
HOL-TestGen
An Interactive Test-Case Generation Framework

Achim D. Brucker1 and Burkhart Wolff2

1 SAP Research, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
achim.brucker@sap.com

2 Université Paris-Sud, Parc Club Orsay Université, 91893 Orsay Cedex, France
wolff@lri.fr

Abstract. We present HOL-TestGen, an extensible test environment
for specification-based testing build upon the proof assistant Isabelle.
HOL-TestGen leverages the semi-automated generation of test theorems
(a form of partitioning the test input space), and their refinement to
concrete test-data, as well as the automatic generation of a test driver
for the execution and test result verification.
HOL-TestGen can also be understood as a unifying technical and con-
ceptual framework for presenting and investigating the variety of unit
test and sequence test techniques in a logically consistent way.

Keywords: symbolic test-case generations, black box testing, white box
testing, theorem proving, interactive testing.

1 Introduction

HOL-TestGen (http://www.brucker.ch/projects/hol-testgen/) is an in-
teractive, i. e., semi-automated, test tool for specification based tests built upon
Isabelle/HOL. HOL-TestGen allows one to write test specifications in higher-
order logic (HOL), (semi-) automatically partition the input space, resulting in
abstract test-cases, automatically select concrete test-data, automatically gen-
erate test scripts for testing arbitrary implementations.

2 The HOL-TestGen Architecture and Workflow

In this section, we briefly review the main concepts and outline the standard
workflow (see Figure 1) of HOL-TestGen [1–3]. The latter is divided into five
phases: first, the test theory containing the basic datatypes and key predicates
of the problem-domain has to be written. Since the test theory can be written
in classical higher-order logic (HOL), i. e., a functional programming language
extended by logical quantifiers, our approach is extremely flexible. Second, the
test-engineer has to write the test specification, i. e., the concrete property the
system under test is tested for. Third comes the generation of test-cases along
with a test theorem, forth the generation of test-data (TD), and fifth the test

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 417–420, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.brucker.ch/
http://www.lri.fr/~wolff
http://www.brucker.ch/projects/hol-testgen/

418 A.D. Brucker and B. Wolff

program under test test script

test harness
(Test Result)

Test Trace

test data

test cases
test specification HOL-TestGen

Isabelle/HOL

test executable SML-system

Fig. 1. Overview of the Standard Workflow of HOL-TestGen

execution (result verification) phase involving runs of the “real code” of the pro-
gram under test. Once a test theory is completed, an integrated documentation
(i. e., a formal test plan) with all definitions and results can be generated.

The properties of the program under test are specified in HOL in the test
specification (TS). A test-specification, typically, will have the form pre x →
post x (PUT x), where pre and post represent pre and post conditions of the
program under test PUT , which is just a variable in the test-specification. In-
stead of just a partition of the input spaces, our system will decompose the test
specification in the test-case generation phase into a semantically equivalent test
theorem which has the form:

�TD1; . . . ; TDn; THYP H1; . . . ; THYP Hm� =⇒ TS

where THYP is a constant used to mark the test hypotheses that are underlying
this test. At present, HOL-TestGen uses only uniformity and regularity Hy-
pothesis; for example, a uniformity hypothesis means informally “if the program
conforms to one instance of a case to TS, it conforms to all instances of this case
to TS.” Thus, a test theorem has the following meaning: If the program under
test passes the tests for all TDi successfully, and if it satisfies all test hypothesis,
it conforms to the test specification. In this sense, a test theorem bridges the
gap between test and verification. The TDi are just formulae so far, containing
variables and arbitrary predicates of the test theory as well as the free variable
referring to the system under test. In the data-selection phase, which is imple-
mented by a constraint-resolution based on Isabelle’s proof procedures, ground
instances for these variables were constructed. Both the test-case generation and
the test-data-selection phase can be improved by adding lemmas (derived within
Isabelle), or all sorts of logical massage can be realized by Isabelle on the test
specification, the test theorem, the test-data, etc. This is how advanced users
can improve the power of the deduction process dramatically.

The test theory containing test specifications, configurations of the test-data
and test script generation, possibly extended by proofs for rules that support
the overall process, is written in an extension of the Isar language [6]. It can be

HOL-TestGen 419

Fig. 2. A HOL-TestGen Session Using Proof General

processed in batch mode, but also using the Proof General interface interactively,
see Figure 2. This interface allows for interactively stepping through a test theory
(in the upper sub-window) and the sub-window below shows the corresponding
system state. A system state may be a proof state in a test theorem development,
or the result of inspections of generated test-data or a list of test hypothesis.

After test-data generation, HOL-TestGen can produce a test script driving
the test using the provided test harness. The test script together with the test
harness stimulate the code for the program under test built into the test exe-
cutable. Executing the test executable runs the test and results in a test trace
showing possible errors in the implementation (see lower window in Figure 2).

3 Case Studies

HOL-TestGen was used successfully in several case studies, among them:

Unit testing of red-black trees: In this case study [2], we generated test-
cases for recursive data-structures. In particular, we generated test-cases for
red-black trees testing the red-black properties (i. e., both the insertion and
deletion operation preserve these properties). We also generated test-data
and test scripts for this scenario and used them for testing the red-black tree
implementation of the SML/NJ library. Our work revealed a major bug in
this implementation which has not been detected during the last 12 years.

Unit testing of packet filters: In this case study [4], we modeled stateless
packet filters (firewalls) and their security policy in HOL. Based on this
specification, we generated test-cases for testing that a real firewall imple-
ments a specific security policy. Furthermore, we exploited the framework

420 A.D. Brucker and B. Wolff

aspect of HOL-TestGen and developed a domain-specific test case genera-
tor: HOL-TestGen/fw. HOL-TestGen/fw provides both domain specific
test-case and test-data generation heuristics and domain-specific extensions
of the theorem prover, e. g., supporting the simplification of firewall policies.

Sequence testing of application level firewalls: In this case study [3], we
applied HOL-TestGen to different sequence-testing scenarios. In particular,
we modeled stateful communication protocols (e. g., ftp and voice-over-ip)
and used these models as basis for the test-case generation. Overall, this
provides a method for testing the compliance of an application level, stateful
firewall to a give security policy.

In all these applications, we made the experience that combining theorem prov-
ing techniques and testing techniques can improve the overall quality of the
generated test-cases and test-data.

4 Conclusion

We provide a test environment for specification-based (also called model-based)
unit and sequence testing. Moreover, our test environment bridges the gap be-
tween formal verification and testing techniques, i. e., testing, in a logically con-
sistent way. The system has been used in several substantial case studies [2–4]
and for test-theoretical work [5].

References

[1] Brucker, A.D., Wolff, B.: hol-Testgen 1.0.0 user guide. Technical Report 482,
ETH Zurich (April 2005)

[2] Brucker, A.D., Wolff, B.: Symbolic test case generation for primitive recursive
functions. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
16–32. Springer, Heidelberg (2005)

[3] Brucker, A.D., Wolff, B.: Test-sequence generation with hol-TestGen with an
application to firewall testing. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007. LNCS,
vol. 4454, pp. 149–168. Springer, Heidelberg (2007)

[4] Brucker, A.D., Brügger, L., Wolff, B.: Model-based firewall conformance testing.
In: Suzuki, K., Higashino, T., Ulrich, A., Hasegawa, T. (eds.) TestCom/FATES
2008. LNCS, vol. 5047, pp. 103–118. Springer, Heidelberg (2008)

[5] Brucker, A.D., Brügger, L., Wolff, B.: Verifying test-hypotheses: An experiment
in test and proof. Electronic Notes in Theoretical Computer Science 220(1), 15–
27 (2008); proceedings of the Fourth Workshop on Model Based Testing (MBT)
(2008) ISSN 1571-0661, doi(10.1016/j.entcs, 11.003)

[6] Wenzel, M.M.: Isabelle/Isar – a versatile environment for human-readable formal
proof documents. PhD thesis, TU München, München (February 2002)

	HOL-$\sc{TestGen}$
	Introduction
	The HOL-$\sc{TestGen}$ Architecture and Workflow
	Case Studies
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

