Global Principal Typing in Partially Commutative
Asynchronous Sessions

Dimitris Mostrous!, Nobuko Yoshida', and Kohei Honda?

! Department of Computing, Imperial College London
2 Department of Computer Science, Queen Mary, University of London

Abstract. We generalise a theory of multiparty session types for the w-calculus
through asynchronous communication subtyping, which allows partial commuta-
tivity of actions with maximal flexibility and safe optimisation in message chore-
ography. A sound and complete algorithm for the subtyping relation, which can
calculate conformance of optimised end-point processes to an agreed global spec-
ification, is presented. As a complementing result, we show a type inference al-
gorithm for deriving the principal global specification from end-point processes
which is minimal with respect to subtyping. The resulting theory allows a pro-
grammer to choose between a top-down and a bottom-up style of communication
programming, ensuring the same desirable properties of typable processes.

1 Introduction

Programs which communicate by asynchronous message passing are abundant in criti-
cal computing scenes, from a simple web-service application between two parties to a
global financial network hosting thousands of nodes and billions of messages per year.
The design of such programs, which may be developed in geographically disparate sites,
demands a clear high-level specification of their conversation structure, against which
participating programs can be validated (conformance). Further such specifications may
change during development (refinement), and might even need to be synthesised from
individual endpoint programs, against which updated programs can be further validated
(synthesis of global specifications).

This paper develops a new theory of multiparty session types [1,2,4,5,13,23],
which can handle uniformly these three concerns by seamlessly integrating the top-
down and bottom-up strategies for the development of communication-centred soft-
ware. The methodology for distributed programming put forward in [1, 13] centres on
the concept of a global type which plays the role of type signature for distributed com-
munications, presenting an abstract high-level description of the protocol that all the
participants have to honour when an actual conversation takes place. Building on this
framework, we propose the following two strategies for communication programming:

Top-Down Approach: Once this signature G is agreed upon by all parties as a global
protocol, a local protocol from each party’s viewpoint (local type T;) is generated as a
projection of G to each party. Then each local type T; can be locally refined to, say, T,
possibly giving a more optimised protocol, realised as a program, say, P,. If all the re-
sulting local programs P, .., B, can be type-checked against refined 77,..,7,,, then they

G. Castagna (Ed.): ESOP 2009, LNCS 5502, pp. 316-332] 2009.
(© Springer-Verlag Berlin Heidelberg 2009

Global Principal Typing in Partially Commutative Asynchronous Sessions 317

are automatically guaranteed to interact properly, without communication mismatch or
getting stuck inside a session, precisely following the intended scenario.

Bottom-Up Approach: In this case the programmers may work based on an informal
understanding of shared conversation structures, which, after appropriate development,
will get reified into a formal global protocol by synthesis of local behaviours of all end-
point programs: first, a type 7; is inferred from each program F;, then a new global spec-
ification is synthesised from T, .., T,,. If this specification is validated to satisfy certain
conditions, Py, .., P, are guaranteed to interact properly. This process can be repeated
incrementally, using a succession of synthesised types as globally refined protocols.

This paper presents a general and rigorous foundation for these two approaches and
their seamless integration, based on multiparty session types. For the automatic refine-
ment, we introduce asynchronous communication subtyping over local types, which
allows permutation of actions to increase efficiency, while ensuring type-soundness and
communication-safety. As an example, suppose we are using an asynchronous commu-
nication transport where the message order is preserved but the sending is non-blocking,
as in TCP. Let us assume the following three simple processes:

PLE12(y1);s) (5)is! (apple); 01 Py b2(y2)it! (7);00 Py % 52(21):57(22): 03

where s?(y) is an input and s! (5) is an output via channel s; and *;” is sequential com-
position. Then first P, gets the value at b; then P, sends 7 to Py; finally P; sends S and
“apple” to P; preserving the order. We note that P is blocked until b is fired at P,. To
execute P3 ahead, P; might be locally optimised since y; does not bind the subsequent
outputs at s. We can similarly optimise P». The resulting processes given below still
preserve linearity and proper communication structures.
s def s def def

Py = s1(5);s! apple);1?(v1); Q1 P =11(7);:62(32); Q2 P3 = 52(21)557(22); 03

Asynchronous communication subtyping specifies safe permutations of actions, by
which we can refine a local protocol to maximise asynchrony without violat-
ing the global protocol. For example, in the above case, P is given local type
s!(nat);s! (string);#? (nat); T which is a subtype of #? (nat);s! (nat);s! (string); T pro-
jected from the global type. Hence optimisations can be checked locally. The idea of this
subtyping is intuitive, but it requires delicate formal formulations due to the presence
of recursive types and branching/selection session types, whose combinations are vital
for typing many practical protocols [12,22]. This subtlety is because type-permutations
affect the structures of session types, which makes straightforward constructions follow-
ing the preceding literature [10, 20] inapplicable. Intuitively, because partial commuta-
tivity is defined between a sequence of actions, it may require more than one unfolding
of recursive types to find a match. However, this calculation can be made automatic by
an algorithmic subtyping which completely characterises the semantic notion of sub-
typing and can be used to effectively (in)validate conformance of an optimised local
type to a global type.

For the bottom-up strategy, we formulate principal global typing by which we can
synthesise the most general global type from untyped endpoint programs, or can check
they can have no global type, i.e. their protocols are incompatible. The framework

318 D. Mostrous, N. Yoshida, and K. Honda

uses graph-shaped global types which generalise the original syntactic global types,
extending typability. Asynchronous communication subtyping plays a central role in
the synthesis process. We demonstrate the use of the theory for the two strategies by
providing correctness arguments for the development of a distributed parallel algo-
rithm. A full version, containing more examples and detailed proofs, is available from
http://www.doc.ic.ac.uk/~mostrous/asyncsub.

2 Asynchronous Multiparty Sessions

Syntax. We use the -calculus for multiparty sessions from [13], omitting polyadicity
and delegation for simplicity. We use the following base sets: shared names or names,
written a,b,x,y,z,...; session channels or channels, written s,t, ...; labels (functioning
like labels in labelled records), written [,/’, . ..; and process variables, written XY,
For hiding, we use n for either a single shared name or a vector of session channels.
Then processes (P,Q...) and expressions (e,é’,...) are given below:

P == ar2.n)(5).P request | PO parallel

| alp)(5).P acceptance 0 inaction

| sle);P sendln.g | (va)P hiding

| s2(x);P reception | defDinP recursion

| s<lP selectl(?n | X(&5) process call

| s>{li: Pilier branching | s:h message queue

| ifethen Pelse O conditional

L , . h == 1]|v message values

e u= v|eande | note--- expressions p .._ {X;(%:5:) = P.}ics declaration
v = a | true | false--- values

af2.x](§).P initiates, through a shared name a, a new session with other participants,
each of shape arp] (§).Q with 2 < p < n. The (bound) s; in vector § are session channels
used in the session. We call p, q,... (natural numbers) the participants of a session.
Session communications (which take place inside an established session) are performed
by the sending and receiving of a value; and by selection and branching (the former
chooses one of the branches offered by the latter). s: & is a message queue representing
ordered messages in transit 2 with destination s (which may be considered as a network
pipe in a TCP-like transport). The rest of the syntax is standard from [13]. We often
omit 0, and unimportant arguments of sending/receiving, e.g. s! () and s?(); P.

Operational semantics. Some selected rules of reduction P — P’ are given below:
ar2.n) (§).Py | a21(8).Py | -+ | ami (5).Pa — (VS)(Py | Po| ... | Pa|s1:0]...| 5n:0)
s'(e);P|s:h—P|s:h-v (elv) s2x);P|s:v-h — Plv/x]|s:h
s<LP|s:h—P|s:h-1 s> {li: PYier | s:lj-h — Pj|s:h (jEI)

The first rule describes the initiation of a new session among n participants that syn-
chronise over the shared name a. After the initiation, they will share the private m fresh
session channels s; and the associated m empty queues (0 denotes the empty string). The
output rules enqueue a value and a label, respectively (e | v denotes the evaluation of e
to v). The input rules perform the complementary operations. Processes are considered
modulo structural equivalence, =, defined by the standard rules [13].

Global Principal Typing in Partially Commutative Asynchronous Sessions 319

Global types. A global type, written G, G, .., describes the whole conversation sce-
nario of a multiparty session as a type signature [13].

Global G = p—p: k{U);G values | ut.G recursive
| p—p:k{lj: Gj}jes branching |t variable
| G,G parallel | end end

Value U == bool | nat | --- | G

Type p — p’: k (U); G’ says that participant p sends a message of type U to channel k
(represented as a finite natural number) received by participant p’ and then interactions
described in G’ take place. Value types range over U, and are either global types for
shared names, or base values. Type p — p’: k{lj: G;}jcs says that participant p in-
vokes one of the /; labels on channel k (at participant p’), then interactions described in
G| take place. Type ut.G is for recursive protocols, assuming type variables (t,t',...)
are guarded in the standard way, i.e. they only occur under values or branches. We as-
sume G in value types is closed, i.e. without free type variables. Type end represents the
termination of a session. We often omit end and identify “G,end” and “end, G” with G.
We stipulate that each channel can only be used among two parties (but maybe repeat-
edly), one party using it for input/branching while the other party for output/selection.!

Local types. Local session types type-abstract sessions from each endpoint’s view.

Local T == kI(U);T send | k&{l;: T;}ics branching
| K{U);T receive | ut.T |t recursion
| k®{li: Ti}ic; selection | end end

Type k! (U) expresses the sending to k of a value of type U. Type k?(U) is its dual
input. Type k@ {/;: T;}ics represents the transmission to k of a label /; chosen in the
set {/; | i € I}, followed by the communications described by T;. Type k&{l;: T;}icr
is its dual. The remaining types are standard. We say a type is guarded if it is neither
a recursive type nor a type variable. (An occurrence of) a type constructor not under
a recursive prefix in a recursive type is called top-level action (for example, k! (U;)
and ky ! (U) in ki1 (U)); k2! (Us); ut.ks! (Us);t are top-level, but k3! (Us) in the same
type is not). k is the head of T if k appears at the left-most occurrence of the top-
level actions in T (e.g. k! (U) is the head of the above type). The relation between
global and local types is formalised by projection, written G [p (called projection of
G onto p), defined as in [13]. For example, (p — p’: k(U);G’) [p = kI{U); (G’ ' p),
(p— P kUG P =k2(U); (G p) and (p — p': k(U);G') Iq= (G’ [q). We
write Type for the collection of all closed local types.

3 Asynchronous Partially Commutative Sessions

3.1 Asynchronous Communication Subtyping: Top-Level Actions

This section introduces and studies a basic theory of asynchronous session subtyping.
Figure 1 defines the axioms for partial permutation of top-level actions for closed types,

! This condition dispenses with the need for linearity-check to ensure well-formedness [1].

320 D. Mostrous, N. Yoshida, and K. Honda

(Ol KUK HU YT < KU Yk(UYT

(OB) kKUY K &{1: T} jey < K &{1j: kN (U);T}} jes

(Sh ke {lj: KUY Ti}jer < K2 U);k®{lj:Ti}jes

(SB) k@{li:k’&{l;-ZTij}jej}iel < k’&{l;:k@{li:]}j}ie[}je]

(00) KUKV U)T < KUY KUY T

(1 K2 UYK2U)T < KUY k2(U), T

(SO) k@ {li: k' U); Ti}ier < KW U)k@{li: T }ier

(0S) KUYk {li:T}ier < k®{li: KUY Ti}ier

(SS) k@{l,-:k’@{l}ﬂ}j}jgj},-e] < k’@{l}:k@{li:]}j}iel}jg
<D Th<T T<T T<T

(T] T]2<< T23 ' (o) KUY T <k (U); T’ () kK2(U);T < k2 (U); T’

Viel. ;< T/
k&{l,‘ : T;‘}ie] < k&{l,‘ : T/},‘e[

Viel.T; < T/ (E) end < end

CB
(CB) k@{l,‘:Ti}iel<<k@{li:7;l}ie] (M) ut.T < ut.T

(CS)
Fig. 1. Action Asynchronous Subtyping Rules ((Bl,IB,BB) are omitted)

denoted <. We assume k # k' for all the axioms. T < T is read: T is an action-
asynchronous subtype of T', and means T is more asynchronous than (or more opti-
mised than) 77. We write T > T’ for T < T.

A partial permutation is applied only to finite parts of the top-level actions (with-
out unfolding recursive types); see Proposition 7. Note that we cannot exchange an
input and output in the reverse direction of (Ol) even for different channels. Con-
sider: P = s?();r!() and Q = s!();r?(). These processes interact correctly. If we per-
mute the output and input of O, we get Q' = r?();s!(). Then the parallel composition
(P | Q') causes deadlock, losing progress. For the same reason, the reverse direction of
(OB,SI,SB) is not allowed. By combining these input and output permutation rules,
we can achieve a flexible local refinement for communications. For example, suppose
R = s2(x);r2(y);t!{1);¢'1(y) typed by Tz = s?{file);r?(bool);#! (nat);#'! (bool);end.
We might wish to receive the (small) value via r first, and immediately forward to ¢/,
then receive the (larger) file at s in the end: we can obtain S = r?(y);#'!(y);¢1(1);5?(x)
typed by Ts = r?(bool);#'! (bool); ¢! (nat); s? (file); end, transformed from T (i.e. Ty <
Tg) by using a combination of (OO, Ol, I1).

3.2 Asynchronous Communication Subtyping: Recursive Types

For handling recursive types in asynchronous subtyping, we extend the coinductive
method in [20, § 2.3] and [10, § 3.3]. In particular, we need to modify the unfolding
function for recursive types since < might be applicable to a sequence of types after
unfolding of recursions under guarded prefixes. The resulting definition integrates <
with the traditional session subtyping [10, 13]. For any recursive type T, unfold”(T) is
the result of inductively unfolding the first recursion (even under guarded types) up to
a fixed level of nesting.

Global Principal Typing in Partially Commutative Asynchronous Sessions 321

Definition 1 (n-time unfolding)

unfold®(T) =T forall T unfold!*"(T) = unfold! (unfold”(T))

unfold! (k! (U):T) = k! (U);unfold' (T) unfold! (k& {l;: T;}ier) = k@ {l;: unfold' (T;) }ies
unfold! (k2 (U);T) = k2 (U);unfold' (T) unfold! (k&{l;: T;}icr) = k&{l; : unfold (T}) }ie;
unfold! (ut.T) = T[ut.T /] unfold! (t) =t unfold! (end) = end

We also use unfold”(U) which is defined as unfold”(T') above. 2

For example, unfold®(k?(U); ut.k'!(U");t) = k2(U);K 1 (U)K (U"); ut.k' 1 (U');t.
Note that, because our recursive types are contractive, unfold”(7T') terminates. We can
now introduce the central notion of asynchronous communication subtyping.

Definition 2. A relation R € Type x Type is an asynchronous type simulation if
(T1,T7) € R implies the following conditions:

— If T} = end, then unfold”(7;) = end.
If Ty = k! (U;); T}, then unfold™(T2) > k! (Us); Ty, (T{,Ty) € R and (U,,U,) € R.
If Ty = k?(U;); T}, then unfold"(T2) > k?(Ur); Ty, (T{,Ty) € R and (U»,U,) € R.
If T1 = k@{ll . Tli}iel, then unfold"(Tz) >kd {lJ . sz}jej and / - J and
Vi e I~(TliaT2i) eR.
- If Ty = k&{l; : Thi}ics, then unfold" (7)) > k&{l; : T»} jey and J C I and
Vj € J.(T]j,sz) eR.
— If T = ut.T, then (unfold! (7}),T») € R.

where a type simulation of (U;,U,) € R is defined as the standard bisimulation (since U
is invariant).? The coinductive subtyping relation 77 <. 75 (read: T is an asynchronous
subtype of T») is defined when there exists a type simulation R with (77,73) € R.

An output of T; can be simulated after applying asynchronous optimisation > to the
unfolded 7,. We also need to ensure object type U is a subtype of U,. For the input,
we ensure U, is a subtype of U;. The definitions of selection and branching subsume
the traditional session branching/selection subtyping.* In selection a label appearing in
T1 must be included in 73; dually, in branching a subtype 77 must cover all branches
declared in 7;. For a value type, U; <. U, implies U, <. U; by definition. We show
examples to justify our subtyping.

Example 3. Below we write k! for k! (U) and k? for k? (U), omitting U.

1. Let Ty = ut.k?;k'\;t, T = ut.k'!;k?;t. Then we can prove T» <. T using the sim-
ulation R = {(T»,T1), (K';k2,T»,Ty), (k?;T»,k?;T1)}. T» represents more optimal
communications than 7; since it can output messages at k' without waiting.

2. Let T) = k’!; Ty which means first sending a signal at k¥’ then repeating input-output
actions. Then 7, <. Tj by taking R = {(75,T1), (T1,k%Th), (k2,T,,k2;Th)} as a
simulation closure. Note also 7> <. 7y and T, <. T».

2 In [10], unfold(T) repeatedly unfolds consecutive top-level recursion until a guarded type is
obtained. In our definition, unfold! (T) expands a single recursion, not only top-level but also
under guarded types.

3 Note that G is invariant like standard channel types "[7] [10].

4 We follow the subtyping relation in [7, 13] whose ordering is reversed from [10] since in our
judgement the session environment is declared on the right-hand side of a process.

322 D. Mostrous, N. Yoshida, and K. Honda

3. Let T4' =k ks T3 with T3 = ut.ks?;k ka3 ko st and Ty = utky k3?5 ko s kg 25t
These types are extended from 7,,7; and 7> with two signal messages at the top
level. Then T4' <. T;. To simulate T4’ , we require nested unfold for 73. More exactly,
the intermediate type ki!;k4?;ky!; T3 can be simulated by k4?; T3 if T3 unfolds and
ki ! under recursion appears at the top-level. Similarly for 7] <. Tj.

4. Take Ts = uty kil uty.ky !;&{ll ko kit I kg !;tz} and let Tg = ‘utl.‘utz.&{l] :
ko2 ki sty L skt). Then Ts < Tg. This example is proved similarly to (3).

Note that none of the above subtyping relations, except 75 <. T2’ and T2' <. T», can be
derived without including < in the typed simulation.

Before we prove that <. is a preorder, we show that there are connecting simulations
relating the components of two subtyping relations. We write) R 1> for (71, T3) € R;.

Lemma 4. If T\ R| T» and T» R, T for type simulations Ry and R, then there exists a
type simulation N3 such that if unfold”(T») > T, then T, R3 Tx.

Definition 5 (Transitivity connection). For simulations R and R,, we say R; (from
the condition in Lemma 4) is a transitivity connection of T} R T and T, R, T3. We write
tre(Ty Ry Th R, Tz) for Rz. We define tre(R;,R,) as the smallest relation such that if
(Tl,Tz) € Ry and (1, T3) € Ry, then tre(Ty Ry T R, T3) C tre(Ry, Ro).

From the definition, tre(R;,R,) only contains type simulations, and as the union of
these it is also a type simulation. Note that the smallest relation exists, by set inclusion
of relation pairs, containing all the transitivity connections of elements in R/R,. For
example, R3 = tre(Ty R Tr R, T3) does not contain (k! (U);end, k?(U);end), which
cannot be a member of any type simulation; and by set inclusion, it is smaller than
R3U (k! (U);end, k?(U);end).

Theorem 6. The relation <. is a preorder.

Proof. Using as standard the relation {(7,T)|T € Type}, we prove <. is reflexive. For
transitivity of <., suppose T} <. T» <. T3 and let R and R, be type simulations with
(Th,T») € Ry and (T»,T3) € R,. To show T} <. T3 we need to find a type simulation R
such that (77,73) € R. Define R as (R; - Ry) U(R; - tre(R;, Ry)). Clearly (77, 73) € R,
and it remains to show that R is a type simulation. For any (7,T") € R, there are two
cases (relations above), and six subcases (simulation rules). For (U,U’) € R, the result
is easy as U types are invariant. We only show one of the most interesting cases.
Suppose (T,T") € Ry - Ry and T = k! (U;); T1. Then there exists (7,7’) € R, and
(T',T") € R,. By the definition of type simulation, we have unfold"(7") > k! (U{); T{
and (U1,U]) € Ry and (T1,T]) € Ry. Let tre(T Ry T' Ry T") = R3 C tre(R;, Ry), then
by Lemma 4 we obtain (k! (U{);T{,T") € R, and by the definition of simulation we
have unfold™(T") > k! (U["); T{" and (U{,U;") € Rz and (T],T}") € R3. Finally, by the
definition of R, - tre(R;,R»), (U1,U]") € R and (T, T]") € R as required. Other cases
are similar. O

3.3 Algorithmic Asynchronous Subtyping

The algorithmic subtyping of session types is studied in [10, § 5.1]. Due to the incor-
poration of asynchronous permutation and n-time unfolding in the type simulation, we

Global Principal Typing in Partially Commutative Asynchronous Sessions 323

need the bound of unfolding for constructing a terminating algorithm. We first list some

selected rewriting rules % which move the types with channel & to the head applying
the rules of > in Figure 1 in the reverse direction.

k k
O1) KUK WY:T Sk () 1 T

T1>—>k T3
k
k T;—T;
T—T J j
(CO) i

(CB)
KUY T &S K1)’ K& Tyl Ty) oS K&l T 1 T)

We omit the similar rules for (OB-SS), (CI,CS), which are defined similarly to

(0D and (CO,CB). Note that we do not define &, for (E) and (M). (CO,CB) are
for congruency. For a simple example, let Ty = k@ {/; : k12(U,); k2! (Uz);end, I, :

ka!(Us);end}. Then Tp 2 ke {li : k! (U2);k1?(Uy)send, I : ky!(Uz);end} el
k! (Ua)sk @ {k1?{U,);end,l, : end} by (CS,0S). We can easily show & is conflu-

ent and terminates, and 7 Ko implies T/ < T. We can also prove if T < T', then
ki k .
we always have 77 = - = ... M T where kiky..k, are a (possibly empty) subse-

quence of channels occurring at the top-level in 7 with this order (e.g., kjkyk3ks if
kiliko®{ly : k3!, I : k4!}). Hence:

Proposition 7. Given T and T', T < T' is decidable.

The derivability of judgement X - T < T” is defined in Figure 2 where X is a sequence
of assumed instances of the subtyping relation. We use n-hole type contexts (7,7, ...)
where []#€H denotes a hole with index A.

T o= [| N UYST | KUY T | kDl Tier | k&{li: Ti}ier

For example, with H = {1,2} and 7 = k@ {l; : k12 (U;); []'H, L : []*$H}, we have
T[T =k {l; : k12 (U1);Ti, L : T }. A hole in .7 does not appear under recursion
since < permutes top-level actions only. We also use (1) function top(T') which returns
the channel at the head of T and (2) function depth(k, T') to calculate how many unfold-
ings are needed for k to appear at the top-level. If k does not appear in T, depth(k,T) is
undefined. When depth(k, T') is defined, depth(k, T) is finite.

top(end) = e top(k?(U);T) =top(k! (U);T) = top(k&{l;: T;}icr) = top(k®{l;: T; }ier) =k
depth(k,T) =0 iftop(T)=k depth(e,end)=0

depth(k,kK'?(U);T) = depth(k,k'! (U);T) = depth(k,T) k#K

depth{k,kK' &{l;: T;}icr) = depth{k,k’ ® {l;: T;}ic1) = max;cj(depth(k,T;)) k#K
depth(k,ut.T) = depth(k, T[ut.T /t]) +1 depth(e, ut.T) = depth(e, T[ut.T/t]) + 1

In Figure 2, [ASMP,END] are standard. In [OUT], we fix the subtype and apply & to
place k! (U) to the top level. Then we check the tail of the result of rewriting .7 [T, "<
is a supertype of Tj (the rule subsumes the case k! (U) already at the top level). Rule
[SEL] is similarly defined. Rule [RECL] is standard. Rule [RECR] unfolds 7’ until
a type with the same channel as the top of T appears at the top-level. The rule for
input/branching is defined like [OUT]/[SEL], respectively.

324 D. Mostrous, N. Yoshida, and K. Honda

T<T eX

[AsMp] SET<T

[END] X+ eng < end

SHUI KUy EFT S T[TEH TkUy) T8 & k1 (Uy); T[T,

ouT
[Our] SERNU) Ty < TR (U Top)"eH

Vie LEFT,< T[THH Flka {li: T} Yies '8 & ko {li: TITNH Yy 1C T

SEL
[] 2+ k@{l,‘ : T,'},'.E[< y[k@{l,‘ : Ti;l},‘ej}hGH
n=depth(top(T),T') n>1
T< ! 1) < ! < ! < n(pl
RECL] X, ut.T <T'Funfold (ut.T)<T [RECR] 2, T<T'FT < unfold*(T")

SrutT<T TFETLT

Fig. 2. Algorithmic Subtyping Rules

The rules give an algorithm for checking the algorithmic subtyping relation < (by
reading these rules from upwards). As usual, [ASMP| should always be used if it is
applicable, and when both [RECL] and [RECR] are applicable, [RECL] is used in pref-
erence to [RECR]. Similarly, other rules are applied in preference to [RECR], which can
only be applied if the top of T does not appear at the top level of 7’. As an example, let
Ti =k®{l; : k1?(U;);end}. Then we can derive k! (Us); T1 < To (Tp is given above)
by using [OUT]. At the top level, the algorithm is applied to the initial goal @ =T < T’
(which we often write T < T).

Lemma 8. [. The subtyping algorithm always terminates.
2. If T <. T’ then the algorithm does not return false when appliedto X+ T < T'.

The proof uses techniques related to those developed in [10]; the main differences are,
for the proof of (1), we have to take the subterms up to < with the finite number of
unfolding when we argue the size of X cannot increase without bound. However since
< does not change the size of the judgement (defined in [10, Lemma 10]), we can prove
(1). The proof of (2) is standard from (1).

Theorem 9 (Soundness and Completeness of the Algorithmic Subtyping). For all
closedtypes T and T', T <. T' ifand only if T < T'.

The if-direction is by Lemma 8 (2) and the only-if direction by constructing a relation
following [10, Theorem 4].

3.4 Local Asynchronous Commutative Session Typing

The type judgement for end-point processes is of the shape I - P> A which reads:
“under the environment I, process P has typing A” where environments are defined as:

r = 0|TuwU|TX:0T A = 0| A5 {T,@p}pes

A sorting (I',I",..) is a finite map from names to value types and from process variables
to sequences of value types and session types. Typing (A,A’,..) records linear usage of
session channels. T @p is called located type which means T is a session type of the

Global Principal Typing in Partially Commutative Asynchronous Sessions 325

participant p. In multiparty sessions, it assigns a family of located types to a vector
of session channels. The typing system is identical with [13]: we only have to add the
subsumption rule: i.e. ' - P>A and A < A’ then I' - P> A’ where A < A’ is defined
by pointwise application of <.

Theorem 10 (Subject Congruence and Reduction). I' - P>0 and P = Q imply I' -
O>0;andI'-Pr@and P — Q imply I' - Q0.

The proof follows the same routine as in [13], but we must take care that all per-
mutations defined by < do not affect the input-output causal dependencies of the
global types. We can also obtain the other three key proprieties, communication-safety,
session-fidelity and progress as stated in [13, § 5]. The rest of the paper can be read
without knowing the details of a typing system.

4 Principal Global Typing through Graph-Based Types

Why graph-based types. Let P & alp|(5).s11(3);52?(x) and Q &f alp]($).
sp!(true);s1?(y) where P is a participant named by p and Q is an initiator named by
g. Then P and Q are typable under essentially only two global types, G=p — q:
k(int); g — p : h(bool); end and G’ = q — p : h(bool); p — q : k(int); end. Note the
projection of G to p is <-minimal for P (i.e. other local types of P can be derived by
subsumption): but this is not true for its projection to q. Similarly G’ does not give a
minimal type for P. Thus there is no “best” global type for P|Q: this is because inter-
actions between P and Q take place in a criss-crossing way: the syntax of global types,
which can only represent tree-like causality, is too rigid to represent such a situation.

Local and global graphs. A local graph is a (finite or infinite) directed graph where
each node, called action, is labelled by one of k? (U) (input), k! (U) (output), k&[l;]ic1
(branching), k @ [1;];c; (selection) and k @ [(label-output [1]); and, for edges: (1) each
edge from k&|l;]ics or k @ [li]ics is labelled by one of {/;}; and (2) k@1 (resp. k! (U))
has a unique outgoing edge, and its target is always an output/selection/label-output at
k. A global graph for participants {p1,..,pn}, written ¢,%’_ ..., is a disjoint union of
an {py, .., px t-indexed family of local graphs. Given ¥ for {py,..,pn}, its pi-component
is the local graph in ¢ indexed by p;. A node is active if it has no incoming edges.

~ kl<nat> . 7 hi<bool> " 7 hi<bool>". k<nat> .
" h<bool> . . Ko<nmat> . ki<nat> - " hi<bool>
P q P =

(a) (b)

In (a) above, we show a global graph for P and Q given above, consisting of two local
graphs (balloons labelled by p and q), each with an output, an input and no edges. If we
add an edge from input to output in each local graph, we get the global graph (b) for
alp(8).522(x);s1!(3) and a[p](5).s12(y);s2!(true), which now deadlocks.

326 D. Mostrous, N. Yoshida, and K. Honda

Linearity, progress and coherence. We equip global graphs with a notion of reduction
which abstracts that of processes. Below we write & - |..[- | for a global graph with
one or more holes, each of which is to be filled with a sub-graph of a local graph, such
that all holes are active, i.e. have no incoming edges.

ErAU)[KNU)] — &[0] Ek&li: Glicllk® 1] — &£[F)][0] (j€I)
EkB [l : Gier] — EkB ;9]

Above 0 is the empty graph. In each rule, the replacement in the hole(s) entails taking
off both the old graph and all the outgoing edge(s) from it and filling the hole with
the new graph. A reduction by the first two rules is called communication at k. In the
second rule, k&[l; : 4]ics is the disjoint union of k&[lj]jc; and {¥;}ic; together with,
for each i € 1, [;-labelled edges from k&[/;];c; to all the active actions in %;. In the third
(from [11), k® [I; : G)icr is as k&|l; : 4]icr while k D [;;%; is the disjoint union of k ® ;
and ¢; with edges from the former to the active output/selection/label-outputs at k in ¥;.
A global graph ¢ is linear when for each ¢’ such that ¥ —* &', if ¥’ has two active
actions at k, a reduction at k is possible, and no other active action shares k. A global
graph ¢ has progress when for each ¢’ such that ¥ —* &', either ¥’ reduces or it is
empty. Finally we say ¢ is coherent when it is linear and has progress.

Coherent global graphs from local types. A local graph is constructed from a local
type as the latter’s regular tree representations. Given A = {T;@p; };c;, this immedi-
ately gives the global graph for {p;};c;, which we write [JA]]. The coherence of [[A]] is
decidable, as we outline below.

We first check A is well-directed in the sense that each channel in A is used by two
and only two participants and moreover one of them uses it only for input/branching
and the other only for output/selection/label-output, which can be checked by going
through A once. For well-directed A, there is an algorithm to ensure linearity of [[A]],
by checking if each pair of participants in A are compatible in their type structures,
closely following the algorithmic subtyping in § 3.2.

Through the validation of compatibility of A, we can equip [A]] with the addi-
tional communication edges, from each output/selection/label-output to its potentially
interacting action(s), representing potential redexes. Using this added set of edges, we
reduce the progress of [[A]] to the acyclicity of its paths consisting of its local and com-
munication edges, completely characterising progress under linearity. The acyclicity of
[A] is then reducible to that of its initial finite sub-graph. Because linearity and com-
patibility are equivalent under progress, we obtain:

Theorem 11 (complete algorithmic characterisation of coherence). Ler A =
{T;@p; }ic1 be well-directed. Then the coherence of [A] with A given as input is de-
cidable.

Principal global typing through global graphs. Any projectable global type G for
participants say {p;}icr is equivalent to its projections A = {(G | p;) @p; }ics, and be-
cause such A is immediately compatible and acyclic, we can regard G as a coherent
global graph. This motivates the use of coherent global graphs instead of global types

Global Principal Typing in Partially Commutative Asynchronous Sessions 327

in the type discipline, presenting [A] as A itself.’> By replacing global types with co-
herent global graphs in types and typing rules, we obtain a new type discipline. We
write I =, P> A for typability in this new discipline (subsumption is consistent be-
cause if [[A] is coherent and A’ is point-wise <-smaller than A then [A] is also coher-
ent). By identifying ¢ as the corresponding coherent global graph, I" - P> A implies
I' g P A. Further, since linearity and progress of [A]] are reflected onto the dynam-
ics of typed processes (precisely following the arguments in [13]), the typability in
ensures communication safety and progress.

For the principal typing property, we add the <-least element L to the set of local
types; L is also used as local graph occurring in global graphs (where intuitively L
denotes a placeholder for a local behaviour). The coherence and other notions for global
graphs are defined ignoring L. Without loss of practical generality we assume each
shared name say a has a fixed arity which is the number of participants for a potential
session established through a; and that processes are type-annotated on bound variables
and free object names in the standard way. Through local type inference [6, 15] using
the point-wise join of coherent global types (calculated as in algorithmic subtyping),
together with Theorem 11, we obtain a principal global typing property. Below we
write I'" < I for dom(I'") C dom(I") and I'' (a) < I'(a) for each a € dom(I"’). We say
P is closed if it has no free session channels nor free variables.

Theorem 12 (principal global typing). Let P be closed. (1) The typability of P with
respect to & is decidable. (2) If P is typable then P has a principal global typing I in
the sense that Iy =5 P> 0 holds and moreover I' g P>0 implies I < T.

S Application: Double-Buffering Algorithm

This section illustrates the use of our type theory using the double-buffering algorithm
[21], a basic distributed algorithm widely used in stream/media processing and high-
performance and multicore computing, presenting how the two strategies discussed in
Introduction can be applied through the theories presented in the previous sections.

The purpose of the double-buffering algorithm is to transform a large amount of data,
where a series of chunks of data are transferred from a source (Source) to a transformer
(called Kernel), gets processed there and delivered to a sink (Sink). Under potential tem-
poral variations in processing and communication time, it is necessary to synchronise
among these three parties through message passing. However a naive, and obviously
safe, protocol leads to a highly sequential, non-optimal distributed algorithm. Thus it is
beneficial to increase asynchrony of local programs without violating the shared proto-
col. We show the outline of an application of our theories to achieve this goal, starting
from a sequential and safe global protocol to optimised local protocols through asyn-
chronous communication subtyping, with a formal safety guarantee.

3 To be precise, we regard A up to the type isomorphism corresponding to <; and we take off,
from each branching type, its branches (if any) which never get invoked in any reduction path:
such “garbage” branches are precisely identified during the validation of coherence.

328 D. Mostrous, N. Yoshida, and K. Honda

Global Type: G = Source: Kernel:

ut.(allJ(rlrzslsztltzuluz)- a[1,2](r1 r251s211t2u1u2).
K—So:r(); K—So: r(); X 105 ()
So—K:s1(U); So— K:s5(U);

.. // assign data to y[1..n] HX.(

Si—K: 1(); Si— K: n(1120; 511 ([1..n)); $12(x4);

0 ();
K—Si: uyj(U); K—Si: up(U);t)

.. // assign data to y[1..n] .. // repeat:
Projected Local Type of Kernel : () 5521 (¥); X) /] xali] == xali]Bkey
T= . /] key:=xai]
ptry ! Oss 2 U1 ? Oz U s Sink: 1120); urtxa)s r1();
! ()22 (U)s02? ()32 (U)st a2(r1ras$21100U142). 522(xp);

1X.(.. // repeat:
Local Type of Kernel 1) w2(); /] xali] = xali] key
T = .. // print z[1..n] . /] key = x]i] -
r1!<>;r2!<>; t2!<>; u??(z); fz?(); u2!<x3>; rz!();X

pt.s ?2(U)sn 2 ()zun (Ui 1(): - // print Z[1..n])
22U)02 ()51 (U)sra! (3t X)

Fig. 3. Double-Buffering Algorithm: Processes and Types

Top-down approach (1): global type. The development of programs starts from the
global type G on the left-most column in Figure 3. So, K and Si denote participant
names for Source, Kernel and Sink. U denotes a large int-array type. Assuming Kernel
will use two channels and the associated arrays for potential parallelism, the global type
G starts from a recursion, describing an infinite loop. In the loop, Kernel first notifies
Source via rq » that it is ready to receive data in its two channels (s 2, with signal at 7;
saying s; is ready); Source complies, sending two chunks of data sequentially via sy ».
Then Kernel (internally processes data and) waits for Sink to inform (via 1 ») that Sink
is ready to receive data via u; : uponreceiving the signals, Kernel sends the two chunks
of processed data to Sink. This protocol is sequential but is safe and deadlock-free.

Top-down approach (2): local type and its refinement. Just below the global type
G, Figure 3 gives the local type T of Kernel as directly projected from the global type.
Our purpose is to refine 7 so that (1) the new local protocol is more asynchronous,
allowing overlap of communication and computation [9, 11]; and (2) it still conforms to
G — Kernel with the new optimised protocol will safely interact with Source and Sink
who conform to the original global type G. For this purpose the developer may come
up with a more asynchronous 7*, given in Figure 3 after 7. In this refined protocol,
Kernel notifies Source via both ry 5, but only once before entering the loop, allowing
Source to start its work. Now inside the loop, the refined protocol dictates Kernel first
receives data via its first channel s; with Source, processes the data and sends out the
result to Sink via its first channel u; with Sink and immediately notifies Source via ry
that it’s ready in its first channel, allowing Source to start sending data early. Kernel
then repeats the same work for its second channels with Source and Sink. In this way,
Kernel can process data it has already received in one channel while it is receiving data
in the other, noting it can take time for large data to sent, transferred and received.

We now show this optimised local protocol is safe w.r.t. other participants conform-
ing to G, through the asynchronous communication subtyping. The justification uses

Global Principal Typing in Partially Commutative Asynchronous Sessions 329

nested unfolding. We start from unfolding T once to match ry,r, of T* as unfold! (7)) =
()51 2012 ()sun LU)2t ()3522(U)3 027 (s up ! (U); T. Then ry ! () matches T*. To
simulate 2!() of T*, rp!() is permuted by <. Let T* = ri!();r!();T§. Thus
unfold' (7j%) must be simulated by T’ = 512 (U);1;? ();u1 1 (U); 522 (U)312? ()30 (U); T.
However to simulate 1! () in unfold' (7}%), T must be unfolded again since the types in
the guarded position of 7/ do not include r;! (). By [RECRY], it now suffices to solve the
following:

052U 02?2 Osun (U) m! (5T < 522 (U312 (3un! (U);unfold! (T).
For this we apply [IN,OUT] of < with <, reaching the assumption in X in [ASMP].

Top-down approach (3): code development. Figure 3 depicts the skeleton of the three
(final) programs which conform to the global type. All participants initiate the session
at a in the first line. We only illustrate the behaviour of Kernel, considering a simple
transformation for stream encryption. Kernel, after initialising its variables including
the initial key value, signals to Source that its buffers are both empty, via r; and r;:
then enters the main loop, where it does the following: it first receives the datum at
x4 via s, goes through the buffer taking the XOR element-wise with key, after which
it waits for Sink’s cue via #; (which may have already arrived asynchronously), and
finally sends out the buffer content to Sink via u;, and tells Source it’s ready at A
via r;: then similarly works for the second buffer (given in the next column). Unlike
Source and Sink, the behaviour of Kernel does not conform to the projection of G to
Kernel (T): however T* does type-abstract its behaviour directly and because 7" <
T by the argument above, Kernel does type-check under T with subsumption, hence
under G.

Integration with bottom-up approach. The development process described above
can be effectively and seamlessly integrated with the “bottom-up” strategy discussed in
Introduction through the type inference (synthesis) of global types in § 4, which allows
developers to directly refine programs and to synthesise a new global protocol reflecting
the refinement, incrementally validating compatibility. This added flexibility is useful
since, in actual development, programmers may often directly work on programs rather
than starting from refinement of local protocols.

Further examples showing the applicability of permutation of branching/selections
to parallel algorithms [14] can be found in the full version.

6 Related Work

Branching/selection subtyping in session types is first studied in [10] for binary session
types. We use their syntactic approach for defining a type-simulation, but a significant
extension from their technique is needed due to the incorporation of < and nested un-
foldings, which makes the proof of transitivity delicate and challenging. An initial idea
of asynchronous communication subtyping for binary sessions is presented in an unpub-
lished manuscript [18], where the treatment for recursive types and branching/selection

330 D. Mostrous, N. Yoshida, and K. Honda

types is left open. A recent work in a technical report [17] demonstrates a subtyping
rule similar to our (Ol) rule is useful for an object calculus with asynchronous binary
sessions, with an iso-recursive system. It is an interesting future work to extend to the
HOm-calculus [16] where a careful formulation for the algorithmic subtyping would
be required in the presence of arrow types. The top-down approach in multiparty ses-
sion types is first studied in [13], but a local refinement (asynchronous subtyping) is
not proposed there. The problem of synthesising a global specification from endpoint
behaviours has been a lingering question since the inception of the notion of global
descriptions for business protocols [24], being posed as an open problem in [1,2, 13].
Inference of principal types is studied in [15] for binary session types (note in binary
sessions the issue of global synthesis does not arise). The present work gives clear and
general solutions to these extant technical problems.

In the context of multiparty session types, a typing system for a strong progress
property is studied in [1]. Asynchronous communication subtyping can be smoothly
applied to [1]. For delegations, the main definitions of <, <. and < stay as the same, but
proofs need to be revised to treat nesting types; and for the principal typing, L should
be added into a carried type in global graphs. The study of formal theories of contracts
are studied in [8] using CCS-like processes as a type representation. The work [19]
extends [8] with the treatment of asynchronous behaviours using orchestrators, through
the use of bounded buffers that control message flows between a client and servers.
Our own system in [7] developed a theory in which a global specification arises as a
programming language itself.

Conformance and refinement based on agreement of service specifications is studied
in [3], using a synchronous CCS-based calculus as a contract language, and testing-
preorders to check subcontract compliance. Neither type-checking of end-point pro-
cesses using projected contracts (in our case, Theorem 9) nor a bottom-up strategy
is presented there. The work [5] proposes a distributed calculus with sessions, in-
corporating the merging of running sessions. Another work [23] presents a calculus
for service orientations by extending the m-calculus with context-sensitive interac-
tions, equipped with service and request primitives and local exceptions. These pre-
ceding works do not treat the main technical problems addressed in the present work —
the asynchronous communication subtyping, type-based local refinement/conformance,
and a derivation of the minimum global types, backed-up by the efficient type-checking
and inference algorithms, ensuring strong safety properties based on the session type
discipline.

Acknowledgements. We thank the reviewers for their useful comments, Gary Brown
and Steve Ross-Talbot for discussions on the potential applications of the presented
framework for software development, and Matthew Rawlings for discussions on the
practical significance of asynchrony in financial protocols. We generalised < with input
commutativity following a suggestion by Raymond Hu. The work is partially supported
by EPSRC GR/T03208, GR/T03215, EP/F002114, EP/F003757 and 1ST2005-015905
MOBIUS.

Global Principal Typing in Partially Commutative Asynchronous Sessions 331

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Bettini, L., et al.: Global progress in dynamically interleaved multiparty sessions. In: van

Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418-433. Springer,
Heidelberg (2008)

. Bonelli, E., Compagnoni, A.: Multipoint Session Types for a Distributed Calculus. In: Barthe,

G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 240-256. Springer, Heidelberg (2008)

. Bravetti, M., Zavattaro, G.: A theory for strong service compliance. In: Murphy, A.L., Vitek,

J. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 96-112. Springer, Heidelberg (2007)

. Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography conformance and

contract compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC 2007. LNCS, vol. 4829, pp.
34-50. Springer, Heidelberg (2007)

. Bruni, R., Lanese, 1., Melgratti, H., Tuosto, E.: Multiparty Sessions in SOC. In: Lea, D., Za-

vattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 67-82. Springer, Heidelberg
(2008)

. Carbone, M., Honda, K., Yoshida, N.: A theoretical basis of communication-centered con-

current programming. To appear as a WS-CDL working report, www . dcs . gmul.ac.uk/
~carbonem/cdlpaper/workingnote.pdf

. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred programming for

web services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 2-17. Springer,
Heidelberg (2007)

. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services. In: POPL,

pp. 261-272 (2008)

. Culler, D., et al.: Logp: towards a realistic model of parallel computation. SIGPLAN

Not. 28(7), 1-12 (1993)

Gay, S., Hole, M.: Subtyping for Session Types in the Pi-Calculus. Acta Informatica 42(2/3),
191-225 (2005)

Gschwind, M.: The cell broadband engine: Exploiting multiple levels of parallelism in a chip
multiprocessor. International Journal of Parallel Programming 35(3), 233-262 (2007)
Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type disciplines for
structured communication-based programming. In: Hankin, C. (ed.) ESOP 1998. LNCS,
vol. 1381, pp. 122-138. Springer, Heidelberg (1998)

Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types. In: POPL
2008, pp. 273-284. ACM, New York (2008)

Mattson, T., Sanders, B., Massingill, B.: Patterns for Parallel Programming. Addison Wesley,
Reading (2005)

Mezzina, L.G.: How to infer finite session types in a calculus of services and sessions.
In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 216-231.
Springer, Heidelberg (2008)

Mostrous, D., Yoshida, N.: Two Sessions Typing Systems for Higher-Order Mobile Pro-
cesses. In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 321-335. Springer,
Heidelberg (2007)

Mostrous, D., Yoshida, N.: A Session Object Calculus for Structured Communication-Based
Programming. Technical report, Imperial College London (2008), www .doc.ic.ac.uk/
~mostrous

Neubauer, M., Thiemann, P.: Session Types for Asynchronous Communication. Universitit
Freiburg (2004)

Padovani, L.: Contract-directed synthesis of simple orchestrators. In: van Breugel, F.,
Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 131-146. Springer, Heidelberg
(2008)

332 D. Mostrous, N. Yoshida, and K. Honda

20. Pierce, B., Sangiorgi, D.: Typing and subtyping for mobile processes. Journal of Mathemat-
ical Structures in Computer Science 6(5), 409—454 (1996)

21. Sancho, J.C., Kerbyson, D.J.: Analysis of Double Buffering on two Different Multicore Ar-
chitectures: Quad-core Opteron and the Cell-BE. In: International Parallel and Distributed
Processing Symposium (IPDPS), April 14-18. IEEE, Los Alamitos (2008)

22. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typing system.
In: Halatsis, C., Philokyprou, G., Maritsas, D., Theodoridis, S. (eds.) PARLE 1994. LNCS,
vol. 817, pp. 398—413. Springer, Heidelberg (1994)

23. Vieira, H.T., Caires, L., Seco, J.C.: The conversation calculus: A model of service-oriented
computation. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 269-283.
Springer, Heidelberg (2008)

24. Web Services Choreography Working Group. Web Services Choreography Description Lan-
guage, http://www.w3.0rg/2002/ws/chor/

	Global Principal Typing in Partially Commutative Asynchronous Sessions
	Introduction
	Asynchronous Multiparty Sessions
	Asynchronous Partially Commutative Sessions
	Asynchronous Communication Subtyping: Top-Level Actions
	Asynchronous Communication Subtyping: Recursive Types
	Algorithmic Asynchronous Subtyping
	Local Asynchronous Commutative Session Typing

	Principal Global Typing through Graph-Based Types
	Application: Double-Buffering Algorithm
	Related Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

