


Lecture Notes in Computer Science 5503
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Marsha Chechik Martin Wirsing (Eds.)

Fundamental Approaches
to Software Engineering

12th International Conference, FASE 2009
Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2009
York, UK, March 22-29, 2009
Proceedings

13



Volume Editors

Marsha Chechik
University of Toronto
Department of Computer Science
10 King’s College Road, Toronto, ON, M5S 3G4, Canada
E-mail: chechik@cs.toronto.edu

Martin Wirsing
LMU Munich
Institute of Computer Science
Oettingenstr. 67, 80538 Munich, Germany
E-mail: wirsing@pst.ifi.lmu.de

Library of Congress Control Number: Applied for

CR Subject Classification (1998): D.2, F.3, D.3, F.4, G.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-00592-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-00592-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12633227 06/3180 5 4 3 2 1 0



Foreword

ETAPS 2009 was the 12th instance of the European Joint Conferences on The-
ory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new confer-
ences. This year it comprised five conferences (CC, ESOP, FASE, FOSSACS,
TACAS), 22 satellite workshops (ACCAT, ARSPA-WITS, Bytecode, COCV,
COMPASS, FESCA, FInCo, FORMED, GaLoP, GT-VMT, HFL, LDTA, MBT,
MLQA, OpenCert, PLACES, QAPL, RC, SafeCert, TAASN, TERMGRAPH,
and WING), four tutorials, and seven invited lectures (excluding those that were
specific to the satellite events). The five main conferences received this year 532
submissions (including 30 tool demonstration papers), 141 of which were ac-
cepted (10 tool demos), giving an overall acceptance rate of about 26%, with
most of the conferences at around 25%. Congratulations therefore to all the au-
thors who made it to the final programme! I hope that most of the other authors
will still have found a way of participating in this exciting event, and that you
will all continue submitting to ETAPS and contributing towards making it the
best conference on software science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2009 was organised by the University of York in cooperation with

� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST)



VI Foreword

and with support from ERCIM, Microsoft Research, Rolls-Royce, Transitive,
and Yorkshire Forward.

The organising team comprised:

Chair Gerald Luettgen
Secretariat Ginny Wilson and Bob French
Finances Alan Wood
Satellite Events Jeremy Jacob and Simon O’Keefe
Publicity Colin Runciman and Richard Paige
Website Fiona Polack and Malihe Tabatabaie.

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Vladimiro Sassone (Southampton, Chair), Luca de Alfaro (Santa Cruz), Roberto
Amadio (Paris), Giuseppe Castagna (Paris), Marsha Chechik (Toronto), Sophia
Drossopoulou (London), Hartmut Ehrig (Berlin), Javier Esparza (Munich), Jose
Fiadeiro (Leicester), Andrew Gordon (MSR Cambridge), Rajiv Gupta (Arizona),
Chris Hankin (London), Laurie Hendren (McGill), Mike Hinchey (NASA God-
dard), Paola Inverardi (L’Aquila), Joost-Pieter Katoen (Aachen), Paul Klint
(Amsterdam), Stefan Kowalewski (Aachen), Shriram Krishnamurthi (Brown),
Kim Larsen (Aalborg), Gerald Luettgen (York), Rupak Majumdar (Los Ange-
les), Tiziana Margaria (Göttingen), Ugo Montanari (Pisa), Oege de Moor (Ox-
ford), Luke Ong (Oxford), Catuscia Palamidessi (Paris), George Papadopoulos
(Cyprus), Anna Philippou (Cyprus), David Rosenblum (London), Don Sannella
(Edinburgh), João Saraiva (Minho), Michael Schwartzbach (Aarhus), Perdita
Stevens (Edinburgh), Gabriel Taentzer (Marburg), Dániel Varró (Budapest),
and Martin Wirsing (Munich).

I would like to express my sincere gratitude to all of these people and or-
ganisations, the Programme Committee Chairs and PC members of the ETAPS
conferences, the organisers of the satellite events, the speakers themselves, the
many reviewers, and Springer for agreeing to publish the ETAPS proceedings.
Finally, I would like to thank the Organising Chair of ETAPS 2009, Gerald
Luettgen, for arranging for us to hold ETAPS in the most beautiful city of York.

January 2009 Vladimiro Sassone, Chair
ETAPS Steering Committee



Preface

Software technology has become a driving factor for a rapidly growing range of
products and services from all sectors of economic activity. At its core is a set
of technical and scientific challenges that must be addressed in order to set the
stage for the development, deployment, and application of tools and methods in
support of the construction of complex software systems.

The International Conference on Fundamental Approaches to Software En-
gineering (FASE) – as one of the European Joint Conferences on Theory and
Practice of Software (ETAPS) – focuses on those core challenges. FASE provides
the software engineering research community with a forum for presenting the-
ories, languages, methods, and tools arising from both fundamental research in
the academic community and applied work in practical development contexts.

In 2009, FASE received 132 submissions: 123 regular papers and 9 tool pa-
pers. Each submission received an average of 3.1 reviews by technical experts
from the Program Committee, helped by the external research community. Each
paper was further discussed during a two-week “electronic” meeting. We wish
to express our sincere thanks to all of the referees for the time, effort, and care
taken in reviewing and discussing the submissions. The Program Committee
selected 30 papers and 2 tool demonstrations – an acceptance rate of 24%. Ac-
cepted papers addressed topics such as model-driven development, modeling and
specification, model analysis, testing, debugging, synthesis, security, and adapta-
tion. The technical program was complemented by the invited lecture of Stephen
Gilmore on “Scalable Analysis of Scalable Systems.”

FASE 2009 was held in York (UK) as part of the 12th edition of ETAPS.
Arrangements were the responsibility of the local Organizing Committee, and
the overall coordination of ETAPS was carried out by its Steering Committee.
We would like to thank the Chairs of these committees, Gerald Luettgen and
Vladimiro Sassone, for the professional and friendly support with which we were
provided throughout this process. The planning and coordination of the FASE
series of conferences is the responsibility of EASST (European Association of
Software Science and Technology). We would like to thank Reiko Heckel, as
Chair of the Steering Committee of FASE in 2007, for having invited us to be
Co-chairs of this 2009 edition. We wish all the best to the Co-chairs of the 2010
edition, Gaby Taentzer and David Rosenblum.

We used EasyChair for managing the paper selection process and for assem-
bling the LNCS volume, and found this system very convenient. We are grateful
to Springer for their helpful collaboration and assistance in producing this vol-
ume. As always, the real stars of the show are the authors of the papers, and
especially the presenters. We would like to thank them all for having put so
much effort into the papers and the presentations. As to the attendees of FASE



VIII Preface

2009, we are sure that they were inspired by the technical and social quality of
the program, and we are grateful for their participation.

January 2009 Marsha Chechik
Martin Wirsing



Organization

Programme Chairs

Marsha Chechik University of Toronto (Canada)
Martin Wirsing LMU Munich (Germany)

Programme Committee

Michel Bidoit INRIA Saclay (France)
Ruth Breu University of Innsbruck (Austria)
Jim Davies University of Oxford (UK)
Juergen Dingel Queen’s University (Canada)
Schahram Dustdar Vienna University of Technology (Austria)
Alexander Egyed Johannes Kepler University Linz (Austria)
José Fiadeiro University of Leicester (UK)
Harald C. Gall University of Zürich (Switzerland)
Dimitra Giannakopolou RIACS/NASA Ames (USA)
Reiko Heckel University of Leicester (UK)
Mats Heimdahl University of Minnesota (USA)
Paola Inverardi University of L’Aquila (Italy)
Alexander Knapp University of Augsburg (Germany)
Angelika Mader University of Twente (Netherlands)
TSE Maibaum McMaster University (Canada)
Tiziana Margaria University of Potsdam (Germany)
Fabio Massacci University of Trento (Italy)
Stephan Merz INRIA Nancy (France)
Peter Ölveczky University of Oslo (Norway)
Richard Paige University of York (UK)
Gregg Rothermel University of Nebraska-Lincoln (USA)
Koushik Sen University of California, Berkeley (USA)
Perdita Stevens University of Edinburgh (UK)
Gabriele Taentzer University of Marburg (Germany)
Ladan Tahvildari University of Waterloo (Canada)
Tetsuo Tamai University of Tokyo (Japan)
Sebastian Uchitel University of Buenos Aires (Argentina)
Dániel Varró Budapest University of Technology and

Economics (Hungary)



X Organization

External Reviewers

Aboulsamh, Mohammed
Agreiter, Berthold
Arendt, Thorsten
Autili, Marco
Balogh, András
Bauer, Sebastian
Berard, Beatrice
Beszédes, Árpád
Bielova, Nataliia
Bisztray, Dénes
Bocchi, Laura
Boronat, Artur
Bouza, Amancio
Brooke, Phil
Burnim, Jacob
Chen, Feng
Chetali, Boutheina
Chimiak-Opoka, Joanna
Choppy, Christine
Clavel, Manuel
Crichton, Charles
Dalpiaz, Fabiano
de Lara, Juan
Di Benedetto, Paolo
Di Ruscio, Davide
Donyina, Adwoa
Drivalos, Nikos
Egger, Jeff
Ermel, Claudia
Escobar, Santiago
Felderer, Michael
Fluri, Beat
Ge, Xiaocheng
Ghezzi, Giacomo
Giger, Emanuel
Grabe, Immo
Gönczy, László
Habli, Ibrahim
Haddad, Serge
Hafner, Michael

Hert, Matthias
Holmes, Taid
Iris Groher
Deepack Dughana
Istenes, Zoltán
Jacquemard, Florent
Jalbert, Nick
Jhala, Ranjit
Joshi, Pallavi
Jung, Georg
Jurack, Stefan
Juszczyk, Lukasz
Juvekar, Sudeep
Jörges, Sven
Katt, Basel
Khan, Tamim
Kolovos, Dimitrios
Kordon, Fabrice
Kövi, András
Kyas, Marcel
Langerak, Rom
Lapouchnian, Alexei
Li, Fei
Loew, Sarah
Manolescu, Ioana
Marché, Claude
Marincic, Jelena
Markey, Nicolas
Mehmood, Waqar
Memon, Mukhtiar
Mezei, Gergely
Minas, Mark
Montresor, Alberto
Muccini, Henry
Neuhaus, Stephan
Park, Chang-Seo
Park, Myung-Hwan
Pelliccione, Patrizio
Pintér, Gergely
Polack, Fiona

Posse, Ernesto
Radjenovic, Alek
Rassadko, Natalyia
Reif, Gerald
Reiff-Marganiec, S.
Rose, Louis
Ráth, István
Saidane, Ayda
Schall, Daniel
Schneider, Gerardo
Schubert, Wolfgang
Schürr, Andy
Siahaan, Ida Sri Rejeki
Staats, Matt
Steffen, Bernhard
Steffen, Martin
Stergiou, Christos
Tavakoli Kolagari, R.
Tivoli, Massimo
Torrini, Paolo
Truong, Hong-Linh
Tuosto, Emilio
Ure, Jenny
Voisin, Frederic
Van Wyk, Eric
Varró, Gergely
Varró-Gyapay, Szilvia
Vasko, Martin
Villard, Jules
Voigt, Horst
Wagner, Christian
Wang, Chen-Wei
Weber, Michael
Welch, James
Wierse, Gerd
Wuersch, Michael
Xu, Kai
Yautsiukhin, Artsiom
Zannone, Nicola
Zhou, Yu



Table of Contents

Scalable Analysis of Scalable Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Allan Clark, Stephen Gilmore, and Mirco Tribastone

Model-Driven Development

Rewriting Logic Semantics and Verification of Model
Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Artur Boronat, Reiko Heckel, and José Meseguer

Confluence in Domain-Independent Product Line Transformations . . . . . 34
Jon Oldevik, Øystein Haugen, and Birger Møller-Pedersen

Object Flow Definition for Refined Activity Diagrams . . . . . . . . . . . . . . . . 49
Stefan Jurack, Leen Lambers, Katharina Mehner,
Gabriele Taentzer, and Gerd Wierse

A Category-Theoretical Approach to the Formalisation of Version
Control in MDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Adrian Rutle, Alessandro Rossini, Yngve Lamo, and Uwe Wolter

Synthesis and Adaptation

Controller Synthesis from LSC Requirements . . . . . . . . . . . . . . . . . . . . . . . . 79
Hillel Kugler, Cory Plock, and Amir Pnueli

Interface Generation and Compositional Verification in
JavaPathfinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Dimitra Giannakopoulou and Corina S. Păsăreanu

A Formal Way from Text to Code Templates . . . . . . . . . . . . . . . . . . . . . . . . 109
Guido Wachsmuth

Context-Aware Adaptive Services: The PLASTIC Approach . . . . . . . . . . . 124
Marco Autili, Paolo Di Benedetto, and Paola Inverardi

Modeling

Synchronous Modeling and Validation of Priority Inheritance
Schedulers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Erwan Jahier, Nicolas Halbwachs, and Pascal Raymond



XII Table of Contents

Describing and Analyzing Behaviours over Tabular Specifications Using
(Dyn)Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Nazareno M. Aguirre, Marcelo F. Frias, Mariano M. Moscato,
Thomas S.E. Maibaum, and Alan Wassyng

Testing and Debugging

Reducing the Costs of Bounded-Exhaustive Testing . . . . . . . . . . . . . . . . . . 171
Vilas Jagannath, Yun Young Lee, Brett Daniel, and Darko Marinov

Logical Testing: Hoare-style Specification Meets Executable
Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Kathryn E. Gray and Alan Mycroft

Cross-Entropy-Based Replay of Concurrent Programs . . . . . . . . . . . . . . . . . 201
Hana Chockler, Eitan Farchi, Benny Godlin, and Sergey Novikov

Model Analysis

Control Dependence for Extended Finite State Machines . . . . . . . . . . . . . . 216
Kelly Androutsopoulos, David Clark, Mark Harman, Zheng Li, and
Laurence Tratt

Proving Consistency of Pure Methods and Model Fields . . . . . . . . . . . . . . 231
K. Rustan M. Leino and Ronald Middelkoop

On the Implementation of @pre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Piotr Kosiuczenko

Formal Specification and Analysis of Timing Properties in Software
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

Musab AlTurki, Dinakar Dhurjati, Dachuan Yu, Ajay Chander, and
Hiroshi Inamura

Patterns

Formal Foundation for Pattern-Based Modelling . . . . . . . . . . . . . . . . . . . . . 278
Paolo Bottoni, Esther Guerra, and Juan de Lara

Problem-Oriented Documentation of Design Patterns . . . . . . . . . . . . . . . . . 294
Alexander Fülleborn, Klaus Meffert, and Maritta Heisel

Security

Certification of Smart-Card Applications in Common Criteria: Proving
Representation Correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

Iman Narasamdya and Michaël Périn



Table of Contents XIII

Transformation of Type Graphs with Inheritance for Ensuring Security
in E-Government Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

Frank Hermann, Hartmut Ehrig, and Claudia Ermel

A Formal Connection between Security Automata and JML
Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

Marieke Huisman and Alejandro Tamalet

Queries and Error Handling

Algorithms for Automatically Computing the Causal Paths of
Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

William N. Sumner and Xiangyu Zhang

Mining API Error-Handling Specifications from Source Code . . . . . . . . . . 370
Mithun Acharya and Tao Xie

SNIFF: A Search Engine for Java Using Free-Form Queries . . . . . . . . . . . . 385
Shaunak Chatterjee, Sudeep Juvekar, and Koushik Sen

Inquiry and Introspection for Non-deterministic Queries in Mobile
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

Vasanth Rajamani, Christine Julien, Jamie Payton, and
Gruia-Catalin Roman

Tools (Demos) and Program Analysis

HOL-TestGen: An Interactive Test-Case Generation Framework . . . . . . 417
Achim D. Brucker and Burkhart Wolff

CADS*: Computer-Aided Development of Self-* Systems . . . . . . . . . . . . . . 421
Radu Calinescu and Marta Kwiatkowska

HAVE: Detecting Atomicity Violations via Integrated Dynamic and
Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

Qichang Chen, Liqiang Wang, Zijiang Yang, and Scott D. Stoller

Accurate and Efficient Structural Characteristic Feature Extraction for
Clone Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

Hoan Anh Nguyen, Tung Thanh Nguyen, Nam H. Pham,
Jafar M. Al-Kofahi, and Tien N. Nguyen

Enhanced Property Specification and Verification in BLAST . . . . . . . . . . 456
Ondřej Šerý

Finding Loop Invariants for Programs over Arrays Using a Theorem
Prover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

Laura Kovács and Andrei Voronkov

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487



Scalable Analysis of Scalable Systems

Allan Clark, Stephen Gilmore, and Mirco Tribastone

The University of Edinburgh, Scotland

Abstract. We present a systematic method of analysing the scalabil-
ity of large-scale systems. We construct a high-level model using the
SRMC process calculus and generate variants of this using model trans-
formation. The models are compiled into systems of ordinary differential
equations and numerically integrated to predict non-functional proper-
ties such as responsiveness and scalability.

1 Introduction

Very often, our ability to build complex software systems outstrips our ability
to plan and carry out rigorous analysis which predicts the behaviour of these
systems under conditions of increasing load. This situation is unsatisfactory be-
cause it leads to systems being deployed in active use with no real assurance of
graceful degradation of service as the user population grows. Because we cannot
rely on them to provide service in times of greatest need, such systems are as
unreliable in practice as ones which contain programming errors.

The crippling blow which strikes when trying to scale discrete-state models to
represent user populations of significant size is the well-known problem of state-
space explosion. The discrete-state representation demands memory in quantities
which grow too quickly for us to be able to meet these demands for long. A bold
alternative is to abandon discrete-state representations and take our models
to the continuous-space world using fluid-flow analysis [1]. This allows us to
represent and analyse large-scale systems with modest requirements on memory
and time.

Modelling large populations of users is seldom the only difficulty which we en-
counter with large-scale systems. Scalable systems need to be resilient to changes
in the underlying operational conditions. For this reason they are often struc-
tured with critical services replicated on several hosts in order for the system to
continue to function when some of these hosts fail. It is very unusual indeed for
all of the hosts to have identical performance profiles. It is instead quite common
for them to be running different versions of the software services. Some will be
running an older version, others the latest. Some sites will have disabled certain
features, others not.

As if the above did not already give us enough challenges we also need to
address the issue that large-scale systems are dynamic. Hosts providing one
service may be taken down and redeployed to provide a different service. Some
hosts will fail and might not be replaced if they were thought to be underused.
New hosts will be sourced, purchased and brought online where the need is

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 1–17, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 A. Clark, S. Gilmore, and M. Tribastone

perceived to be greatest. We would like our modelling study and our analysis
results to be robust in the face of possible changes such as these.

In this paper we work with a process calculus which can be used for modelling
problems such as these. The Sensoria Reference Markovian Calculus (SRMC),
as described in [2], is a high-level modelling language which can be used for
quantitative analysis of systems from the small scale to the large scale. Small-
scale models in SRMC are mapped to continuous-time Markov chains and large-
scale models are mapped to systems of differential equations. The SRMC lan-
guage supports structured modelling via namespaces which accompany a novel
mechanism for specifying uncertainty about binding. This is used to represent
the inherent uncertainty about evaluation sites which is found generally in dis-
tributed computing and specifically in service-oriented computing where services
are replicated across several hosts to provide scalability and robustness. Model
transformations are used to capture changes in service administration leading to
new hosts being commissioned or old ones being decommissioned.

The SRMC language is supported by a framework for experimentation and
analysis which allows SRMC modellers to define their model together with
a set of transformations. Software tools for SRMC generate the instances of
the model which can be obtained through making different binding decisions.
Once these binding decisions have been made the models can be expressed in a

SRMC

PEPA

PEPA

PEPA

PEPA RK5 RK5 RK5 RK5

PEPA

PEPA RK5 RK5 RK5 RK5

PEPA RK5 RK5 RK5 RK5 RK5 RK5

PEPA RK5 RK5 RK5

PEPA RK5 RK5 RK5 RK5 RK5 RK5

PEPA RK5 RK5 RK5 RK5 RK5 RK5 RK5

PEPA RK5 RK5 RK5 RK5 RK5

PEPA RK5 RK5 RK5 RK5

RK5 RK5 RK5 RK5RK5

Fig. 1. The evaluation model. The single SRMC model in the illustration above gives
rise to three PEPA models when possible bindings to services are considered. These
three PEPA models become nine when model transformations are applied. Each of
these nine models is evaluated between three and seven times in order to consider
all of the possible assignments of rate values to rate parameters. This leads to forty-
four systems of coupled ordinary differential equations in all and the same number of
runs of a fifth-order Runge-Kutta (RK5) numerical integrator. These solve the initial
value problem for each system of ODEs and give a time-series plot of the number
of components of each type in the SRMC model as a function of time up to a finite
time horizon. The results from these forty-four runs are combined to form the analysis
results for the SRMC model.



Scalable Analysis of Scalable Systems 3

simpler modelling language, Performance Evaluation Process Algebra (PEPA)
[3,4]. Variants of each of these PEPA models are obtained by applying the trans-
formations supplied. All models thus generated are evaluated for a range of nu-
merical parameter values and the results from the individual runs are combined
to deliver an evaluation of the model as a whole. Figure 1 illustrates the evalu-
ation model for SRMC.

The novel contribution of the present paper is the use of model transformation
to automatically generate a family of related models from a single SRMC source.
In addition, this paper presents the first application of the fluid-flow analysis
invented for PEPA to large-scale SRMC models. This latter innovation caused
us to develop a supporting software infrastructure for aggregating the analysis
results from the family of related models which we generate.

Structure of this paper: Section 2 presents our modelling concepts and introduces
the ideas behind the process calculus which we use. In Section 3 we describe the
features of the SRMC calculus and relate it to a simpler calculus without explicit
support for dynamic binding, PEPA. In Section 4 we present the language of
model transformations which we use. Our case study of a “virtual university”
is presented in Section 5. The results are in Section 6. Software tool support
is crucial for generating models and for managing the experimentation process;
our software tools are described in Section 7. Section 8 describes related work
and Section 9 presents conclusions.

2 Modelling Concepts

We are concerned here with non-functional properties of systems, specifically
quantitative aspects such as performance. We investigate these properties using
high-level models built from model components.

Model components are of two kinds, behavioural and virtual. A behavioural
component cycles through a lifetime of timed activities offering sometimes only a
single possible next activity and sometimes a choice between several alternatives.
A virtual component does not perform activities but simply introduces a name
into the model which we can use when querying the model later.

The kind of analysis which we will perform on the SRMC models in this
paper tells us the expected number of behavioural components of every kind at
all points in time. The expectation of the virtual components can be calculated
from the expectations of the behavioural components by evaluating the defining
expressions of the virtual components.

Because our interest is in quantitative modelling our models will contain rates
and probabilities. Because we deal with large-scale systems with replicated com-
ponents we also have arrays of behavioural components. For example, if C is
a component then C[15] is an array of fifteen independent copies of this com-
ponent. We use these arrays to represent capacity (e.g. a pool of servers) or
workload (e.g. a population of clients).

Our models will contain two kinds of numerical parameters, certain and un-
certain. Certain parameters are bound to a single value: uncertain parameters



4 A. Clark, S. Gilmore, and M. Tribastone

are bound to a set of possibilities. An uncertain parameter which is a probability
might be bound to {0.4, 0.5, 0.6}, meaning that we should consider each of the
elements of this set as a possible value for the parameter. Rates may be uncer-
tain also, as may array sizes. Binding sites may be uncertain, and we choose one
from a set of behavioural components.

We use model transformation to generate a family of related models from a
single SRMC model. We think of these as plausible modifications of the orig-
inal system which represent what the system might become after foreseeable
reconfiguration or maintenance. Each of these generated models is “close” to the
original model in the sense that they can be obtained by the application of a
single transformation drawn from a set of possible transformations.

3 The Calculus

We work with the Sensoria Reference Markovian Calculus (SRMC), as described
in [2]. SRMC allows modellers to structure their models using namespaces, sep-
arating components which have similar structure. To illustrate the SRMC lan-
guage we will give an example of a simple system which consists of a process
accessing one of two disks, A or B.

We first describe disk A which has occasional failures and has just two states,
failed and working. When failed the disk must be repaired before more data can
be read or written. Reads and writes are thought to be nearly equally likely:
the probability that the I/O operation is a read is pr. Failures occur somewhere
between once every thousand disk operations (pf = 0.001) and once every two
hundred (pf = 0.005). We will consider three sample values in this range. Rates
λ and μ dictate the rates at which repairs and reads and writes take place.
Disk A would be described in the SRMC syntax as shown below.

DiskA::{
lambda = 0.3; mu = 1400; // rates

p_r = { 0.4, 0.5, 0.6 }; // probability of a read

p_f = { 0.001, 0.003, 0.005 }; // probability of failure

Failed = (repair, lambda).Working;
Working = (read, (1 - p_f) * p_r * mu).Working

+ (write, (1 - p_f) * (1 - p_r) * mu).Working
+ (fail, p_f * mu).Failed;

Unavailable = [ Failed ];
};

This namespace has two behavioural components, Failed and Working and one
virtual component Unavailable. The virtual component introduces the concept
of “unavailability” to our model. In this case a disk is unavailable only if it has
failed.

We can think of the above as a high-level schema representing nine concrete
models differing only in the values assigned to the probabilities pr and pf . In the



Scalable Analysis of Scalable Systems 5

first of the concrete models pr has the value 0.4, and pf is 0.001. In the ninth pr

is 0.6, and pf is 0.005. In between all of the other possible assignments of values
to pr and pf have been enumerated.

Disk B is slower than disk A. Failures occur more frequently and they take
longer to repair. In addition disk B has a sleep mode which it enters to save
power. The SRMC description is below.

DiskB::{
lambda = 0.1; mu = 1200; // lower rates for the slower device

p_r = { 0.4, 0.5, 0.6 }; // same probability of a read

p_f = { 0.01, 0.03, 0.05 }; // higher probability of failure

gamma = 0.001; delta = 0.001; // rates for sleep and wake

Failed = (repair, lambda).Working;
Working = (read, (1 - p_f) * p_r * mu).Working

+ (write, (1 - p_f) * (1 - p_r) * mu).Working
+ (fail, p_f * mu).Failed
+ (sleep, gamma).Offline;

Offline = (wake, delta).Working;
Unavailable = [ Failed + Offline ];

};

This too is a high-level schema representing nine concrete models. However, it
introduces a different notion of unavailability. Here a disk is unavailable if it
has failed or is offline. The virtual component Unavailable is defined to be the
arithmetic sum of the number of disks which have failed plus the number of
disks which are offline. Notice that the symbol “+” is overloaded in SRMC. In a
behavioural component “+” denotes choice. In a virtual component “+” denotes
arithmetic sum. Here we will add the expected number of failed disks and the
expected number of offline disks to get the expected number of unavailable disks.
Virtual components are syntactically distinguished because they consist of a
defining expression enclosed in square brackets.

The disk which is in use in the system is either disk A or disk B. To de-
scribe this in SRMC we introduce another namespace, Disk which can stand for
either A or B.

Disk::={ DiskA, DiskB };

The top-level composition of components in our example here introduces a com-
putational process which reads and writes. The disk which is used is initially in
its working state.

System = Process::Idle <read, write> Disk::Working;

In all this SRMC model represents eighteen simpler concrete models. In nine
of these disk A is being used. In the other nine disk B is being used. In eval-
uating this SRMC model we separate out two groups of models. In the first of
these disk A is being used, and disk B is not represented at all—the top-level
composition evaluates to Process::Idle <read, write> DiskA::Working and



6 A. Clark, S. Gilmore, and M. Tribastone

the entire DiskB namespace is discarded. In the second group of models disk B
is being used and disk A is not represented at all—the top-level composition
becomes Process::Idle <read, write> DiskB::Working and the entire DiskA
namespace is discarded.

We then perform a parameter sweep across the possible assignments of values
to model parameters in each group. This will require us to evaluate the version
of the model with the main disk nine times, and the version of the model with
the spare disk nine times also. Finally, we combine the results.

It is important to understand that the model configuration is fixed during
model evaluation. That is, we will investigate the behaviour of the model up to
a finite time horizon and during this time interval the model configuration will
not change. This ability to divide the initial SRMC model up into a collection
of simpler static models is an important factor in making our analysis scale to
large models.

The simpler models which are generated in the parameter sweep which is
performed after resolution of binding do not have namespaces and do not have
uncertain parameters. The consequence of this is that they can all be expressed
in Performance Evaluation Process Algebra (PEPA) [3,4]. PEPA has both a
discrete-state stochastic Markovian semantics [5] and a continuous-state sure
differential equation semantics [1]. We have considered the evaluation of SRMC
models using the Markovian semantics for PEPA in an earlier paper [2] and we
use the differential equation semantics here because our concern is with evalu-
ating large-scale systems with many users and many replicated services.

Once all of the separate instances of the generated PEPA models have been
analysed we collate the results into what is now a database of results. This
database can be used to select and display various results from results relating
to a single configuration or subset of all configurations to results pertaining to
the entire results space. The latter allows such queries as: “What is the worst
case scenario of long term expected number of unavailable disks” and “Give
a listing of all configurations which fail to satisfy a given throughput of read
operations”.

4 Model Transformation

The previous section relates the process of numerically evaluating an SRMC
model. This included generating PEPA models after resolving dynamic binding.
However, we also wish to investigate related models, reachable by an application
of a model transformation, in order to incorporate possible changes which may
occur. The grammar in Figure 2 defines transformation rules. The description
presented here is sufficiently general that it may be applied at either the SRMC
or the PEPA level.

A rule is specified by providing a pattern which should match some subcom-
ponent of the model and a corresponding replacement, which is syntactically
also a pattern. A transformation rule may contain pattern variables denoted by
a question mark followed by a name. A pattern variable will match anything



Scalable Analysis of Scalable Systems 7

rule := pattern==>pattern rules
pattern := ?name variable

| name named
| pattern <activities> pattern cooperation
| pattern[size]〈[activities]〉 array

activities := 〈?name,〉name∗ concrete activities
size := ?name variable

| integer constant
| size binop size binary op

binop := + | − | × | ÷ operators

Fig. 2. The grammar for transformation rules. The names which appear in the patterns
are component identifiers. The names which appear in activity sets are activity names.
The names which are used in size expressions denote the integer values which are used
in dimensioning arrays of components.

which may appear in the given position, so when it occurs in the place of a
component then it will match any component. If the replacement refers to a
pattern variable then whatever was matched against is inserted at that place in
the replacement.

A list of activities may contain a pattern variable together with several other
concrete activity names. If this is the case the pattern variable is set to those
names which are not given concretely, however we only match the given set of
activities if the concrete activities are contained within the set.

The transformation P <a> Q ==> P <a,b> Q adds activity b to the cooper-
ation set. This rule uses no pattern variables and so will only match against
the cooperation P <a> Q. Generally pattern variables are used as ?Q here in the
rule P <a> ?Q ==> P <a,b> ?Q. This will match the cooperation of P with any
component including one which is itself a cooperation or a component array.
Here we match against two cooperating arrays of P and Q components, remove
one P and add a Q instead: P[?m] <a> Q[?n] ==> P[?m - 1] <a> Q[?n + 1].

This style of pattern matching is used with redeployable components where we
wish to analyse our system with different numbers of components deployed in
each role. For example, file servers may be redeployed as web servers. However
the pattern more commonly abstracts over the cooperation set as in the pattern:
P[?m] <?a> Q[?n] ==> P[?m - 1] <?a> Q[?n + 1].

Finally a common pattern is to remove some activities from a cooperation
set. The following pattern matches any component cooperating with a P com-
ponent over the activity b and removes it from the cooperation set allowing the
P component (and the other cooperating component) to perform the activity b
independently. Note though that any other activities in the cooperation set are
preserved. This is written as P <?a, b> ?Q ==> P <?a> ?Q.

5 Case Study

To illustrate the above ideas we consider as an example a distributed e-learning
and course management system. The system is to allow students to enrol in



8 A. Clark, S. Gilmore, and M. Tribastone

courses even when studying remotely. One of the quantitative issues of concern
here is whether or not the system will scale well enough to cope with increased
demand from a larger population of student users.

5.1 The Servers

In this example we consider a fictional virtual university which has two university
sites in the University of Edinburgh and Imperial College, London. Each site
has an HTTP server where students can download course materials, multimedia
content, and other courseware. Each has an FTP server where students can
upload project materials and coursework for assessment. The HTTP and FTP
servers may fail independently and, because each is running other services as
well, availability of the servers varies.

Edinburgh::{
mu = 0.0001; gamma = 0.125; // rates of fail and repair

avail = {0.6,0.7,0.8,0.9,1.0}; // availability of the server

phi = 10.0; psi = 7.0; // rates for download and upload

// The HTTP server

Http::{
Idle = (download, avail * phi).Idle

+ (fail, mu).Broken;
Broken = (repair, gamma).Idle;

};

// The FTP server

Ftp::{
Idle = (upload, avail * psi).Idle

+ (fail, mu).Broken;
Broken = (repair, gamma).Idle;

};
};

The servers at Imperial are similar in functionality to those in Edinburgh however
they differ in their performance characteristics, specifically with respect to the
rates at which failures occur and the rates at which downloads and uploads
occur.

Imperial::{
mu = 0.006; gamma = 0.125; // failures are more likely

avail = {0.6,0.7,0.8,0.9,1.0}; // availability is the same

phi = 20.0; psi = 15.0; // download and upload are faster

// The HTTP server

Http::{
Idle = (download, avail * phi).Idle



Scalable Analysis of Scalable Systems 9

+ (fail, mu).Broken;
Broken = (repair, gamma).Idle;

};

// The FTP server

Ftp::{
Idle = (upload, avail * psi).Idle

+ (fail, mu).Broken;
Broken = (repair, gamma).Idle;

};
};

Of course further servers may be added, in our results given in Section 6 we
added a further server which fairly services both HTTP and FTP requests at
the same rate.

5.2 The Clients

We characterise different types of user of the system. The first, Harry, connects
relatively frequently, and uploads or downloads once each session.

Harry::{
connect_rate = { 0.01, 0.02, 0.03 };
disconnect_rate = 1.0;
download_rate = { 0.01, 0.02, 0.03 };
upload_rate = 1.0;

Idle = (connect, connect_rate / 2).Upload
+ (connect, connect_rate / 2).Download;

Upload = (upload, upload_rate).Disconnect;
Download = (download, download_rate).Disconnect;
Disconnect = (disconnect, disconnect_rate).Idle;
Uploading = [ Upload ];
Downloading = [ Download ];
Inservice = [ Uploading + Downloading ];

};

The second type of user, Sally, connects relatively infrequently and downloads
more than uploading.

Sally::{
connect_rate = { 0.009, 0.0095, 0.01 };
disconnect_rate = 0.5;
download_rate = { 0.01, 0.02, 0.03 };
upload_rate = 0.2;



10 A. Clark, S. Gilmore, and M. Tribastone

Idle = (connect, connect_rate / 3).Upload
+ (connect, connect_rate / 3).Download1
+ (connect, connect_rate / 3).Download2 ;

Upload = (upload, upload_rate).Disconnect;
Download1 = (download, download_rate).Download2;
Download2 = (download, download_rate).Disconnect;
Disconnect = (disconnect, disconnect_rate).Idle;

Uploading = [ Upload ];
Downloading = [ Download1 + Download2 ];
Inservice = [ Uploading + Downloading ];

};

As with the servers further clients may be added as required, in our results
we added a further client who was likely to perform either two uploads or two
downloads with each connection.

5.3 The Model Configuration

The clients are either like Harry or like Sally.

Client::= { Harry, Sally };

The HTTP server which is used is either the Edinburgh server or the Imperial
server, and analogously for the FTP servers.

Http::= {Edinburgh::Http, Imperial::Http};
Ftp ::= {Edinburgh::Ftp, Imperial::Ftp };

There are between three and six servers at each site. Each server has an allocation
of twenty threads to offer. There is a very large pool of clients.

servers = {3, 4, 5, 6};
threads = 20;
clients = 100000;

The entire model consists of an array of clients uploading and downloading from
an array of servers, with multiple threads on each.

Client::Idle[clients] <download, upload>
( Http::Idle[servers * threads] ||
Ftp::Idle[servers * threads] )

5.4 Transformations

The transformations used in this model relate to the redeployment of a server.
This means that a server currently being used as an HTTP server can be rede-
ployed as an FTP server or vice-versa. We use this to test a particular service
configuration’s ability to adapt to varying client behaviours. Recall that one con-
figuration is a set of name space choices. In our given example this means that



Scalable Analysis of Scalable Systems 11

one particular configuration is a selection of a university to supply the HTTP
server, a university to supply the FTP server and finally a client representing
average client behaviour. Here we call a service configuration the part of the
configuration which specifies the two servers in use.

One such configuration is Edinburgh , Imperial and Harry . Suppose we mea-
sure this and we find that the average number of waiting clients is acceptably low,
but in the configuration Edinburgh , Imperial and Sally where we have changed
the client behaviour the system behaves poorly. We may see that it behaves
poorly because the uploading clients are not serviced fast enough. In practice
if such a situation arose one response would be to redeploy one of the HTTP
servers as an FTP server. For each configuration, which corresponds to a single
PEPA model, we use transformations to obtain three PEPA models; the base
configuration model, the model with one HTTP server redeployed as an FTP
server and the model with one FTP server deployed as an HTTP server. The
first transformation would tell us how the system behaves in the configuration
Edinburgh, Imperial and Sally , with one HTTP server redeployed as an FTP
server. Without this transformation we noted that the performance was poor
because uploading clients were not serviced often enough, with this transforma-
tion though it may be that the system performs satisfactorily. In this case we
would know that the system configuration is robust with respect to changing
client behaviour and thus the system may be recommended. The transformation
rule used to obtain this is:

Http::Idle[?m * threads] || Ftp::Idle[?n * threads] ==>
Http::Idle[(?m - 1)*threads] || Ftp::Idle[(?n + 1)*threads]

and similarly for redeploying in the reverse direction.

5.5 Lazy Results

In the example case study we have used a strict semantics for results genera-
tion, that is; all the results were computed before any were viewed by the user.
However an alternative semantics allows the user to generate only those results
which are inspected. In the previous example scenario in which the configuration:
Edinburgh, Imperial and Sally under-performed because the uploading clients
were not serviced enough we would be unlikely to inspect the result obtained
by applying the transformation which redeploys an FTP server as an HTTP
server since this would only exacerbate the situation. In this case we could avoid
computing all the results associated with that particular model – there are more
than one set of results for each model because the model is solved several times
corresponding to the varying rates used within that model instance. Lazy results
can help in the development of a model since often only a small set of the results
are viewed between each update of the entire model. However lazy results are
limited to local obervations, that is results which only depend on a subset of
the entire results space. Many results such as overall average response-time or
worst-case scenario depend on all of the results and in these case lazy results
will behave in the same way as strict results.



12 A. Clark, S. Gilmore, and M. Tribastone

6 Results

We analysed our model on a typical desktop computer. In our first run we
analysed over 1000 configurations within fifteen minutes. In our second run we
increased the variability of the rates involved and performed over 4500 in six
hours. Figure 3 provides a selection of the graphs which were generated from the
second run.

The main result metric we used was the measure of the expected number
of clients currently in the proceess of uploading, downloading or either of the
two. We term this in service. This gives us a measure of how many are gener-
ally competing for the resources of the servers and – in combination with the
throughput of download/upload events – how long each client can expect to wait
to be served.

Graph (a) plots for a single configuration the number of clients in service
against time. Each line corresponds to a single permutation of the variable rates
which are used with the particular configuration (Edinburgh , Edinburgh and
Harry), without any redployment of servers. We see that in the long run the
expected number of clients waiting varies from just over thirty thousand to over
eighty thousand of a total of one hundred thousand users. This shows that there
is substantial variation in system performance caused only by varying the rates
within a single configuration.

In graphs, (b), (c) and (d) respectively we have plotted for a single configu-
ration the effect that redeploying a server has on the number of clients either
uploading, downloading or either of the two. These three graphs all refer to the
first configuration (Edinburgh , Edinburgh and Harry). In the graphs (b) and
(c) it is shown that redeployment gives a large benefit to the recipient of the
redeployment. So in the case that an HTTP server is redeployed as an FTP
server the number of currently uploading clients (in graph (b)) falls almost to
zero. Whereas redeployment of an FTP server reduces the number of currently
downloading clients (graph (c)). In this particular configuration we note that re-
deploying an FTP server has only a small benefit to the number of downloaders
since this is low anyway (the red/middle line in graph (c)). However redeploy-
ing an HTTP server has a large benefit in reducing the number of uploaders
(the blue/bottom line in graph (b)). Finally from graph (d) we see that either
redeployment increases the total number of in service clients for this particu-
lar configuration. However this is not always the case as in graph (e) in which
the configuration (Edinburgh , Imperial and Sally) is considered the number of
overall in service clients reduces when an FTP server is redeployed.

The graphs (f), (g) and (h) plot the experiment number against the total
number of clients in service, uploading and downloading respectively. In each
graph the experiments which correspond to an initial configuration (without
any redeployment of servers) are shown in red on the left. The experiments in
which the configuration has been altered by redeploying an FTP server as an
HTTP server are plotted in green (in the middle) and finally those in which an
HTTP server has been redeployed as an FTP server are plotted on the right in
blue. From graph (f) we see that the redeployment of a server has a relatively



Scalable Analysis of Scalable Systems 13

minor effect on the total number of clients in service. Redeploying an FTP server
does worsen both the worst case scenario and the best case scenarios and in
general decreases the performance by our metric – though not for all individual
configurations as we have already seen from graph (e). Redeploying an HTTP
server actually gives better worse and best case scenarios but performance in
the general case is mildly impaired. From graphs (g) and (h) we see that the
redeployment of a server generally has the intuitive effect. That is if we redeploy
an FTP server the number of clients downloading decreases while the number
of clients uploading increases and vice-versa. However it is encouraging to note
that there are some configurations in which the redeployment of an FTP server
still results in very low numbers of uploaders and conversely the redeployment
of an HTTP server still results in very low numbers of downloaders.

7 Software Support

The software support which is available for SRMC has its basis in the parameter
sweep developed for PEPA [6] and implemented in IPC [7]. We use the Pepato
library of the PEPA Eclipse Plug-in Project [8] to compile our generated PEPA
models to systems of ODEs. The Pepato library gives us access to differential
equation integrators [9,10]. The model transformation engine used for our process
algebra models was developed for the present work. The software used here is
available for download from http://groups.inf.ed.ac.uk/srmc.

8 Related Work

We have considered the distributed e-learning and course management system
example previously. In [2] we considered the problem of how service-level agree-
ments can be evaluated for service-oriented systems at all. In [11,12] we consid-
ered the scalability of such a system in the absence of possible modifications as
generated through model transformation.

Considering the method of evaluation rather than the example, the quantita-
tive modelling approaches which seem similar to ours in spirit are PEPA itself,
stochastic Petri nets, and PRISM model-checking. We consider each of these in
turn, giving attention to the way in which parameters can be varied, the type of
results which can be computed, and the query languages which are available to
query models.

PEPA Eclipse Plug-in. The analysis paradigm for PEPA as supported by the
PEPA Eclipse Plug-in [8] is that we have a single model with rates which can
be varied using the experimenter of the Plug-in. Models can be evaluated
to determine utilisation, throughput and many other criteria. Queries are
expressed using state filters.

IPC. The paradigm for PEPA supported by IPC [7] is that we have a single
model and rates defined in the model can be overridden at evaluation time.
Models can be evaluated to determine transient or steady-state behaviour.

http://groups.inf.ed.ac.uk/srmc


14 A. Clark, S. Gilmore, and M. Tribastone

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0  200  400  600  800  1000  1200

N
um

be
r 

In
se

rv
ic

e

Time

Edinburgh-Http, Edinburgh-Ftp, Harry

(a)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0  200  400  600  800  1000  1200

N
um

be
r 

U
pl

oa
di

ng

Time

Edinburgh-Http, Edinburgh-Ftp, Harry, Uploading

neutral
redeploy ftp

redeploy http

(b)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0  200  400  600  800  1000  1200

N
um

be
r 

D
ow

nl
oa

di
ng

Time

Edinburgh-Http, Edinburgh-Ftp, Harry, Downloading

neutral
redeploy ftp

redeploy http

(c)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0  200  400  600  800  1000  1200

N
um

be
r 

In
se

rv
ic

e

Time

Edinburgh-Http, Edinburgh-Ftp, Harry, Inservice

neutral
redeploy ftp

redeploy http

(d)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0  200  400  600  800  1000  1200

N
um

be
r 

In
se

rv
ic

e

Time

Edinburgh-Http, Imperial-Ftp, Sally, Inservice

neutral
redeploy ftp

redeploy http

(e)

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0  500  1000  1500  2000  2500  3000  3500  4000  4500

In
 s

er
vi

ce

Experiment Number

(f)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0  500  1000  1500  2000  2500  3000  3500  4000  4500

U
pl

oa
di

ng

Experiment Number

(g)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0  500  1000  1500  2000  2500  3000  3500  4000  4500

D
ow

nl
oa

di
ng

Experiment Number

(h)

Fig. 3. Selection of generated graphs



Scalable Analysis of Scalable Systems 15

Passage-time quantiles are computed. Queries are expressed in the language
of eXtended Stochastic Probes (XSP) [13].

PIPE and PQE. Generalised Stochastic Petri net (GSPN) models are sup-
ported by the PIPE editor [14]. Here a single model with fixed rates is evalu-
ated against many criteria. Queries are expressed as Performance Trees [15]
built graphically in the Performance Query Editor (PQE) module for PIPE.

PRISM. The PRISM model-checker supports a language of reactive modules
[16] together with a rich reward language. Queries are expressed in Contin-
uous Stochastic Logic (CSL) [17]. Experimentation is supported by leaving
constants in the model or the CSL formula undefined until the time of eval-
uation.

9 Conclusions

We have placed the emphasis here on modelling rather than models, and on
evidence rather than fact. We start from a position of uncertainty about the
configuration of the computational framework and consider a family of related
models in an attempt to understand the sweep of possibilities. We believe that
this position is a realistic one. In service-oriented computing the critical services
are replicated across hosts so we have a choice of service instances, possibly mod-
ified by system administrators, performing at different rates. For these reasons,
the SRMC calculus provides support for namespace selection, model transfor-
mation, and parameter sweep.

Model transformations work at the level of the PEPA model and can therefore
be deployed as a means of analysing possible changes in one particular model.
In this work we have used the ability to specify generic transformations in order
to apply such a transformation to a large range of PEPA models generated from
our SRMC model.

Collating results allows us to answer questions of a general nature about all
configurations. In our case study there were few general statements that could
be made because the transformations and rate variations provided substantial
changes in performance. This is in itself a useful fact, that the system under
consideration is sensitive to modifications in the running conditions. However
we were able to ascertain worst and best case scenarios for the average number
of currently downloading and currently uploading clients. Of particular note was
that the number of waiting uploading clients can be all but eliminated through
the redeployment of an HTTP server regardless of the initial configuration. We
also saw that in general the redeployment of a server would most often benefit
one kind of user (say uploaders) at the cost of denying some service capacity
to the other (downloaders). This was also shown by the fact that the number
of clients in service either as an uploader or a downloader was relatively less
affected by redeployment of servers.

Model evaluation must be rapid to support the investigation of many alter-
native models. Fluid-flow analysis allows us to obtain meaningful results from a
large family of models, at low computational cost. The result from a fluid-flow



16 A. Clark, S. Gilmore, and M. Tribastone

analysis performed by numerically integrating a system of ordinary differential
equations is precise and definitive. We need to evaluate our system of ODEs only
once, not many times as would be needed for simulation models. This supports
the scalability of our analysis: running many models once is feasible, running
many models many times is less so.

Because fluid-flow analysis does not use a representation of the discrete state-
space of the system we are not crippled by the state-space explosion problem,
unlike any analysis which is based on continuous-time Markov chains. By build-
ing on the foundation provided by fluid-flow analysis and creating software tools
which automate the generation of models by model transformation and the quan-
titative evaluation of these we hope to provide a strong basis for scalable analysis
of scalable systems.

Acknowledgements. The authors are supported by the EU FET-IST Global
Computing 2 project SENSORIA (“Software Engineering for Service-Oriented
Overlay Computers” (IST-3-016004-IP-09)).

References

1. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of the Sec-
ond International Conference on the Quantitative Evaluation of Systems, Torino,
Italy, pp. 33–43. IEEE Computer Society Press, Los Alamitos (2005)

2. Clark, A., Gilmore, S., Tribastone, M.: Service-level agreements for service-oriented
computing. In: Montanari, U., Corradini, A. (eds.) Proceedings of the 19th Interna-
tional Workshop on Algebraic Development Techniques (WADT 2008), Pisa, Italy.
LNCS. Springer, Heidelberg (2008)

3. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, Cambridge (1996)

4. Hillston, J.: Tuning systems: From composition to performance. The Computer
Journal 48(4), 385–400 (2005); the Needham Lecture paper

5. Hillston, J.: Process algebras for quantitative analysis. In: Proceedings of the 20th
Annual IEEE Symposium on Logic in Computer Science (LICS 2005), pp. 239–248.
IEEE Computer Society Press, Chicago (2005)

6. Clark, A., Gilmore, S.: Evaluating quality of service for service level agreements.
In: Brim, L., Leucker, M. (eds.) Proceedings of the 11th International Workshop
on Formal Methods for Industrial Critical Systems, Bonn, Germany, pp. 172–185
(August 2006)

7. Clark, A.: The ipclib PEPA Library. In: Harchol-Balter, M., Kwiatkowska, M.,
Telek, M. (eds.) Proceedings of the 4th International Conference on the Quantita-
tive Evaluation of SysTems (QEST), pp. 55–56. IEEE, Los Alamitos (2007)

8. Tribastone, M.: The PEPA Plug-in Project. In: Harchol-Balter, M., Kwiatkowska,
M., Telek, M. (eds.) Proceedings of the 4th International Conference on the Quan-
titative Evaluation of SysTems (QEST), pp. 53–54. IEEE, Los Alamitos (2007)

9. Ascher, U.M., Ruuth, S., Spiteri, R.: Implicit-explicit Runge-Kutta methods
for time-dependent partial differential equations. Applied Numerical Mathemat-
ics 25(2-3), 151–167 (1997)

10. Dormand, J., Prince, P.: A family of embedded Runge-Kutta formulae. Journal of
Computational and Applied Mathematics 6(1), 19–26 (1980)



Scalable Analysis of Scalable Systems 17

11. Gilmore, S., Tribastone, M.: Evaluating the scalability of a web service-based dis-
tributed e-learning and course management system. In: Bravetti, M., Núñez, M.,
Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 214–226. Springer, Hei-
delberg (2006)

12. Bravetti, M., Gilmore, S., Guidi, C., Tribastone, M.: Replicating web services for
scalability. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp.
204–221. Springer, Heidelberg (2008)

13. Clark, A., Gilmore, S.: State-aware performance analysis with eXtended Stochastic
Probes. In: Thomas, N., Juiz, C. (eds.) EPEW 2008. LNCS, vol. 5261, pp. 125–140.
Springer, Heidelberg (2008)

14. Bonet, P., Lladó, C., Puijaner, R., Knottenbelt, W.J.: PIPE v2.5: A Petri net tool
for performance modelling. In: 23rd Latin American Conf. on Informatics (CLEI
2007) (September 2007)

15. Suto, T., Bradley, J.T., Knottenbelt, W.J.: Performance Trees: A new approach
to quantitative performance specification. In: MASCOTS 2006, 14th International
Symposium on Modelling, Analysis, and Simulation of Computer and Telecommu-
nication Systems, pp. 303–313 ( August 2006)

16. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-
matic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

17. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms
for continuous-time Markov chains. IEEE Trans. Software Eng. 29(7), 1–18 (2003)



Rewriting Logic Semantics and Verification of
Model Transformations

Artur Boronat1, Reiko Heckel1, and José Meseguer2

1 Department of Computer Science, University of Leicester
{aboronat,reiko}@le.ac.uk

2 Department of Computer Science, University of Illinois at Urbana-Champaign
meseguer@uiuc.edu

Abstract. Model transformations are used in model-driven develop-
ment for mechanizing the interoperability and integration among mod-
eling languages. Due to the graph-theoretic nature of models, the theory
of graph transformation systems and its technological support provide
a convenient environment for formalizing and verifying model transfor-
mations, which can then be used for defining the semantics of model-
based domain-specific languages. In this paper, we present an approach
for formalizing and verifying QVT-like transformations that reuses the
main concepts of graph transformation systems. Specifically, we formal-
ize model transformations as theories in rewriting logic, so that Maude’s
reachability analysis and model checking features can be used for ver-
ifying them. This approach also provides a new perspective on graph
transformation systems, where their formal semantics is given in rewrit-
ing logic. All the ideas presented are implemented in MOMENT2. In this
way, we can define formal model transformations in the Eclipse Modeling
Framework (EMF) and we can verify them in Maude. We use a model
of a distributed mutual exclusion algorithm to illustrate the approach.

Keywords: Model and graph transformations, MOF, QVT, rewriting
logic, reachability analysis, LTL model checking, Maude.

1 Introduction

Model transformations are used in model-driven development for mechaniz-
ing the interoperability and integration among modeling languages. Due to the
graph-theoretic nature of models, the theory of graph transformation systems
and its technological support provide a convenient environment for formalizing
and verifying model transformations [1], which can then be used for defining the
semantics of model-based domain-specific languages [2]. In this work, we pro-
vide an executable formalization of QVT-like model transformations for MOF
metamodels in rewriting logic, where such transformations can be executed and
analyzed by model checking of invariants and of temporal logic properties.

This work should be placed within the context of current formal and infor-
mal approaches to model transformations, and can be viewed as a contribution

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 18–33, 2009.
© Springer-Verlag Berlin Heidelberg 2009



Rewriting Logic Semantics and Verification of Model Transformations 19

to bringing such formal and informal approaches considerably closer within the
MOF standard [3]. Among the various informal approaches for model transfor-
mations (see, e.g., [4]), the QVT standard [5] is probably one of the most widely
accepted and has the advantage of extending MOF. However, tool support for
QVT is currently only partial and the support for analyzing model transforma-
tions is still very limited. Among the formal approaches, the most widely used
are based on graph transformations [6], where just a subset of the MOF modeling
constructs can be directly dealt with. To the best of our knowledge, the Tiger
EMF Transformation tool (EMT) [7] is the single representative tool providing
termination and confluence analysis for model transformations. There is no tool
support yet for model checking model transformations.

A model transformation β can be either endogenous to a given metamodel, so
that if M : M , then β(M) : M , or exogenous, i.e., it can transform a model M :
M into a corresponding model β(M) : M ′ in a target metamodel M ′ that need
not be equal to M [8]. Furthermore, endogenous or exogenous transformations
can be either functional, so that a single transformed model β(M) is obtained,
or relational, so that β(M) is not unique, but belongs to a set of models in M ′

obtained from a single model M in M . In this paper we focus on endogenous,
relational transformations although it extends to the exogenous case easily.

At the semantic level we show how the algebraic semantics for MOF in MO-
MENT2 [9,10] is extended to a rewriting logic semantics [11] of model trans-
formations. This rewriting logic semantics is the algebraic counterpart of graph
transformation systems, in the sense that: (i) models viewed as graphs corre-
spond to the same models viewed as terms of an algebraic data type represent-
ing a given metamodel; and (ii) graph transformation rules correspond to rules
in rewrite theories over these algebraic representations. Models are represented
by terms that satisfy structural semantic properties as explained in Section 3.1,
which are preserved by model transformations. Conceptually, this work provides
interesting new connections between graph grammars and rewriting logic, not
just for standard graphs, but for graphs corresponding to models: on the one
hand, the fact that node attributes in graphs often contain data belonging to
sophisticated algebraic data types is seamlessly supported by the rewriting logic
approach while most of other approaches leave attribute values out of the formal
framework; and on the other hand, rewriting logic’s crucial distinction between
equations and rules can be transferred to the world of graph grammars. This can
be used as a powerful state reduction technique for model checking purposes.

At a more pragmatic level, a second important contribution is bringing the
model transformation approaches based on graph grammars and informal ap-
proaches extending MOF, such as QVT, significantly closer; and providing tool
support for defining model transformations, executing them, and model checking
their properties. To the best of our knowledge, MOMENT2 is the first formal
approach and tool supporting QVT-like model transformations and their formal
analysis through model checking techniques.

In Section 2 a model of a distributed mutual exclusion algorithm is presented
to illustrate the definition and verification of model transformations; in Section 3



20 A. Boronat, R. Heckel, and J. Meseguer

we introduce rewriting logic prerequisites and the algebraic semantics of MOF
metamodels in MOMENT2; in Section 4 the semantics of the MOMENT2 model
transformation language is given; in Section 5 model checking facilities are illus-
trated; in Section 6 we discuss related work, conclusions and future work.

2 Modeling a Distributed MUTEX Algorithm

A distributed mutual exclusion algorithm is used in operating systems and
databases to ensure that a resource is never used by more than one process
at a time. However, each request of a process for a resource must eventu-
ally be granted without running into a deadlock. In this section, we provide
a metamodel-based version of a mutual exclusion algorithm [12].

In our approach, a model that conforms to the metamodel in Fig. 1.(a) rep-
resents the state of the system. Imagine this as the metamodel of a domain-
specific language for visualizing and configuring processes and resources, where
rules specify policies for how resources shall be assigned. In this metamodel,
the Ring class contains some properties that are used for supporting fairness in
the application of rules in Section 5. Fig. 1.(b) provides a model describing a
deadlock state. Fig. 1.(c) provides an initial state model checked in Section 5.

We use the concrete syntax that was used in [12] for presenting the algorithm,
where processes are drawn as black nodes and resources as light boxes. An edge
from a process to a resource models a request. A solid edge in the opposite
direction shows that the resource is currently held by the process. A dashed
edge from a resource to a process asks the process to release the resource. Fig.
2 provides two sets of rules describing: (i) the mutual exclusion algorithm (ME)
and (ii) the distributed deadlock detection mechanism (DDD).

Mutual exclusion (ME). The system state is a cyclic list of processes linked by
the next reference. For each resource there is a token, represented by an edge
with a white flag, which is passed from process to process along the ring. If a
process wants to use a resource, it waits for the corresponding token. Mutual

(a) Metamodel (b) Model representing deadlock state 

1 : Process 

id = “p0” 

2 : Process 

id = “p1” 

3 : Resource 

id = “r0” 

4 : Resource 

id = “r1” 

next

next

heldBy heldBy
request request

(c) Initial state 

1 : Process 

id = “p0” 

2 : Process 

id = “p1” 

3 : Resource 

id = “r0” 

4 : Resource 

id = “r1” 

next

next

token token

Fig. 1. (a) Metamodel M . (b) Model representing a deadlock state. (c) Model repre-
senting an initial state for model checking purposes.



Rewriting Logic Semantics and Verification of Model Transformations 21

pass(p,r)

r r

p p

take(p,r)

r

p

r

p
rel(p,r)

r

p

r

p

req(p,r)

r

p

r

p

give(p,r)

r r

p p

blocked(p,r)

r r

p p

waiting(p,r)

r

p

= r

p

unlock(p,r)

r

p

r

p
ignore(p,r)

r

p

r

p

Fig. 2. Algorithms for mutual exclusion and deadlock detection

exclusion is ensured because there is only one token for each resource in the
system. Among the ME rules, pass(p, r) describes that a process having the
token may pass it to the next process in the ring, provided that it does not have
a request on the corresponding resource. This negative application condition is
visualized by the crossed-out request edge from the process to the resource. If
a process wants to use a resource, it may generate a request. This is modeled
by the rule req(p, r), which is only applicable if the process does not have any
requests yet, and if the particular resource is not used already by this process.
If a process receives a token and there is a request for the resource, the process
will choose the rule take(p, r) replacing the token and the request by a heldBy
edge from the resource to the process. When it has finished its task, the process
may release its resource and give the token to the next process using rel(p, r)
and give(p, r). This will happen only when there are no pending requests for r,
which is modeled by a negative application condition at rel(p, r).

Distributed deadlock detection. In a model representing a state, a deadlock is
represented as a cycle of request and heldBy edges. The distributed deadlock
detection uses blocked messages, represented by edges with a black flag from a
resource to a process, in order to detect cyclic dependencies. The blocked(p,r)
rule detects when a process requests a resource already held by another pro-
cess and the rule unlock(p,r) ensures that the resource will be released at some
point.

We use the union of these two algorithms to show how relational in-place
model transformations can be defined and model checked in MOMENT2. On
the one hand, we model check the safety property MUTEX-safe: a resource
cannot be held by two different processes, by means of reachability analysis of an
invariant defined with a model pattern. On the other hand, we verify the liveness
property MUTEX-live: each request of a resource by a process will eventually be
granted, by means of model checking of LTL properties.



22 A. Boronat, R. Heckel, and J. Meseguer

3 Preliminaries: Rewriting Logic and MOMENT2

The key point of rewriting logic is to provide a general and flexible logical frame-
work for concurrent systems, which are specified as rewrite theories so that
their concurrent computation exactly corresponds to deduction by rewriting [11].
Specifically we specify a concurrent system as a rewrite theory R = (Σ,E,R)
where: (i) (Σ,E) is an equational theory, in some variant of equational logic, that
specifies the system states as elements of the initial algebra T(Σ,E) associated to
(Σ,E) (see, e.g., [13]), and where (ii) R is a set of rewrite rules that describe in
a parametric way all the one-step concurrent transitions in the system.

The underlying equational logic can be unsorted, many-sorted, order-sorted,
or the more general membership equational logic (mel) [13], which is the vari-
ant we adopt in this paper. It has the advantage of supporting expressive sorts,
subsorts, and partiality. Its atomic sentences include not only equations t = t′,
but also memberships t : s, stating that term t has sort s. For our purposes in
this paper mel has the additional advantage, as we further explain in Section
3.1, of providing the algebraic semantics for MOF metamodels on which the
MOMENT2 tool is based. That is, given a MOF metamodel M , its algebraic
semantics is a mel theory �(M ). The models M conformant with M then ap-
pear as elements of the initial algebra T�(M ). This gives us what we might call
the static semantics of models in M . The point of considering model transfor-
mations is that they can specify a dynamic semantics for models, in which each
model M is now viewed as a state (for example, a dynamic software architec-
ture configuration), and model transformations become state transitions. It is
precisely in this passage from the static to the dynamic semantics of models
that rewriting logic is particularly helpful: as we explain in Section 4 a model
transformation specifying dynamic model changes for models of a metamodel
M can be precisely characterized as a rewrite theory extending the mel theory
�(M ) that specifies the static semantics.

All this is of more than theoretical interest, because there are several high-
performance implementations of rewriting logic. In particular, the Maude im-
plementation [14] supports not only execution, but also verification of invariants
and model checking of LTL properties, and has various other formal tools for
verification purposes. This is heavily exploited in the MOMENT2 tool, where,
as we further explain in Section 5, Maude is used as the underlying engine to
model check invariants and LTL properties of model transformations.

We assume rewrite theories of the form R = (Σ,E ∪A,R), with E, A, and R
finite and where A is a set of axioms, so that both the equations E and the rules
R are applied modulo the axioms A. That is, we rewrite not just terms t but
rather A-equivalence classes [t]A. The axioms A are for example very important
in the algebraic semantics �(M ) of a metamodel M , because the axioms A
of associativity, commutativity, and identity of set union exactly capture the
graph-theoretic nature of a model M in M as a set of objects linked by mutual
references. Then, rewriting M modulo such axioms exactly corresponds to graph
rewriting, a correspondence discussed in [15] and systematically exploited in
MOMENT2 as we explain in this paper.



Rewriting Logic Semantics and Verification of Model Transformations 23

Furthermore, we assume the following executability properties of R = (Σ,E∪
A,R): (i) the equations E are confluent and terminating modulo A, and (ii) the
rules R are coherent with E modulo A. We refer to [14] for a detailed description
of these properties and give here only an intuitive description of them. Confluence
and termination of E mean that the rules E can be applied from left to right
to always obtain a unique (modulo A) canonical form for any term. Coherence
of R with E intuitively means that the strategy of first simplifying a term with
the equations E to canonical form and then rewriting it with R is complete: no
reachable states are missed by imposing this strategy. For tool support in Maude
to verify confluence, termination, and coherence see [14].

3.1 MOMENT2: MOF and Models

MOMENT2 is based on a reflective, algebraic, executable specification of the
MOF and OCL standards [10,16] in mel. Let �MOF� denote the set of all
MOF metamodels M , and let SpecMEL denote the set of all mel specifications.
The algebraic semantics of a MOF metamodel M is defined as a function � :
�MOF� −→ SpecMEL : M �→ �(M ). �(M ) provides a sort Model , whose carrier
T�(M ),Model is defined by a membership axiom

M : Model if wellFormed(M) = true

that ensures that a model M is semantically well-formed: identifiers are unique,
objects are instances of object types of M, there are no dangling edges, and
the containment hierarchy, defined by means of composition associations, is pre-
served. T�(M ),Model defines the set of terms that represents models M conform-
ing to the metamodel M , denoted M : M . The MOF metamodels M that we
consider involve the following relational constraints: inheritance relations, and
composition and association relations with multiplicities (cardinalities, order and
uniqueness). When a model M conforms to a metamodel M , M implicitly sat-
isfies these constraints by means of the aforementioned membership. For the
metamodel M in Fig. 1.(a), the model depicted in Fig. 1.(b) can be defined as
a term of sort Model in the �(M ) theory as follows:

<< < ’1 : Process | id = "p0", next = ’2, request = ’3, holds = ’4 >

< ’2 : Process | id = "p1", next = ’1, request = ’4, holds = ’3 >

< ’3 : Resource | id = "r0", heldBy = Set{ ’2 } >

< ’4 : Resource | id = "r1", heldBy = Set{ ’1 } > >>

where the set of four tuples is formed by an associative and commutative union
operator with empty syntax (juxtaposition), and each tuple < Oid : ClassName

| Properties > represents an object that is typed with a specific object type
of the corresponding metamodel. Objects are defined with properties of two
kinds: attributes, typed with simple data types, and references, typed with ob-
ject identifier types. Each property is defined by a pair (name = value). All the
constructors that are used in the previous term are defined in the signature of
the �(M ) theory. The representation of models as algebraic terms is automati-
cally generated by MOMENT2 from models in the Eclipse Modeling Framework
(EMF) [17]. A detailed definition of the mapping � can be found in [9,18].



24 A. Boronat, R. Heckel, and J. Meseguer

4 Rewriting Logic Semantics of Model Transformations

MOMENT2’s model transformation language supports the standards MOF,
OCL and QVT: (i) MOF for specifying object types, (ii) OCL for manipu-
lating attribute values, and (iii) QVT for specifying model patterns. In this
paper we focus on endogenous, relational transformations, where the source and
target metamodels are the same. A pair (M ,T ), of a MOF metamodel M
and a MOMENT2 model transformation T , represents a model transformation,
whose semantics is formally defined by a rewrite theory �(M ,T ) given by a
semantic function � : SpecTransf → SpecRL : (M ,T ) �→ �(M ,T ) such that
�(M ) ⊆ �(M ,T ). The nondeterministic outcomes of a transformation (M ,T )
applied to an input model M : M are obtained by rewriting M with the rules
in �(M ,T ).

In this section, we describe: (i) the concrete syntax of our model tranformation
language, (ii) the semantics of an admissible model transformation (M ,T ) as a
rewrite theory �(M ,T ), and (iii) a notion of consistent model transformations
that will be helpful for verification purposes. The MOMENT2 QVT syntax to
specify T and the rewriting logic semantics �(M ,T ) are illustrated by using
the graph production rule rel(p,r) in Figure 3 as a running example.

4.1 QVT-Based Syntax for Model Transformations

Transformation. An in-place, relational transformation is specified as a pair
(M ,T ),which is declaredbyproviding a label,adomain anda setofmodel rewrites.
The QVT notion of domain corresponds to a model that is used in the transforma-
tion. The transformation declaration of the example is defined as transformation
mutexAlgorithm( model : mutex ) { .. }, where mutexAlgorithm corresponds to the
name of the model transformation, model corresponds to the domain variable, and
mutex corresponds to an identifier for the metamodel.

Model Equation/Rewrite. Model transformation rules can be defined either as
equations or as rewrites by the respective keywords eq or rl, respectively. The
corresponding semantics is that they are respectively interpreted as equations in
mel or as rewrites in rewriting logic as explained in Section 3. A model trans-
formation rule always consists of three elements: a label, a left-hand side (LHS)
pattern and a right-hand side (RHS) pattern, where the LHS and RHS patterns
correspond to collections of object template patterns in the QVT terminology,
or to graph patterns in the graph tranformation terminology. Optionally, we can
add a set of (possibly conditional) negative application conditions (NACs) to
each model transformation rule and a global condition with the when clause. A
complete definition of the model transformation language is provided in [19].

QVT Model Patterns. In a model equation/rewrite, model patterns are repre-
sented by using the QVT syntax for object patterns (object templates in the QVT
specification). A model pattern is a collection of object patterns that are applied
over a specific domain model. In our running example, we only have one domain



Rewriting Logic Semantics and Verification of Model Transformations 25

Fig. 3. Model rewrite rel(p,r): textual format in MOMENT2 and graphical
representation

called model. The LHS model pattern of the rel(p,r) model rewrite in Fig. 3 can
be applied over a model that conforms to the metamodel in Fig. 1.(a). This is
due to the transformation declaration above. In this model pattern, an object
of type Process points to an object of type Resource through a holds reference.
We also match the value of attribute id of the Resource object with the variable
R1ID to illustate how attributes can be included in model patterns. This model
pattern is shown as a graph pattern in Fig. 3.

Conditions. In MOMENT2 a user can define rules with conditional and negative
application conditions, which can be defined as boolean OCL expressions. In
addition, OCL expressions can be used to query data in the NAC of a model
equation/rewrite and to manipulate data in its RHS. That is, OCL expressions
can be used to manipulate the shared variables that are matched either in a
LHS pattern or in a NAC of a model transformation rule. See [9] for a detailed
algebraic specification of OCL and [16] for some of its applications.

4.2 Rewriting Logic Semantics of Model Transformations

Let SpecTransf denote the set of pairs (M ,T ) where M is a metamodel and T
is a MOMENT2 model transformation definition. The rewriting logic semantics
is given by the function � : SpecTransf −→ SpecRL : (M ,T ) �→ �(M ,T ),
where the rewrite theory �(M ,T ) is such that �(M ) ⊆ �(M ,T ). However,
not all model transformation specifications (M ,T ) correspond to valid model
tranformations, because, as explained in Section 3, the associated rewrite theory
�(M ,T ) should satisfy reasonable executability requirements such as confluence
and termination of equations, and coherence between equations and rewrites.
We call a model tranformation (M ,T ) admissible iff �(M ,T ) satisfies such
executability requirements. In what follows we illustrate how the model rewrite
rel(p,r) in Fig. 3, already specified in Section 4.1, is translated by � into a
conditonal rewrite rule in the corresponding theory �(M ,T ).



26 A. Boronat, R. Heckel, and J. Meseguer

Model equations/rewrites. In our example rewrite theory �(M ,T ), there is an
operator op mutexAlgorithm : Model -> Model, corresponding to the transforma-
tion’s name. The � function maps each model equation/rewrite in an admissible
model transformation (M ,T ) to equations/rewrites in the theory �(M ,T ). In
the running example, model equations are mapped into equations that define the
above operator mutexAlgorithm. Model rewrites are mapped to rewrites where
this operator is the top symbol of the term that is rewritten. Within the map-
ping of a model equation/rewrite, the following steps are considered: (i) the LHS
model pattern becomes a term with variables t(X1 . . .Xn) that is used to match
a model M , such that M : M , (ii) the RHS of a model transformation rule
becomes a sequence of operators that uses the variables X1 . . .Xn to perform
atomic changes over a model M , and (iii) the when and such that clauses become
boolean expressions used as conditions in the resulting equation/rewrite.

LHS Model Pattern. A collection of object templates that constitutes the LHS
of a model equation/rewrite in a model transformation T is mapped to a term
with variables. For example, the model pattern

lhs model { P1 : Process { holds = R1 : Resource { id = R1ID } } };

is mapped to the term with variables

< P1OID:Oid : Process | holds = R1OID:Oid, P1PS:PropertySet >

< R1OID:Oid : Resource | id = R1ID:String, R1PS:PropertySet > .

RHS Model Pattern. The RHS model pattern of a given model equation/rewrite
is mapped to a sequence of equationally defined operators that perform atomic
changes in a model. These changes correspond to the usual modeling primitives:
to create a new object, to destroy an existing object, to set/unset attributes, or
to update/remove references. These operators manipulate models in a consistent
way so that dangling edges and orphan objects are automatically removed [19].

For the QVT expression of the RHS model pattern in the model rewrite
rel(p,q) in Fig. 3 the corresponding RHS term is [[M] remove(P1OID:Oid,

"holds", R1OID:Oid)] update(R1OID:Oid, "release", P1OID:Oid), where M cor-
responds to the model that is matched in the LHS model pattern, the operator
[M] op represents the application of an atomic change op over the model M, and
the variables that correspond to object identifiers are matched in the LHS model
pattern, as shown above. In this example, the holds reference is removed from
the object identified by P1OID:Oid and the release reference is updated in the ob-
ject with identifier R1OID:Oid. A complete definition of the mapping is presented
in [19] considering all possible combinations of atomic changes.

NACs and conditions. NACs in model transformation rules are compiled into
equationally defined boolean functions as detailed in [19]. These functions are
used in the conditions of the equations and rules that are generated from model
transformation rules checking whether a model pattern matching fails or not.
Such that expressions are compiled into conditions for the equations that define



Rewriting Logic Semantics and Verification of Model Transformations 27

the corresponding NAC function. When expressions are compiled into conditions
for the equations or rules that are generated for model transformation rules.
When and SuchThat clauses are constructed using OCL expressions that are
compiled into terms as explained in [9].

4.3 Consistent Model Transformations

The dynamic semantics of model-based systems can be given by means of model
transformations (M ,T ), where the set of system states is a subset of the model
type �M � and transitions are defined by model rewrites in T . The semantic map-
ping �, when applied to admissible model transformations, plays a crucial role
to model check invariants and LTL properties. It ensures that a model transfor-
mation β, defined by �(M ,T ), always preserves the constraints of a metamodel
M (types and reference multiplicities — cardinalities, order, uniqueness), when
it is applied to a well-formed model M : M , i.e., β(M) : M .

Theorem 1. An admissible model transformation (M ,T ) represents a model
transformation β in �(M ,T ) that preserves the metamodel conformance rela-
tion, i.e., that is consistent w.r.t. the constraints in M .

Proof (Sketch). Since (M ,T ) is assumed admissible, model equations in T
are ground confluent1 and terminating modulo structural axioms (associativity,
commutativity and identity), model equations and rewrites are coherent and
there are no free variables in the LHS, NAC and when expressions.
�maps model equations/rewrites in (M ,T ) to ordinary equations/rewrites in

�(M ,T ), where the RHS is given as a sequence of atomic changes performed by
means of equationally defined operators, namely, new, destroy, set, unset, update
and remove. In [19], we prove that the equations that define these operators are
confluent and terminating. Such operators are completely defined by equations
for admissible model transformations (M ,T ), so that these operators will never
appear in the normal form that represents a model M : M . Furthermore, the
atomic changes that are performed by means of these operators for admissible
model transformations (M ,T ) only produce well-formed models M ′ : M . This
key consistency property is proved by structural induction in [19]. �

5 Dynamic Analysis in MOMENT2

Model Checking Model-Based Invariants. In a model-based system de-
fined by an endogenous, relational model transformation (M ,T ), we are inter-
ested in checking invariants, that is, predicates that hold of a given initial state
M : M and of all models M ′ : M reachable from M by means of state transi-
tions produced by model rewrites. We can use Maude’s breadth-first search for
1 Rewrite steps with model equations make specific choices of names for the objects in

the model and the choice might be different depending on the rewrite steps chosen.
Graph-theoretically, different models may thereby represent the same abstract model
up to renaming. We consider confluence of equations up to name isomorphism [19].



28 A. Boronat, R. Heckel, and J. Meseguer

this purpose by searching for a reachable state violating the invariant. Even if
the number of reachable states is infinite, due to the breadth-first nature of the
search, this gives a semidecision procedure for invariant violations. But if the
reachable states are finite it becomes a decision procedure. We can define the
negation of an invariant predicate by means of a pair (P,C), where P is a model
pattern describing potentially “bad” states, and C is a boolean predicate impos-
ing additional semantic restrictions on the model pattern P . The compilation
process then transforms the pair (P,C) into a corresponding pair (t, C′), where
t is the pattern term with variables corresponding to P , and C′ is a boolean
condition involving the variables of t that expresses condition C at the term
level. The original invariant I¬(t,C′) that (t, C′) negates is then the set-theoretic
complement of the set of states that are instances of t and satisfy C′.

Given an initial state M of sort Model in the theory �(M ,T ), we write
�(M ,T ),M |= I¬(t,C′) to denote that all states reachable from M satisfy the
invariant I¬(t,C′). This is the case if and only if no state reachable from M is an
instance of t that satisfies C′, which can be semidecided by breadth-first search
for an infinite number of reachable states, and can be decided by failure of such
search if the set of reachable states is finite.

MOMENT2 uses Maude’s search command for model checking invariant vi-
olations of the form (P,C), with QVT model patterns P and boolean OCL
expressions C. In our mutual exclusion algorithm, we can verify that a resource
will never be held by two different processes with the search command:

search [1, unbounded] =>* domain model {

P1 : Process { holds = R1 : Resource{} }

P2 : Process { holds = R1 : Resource{} } }

where the pair [1, unbounded] indicates that one single solution is searched and
that all possible states are traversed, and =>* states that we are applying zero,
one, or more model rewrites. In [19], we explain the complete syntax of the
command and its compilation to Maude’s search command.

Model Checking LTL Properties. Given an admissible model transforma-
tion specified by (M ,T ) with semantics �(M ,T ), we can verify Linear Tem-
poral Logic properties over such a model transformation by using Maude’s LTL
model checker. In MOMENT2, we enable the use of model predicates in LTL
formulas by defining a set D of model predicates for (M ,T ) by means of: (i)
possibly parametric model predicate symbols P, and (ii) model-based equations
EP defining the satisfaction relation of a predicate in a model. As an example,
the satisfaction of a parametric model predicate requests(P, R), where P and R

are string parameters, can be defined by means of the equation

domain model {P1 : Process{id = P,request = R1 : Resource{id = R}}}

|= requests( P, R ) = true

stating that the predicate requests(P, R) is satisfied in a state M , when there is
a process with id P that requests a resource with id R in M . Predicate parameters
can be either constants or variables that are matched with the model pattern.



Rewriting Logic Semantics and Verification of Model Transformations 29

Let SpecPred denote the set of specifications of sets of predicates D that
can be defined for an admissible model transformation (M ,T ). We define a
function � : SpecPred −→ SpecMEL that maps a set D of model predicates to a
mel theory defining the state predicates, which are used as propositions in LTL
formulae as explained in [14]. For the aforementioned equation, the following
equation is generated:

eq mutexAlgorithm(<< OC:ObjectCollection

< POID:Oid : Process | id = P:String,

request = ROID:Oid, PPS:PropertySet >

< ROID:Oid : Resource | id = R:String, RPS:PropertySet >

>>) |= requests(P:String, R:String) = true .

The following equation defines the satisfaction of the state predicate heldBy(R,

P), specifying when a resource with id R is held by a process with id P:

domain model {P1 : Process{id = P,holds = R1 : Resource{id = R}}}

|= heldBy( R, P ) = true

A model transition system defined by a meaningful model transformation
(M ,T ) and a set D of model predicates for (M ,T ) is formally defined as a
rewrite theory as follows: (i) (M ,T ) is mapped to the rewrite theory �(M ,T ),
and (ii) D for (M ,T ) is mapped to the equational theory �(D) that extends
�(M ,T ) with model predicate equations. The rewrite theory �(M ,T ) ∪ �(D)
defines a Kripke structure K(�(M ,T ) ∪ �(D)) as explained in [14], where the
transition relation corresponds to one-step model rewrites in �(M ,T ).

In this way, we enable the use of model predicates as propositions in LTL
formulas in Maude’s model checker. In the example, we want to verify that each
process that requests a resource is always eventually served. This can be specified
with the LTL formula [] (requests("p0", "r0") -> <> heldBy("r0", "p0")).
This property can be model checked in Maude by means of the command

red modelCheck( mutexAlgorithm(model),

[] (requests("p0", "r0") -> <> heldBy("r0", "p0")) ) .

By using the model in Fig. 1.(c) as initial state, Maude’s model checker found
a path in which the property is violated. In particular, the two processes P0
and P1 request the resource R0 and the pass rule is henceforth applied over
the resource R1. This is due to the fact that the rules are not applied in a fair
way, i.e., all rules are not equally applied in all possible paths. This problem can
be solved by forcing the application of the take rule. In the metamodel in Fig.
1.(a), we have added the properties rule and currentProcess to the Ring class.
The rule property indicates which rule has been applied and the currentProcess
property indicates which process has been activated by the application of a rule.
In the model transformation, we can modify the model rules so that each rule
updates the rule and currentProcess in the Ring object as in the take rule:

rl take {lhs model{RG : Ring{}..};

rhs model{RG : Ring{rule = "take",currentProcess = P1 : Process{}..};}



30 A. Boronat, R. Heckel, and J. Meseguer

where we only show the elements that are needed to ensure fairness. Two more
model predicates are needed to check when the take rewrite can be applied
(enabled-take) and when it has already been applied (take):

domain model {

rg : Ring {rule = "take", currentProcess = P1 : Process{id = P}}

} |= enabled-take( P ) = false

domain model { } |= enabled-take( P ) = true [owise]

domain model {rg : Ring{rule = "take",

currentProcess = P1 : Process{id = P}}

} |= take( P ) = true

The MUTEX-live property can be model checked for the modified system by
encoding the fairness of the take rule in the LTL formula as follows:

([] <> enabled-take( "p0" ) -> [] <> take( "p0" )) ->

[] (requests("p0", "r0") -> <> heldBy("r0", "p0"))

6 Related Work, Conclusions and Future Work

This work has brought closer the algebraic and graph-based approaches to mod-
els and model transformations. In this sense, it continues a line of work on
algebraic approaches to graphs and graph rewriting including [1,20,21,22,15].
The closest papers to the approach presented here are [22], and particularly [15],
which makes explicit the relationship of graph rewriting with rewriting logic.
However, our approach has some novel features not treated in previous work,
which express the kinds of graph used in model-based software engineering.
Specifically, we support different kinds of references, namely, ordinary references,
and containment references, which have a different semantic treatment.

Several approaches based on model-checking provide automated procedures
for formal verification of model-based systems. On the one hand, model-checking
tools with specific support for graph transformations are particularly interesting
due to the graph-theoretic nature of models. GROOVE [23] is a graph-based
analysis tool that provides model checking for LTS whose states are graphs. Au-
gur [24] is an analysis tool based on the translation of graph transformations
to Petri nets and the application of Petri net analysis techniques. On the other
hand, generic model checkers have been used, such as SPIN, in approaches such
as CheckVML [25]. In [26], Maude is used as a programming language for en-
coding Atom3 visual graph transformations [27] as Maude system modules so
that the state space of a graph transformation system can be examined.

On the other hand, there are fewer approaches that enable the verification of
QVT-like model transformations, as opposed to graph transformations. A no-
tion of graph with containments is used in [7] to encode model transformations
as graph transformations, and to analyse termination and confluence of model
transformations in the algebraic graph transformation environment AGG [28].
Another approach [29], based on Alloy, provides the analysis of the consistency
of model transformations w.r.t. the metamodel conformance relation, which is



Rewriting Logic Semantics and Verification of Model Transformations 31

ensured by construction in MOMENT2. Our approach focuses on the formaliza-
tion of QVT-like model transformations in rewriting logic by reusing the theory
of graph transformation systems. In this way, MOMENT2 enhances the applica-
tion of Maude’s techniques for reachability analysis and LTL model checking to
model transformations by considering MOF modeling primitives, such as con-
tainment relationships, not directly supported in graph-based approaches. At
the same time, our approach provides the rewriting logic semantics of graph
transformations so that the computational semantics of graph rewriting is given
by term rewriting, by considering production rules either as equations or as
rewrites. This semantics is directly supported by the MOMENT2 tool [30], an
Eclipse plugin in which model transformations between EMF metamodels can
be conveniently defined, executed, and efficiently model checked.

Much work remains ahead, including: a closer study of the expressiveness of
the MOMENT2 model transformation language and its applications for defin-
ing the formal semantics of popular transformation languages such as ATL [4]
or QVT [5], and for defining graph-theoretic notions, such as graph constraints
and related logics [31] and triple-graph grammars [32]; a further study of the
rule/equation distinction for model transformation rules and symmetry reduc-
tion techniques for state reduction purposes in model checking; and the formal
analysis of MOF domain-specific languages such as real-time DSLs.

Acknowledgments. We cordially thank Francisco Durán for his kind help with
the CRC and MTT Maude tools. We also thank the anonymous reviewers for
their helpful comments and suggestions. This work has been partially supported
by the NSF Grant IIS-07-20482, by the project META TIN2006-15175-C05-01,
and by the project SENSORIA, IST-2005-016004.

References

1. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, Heidelberg (2006)

2. Ehrig, H., Montanari, U., Kreowski, H.J., Rozenberg, G., Kreowski, H.J.: Hand-
book of Graph Grammars and Computing by Graph Transformations, vol. 3. World
Scientific Publishing Company, Singapore (1999)

3. OMG: Meta Object Facility (MOF) 2.0 Core Specification (ptc/06-01-01) (2006)
4. ATLAS Group: ATL web site (2008), http://www.eclipse.org/m2m/atl/
5. OMG: MOF 2.0 QVT final adopted specification (ptc/07-07-07) (2007)
6. Ehrig, H., Engels, G., Kreowski, H.J.: Handbook of Graph Grammars and Com-

puting by Graph Transformation, vol. 2. World Scientific Publishing Company,
Singapore (1999)

7. Biermann, E., Ermel, C., Taentzer, G.: Precise Semantics of EMF Model Transfor-
mations by Graph Transformation. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl,
A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301. Springer, Heidelberg (2008)

8. Mens, T., Gorp, P.V.: A taxonomy of model transformation. Electr. Notes Theor.
Comput. Sci. 152, 125–142 (2006)

9. Boronat, A.: MOMENT: a formal framework for MOdel manageMENT. PhD
in Computer Science, Universitat Politènica de València (UPV), Spain (2007),
http://www.cs.le.ac.uk/~aboronat/papers/2007_thesis_ArturBoronat.pdf

http://www.eclipse.org/m2m/atl/
http://www.cs.le.ac.uk/~aboronat/papers/2007_thesis_ArturBoronat.pdf


32 A. Boronat, R. Heckel, and J. Meseguer

10. Boronat, A., Meseguer, J.: An Algebraic Semantics for MOF. In: Fiadeiro, J.L.,
Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 377–391. Springer, Heidelberg
(2008)

11. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science 96(1), 73–155 (1992)

12. Heckel, R.: Compositional verification of reactive systems specified by graph trans-
formation. In: Astesiano, E. (ed.) FASE 1998. LNCS, vol. 1382, pp. 138–153.
Springer, Heidelberg (1998)

13. Meseguer, J.: Membership algebra as a logical framework for equational speci-
fication. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61.
Springer, Heidelberg (1998)

14. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

15. Meseguer, J.: Rewriting logic as a semantic framework for concurrency: a progress
report. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp.
331–372. Springer, Heidelberg (1996)

16. Boronat, A., Meseguer, J.: Algebraic Semantics of OCL-constrained Metamodel
Specifications. Technical Report UIUCDCS-R-2008-2995, UIUC (2008), http://
www.cs.uiuc.edu/research/techreports.php?report=UIUCDCS-R-2008-2995

17. Eclipse Organization: The Eclipse Modeling Framework (2007),
http://www.eclipse.org/emf/

18. Boronat, A., Meseguer, J.: An algebraic semantics for MOF. Technical Re-
port CS-08-005, University of Leicester (2008), http://www.cs.le.ac.uk/people/
aboronat/papers/boMe-mof-apps.pdf

19. Boronat, A., Heckel, R., Meseguer, J.: Rewriting Logic Semantics and Verification
of Model Transformations. Technical Report CS-08-004, University of Leicester
(2008), http://www.cs.le.ac.uk/people/aboronat/papers/boHeMe-rl-mt.pdf

20. Bauderon, M., Courcelle, B.: Graph expressions and graph rewriting. Math. Sys-
tems Theory 20, 83–127 (1987)

21. Corradini, A., Montanari, U.: An algebra of graphs and graph rewriting. In: Curien,
P.-L., Pitt, D.H., Pitts, A.M., Poigné, A., Rydeheard, D.E., Abramsky, S. (eds.)
CTCS 1991. LNCS, vol. 530, pp. 236–260. Springer, Heidelberg (1991)

22. Raoult, J.C., Voisin, F.: Set-theoretic graph rewriting. In: Ehrig, H., Schneider, H.-
J. (eds.) Dagstuhl Seminar 1993. LNCS, vol. 776, pp. 312–325. Springer, Heidelberg
(1994)

23. Rensink, A.: The GROOVE simulator: A tool for state space generation. In: Pfaltz,
J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–485.
Springer, Heidelberg (2004)

24. König, B., Kozioura, V.: Augur 2—a new version of a tool for the analysis of
graph transformation systems. ENTCS, vol. 211, pp. 201–210. Elsevier, Amsterdam
(2008)

25. Schmidt, Á., Varró, D.: CheckVML: A Tool for Model Checking Visual Model-
ing Languages. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS,
vol. 2863, pp. 92–95. Springer, Heidelberg (2003)

26. Rivera, J.E., Guerra, E., de Lara, J., Vallecillo, A.: Analyzing rule-based behavioral
semantics of visual modeling languages with maude. In: SLE (2008)

27. de Lara, J., Vangheluwe, H., Alfonseca, M.: Meta-modelling and graph grammars
for multi-paradigm modelling in AToM3. Software and System Modeling 3(3), 194–
209 (2004)

http://www.cs.uiuc.edu/research/techreports.php?report=UIUCDCS-R-2008-2995
http://www.cs.uiuc.edu/research/techreports.php?report=UIUCDCS-R-2008-2995
http://www.eclipse.org/emf/
http://www.cs.le.ac.uk/people/aboronat/papers/boMe-mof-apps.pdf
http://www.cs.le.ac.uk/people/aboronat/papers/boMe-mof-apps.pdf
http://www.cs.le.ac.uk/people/aboronat/papers/boHeMe-rl-mt.pdf


Rewriting Logic Semantics and Verification of Model Transformations 33

28. AGG Homepage (2008), http://tfs.cs.tu-berlin.de/agg/
29. Anastasakis, K., Bordbar, B., Küster, J.M.: Analysis of Model Transformations via

Alloy. In: Giese, H. (ed.) MODELS 2008. LNCS, vol. 5002. Springer, Heidelberg
(2008)

30. MOMENT2 (2008),
http://www.cs.le.ac.uk/people/aboronat/tools/moment2

31. Orejas, F., Ehrig, H., Prange, U.: A logic of graph constraints. In: Fiadeiro, J.L.,
Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 179–198. Springer, Heidelberg
(2008)

32. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1995)

http://tfs.cs.tu-berlin.de/agg/
http://www.cs.le.ac.uk/people/aboronat/tools/moment2


Confluence in Domain-Independent Product
Line Transformations

Jon Oldevik1,2, Øystein Haugen2,1, and Birger Møller-Pedersen1

1 University of Oslo, Department of Informatics, Oslo, Norway
2 SINTEF Information and Communication Technology, Oslo, Norway
jonold@ifi.uio.no, oystein.haugen@sintef.no, birger@ifi.uio.no

Abstract. Flexible models for product line variability allow represent-
ing variability within any kind of domain-specific model. We show how
complex variabilities represented by one variability modelling approach
are implemented by general, domain-independent model transformations.
We analyse the confluence and consistency characteristics of these trans-
formations, show when multiple variabilities may be in conflict, and de-
fine the criteria for confluence of multiple variability transformations.

1 Introduction

Software product line engineering (SPLE) has been recognized as a valuable
approach for achieving reuse and configurability when building software. A main
concept in SPLE are feature diagrams, which are used to describe commonalities
and variabilities of a product line. A resolution process is then used to resolve
each variability and transform the product line to a specific product. Examples of
approaches supporting product line specifications are the Orthogonal Variability
Model (OVM) defined by Pohl et al. [1], cardinality-based feature modelling by
Czarnecki et al. [2], and the variability model defined by Haugen et al. [3].

The real value of feature diagrams appear when features are related to assets
of product line system models, which we denote the base model. It can be repre-
sented by modelling or programming elements. A resolution of a variable feature
can then be directly related to a transformation of corresponding elements of
that base model. When the relationship between the feature diagram and the
actual product line is rigorously specified, the complete resolution process can
be supported by automated model transformations. However, the feature dia-
gram may specify variabilities that are in conflict, which can result in invalid
transformations or require specific ordering of resolutions.

The variability model defined by Haugen et al. [3] allows value-based or struc-
tural variability to be described on any kind of domain model. Based on this
variability model and its links to product line model elements, we implement
general model transformations that can transform any product line model in
any language defined by a MOF-metamodel [4] to a product configuration. A
product line may define variabilities with conflicts e.g. in that they may manip-
ulate overlapping parts of the product line. We analyse confluence and conflict

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 34–48, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Confluence in Domain-Independent Product Line Transformations 35

properties of the product line model and define criteria for determining conflu-
ence and detecting model conflicts between multiple variability transformations.

Outline. The remainder of this paper is structured as follows: Section 2 outlines
the example we use to illustrate the product line transformations. Section 3
gives the background and basis for variability specification. Section 4 describes
how the domain-independent transformations have been realised, and Section 5
addresses confluence characteristics of these transformations. Section 6 presents
related work, and finally Section 7 gives some concluding remarks.

2 Motivating Example

We will use a domain-specific language (DSL) representing train lines and sta-
tions to illustrate our approach. In fact, we will use a subset of a larger DSL for
train stations, which is in use by ABB Norway for defining train line and station
topologies. This example was also used by the authors in [3], and its practical
usage was detailed by Svendsen et al. in [5]. Fig. 1 shows the metamodel of the
train station DSL subset that we will use here.

Two example models in this DSL are the SingleTrack and SwitchedTrack sta-
tions, which are illustrated by the annotated concrete syntax in Fig. 2. The
SingleTrack (to the left) is defined by four NormalEndPoint objects and three
SimpleLine objects. The lines connect to the endpoints by their start and end ref-
erence properties. The SwitchedTrack (to the right) defines two remote switches,
which are special kinds of line segments that allow switching between train lines.

We want to reuse these station models to configure new and existing station
models. In our illustrating example, we show how to modify an existing single
track station to become a switched track station by using a variability model.
The result is a new switched track, resulting from replacing objects in the single
track base model with objects in the switched track model (Fig. 3).

In the course of this paper, we will show how variabilities specified accord-
ing to [3] on the example models in the train station DSL are implemented by
model transformations to create new model variants in the DSL. We will also
analyse conflict and confluence characteristics of these transformations when
several variabilities are involved. The variability illustrated here is a kind of

Fig. 1. TrainStation DSL Metamodel



36 J. Oldevik, Ø. Haugen, and B. Møller-Pedersen

Fig. 2. SingleTrack (left) and SwitchedTrack (right) Stations

Fig. 3. Modified SingleTrack to SwitchedTrack

alternative variability, where parts of the original base model structure (Single-
Track) represent one alternative and parts of the SwitchedTrack represent the
other.

3 Background on Product Line Variability

Product lines are often described in terms of common and variable features. A
feature is a system property that is relevant to some stakeholder and is used to
capture commonalities or discriminate among systems in a family [6]. Common
features are shared among all members of a product line, and variable features
are those that may vary among product line members. A product line will also
often define a common product line architecture (PLA) that is shared by all
products in the product line.

Feature Modelling was introduced by Kang et al. [7] in the Feature Oriented
Domain Analysis (FODA) method, which comprehensively described process
and techniques for product line development. Many variants of feature modelling
have evolved from this. Notable recent ones are the Orthogonal Variability Model
(OVM) by Pohl et al. [1], cardinality-based feature modelling by Czarnecki et
al. [2], the conceptual reference model for variability by Bayer et al. [8]. The
variability metamodel (hereafter referred to as the VarModel) defined by Hau-
gen et al. [3] was based on [8] and adds more general mechanisms for specifying
variable fragments of models in any kind of DSL. In this paper, we show how the
VarModel approach can be implemented by model transformation, and we define
important theoretical properties for these transformations with respect to con-
fluence and conflict. We further define the criteria for checking confluence when
several variabilities are involved. To get a basic understanding of the concepts in
the VarModel, we describe its central concept for representing variability, namely
substitution.

Substitution can be viewed as an advanced kind of assignment operator for
model elements. Three kinds of substitution are defined:



Confluence in Domain-Independent Product Line Transformations 37

Fig. 4. The Fragment Substitution in the Variability Metamodel

– ValueSubstitution: the ValueSubstitution represents a modification of a prop-
erty value in the base model.

– ReferenceSubstitution: the ReferenceSubstitution represents a modification
of an object reference in the base model.

– FragmentSubstitution: the FragmentSubstitution represents structural trans-
formations on the base model. It can be used to represent optionality, al-
ternatives, and repetitions. Further details on the fragment substitution are
given below.

Fig. 4 shows the main concepts related to the FragmentSubstitution. It con-
tains a model fragment called FragmentPlacement, which identifies a set of model
elements that represent variability and may be subject to substitution. It also
contains a set of ReplacementFragments, which identifies possible replacement
alternatives for a fragment placement. A fragment placement defines the bound-
aries for a set of objects (a fragment of the complete model), which can be
replaced by another set of objects defined by a replacement fragment. Substitu-
tion is defined by bindings between the two.

There are two types of boundary elements for a placement and two kinds for
a replacement. A ToPlacement represents an ingoing reference to a fragment
placement. It points to an object outside the fragment and a set of objects that
will be replaced inside the fragment. The attr property defines the name of the
reference on the outside object that can be used to set the values of the inside
reference. A FromPlacement represents an outgoing reference from the fragment
placement. A replacement fragment correspondingly contains ToReplacement
and FromReplacement objects. A To/From Placement/Replacement represents
a one-directional reference either to or from the placement/replacement model
fragments.



38 J. Oldevik, Ø. Haugen, and B. Møller-Pedersen

Fig. 5. Fragment Placement and Replacement Fragment

Fig. 5 illustrates a VarModel superimposed on the two station models. The
fragment placement logically isolates a set of model elements in the base model,
where the edges are defined by boundary elements. In this example, the model
elements defining the inner boundary of the fragment placement have incoming
references from the objects outside the boundary (e.g. the L1 SimpleLine element
references the NE2 endpoint element). The placement boundary elements are
therefore of type ToPlacement. If the reference instead had been from the inner
boundary element (NE2) to the outer element (L1), the placement boundary
element should have been of type FromPlacement. The replacement fragments
are defined correspondingly. The full scope of a fragment is found by traversing
the links from/to boundary objects with cut-off at any outer boundary object.
The shaded parts of 5 shows the model elements that are part of the fragment
models.

The selection of an alternative (a replacement fragment) is done by resolutions
within the variability model, which is also a part of the metamodel in [3]. It
defines resolution elements for different substitutions. For brevity, we cannot go
into further detail on the VarModel, but for full detail, the interested reader is
referred to [3].

4 The Domain-Independent Product Line Transformation

The modification of the product line base model is controlled by the variability
model, and specifically, by resolved variabilities. The resolution process typically
involves human decision making, and it adds resolved substitutions to the vari-
ability model. The resolved variability model is then processed by the product
line transformation, which applies the resolutions to the product line domain
model. The transformation obtains base model references through the variabil-
ity model through its base reference. Each resolved variability will result in a
transformation on the product line base model.

We implemented the transformations using the MOFScript language [9], which
has been extended with model to model transformation capabilities and reflection



Confluence in Domain-Independent Product Line Transformations 39

support at the metamodel (ecore) level. MOFScript is an open source tool origi-
nally developed for model to text transformations based on EMF (Eclipse Mod-
eling Framework) models. Its recent extensions allowed us to specify transforma-
tions that implement feature substitutions for any kind of base models.

4.1 Generating the Product Model Using the Variability
Transformation

The variability transformation processes a resolved VarModel, containing re-
solved substitutions, and generates a product model from the domain-specific
product line base model by applying each resolved substitution. The result of
the transformation is based on copies of the original base model(s). We copy
the base models referenced by the VarModel and define correspondence links
between the original base models and the copies. Correspondence links are de-
fined by iterating all features of all objects in the base models and adding links
between the base model and the copied model elements. Then, all variation ele-
ments of the VarModel are processed. The transformation must handle the three
different kinds of resolved substitutions of the VarModel (Value-, Reference-, and
FragmentSubstitution). We will go through each of these in detail.

The Resolved Value and Reference Substitutions. The resolved Value Substitu-
tion modifies a value for an element in the base model. A resolved Reference
Substitution is similar, but modifies a reference in the base model. In our exam-
ple, a value substitution could be to modify the value of the gradient property
of a SimpleLine. Fig. 6 (left hand side) illustrates this value substitution in the
SingleTrain model. The property val of the Resolved Value object defines the
value to be set on the property identified by the attr property of the value sub-
stitution. The right hand side illustrates a reference substitution on the same
model; it modifies the start property of the L1 line to point to the N4 element
instead of the N1 element, hence modifying the model structure.

The setting of model element references is done much in the same way as set-
ting values, by a reflexive call on the model element using the feature

Fig. 6. Value (left) and Reference (right) Substitutions



40 J. Oldevik, Ø. Haugen, and B. Møller-Pedersen

information given by the substitution. When references are set, the transfor-
mation must check if the receiving feature is a collection or a single element
and handle the assignment correspondingly. In addition, if references are moved
across base models, model elements will be moved from one base model to an-
other.

The Resolved Fragment Substitution. As previously described, the resolved Frag-
ment Substitution may be used to handle optionality, alternatives, and repetition
variability of fragments covering parts of a model. Here, we will focus in detail
on how alternatives, as illustrated by our original example (Fig. 5), are handled.
In this example, we have two base models; one that defines a generic single track
line and one that defines a double track with switches.

The transformation of the example model iterates all boundary elements con-
tained in the replacement fragment. For each replacement boundary element
(rbe):

– If rbe is an ingoing boundary element (ToReplacement), the outside model
element defined by the fragment placement in rbe.binding is modified by
changing its reference (defined by rbe.binding.attr) to point to the inside
element defined by the replacement fragment (rbe.inside) (SE1 from Fig. 5).

– If, on the other hand, rbe is an outgoing boundary element (FromReplace-
ment), the inside model element defined by the rbe.inside is modified by
setting its value to reference the model element referenced by the outside of
the bound fragment placement (rbe.binding.outside).

The corresponding references between the fragment placement inside and
outside elements will be removed (rbe.binding.inside/outside). Fig. 7 Step a)
illustrates this first step. The model elements identified by the fragment place-
ment are deleted according to the following algorithm: for each element E in

Fig. 7. Steps in the Fragment Substitution



Confluence in Domain-Independent Product Line Transformations 41

ToP lacement.inside ∪ FromPlacement.inside, delete E and any element in
the transitive closure of all references to and from E, but cut off at any element
in the set of ToP lacement.outside ∪ FromPlacement.outside (Fig. 7 Step b).

Since the model elements identified by the fragment placement and replace-
ments may live in different model containers (which is the case in our example),
the elements of the replacement fragment are copied into the base model contain-
ing the fragment placement. The algorithm is similar to that for deletion of the
fragment placement: all model elements in the transitive closure of all references
to and from ToReplacement.inside ∪ FromReplacement.inside, but cut off by
any element in th set of ToReplacement.outside ∪ FromReplacement.outside.

The two algorithms for deleting and relocating objects are vulnerable to out-
going and incoming references not captured by the boundary elements. An im-
portant invariant for the fragment substitutions is that the fragments are defined
completely, i.e. that all references going into or out from a fragment are described
by boundary elements; a precise representation of boundary elements for refer-
ences entering/exiting the fragments is required to avoid deletion or copying of
unintended model elements.

5 Confluence of Variability Transformations

A product line may have many dependencies between its features. Some of these
are explicitly designed in the product line by relationships or feature constraints.
There may also be known ordering constraints that govern the order by which
features may be resolved. Conversely, there may be ordering constraints that
are not known in advance, which are there due to constructs in the underlying
product line model. We can use confluence analysis to determine if multiple
supposedly independent feature substitutions are independent or not, when there
are no constraints in place.

In term rewriting systems, confluence describes that terms in a system can
be rewritten in more than one way and still yield the same result [10]. Within
graph transformation theory, confluence can be used to show that a graph trans-
formation with different paths have a unique normal form [11,12]. We will use
confluence to reason about the effects of changing the order of transformations
represented by a variability model, i.e. if we can expect the same result if the
ordering of variability substitutions is altered. We look at the three kinds of
substitutions and analyse their confluence characteristics.

5.1 Value and Reference Substitution

A value substitution only modifies the value of properties within an object. It
does not change the structure of a model. As such, a value substitution can
never conflict with a substitution modifying the model structure (reference or
structure substitution).

However, two value substitutions will conflict with each other if they modify
the same property of an object, with the result that only the last transformation



42 J. Oldevik, Ø. Haugen, and B. Møller-Pedersen

overwrite the result of the first one. The governing constraint for value substi-
tution is: two value substitutions should not be overlapping both with respect to
their involved model element and the referenced attribute.

Reference substitutions may, similarly to value substitutions, interfere with
each other if two or more address the same reference of the same model element.
The governing constraint for reference substitutions is: two reference substitu-
tions should not be overlapping both with respect to their involved model element
and the referenced property.

Reference substitutions may also be in conflict with fragment substitutions,
as we will address in the next Section.

5.2 Fragment Substitutions

Fragment substitutions are more challenging regarding conflicts as they manip-
ulate model element structures that are larger part of the models.

Overlapping Fragments. We define a model fragment (MF) within a base model
(M) in terms of three disjunct sets of model elements from the base model,
where these elements are specified by boundary element within the fragment
MF : MF={Eint, BEint, BEext}, where Eint represents elements internal to the
model fragment without being part of a boundary element, BEint represents ele-
ments specified as the inner boundary of the MF, and BEext represents elements
specified as the outer boundary of MF. Specifically, if MF is a fragment place-
ment, BEint is defined by the set of model elements in placementBE.inside, and
BEext by placementBE.outside, where placementBE is the PlacementBound-
aryElements contained in the fragment placement. For a replacement fragment,
the fragment model is defined in the same way by the ReplacementBoundaryEle-
ments. The set of model elements in Eint is defined by the traversal algorithm as
the elements internal to the fragment model. Fig. 8 illustrates the model element
sets in a fragment model, where the objects (f1, f2, etc.) have uni-directional ref-
erences to each other.

The set of model elements outside the fragment (MF ) is defined by (M \
MF) ∪ BEext. We call model fragments that share a set of model elements
overlapping.

Fig. 8. The Element Sets in a Fragment Model



Confluence in Domain-Independent Product Line Transformations 43

Definition 1. Two model fragments MF1 and MF2 are overlapping if: (MF1.
Eint ∪ MF1.BEint) ∩ (MF2.Eint ∪ MF2.BEint) �= ∅. We say that the two model
fragments MF1 and MF2 have an external boundary overlap if MF1.BEext ∩
(MF2.Eint ∪ MF2.BEint) �= ∅.
Definition 2. A model fragment MF1 is a model fragment of another model
fragment MF2 if all model elements in MF1 are also in MF2: Fragment(MF1,
MF2) ≡ o ∈MF1 ⇒ o ∈MF2.

Definition 3. We call MF1 a proper model fragment of MF2 if it is a model
fragment of MF2 and MF1 only contains elements internal to MF2: MF1 ⊆
MF2.Eint.

A model fragment may be defined as a proper model fragment of another to im-
pose variability on the model fragment itself. For a fragment placement, it makes
little sense to have another model fragment inside, as the outer fragment will be
replaced anyway. However, within a replacement fragment, it may make sense to
define proper fragment placements. Replacement fragments may be defined with
any level of overlapping. Since their elements are copied and replace elements
defined by a fragment placement, no such overlap will result in a modification
or conflict between the replacement fragments.

A replacement fragment cannot be overlapped by a fragment placement unless
the latter is a proper model fragment of the other. In that case, the fragment
placement provides an internal variability space for the replacement fragment.

Such a proper model fragment will in principle result in confluence with re-
spect to the ordering of the two associated substitutions. In the current imple-
mentation, however, these fragments must reside in the same physical model. If
all fragments are contained within the same physical model space, proper model
fragments are confluent with respect to the ordering of the substitutions. Fig. 9
illustrates a transformation involving proper model fragments.

In this example, the fragment placement F2 is a proper model fragment of
the replacement fragment A1. In addition, we have one more fragment place-
ment (F1 ) and replacement fragment (A2 ). In the first transformation path,
the proper model fragment F2 is replaced with A2. The result still have the
replacement fragment A1, which is used as replacement for F1. In the second
path, the replacement fragment A1 is first used as replacement for F1. The
intermediate result still contains the proper model fragment F2, which is then
replaced by A1. The results of the two paths are identical.

A proper model fragment (pmf ) defined as part of another replacement frag-
ment (rf ) implies (by definition 3) that pmf ⊆ rf.Eint. A replacement of pmf in-
side rf with another replacement fragment, rf2, will change the structure of rf by
replacing the involved objects in the rf.Eint set, obtaining rf.E’int. It will however
never touch the rf.EBint or rf.BEext elements. When the rf fragment is used as
replacement for another fragment placement, the set of rf.E’int elements will be
copied as part of rf. If instead the original rf that contains pmf is used in the re-
placement, the replacee will contain all the elements of the fragment placement
pmf, which subsequently can be replaced with replacement fragment rf2.



44 J. Oldevik, Ø. Haugen, and B. Møller-Pedersen

Fig. 9. Confluence of Proper Model Fragments

Fig. 10. Conflicting Model Fragments

Otherwise, overlaps between model fragments will not only result in non-
confluence among substitutions, but also invalidate any order of transformations.
This may happen even if the fragments only have an external boundary overlap,
i.e. that model elements associated with the (Eint ∪ BEint) set of one fragment
are the same as those associated with the BEext elements of another.

Fig. 10 illustrates what may happen in the case of an external boundary over-
lap. The fragment placement F1 is defined by the following base model elements:
Eint={∅}, BEint={f2}, BEext={f1, f3}, while the fragment placement F2 is de-
fined by these base model elements: Eint={∅}, BEint={f3}, BEext={f2, f4}. In
this example, the fragment placement F2 is replaced by the replacement frag-
ment A1. This transformation replaces the replacement fragment element a2
for the placement element f3 within our model copy. In the model copy, the



Confluence in Domain-Independent Product Line Transformations 45

f3 is deleted, and although our original base model keeps the element and the
fragment placement points to this, the mapping to the model copy of that el-
ement is lost. The cut off at F1.fromPlacement.outside for the traversal of the
F1 fragment placement has now been invalidated; when F1 now is replaced by
the replacement fragment A1, the deletion of the fragment placement elements
will never reach the original f3 cut off boundary, hence deleting model elements
a2 and f4 by following the references. The resulting model contains only the f1
and a2 elements.

Conflicts Between Reference Substitutions and Fragment Substitutions. If a ref-
erence substitution operates within the model element set identified by a frag-
ment, it may result in unwanted effects: if a reference internal to the fragment
is modified to point to the outside of the fragment or an external reference is
modified to point inside the fragment, this will break the traversal cut off of
the fragment and include unintended model elements for deletion or addition
through an extended traversal path that is not captured by a boundary element.
This is similar for elements outside of the fragment domain boundary, which
should not be allowed to modify a reference to point inside the fragment.

In the case of a fragment placement, this will result in deletion of unwanted
objects. In the case of the replacement fragment, it will result in copying unin-
tended objects.

For a model M and a model fragment MF, where MF ⊆ M and MF = {Eint,
BEint, BEext}, the set of model elements outside MF, MFout is defined by M
\ MF. There should be no reference substitution that modifies an element in
(Eint ∪ BEint) to reference an element in MFout. There should equally be no
reference substitution that modifies an element in MFout to reference an element
in (Eint ∪ BEint). Finally, there should be no reference substitution that modifies
a reference going from BEext to BEint to an element in MFout. All these will
lead to inconsistency and non-confluence with respect to the two substitutions.

5.3 Confluence Checking of Fragment Substitutions

To see how we can analyse confluence of fragment substitutions, we consider
a model M and a VarModel VM with two fragment substitutions fs1 and fs2,
where fs1 and fs2 each contains one fragment placement and one replacement
fragment, fp1 and rf1, and fp2 and rf2, respectively.

Confluence of fragment placements can be determined by analysing two prop-
erties: model element overlap and completeness of a fragment substitution. Model
element overlap of two fragment placements, fp1 and fp2, can be checked by the
contents of their respective Eint, BEint, and BEext sets, basically by checking if
there are overlaps in the object sets.

An overlap may only exists in two fragment placements in the BEext sets. The
rest of the object sets must be disjunct:

– (fp1.Eint ∪ fp1.BEint) ∩ (fp2.Eint ∪ fp2.BEint) = ∅ ∧ (fp1.BEext) ∩ (fp2.Eint

∪ fp2.BEint) = ∅ ∧ (fp2.BEext) ∩ (fp1.Eint ∪ fp1.BEint) = ∅.



46 J. Oldevik, Ø. Haugen, and B. Møller-Pedersen

Any other overlap between fragment placements will result in deletion of
boundary objects for a fragment placement when the other one is replaced,
resulting in an inconsistent model. If fragment placements adhere to this con-
straint, the respective transformations will be confluent. The replacement frag-
ments do not influence the confluence property.

In addition to set overlap, each fragment substitution must be complete in
the sense that it captures all incoming and outgoing reference on the boundary
of the fragment. For a fragment placement fp1, this means that all references
going in and out of the fragment are captured by boundary elements: f

– ∀ e ∈ fp1.Eint, ∀ e2 ∈ M | hasReference(e, e2) ⇒ e2 ∈ (fp1.Eint ∪ fp1.BEint)
– ∀ e ∈ fp1.BEint, ∀ e2 ∈ M | hasReference(e, e2) ⇒ e2 ∈ (fp1.Eint ∪ fp1.BEint

∪ fp1.BEext)

The hasReference(e, e2) operation returns true if there is a reference in either
direction between elements e and e2. The constraints defined here gives a simple
way of checking confluence between fragment substitutions. We have implemented
a model checking algorithm to check the fragment set overlapping property.

6 Related Work

In [13], Czarnecki and Antkiewicz describe an approach for mapping features to
models and generating model instances (configurations). They use model tem-
plates with feature annotations that are matched and evaluated against a feature
configuration. The approach is generally applicable to any model domain based
on MOF, which is the same for our approach. The implementation of their
approach, however, seems dependent on the domain, which is avoided in our
approach. The model templates are expressed in the base language and defines
the product line in terms of base language elements and presence conditions as
annotations to this model. Hence, the variability specifications are embedded
into the base language, which is not the case in our approach.

Significant work on confluence has been done in term rewriting and graph
transformation theory. Heckel et al. [12] define confluence properties for typed
attributed graph transformation systems, which are based on well established
theory of parallel independence of graph transformations. Parallel independence
requires that two transformations only share elements that are preserved by both
steps, i.e. one transformation cannot delete elements used by another. This prop-
erty has been used to show commutativity and confluence of transformations.
The transformations defined in this paper can be mapped to graph transfor-
mations of general MOF 2.0 object graphs, allowing confluence properties to
be analysed using graph transformation techniques such as critical pair analy-
sis. The transformations described by substitutions are, however, very limited
in that each substitution is never recursive, which makes the described analysis
quite feasible.

The work by Batory et al. [14] on stepwise refinement provides an approach
for composition of features based on hierarchical equations and shows that it can
be applied for code and non-code artifacts, given that composition operators are



Confluence in Domain-Independent Product Line Transformations 47

defined for the artifact type. The execution of each variability substitution can
be viewed as one step in such a refinement, where the composition operator is
defined by the transformation implementation semantics.

7 Conclusions and Future Work

We have described our solution to domain-independent product line transforma-
tions, which was implemented as a model transformation in MOFScript [9]. We
addressed how different kinds of variability defined by the variability model are
handled by model transformations. Based on the variability transformation, we
analysed confluence and conflict characteristics when several points of variation
are involved. We defined the criteria for confluence between different kinds of
substitutions and specified how confluence between substitutions can be checked.
We showed that fragment substitutions that are proper fragment models of re-
placement fragments resulted in confluent transformations. In general, we saw
that fragments should have disjunct domains, i.e., they should not be overlapping
in order to be confluent.

The variability transformations require further work in some areas. Specifi-
cally, we have not addressed recursively configurable model fragments, to handle
structure substitutions that produce duplicates (repetitions), where each dupli-
cate can be individually and recursively configured. There are, however, still
limitations in the variability model that prevent this. The transformations have
been tested on relatively small examples in simple DSLs, such as example train
station model instances; we need to test the scalability of the approach on more
elaborate models and metamodels.

Acknowledgments. This work has been carried out in the context of the SWAT
project (Semantics-preserving Weaving - Advancing the Technology), funded by
the Norwegian Research Council (project number 167172/V30). It has also partly
been conducted within the MoSiS project (ITEA 2 - i06035). MoSiS is a project
within the ITEA2 - Eureka framework. Information included in this document
reflects only the authors views.

References

1. Pohl, K., Bockle, G., van der Linden, F.: Software Product Line Engineering -
Foundations, Principles, and Techniques. Springer, Heidelberg (2005)

2. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged Configuration Using Feature Mod-
els, pp. 266–283. Springer, Heidelberg (2004)

3. Haugen, Ø., Møller-Pedersen, B., Oldevik, J., Olsen, G., Svendsen, A.: Adding
Standardized Variability to Domain Specific Languages. In: Software Product Line
Conference (SPLC) (2008)

4. Object Management Group (OMG): Meta Object Facility (MOF) Core Specifica-
tion. OMG Available Specification formal/06-01-01, Object Management Group,
OMG (2006)



48 J. Oldevik, Ø. Haugen, and B. Møller-Pedersen

5. Svendsen, A., Olsen, G.K., Endresen, J., Moen, T., Carlson, E., Alme, K.J., Hau-
gen, O.: The Future of Train Signaling. In: Czarnecki, K., Ober, I., Bruel, J.-M.,
Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 128–142. Springer,
Heidelberg (2008)

6. Czarnecki, K., Eisenecker, U.: Generative Programming - Methods, Tools, and
Applications. ACM Press/Addison-Wesley Publishing Co., New York (2000)

7. Kang, K., Cohen, S., Hess, J., Novak, W., Petersen, S.: Feature-Oriented Domain
Analysis (FODA) Feasibility Study, CMU/SEI-90-TR-21. Technical report, Soft-
ware Engineering Institute (SEI) (1990)

8. Bayer, J., Gerard, S., Haugen, Ø., Mansell, J., Møller-Pedersen, B., Oldevik, J.,
Tessier, P., Thibault, J., Widen, T.: Consolidated Product Line Variability Model-
ing. In: Software Product Lines, Research Issues in Engineering and Management.
Springer, Heidelberg (2006)

9. Oldevik, J., Neple, T., Grønmo, R., Aagedal, J., Berre, A.: Toward Standardised
Model to Text Transformations. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA
2005. LNCS, vol. 3748, pp. 239–253. Springer, Heidelberg (2005)

10. Knuth, D., Bendix, P.: Simple word problems in universal algebras. In: Leech, J.
(ed.) Computational Problems in Abstract Algebra (1970)

11. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Alge-
braic Approaches to Graph Transformation. Part I: Basic Concepts and Double
Pushout Approach. In: Handbook of Graph Grammars and Computing by Graph
Transformation. Foundations, vol. 1, pp. 163–245 (1997)

12. Heckel, R., Küster, J.M., Taentzer, G.: Confluence of Typed Attributed Graph
Transformation Systems. In: Proceedings of the First International Conference on
Graph Transformation, pp. 161–176 (2002)

13. Czarnecki, K., Antkiewicz, M.: Mapping Features to Models: A Template Approach
Based on Superimposed Variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005.
LNCS, vol. 3676, pp. 422–437. Springer, Heidelberg (2005)

14. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-wise Refinement. In: ICSE
2003: Proceedings of the 25th International Conference on Software Engineering,
pp. 187–197. IEEE Computer Society, Washington (2003)



Object Flow Definition for Refined Activity Diagrams

Stefan Jurack1, Leen Lambers2, Katharina Mehner3, Gabriele Taentzer1,
and Gerd Wierse1

1 Philipps-Universität Marburg, Germany
{sjurack,taentzer,gwierse}@mathematik.uni-marburg.de

2 Technische Universität Berlin, Germany
leen@cs.tu-berlin.de

3 Siemens, Corporate Technology, Germany
katharina.mehner@siemens.com

Abstract. Activity diagrams are a well-known means to model the control flow
of system behavior. Their expressiveness can be enhanced by using their object
flow notation. In addition, we refine activities by pairs of pre- and post-conditions
formulated by interrelated object diagrams. To define a clear semantics for refined
activity diagrams with object flow, we use a graph transformation approach. Con-
trol flow is formalized by sets of transformation rule sequences, while object flow
is described by partial dependencies between transformation rules. This approach
is illustrated by a simple service-based on-line university calendar.

1 Introduction

UML2 activity diagrams are a well-known means to model the control flow of system
behavior. Their expressiveness can be enhanced by using their object flow notation. Cur-
rently, it is an open problem how to formalize coherent object flow for activity diagrams.
In this paper we aim at providing a precise semantics for refined activity diagrams with
coherent object flow. We use graph transformation as semantic domain, since it sup-
ports the integration of structural and behavioral aspects and provides different analysis
facilities.

In [1], sufficient criteria for the consistency of refined activity diagrams were pro-
vided, where interrelated object diagrams are used to specify pre- and post conditions of
single activities. All conditions refer to a domain class model. This refinement serves as
a basis for consistency analysis. The refinement of activities by pre- and post-conditions
was first introduced in [2] to analyze inconsistencies between individual activities re-
fining use cases. Pre- and post conditions are formalized as graph transformation rules.
Mehner et.al. extend the consistency analysis in [3] where also the control flow is taken
into account. In [4], a similar approach for consistent integration of life sequence charts
(LSCs) with graph transformation, applied to service composition modeling, was de-
veloped. The formalization based on graph transformation is used to analyze rule se-
quences. In addition, data flow is modeled textually by name equality for input and
output variables.

In this paper, we extend refined activity diagrams by object flow. We introduce partial
rule dependencies to formalize the semantics of object flow. Based on the consistency

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 49–63, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



50 S. Jurack et al.

notion of refined activity diagrams in [1], we define consistency-related properties of
refined activity diagrams with object flow.

We illustrate our approach with an example from model-driven development of a
service-based web university calendar. In particular the behavior modeling of individual
services still lacks advanced support for precise modeling and subsequent consistency
analysis. Activity diagrams are an adequate means for modeling individual services,
and the use of object flow and pre-/post-conditions can define service behavior more
precisely.

This paper is organized as follows. Section 2 introduces the syntax and semantics
of refined activity diagrams with object flow informally. Section 3 introduces algebraic
graph transformations and the new notion of partial rule dependency. Section 4 presents
the semantics and consistency notion of refined activity diagrams and extends it for
object flow. Sections 5 and 6 contain related work and concluding remarks.

2 Introduction to Refined Activity Diagrams with Object Flow

This section introduces refined activity diagrams with object flow and illustrates this
modeling approach by a small example for a service-based web university calendar.
In this example, we model services by activity diagrams with object flow where each
activity is refined by pre- and post-conditions, and guards are refined by patterns.

2.1 Domain Model

Our example application manages course parts that are lectures, laboratories, and exer-
cises where a lecture may offer a laboratory and an exercise. Each course part is held
by a lecturer and can be located in a room. An appropriate class diagram is presented in
Fig. 1. From an abstract class Object 1, three classes are derived: Room, Lecturer and
CoursePart. The latter is abstract and is specialized by three further classes: Labora-
tory, Exercise and Lecture. Day and time information for course parts are realized by
enumerations Day and Time.

2.2 Activity Diagrams with Object Flow

We use UML2 activity diagrams with object flow [5] to model services of the univer-
sity calendar. Three services, AddLecture, AddExercise, and AddLaboratory, are shown
exemplarily in Fig. 2.

Web applications usually contain a number of services. A service provides a clearly
defined logical unit of functionality based on data entities. While a basic service might
be realized by one activity only, more complex services might contain a number of
different activities. Defining services by the means of hierarchical activity diagrams
opens up the possibility to call services from other ones. The usage of other services
is depicted by placing a complex activity as representation of the used service into
the control flow. The invocation of a complex activity is indicated by placing a rake-
style symbol within the activity node. Our example service AddLecture uses two other

1 Italic class names in diagrams indicate abstract classes.



Object Flow Definition for Refined Activity Diagrams 51

Fig. 1. Domain Class Diagram

services. Accordingly, the complex activities modeling used services AddLaboratory
and AddExercise are refined by corresponding activity diagrams (cf. Section 4).

UML2 provides several object flow notations. The preference for a notation depends
on different aspects, e.g. the amount of information, potential ambiguities, and the
equality of control and object flow. For example, if object and control flow overlap,
related objects may be depicted next to transitions as shown above activity SetRoom
in Fig. 2. Otherwise an object node with separate object flow edges has to be used as
shown for lecture l. However, it is desirable to keep the object flow description as sim-
ple as possible without leaving out important information. Each object may be named
and its identity is expressed by equal names within an activity diagram. E.g. in activity
diagram AddLecture both lecturer nodes named l2 depict the same object. Please note
that in our approach, an object may flow along multiple outgoing edges i.e. object flows,
whereas in UML2 one object serves one object flow exclusively.

Objects passed from outside to an activity diagram can be drawn on the diagram
boundary in order to show parameters flowing into certain activities. Objects passed out
of the diagram itself, may be depicted as boundary objects as well. Consider Fig. 2:
Objects of types Lecturer and Room are passed to the activity diagram AddLecture,
while a newly created object of type Lecture is passed out of this diagram.

In Fig. 2, service AddLecture uses two other services AddLaboratory and AddExer-
cise. Once a lecture has been created and its attributes have been set, a related laboratory
or exercise might be created additionally. At first, a new lecture is created in activity
CreateLecture, its attributes are set and it is linked to lecturer l1. If, moreover, room r1
is not null, activity SetRoom is used to link this room r1 to the lecture newly created. If
a lecturer is given for a laboratory, the complex activity AddLaboratory is used to add a
laboratory to the lecture. Therefore, AddLecture has to pass the newly created lecture l,
lecturer l2, and room r2 to the activity. In diagram AddLaboratory a new laboratory is
created by the first activity CreateLaboratory. In the same step, this laboratory is linked
to lecture l and to lecturer l2. Furthermore, the laboratory’s attributes are set. In the next
activity, the laboratory’s location is set to room r2, provided that r2 is given. If a lecturer
for a related exercise is given, AddExercise is used by AddLecture analogously.



52 S. Jurack et al.

Fig. 2. Activity Diagrams of Services AddLecture and AddLaboratory

Since our activity diagrams model services, we equip each of them with a name and
a comma-separated list of parameters. The semantics follow the programming concept
of parameter passing between operations, i.e. an activity diagram models an operation
consisting of a signature and a body. The signature of an activity diagram consists of
its name and a list of attribute and object parameters. While object parameters have a
type occurring in the domain model, attribute parameters have primitive types in most
cases. This signature is an extension of UML2 made by our approach. Please note that
all attributes and boundary objects used within the activity diagram are arguments which
correspond to the signature. In addition, each parameter declaration has to be enriched
with keyword in, out, or inout. This qualification defines the object flow direction. E.g.



Object Flow Definition for Refined Activity Diagrams 53

lecturer l1 has to be passed to diagram AddLecture and is therefore marked in. Vice versa,
the newly created lecture l is passed out of the diagram and is therefore marked by out.
Parameter objects marked by inout are both input and output objects.

2.3 Refined Activities

Activities are used to model specific changes of the current system snapshot i.e. object
structure. We propose to refine activities by pre- and post-conditions specifying snap-
shots before and after the activity respectively. We refine activities separately by pairs
of object diagrams which are typed over the domain model. Figure 3 shows object dia-
grams refining activities of our example (cf. Fig. 2) where pre-conditions are depicted
on the left and post-conditions on the right. Objects and links with equal names on both
sides express identity and preservation. Objects and links occurring on the left-hand side
only will be deleted, while objects and links occurring in the right-hand side only will
be created. Conditions on non-existence of patterns are depicted in red dashed outline.

Fig. 3. Refined Activities by Pre- and Post-Conditions

Each pair of conditions exhibits a signature according to the inscription of its refined
activity, i.e. it consists of a name (the activity name) and a list of typed parameters
qualified with keyword in, out or inout. Parameters can be distinguished into object and
attribute parameters, analogously to their usage in activity diagrams. While the former
ones are matched to objects, the latter ones are used as attribute values. Keyword in
requires the occurrence of the related object (if object parameter) on the left-hand side.
The object may be used in a read, edit, or delete operation. Keyword out declares a
returned object and requires its presence on the right-hand side. It may be used for
a create or select operation. Inout declares an object to be given and returned as well,
thus requires the given object on both sides which explicitly guarantees its non-deletion.
Attribute parameters must be input parameters. If occurring in pre-conditions, attribute



54 S. Jurack et al.

parameter values restrict the matching of objects, occurring in post-conditions they are
used to assign attribute values. Object parameter types must be respected by condition
checking, i.e. by pattern matchings. Parameters may be matched, if they are matched
with equally typed or sub-typed values only. Analogously, this must hold for attribute
types. Note that arrays and collection-like types are not supported by our approach yet.

The first pair of conditions in Fig. 3 refines activity CreateLecture. The pre-condition
requires the existence of a lecturer in the current system snapshot, otherwise the activity
cannot be applied. Also, it requires the non-existence of a CoursePart instance (which
could be of concrete type Lecture, Exercise, or Laboratory) with a title equal to given
attribute parameter lecTitle. If both conditions hold, the activity is applicable and cre-
ates a Lecture instance associated with the given Lecturer instance and the lecture is
returned. The refinement of activity CreateLaboratory shown as second pair in Fig. 3
is quite similarly, but it requires two given objects to exist and the creation of an object
of type Laboratory. Since the conditions of CreateExercise are analogous to those of
CreateLaboratory, they are left out. The refinement of activity SetRoom is shown as
third pair. It requires two object parameters, one instance of type Room and one of type
CoursePart, and it forbids the CoursePart instance to have a room already. No object
but a link between the given course part and the new room is created here. Please note,
that CoursePart is an abstract type. Thus instances of its concrete sub-classes can be
used here only The last condition in Fig. 3 refines guard notNull. Since guards do not
perform model-changing transformations but rather check for existence in the system
snapshot, we just define a guard pattern here. Note that we disallow non-existence con-
ditions in guard patterns. Else-guards are predefined by negated guard patterns i.e. it is
checked for non-existence of the corresponding guard pattern.

3 Formalization by Graph Transformation

The UML variant presented in the previous section can be equipped with a graph trans-
formation semantics. We start with presenting the theory of graph transformation as in
[6] and extend it by new concepts. While class diagrams are formalized by type graphs,
activities with pre- and post-conditions are mapped to graph rules. The object flow is
formalized by a new concept called partial rule dependencies. This semantics definition
serves as a basis for validating the consistency of refined activity diagrams with object
flow.

3.1 Graphs and Graph Transformation

Graphs are often used as abstract representation of visual models, e.g. UML models.
When formalizing object-oriented models, graphs occur at two levels: the type level
(defined by a meta-model) and the instance level. This idea is described by the con-
cept of typed attributed graphs, where a fixed type graph TG serves as an abstract
representation of the meta-model (without constraints). Node types can be structured
by an inheritance hierarchy and may be abstract in the sense that they cannot be instan-
tiated. Multiplicities and other annotations have to be expressed by additional graph
constraints. Attribute types are formally described by data type algebras. Instances of



Object Flow Definition for Refined Activity Diagrams 55

the type graph are object graphs equipped with a structure-preserving mapping to the
type graph. Attribute values are given by a concrete data algebra.

Graph transformation is the rule-based modification of graphs. A rule is defined by

p = (L l←− K
r−→ R, I,O,NACs) where L is the left-hand side (LHS) of the rule

representing the pre-condition and R is the right-hand side (RHS) describing the post-
condition. l and r are two injective graph morphisms, i.e. functions on nodes and edges
which are structure and type-preserving. They specify a partial mapping r ◦ l−1 from L
toR.L\l(K) defines the graph part that is to be deleted, andR\r(K) defines the graph
part to be created. The types of newly created nodes have to be non-abstract. Elements
inK are mapped in a type preserving way. All graphs of a rule are attributed by the same
algebra being a term algebra with variables. Some of these variables are considered to
be rule parameters. Input parameters can be nodes or variables, thus I = IN ∪ IV ,
whereas output parameters can be nodes only, i.e. O = ON with I ⊆ L and O ⊆ R.

NACs is a set of negative application conditions, each defined by an injective graph
morphism n : L → N where N \ n(L) defines a forbidden graph part. n allows to
refine node types, i.e. a node of a more abstract type is allowed to be mapped to a node
with a finer type according to the inheritance hierarchy.

Example 1 (Example rules). Figure 3 shows example graph rules. Each pre-condition
forms an LHS with one negative application condition and each post-condition de-
scribes an RHS. Identifiers given by names indicate the mapping between left- and
right-hand sides. The solid parts of a pre-condition indicate the LHSL, while the dashed
ones prohibit a certain graph part and representN \ n(L) of the NAC. Input and output
parameters are listed on top of each pair of conditions, formally in the head of each rule.

A graph transformation step G
p,m �� H between two instance graphs G and H is

defined by first finding a match m : L → G of the left-hand side L of rule p into
the current instance graph G such that m is an injective type-refining graph morphism.
Match m has to fulfill the dangling condition, i.e. nodes may be deleted only, if all
adjacent edges are mentioned in the LHS. Moreover, each NAC has to be fulfilled,
i.e. m satisfies a NAC, if for each n ∈ NACs there does not exist an injective type-
refining morphism o : N → G such that o◦n = m. Input parameters are instantiated by
concrete values being nodes of the instance graph and data type values. Thus, parameter
instantiation provides a partial match.

In the second step, graph H is constructed by a double-pushout construction (see
[6]). Roughly spoken, the construction is performed in two passes: (1) build a graph D
which contains all those elements of G not deleted; (2) constructH as a union ofD and
all elements ofR to be created. To focus on the preserved part of a graph transformation
step, we define a partial graph morphism track : G → H by track = g−1 ◦ h.
Graph dom(track) is the subgraph of G where track is defined, i.e. the domain of
track. (See also [7] for a first definition of track morphism.) Morphisms g : D → G
and h : D → H are constructed by a double-pushout as shown below. Morphism
g−1 is always well-defined, since l is injective and the pushout construction preserves
injectivity, thus g is also injective. Furthermore, a so-called co-match m′ : R → H is
defined by the double-pushout construction. Output parameters point to a certain part



56 S. Jurack et al.

of this co-match. Output parameters are useful for pointing to specific nodes which can
be used in further transformation steps then.

I
⊆ �� L

m

��

K
r ��l��

��

R

m′

��

O
⊆��

G
track

��D
h ��g�� H

A graph transformation (sequence) t = G0
p1,m1=⇒ G1 . . . Gn−1

pn,mn=⇒ Gn consists
of zero or more graph transformation steps. Track morphism track0,n of sequence t is
simply the composition of track morphisms trackn−1,n ◦ . . . ◦ track0,1 of its steps. For
n = 0, track0,0 = idG0 . A set of graph rulesP , together with a type graph TG, is called
a graph transformation system (GTS) GTS = (TG,P ). A GTS may show two kinds
of non-determinism: Given a graph, (1) several rules can be applicable, and (2) for each
rule several matches can exist. There are techniques to restrict both kinds of choices.
The choice of rules can be restricted by the definition of control flow while the choice of
matches can be restricted by passing partial matches The tool AGG (Attributed Graph
Grammar System) [8] can be used to specify and analyze graph transformation systems.

3.2 Partial Rule Dependencies

To restrict the choice of matches for rules, we introduce the concept of partial rule
dependencies which may relate output parameter nodes of one rule to input parameter
nodes of a (not necessarily direct) subsequent rule in a given rule sequence2. We say that
rule sequences are dependency-compatible, if the transitive closure of all dependencies
between each two rules is well-defined.

Definition 1 (partial and joint rule dependencies). Given a GTS (T, P ) and a rule
sequence s : p1, ..., pn with p1, ..., pn ∈ P . A partial rule dependency between rules pi

and pj with 1 ≤ i < j ≤ n is defined by an injective partial morphism dij : OiN → IjN

from output parameter nodes of pi to input parameter nodes of pj . If dij is the empty
morphism, no rule dependency is defined. For each pair of rules pi and pj in s, its
closureij is defined as follows: (1) dij belongs to closureij and (2) for all dik , dkj ,
and rules pk with i < k < j add dkj ◦ rk ◦ l−1

k|Ik
◦ dik to closureij .

OiN

⊆
��

dik

�� IkN

⊆
��

OkN

⊆
��

dkj

�� IjN

⊆
��

Ri Lk Kk
rk ��lk�� Rk Lj

Rule sequence s is dependency-compatible, if for all closures closureij the following
holds: (1) For all d ∈ closureij: type(x) has to be finer or coarser than type(d(x))

2 Note that rule sequences differ from transformation sequences in not providing graphs to which
rules are applied.



Object Flow Definition for Refined Activity Diagrams 57

for all x ∈ OiN wrt. the type inheritance relation defined by type graph T . (2) Each
two dependencies d and d′ in closureij are weakly commutative, i.e. d(x) = d′(x) for
all x ∈ dom(d) ∩ dom(d′).

If rule sequence s is dependency-compatible, we can define a joint dependency of a
closure. Given closureij we define the joint dependency depij : OiN → IjN as follows:
(1) dom(depij) =

⋃
d∈closureij

dom(d) and (2) depij(y) = d(y) if y ∈ dom(d) for
d ∈ closureij

Example 2 (partial rule dependencies). Considering the rules in Fig. 3, we compose
rule sequence s = CreateLecture, SetRoom, CreateLaboratory, SetRoom. As first step,
we define partial rule dependencies taking input and output parameters into account:
d12(newLecture) = coursepart, d23 = d34 = d24 = d14 = ∅, d13(newLecture) =
lecture. All dependencies are type-compatible, since either the types of mapped nodes
are equal or in hierarchy, e.g. type(newLecture) = Lecture is finer than
type(d12(newLecture)) = type(coursepart) = Coursepart (see Fig. 1). None of
the closures contains more than one non-empty partial dependency. Thus, partial rule
dependencies are not really composed from each other in this example, e.g. dep13 =
d13.

If coursepart were an inout parameter of rule SetRoom, closure13 could look more
interesting: With d23(coursepart) = lecture we would have closure13 = {d13, d23 ◦
r2 ◦ l−1

2 ◦ d12} with dep13(newLecture) = lecture.
If we enlarged the rule sequence by rule CreateLaboratory and defined d34(newLab)

= coursepart as well as d45(coursepart) = lecture, then dep35 would have to map
newLab) to lecture which would not be type-compatible.

Definition 2 (application of dependency-compatible rule sequences). A dependency
-compatible rule sequence s : p1, ..., pn is applicable to some graph G0, if there is a
graph transformation sequence G0

p1,m1=⇒ G1 . . . Gn−1
pn,mn=⇒ Gn such that mj ◦ depij

and tracki,j−1 ◦ m′
i(OiN ) are weakly commutative, with tracki,j−1 being the track

morphism from Gi to Gj−1 and m′
i being the co-match of rule pi for 1 ≤ i < j ≤ n.

OiN ⊆
��

depij

��
Ri

m′
i

��

Lj

mj

��

IjN⊆
��

Gi
tracki,j−1

�� Gj−1

Partial rule dependencies are defined independently of causal dependencies. Causal de-
pendencies between rules can be analyzed by the critical pair analysis (CPA) [6]. The
only kind of causal dependencies we are interested in here are produce/use-
dependencies where the application of one rule produces an element needed by the
match of a second rule. If two rules are not causally dependent on each other, the
corresponding joint dependency which is defined explicitly must not introduce any
produce/use-dependency. If some partial dependency is defined, it has to correspond
with at least one produce/use dependency.



58 S. Jurack et al.

4 Object Flow: Semantics Definition and Properties

In this section, we first specify well-structured refined activity diagrams, refine their
activities by graph rules and their guards by graph patterns, and define their semantics
and consistency based on graph transformation. Thereafter, this approach is extended
to refined activity diagrams with object flow.

From now on, we assume that an activity diagram does not contain any complex ac-
tivities and that each complex activity has been flattened before, i.e. it has been replaced
by its refining activity diagram. During this potentially recursive process, each object
which goes in to or comes out from a complex activity is glued with the corresponding
boundary object of the refining activity diagram, i.e. the boundary and boundary objects
disappear.

4.1 Refined Activity Diagrams

As in [9,1], we restrict our considerations to well-structured activity diagrams. The
building blocks are simple activities, sequences, fork-joins, decision-merge structures,
and loops only.

Definition 3 (well-structured activity diagram). A well-structured activity diagram
A consists of a start activity s, an activity block B, and an end activity e such that there
is a transition between s and B and another one between B and e. An activity block is
defined as follows:

– Empty: An empty activity block is not depicted.
– Simple: A simple activity is an activity block.
– Sequence: A sequence of two activity blocks A and B connected by a transition

from A to B form an activity block.
– Decision/Merge: A decision activity which is followed by two guarded transitions

leading to one activity block each and where each block is followed by a transition
both heading to a common merge activity form an activity block. One transition is
explicitly guarded, called the if-guard, while the other transition carries a prede-
fined guard ”else” which equals the negated if-guard.

– Loop: A decision activity is followed by a guarded transition. This guard is called
loop-guard. The transition leads to an activity block with an outgoing transition
to the same decision activity as above. Considering this decision activity again, its
incoming transition from outside becomes the incoming transition of the new block.
Its outgoing transition to outside becomes the outgoing transition of the new block.
This transition is guarded by ”else”. The whole construct forms an activity block.

– Fork/Join: A fork activity followed by two branches with one activity block each
followed by a join activity form an activity block.

To be able to define object flow to be coherent with control flow we define a control
flow relation as prerequisite. Because of potential loops it is not a partial order.

Definition 4 (control flow relation). The control flow relation CFRA of an activity
diagram A contains pairs (x,y) where x, y are activities such that the following holds:



Object Flow Definition for Refined Activity Diagrams 59

– Pair (x, y) ∈ CFRA, if x is directly connected via a transition with y.
– If (a, b) ∈ CFRA and (b, c) ∈ CFRA, then also (a, c) ∈ CFRA.

An if- or loop-guard is equipped with a graph pattern which describes an existence
condition on graphs. A guard pattern can be interpreted as identical rule (i.e. a rule
where the left and the right-hand sides are equal). Guard pattern g is fulfilled by a graph
G, if its corresponding rule pg is applicable to G. After rule pg has been performed, the
guarded alternative is executed. Otherwise, rule p̄g which formalizes ”else” for given
guard g, is applicable to G and the second alternative is performed.

Definition 5 (guard pattern, guard rule and negated guard rule). A guard pattern
g is defined by a typed graph being attributed over a term algebra with variables. Its

guard rule pg is defined by (g
idg←− g

idg−→ g, I, O, ∅). Its negated guard rule p̄g is defined

by (∅ ∅←− ∅ ∅−→ ∅, ∅, ∅, {n : ∅ → g}).
Lemma 1. Given a guard pattern g and a graph G. Rule pg is applicable to G, iff rule
p̄g is non-applicable to G.

Proof. See [10].

Definition 6 (refined activity diagram). A refined activity diagram RA is a well-
structured activity diagram such that each simple activity occurring in RA is equipped
with a graph transformation rule. Each if- or loop-guard occurring in RA is equipped
with a guard pattern. We also say that an activity is refined by a transformation rule
where decision activities are refined by guard rules deduced from guard patterns which
refine guards.

Definition 7 (semantics of refined activity diagrams). Given an activity block B of a
refined activity diagram RA, its corresponding set of rule sequences SB is defined as
follows.

– If B is empty, SB = ∅.
– If B consists of a simple activity a refined by rule pa, SB = {pa}.
– If B is a sequence of X and Y , SB := SX seq SY = {sxsy|sx ∈ SX ∧ sy ∈ SY }
– If B is a decision block on X and Y with guard pattern g refining its if-guard,
SB = ({pg} seq SX) ∪ ({p̄g} seq SY )

– If B is a loop block on X with guard pattern g refining its loop-guard, SB :=
loop(g, SX) =

⋃
i∈I S

i
X where S0

X = {p̄g}, S1
X = {pg} seq SX seq {p̄g},

S2
X = {pg} seq SX seq S1

X and Si
X = {pg} seq SX seq Si−1

X for i > 2.
SB(n) = Sn

X denotes the semantics of loop blockB with exactly n loop executions.
– If B is a fork block on X and Y , SB := SX ||SY =

⋃
sx||sy with sx ∈ SX ∧ sy ∈

SY where sx||λ = {sx}, λ||sy = {sy}, and pxs
′
x||pys

′
y = {px} seq (s′x||pys

′
y) ∪

{py} seq (pxs
′
x||s′y).

The semantics Sem(RA) of a refined activity diagram RA consisting of a start ac-
tivity s, an activity block B, and an end activity e is defined as the set of rule se-
quences SB generated by the main activity block B. If RA contains k guarded loops,
Semn1,...,nk

(RA) ⊆ Sem(RA) denotes a restricted semantics where the semantics of
each guarded loop Bj ∈ A for 1 ≤ j ≤ k is SBj (nj).



60 S. Jurack et al.

Now, we are ready to check the control flow consistency of activity diagrams. To do so,
we consider snapshots of the system, i.e. object models which are formalized as graphs
by mapping objects to graph nodes and object links to graph edges. In the following
definitions for consistency-related properties, we directly use graphs as abstract syntax
representation of object models.

Activity diagrams are consistent, if there is a set S of model graphs such that each
rule sequence in the diagram semantics is applicable to some of these graphs. If the di-
agram contains guarded loops, we use the restricted semantics for diagrams (as defined
above) which checks for each guarded loop, if a predefined number of loop executions
is feasible. S is without junk, if each of its model graphs represents a potential snapshot
of the system to which an activity sequence in A can be applied.

Definition 8 (completeness). A set S of graphs is complete wrt. to a refined activity
diagramRA, if for all rule sequences s in Sem(RA) there is a graphG in S such that s
is applicable to G. If RA contains k guarded loops, a set S of graphs is quasi-complete
wrt. to RA, if for all rule sequences s in Semn1,...,nk

(RA) there is a graph G in S
such that s is applicable to G. Set S is without junk, if for each graph in S at least one
applicable rule sequence in Sem(RA) (resp. Semn1,...,nk

(RA)) exists.

Definition 9 (consistent activity diagram (without object flow)). A refined activity
diagram RA is consistent, if there is a set S of graphs which is complete wrt. RA.
If RA contains k guarded loops, RA is quasi-consistent, if there is a set S of graphs
which is quasi-complete wrt. RA.

4.2 Refined Activity Diagrams with Object Flow

In the following, we define refined activity diagrams by partial rule dependencies which
formalize object flows and enrich its semantics.

Definition 10 (well-structured activity diagram with coherent object flow). A well-
structured activity diagram AOF = (A,Obj,OFR, I,O) with coherent object flow is
a well-structured activity diagram A (as given in Def. 3) equipped with a set of object
nodes Obj, an object flow relation OFR for A and Obj, input parameter set I , and
output parameter set O, defined as follows:

– Input parameters can be object nodes or values, i.e. I = IN ∪ IV with IN ⊆ Obj.
Output parameters may only be object nodes only, i.e. O = ON with O ⊆ Obj.

– Object flow relation OFR contains triples (x, o, y) where x and y are simple or
decision activities and o ∈ Obj. In addition, there is a special tag null not used as
activity name which is used to define object flow from and to parameter objects, i.e.
triples (null, o, y) and (x, o, null) can also be in OFR where o ∈ IN or o ∈ ON ,
resp. For each object o in IN (resp. in ON ), there is a triple (null, o, y) (resp.
(x, o, null)) in OFR . For each other object o ∈ Obj, there has to be a triple
(x, o, y) ∈ OFR.

– OFR is coherent with control flow relation CFRA of A (see Def. 4), i.e. for all
(x, o, y) ∈ OFR with x, y �= null there is (x, y) ∈ CFRA.



Object Flow Definition for Refined Activity Diagrams 61

Please note that OFR contains a triple for each pair of object flows sharing an object
and Obj is not allowed to contain objects not involved in object flow.

Definition 11 (refined activity diagram with object flow). A refined activity diagram
RAOF with object flow is a well-structured activity diagramAOF = (A,Obj,OFR, I,
O) with coherent object flow such that each simple activity x occurring in AOF is
refined by a graph transformation rule px. Each decision activity x ∈ AOF has an
if- or loop-guard which is equipped with a guard pattern g. Its guard rule pg is also
denoted by px. Let Opx be the output parameter set of px and Ipy the input parameter
set of py . OFR has to be coherent with refining rules which is defined as follows:

– For all (x, o, y) ∈ OFR where x �= null, an output object parameter exists in Opx

which is called src(x, o, y). If y �= null, an input object parameter exists in Ipy ,
called tgt(x, o, y).

– For all triples (x, o, y), (x, o, y′) (resp. (x, o, y), (x′, o, y)) in OFR we have
src(x, o, y) = src(x, o, y′) (resp. tgt(x, o, y) = tgt(x′, o, y) ).

– For each two activities x and y and the set of all (x, o, y) ∈ OFR, the set of all
pairs (src(x, o, y), tgt(x, o, y)) defines an injective mapping.

– For all triples (x, o, null), (x, o′, null) (resp. (null, o, y), (null, o′, y)) in OFR
with o �= o′ we have src(x, o, null) �= src(x, o′, null) (resp. tgt(null, o, y) �=
tgt(null, o′, y)).

Definition 12 (semantics of refined activity diagrams with object flow). The seman-
tics Sem(RAOF ) of an activity diagram RAOF with object flow being a refined activ-
ity diagram of AOF = (A,Obj,OFR, I,O) is equal to Sem(RA), the semantics of
refined activity diagram RA without object flow, where in addition partial rule depen-
dencies (see Def. 1) are defined as follows:

For each pair of rules (pi, pj) in a rule sequence s : p1, ..., pn of Sem(RA) with
1 ≤ i < j ≤ n, partial rule dependency dij is defined as follows: Let x (resp. y)
be the activity that is refined by rule pi (resp. pj) in sequence s, then the partial rule
dependency dij between pi and pj consists of all pairs (src(x, o, y), tgt(x, o, y)) such
that (x, o, y) ∈ OFR where src and tgt are given by Def. 11.
RAOF is called dependency-compatible, if all rule sequences in Sem(RAOF ) are

dependency-compatible, as defined in Def. 2.

Definition 13 (completeness of refined activity diagrams with object flow). A set S
of graphs is complete wrt. a dependency-compatible refined activity diagram RAOF , if
for all dependency-compatible rule sequences s in RAOF there is a graph G in S such
that s is applicable to G in the sense of Def. 2.

Properties quasi-completeness and consistency of refined activity diagrams without ob-
ject flow can be extended to those with object flow accordingly.

Example 3 (Semantics of activity diagrams). The semantics of the flattened activity
diagram AddLecture in Figure 2 consists of a number of rule sequences. For listing
some of them, we use the following acronyms: NN=NotNull, CLec=CreateLecture,
CLab=CreateLaboratory, CEx=CreateExercise, and SR=SetRoom: Sem(RAOF ) ⊇
{(CLec, NN, NN, NN), (CLec, NN, SR, NN, NN), (CLec,NN, NN,CLab,NN, NN),



62 S. Jurack et al.

(CLec, NN, NN, CLab, NN, SR, NN), (CLec, NN, SR, NN, CLab, NN, NN),
(CLec, NN, NN, CLab, NN, SR, NN, CEx,NN, SR),
(CLec, NN, SR, NN, CLab, NN, SR, NN, CEx, NN, SR)}

As partly shown in Example 2, the object flow in our example can be formalized by
partial rule dependencies. All rule sequences given above are dependency-compatible.

5 Related Work

This paper is rooted in formal semantics and analysis of activity diagrams as well as
graph transformation approaches. While a lot of research has been done on semantics
and validation of activity diagrams (see e.g. [11,12,9]), few works exist on the analysis
of object flow in activity diagrams such as [13] and [14]. For example, [14] adds data
flow semantics to activity diagrams by means of colored petri nets. Objects which are
passed between activities have attribute value checks and method calls. Colored Petri
nets provide validation like reachability of certain states and quantitative analyses as
matching of time bounds. In contrast, we define a semantics for activity diagrams with
object flow where activities may be refined by interrelated object diagrams which has
not been done before (to the best of our knowledge).

Fujaba [15], VMTS [16], and GReAT [17] are graph transformation tools for spec-
ifying and applying object rules along a control flow specified by activity diagrams.
Fujaba’s story diagrams integrate activity diagrams with object rules. Compared to our
approach, object flow is not depicted separately, but represented by equal names in
activities. Furthermore, rules are not separated from activities. Rules used at different
places have to be specified several times. We define object rules independently of activ-
ities and can apply them more than once with different arguments. VMTS and GReAT
support controlled rule application with explicit control flow in a similar way and some
kind of object flow. All three approaches are implemented, but do not provide a formal
semantics comprising activity refinement and object flow.

6 Conclusion

In this paper, we have defined refined activity diagrams with object flow where each
activity is refined by a set of interrelated object diagrams in addition, describing the
pre- and post-conditions of an activity. Pre-conditions can also include non-existence
conditions on object patterns. We have formalized the semantics of well-structured re-
fined activity diagrams with coherent object flow using algebraic graph transformation
where activity-refining object diagrams are defined by transformation rules. In addi-
tion, we have introduced the notion of partial dependencies between rules formalizing
object flow between refined activities. To prepare a notion of consistency we define the
applicability of rule sequences with partial rule dependencies.

In this paper, we have applied the approach to service modeling. Our example
demonstrates how service behavior can be modeled precisely and how the coherence
of its object flow can be checked. We expect that domains such as work flow design and
aspect-oriented modeling can benefit from the application of our concepts as well. In
future, we want to use the formal semantics given by graph transformation to prove the



Object Flow Definition for Refined Activity Diagrams 63

consistency of refined activity diagrams with object flow along sufficient criteria easy
to check. We expect that the graph transformation environment AGG can do a good job
to support automatic checks.

References

1. Lambers, L., Jurack, S., Mehner, K., Taentzer, G.: Sufficient Criteria for Consistent Behavior
Modeling with Refined Activity Diagrams. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl,
A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 341–355. Springer, Heidelberg
(2008)

2. Hausmann, J., Heckel, R., Taentzer, G.: Detection of Conflicting Functional Requirements
in a Use Case-Driven Approach. In: Proc. of Int. Conference on Software Engineering 2002,
Orlando, USA (2002)

3. Mehner, K., Monga, M., Taentzer, G.: Interaction Analysis in Aspect-Oriented Models. In:
International Conference on Requirements Engineering RE 2006 (2006)

4. Lambers, L., Mariani, L., Ehrig, H., Pezzè, M.: A formal Framework for Developing Adapt-
able Service-Based Applications. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS,
vol. 4961, pp. 392–406. Springer, Heidelberg (2008)

5. UML: Unified Modeling Language (2008), http://www.uml.org
6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transfor-

mation. Springer, Heidelberg (2006)
7. Plump, D.: Evaluation of Funtional Expressions by Hypergraph Rewriting. PhD thesis, Uni-

versität Bremen, Fachbereich Mathematik und Informatik (1993)
8. AGG: AGG Homepage, http://tfs.cs.tu-berlin.de/agg
9. Engels, G., Soltenborn, C., Wehrheim, H.: Analysis of UML Activities Using Dynamic Meta

Modeling. In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp.
76–90. Springer, Heidelberg (2007)

10. Jurack, S., Lambers, L., Mehner, K., Taentzer, G., Wierse, G.: Object Flow Definition for
Refined Activity Diagrams - Long Verison. Technical Report 2009-1, Technische Universität
Berlin (2009)

11. Eshuis, R., Wieringa, R.: Tool support for Verifying UML Activity Diagrams. IEEE Trans.
on Software Eng. 7(30) (2004)

12. Störrle, H., Hausmann, J.H.: Towards a Formal Semantics of UML 2.0 Activities. In: Soft-
ware Engineering 2005. LNI P-64, Gesellschaft f. Informatik, pp. 117–128 (2005)

13. Barros, J.P., Gomes, L.: Actions as Activities and Activities as Petri nets. In: Workshop on
Critical Systems Development with UML. In: 20–24 workshop at 6. Int. Conf. on the Unified
Modeling Language (UML 2003), San Francisco, U.S.A (2003)

14. Störrle, H.: Semantics and Verification of Data Flow in UML 2.0 Activities. Electronic Notes
in Theoretical Computer Science, vol. 117 (2003)

15. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A new Graph Rewrite Lan-
guage based on the Unified Modeling Language. In: Ehrig, H., Engels, G., Kreowski, H.-
J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 296–309. Springer, Heidelberg
(2000)

16. Visual Modeling and Transformation System (2008), http://vmts.aut.bme.hu/
17. GReAT - Graph Rewriting and Transformation (2008),

http://www.isis.vanderbilt.edu/tools/GReAT

http://www.uml.org
http://tfs.cs.tu-berlin.de/agg
http://vmts.aut.bme.hu/
http://www.isis.vanderbilt.edu/tools/GReAT


A Category-Theoretical Approach to the Formalisation
of Version Control in MDE

Adrian Rutle1, Alessandro Rossini2, Yngve Lamo1, and Uwe Wolter2

1 Bergen University College, P.O. Box 7030, 5020 Bergen, Norway
{aru,yla}@hib.no

2 University of Bergen, P.O. Box 7803, 5020 Bergen, Norway
{rossini,wolter}@ii.uib.no

Abstract. In Model-Driven Engineering (MDE) models are the primary artefacts
of the software development process. Similar to other software artefacts, mod-
els undergo a complex evolution during their life cycles. Version control is one
of the key techniques which enables developers to tackle this complexity. Tra-
ditional version control systems are based on the copy-modify-merge paradigm
which is not fully exploited in MDE because of the lack of model-specific tech-
niques. In this paper we give a formalisation of the copy-modify-merge paradigm
in MDE. In particular, we analyse how common models and merge models can be
defined by means of category-theoretical constructions. Moreover, we show how
the properties of those constructions can be used to identify model differences
and conflicting modifications.

1 Introduction and Motivation

Since the beginning of computer science, raising the abstraction level of software sys-
tems has been a continuous process. One of the latest steps in this direction has lead to
the usage of modelling languages in software development processes. Software models
are indeed abstract representations of software systems which are used to tackle the
complexity of present-day software by enabling developers to reason at a higher level
of abstraction. In Model-Driven Engineering (MDE) models are first-class entities of
the software development process and undergo a complex evolution during their life-
cycles. As a consequence, the need for techniques and tools to support model evolution
activities such as version control is increasingly growing.

Present-day MDE tools offer a limited support for version control of models. Typi-
cally, the problem is addressed using a lock-modify-unlock paradigm, where a repository
allows only one developer to work on an artefact at a time. This approach is workable
if the developers know who is planning to do what at any given time and can communi-
cate with each other quickly. However, if the development group becomes too large or
too spread out, dealing with locking issues might become a hassle.

On the contrary, traditional version control systems such as Subversion enable
efficient concurrent development of source code. These systems are based on the copy-
modify-merge paradigm. In this approach each developer accesses a repository and cre-
ates a local working copy – a snapshot of the repository’s files and directories. Then, the
developers modify their local copies simultaneously and independently. Finally, the lo-
cal modifications are merged into the repository. The version control system assists with

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 64–78, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



A Category-Theoretical Approach to the Formalisation of Version Control in MDE 65

the merging by detecting conflicting changes. When a conflict is detected, the system
requires manual intervention of the developer.

Unfortunately, traditional version control systems are focused on the management of
text-based files, such as source code. That is, difference calculation, conflict detection,
and source code merge are based on a per-line textual comparison. Since the structure
of models is graph-based rather than text- or tree-based [1], the existing techniques are
not suitable for MDE.

During the last years, research has lead to various outcomes related to model evo-
lution: [2] for the difference calculation, [3] for the difference representation, [4] for
the conflict detection, and [5] for syntactic software merging that exploits the graph-
based structure(s) of programs, to cite a few. However, the proposed solutions are not
formalised enough to enable automatic reasoning about model evolution. For example,
operations such as add, delete, rename and move are given different semantics in differ-
ent works/tools. In addition, concepts such as synchronisation, commit and merge are
only defined semiformally. Moreover, the terminology is not precise and unique, e.g. the
terms “create”, “add” and “insert” are frequently used to refer to the same operations.

Our claim is that the adoption of the copy-modify-mergeparadigm is necessary to en-
able effective version control in MDE. This adoption requires formal techniques which
are targeting graph-based structures. The goal of this paper is the formalisation of the
copy-modify-merge paradigm in MDE. In particular, we show that common models and
merge models can be defined as pullback and pushout constructions, respectively. For
our analysis we use the Diagram Predicate Framework (DPF)1 [6,7,8] which provides
a formal approach to modelling based on category theory – the mathematics of graph-
based structures. In addition, DPF enables us to define a language to represent model
differences and a logic to detect conflicting modifications.

The rest of the paper is structured as follow. Section 2 provides a brief introduction
to DPF. Then Section 3 outlines a motivating example, and gives the formalisation of
the concepts of version control. In Section 4 the state-of-the-art of research in version
control is summarised. Finally, in Section 5 some concluding remarks and ideas for
future work are given.

2 Diagram Predicate Framework

Diagram Predicate Framework (DPF), is a diagrammatic formalism for the definition
and reasoning about modelling languages, (meta)models and model transformations.
The formalism is based on category theory and first order logic; it combines the math-
ematical rigour – which is necessary to enable automatic reasoning – with the intu-
itiveness of diagrammatic notations [9]. DPF’s usage in the formalisation of concepts
in (meta)modelling and model transformations are discussed in [8] and [7,10], respec-
tively. This section includes only a short description of the basic concepts of DPF such
as signatures, constraints and diagrammatic specifications.

In DPF, software models are represented by diagrammatic specifications2. These dia-
grammatic specifications are structures which consist of a graph and a set of constraints.

1 Formerly named Diagrammatic Predicate Logic (DPL).
2 In this paper the terms model and diagrammatic specification are used interchangeably.



66 A. Rutle et al.

The graph represents the structure of the model. Predicates from a predefined diagram-
matic signature are used to add constraints to the graph [6]. Each modelling language
L corresponds to a diagrammatic signature ΣL and a metamodel MML. L-models
are represented by ΣL-specifications where the underlying graphs are instances of the
metamodel MML [8]. Signatures, constraints and diagrammatic specifications are de-
fined as follows:

Definition 1 (Signature). A (diagrammatic predicate) signature Σ := (Π,α) is an
abstract structure consisting of a collection of predicate symbols Π with a mapping
that assigns an arity (graph) α(p) to each predicate symbol p ∈ Π .

Definition 2 (Constraint). A constraint (p, δ) in a graph G is given by a predicate
symbol p and a graph homomorphism δ : α(p) → G, where α(p) is the arity of p.

Definition 3 (Diagrammatic Specification). A Σ-specification S := (G(S), S(Π)),
is given by a graph G(S) and a set S(Π) of constraints (p, δ) in G(S) with p ∈ Π .

Table 1 shows a sample signature Σ = (Π,α) which consists of a collection of useful
predicates such as [cover], [key] etc. The first column of the table shows the names

Table 1. A sample signature Σ

Π α Proposed visualisation Intended semantics

[total] 1
x �� 2 A •

f �� B ∀a ∈ A : |f(a)| ≥ 1

[key] 1
x �� 2 A

f [KEY]�� B ∀a, a′ ∈ A : a �= a′ implies f(a) �=
f(a′)

[single-
valued]

1
x �� 2 A

f [1]�� B ∀a ∈ A : |f(a)| ≤ 1

[cover] 1
x �� 2 A

f � �� B ∀b ∈ B : ∃a ∈ A | b ∈ f(a)

[isA] 1
x �� 2 A

[isA]

f

� �� B f = |φ where φ : B → A is a persis-
tent extension and |φ is its reduct.

[contain-
ment]

1
x �� 2 A

�� f �� B ∀b ∈ B, ∃a ∈ A| b ∈ f(a) and ∀g :
X → B, ∀x ∈ X if b ∈ g(x) then
f = g, X = A and a = x

[inverse] 1

x
	�
2

y


	 A

f
�


[INV] B
g

�� ∀a ∈ A , ∀b ∈ B : b ∈ f(a) iff a ∈
g(b)

[jointly-
key]

1
x ��

y

��

2

3

A
f ��

g

��

[JK]

B

C

∀a, a′ ∈ A : a �= a′ implies f(a) �=
f(a′) or g(a) �= g(a′)



A Category-Theoretical Approach to the Formalisation of Version Control in MDE 67

Fig. 1. A Diagrammatic Specification: (a) S = (G(S), S(Π)), (b) its graph G(S)

of the predicates. The second and the third columns show the arities and a possible visu-
alisation of these predicates, respectively. In the fourth column, the intended semantic
of each predicate is specified. These predicates in Table 1 allow for specifying some
useful properties and constraints that a modeller would define for a structural model.
In addition, the signature can be extended with custom-defined predicates. Typically
in structural models, model elements are interpreted as sets and arrows as multival-
ued functions f : A → ℘(B), i.e. an arrow without constraints stands for an arbitrary
multivalued function. For example, in UML class diagrams the intended semantics of
an association between two classes is that the instances of those two classes have a
many-to-many relationship.

Fig. 1a shows an example of a Σ-specification S = (G(S), S(Π)). S specifies the
structural model of a simple information system for universities. G(S) in Fig. 1b is the
graph of S without any constraints on it. In S, every university educates one or more
students; this is forced by the constraint ([total], δ1) on the arrow educates (see
Table 2). Moreover, every student studies at exactly one university; this is forced by
the constraint ([single-valued], δ2) on the arrow studies. Another property
of S is that the functions studies and educates are inverse of each other, i.e. ∀u ∈
University : u = studies(educates(u)) and ∀s ∈ Student : s ∈ educates(stu-
dies(s)). This is forced by the constraint ([inverse], δ4) on studies and
educates.

Table 2. Diagrams (p, δ) ∈ S(Π)

(p, δ) α(p) δ(α(p))

([total], δ1) 1
x �� 2 University

educates �� Student

([single-valued], δ2) 1
x �� 2 Student

studies �� University

([cover], δ3) 1
x �� 2 University

educates �� Student

([inverse], δ4) 1

x
	�
2

y


	 Student

studies �
University

educates

�



68 A. Rutle et al.

3 Version Control in MDE

The problem of version control in MDE is formalised in terms of category-theoretical
constructs. It should be noted that our reasoning is applicable both at model and meta-
model levels.

First we start with an example to present a usual scenario of concurrent development
in MDE. In our examples we use diagrammatic specifications defined by means of DPF.
The example is obviously simplified and only the details which are relevant for our
discussion are presented. Then, common models, merge models and their computations
are analysed in the subsequent sections.

Suppose that two software developers, Alice and Bob, use a version control system
based on the copy-modify-merge paradigm. The scenario is depicted in Fig. 2, while an
overview of the models in the example is shown in Fig. 3.

Alice checks out a local copy of the model V1 (Fig. 1) from the repository and mod-
ifies it to V1A , where 1 is a version number and A stands for Alice. In particular, she
adds the node PhDStudent as an extension of Student, together with the arrow
enrols. This modification takes place in the evolution step e1A . Since the model in
the repository may have been updated in the mean time, she needs to synchronise her
model with the repository in order to integrate her local copy with other developers’
modifications. This is done in the synchronisation s1A . However, no modifications of
the model V1 has taken place in the repository while Alice was working on it. Therefore,
the synchronisation completes without changing the local copy V1A . Finally, Alice com-
mits the local copy, which will be labelled V2 in the repository (Fig. 3a). This is done
in the commit c1A .

Afterwards, Bob checks out a local copy of the model V2 from the same reposi-
tory and modifies it to V2B . In particular, he takes into consideration also Postdoc as a
different type of student; to avoid the pollution of extensions in the model he deletes
the PhDStudent node, and refactors the model by adding a new node Enrolment.
Then, he synchronises his model with the repository. Again, the synchronisation com-
pletes without changing the local copy V2B . Finally, Bob commits the local copy, which
will be labelled V3 in the repository (Fig. 3b).

Alice continues working on her local copy, which is still V2 and is not synchronised
with the repository which contains Bob’s modifications. She adds a node Project

Fig. 2. The timeline of the example



A Category-Theoretical Approach to the Formalisation of Version Control in MDE 69

Fig. 3. The models of the example



70 A. Rutle et al.

(Fig. 3c). She synchronises her model with the repository where the last model is V3.
Hence, the synchronisation computes the merge model V3,2A (Fig. 3i). Now, the version
control system reports a conflict in the merge model which forbids the commit c2A . This
is because the node PhDStudent has been deleted by Bob, but Alice has added some
arrows from/to it. The resolution of the conflict requires the manual intervention of
Alice, who must review the model and decide to adapt it to Bob’s modifications, or,
adapt Bob’s modifications to her own model.

3.1 Common Model

When Alice changes her local copy from V2 to V2A , her development environment must
keep track over what is common between the two models. The identification of what
is common is the same as the identification of what is not modified, which should be
feasible to implement in any tool.

Every two model elements which correspond to each other can be identified in a
common model. For example, the model C2,2A (Fig. 3e) is a common model of the
models V2 and V2A . The usage of a common model makes the construction of merge
models at synchronisation step easy (explained in Sec. 3.2, 3.3). In some frameworks,
what is common between two models is defined implicitly by stating that structurally
equivalent elements imply that the elements are equal (soft-linking). This approach has
the benefit of being general, but its current implementations are too resource greedy
to be used in production environment. In other frameworks, elements with equal iden-
tifiers are seen as equal elements (hard-linking). Unfortunately, this approach is tool-
dependent, since the element identification is different for every environment. Our claim
is that “recording” which elements are kept unmodified during an evolution step ad-
dresses the problems of the soft- and hard-linking approaches. That is, these equal-
ities are specified explicitly in common models as in the following definition (see
Fig. 4).

Ci,iU � �
incV

iU

���
��

��
��

�
injVi

����
��

��
��

Vi ViU

Fig. 4. Common model

Definition 4 (Common Model). A model Ci,iU together with the injective morphism
injVi and the inclusion morphism incV

iU
is a common model for Vi and ViU .

Note that we support renaming operations by allowing arbitrary injective morphisms
injVi . We decided, however, that the common model contains always the most recent
names by requiring that the incV U

i
are inclusions.

In order to find the common model between two models which are not subsequent
versions of each other, i.e. for which we do not have a direct common model, we can
construct the common model by the composition of the common models of their inter-
mediate models. For example, the model C3,2A (Fig. 3f) is the common model of the



A Category-Theoretical Approach to the Formalisation of Version Control in MDE 71

models V3 and V2A . We call this common model for the composition of commons or the
normal form. A possible way to compute this common model is as follows (see Fig. 5):

Ci,k

injCi,j

����
��

��
��

� �
incCj,k

���
��

��
��

�

P.B.

f

��

� �

g

��

Ci,j

injVi

����
��

��
��

� �
incVj

���
��

��
��

� Cj,k

injVj

����
��

��
��

� �

incVk

��	
		

		
		

	

Vi Vj Vk

Fig. 5. Common models: Ci,j and Cj,k; and the composition: Ci,k

Definition 5 (Composition of Commons). Given the diagrams Vi Ci,j

injVi�� � 	
incVj ��Vj

and Vj Cj,k

injVj�� � 	incVk �� Vk the common model for Vi and Vk is Ci,k with the two
morphisms f and g where f = injCi,j ; injVi , g = incCj,k

; incVk
, and, Ci,k is a pull-

back (Ci,k, injCi,j : Ci,k → Ci,j , incCj,k
: Ci,k → Cj,k) of the diagram

Ci,j
� 	
incVj �� Vj Cj,k

injVj�� such that incCj,k
is an inclusion.

3.2 Merge Model

Recall that when Alice wanted to commit her local copyV2A to the repository, she had to
first synchronise it with the repository. In the synchronisation s2A , a merge model V3,2A

was created (Fig. 3i). The merge model must contain the information which is needed
to distinguish which model elements come from which model. Since this is exactly one
of the properties of pushout, we use pushout construction to compute merge models, as
stated in the next definition (see Fig. 6).

Ci,j

injVi

����
��

��
��

P.O.

� �
incVj

��















Vi

mi ��













 Vj

�

mj����
��

��
��

Vi,j

Fig. 6. Merge model

Definition 6 (Merge Model). Given the models Vi, Vj and Ci,j , the merge model Vi,j

is the pushout (Vi,j , mi : Vi → Vi,j , mj : Vj → Vi,j) of the diagram

Vi Ci,j

injVi�� � 	
incVj �� Vj such that mj is an inclusion.

The properties of the pushout are then used to decorate merge models such that added,
deleted, moved, and renamed elements are distinguished (explained in Sec. 3.4).



72 A. Rutle et al.

3.3 Synchronisation and Commit

Fig. 7 outlines synchronisation and commit operations in the copy-modify-merge para-
digm. These operations are defined as follows. In Fig. 7 and in the following definitions
and propositions, U stands for “username”.

Definition 7 (Synchronisation). Given the local copy ViU , the last model in the repos-
itory Vj and their merge model Vj,iU , the synchronisation siU : (ViU , Vj) → VjU is an
operation which generates a synchronised local copy VjU such that

VjU :=

⎧⎪⎨
⎪⎩
ViU if i = j;

Vj,iU if i < j, and Vj,iU /∈ CU
with CU the set of conflicting merge models.

Definition 8 (Commit). Given the synchronisation siU : (ViU , Vj) → VjU , the commit
ciU : VjU ⇒ Vj+1 is an operation which adds the model VjU to the repository as Vj+1.

Whenever a local copy ViU is synchronised with a model Vj from the repository, if
the version numbers are the same, i.e. i = j, then a synchronised local copy VjU will
be created such that VjU = ViU . However, if i < j, then a merge model Vj,iU will
be created such that VjU = Vj,iU , only if Vj,iU is not in a conflict state (explained
in Sec. 3.4), i.e. Vj,iU /∈ CU . Finally, the commit operation will add the synchronised
local copy VjU to the repository and will label it Vj+1. The next procedure explains the
details of our approach to the synchronisation and commit operation (see Fig. 7).

Ci,iU
� 

incV
iU

����
��

��
�� injVi

���
��

��
��

��
Ci,j � �

incVj

�

injVi

����
��

��
��

�

ViU
��

mu
iU ���

��
��

��
�

P.O.

Vi

mui����
��

��
��

�

mri ���
��

��
��

��
e

iU��

P.O.

. . .

P.O.

�� Vj��

mrj

����������������

��
�
�
�

�
�
�

Vi,iU
��

mu
i,iU ���

���
��

��
Vi,j

mri,j����
��

��
��

Vj+1

Vj,iU ����� VjU

c
iU

��������������

������������

Fig. 7. Synchronisation and Commit

Procedure 9 (Synchronisation Procedure). Given the models ViU , Vi, Ci,iU and Vj ,
where i < j, the synchronisation siU : (ViU , Vj) → VjU is computed as follows:

1. compute the merge model (Vi,iU ,muiU ,mui) as a pushout of

ViU Ci,iU� �
incV

iU��
injVi �� Vi

2. compute the common model (Ci,j , injVi , incVj) as a pullback of

Vi
mri �� Vi,j Vj

mrj��



A Category-Theoretical Approach to the Formalisation of Version Control in MDE 73

3. compute the merge model (Vi,j ,mri,mrj) as a pushout of

Vi Ci,j

injVi��
incVj �� Vj

4. compute the merge model (Vj,iU , mui,iU , mri,j) as a pushout of

Vi,iU Vi
mri ��mui�� Vi,j

5. VjU := Vj,iU only if Vj,iU /∈ CU

3.4 Difference and Conflict

As mentioned, during a synchronisation operation siU : (ViU , Vj) → VjU where i < j,
the merge model Vj,iU may contain conflicts. To detect these conflicts, we need a way to
identify the differences between ViU and Vj , i.e. the modifications which has occurred
in the evolution step(s). Difference identification in the merge model Vj,iU can be done
by distinguishing common elements, ViU -elements and Vj -elements from each other.
However, since this is one of the properties of merge models, we already have all the
information we need to identify the differences and, we only need a language to rep-
resent these differences. Moreover, since software models are graph-based structures,
we need a diagrammatic language for this purpose. The language must enable tagging
model elements as common, added, deleted, renamed and moved. We use DPF to define
such a diagrammatic language, Δ, for the representation of model differences.

The language Δ is represented by the signature ΣΔ = (ΠΔ, αΔ) which consists
of five predicates: [common], [add], [delete], [rename], and [move] (see
Table 3). The merge models will be decorated by predicates from the signature ΣΔ in
addition to the predicates from the signature which represents the modelling language.

Each of [common],[add] and [delete] has two arities: 1 and 1
x �� 2 . That

is, each of these predicates can be used to tag either a node or an arrow. For example,
Bob has added the node Enrolment and the arrows student and university in
the model V3 (Fig. 3b). These added elements are coloured green, i.e. tagged as added,
in the merge model V2,3 (Fig. 3g) since the visualisation of the predicate [add] in ΣΔ

is green.
For the predicate [rename], when an element A ∈ Vi is renamed to B ∈ ViU ,

the common model Ci,iU will contain B with injVi(B) = A and incV
iU

(B) = B.

Moreover, the visualisation will be B [REN:A �→ B] in the merge model Vi,iU . The
morphism injVi is injective in order to allow for this renaming. Moreover, the morphism
incV

iU
is inclusion so that the common- and the merge models always contains the new

name. However, when Vj,iU is a merge model for j > i, then the visualisation will be

C [REN:C �→ Y], where C ∈ Vi is the old name, and Y ∈ Vj or Y ∈ ViU is the new
name. This is due to the commutative property of pushouts. Fig. 8 shows an example of
renaming, where Employee is renamed in an evolution step e1A to Person.

In general, the predicate [move] is used when the source of the reference to a con-
tained model element is changed from a container to another. In object oriented models,
e.g. in class diagrams, this operation is usually used in two cases; when an attribute or a
method of a class is moved to another class, and, when a class is moved from a package
to another. An example of the usage of a move operation is shown in Fig. 8, where the
attribute salary is moved to the objectified relationship Employment.



74 A. Rutle et al.

Table 3. The signature ΣΔ. A, B, C, f, g ∈ Vi,j . Vi,j and Ci,j are the merge and common
models, respectively, of Vi and Vj , with i < j.

ΠΔ αΔ Proposed visualisation Intended semantics

[common]n 1 A A ∈ Vi and A ∈ Vj

[common]a 1
x �� 2 A

f �� B f ∈ Vi and f ∈ Vj

[add]n 1 A A /∈ Vi and A ∈ Vj

[add]a 1
x �� 2 A

f �� B f /∈ Vi and f ∈ Vj

[delete]n 1 A A ∈ Vi and A /∈ Vj

[delete]a 1
x �� 2 A

f �� B f ∈ Vi and f /∈ Vj

[rename] 1 C [REN:X �→ Y] ∃C ∈ Ci,j : injVi (C) = X and
incVj (C) = Y where injVi : Ci,j →
Vi and incVj : Ci,j → Vj

[move] 1
x �� 2

3

y

�� A
�� f �� B

C
��

g

��
[MOV] ��

f ∈ Vi and f /∈ Vj and g ∈ Vj and
g /∈ Vi and B ∈ Ci,j and both f and
g are containment arrows as defined in
Table 1

The synchronisation procedure we have developed uses ΣΔ for two main purposes:

– to reduce the decorated merge model Vj,iU according to the rules in Table 4, e.g. if
a model element is tagged with both [common] and [delete], it will be tagged
only with [delete] in Vj,iU .

– to obtain the synchronised local copy VjU from Vj,iU by interpreting the predicates
as operations, e.g. if a model element is tagged with the predicate [delete], it
will not exist in VjU (see Table 4).

If the reduced merge model Vj,iU contains the predicate [conflict], then Vj,iU ∈
CU , i.e. it is in a state of conflict. Although conflicts are context-dependent, we have
recognised some situations where syntactic conflicts will arise. The definition of new
rules/conflicting situations is also allowed in DPF. The following is a summary of the
concurrent modifications which we identify as conflicts:

– adding structure to an element which has been deleted
– renaming an element which has been renamed
– moving an element which has been moved

In Table 4, the predicates in Vj,iU (ΠΔ) are written in the form ([p], δv
x) with v a

version number and p ∈ ΠΔ, where v is used to distinguish between predicates which
come from Vi,iU and Vi,j (see Def. 2). For example, [common] (X) in the first column

is an abbreviation for (([common]n, δi,iU

x ) : 1 �→ X) ∈ Vj,iU (ΠΔ) for x ∈ N. That



A Category-Theoretical Approach to the Formalisation of Version Control in MDE 75

Fig. 8. Examples of the predicates [move] and [rename]

Table 4. A subset of the rules used for the reduction of Vj,iU and to obtain VjU from Vj,iU .
X, f ∈ Vj,iU

Vi,iU (ΠΔ) Vi,j(ΠΔ) Vj,iU (ΠΔ) In VjU

[common] (X) [common] (X) [common] (X) remains

[delete] (X) [delete] (X) [delete] (X) deleted

[common] (X) [delete] (X) [delete] (X) deleted

[delete] (X) [common] (X) [delete] (X) deleted

[move] (X) [move] (X) [conflict] (X) ⊥
[add]a (f ) [delete]n (src(f)) [conflict] (f, src(f)) ⊥
[add]a (f ) [delete]n (trg(f)) [conflict] (f, trg(f)) ⊥

[rename] (X) [rename] (X) [conflict] (X) ⊥



76 A. Rutle et al.

is, the predicate [common]n comes from the model Vi,iU . Moreover,⊥ means that the
synchronised local model VjU will not be created.

4 Related Work

The literature related to model evolution and in particular version control is becoming
abundant. Firstly, we have the works that describe how to compute the difference of
models: EMF Compare [2] and DSMDiff [11] are two model differencing tools which
are based on a similar technique. The difference calculation is divided in two phases.
The first is the detection of model mappings, where all the elements of the two input
models are compared using metrics like signature matching and structural similarity.
The second phase is the determination of model differences, where all the additions,
deletions and changes are detected. This approach has the great benefit of being general,
but at the price of being resource greedy.

Secondly, there are works which analyse how to represent differences among models
conforming to an arbitrary metamodel. There are different approaches for the represen-
tation of model differences:

1. As models which conform to a difference metamodel. The difference metamodel
can be generic [12], or obtained by an automated transformation [3]. Those mod-
els are in general minimalistic (i.e. only the necessary information to represent the
difference is presented), transformative (i.e. each difference model induce a trans-
formation), compositional (i.e. difference models can be composed sequentially or
in parallel), and typically symmetric (i.e. given a difference representation we can
compute the inverse of it).

2. As a model which is the union of the two compared models, with the modified
elements highlighted by colours, tags, or symbols [13], which is similar to our
visualisation. The adoption of this technique is typically beneficial for the designer,
since the rationale of the modifications is easily readable. However, these quality
factors are retained only if the base models are not large and not too many updates
apply to the same elements, since the difference model consists of both base models
to denote the differences.

3. As a sequence of atomic actions specifying how the initial model is procedurally
modified [14]. While this technique has the great advantage of being very efficient,
the difference representation is not readable and intuitive. In addition, edit scripts
do not follow the “everything is a model vision”. They are suitable for internal rep-
resentations but quite ineffective to be adopted for documenting changes in MDE
environments.

Thirdly, there are works aimed at identifying the types of structural and semantic con-
flicts that can occur in distributed development. In [4] a predefined set of a priori con-
flicts is identified, stating that it is not possible to provide a generic technique for con-
flict detection with an arbitrary accuracy. However, in [15,16] the authors propose a
Domain-Specific Modelling Language for the definition of weaving models which rep-
resent custom conflicting patterns. Moreover, it is possible to describe the resolution
criteria through OCL expressions.



A Category-Theoretical Approach to the Formalisation of Version Control in MDE 77

5 Conclusion and Future Work

In this paper, category-theoretical constructs are used to formalise concepts used in
version control. Usual operations such as checkout, synchronise and commit that a de-
veloper perform in a distributed development are analysed. Moreover, the concepts of
common and merge models are introduced and defined as pullback and pushout, re-
spectively. In addition we defined a languageΔ – specified as the signature ΣΔ in DPF
– which we have used to formalise model differences. The predicates of ΣΔ enable
the reasoning about and presentation of operations such as add, delete, move, and re-
name. That is, model elements which has been added, deleted, moved or renamed are
tagged by predicates from ΣΔ. Finally, we described how these predicates can be used
for the identification of possible conflicting modifications. DPF has shown to have the
expressiveness and flexibility which are required to define the languageΔ.

The proposed approach to version control in MDE differs from the approaches in the
related work mentioned above since it is based on common models instead of differ-
ence models. The difference between two models is identified by means of category-
theoretical constructs and represented through the languageΔ.

In this work, we focused only on the detection of a predefined set of syntactic con-
flicts which are derived from experience. In a future work, we analyse and formalise
semantic conflicts, i.e. modifications which are violating metamodel constraints or pred-
icate dependencies. Moreover, a prototype implementation of these techniques will be
necessary to show the efficiency of the proposed techniques. This is a challenging task,
considering the lack of mature standards and the issues related to the identification of
model elements [17].

References

1. Baresi, L., Heckel, R.: Tutorial Introduction to Graph Transformation: A Software Engineer-
ing Perspective. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT
2004. LNCS, vol. 3256, pp. 431–433. Springer, Heidelberg (2004)

2. Brun, C., Musset, J., Toulmé, A.: EMF Compare Project,
http://www.eclipse.org/emft/projects/compare/

3. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: A Metamodel Independent Approach to Differ-
ence Representation. Journal of Object Technology 6(9), 165–185 (2007) (Special Issue on
TOOLS Europe 2007)

4. Mens, T., Taentzer, G., Runge, O.: Detecting Structural Refactoring Conflicts Using Critical
Pair Analysis. Electronic Notes in Theoretical Computer Science 127(3), 113–128 (2005)

5. Niu, N., Easterbrook, S., Sabetzadeh, M.: A Category-theoretic Approach to Syntactic Soft-
ware Merging. In: ICSM 2005: 21st IEEE International Conference on Software Mainte-
nance, pp. 197–206. IEEE Computer Society, Los Alamitos (2005)

6. Rutle, A., Wolter, U., Lamo, Y.: Diagrammatic Software Specifications. In: NWPT 2006:
18th Nordic Workshop on Programming Theory (October 2006)

7. Rutle, A., Wolter, U., Lamo, Y.: A Diagrammatic Approach to Model Transformations. In:
EATIS 2008: Euro American Conference on Telematics and Information Systems (2008)

8. Rutle, A., Wolter, U., Lamo, Y.: A Formal Approach to Modeling and Model Transformations
in Software Engineering. Technical Report 48, Turku Centre for Computer Science, Finland
(2008)

http://www.eclipse.org/emft/projects/compare/


78 A. Rutle et al.

9. Wolter, U., Diskin, Z.: Generalized Sketches: Towards a Universal Logic for Diagrammatic
Modeling in Software Engineering. In: ACCAT Workshop 2007, satellite event of ETAPS
2007: European Joint Conferences on Theory and Practice of Software (to appear)

10. Diskin, Z.: Model Transformation via Pull-backs: Algebra vs. Heuristics. Technical Report
521, School of Computing, Queen’s University, Kingston, Canada (September 2006)

11. Lin, Y., Gray, J., Jouault, F.: DSMDiff: A Differentiation Tool for Domain-Specific Models.
European Journal of Information Systems 16(4), 349–361 (2007) (Special Issue on Model-
Driven Systems Development)

12. Rivera, J.E., Vallecillo, A.: Representing and Operating with Model Differences. In: 46th In-
ternational Conference on TOOLS Europe 2008: Objects, Components, Models and Patterns.
LNBIP, vol. 11, pp. 141–160. Springer, Heidelberg (2008)

13. Ohst, D., Welle, M., Kelter, U.: Differences between versions of UML diagrams. In:
ESEC/FSE 2003: 11th ACM SIGSOFT Symposium on Foundations of Software Engineer-
ing 2003, pp. 227–236. ACM, New York (2003)

14. Alanen, M., Porres, I.: Difference and Union of Models. In: Stevens, P., Whittle, J., Booch,
G. (eds.) UML 2003. LNCS, vol. 2863, pp. 2–17. Springer, Heidelberg (2003)

15. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: Managing Model Conflicts in Distributed De-
velopment. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS
2008. LNCS, vol. 5301, pp. 311–325. Springer, Heidelberg (2008)

16. Cicchetti, A., Rossini, A.: Weaving Models in Conflict Detection Specifications. In: SAC
2007: 22 nd ACM Symposium on Applied Computing, pp. 1035–1036. ACM, New York
(2007)

17. Rutle, A., Rossini, A.: A Tentative Analysis of the Factors Affecting the Industrial Adoption
of MDE. In: ChaMDE 2008: 1st International Workshop on Challenges in Model-Driven
Software Engineering, pp. 57–61 (2008), http://ssel.vub.ac.be/ChaMDE08/_
media/chamde2008_proceedings.pdf

http://ssel.vub.ac.be/ChaMDE08/_media/chamde2008_proceedings.pdf
http://ssel.vub.ac.be/ChaMDE08/_media/chamde2008_proceedings.pdf


Controller Synthesis from LSC Requirements�

Hillel Kugler1, Cory Plock1, and Amir Pnueli2

1 Computational Biology Group, Microsoft Research, Cambridge, UK
{hkugler,v-coploc}@microsoft.com

2 Computer Science Department, New York University, New York, NY, USA
amir@cs.nyu.edu

Abstract. Live Sequence Charts (LSCs) is a visual requirements language for
specifying reactive system behavior. When modeling and designing open reac-
tive systems, it is often essential to have a guarantee that the requirements can
be satisfied under all possible circumstances. We apply results in the area of con-
troller synthesis to a subset of the LSC language to decide the realizability of LSC
requirements. If realizable, we show how to generate system responses that are
guaranteed to satisfy the requirements. We discuss one particular implementation
of this result which is formulated as an extension of smart play-out, a method for
direct execution of scenario-based requirements.

1 Introduction

Going directly from requirements to a correct implementation has long been a “holy
grail” for system and software development. According to this vision, instead of imple-
menting a system and then working hard to apply testing and verification methods to
prove system correctness, a system is rather built correctly by construction. Synthesis
is particularly challenging for reactive systems, in which the synthesized system must
satisfy the requirements for any possible behavior of an external environment [2,25].

One formal specification language for reactive systems is Live Sequence Charts
(LSCs) [4]. LSCs is a visual language, extending the classical message sequence charts
with the ability to specify both safety and liveness properties. A methodology called
the play-in/play-out approach was described in [11] as part of a tool called the Play-
Engine. Play-in provides an intuitive means of capturing requirements by interacting
with a graphical representation of the system, while play-out executes the scenarios in
a way that gives a feeling of running an implementation of the system.

An improvement to play-out called smart play-out is introduced in [9]. This approach
uses verification methods—in particular, model-checking—to run LSC specifications
and avoid certain violations that may occur in the original version of play-out. Unfortu-
nately, smart play-out cannot avoid all possible violations [7]. This paper addresses an
improvement to smart play-out which guarantees non-violation over all computations,
provided that the requirements are realizable. To accomplish this, we reformulate the
previous model checking problem instead as a synthesis problem.

� This research was supported in part by NIH grant R24-GM066969 and a donation by Robert
B. K. Dewar and Edmond Schonberg.

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 79–93, 2009.
© Springer-Verlag Berlin Heidelberg 2009



80 H. Kugler, C. Plock, and A. Pnueli

We view the problem as a two-player open game between the system and the envi-
ronment. The system refers to the components of an executable program we wish to
construct; the environment represents external entities which produce system inputs.
The system attempts to win the game by satisfying the LSC requirements, whereas the
environment’s goal is to foil the system by steering the game into a violating state.
The game is carried out using a special transition system called a game structure that
encodes the logic of user-supplied LSC requirements.

Given a game structure, the work of [24,23] provides a means of deciding realiz-
ability, which amounts to determining if a reactive system is capable of avoiding vio-
lation over all inputs and across all runs. If so, a transition system called a controller
is extracted. The controller encodes the so-called winning strategy as the original input
transition system with non-winning transitions removed to avoid violating the safety
properties, and guards (possibly) added to certain edges to ensure satisfaction of the
liveness properties. By following the transitions of the resulting controller, satisfaction
of the complete requirements is guaranteed.

In this paper, we describe how to construct a game structure that expresses the be-
havior of a subset of the LSC language. We apply the results of [24], with certain mod-
ifications that allow us to deal with some advanced LSC constructs in a natural way,
to determine realizability and extract the controller, provided it exists. If so, we use
the winning strategy to choose correct system responses to every environment input.
Responses are guaranteed to exist, provided the requirements are realizable.

The paper is organized as follows. Related work is discussed in section 2. We discuss
the contributions and shortcomings of smart play-out in greater detail in section 3 and
motivate the need for this work in section 4. We provide definitions in section 5 and a
description of our synthesis methodology in section 6. Our main result is discussed in
section 7 and conclusion in section 8.

2 Related Work

In recent years there have been considerable research efforts on synthesizing executable
systems from scenario-based requirements [15,16,20,17,31,30,28,21,12]. In many of
these papers, the requirements are given using a variant of classical message sequence
charts and the synthesized system is state-based. Although there are many common
aspects to our work and these papers, the main distinguishing feature of LSCs is that
they are more expressive than most of the classical MSC variants.

Synthesis from LSCs was first studied in [8], and is tackled there by defining consis-
tency, showing that LSC requirements are consistent iff they are satisfiable by a state-
based object system. A satisfying system can then be synthesized. This line of work
was continued in [10], which includes an implementation of a sound but not complete
algorithm for Statechart synthesis. A game theoretic approach to synthesis from LSCs
involving a reduction to parity games is described in [3]. Synthesis from LSCs using
a reduction to CSP appears in [27]. All the above papers were either theoretical and
did not include an implementation, or the synthesis approach was sound but not com-
plete, or the synthesis time complexity was not encouraging. An alternative strategy for



Controller Synthesis from LSC Requirements 81

synthesis from LSCs is to use a translation from LSCs to temporal logic [18,5] or au-
tomata [14] and then apply existing synthesis algorithms, e.g., [25,29].

In [24] a controller synthesis implementation for generalized Büchi winning condi-
tions in the language of TLV-BASIC [26] is presented. The work is later extended in
[23] to include Reactive(1) designs, or generalized Streett winning conditions. Neither
of the results are specific to LSC requirements, but we utilize a modified version of the
former implementation for our present work. In recent work [19], a compositional syn-
thesis approach for a core subset of LSCs containing only messages is presented. The
main contribution of [19] is the compositional approach, whereas this paper focuses on
the basic synthesis algorithm for a wider LSC subset.

3 Smart Play-Out

Smart play-out [9] is a method for direct execution of scenario-based requirements,
which allows a user to interact with an executing reactive system whose behavior was
specified using Live Sequence Charts [4]. The user first creates the LSC requirements
using play-in by manipulating the user interface of the target application (e.g., by press-
ing buttons, rotating knobs, etc.)

Once the requirements have been specified, smart play-out allows the user to play
the role of the environment by injecting input events and then observe system responses
that follow according to the requirements. More specifically, smart play-out accepts
input events only when the Play-Engine is in a so-called stable state. Whenever an in-
put (environment) event is injected within a stable state, smart play-out formulates a
response— a sequence of outputs events called a superstep—which leads the computa-
tion to another stable state, provided a superstep exists. The main contribution of smart
play-out is the means through which supersteps are identified and executed.

Smart play-out finds supersteps by first encoding the logic of LSCs into a transition
system and then formulating a model checking problem for the specified environment
input. Roughly speaking, smart play-out tries to verify the property “no superstep lead-
ing to a stable state exists” with the hope that the property is false. If it is indeed false,
the model checker produces a counterexample as a witness to the existence of the su-
perstep. Smart play-out then feeds the counterexample to the Play-Engine so that the
user may witness the superstep being carried out graphically.

One limitation of smart play-out is that the model checking procedure explores the
state space only to the extent necessary to identify a superstep leading to some successor
stable state. The procedure disregards whether any supersteps exist from the successor
stable state, or any stable state thereafter. Therefore, smart play-out may blindly lead
the system into a state from which no superstep exists—a violation of the requirements,
since reactive systems must supply a (correct) response to every environment input.

When the user sees the violation, they may arrive at an inaccurate conclusion that
something is wrong with the requirements, when in fact the violation was due to the
Play-Engine’s poor choice of supersteps. Better selection of supersteps could have
yielded non-violation instead. The main problem is that the supersteps (i.e., counter-
examples) seem to be chosen arbitrarily by the model checker. By choosing supersteps
more wisely, it is possible to identify a priori whether supersteps exist for all possible



82 H. Kugler, C. Plock, and A. Pnueli

LSC1User

wake

fall make

Tree Noise

sleep

fall

LSC2User

make

Tree Noise

SYNC

SYNC

FALSE

Fig. 1. LSC Requirements

sequences of inputs. To achieve this, we use synthesis techniques to perform a complete
analysis of the state space. This allows for forward-looking decisions and complete
avoidance of violations, provided the requirements are realizable.

4 Example

To solidify the above discussion with an example, consider LSC requirements consist-
ing of the two LSCs shown in Fig. 1. Both scenarios include USER as an environment
instance, and both TREE, NOISE as system instances. Accordingly, the behaviors of
TREE and NOISE are within the control of the system we intend to construct, whereas
the behaviors of the USER are assumed to be external.

According to LSC1, whenever USER sends the wake message, the controller must
respond with a non-deterministic ordering of message fall and make in order to satisfy
the main chart. Therefore, the traces wake, fall, make or wake, make, fall are both ac-
ceptable for satisfying LSC1. On the other hand, LSC2 is an anti-scenario that specifies
the sequence make, fall, sleep cannot ever occur. The synchronizing conditions remove
the otherwise non-deterministic ordering of make, fall, sleep to ensure that only traces
with this precise ordering will satisfy the prechart.

We now consider how smart play-out might respond to an input message wake ex-
ecuted by the USER. After formulating a model-checking problem that checks for the
non-existence of a satisfying trace, the resulting counter-example yields one of the two
possible event sequences above. Supposing that smart play-out executes the sequence:
make, fall, LSC1 would be satisfied, but the prechart of LSC2 would advance such that
the next enabled message is sleep. The USER could then execute sleep and violate the
requirements. This illustrates the inability of smart play-out to look ahead into the future
by more than one superstep.

Using synthesis, it is possible for the controller to decisively choose an alternative
sequence that would not allow the environment to violate the requirements. In response



Controller Synthesis from LSC Requirements 83

to the message wake, the synthesis algorithm would have removed the transitions that
permit the sequence make, fall to occur, leaving fall, make as the only existing path.

5 Game Structures

A game structure (GS ) is defined by G : 〈V,X, Y,Θ, ρe, ρs, ϕ〉 consisting of:

– V , a finite set of typed state variables. We define s to be an interpretation of V ,
assigning to each variable v ∈ V a value s[v] ∈ Dv within its respective domain.
We denote by Σ the set of all states. We extend the evaluation function s[·] to
expressions over V in the usual way. An assertion is a Boolean formula over V .
A state s satisfies an assertion ϕ, denoted s |= ϕ, if s[ϕ] = T. We say that s is a
ϕ-state if s |= ϕ.

– X ⊆ V is a set of input variables controlled by the environment. Let X̄ denote the
set of all input variable valuations.

– Y = V \X is a set of output variables controlled by the system. Let Ȳ denote the
set of all output variable valuations.

– Θ is the initial condition characterizing all initial states of G.
– ρe(X̄, Ȳ , X̄ ′, Ȳ ′) is the transition relation of the environment. This is an assertion

relating state s ∈ Σ to a possible input value x′ ∈ X̄ by referring to unprimed
and primed copies of X̄ and Ȳ . The transition relation ρe identifies valuation x′ as
a possible input in state s, if for some output y′, (s, x′, y′) |= ρe(X̄, Ȳ , X̄ ′, Ȳ ′).
where (s, x′, y′) denotes a transition from state s to state (x′, y′).

– ρs(X̄, Ȳ , X̄ ′, Ȳ ′) is the transition relation of the system. This is an assertion relat-
ing state s ∈ Σ to a possible output value y′ ∈ Ȳ by referring to unprimed and
primed copies of X̄ and Ȳ . The transition relation ρs identifies valuation y′ as a
possible output in state s, if for some input x′, (s, x′, y′) |= ρs(X̄, Ȳ , X̄ ′, Ȳ ′).

– ϕ is the winning condition, given by an LTL (linear temporal logic) formula.

As can be seen, changes in state are characterized by changes in the variable valuations.
We partition variables into those controlled by the environment (input variables) and
those by the system (output variables). Each player may then observe and modify the
valuations of its own variables, but can only observe the valuations of the opponent’s.

5.1 Dependent vs. Independent Moves

We say that a player moves from a state whenever it modifies the variable valuations
according to its transition relation. In most game settings, including [24], players strictly
alternate between moving: a predesignated player moves first according to the current
valuation of the input and output variables. The second player then observes the same
valuations as the first and also the first player’s move and then moves herself.

A different approach is presented in [6], whereby both players move simultaneously
and independently. That is, they move at the same instant and both moves are a function
of the current variable valuations only—a player can’t observe the opponent’s move.
According to our approach, the players move simultaneously as before, but both players



84 H. Kugler, C. Plock, and A. Pnueli

are permitted to move dependently or independently. A player’s move is dependent if
it is a function of the current variable valuations and the opponent’s move. If it is a
function of only the current variable valuations, then it is an independent move, as
above.

We adopt this approach because LSCs inherently require the system and environment
to synchronize during certain points during the execution. This happens, for example,
when system and environment instances arrive on an LSC condition. Our definition
lends itself to modeling this type of behavior quite naturally. Although it is possible to
simulate this type of synchronous behavior using the alternating-turn approach, extra
memory and logic seems to be required.

To illustrate the above concepts, consider the following SMV [22] code:

1 n e x t ( env ) := c a s e
2 s y s =0 & env =0 & n e x t ( s y s )= 1 : 2 ;
3 s y s =0 & env =0 : 3 ;
4 1 : env ;
5 e s a c ;
6
7 n e x t ( s y s ) := c a s e
8 s y s =0 & env =0 : {1 , 2} ;
9 1 : s y s ;

10 e s a c ;

Listing 1.1. Example SMV Code

The example depicts the transition relation for environment input variable env be-
tween lines 1-5, and system output variable sys on lines 7-10. Elsewhere, variable sys
is defined to range over 0, . . . , 2 and env over 0, . . . , 3.

The transition relation for each variable is expressed by a case statement. Each line
of the case statement takes the form expr : val where expr is an expression over the
variables and val is a legal next value (or set of values) when expr is true. Each line is
evaluated in the order appearing in the input. If expr does not hold, then the next line
is evaluated and so on, until one of the expressions holds. Expression “1” is a catch-all
expression referring to all cases not covered by the expressions appearing above it.

For example, according to line 8, if sys and env are both 0 in the current state, then
sys can nondeterministically choose between 1 or 2 in the next state. Line 9 states that
the value of sys remains unchanged for all other cases. Lines 8 and 9 are examples of
independent moves, since neither relies on the environment’s move (the value of env
in the next state.)

As for the transition relation of env, line 2 states that if sys and env are 0 and,
furthermore, sys is 1 in the next state, then env is 2 in the next state. Line 2 is an
example of a dependent move, since the case only holds with the cooperation of the
system. Line 3 is also dependent since it implies that next(sys) is not equal to 1.
However, line 4 is independent because it does not depend on any particular value of
next(env).



Controller Synthesis from LSC Requirements 85

5.2 Deadlock

Conceptually, each round of play proceeds as follows: from a given state, both players
each choose among any available move which is legal according to their own transi-
tion relation. If both moves are independent then neither player risks interference from
their opponent. If a player chooses a dependent move, then the set of allowable moves
becomes restricted according to the opponent’s move. Both players may also choose
dependent moves. However, when at least one of the moves is dependent, there exists
a possibility that moves which were legal according to each player’s own transition
relation may no longer be legal once combined. Such moves are said to be deadlocked.

To illustrate deadlock in this context, consider the following contrived example:

1 n e x t ( s y s ) := c a s e
2 s y s =0 & env =0 & n e x t ( env ) = 1 : 1 ;
3 1 : s y s ;
4 e s a c ;
5
6 n e x t ( env ) := c a s e
7 s y s =0 & env =0 & n e x t ( s y s )= 1 : 0 ;
8 1 : env ;
9 e s a c ;

Listing 1.2. Deadlock Example

First note that lines 2 and 7 both refer to dependent transitions, since the transition
relation for each player’s variable depends on the opponent’s move. Now consider the
state where sys=env=0 holds. According to line 2, if env is 1 in the next state,
then sys must be 1 in the next state. However, according to line 7, if sys is 1 in
the next state, then env must be 0 in the next state. The system’s move on line 2 and
the environment’s move on line 7 are deadlocked because there will never be a way to
proceed using this combination. Note that there could exist other moves that do work.
For instance, both players may move from sys=env=0 to state sys=env=0.

Although not shown in this example, there could generally exist states from which
all moves are deadlocked, leaving no possible next move. We refer to these states as
fully deadlocked.

The presence of deadlocks, or even fully deadlocked states, in a transition system is
not necessarily forbidden. For example, one may intentionally introduce deadlocks into
a transition system to model some kind of real life dead-end situation, with the idea of
having synthesis generate the strategy to avoid the deadlocks. In contrast with previous
synthesis work based on the turn-based approach, such as [24], additional consideration
is required for handling (fully) deadlocked states in the case of games with simultaneous
transitions.

6 Synthesis

Let G be a game structure and s and s′ be states of G. We say s′ is a successor of s if
(s, s′) |= ρe ∧ ρs. We freely switch between (s, x′, y′) |= ρe and ρe(s, x′, y′) = 1 and
similarly for ρs.



86 H. Kugler, C. Plock, and A. Pnueli

A play σ of G is a maximal sequence of states σ : s0, s1, . . . satisfying initiality
(s0 |= Θ) and consecution (for each i ≥ 0, si+1 is a successor of si). Let σ be a play
of G. From state s, the environment chooses an input x′ ∈ X and system chooses an
output y′ such that ρe(s, x′, y′) = 1 and ρs(s, x′, y′) = 1.

We say that play σ is winning for the system if it is infinite and satisfies the winning
condition ϕ. Otherwise, σ is winning for the environment.

Let σ = s0, . . . , sn. A strategy for the system is a function f : Σ+ × X̄ �→ Ȳ where
for every x′ ∈ X̄ such that ρe(sn, x

′, f(σ, x′)) = 1, we have ρs(sn, x
′, f(σ, x′)) = 1.

A play s0, s1, . . . is said to be compliant with strategy f if for all i ≥ 0 we have
f(s0, . . . , si, si+1[X̄ ]) = si+1[Ȳ ], where si+1[X̄] and si+1[Ȳ ] are the restrictions of
si+1 to variable sets X and Y , respectively.

Strategy f is winning for the system from state s ∈ Σ if all s-plays (plays departing
from s) which are compliant with f are winning for the system. We denote byWc the set
of states from which there is a winning strategy for the system. G is said to be winning
for the system if all initial states of G are winning for the system. In this case, we say G
is realizable and we synthesize a winning strategy which is a working implementation
for the system. Otherwise G is unrealizable.

6.1 Controllable Predecessors

States from which the system can force the game into p are referred to as controllable
predecessors of p, denoted p, where p is an assertion over the state space (X̄, Ȳ ).
The main idea is that the system, from a controllable predecessor of p, can choose a
move for which all remaining environment moves lead to p—or—for each possible
environment move, can choose at least one move leading to p. That is, the system can
take either an independent or dependent move. Our controllable predecessor formula is
a disjunction of two parts, Φ1 and Φ2. We have:

Φ1 = ∃y′[[∃x′ρ] ∧ [∀x′ρe → [ρs ∧ (x′, y′) ∈ ‖p‖]]]
where ‖p‖ denotes the set of states characterized by assertion p and ρ = ρe∧ρs is the set
of joint moves. Formula Φ1 states that for some system move y′, any legal environment
move x′ must lead to p. The left side of the conjunction assures the absence of fully
deadlocked predecessors. Next we have:

Φ2 = [∃x′∃y′ρ] ∧ ∀x′[[∀y′¬ρe] ∨ [∃y′ρ ∧ (x′, y′) ∈ ‖p‖]]
The right side requires that for every environment input x′, either there are no environ-
ment moves available or there must exist some system move y′ leading to p. The left
side of the conjunction assures the absence of fully deadlocked predecessors.

Putting it all together, we compute the set of controllable predecessors of p with:

‖ p‖ = {s | Φ1 ∨ Φ2}

6.2 Realizability and Winning Strategy

Once the notion of controllable predecessor is in place, the decision procedure for re-
alizability and the extraction of the winning strategy proceeds according to [24], which



Controller Synthesis from LSC Requirements 87

focuses on winning conditions which are recurrence properties, i.e., LTL formulas of
the form � � q for an assertion q. We restrict our attention to formulas of this form
for the purposes of this paper.

A state satisfies p (for some assertion p) if the system can force the environment
to reach a p-state in a single step. Based on this pre-image operator, a set of winning
states is computed according to the following fix-point equation:

Wc = νZμY. Y ∨ q ∧ Z (1)

Given a game structure G, we can check realizability of G by testing Wc ∩ Θ = ∅.
If G is winning for the system, a winning strategy is extracted by removing controllable
transitions which lead to states outside of Wc.

7 Main Result

We now present a method for constructing a game structure from LSC requirements.
Some of the LSC logic necessary for this result is already incorporated into smart
play-out: whenever the user injects an input event, smart play-out constructs an LSC
transition system. We avoid redundancy here by focusing most of our attention on the
extensions necessary for synthesis. The interested reader can consult [9] for the specifics
of the smart play-out construction.

On a high level, smart play-out defines one SMV module for every object in the
requirements and composes the modules asynchronously for program executions and
model-checking. In contrast, the synthesis algorithm of [24] requires precisely two tran-
sition systems—one for the system and one for the environment. One of our goals is
therefore to express the collection of asynchronous transition systems as a game struc-
ture. Secondly, we add additional logic over and above that supplied by smart play-out
which is necessary for synthesis. We begin by first introducing the variables used in our
construction and then describe the transition relation for each.

7.1 Variables

Let O be an object system and let LR = L1, . . . , Ln over O be a set of LSC re-
quirements. We construct a game structure G with a set of input variables belonging
to the environment and output variables belonging to the system. We now specify the
set of variables V by defining the input variables X and output variables Y . The input
variables are as follows:

1. actLi is 1 when the main chart of LSC Li is active, and 0 otherwise.
2. msgs

Oj→Ok
denotes the sending of a message from objectOj to objectOk in which

Oj .own = env (Oj belongs to the environment.) The value is set to 1 at the occur-
rence of the send and is changed to 0 at the next state.

3. msgr
Oj→Ok

denotes the receipt of a message by objectOk from object Oj in which
Ok.own = env . As in the case of sending, the value is 1 at the instant the message
is received and changes to 0 in the next state.



88 H. Kugler, C. Plock, and A. Pnueli

4. lLi,Oj is the location of object Oj in the main chart of LSC Li where Oj .own =
env . The location number ranges over 0, . . . , lmax where lmax is the last location
of Oj in the main chart of LSC Li. This variable is meaningful only when actLi is
1.

5. lpch(Li),Oj
is the location of object Oj in the prechart of LSC Li where Oj .own =

env . Its value ranges over 0, . . . , lmax where lmax is the last location of Oj in the
prechart of LSC Li. This variable is meaningful only when actLi is 0.

6. gbuchi is an auxiliary variable used to reduce a Generalized Büchi winning condi-
tion to a Büchi winning condition.

7. envreq is a variable that determines which of the environment’s objects has control
in the next step.

The output variables belonging to the system are given by:

1. msgs
Oj→Ok

denoting the sending of a message from object Oj to object Ok in
which Oj .own = sys (Oj belongs to the system.)

2. msgr
Oj→Ok

denoting the receipt of a message by objectOk from objectOj in which
Ok.own = sys .

3. lLi,Oj is the location of object Oj in the main chart of LSC Li such that Oj .own =
sys .

4. lpch(Li),Oj
is the location of objectOj in the prechart of LSCLi such thatOj .own =

sys .
5. currobj is a number ranging over 1, . . . , |O|, referring to the object Ocurrobj that

currently has control of the execution.

The active flags, (actLi , for all i) and the auxiliary variable gbuchi are not prop-
erties of the environment specifically, although they are environment variables. These
are examples of bookkeeping variables, whose values are a function of the variables of
both players. The choice of ownership could therefore be arbitrary. However, we assign
ownership of these variables to the environment in order to be conservatively safe.

For example, if there exists a subtle error in the transition relation of any of these
variables, the environment would find a way to utilize the error to its advantage in order
to win the game and deem the requirements unrealizable. This is positive because we
are forced to deal with the error in such a case. We could have alternatively chosen
the system as the owner instead, in which case an error in the definitions could lead to
false realizability—a more dangerous situation, particularly in the case of safety critical
systems.

The purpose of the remaining variables, envreq and currobj are explained below.

7.2 Transitions

Smart play-out constructs a transition system comprised of an asynchronous composi-
tion of SMV modules. Generally speaking, each module defines the behaviors of one
object in the LSC requirements, consisting of a set of variables and a transition rela-
tion. When generating traces, the TLV-BASIC [26] model-checking routine arbitrarily
selects modules for execution one at a time. The corresponding variables are then up-
dated according to the transition relation of the selected module. Intuitively, each mod-
ule’s (i.e., object’s) transition relation permits the object to carry out the next behavior
on the object’s instance line, with respect to the object’s present LSC location.



Controller Synthesis from LSC Requirements 89

On the other hand, the current synthesis implementation requires a game structure
in which all objects (and associated transition relations) belonging to the system are
grouped into a single system module, and likewise for the environment. This raises the
question of how to deal with the multiple definitions for each variable. We now describe
the solution.

Let ϕi be any variable belonging to objectOi in the smart play-out construction. The
transition relation, according to [9], for ϕi takes on the form:

ϕ′
i =

⎧⎪⎨
⎪⎩

ci1 if Ωi
1

...
...

cin if Ωi
n

where cij is a constant, Ωi
j is a conditional expression over the variables of all objects

in O, and n is the number of SMV transition relation cases produced by smart play-out
for ϕi. In our synthesis construction, we have:

ϕ′ =

⎧⎪⎨
⎪⎩

ϕ′
1 if currobj = 1
...

...
ϕ′

k if currobj = k

where k is the number of objects. Therefore, we may simulate the asynchronous behav-
ior of the smart play-out transition system by manipulating the variable currobj . This
variable is responsible for determining which object, among the system and environ-
ment objects, move in the next step.

Variable currobj must necessarily be owned by either the system or the environment.
It would seem that permitting just one player to determine the current objects for both
itself and its opponent could result in an unfair advantage. To level the playing field
according to our result, the system and environment choose among their respective
objects, but the decision of when each player gets their turn to decide goes to the system.
To prevent the system from starving the environment of any opportunity to move, we
will require the system to yield control to the environment infinitely often.

Formally, let O1, . . . , Oj be the set of objects belonging to the environment and
Oj+1, . . . , Ok be those of the system. We let:

envreq ′ ∈ {1, . . . j}

The environment uses envreq to non-deterministically choose which of its objects will
be the next to move once given a turn. With this in place, the system selects the current
object in the following way:

currobj ′ ∈ {envreq ′, j + 1, . . . , k}

Note that this permits the system to execute arbitrarily long supersteps, since it can just
keep selecting values between j + 1, . . . , k. However, the winning condition discussed
in the next section will require that currobj ′ ≤ j infinitely often, causing all supersteps
to be finite.



90 H. Kugler, C. Plock, and A. Pnueli

7.3 Initial and Winning Conditions

The initial condition, Θ, of our game structure is the set of states in which gbuchi =
0, actLi = 0 for all i, all message variables are set to 0, and all location variables are
set to 0. The initial value of envreq is not specified in Θ, so the choice is therefore
non-deterministic. The winning condition ϕ is the generalized Büchi LTL formula:

� �

n∧
i=1

actLi = 0 ∧ � � currobj ≤ j

which is equivalent to:
� � gbuchi = 0

where:

gbuchi ′ =

⎧⎨
⎩

1 if gbuchi = 0
2 if gbuchi = 1 ∧ ∧n

i=1 actLi = 0
0 if gbuchi = 2 ∧ currobj ≤ j

The above winning condition ensures that a stable state—where all main charts are
simultaneously inactive—is visited infinitely often and that all supersteps are finite. It
assumes that no environment messages appear in a main chart. For this, a more expres-
sive winning condition beyond the scope of this paper is necessary.

7.4 Synthesis in the Play-Engine

When a Play-Engine user creates LSC requirements and wishes to perform synthesis,
the following steps occur: first, the LSC requirements are translated into a game struc-
ture according to the techniques of this section. Next, the synthesis algorithm described
in subsection 6.2 is executed. If the algorithm yields an unrealizable outcome, the pro-
cess terminates at this point and the user is notified. Otherwise, a single, synchronous,
transition system is constructed. We refer the interested reader to [24] for more details
on this construction, which we do not describe in this paper.

At this point, the Play-Engine user may act in the role of the environment by injecting
environment inputs and observing system responses, in a manner nearly identical to
smart play-out. Upon each input event, a model checking routine is executed on the
above output transition system. Since the winning condition guarantees that all LSCs
will infinitely often be simultaneously inactive for any realizable LSC requirements, it
is therefore also guaranteed that a valid super-step will exist for every reachable stable
state in the output transition system.

Note that while the model-checking procedure is executed each time the user injects
an input, the synthesis need only run once. Moreover, LSC requirements and the syn-
thesis algorithm need not exist on the same computer or platform as the application to
be deployed, since the only deliverable is the output transition system.

8 Conclusion

In this paper, we introduced a method for overcoming the limitations of smart play-
out by performing a complete analysis of the state space. We first described a modi-
fication to the previous turn-based approaches for synthesis which permits players to



Controller Synthesis from LSC Requirements 91

transition simultaneously in a dependent or independent fashion. We then showed how
to construct a game structure that expresses the behaviors of LSC requirements as a
two-player game between the reactive system and its environment. After invoking the
synthesis routine, the end result is a controller—a transition system—which consists
only of transitions that collectively satisfy the LSC requirements, provided a satisfy-
ing system exists. The controller, which encodes the winning strategy, can be used for
executing supersteps that satisfy the requirements.

We describe an implementation of the foregoing synthesis procedure as an exten-
sion to the Play-Engine’s smart play-out feature. With this implementation, the user
first plays in behavioral requirements, as before. Then the synthesis procedure may be
invoked from the Play-Engine’s user interface, which constructs the game structure,
checks realizability, and extracts a controller if the requirements are realizable. The
synthesis algorithm executes once, yielding a controller, from which supersteps may be
extracted using a superstep extraction process similar to that already present in smart
play-out.

We are currently implementing a new Scenario-Based Tool [1] with a special fo-
cus on scenario-based modeling of biological systems [13]. Consistency checking and
synthesis are important capabilities required for biological modeling, thus we are im-
plementing extensions and variants of the work described here. An experimental imple-
mentation of a new compositional synthesis algorithm was already implemented using
this new tool [19]. Independently of any specific tool or application domain, however,
we wish to place our current focus on a broader solution of synthesizing executable
programs from scenario-based requirements, whereby the controller generated by the
synthesis routine can be used to directly execute a general reactive system.

References

1. Microsoft Research Cambridge, Scenario-Based Tool for Biological Modeling (2009),
http://research.microsoft.com/SBT/

2. Abadi, M., Lamport, L., Wolper, P.: Realizable and unrealizable concurrent program spec-
ifications. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP
1989. LNCS, vol. 372, pp. 1–17. Springer, Heidelberg (1989)

3. Bontemps, Y., Heymans, P., Schobbens, P.Y.: From live sequence charts to state machines
and back: A guided tour. IEEE Trans. Software Eng. 31(12), 999–1014 (2005)

4. Damm, W., Harel, D.: LSCs: Breathing life into message sequence charts. Formal Methods
in System Design 19(1), 45–80 (2001); preliminary version appeared in: Proc. 3rd IFIP Int.
Conf. on Formal Methods for Open Object-Based Distributed Systems (FMOODS 1999)

5. Damm, W., Toben, T., Westphal, B.: On the Expressive Power of Live Sequence Charts. In:
Reps, T., Sagiv, M., Bauer, J. (eds.) Wilhelm Festschrift. LNCS, vol. 4444, pp. 225–246.
Springer, Heidelberg (2007)

6. de Alfaro, L., Henzinger, T., Majumdar, R.: From verification to control: dynamic programs
for omega-regular objectives. In: Proc. 16th IEEE Symp. Logic in Comp. Sci., pp. 279–290.
IEEE Computer Society Press, Los Alamitos (2001)

7. Harel, D., Kantor, A., Maoz, S.: On the Power of Play-Out for Scenario-Based Programs.
Technical report, Weizmann Institute (2009)

8. Harel, D., Kugler, H.: Synthesizing state-based object systems from LSC specifications. Int.
J. of Foundations of Computer Science (IJFCS) 13(1), 5–51 (2002); also in: Yu, S., Păun, A.
(eds.) CIAA 2000. LNCS, vol. 2088, pp. 1–51. Springer, Heidelberg (2001)

http://research.microsoft.com/SBT/


92 H. Kugler, C. Plock, and A. Pnueli

9. Harel, D., Kugler, H., Marelly, R., Pnueli, A.: Smart play-out of behavioral requirements.
In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp. 378–398.
Springer, Heidelberg (2002); also available as Tech. Report MCS02-08, The Weizmann In-
stitute of Science

10. Harel, D., Kugler, H., Pnueli, A.: Synthesis Revisited: Generating Statechart Models from
Scenarios-Based Requirements. In: Kreowski, H.-J., Montanari, U., Orejas, F., Rozenberg,
G., Taentzer, G. (eds.) Formal Methods in Software and Systems Modeling. LNCS, vol. 3393,
pp. 309–324. Springer, Heidelberg (2005)

11. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs and the
Play-Engine. Springer, Heidelberg (2003)

12. Hennicker, R., Knapp, A.: Activity-Driven Synthesis of State Machines. In: Dwyer, M.B.,
Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 87–101. Springer, Heidelberg (2007)

13. Kam, N., Kugler, H., Marelly, R., Appleby, L., Fisher, J., Pnueli, A., Harel, D., Stern, M.,
Hubbard, E.: A scenario-based approach to modeling development: A prototype model of C.
elegans vulval fate specification. Developmental Biology 323(1), 1–5 (2008)

14. Klose, J., Wittke, H.: An automata based interpretation of live sequence chart. In: Margaria,
T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, p. 512. Springer, Heidelberg (2001)

15. Koskimies, K., Makinen, E.: Automatic synthesis of state machines from trace diagrams.
Software — Practice and Experience 24(7), 643–658 (1994)

16. Koskimies, K., Mannisto, T., Systa, T., Tuomi, J.: SCED: A Tool for Dynamic Modeling of
Object Systems. Tech. Report A-1996-4, University of Tampere (July 1996)

17. Krüger, I., Grosu, R., Scholz, P., Broy, M.: From MSCs to Statecharts. In: Proc. Int. Work-
shop on Distributed and Parallel Embedded Systems (DIPES 1998), pp. 61–71. Kluwer Aca-
demic Publishers, Dordrecht (1999)

18. Kugler, H., Harel, D., Pnueli, A., Lu, Y., Bontemps, Y.: Temporal Logic for Scenario-Based
Specifications. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp.
445–460. Springer, Heidelberg (2005)

19. Kugler, H., Segall, I.: Compositional Synthesis of Reactive Systems from Live Sequence
Chart Specifications. In: Proc. 15th Intl. Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 2009). LNCS. Springer, Heidelberg (2009)

20. Leue, S., Mehrmann, L., Rezai, M.: Synthesizing ROOM models from message sequence
chart specifications. Tech. Report 98-06, University of Waterloo (April 1998)

21. Liang, H., Dingel, J., Diskin, Z.: A comparative survey of scenario-based to state-based
model synthesis approaches. In: Proceedings of the International Workshop on Scenarios
and State Machines: Models, Algorithms, and Tools (SCESM 2006), pp. 5–12 (2006)

22. McMillan, K.: Symbolic Model Checking. Kluwer Academic Publishers, Boston (1993)
23. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson, E.A.,

Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer, Heidelberg
(2005)

24. Pnueli, A.: Extracting controllers for timed automata. Technical report, New York University
(2005)

25. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. 16th ACM Symp.
Princ. of Prog. Lang., pp. 179–190 (1989)

26. Pnueli, A., Shahar, E.: A platform for combining deductive with algorithmic verification.
In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 184–195. Springer,
Heidelberg (1996)

27. Sun, J., Dong, J.S.: Synthesis of distributed processes from scenario-based specifications. In:
Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 415–431.
Springer, Heidelberg (2005)



Controller Synthesis from LSC Requirements 93

28. Uchitel, S., Kramer, J., Magee, J.: Incremental elaboration of scenario-based specifications
and behavior models using implied scenarios. ACM Trans. Software Engin. Methods 13(1),
37–85 (2004)

29. Vardi, M.: An automata-theoretic approach to fair realizability and synthesis. In: Wolper, P.
(ed.) CAV 1995. LNCS, vol. 939, pp. 267–278. Springer, Heidelberg (1995)

30. Whittle, J., Saboo, J., Kwan, R.: From scenarios to code: an air traffic control case study.
In: 25th International Conference on Software Engineering (ICSE 2003), pp. 490–495. IEEE
Computer Society, Los Alamitos (2003)

31. Whittle, J., Schumann, J.: Generating statechart designs from scenarios. In: 22nd Interna-
tional Conference on Software Engineering (ICSE 2000), pp. 314–323. ACM Press, New
York (2000)



Interface Generation and Compositional
Verification in JavaPathfinder

Dimitra Giannakopoulou and Corina S. Păsăreanu

Carnegie Mellon University/NASA Ames Research Center,
Moffett Field, CA 94035, USA,

{dimitra.giannakopoulou,corina.s.pasareanu}@nasa.gov

Abstract. We present a novel algorithm for interface generation of soft-
ware components. Given a component, our algorithm uses learning tech-
niques to compute a permissive interface representing legal usage of the
component. Unlike our previous work, this algorithm does not require
knowledge about the component’s environment. Furthermore, in con-
trast to other related approaches, our algorithm computes permissive in-
terfaces even in the presence of non-determinism in the component. Our
algorithm is implemented in the JavaPathfinder model checking frame-
work for UML statechart components. We have also added support for
automated assume-guarantee style compositional verification in JavaP-
athfinder, using component interfaces. We report on the application of
the approach to interface generation for flight-software components.

1 Introduction

Component interfaces are a central concept in component-based software engi-
neering. Although in current practice, interfaces typically describe the services
that a component provides and requires at a purely syntactic level, the need
has been identified for interfaces that document richer aspects of component
behavior. Such extended interfaces are usually not provided, which makes their
automatic generation an area of active research [1,10,5].

This paper addresses the automatic generation of interfaces that describe le-
gal sequences of component calls. Such interfaces can serve as a documentation
aid to application programmers, but can also be used by verification tools in
checking that components are invoked correctly within a system. In fact, com-
ponent interfaces are key for modular program analysis. They reduce the task of
verifying a system consisting of a component and a client, to the more tractable
task of verifying that the client satisfies the component’s interface.

In previous work [6,16], we presented a framework based on learning, to per-
form automated assume-guarantee model checking of safety properties. To check
that a system consisting of components M1 and M2 satisfies a safety property
P , the framework automatically builds and refines assumptions A for one of the
components, for example M1, to satisfy P , which it then tries to discharge on
the other component, M2. Although assumptions A essentially constitute inter-
faces for component M1, their generation relies on knowledge of component M2.

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 94–108, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Interface Generation and Compositional Verification in JavaPathfinder 95

Moreover, the focus of the framework was to compute assumptions that would
allow to prove or disprove the property in the system, rather than assumptions
that precisely document the behavior of a component.

The algorithm presented here for interface generation is also based on learn-
ing. However, in contrast to our work discussed above, it concentrates on the
creation of precise component interfaces, irrespective of the component clients.
By precise, we mean safe and permissive, as defined in [10]. An interface is safe
if it accepts no illegal sequence of calls to the component. An interface is per-
missive if it includes all the legal sequences of calls to the component. Moreover,
in [8], we presented an algorithm for generating what we call weakest assumptions
in the context of Labeled Transition Systems. Weakest assumptions essentially
constitute precise component interfaces. The difference of the current algorithm
is that it is iterative, meaning that it can return partial results. Moreover, the
approach in [8] required an expensive determinization step that we avoid here by
dealing with the non-determinism in the component dynamically, during compo-
nent analysis, as guided by counter-examples. Furthermore, our past experience,
as well as other independent work [5], has indicated that the learning-based
approach is more efficient for components that have relatively small interfaces.

Henzinger et al. also target the generation of safe and permissive interfaces
in [10]. Unlike our framework, their work based on abstraction techniques and
it is only applicable to components that are visibly deterministic. The latter
requires that the behavior of the component be deterministic with respect to
the methods / actions in its communication interface (we will henceforth call the
communication interface of a component its alphabet in order to avoid confusion
with interface in this context). In the applications that we have been dealing
with, this requirement proved too restrictive. For example, we often need to
generate interfaces that focus on specific aspects of the component behavior, and
that therefore include only a subset of the component’s alphabet. Components
that are visibly deterministic with respect to their full alphabet, typically lose
this property when a subset of that alphabet is considered. Finally, Alur et
al. [1] also use learning to synthesize interface specifications for abstracted Java
components. However, their approach is heuristic-based, i.e., they do not always
obtain precise interfaces.

We have implemented our algorithms in the JavaPathfinder (JPF) model
checking framework for UML statechart components [11]. We have also added
support for automated assume-guarantee style compositional verification in JPF,
using component interfaces. JPF is an open source model checker for Java pro-
grams which, until now, provided no support for compositional verification.

The contributions of this work can be summarized as follows:

1. A novel algorithm for automated generation of precise component interfaces,
also applicable to components that are not visibly deterministic

2. Implementation of our algorithm in the JPF open source model checker. In
addition to interface generation, we have provided support for verification
of safety properties expressed as finite state automata as well as assume-
guarantee reasoning in JPF, where assumptions and guarantees are both



96 D. Giannakopoulou and C.S. Păsăreanu

expressed as finite-state automata. The implementation is freely available as
JPF’s compositional verification (cv) extension.

3. Case studies in the context of NASA applications that demonstrate the use
of our algorithm in practice.

Related Work. The work closest to ours was discussed above. Several other
approaches to automatic generation of component interfaces have been proposed
in the literature. For example, Whaley et al. [19] use a combination of static and
dynamic analyses to generate interfaces for Java components. Tkachuk et. al [18]
use static analysis to obtain component abstractions, used as environments dur-
ing modular analysis. Some approaches are based on extracting interfaces from
sample execution traces [3]. All these techniques generate approximate interfaces,
as opposed to our work that aims at producing precise interfaces that provide
correctness guarantees. Interface generation is related to compositional verifica-
tion. In particular, assume-guarantee reasoning is a compositional approach that
uses assumptions when reasoning about components in isolation [12,17,2,7] and
component interfaces can be used as assumptions in this context. Finally, learn-
ing has also been used to generate models for formal verification [14,9]; those
approaches do not address interface generation or compositional reasoning.

2 Background

We model software components using labeled finite state transition systems
(LTSs), where transitions are labeled with component actions.

Let Act be the universal set of observable actions and let τ denote a local
action unobservable to a component’s environment. Let π denote a special error
state, which models safety violations in the associated transition system.

LTSs. An LTS M is a four-tuple 〈Q,αM, δ, q0〉 where: Q is a finite non-empty
set of states; αM ⊆ Act is a set of observable actions called the alphabet of M ;
δ ⊆ Q× (αM ∪ {τ})×Q is a transition relation; and q0 ∈ Q is the initial state.

Let M = 〈Q,αM, δ, q0〉 and M ′ = 〈Q′, αM ′, δ′, q′0〉. M transits into M ′ with
action a, denoted M

a−→M ′, if (q0, a, q′0) ∈ δ, Q = Q′, αM = αM ′, and δ = δ′.
An LTS M = 〈Q,αM, δ, q0〉 is non-deterministic if it contains τ -transitions

or if there exists (q, a, q′), (q, a, q′′) ∈ δ such that q′ �= q′′. Otherwise, M is
deterministic.

Traces. A trace t of an LTS M is a finite sequence of observable actions that
label the transitions that M can perform starting at its initial state, ignoring
the τ -transitions. For Σ ⊆ Act, we use t ↑ Σ to denote the trace obtained
by removing from t all occurrences of actions a /∈ Σ. For a set of traces T ,
T ↑ Σ = {t|∃t′ ∈ T .t′ ↑ Σ = t}.

Parallel Composition. Parallel composition “‖” is a commutative and associa-
tive operator: given LTSs M1 = 〈Q1, αM1, δ

1, q10〉 and M2 = 〈Q2, αM2, δ
2, q20〉,



Interface Generation and Compositional Verification in JavaPathfinder 97

M1 ‖ M2 is an LTS M = 〈Q,αM, δ, q0〉, where Q = Q1 × Q2, q0 = (q10 , q
2
0),

αM = αM1 ∪ αM2, and δ is defined as follows: (1) M1 ‖ M2
a−→ M ′

1 ‖ M2

if M1
a−→ M ′

1 and a /∈ αM2, (2) M1 ‖ M2
a−→ M1 ‖ M ′

2 if M2
a−→ M ′

2 and
a /∈ αM1, (3) M1 ‖M2

a−→M ′
1 ‖M ′

2 if M1
a−→M ′

1, M2
a−→M ′

2, and a �= τ .

3 Interface Generation

In this section we define safe and permissive interfaces for software components
and we describe our approach to synthesizing such interfaces automatically.

3.1 Safe and Permissive Interfaces

Let M be a software component. For simplicity of presentation, we will first
assume that M includes an error state that expresses the undesired behavior of
M (for example, some assertion violations). Later in this section we will discuss
the more general case where the component property is given as a separate
(safety) automaton.

Let Σ ⊆ αM denote the communication alphabet of component M , i.e., the
set of actions through which M communicates with its environment. Our goal
is to compute M ’s precise interface as a finite state automaton A over Σ. As
mentioned, we need to make sure that A is both safe and permissive, as defined
formally below.

Let us first define the legal and illegal languages of component M . A word
t ∈ αM∗ is illegal if it corresponds to some trace of M that leads to error state
π; otherwise, the word is legal. Then Llegal(M) denotes the set of legal words of
M and Lillegal(M) denotes the set of illegal words of M . Note that Llegal(M)
and Lillegal(M) are complementary. Furthermore, note that, while illegal words
correspond to actual traces in the component, legal words may also represent
behavior that is never executed by the component (and hence could never lead
to violations).

Definition 1. A is a safe interface iff Llegal(A) ∩ Lillegal(M) ↑ Σ = ∅.
In other words, an interface is safe if it accepts no illegal words of M .

Definition 2. A is a permissive interface iff Llegal(M) ↑ Σ ⊆ Llegal(A).

In other words, an interface is permissive if it accepts all legal words of M .

3.2 Learning Interface Specifications with L*

Our approach for learning interface specifications is illustrated in Figure 1. We
use an off-the-shelf learning algorithm, L* [4], to iteratively compute interface
specification A for M that is both safe and permissive. L* learns an unknown
language (over a given alphabet) and produces a minimal deterministic finite
state automaton that accepts it; the learning process is iterative and it uses a
teacher that provides answers to queries and counterexamples to conjectures (for
details on L* see [4]). In our framework, the problem of answering queries and
counterexamples is reduced to reachability problems, solved by a model checker.



98 D. Giannakopoulou and C.S. Păsăreanu

yes and
trace t

return t ↑ Σ

return t ↑ Σ

query: trace w

return true

return false yes

no

L*

π reachable in lts(w)‖M

conjecture: A

backtrack

no

Teacher

no

interface
specification A

trace t
yes and

Oracle 1: π reachable in A‖M

π reachable in lts(t ↑ Σ)‖M

Oracle 2: (π,ok) reachable in Aπ‖MC

no (and A)

Fig. 1. Learning interface specifications with L*

Queries L* is first used to repeatedly query M to check whether or not, in the
context of strings w, M violates the property. This is equivalent with checking
if an error state π is reachable in lts(w)‖M . Here lts(w) denotes an LTS over
Σ that accepts string w (and its prefixes). The results of the queries are used
by L* to first make a “conjecture”, i.e. it builds an automaton A that accepts
all the strings for the positive queries (the case error unreachable), and does not
accept the strings for the negative queries (the case error reachable).

The conjectured automaton A is then checked to make sure it is both safe and
permissive. This is done with the help of a teacher that implements two oracles
as described below.

Oracle 1 checks if A is safe by checking whether π is reachable in A ‖ M . If it
is, then it means that A is un-safe. The resulting counterexample t, projected on
the interface alphabet Σ, is returned to L* to refine its conjecture. If the error
state is un-reachable, then it means A is safe and we proceed to Oracle 2.

Oracle 2 checks if safe interface A is also permissive, i.e. we want to check
that Llegal(M) ↑ Σ ⊆ Llegal(A). This amounts to making sure that there are no
words w ∈ Σ∗ such that w ∈ Llegal(M) ↑ Σ ∩ Lillegal(A). This is equivalent to
w ∈ Lillegal(A) and ∀t ∈ αM such that w = t ↑ Σ, t ∈ Llegal(M).

We search for such words using a special reachability procedure performed
on Aπ ‖ MC (see pseudo-code in Figure 2). Here Aπ denotes the completion
of A with an error state, i.e. we complete each state with outgoing transitions
to π, such that each state has outgoing transitions labeled with every action in
Σ. Similarly, MC denotes the completion of M with a special s ink state. We



Interface Generation and Compositional Verification in JavaPathfinder 99

Oracle 2
input: safe interface A;
begin
(1) Model-check Aπ‖MC :
(2) if (π, ok) is reachable by trace t then
(3) if π is not reachable in lts(t ↑ Σ)‖M then
(4) return t ↑ Σ to L*;
(5) else
(6) backtrack;
(7) output: safe and permissive interface A;
end.

Fig. 2. Oracle 2

need these constructions to reason about traces in Lillegal(A) and Llegal(M),
respectively. Note that Lillegal(A) = Lillegal(Aπ) and Llegal(M) = Llegal(MC).
Note also that for Oracle 2, since both Aπ and MC contain error states, we need
to distinguish between the two in Aπ ‖ MC (this was not necessary for queries
and Oracle 1).

Given the above constructions, checking permissiveness reduces to checking
reachability of states of the form: (π, ok), were π is an error state coming from Aπ

and ok denotes a non-error state in MC . If such a combined state is found, then
the trace t leading to it may indicate that A is not permissive, since w = t ↑ Σ
leads to an error state in Aπ but it is legal in MC (and hence in M). However,
due to non-determinism in M (and hence in MC), it may be the case that on
another path, t does lead to the error state. Even if this is not the case, there
may exist other traces t′ such that w = t′ ↑ Σ and t′ leads to an error in MC on
a different path (see Figure 3).

We check both these cases by performing a query on t ↑ Σ. Note that we do
not stop the state space exploration, but rather, we take trace t that is returned,
and we check if, in the context of t ↑ Σ, M violates its properties.

If the query returns true, then it means the interface is not permissive, and
therefore t ↑ Σ is returned to L* for refinement, and the learning process con-
tinues with more queries and eventually with a new conjecture.

If the query returns false, then t does not correspond to a real counterexample.
Model checking therefore ignores this state; it backtracks, and then continues its
state space exploration. If no traces that satisfy the condition above exist, then
indeed the conjectured automaton is also the most permissive interface, and
therefore it is output to the user.

We note that every query is stored in the L* memoized table, so the result of
the query on the same trace t ↑ Σ later (when A is the same) will be obtained
directly (and faster) from the table.

Properties as safety automata. Assume now that M does not have error
states, and we want to generate an interface specification for ensuring a property
P , given as a (deterministic) safety automaton, encoding all the desired behaviors
of the component. Conversely, Pπ encodes all the un-desired behaviors of the



100 D. Giannakopoulou and C.S. Păsăreanu

(π, π)

t ↑ Σ = t′ ↑ Σ
(sA

0 , sM
0 )

Trace t Trace t′

...

State space of Aπ ‖ MC

(π,sink)

Fig. 3. Example for Oracle 2: dealing with non-determinism

component. The procedure described above will be exactly applicable to this
case as well, if we treat M ||Pπ as M above.

3.3 Correctness and Termination

We argue here the correctness and termination of our approach. To argue cor-
rectness, we first show that Oracle 1 (and similarly the queries) guarantee a safe
interface while Oracle 2 guarantees a permissive interface; therefore, the teacher
implemented by our approach is correct.

Proposition 1. Oracle 1 returns A iff Llegal(A) ∩ Lillegal(M) ↑ Σ = ∅.
Proposition 2. Oracle 2 returns A iff Llegal(M) ↑ Σ ⊆ Llegal(A).

Due to lack of space we omit the proofs here; they proceed by contradiction and
follow the arguments given informally in the previous section.

Theorem 1. Given component finite state M (that may include error states),
the algorithm implemented by our approach terminates and it returns a safe and
permissive interface A.

Proof. Correctness follows from the two propositions above. Termination follows
from the correctness of L*, which is guaranteed that, if it keeps receiving coun-
terexamples, it will eventually terminate.

Discussion. As mentioned, in previous work we defined an algorithm for build-
ing safe and permissive interfaces for finite state components [8]. That algorithm
involves the determinization of M (using the sub-set construction) that results
in an exponential cost in computation time, regardless of the size of the interface
specification. However, for components with small interfaces, the interface au-
tomaton is expected to be much smaller than the component itself. We address



Interface Generation and Compositional Verification in JavaPathfinder 101

this problem by using L*, which builds incrementally automata with increasing
size, finishing with the minimal deterministic automaton representing a safe and
permissive interface.

We also note here that the approach of Henzinger et al. [10] can only handle
components that are visibly deterministic, and therefore could not handle the
case illustrated in Figure 3. On the other hand, the approach of Alur et al. [1]
handles non-deterministic components, but it does not guarantee that the inter-
face is permissive, since it only uses heuristics to implement what it amounts
to Oracle 2 (called “superset query” in [1]). That work argues that the superset
query can not be implemented efficiently, since it involves the determinization
of component M . In our work we avoid an explicit determinization step of M .
Instead, our approach deals with the non-determinism in the component dynam-
ically (during model checking of the component) and only selectively (as guided
by counterexamples).

4 Compositional Verification in JPF

4.1 Java PathFinder

Java PathFinder (JPF) [11] is an open-source verification framework developed
by the RSE group at NASA Ames. It has been started as an explicit state model
checker for Java byte-code. The focus of JPF is on finding bugs, such as con-
currency related bugs (deadlocks, races, missed signals etc.), runtime related
bugs (e.g. unhandled exceptions), etc. JPF can also check for violations of user-
specified assertions that encode application specific requirements. JPF uses a
variety of scalability enhancing mechanisms, such as user extensible state ab-
straction and matching, on-the-fly partial order reduction, configurable search
strategies, and user definable heuristics (searches, choice generators).

4.2 JPF’s UML Statechart Extension

JPF has recently been extended with a statechart modeling and analysis ca-
pability that allows Java modeling of UML state machines [15]. Many UML
development systems can produce code from diagrams, but this code is usually
aimed at production systems, and is not suitable for software model checkers.
The approach taken in JPF (Figure 4(left)) is based on a specific translation
scheme from UML state charts into Java code that (a) is highly readable, (b)
shows close correspondence between diagram and program, (c) provides a 1:1
mapping between model and program states, and (d) imposes few restrictions
about aspects and actions that can be modeled.

The JPF Statechart extension is specialized to handle the obtained Java mod-
els more efficiently than random Java code. These Java models can be run in
isolation, which corresponds to running them in the context of an external en-
vironment that may provide any input event at any stage (we will call this the
universal environment). Alternatively, a guidance script may be provided by the



102 D. Giannakopoulou and C.S. Păsăreanu

Fig. 4. Example illustrating JPF’s UML extension (left) and JPF’s listener (right)

user, which represents the input event sequences that can be provided by the
external environment.

We have used the JPF statechart extension to implement our interface syn-
thesis algorithms for components expressed in the JPF statechart framework.
Note that we do not attempt to perform compositional reasoning for UML stat-
echarts, which is a theoretical challenge that is beyond the scope of this work.
Rather, we use UML statecharts, as supported by JPF, to represent finite state
components with Labeled Transition System semantics. Therefore composition
of components comes down to LTS composition, as described in Section 2. The
interfaces that we generate are expressed as LTSs in the FSP notation [13].

4.3 Assume-Guarantee Reasoning in JPF

We have implemented assume-guarantee reasoning in JPF. As mentioned, com-
ponents are given as UML statecharts (instances of class CVState). Both proper-
ties and assumptions are represented as finite state automata (instances of class
gov.nasa.jpf.cv.SCSafetAutomaton).

Model checking using assumptions and properties has been implemented using
JPF listeners (Figure 4(right)). A listener is essentially configured client code
that is notified when certain events occur while JPF performs its search. The no-
tified listener code can interact with JPF, e.g. a JPF “property” listener informs
JPF if the property holds via the return value of its check() method.

Checking for both assumptions and properties is implemented with the
gov.nasa.jpf.cv.SCSafetyListener class. On creation, a SCSafetyListener
is associated with a finite state automaton P , which expresses the property or
assumption to be used during model checking. Note that the state of a listener



Interface Generation and Compositional Verification in JavaPathfinder 103

is not included in the state that JPF explores / stores during model checking.
However, the state of the automaton P needs to be part of the state space for
correct state-space exploration and backtracking. We perform this by adding a
static integer field of class CVState for the cv extension, which is set from within
the listener.

An SCSafetyListener listens for and reacts to the following events:

– instructionExecuted: Signals to the listener that an instruction was ex-
ecuted by JPF. The listener reacts by invoking method advance(...) on
the automaton P . Advancing the automaton corresponds to making a state
transition, if the instruction that was executed corresponds to an action in
the alphabet of the automaton. If a transition on an alphabet action is un-
defined from the current state, this is an illegal transition (corresponds to a
transition to the error state π). For properties, this means that an error has
occurred, so the result returned by the listener’s check() method is false.

– choiceGeneratorAdvanced: Signals that the next statechart action is se-
lected for execution. The reaction of the listener is to check whether this
action would make P transition to the error state if it were to be exe-
cuted (this does not change the state of P since the transition is not really
executed yet). Reaching an error state in an assumptions means that the
current path explored is not a valid path under this assumption and must
therefore be ignored. The listener forces JPF to backtrack (by executing
vm.getSystemState().setIgnored(true)).

– stateBacktracked: When the model checker backtracks, then the automa-
ton must backtrack accordingly.

For example, in order to check some property described as an automaton pro-
vided in some file Foo, we need to include the following arguments when running
JPF’s main class gov.nasa.jpf.JPF:

+jpf.listener=.cv.SCSafetyListener
+safetyListener1.property= Foo

The first argument informs JPF that an SCSafetyListener will need to be
notified of specific events, and the second one provides details for the listener,
i.e., its unique id is “1”, it is of type property (as opposed to assumption), and
the automaton associated with it is provided in file Foo (this may also include
the full path to Foo).

4.4 Interface Generation and Discharge

The interface generation in JPF is implemented in the main class
gov.nasa.jpf.tools.cv.ScRunCV. The user can customize the generation via
the following arguments:

+assumption.alphabet=<actions> defines the interface alphabet;
+assumption.outputFile=<file name> defines a file in which the generated

interface is output.



104 D. Giannakopoulou and C.S. Păsăreanu

public boolean query(Vector sequence) throws SETException {

Boolean recalled = memoized_.getResult(sequence);

if (recalled != null) {

return (!recalled.booleanValue());

} else {

// play the query as an assumption

System.out.println("\n New query: " + sequence);

SCSafetyListener assumption = new SCSafetyListener(

new SCSafetyAutomaton

(true, sequence, alphabet_, "Query", module1_));

JPF jpf = createJPFInstance(assumption, property, module1_);

jpf.run();

boolean violating = jpf.foundErrors();

memoized_.setResult(sequence, violating);

return (!violating);

}

}

Fig. 5. Answering queries in SCModularTeacher

This allows for a generated interface to be used for subsequent reasoning, ei-
ther as an assumption, or as a property. The format currently used for expressing
the interface is the FSP language.

The main method of gov.nasa.jpf.tools.cv.ScRunCV creates an instance of
class gov.nasa.jpf.tools.cv.SETLearner to carry out the learning of the in-
terface; an associated instance of gov.nasa.jpf.tools.cv.SCModularTeacher
serves as the teacher. Our learning algorithm implementation uses JPF to per-
form the model checking steps described in Section 3. JPF model checks in-
dividual components in the context of the universal environment. Listeners are
added as necessary to reflect the work of the Teacher, which consists of answering
Queries, and implementing Oracle 1 and Oracle 2 in order to answer conjectures,
as described in more detail below.

Queries and Oracle 1. Queries and Oracle 1 are performed in a similar fash-
ion because they are concerned with checking whether error states are reachable
in the component, in the context of a particular sequence (for queries) or finite
state automaton (for Oracle1). As illustrated in Figure 5, to respond to a query,
a listener instance assumption is created with an associated automaton that re-
flects the particular sequence that is being queried. JPF is then invoked, together
with the assumption listener. If JPF returns errors, the answer to the query is
false, otherwise the answer is true. Oracle 1 works in a similar fashion, with
the difference that it also returns a counterexample.

Oracle 2. Oracle 2 checks for permissiveness of a computed interface. It needs
to work on the completed component, as described in Section 3. This is a man-
ual step that we intend to automate in the future. It similarly invokes JPF,



Interface Generation and Compositional Verification in JavaPathfinder 105

but performs the search in the context of a specialized type of listener, the
gov.nasa.jpf.cv.SCConformanceListener. Its aim is to detect the reachabil-
ity of a (π, ok) combination of states in the interface and component where the
interface is in an error state, while the component is in an non-error state.

The gov.nasa.jpf.cv.SCConformanceListener listens for and reacts to the
following events:

– executeInstruction: When the instruction about to be executed by JPF
is an assertion violation, then it means that the component has entered an
error state. Since such states are not targeted by the listener, it performs
ti.skipInstruction();

vm.getSystemState().setIgnored(true);.
The first command ensures that the exception is not processed by JPF, for
efficiency. The second asks JPF to backtrack since this path cannot lead to
the targeted combination of states.

– instructionExecuted: Similar to gov.nasa.jpf.cv.SCSafetyListener.
When the automaton associated with the listener moves to an error state,
the result returned by the check() method of the listener is set to false,
since the component is in a legal state (illegal states are never reached since
the listener advises JPF to backtrack when it reacts to executeInstruction
events), while the interface is in an error state.

– stateBacktracked: Similar to gov.nasa.jpf.cv.SCSafetyListener.

As described in Section 3, when an (π, ok) state is detected by the model checker,
the counterexample leading to this state is queried, and if it is not a real coun-
terexample, the model checker will backtrack. Since a query involved calling the
model checker, this would involve nested model checker calls. To avoid such nest-
ing, our implementation exploits a memoized table that is used by the learner to
store results of previous queries. Oracle 2 checks for the reachability of (π, ok)
states in a loop. Whenever a counterexample is obtained by the model checker,
then OraclE2 invokes a query on it. Each query stores its result in the memoized
table.

Whenever a real counterexample is obtained, Oracle 2 exits the loop and re-
ports the result to the learner. When a counterexample is spurious, then another
iteration of the loop is entered. In this iteration, we wish to ensure that the model
checker will not report the same spurious counterexample. We achieve this as
follows. When a gov.nasa.jpf.cv.SCSafetyAutomaton is asked to advance in
the context of a gov.nasa.jpf.cv.SCConformanceListener, if the automaton
reaches an error state, it will get the path to this state from JPF. It will then
check the memoized table to see if there is a result for the corresponding se-
quence stored there. If there is, and the result is true, then it means that this is
a spurious counterexample, and it notifies JPF to backtrack. Therefore, we have
implemented the nested model checking calls by consecutive calls to the model
checker, where the information of spurious counterexamples is shared through
the memoized table.



106 D. Giannakopoulou and C.S. Păsăreanu

Fig. 6. Model of the Ascent and Earth Orbit flight phases of a spacecraft

Interface discharge. For compositional reasoning, one needs to also discharge
the generated interface on the component environment. This can be performed
by model checking the environment component in the presence of a
gov.nasa.jpf.cv.SCSafetyListener using the interface as a property.

5 Experience

In order to evaluate our implementation, we used a statechart model of the
Ascent and EarthOrbit flight phases of a space-craft (see Figure 6). The JAVA
model is available with the JPF distribution under examples/jpfESAS. The
UML statechart diagrams for the model are included in examples/jpfESAS.doc.

The model was created and used to demonstrate the features of the JPF
UML statechart extension to our NASA mission customers. Several properties
were analyzed on the model, and JPF returned violations for some of these
properties. When the counterexamples obtained were analyzed, it was clear that
some of the violations were spurious. The violations were related to the following
properties:

– An event lsamRendezvous, which represents a docking maneuver with an-
other spacecraft, fails if the LAS (launch abort system) is still attached to
the spacecraft.

– Event tliBurn (trans-lunar interface burn takes spacecraft out of the earth
orbit and gets it into transition to the moon) can only be invoked if EDS
(Earth Departure Stage) rocket is available.

These violations were due to the fact that the universal environment was too
general. The models had been created under the assumption that the use of the
model respects some implicit flight rules. We decided to use our interface genera-
tion techniques to formalize the flight rules. More specifically, for each property,



Interface Generation and Compositional Verification in JavaPathfinder 107

lasJetisson
lasJetisson

lsamRendezvous0 1 lsamRendezvous0

lsamRendezvous
tliBurn

1

Interface 1: Interface 2:

Fig. 7. Generated interface specifications

we generated a safe and permissive interface to eliminate its corresponding vio-
lations. To do this, we added a listener that eliminated all assertion violations
that were not related to the targeted property, through the following arguments:
+jpf.listener=.tools.ChoiceTracker:.cv.AssertionFilteringListener
+assertionFilter.include=<method name>

These arguments specify that all assertion violations that occur outside the
particular <method name> will be ignored.

The generated interface specifications are illustrated in Figure 7. The first one
expresses the fact that the lsamRendezvous maneuvers cannot start before the
las module of the spacecraft has jettisoned. According to the second one, it does
not make sense to perform tliBurn prior to performing lsamRendezvous. These
interfaces were inspected by the developer of the model that confirmed that they
encode actual flight rules. Interface generation can therefore be used by develop-
ers to help them in the expression of the assumptions that their models encode.
We note that other examples, including the input-output example from [6], are
available with the JPF distribution.

6 Conclusions

We have proposed an algorithm for automatically synthesizing behavioral inter-
face specifications for finite state software components. Our algorithm is the first
iterative approach that is guaranteed to compute interfaces that are both safe
and permissive, even in the presence of non-determinism in the visible behav-
ior of a component. We have implemented our approach in the JavaPathfinder
model checking framework for UML statechart components, and have obtained
promising results from its application to several systems. The source code for
the implementation and the examples is available through JPF’s distribution.

In the future, we plan to investigate interface generation for methods with pa-
rameters. We have made some initial experiments using JPF’s symbolic execution
extension to generate values for parameters with infinite domains, and used these
values to define finite interface alphabets related to their corresponding methods.
We wish to pursue this direction further, and also plan to extend our results to
generic Java components. For components that may be infinite-state, we will com-
bine our approach with techniques such as predicate abstraction (similar to [1]).
Finally, we plan to perform extensive evaluations of our approach.

Acknowledgements

We thank Peter Mehlitz and Suzette Person for helping with the implementation.



108 D. Giannakopoulou and C.S. Păsăreanu

References

1. Alur, R., Cerny, P., Madhusudan, P., Nam, W.: Synthesis of interface specifications
for Java classes. In: Proceedings of POPL 2005, pp. 98–109 (2005)

2. Alur, R., Henzinger, T., Mang, F., Qadeer, S., Rajamani, S., Tasiran, S.: MOCHA:
Modularity in Model Checking. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427,
pp. 521–525. Springer, Heidelberg (1998)

3. Ammons, G., Bodik, R., Larus, J.R.: Mining specifications. In: Proceedings of ACM
POPL 2002, pp. 4–16 (2002)

4. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2), 87–106 (1987)

5. Beyer, D., Henzinger, T.A., Singh, V.: Algorithms for Interface Synthesis. In:
Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 4–19. Springer,
Heidelberg (2007)

6. Cobleigh, J.M., Giannakopoulou, D., Pasareanu, C.S.: Learning Assumptions for
Compositional Verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

7. Flanagan, C., Freund, S.N., Qadeer, S.: Thread-Modular Verification for Shared-
Memory Programs. In: Le Métayer, D. (ed.) ESOP 2002. LNCS, vol. 2305, pp.
262–277. Springer, Heidelberg (2002)

8. Giannakopoulou, D., Pasareanu, C.S., Barringer, H.: Assumption Generation for
Software Component Verification. In: Proceedings of ASE 2002, pp. 3–12. IEEE
Computer Society, Los Alamitos (2002)

9. Groce, A., Peled, D., Yannakakis, M.: Adaptive Model Checking. In: Katoen, J.-
P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, p. 357. Springer, Heidelberg
(2002)

10. Henzinger, T.A., Jhala, R., Majumdar, R.: Permissive Interfaces. In: Proceedings
of ESEC/SIGSOFT FSE 2005, pp. 31–40 (2005)

11. Java PathFinder, http://javapathfinder.sourceforge.net
12. Jones, C.B.: Specification and Design of (Parallel) Programs. In: Information Pro-

cessing 1983: Proceedings of the IFIP 9th World Congress, IFIP, pp. 321–332.
North Holland, Amsterdam (1983)

13. Magee, J., Kramer, J.: Concurrency: State Models & Java Programs. John Wiley
& Sons, Chichester (1999)

14. Margaria, T., Raffelt, H., Steffen, B., Leucker, M.: The LearnLib in FMICS-jETI.
In: Proceedings of ICECCS 2007 (2007)

15. Mehlitz, P.: Trust Your Model - Verifying Aerospace System Models with Java
Pathfinder. In: IEEE/Aero (2008)

16. Pasareanu, C.S., Giannakopoulou, D., Gheorghiu Bobaru, M., Cobleigh, J.M., Bar-
ringer, H.: Learning to Divide-and-Conquer: Applying the L* Algorithm to Auto-
mate Assume-Guarantee Reasoning. In: FMSD (January 2008)

17. Pnueli, A.: In Transition from Global to Modular Temporal Reasoning about Pro-
grams. In: Logic and Models of Concurrent Systems, vol. 13, pp. 123–144 (1984)

18. Tkachuk, O., Dwyer, M.B.: Adapting side effects analysis for modular program
model checking. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 188–197.
Springer, Heidelberg (2003)

19. Whaley, J., Martin, M.C., Lam, M.S.: Automatic extraction of object-oriented
component interfaces. In: Proceedings of ISSTA 2002, pp. 218–228 (2002)

http://javapathfinder.sourceforge.net


A Formal Way from Text to Code Templates

Guido Wachsmuth

Humboldt-Universität zu Berlin
Unter den Linden 6

D-10099 Berlin, Germany
guwac@gk-metrik.de

Abstract. We present an approach to define template languages for gen-
erating syntactically correct code. In the first part of the paper, we define
the syntax and semantics of a template language for text generation. We
use Natural Semantics for expressing both the static and the dynamic
semantics of the language. In the second part, we deal with template lan-
guages for code generation in a particular target language. We provide
construction steps for the syntax and semantics of such languages. The
approach is generic and can be applied to any target language.

1 Introduction

Code generation forms a central part of Model-driven Engineering (MDE). Tem-
plate languages provide means to specify code generation. They are used in
mature modelling frameworks, for example Java Emitter Templates [1] in the
Eclipse Modeling Framework [2] or openArchitectureWare’s XPand [3] in the
Eclipse Graphical Modeling Framework [4]. With its MOF Model to Text Trans-
formation Language (MOF M2T) [5], the Object Management Group proposes
a standardised template language for model to text transformations. Beyond
MDE, template languages are generally used in generative programming. For
example, StringTemplate [6] is used for parser generation with ANTLR [7] as
well as for generating web pages [8].

Template languages allow to specify code in concrete syntax. To generate code
in different target languages, most template languages treat code simply as text.
As a consequence, template languages do not provide any static judgement on
syntactical correctness of templates with respect to a particular target language.
In this paper, we investigate a formal method to develop a template language
TLλ for generating syntactically correct code in a given target language λ. We
enhance the grammar of λ to derive a grammar for TLλ. For this enhancement,
we rely on well-defined grammar adaptation steps [9]. We use Natural Seman-
tics [10] for expressing both the static and the dynamic semantics of TLλ. The
approach is generic and can be applied to any target language.

The remainder of the paper is structured as follows: In Sec. 2, we describe
the formal foundations of our approach, i.e.grammar adaptation and Natural
Semantics. In Sec. 3, we define syntax and semantics of the core concepts of
template languages. In Sec. 4, we provide construction steps for template lan-
guages concerned with true code generation. The paper is concluded in Sec. 5.

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 109–123, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



110 G. Wachsmuth

adaptation = step∗

step = introduce rrule | include rule | fold rule
| foreach vn : yielder do step∗ endfor

rrule = rule | nt∗

rule = nt = elem∗

elem = nt | vn | kw | �vn� | elem ∗

yielder = N | M | L
nt nonterminals
vn variable names
kw keywords

Fig. 1. An operator suite for grammar adaptation

2 Preliminaries

Grammar adaptation. In this paper, we employ formal grammar transforma-
tions for the stepwise adaptation of grammars [9]. This approach offers several
benefits: First, the derivation of the template language is formally defined by the
application of well-defined adaptation operators. Second, we prevent accidental
modifications of the target language since preservation properties of adaptation
operators are well understood [9]. Third, the adaptation is generic and can be
applied to any target language. Finally, existing tool support automates the
derivation process [11].

We rely on a very restricted operator suite for this paper. Figure 1 shows its
concrete syntax: First, we can introduce a new rule for a fresh nonterminal. We
use the same operator to introduce nonterminals without a defining rule (e.g. for
morphem classes). Second, we can include an additional rule for a nonterminal.
If the nonterminal is yet undefined, include operates as introduce. Third, we
can fold a phrase. This introduces a fresh nonterminal defined by the phrase. All
occurrences of the phrase are replaced by the nonterminal. All these operators
are purely constructive, i.e. they extend the language defined by the grammar [9].
Finally, we can execute operators foreach nonterminal in a set. There are three
yielders of such sets: N yields all nonterminals except morphem classes, M yields
all morphem classes, and L yields all nonterminals to which a Kleene closure
is applied. Inside a foreach block, a variable provides access to the current
nonterminal. �·� yields a nonterminal’s name as a keyword.

Natural Semantics. In this paper, we use Natural Semantics [10] for the static
and dynamic semantics of template languages. Typically, template languages are
functional languages [6]. Describing functional languages by Natural Semantics
is well understood. For example, Natural Semantics was used for both the static
and dynamic semantics in the formal specification of Standard ML [12]. The
general idea of a semantics definition in Natural Semantics is to provide axioms
and inference rules for judgements over syntactical and semantical domains. A
static semantics is typically described in terms of well-typedness judgements for



A Formal Way from Text to Code Templates 111

tcoll = tmpl∗

tmpl = �define tn targ∗ � tstmt∗ �enddef�
targ = ttype tvn

tstmt = text | � texpr � | �expand tn texpr ∗ �
| � if texpr � tstmt∗ �else� tstmt∗ �endif�
| � for tvn in texpr � tstmt∗ �endfor�

tn template names
text text phrases

texpr expressions
ttype variable types

tvn variable names

Fig. 2. Syntactical domains of TL⊥

the various syntactical domains of a language. A dynamic semantics is described
in an operational style by judgements for the execution of language instances.

We follow some notational conventions in this paper: For semantical domains,
we use standard domain constructors, namely products (“×”), list types (“∗”),
and function domains (“→fin”). We restrict ourselves to pointwise definition of
functions, i.e. these functions are only defined for a finite subset of the domain X
in f : X →fin Y . For most x ∈ X we have that f(x) = ⊥. The entirely undefined
function is denoted by “⊥”. In inference rules, we reuse domain names as stems
of meta-variables. Tuples and sequences are constructed via 〈 ·, . . . , · 〉. In order to
concatenate several lists to a new one, we use the notation 〈 · : . . . : · 〉. Update of
a function f for a point x to return y is denoted by f [x 	→ y]. Function application
is highlighted using the notation f @ x.

3 A Core Text Template Language

In this section, we provide formal semantics of the core concepts in template
languages for text generation. For this purpose, we introduce TL⊥, a functional
language similar to StringTemplate, XPand, and even more to MOF M2T.

Syntax. Figure 2 shows a grammar of the template language TL⊥. We briefly
read its rules: A template collection tcoll consists of a list tmpl∗ of templates. A
template declares a list targ∗ of arguments and a list tstmt∗ of template state-
ments. Template statements include simple text, expression evaluation, template
expansion, conditional statement, and iteration.

Template languages typically comprise an expression language for navigating
the source model. This sublanguage highly depends on the technological space
of the source model. In the grammarware space, we need to navigate syntax
trees. In the modelware space, we need to navigate object-oriented models. For
this reason, we do not specify an expression sublanguage in detail. Instead,
we specify several requirements for its syntax and semantics. Syntactically, we
assume domains for expressions (texpr), types (ttype), and variables (tvn).



112 G. Wachsmuth

Domains

τ = ttype
T = tvn →fin τ
Θ = tn →fin τ∗

(Expression types)
(Variable type table)

(Template type table)

Principal judgements

� tcoll
Θ � tmpl : Θ
Θ � tmpl
Θ, T � tstmt
T � texpr : τ
�L τ : τ
�B τ

(Well-typedness of template collections)
(Extraction of type context)

(Well-typedness of templates)
(Well-typedness of template statements)
(Well-typedness of template expressions)

(Decomposition of list types)
(Booleaness of types)

Fig. 3. Model of TL⊥ static semantics

Static semantics. The domains involved in the static semantics and the prin-
cipal judgements are shown in Fig. 3. For the expression sublanguage, we require
a domain of types (τ), a domain for variable environments (T ) to store variable
types, and a judgement of well-typedness of expressions under a given environ-
ment. Furthermore, we require types for list-like data structures. We assume the
judgment 
L τ : τ ′ to hold for a list type τ iff the list elements are of type τ ′.
The judgement 
B τ is expected to hold iff τ is boolean-like, that is, elements
of this type can be mapped to boolean values.

As for the core concepts of TL⊥, we define a domain for type tables (Θ)
to store the argument types of templates. Judgements concern the extraction
of a type table for a given template collection, the overall well-typedness of a
template collection, the well-typedness of a template definition for a given type
table, and the well-typedness of a statement for a given type table and variable
environment.

Figure 4 lists the inference rules for the judgements. Since most of them are
straightforward, we do not discuss all these rules in detail. Let us focus on the
well-typedness judgement for statements. Θ, T 
 tstmt is meant to hold if the
statement tstmt is well-typed in the context of Θ and T . The parameter Θ covers
the template types whereas T corresponds to an environment mapping variables
for template arguments or iterations to types.

The axiom [text] encodes the well-typedness of any text. The rule [exp] defines
well-typedness for expression evaluation: An expression evaluation is well-typed
if its expression has a type in the context of the current variable environment.

The premises of rule [expand] say that a template expansion is well-typed
if (1) a table look-up for tn delivers the types of the template arguments and
(2) the actual parameter types are subsumed by the formal ones.

The rule [for] defines well-typedness of iteration as follows: (1) The type τ of
the iteration expression is determined under the current variable environment
T . This type needs to be a list type with a corresponding type τ ′ for the list



A Formal Way from Text to Code Templates 113

Well-typedness of template collections � tcoll

⊥ � tmpl1 : Θ1 ∧ · · · ∧ Θn−1 � tmpln : Θn

∧ Θn � tmpl1 ∧ · · · ∧ Θn � tmpln
� 〈 tmpl1, . . . , tmpln 〉

[collection]

Extraction of type context Θ � tmpl : Θ

targ1 = ttype1 tvn1 ∧ · · · ∧ targn = ttypen tvnn

∧ Θ @ tn = ⊥ ∧ Θ′ = Θ[tn �→ 〈 ttype1, . . . , ttypen 〉]
Θ � �define tn 〈 targ1, . . . , targ 〉� . . . �enddef � : Θ′ [extract]

Well-typedness of templates Θ � tmpl

targ1 = ttype1 tvn1 ∧ · · · ∧ targn = ttypen tvnn

∧ T = ⊥[tvn1 �→ ttype1, . . . , tvnn �→ ttypen]
∧ Θ, T � tstmt1 ∧ · · · ∧ Θ, T � tstmtm

Θ � �define tn 〈 targ1, . . . , targn 〉�
〈 tstmt1, . . . , tstmtm 〉

�enddef �

[template]

Well-typedness of statements Θ, T � tstmt

Θ, T � text [text]

T � texpr : τ

Θ, T � � texpr �
[expr]

(1) Θ @ tn = 〈 τ1, . . . , τn 〉
(2)∧T � texpr1 : τ1 ∧ · · · ∧ T � texprn : τn

Θ, T � �expand tn 〈 texpr1, . . . , texprn 〉 �
[expand]

(1) T � texpr : τ ∧ �L τ : τ ′

(2)∧T ′ = T [tvn �→ τ ′]
(3)∧Θ, T ′ � tstmt1 ∧ · · · ∧ Θ, T ′ � tstmtn

Θ, T � � for tvn in texpr � 〈 tstmt1, . . . , tstmtn 〉 �endfor�
[for]

(1) T � texpr : τ ∧ �B τ
(2)∧Θ, T � tstmt1 ∧ · · · ∧ Θ, T � tstmtm

Θ, T � � if texpr �
〈 tstmt1, . . . , tstmtn 〉

�else�
〈 tstmtn+1, . . . , tstmtm 〉

�endif �

[if]

Fig. 4. Rules of TL⊥ static semantics



114 G. Wachsmuth

Domains

ν
β = true | false
ϕ = text
ψ = ϕ∗

T = tvn →fin ν
Θ = tn →fin ( tvn∗ × tstmt∗ )

(Expression values)
(Boolean values)

(Text phrases)

(Variable environment)
(Template code table)

Principal judgements

� tcoll ⇒ Θ
Θ � tmpl ⇒ Θ
T, Θ � tstmt ⇒ ψ
T � texpr ⇒ ν
� ν ⇒ ϕ
�L ν ⇒ ν∗

�B ν ⇒ β

(Extraction of code table)

(Execution of template statements)
(Evaluation of template expressions)

(Text conversion of values)
(Decomposition of lists)

(Boolean conversion of values)

Fig. 5. Model of TL⊥ dynamic semantics

elements. (2) A new variable environment T ′ is retrieved by updating the type
of the iteration variable tvn to τ ′. (3) All statements in the iteration need to be
well-typed under the new environment.

The rule [if] for conditional statements reads similarly: (1) The type τ of the
condition expression is determined. This type needs to be boolean-like. (2) All
statements in a conditional statement need to be well-typed in the current context.

Dynamic semantics. While the static semantics is concerned with well-typed-
ness judgements, the dynamic semantics provides judgements about text gener-
ation. Figure 5 shows the model of the dynamic semantics. We use a style that
emphasises the similarities of the models of static and dynamic semantics. While
Θ covers the template types in the static case, it models the template code in
the dynamic case. Similar variations apply to the principal judgements. That is,
code table extraction corresponds to type table extraction, text generation out
of template statements to well-typedness of template statements, and text gen-
eration out of template expressions to type assignment for template expressions.

For the expression sublanguage, we require a domain of values (ν), a domain
for variable environments (T ) to store variable values, and a judgement for eval-
uating expressions under a given environment. The structure of this judgement
implies side-condition free evaluation. This ensures model view separation [13].
Furthermore, we assume the judgment 
L ν ⇒ 〈 ν1, . . . , νn 〉 to hold for a list-like
data structure ν iff ν1, . . . , νn are the elements of this structure. The judgement

B ν ⇒ β is expected to hold iff ν can be converted into the boolean value β.
Finally, we require a judgement 
 ν ⇒ ϕ for the conversion of values to text.

Figure 6 lists the inference rules for the judgements. Again, we do not dis-
cuss all these rules in detail. Let us focus on the text generation judgement for



A Formal Way from Text to Code Templates 115

Well-typedness of template collections � tcoll

⊥ � tmpl1 : Θ1 ∧ · · · ∧ Θn−1 � tmpln : Θn

∧ Θn � tmpl1 ∧ · · · ∧ Θn � tmpln
� 〈 tmpl1, . . . , tmpln 〉

[collection]

Extraction of type context Θ � tmpl : Θ

targ1 = ttype1 tvn1 ∧ · · · ∧ targn = ttypen tvnn

∧ Θ @ tn = ⊥ ∧ Θ′ = Θ[tn �→ 〈 ttype1, . . . , ttypen 〉]
Θ � �define tn 〈 targ1, . . . , targ 〉� . . . �enddef � : Θ′ [extract]

Well-typedness of templates Θ � tmpl

targ1 = ttype1 tvn1 ∧ · · · ∧ targn = ttypen tvnn

∧ T = ⊥[tvn1 �→ ttype1, . . . , tvnn �→ ttypen]
∧ Θ, T � tstmt1 ∧ · · · ∧ Θ, T � tstmtm

Θ � �define tn 〈 targ1, . . . , targn 〉�
〈 tstmt1, . . . , tstmtm 〉

�enddef �

[template]

Well-typedness of statements Θ, T � tstmt

Θ, T � text [text]

T � texpr : τ

Θ, T � � texpr �
[expr]

(1) Θ @ tn = 〈 τ1, . . . , τn 〉
(2)∧T � texpr1 : τ1 ∧ · · · ∧ T � texprn : τn

Θ, T � �expand tn 〈 texpr1, . . . , texprn 〉 �
[expand]

(1) T � texpr : τ ∧ �L τ : τ ′

(2)∧T ′ = T [tvn �→ τ ′]
(3)∧Θ, T ′ � tstmt1 ∧ · · · ∧ Θ, T ′ � tstmtn

Θ, T � � for tvn in texpr � 〈 tstmt1, . . . , tstmtn 〉 �endfor�
[for]

(1) T � texpr : τ ∧ �B τ
(2)∧Θ, T � tstmt1 ∧ · · · ∧ Θ, T � tstmtm

Θ, T � � if texpr �
〈 tstmt1, . . . , tstmtn 〉

�else�
〈 tstmtn+1, . . . , tstmtm 〉

�endif �

[if]

Fig. 6. Rules of TL⊥ dynamic semantics



116 G. Wachsmuth

statements. T, Θ 
 tstmt ⇒ ψ is meant to hold if the statement tstmt generates
a list of text phrases ψ in the context of Θ and T .

The axiom [text] states that text generates itself. The rule [expr] defines text
generation for template expression. The expression is evaluated in the context of
the current variable environment to a value which in turn is converted to text.

The premises of rule [expand] specifies text generation by template expansion
as follows: (1) A table look-up for tn delivers the parameter names and the
statements of the template. (2) Parameter expressions are evaluated under the
current variable environment T and (3) the results are assigned to the parameter
names in a fresh variable environment T ′. (4) The statements are evaluated under
the new variable environment and the resulting text phrases are concatenated.

The rule [for] defines iterative text generation as follows: (1) The value ν of
the iteration expression is determined under the current variable environment
T . This value needs to be a list of elements ν1, . . . , νm. (2) New variable environ-
ments T1, . . . , Tm are retrieved by updating the value of the iteration variable tvn
to the corresponding value. (3) All statements in the iteration are executed under
each new environment and (4) the generated text phrases are concatenated.

The rules [then] and [else] for conditional statements read similarly: (1) The
value ν of the condition expression is evaluated under the current variable en-
vironment T and converted into a boolean value. (2) For true, the rule [then]
executes the first branch. For false, the rule [else] executes the second branch.
All statements in the branch are executed and (3) the generated text phrases
are concatenated.

4 Generating Code Template Languages

In this section, we provide a generic approach to derive a template language
from a target language. The resulting template language ensures the generation
of syntactically correct code with respect to the target language. The derivation
is split into three phases: First, we rely on grammar adaptation to syntactically
enhance the target language with constructs for template definitions. This steps
results in a grammar for the template language. Second, we rely on Natural
Semantics to define the static semantics of the resulting template language. This
includes a static judgement about the syntactical correctness of templates with
respect to the target language. Finally, we rely again on Natural Semantics to
define the dynamic semantics of the resulting template language.

Syntactical enhancement. We use grammar adaptation to enhance the gram-
mar of a target language. Figure 7 gives the corresponding adaptation script
which can be applied generically to any target language. First, we introduce
expressions, types, variable names, template names, and template arguments.
While names are typically morphem classes, expressions and types need to refer
to the grammar of an expression language. Second, we enhance the definition of
each nonterminal except morphem classes. We include rules for template expan-
sion and for a conditional statement. Additionally, we include a rule for tem-
plates. Third, we enhance the definition of each morphem class. We fold each



A Formal Way from Text to Code Templates 117

introduce texpr ttype tvn tn
introduce targ = ttype tvn
foreach nt : N

include nt = �expand tn texpr ∗ �
include nt = � if texpr∗ � nt �else� nt �endif�
include tmpl = �define �nt� tn targ∗ � nt �enddef�
include tstmt = nt
include dn = �nt�

endfor
foreach nt : M

fold ntM = nt
include ntM = � texpr �
include tstmt = ntM

include dn = �nt�
endfor
foreach nt : L

fold ntL = nt
include ntL = � for tvn in texpr � nt �endfor�
include tstmt = ntL

endfor
introduce tcoll = tmpl∗

Fig. 7. Generic adaptation script for the syntactical enhancement of a target language

morphem class to a fresh nonterminal and include a rule for expression evalu-
ation. Fourth, we enhance the definition of nonterminals occurring in a Kleene
closure. We fold each of these domains to a fresh nonterminal and include a rule
for iteration. Finally, we introduce template collections.

The result of the adaptation is a grammar for a template language particu-
larly concerned with the target language. In this template language, templates
are associated with a particular syntactical domain of the target language. Fig-
ure 8 gives an example. The upper part of the figure shows the grammar of a
simple programming language PL: A program prog consists of a list of state-
ments pstmt∗. A statement is either a variable declaration, an assignment, a
while loop, or a conditional statement. An expression pexpr is either an integer
number, a character string, a variable, a sum, a difference, or a string concate-
nation. The lower part of Fig. 8 shows the resulting grammar for the template
language TLPL.

Static semantics. During the syntactical enhancement, two helper domains
tstmt and dn are constructed. This allows us to use a generic model of the static
semantics. The model differs only slightly from the model for TL⊥. Figure 9 high-
lights the modifications. In Θ, we keep the syntactical domain of the template in
addition to the parameter types. In the well-typedness judgement for template
statements, we assign the addressed syntactical domain. Furthermore, we add a
judgement yielding the syntactical domain of an expression when converted into
text.



118 G. Wachsmuth

pprog = begin pstmt∗ end
pstmt = pvn : ptype | pvn := pexpr | while pexpr do pstmt∗ od

| if pexpr then pstmt∗ else pstmt∗ fi
pexpr = pvn | in | cs | pexpr + pexpr | pexpr − pexpr | pexpr ‖ pexpr
ptype = int | string

pvn variable names
in integer numbers
cs character strings

tcoll = tmpl∗

tmpl = �define pprog tn targ∗ �pprog �enddef�
| �define pstmt tn targ∗ �pstmt �enddef�
| �define pexpr tn targ∗ �pexpr �enddef�
| �define ptype tn targ∗ �ptype �enddef�

targ = ttype tvn
pprog = begin pstmt∗L end

| �expand tn texpr ∗ �
| � if texpr∗ � pprog �else� pprog �endif�

pstmt = pvnM : ptype | pvnM := pexpr | while pexpr do pstmt∗L od
| if pexpr then pstmt∗L else pstmt∗L fi
| �expand tn texpr ∗ �
| � if texpr∗ � pstmt �else� pstmt �endif�

pstmtL = pstmt | � for tvn in texpr � pstmt �endfor�
pvnM = pvn | � texpr �

. . .
tstmt = pprog | pstmt | pexpr | ptype | pvnM | inM | csM | pstmtL

dn = pstmt | pexpr | ptype | pvn | in | cs

Fig. 8. Syntactical domains of a simple programming language PL and its correspond-
ing template language TLPL

Domains

Θ = tn →fin ( τ∗ × dn ) (Template types and domains)

Principal judgements

Θ, T � tstmt : dn

� τ : dn

(Well-typedness of template statements)
(Syntactical domains of expression types)

Fig. 9. Generic model of TLPL static semantics (excerpt)

There are two kinds of inference rules. First, we provide generic rules for
language constructs introduced during the syntactical enhancement. Second,
we need to generate inference rules covering original constructs of the target
language. The generic rules deal with template statements introduced by the
syntactical enhancement. Only minor modifications are needed to the inference
rules of the static semantics of TL⊥. These modifications deal with domain



A Formal Way from Text to Code Templates 119

assignment for templates, statements, and expressions. The upper part of Fig. 10
presents the affected rules.

The lower part of the figure shows some of the inference rules generated for
TLPL. For each morphem class m, we generate an axiom of the form

Θ, T 
 m : �m�
where �m� yields the name of m. For each grammar rule nt = 〈 e1, . . . , en 〉, we
generate an inference rule of the form

premise1 ∧ · · · ∧ premisem

Θ, T 
 〈 p1, . . . , pn 〉 : �nt�
Each right-hand side element ei is mapped to a corresponding pattern pi in the
inference rule and premises might be added.

1. A nonterminal nt is mapped to a fresh variable v of the corresponding do-
main. The premise Θ, T 
 v : �nt� is added.

2. A Kleene closure nt∗ is mapped to a list pattern 〈 v1, . . . , vk 〉 with fresh
variables. The premises Θ, T 
 v1 : �nt� ∧ . . . ∧ Θ, T 
 vk : �nt� are
added.

3. A morphem class m is mapped to a fresh variable v of the corresponding
domain for mM which resulted from folding m during the syntactical en-
hancement. The premise Θ, T 
 v : �m� is added.

4. A keyword is mapped to itself. No premise is added.

Dynamic semantics. As for the static semantics, we can reuse the model of
TL⊥ dynamic semantics. The only modification affects the code table: We only
need to store single template statements instead of statement lists. Again, there
are two kinds of inference rules, generated and generic ones. The upper part of
Fig. 11 shows the generic rules. Modifications to inference rules of TL⊥ dynamic
semantics are highlighted.

The lower part of the figure shows generated rules for TLPL. Generation is
quite similar to the static case. For each morphem class m, we generate an axiom
of the form

Θ, T 
 m ⇒ m

stating that a morphem generates itself. For each grammar rule nt =〈 e1, . . . , en 〉,
we generate an inference rule of the form

premise1 ∧ · · · ∧ premisem

Θ, T 
 〈 p1, . . . , pn 〉 ⇒ 〈ψ1 : . . . : ψn 〉
The mapping of right-hand side element ei to a corresponding pattern pi is the
same as in the static case. The following premises are added:

1. For a nonterminal, the premise Θ, T 
 v ⇒ ψi is added.
2. For a Kleene closure, premises Θ, T 
 v1 ⇒ ψi,1 ∧ . . . ∧ Θ, T 
 v1 ⇒

ψi,m ∧ ψi = 〈ψi,1 : . . . : ψi,k 〉 are added.
3. For a morphem class, the premise Θ, T 
 v ⇒ ψi is added.
4. For a keyword kw , the premise ψi = kw is added.



120 G. Wachsmuth

Extraction of type context Θ � tmpl : Θ

targ1 = ttype1 tvn1 ∧ · · · ∧ targn = ttypen tvnn

∧ Θ′ = Θ[tn �→ 〈 〈 ttype1, . . . , ttypen 〉, dn 〉]
Θ � �define dn tn 〈 targ1, . . . , targn 〉� . . . �enddef� : Θ′ [extract]

Well-typedness of templates Θ � tmpl : dn

targ1 = ttype1 tvn1 ∧ · · · ∧ targn = ttypen tvnn

∧ T = ⊥[tvn1 �→ ttype1, . . . , tvnn �→ ttypen]
∧ Θ, T � tstmt : dn

Θ � �define dn tn 〈 targ1, . . . , targn 〉� tstmt �enddef� : dn
[template]

Well-typedness of statements Θ, T � tstmt : dn

T � texpr : τ ∧ � τ : dn

Θ, T � � texpr � : dn
[expr]

Θ @ tn = 〈 〈 τ1, . . . , τn 〉, dn 〉
∧ T � texpr 1 : τ1 ∧ · · · ∧ T � texprn : τn

Θ, T � �expand tn 〈 texpr1, . . . , texprn 〉 � : dn
[expand]

T � texpr : τ ∧ �L τ : τ ′

∧ T ′ = T [tvn �→ τ ′]
∧ Θ, T ′ � tstmt : dn

Θ, T � � for tvn in texpr � tstmt �endfor� : dn
[for]

T � texpr : τ ∧ �B τ

∧ Θ, T � tstmt1 : dn ∧ Θ, T � tstmt2 : dn

Θ, T � � if texpr � tstmt1 �else� tstmt2 �endif� : dn
[if]

(2) Θ, T � pstmt1 : pstmt ∧ · · · ∧ Θ, T � pstmtn : pstmt

Θ, T � begin 〈 pstmt1, . . . , pstmtn 〉 end : pprog
[pprog]

(3) Θ, T � pvnM : pvn
(1)∧Θ, T � ptype : ptype

Θ, T � pvnM : ptype : pstmt
[pstmt1]

...
Θ, T � cs : cs [cs]

Fig. 10. Rules of TLPL static semantics (excerpt)



A Formal Way from Text to Code Templates 121

Code table extraction Θ � tmpl ⇒ Θ

targ1 = ttype1 tvn1 ∧ · · · ∧ targn = ttypen tvnn

∧ Θ′ = Θ[tn �→ 〈 〈 tvn1, . . . , tvnn 〉, tstmt 〉]
Θ � �define dn tn 〈 targ1, . . . , targn 〉� tstmt �enddef� ⇒ Θ′ [extract]

Statement evaluation T, Θ � tstmt ⇒ ψ

Θ @ tn = 〈 〈 tvn1, . . . , tvnn 〉, tstmt 〉
∧ T � texpr 1 ⇒ ν1 ∧ · · · ∧ T � texprn ⇒ νn

∧ T ′ = ⊥[tvn1 �→ ν1, . . . , tvnn �→ νn]
∧ T ′, Θ � tstmt ⇒ ψ

T, Θ � �expand tn 〈 texpr 1, . . . , texprn 〉 �⇒ ψ
[expand]

T � texpr ⇒ ν ∧ �L ν ⇒ 〈 ν1, . . . , νm 〉
∧ T1 = T [tvn �→ ν1] ∧ · · · ∧ Tm = T [tvn �→ νm]
∧ T1, Θ � tstmt ⇒ ψ1

∧ · · ·
∧ Tm, Θ � tstmt ⇒ ψm

∧ ψ = 〈 ψ1 : . . . : ψm 〉
T, Θ � � for tvn in texpr � tstmt �endfor�⇒ ψ

[for]

T � texpr ⇒ ν ∧ �B ν ⇒ true

∧ T, Θ � tstmt ⇒ ψ

T, Θ � � if texpr � tstmt �else� . . . �endif�⇒ ψ
[then]

T � texpr ⇒ ν ∧ �B ν ⇒ false

∧ T, Θ � tstmt ⇒ ψ

T, Θ � � if texpr � . . . �else� tstmt �endif�⇒ ψ
[else]

(4) ψ1 = begin
(2)∧Θ, T � pstmt1 ⇒ ψ2,1 ∧ · · · ∧ Θ, T � pstmtn ⇒ ψ2,n

∧ψ2 = 〈ψ2,1 : . . . : ψ2,n 〉
(4)∧ψ3 = end

Θ, T � begin 〈 pstmt1, . . . , pstmtn 〉 end ⇒ 〈ψ1 : ψ2 : ψ3 〉
[pprog]

(3) Θ, T � pvnM ⇒ ψ1

(4)∧ψ2 = :
(1)∧Θ, T � ptype ⇒ ψ3

Θ, T � pvnM : ptype ⇒ 〈ψ1 : ψ2 : ψ3 〉
[pstmt1]

...

Fig. 11. Rules of TLPL dynamic semantics (excerpt)



122 G. Wachsmuth

5 Conclusion

Contribution. We give formal semantics to a core template language for text
generation. This way, we provide a starting point for semantics definitions of
template languages like MOF M2T. Furthermore, we make a transition from
text to true code generation. We show how a template language concerned with
a particular target language can be derived from the target language itself. The
resulting template language has clear semantics and ensures the syntactically
correctness of generated code. This contributes to the E in MDE. The approach
is generic and can be applied to any target language. In general, this paper
contributes to software language engineering.

Related Work. In the technological space of grammarware, some program
transformation languages like ASF [14] and Stratego/XT [15] allow to specify
program transformations in the concrete syntax of the object language. This
enables code generation based on concrete syntax. [16], provides a case study for
code generation with Stratego/XT. Furthermore, the benefits of using concrete
syntax in transformations and of a judgement about the syntactical correct-
ness of transformations are discussed. In [17], a generic method to integrate
target language grammars into arbitrary program transformation languages is
presented. The method is based on modular syntax definitions in the syntax
definition formalism SDF. In contrast to this approach, we prevent manual in-
tegration by using formal grammar adaptation steps. Furthermore, we address
the semantics of the transformation language. In general, our approach is re-
lated to the embedding of languages, e.g. SQL, into host languages [18,19],
e.g. Java [20].

Future Work. In this paper, we concern syntactical correctness of generated
code. In a next step, the static semantics of the target language should be taken
into account. This includes a restricted form of well-typedness checks (in terms
of the target language) for templates. Another important point is tool support.
When it comes to the target language, current template editors miss many use-
ful features like error highlighting and code completion. This inhibits productive
template engineering. Our approach is a starting point to overcome these short-
comings: Grammars and Natural Semantics allow for generic prototypical tool
support. Thus, we can directly develop language tools on base of the formal
syntax and semantics of a derived template language.

Acknowledgement. This work is supported by grants from the DFG (German
Research Foundation, Graduiertenkolleg METRIK). The author is indebted to
Ralf Lämmel for providing him with layout templates for the Natural Semantics
descriptions.



A Formal Way from Text to Code Templates 123

References

1. The Eclipse Foundation: Java Emitter Templates (JET) (2008),
http://www.eclipse.org/modeling/emf/

2. The Eclipse Foundation: Eclipse Modeling Framework (EMF) (2007),
http://www.eclipse.org/modeling/emf/

3. OpenArchitectureWare: XPand (2008), http://www.openarchitectureware.org
4. The Eclipse Foundation: Eclipse Graphical Modeling Framework (GMF) (2008),

http://www.eclipse.org/gmf/

5. Object Management Group: MOF Model to Text Transformation Language, ver-
sion 1.0 (January 2008)

6. Parr, T.J.: A functional language for generating structured text. Draft (2006)
7. Parr, T.J., Quong, R.W.: Antlr: a predicated-ll(k) parser generator. Softw. Pract.

Exper. 25(7), 789–810 (1995)
8. Parr, T.J.: Intelligent web site page generation (2007)
9. Lämmel, R.: Grammar adaptation. In: Oliveira, J.N., Zave, P. (eds.) FME 2001.

LNCS, vol. 2021, pp. 550–570. Springer, Heidelberg (2001)
10. Kahn, G.: Natural semantics. In: Brandenburg, F.J., Wirsing, M., Vidal-Naquet,

G. (eds.) STACS 1987. LNCS, vol. 247, pp. 22–39. Springer, Heidelberg (1987)
11. Lämmel, R., Wachsmuth, G.: Transformation of SDF syntax definitions in the

ASF+SDF Meta-Environment. ENTCS 44(2) (2001)
12. Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML

(Revised). MIT Press, Cambridge (1997)
13. Parr, T.J.: Enforcing strict model-view separation in template engines. In: Feld-

man, S.I., Uretsky, M., Najork, M., Wills, C.E. (eds.) WWW 2004, pp. 224–233.
ACM, New York (2004)

14. van den Brand, M., Heering, J., de Jong, H., de Jonge, M., Kuipers, T., Klint,
P., Moonen, L., Olivier, P., Scheerder, J., Vinju, J., Visser, E., Visser, J.: The
ASF+SDF Meta-Environment: a Component-Based Language Development En-
vironment. In: Wilhelm, R. (ed.) CC 2001. LNCS, vol. 2027, p. 365. Springer,
Heidelberg (2001)

15. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/xt 0.16: com-
ponents for transformation systems. In: Hatcliff, J., Tip, F. (eds.) PEPM 2006, pp.
95–99. ACM, New York (2006)

16. Hemel, Z., Kats, L.C.L., Visser, E.: Code generation by model transformation. In:
Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp.
183–198. Springer, Heidelberg (2008)

17. Visser, E.: Meta-programming with concrete object syntax. In: Batory, D., Consel,
C., Taha, W. (eds.) GPCE 2002. LNCS, vol. 2487, pp. 299–315. Springer, Heidel-
berg (2002)

18. Bravenboer, M., Dolstra, E., Visser, E.: Preventing injection attacks with syntax
embeddings. In: Consel, C., Lawall, J.L. (eds.) GPCE 2007, pp. 3–12. ACM, New
York (2007)

19. Gao, J., Heimdahl, M., Van Wyk, E.: Flexible and extensible notations for modeling
languages. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 102–
116. Springer, Heidelberg (2007)

20. Van Wyk, E., Krishnan, L., Schwerdfeger, A., Bodin, D.: Attribute grammar-based
language extensions for java. In: Ernst, E. (ed.) ECOOP 2007. LNCS, vol. 4609,
pp. 575–599. Springer, Heidelberg (2007)

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www.openarchitectureware.org
http://www.eclipse.org/gmf/


Context-Aware Adaptive Services:
The PLASTIC Approach�

Marco Autili, Paolo Di Benedetto, and Paola Inverardi

Dipartimento di Informatica - Università degli Studi di L’Aquila, Italy
{marco.autili,paolo.dibenedetto,inverard}@di.univaq.it

Abstract. The near future envisions a pervasive heterogeneous
computing infrastructure that makes it possible for mobile users to run
software services on a variety of devices, from networks of devices to
stand-alone wireless resource-constrained ones. To ensure that users meet
their non-functional requirements by experiencing the best Quality of
Service according to their needs and specific contexts of use, services
need to be context-aware and adaptable. The development and the ex-
ecution of such services is a big challenge and it is far to be solved. In
this paper we present our experience in this direction by describing our
approach to context-aware adaptive services within the IST PLASTIC
project. The approach makes use of Chameleon, a formal framework
for adaptive Java applications.

1 Introduction

Pervasive computing is an emerging paradigm that is rapidly changing the ways
we use technologies to perform everyday tasks. The wide spread of small com-
puting devices and the introduction of new communication infrastructures make
it possible for mobile users to run software services on a variety of devices
from networks of devices to stand-alone wireless resource-constrained ones. B3G
networks [30] have gained importance as an effective way to realize pervasive
computing by offering broad connectivity through various network technologies
pursuing the convergence of wireless telecommunication and IP networks (e.g.,
UMTS, WiFi and Bluetooth).

Ubiquitous networking empowered by B3G networks makes it possible for mo-
bile users to access networked software services across heterogeneous infrastruc-
tures through resource-constrained devices characterized by their heterogeneity
and limitedness. Software applications running over this kind of infrastructure
must cope with resource scarcity and with the inherent faulty and heterogeneous
nature of this environment [9]. Indeed to ensure that users meet their non-functional
requirements by experiencing the best Quality of Service (QoS) according to their
needs and specific contexts of use, services need to be context-aware and adapt-
able. The development and the execution of such services is a big challenge for the
� This work is part of the IST PLASTIC project and has been funded by the European

Commission, FP6 contract number 026955, http://www.ist-plastic.org/.

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 124–139, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Context-Aware Adaptive Services: The PLASTIC Approach 125

research community and it far to be solved. This paper describes our experience
in this direction and, by extending our preliminary work in [17], presents our ap-
proach to context-aware adaptive services within the IST PLASTIC project [21].
The approach makes use of Chameleon, a formal framework for adaptive Java
applications [7]. The goal of the PLASTIC project is the rapid and easy devel-
opment, deployment and execution of adaptable services for B3G networks [30].
PLASTIC builds on Web Services (WS) and component-based technologies, and
introduces the notion of requested Service Level Specification (SLS) and offered
SLS to deal with the non-functional dimensions - i.e., QoS - that will be used to
establish the Service Level Agreement (SLA) between the service consumer and
the service provider. Services are implemented as adaptable components and are
deployed on heterogeneous resource-constrained mobile devices. The new contri-
bution of this paper is to describe the two types of adaptation supported by a
PLASTIC service, namely adaptation driven by the (requested) SLS and adap-
tation with respect to the characteristic of the execution context. We name these
two types of adaptation SLS-based adaptation and context-aware adaptation, re-
spectively. Service adaptability is achieved via a development paradigm based on
SLS and resource-aware programming supported by Chameleon that takes into
account the characteristics of the hosting environment like resource availability,
network conditions, and the SLSs.

The paper is organized as follows: Section 2 defines the two dimensions of the
PLASTIC adaptation and Section 3 briefly describes the PLASTIC development
environment. Section 4 introduces the Chameleon framework and describes
how it has been used for implementing the PLASTIC Service-oriented Interac-
tion Pattern. Section 5 describes the actual implementation of Chameleon by
showing how the approach has been applied to the PLASTIC e-Health Remote
Diagnosis case study. Related work is discussed in Section 6. Concluding remarks
and future directions are given in Section 7.

2 PLASTIC Adaptation(s)

In this section we define the two dimensions of adaptation supported by a PLAS-
TIC service.

The first kind of adaptation we consider is SLS-based adaptation. For this
adaptation the context of interest is represented by the preferences expressed by
the user in the requested SLS and by the provider in the offered SLS. The SLS
represents the non-functional characteristics of the service. It is coupled with the
service interface and it is used to establish the SLA between a user requesting
the service and a provider of the service. The SLA defines the conditions on the
QoS accepted by both the service consumer and the service provider. Adaptation
in PLASTIC is used by the service provider to exhibit a service with different
SLS. The exposed service is actually a generic one that at “matching time” is
adapted with respect to the requested SLS and the available execution context.

The second type of adaptation is context-aware adaptation. For this adapta-
tion the context of interest is represented by the provider, network and consumer
contexts which represent the environment in which a service is provisioned and



126 M. Autili, P. Di Benedetto, and P. Inverardi

consumed. PLASTIC applications are deployed over heterogeneous, resource-
constrained devices, thus the provider and consumer contexts are their respective
device resource characteristics - e.g., screen resolution, CPU frequency, memory
size, available radio interfaces, networks in reach. The B3G network context
identifies the characteristics of the (multiple) network(s) between consumer and
provider such as number and type of networks, number of active users, number
of available services, security, transmission protocol, access policy, etc. The net-
work context impacts on the network QoS in terms of bitrate, transfer delay,
packet-loss, network coverage, price and energy consumption for using a given
network. Adaptation in this case is practiced by the service programmer who
can produce a generic service that can be customized with respect to the actual
resource characteristics of the execution context so that its execution can be
correctly supported.

In PLASTIC adaptation is restricted at discovery time, that is at the moment
in which the service execution context and the user QoS preferences (requested
SLS) are known, and a SLA can be put in place. The advantage of this approach
to adaptation is that it is cost effective since it is a compromise between static and
fully dynamic adaptation. The limit is that unpredictable changes of contexts
might invalidate the SLA and thus make the service unusable. However in highly
heterogeneous and autonomous infrastructures like B3G, QoS attributes cannot
be (a priori) guaranteed. Thus SLA violations can occur and must be monitored
and detected. Indeed, in [17] we present a first attempt to tackle this problem by
monitoring service execution to detect possible SLA violations. Upon violation
either (i) the service can be adapted to the new context so that it can continue
respecting the agreed SLA or (ii) a re-negotiation of the SLA can happen which
can in turn drive a new adaptation.

3 PLASTIC Development Environment

In this section we briefly describe the PLASTIC development environment from
the perspective of a service developer. PLASTIC provides a set of tools1 that
are all based on the PLASTIC Service Conceptual Model2 and support the ser-
vice life cycle, from design to implementation to validation to execution. The
conceptual model formalizes all the concepts needed for developing B3G service-
oriented applications. The overall approach is model driven, starting from the
conceptual model till the execution service model used to monitor the service.

With reference to Figure 1, the PLASTIC conceptual model has been con-
cretely implemented as a UML2 profile and, by means of the PLASTIC devel-
opment environment tools, the functional behavior of the service and its non-
functional characteristics can be modeled. Then, non functional analysis and
development activities are iteratively performed [10]. The analysis aims at com-
puting QoS indices of the service at different levels of detail, from early design
1 Available at http://gforge.inria.fr/projects/plastic-dvp/
2 The Formal description of the PLASTIC conceptual model and of its relationship

with the PLASTIC platform toolset is available at http://www.ist-plastic.org/



Context-Aware Adaptive Services: The PLASTIC Approach 127

to implementation to publication, to support designers and programmers in the
development of services that satisfy the specified QoSs, i.e., SLSs. In PLASTIC,
among QoS measures, we only consider performance and reliability. The princi-
pal performance indices are utilization and throughput of (logical and physical)
resources, as well as response time for a given task. The considered reliability
measures are, instead, probability of failure on demand and mean time to failure.
Discrete set of values - e.g., high, medium, low - are used to identify ranges.

The analysis and validation activities rely on artifacts produced from the
PLASTIC service model through different model transformations. For instance,
the service model editor [8] and the SLA editor, that are part of the PLASTIC
platform toolset, are integrated through a model-to-code transformation. Once
the service model has been specified, a model-to-code transformation can be
performed in order to translate the parts of the service model that are needed
for specifying the agreement (e.g., involved parties, other services, operations,
etc.) into a HUTN file (i.e., a human-usable textual notation for SLA) which the
SLA editor is capable to import. The SLS attached to the published service and
the SLA are formally specified by using the language SLAng [16].

Fig. 1. Development Environment

After the service has been im-
plemented, the PLASTIC validation
framework enables the off-line, prior
to the service publication, and on-
line, after the service publication, val-
idation of the services with respect
to functional - through test mod-
els such as Symbolic State Machines
(SSMs) or based on BPEL processes
- and non-functional properties [12].
This means that through validation
it is possible to assess whether the
service exhibits the given SLS. On-
line validation concerns the “check-
ing” activities that are performed af-
ter service deployment such as SLA

monitoring [23].
For the purposes of this work, hereafter we will concentrate on how PLASTIC

services are implemented and how the two types of adaptation, namely, SLS-
based adaptation and context-aware adaptation, are supported.

4 PLASTIC Services Deployment and Access

PLASTIC services are implemented by using the Chameleon Programming
Model (presented in Section 5) that, extending the Java language, permits de-
velopers to implement services in terms of generic code. Such a generic code,
opportunely preprocessed, generates a set of different application alternatives,
i.e., different standard Java components that represent different ways of



128 M. Autili, P. Di Benedetto, and P. Inverardi

implementing a provider/consumer application. Therefore, an adaptable soft-
ware service might be implemented as and consumed by different application
alternatives (i.e., different adaptations). Each alternative is characterized by (i)
the resources it demands to be correctly executed (i.e., Resource Demand) and
(ii) the so called Code-embedded SLSs. The latter are QoS indices retrieved by
the non-functional analysis. They are specified by the developers at generic code
level through annotations attached to methods and are then automatically “in-
jected” into the application alternatives by Chameleon. As it will be clear in
Section 5, code-embedded SLSs contribute to determine the final SLSs offered
by the different alternatives.

In the remainder of this section we describe how adaptive PLASTIC services
are published, discovered and accessed (Section 4.1), and how both provider-
and consumer-side application alternatives (stored in the Applications Registry)
can be over-the-air delivered and deployed on devices (Section 4.2).

4.1 The PLASTIC Service-Oriented Interaction Pattern

The PLASTIC Service-oriented Interaction Pattern for provision and consump-
tion of adaptive services (Figure 2) involves the following steps.

Fig. 2. PLASTIC Interaction Pattern

The service provider publishes
into the PLASTIC Registry the
service description in terms of
both functional specifications and
associated offered SLSs (1).
Specifically, a provider can pub-
lish a service with different SLSs,
each one associated to a differ-
ent provider-side application al-
ternative that represents a way of
adapting the service. The service
consumer queries the PLASTIC
registry for a service functional-
ity, additionally specifying the re-
quested SLS (2). The PLASTIC
registry searches for service descriptions that satisfy the consumer request. If
suitable service descriptions are present in the service registry, the service con-
sumer can choose one of them on the base of their offered SLSs. After the service
consumer accepts an offered SLS, the registry returns the actual reference to the
provider-side application alternative that implements the (adapted) service with
the accepted SLS (3.a). Thus, the SLA can be established and the service con-
sumption can take place (4). If no suitable published service is able to directly
and fully satisfy the requested SLS, negotiation is necessary (3.b). The negotia-
tion phase starts by offering a set of alternative SLSs. The consumer can accept
one of the proposed SLSs, or perform an “adjusted” request by reiterating the
process till an SLA is possibly reached. In Figure 2 the box SLA labeling the
provider and the consumer represents the agreement reached by both of them.



Context-Aware Adaptive Services: The PLASTIC Approach 129

4.2 Over-the-Air Application Alternatives Delivery and
Deployment

With reference to Figure 3, we call PLASTIC-enabled devices the devices de-
ploying and running the Chameleon Client component and the PLASTIC
B3G Middleware [13] that together are able to retrieve contextual information.
A PLASTIC-enabled device provides a declarative description of the execution
context in terms of the resources it supplies (i.e., Resource Supply) and a descrip-
tion of the impact that computational elements (i.e., code instructions) have on
the resources (i.e., Resource Consumption Profile). PLASTIC-enabled devices
can host both service consumers and service providers.

Fig. 3. Chameleon Client-Server

Indeed, the Chameleon Client
component can interact with the
Chameleon Server component in or-
der to dynamically download (from
the Chameleon Applications Reg-
istry), deploy and run (i) provider-
side application alternatives, e.g., a
.war file for a web application to be
exposed as service and, if needed, (ii)
ad-hoc consumer-side application al-
ternatives, e.g., a .jar and a .jad files
for a midlet to be used for consuming
a service. Note that, the Chameleon

client is a lightweight component that
effortlessly runs on limited devices;
the Chameleon server runs on a

back-end server which does not suffer resource limitations.

Fig. 4. Application Alternatives Delivery

By referring to Figure 4, (i)
a provider that wants to of-
fer a service S can connect di-
rectly to the Chameleon ap-
plication registry and search
for an application among a
set of already implemented
application alternatives to be
exposed as service S. The
choice is based on the func-
tional description of S and the
code-embedded SLSs restrict-
ing to those alternatives that
are compatible (i.e., will run
safely) with respect to the ex-
ecution context (i.e., resource
supply and resource consumption profile). The chosen alternative will be au-
tomatically delivered and deployed via the Over-The-Air (OTA) provisioning



130 M. Autili, P. Di Benedetto, and P. Inverardi

technique [2] on the provider device. Note that, the process can be used for de-
livering and deploying more than one alternative A1, . . . , An for S. Then, the
functional description of S will be published into the PLASTIC registry along
with the final offered SLSs defined on the base of the code-embedded SLSs, as-
sociated to A1, . . . , An, possibly refined by the provider through the SLA editor
(see Section 3).

(ii) Differently, if to consume the service S an ad-hoc client application needs
to be deployed on the consumer device, the final offered SLSs published by the
provider will be defined on the base of the code-embedded SLSs associated to
all the chosen provider application alternatives A1, . . . , An combined with the
code-embedded SLSs associated to all the consumer application alternatives of
S. In this case, upon the consumer request, the PLASTIC registry relies on the
Chameleon application registry to search for a set of compatible consumer-side
application alternatives C1, . . . , Cm that are able to safely run on the consumer
device and properly interact with the service S (i.e., A1, . . . , An). The delivered
consumer application alternative will depend on the SLS chosen among the only
offered SLSs related to C1, . . . , Cm.

5 Chameleon-Based PLASTIC Services Implementation

In this section we present the Chameleon framework and show how it sup-
ports the implementation of PLASTIC adaptive services and their provision
and consumption. For more detailed presentations of the formalisms and defi-
nitions underlying the framework please refer to [6,7] (and references therein).
The Chameleon framework has been implemented [7] on the Java platform and
it exploits XML-based technologies for data exchange. The framework will be
presented by means of the PLASTIC e-Health Remote Diagnosis case study.

The e-Health service allows to establish a link between patients and assistants
providing support for video conferences, medical agenda management, alarm
generation and management, remote diagnosis (RD), etc. Both professionals and
patients are considered to be nomadic and can move with their mobile devices
e.g., move from outdoor to their office/home. Therefore, mobility becomes a
key issue and services need to be adapted, both to the heterogeneous networks
capabilities and to the terminals that could be used by professionals and patients.

For the purposes of this paper, we focus on the RD functionality. When an
alarm is generated on the patient side due to some event like patient inactivity,
dangerous vital parameters or help request, the e-Health system contacts one or
more doctors to perform a diagnosis. On the doctor side the diagnosis process
is supported by an RD consumer application that, connecting to an RD service
provider installed on the patient side, allows the doctor to check the patient
camera and monitor vital parameters, e.g., blood pressure, temperature, heart
rate. The whole service is adapted according to both the patient (the provider)
and doctor (the consumer) context.
� Programming Model. Referring to right-hand side of Figure 5, the De-

velopment Environment (DE) is based on a Programming Model that provides



Context-Aware Adaptive Services: The PLASTIC Approach 131

Fig. 5. Chameleon Framework

developers with a set of ad-hoc extensions to Java for easily specifying services
code in a flexible and declarative way. As already mentioned, services code is a
generic code that consists of two parts: the core and the adaptable code - see in
Figure 5 the screen-shoot of our DE implemented as an Eclipse plugin [7]. The
core code is the frozen portion of the application and represents its invariant
semantics. The adaptable one represents the degree of variability that makes the
code capable to adapt. The generic code is preprocessed by the Chameleon

Preprocessor (1), also part of the DE, and a set of different standard Java ap-
plication alternatives is automatically derived and stored into the Application
Registry (2).

Figure 6 represents an excerpt of a generic code, as part of the RD
consumer MIDlet, written by the developer according to the Chameleon pro-
gramming model. The core code is a standard code and, hence, can be speci-
fied through standard Java classes; the adaptable code is an “extended” code
and is specified through Adaptable Classes that declare one or more Adaptable
Methods. Methods are the smallest building blocks that constitute the entry-
points for a behavior that can be adapted. Alternative Classes define how one
or more adaptable methods can actually be adapted. For instance, the adapt-
able class RemoteDiagnosis declares three adaptable methods (see the keyword
adaptable): visualCheck, vitalParameters and connect. The implementation of
these adaptable methods is defined by two alternative classes (see the keywords
alternative and adapts): HighSupportRD and LowSupportRD. Such a generic
code will be preprocessed by the Chameleon Preprocessor and the two stan-
dard Java application alternatives described in Table 1 will be derived by suit-
ably combining the adaptable methods implementations specified by the various
alternatives.

The programming model also allows for specifying additional information by
using Annotations. Annotations are specified at the generic code level and permit
to specify resource demand (Resource Annotation), code-embedded SLS (SLS
Annotation), upper bound on the number of loop iterations (Loop Annotation)
and recursive method calls (Call Annotation).



132 M. Autili, P. Di Benedetto, and P. Inverardi

adap tab l e p ub l i c c l a s s RemoteDiagnos i s extends MIDlet {. . .
adap tab l e vo id connect ( ) ;
adap tab l e vo id v i s u a l Ch e ck ( ) ;
adap tab l e vo id v i t a l P a r am e t e r s ( ) ;
. . .

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

a l t e r n a t i v e c l a s s HighSupportRD adapts RemoteDiagnos i s {
p r i v a t e vo id connect ( ) { . . .

Annotat ion . SLSAnnotat ion ( ‘ ‘ Throughput ( h i gh ) ’ ’ ) ;
Annotat ion . r e s o u r c eAnno t a t i o n ( ‘ ‘ WiFi ( t r ue ) ’ ’ ) ;
QoSInfo . s e t B i t r a t e (HIGH ) ;
P l a s t i cM i dd l ewa r e . s e l e c tN e two r k ( Qos In f o ) ;

}
p r i v a t e vo id v i s u a l Ch e ck ( ) {/∗ shows v i d eo s t r eam ing from pa t i e n t ’ s cameras ∗/}
p r i v a t e vo id v i t a l P a r am e t e r s ( ) {/∗draws d iagrams o f v i t a l pa ramete r s ∗/}

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

a l t e r n a t i v e c l a s s LowSupportRD adapts RemoteDiagnos i s {
p r i v a t e vo id connect ( ) { . . .

Annotat ion . SLSAnnotat ion ( ‘ ‘ Throughput ( low ) ’ ’ ) ;
QoSInfo . s e t B i t r a t e (LOW) ;
P l a s t i cM i dd l ewa r e . s e l e c tN e two r k ( Qos In f o ) ;

}
p r i v a t e vo id v i s u a l Ch e ck ( ) {/∗ shows p a t i e n t ’ s camera images ∗/ }
p r i v a t e vo id v i t a l P a r am e t e r s ( ) {/∗ shows t e x t u a l data o f v i t a l pa ramete r s ∗/}

}
Fig. 6. An Adaptable MIDlet

Table 1. Remote Diagnosis Consumer Application Alternatives

Alter-
native

Features Resource Demand Code-embedded SLS

Cons 1 Shows patient’s camera images and textual data
of vital parameters

{Energy(200)} {Throughput(low)}

Cons 2 Shows video streaming and images from patient’s
cameras and draws diagrams of vital parameters

{WiFi(true),
Energy(400)}

{Throughput(high)}

pub l i c c l a s s Annota t i on {
pub l i c s t a t i c vo id r e s o u r c eAnno t a t i o n ( S t r i n g ann ){} ;
pub l i c s t a t i c vo id SLSAnnotat ion ( S t r i n g ann ){} ;
pub l i c s t a t i c vo id l o opAnnota t i on ( i n t n ){} ;
pub l i c s t a t i c vo id c a l l A n n o t a t i o n ( i n t n ){} ;

}
Fig. 7. Annotation Class

Annotations can be
specified by calls to
“do nothing” static
methods of the An-
notation class in Fig-
ure 7. For instance, in
Figure 6 the method calls Annotation.resourceAnnotation(“WiFi(true)”) and An-
notation.SLSAnnotation(“Throughput(high)”) are used to specify that the High-
SupportRD alternative class demands for a WiFi radio-interface on the consumer
device and provides a high quality remote diagnosis support. Note that, a high
throughput is related to the usage of the resource WiFi. These annotations will
contribute to determine the resource demand and the code-embedded SLSs, re-
spectively, of the derived alternatives. Indeed, the whole framework is based
on the Resource and SLS Models (see Figure 5) that, in particular, allow for
specifying conforming resource and SLS annotations, respectively.
� Resource and SLS Models. The resource model is a formal model that

allows the characterization of the resources needed to consume/provide a service
and it is at the base of context-aware adaptation. The SLS model is a model that



Context-Aware Adaptive Services: The PLASTIC Approach 133

permits developers to attach non-functional information at generic code level
through code-embedded SLSs and is used for SLS-based adaptation purposes
(see Section 4).

Resource Definition
def ineRES Energy as Natu ra l
def ineRES Bluetoo th as Boolean

SLS Definition
def ineSLS Throughput as { low , medium , h i gh}
def ineSLS Mob i l i t y
as{ low , medium , h i gh}

Fig. 8. Resource and SLS Definitions

A resource is modeled as a
typed identifier that can be as-
sociated to natural, boolean or
enumerated values. Natural val-
ues are used for consumable re-
sources whose availability varies
during execution (e.g., energy,
heap space). Boolean values de-
fine non-consumable resources that can be present or not (e.g., function li-
braries, network radio interfaces) and enumerated values define non-consumable
resources that provide a restricted set of admissible values (e.g. screen resolution,
network type). Figure 8 shows an example of some resource and SLS definitions
for the RD case study. Both the Resource Demand and the Resource Supply are
specified in terms of resource sets that couple resources to their values in the
form {res1(val1), ..., resn(valn)}. Table 1 also reports the resource demand and
the code-embedded SLS calculated by the analyzer (see below). For example,
the resource demand of the Cons 2 application alternative in Table 1, specifies
that, to run safely, the alternative will require a WiFi network readio-interface
(WiFi(true)) and a battery state-of-charge of the target consumer device at
least of 400 energy units (Energy(400)).

The SLS Model bases itself around the same formalisms as the resource model
and it is used for specifying SLSs. For example, the code-embedded SLS of
the Cons 2 alternative of Table 1, specifies that the alternative offers a high
throughput (Throughput(high)).
�Chameleon Server.Still referring to Figure 5, the Analyzer (running on the

Chameleon server) is an interpreter that, abstracting a standard JVM, is able
to analyze the application alternatives (3) and derive their resource consumption
(5.a) and the code-embedded SLSs (5.b). The analyzer is parametric with respect
to the characteristics of the execution environment as described through the re-
source consumptions profile sent by the device (4.a). We remind that the profile
provides a characterization of the target execution environment, in terms of the
impact that Java bytecode instructions have on the resources. Note that this im-
pact depends on the execution environment since the same bytecode instruction
may require different resources in different execution environments.

More precisely, these profiles associate resources consumption to particular
patterns of bytecode instructions specified as regular expressions. Since the byte-
code is a verbose language3, this allows to define the resource consumption as-
sociated to both basic instructions (e.g., ipush, iload, etc.) and complex ones,
e.g., method calls. Figure 9 represents an example of a resource consumption
profile. For instance, the last row states that a call to the getLocalDevice()

3 This is particularly true for method invocations where the method is uniquely iden-
tified by a fully qualified id (base class identifier + name + formal parameters).



134 M. Autili, P. Di Benedetto, and P. Inverardi

1) aload 0 → {Memory(2)} 2) .* → {Memory(1), Energy(1)}
3) invokestatic LocalDevice.getLocalDevice() → {Bluetooth(true), Energy(20)}

Fig. 9. A Resource Consumption Profile

static method of the LocalDevice class within the javax.bluetooth library
requires the presence of Bluetooth on the device (Bluetooth (true)), and it
causes a consumption of the resource Energy equal to 20 cost units.

The analyzer performs a worst-case analysis of the program by statically in-
specting the Java bytecode of the different application alternatives. More specif-
ically, the analyzer scans each possible execution path of the application alterna-
tive bytecode by reconstructing (through the DAVA decompiler4) and travers-
ing the bytecode abstract syntax tree (BAST). Within a path, each encoun-
tered instruction is matched against the resource consumption profile and, by
combining the demand of each instruction, the overall resource demand of the
path is derived. The final resource demand (5.a) of the application alterna-
tive will be the one of the most demanding execution path. At the same time
the encountered SLS annotations contribute to determine the code-embedded
SLS (5.b). The analyzer is based on an operational semantic that has been for-
malized using a transition system. It is out of the scope of this paper to go
into details of our analysis technique, and we refer to [6] for further details.

IsLeaf(n) Label(n) = instr
instr !Like("invoke*")

!IsAnnotation(n)
r = b(instr)

〈e, b, M, n〉 →ARA {〈r, φ〉}

Fig. 10. Fall-Back Leaf Rule

As an example, in Figure 10 we show a very
simple rule that is applied when the tran-
sition system (reaching a BAST leaf node
n) encounters a basic bytecode instruction
instr that is neither a method invocation
(i.e., !Like("invoke*")) nor an annotation
(i.e., !IsAnnotation(n)). The rule simply uses

the function b that matches instr against the resource consumption profile in
order to obtain its resource demand r. The result is a set of pairs 〈r, s〉 where s
contains the encountered code-embedded SLSs (empty in this case since instr
is not an annotation).

Still referring to Figure 5, the resource demands (5.a) of the application al-
ternatives together with the resource supply sent by the device (4.b) are used
by the Customizer that is able to choose (6.a) and propose a set of “best”
suited application alternatives, and deliver (6.b) consumer- and/or provider-side
standard Java applications that (through the delivery mechanism described in
Section 4.2) can be automatically deployed in the target devices for execution.
The customizer bases on the notion of compatibility that is used to decide if
an application alternative can run safely on the requesting device, i.e., if for
every resource demanded by the alternative a “sufficient amount” is supplied
by the execution environment. For instance, a resource supply {WiFi(true),
Energy (300)} would be compatible only with the resource demand of adapta-
tion Cons 1 in Table 1.

4 Available at http://www.sable.mcgill.ca/dava/



Context-Aware Adaptive Services: The PLASTIC Approach 135

Table 2. Remote Diagnosis Provider Application Alternatives

Alter-
native

Features Resource Demand Code-embedded
SLS

Prov 1 Transmits images from patient camera, stores
and makes available manually inserted vital pa-
rameters values

{GPRS(true),
Memory(128),
...}

{Throughput(low),
Mobility(high)}

Prov 2 Streams video from patient camera, collects and
makes available data automatically retrieved
by measurement instruments, and provides all
functionalities of alternative Prov 1

{Memory(512),
PressureMeter(true),
HRM(true),
WiFi(true)...}

{Throughput(high),
Mobility(medium)}

Now, let us assume that the two application alternatives in Table 2 have
been derived for the provider (i.e., the patient): Prov 1 provides a high patient
mobility5 (Mobility(high)) but a low throughput (Throughput(low)), Prov 2
provides a limited patient mobility but a high throughput.

Since to consume the RD service an ad-hoc client application needs to be
deployed on the consumer device (see Section 4.2), the code-embedded SLSs
associated to provider alternatives that will be stored in the Chameleon ap-
plication registry will be those in Table 3. They results from the combination of
the code-embedded SLSs associated to the provider alternatives in Table 2 with
the ones associated to the consumer alternatives in Table 1. Note that merging
Throughput(low) with Throughput(high) produces Throughput(low).

Table 3. Combined Code-embedded SLSs

Cons 1 Cons 2
Prov 1 {Throughput(low),

Mobility(high)}
{Throughput(low),
Mobility(high)}

Prov 2 {Throughput(low),
Mobility(medium)}

{Throughput(high),
Mobility(medium)}

Still referring to Section 4.2, let
us now assume that a patient (a
provider), deploying both the alter-
natives Prov 1 and Prov 2 of Ta-
ble 2, has published the RD Service
in the PLASTIC registry along with
the offered SLSs associated to them
in Table 3. Upon a doctor (a consumer) request, the PLASTIC registry relies
on the Chameleon server to obtain a set of applications compatible with the
doctor device. If the doctor device is compatible only with the consumer-side RD
alternatives Cons 1 of Table 1, the doctor will be allowed to choose among only
the offered SLSs related to Cons 1 (i.e., the combined SLSs of Cons 1-Prov 1
and Cons 1-Prov 2 in Table 3).

6 Related Work

Our resource model and analyzer can be related to other approaches to resource-
oriented analysis. The MRG Project [5] proposes a framework (based on proof-
carrying code) for giving correct guarantees that programs are free from run-
time violations of resource bounds. The MRG approach is based on a resource-
counting semantics that takes into account, through a resource component, the
number of executed instructions and the maximum size of the stack frame. The
same line of research is continued in the Mobius project [11]. For example, in [3]
5 Mobility describes the size of network coverage considered by the PLASTIC B3G

middleware.



136 M. Autili, P. Di Benedetto, and P. Inverardi

the authors propose static analysis framework for the cost analysis of sequential
Java bytecode that adds cost relations for defining the cost of a program as a
function of its input data size.

In [25] the authors present a framework that, at both deployment- and run-
time, is able to estimate the energy consumption of a distributed Java-based
system. In particular, at the component level, they integrate an energy cost
model and a communication cost model that allow for estimating the overall
energy cost of each component. This information can then be used by software
engineers in order to make decisions when adapting an application.

Tivoli [19] provides a resource modeler tool that enables the specification of
resources and allows for the automatic monitoring of them by instrumenting the
environment in which programs are executed.

The worst-case execution-time (WCET) problem has been deeply studied in
the literature. In [28], the authors give an exhaustive survey of methods and
tools for estimating (under precise assumptions) the WCET of hard real-time
systems. Even though not strictly related to our work, this work provides an
in-depth insight into the static and dynamic program analyses techniques used
in this research area. In particular, the work in [4] also addresses the WCET
problem and proposes a parametric timing analysis that instead of computing
a single numeric value for WCET, as done by numeric timing analyses, derives
symbolic formulas for representing the WCET. By accounting for parameters of
the program, processor behaviour, and by deriving parametric loop bounds, the
proposed analysis allows for deriving precise WCETs.

All these approaches use a resource model and aim at giving an absolute (over-
)estimation of resources’ consumption. Our approach instead, does not aim at
establishing a punctual estimation rather aims at supporting a reasoning mech-
anism for selecting alternatives. Its correctness thus is restricted to consistently
reflect the ordering among resource consumptions of a set of alternatives that
will run in the same execution context.

By exploring all the possible computation paths and by mapping JVM byte-
code to a transition system, the Chameleon analyzer uses the same exhaustive
technique of other existent tools such as Java Pathfinder (JPF) [26]. JPF checks
for property violations (deadlocks or unhandled exceptions) traversing all pos-
sible execution paths. Differently from JPF, our analyzer gets rid of variable
values and abstracts the JVM with respect to resource consumption. In this ab-
straction we consider bytecode instructions behavior only by taking into account
their effects on resources.

For the sake of space, we cannot address all the recent related works in the
wide domain of software services. In the following, we provide only some ma-
jor references. In [20] an interesting approach is presented that considers sep-
aration of concerns between application logic and adaptation logic. The ap-
proach makes use of Java annotations to express metadata needed to enable dy-
namic adaptation. Stemming from the same separation of concerns idea, in [24]
in the scope of the MUSIC project [1], the authors propose the design of a
middleware- and architectural-based approach to support the dynamic



Context-Aware Adaptive Services: The PLASTIC Approach 137

adaptation and reconfiguration of the components and service composition struc-
ture. They use a planning-based middleware that, based on metadata included
in the available plans, enables the selection of the right alternative architectural
plan for the current context. Similarly to us this approach is based on requested
and offered QoS, and supports SLA negotiation. Differently from us, they do not
consider adaptability to the device execution context basing on a resource ori-
ented analysis that is parametric with respect to resource consumption profiles.

Current (Web-)service development technologies, e.g., [14,15,22,27,29] (just to
cite some), address only the functional design of complex services, that is they do
not take into account the extra-functional aspects (e.g., QoS requirements) and
the context-awareness. Our process borrows concepts from these well assessed
technologies and builds on them in order to make QoS issues, context-awareness
and adaptiveness emerge in service development.

7 Discussion and Future Work

In this paper we have described how the Chameleon framework is used to
realize a form of service adaptation in the IST PLASTIC project. Chameleon

allows for the development and deployment of adaptable applications (consuming
and providing services) targeted to mobile resource-constrained devices in the
heterogeneous B3G network. We have proposed a Service-oriented Interaction
Pattern for adaptable service provision and consumption, and have described
how it is based on Chameleon to support the two-fold PLASTIC adaptation
from both service provider side and consumer side.

Right now, PLASTIC adaptation happens at discovery time, thus the de-
ployed application is customized (i.e., it is tailored) with respect to the context
at binding time but, at run time, it is frozen with respect to evolution. If context
changes at run time the service needs to dynamically adapt to continue respect-
ing the reached SLA and dependability. As first attempt to tackle this problem,
in [17] we propose a mechanism that, exploiting ad-hoc methods for saving and
restoring the (current) application state, enables services’ evolution against mon-
itored SLA violations. Evolution is achieved by dynamically un-deploying the no
longer apt alternative and subsequently (re-)deploying a new alternative that is
able to preserve the agreed SLA. If no alternative is able to continue respecting
the agreed SLA, a re-negotiation of the SLA can happen which can in turn drive
a new adaptation.

Moreover, assuming that upon service request the user knows (at least a
stochastic distribution of) the mobility pattern [18] they will follow during service
usage, this permits to identify the successive finite contexts they can traverse dur-
ing service usage. Following this approach, an enhanced version of Chameleon

would be able to generate code that is a compromise between self-contained
(i.e., embedding adaptation logic) and tailored adaptable code. The code would
merge the adaptation alternatives that, associated to the specified mobility pat-
tern, are necessary to preserve the offered SLS. The code will also embed some
dynamic adaptation logic which is able to recognize context changes, seamlessly



138 M. Autili, P. Di Benedetto, and P. Inverardi

“switching” among the embedded adaptation alternatives. In this way, a seam-
less evolution will be performed among the embedded alternatives associated to
the mobility pattern, while the un-/re-deployment evolution will be performed
when moving out of the mobility pattern’s context.

We are currently performing an empirical analysis of the framework in order
to evaluate its correctness and its applicability to more complex real scenarios.
Moreover, we are investigating how ontology based specifications might be used
to establish a common vocabulary and relationships among resource/SLS types.
This would allow to relate resource/SLS types and to predicate about a common
set of related types. For instance, a demand of Energy could be related to a
supply of Battery.

References

1. MUSIC Project, http://www.ist-music.eu/
2. Over-The-Air (OTA), http://developers.sun.com/mobility/midp/articles/

ota/

3. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of
java bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 157–172.
Springer, Heidelberg (2007)

4. Altmeyer, S., Hümbert, C., Lisper, B., Wilhelm, R.: Parametric Timing Analyis
for Complex Architectures. In: Proc. of the 14th IEEE RTCSA, pp. 367–376. IEEE
Computer Society Press, Los Alamitos (2008)

5. Aspinall, D., MacKenzie, K.: Mobile resource guarantees and policies. In: Con-
struction and Analysis of Safe, Secure, and Interoperable Smart Devices (2006)

6. Autili, M., Di Benedetto, P., Inverardi, P.: Resource oriented static analysis of
Java programs. Technical Report univaq-1243 (2008), http://www.di.univaq.it/
chameleon/output/download.php?fileID=1243

7. Autili, M., Di Benedetto, P., Inverardi, P., Mancinelli, F.: Chameleon project -
SEA group, http://di.univaq.it/chameleon/

8. Autili, M., Berardinelli, L., Cortellessa, V., Di Marco, A., Di Ruscio, D., Inverardi,
P., Tivoli, M.: A development process for self-adapting service oriented applica-
tions. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS,
vol. 4749, pp. 442–448. Springer, Heidelberg (2007)

9. Autili, M., Caporuscio, M., Issarny, V.: A reference model for service oriented
middleware. Technical Report inria-00326479, INRIA Paris-Rocquencourt (2008)

10. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based performance
prediction in software development: A survey. IEEE TSE 30(5), 295–310 (2004)

11. Barthe, G.: Mobius, securing the next generation of java-based global computers.
In: ERCIM News (2005)

12. Bertolino, A., De Angelis, G., Di Marco, A., Inverardi, P., Sabetta, A., Tivoli, M.:
A Framework for Analyzing and Testing the Performance of Software Services. In:
Proc. of the 3rd ISoLA. CCIS, vol. 17, Springer, Heidelberg (2008)

13. Caporuscio, M., Raverdy, P.-G., Moungla, H., Issarny, V.: ubiSOAP: A service
oriented middleware for seamless networking. In: Proc. of 6th ICSOC (2008)

14. Eclipse.org. Eclipse Web Standard Tools, http://www.eclipse.org/webtools
15. IBM. BPEL4WS, Business Process Execution Language for Web Services (2003)
16. Skene, J., Lamanna, D., Emmerich, W.: Precise service level agreements. In: Proc.

of the 26th ICSE, pp. 179–188, Edinburgh, UK (May 2004)

http://www.ist-music.eu/
http://developers.sun.com/mobility/midp/articles/ota/
http://developers.sun.com/mobility/midp/articles/ota/
http://www.di.univaq.it/chameleon/output/download.php?fileID=1243
http://www.di.univaq.it/chameleon/output/download.php?fileID=1243
http://di.univaq.it/chameleon/
http://www.eclipse.org/webtools


Context-Aware Adaptive Services: The PLASTIC Approach 139

17. Autili, M., Di Benedetto, P., Inverardi, P., Tamburri, D.A.: Towards self-evolving
context-aware services. In: Proc. of CAMPUS (DisCoTec), vol. 11 (2008)

18. Di Marco, A., Mascolo, C.: Performance analysis and prediction of physically mo-
bile systems. In: Proc. of WOSP, NY, USA, pp. 129–132 (2007)

19. Moeller, M., Callahan, B., Gucer, V., Hollis, J., Weber, S.: Introducing Tivoli
Distributed Monitoring Workbench 4.1. IBM Redbooks (2002)

20. Paspallis, N., Papadopoulos, G.A.: An approach for developing adaptive, mobile
applications with separation of concerns. In: COMPSAC (2006)

21. PLASTIC project, http://www.ist-plastic.org
22. A-MUSE Project. Methodological Framework for Freeband Services Development

(2004), https://doc.telin.nl/dscgi/ds.py/Get/File-47390/
23. Raimondi, F., Skene, J., Emmerich, W.: Efficient Online Monitoring of Web-Service

SLAs. In: Proc. of the 16th ACM SIGSOFT/FSE (November 2008)
24. Rouvoy, R., Eliassen, F., Floch, J., Hallsteinsen, S.O., Stav, E.: Composing com-

ponents and services using a planning-based adaptation middleware. In: Pautasso,
C., Tanter, É. (eds.) SC 2008. LNCS, vol. 4954, pp. 52–67. Springer, Heidelberg
(2008)

25. Seo, C., Malek, S., Medvidovic, N.: An energy consumption framework for dis-
tributed java-based systems. In: ASE (2007)

26. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
ASE journal 10(2) (2003)

27. W3C. Web Service Definition Language, http://www.w3.org/tr/wsdl
28. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley,

D., Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut,
I., Puschner, P., Staschulat, J., Stenström, P.: The worst-case execution-time
problem—overview of methods and survey of tools. Trans. on Embedded Com-
puting Sys. 7(3), 1–53 (2008)

29. Yun, H., Kim, Y., Kim, E., Park, J.: Web Services Development Process. In: Proc.
of Parallel and Distributed Computing and Systems (PDCS) (2005)

30. Zahariadis, T., Doshi, B.: Applications and services for the B3G/4G era. Wireless
Comm. 11(5) (2004)

 http://www.ist-plastic.org
https://doc.telin.nl/dscgi/ds.py/Get/File-47390/
http://www.w3.org/tr/wsdl


Synchronous Modeling and Validation
of Priority Inheritance Schedulers�

Erwan Jahier, Nicolas Halbwachs, and Pascal Raymond

VERIMAG (CNRS, UJF, INPG)
Grenoble, France

{Erwan.Jahier,Nicolas.Halbwachs,Pascal.Raymond}@imag.fr
http://www-verimag.imag.fr

Abstract. Architecture Description Languages (ADLs) allow embedded
systems to be described as assemblies of hardware and software compo-
nents. It is attractive to use such a global modelling as a basis for early
system analysis. However, in such descriptions, the applicative software
is often abstracted away, and is supposed to be developed in some host
programming language. This forbids to take the applicative software into
account in such early validation. To overcome this limitation, a solution
consists in translating the ADL description into an executable model,
which can be simulated and validated together with the software. In
a previous paper [1], we proposed such a translation of Aadl (Archi-
tecture Analysis & Design Language) specifications into an executable
synchronous model.

The present paper is a continuation of this work, and deals with
expressing the behavior of complex scheduling policies managing shared
resources. We provide a synchronous specification for two shared
resource scheduling protocols: the well-known basic priority inheritance
protocol (BIP), and the priority ceiling protocol (PCP). This results
in an automated translation of Aadl models into a purely Boolean
synchronous (Lustre) scheduler, that can be directly model-checked,
possibly with the actual software.

Keywords: Embedded systems, Simulation, Scheduling, Formal Verifi-
cation, Architecture Description Languages, Synchronous Languages.

1 Introduction

The European project ASSERT is devoted to safe model-driven design of em-
bedded systems, with aerospace systems as a main application domain. Such
systems are deployed on specific architectures that need to be described and
simulated in order to allow early validation of the integrated system.

The approach taken in the ASSERT project is to describe the execution ar-
chitecture separately from the software components. The target architecture is
� This work was partially supported by the European Commission under the Inte-

grated Project ASSERT, IST 004033, which ended in 2008.

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 140–154, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Synchronous Modeling and Validation of Priority Inheritance Schedulers 141

described in the Aadl architecture description language [2,3]. Aadl provides a
collection of classical systems components, which can be instantiated and assem-
bled to describe the actual execution platform. In a typical Aadl description, a
system is made of several computers, communicating through buses; a computer
is made of memory and processors, and a processor runs a scheduler and several
tasks; at last, tasks are running applicative software. Those software components
can be developed using several programming languages, including ADA, C, or
even Scade and Lustre via a C wrapping.

Aadl components are decorated with information like rates and Worst Case
Execution Time (WCET) for periodic tasks, scheduling policy, etc. Those infor-
mations are intended to be used in the validation of the platform, mainly by
checking properties like the absence of deadlocks, or the respect of deadlines.
The functional part is expressed by the software components, and thus generally
completely ignored, although it may influence some non-functional aspects. For
instance, a software component may produce some event that wakes up a task;
the scheduling environment and the execution times are then modified.

Our main objective is to perform simulation and validation that take into ac-
count both the system architecture and the functional aspects. We consider the
case where software components are implemented in the synchronous program-
ming language Lustre/Scade1. Our proposal in [1] is to build automatically a
simulator of the architecture, expressed in a synchronous language like the soft-
ware components. This approach presents several advantages: first, synchronous
languages are well-known to be able to express non-synchronous behaviors, while
the converse is more difficult; now, getting all aspects in the same model allows
both functional and system aspects to be considered jointly. For instance, in
Aadl, sporadic tasks can be activated by the output of some other components.
Therefore, in such cases, more realistic simulation and finer-grained formal ver-
ification can be performed.

The translation proposed in [1] takes into account various asynchronous as-
pects of Aadl such as task execution time, periodic or sporadic activations,
multitasking (using Rate Monotonic Scheduling [5]), and clock drifts. The result
is an executable integrated synchronous model, combining architecture behavior
with actual software components, which can be validated with tools available for
synchronous programs.

In this paper, we propose to extend this work by taking into account shared
resources using different protocols (no lock, blocking, basic inheritance, priority
ceiling). We also show how various properties related to determinism, schedula-
bility, or the absence of deadlock can be automatically checked on given archi-
tecture models.

The article is organized as follows. We first recall in Section 2 the principles
of simulation of Aadl in the synchronous paradigm. Then we describe in Sec-
tion 3 how to deal with shared resources and various shared access protocols
in a synchronous program. Finally, we show in Section 4 how one can use the

1 Scade is the industrial version of Lustre[4], and is maintained and distributed by the
Esterel-Technology company.



142 E. Jahier, N. Halbwachs, and P. Raymond

resulting executable model to check various kinds of properties (determinism,
schedulability, absence of deadlock), and to perform monitored simulations.

2 From Aadl to Synchronous Programs

This section recalls the main features of the Architecture Analysis & Design
Language (Aadl), as well as the synchronous paradigm. Then it briefly recalls
how the behavior of an (asynchronous) Aadl model can be modeled by a non-
deterministic synchronous program. This subject is presented in detail in [1].

2.1 The Aadl Description Language

An Aadl model is made of an arborescent assembly of software and hardware
components [2,3]. A component is defined by an interface (input and output
ports), a set of sub-components, a set of connections linking up the subcompo-
nents ports, and a set of typed attributes (called properties). The main kinds of
Aadl components are the following.

Systems are top-level components; they describe the mapping between soft-
ware and hardware components. Device components model hardware responsible
for interfacing the system with its environment. They are typically used to rep-
resent sensors or actuators. From a functional point of view, they correspond to
the inputs and the outputs of the system. Processor components are abstractions
of hardware and software responsible for scheduling and executing threads.

Memory components (hardware) are used to specify the amount and the kind
of memory that is available to other components.

Data components (software) are used to represent data types in the source
text. Other components might have a shared access to data components. The ac-
cess policy is controlled by the Concurrency Control Protocol property (lock,
priority ceiling protocol, cf. Section 3). Bus components (hardware) are used to
exchange data between components on different processors.

Process components are abstractions of software responsible for defining a
memory space that can be accessed by the thread sub-components it contains.
Thread components are abstractions of software responsible for executing applica-
tive programs. When several threads run under the same processor, the sharing of
the processor is managed by a runtime scheduler. The dispatch protocol prop-
erty is used to specify that scheduling policy. For instance, the value periodic
means that the thread must be activated according to the specified period; the
value aperiodic means that the thread is activated via one of the other compo-
nents’ output ports (called event ports). Sub-program components are the leaves of
this arborescent description. Their implementations need to be provided in some
host language. In our approach, if one wants to be able to formally analyze aperi-
odic threads whose activation depends on the functional output of some program
component, one needs to provide for it a synchronous program (or at least a wrap-
per), e.g., written in Scade or Lustre. The property compute exec time specifies
a range for the worst case execution time (WCET) of the program. In the sequel,
we use the term task to denote a thread running a program.



Synchronous Modeling and Validation of Priority Inheritance Schedulers 143

2.2 The Synchronous Paradigm

We present now the essentials of the synchronous paradigm, focusing on the
aspects that will be used later on.

A synchronous program (also called a node) is a dynamic system evolving on
a discrete time scale. It has an internal memory made of state variables, inputs
and outputs, and its behavior is a (virtually infinite) sequence of atomic reac-
tions. Each reaction consists in reading current inputs, computing outputs, and
updating the internal memory (state). In other terms, synchronous programs
are a straightforward generalization of synchronous circuits (i.e., sequential cir-
cuits or Mealy machines), where data can be of arbitrary types rather than just
Boolean values.

A synchronous program is characterized by a vector of inputs i, a vector of
outputs o, a vector of state variables s. Its semantics is defined by its initial state
s0 (the initial value of s), and the functions fo and fs, respectively returning
the output and the next state from the current inputs and the current state. For
each instant t:

ot = fo(it, st) ; st+1 = fs(it, st)

A program without state is called a combinational node; usual functions like
arithmetic or logical operators are then naturally lifted to synchronous programs.

For any data-type τ with a well-defined default value d, a “delay” (or register)
program can be defined as follows:

s0 = d ; fo(i, s) = s ; fs(i, s) = i

In the sequel we mainly use Boolean (resp. integer) registers, with false as default
value (resp. 0), and represented by the symbol •.

The main characteristic of synchronous programs is the way they are com-
posed: when connecting several sub-programs, a reaction of the whole program
consists of a simultaneous reaction of all the components. In other words, the
synchronous paradigm provides an idealized representation of parallelism.

An important consequence is that a big synchronous program can be described
as a parallel composition of smaller sub-programs. In this approach, a program
is described as a data-flow network of synchronous programs connected by wires.
Fig. 1 shows the data-flow network of a synchronous counter, made of a delay
node and three combinational nodes (two “if-then-else” and an adder). For the
sake of conciseness, we use sets of equations rather than drawings for representing
such networks. For instance, the set of equations equivalent to the counter is the
following:

c = if r then 0 else s ; s = •c+ if x then 1 else 0

Note that such a set of equations has a straightforward solution as long as
it does not contain combinational loops. In other words, any feed-back loop in
the network should pass through a delay operator. In the following, we will take
care to define only such well-founded data-flow networks.

At last, all synchronous formalisms are providing a notion of under-sampling,
also called activation condition, or clock-enable in the domain of synchronous



144 E. Jahier, N. Halbwachs, and P. Raymond

adder

if−then−else

delay

+

•
+

1
0

0

r

x
c

s

•

Fig. 1. The data-flow network of a synchronous counter

circuits. The activation condition is an higher-order operator that takes a syn-
chronous node P , a Boolean input b, and produces a new node. The behavior
of that node is defined as follows: whenever b is true, it behaves exactly like P ,
and whenever b is false, both the internal state and the outputs are “frozen” (i.e.
they keep their previous value).

2.3 Modeling Asynchrony in the Synchronous Framework

The ability of the synchronous framework to model asynchrony is well-known [6],
and has been often used [7,8,9,10,11]. In [1], we used a similar technique for
translating a subset of Aadl into synchronous data flow equations.

This goal is mainly achieved by using “oracles” (i.e., additional inputs) for
modeling non-determinism, and activation conditions for modeling the asyn-
chronous aspects: time-consuming tasks, multi-tasking, clock jitter.

However, in this previous work, multi-tasking was only considered in the case
of simple fixed priorities rate monotonic scheduling. In this article, we consider
more sophisticated policies that take into account shared resources with pro-
tected access, and all the problems they raise: priority inversion, and deadlock.

3 Handling Shared Resources

In Aadl, Data component accesses can be shared between several components. In
contrast to other kinds of components (thread, process, sub-program) which are
translated into nodes, data components are translated into local variables of the
surrounding component node. Depending on the kind of access that is associated
with them (read only, write only, or read write), the necessary wires are added to
the interface of the node: a data component that has a write (resp., read) access
to a resource has an additional output (resp., an additional input), and the data
update is performed at its dispatch time using an activation condition.

In order to guarantee the data integrity, it is necessary to prevent the re-
source from being accessed by several components at the same time. For that
purpose, several concurrency control protocols were defined [12], that modify
the classical Rate Monotonic scheduling. In Aadl, this is specified through the
“Concurrency Control Protocol” property, attached to a data component. In this
section, we explain how to implement four kinds of concurrency control protocol:



Synchronous Modeling and Validation of Priority Inheritance Schedulers 145

– NoneSpecified: components access the shared resource with no constraint at
all (no lock mechanism).

– Lock: Before accessing a shared resource, a component should ask for it,
and gets it only if no other component has locked it before; otherwise, it
is suspended until the resource is unlocked. When a component obtains a
resource, we say that the component enters a critical section.
Hence, a low priority thread tl can block a high priority one th if th wants
to access a resource that is locked by tl. The problem with this protocol is
that tl can block th, even when tl is not in critical section. This is referred
to as the priority inversion problem [12].

– BIP: The Basic Inheritance Protocol, also known as Priority Inheritance
Protocol, refines the previous one to prevent priority inversions.

– PCP: The Priority Ceiling Protocol is a refinement of BIP defined in order
to prevent deadlock.

In the following, we describe those protocols more precisely, and explain how
to implement them in terms of synchronous data-flow equations. Defining a
scheduling protocol consists of defining a node, called hereafter a scheduler, that
decides at each instant which thread the CPU is attributed to.

3.1 The No Lock Protocol

The simplest way of handling shared resources is to ignore them, and to al-
ways give the CPU to the highest priority thread. This (absence of) protocol
is straightforward and generally useless for systems involving shared resources.
But this simplest scheduler is refined in later sections for the other protocols. It
is basically the scheduler used in [1].

Concretely, we need to generate a synchronous program that takes as inputs
Boolean variables indicating which threads ask for the CPU (Dispatched1, ...,
Dispatchedn), and that returns Boolean variables indicating which thread is
elected (cpu1, ..., cpun). Of course, at most one among the cpui should be true
at each instant. The program that computes the Dispatchedi variables is derived
from the period and the WCET of threads, which is specified in the Aadl code.

The convention here is that ti has priority over tj if i < j. A possible way of
implementing that node is as follows:

∀k ∈ [1, n] : cpuk = Dispatchedk ∧
∧

0<i<k

cpui (1)

Henceforth, the convention is that the program input variables begin with an
uppercase letter (e.g., Dispatchedk); and cpui stands for the negation of cpui.

3.2 The Blocking Protocol

In order to take into account shared resources, we need additional inputs: the
Boolean variable named Asks csti

r�
indicates that the thread ti wants to access

the resource r� (their values come from the output of the predefined Aadl sub-
programs Get resource and Set resource [3]).



146 E. Jahier, N. Halbwachs, and P. Raymond

In order to ease the definition of cpuk, we introduce the following auxiliary
variables:
– the Boolean variable has cstk

r�
indicates that the thread tk is in Critical Sec-

tion on resource r�;
– the Boolean variable ti blockstk

r�
indicates that the thread tk asks for a re-

source r�, which is locked by another thread ti.

Computing which thread is in critical section. A thread tk is in critical
section for a resource r� if it asks for the resource, and if either
– it was in critical section before (• has cstk

r�
);2

– or it enters in critical section at the current instant. It enters a critical section
when and only when it obtains the CPU.

Hence, the following definition of has cstk
r�

:

∀k ∈ [1, n], ∀� ∈ [1,m] : has cstk
r�

= Asks cstk
r�

∧ (cpuk ∨ • has cstk
r�

) (2)

Note that when we define such a relation, the quantification “∀k ∈ [1, n], ∀� ∈
[1,m]” suggests that we generate n×m equations for defining the scheduler. But
in fact, it is generally much less, since in the Aadl model, all threads may not
have access connections to all resources. This remark actually holds for all the
variables relating threads and resources in the following.

Computing the blocks relation. We say that a thread ti blocks a thread tk
via a resource r� if both threads ask for the resource, and if the thread ti was
owning r� at the previous instant.

∀k, i ∈ [1, n], i �= k,∀� ∈ [1,m] :

ti blocks
tk
r�

= Asks cstk
r�

∧ Asks csti
r�

∧ •has csti
r�

(3)

Computing the elected thread. Once we have defined those two auxiliary
relations, cpuk can easily be defined similarly as in Section 3.1: the highest
priority thread obtains the CPU, except if it is blocked by some other thread:

∀k ∈ [1, n] : cpuk = Dispatchedk ∧
∧

0<i<k

cpui ∧
∧

i�=k,�∈[1,m]

ti blocks
tk
r� (4)

Note that those three sets of equations defines a valid synchronous program,
since they do not contain any combinational cycle (cf Section 2.2).

3.3 The Basic Inheritance Protocol

The Basic Inheritance Protocol was introduced [12] to avoid the priority inver-
sion problem. Indeed, with the previous protocol, when a high-priority thread t1
wants to access a resource shared by a lower priority thread t3, which have put a
lock on it, then t3 keeps the CPU. Moreover, t3 can be interrupted by t2 of lower
priority than t1, even though t2 does not try to access any shared resource.

The idea of the Basic Inheritance Protocol (BIP) is to modify the priority of
t3 in such a way that it inherits the priority of t1, when t3 has the lock on a resource

2 All Boolean delays (•) are implicitly initialized to false.



Synchronous Modeling and Validation of Priority Inheritance Schedulers 147

r� requested by t1. Indeed, this prevents t2 to interrupt t3, and hence prevents the
priority inversion.

The intuition of our BIP (synchronous data-flow) encoding is the following: first
consider the dispatched threadwith the highest priority. If it is not blocked, it must
obtain the CPU. Otherwise, consider its blocking thread, and check if it is itself
blocked, and so on until we find a thread that is not blocked. When we find the
thread that is not blocked3, we give it the CPU. Hence, the first thing to do is to
compute the transitive closure of the t blockst

r relation.

Computing the ti blocks
∗
tk

relation. Let an inhibition path from a thread ti
to a thread tk be a set of s + 1 threads {ti = ti0, ..., tis = tk} such that there
exist s resources r1, ..., rs, that may be respectively accessed by ti0 and ti1, ti1
and ti2, ..., tis−1 and tks. Such a path is said to be cycle-free if all the threads
in the path are distinct. Let Path(i, k) be the set of cycle-free paths from ti to
tk (this set can be computed from the Aadl source code). A thread ti blocks

∗

another thread tk if ti is not itself blocked, and if there exists an inhibition path
in Path(i, k) that is true.

∀i, k ∈ [1, n], i �= k : (5)

ti blocks
∗
tk

= ti is blocked ∧
∨

p={i0,...,is}∈Path(i,k)

ti0 blocks
ti1
r1 ∧ ... ∧ tis−1 blocks

ts
rs

where:
∀k ∈ [1, n] : tk is blocked =

∨
�∈[1,m],j∈[1,n],j �=k

tj blocks
tk
r�

The protocol. The BIP states that a thread in critical section on a resource
inherits the priority of any other higher priority thread that asks for the
same resource. The difficulty is to translate this “dynamic” condition4 into
a Boolean condition. To do that we use an accumulator, (named ii, which
stands for inhibiting index), that carries the value of the inhibitor of the
thread that has the highest priority, if the dispatched thread with the high-
est priority is blocked (ii is set to 0 or −1 otherwise). For readability, we
use a switch-like notation, where c1 → x1, c2 → x2, ..., cn → xn stands for
if c1 then x1 else if c2 then x2 ... if cn then xn.

ii0 = 0
∀k ∈ [1, n] : (cpuk, iik) = dispatchedk → (False, iik−1) (6)

(cpu1 ∨ ... ∨ cpuk−1) → (False,−1) (7)
iik−1 = k → (True,−1) (8)
iik−1 > 0 → (False, iik−1) (9)

{ tj blocks∗tk
→ (False, j) }j∈[1,n],j �=k (10)

True→ (tk is blocked, 0) (11)
3 if such a thread does not exist, the model-checker will tell us (cf Section 4.1).
4 The priority of each thread depends on the history. But by chance, it only depends

on a very short history, that is, the previous instant.



148 E. Jahier, N. Halbwachs, and P. Raymond

For each k > 0, cpuk and iik depend on cpuk−1 and iik−1, which means that
cpu1 and ii1 are computed first, and then cpu2 and ii2, and so on, until cpun

and iin. At the beginning, the inhibiting index is equal to 0 (ii0 = 0). Then, the
pairs (cpu1,ii1), ..., (cpun,iin) are computed in turn. As long as cpuk−1 is set to
False (i.e., when conditions of lines 8 and 11 do not hold):

– If tk is blocked by a lower priority thread tj (line 10), the inhibiting index
takes the priority of the inhibitor j. Then, the inhibiting index keeps this
value (lines 6 and 9), until the index of the inhibitor is reached (line 8).
In that case, the corresponding cpu variable is set to True, the remaining
values of cpu are set to False (line 7), and iik is unused for bigger k (−1).

– Otherwise (line 11), if tk is not blocked at all, it gets the CPU, and all the
remaining values of cpu are set to false (line 7). If it is blocked, the system
deadlocks.

3.4 The Priority Ceiling Protocol

The problem with the BIP is that it does not prevent deadlocks. Indeed, consider
the following scenario, where 2 threads t1 and t2 share 2 resources r1 and r2:

1. t2 asks for the CPU (Dispatched1) and gets it.
2. t2 locks r1.
3. t1 asks for the CPU. It has a higher priority than t2, hence t1 gets the CPU.
4. t1 locks r2.
5. t1 tries to lock r1. But t2 has locked it. Therefore t2 gets the CPU.
6. t2 tries to lock r2. But t1 has locked it. Nobody can get the CPU. The system

is blocked (or deadlocks).

One solution is to (statically) forbid such intertwined use of locks. Another
solution is to use the so-called Priority Ceiling Protocol (PCP). The PCP is
a refinement of the BIP.

The priority ceiling of a resource r� is the maximal priority of all the threads
that may use r�; we note it PC(�). The priority ceiling of a thread tk is the
maximum of the priority ceilings of the resources locked by other threads; we
note it PCk. Contrary to PC(�), PCk is a dynamic value. The PCP consists in
adding the following constraint to the BIP: tk can lock a resource r only if its
priority is higher than its priority ceiling (k < PCk).

The Priority Ceiling of resources locked by threads other than k. PCk

formal definition is just a direct translation of the definition given above.

∀k ∈ [1, n] : PCk = (12)

Min {n+ 1} ∪
{
PC(�) / Asks csti

r�
∧ •has csti

r�

}
� ∈ [1,m]
i ∈ [1, n], i �= k

The tk ask relation. We first define yet another auxiliary relation that states
whether a thread wants to enter a critical section at the current instant (i.e., a
thread asks for a resource that it hasn’t locked yet).

∀k ∈ [1, n] : asks cstk =
∨

�∈[1,m](Asks cs
tk
r�

∧ •has cstk
r�)



Synchronous Modeling and Validation of Priority Inheritance Schedulers 149

The protocol. The PCP encoding is the same as the BIP one, except that we
modify the definition of the blocks relation (previously defined in equation 3).
Indeed, there is now a second reason for a thread tk to be blocked by another
thread ti: if tk wants to enter a critical section (asks cstk) when its priority
ceiling PCk is not higher than its own priority (PCk ≤ k). Note that the priority
ceiling of tk (i.e., the value of PCk) is a consequence of the lock that ti has on
the resource � (PC(�) = PCk).

∀k, i ∈ [1, n], i �= k, ∀� ∈ [1,m] : ti blockstk
r�

= (13)

Asks csti
r�

∧ •has csti
r�

∧ (Asks cstk
r�

∨ (asks cstk ∧ PC(�) = PCk ≤ k))

Here again, those set of equations defines a valid synchronous program as they
do not contain any combinational loop.

4 Validation

We have encoded all the equations given in the previous Section into an Ocaml

(meta-)program that, given a set of tasks, a set of resources, and a set of
task/resource pairs, generates a Lustre program5. The resulting Lustre pro-
gram is a task scheduler, computing one Boolean variable (cpui) per thread (ti),
from Boolean inputs indicating which threads ask for the CPU (Dispatchedti),
and which threads ask for which resource (Asks csti

rl
).

In the following, we illustrate the use of a state-explorer (i.e., a model-checker)
to prove various properties of this generated program. This was very useful to
debug the equations given in this paper, and also to debug the Ocaml encoding
of those equations. We’ll also argue why we believe it might also be useful for
Aadl end-users.

4.1 Absence of Deadlock

In order to prove the absence of deadlock, we used Lesar [13], a Lustre

model-checker. This tool implements state-of-the-art state-reachability algo-
rithms, based on Binary Decision Diagrams. We used both a enumerative al-
gorithm which complexity is related to the number of states, and a symbolic
algorithm, which complexity is related to the diameter of the state space.

We proved with Lesar that, whenever at least one thread asks for the
CPU, at least one of the cpui is true. Actually, we even prove that ex-
actly one cpui is true in that case, which simply proves that our scheduler
is correct in the sense that it does not give the processor to more than one thread:

(
∨

i∈[1,n] Dispatchedi) ⇒
∨

i∈[1,n] cpui

We performed this on the examples of Fig. 2. For instance, the first example
(ex. 1) of Fig. 2 consists of a system with two threads t1 and t2, that can
5 We put a copy of this Ocaml program as well as a copy of the resulting Lustre

programs at the url http://www-verimag.imag.fr/∼jahier/aadl-schedul/

http://www-verimag.imag.fr/~jahier/aadl-schedul/


150 E. Jahier, N. Halbwachs, and P. Raymond

t1

t2

r1

r2

t3 r3

r4t4

(ex. 1) (ex. 2) (ex. 3)

t1

t2

r1

r2

t1

t2

t3

r1

Fig. 2. Examples of tasks accessing shared resources

access two resources r1 and r2. This example is precisely the one given in [12] to
illustrate the fact that the BIP does not prevent deadlock, and which motivates
the definition of PCP.

Lesar was indeed able to generate a counter-example that exhibits a dead-
lock; the scenario it provides is almost the same as the one given [12] (and also
in Section 3.4). Lesar proved the absence of deadlock for the PCP on the three
examples. The results of those experiments are outlined in Fig. 3. When the
property is false, we indicate the length of the counter-example. When the prop-
erty is true, we indicate the diameter of the graph, and its number of states. All
runs lasted less that a second.

An interesting point in those experiments is that it is not always worth using
the PCP (that is deadlock-free by construction) since the BIP and the lock
protocol can provably be deadlock-free in some configurations (e.g., in ex. 2).
Note that in order to avoid false alarms, we need to tell the state-explorer that
the inputs of the scheduler are not completely random. For instance, it was
necessary to assert that a thread cannot change its requests for resources when
it does not own the CPU.

Lock BIP PCP
ex. 1 ko: 5 ko: 5 ok: 5/40
ex. 2 ok: 6/96 ok: 7/96 ok: 7/96
ex. 3 ko: 9 ko: 9 ok: 12/2316

Fig. 3. Deadlock property exp.

Lock BIP PCP
ok: 6/46 ok: 6/46 ok: 5/40

ko: 4 ok: 7/96 ok: 7/96
ko: 4 ok: 10/3708 ok: 12/3216

Fig. 4. Priority-inversion property exp

4.2 Priority Inversion

The priority inversion corresponds to situations when a thread is blocked by a
lower priority thread. This occurs very naturally when two threads share the
same resource, locked by the lower priority thread. Priority inversion is more
problematic when it happens as in the example of Section 3.3 (which was the
example given in [12] to motivate the introduction of the BIP). Indeed, threads
are generally supposed to remain in critical section for a short time. Now, if
a thread that does not lock any resource preempts a lower priority thread in
critical section, the corresponding resource might be locked for a long time.

Therefore, we check the following property: if a thread tk gets the CPU, when
a higher priority thread asks to enter in critical section, then tk should have



Synchronous Modeling and Validation of Priority Inheritance Schedulers 151

at least a lock on one of the resource. In other words, we want to be sure that
a thread that does not lock any resource cannot block any higher priority thread:

∀i ∈ [2, n], ∀j ∈ [1, i− 1] : (cpui ∧ asks cstj ) ⇒ ∨
�∈[1,m] has cs

ti
r�

We actually ask the model-checker to prove a slightly higher refined property,
which is that for any system that does not deadlock, there is no priority inversion.
Indeed, as soon as two tasks deadlock, any other thread can get the CPU even
if it is not supposed to, according to the priorities defined by the protocol. This
is the kind of subtlety that can be discovered using a model-checker.

As summarized in Fig. 4, Lesar found counter-examples that falsify the prop-
erty for the last two examples of Fig. 2 using the lock protocol. And it proved the
property with the BIP and the PCP. The second example is the one given [12]
(and in Section 3.3) for motivating the introduction of the BIP.

4.3 Schedulability

The thread scheduler we generate in Section 3 is just a part of the Aadl2lustre

translator [1]. The program that computes the values of the Dispatchedi vari-
ables is derived from the AADL code (from the threads period and WCET).

In order to check the schedulability of an Aadl system, we look at the se-
quences of values taken by the Dispatchedi and cpui variables. The set of valid
sequences is defined by the automaton of Fig. 5. In this automaton, d stands for
“dispatch”, and is defined as the Dispatched rising edge; a stands for “activate”,
and is defined as the cpu rising edge; and r stands for “release”, and is defined as
the Dispatched falling edge. All omitted transitions in this automaton target the
“scheduling-error” state. A system is well-scheduled if this error state is never
reached. Indeed, nothing prevents the generated scheduler to issue a “dispatch”
event between an “activate” and a “release” event. This is what occurs when the
system is not schedulable, i.e., when some deadline is missed. Once encoded into
a Lustre formula, this automaton can be used to prove (by state-exploration)
that the system is schedulable.

Note that this schedulability property somehow does not only concern the
part of the Aadl2lustre translator described in this article. But we mention

d a

r

d

a r

a

d a r

d a r

d a r

d a r

RunningIdle Dispatched

Fig. 5. The automaton recognizing well-scheduled systems. There is one such automa-
ton per thread to schedule.



152 E. Jahier, N. Halbwachs, and P. Raymond

it here because we believe this analysis is particularly interesting in presence of
shared resources.

5 Related Work

The Cheddar tool [14,15] can perform Schedulability analysis over Aadl specifi-
cation, but it ignores the functional aspects of Aadl components, and it is more
oriented towards quantitative analysis: resource usage, number of preemptions,
number of context switches, etc. Cheddar allows users to define dedicated (user
defined) schedulers and perform simulations [16].

Using a synchronous framework to model software architectures is not a new
idea [9,10,8,11]. Gamatié et al. [9,10] defined a framework that provides a library
of components, written in Signal [17] and C++, suitable for modeling systems
following the ARINC (Aeronautical Radio Incorporated) 653 standard. They
demonstrate how to use the Signal language as an ADL – whereas we trans-
late Aadl architecture models into Lustre. They mention that model-checking
could be possible since the system is described in Signal, but the task scheduler
is implemented in C++, which would make its model-checking difficult – they
do not pretend to be able to check the scheduler tough. Anyway, they do not
mention any particular protocol with respect to shared resource handling.

Formal verification of priority inheritance protocols has also been conducted
using the Pvs theorem prover [18]. The kind of outcome that one obtains using
a theorem prover is of course different of what can be achieved with a model-
checker. With Pvs, Dutertre proves very general property about the PCP cor-
rectness. On the contrary, we model-check the protocol together with the system
architecture description, plus the functional components. We are therefore able
to prove much more fine-grained properties, not only about the whole system
behavior, but also about the scheduling protocol itself. Moreover, some proto-
col properties can be false in the general case; for example, we proved that the
second system of Fig. 2 does not deadlock with the BIP.

Penix et al. used a model-checker to verify a rate monotonic scheduler of a
real time operating system [19]. But as their scheduler model is very detailed,
here again the rest of the architecture is kept abstract. Elaborated protocols for
dealing with shared resources are not addressed either.

6 Conclusion

Defining an automated translation from Aadl models to a purely Boolean syn-
chronous scheduler, that can be directly model-checked, has many advantages.

– Firstly, the model-checker was very useful to debug our scheduler generator.
– Secondly, we claim it can also be useful for the Aadl end-users; for exam-

ple, the PCP is a refinement of the BIP that has been introduced to avoid
deadlocks. However, for some particular topologies of threads and resources,
it may happen that deadlocks cannot occur even with the BIP scheduler,
and that a model-checker is able to prove it on our model.



Synchronous Modeling and Validation of Priority Inheritance Schedulers 153

– Finally, in presence of shared resources, the analytic schedulability criteria
may be too conservative, and reject schedulable systems. Moreover, as soon
as the system contains sporadic events (when the thread activation depends
on the output of some other thread), the analytic method can be meaningless.
Consider for example two components activated by a third one, which both
outputs cannot be true at the same instant.

Of course with our technique, one cannot deal with generic properties (i.e., for
any number of tasks and resources), but since the generation of models for
verification is automatic, the verification can be replayed for each instance.

When the verification problem is too large, an exhaustive verification can be
untractable. However, our encoding can still be useful to perform intensive auto-
matic simulations using testing tools like Lurette [20]. The absence of deadlocks,
the schedulability, and the non-inversion properties are used as test oracles (i.e.,
runtime monitors). The assertions on the scheduler inputs (e.g., no rising edges
for the asking of a resource by threads that do not have the CPU) are used to
constrain the random input generator [21].

Another case where such tests and simulations are the only tractable methods
is when the Aadl model contains sporadic threads activated by software compo-
nents that are not implemented in Lustre (or in any other language with formal
semantics). A way around this problem would be to have a Lustre abstraction
of all the possible behavior of such components; but such an abstraction is not
always easy to define.

Acknowledgments

We thank Karine Altisen for fruitful (nearby office) discussions about scheduling.

References

1. Halbwachs, N., Jahier, E., Raymond, P., Nicollin, X., Lesens, D.: Virtual execution
of AADL models via a translation into synchronous programs. In: Seventh Inter-
national Conference on Embedded Software (EMSOFT 2007), Salzburg, Austria
(October 2007)

2. Feiler, P.H., Gluch, D.P., Hudak, J.J., Lewis, B.A.: Embedded system architecture
analysis using SAE AADL. Technical note cmu/sei-2004-tn-005, Carnegie Mellon
University (2004)

3. SAE: Architecture Analysis & Design Language (AADL). AS5506, Version 1.0,
SAE Aerospace (November 2004)

4. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow
programming language Lustre. Proceedings of the IEEE 79(9), 1305–1320 (1991)

5. Liu, C.L., Layland, J.: Scheduling algorithms for multiprogramming in a hard real-
time environment. JACM 20(1), 46–61 (1973)

6. Milner, R.: On relating synchrony and asynchrony. Technical Report CSR-75-80,
Computer Science Dept., Edimburgh Univ. (1981)

7. Baufreton, P.: SACRES: A step ahead in the development of critical avionics ap-
plications. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS,
vol. 1569, p. 1. Springer, Heidelberg (1999)



154 E. Jahier, N. Halbwachs, and P. Raymond

8. Baufreton, P.: Visual notations based on synchronous languages for dynamic vali-
dation of gals systems. In: CCCT 2004 Computing, Communications and Control
Technologies, Austin (Texas) (August 2004)

9. Gamatié, A., Gautier, T.: Synchronous modeling of avionics applications using the
signal language. In: 9th IEEE Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS 2003), Toronto, pp. 144–151 (May 2003)

10. Gamatié, A., Gautier, T.: The signal approach to the design of system architectures.
In: 10th IEEE Conference and Workshop on the Engineering of Computer Based
Systems (ECBS 2003), Huntsville (Alabama), pp. 80–88 (April 2003)

11. Le Guernic, P., Talpin, J.P., Le Lann, J.C.: Polychrony for system design. Jour-
nal for Circuits, Systems and Computers, Special Issue on Application Specific
Hardware Design (April 2003)

12. Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority inheritance protocols: An approach
to real-time synchronization. IEEE Trans. Computers 39(9), 1175–1185 (1990)

13. Halbwachs, N., Lagnier, F., Ratel, C.: Programming and verifying real-time sys-
tems by means of the synchronous data-flow programming language Lustre. IEEE
Transactions on Software Engineering, Special Issue on the Specification and Anal-
ysis of Real-Time Systems, 785–793 (September 1992)

14. Hugues, J., Zalila, B., Kordon, L.P.F.: Rapid prototyping of distributed real-time
embedded systems using the AADL and Ocarina. In: 18th IEEE/IFIP International
Workshop on Rapid System Prototyping (RSP 2007) (2007)

15. Singhoff, F., Legrand, J., Nana, L., Marcé, L.: Cheddar: a flexible real time schedul-
ing framework. In: McCormick, J.W., Sward, R.E. (eds.) SIGAda, pp. 1–8. ACM,
New York (2004)

16. Singhoff, F., Legrand, J., Nana, L., Marcé, L.: Scheduling and memory require-
ments analysis with AADL. In: SIGAda (2005)

17. Guernic, P.L., Benveniste, A., Bournai, P., Gautier, T.: Signal, a data flow ori-
ented language for signal processing. IEEE-ASSP 34(2), 362–374 (1986)

18. Dutertre, B.: Formal analysis of the priority ceiling protocol. In: IEEE Real-Time
Systems Symposium (RTSS 2000), pp. 151–160 (2000)

19. Penix, J., Visser, W., Engstrom, E., Larson, A., Weininger, N.: Verification of time
partitioning in the deos scheduler kernel. In: ICSE, pp. 488–497 (2000)

20. Jahier, E., Raymond, P., Baufreton, P.: Case studies with Lurette V2. International
Journal on Software Tools for Technology Transfer (STTT) Special Section on
Leveraging Applications of Formal Methods (2006)

21. Raymond, P., Jahier, E., Roux, Y.: Describing and executing random reactive
systems. In: SEFM, pp. 216–225. IEEE Computer Society, Los Alamitos (2006)



Describing and Analyzing Behaviours over
Tabular Specifications Using (Dyn)Alloy

Nazareno M. Aguirre1, Marcelo F. Frias2, Mariano M. Moscato2,
Thomas S.E. Maibaum3, and Alan Wassyng3

1 Department of Computer Science, FCEFQyN, Universidad Nacional de Rio Cuarto
and CONICET, Argentina

naguirre@dc.exa.unrc.edu.ar
2 Department of Computer Science, FCEyN, Universidad de Buenos Aires and

CONICET, Argentina
{mfrias,mmoscato}@dc.uba.ar

3 Department of Computing and Software, McMaster University, Canada
tom@maibaum.org, wassyng@mcmaster.ca

Abstract. We propose complementing tabular notations used in re-
quirements specifications, such as those used in the SCR method, with a
formalism for describing specific, useful, subclasses of computations, i.e.,
particular combinations of the atomic transitions specified within tables.
This provides the specifier with the ability of driving the execution of
transitions specified by tables, without the onerous burden of having to
introduce modifications into the tabular expressions; thus, it avoids the
problem of modifying the object of analysis, which would make the anal-
ysis indirect and potentially confusing. This is useful for a number of
activities, such as defining test harnesses for tables, and concentrating
the analyses on particular, interesting, subsets of computations. Unlike
previous approaches, ours allows for the description of a wider class of
combinations of the transitions defined by tables, by means of a rich op-
erational language. This language is an extension of the Alloy language,
called DynAlloy, whose notation is inspired by that of dynamic logic.

The use of DynAlloy enables us to provide an extra mechanism for
the analysis of tabular specifications, based on SAT solving. We will
illustrate this and the features of our approach via an example based on
a known tabular specification of a simple autopilot system.

1 Introduction

Tabular notations, originally used to document requirements by D. Parnas and
others [9], have proved to be a useful means for concisely describing expressions
characterizing complex requirements. Indeed, tables have been successfully in-
corporated into various formalisms for requirements specification, most notably
those reported in [12,7]. The central use of tables in the description of software
requirements is as a way of organizing formulas that specify the relations that
the system must maintain with the environment. Since these formulas would be
large and complex in their traditionally linear notation, their division into well

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 155–170, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



156 N.M. Aguirre et al.

distinguished smaller formulas that are easier to follow, provided by the tabular
notation, has great advantages. A tabular specification then consists of a collec-
tion of tables, which combined specify a relation R, characterizing the intended
behaviour of the system. There exist different classes of tables, but essentially all
are descriptions of relations of some form in terms of guards and result values.
The whole specified system is then typically composed of a disjunction of these
guarded expressions, describing, intuitively, all transitions.

We are concerned with complementing tabular notations with a way of pre-
scribing specific combinations of transitions defined in tabular descriptions. As
we will argue later on, this enables the specifier to drive the execution of transi-
tions defined by tables, which is useful for defining test harnesses for tables, and
concentrating the analysis activities on particular execution scenarios, namely
those corresponding to the prescribed combinations.

Contributions of this paper. The contributions of this paper are twofold. First, we
propose a notation for prescribing subsets of the set of all possible executions of
a tabular specification. The notation is very expressive, based on an operational
language called DynAlloy [4], an extension of the Alloy specification language
[10]. This has as an advantage that the specifier can concentrate the analyses on
the particular sets of runs he is interested in with a potentially great impact on
the efficiency and effectiveness of the analyses. The proposed notation enables
the specifier to describe sets of executions by means of programs referring to the
tabular descriptions, without the need to introduce modifications in the tables.
These descriptions are written in a language accessible to the specifier familiar
with tabular descriptions.

Second, we provide an additional analysis mechanism for tabular specifica-
tions, based on SAT solving, and supporting the above mentioned notation for
prescribing sets of executions. This analysis mechanism is based on a translation
of the tabular specifications into Alloy and DynAlloy, and the use of the Alloy
and DynAlloy Analyzers for performing SAT based analysis.

Related Work. The described tabular notations, and in particular the tabular
expressions used in the SCR (Software Cost Reduction) method [7], have associ-
ated tool support, which provide different kinds of analysis, ranging from simple
syntax checking to theorem proving and model checking of properties [3,8,13].
However, most analyses we are aware of apply to the whole set of behaviours as-
sociated with tables; more precisely, most techniques for analyzing properties of
behaviours are concerned with the global set of “atomic transitions”, described
in the tables. Generally, there is a lack of a notation for describing particular
combinations of these atomic transitions or tables. An exception to this is the
case of the simulator in the SCR toolset [8]. The simulator allows the developer
to load specific scenarios and check whether certain associated assertions are
violated or not in the particular executions described by the scenarios. Also, in
an approach described in [5] and defined for testing purposes in the context of
SCR [7], modes (essentially classes of states) are exploited as a means for sin-
gling out a proper subset of all possible transition sequences allowed by a tabular



Describing and Analyzing Behaviours over Tabular Specifications 157

specification. These approaches have some limitations. The use of the first alter-
native becomes impractical if the set of execution scenarios one is interested in
is large, since each execution scenario needs to be individually described. On the
other hand, the second alternative allows for the description (and analysis) of
large proper subsets of the set of executions associated with a tabular descrip-
tion, but all these executions are similarly obtained, essentially by considering
all the execution sequences that “go through” (or, more precisely, “end up at”)
a given set of modes. This is insufficient if one is interested in more sophisti-
cated execution sequences, resulting from table sequencings not obtainable by
“filtering” executions according to some of the existing modes. Of course, one
might decide to include new modes and mode classes to enforce these particular
sequencings of the transitions modelled by tables; however, this last alternative
is, in our opinion, unsuitable, since it would require altering the tables and in-
troducing new modes and mode classes to enforce the sequencing; clearly, this
is inappropriate, and potentially dangerous, if the sequencing is not really part
of the requirements, but particular behaviours the modeller wants to analyze.

2 An Example of Tabular Specifications

In order to illustrate how transitions are typically specified by tables, we will use
the SCR approach to requirements specification. We will describe the notation
via an SCR specification, given in [2], of the requirements for a simple autopilot
system. This will also serve us as a case study for illustrating our proposal.

In the SCR methodology, tables are used for describing the relationship that
the system should induce between monitored and controlled variables. In order to
describe this relationship, SCR uses events, conditions, mode classes and terms.
Events occur when changes in the variables observed by the system take place
(these variables include monitored and controlled variables, as well as modes and
terms), and conditions are logical expressions referring to these variables. Modes
represent classes of states of the system (whose corresponding partition is called
a mode class), and terms are functions on the variables of the specification.

The autopilot needs to monitor three environment variables, the aircraft’s
altitude, flight path angle and calibrated air speed, represented by monitored
variables mALTactual, mFPAactual and mCASactual, respectively. It also mon-
itors the status of some elements in the autopilot’s control panel, which are
four switches, represented also by monitored variables mALTsw, mATTsw, mCASsw
and mFPAsw, and three knobs for changing the desired altitude, flight path angle
and calibrated air speed (these values are represented by monitored variables
mALTdesired, mFPAdesired and mCASdesired, respectively). The system has to
control three displays, which show either the actual or desired altitude, flight
path angle and calibrated air speed (displays are represented by controlled vari-
ables cALTdisplay, cFPAdisplay and cCASdisplay), depending on the state of
the system. The four switches allow the pilot to activate the modes ATTmode,
ALTmode, FPAmode and CASmode of the system. The displays usually show the cur-
rent altitude, flight path angle and calibrated air speed, unless the pilot changes



158 N.M. Aguirre et al.

one of these desired values (i.e., “preselects” a value) and activates the corre-
sponding mode. In this case, the display will show the desired value instead of
the actual one. Each display will show the corresponding current value (instead
of the desired value) when the corresponding mode is manually disengaged, or
when the desired value is reached. Modes are engaged/disengaged by setting the
corresponding switches, although the system cannot be engaged in more than
one of the modes ALTmode and FPAmode, so entering one of these should disengage
the previous mode. There is an extra mode, the attitude control wheel steering,
in which the system is set when neither ALTmode nor FPAmode are engaged. The
CASmode can be engaged independently of the other modes, at any time.

When the pilot attempts to engage the system into the ALTmode, setting the
desired altitude to one that is more that 1200 feet above the current altitude,
the system will not engage directly in the ALTmode; in this situation, the system
will switch to the mode FPAmode, in an “armed” mode. Then the system will
require the pilot to enter a flight path angle (that to follow until the aircraft gets
within 1200 feet away from the desired altitude), after which the system will
move to an “unarmed” mode. Once the aircraft reaches the point where it is less
than 1200 feet from the desired altitude, it engages the mode ALTmode. When
a mode other than CASmode is engaged, the other preselected displays return to
show the current value (instead of the desired one).

In the formalization of the autopilot system’s requirements we are repro-
ducing here, the FPAmode is splitted into two different modes, FPAarmed and
FPAunarmed, to differentiate the cases in which the FPAmode is armed (waiting
for the flight path angle to be set after the mALTsw was switched on at an al-
titude lower than 1200 feet below the desired altitude) and the case in which
the FPAmode is unarmed. These two modes together with modes ALTmode and
ATTmode constitute the only mode class of the system, called mcStatus. Also,
terms tALTpresel, tCASpresel and tFPApresel are introduced to characterize
the states in which the desired altitude, calibrated air speed and flight path an-
gle have been preselected, and the CASmode is also represented as a term. An
additional term tNear is used to characterize the states in which the difference
between the desired and actual altitudes is smaller than 1200.

For describing events, SCR provides a simple notation. The notation @T(c)
WHEN d describes the event in which expression c becomes true, when d is true
in the current state, i.e., it represents the expression c’∧c∧d, where the primed
expression refers to the next state. If d is true, the ‘WHEN’ section is not written.
Also, the event CHANGED(v) indicates that v has changed, i.e., it represents the
expression v′ �= v. The table describing the mode transitions, as well as the
values for terms tALTpresel and tFPApresel is the first one in Figure 1. This
table corresponds to the merge of a mode transition table, describing the mode
transitions, and two event tables. The values of the displays are defined by
the next three small condition tables in Fig. 1. Finally, terms tCASmode and
tCASpresel get defined by the bottom event table in Fig. 1. Term tNear has a
definition which is independent of modes, conditions and events; its definition is
simply mALTdesired− mALTactual ≤ 1200.



Describing and Analyzing Behaviours over Tabular Specifications 159

Mode Class = mcStatus

Old mode Events New mode tALTpresel tFPApresel

ATTmode @T(mALTsw=on) WHEN (tALTpresel AND tNear) ALTmode false

@T(mALTsw=on) WHEN (tALTpresel AND NOT tNear) FPAarmed

@T(mFPAsw=on) FPAunarmed false

CHANGED(mALTdesired) true

CHANGED(mFPAdesired) true

ALTmode @T(mATTsw=on) ATTmode false false

@T(mFPAsw=on) FPAunarmed false

CHANGED(mALTdesired) ATTmode false false

CHANGED(mFPAdesired) true

@T(mALTdesired = mALTactual) false

FPAarmed @T(mATTsw=on) OR @T(mFPAsw=on) ATTmode false false

CHANGED(mALTdesired) ATTmode false false

CHANGED(mFPAdesired) AND NOT (mFPAdesired’ = mFPAactual’) true

@T(tNear) AND (mALTdesired’ = mALTdesired) ALTmode false

@T(mFPAdesired = mFPAactual) false

FPAunarmed @T(mALTsw=on) WHEN (tALTpresel AND tNear) ALTmode false

@T(mALTsw=on) WHEN (tALTpresel AND NOT tNear) FPAarmed

@T(mATTsw=on) OR @T(mFPAsw=on) ATTmode false false

CHANGED(mALTdesired) true

CHANGED(mFPAdesired) AND NOT (mFPAdesired’ = mFPAactual’) true

@T(mFPAdesired = mFPAactual) false

Conditions

tALTpresel NOT tALTpresel

cALTdisplay = mALTdesired mALTactual

Conditions

tCASpresel NOT tCASpresel

cCASdisplay = mCASdesired mCASactual

Conditions

tFPApresel NOT tFPApresel

cFPAdisplay = mFPAdesired mFPAactual

Term = tCASmode

Events tCASmode tCASpresel

NOT tCASmode @T(mCASsw=on) true

CHANGED(mCASdesired) true

tCASmode @T(mCASsw=on) false false

@T(mCASdesired = mCASactual) false

CHANGED(mCASdesired) AND NOT (mCASdesired’ = mCASactual’) true

Fig. 1. Tabular specification of the autopilot system

3 The Alloy and DynAlloy Modeling Languages

In the description of the autopilot system, the datatypes associated with the
variables are obvious: numeric values range over integers, states for switches can
be characterized by boolean values, and the possible values for the mode class
mcStatus can be the defined modes for the system. In Alloy, these datatypes
would be defined by signatures. For instance, the datatype associated with mode
class mcStatus can be straightforwardly defined in Alloy in the following way:

abstract sig StatusMode { }

one sig ALTmode, ATTmode, FPAmode extends StatusMode { }

Abstract signatures have as their only associated elements, those of their non
abstract “subsignatures”. The modifier one forces the corresponding signatures
to have exactly one element, i.e., to be singletons. Thus, the above Alloy spec-
ification defines an enumerated set. More complex data domains can also be
defined via signatures, using typed fields. For instance, we can define a signa-
ture to characterize the state associated with the autopilot system, composed of
monitored and controlled variables, mode classes and state dependent terms, in
the following way:



160 N.M. Aguirre et al.

sig State {

-- Monitored Variables

mALTactual, mCASactual, mFPAactual, mALTdesired, mCASdesired,

mFPAdesired: Int,

mALTsw, mATTsw, mCASsw, mFPAsw: SwitchState,

-- Controlled variables

cALTdisplay, cCASdisplay, cFPAdisplay: Int,

-- Mode classes

mcStatus: StatusMode,

-- Terms

tARMED, tCASmode, tALTpresel, tCASpresel, tFPApresel: Boolean

}

Fields, which can have relational types, are interpreted as relations from the set
associated with the signature in which the field is defined to the relation given
as a type of the field. Thus, for instance, field mcStatus in signature State is
interpreted as a relation from State to StatusMode.

Using signatures and fields, it is possible to build more complex expressions
denoting relations, with the aid of the Alloy operators. Operator ∼ denotes
relational transposition, ∗ denotes reflexive-transitive closure, and ^ denotes
transitive closure of a binary relation. Operator + denotes union, &denotes in-
tersection, and dot (.) denotes composition of relations, generalized to n-ary
relations and having relational image as a special case. In all cases, the typing
must be adequate. Formulas are built from expressions. Binary predicate in
checks for inclusion, while = checks for equality. From these (atomic) formu-
las we define more complex formulas using standard first-order connectives and
quantifiers. Negation is denoted by !. Conjunction, disjunction and implication
are denoted by &&, || and =>, respectively. Finally, quantifications have the
form some a : A | α(a) and all a : A | α(a). These formulas can be used in order
to describe assumed as well as intended properties of the models. Parameterized
formulas, which can be used for describing properties, can be written in Alloy
using predicates. For instance, we can define a predicate for characterizing event
@T(mATTsw = on), as follows:

pred Ev_TmALTswOn(s,s’: State) { s.mALTsw != on && s’.mALTsw = on }

Assumed properties of the specified data domains can be given as facts in Alloy.
We can use facts for characterizing the values of terms or other variables de-
fined via condition tables in a straightforward way. For our presented example,
the values associated with controlled variables cALTdisplay, cCASdisplay and
cFPAdisplay can be enforced using a fact, in the following way:

fact {

all s: State | (s.tALTpresel = trueValue =>

s.cALTdisplay = s.mALTdesired else

s.cALTdisplay = s.mALT) &&

(s.tCASpresel = trueValue =>

s.cCASdisplay = s.mCASdesired else

s.cCASdisplay = s.mCASactual) &&



Describing and Analyzing Behaviours over Tabular Specifications 161

(s.tFPApresel = trueValue =>

s.cFPAdisplay = s.mFPAdesired else

s.cFPAdisplay = s.mFPAactual)

}

Intended properties, those to be checked, are defined in Alloy using assertions.
For instance, we can consider the following assertion, corresponding to a dis-
jointness check for the mode transition table associated with mcStatus:

assert DisjointnessCheck {

all s, s’: State | ! (s.mcStatus = ATTmode &&

(Ev_TmALTswOn[s,s’] && s.tALTpresel = trueValue && s.tNear = trueValue) &&

(Ev_TmALTswOn[s,s’] && s.tALTpresel = trueValue && !(s.tNear = trueValue))

}

In Alloy, operations over the defined domains are specified using predicates. Dy-
nAlloy, on the other hand, incorporates the notion of action for specifying op-
erations. Atomic actions, which are the basic units for specifying state change,
are defined via pre- and post-conditions. This kind of description for an action
indicates that, for the action to be executed, its precondition must be true, and
in this case the state resulting from the execution of the action satisfies the
postcondition. As a simple example, consider the following action, which char-
acterizes the change of the monitored variable mALTactual (and the arbitrary
change of the event-dependent terms and controlled variables):

act mALTactualChange[s: State] {

pre { }

post { s’.mALTactual != s.mALTactual && s’.mCASactual = s.mCASactual &&

s’.mFPAactual = s.mFPAactual && s’.mALTsw = s.mALTsw &&

s’.mATTsw = s.mATTsw && s’.mCASsw = s.mCASsw &&

s’.mFPAsw = s.mFPAsw && s’.mALTdesired = s.mALTdesired &&

s’.mCASdesired = s.mCASdesired && s’.mFPAdesired = s.FPAdesired }

}

Atomic actions can be composed to form composite actions (also called pro-
grams). These are built using sequential composition (;), nondeterministic choice
(+), test ([f]?, an action that does not modify the state but can only be ex-
ecuted when f is true) and iteration (*). For example, if we consider atomic
actions describing the change of each of the monitored variables (as we did
above for monitored variable mALTactual), then the following composite action
characterizes the change of one of the monitored variables:

program monitoredVarChange[s: State] {

mALTactualChange[s] + mCASactualChange[s] + mFPAactualChange[s] +

mALTswChange[s] + mATTswChange[s] + mCASswChange[s] + mFPAswChange[s] +

mALTdesiredChange[s] + mCASdesiredChange[s] + mFPAdesiredChange[s]

}

This language for describing composite actions is what we are primarily inter-
ested in exploiting. DynAlloy also allows the specifier to write assertions as-
sociated with his programs, i.e., intended properties of the executions of the



162 N.M. Aguirre et al.

programs, to be checked. These properties to be checked are also given in the
form of partial correctness assertions, i.e., by pre- and post-conditions. For exam-
ple, the following DynAlloy assertion expresses that the above program cannot
change mALTactual and mCASactual at the same time:

assertCorrectness[s:State] {

pre { }

program monitoredVarChange[s]

post { !(s’.mALTactual != s.mALTactual && s’.mCASactual != s.mCASactual)}

}

Alloy assertions can be automatically analyzed using the Alloy Analyzer. The
mechanism for analysis is based on SAT solving. Basically, given a system spec-
ification and a statement about it, the Alloy tool exhaustively searches for a
counterexample of this statement under the assumptions of the system descrip-
tion, by reducing the problem to the satisfiability of a propositional formula.
Since the Alloy language is first-order, the search for counterexamples has to be
performed up to a certain bound k in the number of elements in the universe of
the interpretations. Thus, in order to check an assertion, the user has to provide
bounds for the number of elements in the domains (associated with signatures)
of the specification. Obviously, this analysis is not a decision procedure, since
it cannot be used in general to guarantee the absence of counterexamples for a
theory [10]. Nevertheless, it is useful in practice, since it allows one to discover
counterexamples of intended properties, and if none is found, gain confidence
about our specifications. This is similar in spirit to testing, since one checks the
truth of a statement for a number of cases; however, as explained in [11], the
scope of the technique is much greater than that of testing, since the space of
cases examined (usually in the order of billions1) is beyond what is covered by
testing techniques, and it does not require one to manually provide test cases.

DynAlloy assertions can also be analyzed automatically, by means of the same
mechanism. Essentially, the DynAlloy Analyzer translates a DynAlloy assertion
into an Alloy specification, which then can be analyzed using the Alloy Analyzer.
In order to do so, the DynAlloy Analyzer needs, besides the bounds for the
domains, an extra bound for iteration. This extra bound is used by the DynAlloy
Analyzer to “unroll” the iterations in the program to be checked.

4 Characterizing Tables in DynAlloy

Part of the characterization of tables in DynAlloy has already been introduced in
the previous section. First, type definitions, including the definition of signature
State, are defined as shown in previous sections. The state of the system is
composed of system variables, mode classes and terms. Second, each of the events
mentioned in the tables gives rise to a corresponding predicate definition. Third,
1 This is so because, even for simple specifications and relatively small bounds, the

number of bounded possible instances of the model, i.e., the cases to be examined,
can be very large, easily reaching billions of possible instances [11].



Describing and Analyzing Behaviours over Tabular Specifications 163

event independent terms and controlled variables, defined by condition tables,
are constrained in Alloy using facts, as shown before for the displays. These
facts are automatically synthesized from the condition tables. Fourth, mode
transitions, described in a mode transition table, give rise to an Alloy predicate
characterizing the transitions. In our case, this predicate is the following:

pred NEXTmcStatus(s, s’: State) {

s.mcStatus = ALTmode &&

(Ev_TmATTswOn[s,s’] || Ev_ChangedmALTdesired[s,s’]) =>

s’.mcStatus = ATTmode else

(s.mcStatus = ALTmode && Ev_TmFPAswOn[s,s’] => s’.mcStatus = FPAmode else

(s.mcStatus = ATTmode && Ev_TmALTswOnWhentALTpreselAndtNear[s,s’] =>

s’.mcStatus = ALTmode else

(s.mcStatus = ATTmode && (Ev_TmFPAswOn[s,s’] ||

Ev_TmALTswOnWhentALTpreselAndNottNear[s,s’]) =>

s’.mcStatus = FPAmode else

(s.mcStatus = FPAmode && (Ev_TmALTswOnWhentALTpreselAndtNear[s,s’] ||

Ev_TtNearWhentARMED[s,s’])

=> s’.mcStatus = ALTmode else

(s.mcStatus = FPAmode && (Ev_TmATTswOn || Ev_TmFPAswOn ||

Ev_ChangedmALTdesiredWhentARMED[s,s’])

=> s’.mcStatus = ATTmode

else s’.mcStatus = s.mcStatus)))))

}

Notice that we are making use of the predicates associated with the events.
Clearly, predicate NEXTmcStatus corresponds to the formula specified using a
tabular notation in SCR. We follow a similar process for controlled variables and
terms defined by event tables. For instance, we will have a predicate associated
with the event table defining tCASmode, etc. Finally, using these predicates we
define a single DynAlloy action, called stateChange, as follows:

act stateChange[s: State] {

pre { }

post { monitoredVariableChange[s,s’] && NEXTmcStatus[s,s’] &&

NEXTtARMED[s,s’] && NEXTtCASmode[s,s’] &&

NEXTtALTpresel[s,s’] && NEXTtCASpresel[s,s’] && NEXTtFPApresel[s,s’] }

}

where monitoredVariableChange is an Alloy predicate characterizing the
change of a monitored variable. Other elements of a tabular specification, such as
initial states, are also straightforwardly characterized in DynAlloy. The impor-
tant point here is that the generation of the DynAlloy specification corresponding
to the tabular descriptions is fully automated.

With the DynAlloy characterization of the tabular specification, we can do
various analyses. For instance, we can use the Alloy Analyzer for checking dis-
jointness and completeness associated with tables (an example of this is assertion
DisjointnessCheck given in the previous section). We can also check proper-
ties of all executions, using the DynAlloy Analyzer. For instance, we could check
that, whenever the system is in the ALTmode, the altitude display shows the de-
sired altitude. This is specified using the following DynAlloy assertion:



164 N.M. Aguirre et al.

assert basicProgram {

assertCorrectness[s: State] {

pre = { initialState[s] }

program = { stateChange[s]* }

post = { (s’.mcStatus = ALTmode) => (s’.cALTdisplay = s’.mALTdesired) }

}

}

where initialState is a predicate describing the initial state for the system
(also synthesized from the tabular specification).

5 Specifying and Analyzing Sets of Executions via
DynAlloy Programs

Most of the analysis techniques associated with tabular specifications, including
the SAT based analysis described in the previous section, have their efficiency
tied to the size of the specification (or, put in a different way, to the number of
possible runs associated with the specification). We propose here a notation for
describing subsets of the executions of a tabular specification. The notation is
essentially that of DynAlloy programs, complemented with a way of restricting
action stateChange, our only atomic action, representing a change in the state
of the system as defined by the tables. Intuitively, the conditioned atomic action
definition:

stateChange<<f[s,s’]>>[s]

where f[s,s’] is a formula referring to the pre and post states, corresponds to
action
stateChange occurring, with f also taking place in the transition. For exam-
ple, the following actions:

stateChange<<@T(mALTsw = on)>>[s] stateChange<<NOT @T(mALTsw = on)>>[s]

correspond to action stateChange, restricted to the facts that the mALTsw switch
must be switched on in the change, and must not be switched on in the change,
respectively. If an action a is defined by pre and postconditions pre a and
post a, then its semantics is the relation associated with the formula pre a[s]∧
post a[s, s′]. Action a<<f[s,s’]>> has instead as its semantics the relation as-
sociated with the formula pre a[s]∧ post a[s, s′]∧ f[s, s′]. Since the restrictions
for atomic action stateChange are provided by the user, the SCR notation is
employed for expressing them. In this way, the specifier used to the tabular no-
tation will not need to deal directly with (Dyn)Alloy. The idea is, of course, that
(Dyn)Alloy should be used as a backend for analysis.

Let us consider as a first example of the use of the notation the following.
If none of the switches in the panel are switched, then the mode remains being
that of the initial state, namely ATTmode. This is expressed as follows:

assert SimpleCheck {

assertCorrectness[s: State] {



Describing and Analyzing Behaviours over Tabular Specifications 165

pre = { initialState[s] }

program = { stateChange<<!@T(mATTsw = switchOn)

AND !@T(mFPAsw = switchOn) AND !@T(mALTsw = switchOn)>>[s]* }

post = { s’.mcStatus = ATTmode }

}

}

Another example is the following. Suppose that one wants to check if, once the
ALTmode is on, if no switch is switched afterwards then either the current mode
is ALTmode, or is back to mode ATTmode (i.e., the ALTmode is deactivated because
the desired altitude was reached). This is expressed as follows:

assert ALTmodeDisengagedWhenALTreached {

assertCorrectness[s: State] {

pre = { initialState[s] }

program = { stateChange[s]* ; [ s.mcStatus = ALTmode]? ;

stateChange<<!@T(mATTsw = switchOn) AND !@T(mFPAsw = switchOn)

AND !@T(mALTsw = switchOn)>>[s]* }

post = { s’.mcStatus = ALTmode || s’.mcStatus = ATTmode }

}

}

These examples use conditioned actions, test actions, iteration and sequential
composition. Let us now consider the following assertion: If the mALTsw is pressed
below 1200 from the desired altitude, then if the panel is not touched and the
airplane reaches an altitude higher than or equal to the desired altitude, the
airplane moves to ALTmode and the altitude display shows the current altitude.
This is expressed in the following way:

assert BackToALTWhenALTpassed {

assertCorrectness[s: State] {

pre = { initialState[s] }

program = { stateChange[s]* ;

[ s.mALTdesired - s.mALTactual > 1200 ]? ;

stateChange<<@T(mALTsw = switchOn)>>[s] ;

stateChange<<!@T(mATTsw = switchOn) AND !@T(mFPAsw = switchOn)

AND !@T(mALTsw = switchOn) AND

NOT Changed(mALTdesired) AND

NOT Changed(mFPAdesired) AND

NOT Changed(mCASdesired)>>[s]* ;

[ s.mALTactual > s.mALTdesired]? ; }

post = { s’.mcStatus = ALTmode && s’.cALTdisplay = s’.mALTactual }

}

}

Via programs, we externalize the specification of control flow from tabular spec-
ifications. Notice that the number of possible executions of these programs if
iterated just a few times is huge, due to the various different branches these
can follow in different iterations; this is beyond the scope of what can practi-
cally be done by manually defining executions for simulation, for instance by
using the SCR toolset’s simulator. Notice that tables in a specification describe



166 N.M. Aguirre et al.

a labeled transition relation, and a system’s behaviour is understood as the
reflexive-transitive closure of this relation. For these relations to adequately de-
scribe the wanted behaviours associated with any of the properties to be checked
given in this section, it would be necessary to include control variables (or new
modes) whose values rule out undesired control flows. Some of these variables
can be deemed unnecessary by using an action language allowing us to externally
define complex behaviours, as the one we propose.

Although in this paper we analyze programs over tabular specifications using
SAT-solving, via the (Dyn)Alloy and DynAlloy analyzers, the notation is not
limited to this usage. For instance, it is relatively straightforward to translate
assertions of the kind shown in this section to the input languages of other
analysis tools, in particular model checking tools.

6 Synthesis for Conditioned Atomic Actions

According to the semantics of conditioned atomic actions, it is clear that we can
straightforwardly synthesize new DynAlloy atomic actions for each of the con-
ditioned atomic actions used by the specifier. For instance, conditioned atomic
action stateChange<<@T(mcStatus = ATTmode)>>[s,s’]would lead to the fol-
lowing DynAlloy atomic action:
act stateChangeCondEv_TmcStatusATTmode[s: State] {

pre { } post { postStateChange[s,s’] && Trans(@T(mcStatus = ATTmode)) }

}

where postStateChange is the original postcondition of action stateChange and
Trans(@T(mcStatus = ATTmode)) corresponds to the mapping of @T(mcStatus
= ATTmode) into Alloy’s syntax (and the predicates associated with events in-
troduced). However, this has some disadvantages. Conditioned actions, which
should be restrictions of the original atomic actions, are actually more complex.
This has a negative impact with respect to analysis, as it will be made clearer in
the next section. Therefore, we consider an alternative mechanism for generat-
ing the corresponding DynAlloy definition of a conditioned atomic action. This
mechanism makes use of the information associated with the wellformedness of
tabular specifications (in particular, disjointness), and the semantics of tables.

Assuming that we have already checked the wellformedness of our tabular
specifications, as defined in [6], the process for synthesizing a DynAlloy atomic
action from a conditioned action stateChange[e] works by identifying a subset
of the events used in the tables, the set of incompatible events with respect to
e. We restrict the construction to atomic events of the form @T(v = c), @F(v
= c), CHANGED(x), @T(v = c) WHEN cond, @F(v = c) WHEN cond, and combi-
nations of these using conjunction, disjunction and negation. Furthermore, in
order to make the process efficient, it is based on the sole syntactic analysis of
the events used in the tables, i.e., without resorting to the use of SAT solving to
check whether two events are incompatible or not. We will describe the rules for
constructing the set of incompatible events for @T(x = c), but the reader can
straightforwardly generalize the principles used in this construction to the other



Describing and Analyzing Behaviours over Tabular Specifications 167

events. Let e be @T(alpha). The events incompatible with e are the following:
(i) @F(alpha) is incompatible with e. (ii) If alpha is of the form x = c, with x
a variable and c a constant, then @T(x = c’) and @T(x = c’) WHEN cond are
incompatible with e, for every constant c’ different from c. (iii) If alpha is of
the form x = c, with x a variable, term or mode class, then then @T(y = c’),
@T(y = c’) WHEN cond, @F(y = c’), @F(y = c’) WHEN cond and CHANGED(y)
are incompatible with e, for every variable, term of mode class y which is not
a predecessor nor a successor of x in the symbol dependency graph, and for
every expression c’. (iv) Conjunctions involving any of the above cases are also
incompatible with e. (v) Disjunctions whose all composing disjuncts correspond
to the above cases are incompatible with e.

These incompatible events are guaranteed not to occur simultaneously with
e. The reason for this in the first and second of the above cases is obvious. The
third is based on the observation that, if x changed its value, then all the symbols
which do not depend on x and of which x does not depend, cannot have changed.
This has to do with the assumption that events start with the change of a single
monitored variable, and the propagation of changes to the symbols depending on
this variable. Notice also that the third of the above rules has as a special case
that, if a monitored variable changes in a transition step, then none of the other
monitored variables changes in the same transition (recall that we assume that
the tabular specification is valid, implying that the symbol dependency graph is
acyclic). The reason for the last two rules are obvious due to the semantics of
conjunction and disjunction, respectively.

Once the set of incompatible events is constructed for e, the process is straight-
forward. First, we remove the cases in the tabular specifications involving events
incompatible with e. Second, in the tables where disjointness conditions apply,
the alternatives to e are removed. We then generate the “stateChange” for-
mula corresponding to the resulting tables. These formulas can be much simpler
than the original stateChange postcondition. For instance, the combined mode
transition/event table given previously, restricted according to
stateChange(@T(mATTsw=on)) is reduced to the following:

Mode Class = mcStatus
Old mode Events New mode tALTpresel tFPApresel

ALTmode @T(mATTsw=on) ATTmode false false

FPAarmed @T(mATTsw=on) OR @T(mFPAsw=on) ATTmode false false

FPAunarmed @T(mATTsw=on) OR @T(mFPAsw=on) ATTmode false false

The resulting tables might not satisfy some of the wellformedness conditions
(e.g., when we remove a row, we might lose completeness); however, this is not a
concern, since the resulting tables are guaranteed to be equivalent to the original,
if restricted to the occurrence of event e, used to “restrict” the tables.

7 Analyzing Programs over Tabular Specifications

In order to assess our approach, we have conducted some case studies, including
two different versions of the autopilot system, taken from [1,2], and a tabular spec-
ification of a mini FM radio. In order for the Alloy Analyzer to be able to handle



168 N.M. Aguirre et al.

integer values, we had to consider abstractions of the altitude, etc, using smaller
integers (smaller than 16). Although this is a limitation particularly associated
with the Alloy Analyzer, this kind of abstraction process is also typical of other
automated analysis techniques, such as model checking. The results of the exper-
iments, which were carried out using an Intel Core 2 Duo of 2.2Ghz with 2GB of
RAM, running the Alloy Analyzer 4.1.8 over Mac OS X, were positive. In the cases
of the somewhat more preliminary specification of the autopilot system taken from
[1] and the specification of the mini FM radio, the Alloy Analyzer allowed us to
find various errors in the specifications, including consistency errors, errors re-
lated to misinterpretations of events, and transcription mistakes. For the better
developed specification of the autopilot system in [2], we carried out experiments
involving the execution programs given above. We compared the straightforward
(SG) and based on event compatibility (ECG) approaches to generating defini-
tions for conditioned atomic actions, with the latter showing a better performance
compared to the former, as expected. We summarize the analysis times for two of
the assertions, namely SimpleCheck and BackToALTWhenALTpassed, in the table
below (times are in seconds). We found out using the (Dyn)Alloy Analyzer that
this last property is, contrary to what we expected, invalid. The first counterex-
ample obtained had to do with the altitude changing arbitrarily, and was solved
by requiring it to be increased/decreased in units (which must divide the repre-
sentation of 1200, used in tNear). The second counterexample obtained exhibited
the following situation: if the airplane gets into FPAunarmed mode after the de-
sired altitude has been altered, the system will stop considering that the altitude
has been preselected; thus, when mALTsw is pressed, the event is ignored and the
system will continue to be in FPAunarmed mode. Obviously, this has to do with a
misinterpretation of the relationship between tNear and tALTpresel, which we
can correct in the program by requiring in the intermediate test action not only
that tNear be false, but also that tALTpresel is true. SimpleCheck and the cor-
rected BackToALTWhenALTpassed (also included in the table) properties are valid
within the provided bounds, requiring exhaustive explorations of cases for the cor-
responding bounds. Also, BackToALTWhenALTpassed contains two loops, leading
to longer runs for the corresponding loop unrolls and longer analysis times, as it
can be observed in the table.

Loop unrolls SimpleCheck BackToALTWhenALTpassed BackToALTWhenALTpassed corrected
SG ECG SG ECG SG ECG

5 .563 .602 2.740 1.233 17.442 16.181
10 1.855 1.255 6.253 6.305 106.018 122.003
20 6.184 4.510 84.421 33.518 > 60′ > 60′

40 46.749 21.648 576.402 170.946 > 60′ > 60′

80 422.722 285.784 > 60′ > 60′ > 60′ > 60′

8 Conclusions

We have proposed a formal notation for describing behaviours over tabular
specifications of requirements. This formalism enabled us to describe classes of
computations, in the sense of particular combinations of the atomic transitions
specified by tables. As opposed to previous approaches, our approach allows for



Describing and Analyzing Behaviours over Tabular Specifications 169

the description of a wider class of combinations of the transitions defined by
tables, by means of a rich operational language. This language is based on Dy-
nAlloy, an extension of the Alloy formal specification language that incorporates
actions, both atomic and composite, in order to specify state change in a suit-
able way. Our approach comes equipped with some tool support, since, as we
showed in the paper, the DynAlloy Analyzer [4] can be used to validate partial
correctness assertions over tabular specifications via a SAT based mechanism
(by indirectly employing the Alloy Analyzer).

The proposed notation for characterizing particular combinations of the tran-
sitions specified by tables is not restricted to SAT-based analysis. The pow-
erful tool support associated with existing tabular notations for requirements
[7,3,8,13] might benefit from the presented approach. In particular, starting from
the DynAlloy assertions (accompanied by programs) of the kind presented in the
paper, one can generate corresponding specifications in the input languages of
model checkers. Thus, one could apply model checking, in the way that the SCR
toolset applies it, to analyze the behaviours corresponding to these programs.
We are confident that this would contribute to the efficiency of the analysis and
the convenience of the user, by allowing the specifier to concentrate verification
on particular sets of runs (specified by programs over tables) in a declarative
manner. It is our aim and part of our work in progress to apply some of these
analysis techniques with a focus on the runs specified by programs in our nota-
tion, rather than on the global set of behaviours.

References

1. Bharadwaj, R., Heitmeyer, C.: Applying the SCR Requirements Specification
Method to Practical Systems: A Case Study. In: 21st Software Engineering Work-
shop, NASA GSFC (1996)

2. Bharadwaj, R., Heitmeyer, C.: Applying the SCR Requirements Method to a Sim-
ple Autopilot. In: Proc. of the Fourth NASA Langley Formal Methods Workshop
(1997)

3. Bultan, T., Heitmeyer, C.: Analyzing Tabular Requirements Specifications using
Infinite State Model Checking. In: Proc. of MEMOCODE 2006 (2006)

4. Frias, M., Galeotti, J.P., López Pombo, C., Aguirre, N.: DynAlloy: Upgrading Alloy
with Actions. In: Proc. of ICSE 2005. ACM Press, New York (2005)

5. Gargantini, A., Heitmeyer, C.: Using Model Checking to Generate Tests from Re-
quirements Specifications. In: Nierstrasz, O., Lemoine, M. (eds.) ESEC 1999 and
ESEC-FSE 1999. LNCS, vol. 1687, p. 146. Springer, Heidelberg (1999)

6. Heitmeyer, C., Bull, A., Gasarch, C., Labaw, B.: SCR*: A Toolset for Specify-
ing and Analyzing Requirements. In: Haveraaen, M., Dahl, O.-J., Owe, O. (eds.)
Abstract Data Types 1995 and COMPASS 1995. LNCS, vol. 1130. Springer, Hei-
delberg (1996)

7. Heitmeyer, C., Jeffords, R., Labaw, B.: Automated consistency checking of require-
ments specifications. ACM Trans. on Soft. Eng. and Methodology 5(3) (1996)

8. Heitmeyer, C., Archer, M., Bharadwaj, R., Jeffords, R.: Tools for constructing
requirements specifications: the SCR Toolset at the age of nine. Computer Systems:
Science & Engineering 20(1) (2005)



170 N.M. Aguirre et al.

9. Heninger, K., Kallander, J., Parnas, D., Shore, J.: Software Requirements for the
A-7E Aircraft, NLR Memorandum Report 3876, US Naval Research Lab. (1978)

10. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. on Soft.
Eng. and Methodology 11(2) (2002)

11. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2006)

12. Leveson, N., Heimdahl, M., Hildreth, H., Reese, J.: Requirements Specifications
for Process-Control Systems. IEEE Trans. on Software Engineering 20(9) (1994)

13. Owre, S., Rushby, J., Shankar, N.: Analyzing Tabular and State-Transition Speci-
fications in PVS. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217. Springer,
Heidelberg (1997)



Reducing the Costs of Bounded-Exhaustive
Testing

Vilas Jagannath, Yun Young Lee, Brett Daniel, and Darko Marinov

Department of Computer Science, University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

{vbangal2,lee467,bdaniel3,marinov}@cs.uiuc.edu

Abstract. Bounded-exhaustive testing is an automated testing method-
ology that checks the code under test for all inputs within given bounds:
first the user describes a set of test inputs and provides test oracles
that check test outputs; then the tool generates all the inputs, executes
them on the code under test, and checks the outputs; and finally the
user inspects failing tests to submit bug reports. The costs of bounded-
exhaustive testing include machine time for test generation and execution
(which translates into human time waiting for these results) and human
time for inspection of results. This paper proposes three techniques that
reduce these costs. Sparse Test Generation skips some tests to reduce the
time to the first failing test. Structural Test Merging generates a smaller
number of larger test inputs (rather than a larger number of smaller test
inputs) to reduce test generation and execution time. Oracle-based Test
Clustering groups failing tests to reduce the inspection time. Results
obtained from the bounded-exhaustive testing of the Eclipse refactor-
ing engine show that these three techniques can substantially reduce the
costs while mostly preserving fault-detection capability.

1 Introduction

Testing is an important but expensive part of software development, estimated
to take more than half of the total development cost [1]. One approach to re-
ducing the cost is to automate testing. Bounded-exhaustive testing is an au-
tomated approach that checks the code under test for all inputs within given
bounds [2, 3, 4, 5, 6]. The rationale is that many faults can be revealed within
small bounds [7, 8], and exhaustively testing within the bounds ensures that
no “corner case” is missed. Bounded-exhaustive testing has been used in both
academia and industry to test several real-world applications, with some recent
examples including testing of refactoring engines [5] and a web-traversal code [6].

Bounded-exhaustive testing consists of three activities. First, the user de-
scribes a set of test inputs and provides test oracles that check test outputs.
Second, the tool generates all the inputs, executes them on the code under test,
and checks the outputs using the oracles. Third, the user inspects failing tests
to submit bug reports or debug the code; typically, bounded-exhaustive testing
produces a large number of failures for each fault found. Two key costs in this

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 171–185, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



172 V. Jagannath et al.

context are machine time for test generation and execution (which also translates
into human time for waiting for these results [9,10]) and human time for inspec-
tion of failures. Previous experience shows that bounded-exhaustive testing can
discover important faults [3,4, 5, 11] but also can have high costs.

This paper proposes, and evaluates on a case study, three novel techniques that
reduce these costs of bounded-exhaustive testing. The three techniques address
various costs and can be used individually or synergistically.

Sparse Test Generation (STG): We present a new technique that reduces the
time to first failure (abbreviated TTFF ), i.e., the time that the user has to wait
after starting a tool for bounded-exhaustive testing until the tool finds a failing
test. Note that in this context there is usually a large number of failing tests (say,
hundreds or even thousands) or no failing test (if the code under test reveals no
fault for any generated test). TTFF measures only the time to the first failure
(not all failures). It is an important practical metric that captures the user idle
time. Previous research shows, in a related context of regression testing, that
reducing the time to failure can significantly help in development [9, 10]. STG
works by making two passes through test generation. The first, sparse, pass skips
some tests in an attempt to reduce TTFF. While this pass is related to test suite
minimization/reduction/prioritization [12, 13, 14, 15, 16, 17], the main challenge
is to skip tests while they are being generated and not to select some tests only
after all have been generated. The second, exhaustive, pass generates all the tests
to ensure exhaustive checking within the given bound. Effectively, STG trades
off (substantially) decreasing TTFF for (slightly) increasing the total time.

Structural Test Merging (STM): We present a new technique that reduces
the total time for test generation and execution. In bounded-exhaustive testing,
users typically describe a test set with a large number of small tests, while we ad-
vocate considering test sets with a smaller number of larger tests. Our technique
is inspired by the work on test granularity [18,19] which studied the cost-benefit
trade-offs in using a larger number of smaller tests versus a smaller number of
larger tests. That work mostly considered manually written tests for regression
testing, while we focus on automatically generated tests. Moreover, that work
considered cases where larger tests can be automatically built from smaller tests
by simply appending (e.g., if each test is a sequence of commands, a longer
test sequence can be obtained by simply appending a number of shorter test
sequences), while we consider cases where it is harder to build larger tests from
smaller tests (e.g., simply appending two test input programs together while
testing a compiler or a refactoring engine would likely result in a compilation
error as these programs have program entities with the same name; moreover,
renaming would reduce the opportunity of speeding up test execution). Instead
of simply appending tests, our technique merges them based on their structure,
hence the name STM.

Oracle-Based Test Clustering (OTC): We present a new technique that re-
duces the human time for inspection of failing tests. Bounded-exhaustive testing
can produce a large number of failing tests, and a tester/developer has to map



Reducing the Costs of Bounded-Exhaustive Testing 173

these failures to distinct faults to submit bug reports or debug the code under
test. Our technique builds on the ideas from test clustering [20,21,22,23,24,25]
where the goal is to split (failing) tests into groups such that all tests in the
same group are likely due to the same underlying fault. Previous work mostly
considered manually written tests or actual programs runs, and clustering was
based on execution profiles obtained from monitoring test execution. In contrast,
we consider automatically generated test inputs, and our technique exploits in-
formation from oracles. Typically, an oracle only states if some test passed or
failed, i.e., the output from an oracle is a boolean. However, in some domains
oracles also state how the result is incorrect, i.e., the output from an oracle is
an error message. OTC splits tests based on oracle messages, and our results
suggest that it is beneficial to build such oracles whenever possible. The key to
our technique is abstracting messages and not comparing them directly.

Case Study: We implemented our three new techniques in the ASTGen frame-
work for bounded-exhaustive testing of refactoring engines [5]. We chose ASTGen
for three reasons: it had enabled finding actual faults in real large software (we
had found a few dozens of new faults in the refactoring engines of Eclipse and
NetBeans, two popular IDEs for Java [5]); we were familiar with the framework;
and we personally experienced the costs of using ASTGen. We evaluated the
techniques on testing 6 refactorings with 9 generators (explained later in the
text). The results show that (1) STG can reduce TTFF almost 10x (an order
of magnitude) when there is a failure, while increasing the total test generation
and execution time only 10% when there is no failure; (2) STM can reduce the
total time 2x-6x (in one instance from over 6 hours to 70 minutes) and even
more (but with some reduction of the fault-detection capability); and (3) OTC
can reduce the number of tests to be inspected by clustering hundreds of failing
tests into a few groups (up to 11) such that almost all tests within the group
are due to the same fault. In summary, the results show that the new techniques
can substantially reduce both the machine time and the human time without
reducing the fault-detection capability.

2 Example

To illustrate how our techniques reduce the costs of bounded-exhaustive testing,
we discuss testing of the PullUpMethod refactoring in the Eclipse refactoring
engine using the ASTGen framework. We first describe what PullUpMethod is.
We then describe how to use ASTGen for bounded-exhaustive testing of this
refactoring. We finally discuss how our new techniques improve on ASTGen.

Each refactoring is a program transformation that changes the program code
but not its external behavior [26]. Programmers undertake refactorings to im-
prove design of their programs. For example, PullUpMethod is a refactoring that
moves a method from some class into one of its superclasses (usually because the
same method is useful for other subclasses of that superclass). Figure 1 shows
a simple application of the PullUpMethod refactoring. Note that moving the



174 V. Jagannath et al.

// Before refactoring
class A {

int f;
}
class B extends A {

void m() {
super.f = 0;

}
}

// After refactoring
class A {

int f;
void m() {
this.f = 0;

}
}
class B extends A {
}

// Before refactoring
class A {
}
class B extends A {
int f;
void m() {

this.f = 0;
}

}

// Refactoring engine
// warning:

// Cannot pull up:
// method ‘m’
// without pulling up:
// field ‘f’

Fig. 1. Example applications of the PullUpMethod refactoring

method also requires properly updating the references within the method body,
i.e., replacing super.f with this.f.

Refactoring engines are development tools that automate applications of refac-
torings. They are an important part of modern IDEs such as Eclipse [27]. To
apply PullUpMethod, the developer instructs the engine which method to move
to which superclass in the input program. The engine first checks whether the
move is permitted (e.g., PullUpMethod should not move a method to a super-
class if the superclass already has a method with the same signature). If it is, the
engine appropriately transforms the program. The output is either a transformed
program or a set of warning messages that indicate why the move would not be
permitted, as illustrated in Figure 1.

Testing the implementation of PullUpMethod requires generating a number of
input programs, invoking the refactoring engine on them, and checking whether
it gives the appropriate output (either a correctly transformed program or an
expected set of warning messages). Testers can have good intuition about which
input programs could reveal a fault. For instance, PullUpMethod may have faults
if the subclass and superclass have some additional relationship, e.g., being an
inner or a local class or being related through a third class. Also, there may
be faults for some expressions and statements that include field and method
references from the body of the method being pulled up or to the method being
pulled up. However, it is time-consuming and error-prone to manually generate
a large number of such input programs.

We previously developed the ASTGen framework for bounded-exhaustive test-
ing of refactoring engines [5]. ASTGen allows the tester to write generators that
can automatically produce a (large) number of (small) input programs for testing
refactorings. ASTGen generates all these inputs, executes the refactoring engine
on them, runs several oracles to validate the outputs, and reports failures.

For instance, to test PullUpMethod, we can use a generator that produces pro-
grams with three classes in various relationships. For this specific case, ASTGen
generates 1,152 input programs, of which 160 result in failing oracles. A detailed
inspection of these failures shows that they reveal 2 distinct faults. While find-
ing these faults is clearly positive, there are costs. Test generation and execution
(including oracles) take about 27 minutes (on a typical desktop), and the time
to find the first failure is about 9 minutes. Also, identifying the 2 distinct faults
among 160 failing tests is labor-intensive and tedious.

This paper proposes three techniques that reduce these costs. STG addresses
the time to first failure (TTFF) by first sampling some inputs rather than



Reducing the Costs of Bounded-Exhaustive Testing 175

exhaustively generating all inputs from the beginning. For our specific example,
TTFF is on average reduced almost an order to magnitude, from about 9 minutes
to 1 minute. STM addresses the total time for test generation and execution.
Instead of testing PullUpMethod for 1,152 (small) programs that exercise vari-
ous features in isolation, STM builds larger programs that combine some of the
features, e.g., combine several expressions or statements that include field and
method references to/from the method being pulled up. The tester can choose
how many features to combine. In this example, the least aggressive combina-
tion reduces the total time from 27 minutes to about 4 minutes, and the most
aggressive combination reduces the total time further to under 1 minute. OTC
addresses the cost of failure inspection. It clusters the failing tests into groups
that are likely to be due to the same fault, and thus the tester can inspect only
one or a few tests from these “equivalence classes”. Our clustering is based on
oracle messages and can consider more or fewer details of the messages. The
basic clustering splits 160 failing tests into 127 clusters, but our best clustering
splits them into just 3 clusters that reliably find the 2 faults. In contrast, random
sampling could miss faults, e.g., one of our experiments shows that it finds on
average 1.77 out of 2 faults in this case.

3 Background: ASTGen

We now describe in more detail two parts of the ASTGen framework that are rele-
vant to present the three techniques introduced in this paper. ASTGen allows the
testers to write generators—pieces of code that implement a specific interface—
which ASTGen runs to automatically generate input programs. ASTGen then
applies refactorings on these inputs and runs the oracles on the outputs.

Generators: Each generator is a piece of Java code that produces elements of
Java abstract syntax trees (ASTs), which can be pretty-printed as Java source.
Conceptually, generators are close to grammar-based generation [28, 29], but
ASTGen uses Java code rather than a grammar formalism as explained else-
where [5]. ASTGen provides (1) a large library of basic generators, (2) several
mechanisms to compose and link simpler generators into more complex genera-
tors, and (3) customization of generators using Java code. Some of the generators
that ASTGen provides include:

Field Declaration Generator produces many different field declarations that
vary in terms of type (int, byte, boolean, array or non array, etc.), visibility
(private, public, etc.), and name of the declared field.

Field Reference Expression Generator is linked to the Field Declaration
Generator and produces different expressions that reference the declared
field in various ways, including field accesses and operations (this.f, new

A().f, super.f, f++, !f, etc.).
Single Class Field Reference Generator is composed on top of the Method

Declaration Generator and produces classes with one field (obtained from
the Field Declaration Generator) and one method that references the field
in various ways.



176 V. Jagannath et al.

Fig. 2. Triple Class Method Child Generator structure and a generated test input

Dual Class Relationship Generator is composed upon generators that pro-
duce classes (e.g., Single Class Field Reference Generator) and produces two
classes with various relationships between them (inheritance, inner class,
local class, etc.).

While the main purpose of generators is to actually produce the test inputs, they
also encode the space of all inputs to be produced. Consider this scenario:

Inputs: Programs with three classes A, B, and C.
– B extends C; B has a method m and a method mPrime that invokes m.
– C and A each have a field f that may be referenced by m.

Test: Pull up method m from class B to class C.

The user can generate all these inputs by writing a generator that composes
and links several library generators. Figure 2 shows the overall structure of a
generator, called Triple Class Method Child Generator, that encodes this input
space. The figure also shows a sample test input produced by this generator and
how the input sub-parts match the sub-generators responsible for producing
them. By iterating through all the variations of the sub-generators, the Triple
Class Method Child Generator produces 1,152 test inputs.

Oracles: While generators are the core of ASTGen and help testers to produce a
large number of input programs for testing refactorings, it would be impractical
that the testers check the result of each refactoring application. Oracles automate
checking of the results so that the testers only have to inspect a smaller number
of tests that fail the oracles (and likely detect faults). ASTGen provides two
generic oracles and allows the users to write refactoring-specific oracles:

Compilation Failure Oracle flags tests where the refactored program has a
compilation error: if the input program compiles, then the output program
should also compile.

Erroneous Warning Oracle flags tests where the refactoring engine raised a
warning about a refactoring application, but ignoring that warning results
in a refactored program with no compilation errors (or custom failures).



Reducing the Costs of Bounded-Exhaustive Testing 177

Custom Oracles are specific to the refactoring being applied. For example, a
custom oracle for RenameMethod checks that renaming a method, say m to
p, and then renaming back, p to m, results in the same program.

The output of traditional oracles are only booleans (pass or fail), but the AST-
Gen oracles can provide additional information about the failure, e.g., messages
from the compiler or warnings from the refactoring engine.

4 Sparse Test Generation (STG)

Generators can encode and produce all the test inputs within defined bounds.
Bounded-exhaustive testing checks the code under test for all these inputs. This
usually consumes a large amount of machine time since the number of inputs gen-
erated is fairly large. For example, ASTGen generators can generate thousands
of test inputs, and it can take hours of machine time to execute the refactorings
on all those inputs. Additionally, this time translates into human time required
by the developer to wait for the execution of the tests to complete.

Note that as soon as a tool reports a failure, the developer can start inspecting
it to file a bug report or to debug the fault that caused the failure. In theory,
the time the tool takes for generation and testing after the first failure is not
important since the developer does not have to idle. For this reason, we consider
the Time to First Failure (TTFF) as the key metric in interactive bounded-
exhaustive testing. If no generated test input results in a failure, the developer
has to wait for the entire generation and testing process to complete.

STG is our technique that aims to reduce the TTFF. STG has two phases:
Sparse Generation is motivated by our observation that failing test inputs are
often located closely together in the sequence of inputs produced by a generator,
and thus, to find a failure, it is often not necessary to exhaustively generate
all the inputs but only one input from a closely located group. Therefore, this
phase makes “jumps” through the generation sequence. The jump length is not
constant (since the failing tests may be in a stride that a constant jump would
miss) but each jump is (uniformly) random within some length limit. The key is
to determine an appropriate limit: a lower limit increases the overhead of STG
compared to the basic, dense bounded-exhaustive testing, while a higher limit
decreases the chance that Sparse Generation finds a failure (and thus increases
the TTFF). We use the limit of 20 as it provides a good trade-off: the expected
jump is of length (1+20)/2, which increases the total time by less than 10%
when there is no failure. If Sparse Generation finds a failing test, it usually does
so quickly; the results from Section 7 show that STG reduces the TTFF by an
order of magnitude in most cases compared to the dense generation. However,
STG is a heuristic and, in general, could keep missing failures until the very end
while dense generation would have found those failures at the very beginning.
Exhaustive Generation follows Sparse Generation and does basic bounded-
exhaustive testing (1) to ensure that a failing test input will be found if one
exists and (2) to find all the failing tests that Sparse Generation missed (which
can help in clustering failures or debugging [20,23,25]).



178 V. Jagannath et al.

Fig. 3. Unmerged test inputs

5 Structural Test Merging (STM)

TTFF is an important metric in bounded-exhaustive testing. Another important
metric is the total time for test generation and execution. This time can be very
long when generators produce a large number of inputs, which is the case for
typical top-level ASTGen generators. For example, consider the number of inputs
for the Triple Class Method Child Generator shown in Figure 2. Each of its sub-
generators has a small number of variations—G2 has 2 (inner, outer); G3 has 3
(inner, method inner, outer); G4, G5, and G6 have 1; G7 has 2 (public, private);
G8 has 6 (f, new A().f, A.this.f, etc.); G9 has 4 (public, private, same/different
signature); and G10 has 4 (m(), new B().m(), this.m(), B.this.m())—but the
top-level generator produces 2×3×1×1×1×2×6×4×4 = 1152 combinations.

STM reduces the number of test inputs while still aiming to preserve their ex-
haustiveness: instead of producing a large number of small input programs, STM
produces a smaller number of larger input programs by merging appropriate pro-
gram elements. For example, the Triple Class Method Child Generator produces
the three inputs shown in Figure 3. The only difference between the three are
the highlighted statements, generated by the Field Reference sub-generator (G8).
Figure 4 shows an input that contains all these three statements. This single,
merged input encodes the same input space as the three unmerged inputs. This
structural merging transformation is the crux of our STM technique.

STM exploits the compositional structure of the sub-generators to produce
merged test inputs. Figure 4 shows an alternative structure for the Triple Class
Method Child Generator: a new Field Reference Merging Single Class Generator
(G8M) merges together all the program elements produced by the original Field
Reference Generator (G8). While figures 2 and 4 show a generator before and
after a single application of the structural merging transformation, it is possible
to apply the transformation multiple times within the hierarchical structure of a
generator. Each application leads to a multiplicative reduction in the number of
generated inputs. For example, the original Method Reference Generator (G10)
can also be modified to a generator G10M that merges together all the different
method invocation statements. Together, G8M and G10M produce inputs that
merge both field references and method references. We refer to the number of



Reducing the Costs of Bounded-Exhaustive Testing 179

Fig. 4. Merged generator structure and a generated merged test input

transformation applications as merging level : for the Triple Class Method Child
Generator, merging level M1 has only G8M, and merging level M2 has both
G8M and G10M. The unmerged generator produces 1,152 inputs, and levels M1
and M2 reduce the number of inputs to 192 and 48, respectively.

While STM achieves significant time savings, it is important to note its two
potential drawbacks. One potential drawback is that larger inputs, through the
interference of program elements, can mask some test failures [18,19]. Consider,
for example, merging together all the different field references (as in Figure 4).
There may be a failure triggered by one of the field reference statements which
gets masked by the presence of the other field reference statements. However, this
interference can also go the other way: larger inputs may trigger new failures that
smaller inputs do not trigger. The other drawback is the effect of larger inputs on
debugging. STM produces fewer larger inputs rather than more smaller inputs,
but (failing) smaller inputs typically make it easier to perform fault localization.
We could take two approaches to address this. One approach is to reduce inputs
by applying Delta Debugging [30] on the larger failing input to try to isolate
the part of the input that triggers the failure. Another approach, enabled by the
fact that larger inputs are produced by merging generators, is to regenerate the
small inputs that represent the larger failing input.

6 Oracle-Based Test Clustering (OTC)

The experience with bounded-exhaustive testing in academia and industry shows
that it can find faults in real code [4,3,5,11] but also produces a large number of
failures. Identifying a few faults out of many failures is a challenging task. OTC
is a new technique that helps in this task by splitting failing tests into groups
such that all tests in the same group are likely due to the same fault.

OTC exploits information from oracles. Recall that ASTGen oracles provide
messages about the failures, e.g., if a refactored program does not compile,
ASTGen reports the compilation error provided by the compiler. We use these
messages to cluster the failing tests by grouping together those tests that have



180 V. Jagannath et al.

exactly the same messages. (A test can produce multiple messages, which our
experiments compare as lists, not bags or sets.) However, directly using concrete
messages provided by the compiler can result in a large number of small clus-
ters, e.g., two compilation errors may differ only in line or column numbers, say,
“3:8:field f not visible” and “2:6:field f not visible”. Instead, we use abstract mes-
sages that ignore some details such as line and column numbers. One can further
consider ignoring exact messages and clustering based on which oracle failed, not
how it failed. The trade-off is that creating too many clusters increases inspec-
tion effort, while creating too few clusters increases the chance to miss a fault.
Our evaluation compares four clustering options: Concrete Message, Abstract
Message, Oracle Name, and Random Selection (a base case with no clustering).

7 Case Study

We evaluated our three new techniques in the ASTGen framework for bounded-
exhaustive testing of refactorings engines. We tested 6 refactorings using 9
generators listed in Figure 5. For each generator and several merging levels,
we tabulate the number of inputs generated, various times and APFD met-
ric (described below), the number of failing inputs, and the number of distinct
faults. We previously tested these refactorings with these generators and found
a number of faults [5]. The goal of this study was to evaluate whether the new
techniques reduce the testing costs, but due to OTC, we also found a new fault
in the PushDownMethod refactoring, previously missed [5] due to random sam-
pling. We ran all experiments in Eclipse 3.3.2 on a dual core 3.4GHz machine.

Sparse Test Generation (STG): Figure 5 shows the time results for ASTGen
with and without STG. The ‘Dense’ subcolumns show the total time and time to
first failure (TTFF) for bounded-exhaustive testing without STG. If no failure
exists, TTFF shows ‘n/a’. The ‘Sparse’ column shows average values for TTFF
if a failure exists (roughly the top half of the table) and the total time if no
failure exists (the bottom half of the table). These times are averaged over 20
random seeds, with the jump limit of 20, as discussed in Section 4. The main
questions about STG are how it affects TTFF and the total time.

STG reduces TTFF in all cases where the dense TTFF was significant (a
minute or more): the speedup ranges from 9.00x to 10.58x, with an average of
an order of magnitude. In a few cases with very small dense TTFF, STG had
a slowdown of at most 1 sec. Recall the two phases of STG; the reduction in
TTFF implies that the sparse phase found a failure before the exhaustive phase.

STG increases the total time, as expected. With the jump limit of 20, the
overhead of the additional sparse phase is expected to be slightly under 10% of
the total time for dense generation. Our experiments confirm that this is indeed
the case: the slowdown ranges from -6.48% to -9.60%. In summary, STG achieves
a 10x speedup in TTFF for only a 10% slowdown in the total time.

We further evaluated STG using the Average Percentage Fault Detected
(APFD) metric introduced by Rothermel et al. [12] to compare techniques for



Reducing the Costs of Bounded-Exhaustive Testing 181

Refactoring Generator ML Inputs Dense Sparse APFD [%] Failures FaultsTime TTFF Dense Sparse
M0 7416 133:32 7:33 0:47 74.98 98.16 1074 2

PushDown- DualClass- M1 1236 22:43 0:01 0:02 99.23 88.62 179 1
Field FieldReference M2 12 0:21 0:00 0:01 95.83 74.17 4 1

M3 3 0:13 0:00 0:00 83.33 63.33 1 1
M0 23760 427:09 73:34 7:14 58.03 97.59 486 3

DualClass- M1 3960 71:50 12:03 1:11 69.82 97.77 354 3
FieldReference M2 72 1:19 0:13 0:03 74.31 80.56 31 2

Encapsulate- M3 18 0:26 0:06 0:03 58.33 73.15 8 2
Field M0 8576 155:15 0:22 0:03 75.37 97.61 836 4

SingleClass- M1 2144 39:04 0:21 0:03 66.86 97.59 242 4
FieldReference M2 1072 19:35 0:09 0:02 84.25 93.04 144 3

M3 268 4:55 0:02 0:02 72.70 88.11 62 3
M4 16 0:17 0:00 0:01 96.88 84.06 1 1
M0 960 22:19 11:28 1:05 43.91 93.59 180 3

PushDown- DualClass- M1 192 4:07 2:07 0:14 41.75 91.89 38 3
Method MethodParent M2 48 0:45 0:28 0:21 40.63 87.85 2 1

M0 1152 27:02 9:09 1:01 13.19 95.77 160 2
TripleClass- M1 192 3:57 1:25 0:09 48.18 95.36 96 2

PullUp- MethodChild M2 48 0:47 0:17 0:02 56.25 89.58 24 2
Method M0 576 13:22 n/a 14:14 n/a n/a 0 0

DualClass- M1 96 1:49 n/a 1:55 n/a n/a 0 0
MethodChild M2 24 0:21 n/a 0:22 n/a n/a 0 0

M0 23760 629:01 n/a 689:17 n/a n/a 0 0
DualClass- M1 3960 107:26 n/a 117:48 n/a n/a 0 0
FieldReference M2 72 1:56 n/a 2:04 n/a n/a 0 0

Rename- M3 18 0:34 n/a 0:34 n/a n/a 0 0
Field M0 8576 229:00 n/a 250:59 n/a n/a 0 0

SingleClass- M1 2144 57:28 n/a 62:56 n/a n/a 0 0
FieldReference M2 1072 28:44 n/a 31:28 n/a n/a 0 0

M3 268 7:15 n/a 7:57 n/a n/a 0 0
M0 9540 173:32 n/a 190:11 n/a n/a 0 0

Rename- SingleClass- M1 4900 89:26 n/a 98:05 n/a n/a 0 0
Method MethodReference M2 140 2:37 n/a 2:50 n/a n/a 0 0

M3 80 1:31 n/a 1:37 n/a n/a 0 0

Fig. 5. Sparse Test Generation and Structural Test Merging Results
Legend: ML = Merging Level, TTFF = Time to First Failure, All times in minutes:seconds

test prioritization and extended by Walcott et al. [16] for test selection. APFD
measures the number of faults detected in terms of the number of tests executed,
whereas TTFF is based on the first failure (not all faults) and actual time (not
number of tests) as TTFF aims to capture the waiting time for testers in inter-
active bounded-exhaustive testing, similar to recent extensions of APFD [10].
APFD ranges between 0 and 100%, with higher values being better. Figure 5
shows APFD, with ‘Sparse’ averaged over 20 random seeds. The results show
that STG improves APFD in all cases where the dense TTFF was significant.
Structural Test Merging (STM): Figure 5 shows the results for STM for
several merging levels of each of the generators. The merging level number (e.g.,
3 in M3) represents the number of structural merging transformations applied
to the unmerged generator (labeled M0) to obtain the corresponding merged
generator, as discussed in Section 5. The main questions about STM are how it
affects times (total and TTFF) and the number of failures/faults detected.

Each merging level reduced both the total time and TTFF compared to its
previous level and thus to M0. On average, level M1 achieved 5x speedup, and
level M2 achieved 130x speedup compared to M0 for the total time. The merged



182 V. Jagannath et al.

Refactoring Generator ML Random Oracle Abstract Concrete
FD NC FD NC FD NC FD NC

PushDownField DualClassFieldReference

M0 1.99 1 2 2 2 5 2 68
M1 1 1 1 1 1 3 1 59
M2 1 1 1 1 1 2 1 4
M3 1 1 1 1 1 1 1 1

EncapsulateField

DualClassFieldReference

M0 2.24 1 2.24 2 3 4 3 51
M1 2.05 1 2.31 2 3 4 3 112
M2 1.73 1 2 2 2 4 2 8
M3 1.75 1 2 2 2 3 2 3

SingleClassFieldReference

M0 2.84 1 3.11 2 4 4 4 71
M1 2.48 1 2.46 2 4 4 4 73
M2 2.26 1 2.26 1 3 4 3 58
M3 2.30 1 2.30 1 3 5 3 24
M4 1 1 1 1 1 1 1 1

PullUpMethod TripleClassMethodChild
M0 1.77 1 1.77 1 2 3 2 127
M1 1.56 1 1.56 1 2 2 2 84
M2 1.62 1 1.62 1 2 2 2 24

PushDownMethod DualClassMethodParent
M0 2.19 1 3 2 3 11 3 20
M1 2.56 1 2.54 2 3 10 3 16
M2 1 1 1 1 1 1 1 2

Fig. 6. Oracle-Based Test Clustering Results
Legend: ML = Merging Level, FD = Faults Detected, NC = Number of Clusters

generators also substantially reduced the TTFF: on average, level M1 achieved
80x speedup, and level M2 generators achieved 150x speedup compared to M0.

Merging did not expose any new faults, but aggressive merging did mask
some faults. In particular, level M1 masks only one fault (in PushDownField),
but levels M2 and higher mask a much larger number of faults. However, even the
highest level of merging finds at least one fault (when there is a fault at M0).
Additionally, if one considers TTFF as the most important metric, masking
faults at the higher merging levels is not detrimental but actually beneficial:
the user can start the exploration from a high level, quickly find failures, and
start inspecting them, while the tool continues the exploration at a lower level. In
summary, STM can substantially improve total time and TTFF while somewhat
reducing the fault-detection capability of bounded-exhaustive testing.

Oracle-Based Test Clustering (OTC): Figure 6 shows the results for the
four clustering options discussed in Section 6. For each option, we present the
number of clusters formed and distinct faults detected by inspecting a number
of randomly selected tests from each cluster. The results are averaged over 1000
random seeds. For this experiment, we needed to choose a sampling strategy [20],
which determines how many tests to select and from which clusters. The basic
strategy, one-per-cluster, selects one test for each cluster; we used this strategy
for Abstract Message and Concrete Message. For Random Selection and Oracle
Name, which have fewer clusters, we used a strategy that selects more tests per
cluster, specifically selects at least as many tests as Abstract Message selects
(i.e., the number of clusters that Abstract Message has) and at most 1% of all
failing tests. The main questions about OTC are how it affects the number of
failures that need to be inspected and the number of faults detected.

To measure the number of faults detected by a set of selected tests, we had
to map failing tests to the fault(s) they detect and also had to determine which



Reducing the Costs of Bounded-Exhaustive Testing 183

faults are distinct. We performed two steps. First, a researcher (the second paper
author) manually inspected all tests from each cluster (based on Abstract Mes-
sage) with less than 30 tests and inspected at least 10 tests from each cluster with
more than 30 tests. Since all inspected tests from each cluster detected the same
fault(s), we extrapolated that all tests in a cluster can detect the same fault(s).
We also patched 6 of these faults in Eclipse and confirmed their results from the
first step. Second, we asked a researcher (unaware of the details of this study
but with a multi-year experience with Eclipse refactorings) to label the faults
collected in the first step as potential duplicates of each other or non-faults. This
resulted in 12 distinct faults that we used in our experiments.

Abstract Message substantially reduces the number of tests to be inspected to
find all the faults, e.g., PullUpMethod for M0 has 160 failing tests, but Abstract
Message splits them into 3 clusters, and selecting any 3 tests, one from each
cluster, always reveals all 2 faults. The results show that Abstract Message finds
all faults that Concrete Message finds but requires inspection of much fewer
tests, up to over an order of magnitude for lower merging levels. Also, Abstract
Message finds more faults than Random Selection and Oracle Name while the
same number or even fewer tests are inspected. In summary, Abstract Message
was the most effective OTC option among the four we compared.

8 Related Work

There is a large body of work on automated testing. Our focus is on bounded-
exhaustive testing [2, 3,4, 5, 6, 11] that tests the code for all inputs within given
bounds. Previous work considered how to describe a set of inputs (using declar-
ative [2, 4] or imperative [5] approaches) and how to efficiently generate them.
Bounded-exhaustive testing has been successfully used to reveal faults in several
real applications [3,4, 5,11], but it has costs in machine time for test generation
and execution and human time for inspection of failures. This paper presents
three new techniques that reduce the costs of such testing.

STG is related to work on test selection/reduction/prioritization [12, 13, 14,
15, 16, 17, 31, 32] whose goal is to reduce the testing cost or to find faults faster
by selecting a subset of tests from a test suite and/or ordering these tests. The
previous techniques mostly consider regression testing where a test suite exists
a priori, and the simplest techniques can randomly select or order these tests.
In contrast, STG selects tests while they are being generated, and generation
proceeds in a particular order, so arbitrary random sampling is not possible.
Finally, STG does not compromise the fault-finding ability [32].

STM is related to work on test granularity [18, 19] which studied the cost-
benefit trade-offs in testing with a larger number of smaller tests versus a smaller
number of larger tests. The key difference is that previous work considered tests
that can be easily appended while we consider tests that need to be merged. Note
that appending tests only saves setup and teardown costs [19], while merging
can also reduce test execution cost (e.g., merging 1,152 input programs into 192
input programs requires only 192 applications of the PullUpMethod refactoring).



184 V. Jagannath et al.

However, the results are similar in both contexts: larger tests reduce the testing
time, but too large tests may miss faults.

OTC is related to work on test clustering/filtering/indexing [20,21,22,23,24,
25]. Previous work performed clustering based on execution profiles, obtained
from monitoring test execution. The main novelty of our technique is to exploit
information-rich oracles, rather than execution profiles, to cluster failing tests.
Our goal is to cluster failing tests to help in identifying the underlying faults.
Dickinson et al. [20] present an empirical study that evaluates somewhat differ-
ent techniques whose goal is to find failures among executions by using cluster
analysis of execution profiles. Effectively, those techniques use cluster analysis
as approximate oracles. Their results show that cluster filtering of executions
can find failures more effectively than random sampling, and that clustering of
executions can distinguish failing executions from passing ones.

9 Conclusions

Bounded-exhaustive testing checks the code for all inputs within given bounds. It
can find faults but at potentially high costs, including machine time to generate
and run tests, and human time to wait for the test results and to inspect failures.
We presented three techniques that reduce these costs: Sparse Test Generation
skips some tests to reduce the time to first failure by an order of magnitude;
Structural Test Merging generates larger tests to reduce test generation and ex-
ecution time by order(s) of magnitude; and Oracle-based Test Clustering groups
failing tests to reduce the inspection time by order(s) of magnitude.

Acknowledgments. We thank Danny Dig for inspecting the faults we found in
Eclipse, the anonymous reviewers for useful comments, and the students from the
Fall 2008 Advanced Topics in Software Engineering class at our department for
their feedback on this work. This material is based upon work partially supported
by the NSF under Grant Nos. CCF-0746856, CNS-0615372, and CNS-0613665.

References

1. Beizer, B.: Software Testing Techniques (1990)
2. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on Java

predicates. In: ISSTA (2002)
3. Sullivan, K., Yang, J., Coppit, D., Khurshid, S., Jackson, D.: Software assurance

by bounded exhaustive testing. In: ISSTA (2004)
4. Khurshid, S., Marinov, D.: TestEra: Specification-based testing of Java programs

using SAT. Auto. Soft. Eng. Jour. (2004)
5. Daniel, B., Dig, D., Garcia, K., Marinov, D.: Automated testing of refactoring

engines. In: ESEC/FSE (2007)
6. Misailovic, S., Milicevic, A., Petrovic, N., Khurshid, S., Marinov, D.: Parallel test

generation and execution with korat. In: ESEC/FSE (2007)
7. Marinov, D., Andoni, A., Daniliuc, D., Khurshid, S., Rinard, M.: An evaluation of

exhaustive testing for data structures. Technical report, MIT CSAIL (2003)



Reducing the Costs of Bounded-Exhaustive Testing 185

8. Jackson, D.: Software Abstractions: Logic, Language and Analysis (2006)
9. Saff, D., Ernst, M.D.: Reducing wasted development time via continuous testing.

In: ISSRE (2003)
10. Do, H., Rothermel, G.: An empirical study of regression testing techniques in-

corporating context and lifetime factors and improved cost-benefit models. In:
ESEC/FSE (2006)

11. Stobie, K.: Model based testing in practice at Microsoft. Electr. Notes Theor.
Comput. Sci. 111, 5–12 (2005)

12. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Test case prioritization: An
empirical study. In: ICSM (1999)

13. Elbaum, S., Malishevsky, A., Rothermel, G.: Incorporating varying test costs and
fault severities into test case prioritization. In: ICSE (2001)

14. Kim, J.M., Porter, A.: A history-based test prioritization technique for regression
testing in resource constrained environments. In: ICSE (2002)

15. Srivastava, A., Thiagarajan, J.: Effectively prioritizing tests in development envi-
ronment. In: ISSTA (2002)

16. Walcott, K.R., Soffa, M.L., Kapfhammer, G.M., Roos, R.S.: Time-aware test suite
prioritization. In: ISSTA (2006)

17. Yu, Y., Jones, J.A., Harrold, M.J.: An empirical study of the effects of test-suite
reduction on fault localization. In: ICSE (2008)

18. Rothermel, G., Elbaum, S., Malishevsky, A., Kallakuri, P., Davia, B.: The impact
of test suite granularity on the cost-effectiveness of regression testing. In: ICSE
(2002)

19. Rothermel, G., Elbaum, S., Malishevsky, A.G., Kallakuri, P., Qiu, X.: On test suite
composition and cost-effective regression testing. In: ACM TOSEM (2004)

20. Dickinson, W., Leon, D., Podgurski, A.: Finding failures by cluster analysis of
execution profiles. In: ICSE (2001)

21. Podgurski, A., Leon, D., Francis, P., Masri, W., Minch, M., Sun, J., Wang, B.:
Automated support for classifying software failure reports. In: ICSE (2003)

22. Liu, C., Yan, X., Fei, L., Han, J., Midkiff, S.P.: Sober: statistical model-based bug
localization. In: ESEC/FSE (2005)

23. Jones, J.A., Harrold, M.J., Bowring, J.F.: Debugging in parallel. In: ISSTA (2007)
24. Runeson, P., Alexandersson, M., Nyholm, O.: Detection of duplicate defect reports

using natural language processing. In: ICSE (2007)
25. Liu, C., Zhang, X., Han, J., Zhang, Y., Bhargava, B.K.: Indexing noncrashing

failures: A dynamic program slicing-based approach. In: ICSM (2007)
26. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving

the Design of Existing Code (1999)
27. Eclipse Foundation, T.: Eclipse project, http://www.eclipse.org
28. Duncan, A.G., Hutchison, J.S.: Using attributed grammars to test designs and

implementations. In: ICSE (1981)
29. Maurer, P.M.: Generating test data with enhanced context-free grammars. IEEE

Soft (1990)
30. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE

Trans. Soft. Eng. (2002)
31. Rothermel, G., Harrold, M.J.: A safe, efficient regression test selection technique.

ACM TOSEM (1997)
32. Heimdahl, M.P.E., Devaraj, G.: Test-suite reduction for model based tests: Effects

on test quality and implications for testing. In: ASE (2004)

 http://www.eclipse.org


Logical Testing
Hoare-style Specification Meets Executable Validation

Kathryn E. Gray and Alan Mycroft

University of Cambridge Computer Laboratory
{Kathryn.Gray,Alan.Mycroft}@cl.cam.ac.uk

Abstract. Software is often tested with unit tests, in which each proce-
dure is executed in isolation, and its result compared with an expected
value. Individual tests correspond to Hoare triples used in program log-
ics, with the pre-conditions encoded into the procedure initializations
and the post-conditions encoded as assertions. Unit tests for procedures
that modify structures in-place or that may terminate unexpectedly re-
quire substantial programming effort to encode the postconditions, with
the post-conditions themselves obscured by the test programming scaf-
folding. The correspondence between Hoare logic and test specifications
suggests directly using logical specifications for tests. The resulting tests
then serve the dual purpose of a formal specification for the procedure.

We show how logical test specifications can be embedded within Java
and how the resulting test specification language is compiled into Java;
this compilation automatically redirects mutations, as in software trans-
actional memory, to support imperative procedures. We also insert mon-
itors into the tested program for coverage analysis and error reporting.

1 Introduction

A unit test comprises a statement of the initial conditions, a statement or ex-
pression to evaluate, and a statement of concrete expectations for the result —
in essence, a Hoare triple. The similarity of these components and their roles
suggests that test specifications can draw from logical specifications in syntax
and semantics. With similar specifications, tests serve as both runtime and log-
ical validation; however, directly encoding tests into a standard programming
language complicates the specification of some tests, making the connection to
logical specifications needlessly complicated.

In discussing test specifications, we separate procedures into two broad classes:
generative procedures that construct new data and imperative procedures that
modify data structures and redirect bindings. As generative procedures do not
modify any values, the associated test specifications closely resemble Hoare-
style post-conditions that only involve the current values of variables. Post-
conditions for imperative procedures in general need to refer to an initial value,
commonly referred to as old, as well as the current, modified, value. Providing
access to both values in previous executable tests obscures the relationship to

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 186–200, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Logical Testing 187

logical specifications and can cause crucial post-conditions to be omitted from
test specifications.

Accessing the old value in an executable test requires a copy of the initial
value that will not be modified. For unstructured data, such as integers, making
the copy is simple. For structured data, such as an object with fields, copying
the initial value is difficult and can lead to test specifications that incorrectly
encode the post-conditions. The object-copy should copy each field, to identify
sub-structure modifications, but heap-level equality is lost.

Given these problems in test specifications for imperative procedures, as well
as additional problems caused by non-standard termination (i.e. exceptions), we
bypass the programming language and use a specialized extension of Java expres-
sions for test-specification. We extend Java with testing forms based on Java Mod-
eling Language [11] (JML) guarantee specifications. Our compiler generates Java
programs from test specifications that provide references to both unmodified and
modified versions of objects using software transactional memory (STM) [12].

Snapshot Testing

In STM, modifications to a transactional variable affect the value read for some
clients while others read the initial value. Modifications to the transaction are
stored until a command commits them to the value, exposing them to all clients,
unless a conflict causes the modifications to be aborted. We use these techniques
to isolate modifications to our initial value instead of copying structural data.

Consider a method that imperatively inserts an item into a list with the
post-condition that after insertion the list is a strict superset of the initial list.
Copying the list requires making a copy of each element of the list, which may
themselves be complex data structures. A copy can be memory intensive, may
require duplication of externally-shared resources that should not be copied (such
as network sockets), and prohibits pointer-equality comparisons. For some post-
conditions, such a copy may invalidate the test.

Instead of copying values, we introduce the idea of snapshot tests that auto-
matically preserve the original data structure while also supporting access to the
modified version. In databases and file-system backups, access to older versions
of the system are provided through snapshots, inspiring our name. Due to stor-
age space involved, it is infeasible for these systems to perform a bit-for-bit copy
and instead store a delta of the changes made. Similarly, our snapshots store the
modifications made to the value during a test and we treat the original value as
a transaction to record the modifications. During the test command, reads to
the snapshot value use the transaction’s record (a ‘log’). The post-conditions can
read either the log or the original value. Subsequently, we commit the changes.

Logical Specifications and Assertions

Hoare-style logical annotations have been incorporated into Java both as formal
specifications (i.e. using JML), and assertions. While these specifications, as gen-
eralized descriptions of a method’s behavior, complement verification



188 K.E. Gray and A. Mycroft

techniques, they do not fill all of the needs of a test. A test sets out all spe-
cific initial conditions for evaluation and concisely connects these to the specific
outcomes; a formal specification does not necessarily provide sufficient informa-
tion to evaluate a command.

While JML can be used for verification and static analysis, such as in tools like
ESC/Java [7], it also comprises the syntax of tools that convert the specifications
into runtime assertions. These tools have taken the first steps toward integrating
formal specifications and execution-based validation. However, their formal spec-
ifications do not support all of the standard aspects of test development; nor do
these implementations fully support accessing initial values after a mutation.

The Jass Java-extension [2] embeds a pre- and post-condition language into
Java comments, using a subset of JML. These conditions are compiled into asser-
tions within the method; however, a user must still provide specific method calls
in a separate location to create tests. The separation between method call and
post-conditions increases development efforts and reduces the clarity of a test.
Jass specifications support access to both the initial and modified values bound
to a variable, using an Old designation. However, the implementation for this
feature uses the Java clone method, which duplicates top-level field bindings
but does not necessarily recur into structures to clone the reachable data. De-
pending on the semantics of any comparisons, this clone can either not provide
sufficient duplication or can break pointer-level comparisons. Our snapshot rep-
resentation dynamically preserves both qualities, so that the test specification
can freely describe the expected behavior.

Another similar system, the Cheon and Leavens [6] system, generates JUnit
test specifications based on JML specifications but requires programmers to
modify the generated test cases with specific parameters and sometimes results,
also provides connections between formal specifications and runtime validation.
However, like the Jass implementation, this system does not support testing
imperative methods.

Existing hybrid systems either preclude the concrete executions of a test case
or split test specification into multiple locations. Also they do not properly sup-
port the semantics of accessing the initial data after an imperative method. Our
work builds on this background to provide a specification framework that matches
standard test development and supports more accurate specification semantics.

Roadmap

Our test specification forms, presented in Section 2, allow test specifications
to support both logically valid assertions with specific executions, combining
the best of existing formal specifications and validating test environments. We
demonstrate the ease of specification, compared with the industry-standard test
specification library JUnit in Section 3. With our specialized test specification
forms, we can provide additional information regarding test evaluation and fail-
ure than standard test engines, described in Section 4.1. Section 4.2 outlines
compiling these test specifications into standard Java expressions, with a spe-
cific emphasis on compiling snapshots in Section 5.



Logical Testing 189

2 Test Specifications

Hoare-logic based specifications, as typified by JML, annotate method definitions
with requirements and guarantees. These specifications encode a generalized
view of the method’s behavior. In contrast, a typical test specification examines
a concrete evaluation of a method call and encodes the specific behavior for
the circumstance. Due to the different requirements, the test specifications must
examine individual evaluations – typically a unit test examines one method call,
so we present this circumstance.

We present our test specifications relative to a class modeling a board game

class Board {

Board(String size, Piece initial) ...

void slide(Piece p, char d) ...

}

abstract class Piece { Posn left; }

A typical test first establishes a set of bindings – the precondition.

Piece p = new LShape();

Board b = new Board("small", p);

A test precondition comprises a set of variable declarations and data initializa-
tions, as above. A test command uses the variable declarations

b.slide(p, ’s’)

Following this imperative method call, the test specification confirms that nec-
essary post-conditions are met; our extended Java expression language encodes
these specifications in JML-style syntax, for example

modifies(b) && old(p).left.y == p.left.y + 1

This TestExpression ensures that the slide method changed the internal board
structure and updated the specified piece’s left corner to a lower coordinate.

To deal with imperative test specifications, TestExpressions extend the Java
expression form with three variants, see Figure 21. Each TestExpression produces
a boolean indicating the success or failure of the individual post-condition. The
old designation allows the specification to access the snapshot of value bound to
the specified variable; the modifies predicate determines whether the test com-
mand has performed any mutations involving the value bound to the specified
variable; and the modifiesOnly predicate determines if the test command has
performed a mutation involving only the specified fields of the specified variables,
leaving other bindings unmodified.

Each TestExpression evaluates with respect to a particular tested command,
in our example the slide method call. To identify the tested command, our
expression test form combines the command with the post-conditions, e.g.

b.slide(p,’s’) ensure modifies(b) && old(p).left.y == p.left.y + 1;

1 We accept any Java expression with nested TestExpressions as a TestExpression.



190 K.E. Gray and A. Mycroft

TestExpression ::= [TestExpression/Expression ]
| old(Variable)
| modifies(Variable)
| modifiesOnly(Variable.Name [,Variable.Name ]∗)
| throws Name

Expression ::= · · ·
| Expression ensure TestExpression

Fig. 1. Test Specification Forms2

The infix3 ensure keyword is drawn from the JML keyword for method re-
quirements, and identifies the scope of the post-conditions. The TestExpressions
include the existing expressions, where TestExpressions can occur within the
expressions, and each produce booleans. The throws form of TestExpression de-
termines whether the tested command terminated with the named expression,
while the others provide a means of describing modifications to data structures.
Further post-conditions can be evaluated in conjunction with a tt throws test,
effectively merging the ensures and exsures keywords from JML.

2.1 Language Additions

While the TestExpressions theoretically suffice to encode test specifications, for
practical purposes (including error reporting) we further extend the Java syntax
to support test development. We also provide test-specific top-level grouping con-
structs to simplify test specifications, discussed in greater detail in Section 3.2, as
well as further TestExpression forms that provide more convenient specifications.
Figure 2 presents all of our additions.

TopDef ::= . . .
test Variable { DefMember }

DefMember . . .
testcase Variable {MethodBody}

Expression ::= . . .
| Expression ensure TestExpression ′

TestExpression ′ ::= [TestExpression ′/TestExpression ]
| TestExpression
| result
| TestExpression ′ === TestExpression ′

| TestExpression ′ memberOf Expression

Fig. 2. Test Specifications

The result binding, following the JML specifications, provides the result
value of the test command on the right-hand side of the ensure expression. We
2 The form [a/b] denotes all the right-hand sides of productions for b, but with occur-

rences of b replaced by a.
3 ensure follows the same precedence as the ? operator in conditional expressions.



Logical Testing 191

restrict binding local variables within a TestExpression for clarity and compila-
tion concerns, therefore we must automatically provide a binding for this value.
A TestExpression may only occur within a test definition. The final two forms
perform common comparisons; a structural comparison of two values using ===,
and a comparison between the stated value and one of an array of values in
memberOf. Programmers could write these specifications themselves, but it is
convenient to incorporate such forms into the language.

3 Comparison with JUnit

Encoding tests as Hoare-style specifications rather than as stylized calls within
a test suite leads to clearer test specifications as well as greater connections be-
tween executable validation techniques and formal verification. To explore the
improvements for specifications, we compare our test specifications with test
specifications written in the most prevalent testing package for Java, JUnit.
These sample test specifications evaluate an extension of our board game exam-
ple from Section 2.

3.1 Individual Tests

A JUnit test specification uses assertion methods, such as assertEquals, to val-
idate test properties, often augmented with logging information to aid in test
reports. These methods are provided from a class Test, that programmers ex-
tend. Programmers may add specialized assertion methods that combine the
initial assertion methods.

Comparing Non-Structured Data. Comparing non-structured values, such
as integers, in JUnit can use the standard assertion method. This method accepts
two values and uses either numeric equality or the Java equals, which defaults
to pointer equality, method to compare them.

assertEquals("board size", b.size(), 30);

The Test class provides an appropriate assertEquals method for all values.
Comparing values in TestExpressions uses result to access the test com-

mand’s returned value.
b.size() ensure result == 30

Test specifications may require multiple checks on a given value, in which case
the JUnit test must also store the resulting value in a variable, for example when
a partly random result is expected:

int size = b.size();

assertTrue("board size", (size > 20 && size < 50));

versus our specification
b.size() ensure (result > 20 && result < 50)

These simple specifications are not significantly different in either implementa-
tion, due to their simplicity. As a language extension, failure reports between
our system and JUnit differ, these differences are discussed in Section 4.1.



192 K.E. Gray and A. Mycroft

Checking Imperative Methods. With imperative methods, comparisons in
JUnit test specifications require the programmer to either explicitly copy an
existing value or manually compare individual fields to constant values. The
following example uses both techniques

Piece p2 = new Square();

Board bOld = copy(b);

b.place(p2, 7, 9);

assertTrue(bOld.grid.subset(b.grid));

assertEquals(p2.left.x, 7);

assertEquals(b.numMoves, bOld.numMoves);

assertEquals(b.maxSide, bOld.maxSide);

...

This test specification correctly validates the performance of place provided a)
the copy procedure properly copies all the field values so that the two boards
do not share values, particularly the grid, b) the copy method preserves the
necessary information for the other fields to satisfy the equality methods, and
c) all of the fields are listed. As a program develops over time, the likelihood
of the test correctly validating the method decreases as fields are added and
implementations change.

Our specification uses a snapshot of b and p2 to validate the post-conditions.

Piece p2 = new Square();

b.place(p2, 7,9) ensure (modifiesOnly(b.grid, p.left) &&

old(b).grid.subset(b.grid))

The modifiesOnly form checks that for the listed bindings, namely p and b,
the referenced fields are modified without changes to any other fields in these
objects. The old form allows the specification to access the initial grid value.

Checking for Exceptions. Testing methods using JUnit that may cause an
exception requires either explicitly placing the method call in a try block or
passing any exception along to the test engine. For simple tests and intricate
interactions, this can be too large a burden for programmers to implement cor-
rectly.

The ensure expression removes the need to explicitly handle exceptions within
the specification, with the throws test clause providing a per-call means to
evaluate error handling implementations.

In JUnit, a test specification that anticipates an exception can omit a try
block if restricted to one method call and exception per test case, as shown in
the following example

@Test(expected = IllegalMove.class) void place() throws IllegalMove {

Board b = new Board("small");

b.place(new Square(), -10, 0)

}

The annotation at the method definition, contained within the test class, in-
dicates that an exception must halt the execution of this test method and any



Logical Testing 193

other behavior is an error. Grouping this test with previous test specifications
manipulating the board is problematic; additionally, testing that a method has
performed any mutations prior to raising an exception cannot be handled in this
style.

To show the potential problems caused in using JUnit, the following protocol4

requires that multiple exceptions be tested within one method, to ensure that
proper side-effects occur during exception handling.

Piece p1 = ..., p2 = ...; Posn c = ...;

b.place(p1,c);

try {

b.place(p2,c);

} catch( ContestedPosition e) {

try {

b.location(p1);

} catch( UnplacedPiece e) {

return;

}

fail("UnplacedPiece not thrown");

}

fail("ContestedPosition not thrown");

The second call to place attempts to overlay one piece on another, which causes
an exception and changes the state in p1 and b. The call to location should
now fail due to the state changes caused in modifying the board due to the
encountered error. Correctly developing such nested try blocks can lead to errors
with omitted return statements or misplaced calls.

An equivalent test specification using our ensure expressions follows

Piece p1= ..., p2= ...; Posn c = ...;

b.place(p1,c);

(b.place(p2,c) ensure throws ContestedPosition &&

b.location(p1) ensure throws UnplacedPiece)

This eliminates the need for nested try statements and the second test specifi-
cation clearly relies on the first.

Comparing Objects. For object comparisons, JUnit’s comparison method
uses the inherited equals method, which does not always perform the necessary
structural comparison, so the programmer must develop an independent com-
parison. These cases are most problematic with arrays and with classes without
source, where a structural comparison is necessary but unavailable. In JUnit,
such a comparison follows

boolean comp(Piece[] a1, Piece[] a2) {

boolean res = a1.length == a2.length;

if (res)

for(int i; i< a1.length; i++)

4 Inspired by a test seen in a open-source text-editing project.



194 K.E. Gray and A. Mycroft

res &= a1[i].equals(a2[i]);

return res; }

assertTrue(comp(b.getPieces(3), new Piece[]{new LShape(), ...}));

The comp method correctly assess whether the two Piecearrays are equivalent.
Depending on the comparison method for a Piece, different array comparison
methods may be required. The === comparison simplifies these test specifications
by providing a structural comparison for any two values.

b.getPieces(3) ensure result === new Piece[]{new LShape(), ...}

Comparisons of objects with private fields highlights an additional benefit offered
with ===; writing such a comparison can be problematic for a programmer,
relying on reflection and security accesses. We leverage compile-time information
to provide a structural comparison in all circumstances.

3.2 Test Organization

Test specifications typically occur in a separate Java package from the primary
implementation, following the JUnit style. Individual classes are tested by an
extension of the JUnit Test class that contains a set of methods which each
test the behavior of a particular method in the implementation class. Thus in
our example, a test-specification Board class would extend the Test class and
primarily test the operations within the Board implementation.

We mirror this organization within our testing specifications, to accommo-
date the expectations of test developers. Instead of deriving a particular class,
however, we provide a third top-level form test that serves as the grouping
mechanism for testing class implementations. The additional form allows us to
restrict the placement of the ensure keyword, so that standard Java programs
are unaffected.

The methods within a JUnit test class are annotated with an @Test attribute,
signaling that these methods test a particular facet of the implementation. These
methods must take no parameters and return no values (conditions which are
checked via reflection at runtime).

We again mirror this organization, but use a specialized form that omits the
possibility of dynamic signature errors. Test methods use a testcase modifier, a
la abstract, and cannot specify attributes. A testcase may only appear within
a test.

These additional forms provide static checks of test organization while not
requiring test developers to modify their test organization strategies.

4 Implementation

The TestExpression and enclosing test forms can all be compiled to standard
Java and during compilation can be automatically integrated with a report mech-
anism. This further simplifies test development and allows a program to be tested
on a standard JVM implementation.



Logical Testing 195

4.1 Integration with Test Reports

Each compiled TestExpression includes source information as well as annota-
tions that provide further tools for evaluating test performance. Using the source
information, a failing test report can identify the tested command and any val-
ues involved in the computation as well as the nature of the failure, for exam-
ple if a method triggers a different exception than one declared in a throws
clause. This information can aid the programmer in eliminating mistakes, in ei-
ther their specification or the program. Using a system like JUnit, programmers
manually annotate test specifications with this information, complicating the
development.

By identifying a test specification, with the combination of the test and
testcase designations and the ensure keyword, we can provide test-specialized
coverage information when compilation is extended with coverage-tracking fea-
tures. The compiler identifies the start of each test and inserts calls to select the
coverage information collected during evaluation of the test command, or of the
testcase. This information can be used to assess the scope of a test, aiding in de-
bugging failed tests and determining the benefit of more test development. Other
analyses, such as memory accounting, could also be automatically incorporated
into test suites to improve program assessment.

4.2 Implementation

The ensure expression compiles into a Java method call that returns a boolean
value, with the two expressions involved compiled into an anonymous inner class
that evaluates the test command and the post-conditions. Figure 3 contains the
compilation target for a general ensure expression, where the test command
generates a value. Other than result, the variables within the value method
are fresh to avoid name capture.

Targeting an anonymous class allows the tested command to expand into a
sequence of statements that initialize the snapshots used within the assessment.
Additionally, this expansion permits the test command to evaluate within a
controlled framework where exceptions can be caught and evaluations can be
run in a separate thread, controlled by the addTest method. Due to the inner
class, local variable declarations must be treated as final within the TestExpres-
sion, so that these values can be passed into the inner class. This safety restric-
tion does not restrict program validation, as mutating abstract variables within
the post-condition does not provide validation on the correctness of the test
command.

Each TestExpression compiles into an expression that evaluates the condition
and provides information to the test report engine. The comparison expression
expands into a method call to a comparison function within the test harness that
inspects all of the fields of an object, whether private or accessible; the throws ex-
pression expands into an instanceof statement using the specified class and the
exn binding. The expansion for the snapshot-specific expressions, are addressed
in Section 5 with the explanation of how a snapshot is implemented.



196 K.E. Gray and A. Mycroft

A standard test specification

Expr1 ensure Expr2

compiles into

test.addTest( new TestClosure() {
public boolean value() {

Object result = null;

boolean ans = false;

Throwable exn = null;

〈〈 set snapshots as indicated by Expr2 〉〉
try {

result = Expr1;

} catch (Throwable t) {
exn = t;

}
ans = Expr2 〈〈 with compiled TestExpressions 〉〉 ;

〈〈 unset snapshots 〉〉
return ans;

}})

Fig. 3. Compilation Template for ensure with Value Generating Test

5 Snapshot Tests

Our snapshots mimic the effect of creating a copy in memory, but do not actually
copy any values, which preserves the semantics of both pointer-level equality and
structural comparisons. We divert mutation operations into a per-object log to
preserve the original data-structure, and redirect accesses to the log during tests.

5.1 Taking a Snapshot in Restricted Java

Redirecting field accesses can be more easily explained in a restricted subset
of Java than in the full language; therefore, we initially prohibit field accesses
outside of specialized methods – fields may only be read in a field-specific get
method and may only be modified in a put method. All methods, including
the constructors, may only use these accessor methods when referring to a field
binding. Both methods may read one additional field we add to each object – a
boolean stmOn5 field, with initial value of false.

While stmOn is false, field reads and writes proceed as normal. Using the
old designation or either modification predicate changes the referenced object’s
stmOn to true prior to evaluating the test expression. While stmOn is true, field
reads and writes pass through a log and do not modify the binding.

We represent the modification log with a hash-table, where the field name
(combined with the class) is the key. On calls to the put method, the hash-table
entry is updated with the provided value for the field binding. On calls to the get

5 The stmOn field’s actual name is generated to avoid collisions.



Logical Testing 197

method, the field value is read when no entry exists in the hash-table, otherwise
the hash-table value is used.

Before returning from the test call, all snapshots are reverted to normal by
changing the stmOn to false and the modifications contained in the hash-table
are committed to the respective field values.

This solution correctly redirects field accesses for object snapshots when all
fields refer to unstructured values (i.e. integers, characters, or booleans). How-
ever, when a field refers to a structured value and the test command modifies
the structure of this value (i.e. a modification of the form p.left.y = 5, where
p is from our previous examples), the modification has not passed through a log
as the left field is not a snapshot.

We must prohibit modifications on a snapshot from affecting the value until
after the test, therefore we propagate the modification to stmOn on each initial
read of a field value of a snapshot. On the first access of a field binding within
a test, the value referred to by the field becomes a snapshot and modifications
cannot affect the stored value. Further on each call to put, if the provided value
is not yet a snapshot, put first sets the stmOn before storing the value.

While this Java subset is too restrictive for standard Java programs, a trans-
lation from any Java program into this subset is straightforward – the primary
concern is to select a fresh name for the field methods and to preserve the shad-
owing of inherited fields.

5.2 Taking a Snapshot with Reduced Costs

Using a method call to access field values is not uncommon in Java programs
and can typically be in-lined by an optimizing compiler, removing dispatch over-
head. However, with the addition of the stmOn parameter, an optimizer may not
be able to identify that field accesses can be safely in-lined. Thus the compila-
tion strategy for taking a snapshot could negatively impact performance of all
programs – this should be avoided.

For each field, compilation generates the accessor methods described above
but only includes the implementation for the case where stmOn is false. This
permits an optimization pass to remove the indirection for all field accesses.
We incorporate the snapshot log by extending each class with a test-aware ver-
sion. These classes each override the accessor methods of the original class with
the body contents described in Section 5.1. The next step is in replacing in-
stances of the original class with instances of the test-aware class in snapshot-
contexts.

If we replace all constructor calls in the test program with their test-aware
counterparts, than any objects initialized within the test specification can be
preserved within a snapshot. However, this does not affect constructor calls not
made within the test but made externally, such as a constructor that itself calls
other constructors to initialize internal state. Therefore, without whole-program
modifications, we cannot redirect the constructor calls and thus cannot turn
every object into a snapshot-variant using this strategy.



198 K.E. Gray and A. Mycroft

A snapshot reflects the state of a value, without regard for the origin of this
value. Therefore our snapshot-aware class extensions embed an instance of their
parent class; each field access method dispatches to the embedded class instance
and other methods defer to the super class. During a field access, the snapshot
implementation defers to the test-aware field implementation, while protecting
the initial value, while dynamic method dispatch selects the correct implemen-
tation to test.

For each value requiring a snapshot, we modify the binding to refer to the
test-aware extension of the class with the initial value embedded within. Due to
dynamic method dispatch, we cannot statically determine the test-aware class
to instantiate. We use reflective techniques to identify the class and create the
instance dynamically.

Uses of old within the post-conditions translate into an access of the embed-
ded value. The modifies and modifiesOnly predicates translate into method
calls which examine the hash-table of the specified snapshot. By examining
the log, we differentiate unmodified values from a modification that has re-
stored the original value before termination. Before returning, we record the
modifications found in each hash-table into the embedded value to commit the
changes.

5.3 Supporting Binary Libraries

The previous translation converts source files, ignoring (JVM) binary compi-
lations. We advocate compiling from source where possible, to provide source-
level information in test reports and analyses; however, this cannot always occur
when using external (pre-compiled) libraries. External libraries must be made
test-aware through byte-code transformations to redirect field accesses. We must
rely on aspect-oriented style rewriting to modify the getfield and putfield
byte-code instructions into appropriate method calls; however, this modification
has not yet been implemented.

Using an aspect-oriented ‘advice’ to generate test-aware byte-code highlights
the similarity between our transformations, which inject transactions into ex-
isting Java applications as well as test-report monitors, and generalized aspect-
oriented programs that inject additional functionality into existing programs.

5.4 Problems with Snapshots

Due to the indirections on field accesses and the additional memory consump-
tion, using snapshots has an impact on the performance of tested methods.
While the run-time impact of snapshots has not been measured, we believe that
any run-time overhead should be minimized to avoid increasing the cost of test
suite evaluation. In future versions of our compiler, we intend to use a com-
bination of ownership types and liveness analysis to determine whether each
field in a class requires a snapshot to accurately validate a method’s perfor-
mance. When no snapshot is necessary, we will either use a copy or ignore the
variable.



Logical Testing 199

6 Related Work

In addition to the existing work joining executable validation with formal spec-
ification discussed in Section 1, much effort has been put into improving the or-
ganization and execution of tests. An early effort in this regards is the SUnit [3]
system for Smalltalk, which supports organizing groups of related tests into
classes with individual test methods containing multiple test cases evaluating
a single implementation method. Individual evaluations use assertion meth-
ods, that may compare or assess values. Libraries following the SUnit philos-
ophy now exist to support similar organizations for most programming lan-
guages, including JUnit [4] for Java, SchemeUnit for Scheme [13], and LIFT
for Lisp [10].

JUnit provides a library of assertion methods, derivable classes, and an in-
tegrated report interface. New tests extend a class from the JUnit library and
contain test methods, indicated either with a @Test attribute[9] or by append-
ing test to the name of the method. Programmers use String-valued fields and
parameters to document test cases. Both the SchemeUnit and LIFT systems
use macros to extend the language with specific test forms, improving error re-
porting. Both provide language forms for test specifications, but encodings for
imperative procedure remain difficult.

More modern efforts, such as TestNG [5], attempt to refine the test organi-
zation strategies of JUnit to support flexible test evaluation at the level of test
methods but do not provide additional support for test specifications within the
language as we do.

As with the macro-based libraries, the jMock [8] test engine embeds a test
specification language into Java – via strings. These test specifications do not
provide support for imperative post-conditions and the form of embedding can
increase the difficulty of reading the test suites, as the programmer must distin-
guish between evaluated strings and documentary strings.

The Fortress programming language [1] contains built-in forms for declaring
test procedures. An individual test case is marked using a test modifier, and a
library provides functions to report and terminate failing tests. This language-
based support does not extend to representing the test specifications, only ben-
efiting the test organization and execution.

7 Conclusions and Further Work

We noted that existing unit test specifications correspond to restricted Hoare-
logic formulae. We then observed that a more relaxed set of post-conditions,
including old(X) (value of X during the precondition), throws (holds when an
exception is thrown) and the like greatly simplify the code required for tests (us-
ing JUnit as a base for comparison), especially for imperative methods, which
modify structures in-place. The extended forms of expressions TestExpression
used in post-conditions can be implemented using a variant of Software Trans-
actional Memory (STM).



200 K.E. Gray and A. Mycroft

While the mapping of our unit test constructs can be seen as a simple extended
Java-to-Java translation, we show that this translation can also be done at the
JVM level for pre-compiled libraries.

The system described is implemented in two systems, one with an alter-
nate syntax and restricted functionality, which can both be downloaded from
www.professorj.org/testing.

More expressive Hoare-logic formulas could also correspond to test specifi-
cations (for example, universal quantification might reasonably be treated as
random testing) to further enhance test development. We leave this to future
work.

Acknowledgements. We thank Matthias Felleisen for helpful conversations
as we began our explorations of test development. This work was supported by
(UK) EPSRC grant GR/F033060 “Linguistic Support for Test Development”.

References

1. Allen, E., Chase, D., Hallett, J., Luchangco, V., Maessen, J.-W., Ryu, S., Steele Jr.,
G.L., Tobin-Hochstadt, S.: The Fortress language specification. Technical report,
Sun (2007)

2. Bartezko, D., Fischer, C., Moller, M., Wehrheim, H.: Jass – Java with assertions.
In: Workshop on Runtime Verification (2001)

3. Beck, K.: Simple smalltalk testing with patterns. The Smalltalk Report (1994)
4. Beck, K., Gamma, E.: Test-infected: programmers love writing tests. Java Report

(1998)
5. Beust, C., Suleiman, H.: Next Generation Java Testing: TestNG and Advanced

Concepts. Addison-Wesley, Reading (2007)
6. Cheon, Y., Leavens, G.T.: A simple and practical approach to unit testing: The

JML and JUnit way. In: Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, p.
231. Springer, Heidelberg (2002)

7. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for Java. In: Proc. PLDI (2002)

8. Freeman, S., Pryce, N.: Evolving an embedded domain-specific language in Java.
In: Proc. OOPSLA (2006)

9. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd
edn. Addison-Wesley, Reading (2005)

10. King, G.: LIFT — the lisp framework for testing. Technical Report 01-25, U. Mass.
CS (2001)

11. Leavens, G.T., Baker, A.L., Ruby, C.: JML: A Notation for Detailed Design, ch. 12.
Kluwer, Dordrecht (1999)

12. Shavit, N., Touitou, D.: Software transactional memory. In: Principles of Dis-
tributed Computing (1995)

13. Welsh, N., Solsona, F., Glover, I.: SchemeUnit and SchemeQL: Two little languages.
In: Proc. Scheme Workshop (2002)

www.professorj.org/testing


Cross-Entropy-Based Replay of Concurrent Programs�

Hana Chockler1, Eitan Farchi1, Benny Godlin1, and Sergey Novikov2,��

1 IBM Haifa Research Laboratories
Haifa University, Mount Carmel

Haifa 31905, Israel
hanac,farchi,godlin@il.ibm.com

2 Department of Computer Science
Weizmann Institute, Israel

sergey.novikov@weizmann.ac.il

Abstract. Replay is an important technique in program analysis, allowing to re-
produce bugs, to track changes, and to repeat executions for better understanding
of the results. Unfortunately, since re-executing a concurrent program does not
necessarily produce the same ordering of events, replay of such programs be-
comes a difficult task. The most common approach to replay of concurrent pro-
grams is based on analyzing the logical dependencies among concurrent events
and requires a complete recording of the execution we are trying to replay as well
as a complete control over the program’s scheduler. In realistic settings, we usu-
ally have only a partial recording of the execution and only partial control over
the scheduling decisions, thus such an analysis is often impossible. In this paper,
we present an approach for replay in the presence of partial information and par-
tial control. Our approach is based on a novel application of the cross-entropy
method, and it does not require any logical analysis of dependencies among con-
current events. Roughly speaking, given a partial recording R of an execution,
we define a performance function on executions, which reaches its maximum on
R (or any other execution that coincides with R on the recorded events). Then,
the program is executed many times in iterations, on each iteration adjusting the
probabilistic scheduling decisions so that the performance function is maximized.
Our method is also applicable to debugging of concurrent programs, in which the
program is changed before it replayed in order to increase the information from
its execution. We implemented our replay method on concurrent Java programs
and we show that it consistently achieves a close replay in presence of incomplete
information and incomplete control, as well as when the program is changed be-
fore it is replayed.

1 Introduction

Software testing and debugging are nowadays the primary means of checking the cor-
rectness of programs. Repeated re-execution, or replay, is a widely accepted technique
� This work is partially supported by the European Community under the Information Society

Technologies (IST) program of the 6th FP for RTD - project SHADOWS contract IST-035157.
The authors are solely responsible for the content of this paper. It does not represent the opinion
of the European Community, and the European Community is not responsible for any use that
might be made of data appearing therein.

�� Most of this work was performed when author was at IBM Haifa Research Laboratories.

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 201–215, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



202 H. Chockler et al.

for debugging sequential deterministic programs. In these programs, a specific input
vector always generates the same execution, so the task of replay is relatively easy, pro-
vided that the input vector is recorded. This approach, of recording the input vector and
re-executing the program, does not work on concurrent programs, where the same input
vector can generate many executions of the program, as a result of the different schedul-
ing of concurrent events. Replay of a concurrent execution from its recorded trace is a
widely used and extensively researched approach for analyzing and debugging concur-
rent behaviors. To overcome the problem of different scheduling, replay of a concurrent
program is achieved by first recording an execution, and then enforcing the same order
of events during the replay.

Existing work on replay of concurrent programs is based on analyzing the logical
order between concurrent events and assigning time-stamps to events that need to be
executed in a particular order. The idea of applying time-stamps to express logical or-
der between events was first introduced in the seminal work of Lamport [15]. Lamport
introduced the happened-before relation between concurrent events, which imposes a
partial order on these events. A system of logical clocks is then used in order to capture
this relation by assigning time-stamps to all concurrent events in the computation, con-
sistent with the logical dependencies between these events. The computation of time-
stamps for ordering of concurrent events is studied and improved upon in several works
(see, for example, [3,14,21,18,19,1]), where the order of events determined by time-
stamps is used for replay of programs. Replay of multi-threaded Java programs, which
are inherently concurrent, is studied by Choi et al., who suggest methods for efficient
recording of concurrent events and control of the Java scheduler in order to replay the
recorded execution (see, for example, [5]). Here also, the logical dependencies between
events are analyzed in order to construct a correct logical schedule, which is then used
for replay.

The major drawback of the existing approaches to replay of concurrent programs
is that they all study deterministic replay, that is, replay that has full control over the
scheduler and follows a complete recording of a previous execution. In order to im-
plement deterministic replay, it is necessary to record the events that are crucial for
defining the logical order between all concurrent events. There are several works that
attempt to reduce the size of the trace as much as possible [16,20]. However, there exists
a minimal subset of events that is crucial for the correct logical order, and this subset
has to be recorded in order to allow replay. Moreover, in replay, there has to be a full
control over the scheduler, since even a slight change in the order of concurrent events
can lead to deviation from the recorded execution and inability to resume replay. In re-
alistic settings, both requirements, of full recording and full control over the scheduling,
are often impractical. Software today incorporates third party code and library code of
which we have no control, code is loaded at runtime, and due to standardization and
open environments it is impossible to have control over all concurrent events. More-
over, due to space and performance considerations and the fact that often recordings
of executions are created by the customer, getting a recording of an execution that is
complete enough to determine logical order is unlikely. Finally, these approaches do
not address a common debugging scenario, in which the user adds informative state-
ments to the program before replaying it (usually print statements). These statements



Cross-Entropy-Based Replay of Concurrent Programs 203

affect the existing happened-before relation and the control over the program, and thus
the program cannot be replayed based on the previously computed order of concurrent
events.

In this paper, we study the problem of approximate replay, that is, replay in presence
of incomplete recording and only partial control over the concurrent events, and where
a program under test is modified before it is replayed. We present a novel approach to
replay that is based on the cross-entropy method and the adaptation of this method
to testing of concurrent programs. The cross-entropy (CE) method is a generic ap-
proach to rare event simulation [24]. It derives its name from the cross-entropy (or
the Kullback-Leibler distance), which is a fundamental concept of modern informa-
tion theory [13]. It is an iterative approach based on minimizing the cross-entropy or
the Kullback-Leibler distance between two probability distributions. The CE method
was motivated by an adaptive algorithm for estimating probabilities of rare events in
complex stochastic networks [22]. Then, it was realized that a simple modification al-
lows to use this method also for solving hard combinatorial optimization problems, in
which there is a performance function associated with the inputs. The CE method in
optimization problems is used to find a set of inputs on which the performance function
reaches its global maximum, where the input space is assumed to be too large to allow
exhaustive exploration. The method is based on an iterative sampling of the input space
according to a given probability distribution over this space. Each iteration consists of
the following phases:

1. Generate a random sample of the inputs according to a specified probability distri-
bution.

2. Update the parameters of the probability distribution based on the sample to pro-
duce a “better” sample in the next iteration, where “better” is chosen according to
the predefined performance function.

The initial probability distribution is assumed to be a part of the input. A sample is
evaluated according to a predefined performance function. The procedure terminates
when the “best” sample, that is, a sample with the maximal value of the performance
function (or, if the global maximum is unknown in advance, with a sufficiently small
relative deviation), is generated. The CE method is used in many areas, including buffer
allocation [2], neural computation [7], DNA sequence alignment [10], scheduling [17],
and graph problems [23].

In [4], we adapted the cross-entropy method to testing of concurrent programs. In-
formally, such programs induce a large control-flow graph with many branching points,
which allows us to view the testing setting as a variation of a graph optimization prob-
lem, with the input space being the space of all possible paths on the graph. While a
serialized program can, in theory, have many points with non-deterministic decisions
(for example, statements conditional on the result of coin-tossing), the most common
example of such programs is concurrent programs. In concurrent programs, decisions
about the order of execution of concurrent threads are made by the scheduler, and thus
can be viewed as non-deterministic when analyzing the program. Our tool, ConCEnter,
is based on the cross-entropy method, and was shown to be effective in finding rare bugs
in multi-threaded Java programs. The most natural initial probability distribution over
the space of all possible paths (and the one we use in [4]) is the uniform distribution



204 H. Chockler et al.

over edges on each node, meaning that at each decision point each enabled thread can
make a step with equal probability.

In this paper, we adapt the cross-entropy method to replay of concurrent programs
as follows. We define the distance D(e1, e2) between two executions e1 and e2 in a
way that reflects the distance between e1 and e2 on the control graph of the program.
Then, we define the performance function S(e) over executions as −D(e, erec), where
erec is the recorded execution. Since the distance is always non-negative, the perfor-
mance function S(e) reaches its global maximum on executions that are as close to the
recorded execution as possible. Then, we apply the cross-entropy-based testing method
(implemented in ConCEnter) in order to get an approximate replay of the recorded ex-
ecution. In our approach, having only a partial recording of the execution or not having
full control over the executions is handled naturally without any adjustments. The dis-
tance is computed based on the recorded events, and the probabilities of concurrent
events over which we have control are adjusted according to the cross-entropy mini-
mization computation. Moreover, our experimental results show that our method works
even if the program is changed before replaying it, for example, by adding print state-
ments (a common scenario for debugging).

As we discuss in Section 4.2, in replay we can use the recorded execution in order to
compute an initial probability distribution over the space of all executions in a way that
significantly improves the running time of ConCEnter compared to executing it on the
same examples with the initial uniform distribution. We give edges that appear in the
recorded execution the initial probability that is higher than their probability under the
uniform distribution, and we adjust the probabilities of other edges accordingly.

We discuss the problem of losing diversity of the sample and the reasons why this
problem is more pronounced in replay than in applications of cross-entropy based test-
ing to bug searching. Essentially, the performance function based on the distance from
a recorded execution has a very narrow global maximum (in fact, when the complete
recording is available, the global maximum is reached on exactly one order of recorded
events). This particular shape of the performance function increases the probability of
missing the global maximum by converging to a local maximum or even to some ran-
dom point. This problem, of losing diversity of the sample (and as a result, converging
to a wrong point), is inherent for the cross-entropy method as well as for other meth-
ods that use iterative adjustments of the probability distribution, and it becomes more
pronounced in replay, compared to testing for rare bugs. To overcome this problem,
we use random injection at some of the iterations of the cross-entropy execution. Our
method is inspired by simulated annealing, introduced in [11]. Simulated annealing is
a general approach to finding good approximations for global optimization problems
of functions in large search spaces. Essentially, in each iteration, simulated annealing
replaces the current solution by a random “nearby” solution, chosen with a probability
that depends on the number of previous iterations. The randomization decreases dur-
ing the process, thus allowing it to converge. Roughly speaking, simulated annealing
slows the convergence process by introducing an additional dimension of randomness.
The effect is two-fold: first, by slowing the convergence process, it increases the prob-
ability of it converging to the correct maximum1; and second, by introducing more

1 The reason for this phenomenon in simulated annealing is the same as in cross-entropy.



Cross-Entropy-Based Replay of Concurrent Programs 205

randomness, it increases coverage of the search space, thus increasing the probability
that a good solution will be eventually drawn. We achieve a similar effect by introduc-
ing random injection at some iterations, where the decision of whether to introduce a
random injection depends on the relative standard deviation of the current sample.

We implemented replay with random injection in ConCEnter and tested it on multi-
threaded Java programs2. Our experimental results show that we are able to efficiently
produce a close replay even when we have only a partial recording of the execution. We
compare the performance of ConCEnter with the performance of ConTest, a random-
ized tool for testing of concurrent programs developed at IBM [8].

2 Preliminaries

2.1 The Cross-Entropy Method in Optimization Problems

In this section we present a brief overview of the cross-entropy method for optimization
problems. The reader is referred to [4] for more formal explanation and to the book on
cross-entropy for the complete description of the method[24]. In our setting, we use the
application of the cross-entropy method to graph optimization problems.

The cross-entropy (CE) method for optimization problems searches for a global max-
imum of a function S (called a performance function) defined on a very large proba-
bility space. Since the exhaustive search is impossible due to the size of the space, the
method works in iterations, each time drawing a sample from the space and adjusting
the probability distribution for the next iteration according to the values of S on the
sample.

In graph optimization problems, we are given a (possibly weighted) graph G =
〈V, E〉, and the probability space is defined on the set of paths in G represented by the
sets of traversed vertices. The probability distribution is defined by assigning probabil-
ities to edges or vertices of the graph (depending on how the sample is drawn). This
setting matches, for example, the definitions of the traveling salesman problem and the
Hamiltonian path problem in the context of CE method. This is also the setting which
we use in this paper.

2.2 Programs as Graphs

We view concurrent programs under test as control flow graphs, with nodes being syn-
chronization points. We start with the definition of a control flow graph of a single
thread. We define a program location (PL) as a line number in the code of the program,
and we assume that it uniquely defines the state of a thread. In particular, this means
that all loops are unwound to the maximal number of iterations and all function calls
are embedded in the code of the main function.3 We use t for the number of threads in
the program.

2 The executable of ConCEnter with some test programs is available from the authors on request.
3 The unwound code of even a small program can be very large. In the previous paper, we

reduced the size of the unwound code by using multi-dimensional modulo counters [4]. Un-
fortunately, when using modulo counters, we lose the one-to-one correspondence between the
trace and its representation on the graph. Thus, we do not use this method in replay.



206 H. Chockler et al.

Definition 1 (CFGi). A control flow graph (CFGi) of thread i (i ∈ [t]) is a directed
graph Gi = 〈Li, Ei, μi〉 where Li is the set of all program locations in the unwound
code of the thread, Ei is the set of edges such that 〈v, u〉 ∈ Ei if a statement at location
u can be executed immediately after the statement at location v, and μi ∈ L is the
initial program location of the thread.

Definition 2 (PLV). Program location vector (PLV) v is a t-dimensional vector such
that for each i ∈ [t], vi ∈ Li.

We say that at a given time m during the execution of the program, the execution is at
PLV v iff for each i ∈ [t], vi is the next program location to be executed in thread i.

Clearly, the set of all PLVs is equal to the cross-product of the Lis.

Definition 3 (JCG). The joint control graph (JCG) of the program under test is a graph
〈V, E〉 whose vertices are the PLVs. There is an edge in the JCG between vertices u and
w if there exists an execution path in which w is the immediate successor of u.

Note that at each step only one thread executes. Therefore, the branching degree of each
vertex is at most t. Since the code is unwound, every statement in it is executed at most
once and the statements are executed in the increasing order of their program locations.
Therefore, JCG is a finite directed acyclic graph (DAG). The initial node of the JCG is
a PLV which is composed of the initial PL μi for each thread i.

Definition 4 (PF). Probability function PF : V (JCG) × [t] 	→ [0, 1] such that the
probability sum over the outgoing edges of each vertex is 1.

This function defines for each vertex v and each of its outgoing edges ei the probability
of the thread i to advance when the execution reaches v. If not all threads are enabled
at v, we take the relative probabilities of the enabled threads. If Ten ⊆ [t] is the set of
the enabled threads at this moment then the relative probabilities are:

RP (v, i) .=

{
PF (v,i)∑

j∈Ten
PF (v,j) if i ∈ Ten

0 otherwise

For a single execution of the program, we call the sequence of vertices of JCG that
it visits an execution path in JCG.

2.3 The Cross-Entropy Method for Replay

We describe the problem of replay in concurrent programs as a graph optimization prob-
lem, where the program is represented as a graph, executions are paths on the graph, and
the performance function reaches its maximum on the recorded execution. In replay, an
input to the procedure is a (partially) recorded execution. The performance function is
based on the distance between two executions. Our distance metric is somewhat similar
to L1 distance, also known as taxicab distance or rectilinear distance (see [12]), and
it expresses the distance between the paths on the control graph that correspond to the
execution.



Cross-Entropy-Based Replay of Concurrent Programs 207

Definition 5. For two executions e1 and e2 of the same program P represented by
paths π1 and π2 on the JCG of P , respectively, the distance D(e1, e2) between e1 and
e2 is defined as the number of nodes that are present in one execution and absent from
another. Formally, we have the following definition:

1. Let LP be the vector of all nodes of the JCG of P (note that each node can appear
only once in an execution because of unwinding). Let n be the length of LP .

2. Let L(πk) be the binary vector of length n such that L(πk)[i] = 1 iff LP [i] ∈ πk,
for k = 1, 2.

3. The distance D(e1, e2) is defined as H(L(π1), L(π2)), where H() is the Hamming
distance (Hamming distance is defined in [9]).

The replay performance function Sr(e) from the recorded execution r to an execution e
is defined as −D(r, e). Clearly, it reaches its maximum value 0 at e = r. When we have
a partial recording of the execution, the distance is measured only with respect to the
recorded nodes, even if they do not form a connected path on the graph. Thus, in case
of a partial recording, there is a set of traces that have the distance 0 from the recorded
execution.

We define the probability distribution on the set of executions by assigning proba-
bilities to edges of the control flow graph. The initial probability distribution is either
uniform or biased towards the recorded execution (see Section 3.1 for the discussion
on the initial distribution). In each iteration i, we sort the sample Xi = {X1, . . . , XN}
generated in this iteration in ascending order of their performance function values. That
is, S(X1) ≤ S(X2) ≤ . . . ≤ S(XN ). For some 0 < q � 1, let

Q(Xi) = {X(1−q)N�, X(1−q)N+1�, . . . , XN}

be the best q-part of the sample. The probability update formula in our setting is

f ′(e) =
|Q(e)|
|Q(v)| , (1)

where e ∈ E is an edge of the control flow graph that originates in the vertex v, Q(v)
are the paths in Q(Xi) which go through v and Q(e) are the paths in Q(Xi) which go
through e. Intuitively, the edge e “competes” with other edges that originate in v and
participate in paths in Q(v). We continue in the next iteration with the updated proba-
bility distribution f ′. The procedure terminates when a sample has a relative standard
deviation below a predefined threshold parameter (usually between 1% and 5%), or an
exact replay is achieved.

Smoothed updating and its importance for replay In optimization problems involving
discrete random variables, such as graph optimization problems, the following equation
is used in updating the probability function instead of Equation 1:

f ′′(e) = αf ′(e) + (1 − α)f(e), (2)

where 0 < α ≤ 1 is the smoothing parameter (clearly, for α = 1 we have the orig-
inal updating equation). According to [6], when the shape of the performance func-
tion makes convergence to the global maximum hard, it is advisable to use very low



208 H. Chockler et al.

smoothing parameters, around 0.01, thus decreasing the rate of update of the probabil-
ity distribution and therefore also the convergence rate. Slowing the convergence rate
increases the probability of a sample to find the global maximum, and hence is better
for “difficult” functions. In our experiments, setting the smoothing parameter to a very
low value increased the running time by several orders of magnitude, thus rendering the
method impractical for large programs. In this work, we use the method of random in-
jection (see Section 3.2) to tackle the problem of convergence to local maximum, thus
allowing us to use a relatively high smoothing parameter (in this work we are using
0.8 ≤ α ≤ 0.9).

3 Algorithm for Approximate Replay of Concurrent Programs

In this section we describe the algorithm that uses cross-entropy for approximate re-
play of concurrent programs and discuss random injection - the main change from the
traditional cross-entropy method.

3.1 Algorithm

Given a (partially) recorded execution r of a concurrent program P , the algorithm out-
puts a set of executions of P that are the closest to r. In each iteration, the algorithm
generates a set of executions based on the probability distribution table. The probabil-
ity distribution table contains probability distribution on edges and is updated at each
iteration. We consider two options for the initial probability table:

1. Uniform distribution, as in other applications of cross-entropy for testing.
2. Probability distribution biased toward the recorded execution. Here, we perform

preprocessing of the probability distribution, assigning higher probability to edges
that participate in the recorded execution.

In the classic cross-entropy setting, the initial probability distribution on an input space
is a part of the input. In our setting, the probability space is on the set of all possible
executions of the concurrent system under test, and there is no predefined probability
distribution on this space. In [4], we start with the initial uniform distribution over the
edges of the control flow graph, since this is the distribution that most accurately reflects
the situation where the program runs without any intervention. In replay, however, the
situation is different because the recorded execution is a part of the input. Thus, the
initial distribution of executions for ConCenter does not need to be uniform – it can be
biased toward the recorded execution. The uniform initial distribution has the advantage
of not requiring any special preprocessing before the start of the execution. An obvious
disadvantage of a biased initial probability distribution is that it requires a preprocess-
ing, however, as we show in Section 4.2, it significantly improves the convergence rate
of the algorithm.

We assume that P is partially instrumented (this is needed for recording executions)
by adding callbacks at synchronization points. This enables the algorithm to stop the
execution at these points and decide which edge is going to be traversed next (that is,
which thread makes a move) according to the probability distribution table. At each
iteration, the algorithm performs the following tasks:



Cross-Entropy-Based Replay of Concurrent Programs 209

1. The instrumented program P is executed a number of times sufficient to collect a
meaningful sample. Executions are forced to perform scheduling decisions accord-
ing to the current probability distribution on edges.

2. The executions are used in order to compute the new probability distribution (see
Equation 1 and Equation 2).

3. If the current iteration satisfies the criteria for random injection (see Section 3.2),
the algorithm computes the probabilities of edges as a weighted average of the prob-
abilities according to the cross-entropy method and a random injection of uniform
distribution, where the weight of the injection is between 0.01 and 0.1.

4. The best execution e (the one with the maximum value of Sr(e)) is compared with
the best execution obtained so far and a new best execution is chosen.

The algorithm terminates when the collected sample of the current iteration has a suffi-
ciently small relative standard deviation (between 1% and 5%), or, alternatively, when
we get the best replay, that is, an execution e for which Sr(e) = 0. We note that there
can be several best replays, depending on the level of instrumentation of the program
and the level of control over the executions. Step 4 of the algorithm is needed in or-
der not to miss an exact replay if it is drawn before the best quantile of the sample
converges.

3.2 Random Injection

The concept of using random injection in order to prevent convergence to local maxi-
mum is not new and is used widely, for example, in simulated annealing [11]. Essen-
tially, without a (sporadic) random injection, the sample might become uniform too
soon and not reach the global maximum. The most common case of converging to a
wrong result is when the sample converges to a local maximum. In replay, due to the
unique shape of the performance function with a very narrow global maximum, there is
also the phenomenon of converging to some value which is neither a local nor a global
maximum. In this work, we examine several ways to add random injection to the al-
gorithm without compromising its convergence. We describe our experiments in more
detail in Section 4 and compare the effect experimental of applying different methods
on the convergence and the convergence rate of the program.

4 Implementation and Experimental Results

We use our cross-entropy-based testing tool ConCEnter for checking our approach to
replay of concurrent programs. We briefly describe ConCEnter and the way replay is
implemented in it in Section 4.1. We describe the experimental setting in Section 4.2
and present our experimental results in Section 4.3.

4.1 Implementation

The cross-entropy-based testing tool ConCEnter is written in Java. Its structure is re-
flected in Figure 1, and we briefly describe each part of it below.



210 H. Chockler et al.

Evaluator Disk Updater

Stopper Decider

Probability
distribution

(table)

Instrumentation

under test
program

Fig. 1. Parts of ConCEnter

– Instrumenter is an instrumentation tool that adds callbacks at control points.
– Decider receives a node v of the JCG of the program under test and chooses which

thread is allowed to execute according to current relative probabilities RP (v) on
the control graph edges.

– Stopper: on callbacks from the instrumented code it stops the currently running
thread using a mutex designated for this thread. Then, it calls notify() on the mutex
of the thread that can execute next (based on Decider’s decision).

– Evaluator collects the edges of the JCG traversed by the execution path. At the end
of each execution it computes the S value of the execution.

– Updater updates the probability distribution table for the next iteration based on
the computations of Evaluator.

During the execution, Decider and Evaluator collect big amounts of data. To minimize
the sizes of the memory buffers for this data, it is periodically written to disk.

4.2 Description of the Experimental Setting

We performed several experiments on different metrics and different types of bugs.
The tests were written in Java version 1.5.0 and executed on a 4 CPU machine 64bit
“Dual Core AMD Opteron(tm) Processor 280” with clock rate of 2.4GHz and 1MB
cache size each. The total memory of the machine is 8GB. The operation system it runs
is GNU/Linux 2.6.9-42.0.3.ELsmp. In all examples, we executed the program once
and recorded it using the instrumentation provided by ConTest. We then attempted to
replay this execution with ConCEnter. For each program, we repeated the experiment of
recording and replay 10 times; the reported numbers are the average numbers calculated
on these executions.

Tuning of parameters for ConCEnter We checked the influence of different parame-
ters on the success and the convergence rate of replay. These parameters control the
execution of ConCenter as follows:

1. Target relative standard deviation is the stopping condition: when the relative stan-
dard deviation of the sample reaches the target, the execution terminates.



Cross-Entropy-Based Replay of Concurrent Programs 211

Table 1. Best Parameters for Replay (After Tuning)

target relative standard deviation 0.01
smoothing parameter 0.8

number of runs per series 200
quantile size q 0.2

target weight in initial distribution 0.9
injection threshold 0.05

injection factor 0.05
change of injection 1
injection frequency 3

2. Smoothing parameter is the weight of the new probability distribution in the
weighted average with the previous probability distribution, as explained in
Section 2.3.

3. Number of runs per series is the number of executions drawn from the space of
all executions according to the current probability distribution on edges at each
iteration.

4. Quantile size q is the best quantile of the sample according to the performance func-
tion (i.e,, for example, the best 10% of the sample used to recompute the probability
distribution for the next step).

5. Target weight in initial distribution is the initial bias of the distribution toward the
recorded execution, as discussed in Section 3.1.

6. Injection threshold is the relative standard deviation of the best q-part of the sample
that triggers random injection in the next iteration.

7. Injection factor is the weight of the random injection in the sample.
8. Change of injection is the multiplicative factor applied to the weight of the random

injection at each iteration (if the change of injection is 1, then the weight of the
injection is constant during the whole execution).

9. Injection frequency is x if a random injection is added to each x-th iteration, pro-
vided that it satisfies the criterion of the injection threshold.

In our setting, we performed the tuning of parameters manually, and the best values are
presented in Table 1. Clearly, manual tuning of parameters is time-consuming. On the
other hand, our experiments show that the best values of these parameters are approxi-
mately the same for all programs we applied our replay algorithm to, so we conjecture
that in most cases tuning can be viewed as a one-time preprocessing task. It is also pos-
sible to let the algorithm to adjust these parameters automatically during the execution
as described in Chapter 5 of [24].

4.3 Experimental Results

In this section we describe the concurrent programs on which we checked the con-
vergence and performance of ConCEnter and discuss the meaning of the experimental
results.



212 H. Chockler et al.

Programs under test

Toy examples We start with two toy examples:

– A standard producer-consumer program, in which the producer threads fill the
buffer, and the consumer threads empty the same buffer. The program launches
two threads of each kind running concurrently, and the recorded execution contains
a buffer overflow. Since placing a request in the buffer and removing it from the
buffer require approximately the same time, a buffer overflow is reproduced only
on executions on which only the producer threads run until the buffer is full. It is
easy to see that if all threads are enabled all the time, the probability of reproduc-
ing a buffer overflow in a random execution is O(1/2n), where n is the size of the
buffer.

– A “Push-pop” example, in which there are two types of threads, A and B, and each
thread either pushes its name on top of the stack or pops the top element of the stack
depending on the value of the current top element: if the value of the top element
is equal to the name of the current thread, the thread pops the value, otherwise it
pushes its name. The recorded execution contains stack overflow. It is easy to see
that it can only be reproduced in executions in which threads constantly alternate,
and thus, similarly to the previous example, the probability of reproducing it is
O(1/2n), where n is the size of the stack.

ConCEnter consistently achieved the perfect replay of recorded executions with the
values of parameters as specified in Table 1. We also checked the effect of biased initial
distribution on the second example (see the results below).

Java 1.4 Collection Library Our real-life example is the Java 1.4 collection library
that was used as a case study in [25]. This is a thread-safe collection framework im-
plemented as a part of java.util package of the standard Java library provided by
Sun Microsystems. We ran our experiments for all tests in this collection. The simplest
tests IT est and MTLinkedListInfiniteLoop converged in less than 5 iterations to
100% replay. The other tests in the library, MTListTest, MTSetTest, and MTVectorTest,
converged to 90% replay after less than 5 iterations, and to 95% replay after less than
10 iterations.

The effect of biased initial distribution. We experimented with the bias in the initial
distribution ranging from 1 (probability 1 to choose the recorded execution), to 0.5 in
steps of 0.2 and compared the results with the uniform initial distribution (that is, no bias
toward the recorded distribution). The results presented in Table 2 are the average results
over 10 executions, and it is easy to see that preprocessing of the probability table that
assigns higher probabilities to edges that are present in the recorded execution decreases
the number of iterations and significantly improves the probability of achieving a good
replay. The experiments were done on the push-pop example.

We note that while the best results were achieved with the initial distribution that
gives the recorded edges probability 1, in real-life examples and especially when the
program was modified before it is replayed, we should not start with such a distribution.
This is because giving the recorded edges the probability 1 effectively eliminates the



Cross-Entropy-Based Replay of Concurrent Programs 213

Table 2. Results for biased initial distribution, push-pop example

Bias weight total replay success good replay (> 95%) success local maximum

1 100% – –
0.9 100% – –
0.7 90% 10% –
0.5 100% – –

unbiased 30% 30% 40%

Table 3. Adding print statements before replay (Java 1.4 Collection Library)

Test name number of iterations
to 90% replay

MTListTest 2 − 3
MTSetTest 2 − 4

MTVectorTest 2

chance of choosing other edges. If the program is modified before it is replayed, the
recorded execution might not be enabled at all, and thus the probability of choosing
other edges should be greater than 0 to allow an approximate replay.

Changing the weight of injection. In our experiments, we checked the influence of
injection on convergence of the cross-entropy based replay by varying the weight of
injection from 0.01 to 0.1. We also checked the effect of different injection frequency,
from 1 (each iteration) to 10. The best results, on all examples, were obtained with the
weight of injection between 0.02 and 0.03, and injection frequency either 2 or 3.

Replay after program modification. In order to simulate a common debugging sce-
nario, we introduced print statements after each action on the shared variables in the
examples from Java 1.4 Collection Library. The print statements are conditional on a
random bit, i.e., executed with the probability 50% at each execution, and they were in-
troduced after the execution was recorded, which corresponds to the scenario where an
engineer attempts to debug a program by introducing print statements and then repro-
ducing the bug. Table 3 shows that a replay that is 90% close to the recorded execution
was achieved after less than 5 iterations.

Comparison with ConTest. We compared our results to ConTest, where replay can
be attempted by using the same random seed as in the recorded execution. We executed
ConTest on the examples above, saved the seed of the random noise generator’s deci-
sions and attempted to replay the execution 100 times for each example. To compare
the executions in ConTest, we checked the number of elements in the buffer after the
execution terminates (that is, a looser criterion than an identity between executions). In
buffer overflow, ConTest succeeded in 4 attempts, and in push-pop in 16 attempts (out
of 100), even with such a permissive criterion of equivalence between executions. On
the collection of program from the Java 1.4 Collection Library, ConTest did not achieve



214 H. Chockler et al.

even an approximate replay. This is hardly surprising, since the same random seed does
not guarantee the same scheduling of concurrent events.

5 Conclusions and Future Work

We presented an application of cross-entropy method to replay of concurrent programs.
To the best of our knowledge, this is the first approach that does not require a full record-
ing of the concurrent events in the execution and also allows only partial control over the
repeated executions. Our approach also accommodates program changes between the
recording and the replay. For example, adding print statements to the program before
replaying it does not interfere with the replay. In future work, we will integrate other
techniques into replay, such as clustering algorithms, simulated annealing, and other
methods for updating the probability distribution. We also plan to integrate techniques
from genetic algorithms, as there seems to be quite a significant common ground be-
tween them and cross-entropy, especially when cross-entropy is applied to reproducing
a single event, such as in replay.

References

1. Agarwal, A., Garg, V.K.: Efficient dependency tracking for relevant events in concurrent
systems. Distributed Computing 19(3), 163–182 (2006)

2. Alon, G., Kroese, D.P., Raviv, T., Rubinstein, R.Y.: Application of the cross-entropy method
to buffer allocation problem in simulation-based environment. Annals of Operations Re-
search (2004)

3. Carver, R.H., Tai, K.C.: Replay and testing for concurrent programs. IEEE Software 8(2),
66–74 (1991)

4. Chockler, H., Farchi, E., Godlin, B., Novikov, S.: Cross-entropy based testing. In: Proceed-
ings of Formal Methods in Computer Aided Design (FMCAD), pp. 101–108. IEEE Com-
puter Society, Los Alamitos (2007)

5. Choi, J.-D., Srinivasan, H.: Deterministic replay of multithreaded java applications. In: ACM
SIGMETRICS Symposium on Parallel and Distributed Tools (SPDT), pp. 48–59 (1998)

6. Costa, A., Jones, O.D., Kroese, D.: Convergence properties of the cross-entropy method for
discrete optimization. Operations Research Letters 35(5), 573–580 (2007)

7. Dubin, U.: The cross-entropy method for combinatorial optimization with applications. Mas-
ter Thesis, The Technion (2002)

8. Edelstein, O., Farchi, E., Nir, Y., Ratzaby, G., Ur, S.: Multithreaded java program test gener-
ation. IBM Systems Journal 41(3), 111–125 (2002)

9. Hamming, R.W.: Error detecting and error correcting codes. Bell System Technical Jour-
nal 26(2), 147–160 (1950)

10. Keith, J.M., Kroese, D.P.: Rare event simulation and combinatorial optimization using cross
entropy: sequence alignment by rare event simulation. In: Proceedings of the 34th Winter
Simulation Conference: Exploring New Frontiers, pp. 320–327. ACM, New York (2002)

11. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Sci-
ence 220(4598), 671–680 (1983)

12. Krause, E.F.: Taxicab Geometry: An Adventure in Non-Euclidean Geometry, Dover (1987)
13. Kullback, S., Leibler, R.A.: On information and sufficiency. Annals of Mathematical Statis-

tics 22, 79–86 (1951)



Cross-Entropy-Based Replay of Concurrent Programs 215

14. Kumar, R., Garg, V.K.: Modeling and control of logical discrete event systems. Kluwer Aca-
demic Publishers, Dordrecht (1995)

15. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communica-
tions of the ACM 21(7), 558–565 (1978)

16. Leblanc, T.J., Mellor-Grummy, J.M.: Debugging parallel programs with instant replay. IEEE
Transactions on Computers 36(4), 471–481 (1987)

17. Margolin, L.: Cross-entropy method for combinatorial optimization. Master Thesis, The
Technion (2002)

18. Mittal, N., Garg, V.K.: Debugging distributed programs using controlled re-execution. In:
ACM Symposium on Principles of Distributed Computing (PODC), pp. 239–248 (2000)

19. Mittal, N., Garg, V.K.: Finding missing synchronization in a distributed computation using
controlled re-execution. Distributed Computing 17(2), 107–130 (2004)

20. Netzer, R.H.B.: Optimal tracing and replay for debugging shared-memory parallel programs.
In: Proceedings of ACM/ONR Workshop on Parallel and Distributed Debugging; also avail-
able as ACM SIGPLAN Notices 28(12), 1–11 (1993)

21. Paik, E.H., Chung, Y.S., Lee, B.S.: Chae-Woo Yoo. A concurrent program debugging envi-
ronment using real-time replay. In: Proc. of ICPADS, pp. 460–465 (1997)

22. Rubinstein, R.Y.: Optimization of computer simulation models with rare events. European
Journal on Operations Research 99, 89–112 (1997)

23. Rubinstein, R.Y.: The cross-entropy method and rare-events for maximal cut and bipartition
problems. ACM Transactions on Modelling and Computer Simulation 12(1), 27–53 (2002)

24. Rubinstein, R.Y., Kroese, D.P.: The Cross-Entropy Method: A Unified Approach to Combi-
natorial Optimization, Monte-Carlo Simulation and Machine Learning. In: Information Sci-
ence and Statistics. Springer, Heidelberg (2004)

25. Sen, K., Agha, G.A.: Cute and jcute: Concolic unit testing and explicit path model-checking
tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 419–423. Springer,
Heidelberg (2006)



Control Dependence for Extended Finite State
Machines

Kelly Androutsopoulos1, David Clark1, Mark Harman1, Zheng Li1,
and Laurence Tratt2

1Department of Computer Science, King’s College London, Strand, London,
WC2R 2LS, United Kingdom

{kalliopi.androutsopoulos,david.j.clark,mark.harman,zheng.li}@kcl.ac.uk
2Bournemouth University, Poole, Dorset, BH12 5BB, United Kingdom

laurie@tratt.net

Abstract. Though there has been nearly three decades of work on pro-
gram slicing, there has been comparatively little work on slicing for state
machines. One of the primary challenges that currently presents a bar-
rier to wider application of state machine slicing is the problem of de-
termining control dependence. We survey existing related definitions,
introducing a new definition that subsumes one and extends another.
We illustrate that by using this new definition our slices respect Weiser
slicing’s termination behaviour. We prove results that clarify the rela-
tionships between our definition and older ones, following this up with
examples to motivate the need for these differences.

Keywords: extended finite state machines, reactive systems, control
dependence, slicing.

1 Introduction

Program slicing is a source code analysis technique that identifies the parts of
a program’s source code which can affect the computation of a chosen variable
at a chosen point in it. The variable and point of interest constitute the slicing
criterion. There are many variations on the slicing theme. For instance, slices
can be constructed statically (with respect to all possible inputs), dynamically
(with respect to a single input) or within some spectrum in-between. Program
slicing has proved to be widely applicable, with application areas ranging from
program comprehension [HBD03] to reverse engineering and reuse [CCD98].

However, despite thirty years of research, several hundred papers and many
surveys on program slicing [BH04, De 01, Tip95], there has been comparatively
little work on slicing at the model level. This paper tackles slicing at the model
level, particularly static slicing of Finite State Machines (FSMs).

FSMs are a graphical formalism that have become widely used in specifi-
cations of embedded and reactive systems. Their main drawback is that even
moderately complicated systems result in large and unwieldy diagrams. Harel’s
Statecharts [Har87] and Extended Finite State Machines (EFSMs) are two of
the many attempts over past decades to address FSM’s disadvantages.

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 216–230, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Control Dependence for Extended Finite State Machines 217

Work on slicing FSM models began with the work of Heimdahl et al. in the
late 1990s [HW97, HTW98], followed by Wang et al. [WDQ02] and then in 2003
by the work of Korel et al. [KSTV03] and more recently by Langenhove and
Hoogewijs [LH07] and by Labbé et al. [LGP07, LG08].

One of the challenges facing any attempt to slice an EFSM is the problem of
how to correctly account for control dependence. It is common for state machines
modelling such things as reactive systems not to have a final computation point
or ‘exit node’. To overcome this problem, Ranganath et al. [RAB+05] recently
introduced the concept of a control sink and associated control dependence defi-
nitions for reactive programs. A control sink is a strongly connected component
from which control flow cannot escape once it enters. Building on this, Labbé et
al. [LGP07, LG08] introduced a notion of control dependence and an associated
slicing algorithm for EFSMs that was non-termination sensitive. However, they
introduce a syntax dependent condition and thus cannot be applied to any FSM.

However, traditional control dependence, as used in program slicing [HRB90]
is non-termination insensitive, with the consequence that the semantics of a
program slice dominates the semantics of the program from which it is; slicing
may remove non-termination, but it will never introduce it. In moving slicing
from the program level to the state based model level, an important choice needs
to be made

“should EFSM slicing be non-termination sensitive or insensitive?”

Recent work on control dependence has only considered the non-termination
sensitive option [LGP07, LG08]. The non-termination insensitive option was
explored by Korel et al. [KSTV03], but only for the restricted class of state
machines that guarantee to have an exit state. Heimdahl et al. [HW97, HTW98]
have a different notion of control dependence which is not a structural property
of the graph of FSMs but is based on the dependency relation between events
and generated events. This could lead to slices being either non-termination
sensitive or insensitive depending on the specification. The definition of control
dependence given in [WDQ02, LH07] is for UML statecharts with nested and
concurrent states and is the same as that of data dependence when applied
to EFSMs that do not have concurrent and/or nested states. This leaves open
the question of how to extend control dependence to create non-termination
insensitive slicing for general EFSMs in which there may be no exit node.

This problem is not merely of intellectual curiosity as it also has implica-
tions for the applications of slicing. In the literature on traditional program
slicing, a non-termination sensitive formulation was proposed as early as 1993
by Kamkar [Kam93], but has not been taken up in subsequent slicing research.
Non-termination sensitive slicing tends to produce very large slices, because all
iterative constructs that cannot be statically determined to terminate must be
retained in the slice, no matter whether they have any effect other than termi-
nation on the values computed at the slicing criterion. These ‘loop shells’ must
be retained in order to respect the definition of non-termination sensitivity. Fur-
thermore, for most of the applications of slicing listed above, it turns out that
it is perfectly acceptable for slicing to be non-termination insensitive.



218 K. Androutsopoulos et al.

In this paper, we introduce a non-termination insensitive form of control de-
pendence for EFSM dependence analysis, that can be applied to any FSM, and
a slicing algorithm based upon it. Like Labbé et al., we build on the recent work
of Ranganath et al. [RAB+05], but our definition is non-termination insensi-
tive. Also, unlike Korel’s definition, our development of the recent work of Ran-
ganath et al. allows us to handle arbitrary EFSMs. We prove that our definition
of control dependence is backward compatible with traditional non-termination
insensitive control dependence outside of control sinks. Furthermore, we prove
that our definition agrees with the non-termination sensitive control dependence
of Labbé et al. inside control sinks. Finally we demonstrate the type of slices
produced with our definition.

2 Extended Finite State Machines

We formally define an EFSM as follows.

Definition 1 (Extended Finite State Machine). An Extended Finite State
Machine (EFSM) E=(S, T, Ev, V) where S is a set of states, T is a set of
transitions, Ev is a set of events, and V is a store represented by a set of variables.
Transitions have a source state source(t) ∈ S, a target state target(t) ∈ S and
a label lbl(t). Transition labels are of the form e1[g]/a where e1 ∈ Ev, g is a
guard, i.e. a condition (we assume a standard conditional language) that guards
the transition from being taken when an e1 is true, and a is a sequence of actions
(we assume a standard expression language including assignments). All parts of
a label are optional.

EFSMs are possibly non-deterministic. States of S are atomic. Actions can in-
volve store updates or generation of events or both. A transition t may have a
successor t′ whose source is the same as the target of t. Two or more distinct
transitions which share the same source node are said to be siblings. A final
transition is a transition whose target is an exit state and an exit state is a state
which has no outgoing transitions. An ε-transition is one with no event or guard.

3 Survey

In this section we survey several existing definitions of control dependence and
discuss their strengths and weaknesses.

Ranganath et al.’s control dependence definitions [RAB+05, RAB+07] are
defined for programs of systems with multiple exit points and / or which execute
indefinitely, and therefore form the basis for subsequent state machine control
dependence definitions. We exclude from this discussion the control dependence
definition as given in [WDQ02, LH07] because it is defined in terms of concurrent
states and transitions and EFSMs do not have concurrent states and transitions.
Moreover, when applied to states and transitions that are not concurrent, it is
the same as data dependence as in Definition 13.



Control Dependence for Extended Finite State Machines 219

Korel et al [KSTV03], Ranganath et al. and Labbé et al. [LGP07, LG08]
definitions of control dependence are given in terms of execution paths. Since a
path is commonly presented as a (possibly infinite) sequence of nodes, a node
is in a path if it is in the sequence. A transition is in a path if its source state
is in the path and its target state is both in the path and immediately follows
its source state. A maximal path is any path that terminates in an end node or
final transition, or is infinite.

3.1 Control Flow for RSML

Heimdahl et al. [HW97, HTW98] present an approach for slicing specifications
modelled in the Requirements State Machine Language (RSML) [LHHR94], a
tabular notation that is based on hierarchical finite state machines. Transitions
have events, guards and actions; events can generate events as actions, which are
broadcast in the next step of execution. Heimdahl et al. were the first to present a
control dependence-like definition for FSMs; it differs from the traditional notion
as it defines control flow in terms of events rather than transitions.

Definition 2 (Control flow for RSML (CF) [HTW98]). Let E be the set
of all events and T the set of all transitions. The relation trigger(T → E)
represents the trigger event of a transition. The relation action(T → E2) repre-
sents the set of events that make up the action caused by executing a transition.
follows(T → T ) is defined as: (t1, t2) ∈ follows iff trigger(t1) ∈ action(t2).

CF can be applied to non-terminating systems that have multiple exit nodes.
However, it depends on transitions being triggered by events and being able to
generate events as actions and therefore cannot be applied to any finite state
machine, such as EFSMs that do not generate events.

3.2 Control Dependence for EFSMs

Korel et al. [KSTV03] present a definition of control dependence for EFSMs in
terms of post dominance that requires execution paths to lead to an exit state.

Definition 3 (Post Dominance [KSTV03]). Let Y and Z be two states and
T be an outgoing transition from Y .

– State Z post-dominates state Y iff Z is in every path from Y to an exit state.
– State Z post-dominates transition T iff Z is on every path from Y to the exit

state though T . This can be rephrased as Z post-dominates target(T ).

Definition 4 (Insensitive Control Dependence (ICD) [KSTV03]). Tran-
sition Tk is control dependent on transition Ti if:

1. source(Tk) post-dominates transition Ti (or target(Ti)), and
2. source(Tk) does not post-dominate source(Ti).

This definition is successful in capturing the traditional notion of control de-
pendence for static backward slicing. However it can only determine control
dependence for state machines with exactly one end state, failing if there are
multiple exit states or if the state machine is possibly non-terminating.



220 K. Androutsopoulos et al.

3.3 Control Dependence for Non-terminating Programs

Ranganath et al. [RAB+05, RAB+07] address the issue of determining control
dependence for programs utilising Control Flow Graphs (CFGs). A CFG is a
labelled, directed graph with a set of nodes that represent statements in a pro-
gram and edges that represent the control flow. A node is either a statement
node (which has a single successor) or a predicate node (which has two succes-
sors, labelled with T or F for the true and false cases respectively). A CFG has
a start node ns (which must have no incoming edges) such that all nodes are
reachable from ns; it may have a set of end nodes that have no successors.

Two versions of control dependence definitions are described: non-termination
sensitive and non-termination insensitive control dependence. The difference
between these definitions lies in the choice of paths. Non-termination sensitive
control dependence is given in terms of maximal paths.

Definition 5 (Non-termination Sensitive Control Dependence
(NTSCD)). In a CFG, Ni

NTSCD−−−−→ Nj means that a node Nj is non-termination
sensitive control dependent on a node Ni iff Ni has at least two successors Nk

and Nl such that: for all maximal paths π from Nk, where Nj ∈ π; and there
exists a maximal path π0 from Nl where Nj �∈ π0.

Non-termination insensitive control dependence is given in terms of sink-bounded
paths that end in control sinks. A control sink is a region of the graph which,
once entered, is never left. These regions are always SCCs, even if only the trivial
SCC, i.e. a single node with no successors.

Definition 6 (Control Sink). A control sink, K, is a set of nodes that form
a strongly connected component such that, for each node n in K each successor
of n is in K.

Definition 7 (Sink-bounded Paths). A maximal path π is sink-bounded iff
there exists a control sink K such that:

1. π contains a node from K;
2. if π is infinite then all nodes in K occur infinitely often.

The second clause of Definition 7 defines a form of fairness and hence we refer to
it as the fairness condition. SinkPaths(N) denotes a set of s ink-bounded paths
from a node N . We now define Ranganath et al. [RAB+05] non-termination
insensitive version of control dependence.

Definition 8 (Non-termination Insensitive Control Dependence
(NTICD)). In a CFG, Ti

NTICD−−−→ Nj means that a node Nj is non-termination
insensitive control dependent on a node Ni iff Ni has at least two successors Nk

and Nl such that:

1. for all paths π ∈ SinkPaths(Nk) where Nj ∈ π;
2. there exists a path π0 ∈ SinkPaths(Nl) where Nj �∈ π0.



Control Dependence for Extended Finite State Machines 221

Fig. 1. A CFG with multiple exit points and which is potentially non-terminating

The difference between paths in NTSCD and NTICD is shown in Figure 1.
According to Definition 5, n1 NTSCD−−−−→ n2 and n1 NTSCD−−−−→ n3 but not n1 NTSCD−−−−→ n4
because n4 is not in all maximal paths as there is a maximal path with an infinite
loop, i.e. {n2 → n3 → n2...}. However, n1 NTICD−−−−→ n2, n3, n4 since n2, n3 and
n4 occur on all sink-bounded paths from n2 (the control sink for these paths is
n4) and there exists a sink bounded path from n5 (the control sink consists of
n5, n6, n7) which does not include n2, n3 and n4. Compared to NTSCD, NTICD
cannot calculate any control dependencies within control sinks. For example,
in Figure 1, n5 NTSCD−−−−→ n7 but no such dependency exists for NTICD. Some
programs (e.g. servers) are a global control sink and as such there would be
NTSCD, but no NTICD, dependences.

3.4 Control Dependence for Communicating Automata

Labbé et al. [LG08]1 adapt Ranganath et al.’s NTSCD definition for communi-
cating automata, in particular focusing on Input/Output Symbolic Transition
Systems (IOSTS) [GGRT06].

Definition 9 (Labbé et al.- Non-Termination Sensitive Control Depen-
dence (LG-NTSCD) [LG08]). For an IOSTS S, a transition Tj is control
dependent on a transition Ti if Ti has a sibling transition Tk such that:

1. Ti has a non-trivial guard, i.e. a guard whose value is not constant under all
variable valuations;

2. for all maximal paths π from Ti, the source of Tj belongs to π;
3. there exists a maximal path π0 from Tk such that the source of Tj does not

belong to π0.

FSM models differ from CFGs is several ways. For example, FSMs can have
multiple start and exit nodes, more than two edges between two states and more
than two successors from a state. Moreover, in CFGs, decisions (Boolean condi-
tions) are made at the predicate nodes while in state machines they are made
on transitions. Labbé et al. take such differences into account when adapting
NTSCD. For example in Figure 2 T 2 NTSCD−−−−→ T 3 and T 3 NTSCD−−−−→ T 2 because ac-
cording to the second clause in Definition 5 the maximal paths start from start.
However these control dependencies are non-sensical because T 2 and T 3 are
1 Labbé et al.’s definition of control dependence in [LGP07] differs slightly from Labbé

et al. [LG08], so we evaluate the most recent.



222 K. Androutsopoulos et al.

Fig. 2. If NTSCD or NTICD is applied, undesired dependences are produced

sibling transitions. Using LG-NTSCD these control dependencies do not exist
because in the third clause of Definition 9 the maximal paths start from s1.

The first clause of LG-NTSCD concerning the non-triviality of guards is in-
troduced in order to avoid a transition being control dependent on transitions
that are executed non-deterministically even though they are NTSCD control
dependent. Furthermore, because this is a syntax dependent clause, the defini-
tion cannot be applied to many FSMs, such as the FSM for the elevator system
in Figure 3 that contains transitions with trivial guards.

4 New Control Dependence Definition: UNTICD

We define a new control dependence definition by extending Ranganath et al.’s
NTICD definition and subsuming Korel et al.’s definition in order to capture a
notion of control dependence for EFSMs that has the following properties. First,
the definition is general in that it should be applicable to any reasonable FSM
language variant. Second, it is applicable to non-terminating FSMs and / or
those that have multiple exit states. Third, by choosing FSM slicing to be non-
termination insensitive (in order to coincide with traditional program slicing) it
produces smaller slices than traditional non-termination sensitive slicing.

Following [RAB+05], the paths that we consider are sink-bounded paths, i.e.
those that terminate in a control sink as in Definition 6. Unlike NTICD, the sink-
bounded paths are unfair, i.e. we drop the fairness condition in Definition 7. For
non-terminating systems this means that control dependence can be calculated
within control sinks.

Definition 10 (Unfair Sink-bounded Paths). A maximal path π is sink-
bounded iff there exists a control sink K such that π contains a transition from
K.

Note that a transition is in a path if its source state is in the path and its target
state is both in the path and immediately follows its source state.

Definition 11 (Unfair Non-termination Insensitive Control Depend-
ence (UNTICD)). Ti

UNTICD−−−−→ Tj means that a transition Tj is control depen-
dent on a transition Ti iff Ti has at least one sibling Tk such that:

1. for all paths π ∈ UnfairSinkPaths(target(Ti)), the source(Tj) belongs to π;
2. there exists a path π ∈ UnfairSinkPaths(source(Tk)) such that the source

(Tj) does not belong to π.



Control Dependence for Extended Finite State Machines 223

UNTICD is in essence a version of NTICD modified to EFSMs (rather than
CFGs) and given in terms of unfair sink-bounded paths. This means that, unlike
in the second clause of Definition 8, sink-bounded paths start from the source of
Tk rather than from the target of Tk because EFSMS can have many transitions
between states and Definition 8 would lead to non-sensical dependences, e.g. in
Figure 2 T 2 NTICD−−−−→ T 3 while according to our definition T 2 does not control T 3.

5 Properties of the Control Dependence Relation

We prove the following properties for UNTICD: UNTICD subsumes ICD; the
transitive closure for the NTICD relation is contained in the transitive closure for
the UNTICD relation; and for an EFSM M , UNTICD and NTSCD dependences
for all transitions within control sinks are identical.

5.1 UNTICD Subsumes ICD

Proposition 1 Definition 4 (ICD) is a special case of Definition 11 (UNTICD).

Proof. Definition 4 is given in terms of post dominance which considers every
path to a unique exit state. Definition 11 is given in terms of sink-bounded paths
that terminate in control sinks. The final transition that leads to the exit state
is a trivial strongly-connected component that has no successors, and hence is a
control sink. Therefore, the paths in ICD are contained in the paths of NTICD,
but NTICD is not restricted to these. Moreover, the clauses of definition 4 are
the same as the clauses of definition 11. ��

5.2 Relation between NTICD and UNTICD’s Transitive Closures

In Theorem 2 we show that the transitive closure of NTICD−−−−→ is contained in
the transitive closure of UNTICD−−−−−→. This shows that UNTICD does not introduce
any additional dependences other than NTICD outside of the control sinks (see
Lemma 2) but introduces dependences within control sinks. In order to prove
this theorem, we first need to identify the regions in the state machine where
dependencies can occur and we do that by considering all the cases in which a
transition t1 controls another transition t2, where K, K1, K2 are control sinks:

∀K. t1 �∈ K ∧ t2 �∈ K (1)
∃K. t1 ∈ K ∧ t2 ∈ K (2)

∃K1,K2. t1 ∈ K1 ∧ t2 ∈ K2 (3)
∀K. t1 �∈ K ∧ ∃K.t2 ∈ K (4)
∀K. t2 �∈ K ∧ ∃K.t1 ∈ K (5)

In case (1) both t1 and t2 are not in any control sink K. In case (2) both t1 and
t2 are in the same control sink K. In case (3) t1 is in a control sink K1 and t2
is in another control sink K2. In case (4) t1 is not in any control sink and t2



224 K. Androutsopoulos et al.

belongs to a control sink. In case (5) t2 does not belong to any control sink and t1
belongs to a control sink. We introduce Definition 12 that defines a descendant
of a transition and the Lemma 1 so that we can discard any impossible cases.

Definition 12 (Descendent). A descendant of t is a transition related to t by
the closure of the successor relation.

Lemma 1. For all transitions t in a control sink K, all descendants of t belong
to K.

Proof. By Definition 6 of the control sink and Definition 12 of the descendant
relation. ��

By Lemma 1, cases (3) and (5) are not possible since t1 can only control t2 if t2
is a descendant of t1. Therefore, we only consider cases (1), (2), and (4). When
t1 NTICD controls t2, then for each case we write case1F , case2F , and case4F .
Similarly when t1 UNTICD t2, then we write case1U , case2U , and case4U .

Lemma 2 shows that the control dependences produced by applying UNTICD
to transitions outside of the control sink are the same as those produced when
applying NTICD, i.e. case1U = case1F .

Lemma 2. For an EFSM M , NTICD and UNTICD dependences for transitions
T outside of the control sink K (where t ∈ T and t �∈ K), are the same.

Proof. Let us assume that in an EFSM M , Tj is NTICD control dependent on

Ti (Ti
NTICD−−−−−→ Tj) and that Ti and Tj are outside of the control sink. From

Definition 8, Ti has a sibling transition Tk such that there exists a path πk ∈
SinkPaths(Tk) where the source(Tj) does not belong to πk.

Now suppose that the fairness condition in the definition of sink bounded
paths is removed, i.e. Definition 11 holds, then this affects the transitions within
the control sink only in that they do not occur infinitely often. The source of Tj

still remains on all paths from Ti as these are outside of the control sink and πk

still exists. Therefore, NTICD and UNTICD dependences of transitions outside
of the control sink are the same. ��

The pairwise intersection of case (1), (2), (4) are empty. Therefore the relations
can be partitioned as follows:

case1F ∪ case2F ∪ case4F = NTICD−−−−→
case1U ∪ case2U ∪ case4U = UNTICD−−−−−→

In Theorem 2 we show that the transitive closure of NTICD dependences between
transitions within a control sink and between a transition outside of the control
sink and a transition within a control sink is a subset of the transitive closure of
UNTICD dependences between transitions within a control sink and between a
transition outside of the control sink and a transition within a control sink, i.e.
(case2F ∪ case4F )∗ ⊆ (case2U ∪ case4U )∗. First we prove the following lemma.

Lemma 3. Let A∩B = C ∩D = ∅ and X = A∪B while Y = C ∪D. If A = C
then X∗ ⊆ Y ∗ if B∗ ⊆ D∗. All relations are over the same base set.



Control Dependence for Extended Finite State Machines 225

Proof. (x1, x2) ∈ X∗ iff there exists a path π ∈ (x1, x2), (x2, x3), ..., (xn−1, xn)
so that for two successive members (xi, xj) and (xk, xl) ∈ π, xj = xk, and for
all (xi, xj) ∈ X . This constructs the smallest transitive closure of X .

We show X∗ ⊆ Y ∗ by induction on the length of the path π in X∗.

Base Case: length(π) = 1 then either (x0, x1) ∈ A = C ⊆ (C ∪ D)∗ = Y ∗ or
(x0, x1) ∈ X∗ because (x0, x1) ∈ B ⊆ B∗ ⊆ D∗ ⊆ (C ∪D)∗ = Y ∗

Induction Case: (Inductive Hypothesis (IH)) Let xX∗y because there exists
a path π ∈ xX∗x1X

∗x2...X
∗y of length N in X∗. Then there exists a path

π1 in Y such that xY ∗y.
Let xX∗z because there exists a path π of length N + 1 in X . Then ∃y, z.
xX∗yXz and by IH xY ∗y by the same arguments for the base case of yXz
then yY ∗z hence xY ∗z. ��

Theorem 2. The transitive closure of NTICD, is contained in the transitive
closure of UNTICD. NTICD−−−→∗

⊆ UNTICD−−−−→∗

Proof. NTICD−−−−→∗
⊆ UNTICD−−−−−→∗

can also be expressed as the transitive closure for all
of the cases: (case1F ∪ case2F ∪ case4F )∗ ⊆ (case1U ∪ case2U ∪ case4U )∗ which
is true if:

– case1F = case1U , i.e. that NTICD and UNTICD dependences between tran-
sitions that are not in a control sink are the same, by Lemma 2, and

– (case2F ∪ case4F )∗ ⊆ (case2U ∪ case4U )∗, i.e. that the transitive closure of
NTICD dependences between transitions within a control sink and a transi-
tion outside of the control sink, and between transitions within a control sink
is a subset of the transitive closure of UNTICD dependences between tran-
sitions within a control sink and a transition outside of the control sink, and
between transitions within a control sink. This is true because of Lemma 3.

��

5.3 NTSCD and UNTICD Dependencies within Control Sinks

Finally, we show that UNTICD and NTSCD are compatible in control sinks.

Theorem 3. For every Ti ∈ K and Tj ∈ K where K is a control sink in EFSM

M , Ti
UNTICD−−−−−−→ Tj iff Ti

NTSCD−−−−−→ Tj.

Proof. In a control sink K, if Ti ∈ K and Tj ∈ K, then according to Definition 11
sink-bounded paths are reduced to maximal paths, since transitions in K do not
occur infinitely often (fairly). This coincides with Definition 5. Therefore, the
control dependences produced by UNTICD and NTSCD for transitions within
control sinks are equivalent. ��

6 Comparison of UNTICD with Existing Definitions

Figure 3 illustrates an EFSM of the door control component, a subcomponent of
the elevator control system [SW99]. The door component controls the elevator



226 K. Androutsopoulos et al.

Fig. 3. An EFSM specification for the door control of the elevator system

CF No dependences as the EFSM does not have generated events
ICD Not applicable as the EFSM does not have a unique exit state
NTSCD wait → closing closing → closed

closed → opening opening → opened
opened → closing closing → opening

NTICD No dependences
LG-NTSCD T3 → T4, T5, T6
UNTICD T5 → T9, T10 T6 → T7, T8

T8 → T9, T10 T10 → T11, T12
T12 → T4, T5, T6

Fig. 4. Control dependences computed by new and existing definitions for Figure 3

door, i.e. it opens the door, waits for the passengers to enter or leave the elevator
and finally shuts the door. In this section we compute all the control dependen-
cies for this EFSM using the existing and new definitions for the purpose of
comparison, as given in Figure 4.

CF cannot be applied to the EFSM in Figure 3 because it is given in terms
of the relationship between events and generated events and according to the
syntax of EFSMs, events cannot be generated.

ICD cannot be applied to the the EFSM in Figure 3 because it does not
have a unique exit state. For EFSMs that lead to a unique exit state the
control dependences computed for both ICD and UNTICD are the same. For
example, in Figure 2, ICD and UNTICD compute the same dependences, i.e.
T 1 → T 2, T 3, T 4, T 5.

In Figure 4, NTSCD and NTICD are given in terms of nodes but can easily be
represented in terms of transitions. Compared to UNTICD, NTSCD considers
maximal paths rather than sink-bounded paths and consequently introduces
more dependences when there are loops on paths that lead to a control sink. For
example, in Figure 3, wait NTSCD−−−−→ closing because of the loop introduced by the
self-transition T 2. Note that NTSCD and UNTICD have the same dependences
inside control sinks—we have formally shown this to be true in Theorem 3.

In Figure 3 there are no NTICD dependences because any control depen-
dency caused by loops on paths to a control sink are ignored and there are



Control Dependence for Extended Finite State Machines 227

no control dependencies within control sinks because of the fairness condition
of sink-bounded paths. Unlike NTICD, UNTICD calculates dependences with
control sinks. Also, as formally shown by Theorem 2, the transitive closure of
NTICD is contained within the transitive closure of UNTICD, although trivially
true in this case.

LG-NTSCD is NTSCD adapted for transitions and with a syntax dependent
clause, i.e. that the controlling transition’s guard must be non-trivial. This addi-
tional clause reduces the number of dependences compared to those of NTSCD.
For example, in Figure 3, T 5, T 6, T 8, T 10 and T 12 do not control any other tran-
sition because they have trivial guards. The transitive closure of LG-NTSCD as
for slicing, could produce too few results to be useful.

7 EFSM Slicing with UNTICD

Backward static program slicing was first introduced by Weiser [Wei81] and
describes a source code analysis technique that, through dependence relations,
identifies all the statements in the program that influence the computation of
a chosen variable and point in the program, i.e. the slicing criterion. It is non-
termination insensitive. Similarly, EFSM slicing identifies those transitions which
affect the slicing criterion, by computing control dependence and data depen-
dence. Data dependence is a definition-clear path between a variable’s definition
and use. We adopt the data dependence definition of [KSTV03] for an EFSM.

Definition 13 (Data Dependence (DD)). Ti
DD−−→v Tk means that transi-

tions Ti and Tk are data dependent with respect to variable v if:

1. v ∈ D(Ti), where D(Ti) is a set of variables defined by transition Ti, i.e.
variables defined by actions and variables defined by the event of Ti that are
not redefined in any action of Ti;

2. v ∈ U(Tk), where U(Ti) is a set of variables used in a condition and actions
of transition Ti;

3. there exists a path in an EFSM from the source(Ti) to the target(Tk) whereby
v is not modified.

The data dependences for the door controller EFSM in Figure 3 are: {T 1 →
T 2, T 3}, {T 2 → T 2, T 3}, {T 5 → T 11}, {T 8 → T 11}, and {T 11 → T 11}.

Definition 14 (Slicing Criterion). A slicing criterion for an EFSM is a pair
(t, V ) where transition t ∈ T and variable set V ⊆ V ar. It designates the point
in the evaluation immediately after the execution of the action contained in
transition t.

Definition 15 (Slice). A slice of an EFSM M , is an EFSM, M ′, that contains
ε−transitions. The transitions that are not ε−transitions are in the set of tran-
sitions that are directly or indirectly (transitive closure) DD and UNTICD on
the slicing criterion c.



228 K. Androutsopoulos et al.

Fig. 5. Static slices computed with LG-NTSCD (top) and UNTICD (bottom). Marked
transitions are in bold. LG-NTSCD has less marked transitions than UNTICD because
dependences in the control sink are not valid as transitions have trivial guards.

7.1 Computing EFSM Slices

The objective of the slicing algorithm is to automatically compute the slice of
an EFSM model M with respect to the given slicing criterion c. First, the al-
gorithm computes the data dependences, using Definition 13, and the control
dependences, using Definition 11, for all transitions in M . These are then repre-
sented in a dependence graph, which is a directed graph where nodes represent
transitions and edges represent data and control dependences between transi-
tions. Then, given the slicing criterion c, the algorithm marks all backwardly
reachable transitions from c, i.e. the transitive closure of DD and UNTICD with
respect to c. All unmarked transitions are anonymised i.e. become ε−transitions.
Note that we can replace UNTICD, with NTICD, LG-NTSCD and NTSCD in
order to compare the different slices produced.

If the slicing criterion for the EFSM in Figure 3 is T 11, then Figure 5(a) illus-
trates the slice produced when using UNTICD, and Figure 5(b) illustrates the
slice produced when using LG-NTSCD. Unlike LG-NTSCD and NTSCD, UN-
TICD slicing slices away transitions which are affected by loops (before control
sinks) that do not data dependent on T 11, i.e. T 3. Moreover, there are no LG-
NTSCD dependences within the control sink because the transitions have trivial
guards. Trivial guards in Figure 3 do not affect whether T 10 and T 9 will be
taken non-deterministically, so in the case where event opening occurs infinitely,
T 11 is never reached. If the slicing criterion for the EFSM in Figure 3 is T 12,
then the marked transitions in the UNTICD slice are {T 5, T 10, T 12}, while in



Control Dependence for Extended Finite State Machines 229

the LG-NTSCD slice are {T 3, T 12}, in the NTSCD slice are {T 3, T 5, T 10, T12}
and in the NTICD slice is {T 12}.

8 Conclusions

In this paper, we introduced a non-termination insensitive form of control de-
pendence for EFSM slicing, that built on the recent work of Ranganath et
al. [RAB+05] and subsumed Korel et al’s definition [KSTV03]. We demonstrated
that by removing the fairness condition of Ranganath et al.’s NTICD no control
dependences were removed, but extra control dependences within control sinks
were introduced. Unlike NTICD our new definition works with non-terminating
systems and, in general, produces smaller slices than those based on NTSCD.

References

[BH04] Binkley, D., Harman, M.: A survey of empirical results on program slicing.
Advances in Computers 62, 105–178 (2004)

[CCD98] Canfora, G., Cimitile, A., De Lucia, A.: Conditioned program slicing. In-
formation and Software Technology 40(11), 595–607 (1998)

[De 01] De Lucia, A.: Program slicing: Methods and applications. In: International
Workshop on Source Code Analysis and Manipulation, pp. 142–149. IEEE
Computer Society Press, Los Alamitos (2001)

[GGRT06] Gaston, C., Le Gall, P., Rapin, N., Touil, A.: Symbolic execution tech-
niques for test purpose definition. In: Uyar, M.Ü., Duale, A.Y., Fecko,
M.A. (eds.) TestCom 2006. LNCS, vol. 3964, pp. 1–18. Springer, Heidel-
berg (2006)

[Har87] Harel, D.: Statecharts: A visual formalism for complex systems. Science of
Computer Programming 8(3), 231–274 (1987)

[HBD03] Harman, M., Binkley, D., Danicic, S.: Amorphous program slicing. Journal
of Systems and Software 68(1), 45–64 (2003)

[HRB90] Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using depen-
dence graphs. ACM Transactions on Programming Languages and Sys-
tems 12(1), 26–61 (1990)

[HTW98] Heimdahl, M.P.E., Thompson, J.M., Whalen, M.W.: On the effectiveness
of slicing hierarchical state machines: A case study. In: EUROMICRO
1998: Proceedings of the 24th Conference on EUROMICRO, p. 10435.
IEEE Computer Society, Washington (1998)

[HW97] Heimdahl, M.P.E., Whalen, M.W.: Reduction and slicing of hierarchical
state machines. In: Jazayeri, M. (ed.) ESEC 1997 and ESEC-FSE 1997.
LNCS, vol. 1301, pp. 450–467. Springer, Heidelberg (1997)

[Kam93] Kamkar, M.: Interprocedural dynamic slicing with applications to debug-
ging and testing. PhD Thesis, Department of Computer Science and In-
formation Science, Linköping University, Sweden (1993)

[KSTV03] Korel, B., Singh, I., Tahat, L., Vaysburg, B.: Slicing of state-based models.
In: Proceedings of the International Conference on Software Maintenance,
pp. 34–43 (2003)



230 K. Androutsopoulos et al.

[LG08] Labbé, S., Gallois, J.-P.: Slicing communicating automata specifications:
polynomial algorithms for model reduction. Formal Aspects of Computing
(2008)

[LGP07] Labbe, S., Gallois, J.-P., Pouzet, M.: Slicing communicating automata
specifications for efficient model reduction. In: Proceedings of ASWEC,
pp. 191–200. IEEE Computer Society, Los Alamitos (2007)

[LH07] Van Langenhove, S., Hoogewijs, A.: SVtL: System verification through
logic tool support for verifying sliced hierarchical statecharts. In: Fiadeiro,
J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409, pp. 142–155.
Springer, Heidelberg (2007)

[LHHR94] Leveson, N.G., Heimdahl, M.P.E., Hildreth, H., Reese, J.D.: Requirements
Specification for Process-Control Systems. IEEE Transactions on Software
Engineering 20(9), 684–706 (1994)

[RAB+05] Ranganath, V.P., Amtoft, T., Banerjee, A., Dwyer, M.B., Hatcliff, J.: A
new foundation for control-dependence and slicing for modern program
structures. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 77–93.
Springer, Heidelberg (2005)

[RAB+07] Ranganath, V.P., Amtoft, T., Banerjee, A., Hatcliff, J., Dwyer, M.B.: A
new foundation for control dependence and slicing for modern program
structures. ACM Trans. Program. Lang. Syst. 29(5), 27 (2007)

[SW99] Strobl, F., Wisspeintner, A.: Specification of an elevator control system –
an autofocus case study. Technical Report TUM-I9906, Technische Uni-
versität München (1999)

[Tip95] Tip, F.: A survey of program slicing techniques. Journal of Programming
Languages 3(3), 121–189 (1995)

[WDQ02] Wang, J., Dong, W., Qi, Z.-C.: Slicing hierarchical automata for model
checking UML statecharts. In: George, C.W., Miao, H. (eds.) ICFEM 2002.
LNCS, vol. 2495, pp. 435–446. Springer, Heidelberg (2002)

[Wei81] Weiser, M.: Program slicing. In: 5th International Conference on Software
Engineering, pp. 439–449, San Diego, CA (March 1981)



Proving Consistency of Pure Methods and
Model Fields

K. Rustan M. Leino1 and Ronald Middelkoop2

1 Microsoft Research, Redmond, USA
leino@microsoft.com

2 Technische Universiteit Eindhoven, Holland
r.middelkoop@tue.nl

Abstract. Pure methods and model fields are useful and common speci-
fication constructs that can be interpreted by the introduction of axioms
in a program verifier’s underlying proof system. Care has to be taken
that these axioms do not introduce an inconsistency into the proof sys-
tem. This paper describes and proves sound an approach that ensures
no inconsistencies are introduced. Unlike some previous syntax-based ap-
proaches, this approach is based on semantics, which lets it admit some
natural but previously problematical specifications. The semantic condi-
tions are discharged by the program verifier using an SMT solver, and
the paper describes heuristics that help avoid common problems in find-
ing witnesses with trigger-based SMT solvers. The paper reports on the
positive experience with using this approach in Spec# for over a year.

1 Introduction

Pure methods and model fields [1,2] are useful and common specification con-
structs. By marking a method as pure, the specifier indicates that it can be
treated as a function of the state. It can then be called in specifications. Model
fields provide a way to abstract from an object’s concrete data. A problem with
either technique is that it can introduce an inconsistency into the underlying
proof system. In this paper, we discuss how to prove (automatically) that no
such inconsistency is introduced while allowing a rich set of specifications.

Starting from a review of the setting, the problem, and previous solutions,
this section leads up to an overview of our contributions.

Pure Method Specifications. Figure 1 shows the template for a pure method
specification (for simplicity, we show only a single formal parameter, named p).
As usual, requires declares the method’s precondition P , ensures declares the
method’s postcondition Q , and result denotes the method’s return value. The
only free variables allowed in P are this and p. In Q , result is allowed as well.

A Deduction System. Marking method m as pure adds an uninterpreted total
function #m : C×T ′ → T (a method function [3]) to the specification language.
In predicates in the specification, the expression E0.m(E1) is treated as syntactic

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 231–245, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



232 K.R.M. Leino and R. Middelkoop

pure T m(T ′ p)
requires P ;

ensures Q ;

Fig. 1. Template

pure int bad()

ensures false;
{ return 4; }

Fig. 2. Inconsistency

pure int n(int i)

ensures result = this.p(i);

pure int p(int i)

ensures result = this.n(i)+1;

Fig. 3. Harmful indirect recursion

class Node {
Object val;

rep Node next;

pure int count(Object obj)

ensures result = (obj = this.val ? 1 : 0) +

(this.next = null ? 0 : this.next.count(obj));

pure bool has(Object obj)

ensures result = this.count(obj) > 0;

} //rest of class omitted

Fig. 4. Singly linked list (see Sect. 4.1 for rep)

sugar for #m(E0,E1). Furthermore, method function #m is axiomatized in the
underlying deduction system for first-order logic by the following axiom:1

∀σ ∈ Σ • [[∀this:C , p:T ′ • P ⇒ Q [#m(this, p)/result] ]]σ (1)

Here, Σ denotes the set of well-formed program states. Partial function [[E ]]σ
evaluates expression E to its value in state σ . [[#m(E0,E1)]]σ is defined as
#m( [[E0]]σ , [[E1]]σ ). Other details of this evaluation are unimportant here.
P [E/v ] denotes the predicate like P , but with capture-avoiding substitution
of variable v by E . For instance, pure method has from Fig. 4 introduces un-
interpreted total function #has : Node × Object → bool, and axiom ∀σ ∈
Σ • [[∀this: Node, obj:bool • #has(this, obj) = #count(this, obj)> 0]]σ .

Consistency of Deduction System. If one is not careful, pure methods can in-
troduce an inconsistency into the deduction system. As an obvious example,
consider Fig. 2. This definition introduces false as an axiom into the deduction
system (more precisely, it introduces ∀σ ∈ Σ • [[∀this:C • false]]σ ). So, it has
to be ensured that for all possible values of the arguments of method function
#m , there is a value that the function can take. Insuring this by requiring a
proof of total correctness of the implementation of m before adding the axiom
is highly impractical. If #m is constrained only by the axiom introduced by m ,
then it suffices to prove property (2):

∀σ ∈ Σ • [[∀this:C , p:T ′ • ∃x :T • P ⇒ Q [x/result] ]]σ (2)

If other axioms can also constrain #m , as is the case in the presence of
mutual recursion, then property (2) needs to simultaneously mention all meth-
ods involved. We aim for sound modular verification, which means being able
1 The axiomatization differs slightly in the presence of class invariants. To simplify

the presentation, invariants are not considered.



Proving Consistency of Pure Methods and Model Fields 233

pure int findInsertionPosition(int N)

requires 0 ≤ N;

ensures 0 ≤ result ∧ result ≤ N;

pure int max(int x, int y)

ensures (x ≤ y ⇒ result = y) ∧
(y ≤ x ⇒ result = x);

Fig. 5. Previous syntactic checks forbid these methods; our semantic checks allow them.

pure bool isEven(int n)

requires 0 ≤ n;

ensures result =

(n = 0 ? true : this.isOdd(n-1));

measuredBy 2n;

pure bool isOdd(int m)

requires 0 ≤ m;

ensures result �= this.isEven(m);

measuredBy 2m+1;

Fig. 6. Odd and even (see Sect. 4.3 for measuredBy)

to verify a program’s modules separately, just like a compiler performs sepa-
rate compilation of modules. If the mutual recursion can span module bound-
aries, then there may be no verification scope that has information about all the
methods that need to be simultaneously mentioned. Therefore, the consistency
of mutual recursion among pure methods is usually stated in a form different
from (2).

Previous Solutions. Darvas and Müller [4] prove that inconsistency is prevented
if the following two measures are taken: (A) the axiom that is introduced into the
deduction system for a method function #m is not proposition (1), but (2) ⇒
(1), and (B) recursion in the pure method axioms is disallowed unless it is direct
and well-founded. For example, measure A prevents the pure methods in Fig. 2
from introducing an inconsistency, and measure B forbids the specifications in
Fig. 3, whose axioms would otherwise introduce an inconsistency.

Darvas and Leino [3] discuss a problem with measure A, namely that an axiom
of the form (2) ⇒ (1) is not suitable for automatic reasoning using today’s
trigger-based SMT solvers like Simplify and Z3 [5,6]. More specifically, these
solvers are unable to come up with a witness for the existential quantification
in (2) even in simple cases. This means that property (1) is ‘silently ignored’,
which renders the pure method useless (and possibly confuses the user).

To circumvent the practical problem with measure A, Darvas and Leino in-
troduce a simple syntactic check that allows one to conclude that (2) holds
once and for all [3]. Thus, (1) can be introduced as an axiom into the de-
duction system without fear of inconsistencies. However, the syntactic check
is restrictive and prevents a number of natural and useful specifications, in-
cluding the two in Fig. 5. Syntactic checks cannot guarantee the consistency
of findInsertionPosition, because its result value is constrained by two in-
equalities, or of max, because its result-value constraints are guarded by an-
tecedents.

Measure B is a Draconian way of dealing with mutual recursion. The syntactic
check of Darvas and Leino [3] improves on this situation. However, this check is
still restrictive; for instance, it does not permit the example in Fig. 6.



234 K.R.M. Leino and R. Middelkoop

class Rectangle {
int x1,y1,x2,y2; //lower left and upper right corner

model int width satisfies this.width = this.x2-this.x1;

model int height satisfies this.height = this.y2-this.y1;

void scaleH(int factor)

requires 0 ≤ factor;

ensures this.width = old(this.width) ∗ factor/100;

{ this.x2 := (this.x2 - this.x1 ) ∗ factor/100 + this.x1; }
} //rest of class omitted

Fig. 7. Model fields

A Glimpse of Our Semantic Solution. In our solution, we use heuristics to guess
candidate witness expressions for (2). Then we verify that in every program state
allowed by the pure method’s precondition, one of these candidates establishes
the postcondition. For example, for pure method max in Fig. 5, we generate three
candidate witnesses 1, x , and y , and construct a program snippet of the form:

r := 1; if ((x ≤ y ⇒ r = y) ∧ (y ≤ x ⇒ r = x )) { return r ; }
r := x ; if ((x ≤ y ⇒ r = y) ∧ (y ≤ x ⇒ r = x )) { return r ; }
r := y; return r ;

and then attempt to verify, using our program verifier’s machinery, that this
program snippet establishes the postcondition of the pure method.

Model Fields. Model fields introduce similar problems. A model field gives a
way to hide details of an object’s concrete state. Figure 7 gives an example
(taken from [7]) of the use of model fields: by updating the satisfies clauses, e.g.,
to this.width = this.w and this.heigth = this.h, Rectangle can be re-
implemented with two ints w and h, without affecting the verification of other
classes. For every model field model T f satisfies Q in a class C , a total
function #f : C → T (an abstraction function) is added to the specification
language. In predicates in the specification, the expression E .f is treated as
syntactic sugar for #f (E ). Abstraction function #f is axiomatized in the de-
duction system by an axiom ∀σ ∈ Σ • [[∀this : C • Q ]]σ .2 This axiom is not
visible outside of C ’s module. The axiomatization problems we have described
for method functions apply to abstraction functions as well: for the purpose
of this paper, a model field f that satisfies predicate Q can be treated as a
parameterless pure method with postcondition Q , with result for this.f .

Contributions. The contributions of this paper are the following:

1. We formalize and strengthen an implicit claim from [3]: No inconsistency is
introduced by axioms of the form (2) ⇒ (1) if every method function call in
a pure method m ’s specification lies below m in a partial order ≺ (Sect. 2).

2 More axioms might be added depending on the methodology, see Sect. 5.



Proving Consistency of Pure Methods and Model Fields 235

2. We present a much improved scheme that leverages the power of the theorem
prover to prove (2) once-and-for-all (Sect. 3).

3. We introduce a permissive definition for ≺ that improves the one in [3] and
allows a greater degree of (mutual) recursion than before (Sect. 4).

We report on our experience and discuss related work in Sect. 5.

2 Avoiding Inconsistency

In this section, we identify proof obligations that allow axioms of form (1) to be
added to the deduction system without introducing inconsistencies.

Let there be N +1 pure methods in the program fragment that is to be verified,
labeled m0, . . .mN . For simplicity, assume that there are no static pure methods
and that every pure method mi has exactly one formal parameter p i of type
T ′

i (extending to an arbitrary number of parameters is straightforward). Let Ti

be the return type of pure method mi . Let Ci be the class that defines mi .
Let predicates Prei and Posti be the pre- and postconditions of mi . PureAx ,
defined below, represents the axioms introduced by pure methods (reformulated
into a single proposition). We use ≡ to define syntactical shorthands.

Definition 1 (PureAx ).
Speci ≡ Prei ⇒ Posti
MSpeci ≡ ∀this:Ci , pi :T ′

i • Speci [#mi(this, pi)/result]
PureAx ≡ ∀σ ∈ Σ • [[MSpec0 ∧ . . . ∧ MSpecN ]]σ

Let Prelude be the conjunction of all axioms in the deduction system that are
not introduced by a pure method. The goal is to find proof obligations POs such
that if Prelude is consistent and POs hold, then adding the axioms for pure
methods does not introduce inconsistencies. Theorem 1 formalizes this goal:

Theorem 1. Prelude ⇒ (POs ⇒ PureAx )

The remainder of this section discusses the proof obligations POs that we use to
ensure that Thm. 1 holds. The theorem itself is proven to hold in the accompa-
nying technical report [8]. If there is no recursion in pure method specifications,
then Thm. 1 can be shown to hold using POs ≡ PO1 (see [4]):

Definition 2 (PO1).
PO1i ≡ ∀σ ∈ Σ • [[∀this:Ci , pi :T ′

i • ∃result:Ti • Speci ]]σ
PO1 ≡ PO10 ∧ . . . ∧ PO1N

Note that PO1i is equivalent to proposition (2) from the introduction.
When there is (mutual) recursion, the crucial property that is in jeopardy

is functional consistency: if the same function is called twice from the same
state and the parameters of the two calls evaluate to the same values, then
the two calls evaluate to the same value. For instance, consider the methods
in Fig. 3. If pure methods add propositions of the form (1) to the deduction
system, then these method definitions allow one to deduce that #n(this, i)



236 K.R.M. Leino and R. Middelkoop

= #n(this, i) + 1, which contradicts functional consistency of #n. More for-
mally, since [[#mi(E0,E1)]]σ = #mi( [[E0]]σ , [[E1]]σ ) (see Sect. 1), it follows
immediately that ∀σ ∈ Σ, i ∈ [0,N ] • [[∀c0, c1:Ci , p0, p1:T ′

i • c0 = c1 ∧ p0 =
p1 ⇒ #mi(c0, p0) = #mi(c1, p1)]]σ . The proof obligations must ensure that the
axioms introduced by pure methods do not contradict functional consistency.

For convenience, we define the equivalence relation ∼ :

Definition 3 (∼).

[[#mi(E0,E1) ∼ #mj (E2,E3)]]σ
def
= i = j ∧ [[E0 = E2 ∧ E1 = E3]]σ

Then ∀σ ∈ Σ • [[#mi(E0,E1) ∼ #mj (E2,E3) ⇒ #mi(E0,E1) = #mj (E2,E3)]]σ .
To ensure that recursive specifications do not lead to an axiomatization that

contradicts functional consistency, we require the verifier to ensure that a func-
tion call in the axiomatization of #mi(o, x ) does not (indirectly) depend on
the value of #mi(o, x ). To this end, we introduce the strict partial order ≺ on
method function calls (i.e., ≺ is an irreflexive and transitive binary relation on
expressions of the shape #mi(E0,E1)). The definition of ≺ is not relevant to
the proof as long as (1) ≺ is well-founded, and (2) the following lemma holds:

Lemma 1. ∀σ ∈ Σ, i , j ∈ [0,N ] • [[∀c0:Ci , x0:T ′
i , c1:Cj , x1:T ′

j •
#mi(c0, x0) ≺ #mj (c1, x1) ⇒ #mi(c0, x0) �∼ #mj (c1, x1)]]σ

In Sect. 4, we present a definition of ≺ that is suitable for our proof system.
Proof obligation PO2 , defined below, requires every method function call in the
specification of mi to lie below #mi(this, pi) in the order ≺ in every state in
which the result of the call is relevant.

Definition 4 (PO2). Let i , j ∈ [0,N ] . Let NrOfCallsi,j be the number of calls
to #mj in Speci . If l + 1 = NrOfCallsi,j , and k ∈ [0, l ] , then
Calli,j ,k is the expression that is the k’th call to #mj in Speci
Speci,j ,k is Speci , but with a fresh variable substituted for the k’th call to #mj

Smalleri,j ,k ≡ Calli,j ,k ≺ #mi(this, pi)
NotReli,j ,k ≡ ∀ result:Ti , x :T ′

j • Speci,j ,k = Speci
PO2i,j ,k ≡ ∀σ ∈ Σ • [[∀ this:Ci , pi :T ′

i • Smalleri,j ,k ∨NotReli,j ,k ]]σ
PO2i,j ≡ PO2i,j ,0 ∧ . . . ∧ PO2i,j ,l

PO2i ≡ PO2i,0 ∧ . . . ∧ PO2i,N

PO2 ≡ PO20 ∧ . . . ∧ PO2N

The intuition behind NotRel is that Calli,j ,k in Speci is not relevant in σ ∈ Σ
if the result value of Calli,j ,k is not relevant to the value of #mi(this, pi) in
σ . That is, for any value of result, the value of Speci is the same for any
result of Calli,j ,k . As an extreme example, suppose Speci is false ⇒ re-
sult = this.mi (p) + 1. Then Smalleri,i,0 never holds, but NotReli,i,0 always
holds as ∀σ ∈ Σ • [[∀ this:Ci , pi :T ′

i , result:Tj , x :T ′
j • (false ⇒ result =

this.mi (p) + 1) = (false ⇒ result = x + 1) ]]σ . Then PO2i,i,0 is met,
and hence PO2i is met. We show a more realistic example in Sect. 4.1.

In this section, we formalized the problem sketched in the introduction. Fur-
thermore, we introduced high-level proof obligations that ensure that the exten-
sion of the Prelude with the axiomatization of pure methods does not introduce



Proving Consistency of Pure Methods and Model Fields 237

inconsistencies: in [8] we prove that Thm. 1 holds if POs ≡ PO1 ∧ PO2 . In
the next two sections, we address two remaining practical concerns: we provide
heuristics to prove PO1, and define the partial ordering ≺ used in PO2 .

3 Heuristics for Establishing PO1

Proof obligation PO1 poses serious difficulties for automatic verification. Even
in simple cases, automatic theorem provers are unable to come up with a witness
for the existential quantification ∃ result : Ti • Speci in PO1i . As a solution,
[3] proposes only to allow a pure method mi when (1) it has a postcondition of
the form result op E or E op result, where op is a binary operator from the
set {=,≥,≤,⇒,⇔} , and (2) E is an expression that does not contain result.
If these conditions are met, then E is a witness for the quantification, i.e.,
∀σ ∈ Σ • [[∀this : Ci , pi : T ′

i • Speci [E/result]]]σ , and therefore PO1i holds.
This solution has the advantage that it only requires a simple syntactic check.

However, it is quite restrictive. Unfortunately, not much more can be done
with syntactic checks. For instance, consider method findInsertPosition from
Fig. 5. Here, 0 is a witness (as 0 ≤ N ⇒ 0 ≤ 0 ∧ 0 ≤ N). However, a syn-
tactic check cannot establish that 0 ≤ N. Our solution is to leverage the power
of the theorem prover. Consider the scheme below.

1. Find a witness candidate E .
2. If ∀σ ∈ Σ • [[∀this : Ci , pi : T ′

i • Speci [E/result]]]σ can be established by
the theorem prover, then PO1i holds. Otherwise, the program is rejected.

This scheme is more powerful than the syntactic check of [3]. For instance, it
allows findInsertPosition, assuming that 0 is found as a witness candidate.
Before we discuss how to find witness candidates, we improve on the scheme
above in one important way. Consider method max from Fig. 5. PO1 cannot be
established for max using the scheme above, no matter which witness candidate
is found. In particular, neither Specmax[x/result] nor Specmax[y/result] holds.
The problem is that the scheme requires that there is a witness that holds in all
cases. PO1 only requires that in all cases, there is a witness. The latter is true
for max, but the former is not. If x ≤ y, then y is a witness. If y ≤ x, then
x is a witness. That is, Specmax[x/result] ∨ Specmax[y/result] holds. Therefore,
∃result: int•Specmax holds, and PO1 holds. Based on this reasoning, the scheme
presented above is replaced by the more liberal scheme below.

1. Find witness candidates E0, . . . ,En .
2. If ∀σ ∈ Σ• [[∀this:Ci , pi :T ′

i • Speci [E0/result] ∨ . . . ∨ Speci [En/result]]]σ
can be established by the theorem prover, then PO1i holds. Otherwise, the
program is rejected.

Next, we present an algorithm to find witness candidates for a pure method. We
assume that there is a function kind : Type → {Bool ,Enum,Num,Ref } that
distinguishes four kinds of types. The algorithm uses a Haskell-like switch that
uses pattern matching and does not fall through. For example, case A of B → C
D → E → F should be read as ‘if A matches B, then C, else if A matches D,



238 K.R.M. Leino and R. Middelkoop

then E, else F’. The witness candidates for a pure method mi with return type
Ti and postcondition Posti are given by wcs(Ti ,Posti). Below, wcs and its
helper functions are defined, discussed and illustrated by a number of examples.
Note that ExprSet ≡ Set of Expression , and that |S | returns the size of set S .

Definition 5 (wcs ).
wcs : Type × Predicate → ExprSet

wcs(T ,P)
def
= case kind(T ) of

Bool → {true, false}
Enum → the enumerator list (i.e. the sequence of enumeration constants) of T
Ref → let euld(P) = 〈S0,S1,S2,S3〉 in S0 ∪ {null}
Num → let euld(P) = 〈S0,S1,S2,S3〉 in

S0 ∪ dupl(S1, |S3 |, true) ∪ dupl(S2, |S3 |, false) ∪ dupl({1}, |S3 |, true)

euld : Predicate → ExprSet × ExprSet × ExprSet × ExprSet

euld(P)
def
= case P of

result = E or E = result → 〈{E}, {}, {}, {}〉
result ≥ E or E ≤ result → 〈{}, {E}, {}, {}〉
result ≤ E or E ≥ result → 〈{}, {}, {E}, {}〉
result �= E or E �= result → 〈{}, {}, {}, {E}〉
result > E or E < result → euld(result ≥ E + 1)
result < E or E > result → euld(result ≤ E − 1)
P0 ∨ P1 or P0 ∧ P1 → let euld(P0) = 〈S0,S1,S2,S3〉

and euld(P1) = 〈S ′
0,S

′
1,S

′
2,S

′
3〉 in

〈S0 ∪ S ′
0,S1 ∪ S ′

1,S2 ∪ S ′
2,S3 ∪ S ′

3〉
¬P0 → let euld(P0) = 〈S0,S1,S2,S3〉 in

〈S3, addOrSub1(S2, true), addOrSub1(S1, false),S0〉
P0 ⇒ P1 or P1 ⇐ P0 → euld(¬P0 ∨ P1)
P0 ⇔ P1 → euld((P0 ∧ P1) ∨ (¬P0 ∨ ¬P1))
P0 ? P1 : P2 → euld((P0 ⇒ P1) ∧ (¬P0 ⇒ P2))

→ 〈{}, {}, {}, {}〉

addOrSub1 : ExprSet × Bool → ExprSet

addOrSub1({E0, . . . ,En}, isAdd)
def
=

(isAdd ? {E0 + 1, . . . ,En + 1} : {E0 − 1, . . . ,En − 1})
dupl : ExprSet × N × Bool → ExprSet

dupl({E1, . . . ,En}, duplCnt , isAdd)
def
=

duplExpr(E1, duplCnt , isAdd) ∪ . . . ∪ duplExpr(En , duplCnt , isAdd)
duplExpr : Expression × N × Bool → ExprSet

duplExpr(E , duplCnt , isAdd)
def
=

(isAdd ? {E + 0, . . . ,E + duplCnt} : {E − 0, . . . ,E − duplCnt})
The intuition behind the wcs(T ,P) definition is as follows. If kind(T) ∈ {Bool,
Enum}, then there is no need to scan the postcondition for witness candidates.
Instead, we make full use of the possibility to select multiple candidates and let



Proving Consistency of Pure Methods and Model Fields 239

every value of the type be a witness candidate. If kind(T) ∈ {Num, Ref}, then
function euld is used to scan P for equalities, upper bounds, lower bounds, and
d isequalities that contain result. More precisely, assume euld(P)=(S0,S1,S2,S3).
Let cnf (P) yield the conjunctive normal form of P , and let test(P ,E ) ≡
cnf (P)[E/result] . Let E0,E1,E2 and E3 be elements of S0,S1,S2 and S3 , re-
spectively. Then for every n ∈ N , each of test(P ,E0), test(P ,E1 + n) and
test(P ,E2−n) has a satisfied conjunct. Also, at least one conjunct of test(P ,E3)
contains an unsatisfied disjunct. From euld ’s result, witness candidates are ex-
tracted and where needed duplicated using function dupl .

We illustrate with several examples. Let kind(Ti ) = Num . If Posti is re-
sult = 4, or result > 3, or result ≤ 4, then euld(Posti) is 〈{4}, {}, {}, {}〉,
〈{}, {4}, {}, {}〉, or 〈{}, {}, {4}, {}〉, respectively. In each case, wcs(Ti ,Posti)
= {4, 1} . As Posti [4/result] holds, Posti [4/result] ∨ Posti [1/result] holds as
well and PO1i is satisfied. Default witness 1 is included to handle, e.g., the
case where Posti is result �= 4 . Then euld(Posti) = 〈{}, {}, {}, {4}〉. Then
wcs(Ti ,Posti) = {1, 2} . As Posti [1/result] holds, PO1i is satisfied.

We track upper and lower bounds and the number of disequalities N to han-
dle, e.g., the case where Posti is result > 4 ∧ result �= 5. Then euld(Posti) =
〈{}, {5}, {}, {5}〉, and wcs(Ti ,Posti) = {5, 6, 1, 2} . As Posti [6/result] holds,
PO1i is satisfied. More generally, by trying N different candidates that all sat-
isfy the bound, we are sure to find at least one that satisfies the disequality.

We combine the candidates found in subpredicates of conjunctions and dis-
junctions to handle, e.g., the case where Posti is (result = 4 ∨ result > 8)
∧ result > 7. Then euld(Posti) = 〈{4}, {9, 8}, {}, {}〉, and wcs(Ti ,Posti) =
{4, 9, 8, 1} . As Posti [9/result] holds, PO1i is satisfied.

A predicate ¬P is dealt with ’on the fly’, which is more efficient than dis-
tributing the negation over the subexpressions of P . We interchange S0 and S3
as well as S1 and S2 , and then add (subtract) 1 to each element of the new S1
(S2 ). The intuition is the following. As was stated above, if E ∈ S1 , then for
every n a conjunct in test(P ,E + n) holds. Then for every n , a conjunct in
test(¬P ,E − 1−n) holds. For example, ¬(result ≥ E ) equals result ≤ E − 1.

As an aside, note that in the cases where P is either P0 ⇔ P1 or P0 ? P1 : P2 ,
euld(P0) and euld(P1) are evaluated twice. These cases can be optimized at the
expense of a more complicated definition.

4 Defining the Ordering ≺
Our definition of ≺ builds on work in [3,4]. It uses a function Order (defined
below) that associates a tuple of numbers with an expression #mi(E0,E1) in
a state σ . Our definition of ≺ ensures that ≺ is a well-founded strict partial
order, and that Lem. 1 holds (as long as Order is well-defined):

Definition 6 (≺). [[#mi(E0,E1) ≺ #mj (E2,E3)]]σ
def
=

Order(#mi ,E0,E1, σ) is lexicographically ordered below Order(#mj ,E2,E3, σ)

As Def. 7 shows, the definition of Order uses three functions. RootDistance as-
sociates a number with an object based on the well-founded strict partial order



240 K.R.M. Leino and R. Middelkoop

on objects provided by ownership, an existing specification technique (Sect. 4.1).
RTVal associates a number with a method function based on a numbering
scheme that can be largely inferred automatically (Sect. 4.2). MeasuredBy yields
a tuple of numbers that is determined by a pure method’s measuredBy clause,
and that depends only on the values of the numerical parameters (Sect. 4.3).
The definition uses � to denote sequence concatenation.

Definition 7 (Order )
Order : Method Function × Expression × Expression ×Σ → Sequence of Z

Order(#mi ,E0,E1, σ)
def
= 〈j ,RTVal(#mi)〉 �MeasuredBy(#mi ,E1, σ) ,

where j is ( [[E0]]σ ∈ Object ? −RootDistance( [[E0]]σ , σ) : 0) .

Note that if #mj (E0,E1) occurs in the specification of mi , and σ does not
map E0 to an object, then the first element of Order(#mj ,E0,E1, σ) is 0, thus
requiring that the call is not relevant in σ if PO2 is to hold.

4.1 Root Distance

Ownership, originally developed to enforce state encapsulation [9,10], is a com-
monly used technique to make whole/part relations explicit in specifications
(often applied to the modular verification of invariants [11,12,13,14]). The set of
owners consists of the set of objects and the special purpose owner root. In any
given state, every object x is directly owned by exactly one owner o , o �= x .
The owned relation is the transitive closure of the directly owned relation. The
intention is that an object x owns the objects that are part of x , i.e., that
belong to x ’s representation. Objects that are not part of any other object are
directly owned by root. The owned relation is required to be irreflexive, as a
whole is not a part of one of its parts. Therefore, ownership is a well-founded
strict partial order, which makes it suitable for use in the definition of ≺ .

In [4], it is suggested that ‘the height of an object in the ownership hierar-
chy’ can be used to allow direct recursion. We formalize this notion and ap-
ply it to general recursion. The owned relation ensures that every object is
owned by root. Let function RootDistance : Object × Σ → N be such that
RootDistance(x , σ) = n iff x is owned by exactly n objects in σ (we say x has
RootDistance n in σ ). Then RootDistance induces a well-founded strict partial
order that is an extension of ownership: if object x is owned by object y in state
σ , then RootDistance(x , σ) > RootDistance(y, σ). Additionally, RootDistance
orders objects that are not ordered by ownership. For instance, if x and y have
the same direct owner in state σ , and object z is owned by y , then x and z
are not ordered by ownership, but RootDistance(x , σ) < RootDistance(z , σ).

Note that given Definitions 6 and 7, [[#mi(E0,E1) ≺ #mj (E2,E3)]]σ = true
when [[E0]]σ = x , [[E2]]σ = y , and RootDistance(x , σ) > RootDistance(y, σ).

It is not necessary, and usually not possible, to determine an object’s absolute
RootDistance during static program verification. Rather, if mi ’s specification
contains a call #mj (E0,E1), one has to establish that the RootDistance of the
this-object is smaller than (or at least equal to) the RootDistance of the E0 -
object. I.e., one reasons about the relative RootDistance . This involves reasoning



Proving Consistency of Pure Methods and Model Fields 241

class Holding {
rep Node myComps;

rep Personnel myPnel;

} //rest of class omitted

class Company {
peer Personnel thePnel;

pure Node myPersonnel()

ensures ∀ Person p • (

result.has(p) ⇔
this.thePnel.myPers.has(p) ∧
p.worksFor �= null ∧
p.worksFor.has(this) );

} //rest of class omitted

Fig. 8. Administration System. H is a Holding, Pnel a Personnel, N’s are Nodes, C’s
Companies, and P’s Persons. Person P2 works only for C2, and P1 works for both C’s.

about ownership, which is often made explicit by extending types with ownership
modifiers [15] like rep and peer. Consider a state σ in which an object x has
a field f that refers to an object y . If the ownership modifier of f is rep,
then x directly owns y and RootDistance(y, σ) = RootDistance(x , σ)+ 1. If it
is peer, then x and y have the same direct owner and RootDistance(y, σ) =
RootDistance(x , σ). Alternatively, ownership can be encoded into existing proof
system concepts using a specification-only field owner [12]. If x .owner evaluates
to y in σ , then RootDistance(x , σ) = RootDistance(y, σ) + 1.

The use of RootDistance is illustrated by method Node.count in Fig. 4. Its
specification contains one call, to #count(this.next, obj). There are two cases,
each of which satisfies PO2 : if [[this.next = null]]σ = false , modifier rep
on next allows the verifier to deduce that RootDistance( [[this.next]]σ , σ) =
RootDistance( [[this]]σ , σ) + 1; if [[this.next = null]]σ = true , NotRel holds
as [[(this.next = null ? 0 : this.next.count(obj))]]σ = 0, which means that
the value of [[#count(this.next, obj)]]σ is not relevant.

The extension of ownership provided by RootDistance is useful for non-
hierarchical scenarios. For instance, Fig. 8 shows two classes and a possible object
configuration of an administration system. In this system, a Holding consists
of multiple Companies, and a Person that is part of the Holding can work
for multiple of these Companies. A Personnel object manages (access to) these
Persons. Classes Personnel and Person are omitted. Each has only one relevant
field. Personnel has a field rep Node myPers which refers to a linked list of the
Persons. Person has a field rep Node worksFor which refers to a linked list of
the Companies that Person works for. Class Node is found in Fig. 4. Pure method
Company.myPersonnel returns a linked list of all Persons that work for that
Company (e.g., if called on C1, it returns a single node with val P1). Assume that
it can be deduced that Company.thePnel and Personnel.thePers are never
null (for instance because of an invariant or non-null annotation [16]). Then
the this.thePnel.myPers.has(p) call in Company.myPersonnel is allowed as



242 K.R.M. Leino and R. Middelkoop

myPers is a rep field of a peer of this and thus has a higher RootDistance .
More formally, in any state σ ∈ Σ in which this evaluates to a Company object,
RootDistance( [[this.thePnel.myPers]]σ , σ) = RootDistance( [[this]]σ , σ) + 1,
and therefore, [[#has(this.thePnel.myPersons, p) ≺ #myPersonnel(this)]]σ
holds. Likewise, the p.worksFor.has(p) call is allowed if one can deduce that
the Persons in the list maintained by p.thePnel are owned by p.thePnel or by
the Holding that owns p.thePnel. We discuss the result.has(p) call in Sect. 5.

4.2 Recursion Termination Value

For the second ordering, a Recursion Termination Value (RTV) is associated
with each pure method [3]. A RTV is an element of the interval [0,maxRTV ] ,
where maxRTV is a sufficiently large constant, e.g. maxInt . RTVal(#mi) yields
the RTV associated with pure method mi .

Note that given Definitions 6 and 7, [[#mi(E0,E1) ≺ #mj (E2,E3)]]σ = true
when RootDistance( [[E0]]σ , σ) = RootDistance( [[E2]]σ , σ) and RTVal(#mi) <
RTVal(#mj ).

The RTV can be specified explicitly. For instance, in Spec# the RTV is spec-
ified by the RecursionTermination attribute that takes an integer parameter.
The main advantage of the RTV ordering, however, is that it is largely inferred
automatically. This inference is complicated by the desire for modular develop-
ment (see Sect. 1).

Of course, the goal of the inference is to assign a RTV to every #mi such
that for every i , the inferred RTV is high enough to conclude PO2i . When the
the specification of mi is changed, the previously inferred RTV for #mi might
no longer be high enough (for instance, because the specification of mi now
contains a method call). Therefore, the inference is rerun prior to re-verification.
But as a consequence of modular development, it is not possible to re-infer every
RTV. In particular, a RTV in a module that is hidden cannot be re-inferred. As a
consequence, if an inferred RTV were publicly visible, a change to a specification
that is hidden from a module M could indirectly invalidate the verification of M .
That is, suppose that mi and mj are defined in different modules, and that the
proof of PO2i depends on RTVal(#mj ) = n . Suppose a part of the specification
of mj that is hidden from mi is changed in such a way that re-inference of
RTVal(#mj ) changes it to n + 1. Then the proof of PO2i no longer holds.
While this does not go against modular development technically (re-inference
of RTVal(#mj ) constitutes a change of public part of the specification of mi ),
it is not intuitive (as the change is to an implicit part of the specification).
Therefore, an inferred RTV is private, and an explicitly specified RTV is public.
As the specifier has committed to the RTV, it is intuitive that changing it will
require re-verification of modules to which it is visible. We discuss an algorithm
to infer the RTVs for a module M in [8]. The outline is as follows. Construct a
directed graph with a node N for every method visible in M , and with an edge
from N to node N ′ iff N ′ occurs in the specification of N . For every N with
an explicitly specified RTV i , label N with i . For every N with an RTV that
is hidden from M , label N with maxRTV . For every remaining N , label N



Proving Consistency of Pure Methods and Model Fields 243

with the lowest value such that (1) N cannot reach a node with a higher RTV ,
and (2) if possible, such that N cannot reach a node with the same RTV . (1) is
always possible, as maxRTV can be assigned to all nodes. (2) can’t be achieved
for nodes that are part of a cycle, nor for nodes that can reach a maxRTV node.

4.3 The measuredBy Clause

The third ordering allows for directly or mutually recursive method functions.
We associate with pure method mi , a measuredBy clause that specifies a tu-
ple of numerical expressions 〈E1, . . . ,En〉 . MeasuredBy(#mi ,E , σ) is defined
as 〈 [[E1[E/pi ]]]σ , . . . , [[En [E/pi ]]]σ 〉 . For each such expression Ej , there is a
proof obligation that Prei ⇒ 0 ≤ Ej , which ensures that the ordering is well-
founded. We restrict the free variables in these expressions to be the numerical
formal parameters of mi , but one can easily imagine allowing other variables,
too, for example so that one can mention the RootDistance of a non-this object
parameter. By default, the measuredBy clause is tuple 〈0〉 .

The use of the measuredBy clause is illustrated by Fig. 6, where it allows the
mutually recursive methods isEven and isOdd. For the call to this.isOdd(n-1)
in the specification of isEven, the reasoning is as follows. Consider an arbitrary
σ ∈ Σ . Assume r0, r1, r2, t0, t1, t2 ∈ Z such that Order(#isEven, this, n, σ) =
〈r0, r1, r2〉 , and Order(#isOdd , this, n− 1, σ) = 〈t0, t1, t2〉 . Then r0 = t0 , as
both are determined by the RootDistance of the this-object (see Sect. 4.1). Also,
r1 = t1 as the same RTV is assigned to mutually recursive method functions (see
Sect. 4.2). Finally, r2 > t2 as r2 = [[2n]]σ , and t2 = [[(2m + 1)[n − 1/m]]]σ =
[[2n − 1]]σ . Thus, 〈t0, t1, t2〉 is ordered lexicographically below 〈r0, r1, r2〉 . So, if
C is the class that declares isEven and isOdd, then ∀σ ∈ Σ• [[∀ this : C, n : int•
#isOdd(this, n− 1) ≺ #isEven(this, n)]]σ . For the call to isEven(m) in the
specification of isOdd, the reasoning is similar (the essential observation being
that 2m+1 > (2n)[m/n]). Together, these properties establish that PO2 holds.

5 Related Work and Experience

Frame properties for a model field f declared in a class C (see Sect. 1) are
discussed in [7]. Essentially, the idea is to add a specification-only field f to C ,
and to extend the deduction system with a second axiom ∀σ ∈ Σ • [[∀this:C •
P ⇒ this.f = #f (this)]]σ , where P (defined by the methodology) describes
the conditions under which the relation should hold. The methodology ensures
that that #f (this) is assigned to f whenever P becomes true . Breunesse and
Poll suggest desugaring a model field using its satisfies clause [17]. This simplifies
the treatment of model fields considerably, but does not account for recursion
or for visibility constraints on satisfies clauses.

Modeling partial functions by underspecified total functions in the underlying
logic can lead to unintuitive outcomes for the users of the specification language
[18]. Recent work by Rudich et al. [19] discusses how to prevent such outcomes.
The work also discusses how to allow conditional use of the axioms introduced by



244 K.R.M. Leino and R. Middelkoop

pure methods, as well as class invariants, when establishing PO1 (see Sect. 2).
Essentially, the idea is that if Smalleri,j ,k holds, then the axiom introduced by
mj , instantiated for Calli,j ,k , can be assumed when proving PO1i (see Defini-
tions 2 and 4). More formally, let Pi,j ,k ≡ (Smalleri,j ,k ?Specj [Calli,j ,k /result] :
true). Then PO1i can be weakened to ∀σ ∈ Σ • [[∀this:Ci , pi :T ′

i • P ⇒
∃result:Ti•Speci ]]σ , where P consists of a conjunct Pi,j ,k for every i , j ∈ [0,N ] ,
for every k ∈ [0,NrOfCallsi,j − 1].

In Sect. 4.1, we discussed how our approach allows a number of the calls in
the specification of the myPersonnelmethod in Fig. 8. The call to result.has()
in that specification, however, is problematic. The axiom introduced by the pure
method describes a property that holds in every well-formed program state.
Therefore, the resulting list of Nodes has to exist in each such state (and contain
the right Persons). This is reflected in PO1, which cannot be proven to hold
for this example. Possible solutions to this problem are suggested in [4,20,21].

The heuristic guesses of candidate witnesses and the accompanying semantics
checks in this paper have been implemented in the Spec# programming system;
there is a partial implementation of RootDistance and the RTV scheme [3].
Pure methods occur frequently in practice, partly because Spec# by default
treats property getters as pure methods. The Spec#/Boogie test suite alone
requires 148 consistency checks. From more than a year’s use, we find that,
with one exception, the heuristics adequately guess candidate witnesses that
(for consistently specified pure methods) the semantic checks quickly verify to
ensure consistency.

The one exception to this positive experience has been pure methods with a
non-null return type. The only non-null candidate witnesses that our heuristics
guess are fields or parameters of exactly those types—the heuristics cannot use
calls to constructors, as this would require one to first prove the consistency
of the specifications of such constructors. Luckily, this case has occurred only
for property getters whose body returns a newly allocated object (see [22] for a
technique that allows such methods to be considered observationally pure). In
the cases we have found, these property getters were not used as pure methods,
so we could circumvent the problem by explicitly marking them non-pure.

6 Conclusions

Pure methods and model fields are useful and common specification constructs
that can be interpreted by the introduction of axioms in the underlying proof
system. Care has to be taken that these axioms do not introduce an inconsistency
into the proof system. In this paper, we described and proved sound an approach
that ensures no inconsistencies are introduced, and we described heuristics for
the part of the approach that is problematic for trigger-based SMT solvers.

References

1. Cok, D.R.: Reasoning with specifications containing method calls and model fields.
Journal of Object Technology 4(8), 77–103 (2005) (FTfJP 2004 Special Issue)



Proving Consistency of Pure Methods and Model Fields 245

2. Cheon, Y., Leavens, G., Sitaraman, M., Edwards, S.: Model variables: cleanly sup-
porting abstraction in design by contract. Softw. Pract. Exper. 35(6), 583–599
(2005)

3. Darvas, Á., Leino, K.R.M.: Practical reasoning about invocations and implemen-
tations of pure methods. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS,
vol. 4422, pp. 336–351. Springer, Heidelberg (2007)

4. Darvas, Á., Müller, P.: Reasoning About Method Calls in Interface Specifications.
Journal of Object Technology 5(5), 59–85 (2006) (FTfJP 2005 Special Issue)

5. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking.
J. ACM 52(3), 365–473 (2005)

6. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

7. Leino, K.R.M., Müller, P.: A verification methodology for model fields. In: Sestoft,
P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 115–130. Springer, Heidelberg (2006)

8. Leino, K.R.M., Middelkoop, R.: Proving consistency of pure methods and model
fields. Technical report, Microsoft Research (2009)

9. Clarke, D.: Object Ownership and Containment. PhD thesis, University of New
South Wales (2001)

10. Müller, P.: Modular Specification and Verification of Object-Oriented Programs.
LNCS, vol. 2262. Springer, Heidelberg (2002)

11. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification
of object-oriented programs with invariants. Journal of Object Technology 3(6),
27–56 (2004) (FTfJP 2003 Special Issue)

12. Leino, K.R.M., Müller, P.: Object invariants in dynamic contexts. In: Odersky, M.
(ed.) ECOOP 2004. LNCS, vol. 3086, pp. 491–515. Springer, Heidelberg (2004)

13. Middelkoop, R., Huizing, C., Kuiper, R., Luit, E.J.: Specification and Verification
of Invariants by Exploiting Layers in OO Designs. Fundamenta Informaticae 85(1-
4), 377–398 (2008) (CS&P 2007 Special Issue)

14. Müller, P., Poetzsch-Heffter, A., Leavens, G.T.: Modular invariants for layered
object structures. Science of Computer Programming 62(3), 253–286 (2006)

15. Clarke, D.G., Potter, J.M., Noble, J.: Ownership types for flexible alias protection.
In: OOPSLA 1998, pp. 48–64. ACM Press, New York (1998)

16. Fähndrich, M., Leino, K.R.M.: Declaring and checking non-null types in an object-
oriented language. In: OOPSLA, pp. 302–312. ACM, New York (2003)

17. Breunesse, C.B., Poll, E.: Verifying JML specifications with model fields. In: FTfJP
2003, Technical Report 408, ETH Zurich, 51–60 (2003)

18. Chalin, P.: Are the logical foundations of verifying compiler prototypes matching
user expectations? Form. Asp. Comput. 19(2), 139–158 (2007)

19. Rudich, A., Darvas, Á., Müller, P.: Checking well-formedness of pure-method spec-
ifications. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014,
pp. 68–83. Springer, Heidelberg (2008)

20. Naumann, D.A.: Observational purity and encapsulation. Theor. Comput.
Sci. 376(3), 205–224 (2007)

21. Barnett, M., Naumann, D.A., Schulte, W., Sun, Q.: 99.44% pure: Useful abstrac-
tions in specifications. In: FTfJP 2004, Technical Report NIII-R0426, University
of Nijmegen, 11–18 (2004)

22. Leino, K.R.M., Müller, P.: Verification of equivalent-results methods. In:
Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 307–321. Springer, Hei-
delberg (2008)



On the Implementation of @pre

Piotr Kosiuczenko

Institute of Information Systems, WAT, Warsaw

Abstract. The paradigm of design by contract provides a transparent
way of specifying object-oriented systems. There exist a number of lan-
guages for contractual specification including OCL, JML and Spec#.
Nevertheless, there are still a number of research problems concerning
this approach. One of them is the implementation of primitive @pre in
OCL or equivalently old in JML. Those primitives are used in post-
conditions to refer to attribute values in states preceding an operation
execution. There are a number of implementations of this operators, but
all suffer logical and computational problems. In this paper, existing ap-
proaches to the implementation of @pre are discussed and a new solution
is proposed.

1 Introduction

The main goal of software engineering is the construction of correct software.
There exist various methods for ensuring that software meets requirements rang-
ing from testing to automatic theorem proving. They have been developed in the
late 1960s, most prominently by Floyd [6] and Hoare [9]. In the following years
several approaches to system specification have been developed. Contracts are
the prevailing way of specifying object-oriented systems from the user point of
view (see [13]). A contract consists of three basic constraint types: invariants,
pre- and post-conditions. The system consistency is ensured by invariants. A
pre-condition specifies in which states a method can be called. A post-condition
specifies the system state after the method execution.

Eiffel [14] is an object-oriented language including in a pioneering way contrac-
tual specification. It turns contracts into run-time checks of program correctness.
The implementation of post-conditions is not an easy thing since it is necessary to
compare attribute values in method’s pre- and post-state. Of course copying the
whole pre-state before a method is executed is out of question due to time- and
memory-cost. Moreover if a method is called several times in a recursive manner,
then it is necessary to copy the whole state again and again. Eiffel avoids this
problem by saving before a method execution values of those attributes whose
old values are referred to in the post-condition. However as we explain below,
this approach has serious drawbacks in case of high level specification languages
such as Object Constraint Language (OCL, see [15]).

Old attribute’s values are accessed with the help of @pre in case of OCL and
old in case of JML and Spec#. These primitives can be used in post-conditions
and allow one for the comparison of attribute values in states before and after

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 246–261, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



On the Implementation of @pre 247

operation execution; e.g. salary = salary@pre + amount. In case of OCL, one
can use @pre with an attribute, an association-end and a query (OCL names the
first two ‘property’). Although the idea is simple, those primitives are not easy
to implement.

The Eiffel approach requires restrictions of post-conditions’ syntax. It is nec-
essary to restrict post-conditions to formulas of the form: t0[t1@pre/x1,..., t

n@pre/xn] (we use here the OCL notation), where term t0 does not include @pre
and whereti@pre is obtained from ti by replacing everyattribute, association-end
and query a by a@pre, for i = 1,..., n; for example, term (self.a.b)@pre is an
abbreviation for OCL term self.a@pre.b@pre. [t1@pre/x1,..., tn@pre/xn]

denotes simultaneous substitution of terms ti for variables xi, for i = 1,..., n. Val-
ues of terms ti are computed before the underlying method is executed, saved and
then used after the method execution to compute the value of the post-condition. It
should be noted that term self.a@pre.b@pre.c.d->size()=self.a->size()

is of the abovementioned kind, since it canbepresented in the form:(x.c.d->size()
= self.a->size())[(self.a.b)@pre/x]. However, it is not possible to present
terms such as self.a.b@pre in this form. The value of self.a is not known in
the pre-state and consequently cannot be pre-computed. It is possible to formulate
in OCL more natural constraints of the latter kind; e.g. one can specify an oper-
ation which creates a new department of a company and makes sure that for all
employees assigned to this department their salaries are increased.

It is disputable how severe the above mentioned syntax restriction is. It is true
that most post-conditions can be written in that form. However, there are more
serious problems with this approach. For example there are subtle problems
with quantification (cf. [1]). Even more serious is the problem of cloning and
more generally copying of large parts of the state. Cloning disallows dealing
directly with object identity. Deep clones are problematic in the presence of
circular references. There are also problems in case when more then one object
references the same object; in this case one needs to avoid multiple clones of the
referenced object. If objects are cloned then reference identity cannot be used
for comparison.

Computing all potentially needed values in the pre-state could be very time-
and space-consuming. In the case of if ex then ex1 else ex2 endif, we
have to compute value of an expression e in the case when e@pre occurs in ex1

or ex2. For example, let us consider expression if 1 + 1 = 2 then 1 else

q@pre endif where q is a computationally complex, integer-valued query. Ob-
viously, in general there is no need to evaluate q in the pre-state to compute the
value of the whole expression. Nevertheless when the Eiffel approach is used, it
is necessary to evaluate q in the pre-state. This unnecessarily increases the time
and space complexity. Moreover if q does not terminate, then the evaluation of
the whole expression does not terminate. Thus evaluation of constraints may not
only slow down program execution, but also prohibit termination.

Theproblemswith theEiffelapproach to@pre-values canbe classifiedas follows:

– the support only for the restricted form of constraints
– the need of extensive cloning



248 P. Kosiuczenko

– the lack of transparency in respect to object identity
– a potential increase of computational complexity

In this paper we present an algorithm addressing those problems. This algo-
rithm is implemented in AspectJ. AspectJ is the most popular aspect-oriented
language. (We refer the interested reader to [11] for a good introduction to
aspect-oriented programming). The algorithm can be implemented in other
aspect-oriented languages and also using reflective features present in languages
such as Java and C#.

This paper is organized as follows. In section 2, we comment on the related
work. In section 3, we present an example and use it to describe problems with
existing approaches and to explain our algorithm. In section 4, we present the al-
gorithm for computing @pre-values; we show how to deal with collection types and
inheritance; we argue that this algorithm does not increase the time-complexity of
constrained methods and that checking old values has constant time-complexity.
Section 5 concludes this paper.

2 Related Work

There exist various languages for contractual system specification. In the realm
of Java, there exist Java Modeling Language (JML, see [3,12]). It allows one
for a modular system specification based on a type system grouping objects in
master-slave hierarchies, the master being fully in control of its slaves. There is
the concept of visible states being the moments when a public or a non-helper
method is called or terminates. In the realm of .Net, and in particular C#, there
is Spec# [1]. This language is closely related to JML, the main dissimilarity be-
ing a different approach to modularity and the relativization of visibility notion
to objects’ states. An efficient implementation was the primary goal of those
specification languages instead of expressivity. Moreover, both specification lan-
guages are intimately related to the corresponding programming languages and
therefore they are rather low level.

There exist high level, programming independent languages for contractual
system specification, the most prominent being OCL [15]. It focuses on expres-
sivity rather than an efficient implementation. There exist numerous tools for
monitoring the satisfaction of OCL constraints. We mention here only Dres-
den OCL Toolkit (DOT) [4], jContractor [10] and OCL2J [5,2] (see [17] for an
overview of other tools). Those tools implement OCL partially due to the com-
plexity of the language. Due to high abstraction level of this language, contract
monitoring often causes a significant slowdown in program execution.

All above mentioned languages follow the Eiffel approach. Interestingly also the
current research focuses on the implementation problems concerned with this ap-
proach (cf. e.g. [5,2]). Archiving attributes before method execution is simple in
the case of basic OCL types and classes. In the first case a single value is stored
in a variable before method execution. In the case of terms of a class type, only
an object reference is stored; the object itself is not cloned. If a term ti (see sec-
tion 1) is of a collection type, then the situation is more complicated. A collection



On the Implementation of @pre 249

is determined by elements it contains. Thus a clone of a collection has to contain
every element of the original collection. As pointed out in [5], using @pre on a
collection requires in most cases a duplication of the collection. In some cases,
if operations like size()are used on the collection, then only the corresponding
value has to be stored. If a post-condition relates attribute’s values before and
after operation execution and those values are of a collection type, then the col-
lection before the operation execution has to be cloned. As pointed out in [5,2],
cloning of collections is the major slow down factor in the automatic constraint
evaluation and the authors classify this problem as a research challenge.

Another sort of problems emerges when objects are cloned in the pre-state, as
it is done in OCL2J. As pointed out in [2], in this approach objects are cloned
before being returned by a method, as required by the so called ‘strong encapsu-
lation principle’. In this case, one has to deal with user defined objects equality
instead of identity (being identity of references or addresses). Some program-
ming styles encourage exclusive use of user defined equality instead of identity;
however a specification language should be implementation style independent.
There are a number of logical problems when in programs identity comparison,
denoted in Java by ==, have to be replaced by user defined equality relation
based on values of object attributes. Redirecting of links is needed when one
wants to deal with true object identity and not a kind of equality based on
attributes identification (cf. [2]).

As in the case of OCL2J, jContractor [10] allows post-conditions to refer to
the state of an object at method entry, however the method is a bit different. A
class includes an instance variable named OLD of the same type as the class. Post-
conditions access old values of properties by referencing OLD. During compilation,
resulting byte-code is instrumented in such a way that the reference to OLD is
routed to a clone of the object created at method entry using Java method
clone(). When a method is executed and its post-condition includes @pre, a
clone of the object is created and stored in OLD [10]. As pointed out by the
authors, there is a problem with object cloning if the method calls are nested,
since in such a case the older clone is overwritten by a newer one. Therefore
jContractor adopts a stack based approach: when execution enters a method
that needs to save OLD, an object clone is created and pushed onto a stack; when
the method terminates, the object is removed from the stack and used to check
the post-condition. Pushing an object onto and removing it from the stack when
the method is called or terminates does not differ from defining local variables
which are then pushed onto and removed from the program stack. In fact, it
is equivalent to wrapping a constrained method in another one which checks
its pre-condition, saves old values, executes the original method and checks its
post-condition. However in the case of post-conditions requiring navigation via
several objects, as for example the OCL constraint presented in the introduction,
deep cloning is needed. It should be noted that there is also the so called Memo
pattern aimed at storing and handling past object states [8]. It should also be
noted that there exist various methods for implementing OCL constraints in
aspect-oriented languages, in particular AspectJ (cf. e.g. [18,16]).



250 P. Kosiuczenko

Fig. 1. List

3 Example

In this section we present an example in order to describe the problems and
explain the proposed solution. The class diagram in Fig. 1 models a list composed
of an anchor object of class Anchor and a number of elements instantiating class
Element. Anchor objects have attribute first storing the first element of the
list. There is also method insertEl(Element el) for inserting elements into
the list. Element objects have attribute val storing integers and attribute next
pointing to the next element. Insertion of an element into a list may be specified
by a formula saying that the set of list elements is enlarged by the new element.

context Anchor::insertEl(el : Element) post insertPC :
self.elements = self.elements@pre->union(Set{el})

where

context Anchor def :
elements : Set(Element) = if self.first = null then Set{}
else self.first.successorsOf(Set{self.first}) endif
context Element def :
successorsOf(Acc : Set(Element)) : Set(Element) =
if self.next = null or Acc->includes(self.next) then Acc
else self.next.successorsOf(Acc->union(Set{self.next}) endif

One can use in this post-condition including, but this would not help us
to avoid cloning. Eiffel approach requires copying of the list before operation
execution and then comparison of the new form of the list with the copied one.
Using datatypes such as lists would require deep cloning causing problems listed
in the introduction.

We implement insertEl in a very inefficient way. An element el is inserted
into the list if the list is empty or el.val is smaller than the value of the first
element. If not, then the list elements are removed as long as the first element
does not exist or its value is larger than the value of the inserted element, then
el is inserted and afterwards all removed elements are inserted too. Execution
of this method causes a cascade of recursive calls. If we insert into an empty list
n+1 elements with increasing values, then we need to make n copies of the list;
i.e. 1+2+...+n = n(n+1)/2 copies of object references.

We present implementation of classes Anchor and Element. It should be noted
that during execution of insertEl several other calls to this method can be
made if the inserted element is not smaller than the first element saved in the
list. In particular the call stack can contain several calls to this method. On the



On the Implementation of @pre 251

other hand, during execution of this method some calls may be terminated. This
shows that a proper stamping policy is needed to guarantee that the method
calls are numbered uniquely and that one needs a proper logic to figure out
which snapshots are valid.

public class Anchor {
public Element first;
public void insertEl(Element el) {
if(first == null) {

first = el; el.next = null;
}
else if(el.val <= first.val)

el.next = first; first = el;
else {

Element oldFirst = first;
first = first.next; oldFirst.next = null;
insertEl(el); insertEl(oldFirst);

}
}

}

public class Element {
public Integer val = 0; public Element next = null;
public Element(Element n, Integer v) {
next = n; val = v;

}
}

4 Implementation of @pre

In this section we present an implementation of the primitive @pre in AspectJ. We
explain how to deal with collection types other than lists (i.e. vectors and arrays),
queries and inheritance. We present a complexity estimation of the proposed al-
gorithm. This algorithm has the advantage that we neither need to restrict syntax
of post-conditions nor redirect references. In our approach we avoid the problems
of deep cloning. However we need to reassemble the states of objects. Therefore
we have to treat cloned object parts carefully and we need a logic for reassembling
objects and for navigating via archived and not archived properties.

4.1 Implementation in AspectJ

Our algorithm is implemented in AspectJ. This language allows us to instru-
ment classes with additional attributes and methods, to add so called pointcuts,
for registering relevant events, and advices, for handling those events. As it is
common in distributed systems, we use a kind of time-stamp to be able to re-
assemble objects states which existed at different times, but in our case those
stamps refer to method calls.



252 P. Kosiuczenko

Instrumenting classes looks as follows. If a property (i.e. attribute or
association-end) a of type T occurs in a post-condition in the form a@pre, then
we instrument the class corresponding to a by superimposing a history attribute
aHIST of type Stack<SnapshotVal<T>> to store the history of a, a pointcut
which listens to changes of a and an advice which is responsible for storing val-
ues of this attribute. For every class possessing such attributes we add a new
aspect. The value of a@pre is returned by a superimposed method aATpre().
It should be noted that attributes which do not occur in post-conditions in the
above mentioned form do not need to be archived. Objects of parametric class
Stack<SnapshotVal<T>> store histories of attributes in the form of a stack.
Class SnapshotVal<T> defines attribute snapshots, i.e. a temporary value of an
attribute plus the corresponding time-stamp, or as we call it later meter-reading.
Class Meter stores information about the number of relevant method calls on
the program stack and the lists of objects modified during execution of those
methods; a method is relevant if it has a post-condition with attributes which re-
quire archiving. MeterAspect handles calls to relevant methods. Class Archive
includes the core logic for value archiving and implements method aATpre().

We describe our algorithm more precisely using the list example. In this ex-
ample there are two attributes which must be archived: first and next. They
do not occur in the post-condition directly but are used to define set elements
storing list elements. It should be noted that values of attribute val are not
archived, since val@pre does not occur in the post-condition.

Class Meter handles time-stamps. They correspond to the number of calls of
insertElwhich are still on the program stack. This number is stored in attribute
meterValue. Meter handles also lists of objects modified during those method
calls. Those lists are stored as attributes of objects of class SnapshotModified.
Those objects are stored in stack meter. The goal is to minimize the memory
use. After a method termination the corresponding list of modified objects is
scanned and outdated snapshots are removed.

public abstract class Meter {
static int meterValue = 0;
static final Stack<SnapshotModified> meter =

new Stack<SnapshotModified>();
public static int getReading() {
if(meter.size() == 0) return 0;
return meter.top().meterReading;

}
public static void increaseMeter() {
++meterValue;
SnapshotModified n = new SnapshotModified(meterValue);
meter.push(n);

}
public static void decreaseMeter() {
meter.pop();

}
}



On the Implementation of @pre 253

Note that part of Meter functionality can also be implemented by an aspect
with aspect-object creation per control-flow; in that case meter attribute of class
Stack<SnapshotModified> could be replaced by an attribute of snapshot class.

MeterAspectis an aspect implementing the logic concerning calls of methods
with a post-condition, in this case insertEl.When the method is called, the me-
ter is increased, a new object of class SnapshotModifiedstoring lists of modified
objects is created, stamped with the current meter-reading and pushed onto the
meter-stack by executing increaseMeter().After insertElterminates, if the
stack is not empty, then the top-most object storing lists of modified object is
removed from the stack and objects stored in the lists are checked for inclu-
sion of outdated snapshots. If the stack is empty, then all history attributes are
emptied and meterValueis set to 0, since there is no active call of a relevant
method on the program stack. Then the lists of modified objects are emptied.
Note that pointcut ins1catches only calls to method insertEl;consequently all
other method calls do not have influence on the meterValueand are in a sense
irrelevant. It should also be noted that aspect MeterAspecthas the highest prior-
ity. This is necessary since during a relevant method call advices for archiving and
retrieving attribute values must be executed after increasing meterValueand
adding the new modified snapshot, and before meterValueis decreased and the
modified stack is popped.

public aspect MeterAspect {
declare precedence: MeterAspect, *;
public pointcut ins1() : call(void insertEl(Element));
before() : ins1() {
Meter.increaseMeter();

}
after() : ins1() {
SnapshotModified sm = Meter.meter.top();
Meter.decreaseMeter();
if(Meter.meter.size() > 0) {

for(Anchor o : sm.modifiedFirst) o.firstHIST.clean();
for(Element o : sm.modifiedNext) o.nextHIST.clean();

}
else /* Meter.meter.size() == 0 */ {

for(Anchor an : sm.modifiedFirst) an.firstHIST.empty();
for(Element e : sm.modifiedNext) e.nextHIST.empty();
sm.modifiedFirst.removeAllElements();
sm.modifiedNext.removeAllElements();
Meter.meterValue = 0;

}
}

}

Class Archive stores the logic for handling old attribute values. This class
contains generic methods for the storing and the retrieval of attribute values.
getValueATpre returns the old value of an attribute. It contains two parame-
ters: val corresponding to the current value of an underlying attribute and st



254 P. Kosiuczenko

corresponding to the attribute’s history-stack. If st is empty, then the attribute
was not modified and val is returned. If not, then outdated snapshots are re-
moved from the attribute’s history-stack. If the topmost element in the stack has
stamp smaller than the current meter-reading, then it means that during the re-
cent method call the value was not modified and val is returned. If not, then the
attribute was modified during this or a later, but already terminated, method
call and the stored topmost value is returned. Method getLastUpdateTime re-
turns last update time of an attribute. This value is taken from the topmost
snapshot in the attribute’s history-stack, if it is not empty; in the other case 0 is
returned. doArchiving is meant for storing attribute’s snapshots on an under-
lying attribute’s history stack. This method has four parameters: st corresponds
to the history stack of the underlying attribute, modTop corresponds to the top-
most list of objects for which the underlying attribute was modified, modBottom
corresponds to the bottommost list, target corresponds to the object for which
the relevant attribute is above being modified, cur corresponds the current at-
tribute’s value. If stack st is empty, then a new attribute snapshot is created
with the current meter-reading and put onto the stack. At the same time the
target object is saved in modBottom. The object is saved at the bottom, since
it is its first modification and therefore the saved value is the @pre-value for all
previous method calls. If st is not empty, then it is checked if the attribute’s
value was already saved. If it was not saved, then a new attribute snapshot with
the current meter-reading is created and pushed on stack st; at the same time
the target object is saved in modTop which is the top list of objects for which the
underlying attribute was modified. If it was saved, then only the meter-reading
in the corresponding snapshot is updated.

public class Archive {
static <T> T getValueATpre(Stack<SnapshotVal<T>> st, T val) {
if(st.size() == 0) return val;
st.clean();
if(st.topReading() < Meter.getReading()) return val;
else return st.top().value;

}
static <T> Integer getLastUpdateTime(Stack<SnapshotVal<T>> st) {
if(st.size() == 0) return 0;
st.clean();
return st.top().meterReading;

}
static <T, S> void doArchiving(Stack<SnapshotVal<S>> st,

Vector<T> modTop, Vector<T> modBottom, T target, S cur) {
if(st.size() == 0) {

st.push(new SnapshotVal<S>(cur, Meter.getReading()));
modBottom.add(target);

}
else if(Meter.getReading() > st.top().meterReading) {

if(st.top().value != cur) {
st.push(new SnapshotVal<S>(cur, Meter.getReading()));
modTop.add(target);

}
else st.top().meterReading = Meter.getReading();



On the Implementation of @pre 255

}
}

}

It should be noted that in the case when the archived value coincides with
the attribute value before it is set for the first time during a method execution
we need to update the meter-reading of the actual snapshot. This is because
the attribute can be changed several times during the method execution. If the
meter-reading was not updated before the first modification, then during the
next modification the stored value would be treated as out of date and a value
different from the stored, and in fact correct one, would be saved as the value in
the pre-state.

Abstract class Snapshot has attribute meterReading for saving the current
meter-reading of a snapshot, i.e. the number of relevant method calls on the
program stack.

public abstract class Snapshot {
int meterReading;

}

SnapshotModified extends Snapshot and is meant for storing the lists of objects
for which attributes requiring archiving were modified during a method execution. In
our case, these are attributes first and next. Inherited attribute meterReading
stores the current meter-reading.

public class SnapshotModified extends Snapshot {
public Vector<Anchor> modifiedFirst = new Vector<Anchor>();
public Vector<Element> modifiedNext = new Vector<Element>();
public SnapshotModified(Integer i) {
meterReading = i;

}
}

SnapshotVal is a parametric class extending Snapshot; its objects are used
to store attributes’ snapshots. Attribute value stores the attribute’s value.

public class SnapshotVal<T> extends Snapshot {
T value;
public SnapshotVal(T el, Integer t){
value = el;
meterReading = t;

}
//... other SnapshotVal constructors

}

Parametric class Stack implements a stack with methods for popping and
pushing snapshots. We implement this class using Vector but it can be imple-
mented using class Stack from the Java API standard library. Apart of above
mentioned methods, it contains method subTop for returning the element below



256 P. Kosiuczenko

the topmost position. Method clean() is used for removing outdated snapshots;
i.e. snapshots located at the top of the stack whose meter-reading is larger then
the current meter reading and who have a direct follower, returned by subTop(),
with meter-reading larger than or equal to the current meter reading. It should
be noted that the cleaning must be done in a while loop, since in general it is not
enough to remove only the topmost outdated snapshot. smallbottom() returns
the bottommost element and empty() removes all elements from the stack.

public class Stack<S extends Snapshot> {
Vector<S> stack = new Vector<S>();
public void push(S el) {
stack.add(el);

}
public S top() {
return stack.lastElement();

}
public int topReading() {
if(stack.isEmpty()) return 0;
return top().meterReading;

}
public S pop() {
S s = top();
stack.remove(stack.size()-1);
return s;

}
public S subTop() {
return stack.get(stack.size()-2);

}
public int size() {
return stack.size();

}
public void clean() {
while(size() >= 2 &&

subTop().meterReading >= Meter.getReading())
stack.remove(stack.size()-1);

}
public S bottom() {
return stack.firstElement();

}
public void empty() {
stack.removeAllElements();

}
}

For every class C with attributes requiring archiving we introduce aspect
ArchiveC which superimposes corresponding history attributes and methods re-
turning old values of attributes. This aspect also manages setting of attributes. In
our example, for classesAnchorandElementwe introduceaspectsArchiveAnchor
and ArchiveElement. first is the only attribute of class Anchorwhich has to be



On the Implementation of @pre 257

archived.For this attributemethodgetFirstATpre() is superimposedonAnchor.
This method is implemented with the help of getValueATpre and
getLastUpdateTime. Every manipulation of first is detected by pointcut
modFirst. If the current meter-reading is larger than 0, meaning that there is a
relevant method on the stack, then the archiving is performed by doArchiving.
It should be pointed out, that the archiving is performed only if there is a relevant
method on the programm stack, or equivalently the meterValue is larger than 0.
This is due to the fact that if no method with a post-condition is executed, then
there is no need for archiving the pre-state. The archiving is needed first when a
relevant method, in this case insertEl, starts to execute.
public aspect ArchiveAnchor {

public Stack<SnapshotVal<Element>> Anchor.firstHIST =
new Stack<SnapshotVal<Element>>();

Element Anchor.getFirstATpre() {
return Archive.getValueATpre(firstHIST, first);

}
Integer Anchor.getFirstLastUpdateTime() {
return Archive.getLastUpdateTime(firstHIST);

}
pointcut modFirst(Anchor target) :
target(target) && set(Element Anchor.first);

before(Anchor target) : modFirst(target) {
if(Meter.getReading() > 0) {

Archive.doArchiving(target.firstHIST,
Meter.meter.top().modifiedFirst,

Meter.meter.bottom().modifiedFirst,
target, target.first);

}
}

}

ArchiveElement is an aspect analogous to ArchiveAnchor. It instruments
class Element by superimposing history attribute nextHIST and method
getNextATpre() on class Element. It defines also pointcut modNextwhich detects
changes of attribute next and the corresponding advice which does the archiving
of old next-values.

public aspect ArchiveElement{
public Stack<SnapshotVal<Element>> Element.nextHIST =

new Stack<SnapshotVal<Element>>();
Element Element.getNextATpre() {
return Archive.getValueATpre(nextHIST, next);

}
Integer Element.getNextLastUpdateTime() {
return Archive.getLastUpdateTime(nextHIST);

}
pointcut modNext(Element target) :
target(target) && set(Element Element.next);

before(Element target) : modNext(target) {
if(Meter.getReading() > 0) {

Archive.doArchiving(target.nextHIST,



258 P. Kosiuczenko

Meter.meter.top().modified Next,
Meter.meter.bottom().modifiedNext,

target, target.next);
}

}
}

Post condition insertPC (see section 3) can be checked with an aspect of the
following form. It should be noted that in contrast to aspect-oriented implemen-
tations of the Eiffel approach we do not need an around-advice for passing saved
values; in such an advice first the values are saved then the underlying method
is executed with proceed command and then the post-condition is checked (cf.
e.g. [18,16]). We do not store any values before method execution. Therefore it
suffices to use an after-advice. This makes the constraint implementation more el-
egant and efficient, since the around-advice causes a significant method slowdown.

public aspect ConstraintsAspect {
public pointcut ins1(Anchor a, Element el) :

target(a) && args(el) && call(void insertEl(Element));
after(Anchor a, Element el) : ins1(a, el) {

//... check the post-condition
}

}

4.2 Collections, Queries and Inheritance

As mentioned in subsection 2 (see also [5]), in the case of collections, the Eiffel
approach requires deep cloning. In subsection 4.1, we have shown how to deal
with lists. We can deal in a similar way with arrays and vectors. The problem
with those collections is that they cannot be directly instrumented by AspectJ,
since it is not possible to superimpose attributes and methods on classes from
the standard Java API library and other predefined types.

In case of arrays, there is no array class as such. In this case we need to
replace arrays with classes in order to instrument them. An array of the form
C[] can be replaced by class ArrayC with an attribute array of type C[] and
history attribute arrayHist of type Stack<SnapshotVal<C>>[]. The old values
of the array can be dealt with as in the case of object valued attributes; the difference
is that we have to access certain positions in the array; i.e. we have to define method
getElementATpre(int i), which returns the correct value. The method can be
defined as aATpre() the only difference is that it accesses values at position i in
array and history stacks occurring at position i in arrayHist.

In case of vectors, we need to extend class Vector to be able to instrument it
with AspectJ. Thuswe candefine classVectorI<C>which extends Vector<C>and
has two additional attributes: vHist of type Vector<Stack<SnapshotVal<C>>>
for storing elements’ snapshots and sizeHist for storing old vector sizes, or more



On the Implementation of @pre 259

precisely the history of size(). We need also to define new query methods
for accessing values corresponding to the pre-state. We have implemented in a nat-
ural way methods sizeATpre(),getATpre(int i), lastElementATpre() corre-
sponding to methods size(), get(int i), lastElement(), respectively, of
class Vector. The implementation has been based on method
Archive.getValueATpre, but takes into consideration the change of length. We
skip it here due to the lack of space.

Dealing with queries is very simple in our approach. Every occurrence of
q@pre can be replaced by query qATpre, where the body of qATpre is obtained
from the body of query q by replacing every attribute b by getBATpre() and
every invocation of a query r by the corresponding query rATpre.

The design by contract approach assumes that constraints are inherited by
subclasses and that subclasses may be additionally constrained. If class Anchor
was extended by class AnchorB and the method insertEl possessed in AnchorB

an additional post-condition, then we would have to make sure that also the
additional post-condition is checked. This can be achieved by defining another
aspect for monitoring constraints which differs from ConstraintsAspect in
that parameter a in pointcut ins1(Anchor a, Element el) is restricted to
objects of class AnchorB, i.e. by defining an additional pointcut with signature
ins2(AnchorB a, Element el). In this case only methods executed on objects
of class AnchorB, and of its subclasses, will be constrained by the additional
post-condition corresponding to ins2.

Overloading attribute names differs from method inheritance. Attributes are
bound at compilation time. Whereas methods are bound at execution time de-
pending on the class of the actual implicit parameter. In our approach we intro-
duce method aATpre for every attribute a which requires archiving; thus we have
to make sure that different attributes correspond to different methods. This can
be achieved either by renaming attributes or by defining different methods for
defacto different attributes. In the second case, it is necessary to replace every
occurrence of a@pre by the corresponding method. We can distinguish between
defacto different attributes by checking the type of every attribute occurrence
in a post-condition.

For example let us assume that class AnchorB extends class Anchor and that
both classes define attribute first. We can either rename the attribute in class
AnchorB to avoid name clash or define two different methods for accessing old
values of those two different attributes. In the second case we can superim-
pose methods getAnchorFirstATpre and getAnchorBFirstATpre returning
the old attributes’ values as well as the corresponding history attributes
Anchor.firstHIST and AnchorB.firstHIST. Observe that in the case of his-
tory attributes we do not need to use different names since they are superimposed
on different classes. Finally for every subterm of the form t.first occurring
in the post-condition we have to replace first by getAnchorBFirstATpre if
t defines objects of class AnchorB, or by getAnchorFirstATpre in the other
case.



260 P. Kosiuczenko

4.3 Complexity

In this section we informally show that the algorithm presented in subsection 4.1
does not increase the time-complexity class of the constraint validation nor the
time complexity class of constrained methods.

More precisely, let m be a method with post-condition postCond including the
primitive @pre. The execution of book-keeping activities performed by the algo-
rithm to archive old values of attributes does not increase the time-complexity
class of m. Let post-condition postCond’ be obtained form postCond by replac-
ing every occurrence of an attribute a@pre by query aATpree. The evaluation
of postCond’ has the same time complexity as it would have when evaluation
of a@pre required one time unit. This is due to the fact that the execution of
aATpree apart of cleaning requires a constantly bound number of steps. Since
the @pre-values are computed when needed, there is no problem with unneces-
sary pre-computation of term values, in particular with unnecessary execution
of nonterminating queries (see the introduction).

Our method does not increase time complexity class of constrained methods
since setting an attribute is accompaniedby atmost one snapshot archiving and re-
moval and there is only a bound number of steps needed for those two operations. A
call of a constrained method results in increasing of meterValue, creation of a new
ModifiedSnapshotobject and pushing it onto the stack. When the method termi-
nates, the corresponding lists of modified objects are scanned, irrelevant snapshots
are removed from the history stacks and the ModifiedSnapshot object is removed
from the stack. The creation and removal of a ModifiedSnapshot object requires
bound time; scanning of modified object lists and removal of outdated snapshots
from an attribute’s history can be accounted for when counting the steps associ-
ated with the corresponding attribute modification.

The space complexity may be increased and in the worst case equal to the
time complexity of m. If in constraint t0[t1@pre/x1,..., tn@pre/xn](see the
introduction) term t0does not contain if then else endif-statements and if
terms tiare of basic OCL type or return single objects as values, then it is not
necessary to archive attributes’ values. It is enough to save values of ti. In this
and other cases it may be advantageous to use the Eiffel approach.

In some cases a combination of the Eiffel approach and the algorithm described
in subsection 4.1 may be the optimal solution. Of course pre-computing values of
some terms and then archiving all values of attributes occurring in those terms
is not reasonable. However it makes sense in the case when the set of attributes
which require archiving is disjoint from the set of attributes occurring in terms ti.

5 Conclusion and Future Work

In this paper we discussed currently existing approaches to the implementation of
the primitive @preand pointed out that they are all based on the Eiffel approach
to old-implementation. We listed the corresponding problems and proposed a
new algorithm which avoids those problems. This algorithm does not require
restriction of the post-condition syntax; no collection cloning is needed and the
identity of objects is preserved. Moreover, a post-condition can be implemented



On the Implementation of @pre 261

with an after-advice, instead of an around-advice, what makes the constraint
implementation more elegant and efficient. We investigated also the complexity
of this algorithm and showed that it does not increase time-complexity of method
execution and constraint evaluation.

In the future we are going to implement this algorithm using Java reflectivity
features. We are going to investigate its defacto time and space overhead, and
to figure out when the Eiffel approach and our algorithm can be most efficiently
combined. We are also going to provide a formal proof of algorithm’s correctness.

References

1. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An
Overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

2. Briand, L., Dzidek, W., Labiche, Y.: Using Aspect-Oriented Programming to In-
strument OCL Contracts in Java, Tech. Rep. SCE-04-03, Carleton Univ. (2004)

3. Darvas, A., Müller, P.: Reasoning About Method Calls in JML Specifications. In:
Proceedings of the 7th Workshop on Formal Techniques for Java-like Programs
(FTfJP 2005), Glasgow, Scotland (July 2005)

4. DOT, Dresdener OCL Toolkit, http://dresden-ocl.sourceforge.net/
5. Dzidek, W., Briand, L., Labiche, Y.: Lessons Learned from Developing a Dynamic

OCL Constraint Enforcement Tool for Java. In: Bruel, J.-M. (ed.) MoDELS 2005.
LNCS, vol. 3844, pp. 10–19. Springer, Heidelberg (2006)

6. Floyd, R.W.: Assigning meanings to programs, in Mathematical Aspects of Com-
puter Science. In: Proceedings of Symposium in Applied Mathematics, vol. 19, pp.
19–32. American Mathematical Society (1967)

7. Hussmann, H., Finger, F., Wiebicke, R.: Using Previous Property Values in OCL
Postconditions: An Implementation Perspective. In: Int. Workshop UML 2.0 - The
Future of the UML Constraint Language OCL, York, UK, October (2000)

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison- Wesley,
Reading (1995)

9. Hoare, T.: An Axiomatic Basis for Computer Programming. CACM 12(10) (1969)
10. Karaorman, M., Abercrombie, P.: jContractor: Introducing Design-by-Contract to

Java Using Reflective Bytecode Instrumentation. Formal Methods in System De-
sign 27(3), 275–312 (2005)

11. Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Programming, Manning
(2003)

12. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,
Kiniry, J.: JML Reference Manual, Tech. Rep. 2007/02/07, Iowa State Univ. (2007)

13. Meyer, B.: Applying design by contract. Computer 25(10), 40–51 (1992)
14. Meyer, B.: Eiffel: The Language. Object- Oriented Series. Prentice Hall, New York

(1992)
15. OMG, OCL 2.0 Specification, Version 2005-06-06 (June 2005)
16. Richters, M., Gogolla, M.: Aspect-Oriented Monitoring of UML and OCL Con-

straints. In: Proc. UML 2003 Workshop on Aspect-Oriented Software Development
with UML. Illinois Institute of Technology, Department of Computer Science (2003)

17. Toval, A., Requena, V., Fernandez, J.: Emerging OCL Tools. Journal of Software
and System Modelling 2(4), 248–261 (2003)

18. Van Der Straeten, R., Casanova, R.: Stirred but not Shaken: Applying Constraints
in Object-Oriented Systems. In: Proc. of NetObjectDays, pp. 138–150 (2001)

http://dresden-ocl.sourceforge.net/


Formal Specification and Analysis of Timing
Properties in Software Systems

Musab AlTurki1, Dinakar Dhurjati2, Dachuan Yu2, Ajay Chander2,
and Hiroshi Inamura2

1 University of Illinois at Urbana-Champaign, Urbana IL 61801, USA
alturki@illinois.edu

2 DOCOMO USA Labs, Palo Alto CA 94304, USA
{Dhurjati,Yu,Chander,Inamura}@docomolabs-usa.com

Abstract. Specifying and analyzing timing properties is a critical but
error-prone aspect of developing many modern software systems. In this
paper, we propose a new specification language and analysis framework
for expressing and analyzing timing behaviors of complex software sys-
tems. Our framework has the following significant benefits: a) it is ex-
pressive, b) it supports trace analysis and simulation of timing behaviors,
c) allows for verification of properties of specification, and d) checks for
common usage errors of timing constructs. The language constructs for
timing were chosen to be very flexible, suitable for expressing different
kinds of timing behaviors, and are inspired from timing constructs used
in previous languages like SDL. We define the formal semantics of our
language using a real-time rewrite theory. Since real-time rewrite theories
are executable in Real-Time Maude, our framework supports trace anal-
ysis and simulation of timing behavior for specifications. Furthermore,
the timed model checker for Real-Time Maude can be readily used for
analyzing and verifying various real-time properties of the specifications.
Finally, to prevent misuses of timing constructs that can be made possi-
ble due to their flexibility, we develop abstract interpretation based static
analysis tools that check for common usage errors. We believe that our
framework, with the above benefits, provides a significant step forward
in facilitating the use of formal tools for specification and analysis of
timing behaviors in software development.

1 Introduction

Due to increasing complexity of modern software systems, the likelihood of mak-
ing errors during the software design phase has increased exponentially. While
some of these errors might be detected during the testing phase, it is much more
cost effective to detect and correct these errors early during the design phase.
For this reason, formal specification and analysis tools are increasingly being
deployed to improve the quality of software design.

Many real-world software systems rely on components that have timing re-
quirements to be met. These may represent maximal timing constraints, such as
timeouts, minimal timing constraints, such as delays, or durational constraints,

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 262–277, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Formal Specification and Analysis of Timing Properties in Software Systems 263

which combine both maximal and minimal constraints. Consequently, correct-
ness of such software systems depends not only on their functional requirements
but also on the non-functional timing requirements. Therefore, to be able to for-
mally reason about such requirements, methods and tools for the specification
and analysis of real-time requirements need to be developed.

There have been several attempts at developing formal analysis and veri-
fication tools for timing properties in software specifications (see [1] and the
references there) but there is a gap between the languages used by these tools
and what the current specification languages provide, making it hard to inte-
grate them into current design activities in the software development industry.
Most of these tools are based on timed formalisms, such as timed automata [2]
and timed Petri Nets [3], that typically sacrifice expressiveness for decidability.
While they provide efficient formal analysis and verification tools, such timed
formalisms are typically difficult to understand and use by the software specifi-
cation writer, which further limits their applicability in industry. Furthermore,
timing constructs in existing high-level specification languages are either restric-
tive (e.g. Erlang [4]) or flexible but at the cost of allowing many misuses while
not providing effective mechanisms to detect them (e.g. SDL [5]).

In this paper, we propose a simple but powerful specification language for ex-
pressing timing properties together with an integrated analysis framework that
makes available a suite of formal analysis tools for software designers. The lan-
guage constructs for timing were chosen to be very flexible, suitable for express-
ing different kinds of timing behaviors, and are inspired from timing constructs
used in previous languages like SDL. Due to this expressiveness, timing con-
structs used in other high level specification languages like SDL and UML can
be easily translated into constructs of our specification language. We define the
formal semantics of our language with rewrite rules in a real-time rewrite the-
ory [6]. Since real-time rewrite theories are executable in Real-Time Maude [7]
under few reasonable assumptions, our framework automatically supports trace
analysis and simulation of timing behavior for specifications. Furthermore, the
timed model checker for Real-Time Maude can be readily used for analyzing and
verifying various real-time properties of the specifications. Thus the integrated
analysis framework facilitates the use of formal specification tools by reducing
the gap between the specification language and the language used by the verifi-
cation tools. Finally, since the timing constructs are intended to be very flexible,
there is a possibility of misusing the constructs. To prevent such misuse, we de-
velop abstract interpretation based static analysis tools that check for common
usage errors.

The main benefits of our framework can be summarized as follows: (1) It is
an expressive framework that is capable of formally capturing software speci-
fications given in various specification languages; (2) it supports trace analysis
and simulation of timing behaviors; (3) it allows for verification of complex
properties of specifications; and (4) it can automatically check for common us-
age errors of timing constructs. We believe that our framework, with the above



264 M. AlTurki et al.

benefits, provides a significant step forward in facilitating the use of formal tools
for specification and analysis of timing behaviors in software development.

The rest of the paper is organized as follows. In Section 2 we present our
specification language, L and its semantics. This is followed in Section 3 with
a description of a prototype implementation of the language using Real-Time
Maude. In Section 4 we describe how the timing abstractions can be misused,
and then in Section 5 we describe our abstract interpretation based solution
to detect and prevent such misuses. In Section 6 we compare our approach to
related work in the area. Finally, we conclude in Section 7 with a summary of
our approach.

2 The Specification Language L
In this section, we introduce a high-level specification language L that is well-
suited for describing a spectrum of behaviors of various software systems, includ-
ing their timed behaviors. L is a simple, concurrent specification language that
is aimed to serve as a formal programming model for various user-level specifi-
cation languages, such as SDL and UML. The language is intended to provide a
unified, well-established specification framework for the analysis and verification
of such higher-level specifications. Beside providing a core language with formal
semantics for specification creation, management and analysis, the simplicity of
L directly translates into a simple formal model that can easily be analyzed and
manipulated.

While the language supports several imperative features for describing se-
quential computations, concurrency in L is modeled by asynchronously com-
municating processes that can be dynamically created or destroyed. A process
maintains a thread of sequential computation representing a simple component
in software. A process may create another process with a specified computational
behavior, or may destroy itself. Processes communicate by exchanging messages
asynchronously, and use timers as the basic timing abstraction to account for
timing behaviors. The syntax and semantics of L are described next.

2.1 Syntax and Examples

The syntax of L is shown in Figure 1. A constant expression in L can be either an
integer value, a boolean value, a literal string, or a variable name. Complex ex-
pressions can be constructed using standard arithmetic, relational, and boolean
composition operators.

Unlike expressions which evaluate to some constant value, commands do not
produce values, but are there for their side effects. A command in L can be
an assignment statement, a scoped declaration of a variable using a let state-
ment, a conditional statement, or a while loop statement. The language also has
a few process-level commands, which include creating a new process, destroy-
ing the current process, sending a message to a process, and receiving a mes-
sage. The body of the receive statement may consist of a list of exclusive case



Formal Specification and Analysis of Timing Properties in Software Systems 265

x, y ∈ Variable n ∈ Integer r ∈ String

e ∈ Expression ::= x | r | a | b
a ∈ Arithmetic Expression ::= n | a ◦ a

b ∈ Boolean Expression ::= true | false | a •rel a | b •bool b | ¬b

c ∈ Command ::= x := e | let x = e in c | if b then c else c | while b c
| new x = y in c | destroy
| send e to e | receive x in {l ; default : c}
| set x to e | release x | {} | {c} | c ; c

l ∈ CaseList ::= ε | case e : c ; l
m ∈ Module ::= module x is c

Fig. 1. The abstract syntax of L

statements followed by a default statement. Timers are managed using two
constructs: set, for starting a timer, and release, for dropping a timer. The
expiration of a timer in a process triggers a signal that can be checked by
a receive command. Furthermore, commands can be grouped into command
blocks, and sequenced using the semicolon as a sequencing operator. Finally, a
specification in L may use an optional list of module declarations, serving as
templates for new processes.

A variable x is bound in c in the commands let x = e in c and new x = y in c,
and is bound in l and c of the receive command. Variables used in set and
release, called timer variables, are globally scoped variables and are assumed
to be distinct in a given specification for it to be meaningful. A variable is said
to be free if it is not bound.

For compactness, we use if b then c as syntactic sugar for a conditional
with an empty else branch, and receive x in c to denote a receive statement
with no case branches, i.e. receive x in {ε ; default : c}. We shall also use
let x1 = e1, x2 = e2 in c as a shorthand for two nested let commands.

Example. (Client) The specification shown in Figure 2 defines a client process
that interacts with the user and a server, and timeouts responses from the server,
for which it maintains two timers t1 and t2. Upon receiving a “resend” request
from the user, the process forwards a request to the server and sets a timeout
of 60 time units for the first response from the server using the timer variable
t1. There are three possibilities at this point; (1) a timeout occurs, which is
indicated by the incoming signal t1, and at which case the process restarts and
waits for another request from the user; (2) another request from the user is
received, at which case the client resets the timer t1, and sends a request to the
server; (3) a response from the server is received, at which case t1 is dropped
and a similar process is initiated for subsequent responses from the server using
another timer t2. For simplicity, the example does not specify how the client
actually processes incoming responses from the server.

We will refer to the Client example above in the rest of the paper to illustrate
various aspects of the specification framework. Below, we give a more precise
description of the semantics of L.



266 M. AlTurki et al.

module client is
let a = true , b = true in
receive o in — server id
while (true)

receive p in { — resend request from user
a := true ; b := true ;
while (a) {

set t1 to 60;
send “request” to o;
receive m in {

case t1 : a := false;
case “resend” : release t1;
default : {

release t1;
while (b) {

set t2 to 120;
receive m in {

case t2 : { b := false; a := false };
case “resend” : { release t2; b := false };
default : { release t2 } } } } } } }

Fig. 2. A specification in L for a client process with timeouts

2.2 Formal Semantics

We give the formal semantics of L as an object-oriented real-time rewrite theory
RL. The semantics is distributed and concurrent in that a state for a specification
in L consists of one or more process objects that are executed concurrently, and
which may interact with each other as time elapses.

Real-Time Rewrite Theories. A rewrite theory, a unit of specification in
rewriting logic [8], gives a formal description of a concurrent system including
its static state structure and dynamic behavior. A rewrite theory is a tuple
R = (Σ,E,R), with

– (Σ,E) a membership equational logic [9] theory with signature Σ and a set
of universally quantified equations and/or memberships E. The signature Σ
declares the sorts and operators to be used in the system specification, while
equations and memberships E algebraically specify the properties satisfied
by these operators.

– R a set of universally quantified, possibly conditional, rewrite rules specifying
the computational behavior of the system. A rewrite rule has the form:

r : t1 −→ t2 if C (1)

where r is a label, t1 and t2 are terms over Σ, and C is a conjunction of
equational or rewrite conditions. A rewrite rule gives a general pattern for a
possible change in the state of a concurrent system (See [10] for a detailed
account of generalized rewrite theories).



Formal Specification and Analysis of Timing Properties in Software Systems 267

A real-time rewrite theory [6] extends a regular rewrite theory with support
for modeling temporal behaviors of systems. In particular, in a real-time rewrite
theory Rτ = (Στ , Eτ , Rτ ): (i) the equational theory (Στ , Eτ ) contains a sort
for Time representing the time domain, which can be either dense or discrete,
and declares a system-wide operator that encapsulates the whole system being
modeled into a special sort GlobalSystem for managing time elapse, and (ii) the
set of rewrite rules Rτ is the disjoint union of two sets RI and RT , where RI

consists of instantaneous rewrite rules having the form (1) above and represent-
ing instantaneous transitions in the system, and RT consists of tick rewrite rules
modeling system transitions that take non-zero amount of time to complete. A
tick rewrite rule has the following form

r : {t1} τ−→ {t2} if C

where τ is a term of sort Time representing the duration of time required to
complete the transition specified by the the rule. The global operator { } en-
capsulates the whole system into the sort GlobalSystem to ensure the correct
propagation of the effects of time elapse to every part of the system.

Semantic Infrastructure. We fix a sort V of values in L. Lists of values can be
constructed as fully associative lists of comma-separated values. An environment
σ is a mapping from variable names to values, specified in RL as an associative
list of entries of the form [x, v] with identity nil .

A state in the system is represented by a configuration consisting of a multi-set
of objects. The fundamental class of objects within a configuration is the Process
class. In addition to the process object identifier, a process object contains the
following fields: a name, an environment, a command, a field for the timer set of
the process, and a queue of incoming messages:

〈id : Process | name : x, env : σ, cmd : c, tmr : T,msg : M〉

The queue of messages M is simply a list of values, and T is a set of timer
records of the form {x, vt}, with vt a time value. A timer record in T represents
an active timer, which is a timer that has been started but is not yet expired or
handled.

Instantaneous Transition Rules. In RL, instantaneous transitions of L are
modeled by regular rewrite rules, which specify the behavior of a process within
a configuration based on the next command to be executed by that process.
The command field cmd of a process serves as a continuation that defines what
action to be taken next. For example, the rule labeled set below specifies the
semantics for setting a timer:

[set] : 〈id : Process | env : σ, cmd : set x to a ; c′, tmr : T 〉
−→ 〈id : Process | env : σ, cmd : c′, tmr : {x, a ↓σ}, T 〉



268 M. AlTurki et al.

where e ↓σ denotes the evaluation of e using the environment σ, while expiration
of a timer is captured by the timeout rule below:

[timeout] : 〈id : Process | env : σ, cmd : receive x in C ; c′, tmr : {y, 0}, T 〉
−→ 〈id : Process | env : σ[x, y], cmd : cases(x,C); pop; c′, tmr : T 〉

with cases(x,C) and pop as auxiliary continuation items for processing the body
of a receive statement. We note that the rules are given in the object-oriented
specification style, in which attributes within a process object that do not play
a role in the rule need not be mentioned. We assume that message exchanges
are instantaneous (take no time to complete) and are therefore modeled by
instantaneous rewrite rules.

2.3 Timed Semantics

Assuming R is a time value and C is a configuration, the tick rule in L that
models time elapse and its effects is as follows:

[tick] : {C} R−→ {δ(C,R)} if R ≤ mte(C) ∧ inactive(C)

There are several important observations to be made here:

– The function δ equationally propagates the effect of a time tick to all ob-
jects within the configuration C, which comprises decreasing all timer values
within all process objects by the amount R of the tick.

– The function mte equationally defines the maximum time elapse until the
next event of interest. This is a standard technique in RTM to specify upper
bounds on how much a clock is allowed to advance before the next event
in the configuration. In this case, the mte of a configuration of processes
is determined by the timer with the minimum time value among all sets of
timers in all processes:

mte(T, {x, vt}) = min(mte(T ), vt), mte(φ) = ∞
– The predicate inactive distinguishes states in which instantaneous (untimed)

transitions are enabled (also called active states) from those in which the only
possible transition is a tick transition advancing time (inactive states). The
predicate is used to restrict applications of the tick rule to inactive states
so that instantaneous transitions have precedence over time tick transitions.
This is to maintain the expected semantics of timers and to prune uninterest-
ing behaviors in which a configuration might appear to be progressing while
it is not (for example, advancing time without doing anything else). This
semantics enforces the fact that when a timer in a process expires, its signal
cannot be ignored and must be handled, either by releasing the timer or
by consuming its signal. For this semantics to be fully meaningful, however,
configurations may only assume non-Zeno behaviors (which are behaviors
in which time will always eventually have a chance to advance), which is a
common assumption for real-time specifications with logical time.



Formal Specification and Analysis of Timing Properties in Software Systems 269

3 Analysis of L Specifications in Real-Time Maude

Real-Time Maude (RTM) [7], which is based on Maude [11], provides a highly
efficient implementation of real-time rewrite theories. We have developed a pro-
totype in RTM for L that corresponds to the specification RL described above.
As an immediate consequence of specifying the formal semantics of L in RTM, we
obtain a simulator and several formal analysis tools essentially for free. Among
the analysis tools provided are: (1) the timed fair rewrite tfrew, which simu-
lates one possible behavior (a sequence of rewrite steps) of a specification up to a
given time bound; (2) the tsearch command, which performs timed breadth-first
search on the reachable state space from given an initial state, while looking for
a state matching a given term and satisfying a given semantic condition; and (3)
the timed model-checking command mc T |=t F in time <= R, which checks
for satisfiability of the linear temporal logic (LTL) formula F along paths starting
from the initial state T within the time bound R.

The prototype is specified as a real-time object-oriented module ML in RTM,
which is declared using the syntax tomod Name . . . tomend. To simplify analysis,
we assume a discrete time domain, implemented using the domain of natural
numbers extended with infinity, which can be specified by letting the module
ML extend RTM’s predefined module NAT-TIME-DOMAIN-WITH-INF.

We consider the Client specifications given in Figure 2 above to illustrate
the use of such formal tools. We use client to denote its specification in ML.
Since client is a template for a reactive process that communicates with a user
and a backend server, we assume an initial configuration system in which a user
object and a server object are defined in order to be able to perform analysis
on client. The initial configuration contains a server process object that upon
receiving a request sends out five responses, five time units apart, and a user
process object that sends two “resend” requests, the first at time 1, and the
other at time 20. To simplify the presentation of the analysis, another object,
called the Observer object, is used to record traces of events of interest along
with their time stamps.

3.1 Simulation and Prototyping

A sample run of system for a duration of 200 time units can be obtained by
issuing the following command (where some of the output is omitted for brevity):

Maude> (tfrew

system in time <= 200 .) Result ClockedSystem : {...

< oo : Obser | out :([6 : "t1: first response received"]

[11 : "t2: response received"] [16 : "t2: response received"]

[21 : "t2: resend before it expires"] [21 : "t1: first response received"]

[26 : "t2: response received"] [31 : "t2: response received"]

[36 : "t2: response received"] [41 : "t2: response received"]

[161 : "t2: expired"]) >

< p(1): Process | name: ’client, cmd: receive p in ... , tmr: empty >

< p(2): Process | name: ’server, cmd: receive m in ... , tmr: empty >

< p(3): Process | name: ’user, cmd: {}, ... , tmr: empty >} in time 200



270 M. AlTurki et al.

The result above shows that after 200 clock ticks, the system reaches a qui-
escent state where no more message exchanges exist or are scheduled, and no
timers are yet to be set or processed. As can be seen from the recorded trace,
a “resend” request from the user was received at time 21 while the client was
processing the third response from the server, immediately after which the client
resent the request and restarted processing. Since the server sends only five re-
sponses to a given request, we see the timeout at time 161 after the fifth response
had been received at time 41.

Furthermore, using timed search, one can verify, starting from system, the
property that the system will in fact never be in a quiescent state before that.

Maude> (tsearch system =>+ { CF:Configuration } such that

inactive({CF:Configuration}) and noAliveTimer(CF:Configuration)

in time <= 160 .)

rewrites: 217595 in 720ms cpu (720ms real) (301842 rewrites/second)

No solution

The arrow =>+ means states reachable by one or more rewrites from the given
state. The semantic condition inactive(CF) and noAliveTimer(CF) captures
exactly what it means for a state to be quiescent.

3.2 Model Checking Analysis

RTM also provides powerful time-bounded model-checking tools for verifying
general LTL formulas, representing both liveness and safety properties, which can
be immediately applied to specifications in L. The LTL formulas are based on a
set of atomic propositions that capture state properties of interest and a labeling
function that assigns to each state in the system a subset of atomic propositions
that are true in that state. Given a module M for some specification in L, this is
done in RTM by defining a module M’ that imports the module M and the internal
module TIMED-MODEL-CHECKER and specifies equationally the meanings of these
propositions and the labeling function. For our running example, client, we
would perform model checking against a module extension of the form:

(tomod MODEL-CHECK-CLIENT is

including TIMED-MODEL-CHECKER .

protecting CLIENT .

...

endtom)

where including and protecting represent module extension modes (see [11]).
The internal module TIMED-MODEL-CHECKER declares sorts for states State,
atomic propositions Prop, logical formulas Formula to which the various LTL
operators belong, and the logical time-bounded satisfaction operator |=t, among
several other things. Thus, within the module above, one can declare the follow-
ing two propositions (the keywords ops, var, and eq introduce, respectively,
operator declarations, variable declarations, and equations in Maude):



Formal Specification and Analysis of Timing Properties in Software Systems 271

ops first-response timeout : -> Prop .

var CF : Configuration . var O1 O2 : Output . var R : Time .

eq {CF < oo : Obser | out :(O1 [R : "t1: first response received"]

O2) > } |= first-response = true .

eq {CF < oo : Obser | out :(O1 [R : "t2: expired"] O2) > } |=

timeout = true .

The first proposition first-response is true in a state in which the client has
already received its first response from the server, while the other proposition
timeout is true in a state where the second timer has expired. States in which
a proposition does not hold need not be specified.

Using these proposition, we can verify a fairly complex property about the
system modeled by client: it is always the case that within the first 200 time
units and after receiving the first response from the server, the second timer will
eventually expire. This property holds since the server will cease to send out
responses after the first response, causing the client to eventually timeout. This
can be checked automatically using the model-checking command:

Maude> (mc system |=t [] (first-response -> <> timeout) in time <= 200 .)

rewrites: 164943 in 689ms cpu (693ms real) (239084 rewrites/second)

Result Bool : true

where [] denotes “always”, -> “implication”, and <> the “eventually” operator.
However, the property does not hold if we restrict traces to 100 time units.
The corresponding model-checking command presents a counter example trace
to that effect:

Maude> (mc system |=t [] (first-response -> <> timeout) in time <= 100 .)

rewrites: 35567 in 4332ms cpu (4345ms real) (8209 rewrites/second)

Result ModelCheckResult :

counterexample({{< od : Decls | dcl :(( module ’client is let a = true

...

[self,vpid(3)],msg : nil,name : ’user,tmr : empty >} in time 41,’tick})

4 Proper Use of Timing Abstractions

In order to be able to model a wide range of software systems with real-time
components, the timing abstractions of L are designed so that they are expressive
and flexible. However, such flexibility might enable unintended or undesirable
usage patterns of these abstractions. We overview in this section possible usage
problems with timers and discuss automatic means to detect them.

We consider again our working example specification Client shown in Fig-
ure 2. There are several possible misuses of timer-related constructs in Client

which would render the specification erroneous or unnecessarily complex. For
instance, by dropping any one of the release commands in this specification or
by dropping any one of the receive case branch statements, we introduce possible
execution paths along which a timer is set but never released or processed. More-
over, by adding any new release command or case statement to this specification,



272 M. AlTurki et al.

we essentially introduce dead code that is either superfluous or even unreach-
able along any execution path in the specification. We note that such problems
become more pronounced as specifications get larger and more complex.

The fundamental reason behind such potential problems is flexibility. Indeed,
timers of a process are globally scoped within that process. Furthermore, the set
and release statements are not tightly coupled together, which implies that com-
plex timer patterns are possible. Finally, the unified treatment of timer signals
and incoming messages in receive statements might also add to the conceptual
complexity of properly using timers. It is worth mentioning that most of these
characteristics are shared with timer-based specification languages such as SDL,
making these languages, too, vulnerable to mishandled timers.

The problem, which we call Mishandled Timers, identifies usage patterns of
timers that could potentially cause semantic or structural problems with speci-
fications in L. It consists of three sub-problems:

1. Unhandled timers: a timer is not properly handled in a specification if there
exists a possible execution path along which a timer is set but then neither
dropped nor its signal is ever consumed.

2. Extra release commands: a release command is extra if it attempts to drop
a timer that is always properly handled along all execution paths to it.

3. Unreachable case branches: a receive case branch is unreachable if the timer
whose signal is being checked is always properly handled along all execution
paths to that case branch.

The significance of such analysis revolves around both specification correctness
and optimization. Unhandled timers immediately indicate a problem in the spec-
ification, since the meaning of an unhandled timer is not clear. Both extra release
commands and unreachable case branches might also be the result of an acci-
dentally missed set command and can therefore change the intended semantics.
In the case that no set command was missed, such superfluous statements can
as well be eliminated to optimize the specification.

Fortunately, the mishandled timers problem can be formulated as a data-flow
analysis problem, and can therefore be checked automatically using standard
static analysis means. Instead of defining a static checker that is specific to the
mishandled timers problem, we develop a general static analysis framework to
be integrated with the specification language L so that different other static
analyses can be easily specified and used. We describe below the static analysis
framework and its instantiation to the mishandled timers problem.

5 Static Analysis of Specifications in L
The formal analysis tools and techniques provided by RTM and described above
are very useful for analyzing specifications in L and verifying properties about
them. However, due to the dynamic nature of the analysis, such properties are
necessarily specific to the specification in hand, and an initial state must be
constructed for them to be carried out. For example, for Client, the property



Formal Specification and Analysis of Timing Properties in Software Systems 273

that the system will never be in a quiescent state before 160 time units have
passed applies only to this specification and was verified against one possible
initial state defined by system.

Another class of formal verification techniques with which generic properties
can be automatically verified can be obtained through static analysis. Static
analysis is an automated formal analysis technique that is based on the static
structure of specifications rather than their dynamic behavior. The analysis al-
lows for the verification of a different class of properties dealing with the proper
use of constructs in L. These properties are generic in the sense that they are
not tied to any particular specification and do not depend on any given initial
state. As a result, a library of static analysis properties can be built and reused
to check specifications in L for common bugs or to perform common optimiza-
tions, which considerably increases the usefulness and effectiveness of L and its
associated tools as a software specification framework.

5.1 A Generic Abstract Interpretation Framework

The approach to static analysis we use is based on the well-studied framework
of Abstract Interpretation [12], which enables building safe approximations of a
given concrete semantics, so that if a property holds in the abstract semantics,
it also holds in the concrete semantics. Specifically, we use control flow graphs
(CFGs) to build such abstract interpretations. A CFG for a specification S
consists of a set of nodes, representing commands (or basic blocks) in S, and a
set of directed edges, representing possible immediate flows between commands.

We have specified our abstraction framework for L as an equational theory
and implemented it in Maude as a functional module. The module defines an
operator cfg, which, given a specification in L, builds a flattened graph as a
set of nodes and directed edges grouped together using the associative and com-
mutative empty juxtaposition operator. A node in a CFG is a pair < I : B >,
consisting of an identifier I and a statement B corresponding to the command
represented by that node, while a directed edge is a triple [ I1 : S : I2 ],
consisting of identifiers I1 and I2 for the source and target nodes, respectively,
and an abstract state S on that edge, which is used for analysis. The CFG con-
struction process is defined inductively over the structure of commands in L,
and computation of fixed points is specified by straight-forward equations that
are mostly facilitated by Maude’s efficient associative-commutative matching al-
gorithms on the flattened graph. For instance, the following equation specifies
the effect of the assignment command (ceq introduces a conditional equation):

ceq [I1 : S : I] < I : x := e > [I : S’ : I2]
= [I1 : S : I] < I : x := e > [I : S’’ : I2]

if S’’ := assign(S, x, e) /\ S’ < S’’ .

where assign(S, x, e) is the transfer function for assignment and < is the
strict partial ordering relation on abstract states. The particular definitions of
transfer functions, abstract states, and the ordering relation are dependent on
the specific property to be analyzed and are therefore left unspecified in the



274 M. AlTurki et al.

abstraction framework. Below, we give an instantiation of it for the analysis of
the mishandled timers problem.

5.2 Mishandled Timers

We formulate the mishandled timers problem as a data-flow analysis problem,
and then use the abstract interpretation framework described above to automat-
ically check for it. The analysis computes, at each point in a specification, the
set of timers that may have not been properly handled on some path to that
point in the specification.

By computing such intermediate states, we can build decision procedures to
detect misuses of timers as follows. We first define the abstract domain to be a
simple lattice {�, ⊥} with the usual ordering. A timer variable is mapped to �
in an abstract state if it references a timer that may not have been handled in
that state. Otherwise, it is mapped to ⊥. The abstract state is a valuation from
timer variable names to values in the lattice. Both the lattice ordering and the
join operation are extended in the usual way to abstract states.

Then, we define, for each command in L, the transfer function that speci-
fies the effect of that command on the abstract state. Most of these functions
are fairly trivial to define for this problem since most functions are the iden-
tity function on states, except for the commands set and release, for which
the transfer functions respectively map variable names to � and to ⊥. Further-
more, the transfer function for the conditional command is defined to reflect
the possible change in state in the true and false branches of several other com-
mands, such as receive case statements. Finally, we define the following operators
that will automatically check the three problems : (1) utimers for unhandled
timers, (2) ers for extra release commands, and (3) ecs for unreachable case
branches.

12 while b

receive m14 b := false19

a := false20

22case resend default24

23 b := false

t2

t2 t2

t2 t2 t2

t2 t2

t2

t2 t2

t2t2

set t213 case t115 case t218

16

release t221

25 release t2

t2

17 b := false

release t2

27 endwhile

26 endrec

Fig. 3. A partial CFG computed by the mishandled timers analysis for the innermost
while loop of a modified (buggy) version of the client example; dashed nodes are the
ones added, while the dotted node is a release t2 node that was removed . Only timer
variables mapped to � in abstract states are shown on edges.



Formal Specification and Analysis of Timing Properties in Software Systems 275

To illustrate the use of these operators, we apply them to an instrumented
version of the client specification, named BuggyClient, to which we introduced
some instances of the mishandled timers problem. The CFG for the innermost
while (b) in the modified specification along with internal results of the analysis
algorithm are shown in Figure 3. As is clear from the figure, timer t2 is not
properly handled, which can be automatically realized by the command1

Maude> red utimers(cfg(BuggyClient)) .
rewrites: 47660 in 58ms cpu (59ms real) (807919 rewrites/second)
result State: [t2,top]

and which is resulting from a missing release statement within the case branch
labeled 22. Moreover, the release command labeled 21 is extraneous, which can
be checked by issuing the command:

Maude> red ers(cfg(BuggyClient)) .
rewrites: 47675 in 59ms cpu (59ms real) (794702 rewrites/second)
result Node: < 21 : release t2 >

Similarly, by executing the command red ecs(cfg(BuggyClient)), we can ver-
ify unreachability of the case branch labeled 15 in the figure.

6 Related Work

Real-time languages, forwhich a large body of research exists,differwidely in terms
of the timing abstractions they support and their semantics depending mainly on
their targeted application domains. The closest languages to our design of tim-
ing abstractions are SDL [5,13], a high-level specification language, and Erlang [4],
which is a programming language based on the Actors model [14] for distributed,
soft real-time systems. Both languages are based on a concurrent process model,
and they both use timers and check for timer signals as incoming messages. How-
ever, our design has a stricter timers semantics than that of SDL and is much more
expressive than Erlang’s (some nested timing patterns, which can be expressed in
L, are not expressible in Erlang). There has also been some attempts at improving
the timing abstractions in SDL for specification writers, such as the work in [15]
on extending timers with annotations and supporting transitions with urgencies.
Many other timed high-level languages exist [16,17,18].

Real-time rewrite theories and their implementations in Real-Time Maude
have been used in the specification and analysis of various protocols and al-
gorithms [19,20,21,22]. Our application is fundamentally different though as it
applies these methods to a specification language rather than a protocol or an
algorithm, which has subtle consequences in terms of design and analysis.

Finally, the technique of abstract interpretation [12] has been successfully
applied over the years to static analysis (see [23] for a recent survey, and [24] on
its use for data-flow analysis). In particular, the technique has been applied to
validation of timing requirements [25] and for more efficient model checking [26].
1 The Maude command red or reduce evaluates the given expression according to the

equations and memberships of the current module.



276 M. AlTurki et al.

7 Conclusion

In this paper, we presented a new simple specification language with formal
semantics that can be used to specify and analyze timing behaviors of software
systems. Our specification language is flexible and supports, through translation,
the timing models of various other high level specification languages like SDL
and UML. Our formal semantics is defined as a real-time rewrite theory. This
automatically gives us the ability to perform simulation and trace analysis using
the RTM tool. Furthermore, we take advantage of the timed model checker
provided with RTM, to provide an integrated analysis framework for software
designers. Finally we show how to use traditional abstract interpretation based
approaches to detect common misuses of timing constructs, thus automatically
preventing some of the common errors that a software designer can make when
using the flexible timing constructs. Together, we believe that our approach
provides a significant step forward in facilitating the use of formal tools for
specification and analysis of timing behaviors in software development.

Acknowledgements. Many thanks to José Meseguer for his comments.

References

1. Wang, F.: Formal verification of timed systems: A survey and perspective. Pro-
ceedings of the IEEE 92(8), 1283–1305 (2004)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

3. Merlin, P., Farber, D.: Recoverability of communication protocols - implications of
a theoretical study. IEEE Tran. on Comm. 24(9), 1036–1043 (1976)

4. Barklund, J., Virding, R.: Specification of the standard Erlang programming lan-
guage, Draft version 0.7 (June 1999)

5. ITU-T: Recommendation Z.100(08/02), languages and general software aspects for
telecom. systems - specification and description language (SDL) (August 2002)

6. Ölveczky, P.C., Meseguer, J.: Specification of real-time and hybrid systems in
rewriting logic. Theoretical Computer Science 285, 359–405 (2002)

7. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20(1-2), 161–196 (2007)

8. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96(1), 73–155 (1992)

9. Meseguer, J.: Membership algebra as a logical framework for equational speci-
fication. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61.
Springer, Heidelberg (1998)

10. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theor. Comput. Sci. 360(1-3), 386–414 (2006)

11. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

12. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL 1977,
pp. 238–252. ACM, New York (1977)



Formal Specification and Analysis of Timing Properties in Software Systems 277

13. ITU-T: Recommendation Annex F1(11/00), languages and general software as-
pects for telecom. systems - SDL formal semantics definition (November 2000)

14. Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT
Press, Cambridge (1986)

15. Bozga, M., Graf, S., Mounier, L., Ober, I., Roux, J.L., Vincent, D.: Timed ex-
tensions for SDL. In: Reed, R., Reed, J. (eds.) SDL 2001. LNCS, vol. 2078, pp.
223–240. Springer, Heidelberg (2001)

16. Tardieu, O.: A deterministic logical semantics for Pure Esterel. ACM Trans. Pro-
gram. 29(2), 8 (2007)

17. Taft, S.T., Duff, R.A., Brukardt, R.L., Ploedereder, E., Leroy, P.: Ada 2005 Ref-
erence Manual. LNCS, vol. 4348. Springer, Heidelberg (2006)

18. Bollella, G., Gosling, J.: The real-time specification for Java. Computer 33(6), 47–
54 (2000)

19. Ölveczky, P.C., Meseguer, J., Talcott, C.L.: Specification and analysis of the
AER/NCA active network protocol suite in Real-Time Maude. Formal Methods in
System Design 29(3), 253–293 (2006)

20. Ölveczky, P.C., Prabhakar, P., Liu, X.: Formal modeling and analysis of real-time
resource-sharing protocols in Real-Time Maude. In: 22nd Int’l Parallel and Dis-
tributed Processing Symp. (IPDPS 2008). IEEE Computer Society Press, Los
Alamitos (2008)

21. Ölveczky, P.C., Caccamo, M.: Formal simulation and analysis of the CASH schedul-
ing algorithm in Real-Time Maude. In: Baresi, L., Heckel, R. (eds.) FASE 2006.
LNCS, vol. 3922, pp. 357–372. Springer, Heidelberg (2006)

22. Ölveczky, P.C., Grimeland, M.: Formal analysis of time-dependent cryptographic
protocols in Real-Time Maude. In: 21st International Parallel and Distributed Pro-
cessing Symposium (IPDPS 2007). IEEE Computer Society Press, Los Alamitos
(2007)

23. Cousot, P.: Abstract interpretation and application to static analysis (invited tu-
torial). In: First IEEE & IFIP International Symposium on Theoretical Aspects of
Software Engineering, TASE 2007, Shanghai, China (June 2007)

24. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis, 2nd printing
edn. Springer, Heidelberg (2005)

25. Wilhelm, R., Wachter, B.: Abstract interpretation with applications to timing vali-
dation: Invited tutorial. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 22–36. Springer, Heidelberg (2008)

26. Ioustinova, N., Sidorova, N.: A transformation of SDL specifications - a step to-
wards the verification. In: Bjørner, D., Broy, M., Zamulin, A.V. (eds.) PSI 2001.
LNCS, vol. 2244, pp. 64–78. Springer, Heidelberg (2001)



Formal Foundation for Pattern-Based Modelling

Paolo Bottoni1, Esther Guerra2, and Juan de Lara3

1 Università di Roma “Sapienza”, Italy
bottoni@di.uniroma1.it

2 Universidad Carlos III de Madrid, Spain
eguerra@inf.uc3m.es

3 Universidad Autónoma de Madrid, Spain
jdelara@uam.es

Abstract. We present a new visual and formal approach to the specifi-
cation of patterns, supporting pattern analysis and pattern-based model
completion. The approach is based on graphs, morphisms and opera-
tions from category theory and exploits triple graphs to annotate model
elements with pattern roles. Novel in our proposal is the possibility of
describing (nested) variable submodels, as well as inter-pattern synchro-
nization across several diagrams (e.g. class and sequence diagrams for
UML design patterns). We illustrate the approach on UML design pat-
terns, and discuss its generality and applicability on different types of
patterns, e.g. workflow patterns using Coloured Petri nets.

1 Introduction

Patterns are increasingly used in the definition of software frameworks, as well as
in Model Driven Development, to indicate parts of required architectures, drive
code refactorings, or build model-to-model transformations. The full realisation
of their power is however hindered by the lack of a standard formalization of the
notion of pattern. Presentations of patterns are typically given through natural
language, to explain their motivation, context and consequences; programming
code, to show usages of the pattern; and diagrams, to communicate their struc-
ture and behavior. However, the use of domain modelling languages, such as
UML for design patterns, or Coloured Petri Nets for workflows, forces pattern
proposers to provide only examples of their realisation, appealing to intuition
to extend them to the complete semantics of the pattern. For instance, the fact
that in the Visitor pattern there must be a distinct operation in the Visitor
interface for each ConcreteElement is only understood through generalisation
of the examples or reading the associated text [4].

The search for a general definition of patterns, independent from the specific
modelling language, has led to several proposals based on the association of con-
straints to diagrammatic definitions, or to extensions of the UML meta-model,
in order to distinguish roles from concrete modelling types. However, these pro-
posals incur some problems to define the relations between different components
of a patterns specification, as will be illustrated in Section 2.

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 278–293, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Formal Foundation for Pattern-Based Modelling 279

We propose a formal notion of pattern, grounded in category theory [9], which
sees them as formed of: i) a vocabulary of roles; ii) a collection of diagrams,
possibly in different modelling languages, defining cardinalities and associations
between roles, and supplemented with indications of variable regions; iii) a col-
lection of interfaces between these diagrams, to identify roles across different
diagrams. Two main results are thus obtained, representing a distinguishing
novel feature of the approach. First, dependencies among different components
of a pattern specification can be formally defined. Second, a clear specification of
the parts of the pattern which can be replicated (and of the admissible number
of replicas) is given, without recurring to concrete examples. As our notion of
pattern generalises patterns from different fields, it opens the way to the exten-
sion of pattern-based techniques to new areas, to the formalisation of existing
ones, and in general, to the development of pattern-based languages.

The paper is organized as follows. Section 2 presents related approaches. Sec-
tion 3 introduces our new definition of pattern. Section 4 shows the procedure
for pattern application. Finally, Section 5 ends with the conclusions.

2 Related Work

The shortcomings of presenting patterns in the GoF (Gang of Four [4]) style have
been addressed by several researchers, who advocate a more formal approach.
For example, [3] extends the UML meta-model for class diagrams with specific
roles and constraints. Conformance of a model to a pattern is checked as the
usual model/meta-model relationship. The technique works for UML class and
sequence diagrams, and the emphasis is on specification of patterns, but not
on their use for model completion. A non-uniform interpretation of interaction
diagrams is provided, where reference to interaction fragments is translated to
their unfolding with respect to the instantiation of roles.

The limitations posed by reference to UML diagrams, in particular as re-
gards premature commitment to hierarchical structures, are overcome in [10]
by extending the UML meta-model with stereotypes accounting for possible re-
alizations of a given pattern. A distinction between roles, types and classes is
used in [8] to decouple representations of roles, at which level the semantics of
the pattern is abstractly described by incorporating constraint diagrams into
the UML notation, from their refinement as types, and their implementation
into classes. This way, the GoF presentation of patterns is shown to be a real-
ization of the abstract level. However, commitment to names and multiplicities
is already needed at the type level, with the class level providing concrete im-
plementations. Our proposal, on the contrary, provides the separation through
triple graphs which establish a correspondence between roles in a pattern model
and types in a pattern specification. Variability is thus maintained also at the
type level, leaving matching morphisms to provide the relation with any given
realization of the pattern. Independence from UML is achieved in [7] by us-
ing Object-Z, but it is limited to structural aspects. Constraints on the use
of patterns are exploited in [14] to maintain the consistency of a pattern-based



280 P. Bottoni, E. Guerra, and J. de Lara

software framework through the use of high-level transformations specific to each
pattern.

In [1] a method is proposed for visualizing the roles of the elements in UML
class and communication diagrams. The technique extends the UML Profile
meta-model with stereotypes and tagged values for pattern annotation. This
also allows pattern composition through single instances. In [6] the intent of
design patterns is described with an ontology, which can be queried to obtain
suggestions about the most appropriate pattern solving a certain problem.

In [13], the authors propose a logic-based approach, using subsets of First
Order Logic – for structural aspects – and Temporal Logic of Actions – for
behavioral ones – and supporting pattern combinations. As the language does
not include implications, support for complex constraints appears limited.

Graph transformation [2] has also been used to formalise patterns. In [11],
patterns are represented with rules, applied to abstract syntax trees to anno-
tate the pattern instances found. In [12], models are transformed to conform to
patterns, after having exploited graph queries that detect needs for transforma-
tions. In [16] Spatial Graph Grammars provide a graph representation of GoF
patterns, to transform object structure graphs so that they conform to patterns.
Although declarative, the rules are based on a concrete presentation of patterns,
and not on a meta-model characterisation.

In general, we observe the lack of an integrated, domain-independent formal-
ism able to give account of mutual synchronization constraints within a pattern
and across different ones, and to support pattern checking, identification and
application. In the rest of the paper we present such a formalism.

3 Pattern Specification

3.1 Variable Patterns

We define a variable pattern as made of a fixed part root and a number of vari-
able parts Vi, which can be replicated according to a given interval (low, high).
Variable patterns support nesting – variable parts inside variable parts – and can
be used with any graph model, from unattributed graphs G = (VG, EG, src, tgt :
EG → VG), to typed node and edge attributed graphs (e.g. E-graphs [2]). Here
we use typed attributed graphs and injective morphisms.

Definition 1 (Variable Pattern). A variable pattern is defined as V P =
(P = {Vi}i∈I , root ∈ P, int : P → N× (N∪ {∗}), Emb = {vi,j : Vi → Vj |∃Vi, Vj ∈
P}), where Vi are non-empty graphs, vi,j are injective morphisms, Emb is a tree
with graphs Vi ∈ P as nodes and morphisms vi,j as edges, rooted in root ∈ P ,
and int is a function returning the variability interval for each graph Vi ∈ P .

A finite set S satisfies interval (l, h), written S � (l, h), iff |S| ≥ l and h =
∗ ∨ |S| ≤ h. Note that if (l, h) is such that l > h, then it cannot be satisfied.

Example. The GoF Observer pattern captures one-to-many dependencies be-
tween objects so that when the subject object changes its state, all the depen-
dent observer objects are notified and updated automatically. Fig. 1 presents a



Formal Foundation for Pattern-Based Modelling 281

Ob,Conc

Subject Observer

ConcreteSubject

Subject Observer

ConcreteObserverConcreteSubject

V (0, *)Ob V (1, *)Conc

v
Subject Observer

ConcreteSubject ConcreteObserver

(0, *)

(1, *)

Fig. 1. The Observer Pattern in Theoretical (left) and Compact (right) Forms

simplified version of this pattern using Def. 1. The left part directly encodes the
theoretical form, with full definition V P = (P = {VOb, VConc}, root = VOb, int =
{(VOb, (0, ∗)), (VConc, (1, ∗))}, Emb = {vOb,Conc}). The variability interval is re-
lated to the satisfiability of the pattern by a model. VOb has (0, ∗) as variability
interval, thus the pattern is not mandatory and we may have any number of
instances. As int(VConc) = (1, ∗), we require at least one ConcreteObserver in
each pattern instance. The right part of the figure shows a compact form, where
fixed and variable parts are presented together. In the figure, we use the concrete
syntax of UML class diagrams, but the abstract syntax can also be used. �
The next definition states when a given graph satisfies a variable pattern.

Definition 2 (Pattern Satisfaction). Given a graph G and a variable pattern
V P as in Def. 1, G satisfies V P , written G |= V P , iff:

– Mroot = {pk
root : root → G} � int(root).

– ∀vi,j : Vi → Vj ∈ Emb:
• ∀pk

i ∈Mi, Mk
j = {pl

j : Vj → G|pk
i = pl

j ◦ vi,j} � int(Vj).
• Define Mj =

⋃
Mk

j , with k = 1..|Mi|.

Remark. The procedure in Def. 2 induces a tree traversal for Emb, because
when Vi → Vj is traversed, Mi must have been previously calculated. �
The left of Fig. 2 describes the morphisms for the satisfaction checking for a
variable pattern with one level of nesting, i.e. Emb = {root→ Vi, Vi → Vj}. We
assume one morphism p1

root ∈ Mroot. The procedure checks that the set M1
i of all

root

j

V
jV

i

v
ij

p
m
j

V
j

V
j

V
i

v
ij

v
ij

...

p
n
j

p
1
j

v
ij

v
root,i

v
root, i p

s
j

p
n
ip

1
root

p
1
i

G

...

...

...

...

...

...

...
V

G
Ob
1

ConcreteObserverConcreteSubject

Subject Observer
VConc

ConcreteObserverConcreteSubject

Subject Observer
VConc

ConcreteSubject

Subject Observer
VOb

vOb,Conc

vOb,Conc

pConc
1

pConc
2

ObserverSubject

ClockTimer AnalogClockDigitalClock

p

Fig. 2. Pattern Satisfaction (left). Pattern Satisfaction Example (right).



282 P. Bottoni, E. Guerra, and J. de Lara

morphisms p1
i , ..., p

n
i : Vi → G commuting with G

p1
root← root

vroot,i→ Vi satisfies the
interval int(Vi) = (lowi, highi). Similarly, given each morphism pk

i ∈ Mi = M1
i ,

each set Mk
j of morphisms p1

j , ..., p
s
j : Vj → G commuting with G

pk
i← Vi

vi,j→ Vj

satisfies the interval int(Vj). In the figure, we have replicated Vj and Vi for each
different morphism pk

j and pk
i , to show more intuitively the tree traversal.

Example. The right of Fig. 2 shows a model G that satisfies the specification of
the observer pattern of Fig. 1. The fixed part VOb occurs once, and the variable re-
gion VConc twice. This is checked by building the set MConc = {p1

Conc : VConc →
G, p2

Conc : VConc → G} � (1, ∗). In the figure, the dotted lines indicate some of
the mappings induced by p1

Ob, p
1
Conc and p2

Conc. �

3.2 Annotating Structure with Roles: Triple Patterns

In order to specify a pattern, we need its structure (as given by a variable
pattern), a vocabulary of pattern roles, and a mapping from the elements in
the pattern to the vocabulary. We call this structure annotated pattern and
ground it in the notion of triple graph [5], composed of two graphs, source and
target, related through a correspondence graph. Nodes in the correspondence
graph (also called mappings) have morphisms to nodes or edges in the other two
graphs. Thus, mappings may relate two nodes, two edges, an edge and a node,
or just point to a single element in the source or target graphs [5].

Definition 3 (Triple Graph). A triple graph TrG = (Gs, Gc, Gt, cs, ct) has
three graphs Gi (i ∈ {s, c, t}), and two functions cj : VGc → VGj ∪ EGj ∪ {·}
(j = s, t).

The element “·” in the codomain of cj denotes that the correspondence function
cj can be undefined. A triple graph is also written as (Gs

cs←− Gc
ct−→ Gt). We

say that a node or edge x of Gs is related to a node or edge y of Gt iff ∃n ∈ VGc

s.t. x cs←− � n
ct�−→ y and we write x relTrG y. As [5] showed, triple graphs and

morphisms form the category1 TrGraph [9].

Example. Fig. 3 shows a triple graph. Its source graph Gs at the bottom con-
forms to the UML meta-model, its target Gt at the top is a pattern vocabulary
model, and the correspondence graph Gc maps UML elements to vocabulary
elements. The morphisms from the nodes in Gc are shown as dotted arrows.
The correspondence function cs is undefined for node :PatternInstance (i.e.
cs(:PatternInstance) = ·) and this is represented by omitting the edge. �
Triple graphs are typed by meta-model triples [5] made of two meta-models,
source and target, related through a correspondence meta-model. In our case, a
meta-model triple relates the meta-model of a specific language (e.g. UML) with
that of a generic pattern vocabulary, which can be refined by subclassification in

1 A category is made of objects (e.g, triple graphs) and arrows (e.g., triple morphisms)
satisfying some conditions [9].



Formal Foundation for Pattern-Based Modelling 283

order to define patterns for the language. The top of Fig. 4 shows the meta-model
for the vocabulary. All classes except the subclasses of PatternRole allow defin-
ing patterns in any language. A Pattern has a name and a type, contains par-
ticipating roles, and can be documented with its motivation, applicability, intent
and consequences. Relations between patterns are given through the Relation
association class. We have specialized the meta-model for UML, so that roles are
applicable to operations, classifiers, classes, structural features and associations.
The bottom of Fig. 4 partially shows the UML meta-model, and the correspon-
dence meta-model maps roles to UML elements. The PatternInstance class is
used to group the mappings of each pattern instantiation.

name=’rProxy’

:OperationRole

owned

UML Model

Corresp. Model

participantparticipantparticipantparticipantparticipant

participant

specific specific

ownedOperation

Operation

name=’Proxy’

:ClassRole

name=’realSubject’

:AssociationRole

:AssocMap

name=’Subject’

:ClassRole

:ClassMap:ClassMap

name=’SimpleProxy’
type=’structural’

:Pattern

:OperMap

:OperationRole

name=’request’
Vocabulary
for UML Proxy

Pattern

name=’RealSubject’

:ClassRole

name=’rReal’

:OperationRole

:Generalization:GeneralizationrealSubject:Class proxy:Class

isAbstract = true

subject:Class
request:Operation

name = x
isAbstract = true

request:Operation

name = x

request:Operation

name = x

owned
Operation

:Property:Property realSubject:Association

participant

:OperMap:ClassMap:OperMap

Instance
:Pattern

Fig. 3. Annotated Pattern with the Structural Part of the Proxy (in Abstract Syntax)

A pattern-annotated model is a triple graph whose source is a model in some
language (e.g. UML), and the target contains a subgraph isomorphic to a pattern
vocabulary, for each pattern used in the source model. The correspondence graph
is called annotation graph and has a PatternInstance node for each pattern
instance and one RoleMap for each element playing a role in the instance. For
example, the annotated pattern in Fig. 3, specifying the structure of the Proxy
pattern [4], conforms to the meta-model triple in Fig. 4. The intent of this design
pattern is to provide a surrogate or placeholder proxy for an object with role
realSubject in order to control access to it. The bottom part of Fig. 3 uses the
abstract syntax for UML class diagrams. For simplicity, we only show the pattern
and the roles in the vocabulary model. The pattern has only one fixed graph,
no variable part, and requires that the operations in Subject, RealSubject and
Proxy have the same name, which is modelled with a variable x. More complex
attribute conditions such as in [2] are possible. We have omitted the name of
classes and associations, so they can be mapped to any name.

An annotated pattern is a variable pattern where all the graphs in Def. 1
are triple graphs, and morphisms are triple morphisms. The notion of pattern



284 P. Bottoni, E. Guerra, and J. de Lara

+ name: String

Pattern

+ type: String

Structural
FeatureRole

AssociationRoleOperationRole

+ name: String

PatternRole

Classifier
Role

ClassRole

RoleMap OperMap AssocMap StructMap ClassiMap ClassMap

ClassifierStructuralFeatureAssociationOperation Class

+ how: String

Motivation

+ why: String

Intent

+ rel: String

Relation

+ desc: String

Consequence

+ when: String

Applicability

Instance
Pattern

Pattern Vocabulary
Meta−Model (for UML)

*

UML Meta−Model

Meta−Model
Correspondence

* *
*

1

*
1

*
participant

1..* 1..*
11

Fig. 4. Meta-model Triple for UML Patterns

satisfaction remains as in Def. 2, but using triple graphs. Thus, annotated pat-
terns are satisfied by triple graphs, called pattern-annotated models.

Example. Workflow patterns [15] collect recurring constructs from existing
workflow systems and provide descriptions of their usage. Their presentation
is textual in the style of GoF patterns. For control flow patterns, dealing with
synchronization policies, an intuitive semantics is given through Coloured Petri
Nets showing example realizations of the pattern, to be inferred by the reader.
Fig. 5 shows three annotated patterns expressed via a syntax identifying the
rolesof places and transitions, as input, split, output, and, and merging. �

(2, *)

Multi−merge

(0, *)

AND−Join
Generalized

(2, *)

(0, *)

Parallel Split

(0, *)

(2, *)

<<and>>

<<output>>

<<output>>

<<input>>

<<input>>

<<split>>

<<input>>

<<merging>>

<<output>>

Fig. 5. Workflow Patterns

As seen before, a tool need not show the triple
graph to the user, but the annotation can be
done by marking the source graph [1]. How-
ever for the theory, an explicit triple graph
has some advantages: (i) we do not modify or
extend the source meta-model (e.g. the UML
one) with additional classes or attributes for
tagging; (ii) triple graphs help in enforcing
the patterns, as shown in Section 4; (iii) it
is easier to distinguish the instances of a pattern, as these are identified by
PatternInstance nodes.

3.3 Synchronizing Different Variable Patterns

A pattern specification can be composed of more than one diagram. For instance,
the GoF patterns are described using class and sequence diagrams. Thus, rela-
tionships have to be established between the elements in the different diagrams,
which we do through their roles in the pattern.

Example. The Visitor pattern explicitly represents as objects the operations to
be performed on the elements of an object structure, so that new operations can



Formal Foundation for Pattern-Based Modelling 285

classclass class

(1, *) (1, *)

(0, *)behavioural diagram

visitConcreteElement(this)

accept(cv)

(0, *)

(1, *)

structural diagram

(1, *) cv:

<<ConcreteVisitor>>

ConcreteElement

+ accept (Visitor)

Element

<<accept>>

<<Element>>

<<accept>><<ConcreteElement>>

ConcreteElement

<<ObjectStructure>>

ConcreteVisitor
<<ObjectStructure>>

ObjectStructure
Visitor

<<ConcreteVisitor>>

ConcreteVisitor

<<Visitor>>

os:

<<visit>>

ce:

<<ConcreteElement>>

ObjectStructure

<<visit>>
+ visitConcreteElement 
   (ConcreteElement)

Fig. 6. Visitor Pattern

be defined without changing the classes of the elements on which they operate.
It is one of the most complex GoF patterns as it requires two levels of variation
for the two hierarchies of Visitor (i.e. the operations) and Element (i.e. the
object structure), with the set of operations for Visitor varying together with
the ConcreteElement set. This covariance cannot be expressed through a con-
straint on cardinalities, as it requires an exact match on types of parameters.
The pattern is shown in Fig. 6, where the presence in the same variance region of
the signatures for the visit operations constrains the types of their parameters
to satisfy the constraint of equality with the types of ConcreteElement.

Both the structural and the behavioral part of Visitor require two variable
parts, relative to the two hierarchies. However, while in the structural part the
two regions are independent, in the behavioral part they are nested. This re-
flects the double constraint that each concrete visitor can be accepted by each
concrete element and that each concrete visitor has an operation to visit each
concrete element. The synchronization between the different regions involved is
represented by the equality of the colours used in the different pattern graphs,
and formally as a synchronization graph.

Fig. 7 shows the scheme of the two patterns for Visitor: SP : V SP
1 ← V SP

0 →
V SP

2 and IP : V IP
0 → V IP

1 → V IP
2 . SP has V SP

0 as root and two variable parts,

V IP
0

vIP
01 �� V IP

1
vIP
12 �� V IP

2

I

iSP

��

iIP

��

e11
�� e22 �

I11

iSP
11��

iIP
11

��

I22

iSP
22��

iIP
22

��

V SP
0

vSP
01 ��

vSP
02

��V SP
1 V SP

2

Fig. 7. Synchronization

and describes the structural part (a class diagram).
IP has root V IP

0 and a variable part V IP
1 with

nested V IP
2 , modelling a sequence diagram. The

synchronization graph I11 ← I → I22 declares the
intersections between the roots and pairs of vari-
able parts of each pattern. Morphism I → I11 is
derived as we have V SP

0 → V SP
1 and V IP

0 → V IP
1 ,

and similar for I → I22. All squares in the diagram
must commute to ensure coherence, so I → V SP

0 →
V SP

1 = I → I11 → V SP
1 , and similar for V IP

0 with
I11 and I22. �
Example. Fig. 8 shows a variation of the Proxy
pattern, in concrete syntax, allowing several proxies for a given subject (V SP

0 →
V SP

1 ). The upper part (V IP
0 → V IP

1 ) shows the annotated sequence diagram.
For clarity, we show the classifiers of the p and rs objects, as both classifiers
play a role in the pattern. �



286 P. Bottoni, E. Guerra, and J. de Lara

RealSubject

rs:

class

n=’rProxy’

:OpRole

n=’Proxy’

:ClassRole

n=’RSubject’

:ClassRole

n=’rReal’

:OpRole

Proxy

+ request ()

RealSubject

+ request ()

Proxy

p:

n=’Proxy’

:ClassRole

n=’RSubject’

:ClassRole

RealSubject

rs:

n=’rProxy’

:OpRole

n=’rReal’

:OpRole

:Pattern

name=’Proxy’
type=’structural’

n=’RSubject’

:ClassRole

RealSubject

:Pattern

name=’Proxy’
type=’structural’

:Pattern

name=’Proxy’
type=’structural’

name=’Proxy’
type=’structural’

:Pattern V IP
1V IP

0 I 11

:Pattern

name=’Proxy’
type=’structural’

V SP
1

n=’RSubject’

:ClassRole

n=’Subject’

:ClassRole

RealSubject

n=’rReal’

:OpRole

n=’request’

:OpRole

n=’Proxy’

:ClassRole

Proxy

+ request ()

n=’rProxy’

:OpRole

n=’rSubject’

:AssocRole

:Pattern

name=’Proxy’
type=’structural’

V SP
0

n=’RSubject’

:ClassRole

n=’Subject’

:ClassRole

n=’rReal’

:OpRole

n=’request’

:OpRole

RealSubject

n=’RSubject’

:ClassRole

class

request()

class

request()

I

+ request () + request ()

Subject

+ request () + request ()

Subject

:OperMap

:OperMap

:ClassMap

:ClassMap:ClassMap:OperMap :ClassMap :ClassMap :OperMap :AssocMap:OperMap:ClassMap:OperMap

:OperMap :OperMap:ClassMap :ClassMap :OperMap :ClassMap:ClassMap :ClassMap

Fig. 8. Synchronization Example for the Proxy Pattern

In Fig. 8 and others, we use a shortcut notation, shown below, for sequence
diagrams. The OperMap node in the annotation graph points to the message
arrow for the invocation, while in the abstract syntax the morphism reaches the
operation to be executed through a MessageOccurrenceSpecification object.

p:
request()

:OperMap

:ConnectableElement

:ExecutionSpecification

:Lifeline

:MessageOccurrenceSpecification

:OperMap

request:Operation

:GeneralOrdering

p:Object

:ExecutionOccurrenceSpecification

The two variable patterns to be synchronized
share the same vocabulary model, as they de-
scribe different diagrams of the same pattern.
Given the parts to be synchronized, the syn-
chronization graph is automatically calculated
by the intersections w.r.t. the roles. Thus,
two elements in two patterns SP and IP , if
mapped to the same role, will be present in I.

Once the intersection graphs Iij (and the
morphisms V SP

i ← Iij → V IP
j ) are derived,

the morphisms of the synchronized graph are
derived as well. Morphism Iik → Ijl is added,
iff there is a path V SP

i → V SP
j in the Emb tree of SP and a path V IP

k → V IP
l

in the Emb tree of IP .

Definition 4 (Synchronization Graph). Let AP k =(P k = {V k
i }i∈Ik , rootk ∈

P k, intk, Embk = {vk
i,j : V k

i → V k
j }), k = {1, 2}, be two annotated patterns on

the same vocabulary V P ; their synchronization graph SG = (V = {root1 i1← I
i2→

root2, ..., V 1
i

i1ij← Iij
i2ij→ V 2

j , ...}, E = {ekl
ij : Iij → Ikl}) is calculated as follows:

– For each pair of triple graphs V k = (V k
s ← V k

c → V k
t ) to be synchronized:



Formal Foundation for Pattern-Based Modelling 287

:ClassRole

:ClassMap

RealSubjectrs:

n=’RSubject’

:ClassRole

:ClassMap

n=’RSubject’

:ClassRole

n=’Subject’

:ClassRole

:Pattern

name=’Proxy’
type=’structural’

n=’rReal’

:OpRole

n=’request’

:OpRole

V SP
0

n=’RSubject’

:ClassRole

n=’Subject’

:ClassRole

:Pattern

name=’Proxy’
type=’structural’

n=’rReal’

:OpRole

n=’request’

:OpRole

n=’rProxy’

:OpRole

n=’Proxy’

:ClassRole

n=’rSubject’

:AssocRole

rs:

class

V IP
0:Pattern

name=’Proxy’
type=’structural’ type=’structural’

n=’RSubject’

RealSubject

+ request () + request ()

SubjectRealSubject

+ request () + request ()

SubjectRealSubject

OI :Pattern

name=’Proxy’

class

:ClassMap:ClassMap:OperMap :OperMap

:OperMap :ClassMap :OperMap:ClassMap

O

V 1
r

f1

���

�����

V 2
s

f2���

�����

V 1
u

v1
ur

��

Irs

i1rs���

�����
i2rs���

�����

P.B.

V 2
v

v2
vs

��

Iuv

ers
uv

��

i1uv���

�����
i2uv���

�����

Fig. 9. Calculating Intersection Edges (left). Example (right).

• Build the triple graph O = (Os ← Oc → V P ), and triple morphisms

V 1 f1

−→ O
f2

←− V 2, jointly surjective on Os and Oc as follows: (i) VP is
the common vocabulary model, so there are inclusions V k

t ↪→ V P (ii) if
two elements a ∈ V 1

s , b ∈ V 2
s are mapped to the same role in V P , (i.e. a

relV 1 x, b relV 2 x) only one element ab is added to Os, and the functions
f1 and f2 identify a and b to such element, f1(a) = ab = f2(b) (if ab
does not exist, the graphs cannot be synchronized).

• Intersection I is given by the pullback 2 V 1 i1← I
i2→ V 2 of V 1 f1

→ O
f2

← V 2.
– Given two intersection nodes V 1

r ← Irs → V 2
s and V 1

u ← Iuv → V 2
v s.t. there

are paths V 1
u → V 1

r in Emb1 and V 2
v → V 2

s in Emb2, add edge ers
uv : Iuv →

Irs to SG, as morphism ers
uv uniquely exists due to the pullback universal

property [2], see the left of Fig. 9.

Remark. Two graphs V 1 and V 2 can be synchronized only if their variability
intervals overlap (i.e. ∃M |M � int1(V 1) and M � int2(V 2)).

Example. The right of Fig. 9 shows an example of the calculation of an inter-
section graph for the synchronization scheme shown in Fig. 8. �

3.4 Full Pattern Specification

We now put all elements together to define a full pattern, made of a primary
structuring pattern SP , and a number of secondary patterns IPi synchronized
with SP through synchronization graphs SGi.
2 Roughly, a pullback [9] is the biggest intersection of two objects Ai through a com-

mon one B to which both are mapped. The pullback A1 ← C → A2 identifies the
elements of A1 and A2 that are mapped to a common element in B.



288 P. Bottoni, E. Guerra, and J. de Lara

Definition 5 (Full Pattern Specification). A Full Pattern SpecificationPS=
(V P, SP, Sec = {(IPs, SGs)}s∈S) is composed of:

1. A Pattern Vocabulary V P , mentioning the relevant roles for the patterns.
2. A Structuring Pattern Diagram SP = (PSP = {V SP

i }i∈I , root
SP , intSP ,

EmbSP = {vSP
i,j : V SP

i → V SP
j }), an annotated pattern where the V SP

i are
triple graphs whose target is a subgraph of the pattern vocabulary V P .

3. A set Sec of pairs made of a Secondary Pattern Diagram IPs = (P IP
s =

{V IP
i }i∈Is , root

IP
s , intIP

s , EmbIP
s = {vIP

i,j : V IP
i → V IP

j }) and a Synchro-

nization Graph SGs = (Vs = {V SP
i

isp
ij← Iij

iip
ij→ V IP

j }, Es = {ekl
ij : Iij → Ikl}),

which synchronizes the secondary patterns with the primary one.

For UML patterns, the primary pattern SP is a class diagram, and Sec generally
contains a sequence diagram synchronized with the class diagram.

The satisfaction of full patterns is similar to Def. 2, but using annotated
patterns and taking into account the synchronization graphs.

Definition 6 (Full Pattern Satisfaction). Given a pattern-annotated model

TrG=(Gs
cG

s←− Gc
cG

t−→ Gt), and a full pattern specification PS=(V P, SP, {(IPs,
SGs)}s∈S) as in Def. 5, TrG satisfies PS, written TrG |= PS, iff:

– ∀(IP, SG) ∈ Sec (i.e. for each secondary pattern and synchronization graph):

• Let Mroot,root = {rootSP psk

→ TrG
pik

← rootIP |rootSP isp← I
iip→ rootIP

is pullback}, then Mroot,root � intSP (rootSP ) and Mroot,root � intIP

(rootIP ).
• ∀elm

jk : Ijk → Ilm ∈ E (i.e. for each edge in SG):

! ∀V SP
j

psr

→ TrG
pir

← V IP
k ∈ Mj,k, let M r

l,m = {V SP
l

psu

→ TrG
piu

←
V IP

m |psu ◦ (V SP
j → V SP

l ) = psr and piu ◦ (V IP
k → V IP

m ) = pir and

V SP
l

isp← Ilm
iip→ V IP

m is pullback}. Then M r
l,m � intSP (V SP

l ) and
M r

l,m � intIP (V IP
m ). See Fig. 10(a).

! Define Ml,m =
⋃
M r

l,m, with r = 1..|Mj,k|.

Example. Fig. 10(b) shows in compact notation the satisfaction of the Proxy
pattern of Fig. 8. The model contains a class diagram and two sequence dia-
grams, enclosed in different regions, which a tool would present in three views.
The model has one instance of the Proxy pattern, and the variability region
that affects the Proxy role has been instantiated twice (classes ImageProxy and
RemoteProxy). Fig. 10(c) shows the first step in the satisfaction checking, where
the pullback of the fixed parts is depicted, corresponding to the intersection
graph shown to the right of Fig. 9. The satisfaction check follows by computing
two additional pullbacks for the two instantiations of the variable parts. �



Formal Foundation for Pattern-Based Modelling 289

{(RealSubject,Image)}

rs:

V IP
0

class

I

{(Subject,Graphic),(request,draw),
(request,draw),(RealSubject,Image)}

class classclass

draw() draw()
draw()draw()

(a)

(c)(b)

M

classclass

draw()
draw() draw()

class

draw()

V SP
0

p:

<<Subject>>

<<rProxy>>

+ draw ()

ImageProxy

<<rProxy>>

<<Proxy>>

RealSubject

+ draw ()<<rProxy>>

RemoteProxy
<<Proxy>>

+ request ()

Subject

+ draw ()

Image

<<rReal>>

<<RSubject>>

<<request>>

<<Subject>>

<<RSubject>>

+ draw ()

+ request ()<<rReal>>

RealSubject
<<RSubject>>

rs: p:

<<rReal>>
<<rProxy>> <<rProxy>>

+ draw ()<<rProxy>>

RemoteProxy
<<Proxy>>

<<rReal>>

Graphic

+ draw ()

Image

<<rReal>>

<<RSubject>>

RealSubject
<<RSubject>>

+ draw ()

ImageProxy

<<rProxy>>

<<Proxy>>

rs:

<<rReal>>

<<request>>

p:

<<rProxy>>

p:

+ draw () <<request>>

<<rReal>>

Graphic

<<Subject>>

Ilm

i
sp
lm

��

i
ip
lm

��
Ijk

elm
jk

��

i
sp
jk

������
�� i

ip
jk

�����
���

P.B.V SP
l

psu ��

V SP
j

vSP
jl��

psr 		����� V IP
k

vIP
km 



pir������� V IP
m

piu��T rG

Fig. 10. (a) Satisfaction of Full Pattern, where Outer Square is Pullback. (b) Annotated
Model Satisfying the Proxy Pattern. (c) First Step in Satisfaction Checking.

4 Pattern-Based Model Completion

Patterns as defined above can be used in different scenarios: (i) to query how
many instances of each pattern a model contains, or to analyse pattern instance
interactions; (ii) for pattern extraction; (iii) to check whether a part of the
model (maybe created by hand) conforms to a pattern; and (iv) to automatically
complete a model according to a pattern. In this section we concentrate on the
latter, giving the algorithm for pattern application for model completion and
proving its correctness.

We start by showing how to apply the primary pattern, and then present
how synchronization with the secondary patterns is achieved. Given a pattern
(V P, SP, Sec = {(IPs, SGs)}s∈S), the application of the primary pattern SP to
an annotated model M = (Ms ←Mc →Mt) is as follows:

1. Vocabulary Extension. Add the vocabulary of the pattern to Mt if it was
not added before (i.e. this is the first instance of the pattern).

2. Role Annotation. The user selects in Ms the elements playing some role
in the pattern. Thus, a RoleMap node is created in Mc for each of these
elements, associated with a node pm of type PatternInstance. pm is a new
node for a new instance of the pattern, or an existing one, if extending a
previous instance. Construct the morphisms from the modified annotation
graph Mc to Mt and Ms. A new instance cannot be created if the number
of existing instances would exceed the interval for the pattern root.

3. Instance Extraction. Construct a pattern graph PG by navigating from
pm to the elements in Mc belonging to the defined instance of the pattern,
and from these to elements in Mt and Ms along the cs and ct morphisms.



290 P. Bottoni, E. Guerra, and J. de Lara

4. Variability Instantiation. The user selects a number ri in the range
int(Vi) = (li, hi) for each variable part Vi of the pattern, such that the
existing number of instances ei plus the new ones ri satisfy the interval.
Build a graph PC as the colimit3 of the fixed part of the pattern P and
ri + ei instantiations of each variable part.

5. Model Extension. Construct the pushout4 M ′ of PC and M through PG.

rootv1

������ v1

�


V1v12 ����
v12  �

�
... V1v12 ����

v12
!!�

�

V2

""

... V2
���

� V2
����

... V2

##PC �� M ′

PG

��
��

P.O.

M

��

Fig. 11. Application of Structural
Pattern

Example. Fig. 11 shows the application of
a pattern with variable part V1 and nested
part V2. Once V1 and V2 are instantiated, we
build the colimit PC and the pushout M ′ of
PC ← PG→M .

Fig. 12 shows the application of the Proxy
to a model M containing a class Image, which
the user mapped to role RealSubject. The
name of the operation in the pattern (“re-
quest”, a variable) is mapped to the name of
the operation in the model (“draw”), and sim-
ilarly for class names. The user selected two instantiations of the variable part;
hence two proxies are created in the resulting model M ′. In the pushout, the new
elements may contain variables, like the name of the Proxy class to be added.
In this case, either the user provides a value (ImageProxy and RemoteProxy in
the example), or default ones are obtained from the role names. �

The application of the secondary patterns continues by enlarging the model M ′

obtained in the previous procedure by a sequence of pushouts. Hence, we first
check which variable parts V SP

i were added to M to yield M ′ (steps 2a and 2b).
This is necessary as the user may have extended an existing instance. Then, the
synchronization graph is used to locate the variable part of the secondary pattern
V IP

l synchronized with V SP
i , and a pushout is built. We use an intermediate

graph BIP
kl (step 1) as pushout object, as it contains the intersection between

V IP
l and the previous graph in the nesting structure, preventing the addition of

too many elements. The procedure is repeated for each secondary pattern:

1. ∀eil
jk : Ijk → Iil, edge in the synchronization graph, calculate the pushout

object BIP
kl as shown in Fig. 13(left). Morphism BIP

kl → V IP
l exists due

to the pushout universal property. Note also that if there are morphisms
V IP

k → M ′ and Iil → M ′, then we uniquely have BIP
kl → M ′ due to the

pushout universal property. Graph BIP
kl will be used later in this procedure.

2. For each (IP, SG) ∈ Sec do (i.e. for each sec. pattern and synch. graph):
– Traverse the graphs used to build the colimit PC in step 4 of the previous

procedure (see Fig. 11) in depth first order.
3 Roughly, a colimit [9] is the smallest object in which a diagram made of objects and

morphisms is embedded (assuming injective morphisms).
4 Given two objects Ai, whose “intersection” is given by A1 ← I → A2, the pushout

A1 → B ← A2 is their union, where the common elements (given by I) are “merged”.



Formal Foundation for Pattern-Based Modelling 291

PC M’

MPG

V SP
1V SP

1

V SP
0

+ request ()

<<rReal>>

RealSubject
<<RSubject>>

<<rReal>>

RealSubject

+ request ()

Subject

<<request>>

<<Subject>>

<<RSubject>>

<<request>>

+ request ()<<rProxy>>

Proxy
<<Proxy>>

<<Subject>>

RealSubject

+ request ()<<rProxy>>

Proxy
<<Proxy>>

<<RSubject>>

+ request ()

Subject

<<request>>

<<Subject>>

+ request ()<<rProxy>> + request ()<<rProxy>>

Proxy

+ draw () <<request>>

Subject
<<Subject>>

<<Proxy>>

Proxy

+ draw ()

Image

<<rReal>>

<<RSubject>>

<<Proxy>>

+ request ()

+ draw () <<rProxy>>

<<Proxy>>

ImageProxy

<<rReal>>

RealSubject

+ draw () <<rProxy>>

<<Proxy>>

RemoteProxy

<<RSubject>>

<<request>>

<<Subject>>

+ request ()<<rReal>>

RealSubject
<<RSubject>>

+ request ()

Subject

+ draw ()

Image

<<rReal>>

<<RSubject>>

+ request ()<<rReal>>

+ request ()

Subject

+ request ()

Fig. 12. Applying a Structural Pattern to an Annotated Model

(a) Let V SP
i be the current node; calculate the pullback object X of

V SP
i → PC ← PG.

(b) If X � V SP
i then

i. If V SP
i = rootSP then update the model M ′ according to the

pushout shown in the center of Fig. 13.
ii. Else let V SP

j be the predecessor of V SP
i in EmbSP and update

the model M ′ according to the diagram to the right of Fig. 13.
iii. Repeat

• Let V IP
m be the child of V IP

l in EmbIP . Update the model
(like in steps i and ii) for each instance V SP

n s.t. V SP
n ← Inm →

V IP
m , and whose pullback object X in V SP

n → PC ← PG is
not isomorphic to V SP

n .
Until all descendants of V IP

l ∈ EmbIP have been visited.

The procedure is incremental – one can update an existing instance – and sup-
ports heterogeneous synchronization, e.g. Fig. 7, where the structural pattern
has two independent variable parts and nesting in the interaction pattern.

Ijk
��

�� P.O.

Iil

��

$$

%%

V IP
k

��

�&

�

BIP
kl

��

&'

V IP
l

M ′

Iij

'(��
��

�
()�

��
��

��

V SP
i

()�
��

��
V IP

j

��
P.O.

M ′ �� M ′′

Ijk

)*������������

��������������

��
V SP

j

	��
���

�+

Iil

�����
��

���
���

� P.O. V IP
k

�����
��

��
V SP

i

���
��� BIP

kl
��

�� P.O.

V IP
l

��
M ′ �� M ′′

Fig. 13. Building BIP
kl (left). First (center) and Second (right) Cases for Model Update.



292 P. Bottoni, E. Guerra, and J. de Lara

M’’’

V IP
1

class

request()
request()

classI
rs:

class

V IP
0 B IP

class

rs:

M’’

class

M’

rs:

class

class

draw()
draw()

p:

<<request>>

Subject
<<Subject>>

<<RSubject>>

ImageProxy

+ draw ()

Image

<<rReal>>

<<RSubject>>

<<Proxy>>

<<rProxy>>

+ draw () <<rProxy>>

<<Proxy>>

ImageProxy

<<rReal>>

RealSubject

+ draw () <<rProxy>>

<<Proxy>>

RemoteProxy

<<RSubject>>

Proxy
<<Proxy>> <<RSubject>>

RealSubject

RemoteProxy

+ draw ()

rs:

+ draw () <<request>>

Subject
<<Subject>>

<<rProxy>>+ draw ()

+ draw ()

Image

<<rReal>>

<<RSubject>>

+ draw () <<request>>

Subject
<<Subject>>

<<rProxy>>

+ draw () <<rProxy>>

<<Proxy>>

ImageProxy

+ request ()

+ draw () <<rProxy>>

<<Proxy>>

RemoteProxy

<<rReal>>

RealSubject
<<RSubject>>

<<Proxy>>

+ draw ()

Proxy
<<Proxy>>

p:

<<rReal>>

+ request ()

<<rProxy>>

<<rProxy>>

Image

rs:

<<rReal>>

RealSubject
<<RSubject>>

+ draw ()

Fig. 14. Synchronization: Building the First Sequence Diagram

Example. For Proxy, Fig. 14 shows how the first sequence diagram is created
starting from M ′ of Fig. 12. Note that, as there were two instantiations of V SP ,
the procedure would follow by adding an additional sequence diagram. �
Finally, it can be shown that, after applying a pattern according to the previous
procedure, the resulting model satisfies such pattern according to Def. 6.

Proposition 1 (Application Correctness). If model Mk′ is obtained from
M by applying pattern SP according to the previous procedure, then Mk′ |= SP .

Proof Sketch. The nodes Iij of SG are the pullbacks of V SP
i → O ← V IP

j . When
applying the primary pattern, the vocabulary model is added to M , and after the
pushouts for the secondary pattern are made, yielding Mk′, we have O →Mk′.
This implies that all Iij are the pullback objects of V SP

i → Mk′ ← V IP
j . The

satisfaction Mk′ |= SP then follows as the application procedure takes care of
the correctness of the replications w.r.t. the allowed variability intervals (step 4
of the application of the primary pattern). �

5 Conclusions and Future Work

We have presented a formal approach to the specification of patterns, as well as
procedures for checking whether a model satisfies a pattern and applying a pattern
to a model for model completion. In the proposed formalization, patterns are an-
notated by roles in a vocabulary, support the synchronization of different types of
diagrams, and allow the definition of variable parts, possibly nested. The proposal
relies on a general meta-model for patterns, not necessarily based on UML.

Our approach presents several benefits w.r.t. existing ones. First, variability
regions – with the possibility of nesting – are more flexible than current pro-
posals, which annotate single elements with cardinalities [3] and for which it is
more difficult to express that several elements have to vary together.



Formal Foundation for Pattern-Based Modelling 293

Second, our mechanism for pattern application considers synchronization of sev-
eral diagrams. Third, we separate the roles from the pattern structure by a triple
graph, without extending existing meta-models. This clean and non-intrusive so-
lution facilitates the manipulation and querying of the vocabulary models, as well
as the identification of pattern instances. Our formal treatment facilitates the
derivation of rules for refactoring towards patterns.

We plan to investigate pattern conflicts and reason about pattern interaction
effects, e.g. using graph constraints or critical pairs [2] in pattern application.

Acknowledgments. Work supported by the Spanish Ministry of Science and In-
novation, projects METEORIC (TIN 2008-02081) and MODUWEB (TIN 2006-
09678). We thank the referees for their insightful and detailed comments.

References

1. Dong, J., Yang, S., Zhang, K.: Visualizing design patterns in their applications and
compositions. IEEE Trans. Software Eng. 33(7), 433–453 (2007)

2. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, Heidelberg (2006)

3. France, R.B., Kim, D.-K., Ghosh, S., Song, E.: A UML-based pattern specification
technique. IEEE Trans. Software Eng. 30(3), 193–206 (2004)

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns. Elements of
Reusable Object-Oriented Software. Addison Wesley, Reading (1994)

5. Guerra, E., de Lara, J.: Event-driven grammars: Relating abstract and concrete
levels of visual languages. Software and System Modeling 6(3), 317–347 (2007)

6. Kampffmeyer, H., Zschaler, S.: Finding the pattern you need: The design pattern
intent ontology. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MOD-
ELS 2007. LNCS, vol. 4735, pp. 211–225. Springer, Heidelberg (2007)

7. Kim, S.K., Carrington, D.: Using integrated metamodeling to define OO design
patterns with Object-Z and UML. In: APSEC, pp. 257–264. IEEE Computer So-
ciety, Los Alamitos (2004)

8. Lauder, A., Kent, S.: Precise visual specification of design patterns. In: Jul, E.
(ed.) ECOOP 1998. LNCS, vol. 1445, pp. 114–134. Springer, Heidelberg (1998)

9. Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Graduate Texts
in Mathematics, vol. 5. Springer, Heidelberg (1998)

10. Mak, J.K.-H., Choy, C.S.-T., Lun, D.P.-K.: Precise modeling of design patterns in
UML. In: ICSE, pp. 252–261. IEEE Computer Society, Los Alamitos (2004)

11. Niere, J., Schäfer, W., Wadsack, J.P., Wendehals, L., Welsh, J.: Towards pattern-
based design recovery. In: ICSE, pp. 338–348. ACM, New York (2002)

12. Radermacher, A.: Support for design patterns through graph transformation tools.
In: Münch, M., Nagl, M. (eds.) AGTIVE 1999. LNCS, vol. 1779, pp. 111–126.
Springer, Heidelberg (2000)

13. Taibi, T., Ngo, D.C.L.: Formal specification of design pattern combination using
BPSL. Information and Software Technology 45, 157–170 (2003)

14. Tourwé, T., Mens, T.: High-level transformations to support framework-based soft-
ware development. In: SET. ENTCS, vol. 72-4 (2003)

15. van der Aalst, W., ter Hoefstede, A., Kiepuszewski, B., Barros, A.: Workflow pat-
terns. Distributed and Parallel Data Bases 14(3), 5–51 (2003)

16. Zhao, C., Kong, J., Dong, J., Zhang, K.: Pattern-based design evolution using
graph transformation. J. Vis. Lang. Comput. 18(4), 378–398 (2007)



Problem-Oriented Documentation of
Design Patterns

Alexander Fülleborn1, Klaus Meffert2, and Maritta Heisel1

1 University Duisburg-Essen, Germany
alexanderfuelleborn@hotmail.de, maritta.heisel@uni-duisburg-essen.de

2 Technical University Ilmenau, Germany
pattern@klaus-meffert.com

Abstract. In order to retrieve, select and apply design patterns in a
tool-supported way, we suggest to construct and document a problem-
context pattern that reflects the essence of the problems that the design
pattern is meant to solve. In our approach, software engineers can choose
examples of source code or UML models from the special domains that
they are experts in. We present a method that enables software engineers
to describe the transformation from a problem-bearing source model to
an appropriate solution model. Afterwards, the inverse of that trans-
formation is applied to the UML solution model of the existing design
pattern, resulting in an abstract problem-context pattern. This pattern
can then be stored together with the solution pattern in a pattern li-
brary. The method is illustrated by deriving a problem-context pattern
for the Observer design pattern.

Keywords: Design patterns, problem derivation, model abstraction,
cross-domain documentation, problem-context patterns, UML models,
source code.

1 Introduction

Design patterns support software engineers in creating maintainable and extend-
able software. In order to select and apply design patterns, practitioners typically
learn a pattern by reading a design pattern book or paper or by studying UML
diagrams or source codes, respectively. From our point of view, this kind of doc-
umenting design patterns is lacking a machine-processable representation of the
problems in their contexts to be solved by the design patterns. The pattern it-
self as the solution for the related problems, however, is represented by UML
models, besides explanations in natural language and program code examples.
This is why it can be instantiated as a solution model to the concrete problems.
As there exists no corresponding problem model, it is difficult for software engi-
neers to judge whether their concrete source code or design models, respectively,
match the problems that the design pattern is meant to solve. They are forced
to make a comparison that is based on two different formats in order to select an
appropriate pattern. In addition, the contexts of the problems are expressed on

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 294–308, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Problem-Oriented Documentation of Design Patterns 295

different abstraction levels. Due to the lack of cross-domain knowledge, there is a
risk that software engineers assume their problem to be of a domain-specific type
that does not match the essence of the problem addressed by a design pattern.
Therefore they do not choose the solution provided by such a design pattern,
even if it solved their problem.

We are interested in developing methods that help software engineers to re-
trieve, select and apply design patterns in a tool-supported way. It should be
possible to apply these methods in the forward as well as in the re-engineering
phase of the software product lifecycle. In this paper, we put special emphasis
on problem orientation in documenting design patterns. We illustrate our ideas
by a re-engineering example. Key of our approach is to enable software engi-
neers in their role of pattern documentalists to use their daily, domain-specific
work together with their knowledge about design patterns, in order to complete
the documentation of these design patterns. We introduce the possibility for
software engineers to start this completion process either with UML models or
with source code, in order to obtain appropriate UML models that reflect the
essence of the related problems in their contexts. The resulting artefacts that
we call problem-context patterns are the basis for our overall methodology of
semi-automated retrieval, selection and application of design patterns.

Our approach consists of a sophisticated way of documenting the situation
before and after a design pattern is being applied. For the first part, this docu-
menting is done by adding non-functional requirements as annotations to con-
crete, domain-specific source code or UML models that have design deficiencies,
in order to document the problems in their contexts that the chosen design
pattern solves. For the second part, we formally document the solved problems
in a way that they can be compared to the situation before the chosen design
pattern was applied. By way of that comparison, the transformation between
the situation before and after applying the design pattern is made explicit. This
transformation is then reused on the design pattern abstraction level in order
to derive the reusable cross-domain representation of the situation before the
chosen design pattern is being applied. To obtain the problem-context pattern,
the inverse of the transformation is applied to the already existing UML model
of the chosen design pattern that we call solution pattern.

The rest of the paper is organized as follows: in Section 2, we introduce our
method for deriving problem-context patterns. We illustrate our method in Sec-
tion 3 by using an example from the business domain of human resources and
the Observer design pattern. Section 4 discusses other work in this area. Section
5 consists of conclusions of our findings and an outlook on future work.

2 A Method for Deriving Problem-Context Patterns

An overview of our method is given in Table 1.
Steps 1 to 4 are performed on the domain-specific level. In Step 1, software en-

gineers choose a concrete, problem-bearing source code or UML model example
that exists in their specific expert domain. In case software engineers choose a



296 A. Fülleborn, K. Meffert, and M. Heisel

Table 1. Method for deriving problem-context patterns

Step Description
1 Choose a problem-bearing, domain-specific source code or UML model example
2 Annotate the chosen problem-bearing source code and UML models with problem

motives

3 Perform transformations by applying design pattern under consideration to the
chosen source code and UML models

4 Annotate the resulting source code and UML models with solution motives

5 Annotate the UML solution model of the cross-domain design pattern with the
same solution motives as in Step 4

6 Perform inverse design pattern transformations to the existing design pattern
UML solution models that are annotated according to Step 5

problem-bearing source code for which no corresponding UML model exists yet
(the typical re-engineering case), the latter must be created, as it is needed in the
later steps of the method. In case software engineers choose a problem-bearing
UML model as a starting point for the example (the typical forward engineering
case), they do not need to have corresponding source code, as Steps 5 and 6 are
only based on the UML models. The chosen example must fit to the abstract,
natural-language problem description of the design pattern for which they want
to complete the documentation. We assume that software engineers are familiar
with the design pattern, for which they intend to complete the documentation.
By using specific examples from expert domains, the procedure of completing a
design pattern documentation is facilitated. The advantage of this approach is
that it is integrated into the usual work of software engineers. The effort needed
to complete the documentation of design patterns is minimized, because soft-
ware engineers can derive them by doing their daily work of modeling, coding
and improving designs.

In Step 2, annotations to the problem-bearing source code and to the UML
models are added manually. We call these annotations problem motives. A
method for deriving problem motives on the source code level can be found
in [5]. On the modeling level, we assign these problem motives to UML model
elements. They represent the non-functional requirements that need to be ful-
filled by the source code and UML models after the design pattern was
applied.

In Step 3, the problem-bearing source code and UML models are transformed
step by step to re-engineered new source code and UML models, according to the
knowledge embodied in the design pattern. In case new elements are added or
existing elements are changed, annotations are manually added to these elements
in Step 4. We call these annotations solution motives. They directly correspond
to the problem motives in the problem-bearing source code and UML models. It
is also possible that there does not exist a problem motive that corresponds to a
solution motive. In this case, the solution provides an additional advantage. It is
also possible that a problem motive without any corresponding solution motive
exists. This indicates a non-optimal solution of the problem.



Problem-Oriented Documentation of Design Patterns 297

The preceding steps all take place on the domain-specific level with its special
vocabulary and semantics, and with limited reuse potential. In the final two steps
of our method, software engineers operate on the generic, cross-domain design
pattern level. Here, the main purpose is to complete the documentation of the
generic design pattern that can be reused across domains. The goal is to find an
appropriate cross-domain UML model for the situation before transformations
are being performed.

In Step 5, software engineers annotate the UML solution model of the chosen
design pattern that has been applied on the domain-specific level before. For this
purpose, they reuse the knowledge they already gained in the domain-specific
scenario: they take the same solution motives they also used for the domain-
specific UML solution model and add them as annotations to the cross-domain
UML solution models. Then, they also reuse the transformations, but in this
case, they apply these transformations inversely to the generic, cross-domain
UML solution models of this design pattern. Thus, they derive the cross-domain
problems in their cross-domain contexts that fit to the design pattern. Finally,
the obtained problem-context pattern can be stored together with the solution
pattern in a design pattern library. It then can be retrieved and selected accord-
ing to the method described in [2].

3 Case Study Salary Statement Application

To illustrate our method, we present a case study from the human resources busi-
ness domain. It is about an existing software application for creating salary state-
ments of monthly employee salaries. This application needs to be re-engineered,
as it has non-functional deficiencies that can be removed by applying the Ob-
server design pattern. The software engineers who perform this re-engineering
task know the pattern well and are able to apply it to the existing code. No UML
models exist, only source code is available to them. Hence, this source code rep-
resents the problem-bearing, domain-specific source code example according to
Step 1 of our method. Besides this domain-specific, pure re-engineering task,
the software engineers are also asked to complete the Observer design pattern
documentation. Hence, they are asked to perform the remaining steps of our
method. In Sections 3.1 and 3.2, we present the results of Steps 1 to 4 of our
method on the source code level. We chose the object-oriented Java language for
demonstrating purposes as Java is widely spread and state-of-the-art. In Sections
3.3 and 3.4, we illustrate the results of Steps 1 to 4 on the UML model level. In
Section 3.5, the results of Steps 5 and 6 are presented.

3.1 Salary Statement Application: Annotated Problem-Bearing,
Domain-Specific Source Code

According to Steps 1 and 2 of our method, the following source code from the
salary statement application has been chosen and annotated:



298 A. Fülleborn, K. Meffert, and M. Heisel

010 public class SalaryStatementAppl i cat ion {
020 public static void main ( S t r i ng [ ] args ) {
030 EmployeeDetail employeeDet = new EmployeeDetail ( ) ;
040 acd EmployeeSelector employeeSel = new EmployeeSelector (

employeeDet ) ;
050 // User Input in a GUI f i e l d . Sent by an event handler
060 employeeSel . updateEmployeeID( ”D026143” ) ;
070 }
080 }

100 public class EmployeeSelector {
110 a private EmployeeDetail employeeDet ;
120 private PersNo se l ec tedEmployee ;

130 acd public EmployeeSelector ( EmployeeDetai l employeeDet ) \{
140 ac this . employeeDet = employeeDet ;
150 \}

180 // Method w i l l be ca l l e d a f t e r user entered employee ID
190 public void updateEmployeeID(PersNo ID) {
200 se l ec tedEmployee = ID ;
210 a employeeDet . changeEmployeeID( ID) ;
220 }
230 }

300 public class EmployeeDetail {
340 public void changeEmployeeID(PersNo ID) {
350 // Read employee with given ID from database
360 PersName name = . . .
370 // Read sa la ry data for employee from database
380 Salarybracket sa l a ryb racke t = readSalarybracket ( ID) ;
390 // Update the d i sp l ay of the g raph ica l user in t e r face
400 . . .
410 }

420 public Salarybracket readSalarybracket ( PersNo ID) {
430 // Read sa la ry data with given ID from database
440 Salarybracket r e s u l t = . . .
450 return r e s u l t ;
470 }
480 }

Listing 1. Salary statement application: annotated problem-bearing, domain-specific
source code

The source code given in Listing 1 represents an application with three classes.
The first class, SalaryStatementApplication, is responsible for starting the ap-
plication. It creates two graphical elements. The first element is represented by
the class EmployeeSelector and implements a selection list with basic master
data related to employees. When users have chosen an entry from this list, the
detail information that is needed in this context can be read and displayed. In
our example, the detail information is represented by the second element, the
class EmployeeDetail, and is displayed as a screen area with detail data such
as Name and Salarybracket (which is the technical term for a salary group) of
the employee, that has been selected by the employee selector. As already men-
tioned above, the Observer design pattern should be applied to this source code.
According to the terminology used in Observer, the class EmployeeSelector cor-
responds to the Subject class, and EmployeeDetail is the observer class to the
subject. The basic non-functional deficiency of this source code is the fact that



Problem-Oriented Documentation of Design Patterns 299

Table 2. Salary statement application: problem motives

Problem motive
identifier Description
a Observer class does not implement any interface
c Observer class can only be registered at one given point in time
d No unified registering mechanism existing

the classes EmployeeSelector and EmployeeDetail are too tightly coupled, which
is not desired. We can further differentiate this fundamental problem for the
given context. Firstly, the subject class EmployeeSelector can only be reused in
a limited way, as it has an attribute of type EmployeeDetail. A common inter-
face provided by the subject class to share data or functionality with observers
is missing. This is a structural coupling. Secondly, objects of the class Employ-
eeDetail can only be registered at one point in time, namely when objects of
class EmployeeSelector are created. Thus, the objects of the classes Employ-
eeDetail and EmployeeSelector are also coupled in time. Thirdly, only objects of
the class EmployeeDetail can be registered with the class EmployeeSelector. A
unified registering mechanism for objects of arbitrary classes is missing, despite
of the fact that they are not present at the moment. According to Step 2 of our
method, the described detail problems are added to the source code as problem
motives by adding a character as an identifier to each detail problem. In Table
2, the used problem motives are listed.

Table 2 contains several aspects of the too tightly coupled problem, which are
addressed by the Observer design pattern. Note that identifier b does not appear
in the problem-bearing source code. The reason is that it has been reserved for a
solution motive in the post-transformation source code, that we will discuss later.
Performing Step 2 of our method, we place problem motive identifiers after the
line numbers in the problem-bearing source code. As already mentioned before, a
method exists for annotating source code which can be found in [5]. For example,
problem motive a has been declared for all lines of code that are affected by
the fact that class EmployeeDetail does not implement any interface. These are
all lines of code where this class type is used. Applying the Observer design
pattern removes the deficiencies that are mirrored by the problem motives. In
the following, the Observer design pattern is applied to the given source code
according to Steps 3 and 4 of our method.

3.2 Salary Statement Application: Performing Transformations by
Applying the Observer Design Pattern

According to Step 3 of our method, every change of the problem-bearing source
code that is caused by applying the Observer design pattern is reflected by a
transformation. Performing method Step 4, each of these transformations has
an explanation, given by an annotated solution motive. This solution motive is
the complement to the problem motive and is directly related to the latter. A
problem motive that has been replaced by a solution motive indicates that the



300 A. Fülleborn, K. Meffert, and M. Heisel

Table 3. Salary statement application: solution motives

Solution motive identifier Description
a Treat observer classes equally
b Possibility to register any number of observers
c Possibility to register at any time
d Unified registering mechanism
e Notify all observers

given problem is solved. A solution motive without any corresponding problem
motive reflects a positive property that has been added without any problem
relationship. This is true for solution motive b, that we already mentioned, and
it is true for solution motive e. An identifier of a solution motive that equals
an identifier of the problem motive indicates that it solves the corresponding
problem. An overview of the solution motives used in this example is given in
Table 3.

The transformations used to apply the Observer pattern are all related to
these solution motives. For each transformation, we give the resulting source
code including the solution motives. If the transformation is a deletion, only
the deleted source code is shown. For better traceability, the line numbers from
Listing 1 are given, too. Equal line numbers in the post-transformation source
code indicate a change, new line numbers indicate an insertion.

Transformation T1: declaring the subject without relation to any ob-
server
In this transformation, the observer and subject class are decoupled from each
other by deleting the static attribute for observer from the subject class.
109 /**@@motive a(1): Treat observer classes equally*/

110 a private EmployeeDetail employeeDet;

Transformation T2: constructing the subject without relation to any
observer
This transformation causes the change of two dependent parts within the source
code, namely of a constructor declaration and the creation of objects of class
EmployeeSelector by this constructor. The changed constructor looks as follows:
127 /**@@motive a(2): Treat observer classes equally*/

128 /**@@motive c(1): Possibility to register at any time*/

129 /**@@motive d(1): Unified registering mechanism*/

130 public EmployeeSelector(){
137 /**@@motiv a(3): Treat observer classes equally*/

138 /**@@motive c(2): Possibility to register at any time*/

139 /**@@motive d(2): Unified registering mechanism*/

140 this.employeeDet = employeeDet;



Problem-Oriented Documentation of Design Patterns 301

As a result, the constructor call must also be adjusted:

037 /**@@motive a(4): Treat observer classes equally*/

038 /**@@motive c(3): Possibility to register at any time*/

039 /**@@motive d(3): Unified registering mechanism*/

040 EmployeeSelector employeeSel = new EmployeeSelector();

As every solution motive can appear more than once, we use a serial number
per motive, which we put into brackets behind each solution motive.

Transformation T3: introducing the base class for observer
Part of the core concept of the Observer design pattern is the usage of an abstract
base class for observer classes. In this context, we call this class Observer. Firstly,
we introduce this base class:

899 /**@@motive a(5): Treat observer classes equally*/

900 public abstract class Observer {
909 /**@@motive e(1): Notify all observers*/

910 public abstract void update(Object state);

920 }
Next, the specialized observer class EmployeeDetail can inherit from this class:

299 /**@@motive a(6): Treat observer classes equally*/

300 public class EmployeeDetail extends Observer {
Furthermore, the abstract method needs to be implemented:

309 /**@@motive e(2): Notify all observers*/

310 public void update(Object state){
320 changeEmployeeID((PersNo)state);

330 }
Transformation T4: introducing a universal registration mechanism
within the subject
Now, we can introduce a registration method with a variable for storing observer
references:
109 /**@@motive b(1): Possibility to register any number of observers*/

110 private List<Observer> observers = new Vector();

147 /**@@motive a(7): Treat observer classes equally*/

148 /**@@motive b(2): Possibility to register any number of observers*/

149 /**@@motive c(4): Possibility to register at any time*/

150 public void register(Observer a_observer){
160 observers.add(a_observer);

170 }
The newly introduced solution motive with the identifier b has no correspond-

ing problem motive in the problem-bearing source code. This means that it is
an additional advantage of the solution that was not seen as a problem before.

Transformation T5: unified notification of all observers by the subject
The way the subject notifies its observers can be adjusted, too. Firstly, we in-
troduce a new method for notifications:



302 A. Fülleborn, K. Meffert, and M. Heisel

222 /**@@motive e(3): Notify all observers*/

223 public void notify(){
224 /**@@motive a(8): Treat observer classes equally*/

225 /**@@motive e(4): Notify all observers*/

226 for(Observer observer:observers){
227 observer.update(selectedEmployee);

228 }
229 }

Now the method call must be placed at a suitable location:
209 /**@@motive e(5): Notify all observers*/

210 notify();

The remaining reference to EmployeeDetail in line 030 of the problem-bearing
source code can be replaced by a reference to the class Observer. However, this
is not needed here. To give readers of this paper a complete overview about
the resulting post-transformation source code, we provide it as a listing in an
appendix at the end of the long version of this paper.1

3.3 Salary Statement Application: Annotated Problem-Bearing,
Domain-Specific UML Model

Until now we performed Steps 1 to 4 of our method on the source code level.
Next, we repeat these steps on the UML model level, because Steps 5 and 6
are based on the UML models. We start with Steps 1 and 2. First, we create
domain-specific UML models of the annotated problem-bearing source code.
Extracting the model can be automated to a certain extent. Next, the problem
motives of the source code are added to those model elements that cause the
problem, according to Step 2 of our method. While taking over the problem
motives, some information gets lost, as not all of the problem motives can be
taken over to the UML model level. The reason is that problem motives in the
source code can also relate to single program statements that do not appear on
the UML model level. However, this loss of information can be reduced by using
UML comments, which contain these program statements with assigned problem
motives in order to give software engineers some guidance in implementing the
details. The resulting UML problem-context model, which is needed later in Step
6 to derive an appropriate problem-context pattern, is shown in Figure 1.

In this problem-context model, the problem motive identifiers of the annotated
problem-bearing source code are assigned to the relevant elements using the tilde
symbol. For example, annotation motives: a is assigned to the problem-causing
attribute employeeDet in the class EmployeeSelector. As stated in Table 2, this
identifier means Observer class does not implement any interface, which refines
the basic problem that class EmployeeSelector and class EmployeeDetail are
too tightly coupled. This problem is expressed by a static attribute that limits
the reuse of class EmployeeSelector. For the sake of readability, we only look at
1 Available at http://swe.uni-duisburg-essen.de/techreports/Fase09Longversion.pdf.



Problem-Oriented Documentation of Design Patterns 303

Fig. 1. Salary statement application: annotated UML model (problem-context model)

the structural aspects in our example. In our research work, we also applied the
described steps to sequence diagrams, which works well, but does not provide
additional information and does not necessitate any extension of the method.

3.4 Salary Statement Application: Annotated Resulting
Domain-Specific UML Model

In this section, we repeat Step 2 of our method on the modeling level. The
resulting domain-specific UML solution model is directly generated from the re-
engineered source code. Then, software engineers analyze the differences between
the pre- and post-transformation UML models by considering the differences in
the pre- and post-transformation source codes, and annotate the models with
comments about the solved problem. The resulting annotated class diagram is
shown in Figure 2.

Note that there are comments assigned to several model elements. These
model elements are exactly the classes or relationships that have been changed
from the problem-context model. The comments log the type and the reason for
the change. The type of changes, namely adding or deleting is described by an
appropriate keyword. The reason for the change is described by adding solution
motives, which also establish relationships to the underlying problem motives
in the problem-context model. For example, a comment is added to the class
EmployeeSelector that states that the attribute employeeDet is deleted due to
solution motive a. In the problem-context model, this attribute still exists and
is annotated with the corresponding problem motive. By using a numbering
within the used motives, software engineers can better reflect the order of the
single transformation steps and the involved model elements.



304 A. Fülleborn, K. Meffert, and M. Heisel

Fig. 2. Salary statement application: annotated resulting post-transformation UML
solution model

3.5 Deriving a Fitting Problem-Context Pattern (Cross-Domain)

Up to this point in the procedure, all activities take place on the domain-specific
level. From now on, the cross-domain level is considered by following Steps 5 and
6 of our method. Here, the main purpose is to complete the generic, cross-domain
Observer design pattern by finding an appropriate cross-domain UML model, a
problem-context pattern for the pre-transformation situation. First, the existing
UML solution model of the Observer design pattern is annotated according to
Step 5 of our method. For this purpose, the solution motives that have been used
to annotate the domain-specific salary statement UML solution model are taken
as a starting point. Thus, software engineers extend the Observer UML solution
models with information about the problems they solve and with information
about the way how they solve them. As in the domain-specific example, for
the sake of readability and simplicity, we use a variant of the Observer design
pattern. In this variant, no explicit subject superclass exists, and observers do
not ask separately for state changes. Instead, the subject provides the observers
proactively with information about state changes. While adding information
about the performed transformations, the transformed model elements are also
abstracted. The result is illustrated in Figure 3.

Note that annotations have also been changed. They are adapted to the pat-
tern in the sense of an abstraction. For example, the model element attribute



Problem-Oriented Documentation of Design Patterns 305

Fig. 3. Annotated UML solution model of the Observer design pattern (variant) ac-
cording to method Step 5

employeeDet of class ConcreteSubject that can be found under the deleted anno-
tation has been renamed to attribute concreteObserver. This annotated solution
pattern is the starting point for the next step of inverse transformations. In
Step 6 of our method, a suitable Observer problem-context pattern is derived by
applying inverse transformations. All transformation steps, that have been per-
formed before on the domain-specific level, started from problem-bearing models
(problem-context models) and resulted in solution models. On the cross-domain
level, solution models exist already, as they are described in the literature [3].
Thus, in order to obtain appropriate problem models for the Observer design
pattern, the knowledge about the way to transform the problem-bearing models
into solution models on the domain-specific level is reused, but in the opposite
direction. For example, in Figure 3 the class Observer is annotated with:

added:

(1) class Observer, motives: a(3)

(2) method update(), motives: e(1)

This annotation is based on the transformations add class Observer and add
method update() to class Observer. Thus, the appropriate inverse transformations
are:
delete method update() from class Observer

delete class Observer



306 A. Fülleborn, K. Meffert, and M. Heisel

Fig. 4. Derived problem-context pattern of the Observer design pattern according to
method Step 6

Besides performing inverse transformations, also problem motives are needed
in the derived problem-context pattern, which establish the link to the solution
motives in the solution pattern. These problem motives are derived from the
domain-specific problem-context model. The derived problem-context pattern is
illustrated as a result of the described actions in Figure 4.

The illustrated problem-context pattern abstractly describes a possible start-
ing point for applying the Observer design pattern, using the same means of
expression as the solution, namely UML. Together with the UML solution mod-
els, the solution pattern, it forms the Observer design pattern and can be stored
in a pattern library. The problem-context pattern is the access key for a semi-
automated pattern retrieval and selection method. Such a method is described
in [2].

4 Related Work

There has only been little work on documenting the problem essence of design
patterns in an appropriate way. Different from our approach of expressing the
problem essence as UML models, other contributors take UML meta models as
the basis for their methods. Mili and El-Boussaidi [6] use transformation meta
models, besides problem and solution meta models, to describe appropriate de-
sign pattern problem models and the way they are transformed to design pattern
solution models. Differently from our method, their problem meta models do not
contain any non-functional requirement or problem description that would be
comparable to our problem motives.

Kim and El Khawand [4] propose to rigorously specify the problem domain of
design patterns. In contrast to Mili and El-Boussaidi [6] and our approach, they
do not describe the problem-bearing model before a design pattern is applied
to it. Moreover, they focus on the functional aspects of design patterns, not
on non-functional aspects. The authors are mainly interested in developing tool
support for checking whether existing UML models conform to known design
patterns.

The work of Fanjiang and Kuo [1] introduces the concept of design-pattern-
specific transformation rule schemata to be used as an additional design pat-
tern documentation. The transformation steps, which are described in natural
language, are similar to ours and are helpful in applying design patterns. How-
ever, as the authors do not intend to support software engineers in their role



Problem-Oriented Documentation of Design Patterns 307

of documentalists, they do not give guidance on deriving transformation rule
schemata.

The work of O’Cinnéide and Nixon [7] aims at applying design patterns to
existing legacy code in a highly automated way. They target code refactorings.
Their approach is based on a semi-formal description of the transformations
themselves, needed in order to make the changes in the code happen. In con-
trast to our method, they describe precisely the transformation itself and under
which pre- and postconditions it can successfully be applied. In our work, we
illustrate the situation before and after the transformation. To a certain extent,
the described preconditions of the transformations can be compared with our
problem context as it outlines the situation before the design pattern is applied.
The advantage of our approach, however, is that we explicitly describe the non-
functional deficiencies by using annotations in the source code of the sub-optimal
situation.

5 Summary and Future Work

In this paper, we have presented a method for the problem-oriented documen-
tation of design patterns that consists of 6 steps. The results of Steps 1 to 2 are
an annotated problem-bearing source code and the corresponding UML mod-
els, stemming from the practical work of software engineers. By applying the
chosen design pattern and by adding solution motives to the resulting source
code and corresponding UML models, the outcome of Steps 3 and 4 are the
transformed and annotated solution source code and UML models. In Step 5,
the same solution motives are used to obtain annotated UML solution models of
the cross-domain design pattern. Finally, inverses of transformations according
to Step 3 are applied to these UML solution models, which result in a problem-
context pattern that fits to the chosen design pattern.

The use of expert domain, real world examples on the source code or on
the modeling level in order to derive the problem-context pattern on the cross-
domain level is novel and makes this approach especially useful and efficient in re-
engineering as well as in forward engineering projects. In addition to that reuse of
domain-specific knowledge on the abstract level, reusing the already documented
UML models of the design pattern solution part to derive the abstract problem-
context pattern is efficient.

To demonstrate how our method works, we used Observer, a behavioural
design pattern. In our research work, we also applied it to creational and struc-
tural patterns, which works well, too. Besides the scenario of completing existing
design patterns that are known from the literature, it also seems promising to
support the creation of new patterns in this way. This aspect is part of our future
work. Furthermore, we are working on the development of a problem statement
language that helps to reuse generic, standardized problems by making use of
the ideas provided by Willms et al. [8]. Another subject area we want to address
is the cross-domain reuse of functional requirements as opposed to the typical
non-functional requirements that are addressed by design patterns.



308 A. Fülleborn, K. Meffert, and M. Heisel

References

1. Fanjiang, Y.-Y., Kuo, J.-Y.: A pattern-based model transformation approach to
enhance design quality. In: Cheng, H.D., Chen, S.D., Lin, R.Y. (eds.) JCIS 2006,
Proceedings of the 2006 Joint Conference on Information Sciences. Atlantis Press
(2006)

2. Fülleborn, A., Heisel, M.: Methods to create and use cross-domain analysis patterns.
In: Zdun, U., Hvatum, L. (eds.) EuroPLoP 2006, Proceedings of the 11th European
Conference on Pattern Languages of Programs, pp. 427–442. Universitätsverlag Kon-
stanz (2007)

3. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design patterns: Abstraction
and reuse of object-oriented design. In: Nierstrasz, O. (ed.) ECOOP 1993. LNCS,
vol. 707, pp. 406–431. Springer, Heidelberg (1993)

4. Kim, D.-K., Khawand, C.E.: An approach to precisely specifying the problem do-
main of design patterns. Journal of Visual Languages and Computing 18(6), 560–591
(2007)

5. Meffert, K., Philippow, I.: Supporting program comprehension for refactoring-
operations with annotations. In: Fujita, H., Mejri, M. (eds.) Proceedings of the
fifth SoMeT 2006: New Trends in Software Methodologies, Tools and Techniques,
vol. 147, pp. 48–67. IOS Press, Amsterdam (2006)

6. Mili, H., El-Boussaidi, G.: Representing and applying design patterns: What is the
problem? In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp.
186–200. Springer, Heidelberg (2005)

7. O’Cinnéide, M., Nixon, P.: A methodology for the automated introduction of design
patterns. In: ICSM 1999: Proceedings of the IEEE International Conference on
Software Maintenance, p. 463. IEEE Computer Society Press, Washington (1999)

8. Willms, J., Wentzlaff, I., Specker, M.: Kreativität in der informatik: Anwendungs-
beispiele der innovativen prinzipien aus triz. In: Informatik 2000, Neue Horizonte
im neuen Jahrhundert, 30. Jahrestagung der Gesellschaft für Informatik. Springer,
Heidelberg (2000)



Certification of Smart-Card Applications in Common
Criteria

Proving Representation Correspondences

Iman Narasamdya1 and Michaël Périn2,�

1 FBK-Irst, Italy
narasamdya@fbk.eu
2 Verimag - UJF, France

Michael.Perin@imag.fr

Abstract. We present a method for proving representation correspondences in
the Common Criteria (CC) certification of smart-card applications. For security
policy enforcement, the CC defines a chain of requirements: a security policy
model (SPM), a functional specification (FSP), and a target-of-evaluation design
(TDS). In our approach to the CC certification, these requirements are models of
applications that can have different representations. A representation correspon-
dence (RCR) describes a correlation between the representations of two adjacent
requirements. One task in the CC certification is to demonstrate formal proofs of
RCRs. We first develop a modelling framework by which the representations of
SPM, FSP and TDS can be described uniformly as models of an application. We
then define RCRs as mutual simulations between two application models over
sets of observable events and variables. We describe a proof technique for prov-
ing RCRs and providing certificates about them based on assertions relating two
models at specific locations. We show how RCRs can help us prove property
preservation from the SPM to the FSP and the TDS.

1 Introduction

We describe in this paper our work on developing a method for formal certification of
smart-card applications in the framework of Common Criteria (CC) [1]. This work is
part of an industrial project called EDEN2.1 The CC is an international standard for the
evaluation of security related systems. It guarantees that a target of evaluation (TOE),
or a system, enforces security policies by means of an assurance architecture. For assur-
ances in the development process, this architecture consists of a chain of requirements
starting from the model of the policies at the start of the chain, to the low-level design
and the implementation of the system at the end of the chain.

At the highest level of the CC certification, which is called evaluation assurance
level 7 (or EAL7), the following chain of requirements are needed in the assurance
architecture: (1) a formal security model (SPM), (2) a formal functional specification

� This research has been supported by funding from RNTL EDEN project.
1 Research and industrial partners include Verimag, CEA, Gemalto, and Trusted-Logic; see
http://www.eden-rntl.org

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 309–324, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.eden-rntl.org


310 I. Narasamdya and M. Périn

of security functions (FSP), and (3) a TOE design (TDS). The SPM models the policy
independently of the implementation, the FSP describes input-output relationships of
security functions, and the TDS is a low-level design that is close to the implementation.
A representation correspondence (RCR) demonstrates the correlation between each two
adjacent requirements in the chain. The CC EAL7 certification consists of proving that
the SPM, the TDS, and the FSP satisfy the security policies, and providing certificates
about this satisfaction. In addition, the CC EAL7 also requires formal proofs of RCRs
between the SPM and the FSP, and between the FSP and the TDS.

In this paper we are concerned with proving RCRs and providing certificates about
them. We present a method for proving RCRs in the context of smart-card applica-
tions. First, we develop a framework for modelling smart-card applications such that
the formal models capture the operations of the applications, in particular our model al-
lows one to reason about card tears (or power loss) and transaction mechanism that are
present in smart-card applications. In this framework, a model of an application consists
of a set of command procedures (or simply command). Each command is presented by
two transition graphs (or control-flow graphs), one describes the normal behavior of
the command and the other describes what the command has to perform when a card
tear occurs. The FSP and the TDS are essentially models of an application. In EDEN2,
the SPM consists of two entities: one entity is a model of the application and the other
is a set of assertions (or formulas) in some logic such that the assertions describe se-
curity properties. In the sequel, we refer to the former entity when we speak about
SPM. Card readers communicate with a smart-card application by sending a sequence
of commands. We model this interaction with a main procedure that takes as the only
input a sequence of commands, and for each command, the procedure calls the cor-
responding command procedure in the application. The semantics of an application is
then characterized by the set of the main procedure’s runs.

We define RCRs between two application models as bisimulation equivalence con-
sisting of mutual simulations between the models over observable events and variables.
To this end, given two models S and T of an application, we associate with S and T
the same set of observable events and for each event we associate a mapping between
observable variables. Intuitively, we say that there is an RCR between S and T if for
every run of S, there is a run of T on the same input, and vice versa, such that (1) both
runs exhibit the same sequence of observable events, and (2) for each two equal events,
the values of corresponding observable variables coincide. Having a unified model for
smart-card applications allows us to have only a single definition of RCRs such that
the definition is applicable for RCRs between the SPM and the FSP, and between the
FSP and the TDS. Furthermore, we will show that our definition of RCR helps us prove
property preservation from one model to the other. That is, as required by the CC EAL7
certification, the RCRs must guarantee that all security properties satisfied by the SPM
are satisfied by the FSP and the TDS.

We develop a proof technique for proving RCRs. We prove RCRs between S and T
by proving the RCR between each corresponding commands in S and T . We
apply a theory of inter-program properties described in [16] to proving RCRs. Inter-
program properties are properties relating two programs. RCRs are essentially inter-
program properties. We prove RCRs by using assertions that describe data abstraction



Certification of Smart-Card Applications in Common Criteria 311

and control mapping between the transition graphs of the corresponding commands.
The theory also provides a notion of certificate about inter-program properties. Such a
certificate is essential to the CC EAL7 certification.

Proving RCRs are challenging due to nontrivial data abstractions between applica-
tion models and due to language features in which the models are written. Consider a
command checkPIN used to authenticate users by checking an input PIN against the
PIN stored on the card. The security policy does not require the PIN to be in some spe-
cific format. Thus, in the SPM the PIN can simply be a natural number. For security,
the command uses variables trial as a trial-remaining counter. If the input PIN does not
match the stored PIN, then trial is decremented, and if it gets 0, then the PIN is blocked.
In the FSP, developers usually take defensive measures. The PIN in the FSP is now an
array of natural numbers, and prior to checking the input PIN, the variable trial must
be decremented. We then have the following excerpts of over-simplified checkPIN, the
SPM and the FSP are on the lefthand and righthand, respectively:

if (pin �= input) {
trial := trial − 1;
return fail;

}

trial := trial − 1;
while (i < length) {

if (pin[i] �= input[i])
return fail;

}
If we associate an event with every update of trial, then in the SPM this event occurs at
the end of command execution, but in the FSP it occurs at the beginning. Thus, we may
end up with different sequences of observable events. This poses some difficulties in
determining observable events in RCRs. Note that in the SPM and the FSP above, the
data abstraction introduces a loop in the FSP. To prove that for every run of the SPM
there is a “corresponding” run of the FSP, one has to prove that the loop will not yield
non-terminating run. We will show later that in the presence of transaction mechanism,
we sometimes have to relax the definition of RCR. That is, we only require that for
every run of the TDS, there is a corresponding run of the FSP.

In summary the contributions of this paper is a method for proving representation
correspondences as a part of the CC EAL7 certification of smart-card applications.

The outline of this paper is the following. We first discuss our framework for for-
mally modelling smart-card applications. We then develop a notion of representation
correspondence based on this framework. Afterward we describe briefly the theory of
inter-program properties. Then, we discuss our proof technique for proving RCRs based
on the theory. We then show how RCRs allow us to preserve property in the chain of
the CC requirements. Finally, we discuss some related work and conclude this paper.

2 Formal Models and Representation Correspondences

2.1 Transition Graphs and Computation Sequences

A smart-card application is a program consisting ofm+1 procedures:main, c1,. . . ,cm,
where main is the main procedure and c1, . . . , cm are command procedures. In the se-
quel, command procedures are often called commands. Each procedure P consists of
a finite set of program points and is presented as two disjoint transition graphs (or



312 I. Narasamdya and M. Périn

program-point flow graphs) Gn
P and Ga

P . A transition graph is a finite directed graph
whose nodes are program points. Each edge of a transition graph is labelled with a
guard, an assignment instruction, a goto instruction (or a skip instruction), or a pro-
cedure call. The transition graph Gn

P describes the normal behavior of P , while the
transition graph Ga

P describes what the application has to do when a card tear occurs
during the execution of P .

We assume that every transition graph GP has a unique entry point, denoted by
entry(GP ) and a unique exit point, denoted by exit(GP ). As such, every procedure
P has a unique entry point entry(P ) = entry(Gn

P ), and two exit points, normal exit
point exitn(P ) = exit(Gn

P ) and abrupt exit point exita(P ) = exit(Ga
P ).

The main procedure takes as input a sequence of input commands. In turn, the pro-
cedure reads each input command of the form (C, v̄), where C is the command name
and v̄ are the input values for C. For each input command (C, v̄), the main procedure
calls the corresponding command C on input v̄, or call C(v̄).

We introduce a restriction on command procedures, that is, for every command pro-
cedure P , the graphs Gn

P and Ga
P do not contain edges labelled with procedure calls.

Similarly, the graph Ga
main does not contain such edges. This restriction does not limit

the applications that can be modelled in our framework. Procedures called by command
procedures in smart-card applications are usually not recursive and thus can be inlined.
For technical reason, we assume that, for every command procedure, Gn

main contains
an edge labelled with a call to the procedure.

We describe the run-time behavior of an application as sequences of configurations.
A configuration of a run is a pair (p, σ) where p is a program point and σ is a state
mapping variables to values. Given a procedure P , a configuration (p, σ) is called an
entry configuration for P if p is an entry point of P , a normal exit configuration for P
if p is a normal exit point of P , and an abrupt exit configuration for P if p is an abrupt
exit point of P

The semantics of an application is defined as a transition relation with transitions of

the form (p1, σ1)
l�→ (p2, σ2), where (p1, σ1) and (p2, σ2) are configurations and l is a

transition label. Transitions are of the following kinds:

– Intra-graph transition, where the pair (p1, p2) is an edge of a transition graph, l is
the label of the edge such that l is not a procedure call.

– Call and return transitions, where l is a procedure call and a special label ret, re-
spectively.

– Abrupt transition, where p1 is in Gn
P , p2 is entry(Ga

P ), l is a special label ab, and
σ1 = σ2.

We allow labels of transitions (or edges of transition graphs) to be associated with
events, which means that the transitions emit the events. We will use a special event
variable ε to store emitted events. That is, if a transition emits an event E, then it is the
same as an assignment of E to ε. Details of transition relations are in [12].

We use the following assumptions for transition relations. First, for every procedureP ,

every pointp in Gn
P , and every stateσ, there is a transition (p, σ) l�→(entry(Ga

P ), σ). That
is, a card tear can occur non-deterministically. Second, there is no transition from an exit
configuration (p, σ), where p = exita(P ) for every procedure P , or p = exitn(main).
Third, intra-graph transitions are deterministic. Forth, transitions are atomic.



Certification of Smart-Card Applications in Common Criteria 313

A computation sequence of an application A is either a finite or an infinite sequence
of

(p0, σ0)
l1�→ (p1, σ1)

l2�→ (p2, σ2) . . .

where, for all i, the transition (pi, σi)
li+1�→ (pi+1, σi+1) is justified by a transition in

the transition relation of A. When a computation sequence is finite, then it ends with a
configuration. A run of a procedure P in A from a state σ0 is a computation sequence
of A such that p0 = entry(P ). For every run of a command procedure P , the run
terminates when it reaches an exit configuration for P , and can only terminate in such a
configuration. We say that the run terminates normally (terminates abruptly) if the final
configuration is a normal (abrupt) exit configuration for P . A run of an application A
from a state σ is a run of the procedure main from σ. Especially for main, a run of
main terminates normally if the final configuration is a normal exit configuration for
main, and terminates abruptly if the final configuration is an abrupt exit configuration
for any procedure. A run of a transition graph G in an application A is a computation
sequence of A such that p0 = entry(G) and for all i, the pairs (pi, pi+1) is an edge of
the graph.

2.2 Representation Correspondences

For our discussion on representation correspondences (RCRs), we assume that we are
given two models S and T of an application, where T is an implementation of S. That
is, S and T can be, respectively, an SPM and an FSP, or they can be, respectively an
FSP and a TDS. For simplicity, we assume that each command in S has a corresponding
command, with the same name, in T , and vice versa. We assume further that S and T
have disjoint sets of transition graphs and disjoint sets of variables.

To define RCRs, we associate with both S and T the same set of observable events,
and for each observable event we associate a one-to-one correspondence between ob-
servable variables of S and T at the start or final configurations of the transitions that
emit the event. Intuitively, there is an RCR between S and T if for every run of T , there
is a run of S on the same input, such that (1) both runs terminate or generate infinite
computation sequences, (2) these runs exhibit the same sequence of observable events,
(3) the values of corresponding observable variables in the configurations of each cor-
responding events coincide, and (4) vice versa for every run of S.

We first discuss the set of observable events. For every procedure P , we associate
every incoming edge into exitn(P ) with either a PassP or a FailP events. The first event
denotes a successful completion of a run of P , while the latter denotes a logic failure.
We associate every incoming edge into exita(P ) with an AbruptP event and every call
transition to a procedure P with a CallP event.

Next, we associate one-to-one correspondences between observable variables for
events. For each command procedure P and for every configuration γ such that there

is a configuration γ′ and γ′ l�→ γ where l is associated with PassP , we associate with
γ a set OS of observable variables if γ belongs to an S’s run, and a set OT if γ be-
longs to a T ’s run, such that there is a one-to-one correspondence Obs between OS

and OT . Similarly for l associated with FailP and AbruptP . When l is associated with



314 I. Narasamdya and M. Périn

CallP , then, instead of γ, we associate OS and OT with γ′ such that if the parame-
ters of P in S and in T are, respectively, x̄ = x1, . . . , xm and ȳ = y1, . . . , yn, then
m = n, {x1, . . . , xm} ⊆ OS and {y1, . . . , yn} ⊆ OT , and Obs maps xi to yi for all
i = 1, . . . ,m. We also associate entry configurations of main with the sets OS and OT

such that the input variables of S and T are mapped to each other.
We associate observation function O with each S and T to identify observable con-

figurations and transition labels. That is, for a configuration γ, the function O(γ) = γ if
γ is associated with a set of observable variables, otherwise O(γ) = ⊥. Similarly,
for a label l of a transition, O(l) = e if l emits an observable event e, otherwise
O(l) = ⊥. An observation sequence of a computation sequence R, denoted by o(R),
is obtained by turning R into an alternating sequence of configurations and transition
labels, and applying the observation function O to each configuration and transition

label of R. That is, for a computation sequence R = γ0
l1�→ γ1

l2�→ γ2
l3�→ . . ., we have

o(R) = O(γ0),O(l1),O(γ1),O(l2),O(γ2),O(l3), . . .. A ⊥-free observation sequence
of a computation sequence R, denoted by o⊥(R) is obtained from o(R) by suppressing
⊥ in o(R).

We say that two states σ1 and σ2 are compatible with respect to a one-to-one cor-
respondence Obs between the sets O1 and O2 of observable variables in the domain
of, respectively, σ1 and σ2 if for every x ∈ O1, we have σ1(x) = σ2(Obs(x)). Two
configurations γ1 = (p1, σ1) and γ2 = (p2, σ2) are compatible if there are sets O1 and
O2 of observable variables associated with γ1 and γ2 such that (1) there is a one-to-one
correspondenceObs betweenO1 andO2, and (2) σ1 and σ2 are compatible with respect
to Obs.

DEFINITION 2.1. We say that two computation sequencesR1 and R2 are observation-
ally equivalent (or stuttering equivalent) if, let

o⊥(R1) = θ1, θ2, . . . o⊥(R2) = θ1, θ′2, . . . ,

o⊥(R1) and o⊥(R2) are of the same length, and for all i, we have either (1) θi = γ and
θ′i = γ′, for configurations γ and γ′, such that γ and γ′ are compatible, or (2) θi = θ′i.

��

DEFINITION 2.2. There is a representation correspondence between a procedure P of
S and a procedure P ′ of T if for every run R of P from a configuration γ, there is a run
R′ of P ′ from a configuration γ′, where γ and γ′ are compatible, and vice versa, such
that R and R′ are observationally equivalent.

There is a representation correspondence between S and T if there is a representa-
tion correspondence between main of S and main of T . ��

In the above definition, due to call transitions and our assumption that Gn
main contains

at least a call edge for every command procedure, the configurations γ and γ′ have sets
of observable variables associated with them. Note that to have γ and γ′ compatible,
then the procedures P and P ′ must refer to the same command. The notion of RCR for
procedures is useful for proving RCR between S and T . Since main can be thought of
as a loop that read input command and call the command, then proving RCR between
S and T can be reduced to proving RCR between each corresponding commands.



Certification of Smart-Card Applications in Common Criteria 315

3 Theory of Inter-Program Properties

In this section we describe an abstract theory for describing and proving properties that
relate two programs, or inter-program properties. A detailed description of the theory
can be found in [16]. The theory deals with programs that are represented as transition
graphs described in the previous section.

For describing and proving inter-program properties, the theory considers two pro-
gramsP1 and P2 as a pair (P1, P2), such that they have disjoint flow graphs and disjoint
sets of variables. A state σ for the pair (P1, P2) can be considered as a pair (σ1, σ2) = σ,
such that σ1 is for P1 and σ2 is for P2. A configuration is a tuple (p1, p2, σ1, σ2) such
that (p1, σ1) is a configuration for P1 and (p2, σ2) is a configuration for P2. The seman-
tics of (P1, P2) is a transition relations containing two kinds of transitions:

1. (p1, p2, σ1, σ2) �→ (p′1, p2, σ
′
1, σ2), such that (p1, σ1) �→ (p′1, σ

′
1) is in P1;

2. (p1, p2, σ1, σ2) �→ (p1, p
′
2, σ1, σ

′
2), such that (p2, σ2) �→ (p′2, σ

′
2) is in P2.

In the description of the theory in this section, we omit the transition labels for simplic-
ity. Thus, a computation sequence is simply a sequence of configurations.

The theory assumes an assertion language and uses relation σ |= α to mean that the
state σ satisfies the assertion α. For a configuration γ = (p, σ), we write γ |= α for
σ |= α. An assertion is valid if it is satisfied by any state.

The formalization of the theory is based on the notion of assertion function. An
assertion function of (P1, P2) is a partial function

I : PointP1 × PointP2 → Assertion

mapping pairs of program points of (P1, P2) to assertions, such that I is defined on
(entry(P1), entry(P2)) and (exit(P1), exit(P2)). This requirement is technical as one
can always define I on these pairs as �. Assertions defined on such an I are called
inter-program assertions. Given a pair of points p̂ and a pair of states σ̂ of (P1, P2), we
say that p̂ is I-observable if I(p̂) is defined. For a configuration γ = (p̂, σ̂), we write
γ |= I if I(p̂) is defined and σ̂ |= I(p̂).

The theory introduces the notion of weakly-extendible assertion function as a well-
suited notion for describing inter-program properties.

DEFINITION 3.1. Let I be an assertion function of a pair (P1, P2) of programs. The
function I is weakly extendible if every run

γ0, . . . , γi

of (P1, P2), such that i ≥ 0, γ0 |= I , γi |= I , and γi is not an exit configuration, can be
extended to a run

γ0, . . . , γi, . . . , γi+n

such that (1) n > 0, and (2) γi+n |= I .

In [16] we show that, without appealing to the standard proof technique that uses well-
founded set, and using only inter-program assertions and the notion of weak extendibil-
ity, we can prove program equivalence and mutual simulations of two programs where
one program has a loop that does not correspond to any loop in the other program, or
even the loop is eliminated in the other program. For proving RCRs, we often encounter



316 I. Narasamdya and M. Périn

such a situation. For example, PIN is a scalar variable in the SPM, but is an array vari-
able in the FSP. So, for checking and updating the PIN, the FSP contains loops that do
not exist in the SPM.

We now develop verification conditions that guarantee weak extendibility. To this
end, we need a notion of path of pairs of programs. A path π of (P1, P2) can be viewed
as a trajectory in a two dimensional space: π = (π1, π2), where π1 is a path in the flow
graph of P1 and π2 is a path in the flow graph of P2. A path is trivial if it consists of
a single pair of points. Given a path π and an assertion ψ, we denote by wpπ(ψ) and
wlpπ(ψ), respectively, the weakest and the weakest liberal preconditions of π and ψ.
Since we have to compute these preconditions, we assume that the programming lan-
guage that we consider has the weak precondition property: for every path π and every
assertion ψ, wpπ(ψ) exists and can effectively be computed. One can also compute
wlpπ(ψ) since it is equivalent to wpπ(ψ) ∨ ¬wpπ(�). The precondition for paths of
pairs of programs can also be derived from the precondition of paths of single programs.

DEFINITION 3.2. Let I be an assertion function and Π be a set of nontrivial paths
such that, for every π ∈ Π , we have start(π) and end(π) to be I-observable. Denote
by Π |(p, p′) the set of paths in Π whose first pair of points is (p, p′).

The weak verification condition W associated with I and Π consists of assertions of
the form

I(start(π)) ⇒ wlpπ(I(end(π))),

where π ∈ Π and assertions of the form

I(p) ⇒
∨

π∈Π|(p,p′)

wpπ(�)

where (p, p′) is I-observable. ��

The first kind of assertion is a standard assertion for proving partial correctness of path.
The second kind of assertion expresses that, whenever a configuration at p satisfies I(p),
the computation from this configuration will inevitably follows at least one path in Π .

THEOREM 3.3. Let W, I and Π be as in Definition 3.2. If every assertion in W is
valid, then I is weakly extendible. ��

The notion of weak verification condition is our notion for certificates that certify inter-
program properties. In the next section we will use inter-program assertions to describe
correspondences between observable variables. Later, to prove an RCR between two
commands, one has to prove other inter-program properties between transition graphs
of the commands. These program properties altogether describe the RCR. To prove
such properties, we define an assertion function and prove that the function is weakly
extendible. The certificates certifying these properties form a certificate for the RCR.

4 Proving Representation Correspondences

For our discussion on proving RCRs, we consider the application models S and T
described in Section 2. To prove an RCR between S and T , we are only concerned with



Certification of Smart-Card Applications in Common Criteria 317

command procedures, that is, for each corresponding command procedures, we prove
an RCR between the procedures.

For two models S and T , there is usually a one-to-one correspondenceObs between
global observable variables of S and T such that the values of each corresponding
variables coincide at the entry and normal exit configurations of every command run.
To this end, let us consider some command procedure P . Let Obsp, Obsf , Obsa be
one-to-one correspondences specified for the end configurations of transitions emitting,
respectively, a PassP , a FailP , an AbruptP event. For simplicity of presentation, in the
sequel let Obsp = Obsf . Let Obsc be a one-to-one correspondence specified for the
start configurations of transitions emitting CallP . We require that Obs is included in
Obsp and Obsc. We say that a correspondence f is included in a correspondence g if
for every mapping x �→ y in f is a mapping in g.

Denote by PS and PT , respectively, the commandP in S and in T . Given a function
f , we denote by dom(f) the domain of f . For simplicity of notation, given a one-to-
one correspondence g, we abbreviate the assertion

∧
x∈dom(g) x = g(x) to simply g. To

prove an RCR between PS and PT , we do the following steps:

1. Letα be an assertion, such that the assertionα ⇒ Obsc is valid. That is, α describes
the correspondence Obsc. The assertion α can also describe invariants specific to
S or T . We prove that α is satisfied by the initializations of global variables.

2. We assert α at (entry(Gn
P S ), entry(Gn

P T )) and α′ at (exit(Gn
P S ), exit(Gn

P T ))
such that the assertions α′ ⇒ Obsp and α′ ⇒ α are valid. That is, we assume
that the correspondence expressed by α holds in the entry configurations of the
procedures, and is preserved in the exit configurations.

3. Let ψ, ψ′ be assertions asserted at, respectively, (entry(Ga
P S ), entry(Ga

P T )) and
(exit(Ga

P S ), exit(Ga
P T )) such that the assertion ψ′ ⇒ Obsa is valid. That is, the

correspondenceObsa holds when procedure runs terminate abruptly.
4. We prove that for every finite run of Gn

P T , there is a finite run of Gn
P S from config-

urations satisfying α, and vice versa, such that the final configurations of the runs
satisfy the assertion ψ.

One can demonstrate (1) easily since it amounts to proving that the initializations of
global variables satisfy α. In the sequel we focus on the steps (2), (3), and (4).

We present our proof technique for proving RCRs of commands by means of a real
example of a command called checkPIN that is used for authenticating users. In this
paper we only consider proving RCRs between the SPM and the FSP of the command.
Proving RCRs between the FSP and the TDS follows the same steps above. The SPM
is written in a domain-specific language, called command description language, that
resembles a subset of Java. Each command can be thought of as a method that has
clauses: one pass clause describing conditions and state updates of successful comple-
tion of a run of the command; one or more fail clauses describing logic failures and the
corresponding state updates; and one abrupt clause describing abrupt behavior of the
command. For each command procedure P , the pass and fail clauses of the command
constitute the transition graph Gn

P , while the abrupt clause constitutes the transition
graph Ga

P .



318 I. Narasamdya and M. Périn

trial > 0

length = l
val := ⊥

pin = p

val := �

trial := MAX

trial := trial − 1

trial > 0

i := 0

i < l

trial := MAX

val := �
val := ⊥

pin[i] = p[i]

i := i + 1

trial := trial − 1

pe

p1

p′
2

p′
3

p′′
1

p′
e

p′
1

px

p′
x

val := ⊥

p3

p2
p′′

3

ae

ax

Abrupt

val := ⊥

Abrupt

val := ⊥
a′

e

a′
x

Fig. 1. SPM and FSP of checkPIN

The FSP is written in a subset of Java. Each command procedure P is a method of
the form:

P ( . . . ) { t ry { . . . } catch ( CardTearException ) { . . . } }
The try part constitutes Gn

P , while the catch part constitutes Ga
P . Details of SPM and

FSP can be found in our technical report [12].

EXAMPLE 4.1. We prove that there is an RCR between two corresponding commands
procedure Pc by considering their transition graphs Gn

Pc
and Ga

Pc
separately. The left-

hand pair of transition graphs in Figure 1 is Gn
checkPIN of the SPM, on the left of the pair,

and Gn
checkPIN of the FSP, on the right of the pair. As a shorthand, we call the former P1

and the latter P ′
1. For disjointness, we assume that all variables in P ′

1 are primed.
First the global variables of the SPM that we want to observe are trial, pin, val, and

MAX. They correspond to their primed counterparts in the FSP. Additionally, at the
entries of P1 and P ′

1, the input pin p corresponds to p′, and at the exits of P1 and P ′
1,

the event variable ε corresponds to ε′. Next, we have to define the equality between
scalar PIN and array PIN. Every array PIN p is associated with a length l; we write
this association as (p, l). We introduce predicate ≡ between such pairs such that, given
array PINs (p, l) and (p′, l′), we say that (p, l) ≡ (p′, l′) if l = l′, l ≥ 0, and for all
i = 0, . . . , l−1, we have p[i] = p′[i]. We introduce a predicate ∼ which is axiomatized
as follows: for every scalar PINs w, x and for every array PINs y, z,

x ∼ y ⇒ (y ≡ z ⇔ x ∼ z) x ∼ y ⇒ (w = x ⇔ w ∼ y).

The predicate ∼ defines the equality between a scalar PIN and an array PIN.
The following assertions express the correspondence between observable variables:

φ1 ⇔ trial = trial′

φ2 ⇔ val = val′
φ3 ⇔ pin ∼ (pin′, length′)
φ4 ⇔ MAX = MAX′

φ5 ⇔ p ∼ (p′, l′)
φ6 ⇔ ε = ε′



Certification of Smart-Card Applications in Common Criteria 319

Next, we define an assertion function I1 of (P1, P
′
1) as follows:

I1(pe, p
′
e) =

∧5
i=1 φi I1(px, p

′
x) =

∧6
i=1 φi

I1(p1, p
′
1) =

∧5
i=1 φi ∧ trial > 0

I1(p1, p
′′
1) =

∧5
i=2 φi ∧ trial > 0 ∧ trial = trial′ + 1

∧length′ = l′ ∧ i′ < l′ ∧ (∀j.0 ≤ j < i′ ⇒ pin′[j] = p′[j])
I1(p2, p

′
2) =

∧5
i=1 φi ∧ pin = p ∧ (pin, length) ≡ (p, l)

I1(p3, p
′
3) = I1(p3, p

′′
3) =

∧5
i=1 φi ∧ pin �= p ∧ (pin, length) �≡ (p, l)

In this example, we prove an interesting part of RCR, that is, without any presence
of card tears, for every runR of P1, there is a run R′ of P ′

1 from compatible states, such
that R and R′ are observationally equivalent. We denote by πp,p′ a path from p to p′,
and by πp a trivial path consisting only of point p. We prove that I1 is weakly extendible
by the following reasoning. First, for every run of (P1, P

′
1) from an entry configuration

that satisfies I1(pe, p
′
e), the run can reach (p1, p

′
1) by following the path (πpe,p1 , πp′

e,p′
1
)

such that the end configuration satisfies I1(p1, p
′
1). From this configuration, the run

can be extended either by following the path (πp1,p3 , πp′
1,p′′

3
) or by following the path

(πp1 , πp′
1,p′′

1
) such that the end configuration satisfies I1. From the configuration that

satisfies I(p1, p
′′
1), the run can be extended either by following (πp1 , πp′′

1 ,p′′
1
), or by

following (πp1,p2 , πp′′
1 ,p′

2
), or by following (πp1,p3 , πp′′

1 ,p′
3
). Without any of these paths,

I1 would not be weakly extendible. Thus, we have shown that, using the notion of weak
extendibility, these paths show that the loop in P ′

1 terminates.
Note that every possible transition of P1 is described by the nontrivial paths that

constitute the first elements of all pairs of paths above. Therefore, we have proved that
for every run R of P1, there is a run R′ of P ′

1 from compatible states, such that R and
R′ are observationally equivalent. We can use the same reasoning for proving the other
direction. Indeed, by taking the set of all the above pairs of paths, one can prove that all
assertions of the weak verification condition associated with I1 and the set are valid.

Consider now the righthand pair of transition graphs in Figure 1 is Ga
checkPIN of the

SPM, on the left of the pair, and Ga
checkPIN of the FSP on the right of the pair. As a

shorthand, we call the former P2 and the latter P ′
2. The SPM and FSP only have to

guarantee that the validation status is set to false in case of power loss. That is, the only
observable variables are val and its primed counterpart.

We define an assertion function I2 of (P2, P
′
2) such that we have I2(ae, a

′
e) = �

and I2(ax, a
′
x) = (val = val). It is easy to that I2 is weakly extendible, which means

that if a card tear occurs and the configurations of the runs at (ae, a
′
e) satisfies I2, then

both runs will emit the same event, which is AbruptcheckPIN and they both terminate in
compatible states.

Finally we have to prove that for every finite run of P1 with end state σ, there is a
finite run of P ′

1 with end state σ′, and vice versa, such that (σ, σ′) satisfies I2(ae, a
′
e).

Since I2(ae, a
′
e) is satisfied by every state, then we have finished our proof. ��

Proving RCRs between an FSP and a TDS is challenging due to the features of the
language of the TDS. A TDS is written in a subset of Java Card [15], which includes
transient and persistent memory as well as transaction mechanism. When a card tear
occurs, data stored in persistent memory will be kept in the memory, while those stored



320 I. Narasamdya and M. Périn

in transient memory will be lost. Variables whose values are stored in persistent memory
are called persistent variables, while those whose values are stored in transient memory
are called transient variables.

Transactions are managed by methods beginTransaction, commitTransaction, and
abortTransaction with standard functionalities. The depth of a transaction is at most 1.
When a transaction is in progress, the updates of persistent variables are conditional, in
the sense that the updates will be materialized if commitTransaction is called. Regardless
a transaction is in progress or not, the updates of transient variables are unconditional.
To model card tears and transactions, we use the desugaring method in [9]. Each com-
mand in the TDS is a Java method, and desugaring the command means translating the
method into the same form as that of the FSP, that is, the method has a big try-catch
construct. The catch construct sets all transient variables to their default values, and
cancel the updates of persistent variables if the card tear occurs when a transaction is in
progress.

One might have to relax Definition 2.2 of RCRs to prove RCRs between an FSP and
a TDS. Let us consider the following toy commands:

P1:

x := 5;
y := 6;

P2:

ε

P ′
1:

if (inTrans) return ERROR;
xb := x′;
yb := y′;
inTrans := �;
x′ := 6;
y′ := 5;
inTrans := ⊥;

P ′
2 :

if (inTrans) {
x′ := xb;
y′ := yb;

}

The programs (or transition graphs) P1 and P2 constitute the try and catch parts of
the FSP, respectively. (P2 has no instruction.) Similarly for P ′

1 and P ′
2 of the desugared

form of the TDS. Suppose that x′ and y′ are observable persistent variables that cor-
respond to x and y, respectively. The variables xb and yb are back-up variables for x′

and y′. The boolean variable inTrans indicates whether a transaction is in progress or
not; assume that it is false at the entry of P ′

1. In case of abrupt terminations, we want to
ensure that the above correspondence holds. To this end, we have to assert at the entries
of P2 and P ′

2 the assertion φ below:

(¬inTrans ⇒ x = x′ ∧ y = y′) ∧ (inTrans ⇒ x = xb ∧ y = yb)

For every finite run R′ of P ′
1 from a state satisfying inTrans = ⊥, there is a finite run R

of P1 such that the final configurations of the runs satisfy φ. For example, if R′ reaches
the middle of transaction, e.g., the entry of y′ := 6, thenR simply stays at the entry of
P1. However, showing the other way around is not possible. When a run R reaches the
entry of y := 6, then there is no finite run R′ of P ′

1 such that the final configurations
satisfy φ. Thus, according to Definition 2.2 there is no RCR between the commands.

To handle such an above case, one can relax Definition 2.2. That is, we only require
that for every run R of PT from a configuration γ, there is a run R′ of PS from a
configuration γ′, where γ and γ′ are compatible, such thatR andR′ are observationally
equivalent. The drawback of this relaxed definition is that if PT does not terminate



Certification of Smart-Card Applications in Common Criteria 321

and the assertion at the entries of abrupt graphs is valid, then there is always an RCR
between PT and PS . Nevertheless, with this relaxed definition, we can still preserve
security properties for S in T , as shown in the following section.

5 Property Preservation

In this section we show how security properties of the SPM can be preserved in the FSP
using RCRs. Property preservation between the FSP and the TDS can be explained in
the same way. We are only concerned with security properties that can be characterized
as partial correctness properties: a procedure P is partially correct with respect to a
precondition α and a postcondition β, denoted by {α}P{β}, if for every run of P from
a state satisfying α and reaching an exit configuration, this configuration satisfies β.

Consider again the application models S and T and the one-to-one correspondences
Obsp, Obsf , Obsa, Obsc described at the beginning of Section 4. We show property
preservation by the following theorem:

THEOREM 5.1. Let α and β be, respectively, a precondition and a postcondition for a
procedure PS such that {α}PS{β}. Let α′ and β′ be, respectively, a precondition and
a postcondition for a procedure PT such that the assertions

Obsc ⇒ (α ⇔ α′)
(Obsp ∧ ε = PassP ) ∨ (Obsf ∧ ε = FailP ) ∨ (Obsa ∧ ε = AbruptP ) ⇒ (β ⇔ β′)

are valid. If there is an RCR between PS and PT , then {α′}PT {β′}. ��

As an example, consider again the command and assertions in Example 4.1. Suppose
that the property that we want to preserve is as follows: for any run of checkPIN, the
value of variable val at the exit configuration of the run is true if and only if the run
emits a PasscheckPIN event.

Let ψ be the assertion (val = � ⇔ ε = PasscheckPIN) and ϕ be the conjunction
of the following assertions: (1) MAX > 0, (2) 0 ≤ trial ≤ MAX, and (3) trial <
MAX ⇒ val = ⊥. The above property can be expressed as a partial correctness property
{ϕ}checkPIN{ψ}. One can use standard Floyd-Hoard proof technique [6,8] to prove
the property for both the SPM and the FSP.

Suppose that we have proved that the property holds for the SPM. We have shown
in Example 4.1 that there is an RCR between the command checkPIN of the SPM and
of the FSP. Let P be the command checkPIN in the FSP. Recall again the assertions
φ1, . . . , φ6 in the example. Given an assertion α, let us denote by p(α) the assertion
obtained from α by replacing each variable in α with its primed notation. Now, since
the following assertions

∧5
i=1 φi ⇒ (ϕ ⇔ p(ϕ))

(
∧6

i=1 φi ∧ (ε = PassP ∨ ε = FailP )) ∨ (φ2 ∧ ε = AbruptP ) ⇒ (ψ ⇔ p(ψ))

are valid, then by Theorem 5.1 we have {p(ϕ)}P{p(ψ)}.



322 I. Narasamdya and M. Périn

6 Related Work and Conclusion

We developed a method for proving RCRs in the CC EAL7 certification of smart-card
applications. We presented a modelling framework by which the representations of the
SPM, the FSP, and the TDS can be modelled uniformly. Our framework is an extension
of the modelling framework of procedural programs in [18], in the sense that we model
abrupt behavior of procedures. Our definition of RCRs is mutual simulations between
two application models. We apply the theory of inter-program properties in [16] for
proving RCRs and providing certificates about them. The theory has been used for prov-
ing properties in translation validation approach to compiler verification [13,19,16]. In
this paper we have shown another venue for the application of the theory. The applica-
tion is beneficial since the theory provides a notion of certificate, which is essential in
the CC EAL7 certification.

There have been a few works on formal specification and verification in the CC
framework; closely related to ours is [4]. Their work is based on B method. Their defi-
nition of RCRs is similar to ours, in the sense that, for each command, they have a map-
ping between input-output relationships of two application models. Their work does
not address complex data abstractions like our PIN, and their commands do not con-
tain loops. However, their work has gone beyond ours in the sense that they included a
model of Java Card API for APDU commands [15].

Another related work is by Heitmeyer et. al. on verifying enforcement of data separa-
tion in the kernel of a software-based embedded device [7]. Similar to ours, their work
uses a state machine model consisting of events as a specification. Concrete code is parti-
tion into event code, trusted code, and other code. Event code corresponds to an event in
the state-machine specification and such code is annotated with preconditions and post-
conditions. Their work construct two mappings: one is between events of the state ma-
chine and of the code, and the other is between assertions describing preconditions and
postconditions of corresponding events. RCRs are proved for each corresponding events,
that is, the precondition and the postcondition of an event in the code imply, respectively,
the precondition and postcondition of the corresponding event in the specification. In
their work, event code contains no loops, and they do not prove the relation between the
code and its precondition and postcondition. Moreover, the mapping between assertions
is based only on syntactic matching. Unlike ours, their work deals with real C code.

Other works on the CC certification have not addressed RCRs, or have only given
little efforts on RCRs [3,17]. One distinguish feature in our work that has not been
addressed by others is proving property preservation using RCRs.

There has been some work related to the specification and verification of smart-
card applications, but not in the CC certification. Paper [14] describes a verification of
Mondex electronic purse based on abstract state machine (ASM). The work is not in the
CC, but it uses a notion of refinement simulation between ASMs to show correctness of
a concrete implementation. The operations (similar to commands) in Mondex are simple
and contains no loops and no complex data abstractions. The work in [2] describes
a case study in the specification and verification of an electronic purse application.
The work is concerned only with the specification and verification of commands in the
implementation code. The work can complement our work in proving properties of the
implementation code.



Certification of Smart-Card Applications in Common Criteria 323

In this paper we do not address RCRs between the TDS and the implementation
code. We assume that existing work on certified and certifying compilers [11,13] can be
used to provide RCRs between the TDS and the implementation code. We are currently
developing certification tools based on the method described in this paper. We take JML
approach [10] to specifying assertion function. That is, we use special comments to put
labels denoting program points in the programs, and write the assertion function in a
separate file. We use off-the-shelf data-flow analyses, such as global value numbering,
to assist users in defining assertion functions, so that users only concentrate on one-to-
one correspondences between observable variables. We are developing heuristics based
on observable events to alleviate the burdens of specifying paths in weak verification
conditions; this is the topic of our future work. Assertions in the verification conditions
can then be proved using SMT solvers, such as Yices [5].

References

1. Common Criteria for Information Technology Security Evaluation, Version 3.1, CCMB-
2007-09-003 (2007)

2. Breunesse, C.-B., Cataño, N., Huisman, M., Jacobs, B.: Formal methods for smart cards: an
experience report. Sci. Comput. Program. 55(1-3), 53–80 (2005)

3. Chetali, B., Nguyen, Q.-H.: Industrial use of formal methods for a high-level security evalu-
ation. In: Formal Methods, pp. 198–213 (2008)

4. Dadeau, F., Potet, M.-L., Tissot, R.: A B formal framework for security developments in the
domain of smart card applications. In: Security Conference, pp. 141–155 (2008)

5. Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)

6. Floyd, R.W.: Assigning meaning to programs. In: Schwartz, J.T. (ed.) Proceedings of Sym-
posium in Applied Mathematics, pp. 19–32 (1967)

7. Heitmeyer, C.L., Archer, M., Leonard, E.I., McLean, J.: Formal specification and verification
of data separation in a separation kernel for an embedded system. In: CCS 2006: Proceedings
of the 13th ACM conference on Computer and communications security, pp. 346–355. ACM,
New York (2006)

8. Hoare, C.A.R.: An axiomatic basis for computer programming. CACM 12(10), 576–580
(1969)

9. Hubbers, E.-M.G.M., Poll, E.: Reasoning about card tears and transactions in Java Card. In:
Wermelinger, M., Margaria-Steffen, T. (eds.) FASE 2004. LNCS, vol. 2984, pp. 114–128.
Springer, Heidelberg (2004)

10. Leavens, G., Cheon, Y.: Design by contract with JML (2003)
11. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler with a

proof assistant. SIGPLAN Not. 41(1), 42–54 (2006)
12. Narasamdya, I., Périn, M.: Certification of smart-card applications in common criteria. Tech-

nical Report TR-2008-14, Verimag (September 2008)
13. Rinard, M., Marinov, D.: Credible compilation with pointers. In: Proceedings of the FLoC

Workshop on Run-Time Result Verification, Trento, Italy (July 1999)
14. Schellhorn, G., Grandy, H., Haneberg, D., Reif, W.: The mondex challenge: Machine

checked proofs for an electronic purse. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM
2006. LNCS, vol. 4085, pp. 16–31. Springer, Heidelberg (2006)



324 I. Narasamdya and M. Périn

15. Sun Micro systems, Inc, Palo Alto, California. Java Card 3.0 Platform Specification (2008),
http://java.sun.com/javacard/3.0/

16. Voronkov, A., Narasamdya, I.: Proving inter-program properties. Technical Report TR-2008-
13, Verimag (2008)

17. Wilding, M., Greve, D.A., Hardin, D.: Efficient simulation of formal processor models. For-
mal Methods in System Design 18(3), 233–248 (2001)

18. Zaks, A., Pnueli, A.: CoVaC: Compiler validation by program analysis of the cross-product.
In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 35–51. Springer,
Heidelberg (2008)

19. Zuck, L.D., Pnueli, A., Goldberg, B.: VOC: A methodology for the translation validation of
optimizing compilers. J. UCS 9(3), 223–247 (2003)

http://java.sun.com/javacard/3.0/


Transformation of Type Graphs with Inheritance
for Ensuring Security in E-Government

Networks

Frank Hermann, Hartmut Ehrig, and Claudia Ermel

Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin

{frank.hermann,hartmut.ehrig,claudia.ermel}@tu-berlin.de

Abstract. E-government services usually process large amounts of con-
fidential data. Therefore, security requirements for the communication
between components have to be adhered in a strict way. Hence, it is
of main interest that developers can analyze their modularized models
of actual systems and that they can detect critical patterns. For this
purpose, we present a general and formal framework for critical pattern
detection and user-driven correction as well as possibilities for automatic
analysis and verification at meta-model level. The technique is based on
the formal theory of graph transformation, which we extend to transfor-
mations of type graphs with inheritance within a type graph hierarchy.
We apply the framework to specify relevant security requirements.

The extended theory is shown to fulfil the conditions of a weak
adhesive HLR category allowing us to transfer analysis techniques and
results shown for this abstract framework of graph transformation. In
particular, we discuss how confluence analysis and parallelization can be
used to enable parallel critical pattern detection and elimination.

1 Introduction

Software systems for e-government services have to provide a platform, where
internal and external users can input and process large amounts of confidential
data. Therefore it is important that considerable efforts are made to secure such
data. To improve the security of software systems, recent research has identified
that security analysis should be integrated into software engineering techniques
and security should be considered from the early stages of the software systems
development process [2]. Existing security modelling frameworks such as the
UML profile UMLsec [3] support the design of security-sensitive systems by offer-
ing stereotypes to describe policies of system parts like communication channels
or subsystems. Models then can be analyzed to check the satisfaction of security
policies, such as access control conditions. Common techniques to elicit secu-
rity requirements are based on use case modeling and goal-oriented approaches
[4]. The problem is that these techniques are better suited for the elicitation
of functional requirements. Security requirements being non-functional require-
ments are closely related to system architecture design and frequently require

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 325–339, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



326 F. Hermann, H. Ehrig, and C. Ermel

architectural changes as reactions to detected critical patterns. Moreover, the
UMLsec profile specifies only core security requirements and has to be refined
for more specific application fields like secure e-government services.

In order to be able to specify flexible architectural changes as reactions to
detected critical patterns in the design of e-government systems, we propose
in this paper a dynamic, general modelling approach based on typed graph
transformation for critical pattern detection and elimination.

Public administration is based on a strict hierarchical structure of e-govern-
ment networks. We reflect this fundamental design paradigm in our modelling
approach by supporting hierarchies along a chain of meta-model layers. The
common approach of meta-modelling uses UML class diagrams equipped with
OCL constraints to model a domain-specific language’s (DSL’s) abstract syn-
tax in a declarative way (see e.g. the MOF approach by the OMG [5]). Graph
grammars [6] are a more constructive alternative, based on a formal categorical
framework which can also be used for formal analysis and verification. A DSL
here is modelled by a type graph capturing the definition of the underlying sym-
bol and relation types. Instances of a DSL are given by graphs typed over (i.e.
conforming to) the type graph, and can be further restricted by defining rule-
based instance generation operations. A DSL type graph corresponds closely to
a meta-model, i.e. also inheritance relations are used1. Hence, the main techni-
cal contribution of this paper lies in solving the challenge of transformation of
graphs with inheritance hierarchies.

As running example, we consider an e-government system application which
is based on a standard given by the E-Government Manual of the Federal Office
for Information Security in Germany. In particular, we here focus on Chapter
IV [8]. There are four main zones in the architecture of an e-government system
(depicted in Fig. 1), one client zone for the external view and three security
zones, which are under control of the corresponding government institution.

E-government services are installed on web servers in zone one, which can
access actual applications of the public agency in zone two, but they are not
directly connected to confidential data. Hiding these data in zone three improves
the security against external attacks. If the data was stored in zone two already,
an intrusion on a web server could directly enable scans of the data file system
and further more critical changes.

In the following sections we discuss how this standard structure of an e-
government network can be refined, customized and analyzed on the basis of
formal type graph transformation with inheritance. Transformations and analy-
sis are performed on the type graph of the e-government network visualized in
Fig. 1. The overall model consists of a hierarchy of models with several meta-
levels, all formalized by type graphs. Type graphs with inheritance and typed
graph transformation have been introduced already in [6,9] but without trans-
formation of the meta-levels including inheritance. The new formal approach
in this paper concerns a generalization of typed graph transformation to the

1 Note that the type graphs used for network modelling in our previous paper [7] did
not yet allow the use of inheritance.



Transformation of Type Graphs with Inheritance for Ensuring Security 327

TGEGov
(concrete syntax)

Client

Internet Application
server

Web
server

Database

Directory
service

Legacy
systems

Connection setup

Data flow

Security
zone I

Security
zone II

Security
zone III

Client
zone

Fig. 1. Scenario: structure of E-Government networks

transformation of type graphs with inheritance. The key concepts thus are graphs
with inheritance, called I-graphs, and I-graph morphisms based on clan mor-
phisms [9], coming up with a new category IGraphs, which is shown to fulfil the
requirements of weak adhesive HLR categories [6]. This allows us to make use
of formal techniques for confluence and dependency analysis to analyze critical
pattern detection and elimination in the e-government network model.

Graphs with inheritance could also be transformed by encoding the graphs to
plain graphs with the help of a special edge type for the inheritance relation and
performing standard graph transformation on them. But this leads to several
problems. All inheritance paths have to be translated to direct edges, and after
performing a transformation step the resulting graph would have to be extended
by the edges which form the transitive closure of the inheritance relation. Fur-
thermore, extending matching to inheritance hierarchies, as considered in this
paper, is not possible if inheritance is encoded by special edges in plain graphs.

The paper is structured as follows: In Sec. 2 we show how type graph rules
and transformations including the handling of inheritance can be used to model
network configurations for secure client-server architectures for e-government
networks [8]. Thereafter, we define the basic formal constructions for transform-
ing type graphs with inheritance and show important properties in Sec. 3, which
will then be used in Sec. 4 for analyzing the e-government network model. Sec. 5
discusses related work, and Sec. 6 concludes the paper. Our technical report [22]
contains the full proofs for the presented results.

2 Modelling E-Government Networks

In this section we show how type graph transformations including the handling
of inheritance can be applied for developing and maintaining meta-models for
e-governments networks [8].

Example 1 (Type Graphs for Network Configurations). Graph GEGov in the
lower left corner of Fig. 2 is an instance-level graph typed over the type graph
TGEGov for network configurations in the area of e-government. Graph GEGov is
shown in concrete syntax in the lower right corner of Fig. 2 and describes a client,



328 F. Hermann, H. Ehrig, and C. Ermel

Node

Client

Server

Srv_I Srv_II Srv_III

ConSetup

DataFlow

PC:Client WebS:Srv_I AS:Srv_II DirS:Srv_III

DBS:Srv_IIIp_c:ConSetup

p_d:DataFlow

TGWeb

LegacyS:Srv_IIIw_d:DataFlow
a_d3:DataFlow

a_c1:ConSetup

a_d2:DataFlow

w_c:ConSetup a_d1:DataFlow

a_c2:ConSetup

a_c3:ConSetup

TGEGov

1:p_c

6:w_d

Roxen:WebS

Dell:PC

BEA:AS

2:p_d
5:w_c

OracleA:AS

4:w_d

3:w_c

9:a_c2

FTP:DirS
10:a_d2

7:a_c1

OracleD:DBS
8:a_d1

GEGov

Dell PC

FTP

Roxen

Oracle

BEA

OracleD

Fig. 2. Instance Graph GEGov and Type Graph Hierarchy TGEGov → TGWeb

which is connected to services of the e-government institution. TGEGov itself is
typed over the more abstract type graph TGWeb which models domain specific
languages of client-server architectures. Type mappings like TGEGov → TGWeb

are denoted by the type name following the respective node or edge name after
the colon, e.g. the node “PC:Client” in TGEGov is mapped to the node “Client”
in TGWeb.

The main idea of graph transformation is the rule-based modification of
graphs, which represent the abstract syntax of models. While standard graph
transformation [6] considers transformations of instances typed over a given type
graph only, we present an extension in Sec. 3 to deal with more general transfor-
mations including transformations of type graphs with inheritance, which may
be typed over a type graph of the next meta level.

The core of a graph transformation rule p = (L l←− K
r−→ R) as defined in [6]

is a triple of graphs (L, K, R), called left-hand side, interface and right-hand side,
and two injective graph morphisms L ←l− K and K −r→ R. Interface K contains
the graph objects which are not changed by the rule and hence occur both in L
and in R. Applying rule p to a graph G means to find a match m of L in G and
to replace this matched part m(L) in G by the corresponding right-hand side R

of the rule, thus leading to a graph transformation step G
p,m
=⇒ H .

Note that a rule may only be applied if the gluing condition is satisfied, i.e.
the rule application must not leave dangling edges, and for two objects which
are identified by m, the rule must not preserve one of them and delete the other



Transformation of Type Graphs with Inheritance for Ensuring Security 329

one. Furthermore, a rule p may be extended by a set of positive or negative
application conditions (PACs and NACs) [10,6]. Intuitively, a NAC forbids the
presence of a certain pattern in graph G, while a PAC requires it.
A match L

m−→ G satisfies a NAC with the in-
jective NAC morphism n : L → NAC, if there is
no injective graph morphism NAC

q−→ G with
q ◦ n = m (where “◦” denotes composition of

NAC

q
|�

��

���
L

m
��

n��

(PO1)

K
l�� r 



��
(PO2)

R

m∗
��

G D�� 

 H

morphisms), as shown in the diagram to the right. Analogously, a PAC is sat-
isfied if there exists such an injective graph morphism PAC

q−→ G. Our notion
of graph transformation is called double-pushout approach (DPO) since both
squares in the diagram are pushouts in the category of graphs, where D is the
intermediate graph after removing m(L) in G and in (PO2) H is constructed as
gluing of D and R along K.

The following examples show how changes of type graphs with inheritance,
like TGWeb and TGEGov in Fig. 2, can be defined in a formal and concise way.

Example 2 (Rules for Editing Network Meta-Models). Fig. 3 and the top line
of Fig. 4 show some typical editing rules, typed over TGWeb, where numbers
specify the rule morphisms. Interface K contains the numbered elements in L
only and is not shown explicitly in Fig. 3. The first two rules insert new nodes
and connections. Note that rule “createCS()” can be applied to any pair of nodes,
because the node types are specified abstractly. Rule “setUpdateConnection()”
contains a NAC and defines the controlled extension of connections, i.e. a pair
of links of types “ConSetup” and “DataFlow”, starting at a server node in zone
3. A new connection for requesting server updates can be established, but only
if there is no incoming connection via the same server, because this would ease
an attack from an external Internet connection.

Finally, rule “insertSupertype()” given by the top line in Fig. 4 specifies a
sample refactoring operation, where a new super type node is created having
three nodes of type “Serv III” as specializations.

Example 3 (EGov Type Graph Transformation Step). Fig. 4 shows a graph trans-
formation step, where rule “insertSupertype()” is applied to graph G1, a part of
graph TGEGov from Fig. 2, resulting in the transformed graph G2.

L R

:Srv_III);

createSrvIII()
L R

2:Node1:Node
:ConSetup

2:Node1:Node)

createCS()

L RNAC :ConSetup

2:Srv_II1:Srv_III
:DataFlow

2:Srv_II1:Srv_III
:ConSetup

2:Srv_II1:Srv_III
:DataFlow

)

setUpdateConnection()

Fig. 3. Rules for Editing Type Graph TGE−Gov



330 F. Hermann, H. Ehrig, and C. Ermel

G2D

AS:SrvII

R
:ConSetup

:ServIII1:Node

3:ServIII

:DataFlow

K 2:ServIII

1:Node

4:ServIII

3:ServIII

2:ServIII 4:ServIII

DirS:SrvIII

Legacy:SrvIII

DBS:SrvIII

:ConSetup
Z3:SrvIIIAS:SrvII

DBS:SrvIII

:DataFlow

DirS:SrvIII Legacy:SrvIII

L :ConSetup

:DataFlow

2:ServIII

1:Node

4:ServIII

:DataFlow

:ConSetup

:DataFlow 3:ServIII:ConSetup

G1 :ConSetup

:DataFlow

DirS:ServIII

AS:SrvII

Legacy:ServIII

:DataFlow

:ConSetup

:DataFlow DBS:ServIII:ConSetup

Fig. 4. Type Graph Transformation Step of rule insertSupertype()

PC:Client WebS:Srv_I AS:Srv_II

DirS:Srv_III

DBS:Srv_III

p_c:ConSetup

p_d:DataFlow

LegacyS:Srv_III

w_d:DataFlow

a_c:ConSetup
w_c:ConSetup

a_d:DataFlow

TGEGov2

Z3:Srv_III

Fig. 5. Resulting Type Graph TGEGov2 as update of TGEGov

The result of applying the rule to the complete type graph TGEGov yields the
type graph TGEGov2 as shown in Fig. 5.

The examples show how transformations of type graphs with inheritance in
e-government networks can be defined in a concise way. After presenting the
underlying formalization in the next section we continue the example in Sec. 4 to
show the relevant features of the approach for ensuring security in e-government
networks.

3 Transformation of Graphs with Inheritance

Graph transformation with node type inheritance [6,9] provides main aspects of
inheritance, in particular inheritance of attributes and edge types from parent
node types to children node types. In this section we lift transformations from the
instance level to the meta levels in order to support a formal basis for editing and
analyzing meta-models, i.e. type graphs with inheritance within the framework of
graph transformation. Recall further that meta-modelling is captured by graph
transformation using the concept of type graph hierarchy [7,11].

Note that we use the algebraic notion of graphs, where a graph G = (V, E, s, t)
is given by a set of nodes V , a set of edges E and functions s, t : E → V
specifying source and target nodes for each edge. A graph morphism f : G1 →
G2 is a pair of mappings (fV : V1 → V2, fE : E1 → E2) compatible with
source and target functions, i.e. fV ◦ s1 = s2 ◦ fE and fV ◦ t1 = t2 ◦ fE . In



Transformation of Type Graphs with Inheritance for Ensuring Security 331

order to improve readability of the paper we present our inheritance concepts
first for graphs without attribution, but in [22] we show how all concepts and
results can be extended to attributed graphs. Note that the following notion of
I-graphs slightly differs from [6] by using a relation for capturing the inheritance
information (instead of a separate graph with distinguished abstract nodes) in
order to simplify further constructions.

Definition 1 (I-Graph). Graph with Inheritance, short I-Graph, is given by
GI = (G, I). It consists of graph G and inheritance relation I ⊆ GV ×GV , where
for v ∈ GV clanI(v) = {v′ ∈ GV | (v′, v) ∈ I∗} with I∗ being the reflexive and
transitive closure of I.

Remark 1. According to [6,9] as well as MOF [5] and UML [12] we do not require
that the inheritance relation is cycle free.

I-graph morphisms - not considered in [6] - are based on clan-morphisms [6]
taking into account inheritance.

Definition 2 (Clan-Morphism). Given graph G1 and I-graph GI2=(G2, I2)
a pair of mappings f = (fV , fE) : G1 → G2 is called clan-morphism, written
f : G1 → GI 2, if ∀ e1 ∈ G1E :

fV ◦ sG1(e1) ∈ clanI2(sG2 ◦ fE(e1)) ∧ fV ◦ tG1(e1) ∈ clanI2(tG2 ◦ fE(e1)).

I-graphs and I-graph morphisms define the category IGraphs.

Definition 3 (Category IGraphs). Given I-graphs GI 1=(G1, I1) and GI 2=
(G2, I2), an I-graph morphism f : GI 1 → GI 2 is given by a clan-morphism
f : G1 → GI 2, which is I-compatible, i.e. (v, w) ∈ I1 implies (f(v), f(w)) ∈ I2∗.
The composition of I-graph morphisms f : GI 1 → GI 2 and g : GI 2 → GI 3
is defined by g ◦ f : GI 1 → GI 3 with (g ◦ f)V = gV ◦ fV : G1V → G3V

and (g ◦ f)E = gE ◦ fE : G1E → G3E . The category of I-graphs and I-graph
morphisms is denoted by IGraphs.

Example 4 (I-graph Morphism). The following example shows I-graph mor-
phism f : GI 0 → GI 1 where grey numbers indicate the mappings. According
to I-compatibility the identification of nodes v4 and v5 contained in GI 0 is pos-
sible, because (v45, v45) ∈ I1∗. Furthermore, inheritance between v1 and v2 of
GI 0 can be refined into several steps as shown by node v11 in GI 1. The clan
morphism f can additionally map edges to edges between nodes of super types
as shown by e3.

e3v2

f

GI0 GI1

v1

v3 v5

v4

e3

v2

v1

v3

v45

v11

1
1

2
2

3

3

4

4,5

5

6 6

Remark 2. 1. I-compatibility is equivalent to
(v, w) ∈ I1∗ implies (fV (v), fV (w)) ∈ I2∗.



332 F. Hermann, H. Ehrig, and C. Ermel

2. Given I-graph morphisms f and g then: g ◦ f : GI 1 → GI 3 is an I-graph
morphism, because I-compatibility of f and g implies that of g ◦ f and
we can show for all e1 ∈ G1E : (g ◦ f)V ◦ sG1(e1) = gV ◦ fV ◦ sG1(e1) ∈
clanI3(sG3 ◦ (g ◦ f)E(e1)).

3. Each clan-morphism f : G1 → GI 2 is also an I-graph morphism f : GI 1 →
GI 2 with GI 1 = (G1, I1) and I1 = ∅, because in this case I-compatibility
is trivial. This implies also that the composition of a clan-morphism f :
G1 → GI 2 with an I-graph morphism g : GI 2 → GI 3 is a clan morphism
g ◦ f : G1 → GI 3.

In order to enable automatic critical pattern detection and user driven transfor-
mation for meta-models we lift graph transformation from the instance level to
all meta levels within the abstract framework of weak adhesive HLR categories
[6]. This way we can apply the well-known results for the abstract framework,
e.g. analysis and correction can be parallelized and distributed to meta-model
parts in case of several e-government networks.

For defining a weak adhesive HLR category we need to distinguish a suitable
class M fulfilling certain properties. We propose the class MS−refl of subtype-
reflecting morphisms, because on the one hand DPO-rules based on these mor-
phisms are powerful enough to generate all kinds of cycle-free inheritance graphs
on the meta-model level and on the other hand (IGraphs,MS−refl) can be
shown to be a weak adhesive HLR category with componentwise construction
of pushouts and pullbacks. Note that this fails to be true for the class M of all
injective I-graph morphisms.

The notion of subtype reflection, short S-reflection, defines the condition that
for each node n in the image of a morphism f it holds that all subtypes of n are
in the image of f as well. We will need this condition for the proof of Thm. 1.

Definition 4 (S-reflecting Morphism). An S-reflecting morphism f1 :
GI 0 → GI 1 is an I-graph morphism f1 : GI 0 → GI 1, where f1 is an injec-
tive graph morphism and has the S-reflection property: ∀ (v11, v1) ∈ I1∗, v0 ∈
GI 0V : v1 = f1V (v0) ⇒ ∃ v01 ∈ GI 0V : f1V (v01) = v11 ∧ (v01, v0) ∈ I0∗.

All rules in Figures 3 and 4 are S-reflecting, i.e. their rule morphisms are S-
reflecting. Note that standard graph transformation rules, i.e. rules without in-
heritance, can be interpreted as S-reflecting rules by adding empty inheritance
relations to their graphs. According to Thm. 1 and Thm. 2 in [22] pushouts
and pullbacks along S-reflecting I-graph morphisms can be constructed compo-
nentwise and the class MS−refl is closed under pushouts and pullbacks. There-
fore, DPO transformations of S-reflecting rules are well defined and can be con-
structed componentwise in IGraphs. Furthermore theses properties are part
of the conditions for weak adhesive HLR categories and in fact, the category
(IGraphs,MS−refl) is a weak adhesive HLR category (see Remark 3 below).

Theorem 1 ((IGraphs,MS−refl) is Weak Adhesive HLR Category). The
category IGraphs of graphs with inheritance together with the class MS−refl

of S-reflecting morphisms is a weak adhesive HLR category.



Transformation of Type Graphs with Inheritance for Ensuring Security 333

Remark 3 (Weak adhesive HLR category). According to the definition of weak
adhesive HLR categories (see Definition 4.13 in [6]) (IGraphs,MS−refl) has this
property if

1. MS−refl is a class of monomorphisms closed under isomorphisms, composi-
tion and decomposition

2. IGraphs has pushouts and pullbacks along MS−refl-morphisms and
MS−refl is closed under pushouts and pullbacks

3. (IGraphs,MS−refl) has the weak VK -property, i. e. given a cube as below,
where the bottom face is a pushout with f1 ∈ MS−refl and the back faces
are pullbacks and one of the following two cases is satisfied, then we have:
top square is pushout ⇔ front squares are pullbacks.
case 1 Also f2 ∈ MS−refl .
case 2 Also l1, l2, l3 ∈ MS−refl .

We can conclude for each direction of
the equivalence by item 2 in case 1: also
g1, g2, h1, h2, k1, k2 ∈ MS−refl and in
case 2: also g2, h1, k2, l0 ∈ MS−refl .

GI 4 h1 



l0

��

h2
������

GI 5

l1

��

k1������

GI 6 k2 



l2

��

GI 7
l3

��

GI 0
f1 



f2
������

GI 1

g1������

GI 2 g2 

 GI 3

Proof (see [22]).

Corollary 1 (Results for (IGraphs,MS−refl)). The following results for
graph transformation based on (IGraphs,MS−refl) are valid:

– Local Church Rosser Theorem for pairwise analysis of sequential and parallel
independence (Thm. 5.12 in [6])

– Parallelism Theorem for applying independent rules and transformations in
parallel (Thm. 5.18 in [6])

– Concurrency Theorem for applying E-related dependent rules simultane-
ously (Thm. 5.23 in [6])

– Embedding and Extension Theorem for transferring transformations and
analysis results to more complex scenarios (Thms. 6.14 and 6.16 in [6])

– Local Confluence Theorem and Completeness of critical pairs for analyzing
conflicts and for showing local Confluence (Thm. 6.28 and Lemma 6.22 in
[6])

Proof (Idea). These results are shown in [6] for weak adhesive HLR categories
with some additional properties (see Remark 6 in [22]) and are valid for
(IGraphs, MS−refl) by Thm. 1.

Before we show how the results in Corollary 1 can be applied in our scenario of
e-government networks let us discuss other approaches which may avoid to work
in the category IGraphs. The intuitive semantics of an I-graph GI is the graph
GI defined by closure or flattening of the inheritance relation I (see Def. 6 in [22])
as considered already for type graphs with inheritance in [6]. The inheritance
closure is a cofree construction (see Thm. 7 in [22]) leading to a cofree functor



334 F. Hermann, H. Ehrig, and C. Ermel

from IGraphs to Graphs. This implies that pullbacks are preserved, but as
shown in Example 5 in [22] - pushouts are not preserved in general. For this
reason, transformations with inheritance cannot easily be reduced to standard
graph transformation by flattening (see more details in [22]).

4 Analysis of E-Government Network Meta-Models

During each phase of system design critical patterns may occur, which can imply
unwanted behaviour and possibilities for a loss of security. The earlier they can
be detected and the earlier they can be corrected the lower is the risk of a system
containing critical parts in its implementation. This motivates to apply analysis
techniques as early and as abstract as during the meta-model development. This
section shows how critical patterns can be specified and automatically elimi-
nated. In order to explain our approach we first describe a specific attack to
an e-government system. Even though the cause of this attack is hard to detect
on the implementation level the elimination of a suitable critical pattern in the
meta-model ensures that this attack cannot occur. For the attack we assume
that an intruder got access to the web server already.

GEGov3

PC:Client WebS:Srv_I AS:Srv_II
p_c:ConSetup

p_d:DataFlow encrypted:DataFlow

a_c1:ConSetuppersonalCS:ConSetup

a_d1:DataFlow

TGEGov3

Z3:Srv_III

AS2:Srv_IIplain:DataFlow
generalCS:ConSetup

1:p_c

6:plain
Roxen:WebSDell:PC Tax:AS2

2:p_d

5:generalCS

4:encrypted
3:personalCS

...

...

type

Fig. 6. Configuration for possible attack

Example 5 (Intrusion Attack). Fig. 6 shows a meta-model TGEGov3 and an in-
stance GEGov3 with clan morphism type. There are two types for possible con-
nection setups from server “Roxen” to server “Tax”, because of the inheritance
relation between “AS2” and “AS” in TGEGov3. Assume that the application
server “Tax” in GEGov3 processes both confidential requests for receiving and
updating personal information for tax declaration via secure encrypted data
channel “4:encrypted” and requests for general information regarding dates, laws
and submission address for preparing a tax declaration via unencrypted channel
“6:plain”. The following sequence describes the intrusion:

– A user requests general information, stays connected and performs a log-in
to request in addition also personal information.

– Because of high load of channel 4 a scheduling algorithm on web server
“Roxen” decides to transfer some personal data via channel 6.



Transformation of Type Graphs with Inheritance for Ensuring Security 335

– The user receives the data, which is not encrypted during the communication.
– The intruder with access to the web server may now observe the insecure

communication and intercept some confidential data.

A successful interception of the response is hidden. Even if misuse of confidential
data for another service is detected at a later stage, locating the error is hard.
Even though the channels were initially assigned correctly according to the kind
of data the intrusion happened, because of a side affect of the scheduling algo-
rithm, which is hidden to the model. Hence, possibilities for side effects on the
implementation basis should be minimized.

L 4:ConSetup
2:Node1:Node

5:DataFlow

3:Node
:ConSetup
:DataFlow

R 4:ConSetup
2:Node1:Node

5:DataFlow

3:Node
)

deleteRedundantConnection()

deleteDirectCS()

PAC L R

:ConSetup

:Node

1:Srv_I

)
:ConSetup

2:Srv_III

1:Srv_I

2:Srv_III

:ConSetup

1:Srv_I

2:Srv_III

:DataFlow

:DataFlow
:DataFlow

Fig. 7. Checking rules for analysis

Rule “deleteRedundantConnection()” in Fig. 7 can detect the critical pattern
of web servers that can communicate via different types of connections simulta-
neously. A valid match of the rule states a detection and the developer of the
model may apply the rule for automatic correction causing the deletion of the
more specific connection type. This deletion of edges “generalCS” and “plain” in
TGEGov3 implies in particular that instance GEGov3 is not typed correctly any
more, because the edges 5 and 6 cannot be mapped type consistently.

A further rule for analysis and correction is given by “deleteDirectCS()” in
Fig. 7. The positive application condition PAC requires a possible connection
setup via a proxy node, while the left hand side L already matches a direct con-
nection setup link between a server of zone I and a server of zone III. This situa-
tion may easily occur, if verbal requirements for the model are realized directly.
Since communication shall only be possible between neighbouring zones this
pattern is critical and has to be corrected by applying rule “deleteDirectCS()”.
Note especially that the pattern is very flexible, because the proxy node is of
the general type “Node”.

In the following we show how we can apply the well-known results for adhesive
HLR systems (see Cor. 1).



336 F. Hermann, H. Ehrig, and C. Ermel

PC:Client WebS:Srv_I AS:Srv_II
p_c:ConSetup

p_d:DataFlow
w_d2:DataFlow

a_c1:ConSetupw_c2:ConSetup
a_d1:DataFlow

TGEGov4

Z3:Srv_III

w_d3:DataFlow
w_c3:ConSetup... DBS:Srv_III

w_d1:DataFlow
w_c1:ConSetup

Fig. 8. Conflict situation for rules deleteDirectCS() and deleteRedundantConnection()

Example 6 (Critical Pair). Fig. 8 shows graph TGEGov4, which demonstrates a
conflict situation for the rules “deleteDirectCS()” and “deleteRedundantConnec-
tion()” (see Fig. 7). Both rules can be applied to this graph and the matches are
indicated by dark respectively light grey marked regions, where the first match
is a proper clan-morphism. Both matches overlap on edges “w c3” and “w d3”
that will be deleted by the rule applications. Thus, these rule applications are
parallel dependent and there is a conflict of deciding which one to apply. This
leads to a critical pair.

If in other situations the rule applications overlap only in their interfaces they
are parallel independent and according to the Local Church Rosser and Par-
allelism Theorem (see Corollary 1) we can apply the rules in any order or in
parallel.

According to the general result on completeness of critical pairs (see Corol-
lary 1) there is a critical pair for each possible conflict. Hence, it suffices to
calculate all critical pairs using tool support, which is available for standard
graph transformation already [1]. If all critical pairs are strictly confluent we
can apply the Local Confluence Theorem (see Corollary 1) in order to show
that different applications of the analysis rules lead to the same result. Oth-
erwise the aim is to group the analysis rules, such that there is no critical
pair between two of the same group. In this way the analysis in each group
can be applied in parallel using one parallel rule according to the Parallelism
Theorem.

In practical situations meta-models are more complex, which results in a
higher amount of node and edge types. Since critical patterns do normally con-
tain only few nodes and edges it is quite usual that several rules are independent
from each other and can be put in the same independence group. Therefore,
our approach scales up for complex systems, where an automatic critical pattern
detection and elimination is highly desirable. Note in particular that pure criti-
cal pattern detection without correction will never involve conflicts, since there
is no deletion. For this reason it can be parallelized and distributed without
calculating critical pairs.

Altogether we can use the results in Corollary 1 for parallel critical pattern
detection and analyze how far different orders of the elimination of these patterns
lead to the same result.



Transformation of Type Graphs with Inheritance for Ensuring Security 337

5 Related Work

In this paper we consider rule-based meta-model transformations in order to
change meta-models in a way that makes them adhere to security requirements.
This includes refactoring steps, such as inserting supertype nodes. Usually, model
refactorings are performed at instance model level. Various approaches exist us-
ing graph transformation to provide a formal specification of model refactorings
[13,14,15,16]. It has the advantage of defining refactorings in a generic way, while
still being able to provide tool support in commonly accepted modeling environ-
ments such as EMF [17]. In addition, the theory of graph transformation allows
the modeller to formally reason about dependencies between different types of
refactorings. Synchronized rules are applied in parallel to keep coherence be-
tween models. Considering the special case where exactly two parts (one model
diagram and the program or two model diagrams) are related, the triple graph
grammar (TGG) approach by Schürr et al. [18] is used frequently.

Our transformation approach at meta-model level is most useful during meta-
model development to ensure security requirements before instance graphs are
created. An interesting line of research is the co-evolution of meta-models of
higher levels and the corresponding meta-models at lower levels, down to in-
stance models. Changing one meta level may cause implications for model up-
dates of lower levels to keep them consistent (migration problem). A promising
approach for automatic migration of instances is described in [19], where meta-
model changes are transferred to lower levels by pullback constructions using
non-injective morphisms. In this case, the rule morphisms K −l→ L for the meta
level transformations have to be non-injective. This leads to non-functional be-
haviour of DPO rewriting. In [20], SqPO rewriting is introduced, which is an
extension of DPO rewriting taking into account this problem.

6 Conclusion

The formal basis for type graphs with inheritance was presented already in
[21,6,9] and the semantics given by the closure construction coincides with the
one of the inheritance concept of the meta-modelling language MOF [5]. For this
reason, the presented extension of the theory to transformations of type graphs
with inheritance enables DSL modellers to define modifications of meta-models
which contain inheritance information. Apart from the presented case study of
e-government network security, a wide range of meta-model based application
domains are conceivable, in particular hierarchical and integrated systems of
meta-models.

The paper showed that graphs with inheritance together with the introduced
class of S-reflecting morphisms forms a weak adhesive category. Hence, the in-
troduced formalization of transformations of meta-models allows modellers to
apply various techniques for analysis of the meta-modelling process, due to the
fact that well-known results for confluence analysis and conflict detection ex-
ist for weak adhesive HLR systems [6]. For instance, in the case of the sample



338 F. Hermann, H. Ehrig, and C. Ermel

scenario, when the necessary meta-model changes of several modellers conflict
each other, the formal techniques for merging and conflict detection support a
consistent synchronization. And in the case of local changes of parts or views of
the model, the changes can be embedded into the overall model if the consis-
tency condition of the Embedding Theorem is fulfilled. Note that the presented
approach is suited also in other application domains for checking formally the
fulfillment of security requirements during design phase.

Future work on the theoretical formalization will include an analysis of the glu-
ing condition and characterization of critical pairs for transformations of graphs
with inheritance. Moreover, the migration problem discussed in Sec. 5 is an im-
portant problem when meta-models have to be modified where instance models
exist which have to be kept consistent. The SqPO rewriting approach [20] seems
to be a good candidate for future extensions of the presented theory in the con-
text of model migration. Finally the critical pair analysis of the tool AGG shall
be extended to the case of graphs with inheritance.

References

1. AGG Homepage, http://tfs.cs.tu-berlin.de/agg
2. Mouratidis, H., Giorgini, P. (eds.): Integrating Security and Software Engineering:

Advances and Future Vision. Idea Group, IGI Publishing Group (2006)
3. Jürjens, J.: Secure Systems Development with UML. Springer, Heidelberg (2005)
4. Haley, C., Moffett, J., Nuseibeh, B.: Security Requirements Engineering: A Frame-

work for Representation and Analysis. IEEE Trans. on Software Engineering 34(1),
133–153 (2008)

5. Object Management Group: Meta-Object Facility (MOF), Version 2.0. (2006),
http://www.omg.org/technology/documents/formal/mof.htm

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theor. Comp. Science. Springer, Heidel-
berg (2006)

7. Braatz, B., Brandt, C., Engel, T., Hermann, F., Ehrig, H.: An approach using
formally well-founded domain languages for secure coarse-grained IT system mod-
elling in a real-world banking scenario. In: Proc. 18th Australasian Conference on
Information Systems (ACIS 2007) (2007)

8. Federal Office for Information Security (BSI): Chapter IV: Secure Client-Server Ar-
chitectures for E-Government. In: E-Government Manual. INTESIO 1–179 (2006),
http://www.bsi.bund.de/english/topics/egov/6verb

9. Lara, J., Bardohl, R., Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Attributed
Graph Transformation with Node Type Inheritance. Theoretical Computer Sci-
ence 376(3), 139–163 (2007)

10. Habel, A., Heckel, R., Taentzer, G.: Graph Grammars with Negative Application
Conditions. Special issue of Fundamenta Informaticae 26(3,4), 287–313 (1996)

11. Ehrig, H., Ehrig, K., Ermel, C., Prange, U.: Consistent Integration of Models Based
on Views of Visual Languages. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008.
LNCS, vol. 4961, pp. 62–76. Springer, Heidelberg (2008)

12. Object Management Group: Unified Modeling Language: Superstructure – Version
2.1.1. formal/07-02-05 (2007),
http://www.omg.org/technology/documents/formal/uml.htm

http://tfs.cs.tu-berlin.de/agg
http://www.omg.org/technology/documents/formal/mof.htm
http://www.bsi.bund.de/english/topics/egov/6verb
http://www.omg.org/technology/documents/formal/uml.htm


Transformation of Type Graphs with Inheritance for Ensuring Security 339

13. Mens, T., Taentzer, G., Müller, D.: Model-driven software refactoring. In: Rech,
J., Bunse, C. (eds.) Model-Driven Software Development: Integrating Quality As-
surance, pp. 170–203. Idea Group Inc. (2008)

14. Mens, T., Taentzer, G., Runge, O.: Analysing refactoring dependencies using graph
transformation. Software and System Modeling 6(3), 269–285 (2007)

15. Grunske, L., Geiger, L., Zündorf, A., Van Eetvelde, N., Van Gorp, P., Varro, D.:
Using Graph Transformation for Practical Model Driven Software Engineering. In:
Beydeda, S., Book, M., Gruhn, V. (eds.) Model-driven Software Development, pp.
91–118. Springer, Heidelberg (2005)

16. Bottoni, P., Parisi-Presicce, P., Mason, G., Taentzer, G.: Specifying Coherent
Refactoring of Software Artefacts with Distributed Graph Transformations. In:
van Bommel, P. (ed.) Handbook on Transformation of Knowledge, Information,
and Data: Theory and Applications, pp. 95–125. Idea Group Publishing (2005)

17. Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G., Weiss, E.: Graphical
Definition of In-Place Transformations in the Eclipse Modeling Framework. In:
Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS,
vol. 4199, pp. 425–439. Springer, Heidelberg (2006)

18. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–
163. Springer, Heidelberg (1995)

19. Löwe, M., König, H., Peters, M., Schulz, C.: Refactoring Information Systems. In:
Proc. Software Evolution through Transformations: Embracing the Chance (SeTra
2006). Electronic Communications of the EASST, vol. 3 (2006)

20. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-Pushout Rewriting. In:
Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT
2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006)

21. Bardohl, R., Ehrig, H., de Lara, J., Taentzer, G.: Integrating Meta-Modelling with
Graph Transformation for Efficient Visual Language Definition and Model Ma-
nipulation. In: Wermelinger, M., Margaria-Steffen, T. (eds.) FASE 2004. LNCS,
vol. 2984, pp. 214–228. Springer, Heidelberg (2004)

22. Hermann, F., Ehrig, H., Ermel, C.: Transformation of Type Graphs with Inheri-
tance for Ensuring Security in E-Government Networks (Long Version). Technical
Report 2008/07, TU Berlin, Fak. IV (2008),
http://iv.tu-berlin.de/TechnBerichte/2008/2008-07.pdf

http://iv.tu-berlin.de/TechnBerichte/2008/2008-07.pdf


A Formal Connection between Security
Automata and JML Annotations�

Marieke Huisman1 and Alejandro Tamalet2

1 University of Twente, Netherlands
2 University of Nijmegen, Netherlands

Abstract. Security automata are a convenient way to describe security
policies. Their typical use is to monitor the execution of an application,
and to interrupt it as soon as the security policy is violated. However,
run-time adherence checking is not always convenient. Instead, we aim at
developing a technique to verify adherence to a security policy statically.
To do this, we consider a security automaton as specification, and we
generate JML annotations that inline the monitor – as a specification –
into the application. We describe this translation and prove preservation
of program behaviour, i.e., if monitoring does not reveal a security vio-
lation, the generated annotations are respected by the program.

The correctness proofs are formalised using the PVS theorem prover.
This reveals several subtleties to be considered in the definition of the
translation algorithm and in the program requirements.

1 Introduction

With the emergence of a new generation of trusted personal devices (mobile
phones, PDAs, etc.), the demand for techniques to guarantee application security
has become even more prominent. A common approach is to monitor executions
with a security automaton [13]. Upon entry or exit of a security-critical method,
the security automaton updates its internal state. If it reaches an “illegal” state,
the application will be stopped and a security violation will be reported. This
approach is particularly suited for properties that are expressed as sequences
of legal method calls, such as life cycle properties, or constraints that express
how often or under which conditions a method can be called. However, such a
monitoring approach is not suited for all applications, depending on their nature
and use; sometimes statical means to enforce security are necessary.

Security experts typically express security requirements by a collection of se-
curity automata or temporal logic formulae. However, many program verification
tools use a Hoare logic style for the specifications (i.e., pre- and postconditions).
Therefore, as a first step towards static verification of such security properties,
this paper proposes a translation from security properties expressed as an au-
tomaton into program annotations.
� This work is partially funded by the IST FET programme of the European Commis-

sion, under the IST-2005-015905 Mobius project. Research done while the authors
where at INRIA Sophia Antipolis.

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 340–354, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



A Formal Connection between Security Automata and JML Annotations 341

The translation in this paper is defined for Java programs. It is defined in sev-
eral steps. For each step we provide a correctness proof. (i) We translate a partial
automaton to a total automaton that contains a special trap state to model that
an error has occurred. We show that the behaviour of a program monitored with
a partial automaton is equivalent to the behaviour of the program monitored
with the total automaton. (ii) Using an extension of JML [9], we generate an-
notations that capture the behaviour of the total automaton. These are special
method-level set-annotations that are evaluated upon entry or exit of a method.
We show that run-time monitoring of the program only throws a (new) exception
to signal an annotation violation if the monitor reaches the trap state, other-
wise the annotated program has the same executions as the monitored program.
(iii) We inline the set-annotations from the method specification to the method
body and prove equivalence of the run-time checking behaviour. All results in
the paper have been established formally using the PVS theorem prover [11].
The complete formalisation is available via http://www.cs.ru.nl/ tamalet/.

To prove correctness, the order in which method specifications are evaluated is
important. Further, we had to add an explicit requirement that finally blocks
could not override annotation violation exceptions thrown inside try or catch
statements (see also [8]). The last complication that we encountered was how
to specify conveniently that specification-only constructs and steps taken by
the monitor did not have any side-effects on the program state. More detailed
information about the proofs is given in Section 4.

Throughout this paper, we use the

s1 s2

exit (sendSMS)?true →

n := n + 1;

exc exit (sendSMS)?true →ε;

exit (reset)?true →

n := 0;

entry (sendSMS)? n < N → ε;

Automaton vars = {n} Program vars = ∅

Fig. 1. Example Property Automaton

limited SMS example property of
Fig. 1 (where ε denotes a skip) to il-
lustrate the different translations: the
method sendSMS can be called and
terminate successfully at most N times
in between calls to reset. The counter
is not increased if sendSMS terminates
because of an uncaught exception
(with label exc exit(sendSMS)), and

reset should not be called from within sendSMS. Even though very basic, this
example is representative of a wide range of important resource-related security
properties.

The rest of this paper is organised as follows. Section 2 formalises the au-
tomaton format and defines completion. Next, Section 3 defines the semantics of
monitored and annotated programs. Section 4 defines the translation and proves
correctness. Sections 5 and 6 discuss related and future work and conclusions.

2 Modelling Security Properties with Automata

The automata that we use to express security properties are called Property
Automata (PA). These are extended finite state machines particularly suited for
monitoring, since transitions do not only depend on the automaton’s state (i.e.,



342 M. Huisman and A. Tamalet

the current control point and a valuation for the automaton’s variables), but
also on the state of the monitored program. Transitions are labelled with guards,
events and a list of actions. Events specify the method whose entry and/or exit
is being monitored, with a distinction between normal and exceptional exits.
Guards describe the conditions under which a transition can be applied. They
depend on (i) the automaton state, (ii) the state of the program that is being
monitored, and (iii) the argument of the method, in case the event is method
entry; the result of the method, in case the event is normal method exit; or the
exception with which the method returns, in case the event is exceptional method
exit. Actions describe how the automaton state is updated by a transition.

Throughout, we assume that CP and N are possibly infinite, but countable
non-empty sets of control points and names. PA and programs share the defini-
tions of values, types and exceptions, denoted V , T and E , respectively. These
are defined by the following grammar, where B and Z denote the standard sets
of booleans and integers, respectively1.

V = B(b : B) | I(i : Z) | Null | R(i : Z) | 1l | ⊥
T = Bool | Int | Ref | Void
E = Throwable | RunTimeException | JMLException

The type Void, inhabited by 1l, models methods without results; a reference can
be Null or contain a number representing the location where the object is stored;
⊥ is used to denote the outcome of an expression whose evaluation is undefined
(in Java this would typically result in an exception).

A PA consists of (i) a name, (ii) a class name, to specify which class is being
monitored, (iii) a finite set of control points, (iv) an initial control point, (v) a
set of events, to specify which methods are being monitored, (vi) a set of PA
variable declarations, to describe the internal state of the automaton, (vii) a
set of program variable declarations, to specify which program variables will be
inspected by the monitor, and (viii) a set of transitions. Transitions relate source
and target control points; they are labelled with events, a guard and a list of
actions. An event is a tuple of an event type (entry, exit or exceptional exit),
and a method name. Each action assigns the result of an expression (containing
both program and PA variables) to a PA variable. Notice that we only monitor
classes here. This is often the case in practice, because security-critical methods
are often static API methods. However, a more precise formalisation of Java’s
semantics would allow to monitor objects as well. Formally, a PA is defined as
follows.

Decl = [# type : T , name : N , init : V #]

Event = [# etype : (entry | exit | exc exit), mname : N #]

Trans = [# source, dest : CP , event : Event , action : ([# target : N , expr : Expr #])∗,
guard : PAState × PState × (V | E) → B #]

PA = [# name, clname : N , cps : P(CP), init : CP , events : P(Event),
pa var decl : P(Decl), prog var decl : P(Decl), trans : P(Trans) #]

1 We will use a PVS-like notation to declare abstract data types and records (enclosed
by [# and #]). Further, if x is a record with field y, we use x.y to access field y,
and x(# y := z #) to denote the record x with the field y updated to z.



A Formal Connection between Security Automata and JML Annotations 343

We require a PA to be deterministic, i.e., for every source control point and
event there is always at most one guard that holds. A PA is total if for any
source control point and event, there is always a guard that holds; otherwise it
is partial. Every deterministic PA can be completed into a total one (by function
complete): add a special control point halted, together with transitions for every
control point and every event to halted, where the guard is the negation of the
disjunction of all other guards for this control point and event. Additionally, add
unconditional transitions from halted to halted for every possible event.

A PA is wellformed if: (i) variable names are unique and are not reserved
words, (ii) guards do not have side-effects, (iii) guards and actions only use
declared variables, and (iv) control points and events in transitions are declared.

The state of a PA consists of a current control point, and the store of automa-
ton variables (the program store is not part of the automaton state):
PAState = [# current : CP , storeA : Store #]. Given PA a, the transition function
Δa specifies how an automaton state σA is updated for a given program state
σP , an event e, and a value or exception v (where ε is the arbitrary choice op-
erator, and apply is a function that updates the automaton store according to a
list of actions in the obvious way).

Δa : PAState × PState × Event × (V | E) ↪→ PAState
Δa(σA, σP , e, v) =

let t = ε({t ∈ trans(a) | t.source = σA.current ∧ t.event = e∧
t.guard(σA.storeA, σP .fields.store, v)}) in

(# current := t.dest, storeA := apply(t.action, σA.storeA, σP .fields.store) #)

In a total PA a, the transition function Δa is total. A partial automaton gets
stuck on a certain input if and only if the completed PA reaches the state halted.

Δa(σA, σP , e, v) =⊥⇔ Δcomplete(a)(σA, σP , e, v).current = halted (1)

Example. The property specified in Fig. 1 is encoded by the following PA2, while
Fig. 2 shows the completed PA (where new transitions are dashed).

(# name := LimitSMS, clname := Messaging, cps := {s1, s2}, init := s1,
events := {(# etype := e, mname := sendSMS #) | e ∈ {entry, exit, exc exit}} ∪

{(# etype := exit, mname := reset #)},
pa var decl := {(# name := n, type := Int, init := 0 #)}, prog var decl := ∅,
trans := { (# source := s1, dest := s2, guard := λ(σA, σP , v).σA(n) < N,

event := (# etype := entry, mname := sendSMS #) #),
(# source := s2, dest := s1, action := [(# target := n, expr := n + 1 #)]

event := (# etype := exit, mname := sendSMS #) #),
(# source := s2, dest := s1,

event := (# etype := exc exit, mname := sendSMS #) #),
(# source := s1, dest := s1, action := [(# target := n, expr := 0 #)],

event := (# etype := exit, mname := reset #) #)} #)

2 Where we leave the default guard λ(σA, σP , v).true and empty action ε implicit.



344 M. Huisman and A. Tamalet

s1 s2

halted

exitE(sendSMS)?true −> ;

entry(sendSMS)? n<N −> ;

exit(sendSMS)?true −> n := n + 1;

exit(reset)?true −> n := 0;

entry(sendSMS)?n >= N −> ;

exit(reset)?true −> ;

entry(sendSMS)?true −> ;

exitE(sendSMS)?true −> 

exit(sendSMS)?true −> ;

Fig. 2. Automaton of Fig. 1, after completion

Expr = Plus(n1, n2 : Expr) | VarI(n : N ) | Not(b : Expr) | And(b1, b2 : Expr) |
Eq(e1, e2 : Expr) | VarB(n : N ) | VarR(n : N ) | CondExpr(c, e1, e2 : Expr) |
Assign(n : N , e : Expr) | Call(o : Expr , mn : N , p : Expr) | Const(v : V)

Stmt = Skip | Sequence(s1, s2 : Stmt) | IfThenElse(c : Expr , s1, s2 : Stmt) |
While(c : Expr , s : Stmt) | StmtExpr(e : Expr) | Throw(e : E) |
TryCatchFinally(t : Stmt , e : E , c, f : Stmt) | Set(n : N , e : Expr) |
CaseSet(b : list[Expr × Stmt ]) | Assert(e : Expr)

Fig. 3. Abstract syntax of expressions and statements

3 Programs and Semantics

This section first defines an abstract syntax of programs, followed by their se-
mantics. Both are fairly standard, except that the semantics is parametrised on
the treatment of specifications. In particular, we define a run-time checking and
a monitoring semantics, that evaluate differently upon method call and exit.

3.1 Program Syntax

Our language is a restricted subset of (sequential) Java, abstracting away from
typical object-oriented features, and in particular from method resolution; in-
stead we assume that the annotated class contains method bodies for the relevant
methods, thus method lookup is trivial. We consider only a few exceptions, and
assume that methods have only one parameter. We believe, however, that our
formalisation contains all constructs that are relevant for proving correctness of
our inlining algorithm for class-based monitoring, and implementing the algo-
rithm for the full language is mainly an engineering issue.

Figure 3 defines expressions and statements (we use the term body to denote
either an expression or a statement), e.g., Call represents a call to method mn
on target o with argument p. Notice that we define several special language
constructs to represent JML annotations: Set, to update ghost variables (i.e.,
specification-only variables), CaseSet, to abbreviate a list of conditional ghost
variable updates, and Assert, to evaluate a condition on the program state. A
standard program semantics ignores these statements, whereas the annotated
program semantics evaluates them.



A Formal Connection between Security Automata and JML Annotations 345

Method = [# name : N , param : Decl , lvars : P(Decl), body : Stmt ,
res : Expr , res type : T , pre, post : Expr → Expr ,
pre set, post set : Expr → Stmt , exc set : E → Stmt #]

Class = [# name : N , super : N⊥, fields : P(Decl), methods : P(Method),
inv : Expr , ghost vars : P(Decl) #]

Program = [# classes : P(Class) #]

Fig. 4. Abstract Syntax for Programs

Figure 4 describes the syntax for methods, classes and programs. To ensure
that every method has an appropriate return expression, it is part of the method
signature. Furthermore, methods can be annotated with pre- and postconditions,
and classes with invariants. To support our annotation generation algorithm,
we define special annotations called pre set, post set and exc set. These anno-
tations describe the updates to the ghost variables at method entry, exit and
exceptional exit, respectively. Pre- and postcondition and the different method
specification-level set annotations have a function type to allow the use of the
method parameter, the method result, or the returned exception, respectively.

A program is said to be wellformed if (i) names of fields, local variables and
ghost variables are disjoint and are not reserved words; (ii) class names are
unique; (iii) method names are unique; (iv) every variable name that is used is
declared; and (v) only ghost variables are the target of Set statements.

3.2 Natural Semantics

The behaviour of a program is described via a big step semantics. We closely
follow Von Oheimb’s formalisation of Java [10], with simplifications wherever
possible, due to our simplified program syntax. A judgement P 
 〈e, σ〉 � 〈v, σ′〉
means that the body e evaluates to v, while transforming the state σ into σ′,
in the context of the program P . Note that v is 1l for normally terminating
statements, while v is ⊥ whenever evaluation finishes in an exceptional state.

A basic program state PState is composed of an optional exception and a
store. The store maps every field and local variable to a value.

PState = [# exc : Excp⊥, store : PStore #]

PStore = [# fields : N �→ V, loc vars : N �→ V #]

Since annotated or monitored programs contain more information than unan-
notated programs, the evaluation rules are parametrised with types FullProgram
and FullState. For each instantiation we give mappings program and prog state
to the basic program type Program and the basic program state PState. Further,
we add parameters that specify the actions that are taken upon method entry or
(normal or exceptional) exit (γin, γnorm, and γexc, respectively), and the handling
of annotations (δset, δassert, and δcase). In a standard program semantics, where
specifications are ignored, these are all instantiated with the identity relation.

The evaluation rules are fairly standard, and we refer to Von Oheimb and the
PVS formalisation for more details. Evaluation of normally terminating method



346 M. Huisman and A. Tamalet

calls is described by the following rule (where for clarity of presentation, we left
out several checks that intermediate states are not exceptional).

σ0.prog state.exc = ⊥ P � 〈o, σ0〉 
 〈r, σ1〉 P � 〈p, σ1〉 
 〈act , σ2〉
r �= Null md = lookup mthd(P, r,mn)

old lvs = σ2.prog state.store.loc vars σ3 = update lvs(σ2, r,md .lvars, md.param, act)
γin(P,md , r, Const(act), σ3, σ4) P � 〈md .body, σ4〉 
 〈1l, σ5〉
P � 〈md .res, σ5〉 
 〈v, σ6〉 γnorm(P,md , r, Const(v), σ6, σ7)

P � 〈Call(o,mn, p), σ0〉 
 〈v, σ7(prog state.store.loc vars := old lvs)〉

First the receiver is evaluated, resulting in non-null reference r. Next, the pa-
rameter is evaluated, resulting in value act . Using r, the method definition md
is looked up. The local variable store is updated assigning r to this, initialising
the method’s local variables and assigning the actual parameter to the formal
parameter. The old local variable store is remembered as old lvs . Next, an appro-
priate action upon method entry is taken, as specified by the relation γin. Then
the method body, and method result expression are evaluated. Since this rule
applies to normal method termination only, the parameter for normal method
termination γnorm is evaluated. Last, the local store is set back to old lvs . In
addition, rules exist that specify behaviour of a method call when it is called
upon a null reference, the body contains an uncaught exception etc.

Annotated Program Semantics. The program state of an annotated program is
extended with a store for ghost variables:

AState = [# pstate : PState, ghost vars : N �→ V #]

The types FullProgram and Program coincide, while FullState is instantiated as
AState, and the mapping prog state is defined as pstate. Figure 5 shows some
of the instantiations of the semantics parameters; the other instantiations are
similar. The relation γin uses the auxiliary relation β which checks a boolean
expression e and raises a special JMLException if it evaluates to false. Upon
method entry, the class invariant and precondition are evaluated. We assume
that lookup inv returns the complete class invariant, including those invariants
that are inherited from superclasses. If they fail, a JMLException is thrown,
otherwise the method’s pre set statement is executed. Finally, we ensure that
the program store is not changed. The function δset updates a ghost variable: it
first evaluates the expression and if this did not result in an exceptional state,
it updates the value of the ghost variable3 appropriately.

Monitored Program Semantics. The parametrised program semantics is also in-
stantiated for monitored programs. This semantics is only defined when the PA
is compatible with the program. PA a is said to be compatible with a program
P , denoted a $ P , if (i) the program contains the class c that is being moni-
tored, (ii) all variables declared as program variables in a are fields of the class
3 Where τ (ghost vars.n := v) abbreviates that the value of ghost vars(n) in τ is up-

dated to v.



A Formal Connection between Security Automata and JML Annotations 347

inv = lookup inv(P, r) β(P, inv , σ1, τ1) β(P,md .pre(act), τ1, τ2)
P � 〈md.pre set(act), τ1〉 
 〈v, τ2〉 v ∈ {⊥, 1l} σ1.pstate.store = σ2.pstate.store

γin(P,md , r,act , σ1, σ2)

P � 〈e, σ1〉 
 〈v, τ〉 if v = B(true) then σ2 = τ else σ2 = τ (exc := JMLException)
β(P, e, σ1, σ2)

P � 〈e, σ1〉 
 〈v, τ〉 if τ.pstate.exc = ⊥ then σ2 = τ (ghost vars.n := v) else σ2 = τ

δset(P, Set(e, n), σ1, σ2)

Fig. 5. Instantiation of semantics for runtime annotation evaluation

c with the correct type, and (iii) every event name corresponds to a method
in the class. A monitored program is a product of a PA and a program. The
state of a monitored program consists of the states of the PA and the program
(including ghost variables)4, and a flag stuck. If the PA is partial, the flag stuck
is set when Δa is not defined for a certain input. If the flag is set, this means
that the security policy is violated, and the program should be stopped (by some
external observer). If the PA is total, the stuck flag will never be set. Instead,
violation of the security policy is modelled by the PA reaching the trap state
halted (in which case the external observer again is supposed to stop execution).

MProgram = [# pa : PA, program : Program #]

MState = [# pa state : PAState , pstate : PState , ghost vars : N �→ V, stuck : B #]

Thus, FullProgram gets instantiated as MProgram and FullState as MState, with
mappings program and pstate. Now we can give appropriate instantiations for the
γ- and δ-relations. The δ-relations are the same as for the annotated program
semantics, but the γ-relation also updates the state of the monitor. For example,
γin is defined in terms of γin for annotated programs, as defined in Fig. 5.

γAP
in (P,md , r,act , σ1, τ )

if τ.pstate.exc = ⊥ then σ2 = γpa(entry)(P,md , act , τ ) else σ2 = τ

γin(P,md , r,act , σ1, σ2)

where

γpa(ev)(P,md , act , σ) = let e = (# etype := ev , mname := md .name #),
τ = ΔP.pa(σ.pa state, σ.prog state, e, act) in

if σ.stuck ∨ τ = ⊥ then σ(stuck := true) else σ(pa state := τ )

4 Annotation Generation

Given a security property encoded as a PA, the annotation generation proce-
dure generates JML-annotations that capture this property, i.e., if the program
respects the property encoded by the monitor, then it does not violate the gener-
ated annotations. As explained above, the procedure is defined in several steps:
4 For convenience, we assume that a monitored program also evaluates annotations,

but this instantiation is in fact orthogonal to the annotated program semantics.



348 M. Huisman and A. Tamalet

(i) the monitor is completed; (ii) the annotations are generated at the method
specification level, as special set-annotations; and (iii) the method specification-
level set-annotations are inlined in the method body. Notice that the special
CaseSet annotation could be translated into standard JML annotations as well.

For each step we prove that the new program simulates the old program, i.e.,
we show for every translation step α there exists a relation R such that:

∀b, σ1, σ2, τ1, v1.P � 〈b, σ1〉 
 〈v1, σ2〉 ∧ R(σ1, τ1) ⇒
∃τ2, v2.α(P ) � 〈b, τ1〉 
 〈v2, τ2〉 ∧ R(σ2, τ2)

Additionally, we show that the initial program states are related by R, and from
this we can conclude that for any reachable state of the monitored program,
there exists a related state, reachable in the translated program. As a side-
remark, for translation steps (i) and (iii), we can even prove that relation R is
a bisimulation, while for step (ii) we can only prove existence of a simulation
(since non-terminating monitored programs – for which no derivation exists in
the natural semantics – might terminate after annotation generation, because of
an annotation violation).

A natural way to prove the simulation is by induction over the derivation
length. However, induction can only be applied when the body is unchanged.
Since the translation introduces new (ghost) variables to encode the PA, this
is not always the case. For these cases, separate preservation lemmas have to
be proven. Further, to be able to complete the proof, we need to ensure that
in both bodies the same branches of conditional expressions and statements are
taken, and that the same values get assigned to the store. Therefore, we prove a
stronger result, adding that also the values v1 and v2 are the same (for step (ii):
provided the monitor did not reach the halted state).

Completion of the automaton. The first translation step does not change the
program itself, it only completes the PA. Suppose that P is a monitored program,
where the monitor P.pa is deterministic and wellformed. Then the translation
to a monitored program with a total PA, α1(P ), is defined as:

α1(P ) = (# pa := complete(P.pa), program := P.program #)

The relation that is preserved between executions of P and α1(P ) is the
following (where σ is a state of P and τ is a state of α1(P )):

R(σ, τ) = (if σ.stuck then τ.pa state.current = halted
else σ.pa state.current = τ.pa state.current) ∧ ¬τ.stuck ∧

(σ.pa state.storeA = τ.pa state.storeA) ∧
(σ.pstate = τ.pstate) ∧ (σ.ghost vars = τ.ghost vars)

To prove that this relation is preserved for any body b, we use equivalence (1)
on Page 343 and we observe further that (i) if stuck has been set, it remains
set, (ii) for a total PA, if halted is reached, it is never left, and (iii) for a total
PA, stuck is never set. Formally, where P is a monitored program, and Q is a
monitored program with total PA:



A Formal Connection between Security Automata and JML Annotations 349

α2(P ) = (# classes := {α2,C(c, P.pa) | c ∈ P.program.classes} #)

α2,C(c, a) = if c.name �= a.clname then c
else c (# ghost vars := c.ghost vars ∪ new vars(a)

inv := And(Not(Eq(cp, halted)), c.inv)
methods := {α2,M(m,a) | m ∈ c.methods} #)

α2,M(m,a) = m (# pre set := m.pre set; α2,E (entry, m.name, a);
Assert(Not(Eq(cp, halted))),

post set := m.post set; α2,E(exit, m.name, a)
exc set := m.exc set; α2,E (exc exit, m.name, a) #)

α2,E(e, n, a) = α2,T ({t | t ∈ a.trans ∧ t.etype = (# event := e,mname := m #)}, a)
α2,T (ts, a) = CaseSet({(Eq(cp, q), α2,S(ts, q)) | q ∈ a.cps})
α2,S(ts, q) = CaseSet({(t.guard, Set(cp, t.dest; t.action)) | t ∈ ts ∧ t.source = q})

Fig. 6. Formal definition of translation PA into annotations

σ1.stuck ∧ P � 〈b, σ1〉 
 〈v, σ2〉 ⇒ σ2.stuck
σ1.pa state.current = halted ∧ Q � 〈b, σ1〉 
 〈v, σ2〉 ⇒ σ2.pa state.current = halted

¬σ1.stuck ∧ Q � 〈b, σ1〉 
 〈v, σ2〉 ⇒ ¬σ2.stuck

To illustrate how the annotation generation algorithm works on the LimitSMS
automaton in Fig. 1, assume we have declared a class Messaging, containing the
methods used by the automaton, plus a method receiveSMS. Applying transla-
tion α1 means that this class, instead of being monitored by the partial PA in
Fig. 1, is monitored by the total PA in Fig. 2.

From PA to Annotations. Figure 6 contains the formal definition of the second
translation step: from PA to method-level set-annotations. Given a monitored
program P where P.pa is total, the annotation generation algorithm α2 ap-
plies α2,C to all classes. This function checks whether the class is the one being
monitored. If so, appropriate ghost variables are added to the class using the
function new vars (see the PVS formalisation for its formal definition). Basically
(i) for each automaton control point q, a (final) ghost variable declaration q is
generated, initialised to a unique value; (ii) a ghost variable cp is declared, ini-
tialised to the value of the ghost variable representing the initial control point;
and (iii) for each automaton variable declaration, a ghost variable is declared
with corresponding name, type and initialisation. Further, α2,C adds the condi-
tion that the current control point should not be halted to the class invariant5,
and it annotates all methods in the class using α2,M. For each method, pre set,
post set and exc set are extended with updates to the ghost variables encoding
the automaton. In addition, at the end of pre set, an Assert statement is added
to verify whether the transition reached the halted state: in that case program
execution should terminate immediately. Without this Assert, the property vio-
lation would only be detected after the body is executed. To encode the updates
5 For readability, we do not explicitly write the translation from PA control points to

ghost variables.



350 M. Huisman and A. Tamalet

class Messaging {
//@ ghost int halted = 0, s1 = 1, s2 = 2, N = 5, cp = s1, n = 0;

//@ public invariant cp != halted;

/*@ pre_set CaseSet [(cp == s1, CaseSet [(n < N, cp = s2),

(n >= N, cp = halted)]),

(cp == s2, CaseSet [(true, cp = halted)]),

(cp == halted, CaseSet [(true, cp = halted)])];

Assert cp != halted;

post_set CaseSet [(cp == s1, CaseSet [(true, cp = halted)]),

(cp == s2, CaseSet [(true, cp = s1; n = n + 1)]),

(cp == halted, CaseSet [(true, cp = halted)])];

exc_set CaseSet [(cp == s1, CaseSet [(true, cp = halted)]),

(cp == s2, CaseSet [(true, cp = s1)]),

(cp == halted, CaseSet [(true, cp = halted)])]; @*/

void sendSMS(){/* body sendSMS */} /*@ pre_set

CaseSet []; Assert cp != halted;

post_set CaseSet []; exc_set CaseSet []; @*/

void receiveSMS(){/* body receiveSMS */} /*@

pre_set CaseSet []; Assert cp != halted; exc_set CaseSet [];

post_set CaseSet [(cp == s1, CaseSet [(true, cp = s1; n = 0)]),

(cp == s2, CaseSet [(true, cp = halted)]),

(cp == halted, CaseSet [(true, cp = halted)])]; @*/

void reset() {/* body reset */} }
Fig. 7. Method-level set annotations generated for class Messaging

to the ghost variables, α2,E computes the set of relevant transitions (i.e., those
where the event and method name correspond). For these transitions, a CaseSet
statement is generated, where the different cases correspond to the current con-
trol point being equal to a control point q, for any q in the automaton. For each
such q, α2,S selects the transitions where t.source is q and generates a CaseSet
statement, that tests whether the guard holds, and if so, sets the control point
cp to t.dest, and executes the actions associated with this transition. Notice that
the order in which the different cases are generated is not important: since the
PA is total and deterministic there is always exactly one case that applies.

The formalisation does not specify how guards and actions are translated.
Instead, we assume there exists a translation into expressions in the programming
language that (i) are wellformed, (ii) give the same result, (iii) do not have side-
effects, (iv) do not throw exceptions, and (v) do not contain method calls. From
this we can derive that in the annotated program, the generated statements in
pre set can only throw a JMLException (because of the concluding Assert), while
the generated statements in post set and exc set do not throw any exception.

As an example, consider again the class Messaging and the completed PA,
encoding the limited SMS policy, in Fig. 2. Figure 7 shows the generated an-
notations that result from applying translation α2,C on this class and this PA.
Notice that for methods and events that are not involved in the property, an
empty CaseSet is generated – this is equivalent to a Skip statement.



A Formal Connection between Security Automata and JML Annotations 351

To show correctness of the translation, we show that the following relation
is preserved (where P is the monitored program, σ a state of the monitored
program, and τ a state of the annotated program):

R(σ, τ ) = ¬σ.stuck ∧
if σ.pa state.current = halted then τ.pstate.exc = JMLException else S(σ, τ )

S(σ, τ ) = (unique(σ.pa state.current) = τ.ghost vars(cp)) ∧
∀q ∈ P.pa.cps. (unique(q) = τ.ghost vars(q)) ∧
∀n ∈ N .(σ.pa state(n) �=⊥⇒ σ.pa state(n) = τ.ghost vars(n)) ∧
σ.pstate = τ.pstate ∧
∀n ∈ N .(σ.ghost vars(n) �=⊥⇒ σ.ghost vars(n) = τ.ghost vars(n))

This relation specifies that if the monitor has reached control point halted, the
annotated program must have thrown a JMLException. Otherwise, the state of
the annotated program corresponds to the state of the original program, ex-
tended with the modelling of the monitor’s state. This means that the program
states (fields, local variables and exceptions) have to coincide, just as the val-
ues of the ghost variables that are declared in the original program P . Further,
the current control point is represented by the value stored in ghost variable
cp, and all PA control points and variables correspond to ghost variables. No-
tice that if an annotation already present in P causes a JMLException, both
the monitored and the annotated program will throw it. Therefore, we cannot
prove that the annotated program throws a JMLException if and only if halted
is reached.

To prove that this relation is a preserved, it is strengthened with the following
property: if the control point is not halted, then the derivations also produce the
same value. The crucial part in the proof is of course what happens upon method
call and termination. For example, when a method is called, first the invariant
and the precondition are evaluated. Assuming that halted is not yet reached, the
new conjunct of the invariant evaluates to true, and induction allows to derive
that after evaluation of the precondition, the states are related by R. Next, the
original pre set annotations are evaluated, and again the induction hypothesis
allows to conclude that the resulting states are related. Next, the monitored
program makes a PA transition, and the annotated program executes the newly
generated set annotations, followed by an Assert to check whether halted has
been reached. Here we cannot use the induction hypothesis, but instead we
show manually that relation R is preserved. Notice that in post set or exc set we
do not have an Assert statement. Since the invariant is evaluated immediately
after the set-annotations, the reaching of halted will be detected immediately.
For this part of the proof it is crucial that the newly added invariant is evaluated
first.

Finally, to complete the proof, we have to add a restriction to programs. We
follow the Java Language Specification in describing its behaviour [6]. This means
in particular that if the finally block in the statement terminates abnormally (be-
cause of an exception, or any other reason for abrupt completion), it overrides
a possible exception thrown in the try or catch block. Thus, for example, if halted



352 M. Huisman and A. Tamalet

α3,M(P, m) = m(# pre set := Skip, post set := Skip, exc set := Skip,
lvars := {result} ∪ m.lvars, res := lookup(result),
body := TryCatchFinally(

TryCatchFinally(m.pre set; m.body;
Assign(result, m.res); m.post set

Throwable, m.exc set, Skip),
RunTimeException, m.exc set, Skip) #)

Fig. 8. Formal definition of annotation inlining for methods

is reached in the try block, and hence a JMLException is thrown, this exception
might be overwritten by an exception thrown in the finally block (see also [8] for
a discussion of this problem), which would mean that the violation of the security
policy is not signalled to the user, and instead execution continues (with another
exception). To avoid this, for all TryCatchFinally statements in the program, we
require that if the try or catch block throws a JMLException, the whole statement
also terminates exceptionally because of a JMLException.

Inlining the Annotations. Once the set-annotations at method specification level
are generated, the next step is to inline them into the method bodies. To ensure
that the appropriate set-statements are always executed at the end of the method
body, the body is wrapped in a TryCatchFinally statement. The translation α3
applies α3,C to all classes, which in turn applies α3,M to all methods in the class.
This function generates one new local variable6 result. The body of the method
is changed as follows: all code is wrapped in two TryCatchFinally statements, to
catch Throwable and RunTimeException exceptions7. In the try block, first pre set
is executed, followed by the body of the method. Then the result expression from
the original body is evaluated, and assigned to result. Next, post set is executed.
Notice that the latter is only executed if the body actually terminates normally,
otherwise the exception will simply be propagated. Finally, in the catch clauses,
exc set is executed. The new result expression of the method is the look up
of the variable result. To conclude, pre set, post set and exc set in the method
specification are set to Skip. Figure 8 gives the formal definition of α3,M (where
P is a program, and m a method).

To prove correctness of this translation, we use the following relation: all fields
and ghost variables coincide, exceptions coincide, and all local variables that are
declared in the original program coincide. In the correctness proof, we use that
the post set and exc set annotations do not throw any exceptions, and pre set
may only throw a JMLException. Moreover, we use that the set-annotations do
not contain method calls, from which we can conclude that they do not modify
any variables that are not explicitly mentioned in them. In particular, this allows
to conclude that the new local variable is not changed by the set annotations.

6 In fact, this should be a local ghost variable, but these are not yet supported by our
formalisation, therefore we formalise it as a standard local variable.

7 For simplicity, we do not model the exception hierarchy and thus TryCatchFinally can
only catch a single exception, but in practice only one try-catch-finally instruction
would be necessary.



A Formal Connection between Security Automata and JML Annotations 353

5 Related Work

Security automata [13] are widely used for monitoring security properties. The
originality of our work lies in considering them as specifications in a general
specification language, with the ultimate goal of static verification.

Closely related to our approach is work by Aktug et al. [3,1,2], who define
a formal language for security policy specifications, ConSpec, that is similar to
our PAs. They prove that a monitor can be inlined into the program’s bytecode,
by adding first-order logic annotations, and then they use a weakest precondi-
tion computation that essentially works the same as the annotation propagation
algorithm that we plan to use [12] to produce a fully annotated, verifiable pro-
gram. In contrast, our algorithm is defined for source code, and connects with
the general-purpose specification language JML. This allows the use of JML ver-
ification tools, to verify the actual policy adherence. And of course, correctness
of our inlining algorithm has been proven with a theorem prover.

Cheon and Perumendla propose an extension of JML to specify allowed se-
quences of methods calls in a regular expression-like notation [4]. This results
in succinct specifications, but of limited expressiveness. Even our Limited SMS
example is out of their scope, because it contains a counter used only by the
specification. Further, they only target runtime verification.

Several tools exist that translate temporal properties into JML annotations:
AutoJML [7] translates finite state machine specifications into JML annotations
and can also generate a code skeleton for a smart card applet; JAG [5] translates
properties in (a subset of) temporal logic, including liveness properties. However,
they typically do not distinguish between method entry and exit, and moreover,
correctness of the translation algorithm has not been proven.

For more information about policy languages, monitor inlining and specifying
policy adherence, we refer to Section 4.10 of Aktug’s thesis [1].

6 Conclusions and Future Work

This paper presents an algorithm to inline security automata, in the form of
JML annotations. The translation is defined in several steps, thanks to the in-
troduction of method-level set-annotations as extension to JML. All steps are
formalised and proven correct, using the PVS theorem prover. The algorithm
might seem trivial, but several subtleties complicate the proof, i.e. evaluating
the specifications in the right order, dealing with side-effect-freeness of annota-
tions and the possibility that a finally block hides exceptions.

The formalisation has been developed for a subset of Java. We believe that
extending it to full (sequential) Java would be relatively straightforward. How-
ever, generalising to properties that are not restricted to a single class or that
are related to multithreading might be more challenging.

The ultimate goal of our work is to statically verify adherence to security
policies. To achieve this, a weakest precondition calculus can be used to generate
pre- and postconditions, based on the generated Set annotations. In earlier work,



354 M. Huisman and A. Tamalet

we presented such a propagation algorithm [12], and proved correctness for a
limited case (instance variables and branches are not considered). It is future
work to overcome these limitations.

Acknowledgements. We thank Erik Poll for his useful comments on an earlier
draft of this paper, and Igor Siveroni, who started the work on this topic and
came up with the idea to use method-level set-annotations.

References

1. Aktug, I.: Algorithmic Verification Techniques for Mobile Code. PhD thesis, Royal
Institute of Technology (KTH), Sweden (2008)

2. Aktug, I., Dam, M., Gurov, D.: Provably correct runtime monitoring. In: Cuellar,
J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 262–277. Springer,
Heidelberg (2008)

3. Aktug, I., Naliuka, K.: ConSpec: A Formal Language for Policy Specification. In:
Run Time Enforcement for Mobile and Distributed Systems (REM 2007). Elec-
tronic Notes in Theoretical Computer Science, vol. 197-1, pp. 45–58 (2007)

4. Cheon, Y., Perumendla, A.: Specifying and Checking Method Call Sequences of
Java Programs. Software Quality Journal 15, 7–25 (2007)

5. Giorgetti, A., Groslambert, J.: JAG: JML Annotation Generation for verifying
temporal properties. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922,
pp. 373–376. Springer, Heidelberg (2006)

6. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd
edn. The Java Series. Addison-Wesley, Reading (2005)

7. Hubbers, E., Oostdijk, M., Poll, E.: From finite state machines to provably correct
Java Card applets. In: Gritzalis, D., De Capitani di Vimercati, S., Samarati, P.,
Katsikas, S.K. (eds.) IFIP Information Security Conference, pp. 465–470. Kluwer
Academic Publishers, Dordrecht (2003), http://autojml.sourceforge.net

8. Huisman, M.: Run-time verification can miss errors - why finally clauses can be
dangerous (manuscript, 2008)

9. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Kiniry, J.:
JML Reference Manual. In: Progress. Department of Computer Science, Iowa State
University. (July 2005), http://www.jmlspecs.org

10. von Oheimb, D.: Analyzing Java in Isabelle/HOL: Formalization, Type Safety and
Hoare Logic. PhD thesis, Technische Universität München (2001)

11. Owre, S., Rajan, S., Rushby, J.M., Shankar, N., Srivas, M.K.: PVS: Combining
specification, proof checking, and model checking. In: Alur, R., Henzinger, T.A.
(eds.) CAV 1996. LNCS, vol. 1102, pp. 411–414. Springer, Heidelberg (1996)

12. Pavlova, M., Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L.: Enforcing high
level security properties for applets. In: Quisquater, J.-J., Paradinas, P., Deswarte,
Y., El Kalam, A.A. (eds.) Cardis 2004, pp. 1–16. Kluwer Academic Publishers,
Dordrecht (2004)

13. Schneider, F.B.: Enforceable security policies. Technical Report TR99-1759, Cor-
nell University (October 1999)



Algorithms for Automatically Computing the
Causal Paths of Failures

William N. Sumner and Xiangyu Zhang

Department of Computer Science, Purdue University
{wsumner,xyzhang}@cs.purdue.edu

Abstract. We have proposed an automated debugging technique that
explains a failure by computing its causal path leading from the root
cause to the failure. Given a failing execution, the technique first searches
for a dynamic patch. Fine-grained execution comparison between the
failing run and the patched run is performed to isolate the causal path.
The comparison is enabled by precisely aligning the two executions. We
herein propose and study two algorithms aiming at efficiency. We also
evaluate the effectiveness and cost of our technique on a set of real bugs,
including requirement bugs in which no a single or small set of statements
can be blamed as the root cause. In such cases, understanding a failure
is more important.

Keywords: debugging, automated debugging, execution indexing.

1 Introduction

During debugging, developers often have a “correct” oracle execution in mind
with which they compare a failing execution to identify faulty state and then
understand the failure. We have proposed an automated debugging technique
that mimics such a procedure [1]. Our technique computes the causal path of a
failure, a subsequence of the failing run that explains the failure. It first searches
for a dynamic patch for the failing run. The patch mutates the values of certain
variables or control flow at runtime to produce the desired output. If such a patch
can be found, which is true in most cases, the technique aligns the failing run
and the patched run by establishing a mapping between instruction instances
in the two runs. The states at aligned points are compared to identify faulty
variables, and causality testing is performed to isolate subsets of faulty variables
that are essential. The sequence of essential faulty states explains the failure.

The technique follows the direction pioneered by Zeller et al. in [2, 3]. In
their work, the idea is to isolate the state transitions that are critical for a
failure by comparing the faulty execution with a similar but correct execution.
Compared to their work, we made progress in the following directions. First,
we found that state comparisons need to be performed at rigidly corresponding
points in the two respective executions. Due to the differences between the two
executions, construction of such correspondence is challenging. In [2, 3], it was
carried out in an ad-hoc way such that points that are not compatible may be

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 355–369, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



356 W.N. Sumner and X. Zhang

selected for comparison. As a result, the computed chain may not be relevant
to the failure. We proposed using execution indexing (EI) [4] to align the two
executions before comparison. EI is a technique that constructs a hierarchical
tree of an execution based on program structure. Executions can be aligned
through their trees. Second, our experience shows that using a different execution
as the reference oracle often fails to explain the causality of the failure, as the
reference execution is semantically different from the failing execution. Thus,
comparing these two executions often exposes their inherent semantic differences
instead of causality information for the failure. Our solution is to use a patched
run derived from the same failure inducing input for comparison.

In our prior work [1], we have built a formal model of the technique, proposed
an objective evaluation metric, and evaluated the proposed technique using the
SIR suite [5]. Results show that our technique can produce high quality causal
paths that often capture the root cause at the beginning, the failure point at the
end, and causality information between consecutive steps. Comparison with the
technique in [3] shows that our approach provides much better failure explana-
tions. Details can be found in [1].

In this paper, we make the following contributions.

– We propose and study two algorithms that focus on cost-effectiveness. Both
algorithms compute the same causal paths but differ in their efforts for reduc-
ing the number of state comparisons and causality tests. The first algorithm
relies on the execution index tree to compute causal paths in a hierarchical
manner. The second algorithm speculatively takes shortcuts during causal
path derivation based on program dependence information.

– We evaluate our approach on a set of real world bugs collected from the Inter-
net. Results show that our technique is effective in explaining failures. The
shortcutting algorithm is orders of magnitude faster than the hierarchical
algorithm.

– We use concrete examples to explicitly explain the unique features of our
technique, including using EI to align executions before comparison and
using a patched execution rather than a different execution as the reference.

2 Background

The goal of our technique is to compute the causal path of a failure. Assume
we have the corrected version of the faulty program. The ideal causal path of a
failure is computed by comparing the failing execution and the execution of the
corrected program with the same input. The comparison is done by differencing
the states at corresponding points in the two respective runs, starting from the
failure point and proceeding backwards. In particular, faulty variables at a step
are determined by comparing their values in the failing run with those in the
correct run. Not all faulty variables are essential to the failure. Thus, we define
the failure inducing state (FIS) of a step in the failing run as the minimal set of
faulty variables that cause the failure or the FIS of the next step. Consider the
example in Fig. 1. There is a fault at line 10. Provided with the input a=2 and



Algorithms for Automatically Computing the Causal Paths of Failures 357

b=3, the program produces a failure observed at line 18, i.e. printing the incorrect
value 0. The trace and the states at each execution step of the failing run are
presented in the second and the third columns, respectively. The two columns
on the right show the trace and the states for the correct execution. At 152 of
the failing run, meaning the second instance of statement 15, the faulty variables
are x and z, as they have different values at 152 in the correct run. However,
x is not essential to the failure, as replacing its value with that of (x �→10) in
the correct run does not mask the failure. Therefore, the FIS of 152 contains
only z. Observe that the technique hinges on correctly identifying corresponding
points in the two executions. This is defined as the execution alignment problem.
While it is clear that 181 and 152 in the failing run align with 181 and 152 in the
correct run, the alignments of 141, 51, 142 and 52 of the failing run are less clear.
A simple strategy, which was used in [3, 2], is to align two execution points in
the two respective executions that have the same statement, calling context, and
instance count. Following such a strategy, 142 and 52 in the failing run do not
have aligned points in the correct run and the 141s and 51s in the two respective
executions align as shown in the figure. Such alignments are undesirable because
they result in FIS(141)=FIS(51)={i�→0}, i.e., the failure will not occur if the
value of i is replaced with that of i at 141 or 51 in the correct run. In other
words, the benign state {i�→0} is mistakenly identified as failure inducing state.

In our prior work [1], we proposed using execution indexing [4] to align exe-
cutions. This uses a tree, called the index tree, that represents the hierarchical
structure of an execution so that executions can be aligned by aligning their

int F (int v, int w) {
     return v+w;
}
int G (int v, int w) {
     return v-w;
}

input (a,b);
y= F (a,b);
x=a+4; // should be x=a;
z=10;
for (i=0;i<2; i++) {
    if (x>b)  
        z=G (z, y);
    x=x+4;
}
print(z);

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
18.

input (a,b);
F (a,b);
  y=a+b;
x=a+4; 
z=10;
for (i=… ) {
   if (x>b)  
       G (z, y);
       z=z-y;            
    x=x+4;
for (i=… ) {
   if (x>b)  
       G (z, y);
       z=z-y;            
    x=x+4;
print(z);

2, 3, 0, 0,  0, 0, -
2, 3, 0, 0,  0, 0, -
2, 3, 0, 5,  0, 0, -
2, 3, 6, 5,  0, 0, -
2, 3, 6, 5,10, 0, -
2, 3, 6, 5,10, 0, -
2, 3, 6, 5,10, 0,T
2, 3, 6, 5,10, 0, -
2, 3, 6, 5,  5, 0, -
2, 3,10,5,  5, 0, -
2, 3,10,5,  5, 1, -
2, 3,10,5,  5, 1, T
2, 3,10,5,  5, 1, -
2, 3,10,5,  0, 1, -
2, 3,14,5,  0, 1, -
2, 3,14,5,  0, 2, -

a, b, x, y,  z,  i, (x>b)

input (a,b);
F (a,b);
  y=a+b;
x=a;
z=10;
for (i=… ) {
   if (x>b)  
    x=x+4;
for (i=… ) {
   if (x>b)  
      G (z, y);
      z=z-y;            
    x=x+4;
print(z);

2, 3, 0, 0,  0, 0, -
2, 3, 0, 0,  0, 0, -
2, 3, 0, 5,  0, 0, -
2, 3, 2, 5,  0, 0, -
2, 3, 2, 5,10, 0, -
2, 3, 2, 5,10, 0, -
2, 3, 2, 5,10, 0, F
2, 3, 6, 5,10, 0, -
2, 3, 6, 5,10, 1, -
2, 3, 6, 5,10, 1, T
2, 3, 6, 5,10, 1, -
2, 3, 6, 5,  5, 1, -
2, 3,10, 5, 5, 1, -
2, 3,10, 5, 5, 2, -

a, b, x, y,  z,  i, (x>b)

81

91

21

101

111

121

131

141

51

151

122

132

142

52

152

181

81

91

21

101

111

121

131

151

122

132

141

51

152

181

Failing Execution (a=2, b=3) Ideal Execution (a=2, b=3)
Trace TraceState State

Code

Fig. 1. Misaligned failure inducing states. The ideal execution is from the corrected
program with the same input. The dashed lines represent execution alignments. Boxes
denote failure inducing states computed through comparisons. Note that function in-
vocations in the traces are transformed to better reflect their semantics, e.g., variables
such as v and w are omitted for brevity in the state columns.



358 W.N. Sumner and X. Zhang

trees. Let us first focus on the tree for the failing run presented on the left in
Fig. 2. The root node denotes the entire execution, which is the body of the main
function. The main body comprises the execution of statements 81, 91, 101, 111,
121, and 181, which are the nodes at the first level. Observe that statement ex-
ecutions 91 and 121 have substructures, so substructure nodes are introduced
at the second level. The procedure continues until all hierarchical substructures
are exposed. Note that the second iteration of loop 12, denoted by the subtree
rooted at 122, is considered as part of the first iteration, denoted by node 121.
The reason is that the execution of the second iteration is determined by the
fact that the first iteration gets executed. Similarly, the index tree of the correct
run can be constructed. The two executions are aligned by aligning their index
trees. As a result, 141 and 51 in the left tree do not align with any nodes in the
right tree, and 142 and 52 in the left tree align with 141 and 51 in the right tree.
Thus, FIS(52) = {z �→(0, 52)}, with the state of z being a pair comprising its
value and the definition point of the value, because it is the minimal subset of
the faulty variables at 52 that causes the FIS of its next step, 152. Recall that
FIS(152) = {z �→(0, 52)}. FIS(142) = {z �→(5, 51)}, as it induces FIS(52). The
FISs of all comparable execution points are annotated on the nodes in the left
tree. The definition points in these FISs constitute the causal path as highlighted
in the left tree, which is 101 → 131 → 51 → 52 → 181. One can see it starts with
the root cause and clearly explains how the fault leads to the failure. In com-
parison, the dynamic slice [6] of the failure point 181 contains all the executed
statements, including the causal path.

So far, we have discussed how to compute the causal path in the ideal case
where the corrected program is available. In realistic debugging, however, only
the buggy program is available. It was proposed in [3, 2] to use a similar but
passing run of the buggy program as the reference run to perform the compar-
ison. Unfortunately, since the two executions are derived from two different in-
puts, the semantic differences often significantly compromise the resulting causal
path. Consider the case in Fig. 3. The failing run is the same as before, but since
the corrected program is not available, a similar but passing run of the buggy

main ()

81 input(a,b)

141 G(z,y)

101 x=a+4 111 z=10 121 for (…)

21 y=a+b 131 if (…) 151 x=x+4 122 for (…)

181 print(z);91 F(a,b)

51 z=z-y 142 G(z,y)

132 if (…) 152 x=x+4

52 z=z-y

main ()

111 z=10 121 for (…)

131 if (…) 151 x=x+4 122 for (…)

181 print(z);

141 G(z,y)

132 if (…) 152 x=x+4

51 z=z-y

… … 

z=(0,52)

z=(5,51)

z=(5,51)

z=(5,51)

z=(0,52)

(x>b)=(T,131)

x=(6,101)

z=(5,51)

x=(6,101) x=(6,101)

Fig. 2. Index trees for the two executions in Fig. 1. Execution alignment is achieved
by aligning the two trees. The circled portion does not align with any part in the other
tree. FISs for aligned nodes are annotated. The state of a variable is a pair (value,
definition point). The causal path is highlighted in the index tree of the failing run.



Algorithms for Automatically Computing the Causal Paths of Failures 359

program is used, derived from the input a=2 and b=1. Note that although the
run on the right is from the buggy program, it produces the expected output, i.e.,
the same output as that produced by the corrected program, because whether
x has the value of 6 or 2 at 101 does not affect the final output. The two ex-
ecutions have identical control flows and their inputs differ by only one value.
The two executions can be trivially aligned. Comparing the states at the aligned
steps as mentioned earlier produces the FISs boxed in the figure. Notice that
FIS(152) = {z �→(0, 52)}, as it is the minimal state difference that induces the
failure. FIS(142) = {y�→(5, 21), z�→(5, 51)} because it is the minimal state differ-
ence that induces FIS(52) = {z�→(0, 52)}, even though we know y has a benign
value. The definition points of the faulty states at each step constitute the causal
path as highlighted on the left. Observe that although it has causality between
steps, the path does not explain the failure but rather the difference between the
two executions. Particularly, {b �→(3, 81)} is computed for FIS(81) although b
has a completely benign value at 81. Similarly, FIS(21) = {y�→(5, 21)} is due to
the semantic differences between the two executions. Even worse, x is not part
of FIS(101) as it has the same value in both executions. In other words, the real
faulty state is mistakenly considered as being benign.

In our technique, we first construct a dynamic patch to correct the failing
execution and then use the patched execution as the reference run for compar-
ison [1]. A failing execution is patched if mutating part of its state at one or
multiple execution points leads to the correct output. Since the patched execu-
tion is derived from the same input, it precludes state differences caused by the
input differences. Predicate switching [7] is our prior work on patching a fail-
ing run. It works by systematically changing the branch outcome of a predicate
instance and then observing if the mutated execution produces the expected
output. It was used as a fault localization technique because, if such a predicate

input (a,b);
F (a,b);
  y=a+b;
x=a+4; 
z=10;
for (i=… ) {
   if (x>b)  
       G (z, y);
       z=z-y;            
    x=x+4;
for (i=… ) {
   if (x>b)  
       G (z, y);
       z=z-y;            
    x=x+4;
print(z);

2, 3, 0, 0,  0, 0, -
2, 3, 0, 0,  0, 0, -
2, 3, 0, 5,  0, 0, -
2, 3, 6, 5,  0, 0, -
2, 3, 6, 5,10, 0, -
2, 3, 6, 5,10, 0, -
2, 3, 6, 5,10, 0,T
2, 3, 6, 5,10, 0, -
2, 3, 6, 5,  5, 0, -
2, 3,10,5,  5, 0, -
2, 3,10,5,  5, 1, -
2, 3,10,5,  5, 1, T
2, 3,10,5,  5, 1, -
2, 3,10,5,  0, 1, -
2, 3,14,5,  0, 1, -
2, 3,14,5,  0, 2, -

a, b, x, y,  z,  i, (x>b)

81

91

21

101

111

121

131

141

51

151

122

132

142

52

152

181

input (a,b);
F (a,b);
  y=a+b;
x=a+4; 
z=10;
for (i=… ) {
   if (x>b)  
       G (z, y);
       z=z-y;            
    x=x+4;
for (i=… ) {
   if (x>b)  
       G (z, y);
       z=z-y;            
    x=x+4;
print(z);

81

91

21

101

111

121

131

141

51

151

122

132

142

52

152

181

2, 1, 0, 0,  0, 0, -
2, 1, 0, 0,  0, 0, -
2, 1, 0, 3,  0, 0, -
2, 1, 6, 3,  0, 0, -
2, 1, 6, 3,10, 0, -
2, 1, 6, 3,10, 0, -
2, 1, 6, 3,10, 0,T
2, 1, 6, 3,10, 0, -
2, 1, 6, 3,  7, 0, -
2, 1,10,3,  7, 0, -
2, 1,10,3,  7, 1, -
2, 1,10,3,  7, 1, T
2, 1,10,3,  7, 1, -
2, 1,10,3,  4, 1, -
2, 1,14,3,  4, 1, -
2, 1,14,3,  4, 2, -

a, b, x, y,  z,  i, (x>b)

Failing Execution (a=2, b=3) A Similar but Passing Execution (a=2, b=1)
Trace TraceState State

Fig. 3. Comparing the failing run with a similar but passing run with different input



360 W.N. Sumner and X. Zhang

instance exists, called the critical predicate, it discloses a wealth of information
on the fault. Our study [1] showed that 80% of all the failing test cases in the
SIR [5] suite and 8 out of 12 real bugs collected from internet can be patched by
predicate switching. A patched run serves as an approximation of the ideal run
to carry out execution comparison. For instance, if the predicate instance 131
of the failing run in Fig. 1 is switched so that 141 and 51 are not executed, the
resulting z value at 181 becomes the desired 5. The patched run is very similar
to the ideal run on the right of Fig. 1. The only difference is that variable x has
different values from 101 to 131 in the two respective runs. The causal path is
computed as 131 → 51 → 52 → 181, which captures most of the ideal causal
path. Note that the root cause 101 is not caught, as the patched run has iden-
tical state as the failing run till the switched predicate instance 131. Although
the root cause is not captured in this example, it can often be captured by our
technique if the switched predicate determines if the root cause gets executed.
Our prior study [1] shows that about 45% of the causal paths computed by our
technique capture the root cause. Moreover, we argue that presenting the causal
path is more informative than pointing at root cause candidates. It is reported
in [8] that requirement bugs are the most frequently occurring kind of bug in the
field, which often do not have a single or a small set of statements to be blamed
as the root cause. For such cases, understanding failure causality is preferable.

3 Algorithms

The major contribution of this paper is a detailed study of two algorithms for the
aforementioned causal path computation. The two algorithms produce the same
causal paths but achieve efficiency with different approaches. A näıve approach
is to first align the two executions by aligning their index trees, then compute
the FISs for each aligned step backwards, starting from the failure point. Our
experience shows that such an algorithm is extremely expensive due to the large
number of aligned execution points. For the failures collected from Linux utilities,
listed in Section 4, the algorithm failed to terminate after 8 hours of computa-
tion. Note that all these algorithms require the same basic FIS computation
that compares states of two aligned steps in the two respective executions and
minimizes the state differences using the delta debugging algorithm [9, 3, 2].

3.1 A Hierarchical Algorithm

We have proven in [1] that FISs have a stability property, which states that
if the FISs computed at any two aligned points are the same, there is no need
to compute FISs between these two points because they will be identical. For
example, in Fig. 3, as the two aligned steps 51 and 142 in the failing run have
the same FIS, i.e., {y�→(5, 21), z �→(5, 51)}, all aligned steps in between have the
same FIS, too. Formally, this property requires a more advanced notion of FIS
that captures the definition points and values from both the faulty and correct
executions, but we elide these details in presentation for simplicity. Based on this



Algorithms for Automatically Computing the Causal Paths of Failures 361

property, a hierarchical algorithm can be designed to compute FISs in a demand-
driven fashion. The idea is to carry out state comparison and causality testing
top-down along the index tree of the failing execution until the right granularity
is reached. Each FIS is computed to induce the successive one except for the last
FIS, which induces the observed failure.

Algorithm 1. Hierarchical computation for causal paths of failures.
Primitives:

· AlignedChildren()- Finds the children that align with some nodes in the reference run.
· FIS()- Computes the FIS of the given aligned node.

Important Variables:
· target - The FIS to be induced when computing the preceding FIS.
· defs - The sequence of definition points that constitute the causal path.
· sets- A set of FISs.

CalculateCausalPath()
1 target ← failure
2 defs ← {target}
3 (sets,target) ← SetsInRegion(executionRoot,target)
4 defs ← defs ∪(∪fis∈sets)
5 return TemporalSort(defs)

SetsInRegion(node, target)
Input:A node in the index tree and the first FIS that must be induced.
Output:The set of FISs in the region and the single FIS that induces them.

1 sets ← ∅
2 kids ← AlignedChildren(node)\{children executing with or after target}.
3 while |kids| > 0 do
4 while |kids| > 1 do
5 mid ← |kids| / 2
6 newFIS ← FIS(kidsmid) inducing target
7 if newFIS = target then
8 kids ← kids0...mid−1
9 else

10 kids ← kidsmid...|kids|−1
11 if FIS(kids0) �=target then
12 (subsets,target) = SetsInRegion(kids0, target)
13 sets ← sets ∪ subsets
14 kids ← AlignedChildren(node)\{children executing with or after kids0}.
15 newFIS ← FIS(node) inducing target
16 return (sets ∪ newFIS, newFIS)

The algorithm is shown in Algorithm 1. Using the failing execution and the
reference execution, CalculateCausalPath() generates the complete causal
path. This procedure first initializes variables target, which is the FIS or the
failure to be induced by the next computed FIS, and defs, which stores the se-
quence of definitions constituting the causal path. It then calls SetsInRegion()
with the root of the index tree and target to compute the set of FISs, stored in
sets, in a top-down manner. Once all FISs have been aggregated, the definitions
they contain are sorted by their temporal position and returned at line 5. This
sequence of definitions comprises the complete causal path.

SetsInRegion() generates the FISs for the portion of the indexing tree
rooted at node such that the temporally last generated FIS induces the FIS
target. At line 2, the algorithm extracts the ordered list of all the child nodes



362 W.N. Sumner and X. Zhang

that have alignments in the reference execution and stores them in kids, ex-
cluding those executed after or with target. If there are no such children, the
function skips the loop in lines 3-14 and computes the FIS for the node that
induces target. The loop computes the set of FISs of the subtree. The inner
loop in lines 4-10 performs a classic binary search on kids list to locate the first
child from the end that has an FIS different from target. Observe that if the
FIS of the midpoint is identical to target, as checked at line 7, the algorithm
safely skips computing FISs for the right half of the kids list and its subtrees.
If such a child is found, the function recursively calls itself to compute the FISs
in the subtree rooted at the child on line 12. On line 14, the kids list updates
to reflect a new FIS, so the next round of binary search will be performed on a
reduced list. The computation terminates if the list becomes empty.

Consider the example in Fig. 2. The computation starts from the top of the
tree on the left, and the failure at 181, i.e., {z�→(0, 52)}, is the target to induce.
In the first invocation of SetsInRegion(), the kids list is initialized to contain
{81, 91, 101, 111, 121}. The binary search in lines 4-10 identifies the first child
with an FIS different than target to be 121. It recursively calls itself on 121 to
compute the FISs in the subtree rooted at 121. This time, the kids list is initial-
ized to have {131, 151, 122}. The algorithm descends along 122, 132, and then 142
because their FISs are different than the failure until the closest different FIS in-
ducing the failure, namely 142, is identified. The target is updated to be 142. At
some point, the recursive call for 122 returns with FIS(122) = {z�→(5, 51)} being
the target. The kids list is updated to {131, 151} at line 14 to start a new round
of the binary search. This time, the search identifies FIS(151) = FIS(122), so
if 151 were the root for a subtree, the algorithm would not descend into the
subtree. Computation over the remainder of the tree can be similarly derived.

3.2 A Shortcutting Algorithm

We introduce here another algorithm that exploits the stability property in a
different way. That is, given an FIS to induce, we try to identify the earliest
aligned point that is likely to have the same FIS and jump directly to that
point without computing any FISs in between. The intuition is that the earliest
point that has the same FIS is very likely the last definition point, before the
current point, that occurs in any of the previously computed FISs because all
faulty values in previously computed FISs remain intact between their definition
points and FISs. For example, in Fig. 3, at the aligned step 142, the set of
definitions in all the previously computed FISs is {21, 51, 52}. Recall that causal
path computation proceeds backwards, starting from the failure, with the first
FIS inducing the failure and the remaining FISs each inducing the successive FIS.
The last definition point that happens before 142 is 51. Observe that FIS(51) is
still {y �→(5, 21), z �→(5, 51)}. That implies we are taking the shortcut, jumping
directly from 142 to 51. Further note that the FIS immediately before is {y �→
(5, 21)}. This reflects the change in FIS that the definition at 51 causes. By
taking dependence shortcuts, fewer searches for computing an FIS are needed.



Algorithms for Automatically Computing the Causal Paths of Failures 363

Pseudocode for this approach is presented in Algorithm 2. The main proce-
dure CalculateCausalPath() derives the causal path for the failing execu-
tion, computing backwards starting from the failure. In lines 4-17, the algorithm
traverses backwards by taking shortcuts if possible, accumulating FISs in defs
along the way, until there is no more relevant state, as checked at 4. On line 5,
the last definition that was previously caught in the causal path and occurred
before the current computation point is stored in closest. In lines 6-9, the algo-
rithm handles cases in which no shortcut is available as the captured definition
points happen after or at the current traversal point. The algorithm conserva-
tively moves one step backwards. Lines 10-17 handle cases in which a shortcut
is possible. Line 13 checks if taking the shortcut is valid by comparing the FIS
of closest with target. If they are identical, the shortcut is valid and then at
line 17, the algorithm updates currentNode. Note, however, the shortcut may
not always be valid, i.e., a different FIS may be computed at the destination of
the shortcut. For example, in Fig. 4 the failing run is different from the reference
run because it omits the execution of the true branch. Thus, variable x is not
updated. Assume FIS(71) is computed as {x → (2, 21)}. If the algorithm takes
the shortcut to 21, the FIS at 21 is empty as all variables have the right value.
More important, following the shortcut misses the real FIS alteration point 31.
This results from the failing run omitting execution that it should have gone
through. Note that similar effects can be observed if program state is updated
by the OS and thus not visible to our analysis. Fortunately, such cases are re-
flected in the FIS at the shortcut being different from target. If they occur, the
algorithm falls back to a revised hierarchical search at line 14.

ClosestAdaptive() performs a revised hierarchical derivation of a single
FIS given the target, i.e., the FIS to be induced, and the bound on how early
the FIS transition could occur. Line 1 finds the common ancestor in the index
tree of both the early bound and the index at which the target FIS was de-
rived. Intuitively, execution within the provided bounds must be in the subtree
rooted at the ancestor. Lines 2-14 of ClosestAdaptive() simply perform a
hierarchical binary search for the resulting FIS. The procedure is very similar
to SetsInRegion in Algorithm 1. At line 3, the children of the start node are
retrieved. Those that happen before closest and after or at the point where
target is computed are filtered out. The loop in lines 4-10 is a classic binary

…
x=2;
if (p) {
   … 
   x= x-1;
}
…;

1.
2.
3.
4.
5.
6.
7.

…
x=2;
if (p) 

… ;

…
x=2;
if (p) {
    … 
    x=x-1; 
…;

   x        p

Failing Run Ref. RunCode
TraceState State

(2, 21)      -
(2, 21)   (F,31)

(2, 21)       -

11

21

31

71

11

21

31

41

51

71

   x        p

(2, 21)      -
(2, 21)   (T,31)

(1, 51)      -

Fig. 4. Taking the shortcut is not successful due to execution omission in the failing
run. The horizontal lines denote execution alignment.



364 W.N. Sumner and X. Zhang

search that looks for the first kid with an FIS different from target, and then
the algorithm traverses the index tree one level down to the kid at line 14.

Algorithm 2. Shortcutting computation for causal paths of failures.
Important Variables:

· target - The FIS to be induced when computing the preceding FIS.
· defs - The sequence of definition points that constitute the causal path.
· currentNode - The current FIS computation point.

CalculateCausalPath()
1 currentNode ← the failure point
2 target ← failure
3 defs ← {target}
4 while target �= ∅ do
5 closest ← the temporally last definition in defs that happens before currentNode
6 if closest = ⊥ then
7 currentNode ← the aligned point immediately preceding currentNode.
8 target ← FIS(currentNode)
9 defs ← defs ∪ target

10 else
11 if closest is not aligned then
12 closest ← the aligned point immediately preceding closest.
13 if FIS(closest) �= target then
14 target ← ClosestAdaptive(target, closest)
15 defs ← defs ∪ target
16 else
17 currentnode ← closest
18 return TemporalSort(defs)

ClosestAdaptive(target, closest)
Input: A target FIS to induce and a bound on the earliest point it may be induced.
Output: The FIS that immediately precedes the target in the sequence of FISs.

1 start ← the common ancestor in the indexing tree of closest and the index of target.
2 loop
3 kids ← AlignedChildren(start)\{children before closest, after target, and target itself}.
4 while |kids| > 1 do
5 mid ← |kids| / 2
6 newFIS ← FIS(kidsmid) inducing target
7 if newFIS = target then
8 kids ← kids0...mid−1
9 else

10 kids ← kidsmid...|kids|−1
11 if kids = ∅ then
12 currentnode ← start
13 return FIS(start) inducing target
14 start ← kids0

Consider the example in Fig. 2. To start, target=failure={z �→(0, 52)}, so
the shortcut jumps to 52. The shortcut is valid, as FIS(152)=target. In the
next round of the main loop in CaculateCausalPath(), the algorithm tra-
verses one step backwards since no shortcut is available because all captured
definitions happen after or at 52. The next FIS computation is for 142, which
has the result {z �→(5, 51)}. Due to the newly caught definition 51, a shortcut is
available to reach 51. However, 51 is not aligned and thus its immediate aligned
predecessor 131 is used to compute the FIS instead, as in line 12 of Caculate-

CausalPath(). The resulting FIS(131) = {(x > b) �→ (T, 131)} differs from
target=FIS(142). That is, the shortcut is not valid and the algorithm must
fall back and call ClosestAdaptive(). The binary search eventually identi-
fies 131 as the closest point at which a different FIS is computed that induces



Algorithms for Automatically Computing the Causal Paths of Failures 365

FIS(142). Now, since there is not a captured definition occurring before 131, the
algorithm moves one step backwards and computes FIS(121) = {x �→(6, 101)}.
A shortcut is available leading to the root cause 101.

4 Evaluation

In order to evaluate the presented algorithms, we employed them against several
real world bugs found in the GNU utilities grep, gzip, bc, find, diff, and
tar. The debugging infrastructure comprises source to source transformation
via CIL, Python, and the public Python and GDB infrastructure from [3]. The
two algorithms were implemented with CIL and Python. The tests were run on
a 2GHz dual core machine with 2GB of RAM. For each analyzed bug, Table 1
presents the program and version the bug applies to, a bug report if available,
the number of definitions the causal path comprises, and the time in seconds
required for each algorithm to derive the causal path. Time 1 shows to the time
taken by Algorithm 1 and Time 2 shows the time taken by Algorithm 2.

Observe that the time taken by Algorithm 2, using shortcutting, is consis-
tently and substantially less than the time required by Algorithm 1, 7% as long
or less on average. The most significant factors in the runtime of the algorithm
are the number of causality tests and the size and complexity of the program
states that must be analyzed during causality tests. Causality testing is part of
the FIS computation. It determines if a subset of state differences induce the
successive FIS. It is done through re-executing the program with the state dif-
ferences applied. The efficiency difference in Table 1 results predominantly from
decreasing the number of causality tests via shortcutting. In practice, execution
omission and unobserved state force the shortcutting approach to degenerate
into a hierarchical binary search for some individual elements of the path, but

Table 1. Examined bugs and their causal path properties. Time n is the time in seconds
taken to derive the causal path using Algorithm n. ‘Bug’ is the Internet address of a
bug report, if applicable.

Program Version Bug Path
Length

Time 1 Time 2

bc 1.06 bugs.gentoo.org/51525 2 1130 135
diff 2.8 ....gnu....utils/2002-12/msg00067.html 8 2320 368
find 4.3.0 savannah.gnu.org/bugs/?18222 5 2906 48
grep 2.5.1 savannah.gnu.org/bugs/?11579 5 1220 159
grep 2.5.1 savannah.gnu.org/bugs/?9519 7 >4 hours 250
grep 2.5.1 savannah.gnu.org/bugs/?13920 7 6865 217
grep 2.5.1 savannah.gnu.org/bugs/?9768 5 6167 221
grep 2.5.1 savannah.gnu.org/bugs/?19491 9 >4 hours 244
grep 2.5.3 savannah.gnu.org/bugs/?15620 4 >4 hours 56
grep 2.5.3 -h -H with a single file 4 >4 hours 55
gzip 1.3.9 ....gnu....gzip/2007-05/msg00003.html 15 7583 651
tar 1.13.25 ....gmane....comp.gnu.tar.bugs/491 7 8823 531



366 W.N. Sumner and X. Zhang

most shortcutting efforts are successful. Both algorithms are significantly faster
than a näıve algorithm that computes FISs linearly by traversing backwards step
by step. Note that all these algorithms compute the same causal path.

In the second experiment, we evaluate the effectiveness of our technique on a
set of real bugs from Linux utility programs. We collected these bugs by looking
into their CVS repositories and on-line bug reports. Some of these cases are
explained in detail below.
Grep. Version 2.5.3 of the grep regular expression matching utility incorrectly
handles command-line options -h and -H, which respectively disable and en-
able printing out the filename of a file containing a matched expression. If both
options are given, only the last should be obeyed, but both options are inde-
pendently enabled, yielding inconsistent results. Interestingly, there are multiple
ways that this fault can manifest, but they have the same causal path, which
identifies them as stemming from the same fault. If options -H -h are used when
searching multiple files, file names prefix all resulting output with matches in
those files, but they should not. If -H -h are used when searching one file con-
taining short lines of text, some of the resulting output lines have the filename
prefix, while others do not. It is not immediately apparent that the same fault
affects both executions. The causal paths and faulty code for these executions,
however, are the same, as shown in Fig. 5(a). The switched predicate on line 5
becomes false, preventing the flag for printing filename prefixes from becoming
enabled. The resulting causal path shows that in the failing runs, the predicate
on line 5 enables the flag out file for printing filename prefixes on line 6. Much
later in the execution, this causes the predicate on line 7 to be true, which then
results in failure when the filenames are printed at 8. The switched predicate
and causal path reveal that the predicate should not evaluate to true, but the
-H command forces it to via the variable with names, as it is mistakenly not
disabled by the later option -h. The applied fix was then to disable the opposing
commands on lines 2 and 3.
Find. Find is a tool that locates all files matching provided criteria and also
performs an action at all such files. Version 4.3.0 contains a bug when multiple
directories to search are specified. If the given action is -printf ‘%H %P\n’,
which prints out the specified directory name before each file found in the direc-
tory, then every directory name printed is no longer than the first. For instance,
if the directories dir1 and directory are specified, the contents of dir1 will
be printed with the prefix ‘dir1’, and the contents of directory will have the
prefix ‘dire’. The causal path is presented in Fig. 5 (b). At the first step of the
causal path, the variable s.starting length is set to 4, recording the length
of the first specified directory. The critical predicate is on line 1, which corre-
sponds to the second invocation of the function consider visiting(), handling
the second specified directory. In the failing run, it evaluates to false, so when it
gets switched, s.starting length is updated to 9 and thus leads to the correct
output. The causal path also captures that s.starting length is used at line 6
to cut off the second directory name and eventually produce the wrong output.
The assignment to cc at line 5 is in the causal path, even though it may not



Algorithms for Automatically Computing the Causal Paths of Failures 367

Code Snippet:
main(argc,argv):
1 switch (options) {
2 case ’H’: with names = true;break;
3 case ’h’: no names = true;break;
4 . . .
5 if ((num files>1 && !no names) ||with names)
6 out file = true;
print line head(beg, lim, sep):
7 if (out file)
8 print filename();

Causal Path:
At 5, (. . . || with names) is true
At 6, out file is given true
At 7, (out file) is true
Thus the filename is printed at 8.

Code Snippet:
consider visiting(p,ent):
1 if (0 == s.starting length)
2 s.starting length = ent->fts pathlen;
pred fprintf(pathname,stat buf,pred ptr):
3 switch (kind & 0xff) {
4 case ’H’:
5 cc = pathname[s.starting length];
6 pathname[s.starting length] = ’\0’;
7 printf(pathname);
8 pathname[s.starting length] = cc;
9 break;

Causal Path:
At 2, s.starting length is given 4
At 1, (0 == s.starting length) is false
At 5, cc is given ’c’
At 6, pathname is given ”dire”
So ”dire” is printed at 7.... ...
”dire” is printed at 7 again.

(a) (b)

Fig. 5. Causal paths for (a) grep and (b) find

seem needed for failure induction, because the wrong directory name ‘dire’ was
printed multiple times, and the assignment at line 5 is critical to continually
printing the wrong directory name. This case also shows how a causal path does
not necessarily start with the critical predicate. Namely, the definition at line 2
is the first step of the causal path because it is in FIS(5) and FIS(6).

Diff. The diff tool compares two files or the contents of two directories and
reports differences. In version 2.8, an option to ignore the case within filenames
works incorrectly when comparing directory contents. Thus, if one directory
contains the file bar while another contains BAR, comparing the directories with
the --ignore-file-name-case option should print nothing, but it reports the
above files as being different. The causal path and code in Fig. 6 for this bug
show that this is due to an incorrect name comparison algorithm. When com-
paring directories, the list of files from one directory is compared to the list in
another using the diff dirs function. This uses compare names() to compare
individual files. The critical predicate on line 2 shows that when two file names
are case-insensitively equal, that equality is immediately disregarded because
(r) is false. Thus, the compare names() function continues and returns that the
names are case-sensitively unequal via -7 at line 4 and into order at 6. This
is used to determine that one of the files is unique when (order<0) is true at
line 8 causes *fname1 to be zeroed out at 9. Thus, when the compare files()
function is called to show the results, the argument name1 is given 0, and
(!(name0 && name1)) evaluates to true, forcing one of the equivalent filenames,
name0, to be printed as a difference. The causal path indicates that the right
patch should be to change the algorithm in compare names() to make the com-
parison at line 4 case insensitive when the option is set.



368 W.N. Sumner and X. Zhang

Code Snippet:
compare names(name1,name2):
1 r = strcasecmp(name1,name2);
2 if (r)
3 return r
4 return strcoll(name1,name2);
diff dirs(cmp,handle file):
5 while (fname0 || fname1) {
6 order = compare names(*fname0,*fname1);
7 . . .
8 if (order < 0)
9 *fname1 = 0;
10 v1 = compare files(cmp,*fname0,*fname1);
compare files(parent,name0,name1):
11if (!(name0 && name1))
12 print(name0 == 0 ? name1 : name0);

Causal Path:
At 2, (r) is false
At 4, compare names returns -7
At 6, order is given -7
At 8, (order < 0) is true
At 9, *fname1 is given 0
At 10, name1 is given 0
At 11, (!(name0 && name1)) is true
So the filename is shown at 12

Fig. 6. Causal path for diff

5 Related Work

Delta Debugging. The work most relevant to ours is that by Zeller et al.
[9, 2, 3]. The project in [2] is the first one to propose comparing two similar
executions using delta debugging [9] to compute cause-effect chains, which is a
concept similar to causal paths of failures. Later in [3], the technique is extended
to link cause transitions to a faulty statement. Compared to these works, we
make significant progress on the following: we identify execution indexing as
a key technique, use a patched execution instead of a different execution to
reduce noise from semantic differences, and develop efficient algorithms. Our
prior evaluation [1] using the SIR suite [5] showed that our technique is superior.

Fault Localization. Fault localization computes fault candidates by looking
at many executions, both passing and failing, as exemplified by [10, 11, 12,
13, 14, 15, 16, 17]. Details of these techniques cannot be presented due to space
limits. Compared to our technique, fault localization techniques are less effective
in explaining failures. They produce a ranked candidate set, usually containing
static statements. Reasoning about the candidates and the failure often falls onto
the programmer.

Dynamic Slicing. Dynamic slicing was introduced as an aid to debugging [6].
Compared to fault localization, slicing features the capability of capturing causal-
ity through program dependencies. However, slicing tends to produce fat slices
containing not only the failure inducing dependencies but also benign dependen-
cies. Although various techniques have been proposed to prune dynamic slices
[18, 19], without using a reference execution to exclude benign chains, inspect-
ing pruned slices still requires non-trivial human effort. Dicing [20] aggregates
slices from multiple executions. However, the simple set manipulations in dicing
undermine causality and make resulting slices hard to understand. Furthermore,
it does not handle cases in which a faulty statement occurs in both the benign
and faulty slices. In comparison, our work does not rely strictly on program
dependence but rather on semantic causality. The use of a reference execution
effectively excludes benign state.



Algorithms for Automatically Computing the Causal Paths of Failures 369

Acknowledgments

This work is supported by NSF grants CNS-0720516 and CNS-0708464 to Purdue
University.

References

[1] Sumner, W.N., Zhang, X.: Automatic failure inducing chain computation through
aligned execution comparison. Tech. Rep. 08-023, Purdue University (2008),
http://www.cs.purdue.edu/homes/wsumner/CSD_TR_08-023.pdf

[2] Zeller, A.: Isolating cause-effect chains from computer programs. In: FSE (2002)
[3] Cleve, H., Zeller, A.: Locating causes of program failures. In: ICSE (2005)
[4] Xin, B., Sumner, W.N., Zhang, X.: Efficient program execution indexing. In: PLDI

(2008)
[5] Do, H., Elbaum, S., Rothermel, G.: Supporting controlled experimentation with

testing techniques: An infrastructure and its potential impact. Empirical Software
Engineering: An International Journal 10(4)

[6] Korel, B., Laski, J.: Dynamic program slicing. Information Processing Let-
ters 29(3) (1988)

[7] Zhang, X., Gupta, N., Gupta, R.: Locating faults through automated predicate
switching. In: ICSE (2006)

[8] Jackson, D., Thomas, M., Millett, L.I.: Software for Dependable Systems:Sufficient
Evidence? The National Academies Press

[9] Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE
Transactions on Software Engineering 28(2) (2002)

[10] Harrold, M.J., Rothermel, G., Sayre, K., Wu, R., Yi, L.: An empirical investigation
of the relationship between spectra differences and regression faults. Software
Testing, Verification and Reliability 10(3)

[11] Jones, J.A., Harrold, M.J., Stasko, J.: Visualization of test information to assist
fault localization. In: ICSE (2002)

[12] Renieris, M., Reiss, S.: Fault localization with nearest neighbor queries. In: ASE
(2003)

[13] Liblit, B., Aiken, A., Zheng, A.X., Jordan, M.I.: Bug isolation via remote program
sampling. In: PLDI (2003)

[14] Liu, C., Yan, X., Fei, L., Han, J., Midkiff, S.: Sober: statistical model-based bug
localization. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557.
Springer, Heidelberg (2005)

[15] Brun, Y., Ernst, M.D.: Finding latent code errors via machine learning over pro-
gram executions. In: ICSE (2004)

[16] Chesley, O.C., Ren, X., Ryder, B.G., Tip, F.: Crisp–a fault localization tool for
java programs. In: ICSE (2007)

[17] Wang, T., Roychoudhury, A.: Automated path generation for software fault lo-
calization. In: ASE (2005)

[18] Gupta, N., He, H., Zhang, X., Gupta, R.: Locating faulty code using failure-
inducing chops. In: ASE (2005)

[19] Zhang, X., Gupta, N., Gupta, R.: Pruning dynamic slices with confidence. SIG-
PLAN Not. 41(6) (2006)

[20] Chen, T.Y., Cheung, Y.Y.: Dynamic program dicing. In: ICSM (1993)

http://www.cs.purdue.edu/homes/wsumner/CSD_TR_08-023.pdf


Mining API Error-Handling Specifications
from Source Code

Mithun Acharya and Tao Xie

Department of Computer Science, North Carolina State University, Raleigh, NC, USA, 27695
{acharya,xie}@csc.ncsu.edu

Abstract. API error-handling specifications are often not documented, necessi-
tating automated specification mining. Automated mining of error-handling spec-
ifications is challenging for procedural languages such as C, which lack explicit
exception-handling mechanisms. Due to the lack of explicit exception handling,
error-handling code is often scattered across different procedures and files mak-
ing it difficult to mine error-handling specifications through manual inspection
of source code. In this paper, we present a novel framework for mining API
error-handling specifications automatically from API client code, without any
user input. In our framework, we adapt a trace generation technique to distinguish
and generate static traces representing different API run-time behaviors. We ap-
ply data mining techniques on the static traces to mine specifications that define
correct handling of API errors. We then use the mined specifications to detect
API error-handling violations. Our framework mines 62 error-handling specifica-
tions and detects 264 real error-handling defects from the analyzed open source
packages.1

1 Introduction

Motivation. A software system interacts with third-party libraries through various Ap-
plication Programming Interfaces (API). Throughout the paper, we overload the term
API to mean either a set of related library procedures or a single library procedure in the
set – the actual meaning should be evident from the context. Incorrect handling of er-
rors incurred after API invocations can lead to serious problems such as system crashes,
leakage of sensitive information, and other security compromises. API errors are usu-
ally caused by stressful environment conditions, which may occur in forms such as
high computation load, memory exhaustion, process related failures, network failures,
file system failures, and slow system response. As a simple example of incorrect API
error handling, a send procedure, which sends the content of a file across the network as
packets, might incorrectly handle the failure of the socket API (the socket API can
return an error value of -1, indicating a failure), if the send procedure returns without
releasing system resources such as previously allocated packet buffers and opened file
handlers. Unfortunately, error handling is the least understood, documented, and tested
part of a system. Toy’s study [14] shows that more than 50% of all system failures in

1 This work is supported in part by ARO grant W911NF-08-1-0443.

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 370–384, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Mining API Error-Handling Specifications from Source Code 371

a telephone switching application are due to incorrect error-handling algorithms. Cris-
tian’s survey [7] reports that up to two-thirds of a program may be devoted to error de-
tection and recovery. Hence, correct error handling should be an important part of any
reliable software system. Despite the importance of correct error handling, program-
mers often make mistakes in error-handling code [4, 10, 17]. Correct handling of API
errors can be specified as formal specifications verifiable by static checkers at compile
time. However, due to poor documentation practices, API error-handling specifications
are often unavailable or imprecise. In this paper, we present a novel framework for stat-
ically mining API error-handling specifications automatically from software packages
(API client code) implemented in C.

Challenges. There are three main unique challenges in automatically mining API error-
handling specifications from source code. (1) Mining API error-handling specifications,
which are usually temporal in nature, requires identifying API details from source code
such as (a) critical APIs (APIs that fail with errors), (b) different error checks that
should follow such APIs (depending on different API error conditions), and (c) proper
error handling or clean up in the case of API failures, indicated by API errors. Fur-
thermore, clean up APIs might depend on the APIs called before the error is handled.
Static approaches [17, 16] exist for mining or checking API error-handling specifica-
tions from software repositories implemented in object-oriented languages such as Java.
Java has explicit exception-handling support and the static approaches mainly analyze
the catch and finally blocks to mine or check API error-handling specifications.
Procedural languages such as C do not have explicit exception-handling mechanisms
to handle API errors, posing additional challenges for automated specification mining:
API details are often scattered across different procedures and files. Manually mining
specifications from source code becomes hard and inaccurate. Hence, we need inter-
procedural techniques to mine critical APIs, different error checks, and proper clean
up from source code to automatically mine error-handling specifications. (2) As pro-
grammers often make mistakes along API error paths [4, 10, 14, 17], the proper clean
up, being common among error paths and normal paths, should be mined from normal
traces (i.e., static traces without API errors along normal paths) instead of error traces
(i.e., static traces with API errors along error paths). Hence, we need techniques to gen-
erate and distinguish error traces and normal traces, even when the API error-handling
specifications are not known a priori. (3) Finally, API error-handling specifications can
be conditional – the clean up for an API might depend on the actual return value of
the API. Hence, trace generation has to associate conditions along each path with the
corresponding trace.

Contributions. To address the preceding challenges, we develop a novel framework
for statically mining API error-handling specifications directly from software packages
(API client code), without requiring any user input. Our framework allows mining sys-
tem code bases for API error-handling violations without requiring environment setup
for system executions or availability of sufficient system tests. Furthermore, our frame-
work detects API error-handling violations, requiring no user input in the form of spec-
ifications, programmer annotations, profiling, instrumentation, random inputs, or a set
of relevant APIs. In particular, in our framework, we apply data mining techniques on
generated static traces to mine specifications that define correct handling of errors for



372 M. Acharya and T. Xie

the APIs used in the analyzed software packages. We then use the mined specifications
to detect API error-handling violations. In summary, this paper makes the following
main contributions:

– Static approximation of different API run-time behaviors. We adapt a static
trace generation technique [2] to distinguish and approximate different API run-time
behaviors (e.g., error and normal behaviors), thus generating error traces and normal
traces inter-procedurally.

– Specification mining and violation detection. We apply different mining tech-
niques on the generated error traces and normal traces to identify clean up code, dis-
tinguish clean up APIs from other APIs, and mine specifications that define correct
handling of API errors. To mine conditional specifications, we adapt trace generation
to associate conditions along each path with the corresponding trace. We then use the
mined specifications to detect API error-handling violations.

– Implementation and Experience. We implement the framework and validate the
effectiveness of the framework on 10 packages from the Redhat-9.0 distribution (52
KLOC), postfix-2.0.16 (111 KLOC), and 72 packages from the X11-R6.9.0 dis-
tribution (208 KLOC). Our framework mines 62 error-handling specifications and de-
tects 264 real error-handling defects from the analyzed packages.

The remainder of this paper is structured as follows. Section 2 starts with a mo-
tivating example. Section 3 explains our framework in detail. Section 4 presents the
evaluation results. Section 5 discusses related work. Finally, Section 6 concludes our
paper.

2 Example

In this section, we use the example code shown in Figures 1(b) and 1(c) to define several
terms and notations (summarized in Figure 1(a)) used throughout the paper. We also
provide a high-level overview of our framework using the example code.

API errors. All APIs in the example code are shown in bold font. In Figure 1(c),
InitAAText and EndAAText are user-defined procedures. In the figure, user-defined
procedures are shown in italicized font. The user-defined procedure in which an API is
invoked is called the enclosing procedure for the API. In Figure 1(c), EndAAText,
for instance, is the enclosing procedure for the APIs XftDrawDestroy (Line 27),
XftFontClose (Line 28), and XftColorFree (Line 29). APIs can fail because of
stressful environment conditions. In procedural languages such as C, API failures are
indicated through API errors. API errors are special return values of the API (such as
NULL) or distinct errno flag values (such as ENOMEM) indicating failures. For example,
in Figure 1(b), API recvfrom returns a negative integer on failures. The API error from
recvfrom is reflected by the return variable cc. APIs that can fail with errors are called
as critical APIs. A condition checking of API return values or errno flag in the source
code against API errors is called API-Error Check (AEC); we use AEC(a) to denote
AEC of API a. For example, AEC(recvfrom) is if(cc<0).

Error block. The block of code following an API-error check, which is executed if the
API fails is called the error block. Error blocks contain error-handling code to handle
API failures. We use EB(a) to denote the error block of API a. For example, Lines



Mining API Error-Handling Specifications from Source Code 373

Definitions and Acronyms

Library Application Program Interface (API)

API-Error Check (AEC). AEC(a) is the required error check for API a.

Error Block (EB). EB(a) is the error block of API a. AEC(a) precedes EB(a).
Violat

Specif

Path (P)
Error Path (ErP)

Error Exit-Path (ErExP)

Error Return-Path (ErRP)

Normal Path (NP)

Error E it Trace (ErExT)

1
2
3

Trace (T)
Error Trace (ErT)

Error Exit-Trace (ErExT)

Error Return-Trace (ErRT)

Normal Trace (NT)

4
5
6
7
8(a) Definitions and Acronyms
9
10
11
12
13

1
2
3

~/Redhat-9.0/routed/ripquery/query.c
#include <sys/socket.h>
int main(...){

...
k t( )

14
15
16
17
18

4
5
6
7
8

s = socket(...);
...
cc = recvfrom(s, ...)
...
if (cc < 0){

19
20
21
22
23

9
10
11
12
13

...
close(s);
exit(1);
}

...
l ( )

24
25
26
27
28

14
15
16

close(s)
...
}

29
30
31

(b) Example code from Redhat-9.0/routed-0.17-14

tion (V)
Error-Check Violation (ErCV)

Multiple-API Violation (MAV)

fication (S)
Error-Check Specification (ErCS)

Multiple-API Specification (MAS)

~/X11-R6.9.0/x11perf/do_text.c
#include <X11/Xft/Xft.h>
...
static XftFont *aafont;
static XftDraw *aadraw;
static XftColor aacolor;
...
int InitAAText(XParms xp, Parms p, int reps){

...
aafont = XftFontOpenName (...);
if (aafont == NULL) {

...
return 0;
}

aadraw = XftDrawCreate (...);
if (!XftColorAllocValue (..., &aacolor)){

...
XftFontClose (xp->d, aafont);
XftDrawDestroy (aadraw);
...
return 0;
}

...
}

...
void EndAAText(XParms xp, Parms p){

...
XftDrawDestroy (aadraw);
XftFontClose (xp->d, aafont);
XftColorFree (..., &aacolor);
...
}
(c) Example code from X11-R6.9.0/x11perf

Fig. 1. Terminologies and example code

9-11 in Figure 1(b), Lines 11-12 and 16-20 in Figure 1(c) represent EB(recvfrom),
EB(XftFontOpenName), and EB(XftColorAllocValue), respectively. A given API
can have multiple error blocks depending on the different ways that it can fail (not
shown in the examples for simplicity).

Paths, Traces, and Scenarios. A control-flow path exists between two program points
if the latter is reachable from the former through some set of control-flow edges, i.e.,
Control Flow Graph (CFG) edges. Our framework identifies two types of paths - error
path and normal path. There are two types of error paths. Any path from the begin-
ning of the main procedure to an exit call (such as exit) in the error block of some
API is called the error exit-path. For example, all paths ending at the exit call at
Line 11 in Figure 1(b) are error exit-paths (exit call inside EB(recvfrom)). Any path
from the beginning of the main procedure to a return call in the error block of some
API is called the error return-path. For example, in Figure 1(c), all paths ending at the
return call at Lines 12 (return call inside EB(XftFontOpenName)) and 20 (return
call inside EB(XftColorAllocValue)) are error return-paths. Error exit-paths and er-
ror return-paths are together known as error paths. A normal path is any path from the
beginning of the main procedure to the end of the main procedure without any API er-
rors. For example, any path from Line 3 to Line 15 in Figure 1(b) is a normal path. For
a given path, a trace is the print of all statements that exist along that path. Error paths,



374 M. Acharya and T. Xie

error exit-paths, error return-paths, and normal paths have corresponding traces: error
traces, error exit-traces, error return-traces, and normal traces. Error exit-traces and
error return-traces are together known as error traces. Two APIs are related if they ma-
nipulate at least one (or more) common variable(s). For example, in Figure 1(b), APIs
recvfrom and close are related to API socket. The socket API produces s, which
is consumed by the APIs recvfrom and close. A scenario is a set of related APIs in a
given trace. A given trace can have multiple scenarios. For example, if there were mul-
tiple socket calls in Figure 1(b), then each socket call, along with its corresponding
related APIs, forms a different scenario.

API error-handling specifications. We identify two types of API error-handling spec-
ifications that dictate correct error handling along all paths in a program: error-check
specifications and multiple-API specifications. Error-check specifications dictate that
correct AEC(a)’s (API-Error Checks) exist for each API a (which can fail), be-
fore the API’s return value is used or the main procedure returns. For a given API
a, the absence of AEC(a) causes an error-check violation. Multiple-API specifica-
tions dictate that the right clean up APIs are called along all paths. Clean up APIs
are APIs called, generally before a procedure’s return or program’s exit, to free re-
sources such as memory, sockets, pipes, and files or to rollback the state of a global
resource such as the system registry and databases. For example, in Figure 1(c),
XftFontClose (Line 17) and XftDrawDestroy (Line 18) are the clean up APIs in
EB(XftColorAllocValue). In Figure 1(c), one error-check specification (the return
value of XftColorAllocValue should be checked against NULL) and two multiple-
API specifications (XftFontOpenName should be followed by XftFontClose, and
XftDrawCreate should be followed by XftDrawDestroy) are evident. Violation of a
multiple-API specification along a given path is a multiple-API violation. Multiple-API
violations along error exit-paths could be less serious as the operating system might
reclaim unfreed memory and resource handlers along program exits. However, there
are several cases where explicit clean up is necessary even on program exits. For in-
stance, unclosed files could lose recorded data along an error exit-path if the buffers are
not flushed out to the disk. In addition, any user-defined procedure altering a global re-
source (such as the system registry or a database) should rollback along error exit-paths
to retain the integrity of the global resource. Next, we present the high-level overview
of our framework using the example code.

The only input to our framework is the compilable source code of software pack-
age(s) implemented in C. To mine specifications, our framework initially distinguishes
and generates API error traces and normal traces, for reasons explained later. Our frame-
work then detects API error-handling violations in the source code using the mined
specifications. In particular, our framework consists of the following three stages:

Error/normal trace generation. The trace generation stage distinguishes and gen-
erates error traces (error exit-traces and error return-traces) and normal traces inter-
procedurally. Along normal paths, it is difficult to distinguish clean up APIs from other
APIs. Hence, our framework identifies probable clean up APIs from the error traces.
For example, in Figure 1(b), our framework identifies the API close (Line 10) from
the error exit-trace that goes through EB(recvfrom). In Figure 1(c), our framework
identifies XftFontClose (Line 17) and XftDrawDestroy (Line 18) from the error



Mining API Error-Handling Specifications from Source Code 375

return-trace that goes through EB(XftColorAllocValue). Note that, in Figure 1(c),
the clean up APIs can also be invoked through the user-defined procedure EndAAText,
inter-procedurally. However, even in the error block, there could be other APIs that are
not necessarily clean up APIs (hence the term, probable). The final set of actual clean
up APIs and the APIs related to them are determined during the specification mining
stage.

Specification mining. The specification mining stage generates error-check specifica-
tions and multiple-API specifications. Our framework mines error-check specifications
from error traces by determining API-error checks (AEC) for each API. For example,
our framework determines AEC(recvfrom) to be if (cc < 0) from the error-exit
trace that goes through EB(recvfrom). Programmers often make mistakes along API
error paths. Hence, proper clean up, being common among error paths and normal paths,
should be mined from normal traces instead of error traces. Once probable clean up
APIs are mined from error traces, our framework mines APIs that might be related to the
probable clean up APIs from normal traces. For example, in Figure 1(c), our framework
determines from normal traces that XftFontClose is related to XftFontOpenName,
and XftDrawDestroy is related to XftDrawCreate (Figure 1(c), however, does not
show normal paths or traces for simplicity). Our framework generates multiple-API
specifications by applying sequence mining on normal traces.

Verification. Our static verifier uses the mined specifications (error-check and multiple-
API specifications) to detect violations (error-check and multiple-API violations) in the
source code. Next, we present our framework in detail.

3 Framework

The algorithm presented in Figure 2 shows the details of our framework. There are 3
stages and 10 steps (numbered 1-10) in our algorithm. Section 3.1 describes the er-
ror/normal trace generation stage (Steps 1-6). Section 3.2 (Steps 7-8) explains the steps
involved in mining API error-handling specifications from the static traces. Finally, Sec-
tion 3.3 describes the verification stage for detecting API error-handling violations of
the mined specifications (Steps 9-10). Our framework adapts a trace generation tech-
nique developed in our previous work to generate static traces representing different
API run-time behaviors. The trace generation technique uses triggers to generate static
traces. Triggers are represented using finite state machines. The static traces generated
by the trace generation technique with a given trigger depend on the the transitions in
the trigger. Readers may refer to our previous work [2] for further details.

3.1 Error/Normal Trace Generation

In this section, we explain how we adapt the trace generation technique [2] for gen-
erating API error and normal traces from source code. As shown in Figure 2, the er-
ror/normal trace generation stage has six steps: generate error traces (Step 1), process
error traces (Steps 2-4), identify critical APIs and probable clean up APIs from er-
ror traces (Step 5), and finally, generate normal traces (Step 6). The various steps are
explained next.



376 M. Acharya and T. Xie

// = source code; = FSM; TG = Trace Generate; PDMC = Push DownModel Check
// R = critical APIs, PC = probable clean up APIs
// ERROR/NORMAL TRACE GENERATION
// Generate shortest error traces

retValChk
API

exit
main

ErT = getShortest(TG( , ));

// Extract error return traces (ErRT) and error exit traces (ErExT) from ErT
// Note that ErT = ErExT + ErRT
ErExT = getErExT(ErT);
// E t t API h k (AEC) f E E T

1

2

1 end
errnoChk

start API
CALL 32

main
entry enclosing 

procedure 
return

// Extract API error checks (AEC) from ErExT
AECSet = getAECSet(majorityMine(ErExT));
// Use AECSet to extract ErRT from ErT
ErRT = getErRT(ErT, AECSet);

// Identify critical APIs and probable clean up APIs from error traces (ErT)
R, PC = getRandPC(ErT);

3

4

5 R, PC getRandPC(ErT);

// Generate random normal traces (NT) up to a specified upper bound L

NT = getRandomL(TG( , ));

5

6 1 endstart
main
entry

R, PC

main
return

// SPECIFICATIONMINING
// Generate error check specifications (ErCS) as FSMs from AECSet

ErCS = generateErCS(AECSet);

// Generate multiple API specifications (MAS) as FSMs from normal traces (NT)

7

// Generate multiple API specifications (MAS) as FSMs from normal traces (NT)
// Apply sequence mining with specified support on extracted scenarios

MAS = generateMAS(sequenceMine(extractScenarios(NT), min_sup));

// VERIFICATION
// Detect error check violations (ErCV)

8

foreach( in ErCS) { ErCV += getShortest(PDMC( , )); }

// Detect Multiple API violation along error paths

foreach( in MAS) {MAV += getShortest(PDMC( , )); }

9

10

Fig. 2. The algorithm for mining API error-handling specifications

Step 1 - Generate error traces. An error trace starts from the beginning of the main
procedure and ends in some API error-block with an exit call (causing the program to
exit) or a return call (causing the enclosing procedure to return). The trigger FSM,
say F (Step 1, Figure 2), is used by our trace generator (procedure TG in the figure) to
generate error traces from the program source code (P). The procedure TG represents
our trace generation technique, which adapts the push-down model checking (PDMC)
process. Transitions retValChk and errnoChk in the trigger F (from State 2 to State
3) identify the return-value check and error-flag check, respectively, for the API. Tran-
sitions from State 3 to the final state (State end) in the trigger F capture code blocks
following the retValChk or errnoChk in which the program exits or the enclosing
procedure returns. The procedure TG generates all traces in P that satisfy the trigger
F. However, the procedure getShortest (Step 1, Figure 2) returns only the shortest



Mining API Error-Handling Specifications from Source Code 377

trace from the set of all traces generated by TG. As we are interested only in the API-
error check and the set of probable clean up APIs (PC) in the API error block for a
given API from error traces, the program statements prior to the API invocation are not
needed. Hence, it suffices to generate the shortest path for each API invocation with a
following retValChk or errnoChk. If there are multiple retValChk or errnoChk
for an API call site, then our framework generates the shortest trace for each of the
checks. The trigger F captures the elements of retValChk, errnoChk, and the code
block after these checks, even if these elements are scattered across procedure bound-
aries. However, the traces generated by this step can also have traces where retValChk
or errnoChk is followed by a normal return of the enclosing procedure. Such traces,
which are not error traces, are pruned out in the next step.

Steps 2, 3, and 4 - Process error traces. Our framework easily extracts error exit-
traces from error traces (procedure getErExT, Step 2, Figure 2): error traces that
end with an exit call are error exit-traces. We assume that the API retValChk or
errnoChk, which precedes an exit call in an error-exit trace, is an API-error check.
We then distinguish between the true and false branches of the API-error check. For ex-
ample, in Figure 1(b), since exit(...) appears in the true branch of AEC(recvfrom)
(if(cc<0)), we assume that <0 is the error return value (API error) of recvfrom. For
each API, our framework records API-error check with majority occurrences (proce-
dure majorityMine, Step 3, Figure 2) among error exit-traces (proceduregetAECSet,
Step 3, Figure 2). As mentioned in the previous step, the traces generated in Step 1 can
also have traces where retValChk or errnoChk is followed by a normal return of the
enclosing procedure. Our framework uses the API-error check set computed from error
exit-traces to prune out such traces to generate error return-traces (procedure getErRT,
Step 4, Figure 2).

Step 5 - Identify critical APIs and probable clean up APIs from error traces. Our
framework computes the set R (critical APIs) and the set PC (probable clean up APIs)
in this step (procedure getRandPc, Step 5, Figure 2). The set R of critical APIs is
easily computed from error exit-traces and error return-traces. A key observation here
is that it is much easier to find clean up APIs along error paths than normal paths. It is
because, on API failures, before the program exits or the enclosing procedure returns,
the primary concern is clean up. Along normal paths, however, it is difficult to separate
clean up APIs from other APIs. Hence, our framework identifies probable clean up
APIs (the set PC) from the error traces. The term probable indicates that the APIs that
occur in error blocks need not always be clean up APIs. The mining phase prunes out
the non-clean-up APIs from the set PC. In the next step, we show how our framework
identifies APIs related to the probable clean up APIs. These related APIs occur prior to
API-error checks in the source code.

Step 6 - Generate normal traces. A normal trace starts from the beginning of the main
procedure and ends at the end of the main procedure. The procedure TG uses the trigger
FSM, say F (Step 6, Figure 2), to generate normal traces from the program source code
(P). The edges for State 2 in the trigger F are critical (set R) and probable clean up APIs
(set PC). Our framework generates normal traces (involving critical and probable clean
up APIs) randomly up to a user-specified upper bound L (procedure getRandomL,
Step 6, Figure 2), inter-procedurally. The traces contain the probable clean up APIs and



378 M. Acharya and T. Xie

the APIs related to them, if any. Finally, as API error-handling specifications can be
conditional, the clean up for an API might depend on the actual return value of the API.
As a simple example, for the malloc API, the free API is called only along paths in
which the return value of malloc is not NULL (condition). Hence, normal paths (normal
traces) are associated with their corresponding conditions involving API return values.
The conditions, along with API sequences, form a part of normal traces and are used in
the specification mining stage, explained next.

3.2 Specification Mining

The specification mining stage mines error-check and multiple-API specifications from
the static traces (Steps 7-8). The scenario extraction and sequence mining are performed
in Step 8.

Step 7 - Mine error-check specifications. Our framework generates error-check speci-
fications (procedure generateErCS, Step 7, Figure 2) as Finite State Machines (FSM,
FErCS) from the mined API-error check set. The FSMs representing the error-check
specifications specify that each critical API should be followed by the correct error
checks.

Step 8 - Mine multiple-API specifications. Our frameork mines multiple-API spec-
ifications from normal traces (procedure generateMAS, Step 8, Figure 2) as FSMs
(FMAS). Normal traces include the probable clean up APIs (PC), APIs related to the
set PC, and the conditions (involving API return values). The main observation used
in mining multiple-API specifications from normal traces is that programmers often
make mistakes along error paths [4, 10, 14, 17]. Hence, our framework mines related
APIs from only normal traces and not from error traces. However, a single normal
trace generated by the trace generator might involve several API scenarios, being of-
ten interspersed. A scenario (see Section 2) is a set of related APIs in a given trace.
Our framework separates different API scenarios from a given normal trace, so that
each scenario can be fed separately to our miner. We use a scenario extraction algo-
rithm (procedure extractScenarios, Step 8, Figure 2) [2] that is based on identify-
ing producer-consumer chains among APIs in the trace. The algorithm is based on the
assumption that an API and its corresponding clean up APIs have some form of data
dependencies between them such as a producer-consumer relationship. Each producer-
consumer chain is generated as an independent scenario. For example, in Figure 1(c),
the API XftFontOpenName (Line 9) produces aafont, which is consumed by the
API XftFontClose (Line 17). The APIs XftFontOpenName and XftFontClose are
generated as an independent scenario.

Our framework mines multiple-API specifications from independent scenarios using
frequent-sequence mining (procedure sequenceMine, Step 8, Figure 2). Let IS be the
set of independent scenarios. We apply a frequent sequence-mining algorithm [15] on
the set IS with a user-specified support min sup (min sup ∈ [0, 1]), which produces
a set FS of frequent sequences that occur as subsequences in at least min sup × |IS|
sequences in the set IS. Note that our framework can mine the different error-handling
specifications for the different errors of a given API as long as the different specifica-
tions have enough support among the analyzed client code.



Mining API Error-Handling Specifications from Source Code 379

3.3 Verification

Our framework uses the specifications to find API error-handling violations (Steps
9-10).

Steps 9 and 10 - Detect error-check and multiple-API violations. In Steps 1 and 6,
we adapt the push-down model checking (PDMC) process for trace generation by the
procedure TG. Here we use the PDMC process for property verification. The speci-
fications mined by our framework as FSMs (FErCS and FMAS) represent the error-
handling properties to be verified at this stage. Our framework verifies the property
FSMs in FErCS and FMAS against the source code (P). The mined specifications can
also be used to verify the correct API error handling in other software packages. For
verifying conditional specifications, we adapt the PDMC process to track the value of
variables that take the return value of an API call along the different branches of con-
ditional constructs. Our framework generates (procedure getShortest) the shortest
path for each detected violation (i.e., a potential defect) in the program, instead of all
violating traces, thus making defect inspection easier for the users.

4 Evaluation

To generate static traces, we adapted a publicly available model checker called
MOPS [6] with procedures (Steps 1-10) shown in Figure 2. We used BIDE [15] to
mine frequent sequences. We have applied our framework on 10 packages from the
Redhat-9.0 distribution (52 KLOC), postfix-2.0.16 (111 KLOC), and 72 pack-
ages from the X11-R6.9.0 distribution (208 KLOC). The analyzed packages use the
APIs from the POSIX and X11 libraries. We selected POSIX and X11 clients because
the POSIX standard [1] and the Inter-Client Communication Conventions Manual (IC-
CCM) [13] from the X Consortium standard were readily available. These standards
describe rules for how well-behaved programs should use the APIs, serving as an ora-
cle for confirming our mined results. We ran our evaluation on a machine with Redhat
Enterprise Linux version 2.6.9-5ELsmp, 3GHz Intel Xeon processor, and 4GB RAM.
For specification mining and violation detection, the analysis cost ranges from under a
minute for the smallest package to under an hour for the largest one. We next explain the
evaluation results (summarized in Figure 3(a)) for the various stages of our framework.

Trace generation. The number of error exit-traces and error return-traces generated by
our framework are shown in Columns 3 (ErExT) and 4 (ErRT) of Figure 3, respec-
tively. To evaluate trace generation, we manually inspected the source code for each
error exit-trace produced by our framework and each error exit-trace missed by our
framework. Error exit-traces missed by our framework can be determined by manually
identifying the exit statements in the analyzed program not found in any of the gen-
erated error exit-traces. There are five sub-columns in Column 3 (ErExT): Σ (total
number of error exit-traces generated or missed by our framework), Σop (total number
of error exit-traces actually generated by our framework), FN = Σ − Σop (total num-
ber of error exit-traces missed by our framework), FP (false positives: generated traces
that are not actually error exit-traces), and IP (inter-procedural: the number of traces
in which the API invocation, API-error check, and error blocks were scattered across
procedure boundaries).



380 M. Acharya and T. Xie

1.  Packages 2. LOC 3. ErExT
op FN  =  - op FP IP

10-Redhat-9.0-pkgs 52 K 338 320 18 35 18

postfix-2.0.16 111 K 124 92 32 3 124

X11-R6.9.0 208 K 286 248 38 27 164

371 K 748 660 88 (12%) 65( 10%) 306(41%)

4. ErRT
5. ErCS 6. ErCV 7. MAS 8. MAV

FP FP FP FP

205 31 3 58 1 40 6 4 3

( ) T d i l ti

30 31 3 4 2 40 6 0 0

305 31 3 170 13 40 6 56 9

540 31 3(10%) 232 16(7%) 40 6(15%) 60 12(20%)

(R)XGetVisualInfo (R)XpQueryScreens (R)XpGetAttributes

XGetWindowProperty(12) (R)XScreenResourceString (R)XpGetOneAttribute

XQueryTree(5) (R)XGetAtomName (R)glXChooseVisual

(a) Traces and violations

(b) Multiple-API specifications for the clean up API 
XFree mined by our framework

XQueryTree(5) (R)XGetAtomName (R)glXChooseVisual

(R)XFetchBytes (R)malloc XGetIMValues(3)

(R)XGetKeyboardMapping XGetWMProtocols(3) (R)XGetWMHints

XFree, mined by our framework

: Total, IP: Interprocedural, FP: False Positives, FN: False Negatives, ErExT: Error Exit-
Traces, ErRT: Error Return-Traces, ErCS: Error-Check Specifications, ErCV: Error-Check 
Violations, MAS: Multiple-API Specifications, MAV: Multiple-API Violations

Fig. 3. Evaluation Results

We observed that the number of false negatives (FN) and false positives (FP) were
low, at 12% (88/748) and 10% (65/660), respectively. The main reason for false neg-
atives in the traces generated by our framework is the lack of aliasing and pointer
analysis. For example, in xkbvleds/utils.c, the variable outDpy takes the return
value of the API XtDisplay. Then the value of outDpy is assigned to another variable
inDpy, and inDpy is compared to NULL. If inDpy is NULL, a user-defined procedure
uFatalError is called, which then calls exit. Our framework did not capture the
aliasing of outDpy to inDpy, and hence missed the trace. However, as the number of
false negatives was low, our framework still generated enough traces for the mining pro-
cess. Some of the traces generated by our framework were not error exit-traces, leading
to false positives. For example, in tftp/tftpd.c, the variable f (process id) takes the
return value of the API fork. The program exits on f>0 (parent process; not an error).
Although the trace was generated by our framework, it is not an error exit-trace (fork
fails with a negative integer). However, as the number of false positives was low, false
error exit-traces were pruned by the mining process. 41% (306/748) of all the error



Mining API Error-Handling Specifications from Source Code 381

exit-traces were scattered across procedure boundaries, highlighting the importance of
inter-procedural trace generation. Specifically, all error exit-traces from the postfix

package crossed procedure boundaries.
Our framework identifies the set of probable clean up APIs from the error traces

(Step 5, Figure 2). After discarding string-manipulating APIs (such as strcmp and
strlen), printing APIs (such as printf and fprintf), and error-reporting APIs (such
as perror), which frequently appear (but unimportant) in error blocks, our framework
identified 36 APIs as probable clean up APIs. Our framework used probable clean up
APIs in generating normal traces. For each compilable unit in the analyzed packages,
our framework randomly generated 20 normal traces, ensuring there are enough distinct
traces for mining. Our framework discarded 14/36 APIs after mining the normal traces
with one of the following reasons: (1) insufficient call sites and hence an insufficient
number of traces to mine from (for example, the API XEClearCtrlKeys had only two
traces), (2) no temporal dependencies with any APIs called prior to the error block (for
example, the API XtSetArg appears in an exit trace from xlogo/xlogo.c. However,
XtSetArg does not share any temporal dependencies with APIs called prior to the
exit block), or (3) insufficient support among the scenarios. Our framework mined 40
multiple-API specifications from the remaining 22/36 probable clean up APIs (Column
7, MAS).

Error-check specifications. Our framework mined error-check specifications for only
those APIs that occur more than three times among the error traces. In all, our frame-
work mined 31 error-check specifications (Column 5, ErCS) from the error traces
across all the analyzed packages. 3 (10%) out of the 31 (subcolumn Σ) mined spec-
ifications were false positives (subcolumn FP). For example, the API geteuid returns
the effective user ID of the current process. The effective ID corresponds to the set ID
bit on the file being executed [1]. Our framework encounters geteuid()!=0 at least 5
times among error traces leading to a false error-check specification – ‘geteuid fails
by returning a non-zero integer’. But, a non-zero return value simply indicates an un-
privileged process.

Error-check violations. The error-check specifications mined from error traces are
used in detecting error-check violations along the error paths in the analyzed software
packages. Column 6 (ErCV) of Figure 3(a) presents the number of error-check vio-
lations detected by our framework. We manually inspected the violations reported by
our framework. 16 (7%) out of the 232 (subcolumn Σ) reported error-check violations
were false positives (subcolumn FP). The main reason for false positives in the reported
violations is, once again, the lack of aliasing and pointer analysis in our framework. For
example, in twm/session.c and smproxy/save.c, the variable entry takes the re-
turn value of malloc. Then the variable entry is assigned to another variable pentry.
The variable pentry is then checked for NULL, which was missed by our framework.

Multiple-API specifications. Our framework mines multiple-API specifications from
normal traces. Our framework produces a pattern as a multiple-API specification if the
pattern occurred in at least five scenarios, with a minimum support (min sup) of 0.8
among the scenarios. Our framework mined 40 multiple-API specifications (Column 7,
MAS) across all the packages, with 6 (15%) of them being false positives (subcolumn
FP). All multiple-API specifications mined by our framework were conditional – the



382 M. Acharya and T. Xie

clean up APIs in conditional multiple-API specifications depend on the return value or a
parameter (that holds the return value). As an example of a conditional specification, for
the API XGetVisualInfo, cleaning up through the API XFree is necessary only if the
fourth input parameter of XGetVisualInfo (the number of matching visual structures)
is non-zero. False positives among the mined specifications may occur if some patterns
occuring in the analyzed source code are not necessarily specifications. This result is a
limitation shared by all mining approaches, requiring human inspection and judgement
to distinguish real specifications from false ones. For example, our framework consid-
ered the APIs XSetScreenSaver and XUngrabPointer as probable clean up APIs,
as both APIs appeared in some error traces generated by our framework. The first pa-
rameter of both these APIs is the display pointer produced by the API XOpenDisplay.
Hence, our framework mined the property “XSetScreenSaver and XUngrabPointer
should follow XOpenDisplay”, leading to a false positive. The number of false speci-
fications mined by our framework is low as the code bases used by our framework for
mining are sufficiently large.

Our framework mines the maximum number of multiple-API specifications around
the clean up API XFree. From the static traces, 35 APIs from the X11 library were
found to interact with the XFree API, leading to 15 multiple-API specifications with
sufficient support. The specifications mined around the API XFree are shown in Fig-
ure 3(b). XFree is a general-purpose X11 API that frees the specified data. XFree must
be used to free any objects that were allocated by X11 APIs, unless an alternate API is
explicitly specified for the objects [13]. The pointer consumed by the XFree API can
either be a return value or a parameter (that holds the return value) of some X11 API.
The “(R)” in (R)XGetVisualInfo, for instance, indicates that the return value of the
API XGetVisualInfo should be freed through the API XFree along all paths. The
“(5)” in XQueryTree(5), for instance, indicates that the fifth input parameter of the
API XQueryTree should be freed through the API XFree along all paths.

Multiple-API violations. Our framework uses the multiple-API specifications mined
from normal traces to detect multiple-API violations in the analyzed software pack-
ages. Column 8 (MAV) presents the number of multiple-API violations detected by our
framework. We manually inspected the violations reported by our framework. 12 (20%)
out of the 60 (subcolumn Σ) reported multiple-API violations were false positives (sub-
column FP). To verify conditional specifications, we adapted MOPS to track the value
of variables that take the return value of an API call along the different branches of
conditional constructs. Tracking API return values while verifying multiple-API spec-
ifications decreases the number of false positives, which would have otherwise been
reported. As a simple example, verifying conditional specifications causes false posi-
tives such as “a file is not closed before the program exits on the failure (NULL) path
of the open API” not to be reported. Verifying conditional specifications by tracking
return values avoided 87 false positives in the analyzed packages, which would have
otherwise been reported. In all, our framework mines 62 error-handling specifications
and detects 264 real error-handling violations in the analyzed packages. Due to pointer-
insensitive analysis, our framework might not mine all the error-handling specifications
or detect all the error-check and multiple-API violations in the analyzed software pack-
ages, leading to false negatives. For the mined specifications and the detected violations,



Mining API Error-Handling Specifications from Source Code 383

we have not quantified the false negatives of our framework. Quantifying the violations
missed by our framework (through manual inspection of source code along all possible
paths in the presence of function pointers and aliasing) is difficult and error prone.

5 Related Work

Dynamic. Previous work has mined API properties from program execution traces.
For example, Ammons et al. [3] mine API properties as probabilistic finite state au-
tomata from execution traces. Perracotta developed by Yang et al. [18] mines temporal
properties (in the form of pre-defined templates involving two API calls) from execu-
tion traces. Different from these approaches, our framework mines specifications from
source code of API clients. Dynamic approaches require setup of runtime environments
and availability of sufficient system tests that exercise various parts of the program and
hence the violations might not be easily exposed. In contrast, our new framework mines
API error-handling specifications from static traces without suffering from the preced-
ing issues.

Static. Previous several related static approaches developed by other researchers also
mine properties from source code for finding defects. Engler et al. propose Meta-level
Compilation [8] to detect rule violations in a program based on user-provided, simple,
system-specific compiler extensions. Their approach detects defects by statically iden-
tifying inconsistencies in commonly observed behavior. PR-Miner developed by Li and
Zhou [11] mine programming rules as frequent itemsets (ordering among program state-
ments is not considered) from source code. Apart from being intra-procedural, neither
approach considers data-flow or control-flow dependences between program elements,
required for mining error-handling specifications. Two recent approaches in static spec-
ification mining, most related to our framework, are from Chang et al. [5] and Ra-
manathan et al. [12]. Chang et al.’s approach [5] mines specifications as graph minors
from program dependence graphs by adapting a frequent sub-graph mining algorithm.
Specification violations are then detected by their heuristic graph-matching algorithm.
The scalability of their approach is limited by the underlying graph mining and match-
ing algorithms. Furthermore, their approach does not mine conditional specifications.
Ramanathan et al. [12] mine preconditions of a given procedure across different call
sites. To compute preconditions for a procedure, their analysis collects predicates along
each distinct path to each procedure call. As their approach is not applicable to postcon-
ditions, it cannot mine error-handling specifications. Static approaches [17, 16] exist to
analyze programs written in Java, which has explicit exception-handling support. Sev-
eral proposals [9] exist for extending C with exception-handling support. In contrast,
our framework is applicable to applications implemented in procedural languages with
no explicit support for exception handling.

6 Conclusions

We have developed a framework to automatically mine API error-handling specifica-
tions from source code. We then use the mined specifications to detect API error-
handling violations from the analyzed software packages (API client code). We have



384 M. Acharya and T. Xie

implemented the framework, and validated its effectiveness on 10 packages from the
Redhat-9.0 distribution (52 KLOC), postfix-2.0.16 (111 KLOC), and 72 pack-
ages from the X11-R6.9.0 (208 KLOC). Our framework mines 62 error-handling
specifications and detects 264 real error-handling defects from the analyzed packages.

References

1. IEEE Computer Society. IEEE Standard for Information Technology - Portable Operating
System Interface POSIX - Part I: System Application Program Interface API, IEEE Std
1003.1b-1993 (1994)

2. Acharya, M., Xie, T., Pei, J., Xu, J.: Mining API patterns as partial orders from source code:
From usage scenarios to specifications. In: Proc. ESEC/FSE, pp. 25–34 (2007)

3. Ammons, G., Bodik, R., Larus, J.: Mining specifications. In: Proc. POPL, pp. 4–16 (2002)
4. Bruntink, M., Deursen, A.V., Tourwe, T.: Discovering faults in idiom-based exception han-

dling. In: Proc. ICSE, pp. 242–251 (2006)
5. Chang, R.Y., Podgurski, A.: Finding what’s not there: A new approach to revealing neglected

conditions in software. In: Proc. ISSTA, pp. 163–173 (2007)
6. Chen, H., Wagner, D.: MOPS: an infrastructure for examining security properties of software.

In: Proc. CCS, pp. 235–244 (2002)
7. Cristian, F.: Exception Handling and Tolerance of Software Faults. In Software Fault Toler-

ance, ch. 5. John Wiley and Sons, Chichester (1995)
8. Engler, D., Chen, D.Y., Hallem, S., Chou, A., Chelf, B.: Bugs as deviant behavior: A general

approach to inferring errors in systems code. In: Proc. SOSP, pp. 57–72 (2001)
9. Gehani, N.H.: Exceptional C for C with exceptions. Software Practices and Experi-

ences 22(10), 827–848 (1992)
10. Gunawi, H., Rubio-Gonzalez, C., Arpaci-Dusseau, A., Arpaci-Dusseau, R., Liblit, B.: EIO:

Error handling is occasionally correct. In: Proc. USENIX FAST, pp. 242–251 (2006)
11. Li, Z., Zhou, Y.: PR-Miner: automatically extracting implicit programming rules and detect-

ing violations in large software code. In: Proc. ESEC/FSE, pp. 306–315 (2005)
12. Ramanathan, M.K., Grama, A., Jagannathan, S.: Static specification inference using predi-

cate mining. In: Proc. PLDI, pp. 123–134 (2007)
13. Rosenthal, D.: Inter-client communication Conventions Manual (ICCCM), Version 2.0. X

Consortium, Inc. (1994)
14. Toy, W.: Fault-tolerant design of local ESS processors. In: The Theory and Practice of Reli-

able System Design. Digital Press (1982)
15. Wang, J., Han, J.: BIDE: Efficient mining of frequent closed sequences. In: Proc. ICDE, pp.

79–90 (2004)
16. Weimer, W., Necula, G.C.: Finding and preventing run-time error handling mistakes. In:

Proc. OOPSLA, pp. 419–431 (2004)
17. Weimer, W., Necula, G.C.: Mining temporal specifications for error detection. In: Halbwachs,

N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 461–476. Springer, Heidelberg
(2005)

18. Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Perracotta: Mining temporal API rules
from imperfect traces. In: Proc. ICSE, pp. 282–291 (2006)



SNIFF: A Search Engine for Java Using
Free-Form Queries

Shaunak Chatterjee, Sudeep Juvekar, and Koushik Sen

EECS Department, University of California, Berkeley, CA, USA
{shaunakc,sjuvekar,ksen}@cs.berkeley.edu

Abstract. Reuse of existing libraries simplifies software development
efforts. However, these libraries are often complex and reusing the APIs
in the libraries involves a steep learning curve. A programmer often uses
a search engine such as Google to discover code snippets involving library
usage to perform a common task. A problem with search engines is that
they return many pages that a programmer has to manually mine to
discover the desired code. Recent research efforts have tried to address
this problem by automating the generation of code snippets from user
queries. However, these queries need to have type information and there-
fore require the user to have a partial knowledge of the APIs.

We propose a novel code search technique, called SNIFF, which retains
the flexibility of performing code search in plain English, while obtaining
a small set of relevant code snippets to perform the desired task. Our
technique is based on the observation that the library methods that a
user code calls are often well-documented. We use the documentation
of the library methods to add plain English meaning to an otherwise
undocumented user code. The annotated user code is then indexed for
the purpose of free-form query search. Another novel contribution of our
technique is that we take a type-based intersection of the candidate code
snippets obtained from a query search to generate a set of small and
highly relevant code snippets.

We have implemented SNIFF for Java and have performed evalua-
tions and user studies to demonstrate the utility of SNIFF. Our evalua-
tions show that SNIFF performed better than most of the existing online
search engines as well as related tools.

1 Introduction

Java’s evolution and growth over the years has greatly increased the number
of APIs available at a programmer’s disposal. For example, the Java Standard
Library, J2SE, contains thousands of classes and more than 20,000 methods [12].
The Java APIs are often designed in a modular manner using small composable
units. A programmer needs to combine these APIs using some (often compli-
cated) sequence of classes and method calls, to correctly use a Java library. This
fact, compounded with the sheer number of APIs, makes it difficult for a pro-
grammer to discover what APIs he/she wants and how to use those APIs to
perform a given programming task. For example, consider a programmer who

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 385–400, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



386 S. Chatterjee, S. Juvekar, and K. Sen

wants to read from a file and is unfamiliar with the java.io package. With-
out prior knowledge about the java.io package, the programmer will not only
find it difficult to discover what classes he/she needs to use, but also to fig-
ure out how to use the methods in those classes to read from a file. Even if
the programmer manages to write code to read from a file after digging into the
java.io API, the code written may not be efficient—the code may only use the
class java.io.FileReader and ignore the use of the java.io.BufferedReader
class, which is required for an efficient implementation.

In order to solve the above problem, a programmer generally resorts to one
of the following two techniques. He/she might try to explore existing code bases
and their documentations, and search for code snippets which perform the de-
sired programming task using some APIs. This “mining” effort becomes quite
tedious because existing code bases are often very large, making manual search
impossible. Moreover, these code bases may not be well-documented making it
difficult to locate the relevant code snippets. Some recent tools, such as Prospec-
tor [12], have tried to automate the search process; however, they assume that
the programmer knows what classes and object types he/she wants to use. This
may not be a realistic assumption if the programmer is unfamiliar with the class
names.

Alternately, a programmer might search the web using some search engine
such as Google. An advantage of using a search engine is that the programmer
posts his/her query in plain English (free-form), such as “read from a file in Java”
without any prior knowledge about the required packages, classes, or methods.
However, the results returned by the search engines contain relevant code inter-
spersed with irrelevant code and plain English text from the webpage. The pro-
grammer needs to determine, potentially involving further searches, what part of
the returned code snippet is relevant. More recently, PARSEWeb [18] has tried
to combine results from web searches with Prospector to improve the quality
of search. However, the tool suffers from the same problem as Prospector—the
programmer needs to know what classes and object types he/she has to use.

We propose a novel code search technique called Sniff
1,2, which retains the

flexibility of performing a search in English, while obtaining small and relevant
code snippets required to perform the desired task. In Sniff, a programmer
issues a query expressing the programming task in English and Sniff returns a
small set of relevant code snippets. For example, Sniff returns the code snippet
in Table 1 for the query “read a line of text from a file”.

Table 1. Original code with no useful comments

FileReader fr = new FileReader(String fileName);

BufferedReader br = new BufferedReader(FileReader fr);

String line = br.readLine()

1
Sniff stands for SNIppet for Free-Form queries.

2 It “sniffs” the code database for the relevant code.



SNIFF: A Search Engine for Java Using Free-Form Queries 387

The key idea of Sniff is to combine API documentation with publicly available
Java code. Specifically, Sniff takes a large amount of Java source code already
available on the web and annotates it by appending each statement containing
a method call with the method’s Javadoc description (if available). Annotation
allows Sniff to add meaningful comments to otherwise uncommented Java files.
Sniff indexes these annotated Java files in a database. A query to Sniff looks
up this database and collects code chunks that match the query. Sniff then per-
forms a type-based intersection of these code chunks to retain the most relevant
and common part of the code chunks. Sniff also ranks these pruned chunks us-
ing their relevance to the query. We have defined one criterion for the relevance
of the code snippets: the frequency of their occurrence in the indexed code base.
Ranking in Sniff is based on this measure of relevance.

Sniff has several advantages:

1. Sniff allows free-form English queries about a programming task. This elim-
inates the need to know the appropriate APIs beforehand.

2. Sniff facilitates more effective code reuse by eliminating the requirement
of much prior knowledge about APIs. Code reuse increases the performance
and reliability of the new code.

3. Since Sniff constructs the most relevant code snippet by performing type-
based intersection of several Java code chunks, we get relatively mature and
correct code.

We have developed an eclipse plugin for Sniff and performed a user study
that found that programmers could solve the reuse problems 40% faster with
Sniff than with other tools. We have also compared the performance of Sniff

with online code search engines [5,10,3] on a set of user queries posted on a Java
developer’s forum [8]. Our experiments show that Sniff returned the most rele-
vant code snippet as the top ranked result for about 88% of queries, whereas the
online search engines returned the top result for about 50% of queries. Moreover,
these results were buried inside hyperlinked source files and required substantial
manual inspection to discover the exact snippets. We have also evaluated the
importance of our intersection algorithm for the relevance of the snippets. Our
experiments show that intersection helps in effective pruning and better ranking
of the code snippets.

2 Overview

We give an overview of Sniff using a simple example. Consider a Java pro-
grammer who is unfamiliar with the Java classes Runtime and Process. The

Table 2. Executing a system command in Java

Runtime r = Runtime.getRuntime();

Process p = r.exec(String command);



388 S. Chatterjee, S. Juvekar, and K. Sen

programmer wants to execute a system command such as ls from inside a Java
program. The required code snippet is shown in Table 2.

The code is relatively difficult for the programmer to infer for several reasons.
First, it is hard for a programmer unfamiliar with the Java APIs to figure out
that the Runtime class is required to get the runtime and to execute the com-
mand in that runtime. It is even harder for the programmer to discover that
the methods getRuntime and exec should be called in that order to first obtain
the runtime and then to execute the command, respectively. Finally, an object
of class Process is required to create a separate process and execute the com-
mand. In this situation, the programmer has a couple of options to discover the
code snippet. (1) The programmer could search the web (e.g. using Google) by
posting a query such as “execute command in Java.” (2) The programmer could
use an existing code synthesizer such as Prospector [12] or PARSEWeb [18]. The
results returned by web search would not often give the exact code snippet, but
rather some large code fragments that have the relevant statements surrounded
by other statements and non-Java text. The programmer then needs to manually
examine such code fragments for the exact code snippet. The problem with the
code synthesizers is that the programmer needs to know the object types (e.g.
Runtime and Process in this case) that he/she wants to synthesize.

Sniff retains the flexibility of performing the search in plain English (as
in web search), while obtaining small code snippets (as in Prospector or
PARSEWeb) that are relevant to the query. In particular, the programmer will
type the query “execute command” in Sniff and Sniff will return a small set
of concise and relevant code snippets, that would execute a system command
from inside Java.

Sniff works as follows: In a nutshell, Sniff takes a large amount of publicly
available Java source code and indexes [2] it in a database. A query to Sniff

examines this database and collects code chunks that match the query. Sniff

then performs a Java syntax-aware intersection of these code chunks and returns
a small set of concise and relevant code-snippets. Although the above steps
look trivial, each step presents a number of technical challenges. For example,
during the indexing phase, what should be considered as keywords? A natural
answer would be to consider the words in comments and method names as

Table 3. Intersection of Code Snippets

Candidate Codes Result of Intersection

Runtime r = Runtime.getRuntime();

String command = "clear";

Process p = r.exec(command);

Runtime r = Runtime.getRuntime();

flag = 1;

// flag set if branch entered

Process p = r.exec("ls");

Runtime r = Runtime.getRuntime();

Process p = r.exec(String command);



SNIFF: A Search Engine for Java Using Free-Form Queries 389

keywords. However, this straightforward approach does not work, because user
codes usually have very few comments and the method names do not always
reflect the actual functionality of the method. For example, the code in the
first column of Table 3 does not reflect that it is meant for executing a system
command.

We address this indexing problem in a novel way. We have observed that
although the user of the Runtime class does not write any comment about the
purpose of the code, the Runtime class is well-documented and can be used to an-
notate the user code to help us understand the purpose of the user-written code.
For example, given the code chunk in Table 1, one can automatically annotate
it with comments as shown in Table 4 by inserting the Javadoc description of a
method after each statement that contains the method. For code in table 1, these
Javadoc descriptions are collected from the FileReader and BufferedReader
classes. This special method of annotating a user-written and possibly uncom-
mented Java source file adds extra useful information about the user code. Sniff

subsequently indexes the annotated user code in a database for the purpose of
query.

A query to Sniff, like “execute command” searches this database and re-
turns the consecutive lines of code from a single source class, that contain both
the keywords execute and command of the query. Assume that the first col-
umn of Table 3 lists two such candidate codes returned for the query “execute
command”. Any such candidate contains the relevant code along with possibly
irrelevant code. The irrelevant code might either contain completely irrelevant
information, like initialization of some arbitrary variable (e.g. flag = 1; in the
second code snippet in Table 3) or might contain statements like Runtime r =
Runtime.getRuntime(); which are essential for correctness of the implemen-
tation but do not match to any query keyword. Our observation is that the
irrelevant statements are dissimilar across the candidates, while relevant state-
ments are similar (syntactically identical) in almost all of them. Therefore, we
perform a type-based intersection of these candidates to extract the relevant
statements out of them. The second column of Table 3 shows the intersection of
the candidates from the first column. The comments inserted by Sniff are not
shown in Table 3 for convenience. Note that intersection retains the common
statements of the two candidate codes, but removes the statements specific to
each individual code. This intersection step is another novel contribution of this
work and distinguishes Sniff from other code search engines. Specifically, our
intersection allows Sniff to return a concise and relevant code snippet instead
of a set of code chunks containing some irrelevant statements. We will explain
our intersection algorithm in section 3.

Finally, there might be multiple code snippets that achieve the same pro-
gramming purpose. In order to represent all possible relevant code snippets, we
perform clustering to group similar snippets together. These clusters must be
meaningfully ranked so that the most relevant snippets are displayed at the top.
We have observed that the most relevant snippets are also the ones that are



390 S. Chatterjee, S. Juvekar, and K. Sen

implemented most frequently in our indexed code. Hence, we rank the clusters
based on the number of constituent snippets.

3 Our Approach and Algorithm

In this section, we describe in details our approach for generating code snippets
from a user query. We begin with formal definitions of user query, code chunk
and code snippet.

Definition 1. A user query is defined as a sequence q = (w1, w2, · · · , wn),
where each wi is a string of characters. We call each wi a keyword.

An example of a user query is (“execute”, “command”).

Definition 2. A code chunk C is defined as an ordered list of statements
s1; s2; · · · ; sn that occur in contiguous lines in some Java method body. A code
snippet S is defined as an ordered list of statements s′1; s

′
2; · · · ; s′m that occur

in the same order (but not necessarily contiguous) in some Java method body. A
code snippet might omit some intermediate statements from a method body.

Note that every code chunk is a code snippet, but not vice-versa. For example, in
Table 3, the first column shows the code chunks while the second column shows
a code snippet. We now describe the components of Sniff.

Table 4. Annotated code generated by Sniff

...
FileReader fr = new FileReader(fileName); // File Reader

// Creates new FileReader given file name read
BufferedReader br = new BufferedReader(fr); // Buffered Reader

// Creates character-input stream
// uses input buffer specified size

...

3.1 Preprocessing: Parsing Open-Source Java Code

We assume that our codebase has a large collection of Java source code and that
these Java classes contain sufficient number of examples on how to use various
common Java APIs.

Most often, these Java classes, which we will call client classes, contain very
few user comments. Sniff annotates this client code by adding its own com-
ments. This annotation is performed in a novel and automatic way. It first col-
lects the Javadoc descriptions and user comments for every class and its methods
defined in the standard Java API as well as in the client code. These comments
are pruned to remove common word classes like prepositions, conjunctions and
articles (called stopwords). Sniff also performs a preliminary natural language
processing in form of stemming [14] on all the keywords in the comment.



SNIFF: A Search Engine for Java Using Free-Form Queries 391

Sniff then creates a map MethToComments :Sig → Comment from each
method signature Sig to its Javadoc comments Comment, where a method
signature contains the class name containing the method, the method name, the
types of the method’s arguments and the return type of the method. Finally,
Sniff performs a simplifying transformation of the client code to convert it into
an intermediate representation. The grammar for this intermediate form is given
in Table 5. The purpose of this transformation is to simplify the indexing and
retrieval of the code snippets in the latter stages of the system.

Table 5. Intermediate representation for the client code

stmt ::= var = expr | var.field = expr | var.method(var*)

| var = var.method(var*) | if (expr) goto label

expr ::= constant | var | var.field | var op var

3.2 Preprocessing: Annotating and Indexing the Client Code

After the previously described transformation, Sniff performs the actual anno-
tation using the MethToComment map as follows. Sniff parses each client Java
source file. For each statement that contains a method call var.method(var*)
with signature, say sig, Sniff adds the comment MethToComment(sig) at the
end of the statement. Java coding convention recommends the use of descriptive
method names, where the first character of every internal word is capitalized.
(e.g. ‘readLine’). Therefore, we also break the method name using these capi-
talizations to identify the breakpoints and add it as a part of the comment to the
statement containing the method call. For example, readLine is broken up into
read and Line and these two words are added as comments to any statement
that contains the method call readLine. Thus, the client code in Table 1 gets
converted to the commented code shown in Table 4.

Sniff then indexes the commented code in a database. Our database schema
contains two tables. The first table stores the individual statements in the client
source files and the second table stores the tuples (keyword, statementid). A
tuple for the string keyword gives the primary key of the statement whose com-
ments contain keyword.

3.3 Responding to a Query

Obtaining Code Chunks using Database: Sniff takes a user query as an
input and applies the same stop-word removal and stemming to it as in the
previous section. This modified query will be referred to as q for the remaining
portion of the discussion. q is then treated as a bag of words, i.e. the ordering
between the keywords is ignored. We search for each keyword wi in q in the
database and retrieve the code chunks that contain all keywords wi in q. We
enhance these code chunks by adding a few lines of code located before and
after the keyword-matching region in the original source file.



392 S. Chatterjee, S. Juvekar, and K. Sen

Returning the code chunks “as is” is not useful because (with respect to
the user query) these code chunks contain both relevant statements as well as
irrelevant ones. We would like to return only those statements that are relevant to
the user query. A natural way to return the relevant statements would be to only
return those statements whose comments contain at least one keyword. However,
we observed that some of the statements that do not contain any keyword in their
comments are often the useful glue among the statements containing a keyword;
therefore such statements cannot be classified as irrelevant. An example of this
is in Table 3. The Runtime class and its method does not contain the comments
relevant to “execute command”, but it is required for actually executing a system
command as a String. We also observed that these relevant statements, unlike
the irrelevant statements, are present in all code chunks. Therefore, to obtain
the maximal relevant code snippets, we take an intersection of the code chunks
obtained from the previous step.

We next give an algorithm to perform an intersection of any two code snippets.
Since each code chunk is also a code snippet, the intersection operation will apply
equally well to code chunks. Every statement in the code chunks returned by
the database has the form given in Table 5. We define equivalence ∼ of two
statements recursively as follows.

– var1 = expr1 ∼ var2 = expr2 iff typeOf (var1) = typeOf (var2) and expr1 ∼
expr2.

– var1.field1 = expr1 ∼ var2.field2 = expr2 iff typeOf (var1) = typeOf (var2),
field1 = field2, and expr1 ∼ expr2.

– var1.method1(vars1*) ∼ var2.method2(vars2*) iff typeOf (var1) =
typeOf (var2), method1 = method2, and typeOf (vars1*) = typeOf (vars2*).

– if (expr1) goto label1 ∼ if (expr2) goto label2 iff expr1 ∼ expr2.
– label1 ∼ label2.
– var1 op1 var1’ ∼ var2 op2 var2’ iff typeOf (var1) = typeOf (var2),

typeOf (var1’) = typeOf (var2’), and op1 = op2.
– var1 ∼ var2 iff typeOf (var1) = typeOf (var2).
– var1.field1 ∼ var2.field2 iff typeOf (var1) = typeOf (var2) and field1 =

field2.

Let S = s1; s2; · · · ; sm and R = r1; r2; · · · ; rn be any two code snippets. Note that
these snippets contain comments added by Sniff. We define the intersection
of S and R, denoted by S � R, as the longest common subsequence (LCS) of
S and R defined as follows: The LCS of S and R is the longest subsequence
Q = si1 ; si2 ; · · · ; sil

of S such that there exists a subsequence T = rj1 ; rj2 ; · · · ; rjl

of R, where 1 ≤ i1 < i2 · · · < il ≤ m; 1 ≤ j1 < j2 < · · · < jl ≤ n and sik
∼ rjk

for
all k. The LCS of two code snippets can be computed using a modification of a
standard dynamic programming algorithm [4]. The complexity of the algorithm
in O(mn) where m and n are the sizes of the two code snippets respectively. All
the code chunks (or snippets) ever handled by Sniff are small in size (less than
10 lines of code) and hence the quadratic running time of the algorithm is not
an excessive overhead.
Clustering Code Snippets: The code chunks obtained from the main
database are grouped together based on their similarity. Informally, two code



SNIFF: A Search Engine for Java Using Free-Form Queries 393

chunks are similar if their intersection is still relevant to the query and does not
lose too much information. We next formalize this notion of relevance. We first
define validity as a measure of similarity of two snippets.

Let S = {S1, S2, · · · , Sm} be a set of code snippets and let q = w1w2 · · ·wn

be a user query. A code snippet Si is said to be q-valid if its code and comments
together contain all keywords wj from the query q. For example, the code chunks
returned from the main database in response to q are q-valid by definition. We
will henceforth use valid in place of q-valid, when the query q is understood.
Similarity of code snippets is defined below:
Definition 3. Two code snippets Si and Sj are defined to be similar if their
intersection Si � Sj is valid.
Informally, an initial code chunk matched to a query contains some lines of code
which are relevant to the query, and others which are not. It should be noted that
the relevant lines of code need not contain any of the keywords. Intersecting two
code chunks or snippets attempts to remove the irrelevant lines of code, while
keeping the ones which are relevant to the query (either through the presence of
keywords, or because of issues concerning correct implementation). The intuition
behind the intersection operation is that the relevant lines would co-occur in both
the chunks while the irrelevant lines would not match. If the common lines found
by the intersection operation still contain all the keywords, then the two code
chunks or snippets are similar.

However, in some cases, there might be multiple method call sequences which
correctly perform the task specified by the query. In that case, two such code
chunks or snippets (corresponding to different sequences) would not contain all
the keywords in their intersection, as the statements in each of them will be
different. Thus, these two code chunks or snippets will be dissimilar.

We cluster the code snippets based on this similarity measure. The idea behind
clustering is to group similar code snippets in one cluster. The intersection of
all code snippets {Si1 , Si2 , · · ·Sir} in a cluster represents the most relevant code
to the query, that can be extracted out of those snippets. Formally, clustering is
defined as a function F : S → {1, 2, · · ·p}, where S is a set of code snippets and
p ≤ |S|, satisfying the condition that if F(Si) = F(Sj), then Si and Sj are similar.
All snippets mapping to the same integer are said to be in the same cluster, and
are represented by a single snippet in the final results. The clustering procedure
is detailed in Algorithm 1. The running time of this procedure is quadratic in
number of candidate code chunks. Our observation is that the number of code
chunks returned from the database is very small (less than 30 on an average),
and hence clustering runs very fast on them.

Ranking Code Snippets: After clustering, Sniff ranks code snippets before
returning them to the user. Ranking should reflect the relevance of the code
snippet to the query. We observe that the most relevant code snippet to the
query is generally implemented in a large number of client classes and methods,
and hence is the most common way of performing the programming task required
by the query. We formalize this property of code snippets by using support of the



394 S. Chatterjee, S. Juvekar, and K. Sen

Algorithm 1. Clustering and Ranking algorithm
Input: C = C1, C2, ....., CN , the list of code chunks returned for the query
Output: I, the set of all clusters of code chunks in C.
1: I ← C
2: for all Ci ∈ I do
3: support(Ci) = 1
4: end for
5: for all Ci ∈ I do
6: for all Cj ∈ I, Cj �= Ci do
7: C ← Ci � Cj

8: if isValid(C) then
9: support(C) = support(Ci) + support(Cj)
10: I ← I ∪ {C} \ {Ci, Cj}
11: end if
12: end for
13: end for
14: return sort(I, support)

snippet defined as follows: For every code chunk Ci returned from the database,
support(Ci) = 1. The support of an intersection is defined as the sum of the
supports of code snippets that participate in the intersection operation. Thus
support(S1 �S2 � · · · �Sk) =

∑k
j=1 support(Sj). That is, support represents the

number of occurrences of the snippet across client source files. Lines 3 and 9 of
the Algorithm 1 initialize and update the supports of the clusters respectively.
We rank the clusters based on their supports, with the clusters having higher
supports receiving higher ranks.

4 Evaluation

We conducted three different experiments using Sniff to show that Sniff is
effective in solving programmers’ queries and to compare it against the existing
tools and search engines. In our first experiment, we compared Sniff against
tools such as Prospector [12] and Google Code Search(GCS) [5]. We performed
controlled user experiments where a set of programming problems were given
to a group of users and their performance (i.e. the time they spent to complete
the tasks) using different tools was observed. In the second experiment, we com-
pared Sniff against online code search engines like GCS, Koders and Krugle.
We manually collected programming problems posted on a Java user forum [8]
and converted them into natural language queries. We then posed these queries
to Sniff as well as the online search engines and compared the results. We
performed a third experiment to show the effectiveness of our intersection and
ranking techniques.

4.1 User Study

Our user study was aimed at evaluating the usefulness of Sniff to developers
for real programming tasks which involved reuse of existing APIs. We designed
four programming problems and assigned them to a set of users. We had eight
participants in our study. Each user was allowed to use Sniff for two of the



SNIFF: A Search Engine for Java Using Free-Form Queries 395

four problems. Of the remaining two, they were allowed to use Prospector for
one problem and Google Code Search Engine for the other. We assigned the
problems and the tools to be used to solve them randomly to each user. We
recorded users’ final answers, the time they spent to complete each problem, the
queries they issued, and the rank of the snippet that they used in their code.

Each user was given a brief introduction to Sniff and Prospector. In the intro-
duction we described the tools using a short demo. There was no training phase
and none of the users participating in the user study had used Sniff before. The
users were graduate students who had moderate to expert programming skills
in Java.

The programming problems were designed to approximate real programming
tasks. The users were not given any hints about when to use Sniff (or any of
the other tools/search engines). However, the tasks were designed in such a way
that they involved the usage of some APIs which were not very commonly used.
The motivation for this scheme was to ensure that the users would be required
to search for some APIs that they did not know about. The four programming
problems for the user study were as follows:

1. Problem 1: In Eclipse, the visual representation of the editor, i.e. the
actual window we see on the editor, is called the active editor. The task is
to retrieve this active editor from the workbench.

2. Problem 2: JDOM is a parser for parsing java source files and identifying
method declarations/invocations etc. The task is to use this parser to parse
a java source and create and AST.

3. Problem 3: JDBC is the Java technology to connect to a remote database
and run SQL queries on it. The user is given the url of a remote database
server. The task is to connect to the database using JDBC.

4. Problem 4: I have a generic Viewer object in Eclipse and I want to pop-up
a dialog displaying all directories in the workspace. The task is to open such
a directory dialog.

The results of the experiments are given in Figure 1. The plot in the figure
gives the average time taken by the users on each problem using different tools.
The plot shows that on all problems, Sniff took about 40% less time as com-
pared to Prospector and Google Code Search. In problem 1, the users had diffi-
culty in deducing the desired return type, IEditorPart; therefore, they ended up
browsing the eclipse API while using Prospector. We observed similar trend in
problem 3, where the desired destination class was java.sql.Connection. The
JDOM API in problem 2 is fairly complicated and Google Code Search failed to
return the specific code snippet for parsing the java file. In fact, on all queries,
the results returned by Google Code Search required significant manual inspec-
tion (most of the time in the associated source code) to arrive at the desired code
snippets. Sniff returned the exact code snippet, although the users needed to
play around a little with their queries to arrive at this code snippet. Also, the
snippets returned by Sniff required the least amount of post-processing at the
users’ end. Most of this post-processing was renaming variables and importing
required packages, which was pretty straightforward.



396 S. Chatterjee, S. Juvekar, and K. Sen

 5

 10

 15

 20

Problem4Problem3Problem2Problem1

C
od

in
g 

T
im

e 
(m

in
)

Problems

Google Code Search
Javasketch

Sniff

Fig. 1. Average time taken by the users on the problems using each tool

4.2 Comparison with Online Search Engines

We collected random queries from the ones issued by the users in the previous
section and issued them to Sniff as well as online search engines like Google
Code Search [5], Koders [10], and Krugle [3]. We also collected some of the most
common programming problems from frequently asked questions on a Java user
forum [8] and formulated them as natural language queries. On all of these
queries, we compared the results of Sniff and online search engines with the
responses posted on the forum. Table 6 shows the rank of the most relevant
snippet (as judged by a human programmer based on the forum response) using
different tools. All existing search engines display a set of small code snippets
in response to the query. These snippets are hyperlinked to the entire source
files that contain them, and clicking on the snippets displays the contents of the
files with keywords highlighted in different colors. We have manually searched
these returned results and report a match if the returned source file contains the
desired code snippet. A - in the table means that the desired code snippet was
not present in top 10 hits from the corresponding tool. The last three lines for
each tool give the percentage of queries where the most relevant code snippet
is among top 1, 5 and 10 hits respectively. Our experiments show that Sniff

returned the most relevant snippet as the top ranked snippet for 87.5% of queries.
The same numbers for GCS, Koders and Krugle are 25%, 62.5% and 12.5%
respectively. One all the queries, Sniff returned the most relevant code snippet
in top 5 results.

4.3 Effectiveness of Intersection and Clustering Techniques in Sniff

In order to show the effectiveness of our intersection and clustering algorithms, we
first issued the queries given in Table 6 to Sniff with intersection and clustering
turned on. We then issued the same queries after disabling the intersection and



SNIFF: A Search Engine for Java Using Free-Form Queries 397

Table 6. Results from existing code search engines on user queries

Query Rank of the top snippet that
matched the forum response
GCS Koders Krugle SNIFF

get active editor window from eclipse workbench 2 2 2 1
parse a java source and create ast 2 3 2 1
connect to a database using jdbc 2 1 - 1
display directory dialog from viewer in eclipse - 9 2 1
read a line of text from a file 6 1 - 1
return an audio clip from url 1 1 1 1
execute SQL query 1 1 3 2
return current selection from eclipse workbench 5 1 4 1
Relevant snippet is top ranked (%) 25 62.5 12.5 87.5
Relevant snippet is in top 5 hits (%) 75 87.5 75 100
Relevant snippet is in top 10 hits (%) 87.5 100 75 100

clustering. During this phase, we ranked the snippets simply based on their sizes
with the smaller snippets getting higher ranks. We compared the ranks and sizes
(in LOC) of the most relevant snippets with and without intersection/clustering.
We also compared the amount of pruning obtained using intersection.

The results are shown in Table 7. The first column of the table gives the
queries. The next two columns give the rank of the most relevant code snippet
with and without intersection and clustering (denoted I/C and No I/C, re-
spectively.) The next two columns give similar observations for the size of the
most relevant snippet. The table shows that the rank and size of the returned
snippet is better when intersection and clustering are turned on. In more than
half of the cases, the most relevant snippets are poorly ranked when intersection
is turned off. Intersection also reduces the size of resultant snippets by 34% on
an average. Smaller size of snippet usually means less post-processing time on
the returned snippets required by the users.

5 Other Related Work

A large fraction of the previous research, including Prospector [12] has focused
on user queries of the form Tin → Tout, where Tin is a source object and Tout is
a destination object. These tools return code snippets that convert Tin to Tout,
using a sequence of API method calls. PARSEWeb [18] and XSnippet [16] are
two more examples in this research direction.

PARSEWeb [18] gathers the relevant code samples from GCS and performs
a static analysis over them to answer the queries of type Tin → Tout. They also
split the query by introducing intermediate object types. The dynamic database
(that of Google Code Search) together with the query splitting results in some
reported improvements. XSnippet [16] makes use of context information along
with a user query for finding relevant snippets. Their object instantiation queries



398 S. Chatterjee, S. Juvekar, and K. Sen

Table 7. Effect of Intersection and Clustering on Results

Query Rank Size(in LOC)
I/C No I/C I/C No I/C

get active editor window from eclipse workbench 1 3 3 4
parse a java source and create ast 1 1 2 4
connect to a database using jdbc 1 6 3 6
display directory dialog from viewer in eclipse 1 1 4 7
read a line of text from a file 1 3 3 5
return an audio clip from url 1 2 6 6
execute SQL query 2 2 2 5
return current selection from eclipse workbench 1 2 2 4

can be classified as type-based (from type Tin to type Tout) or parent-based, where
parenthood is defined by the subclass-superclass relation.

Although there is variation in the expressiveness of queries allowed by these
approaches, the basic structure of the queries is still limited to object instan-
tiation and cannot be generalized to free-form natural language queries. Sniff

does not suffer from this limitation since it allows free-form queries.
An alternate approach is the work of Murphy et al [6,7], which locates ex-

ample code files relevant to the code under development. The work focuses on
structural context matching heuristics. However, this approach does not allow
the user to explicitly specify a query and hence, proves to be useful only in spe-
cial cases, when the code under development is very similar to some example in
the repository. Often, the developer might not have enough context present in
her program to be guided to an actually relevant example.

SPARS-J [13] is a closely related Java class retrieval system that applies a
graph-based model to the programs. It returns a ranked set of classes to a
free-form user query using a frequency-of-usage based heuristic. However, the
SPARS-J technique is not aware of the functionality of a method or API beyond
what is suggested by its name. Several user queries in our experiments were
based on functionality. Sniff gathers much more information about the source
code from its inline comments or JavaDoc specifications. Moreover, SPARSE-
J returns relevant classes and it often requires time and expertise to identify
the precise snippet inside a complicated class/API. Robillard et al [15] present
another graph-based approach to discover the code relevant to change during
code modification. They use topological structure of the program graph to pro-
pose and rank program elements that are potentially interesting to a developer
modifying the source code.

The role of comments as an aid to program understanding has been a well-
studied topic [19]. iComment [17] automatically analyzes comments written in
natural language to extract implicit program rules and uses them to automati-
cally detect inconsistencies between comments and source code, indicating either
bugs or bad comments. However, extracting and using the information contained



SNIFF: A Search Engine for Java Using Free-Form Queries 399

in comments can be hard, since comments often convey other information like
directions to colleagues (especially in a group development environment) [20].

Besides comments, program invariants is another interesting direction for
identifying code snippets. There has also been a lot of work on inferring specifica-
tions [1,11]. However, we believe that in the context of code reuse and searching
for relevant APIs and their usage patterns, comments are much more useful than
formal specification of invariants.

Our intersection approach has some similarities with DECKARD [9]. However,
Sniff performs type-based intersection only at the statement level (since we
treat a program as an ordered list of statements), while DECKARD focuses
on efficient algorithms for identifying similar subtrees and applying it to tree
representations of the source code.

6 Conclusion

We have shown that our approach to locate relevant snippets for a free-form
query has a lot of promise. Inserting API comments in the client code at the
right places helps in localizing search results. Our current results for free-form
queries are already better than several existing code search engines. The inter-
section performed by Sniff is also critical in coming up with the relevant code
snippet(s), while separating out the statements that are irrelevant to the query.

Integrating and indexing search results from online search engines is an impor-
tant future work on this problem. An interesting extension of current approach
would be to deploy the tool in a cloud or compute cluster. Releasing the tool for a
larger class of programmers will provide us more valuable feedback on usefulness
of techniques used in this paper.

Acknowledgments

We would like to thank Jacob Burnim, Pallavi Joshi, Chang-Seo Park, Chris-
tos Stergiou, Raluca Sauciuc, Yamini Kannan, Nicholas Jalbert and Subhransu
Maji for their valuable comments on a previous draft of this paper and for par-
ticipating in the user study. This work is supported in part by the NSF Grants
CNS-0720906, CCF-0747390, and CCR-0326577.

References

1. Ammons, G., Bodik, R., Larus, J.R.: Mining specifications. In: POPL 2002, pp.
4–16 (2002)

2. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems 30(1–7), 107–117 (1998)

3. Krugle inc, http://www.krugle.com
4. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to algorithms. MIT

press/ McGraw-Hill (2001)
5. Google code search, http://google.com/codesearch

http://www.krugle.com
http://google.com/codesearch


400 S. Chatterjee, S. Juvekar, and K. Sen

6. Holmes, R., Murphy, G.: Using structural context to recommend source code ex-
amples. In: Inverardi, P., Jazayeri, M. (eds.) ICSE 2005. LNCS, vol. 4309, pp.
117–125. Springer, Heidelberg (2006)

7. Holmes, R., Walker, R., Murphy, G.: Approximate structural context matching:
An approach to recommend relevant examples. IEEE Transactions on Software
Engineering 32(12), 952–970 (2006)

8. Java frequently asked questions, http://www.javafaq.com/
9. Jiang, L., Misherghi, G., Su, Z., Glondu, S.: Deckard: Scalable and accurate tree-

based detection of code clones. In: ICSE 2007, pp. 96–105 (2007)
10. Koders inc, http://www.koders.com
11. Kremenek, T., Twohey, P., Back, G., Ng, A., Engler, D.: From uncertainty to belief:

inferring the specification within. In: OSDI 2006, pp. 161–176 (2006)
12. Mandelin, D., Xu, L., Bod́ık, R., Kimelman, D.: Jungloid mining: helping to navi-

gate the api jungle. In: PLDI 2005, pp. 48–61 (2005)
13. Matsushita, M., Inoue, K., Yokomori, R., Yamamoto, T., Kusumoto, S.: Ranking

significance of software components based on use relations. IEEE Trans. Softw.
Eng. 31(3), 213–225 (2005)

14. Porter, M.F.: An algorithm for suffix stripping. In: Readings in information re-
trieval, vol. 14, pp. 130–137 (1980)

15. Robillard, M.P.: Automatic generation of suggestions for program investigation. In:
ESEC/FSE-13: Proceedings of the 10th European software engineering conference
held jointly with 13th ACM SIGSOFT international symposium on Foundations
of software engineering, pp. 11–20. ACM, New York (2005)

16. Sahavechaphan, N., Claypool, K.: Xsnippet: mining for sample code. In: OOPSLA
2006, pp. 413 – 430 (2006)

17. Tan, L., Yuan, D., Krishna, G., Zhou, Y.: /*icomment: bugs or bad comments?*/.
In: SOSP 2007, pp. 145–158 (2007)

18. Thummalapenta, S., Xie, T.: PARSEWeb: A programmer assistant for reusing open
source code on the web. In: ASE 2007, pp. 204–213 (2007)

19. Woodfield, S., Dunsmore, H., Shen, V.Y.: The effect of modularization and com-
ments on program comprehension. In: ICSE 2002, pp. 215–223 (1981)

20. Ying, A.T.T., Wright, J.L., Abrams, S.: Source code that talks: an exploration of
eclipse task comments and their implication to repository mining. In: MSR 2005,
pp. 1–5 (2005)

http://www.javafaq.com/
http://www.koders.com


Inquiry and Introspection for Non-deterministic
Queries in Mobile Networks

Vasanth Rajamani1, Christine Julien1, Jamie Payton2,
and Gruia-Catalin Roman3

1 Department of Electrical and Computer Engineering
The University of Texas at Austin

{c.julien,vasanthrajamani}@mail.utexas.edu
2 Department of Computer Science

University of North Carolina, Charlotte
payton@uncc.edu

3 Department of Computer Science and Engineering
Washington University in Saint Louis

roman@wustl.edu

Abstract. This paper focuses on the information gathering support
needs for enterprises that operate over wireless mobile ad hoc networks.
While queries are a convenient way to obtain information, the highly
dynamic nature of such networks makes it difficult to ensure a precise
match between the results returned by a query and the actual state of
the enterprise. However, decisions can be made based on the perceived
quality of the information retrieved; specialized query support is needed
to control and assess the accuracy of the query results. In this paper, we
introduce the notion of inquiry mode to allow the user to exercise control
over the query processing policy so as to match the level of accuracy to
the requirements of the task. In addition, we describe the use of query
introspection, a process for assessing the fitness of a particular inquiry
mode. Both concepts are formalized, illustrated, and evaluated.

1 Introduction

Information drives the modern world. Everyday decisions depend on the quality
of data decision makers have. With the introduction of mobile wireless devices,
access to information has been extended to any individual carrying a phone or
PDA. This, in turn, led to changes in the very nature of the enterprise struc-
ture by empowering mobile users and by facilitating more decentralized decision
processes, faster reaction times, and more nimble data acquisition. A still more
radical transformation is made possible by the emergence of mobile ad hoc net-
works (MANETs) that support application domains where a still more fluid
organization is required to adapt to rapidly evolving circumstances. Emergency
response units, wilderness exploration groups, and battlefield intelligence teams
demand quality information gathered from distributed, cooperating sources.

The transformation will have far reaching implications, as enterprises that
rely on connectivity to the wired infrastructure are likely to evolve to include

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 401–416, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



402 V. Rajamani et al.

operations over local MANETs with only occasional access to the wired network.
Construction sites are a representative example. Today, phones are used on the
site to gather information about the status of jobs and to track developing situ-
ations. A chemical spill is likely to trigger a large volume of phone conversations
to coordinate a response to the emergency and to assess the appropriateness of
those actions. Enterprise level systems on the wired network, though well-suited
to support logistics and planning, are not nimble enough to support these ad hoc
peer-to-peer interactions that emerge unexpectedly. A more effective solution is
required to acquire up-to-date data on-demand.

These new enterprises demand flexible and timely access to spatially corre-
lated information about highly dynamic environments. Because the information
is distributed, accessing it entails the evaluation of a distributed query over a
rapidly evolving network, rendering any atomicity guarantees infeasible much of
the time. The spatiotemporal dimension of the information encourages decision
makers to pose questions in a manner sensitive to one’s mental model of how
space is organized and how the system evolves. Furthermore, one is likely to
question the soundness of the decision process. Am I asking the right question?
Am I looking in the right place? Am I getting an accurate enough answer? By
knowing how a query is processed and how volatile the system state is, one
can gain important semantic information about the data a query returns. This,
combined with an ability to specify how queries are evaluated, can significantly
impact the quality of the decision process. For example, a construction site su-
pervisor can specify that a query will be evaluated by sampling across the entire
site or by acquiring values from all devices within a smaller local area. Even
though the queries may return identical results, a supervisor will interpret the
data differently. Finally, changes in query results over time (e.g., rising chemical
concentration readings) or the presence of unexpected values may offer insight
into the adequacy of the query relative to the decision maker’s goals.

This paper explores the semantic dimension of query processing over MANETs.
Starting with the premise that the universe of discourse is the global state of a
connected mobile ad hoc network that represents a distributed mobile enterprise,
we seek to provide decision makers with a new set of query processing tools. These
are meant to enable both flexible control over the spatiotemporal dimension of
query processing and the ability to assess the fitness of the query processing for
the specific task at hand. Our contribution is twofold:

– We propose an inquiry mode as the means to specify how a query is evaluated
across a MANET; we identify several inquiry modes that relate to different
semantic interpretations of results; and we offer both a general formalization
of the concept and specific query processing protocols.

– Complementing the notion of inquiry mode is query introspection, which
enables evaluation of the adequacy of an inquiry mode. We propose the
use of adequacy metrics that compare query results against expectations or
results obtained from previous correlated queries.

Our approach represents an important shift in the way one thinks about query
processing. A query is intellectually decoupled from the traditional notions of



Inquiry and Introspection for Non-deterministic Queries 403

database processing and is promoted as a basic tool for exploring the surround-
ing world. Within this broad context, new user requirements for query processing
emerge, which suggest that queries should be sensitive to the spatiotemporal na-
ture of the environment and its evolutionary dynamics. In the remainder of this
paper, we first define, formalize and demonstrate inquiry modes. Section 4 then
defines and demonstrates query introspection. Section 5 presents our program-
ming model and a case study application that employs it. We discuss related
work in Section 6 and conclude in Section 7.

2 Defining Inquiry in Dynamic Networks

Our approach is based loosely on our previous work modeling change in mobile
environments [1]. In our model, queries can retrieve information from the network
using a variety of techniques, or inquiry modes, each of which entails its own
costs and benefits. Informally, an inquiry mode specifies the subset of hosts that
contribute to resolving the query. Different inquiry modes may generate vastly
different results for the same query. In this section, we formalize the specification
of queries, their inquiry modes, and their results and provide concrete examples
of how real protocols can be expressed using this formalization.

3 Hosts, Configurations, and Configuration Change

A mobile ad hoc network is a closed system of hosts, each represented as a
triple (ι, ζ, ν), where ι is the host’s unique identifier, ζ is its context, and ν is its
data value. In a simple model, the context can be simply a host’s location. In
more complicated models, the context may include a list of a host’s neighbors,
routing tables, and other system or network information. A snapshot of the
global abstract state of a mobile ad hoc network, which we call a configuration,
C, is simply the set of these host tuples, one for every host in the network.

To capture network connectivity, we define a binary logical connectivity re-
lation, K, to express the ability of one host to communicate with a neighboring
host. Using the values of the fields of a host triple, we can derive physical and
logical connectivity relations. As one example, if the host’s context element, ζ,
includes the host’s location, we can define a physical connectivity relation based
on communication range. K is not necessarily a symmetric relation; in the cases
that it is symmetric, K specifies bi-directional communication links.

The environment evolves as the network topology changes, value assignments
occur, and hosts exchange messages. We model network evolution as a state
transition system where the state space is the set of possible system configura-
tions, and transitions are configuration changes. Specifically, a single configura-
tion change consists of one of the following:

– neighbor change: changes in hosts’ states impact the connectivity relation.
– value change: a single host can change its stored data value.
– message exchange: a host can send a message that is received by one or more

neighboring nodes.



404 V. Rajamani et al.

To refer to the connectivity relation for a particular configuration in this evolu-
tion, we assign configurations subscripts (e.g., C0, C1, etc.) and use Ki to refer
to the connectivity relation for configuration i.

We build on K to define reachability across configurations. The reachability
relation, R(i,j), is a binary relation on host tuples that indicates the potential
of one-way multi-hop communication between them that starts no earlier than
the ith configuration and completes no later than the jth configuration:

〈∀k : i ≤ k ≤ j :: h ∈ Ck ⇒ (h, h) ∈ R(i,j)〉
〈∀h1, h2, k : i ≤ k ≤ j :: (h1, h2) ∈ Kk ⇒ (h1, h2) ∈ R(i,j)〉
〈∀h1, h2, h3, k : i ≤ k < j :: ((h1, h2) ∈ R(i,k) ∧ (h2, h3) ∈ Kk+1) ⇒ (h1, h3) ∈ R(i,j)〉1

First, every host is always reachable from itself. Second, if one host (h1) is
connected to another (h2) in any configuration between i and j inclusive, then
h2 is reachable from h1. Finally, we recursively define reachability.

3.1 Queries, Inquiry Modes, and Query Results

We extend our definition of reachability to define query reachability, which, in-
formally, determines whether it was possible to deliver a query to and receive a
response from some host h within the sequence of configurations. Given the host
who issues the query, h, query reachability for query q, Rq, is defined as:

(h, h, i) ∈ Rq ⇔ (h, h) ∈ R(0,i) ∧ (h, h) ∈ R(i,m)

It is not only necessary that h was reachable from the query issuer during the
query, but also that, after h was able to receive the query, h was reachable from
h, ensuring that it was possible for h’s response to reach the query issuer.

In our model, the inquiry mode is the technique used to process the query
over a set of configurations. An inquiry mode is defined by a forward-function
and a respond-function, both of which use a host’s state to make a decision about
whether to propagate and/or respond to a query. From any host’s perspective, an
inquiry model is simply the application of two independent functions: I � 〈f, r〉.
Each of f and r is a boolean function over a host tuple h. In the same atomic step
in which a host receives a query, it evaluates both f and r given the particular
query and the host’s state. Since a message exchange constitutes a configuration
change that takes the network from some configuration Ci to Ci+1, the two
functions are evaluated on the receiving host’s tuple in configuration Ci+1.

Next, we define a trio of relations over host tuples that allow us to formalize
a query’s result. Briefly, the forwards relation, Φq, specifies pairs of senders and
receivers of the query and the configuration of reception; the receptions relation,

1 In the three-part notation: 〈op quantified variables : range :: expression〉, the vari-
ables from quantified variables take on all possible values permitted by range. Each
instantiation of the variables is substituted in expression, producing a multiset of
values to which op is applied. If no instantiation of the variables satisfies range, the
value of the three-part expression is the identity element for op, e.g., true if op is ∀.



Inquiry and Introspection for Non-deterministic Queries 405

Γq, specifies hosts that received the query and the relevant configuration; and the
responses relation, Ψq, specifies whether a host qualified to generate a response.

The forwards relation is a ternary relation over host tuples and configuration
numbers. Specifically, (h1, h2, i) ∈ Φq if the host identified by h1.ι forwarded the
query q in a configuration in which h1 captured its state, and the host identified
by h2.ι received the query in a configuration in which h2 captured its state. In
addition, the host that forwarded the query (h1) must also have satisfied the
query’s forward-function, q.f in the state that it received the query. Formally:

(h1, h2, i) ∈ Φq ⇒
〈∃j, h′

1 : i < j ∧ h′
1.ι = h1.ι :: (h′

1, i) ∈ Γq ∧ q.f(h′
1) ∧ (h1, h2) ∈ Kj〉

In this formalization, i and j identify configurations; i is the configuration in
which the host h′1 received the query, and j is the configuration in which the
forwarding occured. Forwarding the query caused the transition Cj → Cj+1.

We next define the receptions relation, Γq. A host is in the receptions relation
if it was the target of a forward or if it is the query issuer:

(h, i) ∈ Γq ⇒ (h = h ∧ i = 0) ∨ 〈∃h′ :: (h′, h, i − 1) ∈ Φq〉

This requires that for a host other than the query issuer to receive a query in
Ci, the query must have been forwarded by a neighboring host in Ci−1.

Finally, the responses relation, Ψq, defines the hosts that received the query
and generated a response to it. To generate a response, the host must receive
the query and satisfy the respond-function. Formally, Ψq is:

h ∈ Ψq ⇒ 〈∃i :: (h, i) ∈ Γq ∧ q.r(h))〉

A query’s result, ρ, is a subset of a configuration: it is a collection of host tuples
that constitute responses to the query; no host in the network is represented
more than once in ρ, though it is possible that a host is not represented at all
(e.g., because it was never reachable from the query issuer). The constraints
defining a query’s result stem from the concepts derived above. First, a result
present in the query must come from a host that responded to the query:

h ∈ ρ ⇒ h ∈ Ψq (1)

Second, any result must have satisfied the aforementioned property of query
reachability. This ensures that both forward and reverse paths exist for query
propagation and response collection. Formally, given the query issuer, h:

h ∈ ρ ⇒ 〈∃i, j : i ≤ j :: (h, i) ∈ Γq ∧ (h, h, j) ∈ Rq〉 (2)

3.2 Examples of Application Protocols

The ability to specify the inquiry mode with which a query executes gives an
application fine-grained control. Consider an application that has some require-
ment for query quality. Given the availability of forward and respond function



406 V. Rajamani et al.

(a) (b)

A

(c) (d)

Fig. 1. Potential inquiry modes. Solid lines indicate available connections, dashed lines
indicate sent messages. (a) Flooding. Every node within the constraint (2 hops) re-
transmits the query. (b) Probabilistic. Every node within the constraint (3 hops) that
receives the packet retransmits it to 2 random neighbors. (c) Location Based. The
query reaches the nodes in region A. (d) Random. The query reaches any 5 nodes.

definitions, the application can construct a variety of possible query processing
protocols, honing in on the implementation best suited to the combination of
the application’s requirements and the query environment. In this section we
show how query processing protocols that are commonly used in mobile ad hoc
networks can be easily represented using inquiry modes and their components.
Flooding Inquiry Mode: Flooding based queries are most common in mobile
applications [2,3]. The sending node broadcasts the query to all of its one-hop
neighbors, who in turn propagate the message to their neighbors. A query is
very likely to reach every node in the network. However, this approach can
be very expensive in terms of the message overhead [4]. Approaches also exist
that constrain the flooding to some region of the network [5]. Because a basic
flooding protocol is deterministic, it cannot be parameterized, so no protocol
parameters are included in the inquiry mode. However, a constrained flood can
be parameterized by specifying the number of hops across which the query is
flooded. Fig. 1(b) shows the messages sent by and the nodes responding to a
flooding inquiry constrained to nodes within two hops of the query issuer.

Expressing the flooding inquiry mode using our formulation is trivial:

Iflooding = 〈true, true〉

This query reaches all hosts but at a significant communication overhead.
Probabilistic Inquiry Mode: Probabilistic techniques distribute the query
with a lower message overhead by reducing the number of nodes involved in
query propagation. Fig. 1(c) depicts an example, where each node receiving
a query retransmits it to two randomly selected neighbors. A more common
variant is to use a probability function to determine whether a particular node
should rebroadcast a received message [4]. Additional parameters can be used
to determine how many times to retransmit a message [6].

Here, the respond function is identical to flooding’s respond function. The
forward function ensures that only a fraction of messages propagate. Every
host generates a random number (rand) and passes it as an argument to the
fprobabilistic function, which is used to determine satisfiability:



Inquiry and Introspection for Non-deterministic Queries 407

fprobabilistic(θ) � (θ < p)

Iprobabilistic = 〈fprobabilistic(rand), true〉
In this inquiry mode, the query reaches only a probabilistically selected set of

hosts, which comes with added complexity but reduced overhead.
Location based Inquiry Mode: If location information is available, it can
direct queries to particular regions. Fig. 1(d) demonstrates a location based query
targeting region A. In this inquiry mode, it is important to be able to compute
a logical function that determines whether a given node satisfies the query’s
location requirements. This is accomplished by writing forward and respond
functions that use the cartesian distance to evaluate satisfiability:

rlocation (x1, y1) � ((x1 − x2)2 + (x2 − y2)2 < maxD)

Ilocation = 〈true, rlocation (h.ζ.λ.x, h.ζ.λ.y)〉
The parameters come from the host’s location (λ) stored in its context (h.ζ). The
query targets hosts in a specific location, reducing the communication overhead
but requiring significantly increased computation and resource demands.
Random Inquiry Mode: At the far end of the spectrum, a random sampling
algorithm may just randomly select a fraction of hosts to reply to the query, as
depicted in Fig. 1(e). These protocols can be parameterized by specifying how
many or what fraction of nodes should take part in the query.

The forward function is the same as in flooding. However, the respond function
needs to ensure that only k% of the query receptions are replied to:

rrandom(θ) � (θ < k)

Irandom = 〈true, rrandom(rand)〉
The value of k is used as decision criteria and a randomly generated number,
rand , is passed in as a parameter. The random inquiry mode reaches only ran-
domly selected hosts, radically reducing communication complexity. A common
technique found in practical protocols is the use of an aggregation strategy. It
should be noted that our model only forces decisions to be made immediately;
an implementation of the model can accommodate aggregation by delaying the
response with proper use of timers to create a routing structure for aggregation.

4 Inquiry Introspection

Using different inquiry modes can yield different results for the same query.
The suitability of an inquiry mode is determined by the needs of the querying
application and may depend on the dynamics of the environment. We define
query introspection as the use of information about a query’s result to determine
if the associated inquiry mode meets the application’s needs. In this section,
we discuss the use of adequacy metrics, which compare query results against
application expectations, to support query introspection.



408 V. Rajamani et al.

4.1 An Informal Introduction to Query Introspection

Different inquiry modes provide different sets of tradeoffs as they collect infor-
mation from a distributed network. The inquiry mode selected depends on an
application’s needs; how well a particular inquiry mode meets the needs of the
application is dependent, in part, on the environment during query execution.
For example, a query issued by a construction supervisor may determine the
concentration of a dangerous compound on a construction site. If it is important
to minimize the query’s overhead, the application may use a random inquiry
mode to collect concentration readings from randomly selected hosts across the
site. However, the random inquiry mode may not provide results that are ac-
curate enough. For a dense network the random inquiry mode may provide a
representative result while the same query may not provide an accurate enough
view of a sparse network to enable a decision about site safety.

This kind of analysis can be supported through query introspection, using
feedback about query execution to determine if an inquiry mode is appropriate.
The ideal approach to evaluating an inquiry mode’s tradeoffs is to determine
how well results reflect the ground truth of the environment during the query’s
execution, but this is impractical. Instead, query introspection examines query
results directly, using a history that may include results for this query and for
queries recently executed using the same inquiry mode. Since each host’s contri-
bution to a query result contains information about its context, we can consider
properties of the execution environment relevant to the application’s needs.

Using a history of query results, we can approximate a view of the world
that can be used to determine if an inquiry mode is appropriate in the current
environment given the application’s needs. Query introspection, then, can be
achieved by applying an adequacy metric over similar queries’ results. We now
formalize query introspection and provide examples of adequacy metrics that
can be used in the introspection process.

4.2 Formalizing Query Introspection

Query introspection is the process of determining if an inquiry mode is suitable.
This decision is often related to a tradeoff between the desired properties of the
result and the cost of query execution. A desired property may be that the results
are representative samples; another is that the results are relatively stable and
do not change rapidly over time. Variability in the network topology, the query’s
execution context, and randomness introduced by the inquiry mode can impact
how well results delivered by a query reflect the desired properties.

To support quantifiable introspection, we apply adequacy metrics to query
results. An adequacy metric, d, measures the logical distance between the desired
property of a query’s execution and the actual properties of the achieved query
result. For each distance function, an associated threshold (δ) can be defined by
the application to aid in evaluation. This simple construction supports expression
of arbitrary adequacy metrics that can enrich decision-making processes.

We identify two categories of adequacy metrics. The first measures the qual-
ity of the data captured by a query based on the variability between successive



Inquiry and Introspection for Non-deterministic Queries 409

queries. The second compares an idealized property of the execution environ-
ment to the environment’s measured state during query execution. This set of
metrics is not exhaustive; rather, we intend to illustrate applications’ needs and
to provide a framework for identifying and expressing adequacy metrics.

Data Capture Quality Metrics. Often, decisions regarding the appropriate-
ness of an inquiry strategy are related to the desired quality of the result. One
way to measure the quality of query results is to define an adequacy metric
based on a measurement of the changes in the captured data due to network
variability during query execution. This type of adequacy metric can be sup-
ported by constructing a baseline for comparison using the results of a previ-
ously executed query. In general, this kind of distance metric can be expressed
as: d(Pj(ρj),Pk(ρk)), where ρj is the result for the jth query issued in a sequence
of queries that employ the same inquiry mode, Pj maps a desirable property of
the result to a numerical value, and j ≤ k.
Set Difference. Consider a construction site supervisor that uses a probabilistic
inquiry mode to return an inventory of available materials; however, the supervi-
sor realizes that when the network is highly dynamic, this type of inquiry mode
is not sufficient to achieve a high-quality result that presents an accurate view of
the inventory. To support this kind of introspection, the quality of results can be
assessed by measuring variability between different collections of results. The set
difference metric quantifies the percentage of items returned by a query that are
newly available, have been modified, or are no longer reachable in comparison to
previously collected results. We can express a distance metric that determines
the fraction of new results as:

d =
| ρk − ρj |

| ρk |
where the kth query is the most recently issued in a sequence of queries using
the same inquiry mode, and j < k. The threshold δ associated with this metric
depends on application needs.

The set difference operator can similarly be used to describe how many result
elements have departed between the submission of a previous query and the
current query. In our construction site scenario, the amount of bricks available
on-site is likely to remain steady until a job consuming them begins, so the
construction site supervisor may initially use a random sampling inquiry mode
to check the inventory of bricks. The supervisor can use the departure distance
function to determine when a job on the site that consumes bricks has begun,
and can alter the inquiry mode if necessary to more closely track brick use.

We can also define an adequacy metric based on a cumulative view across
an entire sequence of returned results. For example, we can define an adequacy
metric based on transitive departures, which counts the fraction of hosts that
departed between the beginning of the execution of query i and the conclusion
of query k, even if the hosts later return. This can be captured as:



410 V. Rajamani et al.

d =

| (
k⋃

i=1

ρi) − ρ0 |

| ρk |

Transitive additions can be specified similarly. These transitive distance metrics
allow a construction site supervisor, for example, to make a decision regarding
the use of the inquiry mode to more closely monitor inventory after an influx of
supplies due to a delivery or the departure of supplies to another site.
Aggregate distances. Another way to describe the quality of a query’s result is
to measure the distance between the aggregated numerical values of a previous
result and the aggregated values for the current result. Such aggregate distance
measures can define adequacy metrics based on trends in the reported results.
For example, a construction supervisor may initially use a probabilistic inquiry
mode to monitor the total level of hazardous chemicals. If the hazardous chemical
level rises at a rate that implies a leak, the probabilistic inquiry mode may no
longer be suitable; given the potential danger, an inquiry mode which gives more
accurate view of the world is needed regardless of the associated cost. To make
this kind of assessment, an aggregate distance metric can compute the distance
of an aggregate (e.g., a total) between two queries:

d = |〈sum p : p ∈ ρi+1 :: p〉 − 〈sum p′ : p′ ∈ ρi :: p′〉|

Variations on this metric can be applied to other aggregates such as count,
minimum, maximum, and average.

Environmental Property Metrics. The previous class of adequacy metrics
are concerned with the quality of a query’s result. These metrics defined the
distance between the most recent query result and an approximate view of the
ground truth. Here, we describe adequacy metrics that evaluate the distance be-
tween a query result and a desired property of the execution environment during
query processing. These metrics can be defined in terms of the distance between
an ideal environment and the conditions under which the query executed, as
captured by the context field ζ for each host tuple in the result.
Network Coverage. In some cases, a query’s network coverage is important
in determining the suitability of its inquiry mode. A query covers an area if
the elements of the result form a connected graph that spans the associated
geographic region. In regions of the network where the data is dense, an area
can be covered by an inquiry strategy that selects a small subset of hosts. This
would yield a query result that is representative of the data in the region while
reducing the associated overhead. In sparse regions of the network, a query result
may cover a region only if all hosts in the region report results. The query issuer
can use query introspection to determine if results obtained using a particular
inquiry mode provide a reasonable representation of the surrounding area.

While finding the minimum set of nodes that cover a geographic region is an NP-
hard problem, it is still possible to provide an adequacy metric based on whether



Inquiry and Introspection for Non-deterministic Queries 411

the results approximately satisfy a network coverage constraint using information
about the density of results. We can get a rough estimate of this density through
average numbers of neighboring results; a relatively high average results suggests
that the results are dense, while a low average suggests that results are sparse. To
provide an example based on location, we first define a connectivity relation over
host locations that defines the existence of communication links between hosts. A
physical connectivity relation that represents a connectivity model with a circular,
uniform communication range can be defined using the location variable λ from a
host’s context ζ:

(hι0 , hι1) ∈ K ⇔ |(hι0 .ζ.λ) − (hι1 .ζ.λ)| ≤ b

where b refers to a bound on the distance between two hosts to consider them
connected. We can roughly determine the density of the query results by aver-
aging across the number of one-hop neighbors, which we compute by applying
the connectivity relation to hosts in the query result. This characterization of
network density can be expressed as:

n =
〈sum hι0 , hι1 : hι0 ∈ ρi ∧ hι1 ∈ ρi ∧ (hι0 , hι1) ∈ K : 1〉

〈sum h : h ∈ ρi :: 1〉
The distance metric can be expressed simply as the difference between n and the
ideal number of neighbors (i.e., d = |ideal−n|). The application can dictate how
the average connectedness measure relates to ideal network density and define a
threshold that determines adequacy.
Semantic Discovery. It may also be desirable to determine inquiry strategy
suitability based on the presence of a particular value:

n = 〈sum p : p ∈ ρi ∧ p.ν = v :: 1〉

where v is the desired value. A distance metric can be specified as d = 1 − n.
For an application that wishes to be alerted of the presence of a single value, the
associated threshold is specified as δ = 0.

The value of interest may not be directly related to a query’s reported result.
Instead, causal relationships between different values may be the basis for adap-
tation. For example, the discovery of smoke on a construction site implies the
presence of fire. If smoke is detected, then a inquiry mode which trades accuracy
for overhead should be abandoned in favor of one that provides a higher accuracy
in a search for a fire. These causal relationships can be captured in an adequacy
metric by collecting and evaluating a metric over causally related values in the
context field ζ of responding hosts.

5 Implementing Inquiry Modes and Introspection

We have implemented our model using Java2; we use the public interface pre-
sented below to demonstrate how our model can be realized in practice in a real
2 The source code and settings used are available at
http://mpc.ece.utexas.edu/InquiryMode/index.html

http://mpc.ece.utexas.edu/InquiryMode/index.html


412 V. Rajamani et al.

application example. Fig. 2 shows this public interface, which includes a defini-
tion of a Query and its InquiryMode. Implementations of inquiry modes like the
ones described in Section 2 extend these abstract classes with concrete function-
ality. For this discussion, consider a scenario where a construction site supervisor
has deployed sensors across the site over which he issues queries to monitor the
concentrations of hazardous airborne materials. The manner in which queries
are processed should differ depending on the conditions on the site; our model
captures this in a changing inquiry mode.
Phase 1. Initially, the supervisor may use a query with these characteristics:

– Forward Function: Probabilistic (Parameters: p = 0.7)
– Respond Function: Random Sampling (Parameters: k = 0.5)
– Introspection: Aggregate Data Capture quality (Parameters: δ = 0.1)

To execute this query, concrete implementations of the probabilistic forward
and random respond functions (such as the one shown in Fig. 3) need to be
provided. When a node receives a query, it executes the query’s forward and
respond functions. If the forward function returns true given the host’s current
context, the host forwards the query. If the respond function returns true, the
node processes the query at the application level. This entails updating the
query with its data value(s) and the cost as defined by the introspection type.
In this phase, the introspection cost is simply an aggregate on data quality, so
no metadata outside the query result is required.

This query is adequate for baseline monitoring. Only a fraction of all the
devices are involved in query processing, reducing resource usage. By choosing
data quality as the introspection strategy, the supervisor can keep issuing such
low cost queries until there is an indication of variance in data quality. In our
example, a 10% change in the concentration indicates a chemical leak.
Phase 2. When a leak is detected, more serious monitoring is warranted. The
first step is detecting where the leak emanates from.

class Query {

public Query(InquiryMode inquiry, Introspection metadata);

}

class InquiryMode {

public InquiryMode(ForwardFunction f, RespondFunction s);

}

abstract class ForwardFunction {

abstract public boolean Execute(Context nodeContext);

}

abstract class RespondFunction {

abstract public boolean Execute(Context nodeContext);

}

Fig. 2. The Inquiry and Introspection API



Inquiry and Introspection for Non-deterministic Queries 413

class FowardProbabilistic extends ForwardFunction {

double p;

FowardProbabilistic(Conext c) {

p = c.probThreshold;

}

public boolean Execute(Context nodeContext) {

return (nodeContext.getRandomNumber() < p);

}

}

Fig. 3. Defining a probabilistic forward function

– Forward Function: Flooding (Parameters: None)
– Store Function: Flooding (Parameters: None)
– Introspection: Spatial Coverage (Parameters: 10 units)

By issuing such a query, the supervisor spends more resources by employing a
flooding based inquiry mode to detect the location of the leak. By correlating
those regions (obtained from the metadata information) with the response values,
the application can establish regions of leakage.
Phase 3. Once the leak has been localized, the application can adapt the query
once again to focus on the area of the leak:

– Forward Function: Location (Parameters: Area enclosing quadrant of site)
– Store Function: Location (Parameters: Area enclosing quadrant of site)
– Introspection: Data Quality (Parameters: δ = 0.2)

Only devices in the vicinity of the leak respond to the query, and the user can get
more detailed data from that region. In addition, this data can be collected more
quickly since the network is focusing on a smaller amount of communication.

Results. Table 1 highlights the values for responses, metadata, and cost ob-
served during the execution of this case study; in the table, P12 refers to the
second query issued in Phase 1. When the first query is issued, the average con-
centration of chemicals is determined. Subsequent queries show a jump from an
average that exceeds the threshold of 10% stipulated by the application. The
application switches to Phase 2’s flooding query, and the introspection strategy
determines the query’s spatial coverage. The supervisor identifies the location
coordinates that have a high value for the amount of chemicals sensed. Once
the areas of interest are located, he issues queries to get data only from those
locations. At every step, he can evaluate the data against the cost of obtaining
it. The cost expressed here is the number of messages to obtain the query result
and its associated metadata. When the supervisor is obtaining just the data ele-
ments and using a low cost inquiry mode like random sampling, he incurs a lower
cost. However, the cost increases to a higher value (175) when a more expensive
inquiry mode like flooding is used. However, once this information is used to
locate the area of interest, the supervisor can revert to an inquiry mode that



414 V. Rajamani et al.

Table 1. Case Study query results by phases

P11 P12 P13 P21 P31 P32

Data Response 484 504 559 604 609 598
Spatial Coverage ∅ ∅ ∅ (900, 915), (805, 311), ...(700, 232) ∅ ∅

Cost 19 10 23 175 45 51

restricts the overhead by scoping the query to a particular region of interest.
This example demonstrates that introspection can provide great flexibility to
the application developer and has the potential to save resources. Introspection
thus provides an important mechanism in analyzing feedback, which is critical
to developing intelligent adaptive systems.

6 Related Work

Our approach takes a novel perspective on modeling queries in mobile ad hoc
networks by defining two new concepts: inquiry modes and query introspection.
In this section, we examine related approaches with respect to modeling queries
in these dynamic environments and adapting querying techniques.

Several related approaches to modeling dynamic environments rely on pro-
cess calculi [7,8] or petri nets [9]. The former tend to focus on evolutionary
changes (like our configuration changes), but make it difficult to capture the
impact of time, space, and other constraints on query processing. The latter
focus on low-level aspects of the environment such as packet transmission and
energy consumption, lacking constructs to capture query processing behavior.
More closely related work on coordination techniques for mobile and discon-
nected environments defined a concept similar to our reachability [10]: discon-
nected routes, which allow decoupling of mobile communication in space and
time. The model, however, focuses on using the availability of motion profiles to
plan nodes’ interactions over time. Existing work in applying query processing to
these dynamic environments focuses primarily on mobile distributed databases
and the ability (or inability) of a system to provide traditional strong seman-
tics (e.g., [11]). Our approach explicitly separates dissemination (through our
forward function) from result generation (through our respond function). This
approach in essence treats the entire network as a global virtual data struc-
ture, which is more in line with approaches targeted to database abstractions
for sensor networks (e.g., [12]).

Our work also has some similarities to what can be broadly categorized as
stream processing systems. Some of this work has explored model-driven query
processing [13] where each node constructs a local model of the data available.
If the estimated error of the model is below a threshold, a node processes a
query over the local data model to avoid consuming resources. A model driven
approach is less suitable for mobile environments because of the inherent un-
predictability of movement. Our formalization of introspection provides a more



Inquiry and Introspection for Non-deterministic Queries 415

systematic approach to exposing relevant adequacy metrics (both data and net-
work related) to facilitate adaptivity. By evaluating these metrics over values,
informed decisions can be made on the trade-off between the cost of executing a
particular query against application needs and switch inquiry modes as applica-
tion requirements change. Similarly, reflection is common in mobile computing
middleware and models [14]; our work recognizes the importance of reflection
to the adaptivity of mobile applications and provides a formal foundation for
exposing information about query results to applications through a principled
use of introspection.

7 Conclusions

In this paper, we have presented a new perspective on query processing in mobile
and pervasive networks. We presented a formalism for the concept of an inquiry
mode that defines which devices participate in query resolution. In addition, we
also formally defined the notion of introspection that helps evaluate the tradeoff
between the cost of a chosen inquiry mode and its effectiveness by exposing rele-
vant metadata in the form of adequacy measures. We showed how our model can
be used to specify a variety of real world inquiry modes and adequacy measures.
In addition, we provided a Java implementation that helps realize our model for
practical application development and demonstrated its effectiveness.

References

1. Payton, J., Julien, C., Roman, G.C.: Automatic consistency assessment for query
results in dynamic environments. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593.
Springer, Heidelberg (2007)

2. Johnson, D.B., Maltz, D.A., Broch, J.: Dsr: The dynamic source routing protocol
for multi-hop wireless ad hoc networks. Ad Hoc Networking 1, 139–172 (2001)

3. Perkins, C., Royer, E.: Ad hoc on-demand distance vector routing. In: Proc. of
WMCSA (February 1999)

4. Ni, S.Y., Tseng, Y.C., Chen, Y.S., Sheu, J.P.: The broadcast storm problem in a
mobile ad hoc network. In: Proc. of MobiCom, pp. 151–162 (1999)

5. Roman, G.C., Julien, C., Huang, Q.: Network abstractions for context-aware mobile
computing. In: Proc. of ICSE, pp. 363–373 (2002)

6. Kyasanur, P., Choudhury, R., Gupta, I.: Smart gossip: An adaptive gossip-based
broadcasting service for sensor networks. In: Proc. of MASS (October 2006)

7. Braione, P., Picco, G.P.: On Calculi for Context-Aware Coordination. In: De
Nicola, R., Ferrari, G.-L., Meredith, G. (eds.) COORDINATION 2004. LNCS,
vol. 2949, pp. 38–54. Springer, Heidelberg (2004)

8. Lopes, L., Martins, F., Silva, M., Barros, J.: A process calculus approach to sensor
network programming. In: Proc. of Sensorcomm, pp. 451–456 (2007)

9. Xiong, C., Murata, T., Tsai, J.: Modeling and simulation of routing protocols for
mobile ad hoc networks using colored petri nets. In: Proc. of Wkshp. on Formal
Methods Applied to Defense Systems, pp. 145–153 (2002)

10. Roman, G.C., Handorean, R., Sen, R.: Tuple space coordination across space
and time. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS,
vol. 4038, pp. 266–280. Springer, Heidelberg (2006)



416 V. Rajamani et al.

11. Dunham, M., Helal, A., Balakrishnan, S.: A mobile transaction model that captures
both the data and movement behavior. ACM-Baltzer Journal on Mobile Networks
and Applications 2(2), 149–161 (1997)

12. Madden, S., Franklin, M., Hellerstein, J., Hong, W.: The design of an acquisitional
query processor for sensor networks. In: Proc. of the 2003 ACM SIGMOD Int’l.
Conf. on Management of Data, pp. 491–502. ACM Press, New York (2003)

13. Deshpande, A., Guestrin, C., Madden, S., Hellersetin, J., Hong, W.: Model-driven
data acquisition in sensor networks. In: Proc. of VLDB (2004)

14. Capra, L., Blair, G.S., Mascolo, C., Emmerich, W., Grace, P.: Exploiting reflec-
tion in mobile computing middleware. ACM SIGMOBILE Mobile Computing and
Communications Review 6(4), 34–44 (2002)



HOL-TestGen
An Interactive Test-Case Generation Framework

Achim D. Brucker1 and Burkhart Wolff2

1 SAP Research, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
achim.brucker@sap.com

2 Université Paris-Sud, Parc Club Orsay Université, 91893 Orsay Cedex, France
wolff@lri.fr

Abstract. We present HOL-TestGen, an extensible test environment
for specification-based testing build upon the proof assistant Isabelle.
HOL-TestGen leverages the semi-automated generation of test theorems
(a form of partitioning the test input space), and their refinement to
concrete test-data, as well as the automatic generation of a test driver
for the execution and test result verification.
HOL-TestGen can also be understood as a unifying technical and con-
ceptual framework for presenting and investigating the variety of unit
test and sequence test techniques in a logically consistent way.

Keywords: symbolic test-case generations, black box testing, white box
testing, theorem proving, interactive testing.

1 Introduction

HOL-TestGen (http://www.brucker.ch/projects/hol-testgen/) is an in-
teractive, i. e., semi-automated, test tool for specification based tests built upon
Isabelle/HOL. HOL-TestGen allows one to write test specifications in higher-
order logic (HOL), (semi-) automatically partition the input space, resulting in
abstract test-cases, automatically select concrete test-data, automatically gen-
erate test scripts for testing arbitrary implementations.

2 The HOL-TestGen Architecture and Workflow

In this section, we briefly review the main concepts and outline the standard
workflow (see Figure 1) of HOL-TestGen [1–3]. The latter is divided into five
phases: first, the test theory containing the basic datatypes and key predicates
of the problem-domain has to be written. Since the test theory can be written
in classical higher-order logic (HOL), i. e., a functional programming language
extended by logical quantifiers, our approach is extremely flexible. Second, the
test-engineer has to write the test specification, i. e., the concrete property the
system under test is tested for. Third comes the generation of test-cases along
with a test theorem, forth the generation of test-data (TD), and fifth the test

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 417–420, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.brucker.ch/
http://www.lri.fr/~wolff
http://www.brucker.ch/projects/hol-testgen/


418 A.D. Brucker and B. Wolff

program under test test script

test harness
(Test Result)

Test Trace

test data

test cases
test specification HOL-TestGen

Isabelle/HOL

test executable SML-system

Fig. 1. Overview of the Standard Workflow of HOL-TestGen

execution (result verification) phase involving runs of the “real code” of the pro-
gram under test. Once a test theory is completed, an integrated documentation
(i. e., a formal test plan) with all definitions and results can be generated.

The properties of the program under test are specified in HOL in the test
specification (TS). A test-specification, typically, will have the form pre x →
post x (PUT x), where pre and post represent pre and post conditions of the
program under test PUT , which is just a variable in the test-specification. In-
stead of just a partition of the input spaces, our system will decompose the test
specification in the test-case generation phase into a semantically equivalent test
theorem which has the form:

�TD1; . . . ; TDn; THYP H1; . . . ; THYP Hm� =⇒ TS

where THYP is a constant used to mark the test hypotheses that are underlying
this test. At present, HOL-TestGen uses only uniformity and regularity Hy-
pothesis; for example, a uniformity hypothesis means informally “if the program
conforms to one instance of a case to TS, it conforms to all instances of this case
to TS.” Thus, a test theorem has the following meaning: If the program under
test passes the tests for all TDi successfully, and if it satisfies all test hypothesis,
it conforms to the test specification. In this sense, a test theorem bridges the
gap between test and verification. The TDi are just formulae so far, containing
variables and arbitrary predicates of the test theory as well as the free variable
referring to the system under test. In the data-selection phase, which is imple-
mented by a constraint-resolution based on Isabelle’s proof procedures, ground
instances for these variables were constructed. Both the test-case generation and
the test-data-selection phase can be improved by adding lemmas (derived within
Isabelle), or all sorts of logical massage can be realized by Isabelle on the test
specification, the test theorem, the test-data, etc. This is how advanced users
can improve the power of the deduction process dramatically.

The test theory containing test specifications, configurations of the test-data
and test script generation, possibly extended by proofs for rules that support
the overall process, is written in an extension of the Isar language [6]. It can be



HOL-TestGen 419

Fig. 2. A HOL-TestGen Session Using Proof General

processed in batch mode, but also using the Proof General interface interactively,
see Figure 2. This interface allows for interactively stepping through a test theory
(in the upper sub-window) and the sub-window below shows the corresponding
system state. A system state may be a proof state in a test theorem development,
or the result of inspections of generated test-data or a list of test hypothesis.

After test-data generation, HOL-TestGen can produce a test script driving
the test using the provided test harness. The test script together with the test
harness stimulate the code for the program under test built into the test exe-
cutable. Executing the test executable runs the test and results in a test trace
showing possible errors in the implementation (see lower window in Figure 2).

3 Case Studies

HOL-TestGen was used successfully in several case studies, among them:

Unit testing of red-black trees: In this case study [2], we generated test-
cases for recursive data-structures. In particular, we generated test-cases for
red-black trees testing the red-black properties (i. e., both the insertion and
deletion operation preserve these properties). We also generated test-data
and test scripts for this scenario and used them for testing the red-black tree
implementation of the SML/NJ library. Our work revealed a major bug in
this implementation which has not been detected during the last 12 years.

Unit testing of packet filters: In this case study [4], we modeled stateless
packet filters (firewalls) and their security policy in HOL. Based on this
specification, we generated test-cases for testing that a real firewall imple-
ments a specific security policy. Furthermore, we exploited the framework



420 A.D. Brucker and B. Wolff

aspect of HOL-TestGen and developed a domain-specific test case genera-
tor: HOL-TestGen/fw. HOL-TestGen/fw provides both domain specific
test-case and test-data generation heuristics and domain-specific extensions
of the theorem prover, e. g., supporting the simplification of firewall policies.

Sequence testing of application level firewalls: In this case study [3], we
applied HOL-TestGen to different sequence-testing scenarios. In particular,
we modeled stateful communication protocols (e. g., ftp and voice-over-ip)
and used these models as basis for the test-case generation. Overall, this
provides a method for testing the compliance of an application level, stateful
firewall to a give security policy.

In all these applications, we made the experience that combining theorem prov-
ing techniques and testing techniques can improve the overall quality of the
generated test-cases and test-data.

4 Conclusion

We provide a test environment for specification-based (also called model-based)
unit and sequence testing. Moreover, our test environment bridges the gap be-
tween formal verification and testing techniques, i. e., testing, in a logically con-
sistent way. The system has been used in several substantial case studies [2–4]
and for test-theoretical work [5].

References

[1] Brucker, A.D., Wolff, B.: hol-Testgen 1.0.0 user guide. Technical Report 482,
ETH Zurich (April 2005)

[2] Brucker, A.D., Wolff, B.: Symbolic test case generation for primitive recursive
functions. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
16–32. Springer, Heidelberg (2005)

[3] Brucker, A.D., Wolff, B.: Test-sequence generation with hol-TestGen with an
application to firewall testing. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007. LNCS,
vol. 4454, pp. 149–168. Springer, Heidelberg (2007)

[4] Brucker, A.D., Brügger, L., Wolff, B.: Model-based firewall conformance testing.
In: Suzuki, K., Higashino, T., Ulrich, A., Hasegawa, T. (eds.) TestCom/FATES
2008. LNCS, vol. 5047, pp. 103–118. Springer, Heidelberg (2008)

[5] Brucker, A.D., Brügger, L., Wolff, B.: Verifying test-hypotheses: An experiment
in test and proof. Electronic Notes in Theoretical Computer Science 220(1), 15–
27 (2008); proceedings of the Fourth Workshop on Model Based Testing (MBT)
(2008) ISSN 1571-0661, doi(10.1016/j.entcs, 11.003)

[6] Wenzel, M.M.: Isabelle/Isar – a versatile environment for human-readable formal
proof documents. PhD thesis, TU München, München (February 2002)



CADS*: Computer-Aided Development
of Self-* Systems

Radu Calinescu and Marta Kwiatkowska

Computing Laboratory, University of Oxford, UK
{Radu.Calinescu,Marta.Kwiatkowska}@comlab.ox.ac.uk

Abstract. We present the prototype tool CADS* for the computer-aided
development of an important class of self-* systems, namely systems whose
components can be modelled as Markov chains. Given a Markov chain rep-
resentation of the IT components to be included into a self-* system,
CADS* automates or aids (a) the development of the artifacts necessary
to build the self-* system; and (b) their integration into a fully-operational
self-* solution. This is achieved through a combination of formal software
development techniques including model transformation, model-driven
code generation and dynamic software reconfiguration.

1 Introduction

The ever growing complexity of today’s IT systems has led to unsustainable
increases in their management and operation costs. Software architects and de-
velopers aim to alleviate this problem by building self-* (or autonomic) systems,
i.e., systems that self-configure, self-optimise, self-protect and self-heal based on
a set of high-level, user-specified objectives [4,8].

The architecture of a self-* system is depicted in Fig. 1. Given a set of user-
specified system objectives (or policies), an autonomic manager monitors the
system components through sensors, uses its knowledge (i.e., model of the sys-
tem) to analyse their state and to plan changes in their configurable parameters,
and implements these changes through effectors. In recent work, we introduced
a general-purpose implementation of an autonomic manager as a reconfigurable
policy engine [1], and we described how quantitative analysis methods from the
area of probabilistic model checking can be used to implement user-specified
policies in a self-* system [2,3].

IT component

Sensors

Effectors

Manageability
adaptors

monitoranalyse

plan execute

Autonomic manager

system
objectives

Existing system
(policies)

knowledge
(system model)

Fig. 1. High-level architecture of a self-* system

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 421–424, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



422 R. Calinescu and M. Kwiatkowska

Fig. 2. The CADS* development process

In this paper, we introduce CADS*, a tool for the computer-aided develop-
ment of self-* systems whose components can be modelled as Markov chains.
The tool takes as input a continuous- or discrete-time Markov chain (CTMC or
DTMC) describing the behaviour of the IT components to be included in the
self-* system. This Markov chain is expressed in the high-level modelling lan-
guage used by the probabilistic model checker PRISM [5], and may be available
already from the verification of the IT components.1 Alternatively, the Markov
chain can be built as described in [6,5].

Starting from the Markov chain mentioned above, CADS* reduces the effort
and expertise required to develop self-* systems by automating or guiding: (a) the
generation of the system model used to set up the reconfigurable policy engine
from [1]; (b) the generation of the manageability adaptors from Fig. 1; and (c) the
configuration of the policy engine for the planned self-* solution.

2 CADS* Development Process

The three-stage development process implemented by CADS* is shown in Fig. 2,
and presented below.

Generation stage. This stage starts with the developer uploading into CADS*
a Markov chain describing the behaviour of the targeted IT components, and
expressed in the PRISM modelling language [5]. In a first step (labelled G1
in Fig. 2), CADS* employs a model transformation to derive an XML-encoded
model of the system to be managed, as described by the mapping

modelT ransformation : MarkovChain→ SystemModel, (1)
1 PRISM models for a wide range of system components are available from [9].



CADS*: Computer-Aided Development of Self-* Systems 423

where MarkovChain and SystemModel represent the set of Markov chains ac-
cepted by PRISM and the set of models used to configure the policy engine
from [1]. Step G1 is computer-assisted, i.e., the developer is required to allocate
the system parameters that CADS* identifies in the Markov chain to IT com-
ponents, and to partition them into read-only state parameters and read-write
configuration parameters.

In step G2, CADS* uses an XSL transformation to automatically extract an
XML schema specification for the targeted IT components from the result of (1):

schemaGen : SystemModel → XmlSchema. (2)

In step G3, the tool runs an instance of the XML Schema Definition tool [7] to
generate the set of data types associated with the XML schema:

dataTypeGen : XmlSchema→ 2DataType. (3)

The result is a set of .NET classes. Finally, we implemented a model-driven code
generation module that CADS* uses in step G4 to automate the generation of
web service stubs for the manageability adaptors in Fig. 1:

adaptorGen : XmlSchema→ 2ManageabilityAdaptor . (4)

These stubs subclass a generic abstract web service ManagedResource<T> that
implements the bulk of the sensor and effector functionality associated with
the manageability adaptor for an IT component (or resource). At the end of this
computer-assisted step, CADS* requires that the developer implements manually
a couple of simple, component-specific methods that are declared abstract in
ManagedResource<T>—the work involved is described in [1].

Deployment stage. In step D1, the developer provides the URL of a running
instance of the policy engine from [1], and CADS* calls the appropriate web
method to supply the model from (1) to this policy engine. In step D2, the
manageability adaptors from step G4 are deployed manually, and configured to
access the IT components to which autonomic capabilities are being added.

Exploitation stage. In step E1, user-specified policies are forwarded by CADS*
to the policy engine configured in step D1. These policies are specified in the pol-
icy expression language described in [2,1], by using a combination of arithmetic,
logic, relational and string operators, and optimisation functions such as Min,
Max and Goal to construct well-defined policies as expressions of the system
parameters identified in step G1. Finally, the policy engine applies these poli-
cies to the IT components exposed by the manageability adaptors it discovers
automatically in step E2.

3 Tool Validation

In order to assess the effectiveness of CADS*, we used it to re-implement two
self-* systems that we had previously developed manually in [2,3]. The first sys-
tem was a self-configuring/self-protecting system whose objective was to main-
tain user-specified levels of availability for a set of data-centre clusters. This



424 R. Calinescu and M. Kwiatkowska

objective was achieved by automatically adapting the number of servers allo-
cated to each cluster to changing cluster workloads, priorities and target avail-
abilities. The second system was a self-optimising system involving the dynamic
power management of a disk drive, and had as objective the optimisation of
user-specified trade-offs between the performance and the power usage of a disk
drive exposed to variable workloads.

In both cases, we started from existing PRISM CTMCs from [9], and we
successfully devised operational prototypes of the planned self-* system in ap-
proximately a tenth of the time taken to develop an equivalent solution manually
(i.e., under one day compared to over a week). This gain was primarily due to
CADS* reducing significantly the potential for developer error through automat-
ing or aiding the development of the self-* system artifacts, and their integration
into a fully operational solution.

4 Conclusion

We introduced the prototype computer-aided development tool CADS*, and
briefly described how its use in two case studies sped up the development of self-*
systems compared to implementing equivalent systems manually. Future work
includes augmenting CADS* with the ability to aid users in the specification
of valid, non-conflicting system objectives, and to validate the tool further by
exposing it to developers with limited expertise in self-* system development.

Acknowledgement. This work was partly supported by the UK Engineering and
Physical Sciences Research Council grant EP/F001096/1.

References

1. Calinescu, R.: Implementation of a generic autonomic framework. In: Proc. 4th Intl.
Conf. Autonomic and Autonomous Systems, pp. 124–129 (2008)

2. Calinescu, R.: General-purpose autonomic computing. In: Denko, M., et al. (eds.)
Autonomic Computing and Networking. Springer, Heidelberg (2009)

3. Calinescu, R., Kwiatkowska, M.: Software engineering techniques for the develop-
ment of systems. In: Proc. 15th Monterey Workshop on Foundations of Computer
Software, pp. 86–93 (2008)

4. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Computer
Journal 36(1), 41–50 (2003)

5. Kwiatkowska, M., et al.: Quantitative analysis with the probabilistic model checker
PRISM. Electronic Notes in Theoretical Computer Science 153(2), 5–31 (2005)

6. Kwiatkowska, M., et al.: Stochastic model checking. In: Bernardo, M., Hillston, J.
(eds.) Formal Methods for the Design of Computer, Communication and Software
Systems: Performance Evaluation, pp. 220–270. Springer, Heidelberg (2007)

7. Microsoft Corporation. Xml schema definition tool (xsd.exe) (2007),
http://msdn2.microsoft.com/en-us/library/x6c1kb0s(VS.80).aspx

8. Parashar, M., Hariri, S.: Autonomic Computing: Concepts, Infrastructure & Appli-
cations. CRC Press, Boca Raton (2006)

9. PRISM Case Studies, http://www.prismmodelchecker.org/casestudies

http://msdn2.microsoft.com/en-us/library/x6c1kb0s(VS.80).aspx
http://www.prismmodelchecker.org/casestudies


HAVE: Detecting Atomicity Violations via
Integrated Dynamic and Static Analysis�

Qichang Chen1, Liqiang Wang1,��, Zijiang Yang2, and Scott D. Stoller3

1 Dept. of Computer Science, University of Wyoming, WY, USA
{qchen2,wang}@cs.uwyo.edu

2 Dept. of Computer Science, Western Michigan University, MI, USA
zijiang.yang@wmich.edu

3 Computer Science Dept., Stony Brook University, NY, USA
stoller@cs.stonybrook.edu

Abstract. The reality of multi-core hardware has made concurrent pro-
grams pervasive. Unfortunately, writing correct concurrent programs is
difficult. Atomicity violation, which is caused by concurrently executing
code unexpectedly violating the atomicity of a code segment, is one of
the most common concurrency errors. However, atomicity violations are
hard to find using traditional testing and debugging techniques.

This paper presents a hybrid approach that integrates static and dy-
namic analyses to attack this problem. We first perform static analysis
to obtain summaries of synchronizations and accesses to shared vari-
ables. The static summaries are then instantiated with runtime values
during dynamic executions to speculatively approximate the behaviors
of branches that are not taken. Compared to dynamic analysis, the hy-
brid approach is able to detect atomicity violations in unexecuted parts
of the code. Compared to static analysis, the hybrid approach produces
fewer false alarms. We implemented this hybrid analysis in a tool called
HAVE that detects atomicity violations in multi-threaded Java programs.
Experiments on several benchmarks and real-world applications demon-
strate promising results.

1 Introduction

Today, multi-core hardware has become ubiquitous, which puts us at a funda-
mental turning point in software development. In order for software applications
to benefit from the continued exponential throughput advances in new proces-
sors, the applications will need to be well-written multi-threaded programs. How-
ever, writing correct multi-threaded programs is difficult, because concurrency
can introduce subtle errors that do not exist in sequential programs, if concurrent
accesses to shared data are not properly synchronized.

� The work was supported in part by Wyoming NASA Space Grant Consortium,
NASA Grant NNG05G165H, Wyoming NASA EPSCoR, NASA Grant NCC5-578,
NSF CCF-0811287, CNS-0831298, CNS-0627447, CCF-0613913, and CNS-0509230.

�� Corresponding author.

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 425–439, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



426 Q. Chen et al.

Two of the most common concurrency errors are data races and atomicity
violations. A data race occurs when two concurrent threads perform conflicting
accesses (i.e., accesses to the same shared variable and at least one access is
a write) and the threads use no explicit mechanism to prevent the accesses
from being simultaneous. In Program 1 of Figure 1, conflicting accesses to the
shared variable bal can happen simultaneously without any protecting lock,
hence a data race occurs. An atomicity violation occurs when an interleaved
execution of a set of code blocks (expected to be atomic) by multiple threads
is not equivalent to any serial execution of the same code blocks. Program 2 in
Figure 1 eliminates the data race in Program 1 by adding a lock o. However,
Program 2 is still incorrect if the deposit method is required to be atomic. An
atomicity violation occurs in Program 2 when the two synchronization blocks in
thread 2 execute between the two synchronization blocks in thread 1.

Program 1
Thread 1
deposit(int val){

int tmp = bal;
tmp = tmp + val;
bal = tmp;

}

Thread 2
deposit(int val){

int tmp = bal;
tmp = tmp + val;
bal = tmp;

}

Program 2
Thread 1
deposit(int val){

synchronized(o){
int tmp = bal;
tmp = tmp + val;

}
synchronized(o){
bal = tmp;

}
}

Thread 2
deposit(int val){

synchronized(o){
int tmp = bal;
tmp = tmp + val;

}
synchronized(o){
bal = tmp;

}
}

Fig. 1. Examples in Java demonstrating data races and atomicity violations

Most existing approaches to detect atomicity violations are either purely dy-
namic (e.g. [6,21,20,19]) or purely static (e.g. [9,7]). The strength of static anal-
ysis is that it can consider all possible behaviors of a program. However, it may
produce false positives (i.e., false alarms), because some aspects of a program’s
behavior, such as alias relationships, values of array indices, and happens-before
relationships, are very difficult to analyze statically. Moreover, many static anal-
yses, such as the type system for atomicity in [9], require either manual annota-
tion of the program or rewriting of the program into a special language. Dynamic
analysis observes and analyzes the actual behaviors of a program by executing
it. Generally, dynamic analysis is unsound compared to static analysis, because
it does not analyze unobserved behaviors of programs. On the positive side, it
generally produces much fewer false positives. Furthermore, dynamic analysis
generally does not require manual annotation of code that is often required in
static analysis; this is a significant practical advantage.

In order to exploit the complementary benefits of static and dynamic analyses,
we propose a hybrid approach to detect atomicity violations. In our approach,
we perform a conservative intraprocedural static analysis to generate a summary
for each method in the program. Our runtime system tracks and records the
values of reference variables during execution. When we observe an unexecuted
branch during dynamic analysis, the static summary of that unexplored branch



HAVE: Detecting Atomicity Violations 427

is retrieved and instantiated using the recorded values. Thus, the instantiated
summary speculatively approximates what would have happened if the branch
had been executed.

We implemented the hybrid approach in a tool called Hybrid Atomicity Viola-
tion Explorer (HAVE) for detecting atomicity violations in multi-threaded Java
programs and evaluated it on several benchmarks and real-world applications.
The experiments show that the hybrid approach reports fewer false positives
than the previous static approaches [9,1], and fewer false negatives (i.e., missed
errors) than the previous dynamic approaches [6,20,19].

The rest of this paper is organized as follows. Section 2 formally defines atom-
icity violations. Section 3 presents the architecture of our tool HAVE. Section 4
introduces the conflict-edge algorithm. Section 5 describes some optimizations.
Section 6 presents the experimental results. Section 7 reviews the related work.
Section 8 discusses the conclusions and future work.

2 Atomicity Violations

An execution σ = 〈s1, . . . , sn〉 is a sequence of accesses to shared variables, lock
acquire, lock release, thread start, thread join, and barrier synchronization
operations.

A transactional unit (or transaction) is an execution of a code block expected
to be atomic. A non-transactional unit is an execution of a code block not ex-
pected to be atomic. For an event or transaction x, let th(x) be the thread that
performed x. As in [19], we assume that transaction boundaries are chosen so
that thread start and join operations and barrier operations occur at transac-
tion boundaries, not in the middle of transactions. Thus, thread and barrier
operations induce a partial order on transactions: given an execution σ, and
two transactional or non-transactional units u1 and u2, u1 happens-before u2,
denoted u1 <H u2, if (1) th(u1) = th(u2) and u1 is executed before u2, or (2)
th(u1) �= th(u2) and (2a) th(u1) starts thread th(u2) after executing u1 or (2b)
th(u2) joins on th(u1) before executing u2, or (3) ∃ui : (u1 <H ui)∧ (ui <H u2).
From monitoring an execution, we extract a set T of transactions, a set A of
non-transactional units, and a happens-before relation <H .

Given 〈T,A,<H〉, a trace of 〈T,A,<H〉 is an interleaving of events from units
in T∪A that is consistent with the happens-before relation <H (i.e., if u1 <H u2,
then all events in u1 precede all events in u2) and respects locking (i.e., for every
matching pair of acquire and release operations that belong to the same thread,
no acquire or release of the same lock by other threads happens between them).

Traces π1 and π2 for 〈T,A,<H〉 are equivalent if (1) they contain the same
events, and (2) for each pair of conflicting accesses, the two accesses appear in
the same order in both traces.

A trace of 〈T,A,<H〉 is serial if the events of each transaction in T form
a contiguous subsequence of the trace. 〈T,A,<H〉 is atomic if every trace of
〈T,A,<H〉 has an equivalent serial trace of 〈T,A,<H〉.



428 Q. Chen et al.

For example, consider Program 2 in Figure 1. Suppose the method deposit
is expected to be atomic. The program has only two serial executions, [t1.R(bal)
t1.W (bal) t2.R(bal) t2.W (bal)] and [t2.R(bal) t2.W (bal) t1.R(bal) t1.W (bal)],
where t.A(x) denotes that thread t performs action A on variable x. The inter-
leaved execution [t1.R(bal) t2.R(bal) t2.W (bal) t1.W (bal)] is not equivalent to
any serial trace, hence, the execution of method deposit is not atomic.

This notion of atomicity is also called conflict atomicity [19]. In [19], we also
explored another notion of atomicity, called view atomicity. We do not consider
view atomicity in this paper because checking it is more expensive and gives the
same results as checking conflict atomicity in our experiments [19].

In this paper, we assume that the program does not have potential for deadlock
(i.e., some trace of the program may end in deadlock). This assumption is needed
because a trace that ends in deadlock with some thread in the middle of a
transaction is not equivalent to any serial trace. Potential for deadlock can be
checked using our approach in [2].

3 Integrating Dynamic and Static Analyses

This section gives an overview of our hybrid approach to check atomicity viola-
tions. Figure 2 shows the architecture of our tool, HAVE, which consists of five
components.

source
code

static summary
trees

static
analyzer

instrumentation
tool

hybrid
treesspeculator

hybrid
conflict-edgetool

instrumented
code

dynamic
trees

dynamic
monitor

trees algorithm

atomicity violation
warningscode treesmonitor warnings

Fig. 2. The architecture of the tool HAVE

1. A static analyzer, which parses the source code to generate static summary
trees (SSTs).

2. An instrumentation tool, which inserts event interception code.
3. A dynamic monitor, which intercepts events and builds dynamic trees during

execution.
4. A speculator, which generates speculations for the unexecuted branches from

SSTs and combines them with dynamic trees to form hybrid trees.
5. A detector, which analyzes the hybrid trees for atomicity violations using

the hybrid conflict-edge algorithm described in Section 4.



HAVE: Detecting Atomicity Violations 429

3.1 The Static Analyzer

The static analyzer parses source code to construct static summary trees (SSTs).
Each SST corresponds to a method in a certain class. Specifically, a static tree
may contain nodes representing: (1) read/write to non-final and non-volatile
fields; or (2) entrance and exit of synchronized blocks, including synchronized
methods (which represent lock acquire and release operations); or (3) control-
flow structures, namely, if, for/while, and switch/case; or (4) assignments
to reference variables, which are used to speculate reference changes for the
unexecuted code blocks. SSTs do not contain interprocedural information, i.e.,
method calls are ignored. Unlike the dynamic monitor, the static analyzer ignores
thread start, join and barrier synchronizations. Accesses to array elements are
ignored in this paper due to the difficulty of statically resolving the indices of
array elements. Figure 3 shows an example of a code block and its SST.

class Account {
int checking, saving;

public void withdraw(int w) {
if ((this.checking + this.saving) < w)

print("Not enough balance");
else if (this.checking >= w)

synchronized(this)
this.checking -= w;

else
synchronized(this) {

this.saving -= w - this.checking;
this.checking = 0;

}
}

}

The corresponding SST

Fig. 3. An example of a static summary tree (SST), where Account.c and Account.s

denote Account.checking and Account.saving, and “R” or “W” denotes that the node
is a read or write, respectively.

3.2 Instrumentation

The instrumentation component instruments source code in order to intercept
specific events during execution. The intercepted events include program control-
flow structures, reads and writes to non-final and non-volatile fields, synchro-
nization (including lock acquire and release, barrier operation, thread start
and join), assignments to reference variables, and transaction boundaries.

Similar to [19], executions of the following code fragments are considered as
transactions by default because their executions are often expected to be atomic
by programmers: non-private methods, synchronized private methods, and syn-
chronized blocks inside non-synchronized private methods. With exceptions, the
executions of the main() method in which the program starts and the execu-
tions of run() methods of classes that implement Runnable are not considered as



430 Q. Chen et al.

transactions, because these executions represent the entire executions of threads
and are often not expected to be atomic. Moreover, start, join and barrier
operations are treated as boundaries, i.e., they separate the preceding events
and following events into different units, and are not contained in any unit. We
adopt this heuristic because execution fragments containing these operations are
typically not atomic and hence are not expected to be transactions. The events
not in transactions form non-transactional units. Note that for nested transac-
tions, we check atomicity only for the outmost transactions, since they contain
the inner transactions. The defaults can be overridden using a configuration file.

3.3 The Dynamic Monitor and Speculator

When an instrumented program runs, the dynamic monitor receives events is-
sued by the instrumented code. The events of each unit (including transactional
and non-transactional units) are stored in a structure called a hybrid tree, which
consists of events observed in the execution and speculations based on static
summary trees. Each leaf node represents a read or write to a shared vari-
able and contains the runtime identifier for the shared variable. For example,
R(320.checking) denotes a read to the field “checking” of an object identi-
fied by its hashcode 320. Each non-leaf node except for the root represents a
lock-based synchronization block or control-flow structure (e.g. if/then/else,
for/while loop, switch/case). Each synchronization node contains the run-
time identifier for the current lock (i.e., synchronization object). The root node
simply identifies the unit.

For each unexecuted branch in the unit, we instantiate the corresponding part
of the method’s SST by simulating its execution using the runtime context at
the associated branch point, and add the resulting concrete events (e.g. synchro-
nization nodes, reads and writes) to the hybrid trees. We instantiate symbolic
names in the SST by querying binding tables. A binding table is maintained for
each object; it stores the mappings between symbolic names and runtime val-
ues of all reference fields and local reference variables under the context of the
object. A binding table is maintained for each class with static reference fields.
Binding tables are updated when assignments to reference variables are exe-
cuted. During speculative execution, assignments to reference variables in SSTs
trigger updates on temporary copies of binding tables, instead of the original
ones. Since there might be unresolved symbolic names left during speculation,
the speculation may be not as accurate as its runtime equivalent observed in the
dynamic analysis if it can be executed. This speculative technique may lead to
false positives. Our experiments show that such kind of false positives are very
rare in practice.

Our speculative execution also constructs subtrees corresponding to specu-
lative iterations of loop bodies. According to Theorem 3 in Section 4.3, if all
iterations of a loop perform the same accesses, then at most two iterations are
needed to detect atomicity violations. We use this as a heuristic, without at-
tempting to verify the hypothesis of the theorem. Specifically, when the control
flow reaches a loop, if the execution contains no iterations of the loop at that



HAVE: Detecting Atomicity Violations 431

Fig. 4. An example of hybrid trees. Tree (a) corresponds to an execution of withdraw
in Figure 3 when the else if is executed; tree (b) corresponds to the scenario when
the first then is executed. The grey nodes are generated from the real executions; all
the other nodes are speculated. The dotted lines denote conflict-edges introduced in
Section 4. Only partial conflict-edges are marked out.

point, we add two speculative iterations; if the execution contains only one iter-
ation of the loop at that point, we add one speculative iteration.

Two examples of hybrid trees are shown in Figure 4. Tree (a) and Tree (b)
are generated by two threads of an execution that call the method withdraw()
in Figure 3. The hashcode of the instance of Account is assumed to be 320.

4 The Conflict-Edge Algorithm

This section presents the conflict-edge algorithm that detects atomicity viola-
tions based on hybrid trees. The algorithm adds edges, called conflict-edges,
between hybrid trees, to connect two conflicting nodes (which is discussed in
details in Section 4.1). The algorithm then generates all valid pairs of conflict-
edges; informally, “valid” means that all nodes involved in the pair can coexist
in some execution. The algorithm detects and reports atomicity violations by
analyzing each valid conflict-edge pair. Note that the conflict-edge algorithm
does not merely look for violations of atomicity in the observed execution, but
also determines whether atomicity violations exist in feasible permutations of
the observed execution.

4.1 Building Conflict-Edges between Hybrid Trees

Two nodes n1 and n2 conflict if (1) they are in different hybrid trees, and (2) they
represent accesses to the same variable and at least one of them is a write, and
(3) thread start, join, and barrier operations do not induce a happens-before
relation on them (i.e., do not prevent them from occurring simultaneously). Let



432 Q. Chen et al.

held(ni) denote the set of locks held when ni is executed, which is determined
by the synchronization nodes that are ancestors of ni in the tree.

For each pair (n1, n2) of conflicting nodes, if held(n1)∩held(n2) = ∅, we add
a conflict-edge between n1 and n2; otherwise, we add a conflict-edge between the
highest ancestors of n1 and n2 that are synchronization nodes for the same lock.
The highest synchronization nodes represent the outmost common lock held
during the executions of n1 and n2. The conflict-edge reflects the granularity
at which the code blocks containing conflicting accesses can be interleaved. For
example, Figure 4 shows partial conflict-edges between the two hybrid trees.

4.2 Detecting Atomicity Violations

A hybrid tree t represents a set [[t]] of possible (transactional or non-transac-
tional) execution units, corresponding to different choices of the branches of the
if, switch, and loop statements that appear in it. For simplicity, our speculative
analysis assumes that each branch could be taken, independently of other choices;
in other words, the conditions guarding the branches are ignored. Given a set
T = {t1, . . . , tn} of hybrid trees representing transactions, a set A = {a1, . . . , am}
of hybrid trees representing non-transactional units, and a happens-before re-
lation <H on these trees, 〈T,A,<H〉 is atomic if, for all t′1 ∈ [[t1]] , . . . , t′n ∈
[[tn]] , a′1 ∈ [[a1]] , . . . , a′m ∈ [[am]], 〈{t′1, . . . , t′n}, {a′1, . . . , a′m}, <′

H〉 is atomic, where
two execution units are related by <′

H iff the hybrid trees they were generated
from are related by <H .

Conflict-edges e and e′ are incompatible if one end node of e and one end
node of e′ appear in mutually exclusive branches of a hybrid tree, such as then
and else branches of the same if statement, or different cases of a switch
statement; otherwise, conflict-edges e and e′ are compatible.

Conflict-edge e is an ancestor of conflict-edge e′ in hybrid tree t if an endpoint
of e is an ancestor of an endpoint of e′ in t. A pair (e, e′) of conflict-edges is valid
for hybrid tree t, if (1) e and e′ are compatible, (2) e is not an ancestor of e′ in t,
and vice versa, and (3) e and e′ are incident on different nodes of t. In the rest of
the paper, all pairs mentioned are valid by default if without explicit indication.

We have the following theorem to determine atomicity for a transactional
hybrid tree. Let Fσ be a hybrid forest generated from an execution σ. Given a
transactional hybrid tree t contained in Fσ, let Fσ \{t} be the set of all the other
units.

Theorem 1. Suppose a hybrid forest Fσ has no potential for deadlock. If t has
no valid pair in Fπ, 〈{t}, Fσ \ {t}, <H〉 is atomic.

Proof Sketch: If t does not have valid pairs in Fπ, for every trace of 〈{t}, Fσ \
{t}, <H〉, there are only two possible cases: (1) t has at most one node with an
incident conflict-edge; or (2) t has a set S of nodes with incident conflict-edges,
and for all n1, n2 ∈ S, n1 is an ancestor or descendant of n2. In the first case, for
each non-serial trace, we can construct an equivalent serial trace by commuting
all events in t to the position of that node. In the second case, we can construct



HAVE: Detecting Atomicity Violations 433

CheckAtomicityViolations() {
AV Scenarios := ∅;
for each transactional hybrid tree t do

for each valid conflict-edge pair (e, e′) of t do
if only two hybrid trees including t are connected by e and e′ then

/* find an atomicity violation scenario */

AVScenarios := AVScenarios ∪{(e, e′)};
else

if ∃ a valid cycle c of conflict-edges involving (e, e′) then
AVScenario := AVScenario ∪{c};

}
Fig. 5. The conflict-edge algorithm to detect atomicity violations

an equivalent serial trace by commuting all events in t to the position of the
lowest node in S. Hence, 〈{t}, Fσ \ {t}, <H〉 is atomic. �
Given a valid pair of conflict-edges (e, e′), a sequence of conflict-edges involving e
and e′ may form into a cycle, where two conflict-edges connected to the same tree
are considered linked. A cycle involving (e, e′) is valid if (1) neither e nor e′ is an
ancestor of the other; and (2) all conflict-edges on the cycle are compatible; and
(3) for each node n on the cycle, held(n) ∩ held(nt

e) = ∅∧ held(n) ∩ held(nt
e′)

= ∅, where nt
e and nt

e′ are the end nodes of e and e′ in t, respectively; and
(4) all involved transactional and non-transactional units are concurrent (i.e.,
the happens-before relation enforces no order on them). We have the following
theorems to check atomicity violations.

Theorem 2. Suppose a hybrid forest Fσ has no potential for deadlock. If a valid
pair of conflict-edges (e, e′) on a transactional hybrid tree t is involved in a valid
cycle of Fσ, then t has an atomicity violation with the scenario indicated by the
cycle.

Proof Sketch: Suppose the valid cycle consists of conflict-edges e0, e1, . . . , en,
where e0 = e and en = e′. Let ui and ui+1 be the execution units containing the
endpoints of ei, for i = 0..n. Note that u0 = t and un+1 = t. The conditions in
the definition of valid cycle imply that u0, . . . , un are distinct and there exist u′0 ∈
[[u0]] , . . . , u′n ∈ [[un]] and an interleaving σ′ for 〈T ′, A′, <′

H〉 that contains events
in the order 〈endpoint(e0, t), endpoint(e0, u1), endpoint(e1, u1), endpoint(e1, u2),
. . . , endpoint(en, un), endpoint(en, t)〉 (i.e., all of the other nodes on the cycle oc-
cur between the two nodes of t on the cycle), where T ′ and A′ contain the trans-
actional and non-transactional units, respectively, in {u′0, . . . , u′n}, and u′i <

′
H u′j

iff ui <H uj . Because the two endpoints of a conflict-edge represent conflicting
accesses to a shared variable, all executions equivalent to σ must preserve the
order of t, u1, . . . , un, t. Thus, there is no serial execution (in particular, no ex-
ecution in which t occurs serially) equivalent to σ, so the cycle indicates an
atomicity violation. �
Corollary 1. Suppose a hybrid forest has no potential for deadlock. If a valid
pair of conflict-edges on a transactional hybrid tree t is incident to only two



434 Q. Chen et al.

transactions (including t), then t has an atomicity violation with the scenario
indicated by the pair.

Proof Sketch: The valid pair forms into a cycle. Thus, the conclusion is simply
implied by Theorem 2. �
For each hybrid tree t, we detect atomicity violations by checking valid pairs of
conflict-edges as shown by CheckAtomicityViolations() in Figure 5. Given a
valid pair (e, e′) of t, if e and e′ involve only two hybrid trees, this pair implies an
atomicity violation by Corollary 1. If e and e′ involve three hybrid trees (recall
that e and e′ are already incident to t), we check atomicity violations based on
Theorem 2. Our current implementation does not use Theorem 1, because our
system looks for potential atomicity violations; it does not try to verify atomicity.
Corollary 1 is applied first because it is cheaper.

For example, in Figure 4, an atomicity violation is revealed by a valid pair
(< a.W(320.c), b.R(320.c) >,< a.W(320.s), b.R(320.s) >). The atomicity viola-
tion cannot be discovered by a purely dynamic approach because the valid pair
connects a speculative branch in tree a with an executed branch in tree b.

Let S (mnemonic for Size of trees) denote the maximum number of nodes in
any hybrid tree. Note that the number of trees is |T ∪ A|. The worst-case time
complexity of constructing conflict-edges is O((|T ∪A|×S)2). Let nc denote the
maximum number of conflict-edges incident on any hybrid tree. Usually nc is
much less than |T ∪A| × S2. Theorem 2 requires finding a valid cycle, which is
O((|T∪A|×nc)2). The total number of valid pairs is O(T×n2

c). Hence, the worst-
case time complexity of checking atomicity violations is O(|T | × |T ∪A|2 × n4

c).

4.3 Unwrap Loops

The following theorem shows that executing a loop twice is sufficient to find
atomicity violations, if all iterations perform the same accesses.

Consider a loop such that every iteration contains the same sequence of access
events. Let σ2 denote an execution in which, at some point, a thread performs
exactly two iterations of the loop. Let t2 be the corresponding transaction con-
taining the two iterations. Let σm be an execution that differs from σ2 only in
that, at the same point, the thread performs more than two iterations. Let tm
be the corresponding transaction containing the m iterations. Suppose t2 and
tm differ only on the number of iterations.

Theorem 3. 〈t2, A,<H〉 is not atomic iff 〈tm, A,<H〉 is not atomic.

Proof Sketch: “⇒”: it is obvious.
“⇐”: We prove the contrapositive, i.e., if 〈t2, A,<H〉 is atomic, then 〈tm, A,

<H〉 is atomic. Given any trace πm of 〈tm, A,<H〉, it must have a corresponding
trace π2 of 〈t2, A,<H〉, where πm and π2 differ only on the number of iterations
for the loop. Because there must exist a way to swap π2 into an equivalent serial
trace, the events in πm can be swapped in the same way. Specifically, if there is an



HAVE: Detecting Atomicity Violations 435

event in πm to prevent from swapping, an event in π2 with the same properties
(i.e., accesses the same variable, holds the same lock, and observes the same
happens-before relation) must exist to prevent π2 from being serializable. Hence
πm has an equivalent serial trace, i.e., 〈tm, A,<H〉 is atomic. �

5 Optimization: Dynamic Sharing Analysis

To reduce the runtime overhead of monitoring, we restrict monitoring to shared
variables. Before an object becomes shared (i.e., escapes from the thread that
created it), all events involving it can be ignored. We designed and imple-
mented dynamic sharing analysis to accurately determine the sharing property
of each variable. This analysis extends our previous dynamic escape analysis [20]
and introduces an additional execution on the same input before the atomicity
analysis.

The first execution is used to determine whether each field of every class
ever becomes shared during the entire run. Note that we do not construct and
analyze hybrid trees during this execution. Each field of a class is processed
independently, since some fields might be always accessed by a single thread
even if the owner object is shared by multiple threads. Specifically, for each
field, if that field in some instance has ever been accessed by multiple threads, the
field of the corresponding class is marked as shared; otherwise, it is considered
unshared.

During the second execution with the same input, we keep track of when
an object (instead of field) becomes shared while constructing hybrid trees and
analyzing atomicity violations. Fields classified as unshared from the first ex-
ecution are not monitored. When an object becomes shared, all its monitored
fields are marked as shared. To indicate whether an object has escaped from its
creating thread, we add a boolean instance field to every class with the initial
value false. We use Java reflection mechanism to dynamically update the field.
An object o becomes shared in the following scenarios: (1) o is stored in a static
field or a field of a shared object; (2) o is an instance of a thread and the thread
is started; (3) o is referenced by a field of another object o′, and o′ becomes
shared (this leads to cascading sharing); (4) o is passed as an argument to a
native method that may cause it to be shared.

The dynamic sharing analysis is based on an assumption that given the same
input, the sharings of a variable are the same during different executions, which is
true in our experiment of Section 6. The dynamic sharing analysis has improved
performance significantly. For example, it reduces the overall runtime by 40%
on the benchmarks Tsp and Jigsaw compared to the executions without the
dynamic sharing analysis.

Another optimization is that, for access nodes with the same parent node,
we preserve only the first two accesses in the same type (read or write) to each
shared variable, because the first two accesses can represent all discarded accesses
for checking atomicity. This is justified by Theorem 7.1 in [19].



436 Q. Chen et al.

6 Experiments

We tested our tool on the following programs: Elevator, Tsp, Sor, and Hedc
from [15], Jigsaw 2.2.6 from [11], Apache tomcat 6.0.16, and Vector, Stack,
and Hashtable from JDK 1.4.2.

We performed the experiments on a machine with 1.8 GHz Intel dual-core
CPU, 2GiB memory, Windows XP SP3, and Sun JDK 1.6.

Figure 6 compares the running time and results of our hybrid algorithm with
the purely dynamic commit node algorithm for conflict-atomicity in [19]. “Base”
is the original program’s running time without instrumentation. “Dummy” is the
instrumented program’s running time without analyzing atomicity violations
(i.e., analysis is not performed after intercepting the events). “Purely Dynamic”
is the instrumented program’s running time using the purely dynamic commit
node algorithm in [19]. “Hybrid” is the running time of our hybrid algorithm.
“Code Coverage” is the coverage of statements in the current execution, which
is obtained using an Eclipse plugin EclEmma.

For Tsp, HAVE discovers more potential atomicity violations because of spec-
ulation. For example, we found that an atomicity violation involves a read on
the static field TspSolver.MinTourLen in the speculative branch in the method
split tour and two writes on the same field in the executed code of the method
set best called by the method recursive solve.

For Jigsaw, HAVE also reveals more atomicity violations than the purely dy-
namic approach. HAVE reports that the non-atomic method perform in httpd.
sjava has multiple atomicity violations regarding several fields such as the in-
stance field LRUNode.next and the instance field ResourceStoreImpl.res-
ources. The previous purely dynamic approach missed this because some field ac-
cesses occur in speculatively executed branches.

Fig. 6. Comparison of the purely dynamic commit node algorithm and the hybrid
conflict-edge algorithm in performance and accuracy. The column “nAV” denotes the
number of atomicity violations, which are counted based on the places in source code
where the events involved in atomicity violations appear. The column “NA-methods”
denotes the number of non-atomic methods with the categories being bug - benign -
false positive. All times are measured in seconds.



HAVE: Detecting Atomicity Violations 437

For Tomcat, the static field StringCache.accessCount in the method
toString (ByteChunk bc) of StringCache.java has the potential for atomic-
ity violation when at least two threads find StringCache.bcCache != null and
speculate the else branch. The same risk exists for the static field StringCache.
hitCount in the same method, if both threads fail the condition test before it.
We classify this atomicity violation as a bug, because it may cause the statistics
to be inaccurate, even though this inaccuracy does not cause other incorrect
behavior.

7 Related Work

The most closely related work is our commit-node algorithm in [19], which is
purely dynamic. The main contribution of this paper is to extend it to a hybrid
algorithm that combines static and dynamic analyses. This paper also presents
a new optimization to the algorithm.

Dynamic algorithms to detect atomicity violations can be classified into two
categories, based on whether they aim to detect potential atomicity violations
(i.e., whether any feasible permutation of an observed trace is unserializable),
or actual atomicity violations (i.e., whether an observed trace is unserializable).
The algorithms to detect potential atomicity violations include this paper, Wang
and Stoller’s reduction-based, block-based algorithms, commit-node algorithms,
[17,20,19], and Flanagan and Freund’s reduction-based algorithm [6], which is
similar to Wang and Stoller’s reduction-based algorithm. Xu et al. infer compu-
tation units (subcomputations that the programmer might expect to be atomic)
based on data and control dependencies and report an atomicity violation when
an unserializable write by another thread is interleaved in a computation unit
[21]. Lu et al.’s AVIO system learns access interleaving invariants as indications
of programmers’ likely expectations about atomicity and reports an atomicity
violation when an observed interleaving violates an access interleaving invariant
[12]. Flanagan et al. developed a sound and complete atomicity violation de-
tector based on analysis of exact dependencies between operations [8]. Farzan
and Madhusudan developed a space-efficient algorithm for detecting atomicity
violations [4]. Park and Sen propose a randomized dynamic analysis technique
that greatly increases the probability that a special class of potential atomicity
violations will manifest as actual atomicity violations [13].

Static analyses have been developed to infer or verify atomicity of code seg-
ments, e.g., [16,9,7,18]. Static analysis gives stronger guarantees, because it con-
siders all possible behaviors of a program, but is typically more restrictive or
reports more false alarms than dynamic analysis. Model checking can also be
used to check atomicity [5,10,4]. Model checking also provides strong guarantees
but is feasible only for programs with relatively small state spaces.

Static and dynamic analyses can be combined in various ways for atomicity
checking. Agarwal, Sasturkar, Wang, and Stoller used static analysis to reduce
the overhead of the reduction-based algorithm [14] and the block-based algorithm
[1]. JPredictor uses static analysis to improve the accuracy of the dependency



438 Q. Chen et al.

relation used in dynamic checking for potential concurrency errors, including
atomicity violations [3]. Those techniques, in contrast to ours, do not use spec-
ulative execution.

8 Conclusions and Future Work

This paper describes a new approach to enhance dynamic analysis with results
from static analysis to make the dynamic analysis more effective at finding subtle
atomicity violations, by augmenting the dynamic analysis to consider some of
the behavior of unexecuted branches in the program. This is significant because
software testing rarely achieves full code coverage in practice.

In our experiments, our hybrid conflict-edge algorithm scales almost as well
as our previous dynamic algorithm [19]. Comparing our results in Figure 6 with
results for those benchmarks in other papers [19,20,9,6,4,8], our system detects
all the atomicity violations detected by the purely dynamic algorithms described
in those other papers and, for some benchmarks, detects additional atomicity
violations.

Directions for future work include extending the static analysis to be inter-
procedural, taking the predicates guarding branches into account, incorporating
more sophisticated approaches to identify transaction boundaries, and using a
testcase generator to generate inputs that lead to execution of speculative events
involved in atomicity violations to verify that they are not false alarms.

References

1. Agarwal, R., Sasturkar, A., Wang, L., Stoller, S.D.: Optimized run-time race
detection and atomicity checking using partial discovered types. In: Proc. 20th
IEEE/ACM International Conference on Automated Software Engineering (ASE)
(November 2005)

2. Agarwal, R., Wang, L., Stoller, S.D.: Detecting potential deadlocks with static
analysis and runtime monitoring. In: Ur, S., Bin, E., Wolfsthal, Y. (eds.) HVC
2005. LNCS, vol. 3875, pp. 191–207. Springer, Heidelberg (2006)

3. Chen, F., Serbanuta, T.F., Rosu, G.: jPredictor: a predictive runtime analysis tool
for Java. In: Proc. 30th International Conference on Software Engineering (ICSE),
pp. 221–230. ACM, New York (2008)

4. Farzan, A., Madhusudan, P.: Monitoring atomicity in concurrent programs. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 52–65. Springer, Hei-
delberg (2008)

5. Flanagan, C.: Verifying commit-atomicity using model-checking. In: Graf, S.,
Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 252–266. Springer, Heidel-
berg (2004)

6. Flanagan, C., Freund, S.N.: Atomizer: A dynamic atomicity checker for multi-
threaded programs. In: Proc. ACM Symposium on Principles of Programming
Languages (POPL), pp. 256–267 (2004)

7. Flanagan, C., Freund, S.N., Qadeer, S.: Exploiting purity for atomicity 31(4) (April
2005)



HAVE: Detecting Atomicity Violations 439

8. Flanagan, C., Freund, S.N., Yi, J.: Velodrome: a sound and complete dy-
namic atomicity checker for multithreaded programs. In: Proceedings of the 2008
ACM SIGPLAN conference on Programming language design and implementation
(PLDI). ACM, New York (2008)

9. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In: Proc. ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI) (2003)

10. Hatcliff, J., Robby, Dwyer, M.B.: Verifying atomicity specifications for concurrent
object-oriented software using model-checking. In: Steffen, B., Levi, G. (eds.) VM-
CAI 2004. LNCS, vol. 2937, pp. 175–190. Springer, Heidelberg (2004)

11. Jigsaw, version 2.2.4, http://www.w3c.org
12. Lu, S., Tucek, J., Qin, F., Zhou, Y.: AVIO: detecting atomicity violations via ac-

cess interleaving invariants. In: Twelfth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS) (2006)

13. Park, C.-S., Sen, K.: Randomized active atomicity violation detection in concurrent
programs. In: Proceedings of the 16th ACM SIGSOFT International Symposium on
Foundations of software engineering (FSE), pp. 135–145. ACM, New York (2008)

14. Sasturkar, A., Agarwal, R., Wang, L., Stoller, S.D.: Automated type-based anal-
ysis of data races and atomicity. In: Proc. ACM SIGPLAN 2005 Symposium on
Principles and Practice of Parallel Programming (PPoPP) (June 2005)

15. von Praun, C., Gross, T.R.: Object race detection. SIGPLAN Notices 36(11), 70–82
(2001)

16. von Praun, C., Gross, T.R.: Static detection of atomicity violations in object-
oriented programs. Journal of Object Technology 3(6) (June 2004)

17. Wang, L., Stoller, S.D.: Run-time analysis for atomicity. In: Third Workshop on
Runtime Verification (RV 2003), vol. 89(2) (2003)

18. Wang, L., Stoller, S.D.: Static analysis of atomicity for programs with non-blocking
synchronization. In: Proc. ACM SIGPLAN 2005 Symposium on Principles and
Practice of Parallel Programming (PPoPP) (June 2005)

19. Wang, L., Stoller, S.D.: Accurate and efficient runtime detection of atomicity errors
in concurrent programs. In: Proc. ACM SIGPLAN 2006 Symposium on Principles
and Practice of Parallel Programming (PPoPP). ACM Press, New York (2006)

20. Wang, L., Stoller, S.D.: Runtime analysis of atomicity for multi-threaded programs.
Transactions on Software Engineering 32(2), 93–110 (2006)

21. Xu, M., Bodik, R., Hill, M.D.: A serializability violation detector for shared-
memory server programs. In: Proc. ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI) (2005)

http://www.w3c.org


Accurate and Efficient Structural Characteristic
Feature Extraction for Clone Detection

Hoan Anh Nguyen, Tung Thanh Nguyen, Nam H. Pham, Jafar M. Al-Kofahi,
and Tien N. Nguyen

Electrical and Computer Engineering Department, Iowa State University, USA

Abstract. Structure-oriented approaches in clone detection have be-
come popular in both code-based and model-based clone detection. How-
ever, existing methods for capturing structural information in software
artifacts are either too computationally expensive to be efficient or too
light-weight to be accurate in clone detection. In this paper, we present
Exas, an accurate and efficient structural characteristic feature extrac-
tion approach that better approximates and captures the structure
within the fragments of artifacts. Exas structural features are the se-
quences of labels and numbers built from nodes, edges, and paths of
various lengths of a graph-based representation. A fragment is charac-
terized by a structural characteristic vector of the occurrence counts of
those features. We have applied Exas in building two clone detection
tools for source code and models. Our analytic study and empirical eval-
uation on open-source software show that Exas and its algorithm for
computing the characteristic vectors are highly accurate and efficient in
clone detection.

1 Introduction

The habit of copy-and-paste in programming is one of the sources for similar
fragments of code in many software systems. Such fragments are called clones. It
is found that cloning also occurs in model-based software development (MBD).
Clones create difficulties for software maintenance, for example, changes to a
cloned fragment must be carried out in several other places in the codebase.

Many approaches have been proposed to detect clones in traditional software
as well as in model-based software. Among them, structure-oriented approaches
are the most popular and successful in both code-based and model-based clone
detection [11,25]. In structure-oriented approaches, software artifacts including
source code and models are represented as tree-based and/or graph-based data
structures. For example, abstract syntax trees (ASTs) or parse trees are used for
source code and attributed, directed graphs are used for program dependence
graphs (PDGs), call graphs, and models in MBD.

In those approaches, the common detection process include (1) modeling the
artifacts and their fragments (i.e. potential clone parts) in the form of a structure-
oriented representation, (2) extracting features of each fragment from its rep-
resentation, (3) computing the similarity between fragments using a similarity

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 440–455, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Accurate and Efficient Structural Characteristic Feature Extraction 441

int sum(int l,h) {
int s = 0;

for(int i=l; i<h; i++)

if (i%2 == 0)

s = s + i;

return s;

}

int power(int x,n) {
int p = 0;

if(x != 0) {
p = 1;

for(int i=1; i<n; i++)

p = p * x;

}
return p;

}

Fig. 1. Different fragments with similar occurrence-count vectors of single node types

measure on the features, and (4) grouping similar fragments into clone groups.
The phases (3) and (4) involve the comparison of the features extracted from the
structure-oriented representation of fragments in phase (2). The key feature in
those structure-oriented approaches is the internal structure of a (code or model)
fragment. However, the methods for comparing tree-based or graph-based struc-
tures, such as tree editing distance measurement [1] or graph isomorphism [3],
are computationally expensive for scalable and efficient clone detection.

To avoid that high complexity, several light-weight approaches for clone de-
tection have been proposed [4,5,6,7,8]. However, the accuracy is not satisfactory.
Methods for extracting structural features in artifacts are still simple. One of
the state-of-the-art light-weight approaches, Deckard [8], uses a vector-based
approach to extract the structural information in an AST or a parse tree. It
proposes to use the occurrence counts of each q-level complete binary subtree in
such a tree as characteristic vectors. However, for q > 1, this method does not
work for graph-based representations. For q = 1 (the case that Deckard tool is
implemented), a fragment is characterized by a vector in which each element is
the occurrence counts of single AST node types. However, the occurrence counts
of only single node types is insufficient to capture well structural information.

The illustrated example in Figure 1 shows two code fragments. They quite
differ from each other because they have very different nesting structures of pro-
gram constructs (e.g. a “for” encloses an “if” and vice versa). In addition, in
two methods, the sequential structures (i.e. the orders) of statements are also
different, despite that each contains a declaration, a “for”, an “if”, and a “re-
turn” statement. Unfortunately, the above two code fragments have very similar
Deckard representation vectors since they have similar numbers of occurrences
of single AST node types, e.g., method and variable declarations, “if” and “for”
statements, expressions, literals, simple names, etc. Thus, two fragments would
be incorrectly detected by Deckard’s vector-based approach.

In brief, existing methods for capturing structural information in software
artifacts for clone detection are either too computationally expensive to be effi-
cient or too light-weight to be accurate. Importantly, no light-weight approach
has been proposed for graph-based structure. In this paper, we present a novel
approach, Exas, for better approximating the structure as a feature of tree-based
and graph-based representations in software artifacts. At the same time, Exas



442 H.A. Nguyen et al.

achieves high levels of both accuracy and efficiency. In Exas, features are the
sequences of labels and numbers built from nodes, edges, and paths of vari-
ous lengths in a generic graph-based representation. A structural characteristic
vector for a fragment contains the occurrence counts of all kinds of its features.

Our analytical study shows that in Exas, for the graph-based representation,
isomorphic (sub)graphs have the same structural characteristic vectors. For the
graph-based representation, the distance of Exas vectors of two (sub)graphs is
bounded by their graph editing distance. That is, if two (sub)graphs are consid-
ered clones (i.e. having a small editing distance), their vector distance is small
as well. This result also holds for trees and tree editing distance.

We also developed two clone detection tools using Exas: one for code (tree-
based representation) and one for Simulink models (graph-based representation).
Our empirical study shows that with Exas, the clone detection result is 3-12%
more accurate than that of Deckard, the state-of-the-art vector-based approach,
with less than a few seconds more in running time. Additionally, the result for
model clones is also highly precise. The study shows that our vector computation
algorithm is more time-efficient than the canonical labeling, the state-of-the-art
method for graph isomorphism. The contributions of this paper include:
1. Exas: A novel, accurate and efficient characteristic feature extraction ap-

proach for clone detection in structure-based software artifacts. It provides
a good approximation of a structure in a program or a model,

2. An efficient algorithm to compute Exas vectors,
3. Two applications of Exas in two clone detection tools for code and models,
4. Analytical and empirical studies of the accuracy and efficiency of Exas.

Section 2 presents Exas approach and an analytic study. Section 3 describes an
efficient algorithm to compute Exas vectors. Section 4 discusses the application
of Exas in two clone detection tools for code and models. Section 5 presents our
empirical evaluation. Related work is in Section 6. Conclusions appear last.

2 Exas Approach

2.1 Structure-Oriented Representation

In our structure-oriented representation approach, a software artifact is modeled
as a labeled, directed graph (tree is a special case of graph), denoted as G =
(V,E, L). V is the set of nodes in which a node represents an element within an
artifact. E is the set of edges in which each edge between two nodes models their
relationship. L is a function that maps each node/edge to a label that describes
its attributes. For example, for ASTs, node types could be used as nodes’ labels.
For Simulink models, the label of a node could be the type of its corresponding
block. Other attributes could also be encoded within labels. In existing clone
detection approaches, labels for edges are rarely explored. However, for general
applicability, Exas supports the labels for both nodes and edges.

The purpose of clone detection is to find cloned parts in software artifacts. Po-
tential cloned parts in a software artifact are called fragments. In our approach,



Accurate and Efficient Structural Characteristic Feature Extraction 443

1
In

2
In

5
Gain

6
Mul Out

3
In

4
In

7
Mul

9
Sum

Sum

Delay

8
Gain

10

11

12

a) A Simulink model

1

Out

z

1
Unit Delay

Mul2

Mul1

2

Gain2

2

Gain1

4

In4

3

In3

2

In2

1

In1

b) The representation graph

Fragment A

Fragment B

Fig. 2. An example: numbers are the indexes of nodes, texts are their labels

a fragment within a tree-based software artifact is considered as a subtree of the
representation tree. For a graph-based software artifact, a fragment is considered
as a weakly connected sub-graph in the corresponding representation graph.

Figure 2 shows an illustrated example of a Simulink model, its representation
graph and two cloned fragments A and B.

2.2 Structural Feature Selection

Exas focuses on two kinds of patterns of structural information of the graph,
called (p, q)-node and n-path.

A (p, q)-node is a node having p incoming and q outgoing edges. The values
of p and q associated to a certain node might be different in different examined
fragments. For example, node 9 in Figure 2 is a (3,1)-node if entire graph is
currently considered as a fragment, but is a (2,0)-node if fragment A is examined.

An n-path is a directed path of n nodes, i.e. a sequence of n nodes in which
any two consecutive nodes are connected by a directed edge in the graph. A
special case is 1-path which contains only one node.

Structural feature of a (p, q)-node is the label of the node along with two
numbers p and q. For example, node 6 in fragment A is (2, 1)-node and gives
the feature mul-2-1. Structural feature of an n-path is a sequence of labels of
nodes and edges in the path. For example, the 3-path 1-5-9 gives the feature
in-gain-sum. Table 1 lists all patterns and features extracted from A and B. It
shows that both fragments have the same feature set and the same number of
each feature. Later, we will show that it holds for all isomorphic fragments.

2.3 Characteristic Vectors

An efficient way to express the property “having the same or similar features”
is the use of vectors. The characteristic vector of a fragment is the occurrence-
count vector of its features. That is, each position in the vector is indexed for



444 H.A. Nguyen et al.

Table 1. Example of Patterns and Features: numbers are the indexes of nodes and
texts are features

Pattern Features of fragment A Features of fragment B
1-path 1 2 5 6 9 4 3 8 7 11

in in gain mul sum in in gain mul sum
2-path 1-5 1-6 2-6 6-9 5-9 4-8 4-7 3-7 7-11 8-11

in-gain in-mul in-mul mul-sum gain-sum in-gain in-mul in-mul mul-sum gain-sum
3-path 1-5-9 1-6-9 2-6-9 4-8-11 4-7-11 3-7-11

in-gain-sum in-mul-sum in-mul-sum in-gain-sum in-mul-sum in-mul-sum
(p,q)-node 1 2 5 4 3 8

in-0-2 in-0-1 gain-1-1 in-0-2 in-0-1 gain-1-1
(p,q)-node 6 9 7 11
(continued) mul-2-1 sum-2-0 mul-2-1 sum-2-0

Table 2. Example of Feature Indexing. Based on the occurrence counts of features in
fragment A, the vector for A is (2,1,1,1,1,2,1,1,1,2,1,1,1,1,1).

Feature Index Counts Feature Index Counts Feature Index Counts Feature Index Counts
in 1 2 in-gain 5 1 in-gain-sum 9 1 gain-1-1 13 1
gain 2 1 in-mul 6 2 in-mul-sum 10 2 mul-2-1 14 1
mul 3 1 gain-sum 7 1 in-0-1 11 1 sum-2-0 15 1
sum 4 1 mul-sum 8 1 in-0-2 12 1

a feature and the value at that position is the number of occurrences of that
feature in the fragment. Table 2 shows the indexes of the features, which are
global across all vectors, and their occurrence counts in fragment A.

Two fragments having the same feature sets and occurrence counts will have
the same vectors and vice versa. The vector similarity can be measured by an
appreciably chosen vector distance such as 1-norm distance.

Note that 1-paths are equivalent to 1-level binary subtrees used in Deckard
tool. Therefore, Deckard vector of a fragment is a part of the Exas vector for
that fragment. For example, Deckard vector for fragment A would be (2,1,1,1). In
other words, Exas uses more features. It implies that the vector distance between
Deckard vectors of two fragments is no larger than that of Exas vectors. It also
implies that Exas vector distance has better discriminative characteristic, i.e. is
more accurate in measuring the fragments’ similarity. These are also true when
applying for tree structures. For example, in the illustrated example (Section 1),
Exas vectors are able to distinguish two code fragments because Exas can better
approximate the nesting and sequential structures of program elements.

2.4 Analytical Study

Given two (sub)graphs G and G′. Let V and V ′ be their vectors, respectively, d
be the maximum degree of all nodes of all (sub)graphs, and N be the maximum
size of all n-paths.

Lemma 1. The number of n-paths containing a node is at most P =
∑N

n=1 n.dn−1

and that of n-paths containing an edge is at most Q =
∑N

n=2 n.dn−2.



Accurate and Efficient Structural Characteristic Feature Extraction 445

Due to space limit, we do not provide the proof for Lemma 1 since it is easy to
be verified.

For brevity, we call n-paths and (p, q)-nodes instances. Let S and S′ be the
sets of instances of G and G′, respectively. If G is edited to be G′, S′ is updated
accordingly from S by removing some instances and/or inserting others. Let us
call those removed and inserted instances as “affected instances”.

Lemma 2. k graph editing operations affect at most (2P + 4)k instances.

Proof. We consider four types of graph editing operations: removing an edge,
inserting an edge, relabeling a node, and relabeling an edge.

Removing (inserting) an edge removes (inserts) all n-paths containing it and
replaces two (p, q)-nodes at its two ends with two new (p, q)-nodes. This replace-
ment affects four instances. Thus, the total number of affected instances is at
most Q + 4. Relabeling a node replaces its corresponding (p, q)-node and all
n-paths containing it with new instances, thus, affects at most 2+ 2P instances.
Similarly, relabeling an edge affects at most 2Q instances since no (p, q)-node is
affected. In all cases, the total number of affected instances is at most 2P + 4.
Therefore, k editing operations affect at most (2P + 4)k instances.

Lemma 3. If there are M affected instances, ‖V − V ′‖1 ≤ M .

Proof. If an instance is removed (inserted), the occurrence counts of its feature
reduce (increase) by one. Since there are M affected instances, V ′ is obtained
from V by the total of M units of such increment and/or decrement. Since
‖V − V ′‖1 is the total differences of occurrence counts between V and V ′, it is
at most M .

Two above lemmas imply the following theorem.

Theorem 1. If graph edit distance of G and G′ is k, ‖V − V ′‖1 ≤ (2P + 4)k.

We could consider two isomorphic graphs as having the editing distance of zero.
Therefore, applying Theorem 1, we have the following corollary.

Corollary 1. If G and G′ are isomorphic, they have the same vector,i.e. V = V ′.

The results can be applied directly to (sub)trees. However, tree editing distance
can be defined in a different set of operations. The following results are for
the case in which G and G′ are (sub)trees and tree editing operations include
relabeling, inserting, and deleting a node.

Lemma 4. The number of n-paths containing a node in a (sub)tree is at most
R =

∑N
n=1

∑n
i=1 d

i−1.

Lemma 5. k tree editing operations affect at most (2R+ 3)k instances.

Proof. Relabeling a node affects at most 2R+2 instances (see the proof of Lemma
2). Removing a node u, i.e. connecting all its children to its parent v, removes
all n-paths containing u, inserts some n-paths containing v, replaces (p, q)-node
at v with a new one, and removes (p, q)-node at u. Thus, the total number of
affected instances is 2R+3. Similar argument is applied for the case of inserting



446 H.A. Nguyen et al.

a node u. Therefore, a single tree editing operation affects at most (2R + 3)
instances, thus, k operations affect at most (2R+ 3)k instances.

From Lemmas 4 and 5, we have the following theorem.

Theorem 2. If tree editing distance of G and G′ is k, ‖V − V ′‖1 ≤ (2R+ 3)k.

2.5 Implications in Clone Detection

The aforementioned important properties of Exas characteristic vectors im-
ply that they are very useful in the problems involving graph isomorphism or
tree/graph similarity, especially in structure-oriented clone detection.

State-of-the-art graph-based clone detection approaches [11,32] require graph-
based cloned fragments to be isomorphic. With Corollary 1, instead of checking
isomorphism of two (sub)graphs, we could compare their Exas characteristic
vectors to find cloned (sub)graphs. That corollary guarantees that all clone pairs
will be detected. However, it is not a sufficient condition for absolute precision,
i.e. two (sub)graphs with the same vectors might be non-isomorphic since nodes
and edges which cannot be mapped between two (sub)graphs can make up n-
paths or (p, q)-nodes with the same feature. Other criteria should be used along
with Exas to increase the precision of detected results.

Theorem 1 shows that our approach is also useful for the problems involving
graph editing distances such as similarly matched clone detection in graph-based
representations or graph similarity measurement.

Theorem 2 is useful for clone detection approaches based on tree editing
distance, i.e. two tree-based fragments are considered clones if their editing dis-
tance is smaller than a chosen threshold k. For a set of fragments, we can always
find a common value R for any two fragments. Then, the vector distance of any
two cloned fragments will be less than (2R + 3)k. In other words, the 1-norm
distance of Exas characteristic vectors could be used as a necessary condition: to
be a cloned pair, two fragments must have the distance of their vectors smaller
than a chosen threshold δ = (2R + 3)k. Of course, a small vector distance does
not imply a small tree editing distance, i.e. this condition is not sufficient.

In our empirical evaluation (Section 5), the precision of only Exas character-
istic vectors is evaluated for both tree-based and graph-based clone detection.

3 Vector Computing Algorithm

In this section, we describe an efficient algorithm to calculate Exas vectors from
the structure-oriented representation. The key idea is that the characteristic
vector of a fragment is calculated from the vectors of its sub-fragments. Of course,
a node is the smallest fragment and its vector is calculated directly.

3.1 Key Computation Operation: incrVector

The key operation in our algorithm, incrVector(), is the computation of the
vector for a fragment g = f + e (i.e. g is built from f by extending f with an



Accurate and Efficient Structural Characteristic Feature Extraction 447

Out
v

e
In

Gain

Mul
v

Sum

In
u

e

In

Gain

Mul Sum
u

e

In

Gain
u

Mul Sum
v

a) Adding an incoming edge b) Adding an outgoing edge c) Adding a connecting edge

Fig. 3. Three cases of adding an edge to a fragment

edge e), given e and f (along with its vector) as inputs. In brief, the vector of g
is derived from that of f by updating it with the occurrences of all new features
of g created by the addition of the edge e into f .

Since we consider only weakly connected components as fragments, at least a
node of e must belong to f . Let e = (u, v). There are three following cases:

Case 1: incoming-edge, i.e. u �∈ f and v ∈ f . In this case, u is a newly
added node. New features are created from the 1-path u, the 2-path u − v, the
new (0, 1)-node at u. The (x,y)-node at v is replaced by the new (x+ 1, y)-node
because of the new incoming edge. All new n-paths of f will have the first node
of u and the second node of v. Therefore, they are generated by adding u to the
first of all (n− 1)-paths starting from v. These (n− 1)-paths can be achieved by
a depth-first search (DFS) within fragment g from node v to the depth of n− 2.

Case 2: outgoing-edge, i.e. u ∈ f and v �∈ f . The situation is similar.
However, new n-paths are generated from (n − 1)-path ending at u, i.e. DFS
needs to expand in backward direction. Furthermore, (x, y)-node at v is replaced
by a new (x, y + 1)-node.

Case 3: connecting-edge, i.e. both u and v were already in f . In this case,
new n-paths are generated by the combination of any i-path ending at u (DFS in
backward direction) and an j-path starting from v (DFS in forward direction),
for all i+ j = n. Both (x, y)-nodes at u and v are replaced by new (x′, y′)-nodes.

Time Complexity and Improvement. Assume that d is the maximum degree
of the nodes and N is the maximum length of n-paths of interest. The number
of n-paths searched by DFS is O(dN−2) in all three cases (in the 3rd case, two
DFSs from u and v to level n − 2 are sufficient to find all those x-paths and
y-paths). This seems to be exponential. However, instead of extracting features
from n-paths of all sizes, we just extract features from short n-paths, i.e. n-paths
having at most N nodes. This gains much efficiency and reduces little precision.
In our experiments, in most subject systems, N = 4 gives the precision of almost
100% (Section 5). Moreover, in practice, representation graphs are generally not
very dense, i.e. d is small. Thus, O(N.dN−2) is indeed not very time-consuming.

3.2 Vector Computation for All Fragments in a Graph

Using incrVector operation, Exas calculates the vector of any individual fragment
by starting from one of its nodes, adding one of its edges, then computing the



448 H.A. Nguyen et al.

vector, and so on. Thus, time complexity of computing vector for a fragment is
O(m.N.dN−2), with m as the fragment’s size, i.e. the number of edges.

For the clone detection problem, the goal is to calculate the vectors for all
potential cloned fragments in a graph. Generating all of its sub-graphs and then
calculating their vectors as for individual fragments will not take advantage of
incrVector operation. A more efficient approach is to generate the fragments with
the increase in size by adding edge-by-edge and then to calculate the vector for
the larger fragment from the vectors of the smaller ones.

However, the number of sub-graphs of a graph is exponential to its size. To
increase efficiency, if graph isomorphism is used as a clone condition, we can
take advantage of the following fact: to be a clone, a fragment should contain
a smaller cloned fragment, i.e. two large isomorphic graphs should contain two
smaller isomorphic sub-graphs.

Let Ck be the set of all cloned fragments of size k (i.e. with k edges). Observe
that: (1) every fragment of size k can be generated from a fragment of size k− 1
by adding a relevant edge; and (2) if two fragments of size k are a clone pair
(isomorphic), there exists two cloned fragments of size k − 1 within them, i.e.
every clone pair of Ck can be generated from a clone pair of Ck−1.

Those facts imply that Ck can be generated from Ck−1 by following steps:
(1) extending all cloned fragments in Ck−1 by one edge to have a candidate set
Dk, (2) calculating vectors for all fragments in Dk by the incrVector operation,
(3) grouping Dk into clone groups by characteristic vectors (i.e. all fragments
in a group must have the same characteristic vectors), and (4) adding only
the cloned fragments in Dk into Ck. By gradually generating C0, C1, C2,...,
Ck,..., we can find all cloned fragments precisely and completely. Note that, this
strategy reduces significantly time complexity for fragment generation and vector
computation for sparse graphs. In worst case (such as for a complete graph), time
complexity is still exponential. More details can be found in another paper [12].

Vector Calculation for All Fragments in a Tree. For tree-based represen-
tations, a fragment is represented by a subtree. Since each node is the root of a
subtree, i.e. each fragment corresponds to a node, the generation process is not
needed. To compute the vectors for all subtrees in a tree, Exas traverses it in
post-order. When a root p of a subtree T (p) is traversed, the vector for T (p) will
be calculated as follows. Assume that c1, c2, ..., ck are the children of p, connect-
ing from p by edges e1, e2, ..., ek. Because of the post-order traversal, the vectors
of the sub-trees T (c1), T (c2), ..., T (ck) are already calculated. Adding edge ei

to subtree T (ci) using incrVector operation gives the vector Vi for each branch.
Then, the vector of T (p) is derived from all vectors V1, V2, ..., Vk. By this strategy,
time for computing vectors for all fragments of a tree is just O(m.N.dN−2).

3.3 Vector Indexing and Storing

The potential number of features is huge. For example, if the number of different
labels of nodes is Lv and that of edges is Le, the total number of potential features
generated from all n-paths of size no longer than N is

∑N
n=1 L

n
v .Ln−1

e . However,



Accurate and Efficient Structural Characteristic Feature Extraction 449

in practice, the actual features encountering in certain graph modeling for a
software artifact is much smaller because there are not all combinations of nodes
and edges that make sense with respect to the semantics of elements in artifacts.

Our experiment confirmed this fact. We conducted an experiment with WCD-
MALIB, a real-world model-based system with 388 nodes and Lv = 107 labels
(Le = 0). With N = 4, the actual features encountered in the whole model is
only 381, although the number of all possible features is more than 1074.

More importantly, most fragments do not contain all features, especially small
fragments. Thus, the characteristic vectors are often sparse. To efficiently process
sparse characteristic vectors, a hashmap H is used to map between features and
their indexes (i.e. their positions in vectors for storing their occurrence counts).
H is global and used for all vectors. During vector calculation, if a feature has
never been encountered before, it will be added into H with a next (increasing)
available index. The vector of a fragment is also stored as a hashmap that maps
the index of each feature into its corresponding counting value in the vector.

4 Applications of Exas

To demonstrate the usefulness of our structural feature extraction approach in
clone detection, we implemented two tools. The first one, ClemanX, is for tree-
based software artifacts. The second one, GemScan, is for graph-based artifacts.

4.1 ClemanX

ClemanX is a clone group management tool based on Cleman framework [9]. One
key task of ClemanX is to detect clone groups of code fragments of a software
project. Each source file managed by ClemanX is parsed and represented in
ClemanX as an AST. The label of each node of the tree is its AST node type
such as class, method declaration, block, for statement, etc. No label for edges
is used. Each fragment is represented by a sub-tree of the AST. ClemanX uses
Exas to extract the structural features in fragments as described in Section 3.

ClemanX detects not only exact-matched but also similar-matched code
clones. Therefore, clone condition is defined based on the 1-norm distance of
characteristic vectors: two fragments are considered clones if their relative simi-
larity r = 1− 2‖v1−v2‖1

‖v1‖1+‖v2‖1
is greater than a chosen threshold where v1 and v2 are

their vectors. Relative similarity allows larger clones to have greater differences.

4.2 GemScan

GemScan is a clone detection tool for Simulink models [10]. The transformation
of Simulink models into graphs in GemScan is carried out in the same manner
as in CloneDetective [11]. Basically, it consists of three tasks: (1) parsing the
model into a directed graph in which a node represents a block and an edge
represents a signal connection, (2) flattening the subsystems, and (3) labeling
nodes/edges with the labels depending on their attributes. The output is a la-
beled, directed graph where the set of nodes V represents Simulink blocks, the set



450 H.A. Nguyen et al.

of directed edges E represents the signal lines, and the labeling function L assigns
labels to nodes and edges. Cloned fragments of a model are weakly connected,
non-overlapping, isomorphic sub-graphs of the representation graph. Fragment
generation and vector calculation in GemScan are described in Section 3.

5 Empirical Evaluation

Our experiment mainly focuses on the accuracy and efficiency of our structural
feature extraction approach. We also evaluate the trade-off between those qual-
ities and the limit length of extracted features.

To use ClemanX and GemScan for evaluating Exas, they are configured to
use only Exas structural features as a sole criteria for detection. The efficiency
is evaluated by the time of fragment generation and vector computation. The
accuracy is evaluated by checking the precision of the detected clones, i.e. the
ratio between the number of correct clone groups and the total number of clone
groups. A group is considered to be correctly detected if all pairs of member
fragments in that groups are clones. Clone groups detected by GemScan are
checked by canonical labeling method, the state-of-the-art technique for checking
graph isomorphism. Clone results of ClemanX are checked manually because it
detects similar code clones. All experiments are conducted on a computer with
AMD Athlon 64 X2 Dual Core 5200+ 2.70GHz,1.50GB RAM, and Windows XP.

5.1 Clone Detection on Graph-Based Artifacts

GemScan was run on three Simulink systems with different maximum sizes N
of used n-paths. For example, N = 4 means that only n-paths with at most four
nodes are processed. The number of generated fragments, clone groups, used
features, and time for fragment generation and vector calculation (FTime in
seconds) were reported. We also wanted to compare our approach with canonical
labeling, one of the fastest techniques for checking graph isomorphism. Therefore,
the canonical labeling module was run to get Ctime, time for generating canonical
labels of all generated fragments. Those generated canonical labels were then also
used to check the correctness of GemScan’s detected clone groups.

Table 3 shows the result. MSize is the maximum size of generated fragments.
The result shows that our approach is very fast (less than a second) and thou-
sands times faster than the canonical labeling method. However, that level of
efficiency does not sacrifice much precision. Especially when N = 4, the preci-
sion reaches 97-100% in almost all cases. Moreover, the precision is increased as
the maximum size N of n-paths increases, i.e. extracting longer features achieves
higher precision. This implies that Exas is accurate and efficient. Our experiment
to evaluate Exas in similar-matched graph-based clone detection is in [12].

5.2 Clone Detection on Tree-Based Artifacts

ClemanX was run on six open-source projects of different sizes from medium
to very large ones. Time was measured as before. Table 4 shows the result of



Accurate and Efficient Structural Characteristic Feature Extraction 451

Table 3. Feature extraction time and Precision of GemScan

System N Fragment Feature MSize FTime CTime Group Correct Precision
WCDMALIB 1 11597 139 9 0.84 3135 361 352 98%

388 nodes,410 edges 2 11415 314 9 1.00 3148 355 355 100%
107 labels 4 11391 382 9 1.10 3151 355 355 100%

Simulink labs 1 4551 58 13 0.52 1017 739 720 97%
452 nodes, 415 edges 2 4492 181 13 0.64 1080 741 722 97%

39 labels 4 4492 334 13 0.85 1107 729 729 100%
Multiuav 1 7439 78 34 0.91 2000 542 490 90%

471 nodes, 573 edges 2 7316 238 34 0.92 2012 520 496 95%
52 labels 4 7276 465 34 1.00 1966 514 501 97%

Table 4. Feature extraction time of ClemanX

Log4J 1.2.14 (41 kLOC) jEdit 4.2 (141 kLOC) Axis 1.4 (227 kLOC)
N kFrag. Feature FTime N kFrag. Feature FTime N kFrag. Feature FTime
1 97 59 2.5 1 379 59 6.1 1 717 59 10.0
2 97 128 2.6 2 379 139 6.4 2 717 134 10.1
4 97 823 2.8 4 379 1388 7.0 4 717 1195 10.4
jFreeChart1.0.6(270kLOC) JDK6 (3972 kLOC) Eclipse3.2 (8318 kLOC)
N kFrag. Feature FTime N kFrag. Feature FTime N kFrag. Feature FTime
1 689 59 9.5 1 10,114 59 131 1 28,848 59 337
2 689 133 9.8 2 10,114 145 135 2 28,848 145 351
4 689 1007 10.1 4 10,114 2176 141 4 28,848 2302 361

running ClemanX on those systems. Its columns are similar to those of Table 3.
The number of fragments (kFrag.) is shown in thousand units, e.g. the number
of fragments in Eclipse3.2 is about 28,848,000. Those numbers (also equal to the
number of AST nodes) do not change as N is varied because all fragments (i.e.
all subtrees in an AST) are processed, regardless of the size of used features.

The result shows that ClemanX performed feature extraction very fast. It
can scale up to very large projects with millions lines of code. For example, for
Eclipse3.2 with more than 8 millions LOCs and 28 millions fragments, it took
only about 6 minutes. Table 4 shows that Exas is very efficient and scalable.

ClemanX detects similar-matched code clone. Because the similarity of code
clones is subjective, we have to check the precision of ClemanX manually. The
checking was done on 100 randomly selected groups from the clone report for
jFreeChart 1.0.6 on each experiment of N . Table 5 shows the result for two
different choices for the threshold of similarity (TGroup is the total number of
detected clone groups, CGroup is the number of checked groups). As we can see,
the precision is very high. In addition, the longer the features are, the higher the
precision is. The precision of 100% can be also achieved with N = 4.

Remind that for N = 1, the feature extraction of our approach is equivalent
to Deckard (with q = 1). Running on the example in Section 1 and examining
closely the fragments from the clone reports, we found that many fragments
are wrongly reported as clones when N = 1, but are correctly reported as



452 H.A. Nguyen et al.

Table 5. Precision of ClemanX by manual checking

threshold = 0.95 threshold = 0.90
N TGroup CGroup Correct Precision N TGroup CGroup Correct Precision
1 547 100 97 97% 1 2042 100 88 88%
2 528 100 99 99% 2 2188 100 95 95%
4 532 100 100 100% 4 1904 100 100 100%

public List getCategoriesForAxis(CategoryAxis axis){
  List result=new ArrayList();
  int axisIndex=this.domainAxes.indexOf(axis);
  List datasets=datasetsMappedToDomainAxis(axisIndex);
  Iterator iterator=datasets.iterator();
  while (iterator.hasNext()) {
    CategoryDataset dataset=(CategoryDataset)iterator.next();
    for (int i=0; i < dataset.getColumnCount(); i++) {
      Comparable category=dataset.getColumnKey(i);
      if (!result.contains(category))
        result.add(category);
    }
  }
  return result;
}

public List getCategories(){
  List result=new java.util.ArrayList();
  if (this.subplots != null) {
    Iterator iterator=this.subplots.iterator();
    while (iterator.hasNext()) {
      CategoryPlot plot=(CategoryPlot)iterator.next();
      List more=plot.getCategories();
      Iterator moreIterator=more.iterator();
      while (moreIterator.hasNext()) {
        Comparable category=(Comparable)moreIterator.next();
        if (!result.contains(category))
          result.add(category);
      }
    }
  }
  return Collections.unmodifiableList(result);
}

Fig. 4. A real example where N=1 could not capture nesting and sequential structures

non-clones when N = 2 or N = 4. Figure 4 shows such two fragments in a
real case study with different nesting and sequential structures of program el-
ements. In those real examples, our approach is more accurate than Deckard
approach. The feature extraction time for N = 4 is only a couple tens of seconds
longer than that of Deckard (i.e. when N = 1).

6 Related Work

Code clone detection approaches can be classified based on the representation of
extracted features [2,25]. Text-based approaches [27,28] consider two code frag-
ments as clones if their constituent texts match. Token-based approaches [5,6,29]
view a code fragment as a sequence of program tokens. Similar or exactly
matched sequences of tokens signify clones. Basit et al. [24] use suffix array
on the token sequence. No structural features are extracted in text-based and
token-based approaches. Tree-based approaches [1,4,7,30,31] represent a code
fragment as a subtree in either an AST or a parse tree. Subtrees with similar
extracted features are detected as clones. Kontogiannis et al. [1] use tree editing
distance. Baxter et al. [4] compute the similarity between two subtrees in an
AST by the ratio between the number of shared nodes and the total. No other
structural information is used. In DMS [30], graph transformation and rewriting
rules were applied. Wahler et al. [31] represent a Java program in XML and
detect clones using frequent itemsets mining technique. Evans et al. [7] count
the number of AST nodes, characters, tokens, LOCs in a fragment. Koschke
et al. [26] use suffix trees on AST. Fluri et al. [23] propose a tree differencing
algorithm for ASTs via matching nodes with a minimum edit script.



Accurate and Efficient Structural Characteristic Feature Extraction 453

Deckard [8], a state-of-the-art tree-based approach, extracts characteristic vec-
tors from parse trees by counting q-level binary subtree patterns. Its approach
with q = 1 is equivalent to Exas with only 1-paths. When q > 1, the approach
does not work for graphs. To detect semantic clones from Program Dependence
Graph (PDG), it maps a subgraph into a forest of subtrees of the program’s
ASTs, and uses that technique for vector computation. Yang et al. also repre-
sent a tree by a set of q-level binary subtrees [14]. They transform a general tree
to a binary tree and build a profile of all binary subtrees having the depth of q.
This approach of q-level binary branches cannot be extended to support graphs.

For graph-based representations, existing approaches are too heavy. Komon-
door and Horwitz [32] detect code clones in PDGs using subgraph isomorphism.
To support similar clones in PDGs, program slicing is applied. In Datrix [33],
to compare control or data flow graphs, a variety of software metrics are used
including the number of arcs, loops, nodes, exits in a function, independent
paths, etc. The state-of-the-art tool for clone detection in graph-based models
is CloneDetective [11]. In CloneDetective, the structural feature extraction for
clone detection is graph isomorphism. CloneDetective avoids graph isomorphism
computation via its heuristic approach. Liu et al. [16] detect clones in a UML se-
quence diagram by representing it as an array of elements, and structural feature
is a suffix tree. There has been much research on the methods for similar/exact
matching of subgraphs [15]. However, similar to canonical labeling [3] for graph
isomorphism, those approaches are too heavy to apply for clone detection.

There are also many approaches to support model evolution including the de-
tection of differences between models [17,18,19], the merging of different models
or different versions [19,20], and the management of consistency model changes
[21]. The approaches in [17,18] represent a UML diagram as a tree. Those meth-
ods share a common strategy in which they try to match nodes from one graph
to another via the matching of node labels and only the local connectivity of
a node to its neighboring nodes. For example, the numbers of parents and/or
children nodes of a node are considered. It is equivalent in spirit to our (p, q)-
node pattern. Bergmann et al. [22] propose an approach for incremental graph-
based pattern matching via a model transformation language. Our idea of using
p-paths is inspired from the use of q-grams in Information Retrieval [13]. A q-
gram refers to a sequence of continuous characters or words in text processing.
q-grams are widely used to represent strings and effective in approximate string
matching [13].

7 Conclusions

Structure-oriented approaches in clone detection have become popular. However,
existing methods for capturing structural information in structure-oriented rep-
resentation of software artifacts are either too computationally expensive to be
efficient or too light-weight to be accurate in clone detection.

In this paper, we introduce Exas, a light-weight structural feature extraction
approach that can approximate well the structure of tree-based and graph-based



454 H.A. Nguyen et al.

software fragments. In Exas, the characteristic features are extracted from the
patterns of elements of the trees and graphs. The fragments are characterized by
their counting vectors of those features. We also provided efficient strategies for
fragment generation and algorithms for computing the vectors. We implemented
two tools to show the applications and the usefulness of our approach.

Our analytical and empirical studies show that our structural characteristic
features are accurate. The detection result is highly precise while it does not lose
completeness. Importantly, our approach can be used as an approximation solu-
tion for other problems that involve graph isomorphism or tree/graph similarity.

Acknowledgment. This project was funded in part by a grant from the Viet-
nam Education Foundation (VEF) for the second author. The opinions, findings,
and conclusions stated herein are those of the authors and do not necessar-
ily reflect those of VEF. The fifth author is partially supported by the NSF
award #0737029 and the Litton Industries Professorship.

References

1. Kontogiannis, K.A., Demori, R., Merlo, E., Galler, M., Bernstein, M.: Pattern
matching for clone and concept detection. Reverse Engineering, 77–108 (1996)

2. Roy, C., Cordy, J.: Towards a mutation-based automatic framework for evaluating
code clone detection tools. In: C3S2E 2008, pp. 137–140. ACM, New York (2008)

3. Read, R., Corneil, D.: The graph isomorph disease. Journal of Graph Theory 1,
339–363 (1977)

4. Baxter, I.D., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone detection using
abstract syntax trees. In: ICSM 1998, p. 368. IEEE CS, Los Alamitos (1998)

5. Li, Z., Lu, S., Myagmar, S.: CP-Miner: Finding copy-paste and related bugs in
large-scale software code. IEEE Trans. Softw. Eng. 32(3), 176–192 (2006)

6. Kamiya, T., Kusumoto, S., Inoue, K.: CCFinder: a multilinguistic token-based code
clone detection system for large scale source code. IEEE Trans. Softw. Eng. 28(7),
654–670 (2002)

7. Evans, W.S., Fraser, C.W., Ma, F.: Clone detection via structural abstraction. In:
WCRE 2007: Working Conference on Reverse Engineering, pp. 150–159. IEEE CS,
Los Alamitos (2007)

8. Jiang, L., Misherghi, G., Su, Z., Glondu, S.: Deckard: scalable and accurate tree-
based detection of code clones. In: ICSE 2007, pp. 96–105. IEEE CS, Los Alamitos
(2007)

9. Nguyen, T.T., Nguyen, H.A., Pham, N.H., Al-Kofahi, J.M., Nguyen, T.N.: Cleman:
Comprehensive clone group evolution management. In: ASE 2008. IEEE CS, Los
Alamitos (2008)

10. The MathWorks Inc. SIMULINK Model-Based and System-Based Design (2002)
11. Deissenboeck, F., Hummel, B., Jürgens, E., Schätz, B., Wagner, S., Girard, J.F.,

Teuchert, S.: Clone detection in automotive model-based development. In: ICSE
2008, pp. 603–612. ACM, New York (2008)

12. Pham, N.H., Nguyen, H.A., Nguyen, T.T., Al-Kofahi, J.M., Nguyen, T.N.: Com-
plete and Accurate Clone Detection in Graph-based Models. In: ICSE 2009, Inter-
national Conference on Software Engineering. IEEE CS, Los Alamitos (2009)

13. Ukkonen, E.: Approximate string matching with q-grams and maximal matches.
Albert-Ludwigs University at Freiburg. Technical report (1991)



Accurate and Efficient Structural Characteristic Feature Extraction 455

14. Yang, R., Kalnis, P., Tung, A.K.H.: Similarity evaluation on tree-structured data.
In: SIGMOD 2005: International conference on Management of data (2005)

15. Kuramochi, M., Karypis, G.: Finding frequent patterns in a large sparse graph*.
Data Mining and Knowledge Discovery 11(3), 243–271 (2005)

16. Liu, H., Ma, Z., Zhang, L., Shao, W.: Detecting duplications in sequence diagrams
based on suffix trees. In: APSEC 2006, pp. 269–276. IEEE CS, Los Alamitos (2006)

17. Ohst, D., Welle, M., Kelter, U.: Differences between versions of UML diagrams.
SIGSOFT Softw. Eng. Notes 28(5), 227–236 (2003)

18. Xing, Z., Stroulia, E.: UMLDiff: an algorithm for object-oriented design differenc-
ing. In: ASE 2005, pp. 54–65. ACM, New York (2005)

19. Mehra, A., Grundy, J., Hosking, J.: A generic approach to supporting diagram
differencing and merging for collaborative design. In: ASE 2005, pp. 204–213. ACM,
New York (2005)

20. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.: Matching and
merging of statecharts specifications. In: ICSE 2007, pp. 54–64. IEEE CS, Los
Alamitos (2007)

21. Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., Mei, H.: Towards automatic
model synchronization from model transformations. In: ASE 2007, pp. 164–173.
ACM, New York (2007)

22. Bergmann, G., Ökrös, A., Ráth, I., Varró, D., Varró, G.: Incremental pattern
matching in the viatra model transformation system. In: GRaMoT 2008: Proc.
of international workshop on graph and model transformations, pp. 25–32. ACM,
New York (2008)

23. Fluri, B., Wuersch, M., PInzger, M., Gall, H.: Change distilling: Tree differencing
for fine-grained source code change extraction. IEEE Trans. Softw. Eng. 33(11),
725–743 (2007)

24. Basit, H., Jarzabek, S.: Efficient token based clone detection with flexible tokeniza-
tion. In: FSE 2007, pp. 513–516. ACM, New York (2007)

25. Bellon, S., Koschke, R., Antoniol, G., Krinke, J., Merlo, E.: Comparison and eval-
uation of clone detection tools. IEEE Trans. Softw. Eng. 33(9), 577–591 (2007)

26. Koschke, R., Falke, R., Frenzel, P.: Clone detection using abstract syntax suffix
trees. In: WCRE 2006, pp. 253–262. IEEE CS, Los Alamitos (2006)

27. Baker, B.S.: Parameterized pattern matching: Algorithms and applications. Jour-
nal of Computer and System Sciences 26(1), 28–42 (1996)

28. Johnson, J.H.: Identifying redundancy in source code using fingerprints. In: CAS-
CON 1993, pp. 171–183. IBM Press (1993)

29. Baker, B.S.: Parameterized duplication in strings: Algorithms and an application
to software maintenance. SIAM J. Comput. 26(5), 1343–1362 (1997)

30. Baxter, I.D., Pidgeon, C., Mehlich, M.: DMS R©: Program transformations for practi-
cal scalable software evolution. In: ICSE 2004, pp. 625–634. IEEE CS, Los Alamitos
(2004)

31. Wahler, V., Seipel, D., Gudenberg, J.W., Fischer, G.: Clone detection in source
code by frequent itemset techniques. In: SCAM 2004, pp. 128–135. IEEE CS, Los
Alamitos (2004)

32. Komondoor, R., Horwitz, S.: Using slicing to identify duplication in source code. In:
Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 40–56. Springer, Heidelberg (2001)

33. Mayrand, J., Leblanc, C., Merlo, E.: Experiment on the automatic detection of
function clones in a software system using metrics. In: ICSM 1996, p. 244. IEEE
CS, Los Alamitos (1996)



Enhanced Property Specification and
Verification in BLAST�

Ondřej Šerý

Charles University in Prague
Malostranské náměst́ı 25

118 00 Prague 1
Czech Republic

ondrej.sery@dsrg.mff.cuni.cz

http://dsrg.mff.cuni.cz

Abstract. Model checking tools based on the iterative refinement of
predicate abstraction (e.g., Slam and Blast) often feature a specifica-
tion language for expressing complex behavior rules. The source code
under verification is instrumented by artificial variables and statements
in order to transform the problem of checking such a rule into the problem
of program location reachability. This way, the source code get bloated
and additional predicates have to be discovered and tracked during the
verification. We suggest that a significant performance improvement can
be achieved by tracking state of the behavior rules aside from the source
code instead of instrumenting them. We have implemented an extension
to Blast, which accepts a specification language (a simplified version of
behavior protocols), and checks its validity without modifying the input
source code. An experiment with two Linux kernel drivers confirms the
performance gain using the extension.

1 Introduction

For the last few years, the explicit state and predicate abstraction based model
checking techniques have developed rather independently to each other. Success
stories of the predicate abstraction based tools, like Slam [2] and Blast [14],
earned a lot of both research and industry attention. Basically, these tools create
a very coarse existential abstraction (over-approximation) of a system, try to
find an error trace (if there is none, the system is safe), decide whether the
error trace is a real one (i.e., the system is erroneous) or not, in which case
the existential abstraction is refined and the cycle repeats. The technique has
very good performance on single-threaded programs even those containing high
level of data nondeterminism. On the other hand, these tools typically feature
a very limited support for multi-threading, complex data types (e.g., floats and
arrays), reasoning about heap objects, and perform poorly on certain inputs
(e.g., containing for cycles).
� This work was partially supported by the Grant Agency of the Czech Republic

project 201/08/0266.

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 456–469, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Enhanced Property Specification and Verification in BLAST 457

Fig. 1. Architecture of the Blast model checker

In contrast, the explicit state model checkers, like Java PathFinder [20] and
Spin [15], which are based on explicit representation and exploration of the
state space, perform complementary in many cases. They are typically equipped
with optimizations for dealing with multi-threaded programs (e.g., partial order
reduction, transactions), and complex data types as well as heap objects are
represented explicitly without much trouble. A major obstacle, however, is data
nondeterminism, for which the predicate abstraction based tools excel.

In general, this suggests not only that for some inputs one or the other tech-
nique is preferred but also that relying on one technique only might not be
enough; that mixing these two techniques in a single tool is a promising idea.
Quite recently, approaches to mixing explicit state and abstraction based model
checking have been published [13,17,8].

In this paper, we apply the idea on the Blast model checker. We propose
an extension for tracking the state of a behavior specification during verification
explicitly rather then encoding it into the source program and then using the
purely abstraction based verification (as done in Blast). The original process is
depicted on Fig. 1. Before the actual verification, the input source code is instru-
mented so that the problem of checking a rule is converted into the problem of
program location reachability. The resulting program is bloated by a code whose
only purpose is to identify the error states. To analyze the instrumented code,
additional costly theorem prover calls are necessary. In contrast, our extension
tracks the state of the behavior specification explicitly without any modification
of the source program and with no unnecessary theorem proving overhead.

Blast has a specification language [5] for stating the behavior rules. Although
the language is very powerful (almost arbitrary C statements can be used) and
well suited for simple rules, we argue that it is not very user-friendly for specify-
ing more complex rules concerning function call sequencing and nesting. In such
a case, a user has to manually encode the rule into an additional state variable(s)
and ensure proper state transitioning, which is very impractical and error prone.

1.1 Goals and Structure of the Paper

The goal of this paper is twofold, (i) to extend Blast’s algorithm for verification
of behavior rules by explicit state representation of the rule without modification
of the input source code and any additional theorem proving overhead, and (ii)



458 O. Šerý

to allow for specification of behavior rules restricting sequencing and nesting of
function calls in a lightweight easy-to-use formalism.

The rest of the paper is structured in the following way. First, we summarize
the Blast’s concept of configurable program analysis (Sect. 2), which we em-
ploy in our technique on both the formal and the implementation level. Then
(Sect. 3), we present the simplified formalism of behavior protocols to be used
for behavior specification (Sect. 3.1) along with necessary extensions to the con-
figurable program analysis concept (Sect. 3.2) and a note about the prototype
extension of the Blast model checker (Sect. 3.3). Experimental evaluation of the
proposed technique and discussion in the context of the related work (Sect. 5, 4)
are followed by list of directions for future research (Sect. 6) and concluding
remarks (Sect. 7).

2 Configurable Program Analysis

For the sake of completeness, we summarize the concept of Configurable Program
Analysis (CPA) as published by the Blast authors in [7]. The CPA concept
stems from abstract interpretation [12] and was originally introduced to support
a uniform view on model checking and static analysis. Nevertheless, later in
Section 3, we will use CPA with advance as a means for plugging the explicit
state space of behavior specification into Blast.

The basic idea is to have multiple CPAs for tracking different kinds of infor-
mation (e.g., predicates, heap shape) about the program under analysis. Each
CPA tracks the information in either a path sensitive or insensitive way. By
combining the different CPAs, various configurations of the resulting analysis
can be achieved.

Definition 1 (Configurable Program Analysis). A configurable program
analysis is a four-tuple D = (D, �, merge, stop), where D is an abstract domain,
� is a transfer function, merge is an operator for merging states, and stop is a
termination check.

Informally, D represents the state space of a CPA. It consists of a set of concrete
states C, a semi-lattice (with a preorder $ and a join operator �) of abstract
states E, and a concretization function relating the abstract and concrete states.
For explicit state CPAs featuring no abstraction, the semi-lattice is the trivial
flat lattice over the set of concrete states (E = C∪{�,⊥}). The transfer relation
� ⊆ E × G × E contains transitions among the abstract states of D, where G
is a set of labels, which contains statements of the program under analysis.

The two operators merge and stop play their role during the state space traver-
sal. The termination check stop : E × 2E → B is used to decide whether a newly
discovered state (first parameter) is covered by the already explored states (sec-
ond parameter). If so, the new state is not analyzed any further. For purposes of
this paper, the operator merge : E ×E → E is not of high importance. An intu-
itive idea that merge is used to merge information from a newly discovered state
(first parameter) to each already visited state (second parameter), i.e., merging



Enhanced Property Specification and Verification in BLAST 459

Algorithm: traverseCPA(D, e0)
Input: a configurable program analysis D = (D, �, merge, stop), an initial ab-
stract state e0 ∈ E, let E denote the set of abstract states of D
Output: a set of reachable abstract states
Variables: a set reached of elements of E, a set waitlist of elements of E

waitlist := {e0}
reached := {e0}
while waitlist �= ∅ do

pop e from waitlist
for each e′ with e � e′ do

for each e′′ ∈ reached do
// Combine with already visited abstract states.
enew := merge(e′, e′′)
if enew �= e′′ then

waitlist := (waitlist ∪ {enew}) \ {e′′}
reached := (reached ∪ {enew}) \ {e′′}

if ¬stop(e′, reached) then
waitlist := waitlist ∪ {e′}
reached := reached ∪ {e′}

return reached

Fig. 2. Algorithm for CPA state space traversal taken from [7]

information from different execution paths, would suffice. A special case of the
operators is stopsep(e, R) = (∃e′ ∈ R : e $ e′) and mergesep(e, e′) = e′. These
correspond to a model checking CPA without merging of information from dif-
ferent execution paths.

In [7], the authors describe a number of CPAs for predicate abstraction, shape
analysis, and pointer analysis. They also present a way how to combine more
CPAs into a single composite CPA and an algorithm for state space traversal of
a CPA. We recapitulate the algorithm in Fig. 2. For further details on CPA, the
reader is kindly referred to the original paper.

3 Checking Behavior

Having the CPA concept explained, we first show what kind of behavior speci-
fication we are interested in and how it can be encoded using the CPA concept.

3.1 Behavior Specification

The behavior specification used in this paper stems from the formalism of be-
havior protocols [18,1], which comes from the software component world. In a
syntax close to regular expressions, a behavior protocol specifies a behavior as a
set of finite traces of method calls that are allowed to occur on the component’s
interfaces. The reason for using behavior protocols (besides our long experience
with the formalism) lies in their relative simplicity, which makes them easy to
use even for a nonprofessional.



460 O. Šerý

In this paper, a slightly modified definition of behavior protocols, tailored for
specification of behavior rules of C code, is used. The basic building block is
not a method call on an interface of a component, but a C function call. The
simplified syntax and semantics of behavior protocols is as follows.

Definition 2 (Syntax). A behavior protocol over an alphabet Σ is an expres-
sion obtained by a finite number of applications of the following rule. Let a
and b be behavior protocols, and func ∈ Σ, then all expressions of the form:
NULL, func↑, func↓, (a), a∗, a; b, a+b, a | b, func, func{a} are also behavior
protocols.

The semantics of a behavior protocol is then a set of allowed traces of events
func↑ and func↓, where func↑ denotes a function call and func↓ denotes return
from the call. Distinguishing between the two events allows for precise specifica-
tion of function nesting.

Definition 3 (Semantics). The set of traces specified by a behavior protocol
p, and denoted as L(p), is inductively defined as follows:

Protocol Description Semantics

NULL Empty prot. L(NULL)) = {λ}
func↑ Func. call L(func↑) = {func↑}
func↓ Return L(func↓) = {func↓}
(a) Parentheses L( (a) ) = L(a)
a∗ Repetition L(a∗) = {un | u ∈ L(a) ∧ n ∈ N0}
a; b Sequence L(a; b) = {u.v | u ∈ L(a) ∧ v ∈ L(b)}
a + b Alternative L(a + b) = L(a) ∪ L(b)
a | b Parallelism L(a | b) = {u | u is interleaving of v ∈ L(a), w ∈ L(b)}
func Abbreviation L(f) = L(func↑; func↓)
func{a} Abbreviation L(f{a}) = L(func↑; a; func↓)

As an example of a behavior protocol, consider the following usage rule of the
SDL graphic library:

SDL_Init; (SDL_PushEvent + SDL_WaitEvent)* ; SDL_Quit

The rule states that a call to SDL Init should precede any manipulation with
event queues (finite number of calls to SDL PushEvent and SDL WaitEvent)
and that the SDL Quit cleanup function should be called afterwards.

Naturally, the set of traces specified by a behavior protocol can be repre-
sented by the means of a finite automaton. The transformation follows the stan-
dard algorithm of transformation of a regular expression into an automaton [16],
straightforwardly extended by the parallel operator |.

Definition 4. Let p be a behavior protocol over an alphabet Σ, then Ap =
(SAp , Σ↑↓,→Ap , initialAp, FAp), where Σ↑↓ = {func↑, func↓ | func ∈ Σ}, de-
notes the minimal deterministic finite automaton over the alphabet Σ↑↓ accepting
traces specified by p.



Enhanced Property Specification and Verification in BLAST 461

3.2 Behavior CPA

Decoupling the behavior specification from code into a separate CPA requires
one change to the concept of CPA. During state space traversal, different CPAs
can add different kinds of information to the states being traversed. In princi-
ple, this allows CPAs to affect the shape and the size of the state space to be
traversed. However, there is no mechanism that would allow CPA to identify
erroneous states. Only the states involving a program location, which is labeled
as erroneous (i.e., passed as an input to Blast) are considered erroneous. Infor-
mation tracked by individual CPAs is not used for error state detection.

This is because Blast was originally designed to decide reachability of pro-
gram locations (marked as erroneous). In theory, this is sufficient for deciding
any safety property, as the problem can be always transformed into decision of
program location reachability on an accordingly modified program. In practice,
however, the necessity to transform all properties into reachability of a program
location is prohibitive. It seems more natural to allow the individual CPAs to
identify error states based on the information a particular CPA tracks rather
than requiring modification of the original source code and thus affecting (ob-
fuscating) input shared by all the CPAs.

For example, to check absence of null pointer dereference errors in a program
using Blast, one can insert an if statement asserting that p != NULL before
dereferencing any pointer p. In case of a null pointer, the statement would lead
to an error program location. Blast is then executed to check that the error
location is unreachable and thus no null pointer dereference error can occur (this
technique was used and documented by others in [6]). In contrast, we argue that
such a change of the original program affects all CPAs (mainly the predicate
abstraction CPA) and that such an error could be detected by the shape or
pointer analysis CPA, which tracks the information concerning heap.

Note that we discuss only “identification” of the possible error states. Once
there is a candidate error trace, all the CPAs can contribute to prove the trace
infeasible by their means and, if it is a spurious one, get refined to disallow the
trace in the future. The point here is that there is no need to bother all the CPAs
by the information necessary for identification of the possible errors related to
only some of them.

This becomes even more pronounced in the case of behavior specification,
whose purpose is only to observe an execution of a program (without altering
it in any sense) and to signal any violation. As mentioned above, this problem
can also be transformed into the program location reachability by encoding the
behavior specification into the program itself (as is done for the Blast specifi-
cation language). However, then all CPAs are affected by the additional code,
whose purpose lies only in identification of the error states. Namely, the pred-
icate abstraction CPA will be cluttered by artificial predicates. This is costly,
because finding and managing additional predicates means additional theorem
prover calls.

Therefore, we extended the concept of CPA to allow identification of error
states of two kinds. First, a standard error state εreach, is a state which should



462 O. Šerý

never be reached in a correct program; i.e. a program is considered incorrect,
if there is a prefix of a concrete path in the program reaching the error state.
Second, an error final state εfinal, is a state which represents an error only for
the final state of the model. In other words, a program is considered incorrect, if
there is a finite concrete path ending in an error final state. As an example, the
null pointer dereference error is a standard error (i.e., it should never happen),
while finishing without deallocating all resources is an error final state (i.e., it is
alright to have allocated memory during execution but not at its end).

Definition 5 (Configurable program analysis – revisited). A configurable
program analysis is a five-tuple D = (D, �, merge, stop, error), where D is an
abstract domain, � is a transfer function, merge is an operator for merging
states, stop is a termination check, and error is an error identifying relation.

Given that E is the set of abstract states of D, then error ⊆ E ×{εreach, εfinal}
annotates the abstract states which are considered erroneous. An abstract state
e implies a whole system error state if error(e, εreach) holds. If error(e, εfinal)
holds, the whole system error state is implied only if the system state is final;
i.e., the system can terminate in its current state.

With the CPA definition extended by error state signalization, we can define
a CPA which tracks a single behavior protocol and signal its violation as an error
state to the model checker. In turn, the model checker can attempt to avoid the
error state by refining abstractions captured by all the CPAs.

Definition 6 (Behavior CPA). Let p be a behavior protocol over an alphabet
Σ, then the behavior CPA with respect to p is denoted as B(p) = (DB(p), �B(p)
, merge

B(p), stop
B(p), errorB(p)). DB(p) is based on the flat lattice over states of

the automaton Ap (i.e., SAp ∪ {�,⊥}). The transfer relation �B(p) follows the
transition function of Ap, extended by a self-transition (s

g� s) for every state
s and a control-flow edge g which does not represent any event tracked by the
protocol p. More precisely: s

g� s′ iff any of the following holds:

(i) s
g→Ap s′

(ii) s = s′ and g /∈ Σ↑↓
(iii) s′ = ⊥ and g ∈ Σ↑↓ and ¬∃s′′ ∈ SAp : s

g→Ap s′′
(iv) s = s′ = ⊥
The operators merge

B(p) and stop
B(p) are chosen to be the simple model checking

variants merge
B(p) = mergesep and stop

B(p) = stopsep. Last, the error identifying
relation is chosen so that errorB(p)(s, εfinal) iff s /∈ FAp and errorB(p)(s, εreach)
iff s = ⊥.

Behavior CPA is straightforwardly derived from the deterministic automaton
Ap representing the given behavior protocol p. Those states that do not corre-
spond to a final state of the automaton Ap are identified as error final states.
In such states, the behavior protocol expects further activity and does not allow
termination of the program yet. Whenever there is an activity not allowed by
the protocol (see (iii) of Def. 6), the next state is chosen to be ⊥, for which
errorB(p)(⊥, εreach) holds and is therefore a standard error state.



Enhanced Property Specification and Verification in BLAST 463

Fig. 3. Architecture of the Blast extension

3.3 Tool Support

The concept of behavior CPA was implemented as a prototype extension of the
Blast 2.4 release1. The resulting architecture is depicted in Fig. 3.

The gray emphasized boxes represent the parts of the tool chain newly added
to Blast as a part of this effort. BP preprocessor is a simple command line
tool for preprocessing the behavior specification. It parses the specification and
transforms it into the minimal deterministic automaton. This tool was based on
the core library of dchecker, the distributed model checker for behavior proto-
cols [19], and is written in Java. As well as the rest of Blast, the implementation
of behavior CPA is written in OCaml and uses the CPA interface as an exten-
sion point. The CPA interface itself was modified to allow identification of error
states by individual CPAs.

Unfortunately, libraries, which Blast uses for theorem proving and constraint
solving, are available only as Linux binaries. Even though the rest of the imple-
mentation is platform independent, the prototype implementation runs also only
under Linux, due to these dependencies.

4 Evaluation

Easier usage of behavior protocols for rule specification is, of course, a subjec-
tive matter. However, we show the performance improvements in the following
experiment. Blast was used to analyze two Linux 2.6.24 kernel driver files
drivers/char/esp.c and drivers/net/znet.c with and without our exten-
sion. There were two behavior rules (i) correct spinlock locking and unlocking,
and (ii) correct sequencing of DMA manipulating function calls used in these
files (namely the functions claim_dma_lock, release_dma_lock, enable_dma,
disable_dma, clear_dma_ff, set_dma_mode, set_dma_addr, set_dma_count,
and get_dma_residue). The rules (i) and (ii) specified using both Blast spec-
ification language and behavior protocols are available in the Appendix.

1 Source code of the prototype implementation along with test files from Sect. 4 are
available for download at http://dsrg.mff.cuni.cz/∼sery/blast/

http://dsrg.mff.cuni.cz/~sery/blast/


464 O. Šerý

Table 1. Verification of the spinlock rule

File drivers/char/esp.c drivers/net/znet.c

Test no hint hinted bp no hint hinted bp

Preparation 0.17s 0.17s 0.30s 0.17s 0.17s 0.25s
Verification 3.35s 0.77s 0.26s 1.42s 0.29s 0.14s
Sum 3.52s 0.94s 0.56s 1.59s 0.46s 0.39s

Table 2. Verification of the DMA rule

File drivers/char/esp.c drivers/net/znet.c

Test no hint hinted bp no hint hinted bp

Preparation 0.17s 0.17s 0.30s 0.17s 0.17s 0.30s
Verification 7.07s 1.07s 0.27s 2.55s 0.42s 0.14s
Sum 7.24s 1.24s 0.57s 2.72s 0.59s 0.44s

The verification times2 are then summarized in Table 1 and 2 for the rules
(i) and (ii), respectively. On each source file and for each rule, three different
configurations were executed (columns no hint, hinted, bp). Columns no hint and
hinted contain times for the rule specified in the Blast specification language.
In the hinted column, Blast got the list of predicates suitable for checking
the specified rule as a part of the input, while in the no hint column, it had
to discover the necessary predicates by itself. The bp column contains times
for the rule specified using behavior protocols and verified using the proposed
extension. The difference between no hint and hint is due to the need for discov-
ery of necessary predicates. However, the predicates can be generated from the
specification beforehand. The difference between hint and bp is due to the need
for tracking the additional predicates and coping with the inflated input. The
preparation row contains times necessary for running the C preprocessor and
either code instrumentation or behavior protocol preprocessing. Note also that
behavior protocol preprocessing has to be done only once for each rule, while
code instrumentation has to be performed after every code modification.

5 Related Work

There is quite a number of software model checkers based on the counter example
guided abstraction refinement [11] (CEGAR) and predicate abstraction [3]. Of
those, probably the most famous are Slam [2], Blast [14], and SatAbs [10].
All the three tools analyze programs written in the C programing language.

Slam is the oldest of the three tools. It features a straightforward implemen-
tation of the abstraction refinement loop. In every iteration, a uniform program
abstraction is constructed from scratch, which is costly. Blast enhances the
basic idea by constructing the abstraction in memory and refining only the nec-

2 All the test were run on a Linux 2.6.24, Pentium 4, 3.0GHz machine.



Enhanced Property Specification and Verification in BLAST 465

essary portions of it (this is referred to as lazy abstraction [14]). This feature
significantly improves performance. Like Slam, the SatAbs tool is a straightfor-
ward implementation of the abstraction refinement loop. Unlike Slam, SatAbs

uses a SAT solver instead of a theorem prover. This allows for precise reasoning
about integers as bit-vectors, including arithmetic overflows.

Although the tools can only decide reachability of a program location, other
interesting properties can be transformed into this problem by instrumentation
of the input program’s source code. For this purpose, both Slam and Blast

use a special purpose specification language (SLIC [4] and the Blast specifica-
tion language [5], respectively). However, as already discussed in Sect. 3.2, the
instrumentation results in artificial predicates to be discovered and managed,
which implies unnecessary theorem proving overhead.

In contrast, our solution exploits the specific nature of the behavior specifi-
cation and tracks it explicitly in a separate CPA domain without necessity to
alter the input source code. This way, no additional theorem prover calls are
necessary. Moreover, we argue that using behavior protocols (which are close to
regular expressions known to a majority of software developers) for specifying
rules restraining method sequencing and nesting is more convenient than using
SLIC or Blast specification language, where such a rule has to be encoded
by hand. For more complex rules, this effectively means transformation into a
corresponding automaton and its representation using special state variable.

As both SLIC and Blast specification language permit using almost arbitrary
C code, the expressive power is stronger than the expressive power of behavior
protocols used in our work. Therefore, we intend to extend the formalism to
cover a bigger set of the real-life rules (see Sect. 6).

There are other works that combine explicit state and abstraction based tech-
niques. In [13], the authors propose an algorithm, Synergy, which uses con-
crete execution in cooperation with predicate abstraction. An abstract counter
example is used to guide the concrete execution, while the concrete execution
traces are used when refining the abstraction. Another technique is presented
in [17], where the explicit state space is traversed but abstraction is employed
when deciding whether a current state has been already visited. The resulting
under-approximation is then iteratively refined. In [8], a technique using explicit
representation of some program variables, while predicate abstraction for other,
with possibility of precision adjustment, is proposed and an implementation is
done in Blast.

6 Future Work

One of potential directions for future research is extending the power of the
formalism used for specification of behavior rules. Regular language is sufficient
for conveniently expressing rules concerning correct function call sequencing and
nesting. However, other real-life rules the developers are interested in are related
to dynamically created and destroyed program entities (e.g., files and locks). In



466 O. Šerý

other words, developers are often interested in correct sequencing and nesting of
function calls that refer to the same instances of these entities.

The idea is similar to tracematches [9], which are used to specify incorrect
behavior patterns that may relate to individual entities. In contrast, behavior
protocols are used for positive specification (e.g., specification of expected be-
havior) not negative (e.g., specification of forbidden behavior), as we believe
that the positive specification is less prone to omissions. Signaling a false error is
safer then missing a real one. In order to implement checking capability for such
entity protocols into the Blast model checker, the Behavior CPA would have
to track the explicit state of an entity protocol separately for every instance of
an entity.

7 Conclusion

We believe that combining abstraction and explicit state based model checking
is a promising direction for further work in software verification. We have made
another step in this direction by extending a predicate abstraction tool Blast by
an explicit state representation of behavior rules specified in a simplified version
of the behavior protocols formalism. Thanks to the extension, behavior rules can
be verified more efficiently as was shown on an experiment.

A less significant but noteworthy contribution of this paper is the
presentation of a novel use case for configurable program analysis, which was
originally unanticipated by its authors. We have also proposed changes to this
concept in order to allow individual CPAs to identify erroneous states during the
verification.

References

1. Adamek, J., Plasil, F.: Component composition errors and update atomicity: static
analysis. Journal of Software Maintenance and Evolution 17(5), 363–377 (2005)

2. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., On-
drusek, B., Rajamani, S.K., Ustuner, A.: Thorough static analysis of device drivers.
SIGOPS Oper. Syst. Rev. 40(4), 73–85 (2006)

3. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate ab-
straction of c programs. SIGPLAN Not. 36(5), 203–213 (2001)

4. Ball, T., Rajamani, S.K.: Slic: A specification language for interface checking. Tech-
nical Report MSR-TR-2001-21, Microsoft Research (January 2002)

5. Beyer, D., Chlipala, A., Henzinger, T., Jhala, R., Majumdar, R.: The Blast

query language for software verification. In: Giacobazzi, R. (ed.) SAS 2004. LNCS,
vol. 3148, pp. 2–18. Springer, Heidelberg (2004)

6. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: Checking memory safety
with blast. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 2–18. Springer,
Heidelberg (2005)

7. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: Con-
cretizing the convergence of model checking and program analysis. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518. Springer, Heidelberg
(2007)



Enhanced Property Specification and Verification in BLAST 467

8. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program analysis with dynamic preci-
sion adjustment. In: Proceedings of the 23rd IEEE/ACM International Conference
on Automated Software Engineering (ASE 2008). IEEE Computer Society Press,
Los Alamitos (2008)

9. Bodden, E., Hendren, L.J., Lam, P., Lhoták, O., Naeem, N.A.: Collaborative run-
time verification with tracematches. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007.
LNCS, vol. 4839, pp. 22–37. Springer, Heidelberg (2007)

10. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-Based Predicate
Abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005)

11. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

12. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL
1977: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages, pp. 238–252. ACM, New York (1977)

13. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Synergy:
a new algorithm for property checking. In: SIGSOFT 2006/FSE-14: Proceedings
of the 14th ACM SIGSOFT international symposium on Foundations of software
engineering, pp. 117–127. ACM, New York (2006)

14. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. SIGPLAN
Not. 37(1), 58–70 (2002)

15. Holzmann, G.: The Spin Model Checker, Primer and Reference Manual. Addison-
Wesley, Reading (2003)

16. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation, 2nd edn. Addison-Wesley, Reading (2000)

17. Pasareanu, C.S., Pelánek, R., Visser, W.: Predicate abstraction with under-
approximation refinement. Logical Methods in Computer Science 3(1) (2007)

18. Plasil, F., Visnovsky, S.: Behavior protocols for software components. IEEE Trans-
actions on Software Engineering 28(11), 1056–1076 (2002)

19. Poch, T.: Distributed behavior protocol checker. Master’s thesis, Charles University
in Prague, Czech Republic (2006)

20. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model Checking Programs.
Automated Software Engineering 10(2), 203–232 (2003)

Appendix

The spinlock locking rule prescribes proper alternation of calls to the functions
spin_lock_irqsave and spin_unlock_irqrestore. Listing of this rule speci-
fied as behavior protocol follows:

( spin_lock_irqsave; spin_unlock_irqrestore )*

Specified in the Blast specification language:

global int lockStatus = 0;

event {



468 O. Šerý

pattern { spin_lock_irqsave($?, $?); }

guard { lockStatus == 0 }

action { lockStatus = 1; }

}

event {

pattern { spin_unlock_irqrestore($?, $?); }

guard { lockStatus == 1 }

action { lockStatus = 0; }

}

The DMA rule prescribes specific ordering of calls to the DMA helper func-
tions. For example, other helper functions should be called after the function
claim_dma_lock and before release_dma_lock. According to the source code
comments, the set_dma_xxx and get_dma_xxx functions expect a preceding call
to clear_dma_ff. All these function are to be called with the specific DMA
channel disabled. Specification of the rule using behavior protocol follows:

(

claim_dma_lock;

(

(

disable_dma;

(

clear_dma_ff;

(

set_dma_mode +

set_dma_addr +

set_dma_count +

get_dma_residue

)*

) + NULL

)

)

+

enable_dma

)*;

release_dma_lock

)*

The DMA rule in the Blast specification language:

global int dmaStatus = 0;

event {

pattern { $? = claim_dma_lock(); }

guard { dmaStatus == 0 }

action { dmaStatus = 1; }

}

event {

pattern { disable_dma($?); }



Enhanced Property Specification and Verification in BLAST 469

guard { dmaStatus == 1 }

action { dmaStatus = 2; }

}

event {

pattern { enable_dma($?); }

guard { dmaStatus > 1}

action { dmaStatus = 1; }

}

event {

pattern { clear_dma_ff($?); }

guard { dmaStatus == 2 }

action { dmaStatus = 3; }

}

event {

pattern { set_dma_mode($?, $?); }

guard { dmaStatus == 3 }

}

event {

pattern { set_dma_addr($?, $?); }

guard { dmaStatus == 3 }

}

event {

pattern { set_dma_count($?, $?); }

guard { dmaStatus == 3 }

}

event {

pattern { $? = get_dma_residue($?); }

guard { dmaStatus == 3 }

}

event {

pattern { release_dma_lock($?); }

guard { dmaStatus > 0 }

action { dmaStatus = 0; }

}



Finding Loop Invariants for Programs over Arrays
Using a Theorem Prover�

Laura Kovács1and Andrei Voronkov2

1 EPFL
2 University of Manchester

Abstract. We present a new method for automatic generation of loop invari-
ants for programs containing arrays. Unlike all previously known methods, our
method allows one to generate first-order invariants containing alternations of
quantifiers. The method is based on the automatic analysis of the so-called up-
date predicates of loops. An update predicate for an array A expresses updates
made to A. We observe that many properties of update predicates can be ex-
tracted automatically from the loop description and loop properties obtained by
other methods such as a simple analysis of counters occurring in the loop, recur-
rence solving and quantifier elimination over loop variables. We run the theorem
prover Vampire on some examples and show that non-trivial loop invariants can
be generated.

1 Introduction

Invariants with quantifiers are important for verification and static analysis of programs
over arrays due to the unbounded nature of array structures. Such invariants can express
relationships among array elements and properties involving arrays and scalar variables
of the loop, and thus significantly ease the verification task. Automated discovery of
array invariants therefore became a challenging topic, see e.g. [9,20,10,12,3,11,22,13].
Approaches presented in these papers combine inductive reasoning with predicate ab-
straction, constraint solving and interpolation-based techniques and normally require
user guidance in providing necessary templates, assertions or predicates.

In this paper we present a framework for automatically inferring array invariants
without any user guidance and without using a priori defined boolean templates or
predicates. Moreover, unlike all previously known methods, our method allows one
to generate loop invariants containing quantifier alternations.

The method is based on the following idea.

1. Given a loop over array and scalar variables, we first try to extract from it various
information that can be expressed by first-order formulas. This can be informa-
tion about scalar variables occurring in the loops, such as precise values of these
variables in terms of the loop counter, monotonicity properties of these variables

� This research was partly done in the frame of the Transnational Access Programme at RISC,
Johannes Kepler University Linz, supported by the European Commission Framework 6 Pro-
gramme for Integrated Infrastructures Initiatives under the project SCIEnce (contract No
026133). The first author was supported by the Swiss NSF.

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 470–485, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Finding Loop Invariants for Programs over Arrays Using a Theorem Prover 471

considered as functions of the loop counter and polynomial relations among these
variables. For extracting this information we deploy techniques from symbolic
computation, such as recurrence solving and quantifier elimination, as presented
in [18,14], to perform inductive reasoning over scalar variables.

2. Using the derived loop properties, we then automatically discover first-order prop-
erties of the so-called update predicates for array variables used in the loop and
monotonicity properties for scalar variables. The update predicates describe the
positions at which arrays are updated, iterations at which the updates occur and the
update values. The first-order information extracted from the loop description can
use auxiliary symbols, such as symbols denoting update predicates or loop coun-
ters.

3. After having collected the first-order information, we run a saturation theorem
prover to eliminate the auxiliary symbols and obtain loop invariants expressed as
first-order formulas. When the invariants obtained in this way contain skolem func-
tions, we de-skolemise them into formulas with quantifier alternations.

The main features of the technique presented here are the following.

1. We require no user guidance such as a postcondition or a collection of predicates
from which an invariant can be built: all we have is a loop description.

2. We are able to generate automatically complex invariants involving quantifier alter-
nations.

All experiments described in this paper
a := 0; b := 0; c := 0;
while (a ≤ k) do

if A[a] ≥ 0
then B[b] := A[a];b := b+ 1;
else C[c] := A[a];c := c+ 1;

a := a+ 1;
end do

Fig. 1. Array partitioning [3]

were carried out using two systems: Aligator
— the package for invariant generation
described in [18,14], and the first-order theorem
prover Vampire [25].

This paper is organised as follows. Section 2
motivates our work with an example. Section 3
presents our program model together with some
basic principles of saturation theorem proving.
The notion of update predicates is introduced in
Section 4 together with properties involving such predicates. Section 5 describes how
properties of update predicates and scalar variables are extracted from the loop descrip-
tion. Section 6 presents our method of invariant generation and Section 7 discusses
some experiments with the theorem prover Vampire. Section 8 focuses on related
work. Section 9 concludes the paper with some ideas for future work.

2 Example

In this section we give an example illustrating what kind of loop invariant we would
like to generate.

We will use the program of Figure 1 as our running example throughout the paper.
The program fills an array B with the non-negative values of a source array A, and an
array C with the negative values of A. It is not hard to derive that after n iterations of
this loop (assuming n ≤ k) the value of a is equal to the value of the loop counter n.



472 L. Kovács and A. Voronkov

For example, this property can be derived by the methods of [6,23] or by the recurrence
solving part of Aligator [14,18]. Moreover, Aligator is able to find the linear
invariant relation a = b+ c.

Using light-weight analysis, it is also not hard to see that the values of the variables
b and c may not decrease during the loop execution, therefore c ≥ 0 and b ≥ 0 are loop
invariants. This property can also be extracted by Aligator using more complex rea-
soning involving quantifier elimination techniques [14]. However, such a light-weight
analysis would not give us much information about arrays A,B,C and their relation-
ships, apart from the fact that the value of A does not change since A is not updated.
For example, one may want to derive the following properties of the loop (n denotes
the loop counter).

1. Each of B[0], . . . , B[b− 1] is non-negative and equal to one of A[0], . . . , A[n− 1].
2. Each of C[0], . . . , C[c− 1] is negative and equal to one of A[0], . . . , A[n− 1].
3. Each non-negative value inA[0], . . . , A[n−1] is equal to one ofB[0], . . . , B[b−1].
4. Each negative value in A[0], . . . , A[n− 1] is equal to one of C[0], . . . , C[c− 1].
5. For every p ≥ b, the value of B[p] is equal to its initial value.
6. For every p ≥ c, the value of C[p] is equal to its initial value.

These properties in fact describe much of the intended function of the loop and can be
used to verify properties of programs manipulating arrays in which this loop is embed-
ded. However, the first four of these invariants cannot be obtained by other methods of
invariant generation since, when formulated in first-order logic, they require quantifier
alternations.

In this paper we introduce a new method that can be used to derive such loop proper-
ties automatically using a first-order theorem prover. For example, all of the invariants
given above were automatically generated by the theorem prover Vampire.

3 Preliminaries

In this section, we describe our program model and give a brief introduction into satu-
ration theorem proving.

Array and scalar variables. We assume that programs contain array variables, de-
noted by capital-case letters A,B,C, . . ., and scalar variables, denoted by lower-case
letters a, b, c, . . .. All notations may have indices. The lower-case letter n will be re-
served for the loop counter.

Program P . Consider a program P consisting of a single loop whose body contains
assignments, sequencing and conditionals. In the sequel we assume that P is fixed and
give all definitions relative to it. Denote by Var the set of all variables occurring in P ,
and by Arr the set of all array variables occurring in it.

Expressions. We will use a language Expr of expressions. We assume that Expr con-
tains constants (including all integer constants), variables in Var ∪ Arr , logical vari-
ables, some interpreted function symbols, including the standard arithmetical function



Finding Loop Invariants for Programs over Arrays Using a Theorem Prover 473

symbols +,−, ·, and interpreted predicates symbols, including the standard arithmeti-
cal predicate symbols ≥,≤. We assume that expressions are well-typed with respect to
a set of sorts and ι is a sort of integers. Types are defined as follows: every sort is a type
and types can be built from other types using type constructors × and →. We assume
that each scalar variable has a sort and each array variable has a type ι→ τ , where τ is
a sort. If A is an array variable and e an expression, we will write A[e] instead of A(e)
to mean the element of A at the position e.

Semantics of Expressions. We assume that every sort has an associated non-empty
domain and that the domain associated with ι is the set of integers. Furthermore we
assume that interpreted function and predicate symbols of the language are interpreted
by functions and relations of appropriate sorts. For example, we assume that ≥ is inter-
preted as the standard inequality on integers.

The semantics of the language Expr is defined using the notion of state. A state
maps each scalar variable of a sort τ into a value in the domain associated with τ , and
each array variable A of a type ι → τ into a function from integers to the domain
associated with τ . Note that (for the sake of simplicity) we do not consider arrays as
partial functions and do not analyse array bounds. Given a state σ, we can define the
value of any expression in this state in the standard way, see e.g. [21].

Semantics of programs. We can define the semantics of programs with assignment,
sequencing and conditionals in the standard way, see e.g. [21]. A program of this kind
can be considered as a mapping from states to states. A computation of a program is a
sequence of states.

Extended expressions v(i). Remember that we are dealing with a program P consist-
ing of a single loop. Suppose that a computation of P starts at some initial state σ0.
If we ignore the loop condition, then after i iterations of the loop the computation will
reach a state σi. Let us now extend the notion of expression to capture the state σi of
program execution obtained after i iterations of the main loop. To this end, we first fix a
program P and some initial state σ0 so that the definition is parametrised by this initial
state and the program. Let σi be the state obtained after i iterations of the computation
of P starting at σ0.

For every integer expression i and loop variable v of a type τ , we define a new ex-
pression v(i) of the type τ . The value of this expression is defined to be the value of v at
the state σi. We say that a formula ϕ, possibly using extended expressions v(i), is valid
for P , if this formula is true for every computation of P , that is, for all computations
starting at an arbitrary initial state.

Example 1. Consider the loop P whose body consists of a single assignment c := c+
2, where c is a scalar variable. Then the formula (∀i)(i ≥ 0 =⇒ c(i) = c(0) + 2 · i) is
valid for P .

Note that v(0) is the value of v in the initial state. We will use expressions v(i) only when
we reason about programs or assert their properties. We will not use these expressions
in programs.



474 L. Kovács and A. Voronkov

Relativised expressions i :: e and formulas i :: F . Given an expression e or a for-
mula F , we would like to “relativise” it to an iteration i. The relativised expression and
formula will be denoted by i :: e and i :: F , respectively. These expressions are only
defined when e and F are non-extended expressions, that is, expressions containing no
occurrences of subexpressions of the form v(j) for some v and j.

Definition 1. For every expression e, formula F having no occurrences of extended ex-
pressions v(j) for any v and j, and every integer expression i, let us define an expression
i :: e and a formula i :: F by induction as follows. In the definition below e with indices
stands for expressions and F with indices stands for formulas.

1. If v is a loop (scalar or array) variable, then i :: v def= v(i).

2. i :: (e1[e2])
def= (i :: e1)[i :: e2].

3. If e is a constant or a variable (but not an array or a scalar variable) then i :: e def=
e.

4. If f is an interpreted function, then i :: (f(e1, . . . , en)) def= f(i :: e1, . . . , i :: en).
5. If P is a predicate symbol, then i :: (P (e1, . . . , en)) def= P (i :: e1, . . . , i :: en).
6. i :: (F1 ∧ . . . ∧ Fn) def= i :: F1 ∧ . . . ∧ i :: Fn and similar for other connectives

instead of ∧.

7. Let y be a variable not occurring in i. Then i :: ((∀y)F ) def= (∀y)(i :: F ) and
similar for ∃ instead of ∀.

8. i :: ((∀i)F ) def= (∀i)(F ) and similar for ∃ instead of ∀.

For example, if F is the formula (∀j)(a = 0 =⇒ A[b] = c + j), where A is an array
variable and a, b, c are scalar variables, then i :: F is the formula (∀j)(a(i) = 0 =⇒
A(i)[b(i)] = c(i) + j).

Loop body and guarded assignments. For simplicity of presentation we assume that
the loop body of P is represented by an equivalent collection of guarded assignments.
Let us now define guarded assignments and their semantics. We call a guarded assign-
ment an expression

G→ α1; . . . ;αm, (1)

where each of the αj’s is an assignment either of the form v := e or of the form
A[e1] := e2, and G is a formula, called the guard of this guarded assignment. We
assume that each guarded assignment of the form (1) satisfies the following conditions.

1. The left-hand sides of all assignments are syntactically different;
2. If some of the assignments αj has a form A[e1] := e2, and some αk for k �= j

has the form A[e3] := e4, then in every state satisfying G the expressions e1 and
e3 have different values.

Furthermore, for every collection of guarded assignments whose guards areG1, . . . , Gp

we assume that

1. for all j, k ∈ {1, . . . , p}, if j �= k then the formula Gj ∧ Gk is unsatisfiable (that
is, the guards are mutually exclusive);



Finding Loop Invariants for Programs over Arrays Using a Theorem Prover 475

2. the formula G1 ∨ . . .∨Gp is true in all states (that is, for every state at least one of
the guards is true in this state).

Let us now define the semantics of collections of guarded assignments satisfying these
properties and also briefly discuss how any program can be translated into an equivalent
collection of guarded assignments.

Consider a guarded assignment G → e1 := e′1; . . . ; em := e′m. The sequence of
assignments in a guarded assignment has the semantics of a simultaneous assignment

(e1, . . . , em) := (e′1, . . . , e
′
m).

For example, the guarded assignment true→ x := 0; y := x changes any state in
which x = 1 to a state in which y = 1 but not y = 0.

One can automatically transform any loop body into an equivalent finite set of
guarded assignments [7,21]. In general, such a transformation may result in a set of
guarded assignments of size exponential in the size of the loop body, but one can also
avoid exponential size by using a slightly different notion of guarded assignment. To
satisfy the condition on the left-hand side of guarded assignments one can add extra
equalities and inequalities in the guards. For example, the loop body consisting of the
sequence of assignments A[a] := 0;A[b] := 1 can be transformed into the system
consisting of two guarded assignments:

a �= b → A[a] := 0;A[b] := 1
a = b → A[b] := 1.

Let us consider an example.

Example 2 (Partition). Consider the partition program of Figure 1. Then the loop body
of this program has the following representation in the guarded assignment form:

A[a] ≥ 0 → B[b] := A[a]; b := b+ 1; a := a+ 1 (2)

¬A[a] ≥ 0 → C[c] := A[a]; c := c+ 1; a := a+ 1. (3)

General setting. Given a loop P we would like to generate invariants of this loop,
that is, find formulas that are true after n iterations of the loop, where n is an arbitrary
non-negative integer. These formulas will express the values of loop variables after n
iterations in terms of their initial values, i.e. values of loop variables after 0 iterations.
To find these formulas, we will write some general properties of loop variables at an
arbitrary iteration between 0 and n, using formulas with extended expressions v(i). In
the sequel we assume that n is an arbitrary but fixed non-negative integer. We will also
use a constant with the same name n in formulas to denote the number n. When we
discuss iteration steps, we are only interested in iterations between 0 and n− 1. To this
end, we introduce a predicate iter denoting such iterations. To improve readability, we
will normally write e ∈ iter instead of iter(e), where e is an expression. The predicate
iter has the following definition:

(∀i)(i ∈ iter ⇐⇒ 0 ≤ i ∧ i < n). (4)



476 L. Kovács and A. Voronkov

Saturation theorem proving. In our approach to invariant generation, we rely on a
saturation prover to infer automatically first-order formulas with equality as quantified
invariants from a set of first-order loop properties extracted from loops. We shortly
describe the basic ideas of saturation theorem proving, and refer to [24] for more details.

First-order theorem provers using saturation algorithms employ a superposition cal-
culus, see e.g. [24]. This calculus works with clauses (disjunctions of atomic formulas
and their negations) and consists of inference rules that allow one to derive new clauses
from existing clauses. To prove a formula F , saturation-based provers convert ¬F to
a set of clauses and try to derive the empty clause from this set. If the empty clause
is derived, then ¬F is unsatisfiable and so F is a theorem. In saturation-based provers
the newly derived clauses are normally consequences of the initial clauses. We use this
property to derive invariants instead of establishing unsatisfiability: starting with the
set of initial clauses, we derive new clauses from it using a superposition calculus and
special kinds of reduction orderings and check if some of the newly derived clauses can
be used as invariants.

4 Update Predicates

To make a saturation-based theorem prover find loop invariants we have to extract some
properties of the loop and give them to the prover as initial formulas. Our technique for
doing this is based on the analysis of updates to arrays. To analyse updates we introduce
so-called update predicates and some axioms about these predicates. There are also
other formulas we extract automatically from the loop description, they are described
in the next section.

For each array variable V that is updated in the program we introduce two predicates:

1. updV (i, p): at the loop iteration i the array V is updated at the position p;
2. updV (i, p, v): at the loop iteration i the array V is updated at the position p by the

value v.

The definition of these update predicates can be extracted automatically from the col-
lection of guarded assignments associated with the loop. For example, guarded assign-
ments (2) and (3) result in the following update predicates for B:

updB(i, p) ⇐⇒ i ∈ iter ∧ p = b(i) ∧A(i)[a(i)] ≥ 0; (5)

updB(i, p, v) ⇐⇒ i ∈ iter ∧ p = b(i) ∧A(i)[a(i)] ≥ 0 ∧ v = A[a(i)]. (6)

We introduce these update predicates to express the following key properties of array
updates:

1. if an array V is never updated at an index p then the final value of V [p] is constant;
2. if an array V is updated at an index p at an iteration i and not updated at any further

iteration, then V [p] receives its final value at the iteration i.

These two properties do not depend on the loop. For the array B they are formally
expressed as follows.

(∀i)¬updB(i, p) =⇒ B(n)[p] = B(0)[p]; (7)

updB(i, p, v) ∧ (∀j > i)¬updB(j, p) =⇒ B(n)[p] = v. (8)



Finding Loop Invariants for Programs over Arrays Using a Theorem Prover 477

We will refer to these two properties as the stability property and the last update prop-
erty for B, respectively.

5 Extracting Loop Properties

In this section we will describe some properties that can be automatically extracted
from the loop. Given the loop body, we add all these properties as additional axioms to
the theorem prover Vampire to help it generate loop invariants.

Constant array. If we have an array A that is never updated in the loop, we can add
an axiom (∀i)(A(i) = A(0)). A simpler approach (and the one we adopt here) is to treat
such an array A as a constant and simply use A instead of A(i). In our example, A is
such an array so we will simply write A[p] instead of A(i)[p].

Monotonicity properties. Let us call a scalar variable v increasing if it has the prop-
erty (∀i ∈ iter)(v(i+1) ≥ v(i)) for all possible computations of the loop. Likewise,
a variable is called decreasing if it has the property (∀i ∈ iter)(v(i+1) ≤ v(i)) for
all possible computations of the loop. A monotonic variable is a variable that is either
increasing or decreasing.

The monotonicity properties can be discovered either by program analysis tools or
by some light-weight analysis. For example, if all assignments to a variable v in the loop
have the form v = v+ c where c is a non-negative integer constant, then v is obviously
increasing. In our example, the variables a, b and c can be identified as increasing using
such light-weight analysis.

We can introduce a more fine-grained classification of monotonic variables. A vari-
able v is called strictly increasing if it has the property (∀i ∈ iter)(v(i+1) > v(i)).
Strictly decreasing variables are defined similarly. In our example the variable a is
strictly increasing.

Let us call an increasing integer variable v dense if it has the property

(∀i ∈ iter)(v(i+1) = v(i) ∨ v(i+1) = v(i) + 1)

for all possible computations of the loop, and similarly for decreasing variables. In our
example, the variables a, b, c are all dense.

Let us now formulate properties that we extract from loops automatically for various
kinds of monotonic variable. We will only formulate them for increasing variables,
leaving the case of decreasing variables to the reader.

1. If a variable v is strictly increasing and dense, then we add the following property:

(∀i)(v(i) = v(0) + i).

Note that we do not restrict i in this formula to range over iterations only, as well
as we did so in formulas (7) and (8): one can prove that our approach is still sound
if we use these more general formulas.

2. If a variable v is strictly increasing but not dense, then we add the following prop-
erty:

(∀j)(∀k)(k > j =⇒ v(k) > v(j)).



478 L. Kovács and A. Voronkov

3. If a variable v is increasing but not strictly increasing, then we add the following
property:

(∀j)(∀k)(k ≥ j =⇒ v(k) ≥ v(j)).

4. If a variable v is increasing and dense but not strictly increasing, then we add the
following property:

(∀j)(∀k)(k ≥ j =⇒ v(j) + k ≥ v(k) + j).

Note that, under the monotonicity and density assumptions stated above, the above
formula follows from the property (∀j)(∀k)(v(k) ≤ v(j) + k − j).

In our example the following properties of the monotonic variables a, b, cwill be added:

(∀i)(a(i) = a(0) + i).
(∀j)(∀k)(k ≥ j =⇒ b(k) ≥ b(j)). (9)

(∀j)(∀k)(k ≥ j =⇒ c(k) ≥ c(j)).
(∀j)(∀k)(k ≥ j =⇒ b(j) + k ≥ b(k) + j).
(∀j)(∀k)(k ≥ j =⇒ c(j) + k ≥ c(k) + j).

To describe the other properties extracted from loops we will assume that the loop has
the following presentation by guarded assignments:

G1 → α1,
· · ·

Gm → αm.
(10)

Update properties of monotonic variables. Suppose that x is a monotonic variable.
Intuitively, an update property for this variable expresses that, if the variable changes its
value, then there exists a program point at which conditions for this change have been
enabled. As before, we will only formulate these properties for increasing variables.

Suppose that x is increasing. Further, assume that U ⊆ {1, . . . ,m} is the set of
guarded assignments that may update the value of x, that is, u ∈ U if and only if αu

contains an assignment to x. Then, if x is dense, we add the following property:

(∀v)(v ≥ x(0) ∧ x(n) > v =⇒ (∃i ∈ iter)(
∨

u∈U

(i :: Gu) ∧ x(i) = v).

If x is not dense, then the property is slightly more complex:

(∀v)(v ≥ x(0) ∧ x(n) > v =⇒ (∃i ∈ iter)(
∨

u∈U

(i :: Gu) ∧ v ≥ x(i) ∧ x(i+1) > v).

For our example the following two axioms will be added:

(∀v)(v ≥ b(0) ∧ b(n) > v =⇒ (∃i ∈ iter)(b(i) = v ∧A[a(i)] ≥ 0)); (11)

(∀v)(v ≥ c(0) ∧ c(n) > v =⇒ (∃i ∈ iter)(c(i) = v ∧ ¬A[a(i)] ≥ 0)).



Finding Loop Invariants for Programs over Arrays Using a Theorem Prover 479

Translation of guarded assignments. Suppose that G → e1 := e′1; . . . ; ek := e′k
is a guarded assignment in the loop representation and v1, . . . , vl are all scalar variables
of the loop not belonging to {e1, . . . , ek}. Define the translation t(ej) at iteration i of

a left-hand side of an assignment as follows: for a scalar variable x, we have t(x) def=
x(i+1), and for an array variable X and expression e we have t(X [e]) def= X(i+1)[e(i)].
Then we add the following axiom:

(∀i ∈ iter)(i :: G =⇒
∧

j=1,...,k

t(ej) = (i :: e′j) ∧
∧

j=1,...,l

v
(i+1)
j = v

(i)
j ).

For our running example, we add the following two formulas:

(∀i ∈ iter )( A[a(i)] ≥ 0 =⇒ B(i+1)[b(i)] = A[a(i)] ∧
b(i+1) = b(i) + 1 ∧
c(i+1) = c(i) );

(12)

(∀i ∈ iter)( ¬A[a(i)] ≥ 0 =⇒ C(i+1)[c(i)] = A[a(i)] ∧
c(i+1) = c(i) + 1 ∧
b(i+1) = b(i) ).

6 Invariant Generation

Our method of invariant generation works as follows.

1. Given a loop, create its representation by a collection of guarded assignments.
2. Generate loop invariants over scalars using Aligator. Note, that any other static

analysis tool, e.g. [6,23], can be also used.
3. Extract, using the techniques of Sections 4 and 5, first-order properties of the loop in

the logic using expressions v(i). Note that these first-order properties use auxiliary
function and predicate symbols that cannot occur in the invariants.

4. Eliminate auxiliary function and predicate symbols by running the saturation theo-
rem proverVampire on the collection of first-order properties of the loop obtained
in steps 2 and 3, and finding consequences not using these symbols.

The rest of this section discusses how one can eliminate auxiliary symbols and generate
invariants using Vampire.

Modern resolution theorem provers [25,26,27] lack several features essential for im-
plementing our procedure for invariant generation. These are

1. reasoning with linear integer arithmetic;
2. procedures for eliminating symbols.

The first problem is very hard (see, e.g. [17] for some results on combining first-order
superposition provers and arithmetic). However, one can provide a sound but incom-
plete axiomatisation of linear integer arithmetic that is sufficient for proving many es-
sential properties of integers. In our experiments we used the following very simple



480 L. Kovács and A. Voronkov

axiomatisation of the arithmetical relations > and ≥, and the successor function s (in
our examples we substituted s(e) instead of expressions e+ 1):

x ≥ y ⇐⇒ x > y ∨ x = y;
x > y =⇒ x �= y;
x ≥ y ∧ y ≥ z =⇒ x ≥ z;
s(x) > x;
x ≥ s(y) ⇐⇒ x > y.

To solve the second problem (changing a theorem prover to handle symbol elimination)
we used the following idea. For every array and scalar variable v that occurs on the left-
hand side of an assignment we introduce two new symbols v0 and v′ together with the
following axioms: v(0) = v0 and v(n) = v′. We call these new symbols target symbols.
Let us call a clause useful if it satisfies the following conditions (by a symbol below we
mean a signature symbol, that is, a non-variable).

1. Every symbol in this clause is either a target symbol, or an interpreted symbol or
a skolem function introduced by Vampire. We call such symbols usable and all
other symbols useless.

2. The clause contains at least one target symbol or a skolem function.

We are interested in deriving only useful clauses. Indeed, all other clauses either contain
symbols, such as update predicates, that cannot occur in invariants and so should be
eliminated, or represent valid arithmetical properties and so are irrelevant to the loop.

To this end, we make Vampire use a reduction ordering that makes all useless
symbols large in precedence and having a large weight in the Knuth-Bendix ordering
used by Vampire1. We also make Vampire output all generated useful clauses.

If we derive a useful clause containing no skolem functions, then this clause denotes
an invariant of the loop for all initial states satisfying the condition v = v0 for all
loop variables, after replacing all variables v′ by v. For example, from the properties
presented in Sections 4 and 5, Vampire derived the following useful clause:

¬x ≥ b′ ∨B′[x] = B0[x],

which denotes the invariant ¬x ≥ b ∨B[x] = B0[x] and can also be written as

(∀x)(x ≥ b =⇒ B[x] = B0[x]).

If a clause with skolem functions is derived, we can de-skolemise this clause by intro-
ducing existential quantifiers. For example, Vampire derived the clause

¬b′ > x ∨ ¬x ≥ 0 ∨A[$i(x)] = B′[x], (13)

where $i is a skolem function. This clause can be de-skolemised into a quantified in-
variant

(∀x)(b > x ∧ x ≥ 0 =⇒ (∃y)A[y] = B[x]). (14)

1 Essentially, resolution theorem provers prefer to apply inferences with atoms containing large
and heavy symbols and thus eventually remove these atoms from clauses.



Finding Loop Invariants for Programs over Arrays Using a Theorem Prover 481

However, there are reasons to use clauses with skolem functions directly rather then de-
skolemise them. Consider, for example, the following formula derived by Vampire
for our running example.

¬b′ > x ∨ ¬x ≥ 0 ∨A[$i(x)] ≥ 0. (15)

It can be de-skolemised into the invariant

(∀x)(b > x ∧ x ≥ 0 =⇒ (∃y)A[y] ≥ 0). (16)

The problem is that (13) and (15) imply the following invariant:

(∀x)(b > x ∧ x ≥ 0 =⇒ (∃y)(A[y] = B[x] ∧A[y] ≥ 0)),

which is not implied by their de-skolemised forms (14) and (16).

7 Experiments with Vampire

We made experiments with invariant generation for our running example and also for
an example of [22] where an array is filled with 0’s at positions from 0 to n− 1. In [22]
it took 0.01 seconds to generate an invariant for proving the assertion that all elements
of the array are zeros. Vampire derived this property as a loop invariant in less than
0.01 seconds: more precisely, it derived that all array elements up to the loop counter n
are zeros.

For our running example, among all generated invariants we were interested in find-
ing out how fast Vampire can derive the following two properties:

1. Array B does not change at positions greater than or equal to the final value of b,
that is

∀p(p ≥ b′ =⇒ B′[p] = B0[p]).

The corresponding clause was generated in 0.73 seconds.
2. Every value in {B[0], . . . , B[b−1]} is a non-negative value in {A[0], . . . , A[a−1]}:

∀p(b′ > p ∧ p ≥ 0 =⇒ B′[p] ≥ 0 ∧ ∃k(a′ > k ∧ k ≥ 0 ∧A[k] = B′[p]).

There are four clauses the conjunction of which imply this formula and which were
derived by Vampire, one of them is (13). The derivation was found in about 53
seconds.

8 Related Work

Recently, the problem of automatically generating quantified invariant properties for
loops with arrays received a considerable attention [9,4,20,16,2,12,11]. Based on the
abstract interpretation framework [5], the approaches described in [4,9,11,12,2] use a



482 L. Kovács and A. Voronkov

set of a priori defined atomic predicates over program variables, from which univer-
sally quantified array properties are then inferred. Paper [9] iteratively approximates
the strongest boolean combination of a given set of suitable predicates for the loop, un-
til a fixpoint, i.e. an invariant, is reached. The approach is based on predicate abstraction
with skolem constants for the quantified variables, and implements heuristics for guess-
ing some of the appropriate predicates used further for invariant generation. Iterative
computation of invariant predicates is also used in [20]. In [11] a priori fixed templates
describing candidate invariant properties are used to generate quantified invariants by
under-approximation algorithms of logical boolean operators for building abstract in-
terpreters over quantified abstract domains. However, these approaches require a given
set of predicates from which invariants can be built; some of them also require user
guidance.

Using the combined theory of linear arithmetic and uninterpreted function, [2] pre-
sents a constraint-based invariant synthesis. The method relies on user-given invariant
templates over program variables. Constraints on the unknown parameters of the tem-
plate invariants are generated based on the inductiveness property of an invariant as-
sertion. Solutions to these constraints are substituted for parameters in the template to
derive (universally quantified) invariants. Using counterexample guided abstraction, the
method is further extended in [3] to the generation of path invariants. A counterexample
guided abstraction refinement method is presented also in [16], where range predicates
are used to characterize properties of array segments between specified bounds. Array
invariants are then inferred from the predefined range predicates by interpolation-based
techniques. The appropriate range predicates are however supplied manually.

A fundamental difference of our approach compared to these works is that we do
not require user-defined templates or a fixed collection of predicates. Our invariants can
be arbitrary assertions inferred by a theorem prover from assertions over variables ob-
tained by recurrence solving and quantifier elimination methods and by a light-weight
analysis of monotonic variables of loops. The advantage of using general recurrence
solving methods together with quantifier elimination is also confirmed by comparing
our framework to [19] where loop invariants are inferred by providing predefined solu-
tions for a special subclass of recurrences over scalar variables. Moreover, unlike our
approach, the above mentioned methods do not infer automatically polynomial/linear
relations among scalar variables as invariants.

Based on the abstract interpretation framework, [10,13] infer universally quantified
array invariants. Their approach requires no user guidance. The key idea is to parti-
tion values used as array indexes into symbolic intervals and use abstract interpretation.
Paper [10] infer invariants of a special form essentially involving a single array index,
such as (∀i ≤ n)(A[i] > 0). Paper [13] goes further and, using more sophisticated anal-
ysis, derives invariants that may involve several arrays in which indexes are obtained
from each other by using a “shift” by an expression. An example of such an invariant is
(∀i ≤ n)(A[i] = B[i + e]), where e is an expression in which i does not occur. These
papers do not derive properties with quantifier alternations but [13] treats nested loops.
It seems that we can benefit from integrating the approach of [10,13] into ours, both by
deriving properties of a single loop iteration and by using their invariants as additional
formulas in a theorem prover.



Finding Loop Invariants for Programs over Arrays Using a Theorem Prover 483

In [22], based on an earlier work [15], a saturation theorem prover together with
elimination of symbols is used for generating interpolants and proving loop properties
over arrays. Although our approach has much in common with that of [22], there are
essential differences. First, we do not require to have a loop property for generating
invariants so our approach can be useful for generating properties of loops embedded
into large programs. Second, we support richer arithmetic reasoning by using symbolic
computation methods. Third, we are able to generate invariants also containing quanti-
fier alternations. Finally, [15,22] require some form of guidance by providing a growing
sequence of sets of atoms from which invariants can be built and the efficiency of their
analysis may crucially depend on the choice of such a sequence.

9 Conclusion

We showed how quantified loop invariants of programs over arrays can be automatically
inferred using a first order theorem prover, reducing the burden of annotating loops
with complete invariants. For doing so, we deploy symbolic computation methods to
generate numeric invariants of the scalar loop variables and then use update predicates
of the loop. Using this information quantified array invariants, including those with
alternating quantifiers, are derived with the help of a saturation prover. In particular,
our method does not require the user to give a post-condition, a predefined collection
of predicates or any other form of human guidance and avoids inductive reasoning.
Our initial experimental results on some benchmark examples demonstrate the potential
of our method. Modifications of theorem provers are required to carry out large-scale
experiments with our method.

Our work was partially inspired by an analysis of loops with arrays occurring in very
large programs performed by Thibaud Hottelier, Andrey Rybalchenko and the first au-
thor (personal communication): it turned out that many uses of arrays involve either
array initialisation, or array copying, either to another array or to itself, or simple itera-
tions over array elements. In other words, typical loops for programs with arrays are not
much more complex than the loop of our running example. This made us believe that
analysis of counters and other monotonic variables in such loops may provide enough
information to generate complex invariants.

Future work. To make our technique widely applicable one needs to extend first-order
theorem provers by symbol elimination and generating various classes of clause sets
with eliminated symbols: for example, minimal sets so that clauses in this set do not
imply each other. Minimality is, obviously, undecidable, so we can instead use some
light-weight removal of clauses implied by other clauses.

[22] formulates some results related to symbol elimination in resolution theorem
proving. In general, it is interesting to develop a theory for symbol elimination and
consequence finding, which is not well-understood in presence of equality.

It is possible that similar techniques can be successfully applied to programs with
pointers. To this end one should find out which properties of loops should be extracted
automatically to derive interesting invariants for such programs. Another interesting ex-
tension would be programs with nested loops: we believe many of them can be handled
using the same techniques.



484 L. Kovács and A. Voronkov

It is also interesting to see how our method can be used for proving loop properties
rather than generating them. To this end one can try to embed it into systems for proving
program properties, such as [8,1,14].

We also believe that more complex kinds of loop analysis followed by theorem prov-
ing would be able to discover non-trivial invariants of logically much more complex
loops, such as implementations of quick-sort and union-find algorithms.

We did not treat nested loops or multi-dimensional arrays due to a lack of space,
though they can be treated in a similar way, by using two loop counters and present-
ing arrays as functions of more than one argument and modifying update predicates
and their automatically generated properties. One needs extensive experiments to un-
derstand the efficiency of the method for these extensions too. We are going to make
such experiments after modifying Vampire.

Acknowledgments. We thank Andrey Rybalchenko for motivating discussions,
Thibaud Hottelier whose work provided parts of the infrastructure used by us, Rus-
tan Leino whose numerous remarks and careful proofreading helped us to improve the
paper considerably, and Sumit Gulwani and Shaz Qadeer for discussions on our method
and related work.

References

1. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An Overview. In:
Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

2. Beyer, D., Henzinger, T., Majumdar, R., Rybalchenko, A.: Invariant Synthesis for Combined
Theories. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 378–394.
Springer, Heidelberg (2007)

3. Beyer, D., Henzinger, T., Majumdar, R., Rybalchenko, A.: Path Invariants. In: Proc. of PLDI
(2007)

4. Cousot, P.: Verification by Abstract Interpretation. In: Dershowitz, N. (ed.) Verification: The-
ory and Practice. LNCS, vol. 2772, pp. 243–268. Springer, Heidelberg (2004)

5. Cousot, P., Cousot, R.: Abstract Interpretation: a Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints. In: Proc. of POPL, pp. 238–252
(1977)

6. Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Restraints Among Variables of a
Program. In: Proc. of POPL, pp. 84–96 (1978)

7. Dijkstra, E.W.: Guarded Commands, Nondeterminacy and Formal Derivation of Programs.
Communications of the ACM 18(8), 453–457 (1975)

8. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended
Static Checking for Java. In: Proc. of PLDI (2002)

9. Flanagan, C., Qadeer, S.: Predicate Abstraction for Software Verification. In: Proc. of POPL,
pp. 191–202 (2002)

10. Gopan, D., Reps, T.W., Sagiv, M.: A Framework for Numeric Analysis of Array Operations.
In: POPL, pp. 338–350 (2005)

11. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting Abstract Interpreters to Quantified Logical
Domains. In: Proc. of POPL, pp. 235–246 (2008)

12. Gulwani, S., Tiwari, A.: An Abstract Domain for Analyzing Heap-Manipulating Low-Level
Software. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 379–392.
Springer, Heidelberg (2007)



Finding Loop Invariants for Programs over Arrays Using a Theorem Prover 485

13. Halbwachs, N., Peron, M.: Discovering Properties about Arrays in Simple Programs. In:
Proc. of PLDI, pp. 339–348 (2008)

14. Henzinger, T.A., Hottelier, T., Kovacs, L.: Valigator: A Verification Tool with Bound and In-
variant Generation. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR. LNCS, vol. 5330,
pp. 333–342. Springer, Heidelberg (2008)

15. Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refinement. In:
Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 459–473. Springer,
Heidelberg (2006)

16. Jhala, R., McMillan, K.L.: Array Abstractions from Proofs. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 193–206. Springer, Heidelberg (2007)

17. Korovin, K., Voronkov, A.: Integrating Linear Arithmetic into Superposition Calculus. In:
Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 223–237. Springer, Hei-
delberg (2007)

18. Kovacs, L.: Reasoning Algebraically About P-Solvable Loops. In: Ramakrishnan, C.R., Re-
hof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 249–264. Springer, Heidelberg (2008)

19. Kroening, D., Weissenbacher, G.: Counterexamples with Loops for Predicate Abstraction. In:
Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 152–165. Springer, Heidelberg
(2006)

20. Lahiri, S.K., Bryant, R.E.: Indexed Predicate Discovery for Unbounded System Verification.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 135–147. Springer, Heidel-
berg (2004)

21. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems. Springer,
Heidelberg (1992)

22. McMillan, K.L.: Quantified Invariant Generation Using an Interpolating Saturation Prover.
In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 413–427.
Springer, Heidelberg (2008)

23. Miné, A.: The Octagon Abstract Domain. In: Proc. of WCRE, pp. 310–319 (2001)
24. Nieuwenhuis, R., Rubio, A.: Paramodulation-Based Theorem Proving. In: Robinson, A.,

Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 7, vol. 1, pp. 371–443. Else-
vier, Amsterdam (2001)

25. Riazanov, A., Voronkov, A.: The Design and Implementation of Vampire. AI Communica-
tions 15(2-3), 91–110 (2002)

26. Schulz, S.: System description: E 0.81. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004.
LNCS (LNAI), vol. 3097, pp. 223–228. Springer, Heidelberg (2004)

27. Weidenbach, C., Schmidt, R.A., Hillenbrand, T., Rusev, R., Topic, D.: System description:
SPASS version 3.0. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 514–520.
Springer, Heidelberg (2007)



Author Index

Acharya, Mithun 370
Aguirre, Nazareno M. 155
Al-Kofahi, Jafar M. 440
AlTurki, Musab 262
Androutsopoulos, Kelly 216
Autili, Marco 124

Benedetto, Paolo Di 124
Boronat, Artur 18
Bottoni, Paolo 278
Brucker, Achim D. 417

Calinescu, Radu 421
Chander, Ajay 262
Chatterjee, Shaunak 385
Chen, Qichang 425
Chockler, Hana 201
Clark, Allan 1
Clark, David 216

Daniel, Brett 171
Dhurjati, Dinakar 262

Ehrig, Hartmut 325
Ermel, Claudia 325

Farchi, Eitan 201
Frias, Marcelo F. 155
Fülleborn, Alexander 294

Giannakopoulou, Dimitra 94
Gilmore, Stephen 1
Godlin, Benny 201
Gray, Kathryn E. 186
Guerra, Esther 278

Halbwachs, Nicolas 140
Harman, Mark 216
Haugen, Øystein 34
Heckel, Reiko 18
Heisel, Maritta 294
Hermann, Frank 325
Huisman, Marieke 340

Inamura, Hiroshi 262
Inverardi, Paola 124

Jagannath, Vilas 171
Jahier, Erwan 140
Julien, Christine 401
Jurack, Stefan 49
Juvekar, Sudeep 385

Kosiuczenko, Piotr 246
Kovács, Laura 470
Kugler, Hillel 79
Kwiatkowska, Marta 421

Lambers, Leen 49
Lamo, Yngve 64
Lara, Juan de 278
Lee, Yun Young 171
Leino, K. Rustan M. 231
Li, Zheng 216

Maibaum, Thomas S.E. 155
Marinov, Darko 171
Meffert, Klaus 294
Mehner, Katharina 49
Meseguer, José 18
Middelkoop, Ronald 231
Møller-Pedersen, Birger 34
Moscato, Mariano M. 155
Mycroft, Alan 186

Narasamdya, Iman 309
Nguyen, Hoan Anh 440
Nguyen, Tien N. 440
Nguyen, Tung Thanh 440
Novikov, Sergey 201

Oldevik, Jon 34

Păsăreanu, Corina S. 94
Payton, Jamie 401
Périn, Michaël 309
Pham, Nam H. 440
Plock, Cory 79
Pnueli, Amir 79

Rajamani, Vasanth 401
Raymond, Pascal 140
Roman, Gruia-Catalin 401



488 Author Index

Rossini, Alessandro 64
Rutle, Adrian 64

Sen, Koushik 385
Šerý, Ondřej 456
Stoller, Scott D. 425
Sumner, William N. 355

Taentzer, Gabriele 49
Tamalet, Alejandro 340
Tratt, Laurence 216
Tribastone, Mirco 1

Voronkov, Andrei 470

Wachsmuth, Guido 109
Wang, Liqiang 425
Wassyng, Alan 155
Wierse, Gerd 49
Wolff, Burkhart 417
Wolter, Uwe 64

Xie, Tao 370

Yang, Zijiang 425
Yu, Dachuan 262

Zhang, Xiangyu 355


	Title Page
	Foreword
	Preface
	Organization
	Table of Contents
	Scalable Analysis of Scalable Systems
	Introduction
	Modelling Concepts
	The Calculus
	Model Transformation
	Case Study
	The Servers
	The Clients
	The Model Configuration
	Transformations
	Lazy Results

	Results
	Software Support
	Related Work
	Conclusions
	References

	Model-Driven Development
	Rewriting Logic Semantics and Verification of Model Transformations
	Introduction
	Modeling a Distributed MUTEX Algorithm
	Preliminaries: Rewriting Logic and MOMENT2
	MOMENT2: MOF and Models

	Rewriting Logic Semantics of Model Transformations
	QVT-Based Syntax for Model Transformations
	Rewriting Logic Semantics of Model Transformations
	Consistent Model Transformations

	Dynamic Analysis in MOMENT2
	Related Work, Conclusions and Future Work
	References

	Confluence in Domain-Independent Product Line Transformations
	Introduction
	Motivating Example
	Background on Product Line Variability
	The Domain-Independent Product Line Transformation
	Generating the Product Model Using the Variability Transformation

	Confluence of Variability Transformations
	Value and Reference Substitution
	Fragment Substitutions
	Confluence Checking of Fragment Substitutions

	Related Work
	Conclusions and Future Work
	References

	Object Flow Definition for Refined Activity Diagrams
	Introduction
	Introduction to Refined Activity Diagrams with Object Flow
	Domain Model
	Activity Diagrams with Object Flow
	Refined Activities

	Formalization by Graph Transformation
	Graphs and Graph Transformation
	Partial Rule Dependencies

	Object Flow: Semantics Definition and Properties
	Refined Activity Diagrams
	Refined Activity Diagrams with Object Flow

	Related Work
	Conclusion
	References

	A Category-Theoretical Approach to the Formalisation of Version Control in MDE
	Introduction and Motivation
	Diagram Predicate Framework
	Version Control in MDE
	Common Model
	Merge Model
	Synchronisation and Commit
	Difference and Conflict

	Related Work
	Conclusion and Future Work
	References


	Synthesis and Adaptation
	Controller Synthesis from LSC Requirements
	Introduction
	Related Work
	Smart Play-Out
	Example
	Game Structures
	Dependent vs. Independent Moves
	Deadlock

	Synthesis
	Controllable Predecessors
	Realizability andWinning Strategy

	Main Result
	Variables
	Transitions
	Initial and Winning Conditions
	Synthesis in the Play-Engine

	Conclusion
	References

	Interface Generation and Compositional Verification in JavaPathfinder
	Introduction
	Background
	InterfaceGeneration
	Safe and Permissive Interfaces
	Learning Interface Specifications with L*
	Correctness and Termination

	Compositional Verification in JPF
	Java PathFinder
	JPF’s UML Statechart Extension
	Assume-Guarantee Reasoning in JPF
	Interface Generation and Discharge

	Experience
	Conclusions
	References

	A Formal Way from Text to Code Templates
	Introduction
	Preliminaries
	A Core Text Template Language
	Generating Code Template Languages
	Conclusion
	References

	Context-Aware Adaptive Services: The PLASTIC Approach
	Introduction
	PLASTIC Adaptation(s)
	PLASTIC Development Environment
	PLASTIC Services Deployment and Access
	The PLASTIC Service-Oriented Interaction Pattern
	Over-the-Air Application Alternatives Delivery and Deployment

	Chameleon-Based PLASTIC Services Implementation
	Related Work
	Discussion and Future Work
	References


	Modeling
	Synchronous Modeling and Validation of Priority Inheritance Schedulers
	Introduction
	From $\sc{Aadl}$ to Synchronous Programs
	The $\sc{Aadl} Description Language
	The Synchronous Paradigm
	Modeling Asynchrony in the Synchronous Framework

	Handling Shared Resources
	The $No Lock$ Protocol
	The $Blocking$ Protocol
	The $Basic Inheritance$ Protocol
	The $Priority Ceiling$ Protocol

	Validation
	Absence of Deadlock
	Priority Inversion
	Schedulability

	Related Work
	Conclusion
	References

	Describing and Analyzing Behaviours over Tabular Specifications Using (Dyn)Alloy
	Introduction
	An Example of Tabular Specifications
	The Alloy and DynAlloy Modeling Languages
	Characterizing Tables in DynAlloy
	Specifying and Analyzing Sets of Executions via DynAlloy Programs
	Synthesis for Conditioned Atomic Actions
	Analyzing Programs over Tabular Specifications
	Conclusions
	References


	Testing and Debugging
	Reducing the Costs of Bounded-Exhaustive Testing
	Introduction
	Example
	Background: ASTGen
	Sparse Test Generation (STG)
	Structural Test Merging (STM)
	Oracle-Based Test Clustering (OTC)
	Case Study
	Related Work
	Conclusions
	References

	Logical Testing
	Introduction
	Test Specifications
	Language Additions

	Comparison with JUnit
	Individual Tests
	Test Organization

	Implementation
	Integration with Test Reports
	Implementation

	Snapshot Tests
	Taking a Snapshot in Restricted Java
	Taking a Snapshot with Reduced Costs
	Supporting Binary Libraries
	Problems with Snapshots

	Related Work
	Conclusions and Further Work
	References

	Cross-Entropy-Based Replay of Concurrent Programs
	Introduction
	Preliminaries
	The Cross-EntropyMethod in Optimization Problems
	Programs as Graphs
	The Cross-EntropyMethod for Replay

	Algorithm for Approximate Replay of Concurrent Programs
	Algorithm
	Random Injection

	Implementation and Experimental Results
	Implementation
	Description of the Experimental Setting
	Experimental Results

	Conclusions and Future Work
	References


	Model Analysis
	Control Dependence for Extended Finite State Machines
	Introduction
	Extended Finite State Machines
	Survey
	Control Flow for RSML
	Control Dependence for EFSMs
	Control Dependence for Non-terminating Programs
	Control Dependence for Communicating Automata

	New Control Dependence Definition: UNTICD
	Properties of the Control Dependence Relation
	UNTICD Subsumes ICD
	Relation between NTICD and UNTICD’s Transitive Closures
	NTSCD and UNTICD Dependencies within Control Sinks

	Comparison of UNTICD with Existing Definitions
	EFSM Slicing with UNTICD
	Computing EFSM Slices

	Conclusions
	References

	Proving Consistency of Pure Methods and Model Fields
	Introduction
	Avoiding Inconsistency
	Heuristics for Establishing $PO1$
	Defining the Ordering $\Prec$
	Root Distance
	Recursion Termination Value
	The measuredBy Clause

	Related Work and Experience
	Conclusions
	References

	On the Implementation of @pre
	Introduction
	Related Work
	Example
	Implementation of @pre
	Implementation in AspectJ
	Collections, Queries and Inheritance
	Complexity

	Conclusion and Future Work
	References

	Formal Specification and Analysis of Timing Properties in Software Systems
	Introduction
	The Specification Language $\mathcal{L}$
	Syntax and Examples
	Formal Semantics
	Timed Semantics

	Analysisof $\mathcal{L}$ Specifications in Real-Time Maude
	Simulation and Prototyping
	Model Checking Analysis

	Proper Use of Timing Abstractions
	Static Analysis of Specifications in $\mathcal{L}$
	A Generic Abstract Interpretation Framework
	Mishandled Timers

	Related Work
	Conclusion
	References


	Patterns
	Formal Foundation for Pattern-Based Modelling
	Introduction
	Related Work
	Pattern Specification
	Variable Patterns
	Annotating Structure with Roles: Triple Patterns
	Synchronizing Different Variable Patterns
	Full Pattern Specification

	Pattern-Based Model Completion
	Conclusions and Future Work
	References

	Problem-Oriented Documentation of Design Patterns
	Introduction
	A Method for Deriving Problem-Context Patterns
	Case $Study Salary Statement Application$
	Salary Statement Application: Annotated Problem-Bearing, Domain-Specific Source Code
	Salary Statement Application: Performing Transformations by Applying the Observer Design Pattern
	Salary Statement Application: Annotated Problem-Bearing, Domain-Specific UML Model
	Salary Statement Application: Annotated Resulting Domain-Specific UML Model
	Deriving a Fitting Problem-Context Pattern (Cross-Domain)

	Related Work
	Summary and Future Work
	References


	Security
	Certification of Smart-Card Applications in Common Criteria
	Introduction
	Formal Models and Representation Correspondences
	Transition Graphs and Computation Sequences
	Representation Correspondences

	Theory of Inter-Program Properties
	Proving Representation Correspondences
	Property Preservation
	Related Work and Conclusion
	References

	Transformation of Type Graphs with Inheritance for Ensuring Security in E-Government Networks
	Introduction
	Modelling E-Government Networks
	Transformation of Graphs with Inheritance
	Analysis of E-Government Network Meta-Models
	Related Work
	Conclusion
	References

	A Formal Connection between Security Automata and JML Annotations
	Introduction
	Modelling Security Properties with Automata
	Programs and Semantics
	Program Syntax
	Natural Semantics

	Annotation Generation
	Related Work
	Conclusions and Future Work
	References


	Queries and Error Handling
	Algorithms for Automatically Computing the Causal Paths of Failures
	Introduction
	Background
	Algorithms
	A Hierarchical Algorithm
	A Shortcutting Algorithm

	Evaluation
	Related Work
	References

	Mining API Error-Handling Specifications from Source Code
	Introduction
	Example
	Framework
	Error/Normal Trace Generation
	SpecificationMining
	Verification

	Evaluation
	Related Work
	Conclusions
	References

	SNIFF: A Search Engine for Java Using Free-Form Queries
	Introduction
	Overview
	Our Approach and Algorithm
	Preprocessing: Parsing Open-Source Java Code
	Preprocessing: Annotating and Indexing the Client Code
	Responding to a Query

	Evaluation
	User Study
	Comparison with Online Search Engines
	Effectiveness of Intersection and Clustering Techniques in Sniff

	Other Related Work
	Conclusion
	References

	Inquiry and Introspection for Non-deterministic Queries in Mobile Networks
	Introduction
	Defining Inquiry in Dynamic Networks
	Hosts, Configurations, and Configuration Change
	Queries, Inquiry Modes, and Query Results
	Examples of Application Protocols

	Inquiry Introspection
	An Informal Introduction to Query Introspection
	Formalizing Query Introspection

	Implementing Inquiry Modes and Introspection
	Related Work
	Conclusions
	References


	Tools (Demos) and Program Analysis
	HOL-$\sc{TestGen}$
	Introduction
	TheHOL-TestGen Architecture and Workflow
	Case Studies
	Conclusion
	References

	CADS*: Computer-Aided Development of Self-* Systems
	Introduction
	CADS* Development Process
	Tool Validation
	Conclusion
	References

	HAVE: Detecting Atomicity Violations via Integrated Dynamic and Static Analysis
	Introduction
	AtomicityViolations
	Integrating Dynamic and Static Analyses
	The Static Analyzer
	Instrumentation
	The Dynamic Monitor and Speculator

	The Conflict-Edge Algorithm
	Building Conflict-Edges between Hybrid Trees
	Detecting Atomicity Violations
	Unwrap Loops

	Optimization: Dynamic Sharing Analysis
	Experiments
	Related Work
	Conclusions and Future Work
	References

	Accurate and Efficient Structural Characteristic Feature Extraction for Clone Detection
	Introduction
	Exas Approach
	Structure-Oriented Representation
	Structural Feature Selection
	Characteristic Vectors
	Analytical Study
	Implications in Clone Detection

	Vector Computing Algorithm
	Key Computation Operation: $incrVector$
	Vector Computation for All Fragments in a Graph
	Vector Indexing and Storing

	Applications of Exas
	ClemanX
	GemScan

	Empirical Evaluation
	Clone Detection on Graph-Based Artifacts
	Clone Detection on Tree-Based Artifacts

	Related Work
	Conclusions
	References

	Enhanced Property Specification and Verification in BLAST
	Introduction
	Goals and Structure of the Paper

	Configurable Program Analysis
	Checking Behavior
	Behavior Specification
	Behavior CPA
	Tool Support

	Evaluation
	Related Work
	Future Work
	Conclusion
	References
	Appendix

	Finding Loop Invariants for Programs over Arrays Using a TheoremProver
	Introduction
	Example
	Preliminaries
	Update Predicates
	Extracting Loop Properties
	Invariant Generation
	Experiments with $\tt{Vampire}$
	Related Work
	Conclusion
	References


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




