
Handlers of Algebraic Effects

Gordon Plotkin� and Matija Pretnar��

Laboratory for Foundations of Computer Science,
School of Informatics, University of Edinburgh, Scotland

Abstract. We present an algebraic treatment of exception handlers and,
more generally, introduce handlers for other computational effects repre-
sentable by an algebraic theory. These include nondeterminism, interac-
tive input/output, concurrency, state, time, and their combinations; in
all cases the computation monad is the free-model monad of the theory.
Each such handler corresponds to a model of the theory for the effects
at hand. The handling construct, which applies a handler to a compu-
tation, is based on the one introduced by Benton and Kennedy, and is
interpreted using the homomorphism induced by the universal property
of the free model. This general construct can be used to describe previ-
ously unrelated concepts from both theory and practice.

1 Introduction

In seminal work, Moggi proposed a uniform representation of computational ef-
fects by monads [14,15,1]. The computations that return values from a set X
are modelled by elements of TX , for a suitable monad T . Examples include
exceptions, nondeterminism, interactive input/output, concurrency, state, time,
continuations, and combinations thereof. Plotkin and Power later proposed to
focus on algebraic effects, that is, effects that allow a representation by opera-
tions and equations [18,20,21]; the operations give rise to the effects at hand.
All of the effects mentioned above are algebraic, with the notable exception of
continuations [6], which have to be treated differently: see [9] for initial ideas.

In the algebraic approach, an operation gives rise to an occurrence of an
effect and its arguments are the possible computations after that occurrence.
For example, using a binary choice operation or :2, a nondeterministically chosen
boolean is given by the term or(return true, return false) :Fbool, where Fσ stands
for the type of computations that return values of type σ (we are working in
Levy’s call-by-push-value (CBPV) framework [11]). The equations of the theory,
for example the ones stating that or is a semi-lattice operation, generate the
free-model functor, which is used to interpret the type Fσ.

Modulo the forgetful functor, the free model functor is exactly the monad
proposed by Moggi to model the corresponding effect [19]. When operations are
viewed as a family of functions parametric in X , e.g., orX : TX2 → TX , one
� Supported by EPSRC grant GR/586371/01 and a Royal Society-Wolfson Award

Fellowship.
�� Supported by EPSRC grant GR/586371/01.

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 80–94, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Handlers of Algebraic Effects 81

obtains the so-called algebraic operations ; such families are characterised by a
certain naturality condition [20].

Although the algebraic approach has given ways of constructing, combin-
ing [10], and reasoning [22] about effects, it has not yet accounted for their
handling. The difficulty is that exception handlers, a well-known programming
concept, fail to be algebraic operations [20]. Conceptually, algebraic operations
and effect handlers are dual: the former could be called effect constructors as
they give rise to the effects; the latter could be called effect deconstructors as
they depend on the effects already created. Filinski’s reflection and reification
operations provide general effect constructors and deconstructors in the context
of layered monads [5].

This paper presents an account of deconstructors for arbitrary algebraic ef-
fects, and introduces a handling construct for them. The central new semantic
idea is that deconstructing a computation amounts to applying to it a unique
homomorphism guaranteed by universality. The domain of this homomorphism
is a free model of the algebraic theory of the effects at hand; its range is a
programmer-defined model of the algebraic theory; and it extends a programmer-
defined map on values. Our new handling construct generalises the exception-
handling construct of Benton and Kennedy [2]. It also includes many other,
previously unrelated, examples, such as: stream redirection of shell processes,
renaming and hiding in CCS [8], timeout, and rollback.

In Section 2, we illustrate the use of homomorphisms via an informal discus-
sion of exception handlers. Then in Sections 3, 4, and 5, we develop a formal
calculus in the call-by-push-value framework. This framework includes both call-
by-value and call-by-name and proved convenient for the logic of effects in [22].
Section 3 describes the algebraic theory of effects over a given base signature
and interpretation. A natural need for two languages arises: one describing han-
dlers, given in Section 4, and one using them to handle computations, given
in Section 5. The second parts of these sections give the relevant denotational
semantics; readers may wish to omit them at first reading. We give examples in
Section 6, where CBPV enables us to define handlers using non-free algebras.

We outline a version of a logic for algebraic effects [22] with handlers in Sec-
tion 7. In Section 8, we sketch the inclusion of recursion: until then we work only
with sets and functions, but everything adapts straightforwardly to ω-cpos (par-
tial orders with sups of increasing sequences) and continuous functions (mono-
tone functions preserving sups of increasing sequences). We conclude in Section 9
with a discussion of some open questions and possible future work.

2 Exception Handlers

We start our study with exception handlers, both because they are an estab-
lished concept [2,12] and also because exceptions provide the simplest example
of algebraic effects. To focus on the exposition of ideas, we write this section in
a rather informal style, mixing syntax and semantics.

Taking a set of exceptions E, the computations that return values from a
set X are modelled by elements γ of the monad TX =def X + E with unit

82 G. Plotkin and M. Pretnar

ηX = inlX : X → X + E. Algebraically, one may take a nullary operation, i.e.,
a constant, raisee : 0 for each e ∈ E and no equations, and then FX has carrier
TX with raisee interpreted as inr(e).

Fixing X , an exception handler γ handle {e �→ γe}e∈E takes a computation
γ ∈ X + E and intercepts raised exceptions e ∈ E, carrying out predefined
computations γe ∈ X + E instead (if one chooses not to handle a particular
exception e one takes γe = raisee). So we have the two equations:

ηX(x) handle {e �→ γe}e∈E = inlX(x) ,
raisee handle {e �→ γe}e∈E = γe .

From an algebraic point of view, the γe provide a model X + E for the theory
of exceptions. This model has carrier X+E and, for each e, raisee is interpreted
by γe. We then see from the above two equations that

θ(γ) =def γ handle {e �→ γe}e∈E

is the unique homomorphism θ : X + E → X + E extending inlX : X → X + E
along ηX (we confuse the free model on X with its carrier).

Benton and Kennedy [2] generalised the handling construct to one of the form

try x⇐ γ in g(x) unless {e �→ γe}e∈E ,

where exceptions e may be handled by computations γe of any given type M
(here a model of the theory) and returned values are “handled” with a map
g : X → M . (This construct is actually a bit more general than in [2] as E
may be infinite and as we are in a call-by-push-value framework rather than a
call-by-value one.) We now have:

try x⇐ ηX(x) in g(x) unless {e �→ γe}e∈E = g(x) ,
try x⇐ raisee in g(x) unless {e �→ γe}e∈E = γe .

As remarked in [2], this handling construct allows a more concise programming
style, program optimisations, and a stack-free small-step operational semantics.

Algebraically we now have a model M on (the carrier of) M , interpreting
raisee by γe, and the handling construct corresponds to the homomorphism θ
induced by g, that is the unique homomorphism θ : X + E → M extending g
along ηX . Note that all the homomorphisms from the free model are obtained
in this way, and so (this version of) Benton and Kennedy’s handling construct
is the most general one possible from the algebraic point of view.

We can now see how to give handlers of other algebraic effects. To give a
model of a finitary algebraic theory on a set X is to give a map fop : Xn → X
for each operation op :n, on condition that those maps satisfy the equations of the
theory. As before, computations are interpreted in the free model and handling
constructs are interpreted by the induced homomorphisms. Intuitively, while
exceptions are replaced by handling computations, operations are recursively
replaced by handling functions on computations.

Handlers of Algebraic Effects 83

3 Effects

We start with a base signature Σbase, consisting of: a set of base types β; a
subset of the base types, called the arity types α; a collection of function symbols
f : (β) → β; and a collection of relation symbols R : (β). We use vector notation
a to abbreviate lists a1, . . . , an.

Base terms v are built from variables x and function symbols, while base
formulas ψ are built from equations between base terms, relation symbols applied
to base terms, logical connectives, and quantifiers over base types; we may omit
empty parentheses in terms and formulas, and in similar constructs introduced
below. In a context Γ of variables bound to base types, we type base terms as
Γ � v :β and base formulas as Γ � ψ : form.

An interpretation of the base signature is given by: a set [[β]] for each base
type β, countable if β is an arity type; a map [[f]] : [[β]] → [[β]] for each function
symbol f : (β) → β; and a subset [[R]] ⊆ [[β]] for each relation symbol R : (β),
where [[β]] = [[β1]] × . . . [[βn]]. Terms Γ � v : β and formulas Γ � ψ : form are
interpreted by maps [[v]] : [[Γ]] → [[β]] and subsets [[ψ]] ⊆ [[Γ]] as usual [4].

3.1 Effect Theories

Standard equational logic does not give a finitary notation for describing effects
given by an infinite family of operations, having an infinite number of outcomes,
or described by an infinite number of equations [20]. We present a more general
notation to do this, at least in some cases.

To avoid infinite families of operation symbols, we allow operations to have
parameters of base types. For example, instead of having a family of operation
symbols updatel,d :1 for each location l and datum d, we employ a single operation
symbol update : loc,dat; 1 that takes parameters l : loc and d : dat, giving a
memory location to be updated and a datum to be stored there.

To avoid operation symbols of infinite arity, their arguments are allowed to
depend on an element of an arity type. For example, lookup : loc;dat has param-
eter l : loc and a single argument, dependent on a d :dat. The parameter gives
a memory location to be looked-up and the argument gives the computation to
be then carried out, dependent on the datum stored in that location.

Thus, given a base signature Σbase, an effect signature Σeff consists of oper-
ation symbols op :β; α1, . . . ,αn, where β is a list of parameter base types, and
α1, . . . ,αn are lists of argument arity types. We omit the semicolon when β is
empty, and write n instead of α1, . . . ,αn when every αi is empty. Effect terms
T are given by the following grammar:

T :: = z(v) | opv(xi :αi.Ti)i ,

where z ranges over effect variables, and opv(xi : αi.Ti)i is an abbreviation for
opv(x1 :α1.T1, . . . ,xn :αn.Tn). We may omit empty binders here and in similar
constructs below.

84 G. Plotkin and M. Pretnar

We type effect terms as Z;Γ � T , where Z consists of effect variables z : (α),
according to the following rules:

Γ � v :α
Z;Γ � z(v)

(z : (α) ∈ Z)

Γ � v :β Z;Γ,xi :αi � Ti (i = 1, . . . , n)
Z;Γ � opv(xi :αi.Ti)i

(op :β; α1, . . . ,αn ∈ Σeff) .

Next, conditional equations have the form Z;Γ � T1 = T2 (ψ), assuming that
Z;Γ � T1, Z;Γ � T2, and Γ � ψ : form. Finally, a conditional effect theory Teff

(over base and effect signatures Σbase and Σeff) is a collection of such equations.
It would be interesting to develop an equational logic for such theories [17].

Example 1. To describe a set E of exceptions, the base signature consists of a
base type exc and a constant function symbol e : () → exc for each e ∈ E. We
interpret exc by E and function symbols by their corresponding elements. The
effect signature consists of an operation symbol raise : exc; 0, while the effect
theory is empty. Then, omitting empty parentheses, raisee is the computation
that raises the exception e.

Example 2. For nondeterminism, we take the empty base signature, the empty
interpretation, the effect signature with a single nondeterministic choice opera-
tion symbol or :2, and the effect theory for a semi-lattice, which states that or is
idempotent, commutative, and associative.

Example 3. For state, the base signature contains a base type loc of memory lo-
cations, an arity type dat of data, and appropriate function and relation symbols
for the locations and data. We interpret loc by a finite set L and dat by a count-
able set D. The effect signature consists of operation symbols lookup : loc;dat
and update : loc,dat; 1, while the effect theory consists of seven conditional
equations [19,17]. As an example, lookupl(d :dat.updatel′,d(z)) is the computa-
tion that copies d from l to l′ and then proceeds as z.

Each effect theory Teff and interpretation of the base signature induces a stan-
dard, possibly infinitary, equational theory [7]. For each op : β; α1, . . . ,αn and
b ∈ [[β]], we take an operation symbol opb of countable arity

∑
i |[[αi]]|. Then

each effect term Z;Γ � T and c ∈ [[Γ]] gives rise to a, possibly infinitary, term
Tc, with variables of the form za (z : (α) ∈ Z, a ∈ [[α]]). The equations of the
theory are Tc = Tc′ for each Z;Γ � T = T ′ (ψ) in Teff and c ∈ [[ψ]] (⊆ [[Γ]]).

An interpretation of Σeff has a set M , its carrier, together with a map

opM : [[β]] ×
∏

i

M [[αi]] →M

for each op : β; α1, . . . ,αn ∈ Σeff ; it is a model of the effect theory Teff if the
corresponding maps opM (b,−), where b ∈ [[β]], satisfy the equations of the

Handlers of Algebraic Effects 85

induced equational theory. A homomorphism between models M and N is a
map θ : M → N such that opN ◦ (id[[β]] ×

∏
i θ

[[αi]]) = θ ◦ opM holds for all
op :β; α1, . . . ,αn ∈ Σeff .

Models and homomorphisms form a category ModTeff , equipped with the for-
getful functor U : ModTeff → Set, which maps a model to its carrier and a
homomorphism to its underlying map. This functor has a left adjoint F , which
constructs the free model FX on a set of generators X . The set UFX represents
the set of computations that return values in X , and the monad UF agrees [19]
with the monad proposed by Moggi to model the corresponding effect [15] (as-
suming the effect theory appropriately chosen).

The monad induced by the theory for exceptions in Example 1 maps a set X
to X +E, the one for non-determinism in Example 2 maps it to the set F+(X)
of finite non-empty subsets of X , while the one for state in Example 3 maps it to
(S×X)S , where S = DL. One can give an equivalent treatment using countable
Lawvere theories [23].

4 Handlers

Exception handlers are usually described and used within the same language:
for each exception, we give a replacement computation term, which can contain
further exception handlers. Repeating the same procedure for other algebraic
effects is less straightforward: in order to interpret the handling construct, the
handlers have to be correct in the sense that the redefinition of the operations
they provide yields a model of the effect theory.

Equipping a single calculus with a mechanism to verify that handlers are
correct would result in a complex interdependence between well-formedness and
correctness. We avoid this by providing two calculi: one, given in this section,
enables the language designer to specify handlers; another, given in the next
section, enables the programmer to use them. In this way the selection of correct
handlers is delegated to the meta-level.

Handler types χ, handler terms w, and handlers h are given by the following
grammar:

χ :: = X | Fσ | 1 | χ1 × χ2 | σ → χ

w :: = ϕ(v) | opv(xi :αi.wi)i | if ψ thenw1 elsew2 | return v |
letx :σ bew inw′ | � | 〈w1, w2〉 | fstw | sndw | λx :σ.w | wv

h :: = (ϕp :χ; xp :σ).{opx(ϕ) �→ wop}op∈Σeff ,

where X ranges over type variables, σ ranges over value types (here the same as
the base types), ϕ ranges over handler variables, and ψ ranges over quantifier-free
formulas. A handler is given by a handling term for each operation, dependent on
parameters xp and ϕp. We may omit the semicolon in handlers when either σ or
χ is empty, and also in similar constructs introduced below. When opx(ϕ) �→ wop

is omitted, we assume that wop = opx(xi :αi.ϕi(xi))i, so that op is not handled.

86 G. Plotkin and M. Pretnar

We type handler terms as Φ;Γ � w :χ where Φ is a context of handler variables
ϕ : (α) → χ, according to the following rules:

Γ � v :α
Φ;Γ � ϕ(v) :χ

(ϕ : (α) → χ ∈

Φ)
Γ � v :β Φ;Γ,xi :αi � wi :χ (i = 1, . . . , n)

Φ;Γ � opv(xi :αi.wi)i :χ
(op :β; α1, . . . ,αn ∈ Σeff)

Γ � v :σ
Φ;Γ � return v :Fσ

Φ;Γ � w :Fσ Φ;Γ, x :σ � w′ :χ
Φ;Γ � letx :σ bew inw′ :χ

,

and the standard rules for conditionals, products, and functions.
Handlers are typed as � h : (χ; σ) → χ handler by the following rule:

ϕp :χ, (ϕi : (αi) → χ)n
i=1; xp :σ,x :β � wop :χ (op :β; α1, . . . ,αn ∈ Σeff)

� (ϕp :χ; xp :σ).{opx(ϕ) �→ wop}op∈Σeff : (χ; σ) → χ handler
.

Note that a handler may be polymorphic, as type variables may occur in χ or
χ. We say that a handler � h : (χ; σ) → χ handler is uniform if χ = X , and
parametrically uniform if χ = σ → X .

4.1 Semantics

For each assignment ρ of models to type variables, handler types χ are interpreted
by models [[χ]]ρ, given by

[[X]]ρ = ρ(X) [[Fσ]]ρ = F [[σ]] [[1]]ρ = 1

[[χ1 × χ2]]ρ = [[χ1]]ρ × [[χ2]]ρ [[σ → χ]]ρ = [[χ]][[σ]]
ρ ,

where the model is given component-wise on M1 ×M2 and point-wise on MA.
Then, we interpret contexts Φ = ϕ1 : (α1) → χ1, . . . , ϕn : (αn) → χn by

[[Φ]]ρ = U [[χ1]]
[[α1]]
ρ × · · · × U [[χn]][[αn]]

ρ and handler terms Φ;Γ � w : χ by maps
[[w]]ρ : [[Φ]]ρ × [[Γ]] → U [[χ]]ρ, defined inductively on valid typing judgements by

[[Φ;Γ � ϕi(v) :χi]]ρ = ev[[αi]],U [[χi]]ρ ◦ 〈pri ◦ pr1, 〈[[v]]〉 ◦ pr2〉
[[Φ;Γ � opv(xi :αi.wi)i :χ]]ρ = op[[χ]]ρ ◦ 〈〈[[v]]〉 ◦ pr2,

̂[[w1]]ρ, . . . , ̂[[wn]]ρ〉
[[Φ;Γ � return v :Fσ]]ρ = η[[σ]] ◦ [[v]] ◦ pr2

[[Φ;Γ � letx :σ bew inw′ :χ]]ρ = [[w′]]†ρ ◦ 〈id[[Φ]]ρ×[[Γ]] , [[w]]ρ〉 ,
where judgements are abbreviated to terms on the right. The maps ev and pr are
evaluation and projection functions; -̂ is the transpose operation (associativity
isomorphisms are omitted here, and below); and η is the unit of UF . The map
f † =def U(εM ◦ Ff) ◦ stA,B : A × UFB → UM is the parameterised lifting of
f : A × B → UM , where ε is the counit of FU , and st is the strength of UF .
Conditionals, products, and functions are interpreted as usual [11].

Handlers of Algebraic Effects 87

A handler h : (χ; σ) → χ handler is interpreted by a parameterised family
[[h]]ρ(mp,ap) of Σeff-interpretations, where mp ∈ U [[χ]]ρ and ap ∈ [[σ]]; each
such interpretation has carrier U [[χ]]ρ, and, for each op :β; α1, . . . ,αn, the map

opU [[χ]]ρ =def (m,a) �→ [[wop]]((mp,m), (ap,a))

(identifying models M with their trivial powers M1).
We say that h is correct (with respect to Teff) if for all assignments ρ, and

for all mp ∈ U [[χ]]ρ and ap ∈ [[σ]], the Σeff -interpretation [[h]]ρ(mp,ap) defines
a model of the effect theory Teff on U [[χ]]ρ. If the effect theory is empty, then
any handler is correct, but, in general, correctness is undecidable. In particular,
the following problem is Π1-complete: given a multi-sorted finitary equational
theory with finite signature and finitely many axioms, decide whether, in the
initial model, a given interpretation of the theory in itself satisfies the axioms.

5 Computations

We assume a handler signature Σhand of handler symbols

H : (χ; σ) → χ handler .

Then, computation types τ and terms t are given by the following grammar:

τ :: = Fσ | 1 | τ1 × τ2 | σ → τ ,

t :: = opv(xi :αi.ti)i | if ψ then t1 else t2 | return v | letx :σ be t in t′ |
try twithH(t; v) asx :σ in t′ | � | 〈t1, t2〉 | fst t | snd t | λx :σ.t | tv ,

where ψ ranges over quantifier-free formulas, as before.
One can see that computation types and terms mirror their handler counter-

parts, with the omission of type and handler variables, and with the addition of
the handling construct. When the full handling construct is not necessary, we
write handle twithH(t; v) instead of try twithH(t; v) asx :σ in return x, and when
the handler signature consists of a single handler symbol H , we omit it, writing
try twith v; t asx :σ in t′ or handle twith t; v instead.

We can extend both handlers and computations with other call-by-push-value
types and terms [11,22]. A problem arises if we introduce thunks: handler terms
then contain value terms, which contain thunked computation terms, which con-
tain the handling construct. To resolve the issue, one further splits the handler
types and terms into value and computation ones.

Computation terms are typed as Γ � t : τ according to rules similar to the
ones for handling terms, except that the handling construct for a handler symbol
H : (χ; σ) → χ handler ∈ Σhand is typed by

Γ � t :Fσ Γ � t :χ[τ/X] Γ � v :σ Γ, x :σ � t′ :χ[τ/X]
Γ � try twithH(t; v) asx :σ in t′ :χ[τ/X]

,

where χ[τ/X] is the computation type obtained by replacing all the type vari-
ables X in χ by the computation types τ .

88 G. Plotkin and M. Pretnar

5.1 Semantics

To interpret computation terms, we assume given a handler definition Δ, map-
ping each handler symbol H : (χ; σ) → χ handler ∈ Σhand to a correct handler
� Δ(H) : (χ; σ) → χ handler. Then, computation types and terms are inter-
preted in the same way as their handler counterparts, except that the handling
construct Γ � try twithH(t; v) asx :σ in t′ :χ[τ/X] is interpreted along the lines
discussed in Section 2, as we now see.

Take c ∈ [[Γ]] and let ρ be an assignment that maps Xi to [[τ i]]. Since each
handler Δ(H) is correct, the Σeff interpretation [[Δ(H)]]ρ(〈[[t]]〉(c), 〈[[v]]〉(c)) is
a model U [[χ]]ρ of the effect theory Teff with carrier U [[χ]]ρ. By the universality
of the free model F [[σ]], there is a unique homomorphism θc : F [[σ]] → U [[χ]]ρ
extending [[t′]](c,−) in the sense that the following diagram commutes:

[[σ]]

UF [[σ]]

η[[σ]]

� θc� U [[χ]]ρ

[[t ′]](c,−)
�

The handling construct Γ � try twithH(t; v) asx : σ in t′ : χ[τ/X] is then
interpreted by the map

c �→ θc([[t]](c)) : [[Γ]] → U [[χ[τ/X]]]

(note that [[χ]]ρ is equal to [[χ[τ/X]]] by the definition of ρ).

6 Examples

We give a number of examples to demonstrate the versatility of our handling
construct.

6.1 Exceptions

The standard uniform exception handler is given by

(ϕ :exc → X).{raisee �→ ϕe} : (exc → X) → X handler .

Benton and Kennedy’s construct try x ⇐ t in t′ unless {e1 ⇒ t1 | · · · | en ⇒ tn}
can then be written as try twith texc asx :σ in t′ for a suitable σ and texc :exc → τ .

Benton and Kennedy noted a few issues about the syntax of their construct
when used for programming [2]. It is not obvious that t is handled whereas t′

is not, especially when t′ is large and the handler is obscured. An alternative
they propose is try x ⇐ t unless {e1 ⇒ t1 | . . . | en ⇒ tn}i in t′, but then it is not
obvious that x is bound in t′, but not in the handler. The syntax of our con-
struct try twithH(t; v) asx : σ in t′ addresses those issues and clarifies the order
of evaluation: after t is handled with H , its results are bound to x and used in t′.

Handlers of Algebraic Effects 89

6.2 Stream Redirection

Shell processes in Unix-like operating systems communicate with the user us-
ing input and output streams, usually connected to a keyboard and a terminal
window. However, such streams can be rerouted to other processes so simple
commands can be combined into more powerful ones.

One case is the redirection proc > outfile of the output stream of a pro-
cess proc to a file outfile, usually used to store the output for a future analy-
sis. An alternative is the redirection proc > /dev/null to the null device, which
effectively discards the standard output stream.

Another case is the pipe proc1|proc2, where the output of proc1 is fed to
the input of proc2. For example, to get a way (not necessarily the best one) of
routinely confirming a series of actions, for example deleting a large number of
files, we write yes|proc, where the command yes outputs an infinite stream
made of a predetermined character (the default one being y).

We represent interactive input/output by: a base signature, consisting of
a base type char of characters and constants a, b, . . . of type char, together
with the obvious interpretation; an effect signature, consisting of operation sym-
bols out : char; 1 and in : char, with the empty effect theory. Then, if t is a
computation, we can express yes| t > /dev/null by handle twithHred, where
Hred : () → X handler is defined to be {outc(ϕ) �→ ϕ, in(ϕ) �→ ϕ(y)}.

6.3 CCS Renaming and Hiding

In functional programming, processes are regarded as programs of empty type 0.
The subset of CCS processes [13], given by action prefix and sum, can be repre-
sented by: a base signature, consisting of a base type act of actions and appropri-
ate constants for actions, interpreted in the evident way; an effect signature, con-
sisting of operation symbols 0 :0, do :act; 1, and +:2, with the obvious effect the-
ory [22]. Then, process renaming t[b/a] can be written as handle twithHren(a, b),
where, writing a.ϕ for doa(ϕ), Hren : (act, act) → F0 handler is defined by:

Hren = (a :act, b :act).{a′.ϕ �→ if a′ = a then b.ϕ elsea′.ϕ} .

Note that 0 and + are handled by themselves, following the convention given
above regarding operation symbols omitted from handlers.

Hiding can be implemented in a similar way, but whether parallel can be
is an open question. The difficulty is that the natural definition of parallel is
by a simultaneous recursion on the structure of both its arguments, whereas the
handler mechanism provides only recursion on one argument. We should mention
that some attempts at finding a binary variant of handlers were unsuccessful.

6.4 Explicit Nondeterminism

The evaluation of a nondeterministic computation usually takes only one of all
the possible paths. But in logic programming [3], we do an exhaustive search for

90 G. Plotkin and M. Pretnar

all solutions that satisfy given constraints in the order given by the solver imple-
mentation. Such nondeterminism is represented slightly differently from the one
in Example 2. We take: the empty base signature; an effect signature, consisting
of operation symbols fail : 0 and pick : 2, with the effect theory consisting of the
following equations stating that the operations form a monoid:

z � pick(z, fail) = pick(fail, z) = z ,

z1, z2, z3 � pick(z1, pick(z2, z3)) = pick(pick(z1, z2), z3) .

The free-model monad maps a set to the set of all finite sequences of its elements,
which is Haskell’s nondeterminism monad [16].

A user is usually presented with a way of browsing through those solutions,
for example extracting all the solutions into a list. Since our calculus has no
polymorphic lists (although it can easily be extended with them), we take base
types α and listα, function symbols nil : () → listα, cons : (α, listα) → listα,
head : (listα) → α, tail : (listα) → listα, and append : (listα, listα) → listα. Then,
all the results of a computation of type Fα can be extracted into a returned
value of type F listα using the handler

{fail �→ return nil ,

pick(ϕ1, ϕ2) �→ letx1 : listα beϕ1 in letx2 : listα beϕ2 in return append(x1, x2)} .
We can similarly devise a handler that returns the first solution, or one that
prints out a solution and asks the user whether to continue the search or not.

6.5 Handlers with Parameter Passing

Sometimes, we wish to handle different instances of the same operation dif-
ferently, for example suppressing output after a certain number of characters.
Although we handle operations in a fixed way, we can use handlers on a function
type σ → χ to simulate handlers on χ that pass around a parameter of type σ.

Instead of

(ϕp :χ; xp :σ).{opx(ϕ) �→ λx :σ.wop}op∈Σeff : (χ; σ) → (σ → χ) handler .

where all the occurrences of ϕi(v) are applied to some v :σ, the changed param-
eter, we write

(ϕp :χ; xp :σ).{opx(ϕ)@ x :σ �→ w′
op}op∈Σeff : (χ; σ) → χ@σ handler ,

where w′
op results from substituting ϕi(v)@v for ϕi(v)v in wop. We also write

try twithH(t; v)@v as y :σ′ @ x :σ in t′

instead of
(try twithH(t; v) as y :σ′ inλx :σ.t′)v .

We could similarly simulate mutually defined handlers by handlers on product
types, but we know no interesting examples of their use.

Handlers of Algebraic Effects 91

6.6 Timeout

When the evaluation of a computation takes too long, we may want to abort it
and provide a predefined result instead, a behaviour called timeout.

We represent time by: a base signature with a base type int of integers, ap-
propriate function symbols and a relation symbol > : (int, int), with the evident
interpretation; an effect signature consisting of delay :1, to represent the passage
of some fixed amount of time, with the empty effect theory. Then timeout can
be described by a handler which passes around a parameter T : int representing
how long we are willing to wait before we abort the evaluation and return ϕp.

(ϕp :X).{delay(ϕ)@T : int �→ delay(if T > 0 thenϕ@(T − 1) elseϕp)}
Note that the handling term is wrapped in delay in order to preserve the time
spent during the evaluation of the handled computation.

6.7 Input Redirection

With parameter passing, we can implement the redirection proc < infile, which
feeds the contents of infile to the standard input of proc. We take the base
signature, etc., of Section 6.2, extended by the base type listchar, etc., of Sec-
tion 6.4. Then a handler Hin : () → X@listchar handler to pass a string to a
process is defined by

{in(ϕ)@ � : listchar �→ if � = nil then in(a.ϕ(a)@nil) else ϕ(head(�))@tail(�)} .
Unfortunately we do not see how to implement the pipe t1| t2: the difficulty is
very much like that with the CCS parallel combinator.

6.8 Rollback

When a computation raises an exception while modifying the memory, for ex-
ample, when a connection drops half-way through a database transaction, we
want to revert all the modifications made. This behaviour is termed rollback.

We take the base and the effect signatures for exceptions as in Example 1
and state as in Example 3, and the effect theory for state, together with the
equation updatel,d(raisee) = raisee for each exception e [10]. The standard ex-
ception handler, extended to state, is no longer correct. Instead, working in an
extended language as described above, we use a parametrically uniform handler
Hrollback : () → X@U(exc → X) handler with parameter a thunked function
to revert modified locations. It is defined, omitting some type declarations, by

{updatel,d(ϕ)@ f :U(exc → X) �→
lookupl(d

′.updatel,d(ϕ@ thunk(λe. letx be (force f)e in updatel,d′(return x)))) ,

lookupl(ϕ)@ f :U(exc → X) �→ lookupl(d.ϕ(d)@f) ,
raisee @ f :U(exc → X) �→ (force f)e} ,

and is used on t :Fσ by handle twithHrollback@t0 for some t0 :exc → Fσ.
We can also give a variant of rollback that passes around a list of changes to

the memory, committed only after the computation has returned a value.

92 G. Plotkin and M. Pretnar

7 Logic

We sketch an adaptation of the logic for algebraic effects of [22] to account for
handlers. This is relatively straightforward as the notions needed to interpret
the handling construct are embodied in the computation induction (CI) and free
algebra principles of [22]: the latter allows the ad-hoc construction of models
and guarantees the existence of the required unique homomorphism.

We add handler types and terms to the language of the logic and state that
handling is a homomorphic extension by:

Γ � try return v withH(tp; vp) asx :σ in t = t[v/x] ,
Γ � try opv(xi.ti)i withH(tp; vp) asx :σ in t = w′

op ,

where, if Δ(H) = (ϕp : χ ; xp : σ).{opx(ϕ) �→ wop}op∈Σeff , then w′
op is obtained

by substituting tp for ϕp() and try ti[vi/xi] withH(tp; vp) asx :σ in t for ϕi(vi) in
wop[vp/xp,v/x]; CI yields uniqueness. These two equations generalise the first
two ‘handle-sequencing’ equations of [12].

The fourth ‘associativity’ equation has no valid generalisation of the form

try (try t1 withm2 asx1 :σ1 in t2)withm3 asx2 :σ2 in t3

= try t1 withm′
3 asx1 :σ1 in (try t2 withm3 asx2 :σ2 in t3) ,

for some m′
3, given the ti and the mj (m ranges over model expressions H(t; v)):

such an m′
3 may not exist, and there may even be no possible model for it to

denote. There are generalisations of the third and fourth equations provable by
CI, subject to conditions involving the model expressions.

Still, the associativity of exception handlers is expressible, and provable by
CI. We then have m1 = Hexc(t) for some t :exc → Fσ2, and we set

m3 =def Hexc(λe :exc. try tewithm2 asx2 :σ2 in t3) .

(Note that, although handlers cannot contain handler constructs, it is possible
to achieve something of that effect through the use of parameters, as we do
here.) It may be, more generally, that unconditional associativity is provable
for limited classes of handlers, such as the uniform ones. Further equations for
exception-handling (also provable by CI) are given in [2]; it remains to consider
their possible general forms.

8 Recursion

We sketch how to adapt the above ideas to deal with recursion. Base signatures
are as before; for their interpretations we use ω-cpos and continuous functions,
still, however, interpreting arity types by countable sets, equipped with the triv-
ial order (with some additional effort this can be generalised to ω-cpos countable
in the categorical sense). Effect syntax is as before, except that we allow con-
ditional inequations Z;Γ � T1 ≤ T2 (ψ) and assume there is always a constant
Ω and the inequation Ω ≤ z. We again obtain a category of models, now using

Handlers of Algebraic Effects 93

ω-cpos (necessarily with a least element) as carriers and continuous functions
(necessarily strict) as homomorphisms; free models exist as before.

The handler and computation syntax is also as before except that we add
recursion terms μϕ :χ.w and μy :τ.t (and so also computation variables y) with
the usual least fixed-point interpretation. Correct handlers cannot redefine Ω
because of the inequation Ω ≤ z. The adaptation of the logic of effects to allow
recursion in [22] further adapts to handlers, analogously to the above; in this
regard one notes that inequations are admissible and therefore one may still use
computation induction to prove associativity and so on.

9 Conclusions

Some immediate questions stem from the current work. The most important is
how to simultaneously handle two computations to describe parallel operators,
e.g., that of CCS or the Unix pipe combinator; that would bring parallelism
within the ambit of the algebraic theory of effects. More routinely, perhaps, the
logic should be worked out more fully, the work done on combinations of effects
in [10] should be extended to combinations of handlers, and there should be a
general operational semantics [18] including that of Benton and Kennedy in [2].

The separation between the languages for handlers and computations is es-
sential in the development of this paper. A possible alternative is to give a single
language and a mechanism limiting well-typed handlers to correct ones. This
might be done by means of a suitable type-theory.

It is interesting to compare our approach to that taken in Haskell [16], where
a monad is given by a type with unit and binding maps. The type-checker only
checks the signature of the maps, but not the monadic laws they should satisfy.
Still, the only way to use effects in Haskell is through the use of the built-in mon-
ads, and their laws were checked by their designers. Building on this similarity, one
can imagine extending Haskell in two ways: enriching the built-in effects with oper-
ations and handlers; and giving programmers a means to write their own handlers
which could be used to program in an extension of the monadic style.

A given handler may or may not be computationally feasible for a given effect
and so there is a question as to which are. We may expect uniform, or parametri-
cally uniform, handlers to be feasible, as they cannot use the properties of a specific
data-type and so, one may imagine, cannot be as contrived. In this connection,
note too that a single monad or algebraic theory may model distinct effects. For
example, the complexity monad N×− may be used to model either space or time.

Lastly, one advantage of Benton and Kennedy’s handling construct is the
elegant programming style it introduces. We gave various examples of our more
general construct above; some used parameter-passing, but none, unfortunately,
used mutually defined handlers. We hope our new programming construct proves
useful, and we look forward to feedback from the programming community.

Acknowledgments. The authors thank Andrej Bauer, Andrzej Filinski, Paul
Levy, John Power, Mojca Pretnar, and Alex Simpson for their insightful com-
ments and support.

94 G. Plotkin and M. Pretnar

References

1. Benton, N., Hughes, J., Moggi, E.: Monads and effects. In: Barthe, G., Dybjer, P.,
Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 42–122. Springer,
Heidelberg (2002)

2. Benton, N., Kennedy, A.: Exceptional syntax. Journal of Functional Program-
ming 11(4), 395–410 (2001)

3. Clocksin, W.F., Mellish, C.: Programming in Prolog, 3rd edn. Springer, Heidelberg
(1987)

4. Enderton, H.B.: A Mathematical Introduction to Logic, 2nd edn. Academic Press,
London (2000)

5. Filinski, A.: Representing layered monads. In: 26th Symposium on Principles of
Programming Languages, pp. 175–188 (1999)

6. Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with
continuations. In: PLDI, pp. 237–247 (1993)

7. Grätzer, G.A.: Universal Algebra, 2nd edn. Springer, Heidelberg (1979)
8. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency.

Journal of the ACM 32(1), 137–161 (1985)
9. Hyland, M., Levy, P.B., Plotkin, G.D., Power, A.J.: Combining algebraic effects

with continuations. Theoretical Computer Science 375(1-3), 20–40 (2007)
10. Hyland, M., Plotkin, G.D., Power, A.J.: Combining effects: Sum and tensor. The-

oretical Computer Science 357(1-3), 70–99 (2006)
11. Levy, P.B.: Call-by-push-value: Decomposing call-by-value and call-by-name.

Higher-Order and Symbolic Computation 19(4), 377–414 (2006)
12. Levy, P.B.: Monads and adjunctions for global exceptions. Electronic Notes in

Theoretical Computer Science 158, 261–287 (2006)
13. Milner, R.: A Calculus of Communicating Systems. Springer, Heidelberg (1980)
14. Moggi, E.: Computational lambda-calculus and monads. In: 4th Symposium on

Logic in Computer Science, pp. 14–23 (1989)
15. Moggi, E.: Notions of computation and monads. Information And Computa-

tion 93(1), 55–92 (1991)
16. Peyton Jones, S.L.: Haskell 98. Journal of Functional Programming 13(1), 255

(2003)
17. Plotkin, G.D.: Some varieties of equational logic. In: Futatsugi, K., Jouannaud,

J.-P., Meseguer, J. (eds.) Algebra, Meaning, and Computation. LNCS, vol. 4060,
pp. 150–156. Springer, Heidelberg (2006)

18. Plotkin, G.D., Power, A.J.: Adequacy for algebraic effects. In: Honsell, F., Miculan,
M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp. 1–24. Springer, Heidelberg (2001)

19. Plotkin, G.D., Power, A.J.: Notions of computation determine monads. In: Nielsen,
M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 342–356. Springer,
Heidelberg (2002)

20. Plotkin, G.D., Power, A.J.: Algebraic operations and generic effects. Applied Cat-
egorical Structures 11(1), 69–94 (2003)

21. Plotkin, G.D., Power, A.J.: Computational effects and operations: An overview.
Electronic Notes in Theoretical Computer Science 73, 149–163 (2004)

22. Plotkin, G.D., Pretnar, M.: A logic for algebraic effects. In: 23rd Symposium on
Logic in Computer Science, pp. 118–129 (2008)

23. Power, A.J.: Countable Lawvere theories and computational effects. Electronic
Notes in Theoretical Computer Science 161, 59–71 (2006)

	Handlers of Algebraic Effects
	Introduction
	Exception Handlers
	Effects
	Effect Theories

	Handlers
	Semantics

	Computations
	Semantics

	Examples
	Exceptions
	Stream Redirection
	CCS Renaming and Hiding
	Explicit Nondeterminism
	Handlers with Parameter Passing
	Timeout
	Input Redirection
	Rollback

	Logic
	Recursion
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

