Mining API Error-Handling Specifications
from Source Code

Mithun Acharya and Tao Xie

Department of Computer Science, North Carolina State University, Raleigh, NC, USA, 27695
{acharya,xie}@csc.ncsu.edu

Abstract. API error-handling specifications are often not documented, necessi-
tating automated specification mining. Automated mining of error-handling spec-
ifications is challenging for procedural languages such as C, which lack explicit
exception-handling mechanisms. Due to the lack of explicit exception handling,
error-handling code is often scattered across different procedures and files mak-
ing it difficult to mine error-handling specifications through manual inspection
of source code. In this paper, we present a novel framework for mining API
error-handling specifications automatically from API client code, without any
user input. In our framework, we adapt a trace generation technique to distinguish
and generate static traces representing different API run-time behaviors. We ap-
ply data mining techniques on the static traces to mine specifications that define
correct handling of API errors. We then use the mined specifications to detect
API error-handling violations. Our framework mines 62 error-handling specifica-
tions and detects 264 real error-handling defects from the analyzed open source
packagesE]

1 Introduction

Motivation. A software system interacts with third-party libraries through various Ap-
plication Programming Interfaces (API). Throughout the paper, we overload the term
API to mean either a set of related library procedures or a single library procedure in the
set — the actual meaning should be evident from the context. Incorrect handling of er-
rors incurred after API invocations can lead to serious problems such as system crashes,
leakage of sensitive information, and other security compromises. API errors are usu-
ally caused by stressful environment conditions, which may occur in forms such as
high computation load, memory exhaustion, process related failures, network failures,
file system failures, and slow system response. As a simple example of incorrect API
error handling, a send procedure, which sends the content of a file across the network as
packets, might incorrectly handle the failure of the socket API (the socket API can
return an error value of -1, indicating a failure), if the send procedure returns without
releasing system resources such as previously allocated packet buffers and opened file
handlers. Unfortunately, error handling is the least understood, documented, and tested
part of a system. Toy’s study [14] shows that more than 50% of all system failures in

! This work is supported in part by ARO grant W911NF-08-1-0443.

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 370 2009.
(© Springer-Verlag Berlin Heidelberg 2009

Mining API Error-Handling Specifications from Source Code 371

a telephone switching application are due to incorrect error-handling algorithms. Cris-
tian’s survey [7]] reports that up to two-thirds of a program may be devoted to error de-
tection and recovery. Hence, correct error handling should be an important part of any
reliable software system. Despite the importance of correct error handling, program-
mers often make mistakes in error-handling code [4}[10,[17]]. Correct handling of API
errors can be specified as formal specifications verifiable by static checkers at compile
time. However, due to poor documentation practices, API error-handling specifications
are often unavailable or imprecise. In this paper, we present a novel framework for stat-
ically mining API error-handling specifications automatically from software packages
(API client code) implemented in C.

Challenges. There are three main unique challenges in automatically mining API error-
handling specifications from source code. (1) Mining API error-handling specifications,
which are usually temporal in nature, requires identifying API details from source code
such as (a) critical APIs (APIs that fail with errors), (b) different error checks that
should follow such APIs (depending on different API error conditions), and (c) proper
error handling or clean up in the case of API failures, indicated by API errors. Fur-
thermore, clean up APIs might depend on the APIs called before the error is handled.
Static approaches [17,[16] exist for mining or checking API error-handling specifica-
tions from software repositories implemented in object-oriented languages such as Java.
Java has explicit exception-handling support and the static approaches mainly analyze
the catch and finally blocks to mine or check API error-handling specifications.
Procedural languages such as C do not have explicit exception-handling mechanisms
to handle API errors, posing additional challenges for automated specification mining:
API details are often scattered across different procedures and files. Manually mining
specifications from source code becomes hard and inaccurate. Hence, we need inter-
procedural techniques to mine critical APIs, different error checks, and proper clean
up from source code to automatically mine error-handling specifications. (2) As pro-
grammers often make mistakes along API error paths [4,[10L[14}[17], the proper clean
up, being common among error paths and normal paths, should be mined from normal
traces (i.e., static traces without API errors along normal paths) instead of error traces
(i.e., static traces with API errors along error paths). Hence, we need techniques to gen-
erate and distinguish error traces and normal traces, even when the API error-handling
specifications are not known a priori. (3) Finally, API error-handling specifications can
be conditional — the clean up for an API might depend on the actual return value of
the API. Hence, trace generation has to associate conditions along each path with the
corresponding trace.

Contributions. To address the preceding challenges, we develop a novel framework
for statically mining API error-handling specifications directly from software packages
(API client code), without requiring any user input. Our framework allows mining sys-
tem code bases for API error-handling violations without requiring environment setup
for system executions or availability of sufficient system tests. Furthermore, our frame-
work detects API error-handling violations, requiring no user input in the form of spec-
ifications, programmer annotations, profiling, instrumentation, random inputs, or a set
of relevant APIs. In particular, in our framework, we apply data mining techniques on
generated static traces to mine specifications that define correct handling of errors for

372 M. Acharya and T. Xie

the APIs used in the analyzed software packages. We then use the mined specifications
to detect API error-handling violations. In summary, this paper makes the following
main contributions:

— Static approximation of different API run-time behaviors. We adapt a static
trace generation technique [2]] to distinguish and approximate different API run-time
behaviors (e.g., error and normal behaviors), thus generating error traces and normal
traces inter-procedurally.

— Specification mining and violation detection. We apply different mining tech-
niques on the generated error traces and normal traces to identify clean up code, dis-
tinguish clean up APIs from other APIs, and mine specifications that define correct
handling of API errors. To mine conditional specifications, we adapt trace generation
to associate conditions along each path with the corresponding trace. We then use the
mined specifications to detect API error-handling violations.

— Implementation and Experience. We implement the framework and validate the
effectiveness of the framework on 10 packages from the Redhat-9. 0 distribution (52
KLOC), postfix-2.0.16 (111 KLOC), and 72 packages from the X11-R6.9.0 dis-
tribution (208 KLOC). Our framework mines 62 error-handling specifications and de-
tects 264 real error-handling defects from the analyzed packages.

The remainder of this paper is structured as follows. Section [starts with a mo-
tivating example. Section [3] explains our framework in detail. Section Ml presents the
evaluation results. Section [3] discusses related work. Finally, Section [6| concludes our

paper.

2 Example

In this section, we use the example code shown in Figures[Ilb) and[Ic) to define several
terms and notations (summarized in Figure [[(a)) used throughout the paper. We also
provide a high-level overview of our framework using the example code.

API errors. All APIs in the example code are shown in bold font. In Figure [Ic),
InitAAText and EndAAText are user-defined procedures. In the figure, user-defined
procedures are shown in italicized font. The user-defined procedure in which an API is
invoked is called the enclosing procedure for the API. In Figure [[{c), EndAAText,
for instance, is the enclosing procedure for the APIs XftDrawDestroy (Line 27),
XftFontClose (Line 28), and XxftColorFree (Line 29). APIs can fail because of
stressful environment conditions. In procedural languages such as C, API failures are
indicated through API errors. API errors are special return values of the API (such as
NULL) or distinct errno flag values (such as ENOMEM) indicating failures. For example,
in Figure[Ilb), API recvfromreturns a negative integer on failures. The API error from
recviromis reflected by the return variable cc. APIs that can fail with errors are called
as critical APIs. A condition checking of API return values or errno flag in the source
code against API errors is called API-Error Check (AEC); we use AEC(a) to denote
AEC of API a. For example, AEC(recvfrom)is i f (cc<0).

Error block. The block of code following an API-error check, which is executed if the
API fails is called the error block. Error blocks contain error-handling code to handle
API failures. We use EB(a) to denote the error block of API a. For example, Lines

Mining API Error-Handling Specifications from Source Code 373

Definitions and Acronyms Error-Check Specification (ErCS)
Library Application Program Interface (API) ® Multiple-API Specification (MAS)
API-Error Check (AEC). AEC(a) is the required error check for API a. Error-Check Violation (ErCV)
Violation (V) " "
Error Block (EB). EB(a) is the error block of API a. AEC(a) precedes EB(a). Multiple-API Violation (MAV)
Error Path (EXP) Error Exit-Path (ErfxP) ~/X11-R6.9.0/x11lperf/do_text.c
Path (P) Error Return-Path (ErRP) 1 #include <X11/Xft/Xft.h>
Normal Path (NP) 2 e
3 static XftFont *aafont;
Error Exit-Trace (ErExT) 4 static XftDraw *aadraw;
Trace (T) Eror Trace (ErT) Error Return-Trace (ErRT) 5 static XftColor aacolor;
Normal Trace (NT) 6 o .
7 int InitAAText (XParms xp, Parms p, int reps) {
(a) Definitions and Acronyms 8 ..
9 aafont = XftFontOpenName (...);
10 if (aafont == NULL) {
11 A
12 return 0;
13)
14 aadraw = XftDrawCreate (...);
~/Redhat-9.0/routed/ripquery/query.c 15 if (!XftColorAllocValue (..., &aacolor)){
1 #include <sys/socket.h> 16 .
2 int main(...){ 17 XftFontClose (xp->d, aafont);
3 . 18 XftDrawDestroy (aadraw);
4 s = socket(...); 19
5 . 20 return 0;
6 cc = recvfrom(s, ...) 21 }
7 N 22 ..
8 if (cc < 0){ 23)
9 . 24 ...
10 close (s); 25 void EndAAText(XParms xp, Parms p){
11 exit(1); 26
12 } 27 XftDrawDestroy (aadraw);
13 P 28 XftFontClose (xp->d, aafont);
14 close(s) 29 XftColorFree (..., &aacolor);
15 .ee 30 R
16 } 31 }
(b) Example code from Redhat-9.0/routed-0.17-14 (c) Example code from X11-R6.9.0/x1lperf

Fig. 1. Terminologies and example code

9-11 in Figure [[(b), Lines 11-12 and 16-20 in Figure [[{c) represent EB(recvfrom),
EB(XftFontOpenName), and EB(XftColorAllocvValue), respectively. A given API
can have multiple error blocks depending on the different ways that it can fail (not
shown in the examples for simplicity).

Paths, Traces, and Scenarios. A control-flow path exists between two program points
if the latter is reachable from the former through some set of control-flow edges, i.e.,
Control Flow Graph (CFG) edges. Our framework identifies two types of paths - error
path and normal path. There are two types of error paths. Any path from the begin-
ning of the main procedure to an exit call (such as exit) in the error block of some
API is called the error exit-path. For example, all paths ending at the exit call at
Line 11 in Figure[Tb) are error exit-paths (exit call inside EB(recvfrom)). Any path
from the beginning of the main procedure to a return call in the error block of some
API is called the error return-path. For example, in Figure[Tlc), all paths ending at the
return call at Lines 12 (return call inside EB(XftFontOpenName)) and 20 (return
call inside EB(XftColorAllocvValue)) are error return-paths. Error exit-paths and er-
ror return-paths are together known as error paths. A normal path is any path from the
beginning of the main procedure to the end of the main procedure without any API er-
rors. For example, any path from Line 3 to Line 15 in Figure[I(b) is a normal path. For
a given path, a trace is the print of all statements that exist along that path. Error paths,

374 M. Acharya and T. Xie

error exit-paths, error return-paths, and normal paths have corresponding traces: error
traces, error exit-traces, error return-traces, and normal traces. Error exit-traces and
error return-traces are together known as error traces. Two APIs are related if they ma-
nipulate at least one (or more) common variable(s). For example, in Figure [[b), APIs
recvfrom and close are related to API socket. The socket API produces s, which
is consumed by the APIs recvfrom and close. A scenario is a set of related APIs in a
given trace. A given trace can have multiple scenarios. For example, if there were mul-
tiple socket calls in Figure[I(b), then each socket call, along with its corresponding
related APIs, forms a different scenario.

API error-handling specifications. We identify two types of API error-handling spec-
ifications that dictate correct error handling along all paths in a program: error-check
specifications and multiple-API specifications. Error-check specifications dictate that
correct AEC(a)’s (API-Error Checks) exist for each API a (which can fail), be-
fore the API’s return value is used or the main procedure returns. For a given API
a, the absence of AEC(a) causes an error-check violation. Multiple-API specifica-
tions dictate that the right clean up APIs are called along all paths. Clean up APIs
are APIs called, generally before a procedure’s return or program’s exit, to free re-
sources such as memory, sockets, pipes, and files or to rollback the state of a global
resource such as the system registry and databases. For example, in Figure [Kc),
XftFontClose (Line 17) and XxftDrawDestroy (Line 18) are the clean up APIs in
EB(xftColorAllocValue). In Figure [lc), one error-check specification (the return
value of XftColorAllocValue should be checked against NULL) and two multiple-
API specifications (XftFontOpenName should be followed by XftFontClose, and
XftDrawCreate should be followed by XftDrawDestroy) are evident. Violation of a
multiple-API specification along a given path is a multiple-API violation. Multiple-API
violations along error exit-paths could be less serious as the operating system might
reclaim unfreed memory and resource handlers along program exits. However, there
are several cases where explicit clean up is necessary even on program exits. For in-
stance, unclosed files could lose recorded data along an error exit-path if the buffers are
not flushed out to the disk. In addition, any user-defined procedure altering a global re-
source (such as the system registry or a database) should rollback along error exit-paths
to retain the integrity of the global resource. Next, we present the high-level overview
of our framework using the example code.

The only input to our framework is the compilable source code of software pack-
age(s) implemented in C. To mine specifications, our framework initially distinguishes
and generates API error traces and normal traces, for reasons explained later. Our frame-
work then detects API error-handling violations in the source code using the mined
specifications. In particular, our framework consists of the following three stages:

Error/normal trace generation. The trace generation stage distinguishes and gen-
erates error traces (error exit-traces and error return-traces) and normal traces inter-
procedurally. Along normal paths, it is difficult to distinguish clean up APIs from other
APIs. Hence, our framework identifies probable clean up APIs from the error traces.
For example, in Figure [[ib), our framework identifies the API close (Line 10) from
the error exit-trace that goes through EB(recvfrom). In Figure [Ii¢c), our framework
identifies XftFontClose (Line 17) and XftDrawDestroy (Line 18) from the error

Mining API Error-Handling Specifications from Source Code 375

return-trace that goes through EB(xftColoraAllocvValue). Note that, in Figure [I(c),
the clean up APIs can also be invoked through the user-defined procedure EndaaText,
inter-procedurally. However, even in the error block, there could be other APIs that are
not necessarily clean up APIs (hence the term, probable). The final set of actual clean
up APIs and the APIs related to them are determined during the specification mining
stage.

Specification mining. The specification mining stage generates error-check specifica-
tions and multiple-API specifications. Our framework mines error-check specifications
from error traces by determining API-error checks (AEC) for each API. For example,
our framework determines AEC(recvfrom) to be if (cc < 0) from the error-exit
trace that goes through EB(recvfrom). Programmers often make mistakes along API
error paths. Hence, proper clean up, being common among error paths and normal paths,
should be mined from normal traces instead of error traces. Once probable clean up
APIs are mined from error traces, our framework mines APIs that might be related to the
probable clean up APIs from normal traces. For example, in Figure[Ii(c), our framework
determines from normal traces that XftFontClose is related to XftFontOpenName,
and XftDrawDestroy is related to XxftDrawCreate (Figure [[lc), however, does not
show normal paths or traces for simplicity). Our framework generates multiple-API
specifications by applying sequence mining on normal traces.

Verification. Our static verifier uses the mined specifications (error-check and multiple-
API specifications) to detect violations (error-check and multiple-API violations) in the
source code. Next, we present our framework in detail.

3 Framework

The algorithm presented in Figure [2| shows the details of our framework. There are 3
stages and 10 steps (numbered 1-10) in our algorithm. Section [3.1] describes the er-
ror/normal trace generation stage (Steps 1-6). Section[3.2] (Steps 7-8) explains the steps
involved in mining API error-handling specifications from the static traces. Finally, Sec-
tion 3.3 describes the verification stage for detecting API error-handling violations of
the mined specifications (Steps 9-10). Our framework adapts a trace generation tech-
nique developed in our previous work to generate static traces representing different
API run-time behaviors. The trace generation technique uses triggers to generate static
traces. Triggers are represented using finite state machines. The static traces generated
by the trace generation technique with a given trigger depend on the the transitions in
the trigger. Readers may refer to our previous work [2] for further details.

3.1 Error/Normal Trace Generation

In this section, we explain how we adapt the trace generation technique [2] for gen-
erating API error and normal traces from source code. As shown in Figure 2] the er-
ror/normal trace generation stage has six steps: generate error traces (Step 1), process
error traces (Steps 2-4), identify critical APIs and probable clean up APIs from er-
ror traces (Step 5), and finally, generate normal traces (Step 6). The various steps are
explained next.

376 M. Acharya and T. Xie

// ; = source code; F= FSM; TG = Trace-Generate; PDMC = Push-Down Model Check
// R = critical APIs, PC = probable clean-up APIs
// ERROR/NORMAL TRACE GENERATION

// Generate shortest error traces it
exi
main retValChk
API .
entry CALL X)i
errnoChk procedure

return

1 ErT = getShortest(TG(P,

// Extract error-return traces (ErRT) and error-exit traces (ErExT) from ErT
// Note that ErT = ErExT + ErRT
2 ErExT = getErEXT(ErT);
// Extract API-error checks (AEC) from ErExT
3 AECSet = getAECSet(majorityMine(ErExT));
// Use AECSet to extract ErRT from ErT
4 ErRT = getErRT(ErT, AECSet);

// \dentify critical APIs and probable clean up APIs from error traces (ErT)
5 R, PC=getRandPC(ErT);

// Generate random normal traces (NT) up to a specified upper-bound L
R,PC

6 NT= getRandomL(TGw,P,

// SPECIFICATION MINING
// Generate error-check specifications (ErCS) as FSMs from AECSet

7 IEFErCS = generateErCS(AECSet);

// Generate multiple-API specifications (MAS) as FSMs from normal traces (NT)
// Apply sequence mining with specified support on extracted scenarios

8]F MAS = generateMAS(sequenceMine(extractScenarios(NT), min_sup));

// VERIFICATION
// Detect error-check violations (ErCV)

9 foreach(IF inIF ErCS) { ErCV += getShortest(PDMC\P ,IF N}
// Detect Multiple-API violation along error paths

10 foreach(]:F in FMAS) {MAV += getShortest(PDMC(P ,F)); }

Fig. 2. The algorithm for mining API error-handling specifications

Step 1 - Generate error traces. An error trace starts from the beginning of the main
procedure and ends in some API error-block with an exit call (causing the program to
exit) or a return call (causing the enclosing procedure to return). The trigger FSM,
say IF (Step 1, Figure[2), is used by our trace generator (procedure TG in the figure) to
generate error traces from the program source code (P). The procedure TG represents
our trace generation technique, which adapts the push-down model checking (PDMC)
process. Transitions retvalChk and errnoChk in the trigger I (from State 2 to State
3) identify the return-value check and error-flag check, respectively, for the API. Tran-
sitions from State 3 to the final state (State end) in the trigger ' capture code blocks
following the retvalChk or errnoChk in which the program exits or the enclosing
procedure returns. The procedure TG generates all traces in P that satisfy the trigger
F. However, the procedure getShortest (Step 1, Figure 2)) returns only the shortest

Mining API Error-Handling Specifications from Source Code 377

trace from the set of all traces generated by TG. As we are interested only in the API-
error check and the set of probable clean up APIs (PC) in the API error block for a
given API from error traces, the program statements prior to the API invocation are not
needed. Hence, it suffices to generate the shortest path for each API invocation with a
following retvalcChk or errnoChk. If there are multiple retvalcChk or errnoChk
for an API call site, then our framework generates the shortest trace for each of the
checks. The trigger [captures the elements of retvalcChk, errnoChk, and the code
block after these checks, even if these elements are scattered across procedure bound-
aries. However, the traces generated by this step can also have traces where retvalChk
or errnoChk is followed by a normal return of the enclosing procedure. Such traces,
which are not error traces, are pruned out in the next step.

Steps 2, 3, and 4 - Process error traces. Our framework easily extracts error exit-
traces from error traces (procedure getErExT, Step 2, Figure 2)): error traces that
end with an exit call are error exit-traces. We assume that the API retvalChk or
errnoChk, which precedes an exit call in an error-exit trace, is an API-error check.
We then distinguish between the frue and false branches of the API-error check. For ex-
ample, in Figure[I(b), since exit (. ..) appears in the true branch of AEC(recvfrom)
(if (cc<0)), we assume that <0 is the error return value (API error) of recvfrom. For
each API, our framework records API-error check with majority occurrences (proce-
dure majorityMine, Step 3, Figure[2) among error exit-traces (procedure get AECSet,
Step 3, Figure[2). As mentioned in the previous step, the traces generated in Step 1 can
also have traces where retvalChk or errnoChk is followed by a normal return of the
enclosing procedure. Our framework uses the API-error check set computed from error
exit-traces to prune out such traces to generate error return-traces (procedure get ErRT,
Step 4, Figure2).

Step 5 - Identify critical APIs and probable clean up APIs from error traces. Our
framework computes the set R (critical APIs) and the set PC (probable clean up APIs)
in this step (procedure getRandPc, Step 5, Figure). The set R of critical APIs is
easily computed from error exit-traces and error return-traces. A key observation here
is that it is much easier to find clean up APIs along error paths than normal paths. It is
because, on API failures, before the program exits or the enclosing procedure returns,
the primary concern is clean up. Along normal paths, however, it is difficult to separate
clean up APIs from other APIs. Hence, our framework identifies probable clean up
APIs (the set PC) from the error traces. The term probable indicates that the APIs that
occur in error blocks need not always be clean up APIs. The mining phase prunes out
the non-clean-up APIs from the set PC. In the next step, we show how our framework
identifies APIs related to the probable clean up APIs. These related APIs occur prior to
API-error checks in the source code.

Step 6 - Generate normal traces. A normal trace starts from the beginning of the main
procedure and ends at the end of the main procedure. The procedure TG uses the trigger
FSM, say F (Step 6, Figure[2), to generate normal traces from the program source code
(P). The edges for State 2 in the trigger [F are critical (set R) and probable clean up APIs
(set PC). Our framework generates normal traces (involving critical and probable clean
up APIs) randomly up to a user-specified upper bound L (procedure getRandomL,
Step 6, Figure D), inter-procedurally. The traces contain the probable clean up APIs and

378 M. Acharya and T. Xie

the APIs related to them, if any. Finally, as API error-handling specifications can be
conditional, the clean up for an API might depend on the actual return value of the API.
As a simple example, for the malloc API, the free API is called only along paths in
which the return value of malloc is not NULL (condition). Hence, normal paths (normal
traces) are associated with their corresponding conditions involving API return values.
The conditions, along with API sequences, form a part of normal traces and are used in
the specification mining stage, explained next.

3.2 Specification Mining

The specification mining stage mines error-check and multiple-API specifications from
the static traces (Steps 7-8). The scenario extraction and sequence mining are performed
in Step 8.

Step 7 - Mine error-check specifications. Our framework generates error-check speci-
fications (procedure generateErcs, Step 7, Figure[2)) as Finite State Machines (FSM,
Fgrcs) from the mined API-error check set. The FSMs representing the error-check
specifications specify that each critical API should be followed by the correct error
checks.

Step 8 - Mine multiple-API specifications. Our frameork mines multiple-API spec-
ifications from normal traces (procedure generateMAs, Step 8, Figure 2)) as FSMs
(Fasas). Normal traces include the probable clean up APIs (PC), APIs related to the
set PC, and the conditions (involving API return values). The main observation used
in mining multiple-API specifications from normal traces is that programmers often
make mistakes along error paths [4,[10,[14L[17)]. Hence, our framework mines related
APIs from only normal traces and not from error traces. However, a single normal
trace generated by the trace generator might involve several API scenarios, being of-
ten interspersed. A scenario (see Section P)) is a set of related APIs in a given trace.
Our framework separates different API scenarios from a given normal trace, so that
each scenario can be fed separately to our miner. We use a scenario extraction algo-
rithm (procedure extractScenarios, Step 8, Figure[2) [2]] that is based on identify-
ing producer-consumer chains among APIs in the trace. The algorithm is based on the
assumption that an API and its corresponding clean up APIs have some form of data
dependencies between them such as a producer-consumer relationship. Each producer-
consumer chain is generated as an independent scenario. For example, in Figure[IKc),
the API XftFontOpenName (Line 9) produces aafont, which is consumed by the
API xftFontClose (Line 17). The APIs XftFontOpenName and XftFontClose are
generated as an independent scenario.

Our framework mines multiple-API specifications from independent scenarios using
frequent-sequence mining (procedure sequenceMine, Step 8, Figure[2). Let IS be the
set of independent scenarios. We apply a frequent sequence-mining algorithm [[15] on
the set .S with a user-specified support min sup (min sup € [0, 1]), which produces
a set 'S of frequent sequences that occur as subsequences in at least min sup x |IS]|
sequences in the set 1.5. Note that our framework can mine the different error-handling
specifications for the different errors of a given API as long as the different specifica-
tions have enough support among the analyzed client code.

Mining API Error-Handling Specifications from Source Code 379

3.3 Verification

Our framework uses the specifications to find API error-handling violations (Steps
9-10).

Steps 9 and 10 - Detect error-check and multiple-API violations. In Steps 1 and 6,
we adapt the push-down model checking (PDMC) process for trace generation by the
procedure TG. Here we use the PDMC process for property verification. The speci-
fications mined by our framework as FSMs (Fg,.cs and Fjs45) represent the error-
handling properties to be verified at this stage. Our framework verifies the property
FSMs in Fg,.cs and Fps 45 against the source code (P). The mined specifications can
also be used to verify the correct API error handling in other software packages. For
verifying conditional specifications, we adapt the PDMC process to track the value of
variables that take the return value of an API call along the different branches of con-
ditional constructs. Our framework generates (procedure getShortest) the shortest
path for each detected violation (i.e., a potential defect) in the program, instead of all
violating traces, thus making defect inspection easier for the users.

4 Evaluation

To generate static traces, we adapted a publicly available model checker called
MOPS [6] with procedures (Steps 1-10) shown in Figure 2l We used BIDE [15] to
mine frequent sequences. We have applied our framework on 10 packages from the
Redhat-9.0 distribution (52 KLOC), postfix-2.0.16 (111 KLOC), and 72 pack-
ages from the Xx11-RrR6.9.0 distribution (208 KLOC). The analyzed packages use the
APIs from the POSIX and X11 libraries. We selected POSIX and X11 clients because
the POSIX standard [[1]] and the Inter-Client Communication Conventions Manual (IC-
CCM) [13] from the X Consortium standard were readily available. These standards
describe rules for how well-behaved programs should use the APIs, serving as an ora-
cle for confirming our mined results. We ran our evaluation on a machine with Redhat
Enterprise Linux version 2.6.9-5ELsmp, 3GHz Intel Xeon processor, and 4GB RAM.
For specification mining and violation detection, the analysis cost ranges from under a
minute for the smallest package to under an hour for the largest one. We next explain the
evaluation results (summarized in Figure 3(a)) for the various stages of our framework.

Trace generation. The number of error exit-traces and error return-traces generated by
our framework are shown in Columns 3 (ErExT) and 4 (ErRT) of Figure 3| respec-
tively. To evaluate trace generation, we manually inspected the source code for each
error exit-trace produced by our framework and each error exit-trace missed by our
framework. Error exit-traces missed by our framework can be determined by manually
identifying the exit statements in the analyzed program not found in any of the gen-
erated error exit-traces. There are five sub-columns in Column 3 (ErExT): X' (total
number of error exit-traces generated or missed by our framework), 3/°P (total number
of error exit-traces actually generated by our framework), FN = X' — 3'°P (total num-
ber of error exit-traces missed by our framework), FP (false positives: generated traces
that are not actually error exit-traces), and IP (inter-procedural: the number of traces
in which the API invocation, API-error check, and error blocks were scattered across
procedure boundaries).

380 M. Acharya and T. Xie
1. Packages 2.LOC 3. ErExT
z xop FN = >-3°p FP 1P
10-Redhat-9.0-pkgs 52K 338 320 18 35 18
postfix-2.0.16 111K 124 92 32 3 124 2
X11-R6.9.0 208 K 286 248 38 27 164
> 371K 748 660 88 (12%) 65(10%) 306(41%)
5.ErCS 6. ErCV 7. MAS 8. MAV
4. ErRT Y FP Y FP y FP Y FP
205 31 3 58 1 40 6 4 3
2 30 31 3 4 2 40 6 0 0
305 31 3 170 13 40 6 56 9
540 31 3(10%) 232 16(7%) 40 6(15%) 60 12(20%)
(a) Traces and violations
(R)XGetVisuallnfo (R)XpQueryScreens (R)XpGetAttributes
XGetWindowProperty(12) (R)XScreenResourceString | (R)XpGetOneAttribute
XQueryTree(5) (R)XGetAtomName (R)glXChooseVisual
(R)XFetchBytes (R)malloc XGetIMValues(3)
(R)XGetKeyboardMapping | XGetWMProtocols(3) (R)XGetWMHints

(b) Multiple-API specifications for the clean up API
XFree, mined by our framework

>': Total, IP: Interprocedural, FP: False Positives, FN: False Negatives, ErExT: Error Exit-
Traces, ErRT: Error Return-Traces, ErCS: Error-Check Specifications, ErCV: Error-Check
Violations, MAS: Multiple-API Specifications, MAV: Multiple-API Violations

Fig. 3. Evaluation Results

We observed that the number of false negatives (FN) and false positives (FP) were
low, at 12% (88/748) and 10% (65/660), respectively. The main reason for false neg-
atives in the traces generated by our framework is the lack of aliasing and pointer
analysis. For example, in xkbvleds/utils.c, the variable outDpy takes the return
value of the API xtDisplay. Then the value of outDpy is assigned to another variable
inDpy, and inDpy is compared to NULL. If inDpy is NULL, a user-defined procedure
uFatalError is called, which then calls exit. Our framework did not capture the
aliasing of outDpy to inDpy, and hence missed the trace. However, as the number of
false negatives was low, our framework still generated enough traces for the mining pro-
cess. Some of the traces generated by our framework were not error exit-traces, leading
to false positives. For example, in tftp/tftpd. c, the variable £ (process id) takes the
return value of the API fork. The program exits on £>0 (parent process; not an error).
Although the trace was generated by our framework, it is not an error exit-trace (fork
fails with a negative integer). However, as the number of false positives was low, false
error exit-traces were pruned by the mining process. 41% (306/748) of all the error

Mining API Error-Handling Specifications from Source Code 381

exit-traces were scattered across procedure boundaries, highlighting the importance of
inter-procedural trace generation. Specifically, all error exit-traces from the postfix
package crossed procedure boundaries.

Our framework identifies the set of probable clean up APIs from the error traces

(Step 5, Figure P)). After discarding string-manipulating APIs (such as strcmp and
strlen), printing APIs (such as print £ and fprint£), and error-reporting APIs (such
as perror), which frequently appear (but unimportant) in error blocks, our framework
identified 36 APIs as probable clean up APIs. Our framework used probable clean up
APIs in generating normal traces. For each compilable unit in the analyzed packages,
our framework randomly generated 20 normal traces, ensuring there are enough distinct
traces for mining. Our framework discarded 14/36 APIs after mining the normal traces
with one of the following reasons: (1) insufficient call sites and hence an insufficient
number of traces to mine from (for example, the API XEClearCtrlKeys had only two
traces), (2) no temporal dependencies with any APIs called prior to the error block (for
example, the API XxtSetArg appears in an exit trace from x1ogo/xlogo.c. However,
XtSetArg does not share any temporal dependencies with APIs called prior to the
exit block), or (3) insufficient support among the scenarios. Our framework mined 40
multiple-API specifications from the remaining 22/36 probable clean up APIs (Column
7, MAS).
Error-check specifications. Our framework mined error-check specifications for only
those APIs that occur more than three times among the error traces. In all, our frame-
work mined 31 error-check specifications (Column 5, ErCS) from the error traces
across all the analyzed packages. 3 (10%) out of the 31 (subcolumn X') mined spec-
ifications were false positives (subcolumn FP). For example, the API geteuid returns
the effective user ID of the current process. The effective ID corresponds to the set ID
bit on the file being executed [1]]. Our framework encounters geteuid () ! =0 at least 5
times among error traces leading to a false error-check specification — ‘geteuid fails
by returning a non-zero integer’. But, a non-zero return value simply indicates an un-
privileged process.

Error-check violations. The error-check specifications mined from error traces are
used in detecting error-check violations along the error paths in the analyzed software
packages. Column 6 (ErCV) of Figure [3(a) presents the number of error-check vio-
lations detected by our framework. We manually inspected the violations reported by
our framework. 16 (7%) out of the 232 (subcolumn X) reported error-check violations
were false positives (subcolumn FP). The main reason for false positives in the reported
violations is, once again, the lack of aliasing and pointer analysis in our framework. For
example, in twm/session.c and smproxy/save.c, the variable entry takes the re-
turn value of malloc. Then the variable entry is assigned to another variable pentry.
The variable pentry is then checked for NULL, which was missed by our framework.

Multiple-API specifications. Our framework mines multiple-API specifications from
normal traces. Our framework produces a pattern as a multiple-API specification if the
pattern occurred in at least five scenarios, with a minimum support (min sup) of 0.8
among the scenarios. Our framework mined 40 multiple-API specifications (Column 7,
MAS) across all the packages, with 6 (15%) of them being false positives (subcolumn
FP). All multiple-API specifications mined by our framework were conditional — the

382 M. Acharya and T. Xie

clean up APIs in conditional multiple-API specifications depend on the return value or a
parameter (that holds the return value). As an example of a conditional specification, for
the API XGetVisualInfo,cleaning up through the API XFree is necessary only if the
fourth input parameter of XGetVisualInfo (the number of matching visual structures)
is non-zero. False positives among the mined specifications may occur if some patterns
occuring in the analyzed source code are not necessarily specifications. This result is a
limitation shared by all mining approaches, requiring human inspection and judgement
to distinguish real specifications from false ones. For example, our framework consid-
ered the APIs XSetScreenSaver and XUngrabPointer as probable clean up APIs,
as both APIs appeared in some error traces generated by our framework. The first pa-
rameter of both these APIs is the display pointer produced by the API XOpenDisplay.
Hence, our framework mined the property “XSetScreenSaver and XUngrabPointer
should follow XOpenDisplay”, leading to a false positive. The number of false speci-
fications mined by our framework is low as the code bases used by our framework for
mining are sufficiently large.

Our framework mines the maximum number of multiple-API specifications around
the clean up API XFree. From the static traces, 35 APIs from the X11 library were
found to interact with the XxFree API, leading to 15 multiple-API specifications with
sufficient support. The specifications mined around the API XFree are shown in Fig-
ure[3(b). xFree is a general-purpose X11 API that frees the specified data. XFree must
be used to free any objects that were allocated by X11 APIs, unless an alternate API is
explicitly specified for the objects [[13]]. The pointer consumed by the xFree API can
either be a return value or a parameter (that holds the return value) of some X11 APL.
The “(R)” in (R)XGetVisualInfo, for instance, indicates that the return value of the
API xGetvisualInfo should be freed through the API XFree along all paths. The
“(5)” in XQueryTree(5), for instance, indicates that the fifth input parameter of the
API xQueryTree should be freed through the API XFree along all paths.

Multiple-API violations. Our framework uses the multiple-API specifications mined
from normal traces to detect multiple-API violations in the analyzed software pack-
ages. Column 8 (MAV) presents the number of multiple-API violations detected by our
framework. We manually inspected the violations reported by our framework. 12 (20%)
out of the 60 (subcolumn X') reported multiple-API violations were false positives (sub-
column FP). To verify conditional specifications, we adapted MOPS to track the value
of variables that take the return value of an API call along the different branches of
conditional constructs. Tracking API return values while verifying multiple-API spec-
ifications decreases the number of false positives, which would have otherwise been
reported. As a simple example, verifying conditional specifications causes false posi-
tives such as “a file is not closed before the program exits on the failure (NULL) path
of the open API” not to be reported. Verifying conditional specifications by tracking
return values avoided 87 false positives in the analyzed packages, which would have
otherwise been reported. In all, our framework mines 62 error-handling specifications
and detects 264 real error-handling violations in the analyzed packages. Due to pointer-
insensitive analysis, our framework might not mine all the error-handling specifications
or detect all the error-check and multiple-API violations in the analyzed software pack-
ages, leading to false negatives. For the mined specifications and the detected violations,

Mining API Error-Handling Specifications from Source Code 383

we have not quantified the false negatives of our framework. Quantifying the violations
missed by our framework (through manual inspection of source code along all possible
paths in the presence of function pointers and aliasing) is difficult and error prone.

5 Related Work

Dynamic. Previous work has mined API properties from program execution traces.
For example, Ammons et al. [3] mine API properties as probabilistic finite state au-
tomata from execution traces. Perracotta developed by Yang et al. [[18]] mines temporal
properties (in the form of pre-defined templates involving two API calls) from execu-
tion traces. Different from these approaches, our framework mines specifications from
source code of API clients. Dynamic approaches require setup of runtime environments
and availability of sufficient system tests that exercise various parts of the program and
hence the violations might not be easily exposed. In contrast, our new framework mines
API error-handling specifications from static traces without suffering from the preced-
ing issues.

Static. Previous several related static approaches developed by other researchers also
mine properties from source code for finding defects. Engler et al. propose Meta-level
Compilation [8]] to detect rule violations in a program based on user-provided, simple,
system-specific compiler extensions. Their approach detects defects by statically iden-
tifying inconsistencies in commonly observed behavior. PR-Miner developed by Li and
Zhou [11] mine programming rules as frequent ifemsets (ordering among program state-
ments is not considered) from source code. Apart from being intra-procedural, neither
approach considers data-flow or control-flow dependences between program elements,
required for mining error-handling specifications. Two recent approaches in static spec-
ification mining, most related to our framework, are from Chang et al. [3] and Ra-
manathan et al. [12]]. Chang et al.’s approach [5] mines specifications as graph minors
from program dependence graphs by adapting a frequent sub-graph mining algorithm.
Specification violations are then detected by their heuristic graph-matching algorithm.
The scalability of their approach is limited by the underlying graph mining and match-
ing algorithms. Furthermore, their approach does not mine conditional specifications.
Ramanathan et al. [[12] mine preconditions of a given procedure across different call
sites. To compute preconditions for a procedure, their analysis collects predicates along
each distinct path to each procedure call. As their approach is not applicable to postcon-
ditions, it cannot mine error-handling specifications. Static approaches [17,/16] exist to
analyze programs written in Java, which has explicit exception-handling support. Sev-
eral proposals [9] exist for extending C with exception-handling support. In contrast,
our framework is applicable to applications implemented in procedural languages with
no explicit support for exception handling.

6 Conclusions

We have developed a framework to automatically mine API error-handling specifica-
tions from source code. We then use the mined specifications to detect API error-
handling violations from the analyzed software packages (API client code). We have

384 M. Acharya and T. Xie

implemented the framework, and validated its effectiveness on 10 packages from the
Redhat-9.0 distribution (52 KLOC), postfix-2.0.16 (111 KLOC), and 72 pack-
ages from the x11-r6.9.0 (208 KLOC). Our framework mines 62 error-handling
specifications and detects 264 real error-handling defects from the analyzed packages.

References

1. IEEE Computer Society. IEEE Standard for Information Technology - Portable Operating
System Interface POSIX - Part I: System Application Program Interface API, IEEE Std
1003.1b-1993 (1994)

2. Acharya, M., Xie, T., Pei, J., Xu, J.: Mining API patterns as partial orders from source code:
From usage scenarios to specifications. In: Proc. ESEC/FSE, pp. 25-34 (2007)

3. Ammons, G., Bodik, R., Larus, J.: Mining specifications. In: Proc. POPL, pp. 4-16 (2002)

4. Bruntink, M., Deursen, A.V., Tourwe, T.: Discovering faults in idiom-based exception han-
dling. In: Proc. ICSE, pp. 242-251 (2006)

5. Chang, R.Y., Podgurski, A.: Finding what’s not there: A new approach to revealing neglected
conditions in software. In: Proc. ISSTA, pp. 163-173 (2007)

6. Chen, H., Wagner, D.: MOPS: an infrastructure for examining security properties of software.
In: Proc. CCS, pp. 235-244 (2002)

7. Cristian, F.: Exception Handling and Tolerance of Software Faults. In Software Fault Toler-
ance, ch. 5. John Wiley and Sons, Chichester (1995)

8. Engler, D., Chen, D.Y., Hallem, S., Chou, A., Chelf, B.: Bugs as deviant behavior: A general
approach to inferring errors in systems code. In: Proc. SOSP, pp. 57-72 (2001)

9. Gehani, N.H.: Exceptional C for C with exceptions. Software Practices and Experi-
ences 22(10), 827-848 (1992)

10. Gunawi, H., Rubio-Gonzalez, C., Arpaci-Dusseau, A., Arpaci-Dusseau, R., Liblit, B.: EIO:
Error handling is occasionally correct. In: Proc. USENIX FAST, pp. 242-251 (2006)

11. Li, Z., Zhou, Y.: PR-Miner: automatically extracting implicit programming rules and detect-
ing violations in large software code. In: Proc. ESEC/FSE, pp. 306-315 (2005)

12. Ramanathan, M.K., Grama, A., Jagannathan, S.: Static specification inference using predi-
cate mining. In: Proc. PLDI, pp. 123-134 (2007)

13. Rosenthal, D.: Inter-client communication Conventions Manual (ICCCM), Version 2.0. X
Consortium, Inc. (1994)

14. Toy, W.: Fault-tolerant design of local ESS processors. In: The Theory and Practice of Reli-
able System Design. Digital Press (1982)

15. Wang, J., Han, J.: BIDE: Efficient mining of frequent closed sequences. In: Proc. ICDE, pp.
79-90 (2004)

16. Weimer, W., Necula, G.C.: Finding and preventing run-time error handling mistakes. In:
Proc. OOPSLA, pp. 419431 (2004)

17. Weimer, W., Necula, G.C.: Mining temporal specifications for error detection. In: Halbwachs,
N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 461-476. Springer, Heidelberg
(2005)

18. Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Perracotta: Mining temporal API rules
from imperfect traces. In: Proc. ICSE, pp. 282-291 (2006)

	Mining API Error-Handling Specifications from Source Code
	Introduction
	Example
	Framework
	Error/Normal Trace Generation
	Specification Mining
	Verification

	Evaluation
	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

