omit the reference to C wherever possible.

Events in C are measurable sets of paths; as paths are sequences of combined tran-
sitions, we first define the σ -field F = σ

(
FAct×B(�≥0)×FS

)
on subsets of Ω where

FS = 2S and FAct = 2Act. Based on (Ω ,F), we derive the product σ -field FPathsn =
σ
(
{S0×M0×·· ·×Mn−1 | S0 ∈ FS ,Mi ∈ F}

)
for paths of length n. Finally, the cylinder-

set construction [10] allows to extend this to a σ -field over infinite paths: A set B ∈
FPathsn is a base of the infinite cylinder C if C = Cyl(B) = {π ∈ Pathsω | π [0..n] ∈ B}.
Now the desired σ -field FPathsω is generated by the set of all cylinders, i.e. FPathsω =
σ
(⋃∞

n=0 {Cyl(B) | B ∈ FPathsn}
)
. For an in-depth discussion, we refer to [10,11,6].

2.2 Probability Measure

The probability measures on FPathsn and FPathsω are defined using schedulers that re-
solve the nondeterminism in the underlying CTMDP.

Definition 2 (Generic measurable scheduler). Let C be a CTMDP with actions in
Act. A generic scheduler on C is a mapping D : Paths	×FAct → [0,1] where D(π , ·) ∈
Distr(Act(π↓)). It is measurable (gm-scheduler) iff the functions D(·,A) : Paths	 →
[0,1] are measurable for all A ∈ FAct.

On reaching state sn via path π , D(π , ·) defines a distribution over Act(sn) and thereby
resolves the nondeterminism in state sn. The measurability condition in Def. 2 states

Delayed Nondeterminism in Continuous-Time Markov Decision Processes 367

that {π ∈ Paths	|D(π ,A) ∈ B} ∈ FPaths	 for all A∈ FAct and B∈B([0,1]); it is required
for the Lebesgue-integral in Def. 4 to be well-defined.

To define a probability measure on sets of paths, we proceed stepwise and first derive
a probability measure on sets of combined transitions:

Definition 3 (Probability on combined transitions). Let C=(S ,Act,R,ν) be a CT-
MDP and D a gm-scheduler on C . For all π ∈ Paths	(C), define the probability mea-
sure µD(π , ·) : F→ [0,1] where

µD(π,M) =
∫

Act
D(π,dα)

∫
�≥0

ηE(π↓,α)(dt)
∫
S

IM(α,t,s′) P(s,α,ds′). (1)

Here, IM denotes the characteristic function of M ∈ F. A proof that µD(π , ·) is indeed
a probability measure can be found in [6, Lemma 1]. Intuitively, µD(π ,M) is the prob-
ability to continue on path π under scheduler D with a combined transition in M. With
µD(π , ·) and ν , we can define the probability of sets of paths:

Definition 4 (Probability measure). Let C =(S ,Act,R,ν) be a CTMDP and D a gm-
scheduler on C . For n≥ 0, we define the probability measures Prn

ν,D on the measurable
space (Pathsn,FPathsn) inductively as follows:

Pr0
ν,D : FPaths0 → [0,1] : Π �→ ∑

s∈Π
ν ({s}) and for n> 0

Prn
ν,D : FPathsn → [0,1] : Π �→

∫
Pathsn−1

Prn−1
ν,D (dπ)

∫
Ω

IΠ (π ◦m) µD(π,dm).

Intuitively, we measure sets of paths Π of length n by multiplying the probability
Prn−1

ν,D (dπ) of path prefixes π with the probability µD(π ,dm) of a combined transi-
tion m that extends π to a path in Π . Together, the measures Prn

ν,D extend to a unique
measure on FPathsω : if B ∈ FPathsn is a measurable base and C = Cyl(B), we define
Prω

ν,D(C) = Prn
ν,D(B). Due to the inductive definition of Prn

ν,D, the Ionescu–Tulcea ex-
tension theorem [10] is applicable and yields a unique extension of Prω

ν,D from cylin-
ders to arbitrary sets in FPathsω .

As we later need to split a set of paths into a set of prefixes I and a set of suffixes Π ,
we define the set of path prefixes of length k> 0 by PPref k = (FS ×FAct×B(�≥0))k

and provide a probability measure on its σ -field FPPref k :

Definition 5 (Prefix measure). Let C = (S ,Act,R,ν) be a CTMDP and D a gm-
scheduler on C . For I ∈ FPPref k and k > 0, define

µk
ν,D(I) =

∫
Pathsk−1

Prk−1
ν,D (dπ)

∫
Act

D(π,dα)
∫
�≥0

II
(
π α ,t−−→

)
ηE(π↓,α)(dt).

As Prk−1
ν,D is a probability measure, so is µk

ν,D. If I ∈ FPPref k and Π ∈ FPathsn , their

concatenation is the set I×Π ∈ FPathsk+n ; its probability Prk+n
ν,D (I×Π) is obtained by

multiplying the measure of prefixes i ∈ I with the suffixes in Π :

Lemma 1. Let Π ∈ FPathsn and I ∈ FPPref k . If i = s0
α0,t0−−−→ ·· · sk−1

αk−1,tk−1−−−−−→, define
νi = P(sk−1,αk−1, ·) and Di(π , ·) = D(i◦π , ·). Then

Prk+n
ν,D (I×Π) =

∫
PPref k

µk
ν,D(di)

∫
Pathsn

II×Π (i◦π) Prn
νi,Di

(dπ).

Lemma 1 justifies to split sets of paths and to measure the components of the resulting
Cartesian product; therefore, it abstracts from the inductive definition of Prn

ν,D.

368 M.R. Neuhäußer, M. Stoelinga, and J.-P. Katoen

3 Scheduler Classes

TH

TTH

TTP

TP

TAP

TAHOP

TAH

Fig. 2. Scheduler classes

Section 2.2 defines the probability of sets of paths w.r.t.
a gm-scheduler. However, this does not fully describe a
CTMDP, as a single scheduler is only one way to resolve
nondeterminism. Therefore we define scheduler classes
according to the information that is available when mak-
ing a decision. Given an event Π ∈ FPathsω , a scheduler
class induces a set of probabilities which reflects the CT-
MDP’s possible behaviours. In this paper, we investigate
which classes in Fig. 2 preserve minimum and maximum
probabilities if nondeterministic choices are delayed.

As proved in [6], the most general class is the set of
all gm-schedulers: If paths π1,π2 ∈ Paths	 of a CTMDP
end in state s, a gm-scheduler D : Paths	×FAct → [0,1]
may yield different distributions D(π1, ·) and D(π2, ·) over the next action, depending
on the entire histories π1 and π2. We call this the class of timed, history dependent (TH)
schedulers.

On the contrary, D is a time-abstract positional (TAP) scheduler, if D(π1, ·)=D(π2, ·)
for all π1,π2 ∈ Paths	 that end in the same state. As D(π , ·) only depends on the current
state, it is specified by a mapping D : S → Distr(Act).

s0

s1 s2

s31

1

3

1

Fig. 3. Induced CTMC

Example 2. For TAP scheduler D with D(s0) = {α �→ 1}
and D(s1) = {β �→ 1}, the induced stochastic process
of the CTMDP in Fig. 1 is the CTMC depicted in
Fig. 3. Note that in general, randomized schedulers do
not yield CTMCs as the induced sojourn times are hyper-
exponentially distributed.

For TAHOP schedulers, the decision may depend on the current state s and the length
of π1 and π2 (hop-counting schedulers); accordingly, they are isomorphic to mappings
D : S ×�→ Distr(Act). Moreover, D is a time-abstract history-dependent scheduler
(TAH), if D(π1, ·) = D(π2, ·) for all histories π1,π2 ∈ Paths	 with abs(π1) = abs(π2);
given history π , TAH schedulers may decide based on the sequence of states and actions
in abs(π). In [3], the authors show that TAHOP and TAH induce the same probability
bounds for timed reachability which are tighter than the bounds induced by TAP.

Time-dependent scheduler classes generally induce probability bounds that exceed
those of the corresponding time-abstract classes [3]: If we move from state s to s′, a
timed positional scheduler (TP) yields a distribution over Act(s′) which depends on s′

and the time to go from s to s′; thus TP extends TAP with information on the delay of
the last transition.

Similarly, total time history-dependent schedulers (TTH) extend TAH with informa-
tion on the time that passed up to the current state: If D ∈ T T H and π1,π2 ∈ Paths	 are
histories with abs(π1)=abs(π2) and ∆(π1)=∆(π2), then D(π1, ·)=D(π2, ·). Note that
T TH ⊆ TH, as TTH schedulers may depend on the accumulated time but not on so-
journ times in individual states of the history. Generally the probability bounds of TTH
are less strict than those of TH.

Delayed Nondeterminism in Continuous-Time Markov Decision Processes 369

Table 1. Proposed scheduler classes for CTMDPs

scheduler class scheduler signature

tim
e

ab
st

ra
ct

positional (TAP) D : S → Distr(Act)
hop-counting (TAHOP) D : S ×�→ Distr(Act)

time abstract
D : Paths	abs → Distr(Act)

history dependent (TAH)
tim

e
de

pe
nd

en
t

timed history full timed history
dependent (TH) D : Paths	→ Distr(Act)
total time history sequence of states & total time
dependent (TTH) D : Paths	abs×�≥0 → Distr(Act)

total time last state & total time
positional (TTP) D : S ×�≥0 → Distr(Act)

timed positional (TP)
last state & delay of last transition
D : S ×�≥0 → Distr(Act)

In this paper, we focus on total time positional schedulers (TTP) which are given by
mappings D : S ×�≥0 →Distr(Act). They are similar to TTH schedulers but abstract
from the state-history. For π1,π2 ∈ Paths	, D(π1, ·) = D(π2, ·) if π1 and π2 end in the
same state and have the same simulated time ∆(π1) = ∆(π2). TTP schedulers are of
particular interest, as they induce optimal bounds w.r.t. timed reachability: To see this,
consider the probability to reach a set of goal states G⊆S within t time units. If state
s is reached via π ∈ Paths	 (without visiting G), the maximal probability to enter G is
given by a scheduler which maximizes the probability to reach G from state s within the
remaining t−∆(π) time units. Obviously, a TTP scheduler is sufficient in this case.

Example 3. For t ∈ �≥0, let the TTP-scheduler D for the CTMDP of Fig. 1 be given
by D(s0,0) = {α �→ 1} and D(s1,t) = {α �→ 1} if t ≤ 0.64 and D(s1,t) = {β �→ 1},
otherwise. It turns out that D maximizes the probability to reach s3 within time t. For
now, we only note that the probability induced by D is obtained by the gm-scheduler
D′(π) = D(π↓,∆(π)).

Note that we can equivalently specify any gm-scheduler D : Paths	×FAct → [0,1] as a
mapping D′ : Paths	→Distr(Act) by setting D′(π)(A) = D(π ,A) for all π ∈ Paths	 and
A ∈ FAct; to further simplify notation, we also use D(π , ·) to refer to this distribution.

Definition 6 (Scheduler classes). Let C be a CTMDP and D a gm-scheduler on C .
For π ,π ′ ∈ Paths	(C), the scheduler classes are defined as follows:

D∈TAP⇐⇒∀π ,π ′.π↓= π ′↓ ⇒ D(π , ·) = D(π ′, ·)
D∈TAHOP⇐⇒∀π ,π ′.

(
π↓= π ′↓∧ |π |= |π ′|

)
⇒ D(π , ·) = D(π ′, ·)

D∈TAH ⇐⇒∀π ,π ′.abs(π) = abs(π ′)⇒ D(π , ·) = D(π ′, ·)
D∈TTH ⇐⇒∀π ,π ′.

(
abs(π)=abs(π ′)∧∆(π)=∆(π ′)

)
⇒ D(π , ·)=D(π ′, ·)

D∈TTP⇐⇒∀π ,π ′.
(
π↓=π ′↓∧∆(π)=∆(π ′)

)
⇒ D(π , ·)=D(π ′, ·)

D∈TP⇐⇒∀π ,π ′.
(
π↓=π ′↓∧δ (π , |π−1|)=δ (π ′, |π ′−1|)

)
⇒ D(π , ·)=D(π ′, ·).

Def. 6 justifies to restrict the domain of the schedulers to the information the respec-
tive class exploits. In this way, we obtain the characterization in Table 1. We now come

370 M.R. Neuhäußer, M. Stoelinga, and J.-P. Katoen

to the transformation on CTMDPs that unifies the speed of outgoing transitions and
thereby allows to defer the resolution of nondeterministic choices.

4 Local Uniformization

Generally, the exit rate of a state depends on the action that is chosen by the scheduler
when entering the state. This dependency requires that the scheduler decides directly
when entering a state, as otherwise the state’s sojourn time distribution is not well-
defined. An exception to this are locally uniform CTMDPs which allow to delay the
scheduler’s choice up to the point when the state is left:

Definition 7 (Local uniformity). A CTMDP (S ,Act,R,ν) is locally uniform iff there
exists u : S →�>0 such that E(s,α) = u(s) for all s ∈S ,α ∈ Act(s).

In locally uniform CTMDPs the exit rates are state-wise constant with rate u(s); hence,
they do not depend on the action that is chosen. Therefore locally uniform CTMDPs
allow to delay the scheduler’s decision until the current state is left. To generalize this
idea, we propose a transformation on CTMDPs which attains local uniformity; further,
in Sec. 4.2 we investigate as to which scheduler classes local uniformization preserves
quantitative properties.

Definition 8 (Local uniformization). Let C = (S ,Act,R,ν) be a CTMDP and define
u(s) = max{E(s,α) | α ∈ Act} for all s ∈ S . Then C = (S ,Act,R,ν) is the locally
uniform CTMDP induced by C where S = S ·∪Scp, Scp = {sα | E(s,α) < u(s)} and

R(s,α,s′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R(s,α,s′) if s,s′ ∈S

R(t,α,s′) if s = tα ∧ s′ ∈S

u(s)−E(s,α) if s ∈S ∧ s′ = sα

0 otherwise.

Further, ν(s) = ν(s) if s ∈S and 0, otherwise.

Local uniformization is done for each state s separately with uniformization rate u(s).
If the exit rate of s under action α is less than u(s), we introduce a copy-state sα and an
α-transition which carries the missing rate R(s,α,sα) = u(s)−E(s,α). Regarding sα ,
only the outgoing α-transitions of s carry over to sα . Hence sα is deterministic in the
sense that Act(sα) = {α}.

Example 4. Consider the fragment CTMDP in Fig. 4(a) where λ = ∑λi and µ > 0. It is
not locally uniform as E(s0,α) = λ and E(s0,β) = λ +µ . Applying our transformation,
we obtain the locally uniform CTMDP in Fig. 4(b).

Local uniformization of C introduces new states and transitions in C . The paths in C
reflect this and differ from those of C ; more precisely, they may contain sequences of

transitions s
α ,t−→ sα α ,t′−−→ s′ where sα is a copy-state. Intuitively, if we identify s and sα ,

this corresponds to a single transition s
α ,t+t′−−−→ s′ in C . To formalize this correspondence,

Delayed Nondeterminism in Continuous-Time Markov Decision Processes 371

s0

s1

s2

...

α,λ0
α,λ1

α,λ2β ,λ +µ

1.0

(a) Fragment of a non-uniform CTMDP.

s0

s1

s2

sα
0

...

α,λ2

β ,λ +µ

α,λ1

α,µ

α,λ0

α,λ0

α,λ2

α,λ1

1.0

(b) Local uniformization of state s0.

Fig. 4. How to obtain locally uniform CTMDPs by introducing copy states

we derive a mapping merge on all paths π ∈ Paths	
(
C
)

with π[0],π↓ ∈S : If |π |= 0,
merge(π) = π[0]. Otherwise, let

merge
(
s

α ,t−−→ π
)

=

⎧⎨⎩s
α ,t−−→ merge(π) if π[0] ∈S

merge(s
α ,t+t ′−−−−→ π ′) if π = sα α ,t ′−−→ π ′.

Naturally, merge extends to infinite paths if we do not require π↓ ∈S ; further, merging
a set of paths Π is defined element-wise and denoted merge(Π).

Example 5. Let π = s0
α0,t0−−−→ sα0

0

α0,t
′
0−−−→ s1

α1,t1−−−→ s2
α2,t2−−−→ sα2

2

α2,t
′
2−−−→ s3 be a path in C .

Then merge(π) = s0
α0,t0+t′0−−−−−→ s1

α1,t1−−−→ s2
α2,t2+t′2−−−−−→ s3.

For the reverse direction, we map sets of paths in C to sets of paths in C ; formally, if
Π ⊆ Paths(C) we define extend(Π) =

{
π ∈ Paths(C) | merge(π) ∈Π

}
.

Lemma 2. Let C be a CTMDP and Π1,Π2, · · · ⊆ Paths(C). Then

1. Π1 ⊆Π2 =⇒ extend(Π1)⊆ extend(Π2),
2. Π1∩Π2 = /0 =⇒ extend(Π1)∩ extend(Π2) = /0 and
3.
⋃

extend(Πk) = extend
(⋃

Πk
)
.

Our goal is to construct gm-schedulers such that the path probabilities in C and C are
equal. Therefore, we first adopt a local view and prove that the probability of a single
step in C equals the probability of the corresponding steps in C .

4.1 One-Step Correctness of Local Uniformization

Consider the CTMDP in Fig. 4(a) where λ = ∑λi. Assume that action α is chosen in
state s0; then R(s0,α ,si)

E(s0,α) = λi
λ is the probability to move to state si (where i ∈ {0,1,2}).

Hence the probability to reach si in time interval [0, t] is

λi

λ

∫ t

0
ηλ (dt1). (2)

Let us compute the same probability for C depicted in Fig. 4(b): The probability to

go from s0 to si directly (with action α) is R(s0,α ,si)
E(s0,α) = λi

λ+µ ; however, with probability

372 M.R. Neuhäußer, M. Stoelinga, and J.-P. Katoen

R(s0,α ,sα
0)

E(s0,α) · R(sα
0 ,α ,si)

E(sα
0 ,α) = µ

λ+µ ·
λi
λ we instead move to state sα

0 and only then to si. In this

case, the probability that in time interval [0,t] an α-transition of s0 executes, followed
by one of sα

0 is
∫ t

0(λ + µ)e−(λ+µ)t1
∫ t−t1

0 λ e−λ t2 dt2 dt1. Hence, we reach state si with
action α in at most t time units with probability

λi

λ + µ

∫ t

0
ηλ+µ (dt1)+

µ
λ + µ

· λi

λ

∫ t

0
ηλ+µ (dt1)

∫ t−t1

0
ηλ (dt2). (3)

It is easy to verify that (2) and (3) are equal. Thus the probability to reach a (non-
copy) successor state in {s0,s1,s2} is the same for C and C . It can be computed by
replacing λi with ∑λi in (2) and (3). This straightforwardly extends to the Borel σ -
field B(�≥0); further, the equality of (2) and (3) is preserved even if we integrate
over a Borel-measurable function f :�≥0 → [0,1]. In the following, we consider the
probability to reach an arbitrary non-copy state within time T ∈B(�≥0); thus in the
following lemma, we replace λi with ∑λi = λ :

Lemma 3 (One-step timing). Let f :�≥0→ [0,1] be a Borel measurable function and
T ∈B(�≥0). Then∫

T
f (t) ηλ (dt) =

λ
λ + µ

∫
T

f (t) ηλ+µ (dt)+
µ

λ + µ

∫
�≥0

ηλ+µ (dt1)
∫

T t1
f (t1 + t2) ηλ (dt2)

where T t = {t ′ ∈�≥0 | t + t ′ ∈ T}.

The equality of (2) and (3) proves that the probability of a single step in C equals the
probability of one or two transitions (depending on the copy-state) in C . In the next
section, we lift this argument to sets of paths in C and C .

4.2 Local Uniformization Is Measure Preserving

We prove that for any gm-scheduler D (on C) there exists a gm-scheduler D (on C) such
that the induced probabilities for the sets of paths Π and extend(Π) are equal. However,
as C differs from C , we cannot use D to directly infer probabilities on C . Instead, given
a history π in C , we define D(π, ·) such that it mimics the decision that D takes in C
for history merge(π): For all π ∈ Paths	(C),

D(π, ·) =

⎧⎪⎨⎪⎩
D(π , ·) if π[0],π↓ ∈S ∧merge(π) = π
{α �→ 1} if π↓= sα ∈Scp

γπ otherwise,

where γπ is an arbitrary distribution over Act(π↓): If merge is applicable to π (i.e.
if π[0],π↓ ∈ S), then D(π, ·) is the distribution that D yields for path merge(π) in
C ; further, if π↓ = sα then Act(sα) = {α} and thus D chooses action α . Finally, C
contains paths that start in a copy-state sα . But as ν(sα) = 0 for all sα ∈Scp, they do
not contribute any probability, independent of D(π, ·).

Based on this, we consider a measurable base B of the form B = S0×A0×T0× . . .×Sn

in C . This corresponds to the set extend(B) of paths in C . As extend(B) contains paths
of different lengths, we resort to its induced (infinite) cylinder Cyl(extend(B)) and prove
that its probability equals that of B :

Delayed Nondeterminism in Continuous-Time Markov Decision Processes 373

Lemma 4 (Measure preservation under local uniformization). Let C = (S ,Act,
R,ν) be a CTMDP, D a gm-scheduler on C and B = S0×A0×T0×·· ·×Sn ∈FPathsn(C).
Then there exists a gm-scheduler D such that

Prn
ν,D
(
B
)

= Pr
ω
ν,D
(
Cyl(extend(B))

)
where Pr

ω
ν ,D is the probability measure induced by D and ν on FPathsω (C).

Proof. To shorten notation, let B = extend(B) and C = Cyl(B). In the induction base

B = S0 and Pr0
ν,D(B) = ∑s∈B ν(s) = ∑s∈B ν(s) = Pr

0
ν,D(B) = Pr

ω
ν,D(C). In the induction

step, we extend B with a set of initial path prefixes I = S0×A0×T0 and consider the base
I×B which contains paths of length n + 1:

Prn+1
ν,D (I×B) =

∫
I
Prn

νi,Di
(B) µ1

ν,D(di) by Lemma 1

=
∫

I
Pr

ω
νi,Di

(C) µ1
ν,D(di) by ind. hyp.

= ∑
s∈S0

ν(s) ∑
α∈A0

D(s,α)
∫

T0

Prω
νi,Di

(C) ηE(s,α)(dt) where i = (s,α,t)

= ∑
s∈S0

ν(s) ∑
α∈A0

D(s,α)
∫

T0

Pr
ω
νi,Di

(C)︸ ︷︷ ︸
f (s,α ,t)

ηE(s,α)(dt) by Def. of ν,D.

The probabilities Pr
ω
νi,Di

(C) define a measurable function f (s,α, ·) :�≥0→ [0,1] where

f (s,α,t) = Pr
ω
νi,Di

(C) if i = (s,α,t). Therefore we can apply Lemma 3 and obtain

Prn+1
ν,D (I×B) = ∑

s∈S0

ν(s) ∑
α∈A0

D(s,α) ·
[
P(s,α,S)

∫
T0

f (s,α,t) ηE(s,α)(dt)

+P(s,α,sα)
∫
�≥0

ηE(s,α)(dt1)
∫

T0 t1
f (s,α,t1 + t2) ηE(sα ,α)(dt2)

]
.

(4)

To rewrite this further, note that any path prefix i = (s,α,t) in C induces the sets of path

prefixes I1(i) =
{

s
α ,t−→
}

and I2(i) =
{

s
α ,t1−−→ sα α ,t2−−→ | t1 + t2 = t

}
in C , where I1(i)

corresponds to directly reaching a state in S , whereas in I2(i) the detour via copy-state
sα is taken. As defined in Lemma 1, νi(s′) = P(s,α,s′) is the probability to go to state
s′ when moving along prefix i in C . Similarly, for C we define ν i(s

′) as the probability
to be in state s′ ∈S after a path prefix i ∈ I1(i)∪ I2(i): If i ∈ I1(i) then we move to a
state s′ ∈S directly and do not visit copy-state sα . Thus ν i(s

′) = P(s,α,s′) for i∈ I1(i).

Further, P(s,α,s′) in C equals the conditional probability P(s,α ,s′)
P(s,α ,S)

to enter s′ in C given

that we move there directly. Therefore ν i(s
′) = P(s,α,S) ·νi(s′) if i ∈ I1(i).

If instead i ∈ I2(i) then i has the form s
α ,t1−−→ sα α ,t2−−→ and ν i(s

′) = P(sα ,α,s′) is
the probability to end up in state s′ after i. By the definition of sα , this is equal to the
probability to move from state s to s′ in C . Hence ν i(s

′) = νi(s′) if i ∈ I2(i).
As defined in Lemma 1, Di(π , ·) = D(i ◦ π , ·) and Di(π, ·) = D(i ◦ π, ·). From the

definition of D we obtain Di(π , ·) = Di(π , ·) for all i ∈ I1(i)∪ I2(i) and π ∈ extend(π).
Hence it follows that if i = (s,α,t) and i ∈ I1(i)∪ I2(i) it holds

374 M.R. Neuhäußer, M. Stoelinga, and J.-P. Katoen

Prω
ν i,Di

(C) =

{
P(s,α,S) ·Pr

ω
νi,Di

(C) if i ∈ I1(i)
Prω

νi,Di
(C) if i ∈ I2(i).

(5)

Note that the first summand in (4) corresponds to the set I1(s,α,t) and the second to
I2(s,α,t1 + t2). Applying equality (5) to the right-hand side of (4) we obtain

Prn+1
ν,D (I×B) = ∑

s∈S0

ν(s) ∑
α∈A0

D(s,α)
∫

T0

Prω
ν i,Di

(C) ηE(s,α)(dt)

+ ∑
s∈S0

ν(s) ∑
α∈A0

D(s,α) ·P(s,α,sα)
∫
�≥0

ηE(s,α)(dt1)
∫

T0 t1
Pr

ω
ν i,Di

(C) ηE(sα ,α)(dt2).

Applying Def. 5 allows to integrate over the sets of path prefixes I1 =
⋃

i∈I I1(i) and
I2 =

⋃
i∈I I2(i) which are induced by I = S0×A0×T0 and to obtain

Prn+1
ν,D (I×B) =

∫
I1

Pr
ω
ν i,Di

(C) µ1
ν,D(di)+

∫
I2

Pr
ω
ν i,Di

(C) µ2
ν,D(di).

Rewriting the right-hand side yields Prn+1
ν,D (I×B) = Pr

ω
ν,D
(
Cyl(extend(I×B))

)
. %&

Lemma 4 holds for all measurable rectangles B = S0×A0×T0× . . .×Sn; however, we
aim at an extension to arbitrary bases B ∈ FPathsn(C). Thus let GPathsn(C) be the class of
all finite disjoint unions of measurable rectangles. Then GPathsn(C) is a field [10, p. 102]:

Lemma 5. Let C = (S ,Act,R,ν) be a CTMDP, D a gm-scheduler on C and n ∈�.
Then Prn

ν,D(B) = Pr
ω
ν,D
(
Cyl(extend(B))

)
for all B ∈GPathsn(C).

With the monotone class theorem [10], the preservation property extends from GPathsn

to the σ -field FPathsn : A class C of subsets of Pathsn is a monotone class if it is closed
under in- and decreasing sequences: if Πk ∈ C and Π ⊆ Pathsn such that Π0 ⊆Π1 ⊆ ·· ·
and

⋃∞
k=0 Πk = Π , we write Πk ↑Π (similary for Πk ↓Π). Then C is a monotone class

iff for all Πk ∈ C and Π ⊆ Pathsn with Πk ↑Π or Πk ↓Π it holds that Π ∈ C.

Lemma 6 (Monotone class). Let C =(S ,Act,R,ν) be a CTMDP with gm-scheduler D.

The set C =
{

B ∈ FPathsn(C) | Prn
ν,D(B) = Pr

ω
ν,D
(
Cyl(extend(B))

)}
is a monotone class.

Lemma 7 (Extension). Let C = (S ,Act,R,ν) be a CTMDP, D a gm-scheduler on C
and n ∈�. Then Prn

ν,D(B) = Pr
ω
ν,D
(
Cyl(extend(B))

)
for all B ∈ FPathsn(C).

Proof. By Lemma 6, C is a monotone class and by Lemma 5 it follows that GPathsn(C)⊆
C. Thus, the Monotone Class Theorem [10, Th. 1.3.9] applies and FPathsn ⊆ C. Hence
Prn

ν,D(B) = Pr
ω
ν,D
(
Cyl(extend(B))

)
for all B ∈ FPathsn . %&

Lemma 4 and its measure-theoretic extension to the σ -field are the basis for the major
results of this work as presented in the next section.

5 Main Results

The first result states the correctness of the construction of scheduler D, i.e. it asserts
that D and D assign the same probability to corresponding sets of paths.

Delayed Nondeterminism in Continuous-Time Markov Decision Processes 375

Theorem 1. Let C = (S ,Act,R,ν) be a CTMDP and D a gm-scheduler on C . Then
Prω

ν,D(Π) = Pr
ω
ν,D
(
extend(Π)

)
for all Π ∈ FPathsω .

Proof. Each cylinder Π ∈ FPathsω (C) is induced by a measurable base [10, Thm. 2.7.2];
hence Π = Cyl(B) for some B ∈ FPathsn(C) and n ∈�. But then, Prω

ν,D(Π) = Prn
ν,D(B)

and Prn
ν,D(B) = Pr

ω
ν,D
(
extend(Π)

)
by Lemma 7. %&

With Lemma 4 and its extension, we are now ready to prove that local uniformization
does not alter the CTMDP in a way that we leak probability mass with respect to the
most important scheduler classes:

Theorem 2. Let C = (S ,Act,R,ν) be a CTMDP and Π ∈ FPathsω (C). For scheduler
classes D ∈ {TH,TTH,TTP,TAH,TAP} it holds that

sup
D∈D(C)

Prω
ν,D(Π)≤ sup

D′∈D(C)
Pr

ω
ν,D′(extend(Π)). (6)

Proof. By Thm. 1, the claim follows for the class of all gm-schedulers, that is, for
D = TH. For the other classes, it remains to check that the gm-scheduler D used in
Lemma 4 also falls into the respective class. Here, we state the proof for TTP: If D : S ×
�≥0 →Distr(Act) ∈ TTP, define D(s,∆) = D(s,∆) if s ∈S and D(sα ,∆) = {α �→ 1}
for sα ∈Scp. Then Lemma 4 applies verbatim. %&

Thm. 4 proves that (6) does not hold for TP and TAHOP. Although we obtain a gm-
scheduler D on C for any D ∈ TP(C)∪TAHOP(C) by Thm. 1, D is generally not in
TP(C) (or TAHOP(C), resp.). For the main result, we identify the scheduler classes,
that do not gain probability mass by local uniformization:

Theorem 3. Let C = (S ,Act,R,ν) be a CTMDP and Π ∈ FPathsω (C). Then

sup
D∈D(C)

Prω
ν,D(Π) = sup

D′∈D(C)
Pr

ω
ν,D′(extend(Π)) for D ∈ {TTP,TAP} .

Proof. Thm. 2 proves the direction from left to right. For the reverse, let D′ ∈ TTP(C)
and define D∈ TTP(C) such that D(s,∆) = D′(s,∆) for all s∈S ,∆ ∈�≥0. Then D =
D′ and Pr

ω
ν,D′(extend(Π)) = Prω

ν,D(Π) by Thm. 1. Hence the claim for TTP follows;

analogue for D′ ∈ TAP(C). %&

Conjecture 1. We conjecture that Thm. 3 also holds for TH and TTH. For D′ ∈ TH(C),
we aim at defining a scheduler D ∈ TH(C) that induces the same probabilities on C .
However, a history π ∈ Paths	(C) corresponds to the uncountable set extend(π) in C
s.t. D′(π , ·) may be different for each π ∈ extend(π). As D can only decide once on
history π , in order to mimic D′ on C , we propose to weigh each distribution D′(π, ·)
with the conditional probability of dπ given extend(π).

In the following, we disprove (6) for TP and TAHOP schedulers. Intuitively, TP sched-
ulers rely on the sojourn time in the last state; however, local uniformization changes
the exit rates of states by adding transitions to copy-states.

376 M.R. Neuhäußer, M. Stoelinga, and J.-P. Katoen

s0 s1 s3

s4

β ,2 α ,2
γ,1

γ,1

α ,1
α ,1

sα
0

α ,1
α ,1

s2

β ,3 β ,1

(a) Local uniformization of Fig. 1

fβ (t)

t

fα(t)

(b) From state s1 to state s3.

Fig. 5. Timed reachability of state s3 (starting in s1) in C and C

Theorem 4. For G ∈ {TP,TAHOP}, there exists C and Π ∈ FPathsω (C) such that

sup
D∈G(C)

Prω
ν,D(Π)> sup

D′∈G(C)
Prω

ν,D′
(
extend(Π)

)
.

Proof. We give the proof for TP: Consider the CTMDPs C and C in Fig. 1 and Fig. 5(a),
resp. Let Π ∈ FPathsω (C) be the set of paths in C that reach state s3 in 1 time unit and

let Π = extend(Π). To optimize Prω
ν,D(Π) and Pr

ω
ν,D′(Π), any scheduler D (resp. D′)

must choose {α �→ 1} in state s0. Nondeterminism only remains in state s1; here, the
optimal distribution over {α,β} depends on the time t0 that was spent to reach state s1:
In C and C , the probability to go from s1 to s3 in the remaining t = 1− t0 time units is
fα(t) = 1

3 −
1
3 e−3t for α and fβ (t) = 1 + 1

2 e−3t − 3
2 e−t for β . Fig. 5(b) shows the cdfs

of fα and fβ ; as any convex combination of α and β results in a cdf in the shaded area
of Fig. 5(b), we only need to consider the extreme distributions {α �→ 1} and {β �→ 1}
for maximal reachability. Let d be the unique solution (in �>0) of fα(t) = fβ (t), i.e.

the point where the two cdfs cross. Then Dopt(s0
α ,t0−−→ s1, ·) = {α �→ 1} if 1−t0 ≤ d

and {β �→ 1} otherwise, is an optimal gm-scheduler for Π on C and Dopt ∈ TP(C)∩
TTP(C) as it depends only on the delay of the last transition.

For Π , D′ is an optimal gm-scheduler on C if D′(s0
α ,t0−−→ s1, ·) = Dopt(s0

α ,t0−−→ s1, ·)
as before and D′(s0

α ,t0−−→ sα
0

α ,t1−−→ s1, ·) = {α �→ 1} if 1−t0−t1 ≤ d and {β �→ 1} other-
wise. Note that by definition, D′ = Dopt and Dopt ∈ TTP(C), whereas D′ /∈ TP(C) as

any TP(C) scheduler is independent of t0. For history π = s0
α ,t0−−→ sα

0
α ,t1−−→ s1, the best

approximation of t0 is the expected sojourn time in state s0, i.e. 1
E(s0,α) . For the induced

scheduler D′′ ∈ TP(C), it holds D′′(s1, t1) �= D′(s0
α ,t0−−→ sα

0
α ,t1−−→ s1) almost surely. But

as Dopt is optimal, there exists ε > 0 such that Pr
ω
ν ,D′′(Π) = Pr

ω
ν,Dopt

(Π)−ε . Therefore

sup
D′′∈TP(C)

Prω
ν ,D′′(Π)< Prω

ν,Dopt
(Π) = Prω

ν,Dopt
(Π) = sup

D∈TP(C)
Prω

ν,D(Π).

For TAHOP, a similar proof applies that relies on the fact that local uniformization
changes the number of transitions needed to reach a goal state. %&

Delayed Nondeterminism in Continuous-Time Markov Decision Processes 377

D(s0
α−→s1)(α)

pr
ob

ab
il

it
y

(a) TAH-schedulers on C

D
′ (s0

α−→s1)(
α)D ′(s0 α−→sα

0
α−→ s1)(α)

D′

D

pr
ob

ab
il

it
y

(b) TAH-schedulers on C

Fig. 6. Optimal TAH-schedulers for time-bounded reachability

This proves that by local uniformization, essential information for TP and TAHOP
schedulers is lost. In other cases, schedulers from TAH and TAHOP gain information
by local uniformization:

Theorem 5. There exists CTMDP C = (S ,Act,R,ν) and Π ∈ FPathsω (C) such that

sup
D∈G(C)

Prω
ν,D(Π)< sup

D′∈G(C)
Prω

ν,D′
(
extend(Π)

)
for G = {TAH,TAHOP} .

Proof. Consider the CTMDPs C and C in Fig. 1 and Fig. 5(a), resp. Let Π be the time-
bounded reachability property of state s3 within 1 time unit and let Π = extend(Π).
We prove the claim for TAH: Therefore we derive D ∈ TAH(C) such that Prω

ν,D(Π) =
supD′∈TAH(C) Prω

ν,D′(Π). For this, D(s0) = {α �→ 1}must obviously hold. Thus the only

choice is in state s1 for time-abstract history s0
α−→ s1 where D(s0

α−→ s1) = µ , µ ∈
Distr({α,β}). For initial state s0, Fig. 6(a) depicts Prω

ν,D(Π) for all µ ∈Distr({α,β});
obviously, D(s0

α−→ s1) = {β �→ 1} maximizes Prω
ν,D(Π). On C , we prove that there

exists D′ ∈ TAH(C) such that Prω
ν,D(Π) < Prν,D′(Π): To maximize Pr

ω
ν,D′(Π), define

D′(s0) = {α �→ 1}. Note that D′ may yield different distributions for the time-abstract
paths s0

α−→ s1 and s0
α−→ sα

0
α−→ s1; for µ ,µc ∈Distr({α,β}) such that µ = D′(s0

α−→ s1)
and µc = D′(s0

α−→ sα
0

α−→ s1) the probability of Π under D′ is depicted in Fig. 6(b)

for all µ ,µc ∈ Distr({α,β}). Clearly, Pr
ω
ν ,D′(Π) is maximal if D′(s0

α−→ s1) = {β �→
1} and D′(s0

α−→ sα
0

α−→ s1) = {α �→ 1}. Further, Fig. 6(b) shows that with this choice
of D′, Pr

ω
ν,D′(Π) > Prω

ν,D(Π) and the claim follows. For TAHOP, the proof applies
analogously. %&

6 Delaying Nondeterministic Choices

To conclude the paper, we show how local uniformization allows to derive the class of
late schedulers which resolve nondeterminism only when leaving a state. Hence, they
may exploit information about the current state’s sojourn time and, as a consequence,
induce more accurate probability bounds than gm-schedulers.

378 M.R. Neuhäußer, M. Stoelinga, and J.-P. Katoen

More precisely, let C = (S ,Act,R,ν) be a locally uniform CTMDP and D a gm-
scheduler on C . Then E(s,α) = u(s) for all s ∈S and α ∈ Act (cf. Def. 7). Thus the
measures ηE(s,α) in Def. 3 do not depend on α and we may exchange their order of
integration in (1) by applying [10, Thm. 2.6.6]. Hence for locally uniform CTMDPs let

µD(π,M) =
∫
�≥0

ηu(π↓)(dt)
∫

Act
D(π,dα)

∫
S

IM(α,t,s′) P(s,α,ds′). (7)

Formally, (7) allows to define late schedulers as mappings D : Paths	(C)×�≥0×
FAct → [0,1] that extend gm-schedulers with the sojourn-time in π↓. Note that local
uniformity is essential here: In the general case, the measures ηE(s,α)(dt) and a late
scheduler D(π ,t,dα) are inter-dependent in t and α; hence, in Def. 3, µD(π , ·) is not
well-defined for late-schedulers. Intuitively, the sojourn time t of the current state s de-
pends on D while D depends on t.

s1

s2 s3

s4
α,2

γ,1

γ,1

α,1β ,3

β ,1

Fig. 7. Example

Let LATE and GM denote the classes of late and gm-
schedulers, respectively. For all Π ∈ Pathsω(C):

sup
D∈GM

Prω
ν,D(Π) ≤ sup

D∈LATE
Prω

ν,D(Π) (8)

holds as GM ⊆ LATE. By Thm. 3, TTP and TAP preserve
probability bounds; hence, late-schedulers are well-defined
for those classes and yield better probability bounds than gm-schedulers, i.e., in general
inequality (8) is strict: Let C be as in Fig. 7 and Π be timed-reachability for s3 in 1 time
unit. Then supD∈GM Prω

ν,D(Π) = 1+ 1
2 e−3− 3

2 e−1. On the other hand, the optimal late
scheduler is given by D(s1,t, ·) = {β �→ 1} if t < 1+ ln2− ln3 and {α �→ 1} otherwise.
Then Prω

ν,D(Π)=1+ 19
24 e−3− 3

2 e−1 and the claim follows.

7 Conclusion

We studied a hierarchy of scheduler classes for CTMDPs, and investigated their sen-
sitivity for general measures w.r.t. local uniformization. This transformation is shown
to be measure-preserving for TAP and TTP schedulers. In addition, in contrast to TP
and TAHOP schedulers, TH, TTH, and TAH schedulers cannot lose information to op-
timize their decisions. TAH and TAHOP schedulers can also gain information. We con-
jecture that our transformation is also measure-preserving for TTH and TH schedulers.
Finally, late schedulers are shown to be able to improve upon generic schedulers [6].

References

1. Knast, R.: Continuous-time probabilistic automata. Inform. and Control 15, 335–352 (1969)
2. Guo, X., Hernández-Lerma, O., Prieto-Rumeau, T.: A survey of recent results on continuous-

time Markov decision processes. TOP 14, 177–261 (2006)
3. Baier, C., Hermanns, H., Katoen, J.P., Haverkort, B.R.: Efficient computation of time-

bounded reachability probabilities in uniform continuous-time Markov decision processes.
Theor. Comp. Sci. 345(1), 2–26 (2005)

4. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley and Sons, Chichester (1994)

Delayed Nondeterminism in Continuous-Time Markov Decision Processes 379

5. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Model-checking algorithms for
continuous-time Markov chains. IEEE TSE 29(6), 524–541 (2003)

6. Wolovick, N., Johr, S.: A characterization of meaningful schedulers for continuous-time
Markov decision processes. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS,
vol. 4202, pp. 352–367. Springer, Heidelberg (2006)

7. Grassmann, W.K.: Finding transient solutions in Markovian event systems through random-
ization. In: Stewart, W.J. (ed.) Numerical Solutions of Markov Chains, pp. 357–371 (1991)

8. Gross, D., Miller, D.R.: The randomization technique as a modeling tool and solution proce-
dure for transient Markov processes. Oper. Res. 32(2), 343–361 (1984)

9. Jensen, A.: Markov chains as an aid in the study of Markov processes. Skand. Aktuarietid-
skrift 3, 87–91 (1953)

10. Ash, R., Doléans-Dade, C.: Probability & Measure Theory, 2nd edn. Academic Press, Lon-
don (2000)

11. Neuhäußer, M.R., Katoen, J.P.: Bisimulation and logical preservation for continuous-time
Markov decision processes. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS,
vol. 4703, pp. 412–427. Springer, Heidelberg (2007)

Concurrency, σ-Algebras,
and Probabilistic Fairness

Samy Abbes and Albert Benveniste

1 PPS/Université Paris 7 Denis Diderot. 175, rue du Chevaleret, 75013 Paris, France
samy.abbes@pps.jussieu.fr

http://www.pps.jussieu.fr/∼abbes
2 INRIA/IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

Albert.Benveniste@inria.fr

http://www.irisa.fr/distribcom/benveniste

Abstract. We extend previous constructions of probabilities for a prime
event structure E by allowing arbitrary confusion. Our study builds on
results related to fairness in event structures that are of interest per se.

Executions of E are captured by the set Ω of maximal configurations.
We show that the information collected by observing only fair executions
of E is confined in some σ-algebra F0, contained in the Borel σ-algebra F

of Ω. Equality F0 = F holds when confusion is finite (formally, for the
class of locally finite event structures), but inclusion F0 ⊆ F is strict in
general. We show the existence of an increasing chain F0 ⊆ F1 ⊆ F2 ⊆ . . .
of sub-σ-algebras of F that capture the information collected when ob-
serving executions of increasing unfairness. We show that, if the event
structure unfolds a 1-safe net, then unfairness remains quantitatively
bounded, that is, the above chain reaches F in finitely many steps.

The construction of probabilities typically relies on a Kolmogorov
extension argument. Such arguments can achieve the construction
of probabilities on the σ-algebra F0 only, while one is interested in
probabilities defined on the entire Borel σ-algebra F. We prove that,
when the event structure unfolds a 1-safe net, then unfair executions all
belong to some set of F0 of zero probability. Whence F0 = F modulo 0
always holds, whereas F0 �= F in general. This yields a new construction
of Markovian probabilistic nets, carrying a natural interpretation that
“unfair executions possess zero probability”.

Keywords: Probabilistic Petri nets, probabilistic event structures, true-
concurrency, probabilistic fairness.

Introduction

The distinction between interleaving and partial orders semantics (also called
true-concurrency semantics), has a deep impact when considering probabilistic
aspects. In true-concurrency models, executions are modeled by traces or config-
urations, i.e., partial orders of events. Corresponding probabilistic models thus
consist in randomizing maximal configurations, not infinite firing sequences. It

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 380–394, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Concurrency, σ-Algebras, and Probabilistic Fairness 381

turns out that a central issue in developing true-concurrency probabilistic models
is to localize choices made while the executions progress. In a previous work [4,6],
the authors have introduced branching cells, which dynamically localize choices
along the progress of configurations. In this context, it is natural to introduce the
class of locally finite event structures, in which each choice is causally connected
to only finitely many other choices—as a particular case, every confusion free
event structure is locally finite [20,3]. In locally finite event structures, maximal
configurations are tiled by branching cells. A recursive and non deterministic
procedure allows to scan this set of tiling branching cells—of course, non deter-
minism in the procedure is due to concurrency within the configuration. This
tiling shows that every execution may be seen as a partial order of choices. There-
fore, it is natural to proceed to the randomization of executions by randomizing
local choices and imposing probabilistic independence to concurrent choices.

Although quite natural, the class of locally finite event structures is not gen-
eral enough. Finite 1-safe nets may unfold to non locally finite event structures.
Worse, the class of locally finite event structures is not stable under natural op-
erations such as synchronization product. In this paper, to free our theory from
external constraints on confusion, we consider general event structures with ar-
bitrary confusion. We still try to build a coherent theory of choice for these, with
applications to probabilistic event structures.

As a first contribution, we show that the branching cells that tile a config-
uration may require infinite ordinals greater than ω for their enumeration. We
classify configurations according to their height, that is the number of limit or-
dinals greater than ω needed to enumerate the branching cells that tile the
configuration—thus, for a locally finite event structure, all configurations have
height zero. We show that, for event structures unfolding a finite 1-safe net,
configurations have their height bounded by the number of transitions of the
net. Configurations of strictly positive height turn out to exhibit lack of fairness.
Thus our results provide an analysis of the structure of choice in relation with
fairness in that the height of a configuration can be seen as a measure of its
“unfairness degree”.

A second contribution of our paper concerns the construction of probabili-
ties for event structures with arbitrary confusion. When equipping concurrent
systems with probabilities, the partial orders semantics attaches probabilities to
partial orders of events, not to sequences. Randomizing an event structure is
performed by equipping each “local zone” where a choice occurs with a local
“routing” probability. Accordingly, local probabilities are attached to branching
cells. An event structure is said to be probabilistic when a probability measure
is attached to the space (Ω,F) of maximal configurations equipped with its
Borel σ-algebra. For locally finite event structures, we have shown in [4] that
a Kolmogorov extension argument allows to infer the existence and uniqueness
of a probability P on (Ω,F) coherent with a given family of local “routing”
probabilities attached to branching cells—see also [20] for a similar result valid
for confusion free event structures. For event structures with possibly infinite

382 S. Abbes and A. Benveniste

confusion, however, this construction is not sufficient, mainly because branching
cells do not entirely tile maximal configurations.

The novel idea of this paper is to introduce an increasing family Fn of σ-alge-
bras, where index n ranges over the set of all possible heights for configura-
tions. F0 captures the information obtained by observing only configurations of
height 0 (the fair ones) and Fn captures the information obtained by observing
only configurations of height up to n. In particular, if the maximal height for
configurations is finite and equal to N , then FN = F, the Borel σ-algebra—we
show in this paper that this property holds for unfoldings of 1-safe nets.

The Kolmogorov extension argument always allows to construct a probability
P0 over F0. However, F0 ⊆ F holds with strict inclusion unless the event structure
is locally finite. The second important result of this paper consists in showing
that, for Markovian probabilistic nets, “unfair executions have zero probability”.
Formally, we show that, for every Borel set A ∈ F, there exist two measurable
sets B,B′ ∈ F0 such that B ⊆ A ⊆ B′ and P0(B′ − B) = 0. Consequently,
P0 extends trivially to the Borel σ-algebra F by adding to F0 all zero probability
sets. With these results we fill the gap that remained in our previous studies and
therefore complete the landscape of true-concurrency probabilistic systems.

Related Work. Our study of related work is structured according to the two
contributions of this paper.

The first contribution is concerned with the structure of choice in prime event
structures and nets. Confusion freeness and its variants have been extensively
considered for Petri nets, particularly in the context of stochastic Petri nets [7].
Regarding prime event structures, the notion of cell has been introduced by
Varacca et al. in [20] as equivalence classes of the minimal conflict relation. For
this construction to work, confusion-freeness of the event structure is required.
Cells are minimal zones of the event structure where local choices occur. In-
dependently, the authors of this paper have developed in [2,4,6] the theory of
locally finite event structures, in which confusion freeness is relaxed to kind of
a “bounded confusion”. Branching cells generalize cells in this context. They
still represent zones of local choice. However, unlike cells in confusion free event
structures, branching cells are dynamically defined in that they depend on the
configuration enabling them. Local finiteness guarantees that branching cells are
finite. Restricting ourselves to confusion free or locally finite event structures en-
sures that the structure of choice is “simple” enough. With the present paper,
however, we show that the concept of local choice is valid and useful for general
prime event structures and is still adequately captured by the notion of branch-
ing cell. Thus branching cells appear as the central concept when dealing with
choice in general event structures. In addition, we have characterized fairness
by means of the infinite ordinal (but still countable) needed when incremen-
tally tiling configurations with branching cells. While most authors characterize
fairness with topological tools [19,11], our use of σ-algebras for fairness related
issues is quite new.

The second contribution of this paper relates to probabilistic models for sys-
tems involving concurrency. The definition and specification of probabilistic

Concurrency, σ-Algebras, and Probabilistic Fairness 383

systems can be done through process algebra techniques. Probabilistic process
algebra allow to retain performance information on a system while giving its
specifications. According to the different modeling constraints, the definition
of synchronization for probabilistic processes will differ. Several variants have
thus been proposed, such as PCCS [17], TIPP [14], MPA [9], the probabilis-
tic π-calculus [15], PEPA [16], or the κ-calculus [21] developed for biological
applications. The above theories have been developed in the framework of inter-
leaving semantics, where a probability is assigned to a sequence of events once
proper scheduling of non deterministic choices has been performed. In contrast
our work addresses the construction of true concurrency probabilistic models in
which probabilities are assigned to partially ordered executions, not sequences.

In the context of interleaving probabilistic semantics, the main focus has been
and remains on finding appropriate bisimulation relations for correctly testing
and monitoring systems. The original probabilistic bisimulation relation from
the seminal paper [18] has thus been extensively developed and generalized until
recently [13,10]. As an instance of this series of developments, in [10] simulation
relations as well as approximations are studied, relying on techniques of σ-alge-
bras and conditional expectations. The objective is to approximate the state
space by a possibly non-injective labeling of its states, thus giving rise to a
sub-σ-algebra. Our present work also makes use of σ-algebras but in a totally
different way. Our σ-algebras are not attached to the state space but rather
to the space of trajectories (i.e., the maximal configurations) and they capture
the increasing flow of information gathered while observing the system. Our
objectives are not to obtain simulation relations but rather 1/ to develop the
bases needed to equip prime structures with probabilities with no restriction,
2/ to further study their properties when the event structure originates from
a 1-safe net, thus yielding Markov nets, and 3/ to carry over to Markov nets
the fundamental and highly powerful statistical apparatus attached to infinite
behaviours (Law of Large numbers, Central Limit Theorem, etc.). In this paper
we address the two first issues; the reader is referred to [6] for the third one.
Note that the present work shows that the ergodic results of the latter reference
also hold without the local finiteness assumption.

Organization of the Paper. The paper is organized as follows. Section 1 quickly
reviews the decomposition of event structures through branching cells, and re-
calls the probabilistic construction for locally finite event structures. A gen-
eralized induction is introduced in §2, to deal with choices in case of infinite
confusion. Probabilistic applications are given in §3. Finally, §4 discusses further
research perspectives. Omitted proofs may be found in the research report [5].

1 Background on Probability and Concurrency

We first describe how choices may be distributed on simple examples of nets. We
explain in the same way the randomization that comes with the decomposition
of choices.

384 S. Abbes and A. Benveniste

�������� ��������
��������a

��������
b

��

c

��������
��������

��������
• ��������

��������

��������
•

�������� ��������
��

d

��

e

��������
��������

��������
•

• ������a • ������
b

• c • ������d • e

Fig. 1. Two nets (top) and their associated event structures (bottom)

1.1 Branching Cells by Example

We recall the construction of branching cells through examples. Formal defini-
tions and results will also be given. Branching cells are best understood in the
case of a finite event structure. In a sense, local finiteness is just the most natural
extension of the finite case.

Consider thus the net N1 depicted in Figure 1, top left, and its (quite trivial)
unfolding event structure E1 depicted on bottom left. Remember that we ran-
domize maximal configurations of unfoldings, hence the space to be randomized
here is simply the set with two elements Ω1 = {(ac), (b)}, where we note (ac)
for the configuration with events a and c, the order between a and c being of
no importance. Note that, although a and c are concurrent events, they are not
independent. On the contrary, their occurrences are strongly correlated, since
any maximal configuration ω1 has the following property: a ∈ ω1 if and only if
c ∈ ω1. Obviously, the set Ω1 with 2 elements cannot be further decomposed; this
shows that concurrency and independence are distinct notions. This also shows
that choices, here between (ac) or (b), are not supported by transitions, places or
events of nets or event structures. Here, the event structure must be considered
as a whole. We shall therefore randomize N1 by means of a finite probability µ1,
i.e., two non-negative numbers µ1(ac) and µ1(b) such that µ1(ac) + µ1(b) = 1.

In the same way, consider also the net N2 depicted on the right column of
Figure 1, top, and its event structure equivalent E2 depicted at bottom-right.
Here, the set to be randomized is Ω2 = {(d), (e)}, so we are given a probability
µ2 on Ω2: µ2(d) + µ2(e) = 1.

Consider now the net N ′ consisting of the two above nets N1 and N2 put side
by side—mentally erase the vertical rule of Fig. 1 to get the picture of netN ′. The
corresponding event structure, sayE′, has the property that any event inE1 is con-
current and independent of any event in E2. To verify this, just observe that the
occurrence of any event in E1 is compatible with the occurrence of any event in E2;
and vice versa. Hence N1 and N2, being atomic units of choice, are the branching
cells that form net N ′. As a consequence, the set Ω′ of maximal configurations
of N ′ has the natural product decomposition Ω′ = Ω1 × Ω2. It is thus natural
to consider the product probability µ′ = µ1 ⊗ µ2 on Ω′. Hence, for instance, the
probability of firing a, c and d is given by µ′(acd) = µ1(ac) × µ2(d). Observe the

Concurrency, σ-Algebras, and Probabilistic Fairness 385

	
����� 	
����� 	
����� 	
�����
��

f

��

g

��

h

��

i

	
����� 	
�����
��������������

�������
��					 	
�����
�������

��					 	
�����
��					 a

�������
b

��

c

��

d

��

e

	
�����
�������

��					• 	
�����
�������

��					• 	
�����
�������

��					•

• ����
�� ��
�� 	

�� �� � �� ��

f
• ����

g
• ����

h
•
i

• ����

a
• ����

b
•

��

�� ���������

c
• ����

�� ���������

d
•
e

	
����� 	
����� 	
����� 	
�����
��

f

��

g

��

h

��

i

	
�����• 	
�����
		�����������

��
�������

• 	
�����
��

�������
•

	
����� 	
�����
��

f

��

g

	
�����• 	
�����
�������

�������
• 	
�����•

Fig. 2. Illustrating the decomposition of nets

application here of the principle of correspondence between concurrency and prob-
abilistic independence–see [4,6] for a discussion of this idea.

It remains to continue the construction in case of synchronisation. For this,
consider the net N depicted on the top line of Figure 2, with the event structure
equivalent E on the right. Observe that net N ′, itself composed of N1 and N2,
stands as the “beginning” of net N . We already know how to randomize events
that occur in the N ′ area of N , thanks to the product decomposition of N ′.
What happens “next” will be randomized by a classical conditioning process.
Let for instance the probability of executing maximal configuration ω = (ac d gi)
to be computed. The prefix of ω in N ′ is v = (ac d). Since we know already
the probability of execution of v = (ac d) in N ′, we consider the system after
configuration v. Hence we delete from N all transitions that either have already
been fired during the execution of v, or either that are now unable to fire. The
resulting net is depicted on bottom left of Figure 2—in the event structure
model, we would call it the future Ev of v, to be detailed below in §1.2. We
now start again the analysis we made in the beginning, and realize that f , g,
h and i being correlated, they belong to a same third branching cell, say N3,
or E3 in the event structure model, and we shall consider a third probability
distribution µ3 on the set Ω3 of maximal configurations of E3. Hence, if µ denotes
the global probability on the set Ω of maximal configurations of E, we get that
µ(ac d gi) = µ1(ac)× µ2(d) × µ3(gi).

Now assume that w = (ace) had fired instead of (ade). Erasing events in-
compatible with w only leave events f and g (see the result on bottom right of
Figure 2). Hence f and g are now still two competing events, but they do not
compete in the same context than previously. We have to consider they form a
fourth branching cell, to which we attach a fourth probability distribution µ4
on associated set Ω4 = {(f), (g)} of maximal configurations. We would have for

386 S. Abbes and A. Benveniste

instance µ(ac d f) = µ1(ac)×µ2(d)×µ4(f). Since a same event, here f or g, may
appear in different branching cells according to the context brought by the con-
figuration, we say that the decomposition of configurations through branching
cells is dynamic. It is part of the theory that the function µ for which we have
explained the construction does indeed sum up to 1 over the set Ω of maximal
configurations of E—a fact that can be easily checked by hand on this example.
Let us now formalise the construction.

1.2 Formalisation: Stopping Prefixes and Branching Cells

We refer to the research report [5] and to our original publications [3,4] for the
detailed construction and properties of branching cells. Here we will recall some
essential definitions.

Recall that the relation #µ of minimal conflict has been defined by several
authors for an event structure (E,≤,#) as follows:

∀x, y ∈ E, x#µy ⇐⇒ (↓ x× ↓ y) ∩# = {(x, y)},

where ↓ x = {e ∈ E : e ≤ x} represents the set of predecessors of event x.
Define a stopping prefix of event structure E as a subset B ⊆ E such that:

1. B is downward closed: ∀x ∈ B, ∀y ∈ E, y ≤ x⇒ y ∈ B;
2. B is #µ-closed: ∀x ∈ B, ∀y ∈ E, y#µx⇒ y ∈ B.

Stopping prefixes of E form a complete lattice with ∅ and E as minimal and
maximal elements. Say that a stopping prefix is initial if it is minimal among
non empty stopping prefixes. In the above example depicted in Fig. 2, E1 and E2
were the two initial prefixes of E. Any event structure may not have an initial
stopping prefix—see the research report [5] for an example of event structure
without initial stopping prefix. However if E is the non empty unfolding of a finite
Petri net, then any stopping prefix B of E contains an initial stopping prefix—in
particular, E itself contains initial stopping prefixes. This is a particular case of
the following result:

Theorem 1. Let E be a non empty event structure with the following property:
there is a constant K ≥ 0 such that, for any finite configuration v of E, at most
K events e ∈ E \ v are such that v ∪ {e} is a configuration. Then for every
nonempty stopping prefix B of E, there is an initial stopping prefix A ⊆ B.

We will always consider event structures satisfying the assumption of Theorem 1,
even if it is not explicitly formulated.

Finally, if v is a configuration of E (that is, a subset of E downward closed
and conflict free), we define the future Ev of v in E as the following sub-event
structure of E:

Ev = {e ∈ E : e is compatible with v} \ v.

If z is a configuration of Ev, then the set-theoretic union v∪ z is a configuration
of E, that we denote v ⊕ z to emphasize that we form the concatenation of v
and z.

Concurrency, σ-Algebras, and Probabilistic Fairness 387

Consider the following recursive construction:

1. Pick an initial stopping prefix of E, pick a maximal configuration x0 in it,
and consider the future Ex0 ;

2. Pick an initial stopping prefix of Ex0 , pick a maximal configuration x1 in it,
and consider the future Ex0⊕x1 ;

3. And so on.

Any configuration that can be obtained as some x0 ⊕ . . . ⊕ xn as in the above
construction, or as an increasing union of such, we call a stopped configuration1

of E. A configuration obtained as some x0⊕ . . .⊕xn as in the above construction
is called finitely stopped. The reader that would not know about branching cells
is encouraged to apply this construction to the previous examples.

The several initial stopping prefixes of nested event structures that appear
in the decomposition of some stopped configuration v are called the branching
cells in the decomposition of v. Although there is range for non determinism in
the decomposition of stopped configurations, it is a result that branching cells
encountered in the decomposition of some stopped configuration v only depend
on v. Branching cells are thus intrinsic to stopped configurations. We denote by
∆(v) the set of branching cells that occur in the decomposition of any stopped
configuration v. If v is a finitely stopped configuration, any initial stopping prefix
of Ev is called a branching cell enabled at v.

Specializing to the case where E is the unfolding of some finite 1-safe net,
it is easy to realize in this case that branching cells of E are finitely many, up
to isomorphism of labeled event structures—the labeling originates of course
from the unfolding structure. Furthermore, the isomorphism of labelled event
structures between isomorphic branching cells is unique. If N is the net being
unfolded, we say that the isomorphism classes of branching cells of E are the
local states of N . We use the generic notation x to denote local states of nets.

1.3 The Case of Locally Finite Event Structures and Markov Nets

Additional properties of branching cells hold if the event structure satisfies the
following property: any event e ∈ E belongs to some finite stopping prefix of E.
In that case, event structure E is said to be locally finite [3,4]. In the remaining of
this paragraph, we consider a locally finite event structure E, maybe originating
from the unfolding of a 1-safe Petri net.

The first property is that any branching cell is finite. Furthermore, any max-
imal configuration of E is stopped. We will give an interpretation of the latter
fact through σ-algebras in a next section (§2).

The next steps forward to get to the randomization of locally finite event
structures are the following—the following definition of a probabilistic event
structure is general, and does not require E to be locally finite. We denote by
ΩE the set of maximal configurations of event structure E—this set is always

1 Such configurations are called recursively stopped in [4,6].

388 S. Abbes and A. Benveniste

non empty. The Borel σ-algebra on E is the σ-algebra generated by subsets of
the form

↑ v = {ω ∈ Ω : v ⊆ ω},

for v ranging over the finite configurations of E. We denote by F the Borel
σ-algebra on ΩE . We say the event structure E is probabilistic if we are given a
probability measure P on the measurable space (ΩE ,F). Next, consider for each
branching cell x of E the set Ωx of maximal configurations of x, and a finite
probability distribution px on Ωx. Then define the following function p, for v
ranging over the set of finitely stopped configurations of E:

p(v) =
∏

x∈∆(v)

px(v ∩ x), (1)

where we recall that ∆(v) denotes the set of branching cells involved in the
decomposition of v. Then v∩x belongs to Ωx, and thus the finite product above
is well defined. It is a result that there is a unique probability measure P on
(Ω,F) such that P(↑ v) = p(v) for any finitely stopped configuration v [3,4]. This
result makes use of the local finiteness assumption, the crucial point being that
maximal configurations of E are stopped.

Assume, furthermore, that the locally finite event structure E is the unfolding
of some 1-safe net N . Then we require the family (px)x to satisfy the following
additional property: if x and x′ are isomorphic branching cells, then so are px
and px′ . Formally, px′(ω′) = px(ω), where ω is an arbitrary maximal configura-
tion of x, ω′ = φx,x′(ω), and φx,x′ is the unique isomorphism of labelled event
structures from x to x′. Let x denote the local state associated with x and x′.
Since φx,x′ is unique, it makes sense to consider the set Ωx of maximal configu-
rations of x, and the probability distribution px attached to it, derived from the
various px’s. Such a px is called a local transition probability.

According to the previous result, the (finite) family of local transition proba-
bilities defines a unique probability measure P on the space (Ω,F). Call Markov
net a net equipped with such a probability measure. Markovian and ergodic
properties of Markov nets were studied in [1,6].

The aim of this paper is to generalise the above construction to an arbitrary
1-safe net, without the local finiteness assumption.

2 Non Locally Finite Unfoldings and the Height of Nets

In this section we introduce a new notion of height for nets, which formalizes
our informal discussion in the introduction regarding fairness.

Let us first analyze non locally finite unfoldings on an example. Let N be
the 1-safe net depicted in Fig. 3, top. The unfolding E of N is depicted in
bottom-left. Events ai, bi and ci, for i = 1, 2, . . . , are respectively labeled by
transitions a, b and c. Events named d, e and f are labeled by transitions d, e
and f respectively. E has a unique initial stopping prefix, namely x1 = {a1, b1}.
Observe that the smallest stopping prefix that contains d is E \ {e, f}, since

Concurrency, σ-Algebras, and Probabilistic Fairness 389

��������

����������������

b

��

c

�������� ��

f

��������
��������

���������

�������• ��������
���������

�������•

a

��

d

�������� ��

������������
��

e

��������

...
...

•

...

c3

•

��
����������

������a3 •

����������

b3

•c2

•

�� ���������
������a2 •

���������

b2

•c1 • ������
e

•
f

•

�� ���������
������a1 •

���������

b1

•

�� ���������

�� �� �� �� �� �� �� ��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
� �
��
��
��
��
��
��
��
��

d

• ��������e • f

• ��������c1 •

��������

��������
d

Fig. 3. A 1-safe net that unfolds to a non locally finite event structure

d#µ ci for all i = 1, 2, . . . , and thus E is not locally finite. The finitely stopped
configurations associated with x1 are (a1) and (b1). Now the future E(b1) is
depicted in Fig. 3, bottom-right. It contains the two branching cells {c1, d} and
{e, f}. On the other hand, the future E(a1) is isomorphic to E. Repeating this
process, we find all stopped configurations of E. We describe them as follows:
let r0 = ∅, and rn = a1 ⊕ · · · ⊕ an, for n = 1, 2, Putting sn = rn−1 ⊕ bn for
n ≥ 1, stopped configurations containing bn must belong to the following list:

sn, sn ⊕ cn, sn ⊕ d, sn ⊕ d⊕ e, sn ⊕ d⊕ f, n ≥ 1 . (2)

All stopped configurations are those listed in (2), plus all rn for n ≥ 0, and
finally the infinite configuration a∞ = (a1, a2, . . .). Branching cells are computed
accordingly. They belong to the following list: xn = {an, bn}, x′

n = {cn, d}, n ≥ 1,
or x′′ = {e, f}. This shows in passing that branching cells can be all finite without
E being locally finite. On the other hand, the set ΩE of maximal configurations
is described by:

ΩE =
{
a∞ ⊕ d⊕ e, a∞ ⊕ d⊕ f

}
∪
{
sn ⊕ cn, sn ⊕ d⊕ e, sn ⊕ d⊕ f, n ≥ 1

}
.

As a consequence, a∞ ⊕ d ⊕ e and a∞ ⊕ d ⊕ f are two maximal configurations
that are not stopped. This contrasts with the case of locally finite unfoldings, as
we mentioned above.

390 S. Abbes and A. Benveniste

We may however reach the missing maximal configurations ωe = a∞⊕d⊕e and
ωf = a∞⊕ d⊕ f by a recursion of higher order than ω. Indeed, a∞ is a stopped
configuration of E. Its future is the simple event structure with 3 elements d 3 e,
d 3 f , and e#f . Ea∞ has two branching cells, namely {d} and {e, f}. Hence if we
authorize to perform concatenation, not only with finitely stopped configurations
as left-concatenated element, but also on stopped configurations such as a∞, we
reach more configurations. In this example, in one additional step, we reach the
missing elements ωe and ωf of ΩE . We formalize and extend the above discussion
in a general context next.

Let E be the unfolding of a 1-safe net N . We set X−1 = {∅}, and we define
inductively:

for n ≥ 0, Xn =
{
u⊕ v : u ∈ Xn−1, and v is stopped in Eu

}
.

It follows from this definition that Xn−1 ⊆ Xn for all n ≥ 0, and that X0 is the
set of stopped configurations of E. Then we define a non-decreasing sequence of
associated σ-algebras of ΩE as follows: For n ≥ 0, Fn is the σ-algebra generated
by arbitrary unions of subsets of the form ↑ (u⊕v), with u ∈ Xn−1 and v finitely
stopped in Eu. Then Fn ⊆ Fn+1 for all n ≥ 0 since Xn ⊆ Xn+1. In case of locally
finite unfoldings, we have the following:

Proposition 1. If E is locally finite, then F = F0.

Example 1. That F = F0 is not true in general. For instance, in the above exam-
ple of Figure 3, consider A =↑ (a∞ ⊕ d⊕ f). Then A /∈ F0. Indeed, considering

��������

����
��
��
�

���
��

��
��

• ��������

����
��
��
�

���
��

��
��

•��

a

�� ��

c

��

b

• ��

����
��

��
�

���
��

��
��

��
��

��
�

���
��

��
��

��
��

��
��

��
��

��
��

b1 • ��

����
��

��
�

���
��

��
��

��
��

��
�

b2 •b3

•
��

��
��

��

��
��
��
��

c1,1 •
��

��
��

��

�� �� ��
�� �� ��

�� �� ��
�� �� ��

c1,2 •
� � � �

� � � �
� � � �

� � � �
� � � �

��
��

��
��
c1,3

•

��

����
��

��
�

��������������������

��������������������������������a1

•

!"
!"
!"
!"
!"
!"
!"
!"
!"

��
��
��
��

c2,1 •

!"
!"
!"
!"
!"
!"
!"
!"
!"
!"

�� �� ��
�� �� ��

�� �� ��
�� �� ��

c2,2 •
� � � �

� � � �
� � � �

� � � �
� � � �

!"
!"
!"
!"
!"
!"
!"
!"
!"
c2,3

•

��

����
��

��
�

��������������������a2

•

#$
#$
#$
#$
#$
#$
#$
#$
#$
#$
#$
#$
#$
#$
#$
#$

%&
%&
%&
%&

c3,1 •

#$
#$
#$
#$
#$
#$
#$
#$
#$
#$
#$
#$
#$
#$
#$
#$

�� �� ��
�� �� ��

�� �� ��
�� �� ��

c3,2

•a3

Fig. 4. A net with height 0 and infinite branching cells. A prefix of the (unique and
infinite) initial stopping prefix x0 of the unfolding is depicted at right. To get the entire
unfolding, add a fresh copy of x0 after each event ci,j , i, j ≥ 1, and continue recursively.
Maximal configurations of x0 have the form ωn,m = a1⊕· · ·⊕an⊕b1⊕. . . bm⊕cn+1,m+1,
with n, m ≥ 0, or ω∞ = a1 ⊕ b1 ⊕ a2 ⊕ b2 ⊕ · · · . Any maximal configuration ω of
the unfolding is a finite concatenation of ωn,m’s, ended with a ω∞ , or an infinite
concatenation of ωn,m’s. The net has therefore height zero.

Concurrency, σ-Algebras, and Probabilistic Fairness 391

the σ-algebra G = {↑ a∞ ∩K, K ∈ F0}, the description that we gave of finitely
stopped configurations shows that G = {∅, ↑ a∞}. This implies that A /∈ F0.

The following result generalizes the observation made on the above example:
maximal configurations are reached after a finite number of (infinite) steps.

Theorem 2. Let N be a 1-safe net with p transitions. Let E be the unfolding
of N , and construct as above the sequences (Xn)n and (Fn)n. Then ΩE ⊆ Xp
and F ⊆ Fp+1.

Definition 1 (height). The height of a maximal configuration ω ∈ ΩE is the
smallest integer q such that ω ∈ Xq. The height of a 1-safe net is the smallest
integer q such that ΩE ⊆ Xq.

Theorem 2 says that 1-safe nets have finite height, less than the number of
transitions. Nets with locally finite unfoldings have height 0, although all nets
of height 0 need not to have a locally finite unfolding, as shown by the example
of the double loop depicted on Fig. 4.

3 Application to the Construction of Probabilistic Nets

From the result on σ-algebras stated in Th. 2, one may wish to construct a
probability measure on (ΩE ,F) by using recursively and finitely many times
formula (1). For locally finite unfoldings, such a construction amounts to taking
a projective limit of measures (see [2]). We thus want to take nested projective
limits of measures. Although this procedure would apply to any event structure
(satisfying the hypotheses of Th. 1), considering unfoldings of nets brings a
surprising simplification.

3.1 Analyzing an Example

Let us informally apply this construction to the example depicted in Fig. 3; jus-
tifications of the computations that we perform will be given below. We have al-
ready listed configurations from X0 and associated branching cells xn = {an, bn},
x′
n = {cn, d}, n ≥ 1, and x′′ = {e, f}. With a∞ = (a1, a2, . . .), configurations

from X1 are a∞ ⊕ d, a∞ ⊕ d ⊕ e and a∞ ⊕ d ⊕ f (concatenation of a∞ with
stopped configurations of Ea∞). Hence, extending the definition of branching
cells to initial stopping prefixes in the future of configurations from X1, we
add x′′′ = {d} and the already known x′′. Hence the net has four generalized
local states (=classes of generalized branching cells) x = {a, b}, x′ = {c, d},
x′′ = {e, f} and x′′′ = {d}. Consider µ, µ′, µ′′ and µ′′′, probabilities on the
associated sets Ωx, Ωx′ , Ωx′′ and Ωx′′′ . For a finite configuration v ∈ X0 as
listed in (2) and thereafter, the probability P

(
↑ v
)

is computed by the product
formula (1). Every maximal configuration ω belongs to X1, and that some of
them belong to X0. We may thus ask: what is the probability that ω ∈ X0?
Using formula (1), and recalling the notation rn = a1 ⊕ · · · ⊕ an, we have:

P{ω /∈ X0}=P{ω ⊇ a∞, ω �= a∞} ≤ P{ω ⊇ a∞}= lim
n→∞

P{ω ⊇ rn}= lim
n→∞

αn ,

392 S. Abbes and A. Benveniste

where parameter α = µ(a) is the probability of choosing transition a for a token
sitting on the left most place of the net.

We thus obtain that P(X1 \ X0) = 0 whenever α < 1 (note that α < 1 is a
natural situation). In other words, configurations in X1 are unfair, since they
have infinitely many chances to enable local state x′ but never do, and thus they
have probability zero. This is of course an expected result—see, e.g., [12] for an
account on probabilistic fairness. We shall now see that this situation is indeed
general, for Markov nets.

3.2 Markov Nets of First Order

The first result we have is the following:

Theorem 3. Let N be a 1-safe net, and let µx be a local transition probability
for every local state x of N . For each finitely stopped configuration v, let p(v) be
defined by:

p(v) =
∏

x∈∆(v)

µx(v ∩ x) , (3)

where x denotes the isomorphism class of branching cell x. Then there is a
unique probability measure P0 on (ΩE ,F0) such that P0

(
↑ v
)

= p(v) for all
finitely stopped configurations v. The pair (N , (µx)x), where x ranges over the
set of all local states of N , is called a Markov net of first order.

Comment. For simplicity, the above theorem is formulated only for the case
where each local state x has the property that Ωx is at most of countable car-
dinality. In general we would need to consider subsets of the form ↑x z := {w ∈
Ωx : z ⊆ w}, for z ranging over the finite configurations of x, instead of the
mere singletons {v ∩ x}.

Observe the difference with the result stated in §1.3 for nets with locally
finite unfoldings. The probability constructed in Th. 3 is defined only on F0,
and cannot measure in general all Borel subsets. We will see that this is actually
not a restriction (see Th. 4 below). In case E is locally finite, we see that both
constructions of probability are the same, since F = F0 by Prop. 1, and since
formula (1) and (3) are the same.

3.3 Completion of Markov Nets of First Order to Markov Nets

We now formalize the result observed on the example above (§3.1), that there
is “no room left” for maximal configurations ω not in X0. For this we use the
notions of complete and of completed σ-algebras. Define first the symmetric
difference A9A′ between two sets A and A′ by A9A′ = (A \ A′) ∪ (A′ \ A).
Let (Ω,F,P) be a probability space. Say that a subset A ⊆ Ω is P-negligible (or
simply negligible if no confusion can occur) if there is a subset A′ ∈ F such that
A ⊆ A′ and P(A′) = 0. Remark that, in this definition, A is not required to be
in F. The σ-algebra F is said to be complete (with respect to probability P) if
F contains all P-negligible subsets. For any σ-algebra F, a σ-algebra H is said to
be a completion of F (w.r.t. P) if H is complete, and if for every A′ ∈ H, there is

Concurrency, σ-Algebras, and Probabilistic Fairness 393

a A ∈ F such that A9A′ is negligible. It is well known that every σ-algebra F
has a unique completion, which is called the completed σ-algebra of F [8].

Theorem 4. Let N and (µx)x define a Markov net of first order. We assume
that µx(↑ y) > 0 for any local state x and for any finite configuration y of x.

Let P0 be the probability on (ΩE ,F0) constructed as in Th. 3, and let H be
the completed σ-algebra of F0. Then F ⊆ H, and thus P0 extends to a unique
probability P on (ΩE ,F), where F is the Borel σ-algebra of ΩE.

Comment. The case when F0 �= F brings an obstruction to a purely topological or
combinatorial construction of the probability P on F. A detailed reading of the
proof reveals that our construction indeed combines combinatorial arguments
that use the notion of height for nets with measure theoretic tools.

4 Conclusion

We have shown how to define and construct probabilistic Petri nets for 1-safe net
with arbitrary confusion. The basic idea is that choice is supported by the notion
of branching cells, so independent dice can be attached to each branching cell in
order to draw maximal configurations at random.

Whereas a countable sequence of drawings is enough for nets with locally
finite unfolding, an induction of higher order than ω, although still countable,
is needed in the more general case. Surprisingly enough, for Markov nets, this
higher order induction is actually not required.

Limitations of this approach are encountered when we try to construct ef-
fective local transition probabilities. Although nets with non locally finite un-
foldings can have finite branching cells, we face in general the case of infinite
branching cells x, with associated spaces Ωx being infinite also. Worst is when
Ωx is not countable. We hope that such more difficult cases can be reached by
regarding them as products of simpler probabilistic nets. Composition of true-
concurrent probabilistic processes is a field that we currently explore.

References

1. Abbes, S.: A (true) concurrent Markov property and some applications to Markov
nets. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp.
70–89. Springer, Heidelberg (2005)

2. Abbes, S.: A projective formalism applied to topological and probabilistic event
structures. Mathematical Structures in Computer Science 17, 819–837 (2007)

3. Abbes, S., Benveniste, A.: Branching cells as local states for event structures
and nets: Probabilistic applications. In: Sassone, V. (ed.) FOSSACS 2005. LNCS,
vol. 3441, pp. 95–109. Springer, Heidelberg (2005); Extended version available as
Research Report INRIA RR-5347

4. Abbes, S., Benveniste, A.: Probabilistic models for true-concurrency: branching
cells and distributed probabilities for event structures. Information & Computa-
tion 204(2), 231–274 (2006)

394 S. Abbes and A. Benveniste

5. Abbes, S., Benveniste, A.: Concurrency, σ-algebras and probabilistic fairness. Tech-
nical report, PPS/Université Paris 7 Denis Diderot (2008),
http://hal.archives-ouvertes.fr/hal-00267518/en/

6. Abbes, S., Benveniste, A.: Probabilistic true-concurrency models: Markov nets and
a Law of large numbers. Theoretical Computer Science 390, 129–170 (2008)

7. Baccelli, F., Gaujal, B.: Stationary regime and stability of free-choice Petri nets.
Springer, Heidelberg (1994)

8. Breiman, L.: Probability. SIAM, Philadelphia (1968)
9. Buchholz, P.: Compositional analysis of a Markovian process algebra. In: Rettel-

bach, M., Herzog, U. (eds.) Proceedings of 2nd process algebra and performance
modelling workshop. Arbeitsberichte des IMMD, vol. 27 (1994)

10. Danos, V., Desharnais, J., Panangaden, P.: Labelled Markov processes: stronger
and faster approximations. ENTCS 87, 157–203 (2004)

11. Darondeau, P., Nolte, D., Priese, L., Yoccoz, S.: Fairness, distance and degrees.
Theoretical Computer Science 97, 131–142 (1992)

12. de Alfaro, L.: From fairness to chance. Electronic Notes in Theoretical Computer
Science 22, 55–87 (1999)

13. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Approximating labeled
Markov processes. Information and Computation 184(1), 160–200 (2003)

14. Götz, N., Herzog, U., Rettelbach, M.: Multiprocessor and distributed system de-
sign: the integration of functional specification and performance analysis using
stochastic process algebras. In: Proceedings of Performance 1993 (1993)

15. Herescu, O.M., Palamidessi, C.: Probabilistic asynchronous π-calculus. In: Tiuryn,
J. (ed.) FOSSACS 2000. LNCS, vol. 1784, pp. 146–160. Springer, Heidelberg (2000)

16. Hillston, J.: A compositional approach to performance modelling. Cambridge Uni-
versity Press, Cambridge (1996)

17. Jou, C., Smolka, S.: Equivalences, congruences and complete axiomatizations of
probabilistic processes. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990.
LNCS, vol. 458, pp. 367–383. Springer, Heidelberg (1990)

18. Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Information and
Computation 94(1), 1–28 (1991)

19. Park, D.: Concurrency and automata on infinite sequences. In: Theoretical Com-
puter Science, pp. 167–183. Springer, Heidelberg (1981)

20. Varacca, D., Völzer, H., Winskel, G.: Probabilistic event structures and domains.
Theoretical Computer Science 358(2), 173–199 (2006)

21. Wilkinson, D.: Stochastic modelling for systems biology. Chapman & Hamm/CRC,
Boca Raton (2006)

http://hal.archives-ouvertes.fr/hal-00267518/en/

Synthesis from Component Libraries�

Yoad Lustig�� and Moshe Y. Vardi

Rice University, Department of Computer Science, Houston, TX 77251-1892, USA
{yoad,vardi}@cs.rice.edu

http://www.cs.rice.edu/∼yoad,
http://www.cs.rice.edu/∼vardi

Abstract. Synthesis is the automated construction of a system from its specifi-
cation. In the classical temporal synthesis algorithms, it is always assumed the
system is “constructed from scratch” rather than “composed” from reusable com-
ponents. This, of course, rarely happens in real life. In real life, almost every
non-trivial commercial system, either in hardware or in software system, relies
heavily on using libraries of reusable components. Furthermore, other contexts,
such as web-service orchestration, can be modeled as synthesis of a system from
a library of components.

In this work we define and study the problem of LTL synthesis from libraries
of reusable components. We define two notions of composition: data-flow com-
position, for which we prove the problem is undecidable, and control-flow com-
position, for which we prove the problem is 2EXPTIME-complete. As a side
benefit we derive an explicit characterization of the information needed by the
synthesizer on the underlying components. This characterization can be used as
a specification formalism between component providers and integrators.

1 Introduction

The design of almost every non-trivial commercial system, either hardware or software
system, involves many sub-systems each dealing with different engineering aspects and
each requiring different expertise. For example, a software application for an email
client contains sub-systems for managing graphic user interface and sub-systems for
managing network connections (as well as many other sub-systems). In practice, the
developer of a commercial product rarely develops all the required sub-systems himself.
Instead, many sub-systems can be acquired as collections of reusable components that
can be integrated into the system. We refer to a collection of reusable components as a
library.1

� Work supported in part by NSF grants CCR-0124077, CCR-0311326, CCF-0613889, ANI-
0216467, and CCF-0728882, by BSF grant 9800096, and by gift from Intel.

�� Part of this research was done while this author was at the Hebrew University in Jerusalem.
1 In the software industry, every collection of reusable components is referred to as a “library”. In

the hardware industry, the term “library” is sometimes reserved for collections of components
of basic functionality (e.g., logical and-gates with fan-in 4), while reusable components with
higher functionality (e.g., an ARM CPU) are sometimes referred to by other names (such as IP
cores). In this paper we refer to any collection of reusable components as a library, regardless
of the level of functionality.

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 395–409, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

396 Y. Lustig and M.Y. Vardi

The exact nature of the reusable components in a library may differ. The literature sug-
gest many different types of components. For example: IP cores (in hardware), function
libraries(forproceduralprogramminglanguages),object libraries(forobjectorientedpro-
gramming languages), and aspect libraries (for aspect oriented programming languages).
Web-services can also be viewed as reusable components used by an orchestrator.

Synthesis is the automated construction of a system from its specification. The basic
idea is simple and appealing: instead of developing a system and verifying that it ad-
heres to its specification, we would like to have an automated procedure that, given a
specification, constructs a system that is correct by construction. The first formulation
of synthesis goes back to Church [1]; the modern approach to that problem was initiated
by Pnueli and Rosner who introduced LTL (linear temporal logic) synthesis [2]. In LTL
synthesis the specification is given in LTL and the system constructed is a finite-state
transducer modeling a reactive system.

In the work of Pnueli and Rosner, and in the many works that followed, it is always
assumed that the system is “constructed from scratch” rather than “composed” from
reusable components. This, of course, rarely happens in real life. In real life, almost ev-
ery non-trivial system is constructed using libraries of reusable components. In fact, in
many cases the use of reusable components is essential. This is the case when a system
is granted access to a reusable component, while the component itself is not part of the
system. For example, a software system can be given access to a hard-disk device driver
(provided by the operating system), and a web-based system might orchestrate web ser-
vices to which it has access, but has no control of. Even when it is theoretically possible
to design a sub-system from scratch, many times it is desirable to use reusable com-
ponents. The use of reusable components allows to abstract away most of the detailed
behavior of the sub-system, and write a specification that mentions only the aspects of
the sub-system relevant for the synthesis of the system at large.

We believe therefore, that one of the prerequisites of wide use of synthesis algorithms
is support of synthesis from libraries. In this work, we define and study the problem of
LTL synthesis from libraries of reusable components.

As a perquisite to the study of synthesis from libraries of reusable components, we
have to define suitable models for the notions of reusable components and their com-
position. Indeed, there is no one correct model encompassing all possible facets of the
problem. The problem of synthesis from reusable components is a general problem to
which there are as many facets as there are models for components and types of compo-
sition. Components can be composed in many ways: synchronously or asynchronously,
using different types of communications, etc. . As an example for the multitude of com-
position notions see [3], where Sifakis suggests an algebra of various composition forms.

In this work we approach the general problem by choosing two specific concrete no-
tions of models and compositions, each corresponding to a natural facet of the problem.
For components, we abstract away the precise details of the components and model a
component as a transducer, i.e., a finite-state machine with outputs. Transducers consti-
tute a canonical model for a reactive component, abstracting away internal architecture
and focusing on modeling input/output behavior.

As for compositions, we define two notions of component composition. One relates
to data-flow and is motivated by hardware, while the other relates to control-flow and is

Synthesis from Component Libraries 397

motivated by software. We study synthesis from reusable components for these notions,
and show that whether or not synthesis is computable depends crucially on the notion
of composition.

The first composition notion, in Section 3, is data-flow composition, in which the
outputs of a component are fed into the inputs of other components. In data-flow com-
position the synthesizer controls the flow of data from one component to the other. We
prove that the problem of LTL synthesis from libraries is undecidable in the case of
data-flow composition. In fact, we prove a stronger result. We prove that in the case of
data-flow composition, the LTL synthesis from libraries is undecidable even if we re-
strict ourselves to pipeline architectures, where the output of one component is fed into
the input of the next component. Furthermore, it is possible to fix either the formula to
be synthesized, or the library of components, and the problem remains undecidable.

The second notion of composition we consider is control-flow composition, which
is motivated by software and web services. In the software context, when a function is
called, the function is given control over the machine. The computation proceeds under
the control of the function until the function calls another function or returns. There-
fore, it seems natural to consider components that gain and relinquish control over the
computation. A control-flow component is a transducer in which some of the states are
designated as final states. Intuitively, a control-flow component receives control when
entering an initial state and relinquish control when entering a final state. Composing
control-flow components amounts to deciding which component will resume control
when the control is relinquished by the component that currently is in control.

Web-services orchestration is another context naturally modeled by control-flow
composition. A system designer composes web services offered by other parties to form
a new system (or service). When referring a user to another web service, the other ser-
vice may need to interact with the user. Thus, the orchestrator effectively relinquishes
control of the interaction with that user until the control is received back from the re-
ferred service. Web-services orchestration has been studied extensively in recent years
[4,5,6]. In Subsection 1.1, we compare our framework to previously studied models.

We show that the problem of LTL synthesis from libraries in the case of control-
flow composition is 2EXPTIME-complete. One of the side benefits of this result is an
explicit characterization of the information needed by the synthesis algorithm about the
underlying control-flow components. The synthesis algorithm does not have to know
the entire structure of the component but rather needs some information regarding the
reachable states of an automaton for the specification when it monitors a component’s
run (the technical details can be found in Section 4). This characterization can be used
to define the interface between providers and integrators of components. On the one
hand, a component provider such as a web service, can publish the relevant information
to facilitate the component use. On the other hand, a system developer, can publish
a specification for a needed component as part of a commercial tender or even as an
interface with another development group within the same organization.

1.1 Related Work

The synthesis problem was first formulated by Church [1] and solved by Büchi and
Landweber [7] and by Rabin [8]. We follow the LTL synthesis problem framework

398 Y. Lustig and M.Y. Vardi

presented by Pnueli and Rosner in [2,9]. We also incorporate ideas from Kupferman
and Vardi [10], who suggested a way to work directly with a universal automata for the
specification. In [11], Krishnamurthi and Fisler suggest an approach to aspect verifica-
tion that inspired our approach to control-flow synthesis.

While the synthesis literature does not address the problem of incorporating reusable
components, extensive work studies the construction of systems from components. Ex-
amples for important work on the subject can be found in Sifakis’ work on component
based-construction [3], and de Alfaro and Henzinger’s work on “interface-based de-
sign” [12].

In addition to the work done on the subject by the formal verification community,
much work has been done in field of web-services orchestration [4,5,6]. The web-
services literature suggests several models for web services; the most relevant to this
work is known as the “Roman model”, presented in [5]. In the Roman model web ser-
vices are modeled, as here, by finite-state machines. The abstraction level of the mod-
eling, however, is significantly different. In the Roman model, every interaction with a
web-service is abstracted away to a single action and no distinction is made between
the inputs of the web service and the outputs of the web service.

In our framework, as in the synthesis literature, there is a distinction between output
signals, which the component controls, and input signals, which the component does
not control. A system should be able to cope with any value of an input signal, while
the output signals can be set to desired values [2]. Therefore, the distinction is critical as
the quantification structure on input and output signals is different (see [2] for details).
In the Roman model, since no distinction between inputs and outputs is made, the ab-
straction level of the modeling must leave each interaction abstracted as a single atomic
action. The Roman model is suitable in cases in which all that is needed to ensure is the
availability of web-services actions when these are needed. Many times, however, such
high level of abstraction cannot suffice for complete specification of a system.

2 Preliminaries

For a natural number n, we denote the set {1, . . . , n} by [n]. For an alphabet Σ, we
denote by Σ∗ the set of finite words over Σ, by Σω the set of infinite words over Σ,
and by Σ∞ the union Σ∗ ∪Σω.

Given a set D of directions, a D-tree is a set T ⊆ D∗ such that if x · c ∈ T , where
x ∈ D∗ and c ∈ D, then also x ∈ T . For every x ∈ T , the words x · c, for c ∈ D, are
the successors of x. A path π of a tree T is a set π ⊆ T such that ε ∈ π and for every
x ∈ π, either x is a leaf or there exists a unique c ∈ D such that x · c ∈ π. The full
D-tree is D∗. Given an alphabet Σ, a Σ-labeled D-tree is a pair 〈T, τ〉 where T is a
tree and τ : T → Σ maps each node of T to a letter in Σ.

A transducer, (also known as a Moore machine [13]) is an deterministic finite au-
tomaton with outputs. Formally, a transducer is tuple T = 〈ΣI , ΣO, Q, q0, δ, F, L〉
where: ΣI is a finite input alphabet, ΣO is a finite output alphabet, Q is a finite set of
states, q0 ∈ Q is an initial state, δ : Q×ΣI → Q is a transition function, F is a set of
final states, and L : Q → ΣO is an output function labelling states with output letters.
For a transducer T and an input word w = w1w2 . . . wn ∈ ΣnI , a run, or a computation

Synthesis from Component Libraries 399

of T on w is a sequence of states r = r0, r1, . . . rn ∈ Qn such that r0 = q0 and
for every i ∈ [n] we have ri = δ(ri−1, wi). The trace tr(r) of the run r is the word
u = u1u2 . . . un ∈ ΣnO where for each i ∈ [n] we have ui = L(ri−1). The notions of
run and trace are extended to infinite words in the natural way.

For a transducer T , we define δ∗ : Σ∗
I → Q in the following way: δ∗(ε) = q0, and

for w ∈ Σ∗
I and σ ∈ ΣI , we have δ∗(w · σ) = δ∗(δ∗(w), σ). A ΣO-labeled ΣI -tree

〈Σ∗
I , τ〉 is regular if there exists a transducer T = 〈ΣI , Σ,Q, q0, δ, L〉 such that for

every w ∈ Σ∗
I , we have τ(w) = L(δ∗(w)).

A transducer T outputs a letter for every input letter it reads. Therefore, for every
input word wI ∈ ΣωI , the transducer T induces a word w ∈ (ΣI×ΣO)ω that combines
the input and output of T . A transducer T satisfies an LTL formula ϕ if for every input
word wi ∈ ΣωI the induced word w ∈ (ΣI ×ΣO)ω satisfies ϕ.

For a set X , let B+(X) be the set of positive Boolean formulas over X (i.e., Boolean
formulas built from elements in X using ∧ and ∨), where we also allow the formulas
True (an empty conjunction) and False (an empty disjunction). For a set Y ⊆ X and
a formula θ ∈ B+(X), we say that Y satisfies θ iff assigning True to elements in Y
and assigning False to elements in X \ Y makes θ true. An alternating tree automaton
is A = 〈Σ,D,Q, qin, δ, α〉, where Σ is the input alphabet, D is a set of directions, Q
is a finite set of states, δ : Q×Σ → B+(D×Q) is a transition function, qin ∈ Q is an
initial state, and α specifies the acceptance condition (a condition that defines a subset
of Qω; we define several types of acceptance conditions below). For a state q ∈ Q, we
denote by Aq the automaton 〈Σ,D,Q, q, δ, α〉 in which q is the initial state.

The alternating automaton A runs on Σ-labeled full D-trees. A run of A over a Σ-
labeled D-tree 〈T, τ〉 is a (T ×Q)-labeled N-tree 〈Tr, r〉. Each node of Tr corresponds
to a node of T . A node in Tr, labeled by (x, q), describes a copy of the automaton that
reads the node x of T and visits the state q. Note that many nodes of Tr can correspond
to the same node of T . The labels of a node and its successors have to satisfy the
transition function. Formally, 〈Tr, r〉 satisfies the following:

1. ε ∈ Tr and r(ε) = 〈ε, qin〉.
2. Let y ∈ Tr with r(y) = 〈x, q〉 and δ(q, τ(x)) = θ. Then there is a (possibly empty)

set S = {(c0, q0), (c1, q1), . . . , (cn−1, qn−1)} ⊆ D × Q, such that S satisfies θ,
and for all 0 ≤ i ≤ n− 1, we have y · i ∈ Tr and r(y · i) = 〈x · ci, qi〉.

A run 〈Tr, r〉 is accepting if all its infinite paths satisfy the acceptance condition. Given
a run 〈Tr, r〉 and an infinite path π ⊆ Tr, let inf(π) ⊆ Q be such that q ∈ inf(π)
if and only if there are infinitely many y ∈ π for which r(y) ∈ T × {q}. We consider
Büchi acceptance in which a path π is accepting iff inf(π) ∩ α �= ∅, and co-Büchi
acceptance in which a path π is accepting iff inf(π) ∩ α = ∅. An automaton accepts
a tree iff there exists a run that accepts it. We denote by L(A) the set of all Σ-labeled
trees that A accepts.

The alternating automatonA is nondeterministic if for all the formulas that appear in
δ, if (c1, q1) and (c2, q2) are conjunctively related, then c1 �= c2. (i.e., if the transition
is rewritten in disjunctive normal form, there is at most one element of {c} × Q, for
each c ∈ D, in each disjunct). The automaton A is universal if all the formulas that

400 Y. Lustig and M.Y. Vardi

appear in δ are conjunctions of atoms in D × Q, and A is deterministic if it is both
nondeterministic and universal. The automatonA is a word automaton if |D| = 1.

We denote each of the different types of automata by three-letter acronyms in
{D,N,U} × {B,C} × {W,T }, where the first letter describes the branching mode
of the automaton (deterministic, nondeterministic, or universal), the second letter de-
scribes the acceptance condition (Büchi or co-Büchi), and the third letter describes the
object over which the automaton runs (words or trees). For example, NBT are nonde-
terministic tree automata and UCW are universal co-Büchi word automata.

Let I be a set of input signals and O be a set of output signals. For a 2O-labeled
full-2I tree T = 〈(2I)∗, τ〉 we denote by T ′ the 2I∪O-labeled full 2I -tree in which ε is
labeled by τ(ε) and for every x ∈ (2I)

∗
and i ∈ 2I the node x·i is labeled by i∪τ(x·i).

The LTL realizability problem is: given an LTL specification ϕ (with atomic propo-
sitions from I ∪ O), decide whether there is a tree T such that the labelling of every
path in T ′ satisfies ϕ. It was shown in [7] that if such a tree exists, then a regular such
tree exists. The synthesis problem is to find the transducer inducing the tree if such a
transducer exists [2].

3 Data-Flow Composition

Data-flow composition is the form of composition in which the outputs of a component
are fed into other components as inputs. In the general case, each component might have
several input and output channels, and these may be connected to various other compo-
nents. For an exposition of general data-flow composition of transducers we refer the
reader to [14]. In this paper, however, the main result is a negative result of undecidabil-
ity. Therefore, we restrict ourselves to a very simple form of data-flow decomposition:
the pipeline architecture. To that end, we model each component as a transducer with
a single input channel and single output channel. The composition of such components
form the structure of a pipeline. We prove that even for such limited form of data-flow
composition the problem remains undecidable.

A data-flow component, is a transducer in which the set of final states plays no role.
We denote such a component by C = 〈ΣI , ΣO, Q, q0, δ, L〉. For two data-flow compo-
nents: Ci = 〈ΣiI , ΣiO, Qi, qi0, δi, Li〉, i = 1, 2, where Σ1

O ⊆ Σ2
I , the composition of

C1 and C2 is the data-flow component C1 ◦ C2 = 〈Σ1
I , Σ

2
O, Q

1 ×Q2, 〈q1
0 , q

2
0〉, δ, L〉

where δ(〈q1, q2〉, σ) = 〈δ1(q1, σ), δ2(q2, L
1(q1))〉, and L(〈q1, q2〉) = L2(q2). It is not

hard to see that the trace of the composition on a word w is the same as the trace of the
run of C2 on the trace of the run of C1 on w.

A library L of data-flow component is simply a set of data-flow components. Let
L = {Ci} be a collection of data-flow components. A data-flow component C is a
pipeline composition of L-components if there exists k ≥ 1 and C1, . . . , Ck ∈ L, not
necessarily distinct, such that C = C1 ◦C2 ◦ . . . ◦Ck. When the library L is clear from
the context, we abuse notation and say that C is a pipeline.

The data-flow library LTL realizability problem is: Given a data-flow components
library L and an LTL formula ϕ, is there a pipeline composition of L-components that
satisfies ϕ.

Synthesis from Component Libraries 401

Theorem 1. Data-flow library LTL realizability is undecidable.2 Furthermore, the fol-
lowing hold:

1. There exists a library L such that the data-flow library LTL realizability problem
with respect to L is undecidable.

2. There exists an LTL formula ϕ such that the data-flow library ϕ-realizability is
undecidable.

The standard way to prove undecidability of some machine model is to show that the
model can simulate Turing machines. Had we allowed a more general way of com-
posing transducers, for example, as in [14], such an approach, indeed, could have been
used. Indeed, the undecidability proof technique in [16] can be cast as an undecidability
result for data-flow library realizability, where the component transducers are allowed
to communicate in a two-sided manner, each simulating a tape cell of a Turing machine.
Here, however, we are considering a pipeline architecture, in which information can be
passed only in one direction. Such an architecture seems unable to simulate a Turing
machine. In fact, in the context of distributed LTL realizability, which is undecidable in
general [9], the case of a pipeline architecrure is the decidable case [9].

Nevertheless, data-flow library LTL realizability is undecidable even for pipeline
archirecture. We prove undecidability by leveraging an idea used in the undecidability
proof in [9] for non-pipeline architectures. The idea is to show that our machine model,
though not powerful enough to simulate Turing machines, is powerful enough to check
computations of Turing machines. In this approach, the environment produces an input
stream that is a candidate computation of a Turing machine, and the synthesized system
checks this computation.

We now proceed with details. Let M be a Turing machine with an RE-hard language.
We reduce the language of M to a data-flow library realizability problem. Given a word
w, we construct a library of components Lw and a formula ϕ, such that ϕ is realizable
by a pipeline of Lw-components iff w ∈ L(M).

The gist of the proof, is that given w, we construct a pipeline that checks whether its
input is an encoding of an accepting computation of M on w. Each component in the
pipeline is checking a single cell in M ’s tape. The detailed proof can be found in the
full version below we present an overview of the proof.

Intuitively, the pipeline C checks whether its input is an encoding of an accepting
computation of M on w. (To encode terminating computations by infinite words, simply
iterate the last configuration indefinitely). The pipeline C produces the signal ok either
if it succeeds to verify that the input is an accepting computation of M on w, or if the
input is not a computation of M on w. That way, if w ∈ L(M) then on every word ok
is produced, while if w �∈ L(M) then on the computation of M on w, the signal ok is
never produced.

The input to the transducer is an infinite word u over some alphabet Σtape defined
below. Intuitively, u is broken into chunks where each chunk is assumed to encode a
single configuration of M . The general strategy is that every component in the pipeline
tracks a single tape cell, and has to verify that letters that are supposed to correspond to
the content of the cell “behave properly” throughout the computation.

2 It is not hard to see that the problem is computationally enumerable, since it is computationally
possible to check whether a specific pipeline composition satisfies ϕ [15].

402 Y. Lustig and M.Y. Vardi

The input alphabet Σtape is used to encode configurations in a way that allows the
verification of the computation. The content of one cell is either a letter from M ’s tape
alphabet Γ , or both a letter and the state of M encoding the fact that the head of M is
on the cell. Each letter in Σtape encodes the content of a cell and the content of its two
adjacent cells. The reason for this encoding is that during a computation the content of a
cell can be predicted by the content of the cell and its neighbors in the previous cycle. In
addition to letters from Γ , we allow a special separator symbol # to separate between
configurations. For simplicity, assume that all the configurations of the computation are
encoded by words of the same length. (In the full version we deal with the general case.)

The library Lw contains only two types of components Cf and Cs. In the interesting
pipelines a single Cf component is followed by one or more Cs components. Intuitively,
each Cs component tracks one cell tape (e.g., the third cell) and checks whether the
input encodes correctly the content of the tracked cell throughout the computation. The
Cf component drives the Cs components.

The alphabet Σtape is the input alphabet of the Cf component. The output alphabet
of Cf as well as the input and output alphabet of Cs is more complicated. We describe
this alphabet as Cartesian product of several smaller alphabets. The first of these is
Σtape itself, and both Cf and Cs produce each cycle the Σtape letter they read (thus the
content is propagated through the pipeline).

In order to make sure each component tracks one specific cell (e.g., the third cell),
we introduce another alphabet Σclock = {pulse,¬pulse}. The components produces
a pulse signal as follows: A Cf component produces pulse one cycle after it sees a
letter encoding a separator symbol #, and a Cs component produces a pulse signal two
cycles it reads a pulse. On other cycles ¬pulse is produced. Note that one cycle delay is
implied by the definition of transducers. Thus, a Cs component delays the pulse signal
for one additional cycle. In the full version we show that this timing mechanism allows
each Cs transducer to identify the letters that encode the content of “his” cell.

As for the tracking itself, the content of a tape cell (and the two adjacent cells) in
one configuration contains the information needed to predict the content of the cell
in the following configuration. Thus, whenever a clock pulse signal is read, each Cs
component compares the content of the cell being read to the expected content from the
previous cycle in which pulse was read. If the content is different from the expected
content a special signal is sent. The special signal junk, sent is part of another alphabet
Σjunk = {junk,¬junk}. When junk is produced it is propagated throughout the
pipeline. The Cf component is used to check the consistency of adjacent Σtape letters,
as well as that the first configuration is an encoding of the initial configuration. If an
inconsistency is found junk is produced.

To discover accepting computations we introduce another signal, acc, that is pro-
duced by a Cs if M enters the accepting state and is propagated throughout the pipeline.
Finally, we introduce the signal ok. A Cs component produces ok if it never saw M ’s
head and either it reads junk (i.e., the word does not encode a computation), or it
reads acc (i.e., the encoded computation is accepting). Note that the signal ok is never
produced if the pipeline is too short to verify the computation.

In the full version we prove the following: if w ∈ L(M) then there exists a (long
enough) pipeline in which ok is produced on every word, while if w �∈ L(M) then ok

Synthesis from Component Libraries 403

is never produced (by any pipeline) on the word that encodes M ’s computation on w.
The above shows Theorem 1 for the fixed formula Fok. The proof for a fixed library is
similar.

4 Control-Flow Composition

In the case of software systems, another model of composition seems natural. In the
software context, when a function is called, the function is given control over the ma-
chine. The computation proceeds under the control of the function until the function
calls another function or returns. Therefore, in the software context, it seems natural to
consider components that gain and relinquish control over the computation.

In our model, during a phase of the computation in which a component C is in
control, the input-output behavior of the entire system is governed by the component.
An intuitive example is calling a function from a GUI library. Once called, the function
governs the interaction with user until it returns. Just as a function might call another
function, a component might relinquish control at some point. In fact, there might be
several ways in which a component might relinquish control (such as taking one out of
several exit points).

The composition of such components amounts to deciding the flow of control. This
means that the components have to be composed in a way that specifies which compo-
nent receives control in what circumstances. Thus, the system synthesizer provides an
interface for each component C, where the next component to receive control is speci-
fied for every exit point in C (e.g., if C exits in one way then control goes to C2, if C
exists in another way control goes to C3, etc.). An intuitive example of such interface
in real life would be a case statement on the various return values of a function f . In
case f returns 1: call function g, in case f returns 2: call function h, and so on.3

Below we discuss a model in which the control is passed explicitly from one com-
ponent to another, as in goto. A richer model would consider also control flow by calls
and returns; we leave this to future work. In our model each component is modeled by a
transducer and relinquishing control is modeled by entering a final state. The interface
is modeled by a function mapping the various final states to other components in the
system.

Let ΣI be an input alphabet, ΣO be an output alphabet and, Σ = ΣI ∪ ΣO. A
control-flow component is a transducer M = 〈ΣI , ΣO, Q, q0, δ, F, L〉. Unlike the data-
flow component case, in control-flow components the set F of final states is important.
Intuitively, control-flow components receives control when entering the initial state and
relinquishes control when entering a final state. When a control-flow component is in
control, the input-output interaction with the environment is done by the component.
For that reason, control-flow components in a system (that interact with the same en-
vironment) must share input and output alphabets. A control-flow components library

3 At first sight, it seems that the synthesizer is not given realistic leeway. In real life, systems are
composed not only from reusable components but also from some code written by the system
creator. This problem is only superficial, however, since one can add to the component library
a set of components with the same functionality as the basic commands at the disposal of the
system creator.

404 Y. Lustig and M.Y. Vardi

is a set of control-flow components that share the same input and output alphabets. We
assume w.l.o.g. all the final sets in the library are of the same size nF . We denote the
final set of the i-th component in the library by Fi = {si1, . . . sinF

}.
Next, we discuss a notion of composition suitable for control-flow components.

When a component is in control the entire system behaves as the component and the
system composition plays no role. The composition comes into play, however, when
a component relinquishes control. Choosing the “next” component to be given control
is the essence of the control-flow composition. A control-flow component relinquishes
control by entering one of several final states. A suitable notion of composition should
specify, for each of the final states, the next component the control will be given to.
Thus, a control-flow composition is a sequence of components, each paired with an in-
terface function that maps the various final states to other components in system. We
refer to these pairs of a component coupled with an interface function as interfaced
component. Note that a system synthesizer might choose to reuse a single component
from the library several times, each with a different interface. Therefore, the number
of interfaced components might differ from the number of components is the library.
Formally, a composition of components from a control-flow components library L is a
finite sequence of pairs 〈C1, f1〉, 〈C2, f2〉, . . . , 〈Cn, fn〉 where the first element in each
pair is a control-flow component Ci = 〈ΣI , ΣO, Qi, qi0, δi, Fi, Li〉 ∈ L and the second
element in each pair is an interface function fi : Fi → {1, . . . , n}. Each of the pairs
〈Ci, fi〉 is an interfaced component.

Intuitively, for an interfaced component 〈Ci, fi〉, when Ci is in control and enters
a final state q ∈ Fi, the control is passed to the interfaced component 〈Cfi(q), ffi(q)〉.
Technically, this amounts to moving out of the state as if the state is not the final state q

of Ci but rather the initial state q
fi(q)
0 of Cfi(q). For technical reasons, we restrict every

interface function fi : Fi → {1, . . . , n} in the composition to map every final state to
a component whose initial state agrees with the final state on the labelling.4 Thus, fi is

an an interface function if for every j ≤ |Fi| we have Li(sij) = Lfi(si
j)

(q
fi(si

j)
0).

The fact that a control-flow component C might appear in more than one interfaced
component means that each component in the composition can be referred to in more
than one way: first, as the i-th component in the library, and second, as the component
within the j-th interfaced component in the composition. To avoid confusion, whenever
we refer to a component from the library (as in the i-th component from the library)
we denote it by M i ∈ L, while whenever we refer to a component within an inter-
faced component in the composition (as in the component within the j-th interfaced
component) we denote it by Cj . We denote by type(j) the index, in the library, of the
component Cj which is the component within the j-th interfaced component. Thus, Ci
is the same reusable component as M type(i).

The result of the composition is the transducer M = 〈ΣI , ΣO, Q, q0, δ, L〉 where:

1. The state space Q is
⋃n
i=1(Qi × {i}).

2. The initial state q0 is 〈q1
0 , 1〉.

3. The transition function δ is defined as follows:

4 This restriction is only a technicality chosen to simplify notation in proofs.

Synthesis from Component Libraries 405

(a) For a state 〈q, i〉 in which q ∈ Qi \ Fi, we set δ(〈q, i〉, σ) = 〈δi(q, σ), i〉.
(b) For 〈q, i〉, where q ∈ Fi we set δ(〈q, i〉, σ) = δfi(q)(〈q

fi(q)
0 , fi(q)〉, σ).

4. The labelling function L is defined L(〈q, i〉) = Li(q).

The control-flow library LTL realizability problem is: Given a control-flow compo-
nents library L and an LTL formula ϕ, decide whether there exists a composition of
components from L that satisfies ϕ. The control-flow library LTL synthesis problem is
similar, given a L and ϕ, find the composition realizing ϕ if one exists.

Theorem 2. The control-flow library LTL synthesis problem can is 2EXPTIME-
complete.

Proof. For the lower bound, we reduce classical synthesis to control-flow library syn-
thesis. Thus, a 2EXPTIME complexity lower bound follows from the classical synthesis
lower bound [17]. We proceed to describe this reduction in detail.

As described earlier, the problem of classical synthesis is to construct a transducer
such that for every sequence of input signals, the sequence of input and output signals
induced by the transducer computation satisfies ϕ. The reduction from classical syn-
thesis is simply to provide a library of control-flow components of basic functionality,
such that every transducer can be composed out of this library.

An atomic transducer, is a transducer that has only an initial state and final states.
Furthermore, every transition from the initial state enters a final state. Thus, in an atomic
transducer we have state set Q = {q0, q1, . . . , qm}, where m = |ΣI |, final state set F =
{q1, . . . , qm}, and transition function δ(q0, ai) = qi. The different atomic transducers
differ only in their output function L.

Consider now the library of all possible atomic transducers. It is not hard to see that
every transducer can be composed out of this library (where every state in the transducer
has its own interfaced component in the composition). Therefore synthesis is possible
from this library of atomic control-flow components iff synthesis is possible at all. This
concludes the reduction.

We proceed to prove the upper bound. Before going into further details, we would
like to give an overview of the proof and the ideas underlying it. The classical synthesis
algorithm [2] considers execution trees. An execution tree is an infinite labelled tree
where the structure of the tree represents the possible finite input sequences (i.e., for
input signal set I the structure is (2I)∗) and the labelling represents mapping of inputs
to outputs. Every transducer induces an execution tree, and every regular execution
tree can be implemented by a transducer. Thus, questions regarding transducers can be
reduced to questions regarding execution trees. Questions regarding execution trees can
be solved using tree automata. Specifically, it is possible to construct a tree automaton
whose language is the set of execution trees in which the LTL formula is satisfied, and
the realizability problem reduces to checking emptiness of this automaton.

Inspired by the approach described above, we should ask what is the equivalent of an
execution tree in the case of control-flow components synthesis? Fixing a library L of
components, we would like to have a type of labelled trees, representing compositions,
such that every composition would induce a tree, and every regular tree would induce
a composition. To that end, we define control-flow trees. Control-flow trees represent

406 Y. Lustig and M.Y. Vardi

the possible flows of control during computations of a composition. Thus, the struc-
ture of control flow trees is simply [nF]∗, each node representing a finite sequence of
control-flow choices. (Where each choice picks one final state from which the control
is relinquished.) A control-flow tree is labelled by components from L. Thus, a path in
a control-flow tree represents the flow of control between components in the system.
Note that a control-flow tree also implicitly encodes interface functions. For every node
v ∈ [nF]∗ in the tree, both v and v’s sons are labelled by components from L. We
denote the labelling function by τ : [nf]∗ → L. For a direction d ∈ [nF], the labelling
τ(v · d) ∈ L of the son of v in direction d, implicitly the flow of control. (Formally,
τ(v · d) defines the component from L, within the interfaced component, to which the
control is passed.) Thus, a regular control-flow tree can be used to define a composition
of control-flow components from L.

Each path in a control-flow tree stands for many possible executions, all of which
share the same control-flow. It is possible , however, to analyse the components in L
and reason about the possible executions represented by a path in the control-flow tree.
This allows us to construct a tree automaton that runs on control-flow trees and accept
the control-flow trees in which all executions satisfy the specification. Once we have
such tree automaton we can take the classical approach to synthesis.

An infinite tree composition 〈[nF]∗, τ〉 is an [|L|]-labeled [nF]∗-tree in which τ(ε) =
1. Intuitively, an infinite tree composition represents possible flow of control in a com-
position. The root is labeled 1 since the run begins when C1 is in control. The j-th
successor of a node is labeled by i ∈ |L| if on arrival to the j-th final state, the con-
trol passed to M i. Every finite composition 〈C1, f1〉, 〈C2, f2〉, . . . , 〈Cn, fn〉 can be un-
folded to an infinite composition tree in the following way: τ(ε) = 1, and for x ∈ [nF]∗,

and i ∈ [nF] we set τ(x · i) = fτ(x)(s
τ(x)
i). In the proof we construct a tree automaton

A that accepts the infinite tree compositions that satisfy ϕ. As we show below, if the
language of A is empty then ϕ cannot be satisfied by any control-flow composition. If,
on the other hand, the language of A is not empty, then there exists a regular tree in the
language of A, from which we can extract a finite composition.

The key to understanding the construction, is the observation that the effect of pass-
ing the control to a component is best analyzed in terms of the effect on an automaton
for the specification. The specification ϕ has a UCW automatonAϕ = 〈Σ,Qϕ, q0, δ, α〉
that accepts exactly the words satisfying ϕ. To constructAϕ we construct an NBWA¬ϕ
as in [18] and dualize it [10]. The effect of giving the control to a component M i, with
regard to satisfying ϕ, can be analyzed in terms of questions of the following type: as-
sumingAϕ is in state q when the control is given to M i, what possible statesAϕ might
be in when M i relinquishes control by entering final state s, and whether Aϕ visits an
accepting state on the path from q to s.

Our first goal is to develop notation for the formalization of questions of the type
presented above. For a finite word w ∈ Σ, we denote δ∗ϕ(q, w) = {q′ ∈ Qϕ | there
exists a run of Aqϕ on w that ends in q′}. For q ∈ Qϕ and q′ ∈ δ∗ϕ(q, w) we denote by
α(q, w, q′) the value of 1 if there exists a path in the run ofAqϕ on w that ends in q′ and
traverses through a state in α. Otherwise, α(q, w, q′) is 0.

For a word w ∈ Σ∗
I and a component C = 〈ΣI , ΣO, QC , qC0 , δC , FC , LC〉, we de-

note by δ∗C(w) the state C reaches after running on w. We denote by Σ(w,C) the word

Synthesis from Component Libraries 407

from Σ induced by w and the run of C on w. For w ∈ Σ∗
I , we denote by δ∗ϕ(q, C,w)

the set δ∗ϕ(q,Σ(w,C)) and by α(q, w, q′) the bit α(q,Σ(w,C), q′). Finally, we de-
fine eC : Qϕ × FC → 2Qϕ×{0,1} where eC(q, s) = {〈q′, b〉 | ∃w ∈ ΣI s.t. s =
δ∗C(w) and q′ ∈ δ∗ϕ(q, C,w) and b = α(q, w, q′)}. Thus, 〈q′, b〉 is in eC(q, s) if there
exists a word w ∈ Σ∗

I such that when C is run on w it relinquishes control by entering
s, and if at the start of C’s run on w the state of Aϕ is q then at the end of C’s run the
state of Aϕ is q′. Furthermore, b is 1 iff there is a run of Aqϕ on Σ(C,w) that ends in q′

and traverses through an accepting state.
Note, that it also possible that for some componentC and infinite input word w ∈ ΣωI

the component C never relinquish control when running on w. For anAϕ-state q ∈ Qϕ,
the component C is a dead end if there exists a word w ∈ ΣωI on which C never enters
a final state, and on which Aqϕ rejects Σ(C,w).

Next, we define a UCT A whose language is the set of infinite tree compositions
realizing ϕ.

Let A = 〈L, Q,∆, 〈q0, 1〉, α〉 where:

1. The state space Q is (Qϕ×{0, 1})∪ {qrej}. Where qrej is a new state (a rejecting
sink).

2. The transition relation ∆ : Q× L → B+([nF]×Q) is defined as follows:

(a) For every C ∈ L and i ∈ [nF] we have ∆(qrej , C) =
∧
i∈[nF](i, qrej).

(b) For 〈q, b〉 ∈ Qϕ × {0, 1} and C ∈ L:
– If C is a dead end for q, then ∆(〈q, j〉, C) =

∧
i∈[nF](i, qrej).

– Otherwise, for every j ∈ [nF] the automaton A sends in direction j the
states in eC(q, sij). Formally, ∆(〈q, b〉, C) =

∧
i∈[nF]

∧
〈qi,bi〉∈eC(q,si

j)

(i, 〈qi, bi〉).

3. The initial state is 〈q0, 1〉 for q0 the initial state of Aϕ.
4. The acceptance condition is α = {qrej} ∪ {Qϕ × {1}}.

Claim 3. L(A) is empty iff ϕ is not realizable from L

The proof can be found in the full version.
Note that while Claim 3 is phrased in terms realizability, the proof actually yields a

stronger result. If the language of A is not empty, then one can extract a composition
realizing ϕ from a regular tree in the language of A. To solve the emptiness of A we
transform it into an “emptiness equivalent” NBTA′ by the method of [10]. By [10], the
language of A′ is empty iff the language of A is empty. Furthermore, if the language
of A′ is not empty, then the emptiness test yields a witness that is in the language of A
(as well as the language ofA′). From the witness, which is a transducer labelling [nf]∗

trees with components from L, it is possible to extract a composition.
This concludes the proof of correctness for Theorem 2 and all that is left is the com-

plexity analysis. The input to the problem is a library L = {M1, . . . ,M |L|} and a
specification ϕ. The number of states of the UCW Aϕ is 2O(|ϕ|). The automaton Aϕ
can be computed in space logarithmic in 2O(|ϕ|) (i.e., space polynomial in |ϕ|). The
main hurdle in computing the UCTA is computing the transitions by computing the eC
functions for the various components. For a component M i ∈ L, an Aϕ-state q ∈ Qϕ,

408 Y. Lustig and M.Y. Vardi

and a final state sij ∈ Fi the value of eC(q, sij) can be computed by deciding emptiness
of small variants of the product of Aϕ and M i. Thus, computing eC(q, sij) is nondeter-
ministic logspace in 2O(|ϕ|) · |M i|. The complexity of computingA is nondeterministic
logspace in 2O(|ϕ|) · nF · (

∑|L|
i=1 |M i|). The number of states of A is twice the number

of states of Aϕ, i.e. 2O(|ϕ|), and does not depend on the library.
To solve the emptiness of A we use [10] to transform it into an “emptiness equiva-

lent” NBT A′. The size of A′ is doubly exponential in |ϕ| (specifically, 22|ϕ|2·log(|ϕ|)
)

and the complexity of its computation is polynomial time in the number of its states.
Finally, the emptiness problem of an NBT can be solved in quadratic time (see [19]).
Thus, the overall complexity of the problem is doubly exponential in |ϕ| and polyno-
mially dependent on the size of the library.

An interesting side benefit the work presented so far, is the characterization of the in-
formation needed by the synthesis algorithm on the underlying components. The only
dependence on a component C is by its corresponding eC functions. Thus, given the
eC functions it is possible to perform synthesis without further knowledge of the com-
ponent implementation. This suggest that the eC functions can serve as a specification
formalism between component providers and possible users.

5 Discussion

We defined two notions of component composition. Data-flow composition, for which
we proved undecidability, and control-flow composition for which we provided a syn-
thesis algorithm.

Control-flow composition required the synthesized system to be constructed only
from the components in the library. In real life, system integrators usually add some
code, or hardware circuitry, of their own in addition to the components used. The added
code is not intended to replace the main functionality of the components, but rather
allows greater flexibility in the integration of the components into a system. At first
sight it might seem that our framework does not support adding such “integration code”.
This is not the case, as we now explain.

Recall, from the proof of Theorem 2, that LTL synthesis can be reduced to our frame-
work by providing a library of atomic components. Every system can be constructed
from atomic components. Thus, by including atomic components in our library, we
enable the construction of integration code.

Note, however, that if all the atomic components are added to the input library, then
the control-flow library LTL synthesis becomes classical LTL synthesis, as explained in
the proof of Theorem 2. Fortunately, integration code typically supports functionality
that can be directly manipulated by the system, as opposed to functionality that can
only accessed through the components in the library. Therefore, it is possible to add to
the input library only atomic components that manipulate signals in direct control of
the system. This allows the control-flow library LTL synthesis of systems that contain
integration code.

Synthesis from Component Libraries 409

References

1. Church, A.: Logic, arithmetics, and automata. In: Proc. Int. Congress of Mathematicians,
1962, Institut Mittag-Leffler, pp. 23–35 (1963)

2. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. 16th ACM Symp. on
Principles of Programming Languages, pp. 179–190 (1989)

3. Sifakis, J.: A framework for component-based construction extended abstract. In: Proc. 3rd
Int. Conf. on Software Engineering and Formal Methods (SEFM 2005), pp. 293–300. IEEE
Computer Society, Los Alamitos (2005)

4. Alonso, G., Casati, F., Kuno, H.A., Machiraju, V.: Web Services - Concepts, Architectures
and Applications. Springer, Heidelberg (2004)

5. Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Automatic compo-
sition of e-services that export their behavior. In: Orlowska, M.E., Weerawarana, S., Papa-
zoglou, M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 43–58. Springer, Heidelberg
(2003)

6. Sardiña, S., Patrizi, F., Giacomo, G.D.: Automatic synthesis of a global behavior from mul-
tiple distributed behaviors. In: AAAI, pp. 1063–1069 (2007)

7. Büchi, J., Landweber, L.: Solving sequential conditions by finite-state strategies. Trans.
AMS 138, 295–311 (1969)

8. Rabin, M.: Automata on infinite objects and Church’s problem. Amer. Mathematical Society
(1972)

9. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In: Proc. 31st
IEEE Symp. on Foundations of Computer Science, pp. 746–757 (1990)

10. Kupferman, O., Vardi, M.: Safraless decision procedures. In: Proc. 46th IEEE Symp. on
Foundations of Computer Science, pp. 531–540 (2005)

11. Krishnamurthi, S., Fisler, K.: Foundations of incremental aspect model-checking. ACM
Transactions on Software Engineering Methods 16(2) (2007)

12. de Alfaro, L., Henzinger, T.: Interface-based design. In: Broy, M., Grünbauer, J., Harel, D.,
Hoare, C. (eds.) Engineering Theories of Software-intensive Systems. NATO Science Series:
Mathematics, Physics, and Chemistry, vol. 195, pp. 83–104. Springer, Heidelberg (2005)

13. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, Reading (1979)

14. Nain, S., Vardi, M.Y.: Branching vs. Linear time: Semantical perspective. In: Namjoshi, K.S.,
Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 19–34.
Springer, Heidelberg (2007)

15. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)
16. Apt, K., Kozen, D.: Limits for automatic verification of finite-state concurrent systems. In-

fornation Processing Letters 22(6), 307–309 (1986)
17. Rosner, R.: Modular Synthesis of Reactive Systems. PhD thesis, Weizmann Institute of Sci-

ence (1992)
18. Vardi, M., Wolper, P.: Reasoning about infinite computations. Information and Computa-

tion 115(1), 1–37 (1994)
19. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS,

vol. 2500. Springer, Heidelberg (2002)

Realizability of Concurrent Recursive Programs�

Benedikt Bollig1, Manuela-Lidia Grindei1, and Peter Habermehl1,2

1 LSV, ENS Cachan, CNRS, INRIA, France
{bollig,grindei}@lsv.ens-cachan.fr

2 LIAFA, CNRS and University Paris Diderot (Paris 7), France
haberm@liafa.jussieu.fr

Abstract. We define and study an automata model of concurrent re-
cursive programs. An automaton consists of a finite number of pushdown
systems running in parallel and communicating via shared actions. Actu-
ally, we combine multi-stack visibly pushdown automata and Zielonka’s
asynchronous automata towards a model with an undecidable emptiness
problem. However, a reasonable restriction allows us to lift Zielonka’s
Theorem to this recursive setting and permits a logical characterization
in terms of a suitable monadic second-order logic. Building on results
from Mazurkiewicz trace theory and work by La Torre, Madhusudan,
and Parlato, we thus develop a framework for the specification, synthe-
sis, and verification of concurrent recursive processes.

1 Introduction

The analysis of a concurrent recursive program where several recursive threads
access a shared memory is a difficult task due to the typically high complexity of
interaction between its components. One general approach is to run a verification
algorithm on a finite-state abstract model of the program. As the model usually
preserves recursion, this amounts to verifying multi-stack pushdown automata.
Unfortunately, even if we deal with a boolean abstraction of data, the control-
state reachability problem in this case is undecidable [23]. However, as proved
in [22], it becomes decidable if only those states are taken into consideration that
can be reached within a bounded number of context switches. A context switch
consists of a transfer of control from one process to another. This result allows for
the discovery of many errors, since they typically manifest themselves after a few
context switches [22]. Other approaches to analyzing multithreaded programs
restrict the kind of communication between processes [17,25], or compute over-
approximations of the set of reachable states [6].

All these works have in common that they restrict to the analysis of an already
existing system. A fundamentally different approach would be to synthesize a
concurrent recursive program from a requirements specification, preferably au-
tomatically, so that the inferred system can be considered “correct by construc-
tion”. The general idea of synthesizing programs from specifications goes back
� Partially supported by ARCUS, DOTS (ANR-06-SETIN-003), and P2R MODISTE-

COVER/RNP Timed-DISCOVERI.

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 410–424, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Realizability of Concurrent Recursive Programs 411

to [11]. The particular case of non-recursive distributed systems is, e.g., dealt
with in [7,8, 18].

In this paper, we address the synthesis problem for finite-state concurrent
recursive programs that communicate via shared actions. More precisely, we are
interested in transforming a given global specification in terms of a context-
sensitive language into a design model of a distributed implementation thereof.
The first step is to provide an automata model that captures both asynchronous
procedure calls and shared-variable communication. To this aim, we combine
visibly pushdown automata [2] and asynchronous automata [27], which, seen
individually, constitute robust automata classes with desirable closure properties
and decidable verification problems.

Merging visibly pushdown automata and asynchronous automata, we obtain
concurrent visibly pushdown automata (Cvpa), which are a special case of multi-
stack visibly pushdown automata (Mvpa) [16]. For Mvpa, the reachability prob-
lem is again undecidable. To counteract this drawback, La Torre et al. restrict
the domain of possible inputs to k-phase words. A k-phase word can be decom-
posed into k subwords where all processes are able to evolve in a subword but
only one process can return from a procedure [16]. Note that this is less re-
strictive than the notion of bounded context switches that we mentioned above.
When we restrict to k-phase words, Mvpa actually have a decidable emptiness
problem and lead to a language class that is closed under boolean operations.

Let us turn to the main contributions of our paper. We consider Cvpa as
a model of concurrent recursive programs and Mvpa as specifications. Thus,
we are interested in transforming an Mvpa into an equivalent Cvpa, if possi-
ble. Indeed, one can lift Zielonka’s Theorem to the recursive setting: For every
Mvpa language L that is closed under permutation rewriting of independent
actions, there is a Cvpa A such that L(A) = L. Unfortunately, it is in general
undecidable if L is closed in this way. In the context of k-phase words, how-
ever, we can provide decidable sufficient criteria that guarantee that the closure
of the specification can be recognized by a Cvpa. We will actually show that
the closure of an Mvpa language that is represented (in a sense that will be
made clear) by its k-phase executions can be realized as a Cvpa. The problem
with Mvpa as specifications is that they do not necessarily possess the closure
property that Cvpa naturally have. We therefore propose to use MSO logic as
a specification language. Formulas from that logic are interpreted over nested
traces, which are Mazurkiewicz traces equipped with multiple nesting relations.
Under the assumption of a k-phase restriction, any MSO formula can be effec-
tively transformed into a Cvpa. This constitutes an extension of the classical
connection between asynchronous automata and MSO logic [26].

Organization. Section 2 provides basic definitions and introduces Mvpa and
Cvpa. Section 3 considers the task of synthesizing a distributed system in terms
of a Cvpa from an Mvpa specification. In doing so, we give two extensions of
Zielonka’s Theorem to concurrent recursive programs. In Section 4, we provide
a logical characterization of Cvpa in terms of MSO logic. We conclude with
Section 5, in which we suggest several directions for future work.

412 B. Bollig, M.-L. Grindei, and P. Habermehl

2 Definitions

The set {1, 2, . . .} of positive natural numbers is denoted by N. We call any
finite set an alphabet. Its elements are called letters or actions. For an alphabet
Σ, Σ∗ is the set of finite words over Σ; the empty word is denoted by ε. The
concatenation uv of words u, v ∈ Σ∗ is denoted by u · v. For a set X , we let |X |
denote its size and 2X its powerset.

Concurrent Pushdown Alphabets. The architecture of a system is consti-
tuted by a concurrent (visibly) pushdown alphabet. To define it formally, we fix
a nonempty finite set Proc of process names or, simply, processes. Now consider
a collection Σ̃ = ((Σc

p , Σ
r
p , Σ

int
p))p∈Proc of alphabets. The triple (Σc

p , Σ
r
p , Σ

int
p)

associated with process p contains the supplies of actions that can be executed
by p. More precisely, the alphabets contain its call, return, and internal actions,
respectively. We call Σ̃ a concurrent pushdown alphabet (over Proc) if

– for every p ∈ Proc, the sets Σc
p , Σ

r
p , and Σint

p are pairwise disjoint, and
– for every p, q ∈ Proc with p �= q, (Σc

p ∪Σr
p) ∩ (Σc

q ∪Σr
q) = ∅.

For p ∈ Proc, let Σp refer to Σc
p ∪Σr

p ∪Σint
p , the set of actions that are available

to p. Thus, Σ =
⋃
p∈Proc Σp is the set of all the actions. Furthermore, for a ∈ Σ,

let proc(a) = {p ∈ Proc | a ∈ Σp}. The intuition behind a concurrent pushdown
alphabet is as follows: An action a ∈ Σ is executed simultaneously by every
process from proc(a). In doing so, a process p ∈ proc(a) can access the current
state of any other process from proc(a). The only restriction is that p can access
and modify only its own stack, provided a ∈ Σc

p ∪ Σr
p . However, in that case,

the stack operation can be “observed” by some other process q if a ∈ Σint
q .

We introduce further useful abbreviations and let Σc =
⋃
p∈Proc Σc

p , Σr =⋃
p∈Proc Σr

p , and Σint = (
⋃
p∈Proc Σint

p) \ (Σc ∪Σr).

Example 1. Let Proc = {p, q} and let Σ̃ = (({a}, {a}, {b}), ({b}, {b}, ∅)) be a
concurrent pushdown alphabet where the triple ({a}, {a}, {b}) refers to process
p and ({b}, {b}, ∅) belongs to process q. Thus, Σ = {a, a, b, b}, Σc = {a, b},
Σr = {a, b}, and Σint = ∅. Note also that proc(a) = {p} and proc(b) = {p, q}.

If not stated otherwise, Σ̃ will henceforth be any concurrent pushdown alphabet.

Multi-Stack Visibly Pushdown Automata. Before we introduce our new
automata model, we recall multi-stack visibly pushdown automata, as recently
introduced by La Torre, Madhusudan, and Parlato [16]. Though this model will
be parametrized by Σ̃, it is not distributed yet. The concurrent pushdown alpha-
bet only determines the number of stacks (which equals |Proc|) and the actions
operating on them. In the next subsection, an element p ∈ Proc will then actually
play the role of a process.

Definition 2. A multi-stack visibly pushdown automaton (Mvpa) over Σ̃ is a
tuple A = (S, Γ, δ, ι, F) where S is its finite set of states, ι ∈ S is the initial
state, F ⊆ S is the set of final states, Γ is the finite stack alphabet containing
a special symbol ⊥, and δ ⊆ S ×Σ × Γ × S is the set of transitions.

Realizability of Concurrent Recursive Programs 413

Consider a transition (s, a, A, s′) ∈ δ. If a ∈ Σc
p , then we deal with a push-

transition meaning that, being in state s, the automaton can read a, push the
symbol A ∈ Γ \ {⊥} onto the p-stack, and go over to state s′. Transitions
(s, a, A, s′) ∈ δ with a ∈ Σc and A = ⊥ are discarded. If a ∈ Σr

p , then the
transition allows us to pop A �= ⊥ from the p-stack when reading a, while the
control changes from state s to state s′; if, however, A = ⊥, then the a can
be executed provided the stack of p is empty, i.e., ⊥ is never popped. Finally,
if a ∈ Σint , then an internal action is applied, which does not involve a stack
operation. In that case, the symbol A is simply ignored.

Let us formalize the behavior of the Mvpa A. A stack content is a nonempty
finite sequence from Cont = (Γ \ {⊥})∗ · {⊥}. The leftmost symbol is thus
the top symbol of the stack content. A configuration of A consists of a state
and a stack content for each process. Hence, it is an element of S × ContProc.
Consider a word w = a1 . . . an ∈ Σ∗. A run of A on w is a sequence ρ =
(s0, (σ0

p)p∈Proc) . . . (sn, (σnp)p∈Proc) ∈ (S × ContProc)∗ such that s0 = ι, σ0
p = ⊥

for all p ∈ Proc, and, for all i ∈ {1, . . . , n}, the following hold:

[Push]. If ai ∈ Σc
p for p ∈ Proc, then there is a stack symbol A ∈ Γ \ {⊥} such

that (si−1, ai, A, si) ∈ δ, σip = A · σi−1
p , and σiq = σi−1

q for all q ∈ Proc \ {p}.
[Pop]. If ai ∈ Σr

p for p ∈ Proc, then there is a stack symbol A ∈ Γ such that
(si−1, ai, A, si) ∈ δ, σiq = σi−1

q for all q ∈ Proc \ {p}, and either A �= ⊥ and
σi−1
p = A · σip, or A = ⊥ and σip = σi−1

p = ⊥.
[Internal]. If ai ∈ Σint , then there is A ∈ Γ such that (si−1, ai, A, si) ∈ δ and

σip = σi−1
p for every p ∈ Proc.

The run ρ is accepting if sn ∈ F . The language of A, denoted by L(A), is the set
of words w ∈ Σ∗ such that there is an accepting run of A on w. In the following,
we denote by |A| the size |S| of the set of states of A.

Clearly, the emptiness problem for Mvpa is undecidable. Moreover, it was
shown that Mvpa can in general not be complemented [5]. We can remedy this
situation by restricting our domain to k-phase words [16]. Let k ∈ N. A word
w ∈ Σ∗ is called a k-phase word over Σ̃ if it can be written as w1 · . . . ·wk where,
for all i ∈ {1, . . . , k}, we have wi ∈ (Σc ∪ Σint ∪ Σr

p)∗ for some p ∈ Proc. The set
of k-phase words over Σ̃ is denoted by Wk(Σ̃). Note that Wk(Σ̃) is regular. The
language of the Mvpa A relative to k-phase words, denoted by Lk(A), is defined
to be L(A) ∩ Wk(Σ̃). Even if we restrict to k-phase words, a deterministic
variant of Mvpa is strictly weaker, unless we have Σ = Σint [16,27].

In this paper, we will exploit the following two theorems concerning Mvpa:

Theorem 3 (LaTorre-Madhusudan-Parlato [16]). The following problem
is decidable in doubly exponential time wrt. |A|, |Proc|, and k:

Input: Concurrent pushdown alphabet Σ̃; k ∈ N; Mvpa A over Σ̃.
Question: Does Lk(A) �= ∅ hold?

Theorem 4 (LaTorre-Madhusudan-Parlato [16]). Let k ∈ N and let A be
an Mvpa over Σ̃. One can effectively construct an Mvpa A′ over Σ̃ such that
L(A′) = Lk(A), where Lk(A) is defined to be Σ∗ \ Lk(A).

414 B. Bollig, M.-L. Grindei, and P. Habermehl

s0 s1 s2 s3 s4

r0 r2

a,A
b

a, A
b

a, A b a, A

a, A

a, A

t0 t1 t2 t3
b, B

b, B b, B

b, B

b, B

b, B

Fig. 1. A concurrent visibly pushdown automaton

Concurrent Visibly Pushdown Automata. We let IΣ̃ = {(a, b) ∈ Σ ×
Σ | proc(a) ∩ proc(b) = ∅} contain the pairs of actions that are considered
independent. Moreover,∼Σ̃ ⊆ Σ∗×Σ∗ shall be the least congruence that satisfies
ab ∼Σ̃ ba for all (a, b) ∈ IΣ̃ . The equivalence class of a representative w ∈ Σ∗

wrt. ∼Σ̃ is denoted by [w]∼Σ̃
. We canonically extend [.]∼Σ̃

to sets L ⊆ Σ∗ and
let [L]∼Σ̃

= {w ∈ Σ∗ | w ∼Σ̃ w′ for some w′ ∈ L}.
Based on Definition 2, we now introduce our model of a concurrent recursive

program, which will indeed produce languages that are closed under ∼Σ̃ .

Definition 5. A concurrent visibly pushdown automaton (Cvpa) over Σ̃ is an
Mvpa (S, Γ, δ, ι, F) over Σ̃ such that there exist a family (Sp)p∈Proc of sets of
local states and relations δa ⊆

(∏
p∈proc(a) Sp

)
× Γ ×

(∏
p∈proc(a) Sp

)
for a ∈ Σ

satisfying the following properties:

– S =
∏
p∈Proc Sp and

– for every s, s′ ∈ S, a ∈ Σ, and A ∈ Γ , we have (s, a, A, s′) ∈ δ iff
• ((sp)p∈proc(a), A, (sp′)p∈proc(a)) ∈ δa and
• sp = sp

′ for every p ∈ Proc \ proc(a)
where sp denotes the p-component of state s.

To make local states and their transition relations explicit, we may consider a
Cvpa to be a structure ((Sp)p∈Proc, Γ, (δa)a∈Σ , ι, F).

Note that, if Σ = Σint (i.e., Σ̃ = ((∅, ∅, Σp))p∈Proc), then a Cvpa can be seen
as a simple asynchronous automaton [8,27]. It is easy to show that the language
L(C) of a Cvpa C is ∼Σ̃-closed meaning that L(C) = [L(C)]∼Σ̃

.

Example 6. Consider the concurrent pushdown alphabet Σ̃ from Example 1.
Assume C = (S, Γ, δ, ι, F) to be the Cvpa depicted in Figure 1 where S is the
cartesian product of Sp = {s0, . . . , s4, r0, r2} and Sq = {t0, . . . , t3}. Actions
from {a, a, b} are exclusive to a single process so that corresponding transitions
are local. For example, the relation δa, as required in Definition 5, is given
by {(s0, A, r0), (s0, A, s1), (s2, A, r2)}. Thus, ((s0, ti), a, A, (r0, ti)) ∈ δ for all
i ∈ {0, . . . , 3}. In contrast, executing b involves both processes, which is indicated
by the dashed lines depicting δb. For example, ((s1, t0), B, (s2, t1)) ∈ δb. Further-
more, ((r0, t0), b, B, (s0, t0)), ((s1, t0), b, B, (s2, t1)), and ((r2, t1), b, B, (s2, t1))

Realizability of Concurrent Recursive Programs 415

are the global b-transitions contained in δ. Note that L1(C) = ∅, since at least
two phases are needed to reach the final state (s4, t3). Moreover,

– L2(C) = {(ab)nw | n ≥ 2, w ∈ {amb
m
, b
m
am} for some m ∈ {2, . . . , n}} and

– L(C) = {(ab)nw | n ≥ 2, w ∈ {a, b}∗, |w|a = |w|b ∈ {2, . . . , n}} = [L2(C)]∼Σ̃

where |w|a and |w|b denote the number of occurrences of a and b in w. Note that
L2(C) can be viewed as an incomplete description or representation of L(C).

3 Realizability of Concurrent Recursive Programs

From now on, we consider an Mvpa A to be a specification of a system, and
we are looking for a realization or implementation of A, which is provided by a
Cvpa C such that L(C) = L(A). Actually, specifications often have a “global”
view of the system, and the difficult task is to distribute the state space onto the
processes, which henceforth communicate in a restricted manner that conforms
to the predefined system architecture Σ̃. If, on the other hand, A is not closed
under ∼Σ̃, it might yet be considered as an incomplete specification so that we
ask for a Cvpa C such that L(C) = [L(A)]∼Σ̃

.
We now recall two well-known theorems from Mazurkiewicz trace theory. The

first one, Zielonka’s celebrated theorem, applies to simple concurrent pushdown
alphabets. It will later be lifted to general concurrent pushdown alphabets.

Theorem 7 (Zielonka [27]). Suppose Σ = Σint . For every regular language
L ⊆ Σ∗ that is ∼Σ̃-closed, there is a Cvpa C over Σ̃ such that L(C) = L.

We fix a strict total order <lex on Σ. It naturally induces a (strict) lexicographic
order on Σ∗, which we denote by <lex as well. We say that w ∈ Σ∗ is in (lexi-
cographic) normal form wrt. <lex if it is minimal wrt. <lex among all words in
[w]∼Σ̃

. There is exactly one word in [w]∼Σ̃
that is in normal form. For L ⊆ Σ∗,

we write nf<lex(L) to denote the set of words from L that are in normal form
wrt. <lex. In particular, w ∈ Σ∗ is in normal form iff w ∈ nf<lex([w]∼Σ̃

).

Theorem 8 (Ochmański [20]). If L ⊆ Σ∗ is a regular set of words in lexico-
graphic normal form wrt. <lex, then [L]∼Σ̃

is regular.

It will turn out to be useful to consider an Mvpa A = (S, Γ, δ, ι, F) over Σ̃ as
a finite automaton reading letters over the alphabet Σ × Γ . Recall that δ is a
subset of S×Σ×Γ×S. We will now simply interpret a transition (s, a, A, s′) ∈ δ
as the transition (s, (a,A), s′) of a finite automaton with state space S, reading
the single letter (a,A) ∈ Σ × Γ . In this manner, we obtain from A a finite
automaton, denoted by FA, which recognizes a regular word language L(FA)
over Σ × Γ . Though L(A) is in general not even context-free, we can provide a
link between L(A) and L(FA). Indeed, L(A) contains the projections of words
from L(FA) onto their first component if we restrict to well-formed words.

In a well-formed word, we take into account that the stack symbols from
Γ must obey a pushdown-stack policy. Towards the definition of a well-formed

416 B. Bollig, M.-L. Grindei, and P. Habermehl

word, we first call a word from Σ∗ p-well-matched (wrt. Σ̃), for some process
p ∈ Proc, if it is generated by the grammar N ::= aN b | NN | ε | c where a ranges
over Σc

p , b over Σr
p , and c over Σ \ (Σc

p ∪ Σr
p). Now suppose w = a1 . . . an ∈ Σ∗.

For i, j ∈ {1, . . . , n}, we call (i, j) a matching pair in w if i < j and there is
p ∈ Proc such that ai ∈ Σc

p , aj ∈ Σr
p , and ai+1 . . . aj−1 is p-well-matched. A

position i ∈ {1, . . . , n} is called unmatched in w if, for every j ∈ {1, . . . , n},
neither (i, j) nor (j, i) is a matching pair. We call a word (a1, A1) . . . (an, An) ∈
(Σ × Γ)∗ well-formed if (i) for each matching pair (i, j) in a1 . . . an, we have
Ai = Aj , (ii) for all i ∈ {1, . . . , n} such that ai ∈ Σc, we have Ai �= ⊥, and (iii)
for all i ∈ {1, . . . , n} such that ai ∈ Σr and i is unmatched in a1 . . . an, we have
Ai = ⊥. We provide a projection mapping π : 2(Σ×Γ)∗ → 2Σ

∗
, which filters from

an argument L ⊆ (Σ × Γ)∗ all the well-formed words and then abstracts away
the symbols from Γ . Formally, π(L) = {w | (w,W) ∈ L is well-formed} (here
and in the following, we may write a word (a1, A1) . . . (an, An) ∈ (Σ × Γ)∗ as
the pair (a1 . . . an, A1 . . . An)). Though the notion of a well-formed word and the
map π actually depend on a given Mvpa, we will omit a corresponding index.

Next, we establish a link between an Mvpa and its finite automaton. The
subsequent lemma then extends Theorem 8 to our recursive setting.

Proposition 9. For every Mvpa A over Σ̃, we have L(A) = π(L(FA)).

Lemma 10. Let A be an Mvpa over Σ̃ satisfying nf<lex([L(A)]∼Σ̃
) ⊆ L(A).

There is a Cvpa C = ((Sp)p∈Proc, Γ, (δa)a∈Σ , ι, F) over Σ̃ such that L(C) =
[L(A)]∼Σ̃

. For all p ∈ Proc, |Sp| is doubly exponential in |A| and triply expo-
nential in |Σ|.

Proof. We will basically interpret a given Mvpa over Σ̃ as an Mvpa over a sim-
plified concurrent pushdown alphabet so that Theorems 7 and 8 can be applied.
In turn, the resulting automaton will be considered as a Cvpa over Σ̃ and will
indeed have the desired property.

So let A = (S, Γ, δ, ι, F) be an Mvpa over Σ̃ such that nf<lex([L(A)]∼Σ̃
) ⊆

L(A). We define a concurrent pushdown alphabet Ω̃ = ((∅, ∅, Σp × Γ))p∈Proc .
In particular, we have Ω = Σ × Γ . Note that, for every (a,A), (b, B) ∈ Ω,
((a,A), (b, B)) ∈ IΩ̃ iff (a, b) ∈ IΣ̃ . Now consider any lexicographic order <′

lex ⊆
Ω∗×Ω∗ such that, for every (a,A), (b, B) ∈ Ω, a <lex b implies (a,A) <′

lex (b, B).
Let NF denote the set of all words x ∈ Ω∗ that are in lexicographic normal form
wrt. <′

lex, i.e., such that x ∈ nf<′
lex

([x]∼Ω̃
). This set forms a regular word language

(cf. [15]) so that the intersection L(FA) ∩ NF is regular, too.
According to Theorem 8, [L(FA) ∩ NF]∼Ω̃

is regular, and Theorem 7 tells
us that there is a Cvpa C over the concurrent pushdown alphabet Ω̃ such
that L(C) = [L(FA) ∩ NF]∼Ω̃

. From C, we obtain an Mvpa C′ over Σ̃ with
stack alphabet Γ by transforming a transition (s, (a,A),B, s′) into a transition
(s, a, A, s′) (recall that (a,A) is necessarily contained in Ωint so that B can in-
deed be neglected). Observe that C′ is actually a Cvpa. As L(FC′) = L(C) and,
by Proposition 9, π(L(FC′)) = L(C′), we deduce L(C′) = π(L(C)). So it remains
to show that [L(A)]∼Σ̃

= π(L(C)).

Realizability of Concurrent Recursive Programs 417

Suppose w ∈ [L(A)]∼Σ̃
. We chose the word w′ ∈ [w]∼Σ̃

that is in lexicographic
normal form wrt. <lex. As nf<lex([L(A)]∼Σ̃

) ⊆ L(A), we have w′ ∈ L(A). Thus,
there must be W ′ ∈ Γ ∗ such that (w′,W ′) is well-formed and contained in
L(FA) (Proposition 9). As w′ is in lexicographic normal form wrt. <lex and as
<′

lex is an extension of <lex, (w′,W ′) is in lexicographic normal form wrt. <′
lex

so that (w′,W ′) ∈ NF. We can now reorder (w′,W ′) in such a way that its first
component becomes w. Formally, there is W ∈ Γ ∗ such that (w,W) ∼Ω̃ (w′,W ′).
As every word from [(w′,W ′)]∼Ω̃

is well-formed, so is (w,W), and we conclude
w ∈ π([L(FA) ∩NF]∼Ω̃

).
Now suppose w ∈ π([L(FA) ∩ NF]∼Ω̃

). We can find an extension W ∈ Γ ∗ of w
such that (w,W) is well-formed and contained in [L(FA) ∩ NF]∼Ω̃

. Thus, there
is (w′,W ′) ∈ L(FA) ∩ NF such that (w′,W ′) ∼Ω̃ (w,W). The latter implies
w′ ∼Σ̃ w. Note that (w′,W ′) is well-formed, too, so that, by Proposition 9,
w′ ∈ L(A). We conclude w ∈ [L(A)]∼Σ̃

.
Let us analyze the size of C′. For this, we need to introduce two notions

concerning finite automata over Ω. A finite automaton is called loop-connected
if, for every nonempty word α1 . . . αn ∈ Ω∗ labeling a path from a state s back
to state s, the graph (V,E) is connected, where V = {αi | i ∈ {1, . . . , n}} and
E = (V × V) \ I∼Ω̃

. It is said to be I-diamond if, for all pairs (α, β) ∈ I∼Ω̃

and all transitions r
α→ s

β→ t, we have transitions r
β→ s′

α→ t for some state s′.
From [15], we know that there is a deterministic loop-connected finite automaton
B1 over Ω with (|Σ| + 1)! many states that recognizes the set NF. The set of
states of FA is the same as that of A so that we obtain, as the product of FA and
B1, a finite automaton B2 of size n := |A| ·(|Σ|+1)! recognizing L(FA) ∩ NF. As
B1 is loop-connected, so is B2. According to [15,19], there is an I-diamond finite
automaton B3 over Ω with at most N := (n2 · 2|Σ|)(n−1)(|Σ|+1)+1 many states
that recognizes [L(B2)]∼Ω̃

. In the next step, we constructed, from B3, a Cvpa

C = ((S′
p)p∈Proc, Γ

′, (δ′α)α∈Ω, ι′, F ′) over Ω̃ such that L(C) = L(B3). From [13],
we know that, for all p ∈ Proc, |S′

p| can be bounded by 2N
2·(|Σ|2+|Σ|)+2|Σ|4. As

C′ and C have the same local states, we conclude that the number of local states
of C′ is doubly exponential in |A| and triply exponential in |Σ|.

Alternatively, we can apply the construction from [4] to the I-diamond finite
automaton B3. Then, C′ has more nondeterminism, and its number of local states
is exponential in |S| and doubly exponential in |Σ| and |Γ |. %&

Since L = [L]∼Σ̃
implies nf<lex([L]∼Σ̃

) ⊆ L, we obtain, by Lemma 10, the follow-
ing extension of Zielonka’s Theorem.

Theorem 11. Let A be an Mvpa over Σ̃ such that L(A) is ∼Σ̃-closed. There
is a Cvpa C = ((Sp)p∈Proc, Γ, (δa)a∈Σ , ι, F) over Σ̃ satisfying L(C) = L(A). For
all p ∈ Proc, |Sp| is doubly exponential in |A| and triply exponential in |Σ|.

This result demonstrates that Mvpa recognizing a ∼Σ̃-closed language are suit-
able specifications for Cvpa. Unfortunately, it is in general undecidable if an
Mvpa has this property, which can be easily shown by a reduction from the
undecidable emptiness problem. However, a restriction to k-phase words allows

418 B. Bollig, M.-L. Grindei, and P. Habermehl

us to define decidable sufficient criteria for the transformation of an Mvpa into
a Cvpa. We will state a Zielonka-like theorem that is tailored to this restriction.
There, we require that an Mvpa represents the k-phase words of a system, while
the final implementation can produce non-k-phase executions.

Definition 12. For k ∈ N, we call a language L ⊆Wk(Σ̃) a k-phase represen-
tation if, for all u, v ∈ Σ∗ and (a, b) ∈ IΣ̃ with {uabv, ubav} ⊆ Wk(Σ̃), we have
uabv ∈ L iff ubav ∈ L.

Next, we show that the closure of a k-phase representation that is given by an
Mvpa can be realized as a Cvpa.

Theorem 13. Let k ∈ N and let A be an Mvpa over Σ̃ such that Lk(A) is a
k-phase representation. There is a Cvpa C = ((Sp)p∈Proc , Γ, (δa)a∈Σ , ι, F) over
Σ̃ such that L(C) = [Lk(A)]∼Σ̃

. For all p ∈ Proc, |Sp| is doubly exponential in
|A| and k, and triply exponential in |Σ|.

Proof. Again, we exploit Lemma 10. Unlike in Theorem 11, we cannot apply it
directly, as it is in general impossible to define the lexicographic order <lex in
such a way that nf<lex([Lk(A)]∼Σ̃

) ⊆ Lk(A) if Lk(A) is a k-phase representation.
Our trick is to extend Σ̃ by a component that indicates the current phase of a
letter. An appropriate definition of a normal form over this extended alphabet
will then allow us to apply Lemma 10.

So let k ∈ N and let A = (S, Γ, δ, ι, F) be an Mvpa over Σ̃ such that Lk(A)
is a k-phase representation. Based on Σ̃, we define a new concurrent pushdown
alphabet Ω̃ by Ωc

p = Σc
p × {1, . . . , k}, Ωr

p = Σr
p × {1, . . . , k}, and Ωint

p = Σint
p ×

{1, . . . , k} for all p ∈ Proc. From A, one can construct an Mvpa B over Ω̃
accepting the words (a1, ph1) . . . (an, phn) such that both a1 . . . an ∈ Lk(A) and,
for all i ∈ {1, . . . , n}, phi = min{j ∈ {1, . . . , k} | a1 . . . ai is a j-phase word}.
Intuitively, the additional components ph i give rise to a unique tight factorization
of a1 . . . an into phases (cf. [16]). Now consider any lexicographic order <′

lex ⊆
Ω∗ ×Ω∗ such that i < j implies (a, i) <′

lex (b, j) and, moreover, a <lex b implies
(a, i) <′

lex (b, i). We claim that L(B) contains, for every word x ∈ L(B), the
normal form of x wrt. <′

lex. Indeed x ∈ L(B) can be written as a concatenation
x1 · . . . ·xk with xi ∈ (Σ×{i})∗ for all i ∈ {1, . . . , k}. I.e., for two letters α and β
occurring in xi and, respectively, xj with i < j, we have α <′

lex β. In particular,
the normal form of x can be obtained by reordering letters within the factors xi,
i.e., nf<′

lex
([x]∼Ω̃

) ⊆ nf<′
lex

([x1]∼Ω̃
) · . . . · nf<′

lex
([xk]∼Ω̃

). Note that the reordering
does not increase the number of phases. As Lk(A) is a k-phase representation, the
reordering also preserves containment in L(B) and we have nf<′

lex
([x]∼Ω̃

) ⊆ L(B).
By Lemma 10, there is a Cvpa C over Ω̃ with L(C) = [L(B)]∼Ω̃

. Consider the
projection from Ω̃ to Σ̃ that is induced by the function f : Ω → Σ given by
f((a, i)) = a. It is easy to see that applying the projection to a Cvpa language
over Ω̃ yields a Cvpa language over Σ̃ (this was shown for Mvpa in [16]). Thus,
there is a Cvpa C′ over Σ̃ such that L(C′) = f([L(B)]∼Ω̃

) (where f is canonically

Realizability of Concurrent Recursive Programs 419

extended to words and, then, to languages). As f([L(B)]∼Ω̃
) = [f(L(B))]∼Σ̃

=
[Lk(A)]∼Σ̃

, we are done.
To establish the number of local states, observe that |B| can be bounded by

|A| · |Σ| · (k + 1). The rest of the construction follows that from the proof of
Lemma 10. %&

Remark 14. The transformations in the proofs of Lemma 10 and Theorems 11
and 13 are effective. In particular, one can explicitly give a decomposition of
states and transitions of the Cvpa, as required in Definition 5.

When we restrict to k-phase words, it is actually decidable whether the previous
theorems are applicable to a given Mvpa:

Theorem 15. The following problems are decidable in elementary time:
Input: Concurrent pushdown alphabet Σ̃; k ∈ N; Mvpa A over Σ̃.
Question 1: Is Lk(A) ∼Σ̃-closed?
Question 2: Is Lk(A) a k-phase representation?

Proof. Our proof is inspired by [21] where similar problems are addressed in the
finite setting. The main difficulty, however, arises from the presence of stacks.

We first show decidability of Question 1. Let k ∈ N and let furthermore
A1 = (S1, Γ1, δ1, ι1, F1) be the Mvpa over Σ̃ in question. By Theorem 4, one
can obtain from A1 a further Mvpa A2 = (S2, Γ2, δ2, ι2, F2) over Σ̃ such that
L(A2) = Lk(A1). We will now construct an Mvpa A over Σ̃ recognizing words
of the form uabv with u, v ∈ Σ∗, (a, b) ∈ IΣ̃ , and both uabv ∈ L(A1) and ubav ∈
L(A2). Thus, if L(A) contains a k-phase word uabv, then uabv is contained in
Lk(A1) and ubav (which is a (k + 2)-phase word) is equivalent to uabv, but not
contained in Lk(A1). Indeed, Lk(A1) �= [Lk(A1)]∼Σ̃

iff Lk(A) �= ∅. The latter
question is decidable (Theorem 3).

The set of states ofA is S1×S2×({0, 1} ∪ (IΣ̃×Γ2×Γ2)). The first component
of a state is used to simulate A1, while the second component simulates A2. The
third component starts in 0. In states of the form (s1, s2, 0), both automata
proceed synchronously: Reading a ∈ Σ, A applies a-transitions (s1, a, A1, s

′
1) ∈

δ1 and (s2, a, A2, s
′
2) ∈ δ2 to the first and the second component, respectively,

resulting in a global step ((s1, s2, 0), a, (A1, A2), (s′1, s
′
2, 0)). The stack alphabet

is extended to Γ1 × Γ2 to take into account that A1 and A2 can be different.
When reading an input word, A1 should eventually perform an action se-

quence ab with (a, b) ∈ IΣ̃ , while A2 executes ba. So suppose A is about to sim-
ulate transitions (s1, a, A1, s

′
1) followed by (s′1, b, B1, s

′′
1) in A1 and (s2, b, B2, s

′
2)

followed by (s′2, a, A2, s
′′
2) in A2. The global automaton A will produce this tran-

sition sequence “crosswise”. It will first read the a and apply the transition
involving A1 ∈ Γ1 to the first component. At the same time, the second com-
ponent only changes its local state into s′2. As the stack symbol B2 cannot be
applied directly, it is stored in the third component of the subsequent global
state of A, which is of the form (s′1, s′2, ((a, b), B2, A2)). Observe that A2, which
is associated to executing a in A2, must be applied together with reading a so

420 B. Bollig, M.-L. Grindei, and P. Habermehl

that (A1, A2) acts as the stack symbol. Since a corresponding local transition
(s′2, a, A2, s

′′
2) has to follow in A2, the stack symbol A2 needs to be stored as

well. The formal description of this step can be found below (2). Now, being in
the global state (s′1, s

′
2, ((a, b), B2, A2)), A will, according to the local transition

(s′1, b, B1, s
′′
1), perform a b and apply (B1, B2) to the designated stack. Again,

A2 will only change its local state into s′′2 . However, the local transition has to
conform to the symbol A2 that had been stored. This step corresponds to rule
(3) below. We are now in a global state of the form (s′′1 , s′′2 , 1). In states with 1
in the third position, A1 and A2 again act simultaneously (rule (1)).

Formally, A = (S, Γ, δ, ι, F) is given by S = S1×S2×({0, 1} ∪ (IΣ̃×Γ2×Γ2)),
Γ = Γ1×Γ2, ι = (ι1, ι2, 0), and F = F1×F2×{1}. Let (s1, s2, σ), (s′1, s′2, σ′) ∈ S,
a ∈ Σ, and (A1, A2) ∈ Γ . Then, ((s1, s2, σ), a, (A1, A2), (s′1, s

′
2, σ

′)) ∈ δ if there
are (B1, B2) ∈ Γ and b ∈ Σ such that one of the following holds:

(1) (σ = σ′ = 0 or σ = σ′ = 1), (s1, a, A1, s
′
1) ∈ δ1, and (s2, a, A2, s

′
2) ∈ δ2, or

(2) σ = 0, σ′ = ((a, b), B2, A2), (s1, a, A1, s
′
1) ∈ δ1, and (s2, b, B2, s

′
2) ∈ δ2, or

(3) σ′ = 1, σ = ((b, a), A2, B2), (s1, a, A1, s
′
1) ∈ δ1, and (s2, b, B2, s

′
2) ∈ δ2.

The only difference in the decision procedure for Question 2 is that A2 is such
that L(A2) = Lk(A2) = Lk(A1) ∩Wk(Σ̃).

An inspection of the constructions from [16] tells us that the size of A2 is in
both cases triply exponential in |A1|, k, and |Proc|. As emptiness of Mvpa wrt.
k-phase words is decidable in doubly exponential time, we obtain elementary
decision procedures for Question 1 and Question 2. %&

4 Specifying Programs in MSO Logic

In Section 3, we considered the language L of an Mvpa to be a specification,
and our aim was to find a Cvpa C such that L(C) = [L]∼Σ̃

. Unfortunately, one
cannot always find such a Cvpa (consider, e.g., L = (ab)∗ with (a, b) ∈ IΣ̃). We
now present a specification language that operates directly on equivalence classes
of ∼Σ̃ so that, provided that we restrict to k-phase executions, any specifica-
tion can be realized as a Cvpa. In doing so, we extend the classical connection
between monadic second-order (MSO) logic and finite automata. The study of
relations between logical formalisms that may serve as a specification language
and automata has had many generalizations, including Mvpa [16].

Actually, we present an MSO logic that is interpreted over partial orders,
which arise naturally from words in the presence of a concurrent pushdown
alphabet and the induced independence relation. Any such partial order repre-
sents one equivalence class of words so that a formula defines a set of equivalence
classes or, in other words, a set of words that is ∼Σ̃-closed.

Let w = a1 . . . an ∈ Σ∗. To w, we associate the labeled structure TΣ̃(w) =
(E,3, µ, λ), where E = {1, . . . , n} is the set of events, λ : E → Σ assigns to any
event i ∈ E the action λ(i) = ai it executes, and µ ⊆ E×E contains the matching
pairs in w (i.e., (i, j) ∈ µ iff (i, j) is a matching pair). Finally, 3 ⊆ E × E is a
partial-order relation (i.e., it is reflexive, transitive, and antisymmetric), which is
defined to be the transitive closure of {(i, j) ∈ E × E | i ≤ j and (ai, aj) �∈ IΣ̃}.

Realizability of Concurrent Recursive Programs 421

a a
a a

b b

b b ba

Fig. 2. A nested trace

We call the structure TΣ̃(w) that arises from a word w ∈ Σ∗ a nested trace
over Σ̃. The set of nested traces over Σ̃ is denoted by Tr(Σ̃). It is standard to
prove that TΣ̃(w) = TΣ̃(w′) iff w ∼Σ̃ w′ where we consider equality of nested
traces up to isomorphism. In other words, there is a one-to-one correspondence
between nested traces and equivalence classes of ∼Σ̃ . We remark that nested
traces are a merge of Mazurkiewicz traces [10] and nested words [3], which, in
turn, generalize themselves the notion of a word.

Example 16. Figure 2 depicts T = TΣ̃(a b a b a b aa b b) = TΣ̃(a b a b a b b b a a)
where Σ̃ is taken from Example 1. Hereby, the straight edges form the cover
relation ≺ \ ≺2 of the underlying partial-order relation 3, and the curved edges
represent µ, i.e., the matching pairs. There are two unmatched events in T .

Fixing supplies of first-order variables x, y, . . . and second-order variables
X,Y, . . ., the syntax of our MSO logic complies with the signature of a nested
trace. Formally, formulas from MSO(Σ̃) are given by the grammar

ϕ ::= x 3 y | (x, y) ∈ µ | λ(x) = a | x ∈ X | ¬ϕ | ϕ1 ∨ ϕ2 | ∃xϕ | ∃Xϕ

where x and y are first-order variables, X is a second-order variable, and a ∈ Σ.
Moreover, one may use the usual abbreviations such as ϕ1 ∧ ϕ2, ϕ1 → ϕ2, and
∀xϕ. To determine the semantics, let T = (E,3, µ, λ) be a nested trace over Σ̃
and I be an interpretation function, which assigns to a first-order variable an
element from E and to a second-order variable a subset of E. Let us define when
T, I |= ϕ for ϕ ∈ MSO(Σ̃). Namely, T, I |= x 3 y if I(x) 3 I(y), T, I |= (x, y) ∈ µ
if (I(x), I(y)) ∈ µ, and T, I |= λ(x) = a if λ(I(x)) = a. The rest of the semantics is
classical for MSO logics. If ϕ is a sentence, i.e., a formula without free variables,
we can write T |= ϕ if T, I |= ϕ for some interpretation function I. Now, given a
sentence ϕ ∈ MSO(Σ̃), we set L (ϕ) = {T ∈ Tr(Σ̃) | T |= ϕ}.

As the language of a Cvpa C is closed under ∼Σ̃, it is legitimate to assign to
C a set of nested traces, too, letting L (C) = {TΣ̃(w) | w ∈ L(C)}.

Example 17. Suppose T to be the nested trace given in Figure 2 and consider the
sentences ϕ1 = ∀x ((λ(x) = a ∨ λ(x) = b)→ ∃y (x, y) ∈ µ) expressing that there
is no pending call, and ϕ2 = ∀x ((λ(x) = a ∨ λ(x) = b) → ∃y (y, x) ∈ µ), which
expresses that there is no pending return. We have T �∈ L (ϕ1) but T ∈ L (ϕ2).
Note also that T ∈ L (C) for the Cvpa C from Example 6 (Figure 1).

Before we look at a logical characterization of general Cvpa, let us recall a result
that has already been found in the context of asynchronous automata, i.e., of
Cvpa over simple concurrent pushdown alphabets.

422 B. Bollig, M.-L. Grindei, and P. Habermehl

Theorem 18 (Thomas [26]). Suppose Σ = Σint and let L ⊆ Tr(Σ̃). Then,
L = L (C) for some Cvpa C over Σ̃ iff L = L (ϕ) for some ϕ ∈ MSO(Σ̃).

Now let us turn towards Cvpa over general concurrent pushdown alphabets.
It has been shown in [5] that MSO logic is in general strictly more expressive
than Cvpa. We will therefore extend the notion of k-phase words to nested
traces. For k ∈ N, a nested trace T ∈ Tr(Σ̃) is called a k-phase trace if there
is w ∈ Wk(Σ̃) such that TΣ̃(w) = T . The set of k-phase traces over Σ̃ is
denoted by Trk(Σ̃). For example, the nested trace T from Figure 2 is a 2-phase
trace, even though we have T = TΣ̃(w) for w = a b a b a b ab a b �∈ W2(Σ̃).
The domain of k-phase traces is particularly interesting, because it is decidable
whether L (C) ∩ Trk(Σ̃) �= ∅ holds for a Cvpa C. To see this, observe that the
latter holds iff L(C) ∩ Wk(Σ̃) �= ∅, which is decidable according to Theorem 3.

For a logical characterization of Cvpa, we will need the following lemma.
Lemma 19. Let k ∈ N and let C be a Cvpa over Σ̃ such that L (C) ⊆ Trk(Σ̃).
There is a Cvpa C′ over Σ̃ such that L (C′) = L (C) ∩ Trk(Σ̃), where L (C) =
Tr(Σ̃) \L (C).

Proof. Let k ∈ N and let C be a Cvpa over Σ̃ satisfying L (C) ⊆ Trk(Σ̃). Due
to Theorem 4, there is an Mvpa A over Σ̃ such that Lk(A) = Lk(C) ∩Wk(Σ̃).
Observe that Lk(A) is a k-phase representation. Thus, by Theorem 13, there
is a Cvpa C′ over Σ̃ such that L(C′) = [Lk(A)]∼Σ̃

. One easily verifies that we
actually have L (C′) = L (C) ∩ Trk(Σ̃). %&

As a corollary, we obtain that, for every k ∈ N, there is a Cvpa C with
L (C) = Trk(Σ̃). This is an important fact in the proof of Theorem 21. In-
deed, the following two theorems constitute a logical characterization of Cvpa
(restricted to k-phase traces). Both transformations are effective. Hereby, The-
orem 20 has a standard proof (see [26] for a similar instance of that problem).

Theorem 20. For every Cvpa C over Σ̃, there is a sentence ϕ ∈MSO(Σ̃) such
that L (ϕ) = L (C).

Theorem 21. Let k ∈ N. For every sentence ϕ ∈MSO(Σ̃), there is a Cvpa C
over Σ̃ such that L (C) = L (ϕ) ∩ Trk(Σ̃).

Proof (sketch). As usual, one proceeds by induction on the structure of an MSO
formula. However, treating negation is less obvious than in classical settings
such as words and trees. To get a Cvpa for ¬ϕ, let k ∈ N and suppose that
we already have a Cvpa C over Σ̃ such that L (C) = L (ϕ) ∩ Trk(Σ̃) (actually,
we need to consider extended concurrent pushdown alphabets to cope with free
variables during the inductive translation). By Lemma 19, there is a Cvpa C′
such that L (C′) = L (C) ∩ Trk(Σ̃). The latter equals L (¬ϕ) ∩ Trk(Σ̃) so that
we are done. The translations of atomic formulas, disjunction, and existential
quantification exploit the fact that Trk(Σ̃) is recognizable by some Cvpa and
that Cvpa are closed under union, intersection, and projection. %&

Realizability of Concurrent Recursive Programs 423

5 Future Directions

Though the results in this paper are of rather theoretical nature, due to the high
complexity of our constructions, Cvpa and the related notion of a nested trace
may open a new line of research in Mazurkiewciz trace theory and the analysis
of multithreaded recursive programs. We mention here some future directions:

We excluded an important question from our study: For k ∈ N and an Mvpa
A, when can we decide whether [Lk(A)]∼Σ̃

is the language of some Mvpa and,
hence, of some Cvpa? If Σ = Σint , we know that this is the case iff IΣ̃ ∪ idΣ is
transitive [24]. In the general setting, the question remains open.

Given an Mvpa A, one may ask if A is already a Cvpa such that its local state
spaces and transition relations can be computed effectively. Those questions are
addressed and answered positively in [18,8] for asynchronous automata.

In Cvpa, processes communicate via shared memory. It will be interesting
to study extensions of communicating finite-state machines (CFMs), where pro-
cesses communicate via first-in first-out channels, by visibly pushdown stacks.
While Cvpa recognize sets of nested traces, a visibly pushdown CFM would give
rise to the notion of a nested message sequence chart. Interestingly, there are
theorems for CFMs that constitute counterparts of Zielonka’s Theorem [12, 14].

For both Mazurkiewicz traces [9] and nested words [1], temporal logics were
studied. We raise the question if these logics can be combined towards specifi-
cation formalisms with decidable satisfiability and model-checking problems.

In a distributed setting, deadlock-free systems are particularly important.
The paper [8] addresses the problem of synthesizing deadlock-free asynchronous
automata from regular specifications. It remains to define a notion of deadlock-
freeness for our setting and to study if the ideas from [8] can be adopted.

References

1. Alur, R., Arenas, M., Barceló, P., Etessami, K., Immerman, N., Libkin, L.: First-
order and temporal logics for nested words. Logical Methods in Computer Sci-
ence 4(4:11), 1–44 (2008)

2. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: STOC 2004, pp. 202–
211. ACM Press, New York (2004)

3. Alur, R., Madhusudan, P.: Adding nesting structure to words. In: H. Ibarra, O.,
Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 1–13. Springer, Heidelberg (2006)

4. Baudru, N., Morin, R.: Unfolding synthesis of asynchronous automata. In: Grig-
oriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 46–57.
Springer, Heidelberg (2006)

5. Bollig, B.: On the expressive power of 2-stack visibly pushdown automata. Logical
Methods in Computer Science 4(4:16), 1–35 (2008)

6. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis
of concurrent programs with procedures. International Journal on Foundations of
Computer Science 14(4), 551–582 (2003)

7. Castellani, I., Mukund, M., Thiagarajan, P.S.: Synthesizing distributed transition
systems from global specifications. In: Pandu Rangan, C., Raman, V., Ramanujam,
R. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 219–231. Springer, Heidelberg (1999)

424 B. Bollig, M.-L. Grindei, and P. Habermehl

8. Ştefănescu, A., Esparza, J., Muscholl, A.: Synthesis of distributed algorithms using
asynchronous automata. In: Amadio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS,
vol. 2761, pp. 27–41. Springer, Heidelberg (2003)

9. Diekert, V., Gastin, P.: LTL is expressively complete for Mazurkiewicz traces.
Journal of Computer and System Sciences 64(2), 396–418 (2002)

10. Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore
(1995)

11. Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize
synchronization skeletons. Science of Computer Programming 2, 241–266 (1982)

12. Genest, B., Kuske, D., Muscholl, A.: A Kleene theorem and model checking algo-
rithms for existentially bounded communicating automata. Information and Com-
putation 204(6), 920–956 (2006)

13. Genest, B., Muscholl, A.: Constructing Exponential-Size Deterministic Zielonka
Automata. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 565–576. Springer, Heidelberg (2006)

14. Henriksen, J.G., Mukund, M., Narayan Kumar, K., Sohoni, M., Thiagarajan, P.S.: A
theory of regular MSC languages. Information and Computation 202(1), 1–38 (2005)

15. Kuske, D.: Weighted asynchronous cellular automata. Theoretical Computer Sci-
ence 374(1-3), 127–148 (2007)

16. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive lan-
guages. In: LICS 2007, pp. 161–170. IEEE Computer Society Press, Los Alamitos
(2007)

17. La Torre, S., Madhusudan, P., Parlato, G.: Context-bounded analysis of concurrent
queue systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS,
vol. 4963, pp. 299–314. Springer, Heidelberg (2008)

18. Morin, R.: Decompositions of asynchronous systems. In: Sangiorgi, D., de Simone,
R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 549–564. Springer, Heidelberg (1998)

19. Muscholl, A., Peled, D.: Message sequence graphs and decision problems on
Mazurkiewicz traces. In: Kuty�lowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS
1999. LNCS, vol. 1672, pp. 81–91. Springer, Heidelberg (1999)

20. Ochmański, E.: Regular behaviour of concurrent systems. Bulletin of the European
Association for Theoretical Computer Science (EATCS) 27, 56–67 (1985)

21. Peled, D., Wilke, T., Wolper, P.: An algorithmic approach for checking closure
properties of temporal logic specifications and omega-regular languages. Theoreti-
cal Computer Science 195(2), 183–203 (1998)

22. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

23. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Trans. Prog. Lang. Syst. 22(2), 416–430 (2000)

24. Sakarovitch, J.: The ”last” decision problem for rational trace languages. In: Simon,
I. (ed.) LATIN 1992. LNCS, vol. 583, pp. 460–473. Springer, Heidelberg (1992)

25. Sen, K., Viswanathan, M.: Model checking multithreaded programs with asyn-
chronous atomic methods. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 300–314. Springer, Heidelberg (2006)

26. Thomas, W.: On logical definability of trace languages. In: Proceedings of Alge-
braic and Syntactic Methods in Computer Science (ASMICS), Report TUM-I9002,
Technical University of Munich, pp. 172–182 (1990)

27. Zielonka, W.: Notes on finite asynchronous automata. R.A.I.R.O. — Informatique
Théorique et Applications 21, 99–135 (1987)

Beyond Shapes: Lists with Ordered Data

Kshitij Bansal1,�, Rémi Brochenin2,��, and Etienne Lozes2

1 Chennai Mathematical Institute
kshitij@cmi.ac.in

2 LSV, ENS Cachan, CNRS
{brocheni,lozes}@lsv.ens-cachan.fr

Abstract. Standard analysis on recursive data structures restrict their
attention to shape properties (for instance, a program that manipulates
a list returns a list), excluding properties that deal with the actual con-
tent of these structures. For instance, these analysis would not establish
that the result of merging two ordered lists is an ordered list. Separation
logic, one of the prominent framework for these kind of analysis, pro-
posed a heap model that could represent data, but, to our knowledge, no
predicate dealing with data has ever been integrated to the logic while
preserving decidability. We establish decidability for (first-order) separa-
tion logic with a predicate that allows to compare two successive data in a
list. We then consider the extension where two data in arbitrary positions
may be compared, and establish the undecidability in general. We define
a guarded fragment that turns out to be both decidable and sufficiently
expressive to prove the preservation of the loop invariant of a standard
program merging ordered lists. We finally consider the extension with the
magic-wand and prove that, by constrast with the data-free case, even a
very restricted use of the magic wand already introduces undecidability.

1 Introduction

Data-ordering and shape analysis. Providing automatic methods for faults
detection in programs manipulating recursive mutable data structures is a long-
standing problem. Shape analysis is a well established approach that may de-
tect faults due to in-depth properties of the heap, like creating a cycle in an
acyclic list. Prominent logics that integrate such an analysis are separation
logic [1], pointer assertion logic PAL [9], TVLA [10], LRP (logic of reachable
patterns) [16], or alias logic [4], to quote a few examples. A common feature
in these analyses is that they completely forget the data held in the recursive
structures, focusing on the shape of the structure. As a consequence, ordering
properties are out of the scope of these analyses: for instance, one cannot check
or even specify that the reverse of a sorted list is a sorted list. Extensions of
shape analysis have been proposed for ordering properties, stability properties,
� Supported by P2R MODISTE-COVER/Timed-DISCOVERI, a project under the

Indo-French Networking Programme.
�� Supported by a DGA/CNRS fellowship.

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 425–439, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

426 K. Bansal, R. Brochenin, and E. Lozes

and size properties, in shape graphs [3], in the TVLA approach [11], and in the
separation logic approach [12] to cite a few. This paper studies the rather more
theoretical issue of the decidability of the satisfiability problem. It proposes a
general approach for reducing the shapes handling ordering properties to pure
shapes, and stress some natural limitations we should put on the data properties
we would like to check automatically.

Data-ordering in separation logic. Our approach lies in the framework of sepa-
ration logic [14]. In essence, separation logic extends first order logic with two
substructural connectives: the separation connective (∗) and its adjoint (the sep-
arating implication −−∗, also known as the magic wand). These connectives are
convenient to express pre and post conditions of all standard heap-manipulating
instructions. For instance, the strongest post condition Post(x := new, A) of a
memory allocation instruction can be expressed by x�→ − ∗∃x.A{x/x}. This for-
mula involves two more ingredients : the use of first-order logical variables, that
here quantify over the memory location of x before allocation, and the points-to
predicate .↪→. (or its precise version in this example). We extend the logic with
the predicate val(x) ≤ val(y) that asserts that the value stored at the location
x is smaller than the one stored at y, which in particular allows to define the
predicate

x
≤
↪→y

def≡ x↪→y ∧ val(x) ≤ val(y)

and x
≥
↪→y accordingly. We call these predicates short-distance comparisons, and

by contrast val(x) ≤ val(y) is called long-distance comparison. We moreover say
that such a long-distance comparison is guarded if x or y is an open variable.

Separation logic’s decidability. The decidability of the satisfiability problem for
separation logic has been intensively studied so far: first-order separation logic
over heap models with at least two selectors (record fields) is known to be un-
decidable [7] by containment of finite satisfiability for classical predicate logic
with one binary relation [15] (even with no separating connectives). On the other
hand, first-order separation logic over heaps with one selector has been proved
to be decidable when the magic-wand is dropped [6], by reduction to monadic
second order logic over functional graphs, but becomes undecidable in presence
of magic wand. To our knowledge, nothing was known about first-order separa-
tion logic with data. The following table summarizes the results we present in
this paper:

Undecidable long distance comparison without −−∗
short distance comparison with (restricted) −−∗

Decidable short + guarded long distance comparisons without −−∗
The decidability result comes from a reduction to monadic second order logic

over functional graphs. The translation is strongly inspired by the one for separa-
tion logic over lists without data [6], but involves some non-trivial complications
for ensuring the coherence of data abstraction. The undecidability results are
obtained by reduction to first-order logic over (finite) data words, which was
proved undecidable [2,8].

Beyond Shapes: Lists with Ordered Data 427

Case study. In order to illustrate the practical relevance of our results, we con-
sider a very standard merge-sort program. Checking that any formula is a correct
loop invariant requires in general to deal with the magic-wand connective, which
leads to our undecidable fragments. However, for the loop invariant one may
think about (that is, all working lists are ordered lists) the magic wand can be
eliminated, and the formula considered falls into the decidable fragment.

Outline of the paper. Section 2 introduces our separation logic over lists with
data. In Section 3, we illustrate on the merge program how the logic can deal
with relevant loop invariants. In Section 4, we establish the decidability of the
short distance comparison. Section 5 deals with the case of guarded and non-
guarded long-distance comparison, whereas Section 6 explains the undecidability
of the logic in the presence of the magic wand.

2 Preliminaries

In this section, we introduce first the separation logic with data considered in
this work, then the monadic second order logic to which we reduce to. These
logics are based on different classes of models: our separation logic deals with
lists with data, whereas the monadic second order logic deals with shapes, e.g.
lists without data.

2.1 A Separation Logic for Lists with Ordered Data

Memory model. We assume an infinite, totally ordered set (Dat,≤) of data, and
range over a particular datum with α, β. We moreover assume an infinite set
Loc of locations, ranged over with l, l′ etc. and an infinite set Var of variables,
ranged over with either x, y, z or x,y, z etc. Variables can be interpreted as both
variables from the programs or logical variables quantifying over locations; the
main difference between both is that program variables are never quantified in
the formula. We safely identify them and will use the font convention x, y to
emphasize that a variable should be understood as a program variable. In the
latter, we may use the standard notation A{y/x} for the formula A in which x
replaces y.

Following the standard semantics of separation logic, we define a memory
state as a pair of a store s and a heap h such that:

– s : Var→ Loc,
– h : Loc ⇀ (Loc× Dat) is a partial function with finite domain.

We write dom(h) to denote the domain of h and ran(h) to denote its range. For
Z ⊆ dom(h), We write h| Z to denote the restriction of h to Z. We write fst and
snd to denote the first and second projection on a product set. We write h ⊥ h′

if dom(h)∩dom(h′) = ∅, and the heap composition h∗h′ is defined as h∪h′ when
h ⊥ h′.

428 K. Bansal, R. Brochenin, and E. Lozes

Example 1 (Ordered lists). Programs manipulating ordered lists of integers can
be modeled choosing Dat = Z with the standard order. The same holds for lists
of reals, lists of naturals, and so on.

Example 2 (Fine-grained concurrent lists). Dat could be thought as the state
of a lock at the current node, that is the identifier of the thread holding the
node (or some constant for an available lock). Here, the ordering on data is not
relevant, but the equality between data is. For such a model, one may want to
express, for instance, that every thread holds the locks of at most two nodes of
a list, and that these nodes are necessarily consecutive.

Separation logic. We now define our assertion language SL< by extending the
standard separation logic with a comparison predicate. We assume a set DVar of
data variables, ranged over with v, w, etc. A valuation interpreting data variables
is a function ρ : DVar→Dat.

Formulae of SL< are defined by the grammar below.

φ ::= ¬φ | φ ∧ φ | ∃x.φ | ∃v.φ |x ↪→ y | val(x) ≤ v | val(x) ≥ v |x = y |φ ∗ φ |φ −−∗ φ

The semantics of the formulae is defined as usual, with the expected definition
for the predicates val(x) ≤ v and val(x) ≥ v.

(s, h), ρ |=SL φ ∧ ψ iff (s, h), ρ |=SL φ and (s, h), ρ |=SL ψ
(s, h), ρ |=SL ¬φ iff not (s, h), ρ |=SL φ
(s, h), ρ |=SL ∃x. φ iff there is l ∈ Loc such that (s[x �→ l], h), ρ |=SL φ
(s, h), ρ |=SL ∃v. φ iff there is α ∈ Dat such that (s, h), ρ[v �→ α] |=SL φ
(s, h), ρ |=SL x ↪→ y iff there is α ∈ Dat such that h(s(x)) = (s(y), α)
(s, h), ρ |=SL val(x) ≤ v iff there is α ∈ Dat and l ∈ Loc such that

h(s(x)) = (l, α), and α ≤ ρ(v)
(s, h), ρ |=SL val(x) ≥ v iff there is α ∈ Dat and l ∈ Loc such that

h(s(x)) = (l, α), and α ≥ ρ(v)
(s, h), ρ |=SL x = y iff s(x) = s(y)
(s, h), ρ |=SL φ1 ∗ φ2 iff there are two heaps h1, h2 such that

h = h1 ∗ h2 and (s, hi), ρ |=SL φi, i = 1, 2
(s, h), ρ |=SL φ1 −−∗ φ2 iff for all h′, if h ⊥ h′ and (s, h′), ρ |=SL φ1,

then (s, h ∗ h′), ρ |=SL φ2

Note that, due to our memory model, the natural semantics of val(x) ≤ v
implies in particular ∃z.x↪→z.

Derived formulae. We use standard notations ∨, ∀,⇒, and write val(x) = v,
val(x) ≤ val(y),... for the obvious combinations of comparison predicates. We
write precisely(A) to denote A ∧ ¬(A ∗ ∃x, y.x↪→y). We also abbreviate φ −−∗¬ ψ
for the sometimes called septraction connective defined by ¬(φ −−∗ ¬ψ). We use
the wildcard notation, e.g. x↪→− for ∃y.x↪→y, the so-called precise predicates �→

Beyond Shapes: Lists with Ordered Data 429

(e.g. x�→y abbreviates precisely(x↪→y)), and equality over vectors (x1, .., xn) =
(y1, .., yn). We will also use the following shorthands:

x
≤
↪→y for x↪→y ∧ val(x) ≤ val(y), and x

≥
↪→y accordingly,

x�→(y, v) for x�→y ∧ val(x) = v

x↪→∗y for x = y ∨
(
� ∗
(

(x↪→−) ∧ (−↪→y) ∧ ¬(−↪→x) ∧ ¬(y↪→−)

∧ ∀z �∈ {x, y}.
(
(z↪→−)⇔ (−↪→z)

)))
x↪→+y for ∃z.x↪→z ∧ z↪→∗y,

decls(x, y) for precisely(x = y) ∨ x�→y

∨ precisely
(
∃y′. x↪→+y′ ∧ y′↪→y ∧ ∀z.(z↪→+y′)⇒ (z

≥
↪→−)

)
We christen the

≤
↪→ predicate short-distance comparison, and by contrast refer

to val(x) ≤ val(y) as long-distance comparison. The binary predicate x↪→∗y is
the accessibility relation (see [6]); it asserts that (fst ◦ h)n(s(x)) = s(y) for some
n ≥ 0.

The binary predicate decls(x, y) characterises a heap composed of a single list
segment with data sorted in the decreasing order.

2.2 A Monadic Second Order Logic over Memory Shapes

Memory shapes. We define memory shapes as the abstraction of a memory heap
forgetting the whole data component of all cells, while retaining the graphical
aspect. A memory shape is hence a pair composed of a store and a heap shape,
(s, h) such that

– s is a variable valuation of the form s : Var→ Loc,
– h is a partial function h : Loc ⇀ Loc with finite domain.

We will use the typographic convention to differentiate a memory state (s, h)
from a memory shape (s, h). Note that concrete stores can be safely identified to
abstract stores. We will write shape(.) for the obvious map from concrete heaps
to heap shapes:

shape(h)
def≡ Loc ⇀ Loc

l �→ fst(h(l)) with dom(shape(h)) = dom(h)

MSO over memory shapes. We assume a set VAR of monadic second-order vari-
ables, denoted by P, Q, R, An environment E is a map E : VAR→Pfin(Loc)
that associates to every second order variable a finite set of locations. Since we
require finiteness of models, the version of monadic second-order logic we shall
consider is usually called weak.

Formulae of (weak) monadic second-order logic (MSO) are defined by the gram-
mar below:

φ := ¬φ |φ ∧ φ | ∃x.φ | x ↪→ y |x = y | ∃P.φ | P(x)

430 K. Bansal, R. Brochenin, and E. Lozes

and are interpreted with the expected semantics:

(s, h), E |=MSO ¬φ iff not (s, h), E |=MSO φ
(s, h), E |=MSO φ ∧ ψ iff (s, h), E |=MSO φ and (s, h), E |=MSO ψ
(s, h), E |=MSO ∃x. φ iff there is l ∈ Loc such that (s[x �→ l], h), E |=MSO φ
(s, h), E |=MSO x ↪→ y iff h(s(x)) = s(y)
(s, h), E |=MSO x = y iff s(x) = s(y)
(s, h), E |=MSO ∃P. φ iff there is a finite subset P of Loc,

such that (s, h), E [P �→ P] |=MSO φ
(s, h), E |=MSO P(x) iff s(x) ∈ E(P)

As usual, we will write P ⊆ Q for ∀x.P(x) ⇒ Q(x), P � Q for P ⊆ Q∧ ∃x.P(x) ∧
¬Q(x), and all set operators P ∩ Q, P ∪ Q, etc.

The following result is an almost straightforward consequence of the decid-
ability of monadic second-order logic over structures with one function symbol
[13] (see also [6] for details):

Theorem 1. The satisfiability of MSO formulae interpreted over memory
shapes is a decidable problem.

3 Motivations

The merge function, that builds an ordered list from two ordered lists, will be
our running example in this section. We consider the following C-like code :

struct cell {
int val;
struct cell *next;

};

function merge(cell *x, cell *y){
cell *z, *head;
if (x==NULL) return y;
if (y==NULL) return x;
if ((x->val) >= (y->val)){

head = x; x=x->next;
else {

head = y; y=y->next;
}
z= head;

while((x!=NULL)&&(y!=NULL)) {
/* MAIN LOOP P */
if ((x->val) >= (y->val)) {

z->next = x;
x = x->next;

} else {
z->next = y;
y = y->next;

}
z = z->next;
/* END OF LOOP P*/

}
[...]
}

Let P denote the instruction block of the while loop. In order to prove the
merge program, one usually needs at some point to provide a loop invariant A.
This invariant may be automatically found, using some acceleration techniques,
or might be provided by the user. In both cases, proving that the invariant is
preserved is equivalent to showing that

Post(P,A ∧ x �= null ∧ y �= null) ⇒ A (1)

Beyond Shapes: Lists with Ordered Data 431

is a valid formula, where Post denotes the strongest postcondition. There are
several ways to compute the strongest postcondition of a loop-free sequence of
instructions. We sketch here two approaches: the original one in separation logic
theory [14], and the one followed by the tool Smallfoot [1].

The original approach does not make any assumption on the invariant A, and
fully exploits the magic wand connective. To give an idea, in our case, the post-
condition of the loop P of the merge program would look like

Post(P,B) = ∃x′, y′, z′. z′↪→z

∧val(x′) ≥ val(y′)⇒
(

x′↪→x ∧ y′ = y

∧
(
∃v. z′ �→(x′, v) ∗

(
z′ �→(−, v) −−∗¬ B{x′,z′/x,z}

)))
∧val(x′) < val(y′)⇒

(
y′↪→y ∧ x′ = x

∧
(
∃v. z′ �→(y′, v) ∗

(
z′ �→(−, v) −−∗¬ B{x′,z′/x,z}

)))
.

where primed variables quantify over the value of the corresponding program
variable before the execution of the loop. What should be underlined concerning
this approach is that automatically checking (1) would involve to solve the satis-
fiability of the logic in presence of magic wand, which is known to be undecidable
even with only one selector [6].

In the Smallfoot approach, on the contrary, the symbolic computation is not
parametric in the invariant. Usually, symbolic memory states are represented by
(disjunctions of) formulae of the form ∃x1, . . . , xn.Π ∧Σ, where Σ (the “spatial”
part) is a ∗-conjunct of the elementary list segments present in memory, and Π
(the “pure” part) handles all other informations that are not properly adressed
by local reasoning. For instance, a reasonable loop invariant following this format
could be:

A
def≡ ∃z1, z

′
1

(
(z1 = x ∨ z1 = y)

∧ z′1
≥
↪→z ∧ val(z) ≥ val(x) ∧ val(z) ≥ val(y)

)
∧ decls(head, z) ∗ z�→z1 ∗ decls(x, null) ∗ decls(y, null)

(2)

Symbolic computation over lists with values has not been defined in Smallfoot,
but taking inspiration from it, we may consider that for such an invariant the
result of the symbolic computation would look like:

Post(P,A ∧ x �= null ∧ y �= null)
def≡ ∃z′1, z2, z3, z4, x

′, y′, z′.⎛⎜⎝
(
(z2, z3, z4, y

′) = (x′,x,y,y) ∨ (z2, z3, z4, x
′) = (y′,y,x,x)

)
∧ z = z2 ∧ z′1

≥
↪→z′ ∧ z2

≥
↪→z3

∧ val(z′) ≥ val(x′) ∧ val(z′) ≥ val(y′) ∧ val(z2) ≥ val(z4)

⎞⎟⎠
∧ decls(head, z′) ∗ z′ �→z2 ∗ z2 �→z3 ∗ decls(x, null) ∗ decls(y, null)

(3)

where again primed variables should be thought as the past values of the cor-
responding program variables. We may underline that, unlike for (2), there are

432 K. Bansal, R. Brochenin, and E. Lozes

long-distance comparisons in the pure part of (3) that involve two quantified
variables. As we will see in Section 5, this formula belongs to a fragment for
which we obtain an undecidability result. However, looking more carefully to it,
one may notice that, out of z′ and z′1, all quantified variables are aliased to pro-
gram variables, which allows to rewrite the formula so that each long-distance
comparison involves at least one open variable. Up to that, one may then use
our decidability result of Section 5 to automatically check (1).

4 Decidability of Short-Distance Comparisons

In this section, we establish the decidability of the short-distance fragment of
SL<. This fragment is defined by the following grammar:

φ ::= ¬φ |φ ∧ φ | ∃x.φ | x ↪→ y |x ≤
↪→y |x ≥

↪→y |x = y |φ ∗ φ
(short-distance fragment)

The decidability of satisfiability for this fragment is obtained by reduction to
the satisfiability of MSO over shapes.

Colored shapes. We hence have to abstract the values taking care of their local
comparisons. To do so, we use a colored shape, with three colors on the edges3:
‘<’, ‘>’, and ‘=’. In logical terms, these colors will be defined by two second
order variables, noted X and Y , and we will observe the color ‘=’ if both X and
Y holds for the source location of the edge, ‘<’ if X holds but not Y , and ‘>’
if Y holds but not X . The case where neither X nor Y holds is irrelevant since
we assumed a total order on data values, so we should constrain the possible
choices for X and Y to avoid this situation. Moreover, some extra constraints
will be involved by the necessity to manipulate only colored shapes for which
it is possible to assign data respecting the colors (for instance, a cycle of ‘<’
cannot be assigned data).

The graph of constraints. Given a shape (s, h), and the interpretations X ,Y ⊆
dom(h) of the second-order variables mentioned before, we define the associated
graph of constraints G = (V,E) where:

– V is dom(h) quotiented by the equivalence l ∼ l′ relating locations connected
by a non oriented, ’=’-labeled path in the colored shape. Note that each
∼-equivalence class contains at most one location l whose image under h
lies outside the equivalence class of l. In such a situation, [l] denotes this
equivalence class.

– E is the set of pairs of equivalence classes ([l], [l′]) such that
• either h(l) = l′ and the color on l is ’>’
• or h(l′) = l and the color on l′ is ’<’

3 Formally, on vertices, but each edge can be non-ambiguously identified to its source
vertex in a shape.

Beyond Shapes: Lists with Ordered Data 433

5 4

5

5 2 2

3

(1)

>

=

>

=

=

>

a c

d

e
f g

b

(2) (3)

Fig. 1. A concrete heap (1), its colored abstraction (2), and the associated graph of
constraints (3). Here X = {c, d, f, g} and Y = {a, d, e, f, g}.

Figure 1 gives an example of a colored shape and its associated graph of constraints.
Note that an edge towards a dangling pointer cannot be colored, and this is in fact
the unique situation in which one allows ¬X ∧¬Y . The graph of constraints helps
us to decide whether or not it is possible to assign values to a colored shape: in-
deed, this problem is equivalent to defining a topological order on the graph of con-
straints, which is known to be equivalent to this graph being acyclic. What remains
to be explained now is: (1) how to define the graph of constraints in MSO, (2) how
to express acyclicity, (3) how to treat separating conjunction.

The reduction. The reduction from SL< over memory states to MSO over shapes
is defined by rdSL<→MSO(φ) = ∃X.∃Y.∃Z.Cons(X,Y, Z) ∧ rd(φ,X, Y, Z) where:

– Z is an extra second-order variable that is needed to define the current
focus, that is the subheap of the original heap on which the (sub)formula is
currently evaluated.

– rd is an auxiliary reduction that works assuming that X,Y and Z have
been correctly guessed, updating these parameters appropriately when ∗ is
translated.

– Cons are constraints imposed on X , Y and Z to guarantee that the first
guess is a valid one: Z is the domain of the heap, and X and Y define a
colored shape to which one may assign values.

Constraints. We impose three contraints : Cons(X,Y, Z)
def≡ Cons1(X,Y, Z) ∧

Cons2(X,Y, Z) ∧Cons3(X,Y, Z)

1. the only admitted color on a monochromatic cycle is ’=’ (this is indeed
equivalent to the acyclicity condition on the graph of constraints):

Cons1(X,Y, Z)
def≡ ∀U ⊆ Z. Loop(U) ⇒ (U ⊆ X ⇔ U ⊆ Y)

where Loop(U) is defined as SetOfLoops(U)∧∀V � U.¬SetOfLoops(V) and
SetOfLoops(U) is ∀x.U(x) ⇒ ∃y.U(y) ∧ y ↪→ x

2. every edge that should be colored is colored with ’<, ’>’ or ’=’

Cons2(X,Y, Z)
def≡ ∀x. (Z(x) ∧ (∃y.Z(y) ∧ x ↪→ y)) ⇔ (X(x) ∨ Y (x))

3. Z is the domain of the heap: Cons3(X,Y, Z)
def≡ ∀x.(x ↪→ −) ⇔ Z(x).

434 K. Bansal, R. Brochenin, and E. Lozes

Let us now state the results we may derive from these definitions. We say that
a location l is an increasing (resp. decreasing) node if there are l′, l′′ ∈ Loc and
α, β ∈ Dat such that h(l) = (l′, α), h(l′) = (l′′, β), and α ≤ β (resp. α ≥ β). We
write dom+(h) (resp. dom−(h)) to denote the set of increasing (resp. decreasing)
nodes of h, and Eh denotes [X �→ dom+(h), Y �→ dom−(h), Z �→ dom(h)].

Lemma 1 (Constraints soundness). If (s, h), E |=MSO Cons(X,Y, Z) then
there is a h : Loc ⇀ Loc × Dat such that shape(h) = h, E(Z) = dom(h),
E(X) = dom+(h) and E(Y) = dom−(h).

Lemma 2 (Constraints completeness). For all models with data (s, h):

(s, shape(h)), Eh |=MSO Cons(X,Y, Z).

Auxiliary recursive translation. The auxiliary recursive translation rd is defined
as follows: (1) it is isomorphic on the cases of φ ∧ ψ, ¬φ, ∃x.φ, and x = y, and
(2) for other connectives, parameters X,Y, Z come into play:

rd(x ↪→ y,X, Y, Z)
def≡ Z(x) ∧ x ↪→ y

rd(x
≤
↪→y,X, Y, Z)

def≡ Z(x) ∧ Z(y) ∧X(x) ∧ x ↪→ y

rd(x
≥
↪→y,X, Y, Z)

def≡ Z(x) ∧ Z(y) ∧ Y (x) ∧ x ↪→ y

rd(φ1 ∗ φ2, X, Y, Z)
def≡ ∃Z1, Z2.

rd(φ1, X, Y, Z1) ∧ rd(φ2, X, Y, Z2) ∧ Z = Z1 ∪ Z2 ∧ Z1 ∩ Z2 = ∅

Lemma 3 (Reduction Lemma). For all s, h, for all Z ⊆ dom(h),

(s, shape(h)), Eh[Z �→Z] |=MSO rd(φ,X, Y, Z) if and only if (s, h| Z) |=SL φ.

Theorem 2. For all formulae φ of SL<, there exists (s, h) such that (s, h) |=SL φ
if and only if there exists (s, h) such that (s, h) |=MSO rdSL<→MSO(φ)

Thanks to Theorem 2 and Theorem 1, we have established the announced result:

Corollary 1. The satisfiability problem for the fragment of SL< with short-
distance comparisons is decidable.

5 Long-Distance Comparisons

5.1 An Undecidablity Result

We consider now the fragment of SL< where magic wand is still dropped, but
long-distance comparison is considered:

φ ::= ¬φ | φ ∧ φ | ∃x.φ | ∃v.φ |x ↪→ y | val(x) ≤ v | val(x) ≥ v |x = y |φ ∗ φ.
(long-distance fragment)

We show that, without any further restriction, long-distance comparisons yield
undecidability, even for a simpler fragment:

φ ::= ¬φ | φ ∧ φ | ∃x.φ | x ↪→ y | val(x) = val(y) |x = y |φ ∗ φ.
(equality long-distance fragment)

Beyond Shapes: Lists with Ordered Data 435

Theorem 3. The satisfiability problem for the equality long-distance fragment
is undecidable.

The proof goes by reduction to the satisfiability problem of first-order formulae
over data words. Before giving the intuition of the reduction, we first recall this
logic.

First-order logic over data words. We assume a finite set Σ. A finite data word
is a sequence w = w1..wn, where wi = (ai, αi) ∈ Σ×Dat; we write |w | to denote
the length n ∈ N of w. Note that, so far, we assumed a total order on Dat, but
this aspect is not essential for this reduction, and one may think of Dat as any
arbitrary infinite set. The first-order formulae we will evaluate over these models
are defined by the following grammar:

(FO over data words) φ ::= ¬φ |φ ∧ φ | ∃x.φ | a(x) | x = y + 1 |x ∼Dat y

where a ∈ Σ. Variables are interpreted as positions in the word through a
valuation σ : Var→{1.. |w |}, +1 is the standard addition over N, and ∼Dat

relates positions holding the same datum. More formally

w, σ |=FO ∃x.φ if there is n ∈ {1.. |w |} s.t. w, σ[x�→n] |=FO φ
w, σ |=FO a(x) if aσ(x) = a
w, σ |=FO x = y + 1 if σ(x) = σ(y) + 1
w, σ |=FO x ∼Dat y if ασ(x) = ασ(y)

Theorem 4 (see [2], Prop. 27). The satisfiability problem for a closed sen-
tence of FO over data words is undecidable.

The reduction. To prove Theorem 3, we define a translation from FO to the
long-distance fragment such that a formula φ admits a data word model if and
only if its translation admits a memory state model. A data word of length n is
encoded as a list segment of length 2n, placing the sequence of letters of Σ in
the even positions, and the data sequence in odd positions. Then x = y + 1 can
be encoded by y↪→2x, and x ∼Dat y can be encoded by val(x) = val(y).

5.2 Decidability of Guarded Long-Distance Comparisons

We now consider the fragment of formulae where every quantification over val-
ues is restricted to values stored in the cells that are pointed by the program
variables:

φ ::= ¬φ | φ ∧ φ | ∃x.φ | ∃v.val(x) = v ∧ φ

|x ≤
↪→y |x ≥

↪→y |x ↪→ y | val(x) ≤ v | val(x) ≥ v |x = y |φ ∗ φ.
(guarded long-distance fragment)

Note that guarded long-distance comparisons are quite weak, and we need to
add short-distance comparisons as basic predicates if we still want to use them.

Theorem 5. The satisfiability problem for the guarded long-distance fragment
is decidable.

436 K. Bansal, R. Brochenin, and E. Lozes

Proof of Theorem 5. We only sketch the proof. We adapt the proof of Theo-
rem 2 by extending the notions of colored shapes and graphs of constraints. Let
ProgVar = {x1, ..,xn} � Var be a finite set of variables such that every formula
to be translated will have all its open variables in ProgVar. To every variable
x ∈ ProgVar, we associate two second-order variable Xx, Yx. A colored shape is
then a tuple

CS =
(

(s, h) , X ,Y, Xx1 ,Yx1 , . . . ,Xxn ,Yxn

)
where Xx,Yx are finite sets of locations; it is well defined if X ∪ Y = dom(h) ∩
h−1(dom(h)) and Xx ∪ Yx = dom(h) for every program variable x such that
s(x) ∈ dom(h). Let (s, h) be a fixed shape. We define the relation ∼ on dom(h)
as the smallest equivalence relation such that:

– if l ∈ Xx ∩ Yx and s(x) ∈ dom(h), then s(x) ∼ l;
– if h(l) = l′, and l ∈ X ∩ Y, then l ∼ l′.

The graph of constraints associated to CS is the pair (V,E) where the vertex
set V is the quotient of dom(h) by ∼, and there is an edge from the equivalence
class c1 to c2 if at least one of the following conditions holds:

– either there is s(x) ∈ c1 and l ∈ c2 such that l ∈ Yx −Xx;
– or there is s(x) ∈ c2 and l ∈ c1 such that l ∈ Xx − Yx;
– or there is l ∈ c1, l

′ ∈ c2 such that h(l) = l′ and l ∈ Y − X ;
– or there is l ∈ c1, l

′ ∈ c2 such that h(l′) = l and l′ ∈ X − Y.

It is possible to check that the graph of constraints and the acyclicity condition
on it are MSO definable. We may then adapt the reduction of Section 4: we guess
the Xxs and Yxs at start and check we made a valid guess, and we extend the
recursive translation rd(φ) with the following cases:

rd(∃v.val(x) = v ∧ φ)
def≡ rd(φ{val(x)/v})

rd(val(x) ≤ val(x))
def≡ Z(x) ∧ Z(x) ∧ Yx(x) ∧ ¬Xx(x)

rd(val(x) ≥ val(x))
def≡ Z(x) ∧ Z(x) ∧Xx(x) ∧ ¬Yx(x)

Perspectives. We expect this decidability result to extend to more complex
data structures that would have a decidable MSO theory (trees, doubly-linked
lists, lists of lists, and more generally tree-width bounded structures), and to
more complex short-distance comparisons (n-th successor, brothers,...). More-
over, such restrictions may be sufficient to handle other interesting applications,
for instance search-trees. In this sense, we claim that the graph of constraints is
the “right” general concept for logics dealing with sorted data structures.

6 Magic Wand and Restricted Magic Wand

Even without data, the logic with the operator −−∗ is proved to be undecid-
able in [6]. In the technical report [5] corresponding to the paper, a decidable

Beyond Shapes: Lists with Ordered Data 437

separation logic with a restricted magic wand is presented. Let us write the def-
inition of this binary operator, −−∗n (for n an integer). Unlike the plain operator
−−∗, the quantification on disjoint heaps of −−∗n considers only heaps for which
the cardinality of the domain is bounded by n. More formally, we define that
(s, h) |= φ1−−∗nφ2 if and only if for all h′ such that h′ ⊥ h and | dom(h′) | ≤ n,
if (s, h′) |= φ1 then (s, h ∗ h′) |= φ2. It can be seen as an abbreviation of
(φ1 ∧ ¬∃x1, . . . , xn+1.

∧
i�=j xi �= xj ∧

∧
i ∃y.xi ↪→ y) −−∗ φ2. In the sequel, we

will prove that, in the context of heaps with data, −−∗1 is sufficient to obtain
undecidability.

Let R denote an arbitrary binary relation on Dat. Let us call ∼R the equiv-
alence relation defined as α ∼R α′ iff {β, βRRα} = {β, βRRα′}. We consider
the atomic formula val(x)Rval(y) stating that values stored in x and y com-
pare through R. Formally, (s, h) |=SL val(x)Rval(y) iff there are α, β ∈ Val and
l, l′ ∈ Loc such that h(s(x)) = (l, α), h(s(y)) = (l′, β), and αRβ.

We now introduce the relation x
R
↪→y for x↪→y ∧ val(x)Rval(y), and define the

logic SL(R,−−∗1) with the grammar:

φ ::= ¬φ | φ ∧ φ | ∃x.φ |x ↪→ y |x R↪→y |x = y |φ ∗ φ |φ−−∗1φ.

We are going to prove that satisfiability and validity problems are undecidable
for SL(R,−−∗1), for any R ∈ {≤,≥,=, <,>}. We will rely on the previous section,
especially Theorem 3, by simulating a long-distance equality. We first need the
following fact:

Lemma 4. Let R ∈ {≤,≥,=, <,>}. Then ∼R has an infinite number of equiv-
alence classes.

Let ∼ be an equivalence relation on Dat with infinitely many equivalence classes.
Let us define the following fragment:

φ ::= ¬φ | φ ∧ φ | ∃x.φ | x ↪→ y | val(x) ∼ val(y) |x = y |φ ∗ φ.
(equivalence long-distance fragment)

Then the following lemma, a slight variation of Theorem 3, also holds in this
generalised framework:

Lemma 5. The satisfiability problem for the equivalence long-distance fragment
is undecidable.
Proof. By the same encoding as the one of Theorem 3, one may reduce a
satisfiability problem of an FO sentence over data words, where data taken from
the infinite quotient set Dat/ ∼R, to the satisfiability problem for the equivalence
long-distance fragment. �

Lemma 6. There is a formula φR(x, x′) ∈ SL(R,−−∗1) such that for all (s, h)
with {s(x), s(x′)} ⊆ dom(h):

(s, h) |= φR(x, x′) iff (s, h) |= val(x) ∼R val(x′)

438 K. Bansal, R. Brochenin, and E. Lozes

We only sketch the proof. φ−−∗¬1ψ will abbreviate ¬(φ−−∗1¬ψ). Then (s, h) |= φ−−∗¬1ψ
iff there is h′ such that (s, h′) |= φ, (s, h ∗ h′) |= ψ and | dom(h′) | ≤ 1. The
operators −−∗1 and −−∗¬1 will be used to simulate restricted quantifications over
Dat, respectively universal and existential. Consider the formula φ

∃x1.∃x2.
(
¬∃x3.x1 ↪→ x3 ∨ x2 ↪→ x3

)
∧(x1 ↪→ x2) −−∗1

(
(val(x1) RR val(x)) ⇔ (val(x1) RR val(x′))

)
where val(x1)RRval(x) abbreviates (x2 ↪→ x)−−∗¬1[(x1

R
↪→x2) ∧ x2

R
↪→x]. The for-

mula φ expresses that for all α, there is β such that αRβRsnd(h(s(x))) if and
only if there is β such that αRβRsnd(h(s(x′))), that is val(x) ∼R val(x′). As a
consequence:

Theorem 6. For any R ∈ {≤,≥, <,>,=}, the validity and satisfiability prob-
lems for SL(R,−−∗1) are undecidable.

7 Conclusion

Our results give a wide picture of the decidability status of the satisfiability
problem for separation logic dealing with data.

With the ability to describe lists and quantify over locations, allowing long-
distance comparisons brings undecidability, and so does allowing the operator
−−∗, even strongly restricted. Yet, there is a very positive result: dropping these
two features makes the satisfiability problem decidable, still being able to do
local reasoning and express properties about ordered recursive structures. The
decidability even holds when a finite set of references can be compared to all the
rest of the memory.

Some ways to restrict the full language are still unexplored, for instance
bounding the amount of quantified variables. With the same hope to obtain
decidability for satisfiability problems, one may look at extension of our de-
cidable fragment. For instance, our results are general for any totally ordered
infinite set, and questions remain open about partially ordered sets.

References

1. Berdine, J., Calcagno, C., O’Hearn, P.: Smallfoot: Modular automatic assertion
checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de
Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer, Heidel-
berg (2006)

2. Bojanczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., David, C.: Two-variable
logic on words with data. In: Proceedings of 21th IEEE Symposium on Logic in
Computer Science (LICS 2006), 12-15 August 2006, Seattle, WA, USA, pp. 7–16
(2006)

3. Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs
with lists are counter automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 517–531. Springer, Heidelberg (2006)

Beyond Shapes: Lists with Ordered Data 439

4. Bozga, M., Iosif, R., Lakhnech, Y.: On logics of aliasing. In: Giacobazzi, R. (ed.)
SAS 2004. LNCS, vol. 3148, pp. 344–360. Springer, Heidelberg (2004)

5. Brochenin, R., Demri, S., Lozes, E.: On the almighty wand. Technical report, LSV,
ENS de Cachan (2008)

6. Brochenin, R., Demri, S., Lozes, É.: On the almighty wand (To appear). In: Kamin-
ski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 323–338. Springer, Hei-
delberg (2008)

7. Calcagno, C., Yang, H., O’Hearn, P.: Computability and complexity results for
a spatial assertion language for data structures. In: Hariharan, R., Mukund, M.,
Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 108–119. Springer, Heidelberg
(2001)

8. Demri, S., Lazić, R., Nowak, D.: On the freeze quantifier in constraint LTL: De-
cidability and complexity. In: Proceedings of the 12th International Symposium
on Temporal Representation and Reasoning (TIME 2005), Burlington, Vermont,
USA, pp. 113–121. IEEE Computer Society Press, Los Alamitos (2005)

9. Jensen, J., Jorgensen, M., Klarlund, N., Schwartzbach, M.: Automatic verification
of pointer programs using monadic second-order logic. In: PLDI 1997, pp. 226–236.
ACM, New York (1997)

10. Lev-Ami, T., Sagiv, M.: TVLA: A system for implementing static analyses. In:
Palsberg, J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 280–302. Springer, Heidelberg
(2000)

11. Loginov, A., Reps, T., Sagiv, M.: Refinement-based verification for possibly-cyclic
lists. In: Reps, T., Sagiv, M., Bauer, J. (eds.) Wilhelm Festschrift. LNCS, vol. 4444,
pp. 247–272. Springer, Heidelberg (2007)

12. Nguyen, H.H., David, C., Qin, S.C., Chin, W.-N.: Automated verification of shape
and size properties via separation logic. In: Cook, B., Podelski, A. (eds.) VMCAI
2007. LNCS, vol. 4349, pp. 251–266. Springer, Heidelberg (2007)

13. Rabin, M.: Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society 41, 1–35 (1969)

14. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS 2002, pp. 55–74. IEEE, Los Alamitos (2002)

15. Trakhtenbrot, B.A.: The impossibility of an algorithm for the decision problem for
finite models. Dokl. Akad. Nauk SSSR 70, 572–596 (1950); English translation in:
AMS Transl. Ser. 2, 23(1063), 1–6

16. Yorsh, G., Rabinovich, A.M., Sagiv, M., Meyer, A., Bouajjani, A.: A logic of reach-
able patterns in linked data structures. In: Sassone, V. (ed.) FOSSACS 2005. LNCS,
vol. 3441, pp. 94–110. Springer, Heidelberg (2005)

Interprocedural Dataflow Analysis over Weight
Domains with Infinite Descending Chains�

Morten Kühnrich2, Stefan Schwoon1, Jǐŕı Srba2, and Stefan Kiefer1

1 Technische Universität München
Boltzmannstr. 3, 85748 Garching, Germany

{kiefer,schwoon}@in.tum.de
2 Department of Computer Science, Aalborg University
Selma Lagerlöfs Vej 300, 9220 Aalborg East, Denmark

{mokyhn,srba}@cs.aau.dk

Abstract. We study generalized fixed-point equations over idempotent
semirings and provide an efficient algorithm for the detection whether a
sequence of Kleene’s iterations stabilizes after a finite number of steps.
Previously known approaches considered only bounded semirings where
there are no infinite descending chains. The main novelty of our work
is that we deal with semirings without the boundedness restriction. Our
study is motivated by several applications from interprocedural dataflow
analysis. We demonstrate how the reachability problem for weighted
pushdown automata can be reduced to solving equations in the frame-
work mentioned above and we describe a few applications to demonstrate
its usability.

1 Introduction

Weighted pushdown systems [20] are a suitable model for analyzing programs
with procedures. They have been used successfully in a number of applications,
e.g. BDD-based model checking [23,7], trust-management systems [10], path op-
timization [14], and interprocedural dataflow analysis (see [19] for a survey).

The main idea is that the transitions of a pushdown system are labelled with
values from a given data domain (e.g. natural numbers). These values can be
composed when executed in sequence (e.g. using the addition on natural num-
bers) and one is then interested in a number of verification questions like reach-
ability of a given configuration with the combined value over all paths leading
into this configuration (e.g. by taking the minimum value over all such paths). It
has been shown that there are efficient polynomial time algorithms for answering
these questions [20].

In this paper, we contribute to the research in this area. We first draw a
connection between reachability in weighted pushdown systems (WPDS) over an

� The second and fourth authors are supported in part by the DFG project Algorithms
for Software Model Checking. The third author is supported in part by Institute for
Theoretical Computer Science, project No. 1M0545.

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 440–455, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Interprocedural Dataflow Analysis over Weight Domains 441

idempotent semiring and solving fixed-point equations over the same semiring.
Unlike related work, we allow for infinite descending chains in our semirings
(our approach e.g. includes the integer semiring). Due to this reason, the system
of equations constructed from a WPDS may not have a solution. We therefore
provide an efficient algorithm that either determines the solution or detects the
presence of an infinite descending chain. In the latter case, we output some
component (variable) of the system affected by the problem. So on one hand
we treat domains with infinite descending chains but on the other hand, two
restrictions are necessary to make this possible. However, as argued in Section 4,
the framework still includes a number of interesting applications. A full version
of the paper is available as [12].

1.1 Dataflow Analysis and Fixed-Point Equations

Static analysis gathers information about a program without executing it. Data-
flow analysis is an instance of static analysis: it reasons about run-time values
of variables or expressions. More to the point, we desire to establish facts that
hold at some control point whenever an execution reaches it.

Most approaches to dataflow analysis reduce the problem (explicitly or implic-
itly) to solving a system of fixed-point equations over some algebraic structure,
e.g. a lattice or a semiring. They map the control-flow graph of a program to an
equation system X = f (X), where the vector X = (X1, . . . , Xn) stands for the
nodes in the control flow graph, and takes values from some dataflow domain.
The vector f = (f1, . . . , fn) stands for the edges in the graph, i.e., the transfer
function fi(X) describes the effect of the program on Xi in terms of the other
dataflow values. Under certain conditions (e.g., the functions fi are distributive)
the desired dataflow information is precisely the greatest solution of the system
X = f(X), i.e., the greatest fixed point gfp(f) of f [18,22].

There is a large body of literature dealing with dataflow analysis along these
lines. Of particular interest to us are interprocedural analyses. The seminal work
of Sharir and Pnueli [22] shows how to set up an equation system that captures
only the interprocedurally valid paths, i.e. those paths in which all return state-
ments lead back to the site of the most recent call. However, [22] computes only
one dataflow value for each program point, merging together all the paths that
reach it, regardless of the calling context. In [20] a generalization was provided,
where the solution of the equations computes a solution for each configuration,
where configuration denotes a program point together with its calling context.
Thus, [20] allows to distinguish dataflow values for different, arbitrary calling
contexts. (The merged information can still be obtained as a special case.) The
results of [20] were phrased in terms of weighted pushdown systems (WPDS),
and we will adopt this notion in our paper.

If the dataflow domain satisfies the so-called descending chain condition (i.e.
each infinite descending chain eventually becomes stationary), gfp(f) can be
obtained by Kleene’s iteration: Let 0 be the greatest domain element, and
0 = (0, . . . , 0). Then Kleene’s fixed-point theorem guarantees that the sequence

442 M. Kühnrich et al.

0,f(0),f(f (0)), . . . reaches gfp(f) after finitely many steps. Both [22] and [20]
require the descending chain condition.

However, the descending chain condition does not always hold. For example,
the lattice of non-positive integers with % = min and & = max does not satisfy
the condition because of the infinite descending chain 0,−1,−2, In fact, this
chain arises when doing Kleene’s iteration on the equation X = f(X) where
f(X) = min(X,X − 1). More to the point, Kleene’s iteration on f would fail to
terminate. We will show how to overcome this problem.

Previous work (e.g., [20]) has shown that many important analysis problems
can be phrased as equation systems, where f(X) contains polynomials over
idempotent semirings. By polynomial, we mean an expression that is built up
from variables, constant elements, and the semiring operations ‘⊕’ (combine)
and ‘⊗’ (extend).

Recently, fixed-point equations over idempotent semirings have been studied
intensively. While the classical solution is to use Kleene’s iteration or chaotic iter-
ation, recent work has proposed faster algorithms and better convergence results
based on Newton’s method [9,5,4,6]. In these works, the boundedness condition
is dropped, but replaced by another condition called ω-continuity, requiring that
the infimum of every infinite set exists, thus ensuring that a greatest fixed point
can always be found. Our work does not require this condition, and a greatest
fixed point is not always guaranteed to exist (but our algorithm detects such a
case and reports it). The penalty for this is that a different kind of restriction
has to be introduced: we require that semirings are totally ordered and that
“extend preserves inequality”, i.e., a⊗ c �= b⊗ c for a �= b and a, b, c �= 0.

Our algorithm executes Kleene’s iteration, and if the iteration terminates,
it outputs the greatest fixed point. If Kleene’s iteration fails to terminate, our
algorithm will detect this and still terminate, indicating a responsible variable
(a so-called witness component).

The work closest to ours is the one by Gawlitza and Seidl [8], who consider
systems of equations over the integer semiring. Our algorithm can be seen as
a generalization of one of their algorithms to totally ordered semirings where
extend preserves inequality and to equations over arbitrary polynomials. More-
over, we provide a direct and self-contained proof of the result. Another related
work is by Leroux and Sutre [15]. They present an algorithm for computing
least fixed-points for monotone bounded-increasing functions over integers. On
one hand they consider more general functions like e.g. factorials, on the other
hand the minimum and maximum functions are not bounded-increasing accord-
ing to their definition. As a result, their algorithm is not applicable in our setting
of weighted pushdown systems.

We proceed as follows: In Section 2, we provide a new algorithm for solving
fixed-point equations. Using this result, we design an algorithm for interprocedu-
ral dataflow analysis in Section 3, which is based on WPDS [20] and still requires
a polynomial number of semiring operations. Like previous work on WPDS, the
algorithm allows to compute dataflow information for each configuration (if de-
sired). Due to the properties of the systems we handle, our algorithm either

Interprocedural Dataflow Analysis over Weight Domains 443

returns a solution (if it exists) or reports that none exists (usually indicating an
error in the program). We provide several applications of our theory in Section 4.

2 Fixed-Point Equations over Idempotent Semirings

In this section we shall study fixed-point equations over idempotent semirings
and Kleene’s iterations over vectors of polynomials.

Definition 1 (Idempotent Semiring). An idempotent semiring is a 5-tuple
S = (D,⊕,⊗, 0, 1) where D is a set called the domain, 0, 1 ∈ D, and the binary
operators combine ‘⊕’ and extend ‘⊗’ on D satisfy:

1. (D,⊕) is a commutative monoid with 0 as its neutral element and (D,⊗) is
a monoid with 1 as its neutral element,

2. extend distributes over combine, i.e., ∀a, b, c ∈ D : a⊗(b⊕c) = (a⊗b)⊕(a⊗c)
and (a⊕ b)⊗ c = (a⊗ c)⊕ (b ⊗ c),

3. 0 is an annihilator for extend, i.e., ∀a ∈ D : a⊗ 0 = 0⊗ a = 0, and
4. every a ∈ D is idempotent w.r.t. combine, i.e., ∀a ∈ D : a⊕ a = a.

Definition 2 (Ordering). We write a � b for a, b ∈ D whenever a⊕ b = a.

As we are mainly interested in algorithmic verification approaches, we shall im-
plicitly consider only computable semirings where the elements from the domain
are effectively representable, operations combine and extend are algorithmically
computable and the test on equality is decidable. We will use the big-O-notation
for complexity upper-bounds, though it should be always interpreted relative to
the complexity of the semiring operations. In the semirings considered in our
applications, we can assume that all operations can be performed in O(1) time.
Hence the big-O-notation for the semirings mentioned in this paper corresponds
to the standard asymptotic complexity.

Lemma 1. (i) For all a, b ∈ D it holds that a⊕ b � a. (ii) For all a, b, c ∈ D it
holds that if a � b then a⊗ c � b⊗ c.

The proof of Lemma 1 is straightforward. We shall now define an additional
condition on the extend operator that will be used later on in this section.

Definition 3 (Extend Preserves Inequality). Given an idempotent semir-
ing we say that extend preserves inequality if a �= b implies that a ⊗ c �= b ⊗ c
for any a, b, c ∈ D � {0}.

Example 1. The tuple Sint = (Z∞,min,+,∞, 0) is an idempotent semiring. The
domain are the integers extended with infinity Z∞ = Z∪{∞} where min(∞, a) =
min(a,∞) = a and a+∞ = ∞+a = ∞ for all a ∈ Z∞. Combine is the minimum
and extend is the usual addition on integers. It is easy to see that Sint meets
the requirements of Definition 1. It moreover preserves inequality because the
addition does so, and � is a total order.

444 M. Kühnrich et al.

Another example of an idempotent semirings is Srat = (Q[0, 1],max, ∗, 0, 1)
which is the semiring defined over the rationals in the interval from 0 to 1.
Here combine is the maximum and extend is the multiplication on rationals.
This semiring Srat also meets the requirements of Definition 1, extend preserves
inequality and � is a total order. %&

In what follows we fix an idempotent semiring S = (D,⊕,⊗, 0, 1). We often
omit the ⊗ sign in “products”, i.e., we write ab for a ⊗ b. We also fix a set
X = {X1, . . . , Xn} of variables. Now we define vectors of polynomials over S
and their fixed points following [4].

Let V = Dn denote the set of vectors over S. We use bold letters to denote
vectors, e.g., v = (v1, . . . ,vn). We also write X = (X1, . . . , Xn) to arrange the
variables from X in a vector. We extend � to vectors by setting u � v if ui � vi
for all 1 ≤ i ≤ n.

A monomial is a finite expression a1Xi1a2Xi2 · · · asXisas+1 where s ≥ 0,
a1, . . . , as+1 ∈ D and Xi1 , . . . , Xis ∈ X . A polynomial is an expression of the
form m1 ⊕ · · · ⊕ms where s ≥ 0 and m1, . . . ,ms are monomials. The value of a
monomial m = a1Xi1a2 · · · asXisas+1 at v is m(v) = a1vi1a2 · · · asvisas+1 ∈ D.
The value of a polynomial f = m1⊕· · ·⊕ms at v is f(v) = m1(v)⊕· · ·⊕ms(v).
A polynomial induces a mapping from V to D that assigns to v the element
f(v). A vector of polynomials f = (f1, . . . ,fn) is an n-tuple of polynomials; it
induces a mapping from V to V that assigns to a vector v the vector f(v) =
(f1(v), . . . ,fn(v)). A fixed point of f is a vector v that satisfies v = f(v). A
greatest fixed point of f is a fixed point v such that v′ � v holds for all other
fixed points v′. The size K(f) of a vector of polynomials f is the total number
of ⊕ and ⊗ operators in f . In particular, given a vector v, it takes O(K(f))
time to compute f(v).

Example 2. Consider the semiring Sint from Example 1. Let X = {X1, X2, X3}.
Then f = (−2⊕X2⊗X3, X3⊗1, X1⊕X2) is a vector of polynomials over Sint.
It can be rewritten as f = (min{−2, X2 +X3}, X3 +1, min{X1, X2}). The size
K(f) equals 4. %&

It is easy to see that polynomials are monotone and continuous mappings
w.r.t. �, see Lemma 1. Kleene’s theorem can then be applied (see e.g. [13]),
which leads to the following proposition.

Proposition 1. Let f be a vector of polynomials. Let the Kleene sequence
(κ(k))k∈N be defined by κ(0) = 0 and κ(k+1) = f(κ(k)).

(a) We have κ(k+1) � κ(k) for all k ∈ N.
(b) If a greatest fixed point exists then it is the infimum of {κ(k) | k ∈ N}.
(c) If the infimum of {κ(k) | k ∈ N} exists then it is the greatest fixed point.

Proposition 1 is the mathematical basis for the classical fixed-point iteration:
apply f until a fixed point is reached, which is, by Proposition 1 (c), the greatest
fixed point of f . We call this method Kleene’s iteration. In general, Kleene’s
iteration does not always reach a fixed point. Some equations, like X = X ⊗ (−1)

Interprocedural Dataflow Analysis over Weight Domains 445

over Sint, do not have any (greatest) fixed point, other equations might have
a greatest fixed point but it is not achievable in a finite number of Kleene’s
iterations (consider for example the above equation but over the semiring Sint

extended with the element −∞). It is not a priori clear how to detect whether
Kleene’s iteration terminates, i.e., computes the greatest fixed point in a finite
number of iterations.

Algorithm 1 (called “safe Kleene’s iteration”) solves this problem. If Kleene’s
iteration reaches the greatest fixed point, then the algorithm computes it. Other-
wise it outputs a witness component where Kleene’s iteration does not terminate.
Formally, a witness component is defined as follows.
Definition 4 (Witness Component). Let f be a vector of polynomials over
an idempotent semiring. A component i (1 ≤ i ≤ n) is a witness component if
{κ(k)
i | k ≥ 0} is an infinite set.

In our applications, the presence of a witness component pinpoints a problem of
the analyzed model which the user may want to fix. More details are given in
Section 4.

Algorithm 1 is based on the generalized Bellman-Ford algorithm of [8] for Sint

and generalizes it further to totally ordered semirings where extend preserves
inequality and to equations over arbitrary polynomials.

Algorithm 1. Safe Kleene’s iteration
Input: A vector of polynomials f = (f 1, . . . , fn) over an idempotent semiring S =

(D,⊕,⊗, 0, 1) s.t. � is a total order and where extend preserves inequality.
Output: Greatest fixed point of f or a witness component.
1: κ(0) := 0
2: for k := 1 to n + 1 do
3: κ(k) := f (κ(k−1))
4: end for
5: if ∃i with 1 ≤ i ≤ n such that κ

(n+1)
i �= κ

(n)
i then

6: return “Kleene’s iteration does not terminate. Component i is a witness.”
7: else
8: return “The vector κ(n) is the greatest fixed point.”
9: end if

Theorem 1. Algorithm 1 is correct and terminates in time O(n ·K(f)).

Algorithm 1 on its own is very straightforward, and its proof for polynomials of
degree only 1 would directly mimic the proof of Bellman-Ford algorithm. Our
contribution is that we prove that it works also for polynomials of higher de-
grees where more involved technical treatment is necessary. Details are presented
in [12].

Remark 1. In the integer semiring Sint, Algorithm 1 can be extended such that it
computes all witness components and for the remaining terminating components
returns the exact value. This is done as follows. The main loop on lines 2–4 is run
once again, but the components that still change are assigned a new semiring

446 M. Kühnrich et al.

element “−∞” on which the operators “+” and “min” act as expected. Thus,
−∞ may be propagated through the components during the repetition of the
main loop. At the end, all components that are not −∞ have reached their final
value, all others can be reported as witness components. For details see [8].

Example 3. Consider again the vector of polynomials from Example 2:

f = (min{−2, X2 + X3}, X3 + 1, min{X1, X2}) .

Kleene’s iteration produces the following Kleene sequence: κ(0) = (∞,∞,∞),
κ(1) =(−2,∞,∞), κ(2) =(−2,∞,−2), κ(3) =(−2,−1,−2), κ(4) =(−3,−1,−2).
As κ

(3)
1 = −2 �= −3 = κ

(4)
1 , Alg. 1 returns the first component as a witness. %&

Notice that Algorithm 1 merely indicates whether a greatest fixed point can be
found using Kleene’s iteration or not. Even if Algorithm 1 outputs a witness
component, a greatest fixed point may still exist (and be found by other means).
An example is a semiring over the reals which can admit the sequence 1/2n for
some variable. This sequence converges to 0, but Kleene’s iteration fails to detect
this. Nevertheless, for some semirings like Sint used in our applications, we can
make the following stronger statement.

Corollary 1. Algorithm 1 applied to polynomials over the semiring Sint finds
the greatest fixed point iff it exists. If it does not exist, all witness components
can be explicitly marked.

Proof. In Sint a component is a witness component iff Kleene’s iteration does not
terminate in that component. The rest follows from Definition 4, Proposition 1
and Remark 1. %&

3 Weighted Pushdown Systems

In this section we will use the fixed-point equations studied in the previous sec-
tion for reasoning about properties of weighted pushdown systems (WPDS) [20].
We are interested in applying Theorem 1 to weighted pushdown systems; there-
fore we implicitly consider only semirings that are totally ordered, and where
extend preserves inequality.

Definition 5 (Weighted Pushdown System). A weighted pushdown system
is a 4-tuple W = (P, Γ,∆,S), where P is a finite set of control states, Γ is a
finite stack alphabet, ∆ ⊆ (P × Γ)×D × (P × Γ ∗) is a finite set of rules, and
S = (D,⊕,⊗, 0, 1) is an idempotent semiring.

We write pX
d
↪→ qα whenever r = (p,X, d, q, α) ∈ ∆ and call d the weight of r,

denoted by dr. We consider only rules where |α| ≤ 2. (It is well-known that every
WPDS can be translated into a one that obeys this restriction and is larger by
only a constant factor, see, e.g., [21]. The reduction preserves reachability.) We
let the symbols X,Y, Z range over Γ and α, β, γ range over Γ ∗.

Interprocedural Dataflow Analysis over Weight Domains 447

Example 4. As a running example in this section, we consider a weighted push-
down system over the semiring with both positive and negative integers as
weights, i.e. Wex = ({p, q}, {X,Y }, ∆ex,Sint), where ∆ex = {pX 1

↪→ qY, pX
1
↪→

pXY, pY
1
↪→ p, qY

−2
↪→ q}. %&

A configuration of a weighted pushdown system W is a pair pγ where p ∈ P
and γ ∈ Γ ∗. A transition relation⇒ on configurations is defined by pXγ

r⇒ qαγ

iff γ ∈ Γ ∗ and there exists r ∈ ∆, where r = (pX
d
↪→ qα). We annotate ⇒

with the rule r ∈ ∆ which was used to derive the conclusion. If there exists a
sequence of configurations c0, . . . , cn and rules r1, . . . , rn such that ci−1

ri⇒ ci for
all i = 1, . . . , n, then we write c0

σ⇒ cn, where σ := r1 . . . rn. The weight of σ is
defined as v(σ) = dr1 ⊗ · · · ⊗ drn . By definition v(ε) = 1.

Let c, c′ be two configurations and σ ∈ ∆∗ such that c
σ⇒ c′. We call c

a predecessor of c′ and c′ a successor of c. In the following, we will consider
the problem of computing the set of all predecessors pre∗(cf) and successors
post∗(cf) for a given configuration cf . Due to space limitations we provide the full
treatment only for the predecessors; the computation of successors is analogous
and it is provided in [12].

Let us fix a WPDS W and a target configuration cf , where cf = pf ε for some
control state pf . For any configuration c of W , we want to know the minimal
weight of a path from c to cf . If a path of minimal weight does not exist for
every c, we want to detect such a case. In our applications (see Section 4), this
situation usually indicates the existence of an error.

Remark 2. In the literature, it is more common to consider a regular set C of
target configurations. This problem, however, reduces to the one with only a
single target configuration cf . The reduction can be achieved by extending W
with additional ‘pop’ rules that simulate a finite automaton for C; the ‘pop’
rules will succeed in reducing the stack to cf iff they begin with a configuration
in C. For details, see [20], Section 3.1.1.

At an abstract level, we are interested in solutions for the following equation
system, in which each configuration c is represented by a variable [c]. Intuitively,
the greatest solution (if it exists) for the variable [c] will correspond to the
minimum (w.r.t. the combine operator) of accumulated weights over all paths
leading from the configuration c to cf .

[c] = I(c)⊕
⊕
c

r⇒c′
(dr ⊗ [c′]), where I(c) :=

{
1 if c = cf

0 otherwise
(1)

Let us consider the Kleene sequence (κ(k))k∈N for (1). By κ
(k)
[c] we denote the

entry for configuration c in the k-th iteration of the Kleene sequence.

Lemma 2. For k ≥ 1 and any configuration c, the following holds

κ
(k)
[c] =

⊕
{ v(σ) | c σ⇒ cf , |σ| < k } .

448 M. Kühnrich et al.

Thus, [c] is a witness component of (1) iff no path of minimal weight exists,
because it is possible to construct longer and longer paths with smaller and
smaller weights. On the other hand, if (1) has a greatest fixed point, then the
fixed point at [c] gives the combine of the weights of all sequences leading from
c to cf , commonly known as the meet-over-all-paths. However, (1) defines an
infinite system of equations, which we cannot handle directly. In the following,
we shall derive a finite system of equations, from which we can determine the
greatest fixed point of (1) or the existence of a witness component.

Definition 6 (Pop Sequence). Let p, q be control states and X be a stack
symbol. A pop sequence for p,X, q is any sequence σ ∈ ∆∗ such that pX

σ⇒ qε.

Let us consider the following polynomial equation system, in which the variables
are triples [pXq], where p, q are control states and X a stack symbol:

[pXq] =
⊕

(pX
d
↪→qε)∈∆

d ⊕
⊕

(pX
d
↪→rY)∈∆

(
d⊗ [rY q]

)
⊕
⊕

(pX
d
↪→rY Z)∈∆

(
d⊗
⊕
s∈P

(
[rY s]⊗ [sZq]

))
. (2)

Intuitively, Equation (2) lists all the possible ways in which a pop sequence for
p,X, q can be generated and computes the values accumulated along each of
them.

Example 5. Let us consider the WPDS Wex from Example 4. Here, the scheme
presented in (2) yields a system with eight variables and equations, four of which
are reproduced below.

[pXp] = min{1 + [qY p], 1 + [pXp] + [pY p], 1 + [pXq] + [qY p]} [pY p] = 1
[pXq] = min{1 + [qY q], 1 + [pXp] + [pY q], 1 + [pXq] + [qY q]} [qY q] = −2

Notice that the other four variables would be simply assigned to the 0 element,
in this case ∞. %&

We now examine the Kleene sequence (κ(k))k∈N for (2).

Lemma 3. For any k ≥ 1, control states p, q, and stack symbol X,⊕
{ v(σ) | c σ⇒ cf , |σ| ≤ 2k−1 } � κ

(k)
[pXq] �

⊕
{ v(σ) | c σ⇒ cf , |σ| ≤ k − 1 } .

Thus, [pXq] is a witness component of (2) iff no minimal-weight pop sequence
exists for p,X, q. On the other hand, if no witness component exists, then the
value of [pXq] in the greatest fixed point denotes the combine of the weights of
all pop sequences for p,X, q.

We now show how (2) can be used to derive statements about (1). Let a
configuration c = pX1 . . .Xn be a predecessor of cf . Then any sequence σ leading
from c to cf can be subdivided into subsequences σ1, . . . , σn and there exist states
p =: p0, p1, . . . , pn−1, pn := pf such that σi is a pop sequence for pi−1, Xi, pi, for
all i = 1, . . . , n. As a consequence, we can obtain a solution for (1) from a solution

Interprocedural Dataflow Analysis over Weight Domains 449

for (2): suppose that λ is the greatest fixed point of (2), and let µ be a vector
of configurations as follows:

µ[c] =
⊕

p1,...,pn−1

(
λ[pX1p1] ⊗ · · · ⊗ λ[pn−1Xnpf]

)
, for c = pX1 . . . Xn . (3)

It is easy to see that (3) “sums up” all possible paths from c to cf , and therefore
yields the meet-over-all-paths for c. Thus, µ is a solution (greatest fixed point)
of (1). On the other hand, if (1) has a witness component, then (2) must also
have one.

Theorem 2. Applying Algorithm 1 to (2) either yields a witness component or,
via (3), the greatest fixed point of (1).

Example 6. Once again, consider Wex from Example 4 and the equation system
from Example 5. Here, the Kleene sequence quickly converges to the values 1 for
[pY p], −2 for [qY q], and ∞ for all other variables except [pXq], which turns
out to be a witness component of (2). Indeed, one can construct a series of pop
sequences for p,X, q with smaller and smaller weights, e.g. pX

1⇒ qY
−2⇒ qε,

and pX
1⇒ pXY

1⇒ qY Y
−2⇒ qY

−2⇒ qε, and etc. with weights −1, −2 etc. If
cf = qε, this implies that, e.g., pX is a witness component of (1). On the other
hand, qY or qY Y would not be a witness components, because their values in
(3), would not be affected by the variable [pXq] and evaluate to −2 and −4,
respectively. %&

Remark 3. The size of the equation system (2) is polynomial inW . Notice that it
makes sense to generate equations only for such triples p,X, q in which pX occurs
on the left-hand side or right-hand side of some rule. Under this assumption, the
number of equations in (2) is O(|P | · |∆|), and its overall size is O(|P |2 · |∆|),
the same complexity as in the algorithms for computing predecessors in [3].
According to Theorem 1, Algorithm 1 therefore runs inO(|P |3 ·|∆|2) time on (2).
For any configuration c of interest, the value µc in (3) can be easily obtained
from the result of Algorithm 1. See also the W-automaton technique in the
subsection to follow. A similar conclusion about the complexity of the algorithm
for computing successors can be drawn thanks to the (linear) connection between
forward and backward reachability analysis described in [12].

3.1 Weighted Automata

For (unweighted) pushdown systems, it is well-known that reachability preserves
regularity; in other words, given a regular set of configurations, the set of all pre-
decessors resp. successors is regular. Moreover, given a finite automaton recogniz-
ing a set of configurations, automata recognizing the predecessors or successors
can be constructed in polynomial time (see, e.g., [3]).

It is also known that the results carry over to weighted pushdown systems
provided that the semiring is bounded, i.e., there are no infinite descending chains
w.r.t. � [20]. For this purpose, so-called weighted automata are employed.

450 M. Kühnrich et al.

Definition 7 (Weighted W-Automaton). Let W = (P, Γ,∆,S) be a push-
down system over a bounded semiring S. A W-automaton is a 5-tuple A =
(Q,Γ,→, P, F) where Q is a finite set of states, → ⊆ Q× Γ ×D×Q is a finite
set of transitions, P ⊆ Q, i.e. the control states of W, are the set of initial
states and F ⊆ Q is a set of final (accepting) states.

Let π = t1 . . . tn be a path in A, where ti = (qi, Xi, di, qi+1) for all 1 ≤ i ≤ n.
The weight of π is defined as v(π) := d1 ⊗ · · · ⊗ dn. If q1 ∈ P and qn+1 ∈ F ,
then we say that π accepts the configuration q1X1 . . . Xn. Moreover, if c is a
configuration, we define vA(c) as the combine of all v(π) such that π accepts c.
In this case, we also say that A accepts c with weight vA(c).

In [20] the following problem is considered for the case of bounded semirings:
compute a W-automaton A such that vA(c) equals the meet-over-all-paths (or
equivalently the greatest fixed point of (1), which always exists for bounded
semirings) from c to cf , for every configuration c.

We extend this solution to the case of unbounded semirings, using Theorem 2.
We first apply Algorithm 1 to the equation system (2). If the algorithm yields the
greatest fixed point, then we construct a W-automaton A = (P, Γ,→, P, {cf}),
with (p,X, d, q) ∈ → for all p,X, q such that d is the value of [pXq] in the
greatest fixed point computed by Algorithm 1. Given a configuration c, it is easy
to see that vA(c) yields the same result as in (3).

Example 7. The automaton arising from Example 6 is depicted below where the
witness component is marked by ⊥ and transitions with the value∞ are omitted
completely.

p q
X,⊥

Y, 1 Y,−2

%&

The problem of computing successors is also considered in [20], i.e., comput-
ing a W-automaton A where vA(c) is the meet-over-all-paths from an initial
configuration c0 to c. Using our technique, this result can also be extended to
unbounded semirings; [12] shows an equation system for this problem, which can
be converted into a W-automaton for post∗(c0) in analogous fashion.

4 Applications

Here we outline some applications of the theory developed in this paper. Unless
stated otherwise, we will consider the semiring Sint as described in Example 1.
Following Remark 1 and Corollary 1, we assume that all nonterminating compo-
nents can be detected in this semiring and the corresponding transitions in the
W-automaton will be assigned the value ⊥. The terminating components resp.
the corresponding transitions in the W-automaton take the computed value.

Note that the previously known approaches to reachability in weighted push-
down automata are not applicable to any of the below presented cases because

Interprocedural Dataflow Analysis over Weight Domains 451

they required the semiring to be bounded (no infinite descending chains). Bound-
edness is, however, not satisfied in any of our applications. Our first two applica-
tions are new and we are not aware of any other algorithms that could achieve the
same results. Our third application deals with shape-balancedness of context-free
languages, a problem for which an algorithm was recently described in [24].

Memory Allocations in Linux Kernel. Correct memory allocation and dealloca-
tion is crucial for the proper functionality of an operating system. In Linux the
library linux/gfp.h is used for allocation and deallocation of kernel memory
pages via the functions alloc pages and free pages respectively. The func-
tions which are argumented with a number n (also called the order) allocate or
deallocate 2n memory pages. Citing [16, page 187]:“You must be careful to free
only pages you allocate. Passing the wrong struct page or address, or the incor-
rect order, can result in corruption.” This means that a basic safety requirement
is: never free more pages than what are allocated.

As most questions about real programs are in general undecidable, several
techniques have been suggested to provide more tractable models. For example
so-called boolean programs [2] have recently been used to provide a suitable
abstraction via pushdown systems. Assume a given pushdown system abstraction
resulting from the program code. The transitions in the pushdown system are
labelled with the programming primitives, among others the ones for allocation
and deallocation of memory pages. If a given pushdown transition allocates 2n

memory pages, we assign it the weight 2n; if it deallocates 2n pages, we assign
it the weight −2n; in all other cases the weight is set to 0.

Now the pushdown abstraction corrupts the memory iff a configuration is
reachable from the given initial configuration pX with negative weight. As shown
in Section 3, we can in polynomial time (w.r.t. to the input pushdown systemW)
construct a W-automaton A for post∗({pX}). For technical convenience, we
first replace all occurrences of ⊥ in A with −∞. From all initial control-states
of A we now run e.g. the Bellman-Ford shortest path algorithm (which can
detect negative cycles and assign the weight to −∞ should there be such) to
check whether there is a path going to some accept state with an accumulated
negative weight. This is doable in polynomial time. If a negative weight path
is found this means that the corresponding configuration is reachable with a
negative weight, hence there is a memory corruption (at least in the pushdown
abstraction). Otherwise, the system is safe. All together our technique gives a
polynomial time algorithm for checking memory corruption with respect to the
size of the abstracted pushdown system. Also depending on whether under- or
over-approximation is used in the abstraction step, our technique can be used
for detecting errors or showing the absence of them, respectively.

Correspondence Assertions. In [25] Woo and Lam analyze protocols using the
so-called correspondences between protocol points. A correspondence property
relates the occurrence of a transition to an earlier occurrence of some other
transition. In sequential programs (modelled as pushdown systems) assume that
assertions of the form begin � and end � (where � is a label taken from a finite

452 M. Kühnrich et al.

set of labels) are inserted by the programmer into the code. The program is safe
if for each reachable end � there is a unique corresponding begin � at an earlier
execution point of the program. Verifying safety via correspondence assertions
can be done using a similar technique as before. For each label � we create a
WPDS based on the initially given boolean program abstraction where every
instruction begin � has the weight +1, every instruction end � the weight −1,
and all other instructions have the weight 0. Now the pushdown system is safe if
and only if every reachable configuration has nonnegative accumulated weight.
This can be verified in polynomial time as outlined above.

Shape-Balancedness of Context-Free Languages. In static analysis of programs
generating XML strings and in other XML-related questions, the balancedness
problem has been recently studied (see e.g. [1,11,17]). The problem is, given
a context-free language with a paired alphabet of opening and closing tags, to
determine whether every word in the language is properly balanced (i.e. whether
every opening tag has a corresponding closing tag and vice versa). Tozawa and
Minamide [24] recently suggested a polynomial time algorithm for the problem.
Their involved algorithm consists of two stages. In the first stage they test for the
shape-balancedness property, i.e., if all opening and all closing tags are treated
as of the same sort, is every accepted word balanced? Assume a given pushdown
automaton accepting (by final control-states) the given context-free language. If
we label all opening tags with weight +1 and all closing tags with weight −1, the
shape-balancedness question is equivalent to checking (i) whether every accepted
word has the weight equal to 0 and (ii) whether all configurations on every path
to some final control-state have nonnegative accumulated weights. Our generic
technique provides polynomial time algorithms to answer these questions.

To verify property (i), we first consider the semiring Sint = (Z∞,min,+,∞, 0).
We now construct in polynomial time for the given initial configuration pX a
weighted post∗({pX}) W-automaton A, replace all labels ⊥ with −∞, and for
each final control-state q (of the pushdown automaton) we find in A a shortest
path from q to every accept state of A. This can be done in polynomial time
using e.g. the Bellman-Ford shortest path algorithm, which can moreover detect
negative cycles and set the respective shortest path to −∞. If any of the shortest
paths are different from 0, we terminate because the shape-balancedness property
is broken. If the system passes the first test, we run the same procedure once
more but this time with the semiring (Z∪{−∞},max,+,−∞, 0) and where ⊥ is
replaced with ∞, i.e., we are searching for the longest path in the automaton A.
Again if at least one of those paths has the accumulated weight different from 0,
we terminate with a negative answer. If the pushdown system passes both our
tests, this means that any configuration in the set post∗({pX}) starting with
some final control-state (of the pushdown automaton) is reachable only with the
accumulated weight 0 and we can proceed to verify property (ii).

For (ii), we construct the weighted post∗({pX})W-automaton for the integer
semiring Sint. Now we restrict the automaton to contain only those configura-
tions that can really involve into some accepting configuration by simply inter-
secting it (by the usual product construction) with the unweightedW-automaton

Interprocedural Dataflow Analysis over Weight Domains 453

(of polynomial size) representing pre∗((q1 + · · ·+ qn)Γ ∗) where q1, . . . , qn are all
final control-states and Γ is the stack alphabet. Property (ii) now reduces to
checking whether the product automaton accepts some configuration with neg-
ative weight, which can be answered in polynomial time using the technique
described in our first application.

Unfortunately, [24] provides no complexity analysis other than the state-
ment that the algorithm is polynomial. Our general-purpose algorithm, on the
other hand, immediately provides a precise complexity bound. Consider a given
context-free grammar of size n over some paired alphabet. It can be (by the stan-
dard textbook construction) translated into a (weighted) pushdown automaton
of size O(n) and moreover with a constant number of states. As mentioned in
Section 3, this automaton can be normalized in linear time and we can then
build a weighted post∗({pX})W-automaton, of size O(n2) with O(n) states and
in time O(n4). Details can be found in [12]. Now running the Bellman-Ford al-
gorithm twice in order to verify property (i) takes only O(n3) time. In property
(ii) the Bellman-Ford algorithm is run on a product of the weighted post∗ au-
tomaton and an unweighted pre∗ automaton, which has only a constant number
states. Hence the size of the product is still O(n2) and Bellman-Ford algorithm
will run in time O(n3) as before. This gives the total running time of O(n4).

5 Conclusion

We presented a unified framework how to deal with interprocedural dataflow
analysis on weighted pushdown automata where the weight domains might con-
tain infinite descending chains. The problem was solved by reformulating it via
generalized fixed-point equations which required polynomials of degree two. To
the best of our knowledge this is the first approach that enables to handle this
kind of domains. On the other hand, we do not consider completely general
idempotent semirings as we require that the elements in the domain are totally
ordered and that extend preserves inequality. Nevertheless, we showed that our
theory is still applicable. Already the reachability analysis of weighted pushdown
automata over the integer semiring, one particular instance of our general frame-
work, was not known before and we provided several examples of its potential
use in verification.

Regarding the two restrictions we introduced, we claim that the first condi-
tion of total ordering can be relaxed to orderings of bounded width, where the
maximum number of incomparable elements is bounded by some a priori given
constant c. By running the main loop in Algorithm 1 cn + 1 times, we should
be able to detect nontermination also in this case. The motivation for introduc-
ing bounded width comes from the fact that this will allow us to combine (via
the product construction) one unbounded domain, like e.g. the integer semiring,
with a fixed number of finite domains in order to observe additional properties
along the computations. Whether also the second restriction (extend preserves
inequality) can be relaxed remains open and is a part of our future work.

454 M. Kühnrich et al.

References

1. Berstel, J., Boasson, L.: Formal properties of XML grammars and languages. Acta
Informatica 38(9), 649–671 (2002)

2. Bouajjani, A., Esparza, J.: Rewriting models of boolean programs. In: Pfenning,
F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 136–150. Springer, Heidelberg (2006)

3. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model
checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000)

4. Esparza, J., Kiefer, S., Luttenberger, M.: An extension of Newton’s method to ω-
continuous semirings. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007.
LNCS, vol. 4588, pp. 157–168. Springer, Heidelberg (2007)

5. Esparza, J., Kiefer, S., Luttenberger, M.: On fixed point equations over commu-
tative semirings. In: Stephanidis, C., Pieper, M. (eds.) ERCIM Ws UI4ALL 2006.
LNCS, vol. 4397, pp. 296–307. Springer, Heidelberg (2007)

6. Esparza, J., Kiefer, S., Luttenberger, M.: Newton’s method for ω-continuous semir-
ings. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir,
A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 14–26.
Springer, Heidelberg (2008)

7. Esparza, J., Kiefer, S., Schwoon, S.: Abstraction refinement with Craig interpola-
tion and symbolic pushdown systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS
2006. LNCS, vol. 3920, pp. 489–503. Springer, Heidelberg (2006)

8. Gawlitza, T., Seidl, H.: Precise fixpoint computation through strategy iteration. In:
De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 300–315. Springer, Heidelberg
(2007)

9. Hopkins, M.W., Kozen, D.: Parikh’s theorem in commutative Kleene algebra. In:
Proc. LICS, pp. 394–401. IEEE, Los Alamitos (1999)

10. Jha, S., Schwoon, S., Wang, H., Reps, T.: Weighted pushdown systems and trust-
management systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, pp. 1–26. Springer, Heidelberg (2006)

11. Kirkegaard, C., Møller, A.: Static Analysis for Java Servlets and JSP. In: Yi, K.
(ed.) SAS 2006. LNCS, vol. 4134, pp. 336–352. Springer, Heidelberg (2006)

12. Kühnrich, M., Schwoon, S., Srba, J., Kiefer, S.: Interprocedural dataflow analy-
sis over weight domains with infinite descending chains. Technical report (2009),
http://arxiv.org/abs/0901.0501

13. Kuich, W.: Semirings and Formal Power Series: Their Relevance to Formal Lan-
guages and Automata. In: Handbook of Formal Languages, ch.9, vol. 1, pp. 609–
677. Springer, Heidelberg (1997)

14. Lal, A., Lim, J., Polishchuk, M., Liblit, B.: Path optimization in programs and its
application to debugging. In: Sestoft, P. (ed.) ESOP 2006. LNCS, vol. 3924, pp.
246–263. Springer, Heidelberg (2006)

15. Leroux, J., Sutre, G.: Accelerated data-flow analysis. In: Riis Nielson, H., Filé, G.
(eds.) SAS 2007. LNCS, vol. 4634, pp. 184–199. Springer, Heidelberg (2007)

16. Love, R.: Linux Kernel Development, 2nd edn. Novell Press (2005)
17. Minamide, Y., Tozawa, A.: XML validation for context-free grammars. In:

Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279, pp. 357–373. Springer, Heidel-
berg (2006)

18. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999)

http://arxiv.org/abs/0901.0501

Interprocedural Dataflow Analysis over Weight Domains 455

19. Reps, T., Lal, A., Kidd, N.: Program analysis using weighted pushdown systems. In:
Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 23–51. Springer,
Heidelberg (2007)

20. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their
application to interprocedural dataflow analysis. SCP 58(1–2), 206–263 (2005)

21. Schwoon, S.: Model-Checking Pushdown Systems. PhD thesis, TU Munich (2002)
22. Sharir, M., Pnueli, A.: Two Approaches to Interprocedural Data Flow Analysis. In:

Program Flow Analysis: Theory and Applications, ch.7, pp. 189–233. Prentice-Hall,
Englewood Cliffs (1981)

23. Suwimonteerabuth, D., Berger, F., Schwoon, S., Esparza, J.: jMoped: A test envi-
ronment for Java programs. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 164–167. Springer, Heidelberg (2007)

24. Tozawa, A., Minamide, Y.: Complexity results on balanced context-free languages.
In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 346–360. Springer, Hei-
delberg (2007)

25. Woo, T.Y.C., Lam, S.S.: A semantic model for authentication protocols. In: Proc.
SP, pp. 112–118. IEEE, Los Alamitos (1993)

Realizability Semantics of
Parametric Polymorphism, General References,

and Recursive Types

Lars Birkedal, Kristian Støvring, and Jacob Thamsborg

IT University of Copenhagen, Rued Langgaards Vej 7,
2300 Copenhagen S, Denmark

Abstract. We present a realizability model for a call-by-value, higher-
order programming language with parametric polymorphism, general
first-class references, and recursive types. The main novelty is a relational
interpretation of open types (as needed for parametricity reasoning) that
include general reference types. The interpretation uses a new approach
to modeling references.

The universe of semantic types consists of world-indexed families of
logical relations over a universal predomain. In order to model general
reference types, worlds are finite maps from locations to semantic types:
this introduces a circularity between semantic types and worlds that
precludes a direct definition of either. Our solution is to solve a recursive
equation in an appropriate category of metric spaces. In effect, types are
interpreted using a Kripke logical relation over a recursively defined set
of worlds.

We illustrate how the model can be used to prove simple equivalences
between different implementations of imperative abstract data types.

1 Introduction

In this article we develop a semantic model of a call-by-value programming
language with impredicative and parametric polymorphism, general first-class
references, and recursive types. Motivations for conducting this study include:

– Extending the approach to reasoning about abstract data types via relational
parametricity from pure languages to more realistic languages with effects,
here general references. We discussed this point of view extensively earlier [8].

– Investigating what semantic structures are needed in general models for ef-
fects. Indeed, we see the present work as a pilot study for studying general
type theories and models of effects (e.g., [12, 19]), in which we identify key
ingredients needed for semantic modeling of general first-class references.

– Paving the way for developing models of separation logic for ML-like lan-
guages with reference types. Earlier such models of separation logic [16] only
treat so-called strong references, where the type on the contents of a refer-
ence cell can vary: therefore proof rules cannot take advantage of the strong
invariants provided by ML-style reference types.

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 456–470, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Parametric Polymorphism, General References, and Recursive Types 457

We now give an overview of the conceptual development of the paper. The
development is centered around three recursively defined structures, defined in
three stages. In slogan form, there is one recursively defined structure for each
of the type constructors ∀, ref, and µ alluded to in the title.

First, since the language involves impredicative polymorphism, the semantic
model is based on a realizability interpretation [4] over a certain recursively de-
fined predomain V . Using this predomain we can give a denotational semantics
of an untyped version of the language. This part is mostly standard, except for
the fact that we model locations as pairs (l, n), with l a natural number corre-
sponding to a standard location and n ∈ N∪{∞} indicating the “approximation
stage” of the location [8]. These pairs, called semantic locations, are needed for
modeling reference types in stage three.1

Second, to account for dynamic allocation of typed reference cells, we follow
earlier work on modeling simple integer references [7] and use a Kripke-style
possible worlds model. Here, however, the set of worlds needs to be recursively
defined since we treat general references. Semantically, a world maps locations
to semantic types, which, following the general realizability idea, are certain
world-indexed families of relations on V : this introduces a circularity between
semantic types and worlds that precludes a direct definition of either. Thus we
need to solve recursive equations of approximately the following form

W = N0 ⇀fin T
T =W → CURel(V)

even in order to define the space in which types will be modeled. We formally
define the recursive equations in certain ultrametric spaces and show how to solve
them using known results from metric-space based semantics. The employed
metric on relations on V is well-known from work on interpreting recursive types
and impredicative polymorphism [1, 4, 5, 10, 13]; here we extend its use to
reference types (combined with these two other features).

Third, having now defined the space in which types should be modeled, the
actual semantics of types can be defined. For recursive types, that also involves
a recursive definition. Since the space T of semantic types is a metric space
we can employ Banach’s fixed point theorem to find a solution as the fixed
point of a contractive operator on T .2 This involves interpreting the various
type constructors of the language as non-expansive operators. For most type
constructors doing so is straightforward, but for the reference-type constructor

1 Intuitively, the problem with modeling locations using a flat cpo of natural numbers
is that such “flat” locations contain no approximation information that can be used
to define relations by induction. (See page 466.)

2 We remark that the fixed point could also be found using the technique of Pitts [18];
the proof techniques are very similar because of the particular way the requisite met-
rics are defined. In this article we do in any case need the metric-space formulation,
but not the extra separation of positive and negative arguments in recursive defini-
tions of relations, and hence we define the meaning of recursive types via Banach’s
fixed point theorem.

458 L. Birkedal, K. Støvring, and J. Thamsborg

it is not. That is the reason for introducing the semantic locations mentioned
above: using these, we can define a semantic reference-type operator (and show
that it is non-expansive).

Finally, having now defined semantics of types using a family of world-indexed
logical relations, we define the typed meaning of terms by proving the funda-
mental theorem of logical relations wrt. the untyped semantics of terms.

In this article we do not consider operational semantics but focus on present-
ing the model outlined above. We have earlier shown a computational-adequacy
result for a semantics similar to the untyped semantics defined in stage one [8]: we
expect that result to carry over to the present setup. Also, the model does not val-
idate standard equivalences involving local state,3 although we expect that it can
be extended to do so (see Section 6). Here we rather aim to present the fundamen-
tal ideas behind Kripke logical relations over recursively defined sets of worlds.

The remainder of the article is organized as follows. Section 2 sketches the lan-
guage we consider. In Section 3 we present the untyped semantics, corresponding
to stage one in the outline above. In Section 4 we present the typed semantics,
corresponding to the last two stages. In Section 5 we present a few examples of
reasoning using the model. Related work is discussed in Section 6.

Because of space limitations, some definitions and most proofs have been
omitted from this article. They can be found in the long version, available from
the authors’ web pages.4

2 Language

We consider a standard call-by-value language with universal types, iso-recursive
types, ML-style reference types, and a ground type of integers. The language is
sketched in Figure 1. Terms are not intrinsically typed; this allows us to give a
denotational semantics of untyped terms. The typing rules are standard [17]. In
the figure, Ξ and Γ range over contexts of type variables and term variables,
respectively. As we do not consider operational semantics in this article, there is
no need for location constants, and hence no need for store typings.

3 Untyped Semantics

We now give a denotational semantics for the untyped term language above. As
usual for models of untyped languages, the semantics is given by means of a
“universal” complete partial order (cpo) in which one can inject integers, pairs,
functions, etc. This universal cpo is obtained by solving a recursive predomain
equation. The only non-standard aspect of the semantics is the treatment of
store locations: locations are modeled as elements of the cpo Loc = N0 × ω
where ω is the “vertical natural numbers” cpo: 1 � 2 � · · · � n � · · · �∞. (For
notational reasons it is convenient to call the least element 1 rather than 0.) The

3 The model can only equate computations that allocate references “in lockstep”.
4 Currently: http://www.itu.dk/people/kss/papers/poly-ref-rec.pdf

http://www.itu.dk/people/kss/papers/poly-ref-rec.pdf

Parametric Polymorphism, General References, and Recursive Types 459

Types: τ ::= int | 1 | τ1 × τ2 | τ1 + τ2 | τ1 → τ2 | µα.τ | ∀α.τ | α | ref τ

Terms: t ::= x | n | ifz t0 t1 t2 | t1 + t2 | t1 − t2 | () | (t1, t2) | fst t | snd t

| inl t | inr t | case t0 x1.t1 x2.t2 | λx.t | fix f.λx.t | t1 t2

| fold t | unfold t | Λα.t | t [τ] | ref t | !t | t1 := t2

Sample typing rules:

Ξ | Γ � t : τ [µα.τ/α]
Ξ | Γ � fold t : µα.τ

Ξ | Γ � t : µα.τ

Ξ | Γ � unfold t : τ [µα.τ/α]

Ξ, α | Γ � t : τ

Ξ | Γ � Λα.t : ∀α.τ
(Ξ � Γ)

Ξ | Γ � t : ∀α.τ0

Ξ | Γ � t [τ1] : τ0[τ1/α]
(Ξ � τ1)

Ξ | Γ � t : τ

Ξ | Γ � ref t : ref τ

Ξ | Γ � t : ref τ

Ξ | Γ � ! t : τ

Ξ | Γ � t1 : ref τ Ξ | Γ � t2 : τ

Ξ | Γ � t1 := t2 : 1

Fig. 1. Programming language

intuitive idea is that locations can be approximated: the element (l,∞) ∈ Loc is
the “ideal” location numbered l, while the elements of the form (l, n) for n �= ∞
are its approximations. It is essential for the construction of the typed semantics
(in the next section) that these “approximate locations” (l, n) are included.

Let in the following Cpo be the category of ω-cpos and ω-continuous functions.
We use the standard notation for products, sums, lifting, and function spaces in
Cpo. Injections into binary sums are written ι1 and ι2. For any set M and any
cpo A, the cpo M ⇀fin A has maps from finite subsets of M to A as elements,
and is ordered as follows: f � f ′ if and only if f and f ′ has the same domain
M0 and f(m) � f ′(m) for all m ∈ M0. The Kleisli composition g ◦ f of two
continuous functions f : A → B⊥ and g : B → C⊥ is given by (g ◦ f)(a) = g b
if f a = 'b(for some b, and (g ◦ f)(a) = ⊥ otherwise. A complete, pointed
partial order (cppo) is a cpo containing a least element. The least fixed-point of
a continuous function f : D → D from a cppo D to itself is written fix f .

The semantics below is presented in monadic style [15], i.e., structured using
a monad that models the effects of the language. It is most convenient to define
this monad by means of a Kleisli triple: for every cpo S and every cppo Ans, the
continuation-and-state monad TS,Ans : Cpo → Cpo over S and Ans is given by
TS,Ans A = (A → S → Ans) → S → Ans , ηA a = λk.λs. k a s, and c �A,B f =
λk.λs. c (λa.λs′.f a k s′) s (with ηA : A→ TS,AnsA and �A,B : TS,AnsA→ (A→
TS,AnsB) → TS,AnsB.) In the following we omit the type subscripts on η and �.5

5 Continuations are included for a technical reason, namely to ensure chain-
completeness of the relations that will be used to model computations.

460 L. Birkedal, K. Støvring, and J. Thamsborg

The standard methods for solving recursive (pre)domain equations give so-
lutions that satisfy certain induction principles [18, 21]. One aspect of these
induction principles is that, loosely speaking, one obtains as a solution not only
a cpo A, but also a family of “projection” functions �n on A (one function for
each n ∈ ω) such that each element a of A is the limit of its projections �0(a),
�1(a), etc. These functions therefore provide a handle for proving properties
about A by induction on n.

Definition 1. A uniform cpo (A, (�n)n∈ω) is a cpo A together with a family
(�n)n∈ω of continuous functions from A to A⊥, satisfying

�0 = λe.⊥
�0 � �1 � · · · � �n � . . .⊔

n∈ω
�n = λa.'a(

�m ◦ �n = �n ◦ �m = �min(m,n) .

We are now ready to construct a uniform cpo (V, (πn)n∈ω) such that V is
a suitable “universal” cpo. The functions πn will be used in the definition of
the untyped semantics. Intuitively, if one for example looks up the approximate
location (l, n+1) in a store s, one only obtains the approximate element πn(s(l))
as a result.

Proposition 2. There exists a uniform cpo (V, (πn)n∈ω) satisfying the following
two properties:

1. The following isomorphism holds in Cpo:

V ∼= Z + Loc + 1 + (V × V) + (V + V) + (V → TS,AnsV)
+ V + TS,AnsV (1)

where TS,AnsV = (V → S → Ans) → S → Ans, S = N0 ⇀fin V , Ans =
(Z + Err)⊥, Loc = N0 × ω, and Err = 1.

2. Abbreviate TV = TS,AnsV and K = V → S → Ans. Define the following
injection functions corresponding to the summands on the right-hand side of
the isomorphism (1):

inZ : Z → V in+ : V + V → V

inLoc : Loc → V in→ : (V → TV)→ V

in1 : 1 → V inµ : V → V

in× : V × V → V in∀ : TV → V

With that notation, the functions πn : V → V⊥ satisfy (and are determined
by) the equations shown in Figure 2.

These two properties determine V uniquely, up to isomorphism in Cpo.

Parametric Polymorphism, General References, and Recursive Types 461

π0 = λv.⊥
πn+1(inZ(m)) = inZ(m)!
πn+1(in1(∗)) = in1(∗)!

πn+1(inLoc(l,∞)) = inLoc(l, n + 1)!
πn+1(inLoc(l, m)) = inLoc(l, min(n + 1, m))!

πn+1(in×(v1, v2)) =
{ in×(v′

1, v
′
2)! if πn v1 = v′

1! and πn v2 = v′
2!

⊥ otherwise

πn+1(in+(ιi v)) =
{ in+(ιi v′)! if πn v = v′!

⊥ otherwise
(i = 1, 2)

πn+1(inµ v) =
{ inµ v′! if πnv = v′!

⊥ otherwise

πn+1(in∀ c) = in∀(πT
n+1 c)!

πn+1(in→ f) =
⌊
in→

(
λv.

{
πT

n+1 (f v′) if πn v = v′!
⊥ otherwise

)⌋
Here the functions πS

n : S → S⊥ and πK
n : K → K and πT

n : TV → TV are defined as
follows:

πS
0 = λs.⊥ πK

0 = λk.⊥ πT
0 = λc.⊥

πS
n+1(s) =

{ s′! if πn ◦ s = λl. s′(l)!
⊥ otherwise

πK
n+1(k) = λv.λs.

{
k v′ s′ if πn v = v′! and πS

n+1 s = s′!
⊥ otherwise

πT
n+1(c) = λk.λs.

{
c (πK

n+1 k) s′ if πS
n+1 s = s′!

⊥ otherwise .

Fig. 2. Characterization of the projection functions πn : V → V⊥

Proof (sketch). By modifying the usual projection functions, obtained from a
minimal-invariant solution of (1), on arguments corresponding to locations. %&

From here on, let V and (πn)n∈ω be as in the proposition above. We furthermore
use the abbreviations, notation for injections, etc. introduced in the proposition;
in particular, TV = (V → S → Ans) → S → Ans. Additionally, abbreviate
λl = inLoc(l,∞) and λnl = inLoc(l, n). Let errorAns = 'ι2∗(∈ Ans be the “error
answer” and let error = λk.λs. errorAns ∈ TV be the “error computation”.

In order to model the three operations of the untyped language that involve
references, we define the three functions alloc : V → TV , lookup : V → TV ,
and assign : V → V → TV . The first two of these functions are shown in
the lower part of Figure 3. The third function, assign , is similar to lookup:
the idea is that when one assigns a value to an approximate location, only an
approximate value is inserted in the store. Notice that it would not suffice to
define, e.g., lookup(λn+1

l)(k)(s) = ⊥ for l ∈ dom(s), and hence avoid mentioning
the projection functions: lookup would then not be continuous.

We are now ready to define the untyped semantics.

462 L. Birkedal, K. Støvring, and J. Thamsborg

For every t with FV(t) ⊆ X, define the continuous �t�X : V X → TV by induction on t:

�x�X ρ = η(ρ(x))

�λx.t�X ρ = η(in→(λv. �t�X,x (ρ[x �→ v])))

�t1 t2�X ρ = �t1�X ρ � λv1. �t2�X ρ � λv2.

{
f v2 if v1 = in→ f
error otherwise

�Λα.t�X ρ = η(in∀ (�t�X ρ))

�t [τ]�X ρ = �t�X ρ � λv.

{
c if v = in∀ c
error otherwise

�ref t�X ρ = �t�X ρ � λv. alloc v

�! t�X ρ = �t�X ρ � λv. lookup v

�t1 := t2�X ρ = �t1�X ρ � λv1. �t2�X ρ � λv2. assign v1 v2
. . .

alloc v = λk λs. k (λfree(s)) (s[free(s) �→ v])

(where free(s) = min{n ∈ N0 | n /∈ dom(s)})

lookup v = λk λs.

⎧⎪⎪⎨⎪⎪⎩
k s(l) s if v = λl and l ∈ dom(s)
k v′ s if v = λn+1

l , l ∈ dom(s), and πn(s(l)) = v′!
⊥Ans if v = λn+1

l , l ∈ dom(s), and πn(s(l)) = ⊥
errorAns otherwise

Fig. 3. Untyped semantics of terms (sample cases)

Definition 3. Let t be a term and let X be a set of term variables such that
FV(t) ⊆ X. The untyped semantics of t with respect to X is the continuous
function �t�X : V X → TV defined by induction on t in Figure 3.

The semantics of a complete program is defined by supplying an initial contin-
uation and the empty store:

Definition 4. Let t be a term with no free term variables or type variables. The
program semantics of t is the element �t�p of Ans defined by �t�p =�t�∅ ∅ kinit sinit

where sinit ∈ S is the empty store and

kinit = λv.λs.

{
'ι1 m(if v = inZ(m)
errorAns otherwise.

We emphasize that even though the above semantics is slightly non-standard be-
cause of the use of the projection functions in lookup and assignment, we can still
use it to reason about operational behaviour: as mentioned in the Introduction
an earlier adequacy proof [8] should carry over to the present setting.

4 Typed Semantics

In this section we present a “typed semantics”, i.e., an interpretation of types
and typed terms. As described in the introduction, types will be interpreted as
world-indexed families of binary relations on the universal cpo V . Since worlds

Parametric Polymorphism, General References, and Recursive Types 463

depend on semantic types, the space of semantic types is obtained by solving
a recursive metric-space equation, i.e., by finding a fixed-point of a functor on
metric spaces.

4.1 Ultrametric Spaces

Recall that a metric space (X, d) is 1-bounded if d(x, y) ≤ 1 for all x and y
in X . Let CBUlt be the category with complete, 1-bounded ultrametric spaces
as objects and non-expansive (i.e., non-distance-increasing) functions as mor-
phisms [6]. This category is cartesian closed [22]; here one needs the ultrametric
inequality. The exponential (X1, d1) → (X2, d2) has the set of non-expansive
functions from (X1, d1) to (X2, d2) as the underlying set, and the “sup”-metric
dX1→X2 as distance function: dX1→X2 (f, g) = sup{d2(f(x), g(x)) | x ∈ X1}.

For a given non-empty, complete metric space, consider the function fix that
maps every contractive operator to its unique fixed-point (which exists by Ba-
nach’s fixed-point theorem). On complete ultrametric spaces, fix is non-expansive
in the following sense.

Proposition 5. Let (X, d) ∈ CBUlt be non-empty. For all contractive functions
f and g from (X, d) to itself, d(fix f,fix g) ≤ d(f, g).

4.2 The Space of Semantic Types

We now turn to constructing the space of semantic types. First, some standard
definitions. For every cpo A, let Rel(A) be the set of binary relations R ⊆ A×A
on A. A relation R ∈ Rel(A) is complete if for all chains (an)n∈ω and (a′n)n∈ω
such that (an, a

′
n) ∈ R for all n, also (&n∈ωan,&n∈ωa′n) ∈ R. Let CRel(A) be the

set of complete relations on A. For every cpo A and every relation R ∈ Rel(A),
define the relation R⊥ ∈ Rel(A⊥) by R⊥ = { (⊥,⊥) }∪{ ('a(, 'a′() | (a, a′) ∈ R }.
For R ∈ Rel(A) and S ∈ Rel(B), let R → S be the set of continuous functions
f from A to B satisfying that for all (a, a′) ∈ R, (f a, f a′) ∈ S.

On uniform cpos, we furthermore define uniform binary relations [1, 4]:

Definition 6. Let (A, (�n)n∈ω) be a uniform cpo. A relation R ∈ Rel(A) is uni-
form with respect to (�n)n∈ω if �n ∈ R→ R⊥ for all n. Let CURel(A, (�n)n∈ω)
be the set of binary relations on A that are complete and uniform with respect
to (�n)n∈ω.

Below we define a number of metric spaces that will be used in the interpretation
of types. After defining one of these metric spaces (X, d), the “distance function”
d will be fixed, so we usually omit it and call X itself a metric space.

Let in the following (A, (�n)n∈ω) be a uniform cpo and let CURel(A) =
CURel(A, (�n)n∈ω). First, as in Amadio [4], we obtain:

Proposition 7. The set CURel(A) is a complete, 1-bounded ultrametric space
with the distance function given by

d(R,S) =
{

2−max{n∈ω | �n∈R→S⊥ ∧ �n∈S→R⊥ } if R �= S
0 if R = S.

464 L. Birkedal, K. Støvring, and J. Thamsborg

We also need metrics on “worlds” and monotone functions from worlds:

Proposition 8. Let (X, d) ∈ CBUlt. The set N0 ⇀fin X of finite maps from
natural numbers to elements of X is a complete, 1-bounded ultrametric space
with the distance function given by

d′(∆,∆′) =
{

max {d(∆(l), ∆′(l)) | l ∈ dom(∆)} if dom(∆) = dom(∆′)
1 otherwise.

Definition 9. For every (X, d) ∈ CBUlt, define an “extension” ordering ≤ on
N0 ⇀fin X by ∆ ≤ ∆′ ⇐⇒ dom(∆) ⊆ dom(∆′) ∧ ∀l ∈ dom(∆). ∆(l) = ∆′(l).

Proposition 10. Let (X, d) ∈ CBUlt, and let (N0 ⇀fin X)→mon CURel(A) be
the set of functions ν from N0 ⇀fin X to CURel(A) that are both non-expansive
and monotone in the sense that ∆ ≤ ∆′ implies ν(∆) ⊆ ν(∆′). This set is a
complete, 1-bounded ultrametric space with the “sup”-metric, given by

d′(ν, ν′) = sup {d(ν(∆), ν′(∆)) | ∆ ∈ N0 ⇀fin X} .

Proof (sketch). It suffices to show that the set of monotone and non-expansive
functions is a closed subset of the (complete) metric space of all non-expansive
functions. To that end, one needs the following property: if R,S ∈ CURel(A)
satisfy that �n ∈ R→ S⊥ for all n, then R ⊆ S. %&

In the rest of this section we do not need the extra generality of uniform cpos:
recall that V is the cpo obtained from Proposition 2 and abbreviate CURel(V) =
CURel(V, (πn)n∈ω).

Proposition 11. The operation mapping each (X, d) ∈ CBUlt to the metric
space (N0 ⇀fin X) →mon CURel(V) (as given by the previous proposition) can
be extended to a functor F : CBUltop → CBUlt in the natural way.

Given (X, d) ∈ CBUlt and 0 < δ < 1 one defines δ · (X, d) ∈ CBUlt with the same
underlying set X but with all distances multiplied by δ.

Theorem 12. There exists a unique (up to isomorphism) complete, 1-bounded
ultrametric space T̂ such that the following isomorphism holds in CBUlt:

T̂ ∼= 1
2 ((N0 ⇀fin T̂)→mon CURel(V)) . (2)

Proof (sketch). By a well-known adaptation of the inverse-limit method [6, 20,
22] one can show that so-called locally contractive mixed-variance functors on
CBUlt have unique fixed-points up to isomorphism. The functor F defined in
the previous proposition is only locally non-expansive (i.e., non-expansive as a
function on each hom-set) so we use the standard method of multiplying F with
the “shrinking factor” δ = 1/2, thus obtaining a locally contractive functor. %&

Parametric Polymorphism, General References, and Recursive Types 465

4.3 Interpretation of Types

Let in the following T̂ be a complete, 1-bounded ultrametric space satisfying (2),
and let App : T̂ → 1

2 ((N0 ⇀fin T̂) →mon CURel(V)) be an isomorphism. For
convenience, we use the following abbreviations (where the names W and T are
intended to indicate “worlds” and “types”, respectively):

W = N0 ⇀fin T̂
T = W →mon CURel(V) .

With that notation, (2) expresses that T̂ is isomorphic to 1
2T . We choose T as

our space of semantic types.
We additionally define families of relations on “states” (elements of S), “con-

tinuations” (elements of K = V → S → Ans), and “computations” (ele-
ments of TV). First, (S, (πSn)n∈ω) is a uniform cpo; abbreviate CURel(S) =
CURel(S, (πSn)n∈ω). We then define

TS = W → CURel(S)

as the element of CBUlt obtained from Proposition 7 and the exponential in
CBUlt. (The elements of TS are non-expansive but not necessarily monotone func-
tions.) As for continuations and computations, one observes that (K, (πKn)n∈ω)
and (TV, (πTn)n∈ω) are “uniform cppos”, i.e., satisfy conditions similar to those
in Definition 1, but in the category of cppos and strict continuous functions (see
the long version of this article for the details). Using analogues of Definition 6
and Propositions 7 and 10 we obtain CURel(K) = CURel(K, (πKn)n∈ω) and
CURel(TV) = CURel(TV, (πTn)n∈ω) in CBUlt and define

TK = W →mon CURel(K)
TT = W →mon CURel(TV) .

In all the ultrametric spaces we consider here, all non-zero distances have the
form 2−m for some m. For such ultrametric spaces, there is a useful notion of
n-approximated equality of elements: the notation x =n y means that d(x, y) ≤
2−n. The ultrametric inequality then amounts to the fact that each relation =n
is transitive, and therefore an equivalence relation. The factor 1/2 in (2) implies
that worlds that are “(n + 1)-equal” only contain “n-equal” semantic types.

To interpret types of the language as elements of T , it remains to define a
number of operators on T (and TT and TK) that will be used to interpret the
various type constructors of the language; these operators are shown in Figure 4.
Notice that the operator ref is defined in terms of n-approximated equality =n on
CURel(V). In order to interpret the fragment of the language without recursive
types, it suffices to verify that these operators are well-defined (e.g., ref actually
maps elements of T into T .) In order to interpret recursive types, however, we
furthermore need to verify that the operators are non-expansive.

Lemma 13. The operators ×, +, ref , →, cont, and comp shown in the lower
part of Figure 4 are well-defined and non-expansive.

466 L. Birkedal, K. Støvring, and J. Thamsborg

For every Ξ � τ , define the non-expansive �τ�Ξ : T Ξ → T by induction on τ :

�α�Ξ ϕ = ϕ(α)

�int�Ξ ϕ = λ∆. { (inZ m, inZ m) | m ∈ Z }
�1�Ξ ϕ = λ∆. { (in1 ∗, in1 ∗) }

�τ1 × τ2�Ξ ϕ = �τ1�Ξ ϕ × �τ2�Ξ ϕ

�τ1 + τ2�Ξ ϕ = �τ1�Ξ ϕ + �τ2�Ξ ϕ

�ref τ�Ξ ϕ = ref (�τ�Ξ ϕ)

�∀α.τ�Ξ ϕ = λ∆. { (in∀ c, in∀ c′) | ∀ν ∈ T . (c, c′) ∈ comp(�τ�Ξ,α ϕ[α �→ ν])(∆) }

�µα.τ�Ξ ϕ=fix
(
λν.λ∆.{(inµ v, inµ v′) | (v, v′)∈�τ�Ξ,α ϕ[α �→ν](∆)}

)
(see Def. 14)

�τ1 → τ2�Ξ ϕ = (�τ1�Ξ ϕ) → (comp(�τ2�Ξ ϕ))

The following operators and elements are used above:

× : T × T → T comp : T → TT

+ : T × T → T cont : T → TK

ref : T → T states ∈ TS

→ : T × TT → T RAns ∈ CRel(Ans)

(ν1 × ν2)(∆) = { (in×(v1, v2), in×(v′1, v′2)) | (v1, v′1) ∈ ν1(∆) ∧ (v2, v′2) ∈ ν2(∆) }

(ν1 + ν2)(∆) = { (in+(ι1 v1), in+(ι1 v′1)) | (v1, v′1) ∈ ν1(∆) }
∪ { (in+(ι2 v2), in+(ι2 v′2)) | (v2, v′2) ∈ ν2(∆) }

ref (ν)(∆) = { (λl, λl) | l ∈ dom(∆) ∧ ∀∆1 ≥ ∆. App (∆(l)) (∆1) = ν(∆1) }
∪ { (λn+1

l , λn+1
l) | l ∈ dom(∆) ∧ ∀∆1 ≥ ∆. App (∆(l)) (∆1) =n ν(∆1) }

(ν → ξ)(∆) = { (in→ f, in→ f ′) | ∀∆1 ≥ ∆.∀(v, v′) ∈ ν(∆1) .(f v, f ′ v′) ∈ ξ(∆1) }

cont(ν)(∆)={(k, k′) | ∀∆1≥∆.∀(v, v′)∈ν(∆1).∀(s, s′)∈states(∆1).(k v s, k′ v′ s′)∈RAns}

comp(ν)(∆) = { (c, c′) | ∀∆1 ≥ ∆.∀(k, k′) ∈ cont(ν)(∆1).
∀(s, s′) ∈ states(∆1). (c k s, c′ k′ s′) ∈ RAns }

states(∆) = { (s, s′) | dom(s) = dom(s′) = dom(∆)
∧ ∀l ∈ dom(∆). (s(l), s′(l)) ∈ App (∆(l)) (∆) }

RAns = { (⊥,⊥) } ∪ { (�ι1 m�, �ι1 m�) | m ∈ Z }

Fig. 4. Interpretation of types

It is here, in order to show that ref is well-defined (and non-expansive), that
we need the approximate locations λnl . Suppose for the sake of argument that
locations were modeled simply using a flat cpo of natural numbers, i.e., suppose
that Loc = N0 and that π1(inLoc l) = 'inLoc l(for all l ∈ N0. The definition of ref
would then have the form ref (ν)(∆) = {(inLoc l, inLoc l) | l ∈ dom(∆)∧ . . . }. The
function ref (ν) from worlds to relations must be non-expansive. But assume then
that ∆ =1 ∆′; then ref (ν)(∆) =1 ref (ν)(∆′) by non-expansiveness, and hence
ref (ν)(∆) = ref (ν)(∆′) since π1 is the (lifted) identity on locations. In other
words, ref (ν) would only depend on the “first approximation” of its argument

Parametric Polymorphism, General References, and Recursive Types 467

world ∆: this can never be right, no matter what the particular definition of
ref is.6 This observation generalizes to variants where πn(inLoc l) = 'inLoc l()
for some arbitrary finite n.

For any finite set Ξ of type variables, the set T Ξ of functions from Ξ to T is a
metric space with the product metric: d′(ϕ,ϕ′)=max{ d(ϕ(α), ϕ′(α)) | α∈Ξ }.
Definition 14. Let τ be a type and let Ξ be a type environment such that Ξ � τ .
The relational interpretation of τ with respect to Ξ is the non-expansive function
�τ�Ξ : T Ξ → T defined by induction on τ in Figure 4. The interpretation of
recursive types is by appeal to Banach’s fixed-point theorem (see below).

In more detail, the use of Banach’s fixed point theorem in the interpretation
of recursive types means that well-definedness of �τ�Ξ must be argued together
with non-expansiveness, by induction on τ .7 This is similar to the more familiar
situation with the untyped semantics of terms presented in Section 3: there,
well-definedness must be argued together with continuity because of the use of
Kleene’s fixed-point theorem in the interpretation of fix f.λx.t. The proof that
�µα.τ�Ξ is non-expansive uses Proposition 5.

We need the following substitution lemma, easily proved by induction on τ :

Lemma 15. Let τ and τ ′ be types such that Ξ,α � τ and Ξ � τ ′. For all
ϕ ∈ T Ξ , �τ [τ ′/α]�Ξ ϕ =

�
τ
�
Ξ,α

(ϕ[α �→ �τ ′�Ξ ϕ]) .

Corollary 16. �µα.τ�Ξ ϕ = λ∆. { (inµ v, inµ v′) | (v, v′) ∈ �τ [µα.τ/α]�Ξ ϕ∆ }.

4.4 Interpretation of Terms

As for the interpretation of terms, we must show that the untyped meaning of a
typed term is related to itself at the appropriate type. We first show that comp
respects the operations of the monad T .

Definition 17. For ν ∈ T and ξ ∈ TT and ∆ ∈ W, let ν
∆→ ξ be the binary

relation on functions V → TV defined by

ν
∆→ ξ = { (f, f ′) | ∀∆1 ≥ ∆.∀(v, v′) ∈ ν(∆1). (f v, f ′ v′) ∈ ξ(∆1) } .

Proposition 18. Let ν, ν1, ν2 ∈ T and ∆ ∈ W. (1) If (v, v′) ∈ ν(∆), then
(η v, η v′) ∈ comp(ν)(∆). (2) If (c, c′) ∈ comp(ν1)(∆) and (f, f ′) ∈ ν1

∆→
comp(ν2), then (c � f, c′ � f ′) ∈ comp(ν2)(∆).

Definition 19. For every term environment Ξ � Γ , every ϕ ∈ T Ξ , and every
∆ ∈ W, let �Γ �Ξ ϕ∆ be the binary relation on V dom(Γ) defined by

�Γ �Ξ ϕ∆ = { (ρ, ρ′) | ∀x ∈ dom(Γ). (ρ(x), ρ′(x)) ∈ �Γ (x)�Ξ ϕ∆ } .
6 In particular, the obvious definition of ref as ref (ν)(∆) = {(inLoc l, inLoc l) | l ∈

dom(∆) ∧ ∀∆1 ≥ ∆. App (∆(l)) (∆1) = ν(∆1)} would not be well-defined, since it
would not be non-expansive in ∆.

7 Non-expansiveness of �τ�Ξ,α implies contractiveness of λν. λ∆. { (inµ v, inµ v′) |
(v, v′) ∈ �τ�Ξ,α ϕ[α �→ ν] (∆) }, as needed in the definition of �µα.τ �Ξ ϕ.

468 L. Birkedal, K. Støvring, and J. Thamsborg

Definition 20. Two typed terms Ξ | Γ � t : τ and Ξ | Γ � t′ : τ of the same
type are semantically related, written Ξ | Γ |= t ∼ t′ : τ , if for all ϕ ∈ T Ξ , all
∆ ∈ W, and all (ρ, ρ′) ∈ �Γ �Ξ ϕ∆,(�

t
�
dom(Γ) ρ, �t′�dom(Γ) ρ

′
)
∈ comp(

�
τ
�
Ξ
ϕ)(∆) .

Theorem 21 (Fundamental Theorem). Every typed term is semantically
related to itself: if Ξ | Γ � t : τ , then Ξ | Γ |= t ∼ t : τ .

Proof (sketch). By showing the stronger property that semantic relatedness is
preserved by all the term constructs. The proof uses Proposition 18. %&
Corollary 22 (Type soundness)

1. If ∅ | ∅ � t : τ is a closed term of type τ , then �t�∅ ∅ �= error.
2. If ∅ | ∅ � t : int is a closed term of type int, then �t�p �= errorAns .

5 Examples

The model can be used to prove the equivalences in Section 5 of our earlier
work [8]. More specifically, one can use the model to prove that some equivalences
between different functional implementations of abstract data types are still valid
in the presence of general references, and also prove some simple equivalences
involving imperative abstract data types. (See Section 6 for more about extending
the model to account properly for local state.) Here we only sketch one of these
examples, as well as a “non-example”: an equivalence that cannot be shown
because of the existence of approximated locations in the model.

Example 23. We use the usual encoding of existential types by means of uni-
versal types [11]: ∃α.τ = ∀β.(∀α. τ → β) → β. The type τm = ∃α. (1 → α) ×
(α → 1) × (α → int) can then be used to model imperative counter modules:
the idea as that a value of type τm consists of some hidden type α, used to repre-
sent imperative counters, as well as three operations for creating a new counter,
incrementing a counter, and reading the value of a counter, respectively.

Consider the following two module implementations, i.e., closed terms of
type τm: J = Λβ.λc. c[ref int]I and J ′ = Λβ.λc. c[ref int]I ′ where

I = (λx. ref(0), λx. x := !x + 1, λx. !x)
I ′ = (λx. ref(0), λx. x := !x− 1, λx. −(!x)) .

By parametricity reasoning, i.e., by exploiting the universal quantification in the
interpretation of universal types, one can show that ∅ | ∅ |= J ∼ J ′ : τm.

Example 24. Abbreviate 0 = µα.α. One can show that 0 is an empty type: there
are no closed values of type 0 and furthermore �0�Ξ ϕ = λ∆.∅. Consider now
the two terms K = λx.2 and K ′ = λx.3 of type ref 0 → int. Given a standard
operational semantics for the language, a simple bisimulation-style argument
should suffice to show that K and K ′ are contextually equivalent: no reference
cell can ever contain a value of type 0, and therefore neither function can ever
be applied. However, the equivalence ∅ | ∅ |= K ∼ K ′ : ref 0 → int does not hold.
Briefly, the reason is the existence of approximated locations in the model.

Parametric Polymorphism, General References, and Recursive Types 469

6 Related Work

As already mentioned, the metric-space structure on uniform relations over uni-
versal domains is well-known [1, 4, 5, 10, 13]. The inverse-limit method for solv-
ing recursive domain equations was first adapted to metric spaces by America
and Rutten [6]; see also Rutten [20]. For a unified account covering both do-
mains and metric spaces, see Wagner [22]. Kripke logical relations are covered
in Mitchell [14, Section 8.6] and in the references there.

Semantic (or “approximated”) locations were first introduced in our earlier
work [8]. That work contains an adequacy proof with respect to an operational
semantics and an entirely different, quasi-syntactic interpretation of open types.
Here we instead present an in some ways more natural interpretation that results
from solving a recursive metric-space equation, thus obtaining a proper universe
of semantic types. Open types are then interpreted in the expected way, i.e., as
maps from environments of semantic types to semantic types.

The fundamental circularity between worlds and types in realizability-style
possible-worlds models of polymorphism and general references was observed by
Ahmed [2, p. 62] in the setting of operational semantics (and for unary relations).
Rather than solve a recursive equation, her solution is to stratify worlds and types
into different levels, represented by natural numbers. So-called step-indexing is
used in the definition to ensure that a stratified variant of the fundamental
theorem holds. These stratified worlds and types are somewhat analogous to the
approximants of recursive-equation solutions that are employed in the inverse-
limit method. The main advantage in “going to the limit” of the approximations
and working with an actual solution (as we do here) is that approximation
information is then not ubiquitous in definitions and proofs; by analogy, the only
“approximation information” in our model is in the interpretation of references
and in the requirement that user-supplied relations are uniform.8

Ahmed et al. [3] have recently (and independently) proposed a step-indexed
model of a language very similar to ours, but in which worlds are defined in a
more complicated way: this allows for proofs of much more advanced equivalences
involving local state. We believe that our approach extends to this style of worlds
and plan to investigate this further in future work: one potential advantage would
be the removal of “approximation information” in definitions and equivalence
proofs. We also plan to investigate local-state parameters [9]. In this article,
we instead hope to have presented the fundamental ideas behind Kripke logical
relations over recursively defined sets of worlds as needed for semantic modeling
of parametric polymorphism, recursive types, and general references.

References

[1] Abadi, M., Plotkin, G.D.: A per model of polymorphism and recursive types. In:
Proceedings of LICS, pp. 355–365 (1990)

[2] Ahmed, A.: Semantics of Types for Mutable State. PhD thesis, Princeton Univer-
sity (2004)

8 In future work we plan to perform a more formal comparison.

470 L. Birkedal, K. Støvring, and J. Thamsborg

[3] Ahmed, A., Dreyer, D., Rossberg, A.: State-dependent representation indepen-
dence. In: Proceedings of POPL (to appear, 2009)

[4] Amadio, R.M.: Recursion over realizability structures. Information and Compu-
tation 91(1), 55–85 (1991)

[5] Amadio, R.M., Curien, P.-L.: Domains and Lambda-Calculi. Cambridge Univer-
sity Press, Cambridge (1998)

[6] America, P., Rutten, J.J.M.M.: Solving reflexive domain equations in a category
of complete metric spaces. J. Comput. Syst. Sci. 39(3), 343–375 (1989)

[7] Benton, N., Leperchey, B.: Relational reasoning in a nominal semantics for stor-
age. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 86–101. Springer,
Heidelberg (2005)

[8] Birkedal, L., Støvring, K., Thamsborg, J.: Relational parametricity for references
and recursive types. In: Proceedings of TLDI (to appear, 2009)

[9] Bohr, N., Birkedal, L.: Relational reasoning for recursive types and references. In:
Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279, pp. 79–96. Springer, Heidel-
berg (2006)

[10] Cardone, F.: Relational semantics for recursive types and bounded quantification.
In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP
1989. LNCS, vol. 372, pp. 164–178. Springer, Heidelberg (1989)

[11] Crary, K., Harper, R.: Syntactic logical relations for polymorphic and recursive
types. Electronic Notes in Theoretical Computer Science 172, 259–299 (2007)

[12] Levy, P.B.: Call-by-push-value: Decomposing call-by-value and call-by-name.
Higher-Order and Symbolic Computation 19(4), 377–414 (2006)

[13] MacQueen, D.B., Plotkin, G.D., Sethi, R.: An ideal model for recursive polymor-
phic types. Information and Control 71(1/2), 95–130 (1986)

[14] Mitchell, J.C.: Foundations for Programming Languages. MIT Press, Cambridge
(1996)

[15] Moggi, E.: Notions of computation and monads. Information and Computation 93,
55–92 (1991)

[16] Petersen, R.L., Birkedal, L., Nanevski, A., Morrisett, G.: A realizability model for
impredicative hoare type theory. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS,
vol. 4960, pp. 337–352. Springer, Heidelberg (2008)

[17] Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
[18] Pitts, A.M.: Relational properties of domains. Information and Computation 127,

66–90 (1996)
[19] Plotkin, G.D., Power, J.: Computational effects and operations: An overview.

Electronic Notes in Theoretical Computer Science 73, 149–163 (2004)
[20] Rutten, J.J.M.M.: Elements of generalized ultrametric domain theory. Theoretical

Computer Science 170(1-2), 349–381 (1996)
[21] Smyth, M.B., Plotkin, G.D.: The category-theoretic solution of recursive domain

equations. SIAM Journal on Computing 11(4), 761–783 (1982)
[22] Wagner, K.R.: Solving Recursive Domain Equations with Enriched Categories.

PhD thesis, Carnegie Mellon University (1994)

Author Index

Abbes, Samy 380
Abdulla, Parosh Aziz 348
Adámek, Jǐŕı 152
Alur, Rajeev 15, 333
Antonopoulos, Timos 63
Aranda, Jesús 242

Bansal, Kshitij 425
Benveniste, Albert 380
Bérard, Beatrice 197
Birkedal, Lars 456
Bollig, Benedikt 410
Bonchi, Filippo 272
Bonsangue, Marcello 122
Broadbent, Christopher 107
Brochenin, Rémi 425

Chatzikokolakis, Konstantinos 318
Clairambault, Pierre 16

Dawar, Anuj 63
Degorre, Aldric 333

Fossati, Luca 227

Gadducci, Fabio 272
Grindei, Manuela-Lidia 410
Gutierrez, Julian 48
Guttman, Joshua D. 303

Habermehl, Peter 410
Haddad, Serge 197

Katoen, Joost-Pieter 364
Kiefer, Stefan 440
Kühnrich, Morten 440
Kupferman, Orna 182

Leivant, Daniel 78
Lenglet, Serguëı 257
Lohrey, Markus 212
Lozes, Etienne 425
Lustig, Yoad 395

Maler, Oded 333
Maneth, Sebastian 212
Mayr, Richard 348
Milius, Stefan 152
Monreale, Giacoma Valentina 272
Murawski, Andrzej S. 32
Myers, Rob 137

Neuhäußer, Martin R. 364
Norman, Gethin 318

Ong, Luke 107

Parker, David 318
Pattinson, Dirk 137
Piterman, Nir 182

Rutten, Jan 122

Schewe, Sven 167
Schmidt-Schauß, Manfred 212
Schmitt, Alan 257
Schröder, Lutz 137
Schwoon, Stefan 440
Silva, Alexandra 122
Smith, Geoffrey 288
Srba, Jǐŕı 440
Stefani, Jean-Bernard 257
Stirling, Colin 92
Stoelinga, Mariëlle 364
Støvring, Kristian 456

Thamsborg, Jacob 456
Thomas, Wolfgang 1
Tzevelekos, Nikos 32

Valencia, Frank D. 242
Varacca, Daniele 227
Vardi, Moshe Y. 395
Velebil, Jǐŕı 152
Versari, Cristian 242

Weiss, Gera 333

	Title Page
	Foreword
	Preface
	Organization
	Table of Contents
	Invited Talks
	Facets of Synthesis: Revisiting Church’s Problem
	Prologue
	Church’s Problem
	Infinite Games, Determinacy, and Set Theory
	Solving Infinite Games
	From Logic to Games on Graphs
	Parity Games

	Model-Checking and Tree Automata Theory
	Model-Checking
	Tree Automata

	On Uniformization
	References

	Temporal Reasoning about Program Executions

	Semantics
	Least and Greatest Fixpoints in Game Semantics
	Introduction
	ArenaGames
	Arenas and Plays
	The Cartesian Closed Category of Innocent Strategies
	Recursive Types and Loops
	Winning and Totality

	Fixpoints
	μLJ: An Intuitionistic Sequent Calculus with Fixpoints
	The Games Model
	Interpretation of μLJ

	Conclusion and Future Work
	References

	Full Abstraction for Reduced ML
	Introduction
	Reduced ML
	Nominal Game Semantics
	Nominal Arenas
	Plays
	Strategies

	Properties of \mathcal{G}
	Program Equivalence Explicitly
	References

	Logics and Bisimulation Games for Concurrency, Causality and Conflict
	Introduction
	An Independence Model and Axioms of Concurrency
	Local Dualities in Independence Models
	Separation and Support Sets for Local Reasoning

	Separation Fixpoint Logic
	Denotation of SFL Formulae
	Applications

	Logical and Concurrent Equivalences
	SFL, HML and the Modal Mu-Calculus
	A Separation Modal Mu-Calculus
	A Causal Modal Mu-Calculus
	The Full Separation Fixpoint Logic

	Bisimulation Games
	Concluding Remarks and Related Work
	References

	Logics and Automata
	Separating Graph Logic from MSO
	Introduction
	Background and Preliminaries
	Graph Logic
	GL Games

	Separating GL from MSO
	GL on Binary Trees
	Separation Logic
	GL Is Not Included in MS_{1}
	References

	On the Completeness of Dynamic Logic
	Introduction
	Background
	Regular Programs
	Dynamic Logic Formulas
	Complexity
	Axiomatics

	Inductive Completeness
	Inductive Definition of Program Semantics
	Expressing Program Properties
	The Inductive Theory of Regular Programs
	Inductive Soundness of DL
	Inductive Completeness of DL

	Relative Completeness and Arithmetical Completeness
	Failure of Relative Completeness for Termination Assertions
	Schematic Relative Completeness
	Arithmetical Completeness

	Summary and Directions
	References

	Dependency Tree Automata
	Introduction
	Dependency Tree Automata
	Application of Dependency Automata
	Proof of Theorem 2
	Conclusion
	References

	On Global Model Checking Trees Generated by Higher-Order Recursion Schemes
	Introduction
	The Versatile Property APT and Its Simulation
	The Versatile Parity Game
	Construction of an n-CPDA Recogniser
	Winning Region of a Collapsible Pushdown Game
	References

	Algebras
	A Kleene Theorem for Polynomial Coalgebras
	Introduction
	Preliminaries
	A Language of Expressions for Polynomial Coalgebras
	Expressions Are Coalgebras

	Expressions Are Expressive
	Finite Systems for Expressions
	Formula Normalization
	Synthesis Procedure
	Examples

	Conclusions
	References

	Coalgebraic Hybrid Logic
	Syntax and Semantics of Coalgebraic Hybrid Logic
	A Generic Complete Hilbert System
	Hybrid Sequent Calculi and Cut Elimination
	Complexity of Proof Search
	Shallow Models and PSPACE Algorithms
	Conclusions and RelatedWork
	References

	A Description of Iterative Reflections of Monads
	Introduction
	Ideal and Iterative Monads
	A Characterization of Free Iterative Algebras
	Rational Equation Morphisms
	The Iterative Reflection
	Conclusions and Future Research
	References

	Automata Theory
	Tighter Bounds for theDeterminisation of B\"{u}chi Automata
	Introduction
	Preliminaries — Rabin, Parity and B\"{u}chi Automata
	B\"{u}chi Determinisation
	History Trees
	History Transitions
	Deterministic Acceptance Mechanism

	From Nondeterministic B¨uchi Automata to Deterministic Rabin Automata
	From Nondeterministic B¨uchi Automata to Deterministic Parity Automata
	References

	Lower Bounds onWitnesses for Nonemptiness of Universal Co-B¨uchi Automata
	Introduction
	Universal Co-B¨uchi Word Automata
	Lower Bound on Length of Accepted Words
	Universal Co-B\"{u}chi Tree Automata
	Lower Bound onWidth of Accepted Transducers
	References

	Interrupt Timed Automata
	Introduction
	Interrupt Timed Automata
	Definitions and Examples
	Expressive Power of ITA

	Reachability Is Decidable in ITA
	General Case
	A Simpler Model

	Combining ITA and CRTA
	Conclusion
	References

	Parameter Reduction in Grammar-Compressed Trees
	Introduction
	Trees and SLCF Tree Grammars
	Tree Automata
	Normal Forms for Linear SLCF Tree Grammars
	Parameter Reduction in Linear SLCF Tree Grammars
	Applications to Tree Automata Evaluation
	Adding Nondeterminism or Non-linearity
	References

	Processes and Models
	The Calculus of Handshake Configurations
	Introduction
	Handshake Protocols
	The Calculus
	Syntax and Operational Semantics
	Typing System
	Examples
	Soundness
	Compositionality

	Handshake Petri Nets
	Definition
	Composition
	Observational Properties of hpns

	Full Abstraction and Definability
	Full Abstraction
	Definability

	Conclusions
	References

	On the Expressive Power of Restriction and Priorities in CCS with Replication
	Introduction
	The Calculi
	Convergence, Failures and Related Notions
	Some Basic Properties of Failures

	Decidability of Convergence in $CCS^{-!\nu}_{!}$
	Convergence-Invariant Properties in Fragments of $CCS^{-!\nu}_{!}$
	The Reduction to Petri Nets

	Decidability of Language Equivalence in $CCS^{-!\nu}_{!}$
	Impossibility Results for Failure-Preserving Encodings in $CCS_{!}$, $CCS^{-!\nu}_{!}$ and $CCS^{-\nu}_{!}$
	Expressiveness of Priorities
	$CCS^{-!\nu}_{!+pr}$
	Encoding RAMs in $CCS^{-!\nu}_{!+pr}$

	Concluding Remarks and RelatedWork
	References

	Normal Bisimulations in Calculi with Passivation
	Introduction
	Bisimulations in HOπP
	Syntax and Transition Semantics
	Strong Behavioral Equivalences
	Weak Behavioral Equivalences

	Normal Bisimilarity in HOP
	HO Bisimulation
	Normal Bisimulation

	Abstraction Equivalence in HOπP
	Related Work
	Conclusion
	References

	Reactive Systems, Barbed Semantics, and the Mobile Ambients
	Introduction
	ReactiveSystems
	Mobile Ambients
	Labelled Transition Systems for Mobile Ambients
	An IPO-LTS for Mobile Ambients
	A SOS Presentation for the IPO-LTS
	Equivalence between LTSs

	Barbed Semantics for Reactive Systems
	Barbed Saturated Bisimilarity
	Weak Barbed Saturated Bisimilarity

	Labelled Characterizations of Barbed Congruences
	On Observing Ambient Migration

	Conclusions and Future Work
	References

	Security
	On the Foundations of Quantitative Information Flow
	Introduction
	Our Conceptual Framework
	Deterministic Programs
	Probabilistic Programs

	Existing Definitions of Quantitative Information Flow
	Security Guarantees with the Consensus Definitions
	An Alternative Foundation: Vulnerability and Min-entropy
	Conclusion
	References

	Cryptographic Protocol Composition via the Authentication Tests
	Messages, Protocols, Skeletons
	The Goal Language $L(Π)$
	Multiprotocols, Disjointness, and Authentication Tests
	Protocol Independence
	References

	Bisimulation for Demonic Schedulers
	Introduction
	Preliminaries
	A Variant of CCS_p with Explicit Scheduler
	Syntax
	Semantics for Complete Processes
	Deterministic Labelings

	Demonic Bisimulation
	Definition Using Schedulers
	Characterization Using Refinement

	Verifying Demonic Bisimilarity for Finite Processes
	Characterization Using a Modified Transition System
	An Algorithm for Finite State Processes

	An Application to Security
	Probabilistic Anonymity
	Analysis of the Dining Cryptographers Protocol

	Related Work
	Conclusion and Future Work
	References

	Probabilistic and Quantitative Models
	On Omega-Languages Defined by Mean-Payoff Conditions
	Introduction
	Definitions
	Multi-payoff Automata
	Acceptance

	Expressiveness
	Comparison with ω-Regular Languages
	Topology of Mean-Payoff Accumulation Points
	Comparison of Threshold Mean-Payoff Languages
	Mean-Payoff Languages in the Borel Hierarchy
	Dimensionality

	An Analyzable Class of Mean-Payoff Languages
	The Class of Multi-threshold Mean-Payoff Languages
	Closure under Boolean Operations
	Decidability

	Summary and Future Directions
	References

	Minimal Cost Reachability/Coverability in Priced Timed Petri Nets
	Introduction
	Preliminaries
	Priced Timed Petri Nets
	Priced Petri Nets
	The Priced Reachability/Coverability Problem
	Petri Nets with Control-States and Petri Nets with One Inhibitor Arc

	Decidability for Non-negative Costs
	Undecidability for Negative Costs
	Conclusion
	References

	Delayed Nondeterminism in Continuous-Time Markov Decision Processes
	Introduction
	Continuous-Time Markov Decision Processes
	The Probability Space
	Probability Measure

	Scheduler Classes
	Local Uniformization
	One-Step Correctness of Local Uniformization
	Local Uniformization Is Measure Preserving

	MainResults
	Delaying Nondeterministic Choices
	Conclusion
	References

	Concurrency, σ-Algebras, and Probabilistic Fairness
	Background on Probability and Concurrency
	Branching Cells by Example
	Formalisation: Stopping Prefixes and Branching Cells
	The Case of Locally Finite Event Structures and Markov Nets

	Non Locally Finite Unfoldings and the Height of Nets
	Application to the Construction of Probabilistic Nets
	Analyzing an Example
	Markov Nets of First Order
	Completion of Markov Nets of First Order to Markov Nets

	Conclusion
	References

	Synthesis
	Synthesis from Component Libraries
	Introduction
	Related Work

	Preliminaries
	Data-Flow Composition
	Control-Flow Composition
	Discussion
	References

	Realizability of Concurrent Recursive Programs
	Introduction
	Definitions
	Realizability of Concurrent Recursive Programs
	Specifying Programs in MSO Logic
	Future Directions
	References

	Program Analysis and Semantics
	Beyond Shapes: Lists with Ordered Data
	Introduction
	Preliminaries
	A Separation Logic for Lists with Ordered Data
	A Monadic Second Order Logic over Memory Shapes

	Motivations
	Decidability of Short-Distance Comparisons
	Long-Distance Comparisons
	An Undecidablity Result
	Decidability of Guarded Long-Distance Comparisons

	Magic Wand and Restricted Magic Wand
	Conclusion
	References

	Interprocedural Dataflow Analysis over Weight Domains with Infinite Descending Chains
	Introduction
	Dataflow Analysis and Fixed-Point Equations

	Fixed-Point Equations over Idempotent Semirings
	Weighted Pushdown Systems
	Weighted Automata

	Applications
	Conclusion
	References

	Realizability Semantics of Parametric Polymorphism, General References, and Recursive Types
	Introduction
	Language
	Untyped Semantics
	Typed Semantics
	Ultrametric Spaces
	The Space of Semantic Types
	Interpretation of Types
	Interpretation of Terms

	Examples
	Related Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

