
Trustworthy Log Reconciliation for Distributed

Virtual Organisations

Jun Ho Huh and John Lyle

Oxford University Computing Laboratory
Wolfson Building, Parks Road

Oxford, OX1 3QD
{jun.ho.huh,john.lyle}@comlab.ox.ac.uk

Abstract. Secure management of logs in an organisational grid envi-
ronment is often considered a task of low priority. However, it must be
rapidly upgraded when the logs have security properties in their own
right. We present several use cases where log integrity and confidential-
ity are essential, and propose a log reconciliation architecture in which
both are ensured. We use a combination of trusted computing and virtu-
alization to enable blind log analysis, allowing users to see the results of
legitimate queries, while still withholding access to privileged raw data.

1 Introduction

The notion of a Virtual Organisation (VO) runs commonly through many defi-
nitions of what constitutes a grid: “many disparate logical and physical entities
that span multiple administrative domains are orchestrated together as a sin-
gle logical entity” [15]. The rise of many types of organisational grid systems,
and associated security threats, makes the provision of trustworthy audit-based
monitoring services necessary; for instance, to monitor and report violation of
service-level agreements [18], or to detect events of dubious user behaviour across
multiple domains and take retrospective actions [17].

In reality, a lot of these audit-based controls are prone to be compromised
due to the lack of verification mechanisms for checking the correctness and the
integrity of logs collected from different sites; and also because some of these
logs are highly sensitive, and without the necessary confidentiality guarantees,
neither trusts the other to see the raw data. Many log anonymisation techniques
have been proposed [9,12,19] to solve the latter issue; however, adapting such
techniques and assuring that these anonymisation policies will be correctly en-
forced at a remote site, is a whole new security issue. The problem with existing
solutions is that they provide only weak protection (or none) for such security
properties upon distributed log collection and reconciliation (Section 3).

In our previous work [8] we have proposed a logging infrastructure using the
driver virtualization in Xen that enables trustworthy generation and storage of
the log data. In this paper, we take a step further and describe a log reconciliation
method for guaranteeing their integrity and confidentiality.

L. Chen, C.J. Mitchell, and A. Martin (Eds.): Trust 2009, LNCS 5471, pp. 169–182, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

170 J.H. Huh and J. Lyle

The rest of the paper is organised as follows. In Section 2, we present a num-
ber of motivational examples and highlight distinct security challenges with pro-
cessing distributed log data. Section 3 discusses the security gaps of existing
solutions. Then, in Section 4, we present the trustworthy log reconciliation re-
quirements which address these security gaps. Mindful of such requirements, we
describe a reconciliation infrastructure for a VO in Sections 5 and 6. Finally, in
Section 7 we discuss the contribution of this paper and the remaining work.

2 Motivational Examples

2.1 Healthcare Grids and Dynamic Access Control

The first example application arises in the context of a healthcare grid. In ‘e-
Health’, many data grids are being constructed and interconnected in order to
facilitate the better provision of clinical information. Each clinic (an independent
legal entity) participating in the grid owns and manages physical databases which
together form the virtualized clinical data and log stores. To motivate the use
cases described later in this section we use an abstract view of the VO (see Figure
1): each node consists of external and internal services where the virtualization
of data sources takes place; it also has its own local data and logs; a standard
external service enables communication between different nodes.

Consider the following example in the context of Figure 1. A simplified health-
care grid consists of two nodes, a GP Practice (GP) and a Specialist Clinic (SC).
A patient in GP is often referred to SC to see a specialist. We shall assume that
a single table at each clinic (T1, T2) is made accessible to a researcher R, and
that the National Health Index (NHI) uniquely identifies a patient across the
grid to enable the linking of data. R is carrying out a study that looks at asso-
ciation between smoking status (T1) and development of lung cancer (T2) in the
population of Oxfordshire.

R has originally been granted full access to both T1 (at GP) and T2 (at SC)
to conduct this research. By joining the data across two clinics, R would have
access to potential identifiable information about patients: for example, R could

Fig. 1. Abstract View of the Virtual Organisation

Trustworthy Log Reconciliation for Distributed Virtual Organisations 171

find out that patient 1, born on the 20/05/88 and living in OX2 5PS who has
Dr. Anderson as their GP, is a smoker and has a lung cancer.

GP Practice (GP) T1

NHI DOB GP Smoke Risks

1 20/05/88 Dr. Anderson yes overweight

2 30/07/88 Dr. Anderson no allergies

Specialist Clinic (SC) T2

NHI Postcode LungCancer

1 OX2 5PS yes

2 OX2 6QA no

In a secure VO, as soon as R finds out from querying T2 that patient 1 has
lung cancer, R’s access on T1 for patient 1 needs to be restricted to, for example,
only the NHI and Smoke fields. For GP to have restricted R’s access rights to
information pertaining to patient 1 on T1, would have required GP to collect
data access logs from SC to build up a picture of what R already knows, and
to update its own access control policies to prevent R from collecting potential
identifiable information. Although, in general, SC would never give out patients’
lung cancer status in the form of audit logs to an untrusted GP .

This type of distributed audit approach has been suggested [17] to detect
patterns of behaviour across multiple administrative domains by combining their
audit logs. However, the problem arises from the fact that log owners do not trust
other sites to see their privileged raw logs. This approach will only work if log
owners can be assured of confidentiality during transit and reconciliation.

2.2 The Monitorability of Service-Level Agreements (SLAs)

The provision of Service-Level Agreements (SLAs) and ensuring their monitora-
bility is another example use for trustworthy log reconciliation.

A SLA is a contract between customers and their service provider which spec-
ifies the levels of various attributes of a service like its availability, performance
and the associated penalties in the case of violation of these agreements. Con-
sider a case where the client receives no response for a service (for which they
have entered into a SLA) within the agreed interval of time, complains to the
provider that a timely response was not received and requests financial compen-
sation. The provider argues that no service request was received, and produces
a log of requests in their defense. There is no way for the client to find out the
truth: the provider could have delivered tampered evidence regarding this event.
The problem with this type of SLA is that it is defined in terms of events that
the client cannot directly monitor, and they must take the word of the provider
with respect to the service availability.

Skene et al [18] suggest a way of achieving the monitorability with trusted
computing. This involves generating trustworthy logs, ensuring that unmodified

172 J.H. Huh and J. Lyle

logs have been reported by both parties and that these logs have been used
for monitoring SLAs. For instance, if the client is able to verify with remote
attestation that trustworthy logging and reporting services operate at a remote
site, then the client may place conditions on any event of their interest and
construct more useful SLAs. This approach needs to guarantee the integrity of
all service request/response logs to an evidential standard (i.e. to a standard
acceptable for judicial usages) upon distributed reconciliation and analysis. A
monitoring service would then be able to generate a reliable SLA report for the
client to make claims.

Logs often contain sufficient information to be used as evidence in a variety
of context. However, the inability of a site to verify the integrity of logs collected
from other sites and the lack of guarantees that their own logs are being used
unmodified at remote sites, make it extremely challenging for one to adapt the
usual audit-based monitoring method to the VO.

3 Relevant Work and a Gap Analysis

Having identified the security challenges of imposing audit-based controls, we
are now in a position to present a gap analysis on existing solutions.

DiLoS (Distributed General Logging Architecture for Grid Environments) [5]
provides general logging facilities in service oriented grid environments to enable
tracking of the whole system. One of its application models is to facilitate ac-
counting for resource-providing services: to measure and annotate who has used
which services, and to bill usage prices. In this accounting domain, however,
DiLoS does not consider the log integrity issues and the possible threats that
have been covered in Section 2.2. Without security mechanisms to protect log
integrity, their architecture cannot be relied upon to perform calculating and
billing functions.

Piro et al [14] have developed a more secure and reliable data grid accounting
system based on metering resource usage. All communications are encrypted [13];
but a privileged user may still configure the Home Location Register (HLR), a
component that collects remote usage records for accounting, to disclose sensitive
usage records. A rogue resource owner may modify the Computing Element
(CE), which measures the exact resource usage, in order to fabricate records
and prices for profit.

The NetLogger Toolkit [20] provides client application libraries (C, Java,
Python APIs) that enable one to generate log messages in a common format. It
also includes monitoring tools for log collection and analysis at a central point.
Again, the log integrity and confidentiality threats discussed in the previous
section undermine their approach: access requests are processed without any au-
thorisation policy enforcement, and the logs are transferred across the network
in an unencrypted and unsigned format. No attempt is made to safeguard the
logs while they are being collected and processed at the reconciliation point.

Similar security problems undermine other existing grid monitoring tools such
as APEL (Accounting Processor for Event Logs) [3], which builds accounting

Trustworthy Log Reconciliation for Distributed Virtual Organisations 173

records from system and gatekeeper logs generated by a site; and GMS (Grid
Monitoring System) [11], a system that captures and stores job information in
a relational database, and supports resource usage monitoring and visualising.

4 Trustworthy Log Reconciliation Requirements

To fill the security gaps identified above, we provide a high-level overview of the
key requirements with respect to our motivational examples.

Log Migration Service. Due to the number of potential security vulnerabili-
ties, complex grid middleware services can not be relied upon to perform trusted
operations [4]. Instead the security controls required for safe log data transfer
need to operate within a more secure migration service. This implies data flow
encryption and signing requirements upon log access and transfer requests. These
are integral in preventing intruders from sniffing the logs processed through inse-
cure grid middleware, and from launching man-in-the-middle type of attacks. It
is also possible for a log owner to deliver fabricated logs, as the service provider
might do in the SLA example. To provide a safeguard against such a threat, the
migration service needs to access the signed logs (and the original logs) directly
from the protected log storage. This would give sufficient information for an end
user to verify the log integrity.

Log Reconciliation Service. Our examples have a common set of requirements
for a trustworthy reconciliation service. They require each site to negotiate with
others and grant permissions to view their logs. These sites (before granting per-
missions) need to be assured that their logs will not be compromised and will be
used without modification. The integrity and the confidentiality of the collected
logs as well as the processed results (e.g. summaries on SLA violation) need to be
protected to prevent a malicious user from modifying or stealing them.

To make it harder for insiders to gain unauthorised access and modify the
reconciled logs, this service needs to run in a strongly isolated compartment
with robust memory protection. It should also be a small and simple code to
minimise the number of security holes that might be exploited.

Blind Analysis of the Logs. Returning to our healthcare example, imagine
that SC has agreed to share their logs with GP for dynamic access control. But
at the same time they are unwilling to let the system administrator at GP see
the actual contents of the logs; or only let part of the data be seen as a summary
information. For example, “R’s access rights on T1 for a patient with NHI 1,
aged 20 and living in OX2 area, have been restricted to NHI and Smoke fields.”.
Such anonymisation of end results ensures that the administrator cannot find
out about a patient’s lung cancer status, and yet, still know exactly how the
access control policy has been changed for R.

Log owners need to be assured that any sensitive information contained in
their logs will only be revealed to an extent that has been agreed and stated in

174 J.H. Huh and J. Lyle

anonymisation policies: this requires a mechanism, possibly within the reconcil-
iation service, to carry out a blind analysis of the collected logs so that a user
only sees the running application and the end results, which are just sufficient
for them to carry out post log analysis or to know about the important system
updates.

5 Trustworthy Logging Architecture

In our previous work [8], we have developed a logging architecture based on
Virtual Machine (VM) isolation and remote attestation (see Figure 2). Upon
installation of this architecture, each VO participant will be capable of generating
and storing log data, and proving to other sites that these logs are trustworthy.

The Trusted Computing Group (TCG) [1] has developed a series of technolo-
gies based around a Trusted Platform Module (TPM) which helps to provide two
novel capabilities [7]: a cryptographically strong identity and reporting mecha-
nism for the platform, and a means to measure reliably a hash of the software
loaded and run on the platform (from the BIOS upwards); such measurements
are stored and retrieved from Platform Configuration Registers (PCRs) in the
TPM. These provide the means to seal data so that it is available only to a par-
ticular platform state, and to undertake remote attestation: proving to a third
party that a remote device is in a particular software state. TPM-generated
Attestation Identity Keys (AIKs) are used to sign PCR values and to prevent
tracking of platforms. These trusted computing capabilities can be used in a vir-
tualized environment where a physical host is segmented into strongly isolated
compartments to make attestation feasible (with robust memory protection),
and to limit the impact of any vulnerability in attested code. Our architecture
uses the Xen Virtual Machine Monitor (VMM) [2] to achieve this isolation: a
thin layer of software operating on top of the hardware to enable VM abstraction
and control the way a VM accesses the hardware and peripherals.

All log security functions are enforced by the log security manager VM, a small
amount of code running inside back-end driver VMs and the log analysis manager
VM; each of which has been designed to perform a small number of simple
operations so that it can be compartmented with a high degree of assurance.

Fig. 2. Abstract View of Trusted Logging Services

Trustworthy Log Reconciliation for Distributed Virtual Organisations 175

Attestation of these compartments, the Policy Enforcement Point (PEP) and
the VMM is sufficient for one to establish trust with a VO platform, and to
be assured that its log security functions have not been subverted; this is our
Trusted Computing Base (TCB).

A small number of trusted back-end driver VMs are responsible for generating
all logging requests upon use of device drivers. All other VMs must communicate
with one of these driver VMs to access the physical hardware. Inside these VMs,
the log transit component collects important I/O details and submits requests
to the log security manager. Applications and middleware services running in
other compartments are no longer relied upon to generate trustworthy log data.

The log security manager performs a range of security functions through the
following services:

– The logging service ensures that no adversaries can access or modify the
log data dispatched from log transits. It filters out untrustworthy logging
requests and verifies their integrity before storing them.

– The reconciliation service facilitates trustworthy reconciliation and transfor-
mation of the collected logs. It enables blind analysis of the logs by enforcing
anonymisation policies.

– The migration service is an external service which facilitates secure commu-
nication between VMs in one or more sites by enforcing security controls
required for safe log transfer.

End-user applications only have access to the externally facing visualisation
service running inside the log analysis manager, which provides the minimal
interface necessary for user applications to interactively analyse the processed
log information. A compartment manager within the PEP executes a job in a
per-user log access VM configured with trustworthy services. The grid services
compartment isolates the middleware stack and is untrusted; it performs resource
brokering and job scheduling.

6 Trustworthy Log Reconciliation

Based on the work in previous section and the requirements analysed in Section
4, we present a trustworthy reconciliation infrastructure.

6.1 The Configuration Resolver

We expand our abstract view of the VO to include a Configuration Resolver
(CR) that manages metrics about the available sites in the VO and their current
software configurations. To become part of the VO a site needs to first register
itself with the CR by submitting the PCR representations of its TCB and log
access VM image files, and a credential containing its public key for which the
private-half has been sealed to both PCR values. The CR then creates a Con-
figuration Token (CT) from this information:

176 J.H. Huh and J. Lyle

CT = (PCRAIKS(N)(TCB), PCRAIKS(N)(LA), credAIKS(N)(PK))

A trustworthy PCR(TCB) value proves that secure logging VMs have been
responsible for generating and protecting the log data; this allows a participant to
have high confidence in the correctness of the logs stored in node N . Furthermore,
a trustworthy PCR(LA) value guarantees the security configurations of a log
access VM. A value of PCR(LA) is stored in a resettable PCR 23 because these
VM image files will be remeasured and verified by the PEP at run-time before
being launched.

The CR acts as a token repository in our system and offers no other complex
functionality. The burden of verifying tokens is left to the participant. This is
attractive from a security perspective, as the CR can remain an untrusted com-
ponent. The worst that a malicious CR can do is affect the availability of the
infrastructure. However, the simple CR does increase the management overhead
on each node. They will all need the ability to check tokens. This involves main-
taining a list of trustworthy software (a white-list), and keeping a revocation list
of compromised TPMs and platforms. The security of our system depends on the
proper management of this information. We suggest that a suitable compromise
might be to devolve some of this functionality to local proxy-CRs, which would
perform the token filtering for one specific administrative domain. This keeps
control local to one site, but would decrease the effort at each individual node.

To conform to existing standards, we imagine that CR would be implemented
as a WS-ServiceGroup [10]. Each node would then be a member of this CR’s
group, and have a ServiceEntry in its list. The membership constraints would
be simple, requiring only a valid token and identity. We assume that there is
a public key infrastructure available to verify their identity. As a result, the
levels of indirection introduced by the TCG to prevent any loss of anonymity
are unnecessary. We would suggest that the Privacy CA is not a key component
of the system, and a publically-available one could be used. AIKs can be created
as soon as the platform is first installed, and should very rarely need updating.

6.2 Trustworthy Log Reconciliation Infrastructure

With the resolver in place, security procedures of the reconciliation infrastructure
have been carefully designed. Our healthcare example in Section 2.1 has been
revisited to explain these procedures.

Creation and Distribution of a Log Access Grid Job. All end user in-
teractions with a clinic node are made via the visualisation service. It provides
the minimal interface (APIs) necessary for development of grid-enabled applica-
tions. An analysis tool should be designed to allow a user to select acceptable
host configurations and user credentials, and enter the log access code/query (1,
numbers refer to Figure 3).

A system administrator at GP , using one of these tools, requests for dynamic
updates on the local access control policies. The visualisation service requests
for the list of available configuration tokens (CT s) (2, 3, Figure 3); the list is

Trustworthy Log Reconciliation for Distributed Virtual Organisations 177

Fig. 3. Creation and Distribution of a Log Access Grid Job

forwarded to the log migration service running inside the log security manager
(4, Figure 3). The migration service makes a list of acceptable hosts by com-
paring each CT against a user-specified white-list. It then creates a set of grid
jobs, each of which contains the administrator’s credential, log access code, job
description, a nonce (NGP) and an Attestation Token (AT) that can be used by
any SCs to verify the security state of the system running at GP (5, Figure 3);
AT consists of the following information:

AT = (PCRAIKS(GP)(TCBGP), credAIKS(GP)(PK))

credAIK(GP)(PK) is GP ’s PK credential which identifies the corresponding
SK as being sealed to PCR(TCBGP).

For each job, the credential, the code and NGP are encrypted with a PK(SC)
obtained from a CT to prevent an adversary from modifying the code and to
ensure that the credential is only revealed to a trustworthy SC. The use of the
nonce, NGP , is explained further on in this section. After encryption, these jobs
are sent across the network via an untrusted grid middleware compartment which
can only read the job description to identify the target SC; jobs are submitted
to the PEPs of their target nodes that handle job submission (6, Figure 3).

Operations of a Trusted Log Access VM. In Figure 4 we take a closer
look at how a job gets processed at one of the target nodes, SCA. Any security
processing required before becoming ready to be deployed in a per-user log access
VM is done through the PEP: it compares PCRAIKS(GP) (from AT) with its set
of known-good values stated in a policy to verify that the job has been created
and dispatched from a correctly configured log security manager; this is how
the job is authenticated at SCA (1, Figure 4). Upon successful attestation, the
PEP first measures the local copy of log access VM image (and a configuration

178 J.H. Huh and J. Lyle

Fig. 4. Submission of a Grid Job, Creation and Operations of a Log Access VM

file), and resets PCR 23 with the new measurement, PCR(LAA); this image
consists of the guest OS and the trusted middleware stack (authorisation policy
management and migration services) which provides a common interface for
a job to access the logs. The PEP then attempts to unseal the decryption key,
SK(SCA) (bound to PCR(TCBA) and PCR(LAA)), in order to decrypt the job.
Note that SK(SCA) will only be available if SCA is still running with trustworthy
configurations and the VM image files have not been subverted. This is intended
to guarantee that only a trusted VM has access to the decrypted credential, code
and NGP .

If these security checks pass, the compartment manager launches a trusted
VM from the verified VM image files, and deploys the decrypted job on top
of the middleware stack (2, Figure 4). The migration service first requests the
policy management service to decide whether the administrator is authorised to
view the requested logs (3, 4, Figure 4). If the conditions are satisfied, the code
gets executed. A log anonymisation policy (Pols) specified by the log owner,
which states what part of the requested log data should be available to the
administrator at GP , is also selected (5, Figure 4): in this scenario Pols would
restrict disclosure of LungCancer status (see T2). Existing log anonymisation
techniques such as FLAIM [19] can be used in specifying these policies, in order
to sanitise the sensitive data while pertaining sufficient information for analysis.

The migration service then generates a secure message containing these re-
sults (6, Figure 4):

R = {Logs, Pols, NGP}PK(GP)

GP ’s nonce, NGP , is sufficient to verify that this message has been generated
from a trusted VM and unmodified code has been executed. The entire mes-
sage is encrypted with PK(GP) so that it can only be decrypted if the system

Trustworthy Log Reconciliation for Distributed Virtual Organisations 179

Fig. 5. Reconciliation of Collected Logs

at GP is still configured to match PCR(TCBGP) (from AT); a compromised
system will not be able to decrypt this message. An attacker will not be able to
tamper with it since the private-half, SK(GP), is strongly protected inside the
TPM.

Reconciliation of Collected Logs. This message arrives at the PEP of GP ’s
system where it is decrypted using SK(GP) (1, Figure 5). The decrypted message
is then forwarded to the migration service which compares the returned NGP

with the original nonce (2, Figure 5). A matching value verifies the correctness
and the integrity of the collected Logs.

The internal reconciliation service reconciles the logs collected from SCA,
SCB and SCC and updates the access control policies according to what users
have previously seen from these three specialist clinics (3, Figure 5). During
this process Pols are enforced to fully anonymise the log data. Attestation
of GP ’s log security manager (1, back in Figure 4) is sufficient to establish
that these anonymisation policies will be imposed correctly during reconcil-
iation. VM isolation and its robust memory protection prevent an attacker
from accessing the memory space of the log security manager to steal the raw
data.

A summary of the policy updates is then generated using the anonymised data
and forwarded to the original requestor, the visualisation service (4, 5, Figure
5). The administrator only sees this summary information on how the policies
for their patient data have been updated for different users, and performs blind
log analysis (6, Figure 5). VM Policy Attestation [6] may be used on the log
analysis VM to verify that it does not permit the summary to be exported to
an unauthorised device.

180 J.H. Huh and J. Lyle

Table 1. Trustworthy Log Reconciliation Features

Security Goals Trustworthy Log Reconciliation Features

Logs need to be protected
from the grid middleware
services

Isolation of untrusted grid middleware services; the log
migration service encrypts logs using a log owner’s public
key for which the private-half is strongly protected inside
log owner’s TPM.

A log requester needs to be
able to verify the integrity of
the collected logs

Trustworthy log-generating sites are selected from config-
uration token verification; only a trusted log access VM
is able to decrypt the grid job and return the logs from a
remote site.

A log owner needs to be
assured that their logs will
be safeguarded from compro-
mise and used unmodified at
remote sites

Attestation token (part of the grid job) is used to ver-
ify the trustworthiness of a log requester’s platform and
its reconciliation services; the logs are encrypted using re-
quester’s public key for which the private-half is sealed to
a trustworthy configuration.

Blind log analysis Log anonymisation policies are enforced by the reconcilia-
tion service and the raw data never leaves the log security
manager; an end user only sees the fully anonymised data.

6.3 Observations

Configuration Token Verification. The trustworthiness of our architecture
is dependent on the ability for each participant to make the right decision about
the security provided by software at other nodes. The identity of this software is
reported in the PCR values contained in the CT s. We imagine that these values
will then be compared to a white-list of acceptable software. However, this as-
sumes prior knowledge of all trusted node configurations, which may not be the
case if the VO is particularly large. Such a scalability issue is magnified when
considering settings files, many of which will have the same semantic meaning
but different measured values. It is difficult to assess how big a problem this is,
but future work may look at using Property-Based Attestation [16] as a potential
solution.

Node Upgrades. The most significant overhead of our system is the cost of up-
grading existing nodes to support the new infrastructure. This involves installing
the Xen VMM and various logging VMs. While this is a large change, the advan-
tage of our architecture is that legacy operating systems and middleware can still
be used in their own VMs. The overall administration task is therefore not so
large. Furthermore, virtualization is increasing in popularity, and it seems likely
that the scalability and management advantages will persuade VO participants
into upgrading to a suitable system anyway.

7 Conclusions and Future Work

In this paper, we have described a trustworthy log reconciliation infrastructure to
facilitate audit-based monitoring in distributed virtual organisations with strong

Trustworthy Log Reconciliation for Distributed Virtual Organisations 181

guarantees of the log integrity and confidentiality. Table 1 summarises how our
infrastructure satisfies the security requirements analysed in Section 4.

Prototype implementations of some of these features will be constructed and
their inherent security and practicality will be carefully evaluated.

We intend to extend and generalise this work into a Digital Rights Manage-
ment (DRM) framework in the future. Our reconciliation and migration VMs,
as the root of trust, will enforce DRM policies to protected data and ensure that
they are safeguarded wherever they move in a virtual organisation.

Acknowledgements

The work described is supported by a studentship from QinetiQ. Andrew Martin
reviewed an early draft of this paper and provided constructive comments and
suggestions. David Power and Peter Lee provided help with the healthcare grid
example.

The authors would also like to thank the anonymous reviewers for their careful
attention and insightful comments.

References

1. Trusted computing group backgrounder (October 2006),
https://www.trustedcomputinggroup.org/about/

2. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.: Xen and the art of
virtualization. Technical report, University of Cambridge, Computer Laboratory
(2003)

3. Byrom, R., Cordenonsi, R., Cornwall, L., Craig, M., Djaoui, A., Duncan, A., Fisher,
S.: Apel: An implementation of grid accounting using r-gma. Technical report,
CCLRC - Rutherford Appleton Laboratory, Queen Mary - University of London
(2005)

4. Cooper, A., Martin, A.: Trusted delegation for grid computing. In: The Second
Workshop on Advances in Trusted Computing (2006)

5. de Alfonso, C., Caballer, M., Carrión, J.V., Hernández, V.: Distributed general log-
ging architecture for grid environments. In: Daydé, M., Palma, J.M.L.M., Coutinho,
Á.L.G.A., Pacitti, E., Lopes, J.C. (eds.) VECPAR 2006. LNCS, vol. 4395, pp. 589–
600. Springer, Heidelberg (2007)

6. England, P.: Practical techniques for operating system attestation. In: Lipp, P.,
Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS, vol. 4968, pp. 1–13. Springer,
Heidelberg (2008)

7. Grawrock, D.: The Intel Safer Computing Initiative, pp. 3–31. Intel Press (2006)

8. Huh, J.H., Martin, A.: Trusted logging for grid computing. In: 3rd Asia-Pacific
Trusted Infrastructure Technologies Conference, China (2008)

9. Lincoln, P., Porras, P., Shmatikov, V.: Privacy-preserving sharing and correction of
security alerts. In: 13th conference on USENIX Security Symposium, p. 17 (2004)

10. Maguire, T., Snelling, D.: Web services service group 1.2 (ws-servicegroup). Tech-
nical report, OASIS Open (June 2004)

https://www.trustedcomputinggroup.org/about/

182 J.H. Huh and J. Lyle

11. Ng, H.-K., Ho, Q.-T., Lee, B.-S., Lim, D., Ong, Y.-S., Cai, W.: Nanyang cam-
pus inter-organization grid monitoring system. Technical report, Grid Operation
and Training Center, School of Computer Engineering - Nanyang Technological
University (2005)

12. Pang, R.: A high-level programming environment for packet trace anonymization
and transformation. In: ACM SIGCOMM Conference, Germany (2003)

13. Piro, R.M.: Datagrid accounting system - basic concepts and current status. Work-
shop on e-Infrastructures (May 2005)

14. Piro, R.M., Guarise, A., Werbrouck, A.: An economy-based accounting infrastruc-
ture for the datagrid. In: Fourth International Workshop on Grid Computing (2003)

15. Power, D.J., Politou, E.A., Slaymaker, M.A., Simpson, A.C.: Towards secure grid-
enabled healthcare. Software Practice And Experience (2002)

16. Sadeghi, A.-R., Stüble, C.: Property-based attestation for computing platforms:
Caring about properties, not mechanisms. In: NSPW 2004: Proceedings of the
2004 workshop on New security paradigms. ACM Press, New York (2004)

17. Simpson, A., Power, D., Slaymaker, M.: On tracker attacks in health grids. In: 2006
ACM Symposium on Applied Computing, pp. 209–216 (2006)

18. Skene, J., Skene, A., Crampton, J., Emmerich, W.: The monitorability of service-
level agreements for application-service provision. In: 6th International Workshop
on Software and Performance, pp. 3–14 (2007)

19. Slagell, A., Lakkaraju, K., Luo, K.: Flaim: A multi-level anonymization framework
for computer and network logs. In: 20th Large Installation System Administration
Conference (2006)

20. Tierney, B., Gunter, D.: Netlogger: A toolkit for distributed system performance
tuning and debugging. Technical report, Lawrence Berkeley National Laboratory
(December 2002)

	Trustworthy Log Reconciliation for Distributed Virtual Organisations
	Introduction
	Motivational Examples
	Healthcare Grids and Dynamic Access Control
	The Monitorability of Service-Level Agreements (SLAs)

	Relevant Work and a Gap Analysis
	Trustworthy Log Reconciliation Requirements
	Trustworthy Logging Architecture
	Trustworthy Log Reconciliation
	The Configuration Resolver
	Trustworthy Log Reconciliation Infrastructure
	Observations

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

