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Preface

This volume contains the 15 papers presented in the technical strand of the Trust
2009 conference, held in Oxford, UK in April 2009. Trust 2009 was the second
international conference devoted to the technical and socio-economic aspects
of trusted computing. The conference had two main strands, one devoted to
technical aspects of trusted computing (addressed by these proceedings), and
the other devoted to socio-economic aspects.

Trust 2009 built on the successful Trust 2008 conference, held in Villach,
Austria in March 2008. The proceedings of Trust 2008, containing 14 papers,
were published in volume 4968 of the Lecture Notes in Computer Science series.

The technical strand of Trust 2009 contained 15 original papers on the design
and application of trusted computing. For these proceedings the papers have
been divided into four main categories, namely:

– Implementation of trusted computing
– Attestation
– PKI for trusted computing
– Applications of trusted computing

The 15 papers included here were selected from a total of 33 submissions.
The refereeing process was rigorous, involving at least three (and mostly more)
independent reports being prepared for each submission. We are very grateful
to our hard-working and distinguished Program Committee for doing such an
excellent job in a timely fashion. We believe that the result is a high-quality
set of papers, some of which have been significantly improved as a result of the
refereeing process.

We would also like to thank all the authors who submitted their papers to
the technical strand of the Trust 2009 conference, all external referees, and all
the attendees of the conference.

It is intended that this conference is the second in an annual series of confer-
ences devoted to trusted computing, and we look forward to Trust 2010.

January 2009 Liqun Chen
Chris Mitchell
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Löıc Duflot SGDN/DCSSI, France
Paul England Microsoft, USA
Sigrid Guergens Fraunhofer, Germany
Dirk Kuhlmann HP Laboratories, UK
Peter Lipp IAIK, TU Graz, Austria
Javier Lopez University of Malaga, Spain
Andrew Martin University of Oxford, UK
Yi Mu University of Wollongong, Australia
David Naccache ENS, France
Heike Neumann NXP Semiconductors, Germany
Elisabeth Oswald University of Bristol, UK
Kenny Paterson RHUL, UK
Raphael Phan University of Loughborough, UK
Bart Preneel KU Leuven, Belgium
Graeme Proudler HP Laboratories, UK
Sihan Qing Chinese Academy of Sciences, China
Carsten Rudolph Fraunhofer, Germany
Mark Ryan University of Birmingham, UK
Ahmad-Reza Sadeghi Ruhr University Bochum, Germany



VIII Organization

Jean-Pierre Seifert Samsung Research, USA
Ari Singer NTRU, USA
Sean Smith Dartmouth College, USA
Christian Stüeble Sirrix, Germany
Leendert van Doorn AMD, USA
Vijay Varadharajan Macquarie University, Australia

Steering Committee

Boris Balacheff Hewlett-Packard Laboratories, UK
Ian Brown University of Oxford, UK
Andrew Martin University of Oxford, UK
Chris Mitchell Royal Holloway, University of London, UK
Ahmad-Reza Sadeghi Ruhr University Bochum, Germany

External Reviewers

Tien Tuan Anh Dinh
Kurt Dietrich
Jim Grimmett
Xinyi Huang
Jun Ho Huh
Qingguang Ji
Markulf Kohlweiss
Stephan Krenn
GaiCheng Li
Hans Löhr
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Towards a Programmable TPM 

Paul England and Talha Tariq 

Microsoft Corporation, 1 Microsoft Way,  
Redmond WA 98052, USA 

{paul.england,talhat}@microsoft.com 

Abstract. We explore a new model for trusted computing in which an existing 
fixed-function Trusted Platform Module (TPM) is coupled with user application 
code running on a programmable smart card. We will show that with appropri-
ate coupling the resulting system approximates a “field-programmable TPM.” 
A true field-programmable TPM would provide higher levels of security for 
user-functions that would otherwise need to execute in host software.  Our cou-
pling architecture supports many (but not all) of the security requirements and 
applications scenarios that you would expect of a programmable TPM, but has 
the advantage that it can be deployed using existing technology. 

This paper describes our TPM-smart card coupling architecture and the ser-
vices that we have prototyped. The services include: (1) An implementation of 
count-limited objects in which keys can only be used a preset number of times. 
(2) More flexible versions of the TPM Unseal and Unbind primitives that allow 
sealing to groups of equivalent configurations. And (3) a version of Quote that 
uses alternative signature formats and cryptography available within smart 
cards but not in the TPM itself.  

We also describe the limitations of the coupling architecture and how some 
of the limitations could be overcome with a true programmable TPM.  

Keywords: Trusted Platforms, Trusted Platform Module, Smart Cards, Secure 
Execution. 

1   Introduction 

Trusted Platform Modules (TPMs) are fixed-function security processors built into 
many computer platforms [1].  When combined with Core- and Dynamic-Root-of-
Trust-Measurement facilities (CRTM & DRTM) for reporting platform state, the 
TPM provides a basis for a secure and attestable execution environment for system 
software and applications.  

The TPM provides a variety of services [2] that depend on the platform state.  
These include:  

 

Attestation: Cryptographic reporting of platform state to a remote challenger.  
 

Sealing: Protected storage / encryption of data that will only be released / de-
crypted when the platform is in a particular configuration and state. 

When these services are combined with a secure software stack, the small set of TPM-
provided functions can bootstrap rich and powerful execution environments running 
on the main processors.  
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Using the TPM to bootstrap trust into an execution environment like a platform 
hypervisor or operating system is adequate for many purposes, however data and 
application programs running on the main processors are much less protected from 
physical attack than programs and data held inside the TPM. This problem is evident 
from the recent hardware attacks on applications utilizing TPMs [3], [4], [5].  The 
problems of software robustness are even more challenging: mainstream operating 
systems have an ill-defined Trusted Computing Base (TCB) that is generally not se-
cure enough for attestation to be meaningful [6]. 

Primary OS /
Domain 0

Guest OS

Hypervisor

Programmable TPM

Guest OS (a) (b)

Hypervisor

Smart card
Device
driver

Smart Card

Application
Application

TPM-Core

TPM
Application

TPM Core

Crypto Channel
Endpoint

 

Fig. 1. (a) Schematic illustration of a programmable TPM and its use in a hypervisor setting. 
We assume that the TPM can load and run applications and the services implemented can be 
exposed to the hypervisor and guest operating systems. (b) Schematic of one instantiation of 
our coupled TPM smart card architecture: The TCB and TPM are coupled to the smart card 
using an out-of-band cryptographic marrying step. The cryptographic channels (thick lines) 
represent authenticated and secure connections from the smart card to the TPM and the smart 
card to the channel end-point. 

If the host-platform-based secure environment is not secure enough, we might con-
sider building a secure execution environment inside a TPM such as that illustrated in 
Fig 1(a). Such a system should provide much better robustness to hardware and soft-
ware attack than that offered by platform macrocode.  And indeed, such devices have 
been studied by researchers, but unfortunately they do not yet exist [7]. 

In this paper we propose an alternative architecture for providing high-assurance 
extended TPM services.  Instead of making changes to the TPM hardware design, we 
describe and evaluate an architecture in which we couple a programmable smart card 
to a TPM to provide programmable services that are not possible with either alone. 
See Fig. 1 (b). This architecture has many interesting characteristics: First it is a prac-
tical way of providing enhanced security functionality for existing TPMs. Second, it 
provides a way of prototyping new TPM functions to assess their usefulness before 
committing them to silicon, and finally it allows us to explore the design and assess 
the usefulness of a true “programmable TPM.” 

We have built several advanced security services to help us understand this archi-
tecture and demonstrate its capabilities. The services described in this paper are: 
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Count-Limited Objects: An implementation of TPM keys that can only be used to 
perform cryptographic operations a preset number of times.  This capability is de-
signed to simplify some aspects of key revocation and support rights-management. 
 
Flexible Seal and Unseal: An implementation of the Seal, Unseal, and Unbind primi-
tives that allow more complex policy expressions than the simple Platform Configura-
tion Register (PCR) equality checks supported  by the current TPM specifications1. One 
policy expression allows sealing to a software publisher or other authority identified by 
a public key.  In this case the publisher may later authorize any PCR configuration using 
a certificate signed using the associated private key. Another policy expression allows 
more complex logical expressions of authorized configurations (e.g. PCR configuration 
1 or PCR configuration 2).  Both of these enhancements are designed to make software 
updates and grouping of equivalent programs easier to manage. 
 
Attestation Translation: A smart card service that provides attestation using cryp-
tography and signature formats unavailable within a TPM. This is a proof of concept 
of attestation translation: a more sophisticated implementation could provide platform 
attestation in more widely used signature and certificate formats like X.509.  This 
facility should simplify the deployment of attestation because existing servers and 
protocols can be used. 

The paper is organized as follows. In section 2 we describe the coupling architec-
ture. In section 3 we describe the security primitives that we have prototyped, and in 
sections 4 and 5 we describe the limitations of the coupling architecture and possible 
further work. 

2   TPM to Smart Card Coupling 

We seek to approximate a field-programmable TPM in which the secure execution 
environment for user extensible application programs is part of the host platform 
TPM. However when emulating a programmable TPM using a conventional fixed-
function TPM and an external smart card, the secure execution environment is exter-
nal to the TPM, is independent of the host state, and can be freely roamed between 
machines. This creates several challenges that we need to address:   First, the execu-
tion environments provided by the host system and a smart card are relatively inde-
pendent. For example, smart card applications can still run if the smart card is moved 
between different host machines.  Second, TPM-to-host-TCB communications are 
relatively well protected (for example TPM communications are on a motherboard 
internal bus) whereas in coupling with an external smart card, the smart card bus is 
exposed, and communications are sometimes managed by drivers running outside the 
TCB (Fig. 1(b)). 

2.1   Coupling Security Requirements 

If the smart card is to provide TPM-enhanced platform services we need to couple the 
smart card and the host platform more tightly.   

                                                           
1 At the time of this writing the current TPM specifications is version 1.2. 
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In particular we identify the following security requirements: 
 

1) Smart card applications should be able to determine the host hardware and 
the host TCB (e.g. to support a smart card enhanced version of Unseal or 
Quote.) 

2) The host TCB should be able determine the identity of the smart card and its 
applications (e.g. to ensure that TCB confidential data is not improperly re-
leased to an un-trusted smart.) 

3) The smart card applications should have a bi-directional confidential channel 
to the host. (e.g. to support confidential communication of data passed to a 
smart card enhanced version of Seal or confidential communication of data 
returned from a smart card enhanced version of Unseal). 

 

Our solution to these requirements is described in the next section. 

2.2   Cryptographic Marrying (Smart Card to TPM Binding) 

We assume that a trusted authority determines the TPM-to-smart card binding policy. 
In the case of an enterprise this might involve an IT department coupling an em-
ployee’s smart card with the TPM on her PC (either under conditions of physical 
security, or remotely given knowledge of keys in the devices to be coupled). In the 
case of an OEM this might involve shipping a pre-coupled TPM and smart card to-
gether with an associated platform certificate.  

We have implemented a system in which a unique TPM is coupled with a single 
smart card, but generalizations are straightforward. During this platform binding step 
we generate and store the following cryptographic keys to identify the smart card and 
associated TPM: 

 

• The TPM generates an Attestation Identity Key (AIK) which is used to iden-
tify the TPM and the host. The public portion of this key is communicated to 
the smart card under conditions of physical security in the marrying step, and 
is stored in smart card non-volatile storage as shown in Fig. 2.  

• The smart card generates an RSA key pair which is used to identify the card. 
The public portion of the key is communicated to the platform TCB under 
conditions of physical security and is secured in host platform secure storage.  

The binding and initialization step need only be performed once. At run time code 
in the TCB and in the smart card builds a secure authenticated channel based on these 
authentication keys. 

The explicit software-constructed secure channel is sufficient to support secure 
communication between smart card applications and the trusted computing base.  
Some of our smart card applications additionally employ cryptographic properties 
of the TPM itself without need for further channel security (beyond boot-strapping 
with the married AIK).  First, the attestation translation and enhanced seal opera-
tions need to determine the current platform configuration.  We provide this proof 
using the TPM_Quote operation (using the married AIK).  This cryptographic 
primitive is already designed to work securely in the face of untrustworthy host 
software. Second, the count-limited key function uses the TPMs HMAC-based 
 



 Towards a Programmable TPM 5 

Generate RSA
Identity key
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SmartCard
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Generate AIK

Seal smart card
public key

Export Card Public Key

Export AIK public key

 

Fig  2. Cryptographic Binding of the TPM and Smart Card 

proof-of-password-possession protocols. Finally, the count-limited key function 
uses the TPM capability for remote creation and encryption of keys using the TPM 
key-storage hierarchy. 

In our implementation two more smart card keys are created as part of the marry-
ing step. A symmetric AES key is created for off-card storage of smart card created 
sealed data blobs, and an RSA signing key is created for the attestation translation 
function. If a new binding is performed all previous bound data becomes inaccessible 
and the quote translation key is destroyed (just like installing a new owner in a TPM). 

We also need integrity protected host storage for the host TCB to store the married 
smart card public key.  Since the security model for trusted computing does not gen-
erally assume storage is trustworthy unless protected by cryptography, we use the host 
TPM_Seal primitive to integrity protect the married smart card public key.  The smart 
card has genuine access-protected storage so no cryptographic measures are needed. 

Our current implementation assumes that the smart card applications are loaded 
prior to the marrying step. A more sophisticated version would provide a user-
accessible smart card execution environment and services that let the smart card ap-
plications authenticate themselves (see section 5). 

Our architecture is generic and independent of the nature of host software: it can be 
applied to systems that employ a hypervisor, an operating system without a hypervi-
sor, or applications running directly on the computer hardware.  From our perspective 
all that differs is the nature of the TCB and the PCRs that are used to identify the 
platform state.  Of course the choice of trusted computing base has practical implica-
tions for the comprehensibility and relevance of host PCR values [6].  

3   Smart Card Enhanced TPM Security Primitives 

In this section we describe the implementation of three security primitives that dem-
onstrate the possibilities of the TPM to smart card coupling architecture.2 Note that 
the smart card functions appear somewhat hard to use. This is because we generally 
favor performing only essential security functions in the smart card (which is slow 

                                                           
2 These experiments used a Dell Optiplex 745 running Vista SP1 and containing an Atmel TPM 

version 1.2 with firmware version 13.9. The smart card was a Gemalto.NET v2 card with 
80Kbyte of memory for code and data. 
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and hard to debug) with other logic and complex data structure creation being per-
formed by host software. 

3.1   Count Limited Objects 

Count-limited key objects are keys that can only be used a preset number of times 
[9].  The TPM provides monotonic counters that external software can use to decide 
whether a key should be used, but - as we have already observed - the attack resis-
tance of host software is low.  Our implementation of count-limited keys uses a key 
on the TPM and a use-counter on the smart card and no external software is in-
volved in authorizing the use of the key. 

The design is as follows: The smart card creates a TPM key and sets the key use 
authorization (the useAuth) to a random value (the TPM will not use the key for cryp-
tographic operations unless the requestor proves knowledge of the useAuth value). 
The smart card exports the key as a blob encrypted so that it can only be decrypted by 
the married TPM. The smart card associates the (secret) useAuth-value with an inter-
nal counter, and will only authorize use of the key a preset number of times. When the 
count is exceeded the key can no longer be used. 

TPM key use is authorized by means of an HMAC-based protocol that does not re-
veal the useAuth authorization data in plain-text and is replay resistant (with some 
assumptions – see [8]).  This means that host software cannot use keys without the 
cooperation of the smart card.   

In more detail, the smart card exposes a pair of functions to support this functional-
ity.  CreateCountLimitedKey creates a key with a random useAuth value and exports 
it encrypted so that it can only be loaded into the married TPM.  This function also 
creates a counter set to the maximum number of uses and associates it with the freshly 
created secret useAuth.  Later, host software can load the key into the TPM and ask 
the smart card to provide authorization for its use through GetCountLimitedUseAuth.  
In this function the smart card decrements and then checks that the counter limit has 
not been exceeded.  If not, the requested command is authorized. 

The command pseudo-code is as follows: 
 

CreateCountLimitedKey 
Input:  

A TPM parent storage public key p,  
Algorithm parameters for the key to be created a,  
The number of times the key can be used n 

Output:  
An encrypted key that can be loaded into a TPM, an identifier for 
the counter c 

Actions: 
1) Create a new RSA key with parameters supplied 
2) Create a new counter set to value n 
3) Create a new random useAuth value a for the key and associate 

it with the counter 
4) Encode the RSA key and useAuth into a TPM key structure 

then encrypt with the provided TPM parent public key 
5) Return the key blob and an identifier for the counter 
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GetCountLimitedUseAuth 
Input:  

The TPM command string to be authorized s,  
The counter identifier c 

Output:  
20 byte authorization value for the supplied command string or an 
error 

Actions:  
1) Decrement the counter c. If the counter does not exist or the 

count value is less than zero return an error 
2) Return the HMAC of the command string s using the authoriza-

tion secret associated with the counter 
 
Some scenarios demand that it be proven that count-limited keys are created under 
conditions of physical security.  For instance in our simple implementation it is not 
possible to prove to an outside party that the key is indeed count-limited. There are 
many variations of the simple design that overcome this shortcoming:  E.g. rather than 
creating the key inside the smart card it could be created on a secure server (or a Host 
Security Module) and the count limit and useAuth data could be separately communi-
cated to the smart card. Alternatively the smart card could certify the key that it  
created.  

Our counters share some of the features of the implementation of TPM-supported 
monotonic counters proposed by Sarmenta et al. [9]. In particular our counters can be 
used as part of the authorization policy for key or other object use.  

3.2   Flexible Sealing and Binding 

Sealing encrypts data together with a tag indicating some expected future platform 
state encoded in PCR values. The related Unseal function will only decrypt and reveal 
the data if the platform is in the pre-authorized state. Sealing is a powerful feature of 
the TPM, but unfortunately it is often hard to predict future configurations because of 
unexpected changes in the platform configuration and state. The sealing capability 
(and related capabilities for associating keys with PCR states, Unbinding, etc.) would 
be easier to use if the TPM had more flexibility in the expression of authorized con-
figurations.  

We have extended the simple TCG binding model to provide more powerful seal-
ing policy specifications using code implemented on the smart card. The cases we 
have implemented are: 

• Sealing and binding to any one of a list of PCR configurations. 
• Sealing and binding to a public key so that the key owner can later authorize 

any PCR configuration with a signed certificate. 

In the latter case, when an Unseal or Unbind operation is attempted, the caller must 
also provide a valid digital certificate authorizing the current configuration from the 
policy-associated signature authority. 

In both cases the smart card must check that the current married TPM PCR values 
represent a state authorized by the sealer. In our implementation the smart card  
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performs this check in the same way that any other remote entity would determine the 
platform configuration: i.e. the smart card demands that host software provide evi-
dence for the current state by means of the output of a Quote operation using the mar-
ried AIK and a smart card provided nonce (to prevent replay).   If host software can 
respond with evidence of an authorized configuration, the smart card will release the 
sealed data to the TCB. 

We describe the smart card operations that support the Seal and Unseal implemen-
tations; Unbind is similar to Unseal. 

 

Sealing to a List of PCR Configurations 
 
The following smart card functions support sealing to a list of configurations. Seal-
ToConfigurationList is the smart card function that protects the data.  The sealer need 
only specify the hash of the list of authorized configurations at this stage.  Unseal-
ConfigurationList is the corresponding unseal function.  Here the caller must specify 
the whole configuration list (which the smart card will hash to ensure it matches the 
specified policy) and the policy element number that the smart card should attempt to 
satisfy.  The smart card must also be given proof of the current platform configuration 
by means of the output of a TPM_Quote operation over the relevant PCRs.  Replay 
resistance for the quoted configuration is provided by a smart card provided nonce, 
which must be obtained using the smart card GetNonce function.   

In more detail, the pseudo-code for the commands follows:  

SealToConfigurationList 
Input:  

A secret s,  
the hash of a list of authorized configurations l 

Output:  
A sealed encrypted blob 

Actions: 
 Integrity-protect and encrypt the concatenation of s, and l 

 
GetNonce 

Input:  
None 

Output:  
A 20 byte random nonce 

Actions:  
 Create and return a random nonce 

 
UnsealConfigurationList 

Inputs:  
A sealed blob, b  
The expected configuration list, l  
The list element number that we expect to satisfy, i  
The output of a TPM Quote on the current configuration, q 

Outputs:  
The previously sealed data or an error 
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Actions:  
1) Decrypt the sealed blob b returning the secret s and the policy 

list hash h 
2) Check that the hash of l matches the policy hash h  
3) Check that the TPM signature q is formed signature using the 

married AIK over the l[i] (the configuration element that we 
expect to match) and the previously supplied nonce 

4) Return the secret data s if all of the above checks succeed, else 
return an error 

 
Sealing to a Configuration Authorized by a Public Key 
 
The following smart card functions support sealing to PCR configurations authorized 
by a public key. SealToPublicKey encrypts a secret and the public key of an entity 
trusted to authorize future platform configurations.  UnsealPublicKey is the corre-
sponding unseal function.  UnsealPublicKey must be provided with the original 
sealed blob and a signed statement from policy key holder authorizing a PCR configu-
ration.  The caller must also provide the result of a TPM_Quote operation that proves 
compliance with the specified configuration.  If policy compliance is proven the 
sealed data is released. As before, the caller must obtain a fresh nonce from the smart 
card and have it incorporated into the Quoted data structure. 
 
In pseudo code: 

 
SealToPublicKey 

Input:  
A secret s,  
A public key k 

Output:  
An encrypted blob 

Actions: 
 Integrity-protect and encrypt the concatenation of s, and k 

GetNonce 
 See above 
 
UnsealPublicKey 

Inputs:  
A bound blob b,  
An authorized PCR configuration from the server c,  
A signature over the authorized PCR configuration from the server S,  
The output of a TPM Quote operation q 

Outputs:  
     The sealed data or an error 
Actions:  

1) Decrypt the sealed blob b returning the secret s and the public key k 
2) Validate that the signature S is valid for the configuration c using 

the public key k 
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3) Validate that q is a TPM signature over the configuration c using the 
married TPM AIK and the expected nonce 

4) Return the secret s if the above checks succeed, else return an error 
 

One detail is omitted from the description above. The TPM implementation of Seal 
records PCR values at the time of sealing for the purposes of source platform and 
configuration authentication. Our implementation of Seal also takes the output of a 
Quote operation over a smart card provided nonce to provide similar capabilities.  

All data communicated between the TCB and the smart card is passed over the se-
cure channel described in section 2.  The channel endpoints are authenticated using 
the married TPM and smart card keys. 

3.3   Enhanced Quotes 

The TPM_Quote operation creates a signature using an AIK over a data structure that 
includes TPM internal state as reflected in PCR values, and externally provided data 
(for freshness, or to associate the configuration with some other cryptographic object). 
This building block is designed to be used in cryptographic protocols that prove 
knowledge of the AIK and prove the current platform state. Unfortunately the TPM 
signature format is non-standard, and this is one of the things that has made it difficult 
to adopt TPM attestation technology. 

We have prototyped a smart card function that translates the platform configuration 
provided by the TPM into another format. Our proof of concept also uses non-
standard data structures, but a more sophisticated implementation would use a certifi-
cate format like X.509. Such certificates could be used for network access control, or 
in an email or document signing scenario to prove the machine and machine configu-
ration when the document was signed [11],[12]. 

Our configuration rewriting function is called TranslateQuote.  It must be called 
with fresh evidence of the current configuration by means of the output of the 
TPM_Quote operation over a smart card nonce. TranslateQuote checks the quote 
signature is properly formed and is issued by the married AIK.  If both conditions 
hold, the smart card generates a signature over the TPM-specified state, and an exter-
nal nonce.   

In pseudo code:  
 
GetNonce 
 See above 
 
TranslateQuote 

Inputs:  
The data structure supplied to the TPM_Quote operation q,  
The TPM-quoted signature s over this data structure and the previ-
ously obtained nonce, 
External data to sign d 

Outputs:  
A smart card created signature or an error 
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Actions:  
1) Check that s is a valid signature over the data q and the nonce using 

the married AIK 
2) If the check succeeds return a smart card signature over a translation 

of q and the external data d, else return an error 

4   Programmable TPMs 

Our coupling architecture strikes a useful balance between flexibility and deployabil-
ity using today’s generally available commodity hardware since it requires no modifi-
cation to the current specifications of the TPM3 and uses general purpose 
programmable smart cards, but it is interesting to speculate on the design and im-
proved functionality of a future programmable TPM.  

There are many possible models for a programmable TPM. Useful starting places 
include multi-application programmable Java or .Net smart cards, or the Trusted Exe-
cution Model (TEM) described by Costan et al. [13]. Perhaps the simplest conceptual 
design for a programmable TPM is to replicate the security model for code executing 
outside the TPM but applied to user-code running inside the TPM. The TPM already 
has a model for authenticating security modules executing outside, which is the notion 
of locality coupled with the DRTM launch procedure [14].  This secure late-launch 
procedure has been used by the Oslo project [15] and Flicker [16]. Applying this idea 
to an execution environment inside the TPM would involve the definition of a new 
locality for access by TPM applications, and new PCR-registers dedicated to their 
measurements. See Fig. 3. However, beyond privileges associated with access local-
ity, internal TPM applications would have the same access to other TPM functions 
and keys as applications running outside the TPM.   

TPM-CoreTPM

DRTM-Launched Security
Kernel

Other Host Software

T-RTM-Launched
Security Application

Other Host Software

DRTM-Launched
Security Kernel

Locality-Locked PCR
Locality-Locked PCR

 

Fig. 3. Left: A TPM supporting a DRTM-launched security kernel. The DRTM procedure and 
platform hardware and firmware ensures that a special PCR contains a reliable measurement of 
the external security kernel, and that the TPM can authenticate commands originating from the 
security kernel. Right: Applying this model to a programmable TPM would define a new local-
ity and associated “TPM-Root-of-Trust-of-Measurement” (T-RTM) to hold measurement of the 
TPM internal programmable security functions. 

                                                           
3 As of this writing the current version of TPM Specifications is 1.2. 
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Unfortunately there are limits to the types of functions that can be supported us-
ing this sort of programmable TPM because TPM protected data is not accessible to 
the user applications.  So while it would be possible to create a new class of storage 
key with sophisticated migration features with this design, it would not be possible 
to provide this migration capability to the storage root key (SRK) because the SRK 
private data is inaccessible.  Allowing third party code access to TPM private keys 
and other protected data changes the TPM security model profoundly, so we gener-
ally prefer designs that supplement existing functionality rather than replacing or 
modifying it.  

5   Conclusions and Future Work 

We currently only support applications that are pre-loaded onto the card prior to TPM 
card marrying. This is probably adequate for most enterprise use (the enterprise will 
load line-of-business applications onto the smart card prior to issuance) but does not 
exercise the full potential of the coupling architecture. 

To go beyond pre-loaded applications we must provide an isolated execution envi-
ronment for applications in the smart card, and provide a means for these applications 
to authenticate themselves to the host computer. The isolation and authentication 
primitives are necessary because we can no longer necessarily trust the applications 
running on the card. This seems most straightforwardly solved by re-applying the 
principles of authenticated operation but within the smart card. In particular we 
would need to modify the smart card application loader to measure and record the 
application digest (or other authentication data) and provide the smart card application 
with sealing and attestation services. Smart card applications could use these primi-
tives to prove to the platform TCB that it is communicating with a trustworthy card 
and card application. 

Delivering the promise of Trusted Computing has been delayed by a number of 
problems. These include the relative unavailability of mainstream operating systems 
and hypervisors with useful security properties, problems balancing the high levels of 
security provided by the TPM and ease of management, and problems using the TPM 
to enhance existing security applications and scenarios. Our work demonstrates that 
logic and cryptographic operations running on a smart card coupled with the host 
platform and TPM can mitigate all of these issues, and is also an interesting prototyp-
ing environment for experimenting with new functionality that could be incorporated 
into future TPM designs.  

The three applications we implemented were chosen to exercise local- and re-
mote-trust verification, and to mitigate some of the problems that the authors have 
experienced in trying to apply trusted computing to real problems. Other candidate 
applications included keys with more sophisticated key management and migration 
functions, a software-TPM on the smart card, a “roaming-TPM” for use in an enter-
prise, and general experimentation on the correct definition of security primitives 
for future TPM designs. 
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ACPI: Design Principles and Concerns
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Abstract. ACPI (Advanced Configuration Power Interface) allows op-
erating systems to efficiently configure the hardware platform they are
running on and deal with power management tasks. These tasks used to
be achieved by the BIOS because it was the only platform component
to know which specific chipset or device registers dealt with power man-
agement. In this paper, we illustrate how this shift in the global power
management model introduces additional threats, especially for trusted
platforms, by showing how rootkits can use ACPI to conceal some of
their functions. We also study the relationship between trusted comput-
ing blocks and ACPI.

Keywords: ACPI, trusted platforms, rootkits.

1 Introduction

ACPI (Advanced Configuration and Power Interface) [8] was specified by Intel�,
Hewlett-Packard, Microsoft�, Phoenix� and Toshiba to establish common in-
terfaces for platform-independent configuration and power management. In the
ACPI model, the OSPM (Operating System-directed configuration and Power
Management) is the specific operating system component in charge of power
management tasks. ACPI has been widely accepted as a de-facto standard to
replace the former APM [16] (Advanced Power Management) approach, where
power management was mostly performed by the BIOS. Pushing power man-
agement at the operating system level allows more flexibility and more complex
power management schemes. However, operating systems are generic objects by
nature, so the hardware platform must provide the operating system with some
means of understanding how power management should be achieved on this
specific platform. This is the purpose of the ACPI tables.

On a trusted platform, the trusted computing base is generally in charge of
power management. If the trusted computing base is to run on several platforms,
then it must make use of the ACPI tables provided by the BIOS. In this paper,
we try to determine whether the trusted computing base can trust the ACPI
tables, or if there is a way for an attacker to modify those tables as a means for
privilege escalation on a platform, and what would be the impact of a bug in
one of the ACPI tables.

It is well understood in the industrial world that ACPI is one of the most com-
plex components to deal with from a security perspective on a trusted platform
(along with System Management Mode for instance). During the 2006 Blackhat
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forum, John Heasman [6] presented how it is possible to design an ACPI-based
rootkit. However, to our best knowledge, our paper is one of the first attempt to
study the initial design flaws and to present a comprehensive proof-of-concept
of an ACPI rootkit-like function that can be triggered by external hardware
events (laptop lid opening, power adapter plugged and removed twice in a row
for instance).

In section 2, we present the way ACPI works on a traditional computer and
show how ACPI is handled on a Linux system. Section 3 gives a description of
the flaws in the ACPI model that make it possible for an attacker to use ACPI
to conceal rootkit functions. In section 4, we present an actual proof-of-concept
of an ACPI rogue code that allows an attacker to install a remanent backdoor on
a Linux-based laptop that will be triggered when the power adapter is plugged
and unplugged twice in a row. In section 5, we describe how the problem can be
handled on so-called trusted platforms. Section 6 concludes the paper.

2 ACPI Design Principles

For the sake of simplicity, we only consider in this paper traditional x86 and
BIOS-based computer platforms.

2.1 Traditional PC Architecture

Figure 1 shows a traditional PC architecture. User code (trusted computing
bases, operating systems, applications) run on the CPU [10]. The chipset com-
ponent is in charge of hardware devices management. The northbridge [9] part
of the chipset is connected to main system memory (RAM) and to the graphic
adapter. The southbridge [14] part of the chipset is connected to other devices
(network interface controller, sound device, USB devices) through various com-
munication buses. Power management of a device is achieved at the hardware
level by modifying the content of configuration registers hosted by the chipset
(northbridge, southbridge or both depending on the device) and in the device
itself. Those registers can be accessed from the CPU using several different mech-
anisms [13]:

– some registers are mapped by the chipset into the main system memory
space. Those so-called Memory-Mapped I/O registers can thus be accessed
by the CPU in the same way as RAM is, but at different addresses;

– some registers are mapped into a separate 16-bit bus. These registers are
called Programmed I/O (PIO) registers. They are given an address in the
PIO space and can be accessed from the CPU using “in” [11] and “out” [12]
assembly langage instructions;

– the chipset can also choose to map configuration registers into the PCI con-
figuration space [17]. One way to access those registers is to use two dedicated
PIO registers, 0xcf8 and 0xcfc, by specifying the PCI address of the register
(composed of a bus number, a device number, a function index and an offset)
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Fig. 1. Traditional PC architecture (example Pentium� 4-based architecture)

in the 0xcf8 register and reading (resp. writing to) the 0xcfc register to read
(resp. write) the content of the PCI register.

2.2 ACPI Components

In the model, the chipset itself does not attempt to configure power management
registers. Configuration is actually initiated by software components running on
the CPU. At boot time, the BIOS is likely to configure the hardware, while op-
erating systems or trusted computing bases are in charge of power management
once the boot process is over.

In the ACPI model, the platform provides an ACPI BIOS, several ACPI
registers that are accessed for power management purpose (they can be either
Memory Mapped registers, Programmed I/O registers or PCI configuration reg-
isters), and ACPI tables that basically specify how ACPI registers should be
accessed.

ACPI tables have different types and purposes:

– the Root System Description Table (RSDT) contains a set of pointers to
the other tables. The address of the RSDT is provided by the Root System
Description Pointer (RSDP), which must be stored in the Extended BIOS
Data Area (EBDA), or in the BIOS read-only memory space. The OSPM
will only locate the RSDP by searching for a particular magic number (the
RSDP signature) that the RSDP is required to begin with;

– the Differentiated System Description Table (DSDT), the address of which
can be determined thanks to the pointer provided by the RSDT, contains
those methods that should be used by the component in charge of power
management and specifies how the power characteristics of the devices shall
be modified. The ACPI specification only defines the methods that are avail-
able for each device and their meaning. Actions defined in the methods are
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machine-specific. The DSDT is written in AML (ACPI Machine Langage)
[8], which can be disassembled into a more comprehensible language, called
ASL (ACPI Specification Langage)[1];

– many other tables are also provided, but for the sake of simplicity, we will
not give details on them.

ACPI does not standardise power management at the software level, but oper-
ating systems are advised to include the following components to perform power
management tasks:

– an Operating System-directed configuration and Power Management com-
ponent (OSPM) running at the kernel level should be in charge of the overall
power management strategy;

– an ACPI driver and AML interpreter should be used by the OSPM to execute
the contents of the methods specified in the DSDT;

– device drivers should optionally make use of the AML interpreter to perform
power management independently of the OSPM.

ACPI components and their relationships with the kernel are summarized in
Figure 2.

2.3 DSDT Basic Structure

The DSDT describes those devices that support power management. Devices
are organized in packages in a tree-like structure. Several standardized packages
are located under the root (labelled \) of the tree, such as the \_PR Processor
tree package, which stores all CPU related objects and the \_SB System Bus
tree package, which stores all bus-related resources. PCI resources (e.g., PCI0,
PCI1) are located in the \_SB package. In turn, devices can be defined in other
devices’ subtrees. For instance, IDE or USB controllers can be accessed in the
tree below the PCI0 device; the path to the USB0 host controller on the DSDT
tree is thus \_SB.PCI0.USB0. Power management-related methods are the leaves
of the tree. For example, the method that allows the USB0 controller to transit
to the S5 power state is \_SB.PCI0.USB0._S5. Most method names are defined
in the ACPI standard, so that the OSPM knows which method to call. Example
of such standard methods are given in [8].

Power management basically works as follows: in response to some hardware-
triggered event, or based on its own policy, the OSPM can initiate a power
management-related action by executing the corresponding AML method in the
DSDT. For instance, in order to put one of the USB controller in the S5 power
state, the OSPM simply has to run the \_SB.PCI0.USB0._S5 method.

2.4 ACPI Machine Language and ACPI Source Language

AML-written tables can be disassembled in ACPI source language (ASL) using
for instance the ACPIca tools [1]. The ASL language provides basic constructs in
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order to define ACPI registers and methods. Logical and arithmetic operations
on registers, branching instructions and loops are available. Special commands
are also available, like the Notify() command, which can be used by the OSPM
to send messages to other parts of the operating system. Section 2.5 shows how
Notify events are handled under Linux.

The ACPI registers are defined by the ASL OperationRegion() command.
Memory, PCI configuration and PIO spaces can be mapped as ACPI registers.
Different fields of each ACPI register can be given a name using the Field()
command (see 2.5).

2.5 Use of ACPI in Practice: Linux Example

In this section, we study how ACPI is handled by an ACPI-compliant Linux
system. This will be useful as most of the examples we give in the next sections
will be related to Linux systems.

ACPI software in Linux is mostly composed of two different parts:

– a kernel service which includes an AML interpreter, ACPI drivers for differ-
ent devices (e.g, fan, CPU, batteries) and part of the OSPM. The modular
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structure of the Linux kernel allows for a selection of devices that are handled
by the kernel using ACPI;

– a userland service called acpid (ACPI daemon) that is functionally part of
the OSPM. acpid is configured through a set of configuration files stored
in the /etc/acpi directory, each of which specifying the expected system
behavior when an ACPI “Notify” event for a particular device is received.
For instance, the /etc/acpi/power file can be used to configure acpid so
that whenever a power button event is received, the shutdown command is
executed.

The Linux kernel also allows the user to define an alternate DSDT file, differ-
ent from the one specified by the BIOS. This function is quite convenient as it
allows the DSDT to be modified, e.g. for debug purposes.

The easiest way to force the kernel to use a custom DSDT is through the use
of an “initial RAM disk” (initrd). An initrd is usually used by the bootloader of
a Linux system to load kernel modules that are required to access the root file
system (SATA or IDE drivers, file system-related modules for instance) when
they are not shipped with the kernel. But the initrd can also be used to provide
a custom DSDT to the kernel. For the kernel to use a custom DSDT, all we have
to do is create an initrd file with the following command1 and provide the initrd
to the bootloader.

mkinitrd --dsdt=dsdt.aml initrd.img 2.6.17

The DSDT used by the system is accessible via the /proc/acpi pseudo-file.
It is then possible to disassemble the DSDT of the system and then reassemble
the output ASL file without modifications. On some computers, this simple
operation fails. On the example below, we disassemble the DSDT file (called
“dsdt”) of an actual desktop system through the iasl -d dsdt command. The
ASL file corresponding to the DSDT is written in the dsdt.dsl file. Next, we
compile the dsdt.dsl file into AML. Ideally, the output file should be identical
to “dsdt” . However, the compiler shows unexpected compilation errors. This is
symptomatic of ACPI tables that do not comply to the standard, despite being
written in AML.

#iasl -d dsdt

Loading Acpi table from file dsdt

[...]

Disassembly completed, written to "dsdt.dsl"

#iasl dsdt.dsl

dsdt.dsl 286: Method (\_WAK, 1, NotSerialized)

Warning 1079 - ^ Reserved method must return a value (_WAK)

dsdt.dsl 319: Store (Local0, Local0)

Error 4049 - ^ Method local variable is not initialized (Local0)

dsdt.dsl 324: Store (Local0, Local0)

Error 4049 - ^ Method local variable is not initialized (Local0)

1 The code that is presented below has been tested for a Linux 2.6.17 kernel.
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ASL Input: dsdt.dsl - 4350 lines, 144392 bytes, 1678 keywords

Compilation complete. 2 Errors, 1 Warnings, 0 Remarks, 382 Optimizations

It is also possible to copy the system DSDT and change the definition of ACPI
registers. If we map kernel structures such as system calls to ACPI registers, or
define new ACPI registers, compiling the modified DSDT does not cause any
warning. It is then possible to update the initrd of the system in order for the
modified DSDT to be used by the system after the next reboot. The following
code describes how to define such new ACPI registers. The first OperationRe-
gion() command defines an ACPI register called LIN corresponding to a byte-
wide PCI configuration register. The second OperationRegion command defines
a system memory 12-byte wide ACPI register called SAC composed of three
4-byte registers defined through the following Field() command called SAC1,
SAC2 and SAC3.

/* PCI configuration register : */

/* Bus 0 Dev 0 Fun 0 Offset 0x62 is mapped to LIN */

Name(_ADR, 0x00000000)

OperationRegion(LIN, PCI_Config, 0x62, 0x01)

Field(LIN, ByteAcc, Nolock, Preserve) { INF,8 }

/* System Memory at address 0x00175c96 */

/* (Setuid() syscall) is mapped to SAC */

OperationRegion (SAC, SystemMemory, 0x00175c96, 0x000c)

Field (SAC, AnyAcc, NoLock, Preserve)

{ SAC1,32, SAC2,32, SAC3,32 }

3 Security Issues with ACPI

In this section we study different security issues related to ACPI. The ACPI
model seems to be the most important security flaw. Indeed, the OSPM must
trust the content of the ACPI tables supplied by the BIOS in order to run ACPI
code. Actually, the OSPM has no particular way to determine whether ACPI
tables are genuine or not. Also, the OSPM has no means to properly identify
what the ACPI registers are. As ACPI does not provide any ACPI register
identification scheme, the OSPM cannot ensure that the methods defined in the
DSDT actually manipulate only ACPI registers, so the OSPM can merely trust
those methods.

One could argue that OSPMs have the possibility to correctly identify ACPI
registers. If the OSPM knows that a particular network adapter is plugged in for
instance, it should be able to know which specific configurations of the device
are related to power management and which are not. If the OSPM was able
to differentiate ACPI registers from regular chipset or device registers then the
OSPM could enforce a simple access control policy and would refuse to read
or modify the content of any non-ACPI register even if instructed to do so by
one of the methods of the DSDT. However, as stated in introduction, ACPI
has been precisely introduced to define common interfaces and make sure that
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platform- specific information (for instance the location of ACPI registers) is
pushed in ACPI tables for the operating system to configure the platform without
an in-depth understanding of the semantics of the chipset or devices registers. In
other words, ACPI would be useless if the OSPM knew enough of the platform
details to identify the ACPI registers.

One could also argue that the OSPM not being able to identify ACPI registers
is not a security issue, as computer programs have to trust higher-privilege or
to some extent previously booted components. What we wanted to stress out
here is the fact that ACPI could have been designed differently at the hardware
or platform level to allow OSPMs to differentiate ACPI registers from other
registers. What’s more, the paradigm forcing OSes to trust previously booted
software tends to be challenged by new technologies using hot reboot (this matter
is discussed in section 5).

We now look at the problem from the chipset point of view. The chipset is
able to know the location and the purpose of most ACPI registers, but it does
not know when the OSPM is running on the CPU, nor can it distinguish ACPI-
related access to the registers from non-ACPI-related accesses. From the chipset
perspective, a userspace code attempting to modify a register is not different
from the OSPM, so there is no way for the chipset to enforce that the OSPM
be the only component to access ACPI-related registers and that OSPM cannot
access non-ACPI-related registers.

At this point, one could argue that it is not the job of the hardware to make
security-related decisions. Here again our point is that the fact that neither the
OSPM nor the chipset can serve as a policy enforcement point seems a major
design problem. Additionally, it seems fair to note that the chipset is already
used as a policy enforcement point to restrict access to security-critical memory
areas such as the SMRAM [3], so using the chipset to make the platform more
secure would not really be that innovative.

As a summary, neither the chipset nor the OSPM can decide whether an
action is legitimate or not: the OSPM is not able to determine if the registers it
is accessing are indeed ACPI because it blindly trusts the content of the DSDT,
and the chipset cannot know what software component is trying to access a
particular resource because all software components running in protected mode
look the same to the chipset.

The lack of policy enforcement point makes it impossible to detect misbehav-
iors of the ACPI sub-system:

– it is impossible to detect a bug in the DSDT that would incorrectly define an
ACPI register (remember that disassembling the DSDT and reassembling it
on some computers reveals AML errors);

– it is impossible to detect live modifications of the DSDT image the OSPM
is using.

Other security issues exist even if they can probably be considered of lesser
importance. First, device drivers are allowed to access the content of the DSDT
and perform ACPI-related tasks. The fact that the OSPM and the device drivers
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could be independently accessing the same registers could lead to inconsistencies
and to incorrect system behavior. For instance, the OSPM could consider that
some device is in a particular state when the device driver itself has configured
the device differently. Also, the fact that the OSPM has to actually look for the
Root System Description Pointer signature to be able to locate the structure is
quite debatable from a security point of view. OSPMs probably do not look for
multiple RSDP structures, so an OSPM is likely to use the first RSDP matching
the signature. The fact that the OSPM is indeed able to identify the actual
RSDP relies on the assumption that there is no way for an attacker to insert a
rogue RSDP with a correct signature in memory before the genuine RSDP. This
assumption actually does not prove easy to guaranty.

4 Design of a Rootkit Function

The overall principle of an ACPI rootkit has been presented by John Heas-
man [6]. According to the author, designing an ACPI rootkit triggered by ex-
ternal hardware events (e.g., lid closing, power adapter plugging or removing)
was still an open problem. In this paper, we present a proof-of-concept code that
allows a rogue rootkit-like function to run whenever the power adapter is pulled
and replugged twice in a row. We also study the limits of the ACPI model and
conclude that ACPI rootkits detection is a complex problem.

4.1 ACPI Rootkit Motivations

An attacker controlling the content of the DSDT could:

– add devices in the DSDT, create new ACPI registers corresponding to any
memory zone, or PIO register;

– modify existing methods behavior, create additional methods.

This attack assumes that the attacker has enough privileges to modify the
DSDT used by the OSPM. For instance, the attacker can attempt a live mod-
ification of the DSDT the OSPM is using or, alternatively, interfere with the
DSDT load process (for instance by flashing the BIOS or modifying the boot
loader) in order for the OSPM to load the tainted DSDT. On most operating
systems, an attacker will only be allowed to do so if she is granted maximum
privileges (ring 0). Therefore, this attack shall not be useful in a privilege esca-
lation scheme; on the other hand, modifications of the DSDT can be useful to
kernel- level rootkits.

Kernel-level rootkits are malwares which try hard to ensure both their stealth-
iness and resilience. Indeed, an attacker needs her rootkit to hide its presence
from the user and the operating system and also remain in memory, even if part
of the rootkit is removed by some antivirus software. It has been shown in [4]
that rootkits could hide functions inside of the SMI handler. SMI handler is a
component running in the CPU System Management Mode [3] and that is vir-
tually inaccessible from operating systems. Another possibility for the rootkit is
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to modify one of the methods of the DSDT to make sure that each time this
method is launched by the OSPM, functions of the rootkit get executed.

4.2 Sample ACPI Rootkit Rogue Function

As a proof-of-concept of what is described above, we show how it is possible for
an attacker to design an ACPI rogue code for a Toshiba Portégé M400 laptop
using a Linux Mandriva 2008 [15] system. This rogue code is intended to trigger
a backdoor every time the power adapter plug is pulled and replugged twice in
a row; the backdoor grants superuser privileges to subsequent user logins, no
matter what the user id is.

In order to do so, the attacker can create a new device TEST and define a new
ACPI register called INF corresponding to an otherwise unused chipset register2.
This chipset register is a PCI configuration register (bus 0, device 0, function 0,
offset 0x62). It is byte-wide, readable and writable and is not used by any other
software component (including BIOS). Such a device can be defined as below3:

Scope(\_SB.PCI0){

Device(TEST){

Name(_ADR, 0x00000000)

OperationRegion(LIN, PCI_Config, 0x62, 0x01)

Field(LIN, ByteAcc, Nolock, Preserve)

{ INF,8 }

Method(_S1D,0, NotSerialized)

{ Return(One)}

Method(_S3D,0, NotSerialized)

{ Return(One)}

[...]

}}

On Linux-operated laptops, the STA (Status Request) function of the BAT1
device is used by the OSPM to check the status of the main battery, so it is
supposed to be executed quite frequently (experiments have shown that it is
invoked around once every 10 seconds).

The _PSR (Power Source) function of the ADP1 device is called when the power
adapter is unplugged or plugged in. This function is used by the system to
determine what the current power sources are. The attacker can use the newly
created INF ACPI to keep track of the number of times the _PSR function has
been executed in a row without the BAT1._STA function being called. This can
be achieved by means of the following modifications. The BAT1._STA function is
modified to ensure that each time BAT1._STA is executed, the INF ACPI register
is set to 1. This can be done by using the Store() ASL command. Of course,
2 The attacker could alternatively have used an unused memory space, as for example

the BIOS keyboard buffer, located at physical addresses 0x41a to 0x43e.
3 The device presented does not only contain the INF register, but also some standard

methods, defined for every ACPI device. Even if these methods may not be necessary
for the TEST device to be defined in the DSDT, they make it resemble real devices.
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it is possible to modify other functions4 in the same way as BAT1._STA to make
sure that the INF ACPI register is set to 1 as often as possible.

Device(BAT1){

[...]

Method (_STA, 1, NotSerialized)

{

Store(0x1 , \_SB.PCI0.TEST.INF)

[...]

}

}

The attacker also has to modify different functions and registers of the ADP1
device. A new ACPI register is created, which corresponds to the memory lo-
cation where the setuid() syscall is stored (more precisely to the part of the
setuid() syscall where the effective user id is set).

Device (ADP1)

{ [...]

/* Map setuid() syscall. 0x00175c96 is the physical address */

/* of the part of setuid() to be modified by the backdoor */

OperationRegion (SAC, SystemMemory, 0x00175c96, 0x000c)

Field (SAC, AnyAcc, NoLock, Preserve)

{

SAC1, 32,

SAC2, 32,

SAC3, 32

}

[...]

The ADP1. PSR function is also modified to increment INF.

[...] /* In ADP1 device */

Method (_PSR, 0, NotSerialized)

{ /* if INF = 4 then modify setuid() */

If (LEqual (\_SB.PCI0.TEST.INF, 0x4))

{

Store(0x90900000, SAC3)

Store(0x0, SAC2)

Store(0x014c80c7, SAC1)

}

/* increment INF */

Increment (\_SB.PCI0.TEST.INF)

Return (\_SB.MEM.AACS)

}

[...] /* ADP1 device continues */

4 Determining experimentally which functions are called often requires modification
of the DSDT to make sure that each function of the DSDT writes a different value to
the INF register when called, and tracking accesses to the INF registers (modification
of the ACPI driver).
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If the INF ACPI register reaches the value 4, meaning that ADP1._PSR has
been called four times in a row (unplugged and plugged again in twice in a row)
without the BAT1._STA function being called in the meantime, the backdoor gets
executed. The backdoor modifies the setuid() system call (which is called by
the authentication process every time a user logs on the system) in such a way
that any user obtains the superuser identity instead of her own identity (i.e.
is granted maximum privileges) if authentication succeeds. This is achieved by
modifying 12 bytes of setuid() code at physical address 0x175c96 (mapped in
the SAC1, SAC2, SAC3 ACPI registers) to make sure that the effective identity of
the user is set to root. The values to be written depend on the version of the
kernel, here the assembly language instruction movl $0, 0x14c(%eax) (where
0x14c(%eax) corresponds to the memory location of the effective user id for this
version of the kernel) are to be added, followed by two nop operations for opcode
alignment purposes.

/* Without backdoor activation */ /* After backdoor activation */

Mandriva Linux Release 2008.0 Mandriva Linux Release 2008.0

Kernel 2.6 on an i686 / tty1 Kernel 2.6 on an i686 / tty1

Login: user Login: user

Password: Password:

$id #id

uid=500(user) [...] euid=500(user) uid=500(user) [...] euid=0(root)

$whoami #whoami

user root

4.3 Limitations and Countermeasures

In the previous sections, we have shown that creating an ACPI rootkit-like func-
tion is possible. However, there are a couple of important limitations:

– an ACPI rootkit is machine-specific. It requires modification of the DSDT,
the content of which is strongly related to the machine hardware;

– an ACPI rootkit most likely needs to be operating system-specific. The abil-
ity to create a generic and operational ACPI rootkit on a platform indepen-
dently of the operating system type still needs to be verified. The ACPI _OS
object or the ACPI _OSI command can help identify OSes but of course it
is possible for the operating system to lie about its version;

– after a reboot, the OSPM reloads the DSDT from the one provided by the
platform, unless the rootkit ensures that a modified one is loaded instead.
ACPI rootkit functions will thus require knowledge of relatively important
parts of the operating system or of the BIOS;

– modifications to ACPI tables that survive reboots are likely to be detected
if TPM-based [18] schemes or analyzers that look for an obviously wrong
behavior (mapping between an ACPI register and a system call for instance)
are used. Static or dynamic code analysis tools can indeed be used to detect
anomalous behaviors in the methods defined in ACPI tables, look for the
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definition of ACPI registers that are not legitimate and recover ACPI tables
used by the system. Of course, the efficiency of such a tool would depend on
its knowledge of the operating system and the underlying hardware platform.
Unfortunately, dynamic analyzers will not be efficient against kernel-level
malicious codes, which would deactivate them before modifying ACPI tables.

Overall, static analyzers seem by far the best countermeasures to detect mod-
ifications of ACPI tables that survive reboots. Static analyzers can also be used
to detect bugs in BIOS-provided ACPI tables. Such tools should be run after
each BIOS update. Alternatively, one could also propose that the BIOS vendors
cryptographically sign the ACPI tables. The signature would be verified at boot
time by the BIOS itself to make sure that ACPI tables have not been modified.
Such a scheme would probably not be really efficient as an attacker that would
manage to modify ACPI tables would also probably have enough privileges to
deactivate the signature verification function unless this function is immutable.
Signature schemes will also not provide any protection against bugs in BIOS-
provided ACPI tables. Detecting live modifications of the DSDT will be almost
impossible as long as the content of the DSDT will be executed by the OSPM
with the highest privilege level as it is the case for most classical operating sys-
tems. Possible means to protect trusted platforms against malicious functions
hidden inside of the DSDT are described in the next section.

5 Impact on a Trusted Platform

The principle of a trusted platform is to identify a set of hardware and software
components called “trusted computing base” (TCB). The model is that trust
in the trusted computing base is sufficient to gain trust in the whole platform.
On the contrary, if the trusted computing base was not working according to
its specification, there would be no way to trust the platform. The trusted com-
puting base include at minimum the Trusted Platform Module (TPM) [18], the
CPU and the chipset of the platform and the software component of highest
privilege (in most cases a small virtual machine monitor running different guest
operating systems with reduced privileges in parallel). Different initiatives aim
at limiting the size of the trusted computing base [7]. For the time being, even
the BIOS itself can be put outside of the trusted computing base (using TxT [5]
and Presidio technologies [2] for instance).

The ACPI specification advises the OSPM to be part of the software compo-
nent with the highest privilege level. On a so-called trusted platform, the trusted
computing base is thus generally the component in charge of power management.
In order to do so and to remain generic, the trusted computing base will have
to make use of ACPI tables which means that ACPI tables such as the DSDT
will be included in the trusted computing base. Of course, if TPM and CRTM
are used, ACPI tables can be measured at boot time. But measurements cannot
ensure that tables will not be modified in the future by a rootkit. Measurements
will ensure table integrity but will not give a way to trust their content.
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But how can the trusted computing base determine that there is no bug or
rogue function in the ACPI table provided by the platform that will modify the
behavior of the platform? ACPI static analysis tools can be used but they will
not help against live modification of the ACPI tables. Dynamic tools may also
be used inside of the trusted computing base but could also be deactivated by a
rootkit beforehand.

The best solution so far for a trusted platform would be to move to a new
paradigm where the component in charge of power management is not the trusted
computing base but a non privileged operating system running on top of the
trusted computing base. This way, the OSPM running methods described in
ACPI tables will not have enough privileges to modify security critical structures
such as the ones inside of the trusted computing base. Any such attempt will
give the hand back to the trusted computing base that can for instance shut
down the power management domain and report the security breach.

6 Conclusion

In this paper, we showed how it is possible in practice for an attacker to con-
ceal functions in the ACPI DSDT table. We have provided a proof-of-concept
implementation of such a function that allows an attacker to get to maximum
privileges on a laptop when she pulls the power adapter twice in a row. More
importantly, we have shown that the flaw was in the ACPI model that by design
lacks a correct security policy enforcement point. Neither the chipset, nor the
CPU will be able to detect any DSDT-based attack scheme. Possible counter-
measures include static and dynamic analysis of the ACPI tables that would
help detecting modifications of the DSDT by a rootkit.

The impact is even more important on trusted computing base that have to
make use of ACPI tables. Correctly tackling the problem would require trusted
platforms to move to a paradigm where the component in charge of power man-
agement would not be part of the trusted computing base but in a separate
environment with reduced privileges. This way, any attempt to modify security
critical structures by the component in charge of power management would give
the hand back to the trusted computing base.
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Abstract. Nowadays, trusted platform modules (TPMs) are usually de-
ployed together with desktop PCs and notebooks. However, these plat-
forms are not the only ones that can host TPMs. Mobile and embedded
platforms like cell phones can also host TPMs but may have different
requirements and different use-case scenarios. In contrast to common
TPMs, TPMs for mobile platforms do not need to be implemented as
micro controllers, leading to different security assumptions. In order to
find these differences, we have designed and implemented two approaches
for mobile TPMs that are analyzed in detail in the context of this paper.

Keywords: Mobile Trusted Computing, MTMs, ARM TrustZone, Se-
cure Element, JavaCard.

1 Introduction

Today, trusted platform modules (TPMs) are available for nearly every PC plat-
form, ranging from desktop machines to notebooks. These TPMs provide the
basic building blocks for different security services like storing integrity mea-
surements of the installed and loaded software during boot (aka authenticated
boot in the language of the TCG), authenticated reporting of these stored values
to remote verifiers (aka remote attestation) or binding certain data like keys to
certain platform configurations (aka sealing, binding). All of these services pro-
vide the basic building blocks for Trusted Computing (TC) enabled platforms.

Common desktop TPMs are produced in high numbers which allows TPM
manufactureres to keep the prices low. However, these common TPMs are dep-
recated for mobile and embedded applications From a certain point of view, it
seems simple to put a micro controller based TPM like the ones used on desktop
machines on a mobile platform. However, each new chip on a phone’s mother
board increases the cost of this device, not to mention the additional power
consumption of the extra chip. Consequently, it is reasonable to search for al-
ternatives - alternatives, for example that are primarily based on features and
mechanisms that embedded devices already carry as part of their base configu-
ration. Moreover, to keep the costs for mobile TPMs at a low price, the TPMs
might also be implemented only in software, raising questions about the security
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assumptions for these mobile-trusted-modules (MTM)s and the platforms they
are used with.

The Trusted Computing Group (TCG) has published a specification that de-
fines how mobile TPMs could be designed and which features they could provide
[6]. Intentionally, this specification is written in a rather relaxed style which al-
lows manufacturer to implement their mobile TPMs in different ways. This spec-
ification also forms the basis for the design of our prototypes and our ongoing
investigations.

In this paper, we discuss our two designs for providing TC building blocks
on embedded devices. Both building blocks rely on security mechanisms already
hosted by the embedded devices. The first approach focuses on a software em-
ulated mobile TPM that uses processor extensions to achieve protection from
access by arbitrary applications.

One interesting fact that should be mentioned at this point is that in the sense
of the TCG, MTMs might also be implemented as software security modules.
The TCG sees the mobile TPM more like a service than a fixed micro chip.
Moreover, in order to achieve more flexible and cheap implementations, MTMs
are not constrained to be implemented as micro controller, but might also be
implemented in software. Consequently, the question arises which level of security
a pure software implementation can provide. Is it possible to achieve the same
level as with microcontroller based TPMs?

Or which level is necessary for certain use-cases? Without having clear defini-
tions about conformance and compliance of mobile TPMs,these questions are hard
to answer. Details about our TrustZone based TPM can be found in Section 4.1.

The second approach (see Section 4.2), makes use of onboard smart cards.
Many new mobile phones are equipped with an additional smart card (besides
the SIM card) which can hold secret data like keys or certificates. These smart
cards, or secure elements (SE) in the sense of the TCG, can be addressed by
the mobile phone as well as from external devices via nearfield communication
which offers new perspectives of secure device communication.

In both of our approaches, we try to be as close to the TCG’s published
specification as possible. As a result of our investigations of these two designs,
we give a discussion about the pros and cons of both approaches and provide a
comparison of them.

This article is organized into 6 sections. In section 3 we give an overview
and explain the differences of the two kinds of mobile TPMs i.e. mobile-remote-
owner-trusted-modules
(MRTMs) and mobile-local-owner-trusted-modules (MLTM). In section 4, we
discuss our two approaches in detail. A comparison of the approaches is given in
Section 5 and finally, Section 6 briefly concludes the contribution.

2 Related Work

Different approaches how to implement MTMs are pursued by various research
groups. The most important ones are introduced in the following paragraphs.
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In [20], an idea to extend a SELinux based kernel in order to provide a generic
domain isolation at the kernel level is proposed by Xinwen Zhang, Onur Aciicmez
and Jean-Pierre Seifert. That way, the research group provides a strong and
convenient mechanism to satisfy the security requirements of trusted mobile
phones on isolation of engines and integrity assurance.

One of the leading mobile phone manufacturers - NOKIA - also does research
on implementation aspects of MTMs. Jan-Erik Ekberg and Markku Kylänpää
published a paper [10] that provides an introduction into the concept of MTMs
from the device manufacturer’s point of view. Furthermore, their work presents
an implementation of an MTM that is based on the well-known TPM emulator
from Mario Strasser [16].

In alternative approaches, hardware provided by mobile devices itself is used
to provide MTM functionality. Such hardware is the SIM card every mobile is
equipped with. The work discussed in [3] uses a JavaCard applet loaded on a SIM
card or on-board smart card. The Applet emulates MTM features and makes
use of the hardware support of smart cards. Furthermore, this approach benefits
from the smart cards design as they provide shielded locations and protected
capabilities per se. This MTM supports MRTM as well as MLTM functionality.

And finally, in [18] a design for a software emulated mobile-trusted-module,
based on the ARM TrustZone processor extension is discussed. This approach is
one of the starting points used for this article.

3 Mobile Trusted Modules

One important building block of every trusted platform is the trusted plat-
form module (TPM). Among other components like the CPU or the BIOS,
the TPM has to be trusted a priori in order to create a chain of trust [7].
On mobile and embedded platforms, TPMs are called mobile-trusted-modules
(MTMs). Although MTMs have similar features to TPMs, some differences be-
tween TPMs and Trusted Computing used on desktop machines and MTMs and
Mobile Trusted Computing exist. In addition to the services discussed in the
introduction section, mobile trusted computing defines another service called
secure boot. In contrast to an authenticated boot, a secure boot aborts execu-
tion of the software - or more restrictive: the boot of the device - if the integrity
check on the software that is currently being loaded fails. This fact implies that
a remote party can assume that a certain software configuration is running on
that device. Which software is running on the device is of special interest for
mobile equipment vendors and network providers, as we will see in the following
paragraphs.

In contrast to the TPM specification where we have one dedicated specifica-
tion of the TPM and its features, the Mobile-Trusted-Module specification [6]
defines two types of MTMs: the Mobile Remote-owner-Trusted-Module (MRTM)
and the Mobile-Local-owner-Trusted-Module (MLTM), addressing different own-
ers’ needs. The difference between these two types of MTMs is that the MRTM
must support mobile-specific commands as well as a subset of the TPM v1.2
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commands. In contrast, the MLTM is only required to support a subset of
the TPM 1.2 commands [8]. Usually, phone manufacturers and network service
providers are the owner of MRTMs.

On the one hand, manufacturers and providers want to get secure remote ac-
cess to the mobile phone by using features of the MRTM. On the other hand,
the phone’s user or owner, who has physical access to the device and its applica-
tions, uses the MLTM . The different parties, called stakeholders, have different
security requirements on MTMs. Depending on the stakeholder, the MTMs are
applied in areas such as platform integrity, device authentication, mobile tick-
eting, SIMLock/device personalization, secure software download, secure access
to the UICC and payment services as well as user data protection and privacy.
A mobile platform may host more than one MTM, depending on different stake-
holders and their requirements.

Precise definitions of how MTMs have to be implemented are not defined by
the TCG. Therefore, we propose two solutions with different security require-
ments.

4 Trusted Building Blocks

In the TCG mobile trusted computing architecture [5], MTMs are the funda-
mental building blocks for bringing trust into the platform. Any TCG-style trust
provisioning relies on a complete chain of trust, which ultimately roots in a mo-
bile trusted module. As part of our research in mobile trusted computing, we
have investigated a variety of different approaches to realize such mobile trusted
modules, ranging from pure software solutions in the style of [10] to dedicated
hardware solutions in the style of PC TPMs. In this paper we want to briefly
describe two of the most promising approaches we are currently working on.

4.1 ARM TrustZone

In [1] and [2] ARM introduced a set of hardware-based security extensions to
ARM processor cores and AMBA on-chip components.

The key foundation of ARM TrustZone is the introduction of a “secure world”
and a “non-secure world” operating mode into TrustZone enabled processor
cores. This secure world and non-secure world mode split is an orthogonal con-
cept to the privileged/unprivileged mode split already found on pre-TrustZone
ARM cores. On an ARM TrustZone core, secure world and non-secure world
versions of all privileged and unprivileged processor modes and control regis-
ter coexist. Security critical processor core status bits and control registers are
typically restricted to secure-world-only access. For the purpose of interfacing
between secure and non-secure world a special Secure Monitor Mode together
with a Secure Monitor Call instruction exists. Interrupts can be handled in a
secure deterministic way on TrustZone cores. Apart from the extensions to the
processor core itself, the SoC busses in TrustZone enabled systems carry extra
signals to indicate the originating world for any bus cycles. Whenever a bus
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Fig. 1. Software architecture for an ARM TrustZone based trusted mobile platform

cycle is started by the core, the secure/non-secure world state is recorded and
encoded into these extra signals. SoC peripherals can interpret the TrustZone
extra signals to implement a low-level access control based on the secure/non-
secure world distinction.

In [18], we outlined how ARM TrustZone can be used as an enabling tech-
nology to implement trusted computing building blocks on embedded platforms.
The intrinsic split of the platform into a secure and non-secure partition can be
efficiently leveraged to provide the isolation properties required for the protected
capabilities and shielded locations of a mobile trusted module. As shown in [18],
it is possible to accomplish that goal by solely relying on well known open source
software projects, like the Linux kernel, as fundamental building blocks.

Figure 1 gives an overview of a simplified version of the envisioned software
architecture for a mobile trusted platform. The prototype design utilizes the
TrustZone secure/non-secure world boundary to create two separate domains,
each running its own modified version of the Linux kernel. On the secure world
side, a specialized stripped down Linux kernel is used to provide the necessary
runtime environment for software based mobile trusted modules and for the
components required to handle the non-secure world side. The secure world
environment can be stripped down to the bare minimum of software components.

The MTMs, which execute as software processes within this tightly controlled
secure world environment, can rely on the process isolation and access control
features of the secure world kernel to provide the required isolation properties
with respect to other secure world components.
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The hardware supported boundary to the non-secure world environment is
used to provide a sufficient protective shielding against any potentially malicious
piece of code running on the non-secure side. There is no direct way for non-
secure world code to access secure world data or code memory without explicit
permissions. This is guaranteed by the TrustZone hardware extensions even for
platform features like DMA, which normally cause a lot of issues on platforms
without TrustZone.

Trusted Engines and the ARM TrustZone approach. A logical extension to our
prototype software design, which is not shown in figure 1, is to include a re-
stricted execution environment for secure bytecode or script computation within
the secure world partition of the system. The TCG reference architecture for
mobile trusted platforms mentions the existence of “trusted engines”, without
being precise on the exact nature and implementation details of these building
blocks. These trusted engines are capable of performing trustworthy computa-
tions on behalf of a remote stakeholder on the local mobile platform. In the TCG
architecture, trust provisioning for these engines is done on the basis of mobile
remote owner trusted modules (MRTMs).

The trusted engine concept can be seen as partitioning of the platform into
different trust domains for the stakeholders of the platform. Since various stake-
holders of a mobile platform can not be expected to ultimately trust each other,
mechanisms are required to support a sufficient level of isolation and separation
amongst them. Our ARM TrustZone based approach intrinsically provides two
levels of separation through the TrustZone secure/non-secure world boundary.
These two levels of isolation can be expected to be insufficient if a mobile trusted
platform has more than two different stakeholders. Even in the case of only two
stakeholders, for example a “device manufacturer” and a “device user”, it is
arguable whether two trust domains are sufficient.

By relying on existing software isolation technologies within the two trust
domains intrinsic to ARM TrustZone, it is possible to split them into an arbitrary
number of smaller trust domains.

Secure user-space process based approach. One approach to implementing trusted
engines can be the combination of secure boot concepts with strong software iso-
lation. In this scenario, trusted engines would be implemented as secure-world
user space processes, with embedded certificates. In order to guarantee that
only trusted code is executed within secure world, the secure world operating
system has to enforce mandatory validation of these certificates before allowing
any secure user-space processes to run. Depending on the availability of cryp-
tographic and trusted computing primitives within the secure world operating
system, these certificates can range from simple asymmetric signatures over the
executable images to RIM certificates as proposed in the TCG mobile reference
architecture.

An obvious and very simple mechanism for splitting secure user-space into
smaller trust domains, is to leverage the access control mechanisms offered by
standard Linux users and groups. However, depending on the complexity and
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nature of the task being performed by a trusted engine it can be desirable to
have a more fine grained approach to access control. As an example, a trusted
engine might be comprised of a set of collaborating user-space processes, which
run at different privilege levels.

To support fine grained access control together with strong software isolation,
frameworks like SELinux can be used. The authors of [20] propose a SELinux
based system, to implement different trust domains with mandatory access con-
trol on basis of a normal Linux platform. Their approach can be mapped to the
secure and non-secure world environments of our TrustZone prototype design,
in order to provide fine-grained trust domains and software isolation boundaries
within the two worlds.

Comparison to software MTM solutions on general purpose processors. The
TrustZone based approach to a mobile trusted module implementation discussed
in the preceding section is a hybrid solution somewhere in the middle between
a pure software MTM implementation and dedicated MTM hardware. A pure
software MTM implementation running on a general purpose processor1 has to
solely rely on the process isolation features provided by the operating system
kernel or hypervisor. In such an implementation we can expect all MTMs to
run under the same kernel or hypervisor as any potentially malicious user appli-
cations. In current hypervisors like Xen [19] or microkernels like L4 [11], com-
partment isolation is achieved by using standard virtual memory management
mechanisms available on the general purpose processor they run on. Usually,
only the small hypervisor or microkernel runs in a privileged processor mode,
while the compartments run in unprivileged processor modes.

In the proposed ARM TrustZone based design, the situation is slightly differ-
ent due to the dual nature of the processor core. Since TrustZone effectively turns
a single physical processor core into two separate virtual processors, we have
the possibility to strongly separate the MTMs from any potentially untrusted
user applications. The prototype design explicitly reserves the secure world envi-
ronment for MTMs and tightly controlled trusted processes. Within the secure
world environment, the same techniques as known from general purpose pro-
cessors without TrustZone are applied to provide process isolation among the
MTM processes and other trusted processes. When considering the secure world
environment alone, we can give precisely the same process isolation guarantees
for all secure world processes as we could on a general purpose processor only
executing trusted processes.

Similarly, we can use the techniques known from general purpose processors
and apply them to the non-secure world environment of the TrustZone based
design. If we consider the non-secure world alone, we can achieve the same guar-
antees as we could on a general purpose system without TrustZone, where iso-
lation among trusted and untrusted processes running on the general purpose
processor core is provided by an OS kernel, hypervisor or microkernel.

1 In this context we understand “general purpose processor” as a processor without
dedicated security extensions or hardware virtualisation extensions.



36 K. Dietrich and J. Winter

The actual strengths of the TrustZone based design is the ability to create
an isolated memory area. TrustZone memory isolation features guarantee that
no non-secure world process, regardless of whether it is running in privileged
or unprivileged mode, can ever access secure world memory. If there is need to
perform data exchange between secure and non-secure world, only non-secure
memory can be used for that purpose. Furthermore control transfer between
secure and non-secure world is only possible through a strictly limited interface
at the full discretion of the secure-world environment.

From a global point of view, the TrustZone design implements two indepen-
dent, strongly isolated worlds with a well defined strictly controlled interface
between them. Global isolation between these two worlds is provided by the in-
trinsic protection features of the TrustZone processor extensions. Within each
of these worlds, the design achieves strong local process isolation by resorting to
methods known from general purpose processors without TrustZone.

The possible combinations of these mechanisms allow for great flexibility with
respect to the different trust domains on the platform. When secure-world is
exclusively reserved for MTMs, with strong local isolation mechanisms in place,
this design achieves protected capabilities and shielded locations, which could
get close to the ones found in dedicated hardware MTM modules.

At the time of this writing it is a major part of our ongoing research to
investigate the limitations of the TrustZone based design. We are currently trying
to research definitive statements about which properties of dedicated hardware
MTM modules can not be fulfilled with the TrustZone based design, solely relying
on a software MTM implementation.

4.2 Smart Cards

In this section, the use of smart cards, or secure elements, for hosting trusted
computing building blocks, is discussed. Smart cards are available on every mo-
bile phone - either as an extra smart card or as the subscriber identity module
(SIM) card. The SIM card is required for identifying the user (or better, the ac-
count that is charged for the call) to the communication network. More advanced
devices that support UMTS also support the use of universal-SIM (USIM) cards
which are equipped with more sophisticated security algorithms. These two types
of smart cards seem to be a natural place where to host MTM functionality.

However, developers are hardly allowed to install and execute arbitrary appli-
cations on these cards. Therefore, we moved to alternatives. Other devices are
equipped with on-board smart cards (e.g. Nokia 6131 NFC) which we used in
our approach to host the MTM [3].

At this point, it is important to notice the difference, between a secure element
and a SIM card. The secure element, is fixed on the platform - it cannot be
removed. In contrast to a SIM card that can be removed from the device. All
data that is stored on the secure element, remains on the platform and cannot
be transferred to another device by just moving the card.
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Fig. 2. Software architecture for a Smart Card based trusted mobile platform

This fact has interesting consequences. On the one hand, all data that is bound
to the removable card cannot be unbound unless the correct card is reinserted
again. On the other hand, data that is stored inside a secure element can be
transfered to the new device. Moreover, if the data is fixed to a certain platform
configuration, the new device could be forced to have the same configuration in
order to get access to the stored data.

JavaCards can host different applications, called applets [13]. Typical applica-
tions use such applets to store and manage authorized access e.g. digital purses
or authentication credentials. However, the card can also be used to host applets
with MTM functionality.

Figure 2 shows the basic design of our prototype. The smart card (or secure
element) hosts the MTM. The MTM itself is implemented as a Java Card ap-
plet that supports the processing of TCG compatible commands [8]. Common
TPM functionality also includes cryptographic operations, e.g. the current MTM
specification defines RSA operations to be used for asymmetric cryptography.
Typically, smart cards are equipped with hardware based cryptographic sup-
port. This hardware support enables smart card applications to perform fast
cryptographic operations. Fortunately, this support is also available for Java
Card applets which enables them to support all required operations [6].

The communication between the host application and the smart card is done
by TCG conformant commands that are split to fit into APDUs as defined in
[9]. However, current available cards underlie strong restrictions from available
memory (EEPROM and RAM). The approximate free available space on our
reference prototype is about 76 kByte of nonvolatile memory and 8 kBytes of
RAM. Furthermore, the processing of Java byte code is rather slow, which de-
mands efficient command handling and parsing.
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Many cards can host more than one applet. This fact allows the installation
of multiple MTM applets and therefore allows to install a MRTM and an MLTM
on the same card, providing the functionalities of both kinds of MTMs.

A major advantage when using smart cards for hosting MTM functionality is
that all security properties of a certain smart card can be reused when assessing
the security level of the smart card based TPM. Smart cards are well investigated
in the sense of security evaluations - various security evaluations and protection
profiles [17] exists.

5 Software-Based Versus Hardware-Based Mobile
Trusted Modules

In this section, the different advantages and disadvantages of our approaches are
discussed. Both approaches are able to provide MTM features and functionality
as defined by the TCG mobile phone Specification [6] - all required commands,
for MRTMs and MLTMs, can be provided.

On the one hand, software-based MTMs are a very flexible solution and can
easily be adapted to certain use-case requirements. However, it is hard to de-
termine whether a pure software or TrustZone enhanced implementation can
provide shielded locations and protected capabilities that form the core require-
ments of TPMs as required by the TCG [7].

On the other hand, shielded locations are supported by secure elements per
se. The design of current TPMs and MTMs originally stems from the designs of
smart cards which makes it easy to prove that the requirement for shielded loca-
tions and protected capabilities can be achieved by secure elements. Moreover,
protected capabilities can be established by implementing the required command
and authorization handling services as software components on the card.

5.1 Architectural Implications

A smart card based approach, where the execution of MTM specific operations
is separated between main CPU and a MTM specific processor, has other conse-
quences as the execution of such operations together with arbitrary applications
on a just one single CPU. The first approach provides an absolute separation of
the MTM functionality.

The second approach relies on specific platform features that can provide
hardware enforced separation and protection of processes or, in some cases, soft-
ware based isolation via the operating system or assumptions of the compiller
system. Examples therefore are the L4, micro kernel based architecture and the
Microsoft research operating system Singularity [15].

Roots-of-Trust. Important base components of all trusted platforms are the
roots-of-trust. Not all of these roots are provided by the MTM, they can be
provided by the BIOS or a piece of software that does verification operations,
for example. Therefore, it is reasonable to investigate possible impacts on these
roots by our designs.
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It is obvious to see that the smart card approach provides a root-of-trust-for-
storage (RTS) and root-of-trust-for-reporting (RTR) per se. All measurement
values are stored inside a protected area and all required operations for reporting
this values (i.e. quote and identity operations) can be performed in the same
protected area. Therefore, we can assume that the card provides RTR and RTS.
However, can we put the same assumption on the TrustZone approach?

When we take a closer look at the design (see Section 4.1) we realize that the
software based MTM itself relies on other roots of trust. In order to use this kind
of MTM, we require a mechanism that guarantees the integrity and authenticity
of the MTM implementation (i.e. Root-of-Trust-for-Enforcement (RTE)) [10].
This can be achieved by requiring the device to perform a secure boot process
[6] which again includes operations that rely on a Root-of-Trust-for-Verification
(RTV) and a Root-of-Trust-for-Measurement (RTM). Consequently, we require
a RTV and a RTM to be present before the MTM can be securely started.

An interesting design could be the combination of both approaches. Instead of
a protected place in the BIOS, the secure element could store long term secrets
like the RVAI and could be used to check the integrity of the software MTM.
Consequently, the RTV could then be the smart card itself. Nevertheless, a RTM
is still required as the measurement process is done outside whatever MTM. This
implies that the BIOS must provide means to communicate with the smart card.

Integrity Information. The integrity verification process involves RIM certifi-
cates which contain integrity information of certain software images and in-
formation of expected integrity metrics [6]. The integrity of these certificates
themselves are checked by using asymmetric cryptography which can be rather
time consuming and slow on mobile devices. In order to address this problem,
the MPWG has introduced the concept of binding a RIM certificate to a certain
MTM involving just symmetric cryptography with a key that is only known to
the MTM. Using secure elements could improve this process greatly. Instead of
binding the certificate to the MTM, the certificate could be stored within the
MTM. Assuming that only authorized entities can update or store certificates
within the element, the certificate’s integrity can be seen as assured.

The benefit of this approach could be that a verifier would only have to create
a hash of the RIM certificate and of the image and send it to the secure element.
The secure element could then simply compare the hash certificate with the hash
of the stored certificate to verify its integrity.

Moreover, the card could compare the corresponding PCR selection values
stored in the certificate with the current content of the PCRs detecting aber-
rations between the expected and the actual platform configuration before ex-
tending the PCR, as defined in [6].

Separation. In the JavaCard MTM implementation, the processor executing the
MTM code is a physically distinct entity to the processor running application
code. The interface between the MTM and the application is constrained by the
ISO7816 [9] smart-card interface of the secure element. Data exchange between
the MTM and the application is limited to an APDU based protocol, there is no
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mechanism for directly sharing memory between the MTM and the application.
The nature of this smartcard interface automatically forces the MTM and any
other applets running inside the secure element into a passive role, with respect
to the application processor.

A different situation arises when considering the TrustZone based MTM im-
plementation. In this design, the same physical processor is shared by the MTM
code and the application code. By using the TrustZone features of the physical
processor core, two isolated virtual cores for secure and non-secure world are
created. These two virtual cores can not be considered as a multi-core or multi-
processor system with respect to parallelism. Secure and non-secure world are
mutually exclusive. Whenever one of the worlds is active, the other world sleeps.
Since it is undesirable to suspend all non-secure world application while an MTM
running in secure world performs some longer operation, a time-sharing and pre-
emption mechanism is needed. The interface between the virtual core hosting
the MTM and the virtual core hosting the application is built around a system-
call style secure monitor call instruction. Data exchange between the virtual
cores takes place using a combination of general purpose processor registers and
shared memory.

Platform Binding. The binding of the MTM to its platform is of essential interest
especially for software based MTMs. While the binding in case of secure elements
is given by design, the binding of software based MTMs is not. As all digital
data, such as software-based MTMs, could easily be transferred or duplicated
by just copying the software, efficient mechanisms are needed to protect the
state of a software MTM. Apart from MTM cloning, it is necessary to provide
countermeasures against MTM state rollback attacks. Furthermore, parts of the
MTM state, like private or secret keys, have confidentiality requirements which
need to be fulfilled.

If the target platform of the software MTM provides shielded locations, like
chip-internal non-volatile secure memory, all of these issues can be solved rela-
tively easily. depending on the available size of that memory. Such non-volatile
memory could be an EEPROM or a battery buffered internal static RAM, for
example.

The amount of secure memory can be very small, since only a single secret
key Kstate needs to be placed within this memory. Providing confidentiality
and platform binding is easily accomplished by using the secret Kstate key for
encrypting the MTM state blob. By ensuring that no two platforms share the
same Kstate key, a binding between each platform and the MTM state blobs
encrypted on that platform can be established.

The described mechanism does not enforce any requirements on the update-
ability of the Kstate key and thus also works with platforms, which already
contain hardwired built-in keys. Unfortunately. this simple approach is not suffi-
cient to prevent state rollback attacks. When the platform provides some intrinsic
mechanism to support at least one monotonic counters with large capacity, state
rollback issues can be mitigated, by using the value of this counter to track the
current revision of the MTM permanent state block.
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The need for a monotonic counter to do state revision tracking can be elim-
inated if the secure location used to store Kstate is writeable. In that case, the
MTM generates a new random Kstate key each time when an updated version
of the state blob needs to be stored. As a side effect, this enhanced mechanism
allows the storage of monotonic counter values within the encrypted MTM state
blob, residing outside secure memory.

5.2 The Role of Virtual Machines

Virtual machines play a key role to both of the designs discussed in this paper.
In the secure element based design, the primitives provided by the JavaCard

framework and the Java language are used to realize protected capabilities and
shielded locations for the MTM applet. Within the context of the Java environ-
ment running on the secure element, applet security and isolation is provided by
the design of the JavaCard framework [14].

The JavaCard framework is designed to be usable in environments with extreme
constraints on resources like memory and computational power. Todays smart-
cards are often based on very simple 8bit microcontrollers like 8051-derivates. Such
controllers mostly lack support for features like memory protection, virtual mem-
ory or a distinction between privileged and unprivileged processor modes.

Providing process isolation for applications running natively on such a limited
processor becomes next to impossible. The JavaCard VM provides a powerful yet
simple solution to remedy this undesirable situation. Instead of allowing applet
writers to use the potentially dangerous native instruction set of the smart card
processor, it provides a safe virtual machine instruction set. The virtual machine
instruction set of the JavaCard VM (cf. [14], [12]) is designed to not expose any
direct means for raw pointer or memory operations. In addition the Java virtual
machine specification enforces a number of restrictions on valid programs to allow
bytecode verification. In the context of current JavaCards, bytecode verification
is mostly done outside the card. Since special keys are required to load applets
onto the card, it is still possible to guarantee that only verified applets are
installed. Once the applets are installed, the card can be locked, disallowing any
further applet installations.

Based on bytecode verification and the virtual machine instruction set design
of the JavaCard VM, it is possible to overcome the limitations of the underlying
native processor with respect to applet isolation. Under the assumption that
the virtual machine implementation is correct and secure, JavaCard VMs allow
powerful software-isolation without the need for equally powerful underlying
hardware isolation.

When discussing the TrustZone based prototype design, we already mentioned
the possibility of implementing trusted engines as user-space processes, running
in the secure world environment of the TrustZone based platform. The ARM
processors used in the TrustZone based design do not suffer from the same
limitations with respect to memory protection and privileged instructions.

Nevertheless, trusted engines implemented as native processes can pose a threat
to the entire secure world environment, especially if they have to process input from
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untrusted sources. Incorrectly implemented native trusted engines can give an ad-
versary the capability of directly executing code in secure world user-space. While
this does not necessarily lead to an immediate break of platform security, it can be
a highly significant advantage to an adversary.

A virtual machine based approach to trusted engines offers mechanisms to
tightly restrict the low-level operations which can be carried out by software
running inside the trusted engine. For example, potentially unsafe low-level op-
erations like direct raw pointer manipulation can be ruled out by appropriate
bytecode design. Depending on the tradeoff between performance and security
requirements, virtual machines can implement a significant amount of runtime
checks and bytecode verification steps.

Examples for candidate VMs include the Java VM (J2ME, JavaCard) or the
Lua VM. Especially the latter case of the Lua scripting language appears to be
a quite attractive candidate due to the small size and high flexibility of the Lua
programming language. It should be pointed out that Lua has already been used
in designs with a similar problem setting, as demonstrated in [4].

6 Conclusion and Future Work

In this paper, we discussed two approaches for building mobile trusted mod-
ules based on existing platform features. The ARM TrustZone approach, cov-
ered in section 4.1, focuses on using special capabilities of the platform and its
main processor for implementing trusted computing building blocks in software.
Apart from the requirement for a sufficient processor core with ARM TrustZone
support, this approach avoids dependencies on additional dedicated trusted com-
puting hardware. In comparison to the second MTM implementation approach
outlined in this paper, the TrustZone approach can not rely on the same secu-
rity properties inherited from a smart card environment. We give a comparison
of the TrustZone based approach to a pure software MTM solution on gen-
eral purpose processors. Based on the additional memory and process isolation
features offered through TrustZone, we conclude that the TrustZone approach
allows a finer-grained set of possible trust boundaries and domains. Moreover,
we conclude that software MTMs running in a secure world environment and
exclusively using secure world memory, can provide protected capabilities and
shielded locations which are potentially stronger than their counterparts in the
general purpose processor without TrustZone features.

Finally, we argue that the TrustZone based approach has the potential for
matching the security properties of a dedicated hardware based MTM imple-
mentation closer than a software MTM implementation on a general purpose
processor can do.

The second approach discussed in the paper is based on a dedicated secure el-
ement found on the platform. As mentioned at the beginning of section 4.2, such
secure elements are already deployed in a number of mobile phone platforms.
Again, this JavaCard oriented approach focuses on reusing the existing secure
element for hosting trusted computing building blocks, without creating the
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need for additional special purpose hardware. In this approach, mobile trusted
module functionality is implemented in a dedicated smart card environment,
sharing some similarity with the TPM modules available in many desktop PC
systems. This MTM implementation approach inherits the security properties
established by the JavaCard framework and its smart card nature. We con-
clude that protected capabilities and shielded locations of the smart card based
MTM implementation approach closely match their counterparts found in exist-
ing TPM modules. We can not yet make a definitive and exhaustive statement
on the difference between the security properties of the JavaCard MTM and the
TrustZone-based software MTM. Properties of ARM TrustZone suggest that the
software MTM implementation can achieve characteristics close to the JavaCard
MTM’s security properties at least for a subset of these properties. The precise
limits of the security properties of both approaches discussed in this paper are
part of ongoing and future research. It is an open question whether the MTM
implementations discussed in this paper are compliant and/or conformant to the
TCG specifications. Since there is no publically available test suite for MTMs
at the time of this writing, we can not yet decide if our implementations are
compliant to the TCG specifications.

Unfortunately, there is no protection profile for MTMs available either, thus
it is not possible to make any assertions about the conformance of our imple-
mentations to the TCG specifications at the time of this writing.
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Abstract. This paper presents a Common Criteria protection profile
for high assurance security kernels (HASK-PP) based on the results and
experiences of several (international) projects on design and implementa-
tion of trustworthy platforms. Our HASK-PP was motivated by the fact
that currently no protection profile is available that appropriately covers
trusted computing features such as trusted boot, sealing, and trusted
channels (secure channels with inherent attestation).

In particular, we show how trusted computing features are modeled
in the HASK protection profile without depending on any concrete im-
plementation for these features. Instead, this is left to the definition of
the security targets of a an IT product which claims conformance to the
HASK-PP. Our HASK protection profile was evaluated and certified at
evaluation assurance level five (EAL5) by the German Federal Office for
Information Security (BSI).

1 Introduction

Industrial and governmental IT applications pose a high degree of assurance on
the security of the deployed IT products. Consequently, appropriate evaluation
means are desired to verify product claims. In this context, Common Criteria
standards [1] are established methodologies to provide assurance that the pro-
cess of specification, implementation and evaluation of an IT security product
has been conducted in an appropriate, rigorous and standard manner. In partic-
ular, protection profiles (PP) define a set of requirements for a specific class of
products that must be fulfilled by any product that is certified as compliant to
the profile.

For secure operating systems, a small number of protection profiles exist.
However, until recently, the existing protection profiles either model only spe-
cific aspects such as access control models, or they define the operating system
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on a very low level. In particular, these protection profiles do not consider im-
portant security aspects that can be realized by the emerging trusted computing
technology such as secure booting, trusted channels, or data binding.

For example, the Trusted Computing Group (TCG), an industrial initiative
aiming at the realization of trusted computing, has specified security exten-
sions for commodity computing platforms. The core TCG specification is the
Trusted Platform Module (TPM) [2], currently implemented as cost-effective,
tamper-evident hardware security module embedded in computer mainboards.
It allows a platform to provide evidence of its integrity, cryptographically bind
data to previously taken integrity measurements, and protect cryptographic keys
in shielded hardware. Based on these functionalities, a secure operating system
can realize more advanced protection for applications and more reliable evidence
of its trustworthiness to external entities like remote parties.

Using a TPM to realize the mentioned security properties is only one option.
Alternative solutions are possible based on other hardware security modules like
secure coprocessors [3, 4] or smartcards. Hence, to enable the certification of se-
cure systems providing these security properties on an abstraction level allowing
end-users to compare security products, a new protection profile incorporating
trusted computing becomes necessary.
Contribution. In this paper, we present a Common Criteria protection profile
for high assurance security kernels (HASK-PP) [5], based on experience estab-
lished over several years during the design and development of security kernels
in projects such as EMSCB [6], OpenTC [7], and SINA [8]. Moreover, we discuss
certain aspects of this protection profile and explain the background of deci-
sions made during the development. The HASK-PP incorporates a number of
novelties, compared to existing protection profiles:

– Secure and authenticated boot abstraction (trusted boot)1

– User data binding (trusted storage)
– Secure channels with evidence on integrity of endpoints (trusted channels)
– Minimal core security requirements
– High flexibility for implementation

Although one important input to the PP development was trusted comput-
ing technology, a strong requirement of the PP development was to keep it
implementation-independent. Moreover, a key driver was to minimize the core
security requirements, particularly regarding user management and auditing.
Only minimal requirements were defined in order to also allow products that
do not have (multiple) users or do not need extensive auditing (e.g., embedded
devices). The definition of additional security requirements is intentionally left
to the specification of security targets of concrete products. All together, this
allows a wide range of platforms such as servers, desktop systems, and embedded
devices, which can be evaluated according to the HASK protection profile.

1 We explain the differences between secure and authenticated boot in Section 4.1. In
general we use the term trusted boot as an abstraction for both.
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The protection profile was evaluated and certified at evaluation assurance
level five (EAL5) by the German Federal Office for Information Security (BSI).

Outline. In Section 2, we introduce goals and design principles of the devel-
opment of this protection profile and discuss related and previous work. We
also briefly introduce the Common Criteria and relevant terminology. Section 3
presents an overview of the high assurance security kernel protection profile
(HASK-PP). We show in Section 4 how trusted computing features are modeled
in the protection profile, in particular trusted boot, trusted storage, and trusted
channels. Finally, we conclude the paper in Section 5 with a brief summary and
an outlook on future work.

2 Toward a Protection Profile for Security Kernels

2.1 Goals and Design Principles

The overall goal of the HASK protection profile was to define evaluation criteria
for security kernels that provide functions for the management and separation
of compartments operating on top of the security kernel. Examples of product
types that may implement these functions are

– Microkernels,
– Virtual machine monitors, and
– Logical partitioning products.

The protection profile was developed based on the experiences with different
security kernels covering certain aspects to be considered by HASK:

– Turaya [9]: A microkernel-based security kernel for desktop and mobile IT
products based on COTS components. An open-source version of the Turaya
security kernel has been developed in the EMSCB [6] project partly funded
by the German Ministry of Economics and Technology.

– OpenTC [7]: A hypervisor-based security kernel for clients and servers, using
trusted computing technology. OpenTC is a research project partly funded
by the European Union.

– SINA [8]: A high-assurance “Secure Inter-Network Architecture” developed
by the German Federal Office for Information Security (BSI).

High-level abstraction of trusted computing features such as remote attes-
tation and binding were among the results of these projects. We derived our
requirements for a protection profile from these insights. In addition to the se-
curity functionality of traditional security kernels (such as access control, audit,
etc.), three important functions must exist in a product claiming compliance
with the HASK protection profile: (1) trusted channel, (2) trusted storage, and
(3) trusted boot.

The first function is the ability to “prove” a “trust status” to a remote trusted
IT product and to verify the correctness of a status submitted by a remote
trusted IT product. This status shows that the product is authentic, has not
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been modified, and is “fresh” (i. e. the status information received has not been
replayed from a previous status information potentially intercepted by an at-
tacker). Based on this information, trusted channels between trusted IT products
can be established.

The second function allows to bind user data to compartments resp. the se-
curity kernel itself (trusted storage). This function can be used to prevent ad-
versaries from bypassing security policies by modification of applications or the
operating system. It was deliberately not the goal to prescribe which method is
used to implement these functions. However, a product compliant to the protec-
tion profile requires hardware, software, or firmware in its environment that is
able to ensure the integrity of the security kernel and its data during start-up.

Hence, the third function provides a trustworthy bootstrap mechanism
(trusted boot), which supports the other two functions in providing evidence
that the product has started in the intended manner. Figure 1 shows the ab-
stract view of a security kernel and our goals.

Fig. 1. Abstract functionality of a high-assurance security kernel. “Core Security Func-
tionality” includes separation and access control.

Another important design principle of the HASK-PP was to keep it as minimal
as possible to allow a wide range of different realizations, but prevent ’trivial’
realizations that do not provide the intended security property from being able
to claiming compliance. In fact, the tightrope walk between minimalism and
exclusion of trivial realizations was one of the most challenging tasks during the
development of this protection profile.

2.2 Common Criteria Basics and Terminology

The Common Criteria (CC) are an international standard that aims at per-
mitting comparability between the results of independent security evaluations
[1]. The CC provide requirements for security functionality of IT products and
assurance measures for the security evaluation of these products. The Com-
mon Criteria Recognition Agreement (CCRA) regulates international recogni-
tion of certificates, and about two dozen countries – including the USA, Canada,
UK, Germany, France, Japan, and many others – are currently members of the
CCRA.
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During security assessment, a given product, the target of evaluation (TOE), is
evaluated according to a set of assurance requirements with respect to a security
target (ST) that defines the security requirements for this TOE. An evaluation
assurance level (EAL) is a pre-defined set of assurance requirements. The CC
specify seven levels (from EAL1 to EAL7), where levels with higher numbers
include all requirements from the preceding levels. All hardware, software, and
firmware that is necessary for the security functionality of the TOE is called TOE
security functionality (TSF). The security requirements that have to be fulfilled
by the TSF are called security functional requirements (SFRs). The CC offers
a set of classes of pre-defined SFRs, from which designers of security targets
can choose. SFR classes are grouped according to security functionality like,
e.g., data protection, security management, identification and authentication,
auditing.

A protection profile (PP) specifies implementation-independent security re-
quirements for a class of TOEs (whereas an ST is implementation-dependent).
An ST for a concrete TOE can claim compliance to a PP; in this case, the com-
pliance to the PP is assessed during security evaluation. Protection profiles are
particularly important to compare different IT products, since they specify a
minimum set of security requirements that must be fulfilled. Of course, the ST
for each product can provide additional security features.

2.3 Related Work

The concept of security kernels was explored some decades ago [10–14]. The basic
idea is to implement security-critical functionality, i.e., mediating the access to
resources according to a security policy, (i) separated from other functionality,
and (ii) in a ideally small kernel which allows for the verification of its correct-
ness. The validation and formal verification of security kernels was analyzed and
conducted by several works as well [15–18].

Separation kernels can be seen as a subclass of security kernels. They have
only limited functionality. Typically, a separation kernel divides the system into
separated partitions running virtual machines. Several commercial companies
develop separation kernels, such as LynuxWorks [19], Green Hills Software [20],
and Wind River Systems [21]. There is also prior work in formal specification
and verification of separation kernels [22, 23].

Recently, a protection profile for separation kernels (SKPP) [24] has been
introduced and certified in the US. This protection profile has been designed
for high robustness environments, i.e., it mainly addresses security evaluations
at EAL6 and EAL7. The protection profile itself does not claim conformance
to a specific evaluation assurance level, but specifies assurance requirements
both from EAL6/EAL7, and explicitly defined requirements. Regarding security
functional requirements, on the one hand, the focus of SKPP is restricted to
the security functionality of separation kernels. In contrast to this, HASK-PP
covers a wider range of security functionality, and in particular includes trusted
computing functionality. On the other hand, SKPP includes the hardware in the
TOE and specifies very detailed security requirements. In contrast, the focus
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of HASK-PP is more restricted in this sense, since it excludes the hardware
from the TOE and leaves more flexibility for concrete implementations. For a
discussion of SKPP and its development, see e.g., [25, 26].

Levin et al. [27] compare security kernel and separation kernel architectures
with regard to multi-level security. Moreover, they introduce least-privilege sep-
aration kernel as a third class of architecture, which supports the security re-
quirements of the SKPP.

In the past, conventional operating systems like various Linux distributions,
Unix variants, and versions of Microsoft Windows have been evaluated accord-
ing to the the Controlled Access Protection Profile (CAPP) [28], the Labeled
Security Protection Profile (LSPP) [29] and the Role-Based Access Control Pro-
tection Profile (RBAC-PP) [30]. However, these protection profiles target lower
evaluation levels2 and only address the limited aspect of access control models.

3 Overview of HASK-PP

In this section we first describe the architecture and functionality of the TOE
(Section 3.1). Then we present an overview of the main components of the pro-
tection profile, namely threats and assumptions (Section 3.2) as well as security
objectives and security functional requirements (Section 3.3). Finally, we discuss
our decision for the evaluation assurance level (Section 3.4).

3.1 Security Kernel Architecture and Functions

The HASK protection profile specifies the security functional and assurance re-
quirements for a class of security kernels that allow executing multiple separated
compartments on a single trusted system. Each compartment can behave like
a single platform separated from each other with the TOE enforcing this sep-
aration and controlling the communication between compartments as well as
with external entities in accordance with a defined policy (an overview is shown
in Fig. 2). Note that the notion of compartments in the protection profile is a
generic concept. A compartment is not necessarily a virtual machine, it can be
any set of processes within a security domain. Any product claiming compli-
ance with this PP must provide the necessary security functionality with a high
degree of assurance to its users.

To control the communication of external entities with compartments as well
as the communication between compartments, the TSF manages a set of com-
munication objects that can be assigned to compartments. Communication ob-
jects are (on hypervisor-based security kernels) an abstraction for virtual network
connections between virtual machines or external networks, and (on microkernel-
based security kernels) an abstraction for interprocess-communication between
compartmentalized (groups of) processes. Those communication objects allow the
2 While the PPs themselves are certified according to EAL2 and 3, recent evaluations

of operating systems according to these profiles achieved EAL4+. However, they are
still far from reaching EAL5.
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TSF to control which external entities and other compartments a compartment
can communicate with and how this communication is protected. Protection of
communication is defined by security attributes assigned to communication ob-
jects. Those attributes can define characteristics of the communication link like
the set of external entities one can communicate with using this communication
object, the kind of protection for the communicated data requested from the TSF
when using the communication object (integrity protection, confidentiality pro-
tection, authentication of the communication peer).

In addition to the communication objects, the TOE also manages storage
containers of persistent or volatile storage. Those may be whole disks, disk
partitions, disk sectors, etc. where the technology to implement those containers
(magnetic disks, flash disks, memory disks etc.) is not relevant for the protection
profile.

The security kernel has the following (abstract) set of functions:

– Management of compartments (creation, deletion, starting, changing at-
tributes)

– Management of objects, which are at least containers and communication ob-
jects (creation, deletion, changing attributes, defining and managing access
control policies)

– Management of resources, which are at least processor time and memory
(assignment to compartments, setting resource limits, controlling resource
limits)

– Generation and verification of information that reliably shows the integrity
of the security kernel, a compartment managed by the security kernel, or
specific data. We call such information evidence of integrity.

Fig. 2. TOE architecture. Dark gray colored parts implement the TSF.
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A security kernel that is compliant to the protection profile needs to implement
both mandatory and discretionary access control (MAC/DAC). The DAC policy
must at least allow to specify “access” and “no access”, and the MAC policy
must at least allow separating two compartments from each other such that no
information flow between them is possible.

The security kernel (based on hardware functionality required by assumptions
in the PP) must be able to protect its integrity, the integrity of compartments,
and the integrity of storage containers during runtime. Integrity of the secu-
rity kernel is obviously required to guarantee the proper operation of the TSF.
Integrity of compartments is required for trusted communication channels (see
below). Integrity of storage containers is required to prevent unauthorized mod-
ification of data when this container is mounted to a compartment.

In a similar way, the system must be able to protect the confidentiality of the
security kernel, the confidentiality of compartments, and the confidentiality of
storage containers.

Furthermore, the security kernel must be able to provide trusted channels
between compartments or between compartments and external entities. For a
trusted channel, the security kernel has to ensure that the communication link
provides integrity and confidentiality protection of the data transferred over the
channel, and the identification and authentication of the communication partners
must be ensured.

3.2 Threats and Assumptions

The main threats against the TOE include unauthorized access to objects or
unauthorized information flow between subjects. Additionally, we considered
threats that target to manipulate the TSF or TSF data, including replaying of
an older state, e.g., a backup, or influencing the TSF to generate false evidence of
the integrity of the TSF or its data. This also includes threats against the TOE
environment, e.g., manipulation by installing malicious devices drivers accessing
critical hardware functions, or external entities trying to access confidential TSF
or user data by starting the TOE outside its intended operational environment.

To address the threats, we stated corresponding security objectives for the
TOE and its environment. The latter is important because a security kernel in
software alone cannot guarantee or verify its integrity without the assistance of
security hardware functionality. In order to be implementation-independent,
we did not include security functional requirements for the hardware. Instead,
we stated assumptions on the operational environment in being able to

– support the TOE in producing evidence of the integrity of the TSF code and
data during the boot process (A.INTEGRITY SUPPORT);

– allow the TOE to store information such that it cannot be accessed by the
TOE where the configuration has been manipulated in an unauthorized way
(A.BIND3);

3 In TCG terminology, the TPM sealing function can provide such a feature. Other
implementations may be based on, e.g., secure coprocessors [3].
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– provide a function the TOE trusts that is able to generate evidence of the in-
tegrity of a remote trusted IT product only if it is correct (A.REMOTE TRUST).

The assumptions A.INTEGRITY SUPPORT and A.REMOTE TRUST are needed to
show the status of integrity at load-time of the TOE. Combined with the in-
tegrity protection features of the TSF during runtime, one can derive the in-
tegrity status of the running TOE and compartments executed on the TOE.

Of course, for secure operation of the TOE, we assume the environment to

– provide mechanisms for separation of the TSF and other subjects or func-
tionality (A.SEPARATION SUPPORT);

– not contain backdoors (A.HW OK);
– not be able to start the TOE in an insecure way without this being detectable

(A.NO TAMPER); and
– not have subjects allowed to perform administrative functions and misusing

their privileges (A.NO EVIL).

3.3 Security Objectives and Security Functional Requirements

The security objectives address protection of objects on the one hand (access
control to user data, information flow control between compartments, secure
data exchange, management of security attributes, resource limitation to avoid
denial of service), and protection of the TSF itself on the other hand (TSF and
TSF data integrity and confidentiality). Moreover, the TOE must be able to
audit defined potentially security-critical events.

To address the security objectives of the TOE, we defined security functional
requirements, which can be assigned to four groups: (i) core security functionality
(realizing access control, security management, audit, etc.), (ii) trusted storage,
(iii) trusted boot, and (iv) trusted channels. See Figure 3 for an overview (note
that the SFRs in the groups overlap because some SFRs are addressing more
than one objective).

The core security functionality can be divided into four subgroups4. (1) Access
control and information flow control includes SFRs for data protection, user
identification and authentication, and consistency of TSF data when shared
between TSF and another trusted IT product. (2) Resource limitation: As a
minimal requirement we include maximum quotas for memory and processor
time in order to avoid excessive resource consumption. (3) Audit defines that
the TOE must be able to audit the following events at minimum: start/stop
of audit functions, modifications of security policy enforced by TOE, rejected
attempts to perform management operations, and integrity violations of TSF or
user data. We did not want to dictate a long list of audit events because some
products may not have such strong audit requirement, but should be covered

4 We introduce the subgroups only as orientation to reflect the objectives in this
paper. The reader can find the exact mapping of SFRs to security objectives in the
protection profile.
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Fig. 3. Overview of the HASK-PP with logical grouping of the security functional
requirements and assumptions. See Appendix A for the complete list of SFRs with
their names (such as “Basic Data Authentication” for FDP DAU.1).

by the HASK-PP, too. The actual selection of events to be audited is up to the
security target of a concrete product (and can have even more audit events if
necessary).

Finally, (4) security management consists of management of security attributes
for subjects and objects, management of TSF data, and management of security
roles. The inclusion of these SFRs in the HASK-PP was originally not the focus
(because we wanted to minimize the requirements), but they were a result of de-
pendencies between SFRs. For instance, FDP ACF.1 (security attribute based ac-
cess control) requires FMT MSA.3 (static attribute initialization).

We discuss the modeling of the objectives trusted storage, trusted boot, and
trusted channel in Section 4.

3.4 Security Assurance

The HASK-PP has been developed against the most recent version 3.1 Revi-
sion 2 of the Common Criteria to ensure its usefulness in the future. It is fully
conformant to CC part 3 by selecting the EAL5 package of security assurance
requirements.
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EAL5 was chosen as a minimum level of assurance for different reasons: The
architecture of the TOE in HASK-PP addresses systems with exposure to un-
trustworthy and unauthorized entities and with high value of the data stored
and processed by the system. A sufficient level of assurance must be selected to
provide system users with appropriate assurance that the system will be able to
withstand such threats. The TOEs claiming conformance to the HASK-PP are
expected to provide high assurance against the threats assumed in the PP. Ro-
bust and reliable separation of compartments requires a level of assurance that
includes the evaluation of possible covert channels between unrelated compart-
ments. In this context, testing and vulnerability analysis of the whole TSF is
necessary. The whole architecture of a security kernel managing compartments
should be implemented in a lean, modularized fashion as required by the EAL5
assurance level. This means to have well-structured internals, a functional spec-
ification which is at least semi-formal, and a development process that follows
clear implementation standards and defines unambiguous use of development
tools.

EAL5 was also deemed appropriate because it shall provide a platform for
other secure services implemented in compartments managed by the TOE. Since
such services may be certified at assurance levels above EAL4, the underlying
platform must not provide weaker assurance.

EAL5 was deemed to be sufficient as a minimum level because levels above
EAL5 are usually achievable only with extremely high efforts and costs. This
allows security kernels to be evaluated and certified according to HASK-PP
for commercial application scenarios that do not require the highest levels of
assurance. Of course, the security target for any specific product may specify a
higher evaluation level. However, the PP itself was only certified at EAL5.

4 Trusted Computing Functionality in HASK-PP

4.1 Modeling Trusted Boot

To be able to provide the “trust status” of the product configuration as required
by the HASK-PP, a trustworthy bootstrap architecture is required to convince
remote parties about this status. One basic concept towards the development
of a trustworthy bootstrap architecture is the so-called chain of trust which has
been introduced by Arbaugh et al. [31]. The core idea is that every component
involved in the boot process measures the integrity of the succeeding one before it
transfers control to it. If the bootstrap process is started by a trusted component
(a trusted root host), it is guaranteed that modifications of components involved
in the boot process can be detected by the preceding component. Since the
relevant product configuration might not be limited to the security kernel itself,
we include requirements for loading and starting compartments in the description
of the trusted boot process.

In this context, it is possible to distinguish two types of trusted boot mecha-
nisms that mainly differ in the way how the measurement results are used:
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Definition 1 (Secure Boot). Secure Boot is a security property of a bootstrap
architecture ensuring that only configurations of a certain property can be loaded.
If a modification is detected, the bootstrap process is interrupted.

The term ’property’ used in this definition only identifies a set of configurations,
e.g., a list or a signature key certifying allowed configurations. An example im-
plementation of secure boot, as proposed by Arbaugh et al., is to verify the
integrity of a succeeding component according to a given reference value. If the
verification fails, the boot process is halted or an error function is executed [32].

Definition 2 (Authenticated Boot). Authenticated Boot is a security prop-
erty of a bootstrap architecture ensuring that remote parties can verify properties
of the booted configuration.

We use the term trusted boot to refer to both secure and authenticated boot. In
contrast to secure boot, authenticated boot is not actively influencing the boot
process. An example implementation of authenticated boot, e.g., as proposed
by the TCG, is to securely store measurement results (i.e., hash values) of the
components involved in the boot chain within the Trusted Platform Module
(TPM) and attest the values over an authentic channel.5

Although both concepts are very similar, they fulfill slightly different security
requirements: Secure boot ensures that only valid configurations are loaded.
Local users can therefore assume that the platform is in a trustworthy state
if the bootstrap process finished successfully. Remote parties, however, can in
general not make any assumptions about the loaded platform configuration.
In contrast, authenticated boot allows remote parties to verify the platform’s
configuration. But because any configuration can be loaded, local users can in
general not make any assumptions about the current platform configuration. To
securely verify the current platform configuration, further mechanisms such as
secure hardware tokens or software mechanism are required.

In general, such a trustworthy bootstrap architecture can be realized using
different combinations of technologies and assumptions. Typical examples are
smartcards, the TPM, a tamper-evident device, or the assumption that adver-
saries do not have physical access to the platform.

Since such a bootstrap architecture cannot be realized without assumptions
regarding the IT-environment (i.e., hardware or environmental assumptions), the
HASK-PP models it using the assumptions A.BIND and A.INTEGRITY SUPPORT.
To allow a compliant product to implement authenticated boot, the assumption
A.INTEGRITY SUPPORT only requires that a manipulated security kernel is not
able to generate false evidence of its own integrity. The assumption A.BIND
requires that there must be a possibility for the TSF to store data and code in
such a way that it can be loaded only if the integrity of the TSF is intact. This
allows to implement secure boot.
5 Note that neither authenticated boot, nor secure boot can protect the confidential-

ity of information under the assumptions that hold for common PC architectures,
i.e., the adversary has access to the harddisk. The reason is that both bootstrap
architectures do not provide protected storage.
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In the protection profile, several security requirements are related to trusted
boot. Existing security functional requirements (SFRs) from the CC have been
used to require validation of the security kernel and compartments during start-
up. This includes that only secure values for memory and CPU time assigned to
a compartment are accepted, that the TSF runs a suite of self tests when load-
ing a compartment that requires integrity evidence, and that any modifications
between shut down and start-up of the system (e.g., due to manipulations of the
hard disk when the system is shut off) can be detected.

Most notably, one extended SFR, FDP DAU.3 EXP “controlled data authenti-
cation”, has been defined specifically for the HASK-PP. This requirement states
that the TSF must provide the capability to generate evidence that can be used
as a guarantee of the integrity of objects. Moreover, it allows the security target
of a concrete product to specify conditions under which such evidence is gen-
erated, and subjects must be provided with the ability to verify such evidence.
This extended SFR allows the security kernel to extend the “chain of trust”
(which must be rooted either in hardware or in the operational environment, as
expressed by the assumptions mentioned above) up to individual compartments
started by the security kernel. Furthermore, it is also relevant for other trusted
computing features, such as trusted storage and trusted channels discussed in
the following sections.

HASK-PP requires only that the IT-environment offers a mechanism to check
the integrity of the security kernel either before (e.g., by a tamper-resistant
cover) or during (e.g., with a TPM) loading it. Which alternative is used is left
for the specific implementation to decide.

4.2 Modeling Trusted Storage

A security kernel claiming compliance to the HASK-PP must provide trusted
storage, according to the following definition:

Definition 3. Trusted storage is storage where confidentiality, integrity, and
freshness (i.e., protection against replay attacks) of stored data is provided, and
where the integrity of the TOE accessing the data is ensured (in order to prevent
other software, such as alternative or modified operating systems, from accessing
the data).

To support trusted storage, a security kernel needs special support from the
operational environment, which is reflected in the PP as assumption A.BIND.
This assumption requires that the security kernel can store information in such
a way that it cannot be accessed by a manipulated TOE (or by software with a
different configuration). In concrete systems, A.BIND is usually fulfilled by special
hardware features.

Moreover, the security kernel has to ensure that confidentiality and integrity
of the data are protected both when the system is running, and when it is of-
fline. Furthermore, it must be infeasible for an attacker to modify the system,
or to obtain confidential information from the system in order to get access to
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the protected data. Additionally, the security kernel must provide a capabil-
ity to authenticate storage containers, and to verify the integrity of the entity
(e.g., compartment) accessing the data. These requirements are expressed by
SFRs from the Common Criteria classes FDP (user data protection) and FPT
(protection of the TSF), together with the requirement FDP DAU.3 EXP (cf. Sec-
tion 4.1).

Several possibilities exist to implement trusted storage in real systems. One
such possibility is based on a TPM, however, other concepts for trusted comput-
ing, e.g., based on proprietary security modules that are not compliant to the
TCG specifications, might use different approaches to realize trusted storage.

Trusted storage with the TCG specifications. In the terminology of the
TCG, sealing denotes the encryption of data with a key that can only be used
by a specific TPM under strictly defined conditions: During sealing, the user can
specify values for the evidence of integrity that has to be present inside protected
registers of the TPM for decrypting (unsealing) the data. During unsealing,
the TPM checks the content of these registers and refuses to decrypt if the
current evidence deviates from the required values. Sealing provides integrity
and confidentiality of the data, as well as integrity of the TOE. To support
freshness, monotonic counters, another feature of the TPM, can be used.

4.3 Modeling Trusted Channels

The possibility to establish trusted channels has to be provided by any security
kernel claiming compliance to HASK-PP.

Definition 4. A trusted channel is a channel between two entities that provides
integrity, confidentiality, and authenticity of the transmitted data, and ensures
integrity and authenticity of the end points.

Hence, a trusted channel allows the communication partners to receive integrity
(attestation) information from their peers. A trusted channel may either provide
mutual attestation (i.e., integrity measurements of both end points are trans-
mitted), or only the integrity of one end point is verified. Several solutions for
trusted channels based on the TCG specifications have been proposed in the
literature [33–37].

To keep the protection profile general and implementation-independent, we
need to formulate abstract requirements for the trusted channel, without exclud-
ing any specific realization.

The hardware and environmental assumptions which are required for a trusted
channel are the availability of a mechanism for the TOE to produce evidence of
its own integrity (A.INTEGRITY SUPPORT) and the availability of a mechanism
(that must be trusted by the TOE) providing a similar feature for the remote
entity (A.REMOTE TRUST).

The mandatory functionality of the security kernel to support trusted channels
are required by SFRs from the CC for integrity and confidentiality of user data
and TSF data during transfer, security functional requirements from the CC for
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inter-TSF communication, and the component for controlled data authentication
that has been introduced specifically for HASK-PP (FDP DAU.3 EXP).

The distinctive feature of end point integrity provided by trusted channels
is expressed by requiring assured identification of the end points in the CC
component FTP ITC.1 (“Inter-TSF trusted channel”). Here, the term assured
identification includes integrity verification.

5 Conclusion

In this paper, we describe the first Common Criteria protection profile for a
secure operating system with support for enhanced security features, as they
are provided by trusted computing technology. The protection profile is general
and abstract, thus covering a wide class of IT products without fixing specific
mechanisms and leaving a maximum of flexibility and freedom for concrete im-
plementations.

We show how trusted computing features like trusted boot, trusted storage,
and trusted channels can be expressed in a generic way by a protection profile,
and we point out the relation to existing concepts like the TCG specifications.
Moreover, we present and explain the motivation behind the protection profile
and important design decisions.

Since the protection profile has been certified, it can be used as a guideline for
the design of real systems by security architects. Proof-of-concept implementa-
tions and other results from projects like EMSCB, OpenTC, and SINA provide a
starting point for developing a security kernel that can be evaluated and certified
according to the HASK-PP.
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A Security Functional Requirements

The security functional requirements of the HASK-PP originate all from Com-
mon Criteria V3.1 Release 2, part 2, with the exception of FDP DAU.3 EXP,
which is an extended requirement defined in the protection profile. Table 1 sum-
marizes the security functional requirements of HASK-PP.
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Table 1. Security functional requirements in HASK-PP

SFR Title
FAU GEN.1 Audit data generation
FAU SEL.1 Security audit event selection
FDP ACC.2 Complete access control
FDP ACF.1 Security attribute based access control
FDP DAU.1 Basic data authentication
FDP DAU.3 EXP Controlled data authentication
FDP ETC.2 Export of user data with security attributes
FDP IFC.2 Complete information flow control
FDP IFF.1 Simple security attributes
FDP ITC.2 Import of user data with security attributes
FDP RIP.2 Full residual information protection
FDP SDI.1 Stored data integrity monitoring
FDP UCT.1 Basic data exchange confidentiality
FDP UIT.1 Data exchange integrity
FIA ATD.1 User attribute definition
FIA UAU.1 Timing of authentication
FIA UID.1 Timing of identification
FIA UID.2 User identification before any action
FMT MOF.1 Management of security functions behavior
FMT MSA.1 Management of security attributes
FMT MSA.2 Secure security attributes
FMT MSA.3 Static attribute initialization
FMT MTD.1(1) Management of TSF data
FMT MTD.1(2) Management of TSF data for communication objects
FMT MTD.2 Management of limits on TSF data
FMT MTD.3 Secure TSF data
FMT REV.1 Revocation
FMT SMF.1 Specification of management functions
FMT SMR.1 Security roles
FPT ITI.1 Inter-TSF detection of modification
FPT ITT.1 Basic internal TSF data transfer
FPT ITT.3 TSF data integrity monitoring
FPT STM.1 Reliable time stamps
FPT TDC.1 Inter-TSF basic TSF data consistency
FPT TST.1 TSF testing
FRU RSA.1 Maximum quotas
FTP ITC.1 Inter-TSF trusted channel
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Abstract. UCON is a highly flexible and expressive usage control model
which allows an object owner to specify detailed usage control policies to
be evaluated on a remote platform. Assurance of correct enforcement is
mandatory for the establishment of trust on the remote platform claim-
ing to implement UCON. Without such an assurance, there is no way
of knowing whether the policies attached to the objects will be enforced
as expected. Remote attestation, an important component of Trusted
Computing, is highly suitable for establishing such an assurance. Exist-
ing approaches towards remote attestation work at a very coarse-grained
level and mostly only measure binary hashes of the applications on the
remote platform. Solutions at this level of abstraction cannot provide
assurance to a challenger regarding behavior of a remote platform con-
cerning enforcement of the owner’s policies. In this paper, we provide a
new remote attestation technique which allows a challenger to verify two
important behaviors of a UCON system enforcing its policies. These two
behaviors are the attribute update behavior and information flow behav-
ior. Measuring, storing and reporting these behaviors in a trusted manner
is described in detail and a mechanism for the verification of these be-
haviors against the original UCON policies is provided. The end result
is a flexible and scalable technique for establishing trust on attribute
updates and information flow behaviors of a remote UCON system.

Keywords: Information flow, remote attestation, usage control,
security.

1 Introduction

Usage control deals with issues concerning usage of protected objects based on
the policies of the object owner. While traditional access control models deal
with authorization issues such as who may access an object, usage control models
address issues concerning use of objects such as duration of each use, the number
of usages and ability to re-distribute etc.

UCON [1] is a highly expressive usage control model which adds continuity
of access decisions and mutability of attributes at the model level. Its major

L. Chen, C.J. Mitchell, and A. Martin (Eds.): Trust 2009, LNCS 5471, pp. 63–80, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



64 M. Nauman et al.

strength lies in the ability to specify elaborate usage control policies to be eval-
uated on a remote platform. This strength of UCON to operate on a remote
platform is also a source of concern. Since the owner of the object releases it to a
remote platform, she has no way of ensuring that the policies attached to it will
be enforced as specified. Trusted computing [2] proposes an innovative approach
for establishing trust on a remote platform in such a scenario. This approach,
called Remote Attestation, allows a challenger to verify that the behavior of
a target platform is trustworthy. Existing approaches towards remote attesta-
tion include low-level techniques of presenting binary hashes of executables to
the challenger [3,4], middle-level approaches of mapping system configurations
to generic properties by a trusted third party [5] and a high level mechanism
of measuring individual components of a policy model for the establishment of
trust [6]. The low- and middle-level techniques allow a challenger to statically
determine the identity of the applications running on the client and properties
of the system in general. They do not enable measurement of dynamic behavior
of a target application on the client. Moreover, it has been widely accepted that
binary hashes of executables alone are insufficient for reasoning about trustwor-
thiness of a platform [4,7]. Low-level binary hash based techniques are, therefore,
not suitable for remote attestation of a UCON system.

Consider for example, a UCON policy, which specifies that, “a media file can
only be played once by an individual in the public relations office for two minutes
only and that each usage has to be logged”. Clearly, it is impossible to deduce,
from the hash of an executable alone, that this policy will be enforced correctly
by the application.

For deducing such intricate details of an application’s behavior, Alam et al.
have proposed Model-based Behavioral Attestation [6] i.e. attestation of a pol-
icy model being followed by the target application for a specific purpose. This
technique proposes the decomposition of the behavior of a policy model into its
individual components and measuring these individual behaviors. If the behavior
of each of the components can be attested by the challenger, the whole system
can be deemed as trustworthy. Model-based Behavioral Attestation has speci-
fied three behaviors of a UCON policy model – active subject/object behavior,
attribute update behavior and state transition behavior. We note that the pro-
cedure for the measurement of these behaviors is not a part of the Model-based
Behavioral Attestation framework.

In this paper, we specify a technique for measurement, storage and report-
ing of the attribute update behavior and its verification against the challenger’s
policies. Attribute updates are an integral part of the UCON model and heavily
influence usage decisions [8]. Successful remote attestation of attribute update
behavior would provide confidence to the challenger regarding the trustworthi-
ness of a target platform.

We also identify another UCON model behavior – information flow behavior
– which captures the possible information flows between objects in a UCON
system. Attesting the trustworthiness of information flow behavior would provide
assurance that no illegal information flows occurred on the client end during
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the usage of the owner’s resources. Such assurance is critical in systems of a
distributed nature [9]. Similar to the attribute update behavior, we provide a
detailed mechanism for the measurement, storage, reporting and verification of
the information flow behavior.

Contributions: Our contributions in this paper are as follows: 1) We describe
a mechanism for recording arbitrary data structures in the TPM as opposed
to binary hashes of executables only. 2) We detail a procedure for measuring
the behaviors of attribute updates and information flows in a UCON system.
3) We provide a means of verifying the behavior tokens returned by the target
application on the challenger side against the original UCON policies.

Outline: The rest of the paper is organized as follows: In Section 2, we pro-
vide background about the UCON model and describe the formal model used
for our attestation purposes. Behavioral Attestation is introduced in Section 3.
Our UCON system attestation is described at length in Section 4 with attribute
updates and information flows covered in Sections 4.1 and 4.2 respectively. Pre-
vious work related to this paper is mentioned in Section 5. Finally, we conclude
our work and present future directions in Section 6.

2 UCON

UCON [1] is a Usage CONtrol model, which builds heavily on traditional access
control models. It incorporates dynamic usage of protected objects and changes
in decisions to allow further access to these objects as a result of usage. This ex-
tension is achieved through the introduction of two novel features: access decision
continuity and attribute mutability.

In a UCON system, the user initiates a request for an object protected by the
UCON system. The access decision depends on the policies and constraints for
the particular subject, object and right combination, identified by (s, o, r). The
request can either be granted or denied. Even if the request is initially granted,
the usage session does not end. The coupling of attribute mutability and access
decision continuity means that due to the usage of the protected object, the
attributes of the subject and/or object may change. As a result of this change,
the decision to allow access might also be reversed. The usage session remains at
state accessing as long as the constraints allow the continued use of the object.
If the user ends the usage, the usage session moves to state end. If, however, the
constraints lead to a denial of access after some time, the state moves to revoked
and the user is no longer allowed access to the object. Figure 1 shows the states
in the UCON usage session [1].

Zhang et al. [10] have formally specified the UCON model at a very abstract
level. However, this formalization is not suitable for the purpose of information
flow analysis and attestation of attribute updates. Instead, we use another for-
malization of UCON by Zhang et al. [11] which has been formulated for safety
analysis of the UCON model. Safety analysis of UCON is essential for our be-
havior verification step. For the verification of behaviors collected on the target
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platform, we create a benchmark on the challenger side, which requires the safety
problem of UCON to be decidable. However, Zhang et al. [11] have shown that
the safety problem in general UCON is undecidable. They have defined the safety
problem of a subset of UCON which includes only authorization predicates. This
subset is termed as UCONA. A formal model of UCONA is defined in which a
UCON system is composed of subjects, objects, rights, permissions primitive ac-
tions and policies. Sets of subjects, objects and rights are denoted by S, O and
R respectively and S ⊆ O. A permission is a triple of (s, o, r) where s ∈ S, o ∈ O
and r ∈ R. An attribute a of an object o is denoted by o.a. The set of attributes
is shared by all objects and is denoted by ATT . Attributes are mapped to their
values using an assignment: o.a = v, where v ∈ dom(a) ∪ {null}.

A UCON system state is a pair (O, σ) where O is the set of objects and
σ : O ×ATT → dom(ATT )∪ {null} is a function which maps each attribute of
each object to a value or null. The initial UCON state is denoted by (O0, σ0).

A primitive action changes the system state. The three primitive actions in
UCONA are createObject, destroyObject and updateAttribute. On the applica-
tion of any of these actions, the state of a system is said to change from t to t′

where t is the state before the application of the action and t′ is the state after
the action has been performed. In any given state t, the permission function ρt

maps a pair (subject, object) to a set of rights according to their attribute values
in state t.

A UCON policy consists of a name, two parameter objects (usually a subject
and an object), an authorization rule and a sequence of primitive actions.

policy name(s, o) :
p1 ∧ p2 ∧ . . . ∧ pn → permit(s, o, r)
act1; act2; . . . ; actk

If one of the primitive actions in a policy is a createObject action, the policy is
called a creating policy. The set of policies in a system is denoted by C. Changes
to a system state occur as a result of application of a policy. For two UCON
system states, (Ot, σt) and (Ot′ , σt′), t �c t′ denotes that there exists a pair of
objects (o1, o2) where o1 ∈ Ot such that policy c(o1, o2) can be applied to t and
changes the state to t′. Moreover, t �C t′ if ∃c ∈ C.t �c t′ and t �C t′ if there
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exists a sequence of states t1, t2, . . . , tn such that t �C t1 �C t2 . . . �C tn �C

t′. t �C t′ or simply t � t′ is called the transition history from t to t′.
Zhang et al. have proven that the safety problem in this general model of

UCONA is undecidable [11]. In order to render the safety problem decidable,
Zhang et al. propose some restrictions on the system. Different structures have
been defined in the form of ground policies, attribute update graph and attribute
creation graph to formalize these restrictions.

A set of ground policies generated from a UCON policy ‘c’ denotes all the
evaluations of the policy c with possible attribute tuples of the object parameters
which satisfy the predicates in the authorization rule of c. Assume ATT = {a}
and dom(a) = {1, 2, 3} and the following UCON policy:

c(s, o) :
s.a > o.a → permit(s, o, r)
updateAttribute o : o.a = o.a + 1

Grounding this policy generates the following three ground policies:

c(s : (a = 3), o : (a = 2) :
true → permit(s, o, r)
updateAttributeTuple o : (a = 2) → (a = 3)

c(s : (a = 3), o : (a = 1) :
true → permit(s, o, r)
updateAttributeTuple o : (a = 1) → (a = 2)

c(s : (a = 2), o : (a = 1) :
true → permit(s, o, r)
updateAttributeTuple o : (a = 1) → (a = 2)

Note that for attribute tuples for which the predicate is not true (e.g. s : (a =
1), o : (a = 1)), no ground policy is generated.

A create ground policy is a ground policy, which contains a createObject
action in its body. In such a policy, the attribute tuple of the first parameter
object is termed as create-parent attribute tuple and that of the second is termed
as create-child attribute tuple. An Attribute Creation Graph (ACG) is a directed
graph with nodes all possible attribute tuples and an edge from create-parent
attribute tuple to a create-child attribute tuple if there exists a corresponding
ground policy for these tuples.

Similarly, in a ground policy which updates an attribute tuple, the old at-
tribute tuple is called the update-parent attribute tuple and the updated tuple is
called the update-child attribute tuple. An Attribute Update Graph (AUG) is a
directed graph with nodes all possible attribute tuples and edges from update-
parent attribute tuple to update-child attribute tuple if there exists a corre-
sponding ground policy for these tuples.
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Using these structures, Zhang et al. [11] have shown that a UCONA system
with finite attribute domains is decidable if the ACG is acyclic, the AUG has
no cycles containing a create-parent attribute tuple and in each creating ground
policy, the attribute tuples of both the parent and child are updated. Useful-
ness of UCONA systems with these restrictions has been shown. For a detailed
discussion and proofs of these statements, we refer the reader to [11].

In the next sections, we describe how a UCONA system with these restrictions
can be remotely attested using dynamic behaviors of the system recorded during
enforcement of policies.

3 Behavioral Attestation

Traditional attestation techniques [3,4,5] rely solely on the binary hashes of ap-
plications running on the client. A chain of trust is established from the core
root of trust (i.e. the Trusted Platform Module) to the application. However, all
of these techniques measure the target application statically without considering
its inner working [6]. A recent technique, Model-based Behavioral Attestation
(MBA) [6], proposes a high-level framework for measuring the internal work-
ing of the target application based on the dynamic behaviors of the different
components of the application. We note that the MBA framework relies on the
existence of a small monitor module in the target application as part of the
Trusted Computing Base (TCB)1.

The monitor, being a part of the TCB, can measure the dynamic behavior of
the rest of the application in a trusted manner. During an attestation request, the
monitor sends these measurements to the challenger where they can be verified.
If the behavior depicted by these measurements is compliant with the object
owner’s policy, the challenger can be assured that the security policy is indeed
being enforced as expected. For the dynamic behaviors reported by the monitor
to be trusted, there are two requirements.

1. The monitor module has to be verified for correctness using formal methods.
While formal verification of large systems is a complex procedure and quickly
becomes infeasible [13], verification of small components is easier and can
yield many benefits. The monitor is a relatively small component and its
formal verification adds significantly to the confidence in the correctness of
the functionality and subsequently to its reported measurements.

2. Its hash has to attested using traditional attestation techniques such as
IMA [3] or PRIMA [4]. In other words, this dynamic attestation technique
is not exclusive of traditional attestation mechanisms but supports them
by providing an added level of confidence through attestation of internal
working of the application and its dynamic behavior.

The rest of the paper describes details of implementation of this monitor in
a target application enforcing UCON policies. We discuss the measurements to
1 TCB is the collection of software and hardware components which are responsible

for enforcing security policies on a platform [12].
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be made for the dynamic behavior of attribute updates and information flows in
the application and the mechanism for reporting these changes to the challenger
in a trusted manner. We also describe how the reported behavior can be verified
against the challenger’s policy to ensure that the information flows and attribute
updates in the target UCON application are occurring as expected.

4 UCON System Attestation

UCON is primarily concerned with usage of an object after it is released to a
remote platform. The owner of the object may not have control over the usage
of the object. It is therefore imperative that she be able to establish trust on
the remote platform. Without the assurance of trustworthiness of the UCON
system on the remote platform, there is no way of ensuring that the UCON
policy attached to the object will indeed be enforced as expected [6].

We focus on two aspects of a UCON system implementation in this contribution:

1. Attributes play an important role in a UCON system. Attribute mutability is
a core feature of UCON which lends the model its flexibility and expressive
power. The challenger needs to be able to verify remotely that attribute
updates occurring on the client are compliant with the policies.

2. To ensure that no information leakage can occur, the challenger needs a
mechanism for remotely attesting possible information flows on the target.
Information flows not allowed by the policies of the challenger may lead to a
leakage of information to unauthorized parties. By having the client report all
possible information flow to the challenger in a trustworthy manner, possible
information leakage can be successfully detected.2

To formulate a framework for these two requirements, we define two behav-
iors. The first requirement is captured by the attribute update behavior (AU)
and the second is captured by the information flow behavior (IF). Each of
these behaviors is monitored by the Behavior Manager (BM) which is a part of
the UCON engine on the client end (cf. Section 3). The BM captures dynamic
behavior of attribute updates and possible information flows and is capable of
communicating these behaviors to the challenger in a trustworthy manner.

Figure 2 depicts the architecture of remote attestation of a UCON system.
When a target application on the client requests an object, the server, upon
successful authorization of the client, attaches a UCON policy to the object and
releases the protected object to the client. The object is registered with the UCON
decision engine on the client. During the usage of the object, usage authoriza-
tion decisions and any updates which need to be performed are communicated
to the Behavior Manager. The Attribute Update Manager records proofs for
the attribute update behavior AU and the Information Flow Manager records
proofs for the information flow behavior IF . During an attestation challenge,
2 In this contribution, we focus on explicit information flows. Implicit information

flows, such as those through covert channels, are not addressed.
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Fig. 2. Remote Attestation of a UCON System

the Behavior Manager collects these behavior proofs and reports them to the
challenger.

Upon receipt of these two behaviors, the challenger performs two behavior
verification procedures. The attribute update verification module utilizes the
original UCON policies to generate ground policies (cf. Section 2) which are used
to verify the trustworthiness of the attribute update behavior (cf. Section 4.1).
The same set of UCON policies are utilized by the information flow attestation
mechanism to verify the information flow behavior using an information flow
check algorithm (cf. Section 4.2).

The details of storing and reporting the two behaviors in a trusted manner on
the target platform and the verification mechanisms utilized on the challenger
side are described below.

4.1 Attribute Update Behavior

For capturing the attribute update behavior, the BM implements one or more At-
tribute Update Procedures (AUPs) which are responsible for updating attributes
on the client end. The procedures take two inputs, either of which can be an
attribute of an object or a constant.

Individual calls to an attribute update procedure and subsequent attribute
updates are recorded through a graph structure called the attribute flow graph.
This structure stores the relationship between updated attributes and the at-
tributes used as inputs for this updation. Formally:
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s1.a o1.a

(s1.a = 3) (o1.a = 1)

(s1.a = 2) (o1.a = 1)

(s1.a = 3) (o1.a = 2)

o2.b

(s1.a = 1) (o2.b = 0)

s2.a
(s2.a = 2) (o1.a = 2)

(s2.a = 2) (o2.b = 0)

CONST

(s2.a = 5)

Fig. 3. Attribute Flow Graph Example

Definition 1 (Attribute Flow Graph). The Attribute Flow Graph (AFG)
is a directed multi-graph (G,V) where G is a set of nodes representing object
attributes or a constant and V is a set of edges representing attribute updates.
An edge directed from oi.a to oj .b denotes an update of oi.a and is labeled with
(oi.a = dom(ATT )), (oj .b = dom(ATT )). The label captures the values of oi.a
and oj .b before the update takes place. The special node called CONST is used
to denote all constants.

Figure 3 shows a graphical representation of the AFG. Note that there may be
more than one attribute updates involving the same set of object attributes but
with different values. An attribute update involving a constant is represented by
an edge from the target attribute to the CONST node.

To capture the AFG in a trustworthy manner, we employ the constructs of
Trusted Computing. The initial value of the the AFG (i.e. null) and any subse-
quent changes to it are stored in an Attribute Update Log (AUL). At startup, the
BM initializes the AUL with an initialization token INIT . It monitors all calls
to the AUPs and whenever a call is received, it creates an entry in the AUL. Any
change to the AUL is stored in a Platform Configuration Register (PCR) of the
TPM by taking a hash of the entry and extending the PCR through pcr extend
(cf. Figure 4). The hash of the update procedure (AUPx) responsible for per-
forming the specific update is also recorded in the PCR through pcr extend. The
new value of the PCR after an update is calculated as:

PCRAULε = SHA-1( SHA-1(PCRAULε−1 || SHA-1(AULε)) ||SHA-1(AUPx))

During an attestation challenge, the BM receives a nonce from the chal-
lenger and submits the nonce to the TPM through a Trusted Software Stack
(TSS) [14,15,16]. It requests the TPM to perform a quote over the given PCR
and nonce. The quoted value of the PCR is sent to the challenger along with the
AUL for verification.3

3 The interested reader may refer to [17] for a detailed description of the quote oper-
ation over a PCR.
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INIT
s1.a:o1.a:s1.a=2:o1.a=1::AUP1
s1.a:o2.b:s1.a=1:o2.b=0::AUP2
s1.a:o1.a:s1.a=3:o1.a=1::AUP1
s2.a:CONST:s2.a=5::AUPY
s1.a:o1.a:s1.a=2:o1.a=2::AUPX
s2.a:o1.a:s2.a=2:o1.a=2::AUP2
s2.a:o2.b:s2.a=2:o2.b=0::AUP1

// initialize the AUL
// update by AUP1 involving s1.a and o1.a
// update by AUP2 involving s1.a and o2.b 
// ...
// update by AUPY involving s2.a and a constant 
// ...
// ...
// ...

Fig. 4. Sample Attribute Update Log

Capturing the dynamic behavior of updates is a relatively simple task. Once
the attribute update log is received by the challenger, it has to be verified against
the policy to ensure that all attribute updates occurring on the client comply
with the policies of the challenger. The challenger utilizes the grounding proce-
dure, defined in Section 2, for this compliance checking.

In order for the attribute updates occurring on the client to be considered
as trustworthy, the challenger needs to be able to verify that, for each update,
there exists a ground policy (generated as a result of grounding of the policies
sent to the client), which requires the update performed at the client end. It
also requires the hash of the update procedure responsible for performing the
update to be trusted. The first step for the verification of attribute update
behavior is the verification of the signature performed by the client’s TPM on
the PCR value. This ensures that the PCR values can be trusted to be signed by
a genuine TPM and not by a software masquerading as a TPM. The second step
is to verify the Attribute Update Log (AUL) against the PCR value returned.
This is a similar operation to the verification procedure used by the Integrity
Measurement Architecture [3]. Hashes of entries in the AUL and those of the
update procedures are concatenated in sequence to give the final value of the
PCR. For each entry AULε in the AUL, the PCR value at AULε is given by:

PCRAULε = SHA-1( SHA-1(PCRAULε−1 || SHA-1(AULε)) ||SHA-1(AUPx))

where AUPx is the procedure performing the update recorded in AULε. If the
final value of the computation matches the value of the PCR returned by the
target’s TPM, the challenger can be assured that the AUL has not been tampered
with and can be used for verification of the target’s behavior.

The next step in the attribute update behavior verification is to verify each
attribute update operation against the ground policies to ensure that no illegal
attribute updates have occurred on the target platform and that the hash of the
update procedure responsible for performing the updates is a known good one.
For each attribute update, represented by edges in the AFG, there must exist a
ground policy which updates the target (object, attribute) pair using the source
(object, attribute) pair in the AFG. Attribute updates involving constants must
be verified against the CONST node against the values required by the ground
policies. Formally:

∀v ∈ V.∃cn ∈ Cn.∃uo ∈ cn.target(uo) = target(v)
∧∃s ∈ sources(uo).s = source(v)
∧∀o.a ∈ v.value(o.a) = avalue(o.a, uo)



Remote Attestation of Attribute Updates and Information Flows 73

where uo is an update operation in a ground policy cn, target(uo) is the output
of the update operation, sources(uo) are the inputs to the update operation uo,
value(o.a) returns the value of the attribute a of object o during the update pro-
cedure and avalue(o.a, uo) returns the attribute value of o.a from the attribute
tuple of uo.

If the above condition is satisfied by the complete AFG, the challenger can
be assured that all attribute update operations performed on the client have
been in compliance with the UCON policies. We define the trustworthiness of
the attribute update behavior AU as:

AU .behavior = trusted iff
∀v ∈ V.∃cn ∈ Cn.∃uo ∈ cn.target(uo) = target(v)

∧∃s ∈ sources(uo).s = source(v)
∧∀o.a ∈ v.value(o.a) = avalue(o.a, uo)

∧∀a ∈AUPx. a.behavior = trusted

In essence, attribute update behavior is trusted if and only if 1) all attribute
updates taking place on the target machine are allowed by some ground poli-
cies generated from the original usage policies of the challenger and 2) all the
procedures responsible for performing attribute updates on the target are also
trusted.

4.2 Information Flow Behavior

For the measurement of the information flow behavior, the Behavior Manager
utilizes an Information Flow Manager. This component of the UCON implemen-
tation is responsible for maintaining a structure called the Access Rights Graph
(ARG). The ARG records information about which objects have been granted
access rights to other objects. Formally:

Definition 2 (Access Rights Graph). An Access Rights Graph (ARG) is a
directed graph (H, W ) where H is a set of nodes representing the objects and W
is a set of edges representing rights. An edge from h1 to h2 labeled r denotes the
rights r assigned to h1 on h2 at some point in the usage history where h1, h2 ∈ H,
r ∈ 2R and R is the set of rights.

Figure 5 shows a graphical depiction of the ARG. To store and later report this
structure in a trusted manner, the BM utilizes a technique similar to that used
for capturing the AFG. The initial (empty) value of the ARG is stored in a
Access Rights Log (ARL). The ARL is initialized as empty by setting it to the
value INIT . Any decisions by the UCON decision module are captured by the
ARL. If an access is granted to a subject s on an object o for right r, nodes s
and o are added to the ARG, if they are not already present. An entry is made
in the ARL for recording the addition of the nodes. An edge, directed from s
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o1

s3

{ read, write, copy }

s2

{ write }

o2

{ read }

{ read, print }

s1

{ copy, delete, append }

{ read, write }

o3{ delete }
{ print }

Fig. 5. Access Rights Graph Example

to o is added to the ARG and labeled {r} if such an edge doesn’t already exist.
If the edge already exists, right r is added to the set of rights on the edge. An
entry is made in the ARL corresponding to the addition of the right for s on o.
Figure 6 shows an example ARL created as a result of different usage decisions.

Whenever an entry is appended to the ARL, its hash is calculated by the
Information Flow Manager and stored in the PCR through pcr extend. Dur-
ing an attestation challenge, the ARL and this PCR value is returned to the
challenger where verification of these structures against the challenger’s UCON
policies takes place.

For the verification of the ARL on the challenger side, we utilize an infor-
mation flow check algorithm which utilizes the same semantics as the UCON
safety check algorithm presented by Zhang et al. [10]. The first step, as in the
verification of the ARL, is to verify the signature by the TPM to ensure that
the PCR values returned are from a genuine TPM and that the ARL is trusted.
Every entry ARLε in the ARL is concatenated in sequence to give the final value
of the PCR as:

PCRARLε = SHA-1(PCRARLε−1 || SHA-1(ARLε))

Verification of the entries in the ARL provides assurance to the challenger that
the ARL has not been tampered with. The individual entries in the ARL are

INIT
ADD|s1
ADD|o3
ASSIGN|s1:o3:delete
ADD|o1
ASSIGN|s1:o1:read
ADD|o2
ASSIGN|s1:o2:append
...

// initialize the ARL
// add a new subject s1
// add a new object o3 
// assign right delete to s1 on o3
// ...
// ...
// ...
// ...

Fig. 6. Sample Access Rights Log
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o1 o2o3
Discarded: No 

information Flow

Fig. 7. Information Flow Graph corresponding to ARG in Figure 5

used to re-generate the ARG on the challenger side. After this re-generation, the
challenger creates an Information Flow Graph (IFG). The IFG depicts possible
information flows implied by the Access Rights Graph. Formally:

Definition 3 (Information Flow Graph). An Information Flow Graph
(IFG) is a directed graph (I, U) where I is a set of nodes representing the objects
and U is a set of edges representing possible information flow in the direction of
the edge. An edge from i1 to i2 denotes that information may have flown from
i1 to i2 where i1, i2 ∈ I.

To construct the IFG from the ARG, we first define all rights as read-like, write-
like, read-write-like or no-impact [18]. No-impact operations are those which
cannot play a part in information flow (such as print) and are discarded imme-
diately. Afterwards, all objects in the ARG are represented in the IFG. For each
subject s in the ARG, an edge is created from o1 to o2 if a read-like (or read-
write-like) operation is granted to s on o1 and a write-like (or read-write-like)
operation is granted to s on o2. Afterwards, orphan nodes are removed from the
IFG. Figure 7 shows an IFG corresponding to the ARG of Figure 5.

For the verification of possible information flows as depicted by the IFG the
following procedure is adopted. For each edge on the IFG, Algorithm 1 is applied
to ensure that the information flow is compliant with the policies of the chal-
lenger. The algorithm takes an initial UCON state and a set of ground policies
as inputs. A finite automaton (FA) is created which maps changes to the UCON
state as a result of applying non-creating ground polices (line 2). For each state
in the resulting FA, a few operations are performed. First, all subjects which
have been assigned a read-like (or read-write-like) right on o1 are added to the
set reading (lines 4,6). If one of the subjects was previously granted a write-like
operation on o2, the algorithm immediately returns true (line 7) as the subject
would have been able to cause information to flow from o1 to o2.

A similar procedure is followed for write-like operations (line 9). All subjects
which have been assigned a write-like operation (or read-write-like operation)
on o2 are added to the set writing (lines 9,11) and if one of them was previously
assigned a read-like operation on o1, the algorithm returns true immediately
(line 12).4

Finally, creating ground policies are applied (line 15) to extend the UCON
system with new objects and InfoFlowCheck() algorithm is called recursively
(line 20) to check for possible information flows in this expanded space.

4 Note that the algorithm only checks for information flow from o1 to o2 and not in
the other direction.
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Algorithm 1. Information Flow Check Algorithm
Input: UCONA system with initial state t0 = (O0, σ0), a finite set of ground policies

and two objects, o1 and o2

Output: A boolean value which is true only if information can flow from o1 to o2

1) InfoFlowCheck(O0, t0)
2) Construct a finite state automaton FA with objects O0 and the set of non-creating

ground policies as in [11]
3) foreach t0 � t ∈ FA do
4) collect ς = {x|r ∈ ρt(x, o1) ∧ r = ‘read’ }
5) foreach s ∈ ς do
6) reading := reading ∪ {s}

// maintain a set of subjects which have been allowed to read from o1

7) if s ∈ writing return true;
8) end for
9) collect ς = {x|r ∈ ρt(x, o2) ∧ r = ‘write’ }
10) foreach s ∈ ς do
11) writing := writing ∪ {s}

// maintain a set of subjects which have been allowed to write to o2

12) if s ∈ reading return true;
13) end for
14) foreach subject s in t do
15) foreach creating ground policy c(s : τs, o : τo), where τs(a) = σs(o.a) do
16) enforce c(s : τs, o : τo);
17) create object o and update its attribute tuple to τ ′

o;
18) update s’s attribute tuple to τ ′

s;
19) the system state changes to t′ with new object o and update attributes of

s and o ;
20) InfoFlowCheck(O0 ∪ {o}, t′)
21) end for
22) end for
23) end for

The trustworthiness of the information flow behavior IF is defined as:

IF .behavior = trusted iff ∀u ∈ U. InfoF lowCheck(u) =true
where U is the set of edges in the IFG.

Concisely, information flow behavior is trusted if and only if all possible paths
of information flow on the client comply with the challenger’s usage policies.

5 Related Work

One of the earliest and most significant works analyzing information flow mod-
els is by Denning [19] in which mechanisms for information flow are formalized
using a lattice structure of labels and classes of objects. JFlow [20] is a security-
typed language providing “mostly-static” information flow control by assigning
labels to objects within the source code and ensuring that information flows
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comply with the security policy of the programmer. JFlow relies on a special-
ized compiler and information flow controlling virtual machine for enforcement
of information flow control. Haldar et al. [21] have devised a mechanism for im-
plementing mandatory access control (MAC) mechanisms in virtual machines
for controlling information flows. They propose the use of run-time policy en-
forcement as opposed to the mostly-static compile time checks [20] for enforcing
MAC policies. Nair et al. [22] have presented an information flow control system
which addresses the issue of implicit information flows. The resulting framework
is capable of dynamically assigning labels to objects and propagating these labels
based on information and control flow.

All of these models and mechanisms address either information flow control
or audit but do not deal with remote attestation of information flows, the un-
derlying environment or the target application. However, as can be seen, some
of them deal with implicit information flows as well as explicit ones and can,
therefore, help in future extensions of this work.

From the aspect of remote attestation, several works have been proposed.
These include the Integrity Measurement Architecture [3], which allows a remote
party to verify the trustworthiness of a target platform based on the load-time
integrity of binaries on the target platform. Policy Reduced Integrity Measure-
ment Architecture (PRIMA) [4] targets a specific application by analyzing the
information flow to and from the target application but still does not address
internal structures and semantics of the application. LKIM [7] is one of the
few approaches, which target the dynamic behavior of a system. It verifies the
integrity of a Linux kernel by measuring and reporting the target’s dynamic
state [23]. It has been shown to detect malicious code, which could not be de-
tected using hashes of static code.

Gu et al. [24] have described a new approach for measuring the behavior of an
application using static analysis of the source code and verification of program
execution against this benchmark.

The attestation technique described in our contribution is significantly dif-
ferent from both these approaches in two respects. Firstly, we utilize the TPM
hardware for trusted storage and reporting of measurements. Secondly, our ap-
proach utilizes the owner’s policies for the creation of a baseline. This allows for
the integrity verification of a specific application for a particular purpose, thus
greatly reducing the complexity of attestation.

Semantic Remote Attestation [25] is closest to the approach described in this
paper. It proposes the use of a Trusted Virtual Machine, which is established as
trusted and is then expected to enforce the policies at the VM level. However,
trust on the correct enforcement of the policies is implied and no mechanism
for measuring the correctness of the enforcement is provided. Our technique
builds on this approach and describes a detailed architecture for using run-
time measurements of the behavior in a trusted manner for dynamic behavioral
attestation of a target application. To the best of our knowledge, no work has
been done for the attestation of attribute updates and information flows in a
UCON system at this level of detail.
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6 Conclusion and Future Work

Remote attestation is an integral part of Trusted Computing. It allows a chal-
lenger to establish the trustworthiness of a remote platform depending on its
behavior. Recent advances in remote attestation have led us to believe that
measuring the hashes of executables on the remote platform is insufficient for
the establishment of trust. It is necessary to verify the dynamic behavior and
internal functioning of a target application. In this paper, we have proposed a
mechanism for attesting the dynamic behavior of UCON – a highly expressive
usage control model. Two important aspects of UCON, attribute updates and
information flow, have been described. We have presented details regarding mea-
surement, storage and verification of these behaviors in a trustworthy manner.
The model of UCON under consideration is UCONA with certain restrictions,
which has previously been shown to be useful in practical scenarios. Establish-
ment of trust on a remote party implementing this model will provide confidence
to the challenger that her policies will indeed be enforced on the remote end as
dictated.

This paper has introduced the novel concept and semantics of using a small
‘behavior manager’ component on the remote platform for collecting trust tokens
used during attestation. This concept has been applied to collect and verify
attribute update behavior and information flow behavior. The same technique
can, with slight modifications, be applied for collecting various other types of
trust tokens, such as information flows to and from other applications, system
calls and input/output to storage devices, for an even more detailed inspection
of the dynamic behavior of the target application. These and other behaviors
are being considered for attestation of UCON and even generalized applications
not following the UCON model. These form the basis of ongoing work in this
research.
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Abstract. We propose a framework for the attestation of the integrity
of a remote system that considers not only the configuration of the sys-
tem to be attested but also its current behaviour. The resulting architec-
ture, called Virtual machine Integrity Measurement System (VIMS), is
based upon virtualization technology and it runs two virtual machines on
a system to be attested, i.e. the Client (C-VM) and the Assurance VM
(A-VM). A generic remote server (REM-S) accepts incoming connections
and cooperates with the A-VM to authenticate and attest the integrity
of the C-VM and of the software it runs. The A-VM is a shadow machine
that exploits virtual machine introspection to apply a set of consistency
checks on the configuration of the C-VM and on the software it currently
runs. The checks depend upon the security policies that the REM-S es-
tablishes in the initial connection handshake. The REM-S defines both
the complexity of checks to be applied and the frequency of their ex-
ecution and it communicates the security policy to the A-VM through
a control channel. Policies that can be applied range from the one that
simply checks the integrity of the binaries loaded by the C-VM to those
that continuously monitor the dynamic behaviour of applications to dis-
cover attacks that alter their expected behaviour. The control channel
also transmits the results of the checks from the A-VM to the REM-S.
As an example, remote attestation can be adopted when a client soft-
ware on the C-VM tries to establish a secure channel to a REM-S on an
Intranet.

After describing the overall VIMS architecture, we present and discuss
the implementation and the performance of a first prototype.

1 Introduction

Intranet access has become a fundamental prerequisite for corporate users. On
the other hand, network administrators cannot guarantee the confidentiality and
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the integrity of Intranet data that may be accessed by remote clients because
little assurance about the integrity of these clients can be established. In fact,
an attacker may have compromised a client application to download or modify
corporate data through the remote access gained by the client. A solution to this
problem requires a general notion of integrity that, first of all, should consider
that a client system can be trusted only if it executes applications in a predefined
set. Moreover, these applications should be continuously monitored to discover
if they have been attacked. In other words, since both these applications and
the underlying software can be attacked, the notion of integrity should also take
into account run-time attacks against both applications and the OS rather than
merely verifying that the proper binaries have been loaded.

Virtual machine Integrity Measurement System (VIMS) is an architecture
that implements the proposed approach to integrity measurement and that can
be adopted to protect networks by auditing endpoint configurations. VIMS eval-
uates the integrity of a remote host and it imposes a security policy before the
platform can connect to an existing network to access some of the services it
offers. In more detail, VIMS can guarantee the integrity of a client system that
is trying to connect to the network, where the adopted notion of integrity in-
cludes not only the correct configuration of the system and of the software it
runs, but also that the client does not execute some malware that changes the
overall behaviour of its applications. To this purpose, VIMS exploits virtualiza-
tion technology to enable the client system to run two virtual machines (VMs)
on top of a virtual machine monitor (VMM). The Client VM (C-VM) runs the
client software, such as a VPN client application to connect to a remote server
(REM-S), while the Assurance VM (A-VM) is a shadow VM that applies a set
of security checks on the memory of the C-VM. These checks measure, on behalf
of the REM-S, the integrity of the software that the C-VM runs. The A-VM
can either apply consistency checks periodically or on demand when requested
by the REM-S. Furthermore, the complexity of the checks that it applies is a
function of the degree of the assurance that the REM-S requires. As soon as
the A-VM detects anomalous behaviour or some malware, for example a rootkit
in the memory of the C-VM, it contacts the REM-S that can tear down the
connection with the C-VM.

The rest of the paper is organised as follows. Section 2 introduces the main
concepts underlying VIMS, such as trusted computing, virtualization, semantic
attestation and discusses related works. Section 3 presents the overall architec-
ture of VIMS. The current prototype implementation is discussed in Sect. 4.
Section 5 presents a first set of performance results. Finally, Sect. 6 draws some
conclusions and outlines future developments.

2 Background

After discussing some related works, this section introduces the main concepts
underlying VIMS.
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2.1 Related Works

Trusted Virtual Domains (TVDs) [1] [2] is an architecture where computing ser-
vices can be offloaded into execution environments that demonstrably meet a
set of security requirements. A TVD is an abstract union including by an ini-
tiator and one or more responders. During the process of joining, all the parties
specify and confirm the set of mutual requirements and each party is assured
of the identity and integrity of the computer system of the remote party. The
enforcement of the attestation is delegated to virtual environments. Terra [3] is
a VM-based architecture for trusted computing that enables applications with
distinct security requirements to run simultaneously on commodity hardware.
The software stack in each VM can be tailored to meet the security requirements
of its applications. [4] discusses the design and implementation of Integrity Mea-
surement Architecture (IMA), which is a secure integrity measurement system
for Linux. This architecture enables a system to prove that the integrity of a pro-
gram on a remote system is sufficient. IMA uses the Trusted Platform Module
(TPM) to detect subversion of the measurements system by comparing a hash
value stored in the TPM against the one in the measurement system audit log.
UCLinux [5] is a Linux Security Module that enables TPM-based usage controls
enforcement. It provides the attestation support, sealing support and protection
from administrative abuse required by a trustworthy usage control system, and
it does so with existing hardware and limited changes to an existing OS. [6]
introduces a formal integrity model to manage the integrity of arbitrary aspects
of a virtualized system. The authors describe the PEV architecture, which is
based upon a model that generalises the integrity management functions of the
TPM to cover not only software binaries, but also VMs, virtual devices, and
a wide range of security policies. PEV enables the verification of security com-
pliance and the enforcement of security policies. [7] discusses an access control
architecture that enables corporations to verify the integrity of a remote client
and establish trust into its ability to enforce a security policy before allowing
the client to access corporate Intranet services. It also shows how to enforce
the policy on both remote clients and VPN servers. To this end, it discusses
the adoption of an integrity heart-beat that enables the VPN server to react
to changes in the security properties of the remote client by updating the secu-
rity policy. Pioneer [8] is a software-based platform addressing the problem of
verifiable code execution on legacy computing hosts without relying on secure
co-processors or CPU virtualization extensions. Pioneer is based on a challenge-
response protocol between an external trusted entity (the dispatcher) and an
untrusted computing platform. Property based attestation [9] [10] is a strategy
that describes an aspect of the behaviour of the platform to be attested with
respect to security-related requirements. As an example, a property may state
that a platform has built-in measures to conform to the privacy laws, or that it
strictly separates processes from each other, or that it has built-in functional-
ities to provide Multi-Level Security. A protocol and architecture for property
attestation is proposed in [11]. With property attestation, a verifier is securely as-
sured of security properties of the execution environment of the verified platform
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without receiving detailed configuration data. This enhances privacy and scal-
ability because the verifier needs to be aware of only a few security properties
rather than of a huge number of acceptable configurations. Semantic integrity
[12] is a measurement approach targeting the dynamic state of the software dur-
ing execution and, therefore, providing fresh measurement results. Similar to
the adoption of language-based virtual machines for remote attestation of dy-
namic program properties [13], this approach can provide increased flexibility for
the challenger, because the integrity monitor can examine the current state of a
system to detect semantic integrity violations. This technique alone will not pro-
duce complete results as it does not attempt to characterise the entire system.
However, it does offer a way to measure the integrity of portions of the target
not suitable for measurement by hashing. Prima [14], which is an extension of
the Linux IMA system, measures information flow integrity that can be verified
by remote parties.

2.2 Trusted Computing

One outstanding framework of integrity measurement is that endorsed by the
Trusted Computing Group (TCG), an industry consortium that defines specifi-
cations for hardware and software components [15]. The standard TCG measure-
ment is the computation of SHA-1 cryptographic hash of critical components as
they are loaded into the system. The TCG guidance for measurement includes
the Trusted Platform Module (TPM) as a hardware device to securely store and
report measurement values in the form of a SHA-1 hash. This architecture pro-
vides a good model for determining the integrity during software initialisation.
Moreover, the TPM is becoming standard on several personal computing plat-
forms. However, this framework does not address issues such as loss of platform
integrity due to run-time attacks against the system. If the system environment
can be attacked through either its interfaces or the hardware and software envi-
ronment, this issue requires not only to measure the integrity of an executable
stored in a file, but also to periodically measure the integrity of the software run-
ning in memory [16]. This approach poses new problems because, first of all, the
well-known execution environment initialised at boot time, and that provided a
safe environment for the measurement, cannot be reproduced without rebooting
the system. Second, if the applications virtual memories are updated after they
have been loaded, their hash value change as well. Finally, some run-time data
updates cannot be correctly represented through hash values.

TPM and vTPM. In systems equipped with a TPM chip [17] [18], the TPM
acts as a root-of-trust in the process that builds and setup the software environ-
ments and it ensures that a system has loaded its software properly. Moreover, it
protects secrets such as asymmetric keys or it can be used to encrypt symmetric
keys. The TPM has a set of registers that it protects from the system software
and it implements two operations on each register content: extend and quote.
The former operation takes a value V as input and computes the SHA-1 hash of
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the current register content appended to V. Instead, a quote operation generates
a message with the register contents and signs it with a key protected by the
TPM.

The vTPM [19] [20] extends the functionalities of the TPM in a virtualized
environment, where several VMs can run distinct OSes on the same platform.
The vTPM is a virtual extension of the TPM that enables the VMM to emulate
the features of the TPM, by exporting to each VM a virtual implementation of
the TPM having the same interface of the TPM.

2.3 Virtualization and Semantic Attestation

A Virtual Machine Monitor (VMM) is a thin software layer that runs on top of
a physical machine and that creates, manages and monitors Virtual Machines
(VMs), i.e. execution environments. Each VM emulates, at software, the be-
haviour of the underlying physical machine. In this way, a VMM can run different
OSes in parallel.

To apply consistency checks on the OS kernel of a system and on the processes
it runs in a robust and transparent manner, several proposed solutions exploit
virtualization technologies [21]. Virtualization enhances the robustness of con-
trols and guarantees a transparent monitoring by running two VMs on the same
physical machine, e.g. a monitored VM and a privileged VM. The former runs
the system and the processes to be monitored, while the latter is a distinct VM
that can access the memory of the other VM to apply a set of security checks
on any region in this memory, i.e. the privileged VM has full access to the mem-
ory space of any other VM to apply virtual machine introspection [22]. These
checks verify the integrity of the software that the monitored VM runs and they
implement a form of semantic attestation because, first of all, they consider the
current status of the running processes. Furthermore, they can exploit any in-
formation about the expected behaviour of a component to discover anomalous
behaviour of the component itself.

3 Overall Architecture

Virtual machine Integrity Measurement System (VIMS) is a system that mea-
sures the integrity of a node as required by remote semantic attestation. VIMS
integrates a set of tools for static and dynamic analysis to protect the OS ker-
nel and the running processes of a node against attacks trying to modify their
expected behaviour. The various tools of VIMS analyse the current state of
the critical data structures loaded by the kernel, the kernel itself, including the
modules, and the running processes.

Design Goals. VIMS is aimed at implementing a fairly general and reliable
system to measure the integrity of a remote client, so that the server can be
assured of the state of the remote host. The main goals of VIMS are:
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1. granular checks on the integrity of the client: with respect to solutions that
only exploit TPM-based functions, VIMS can apply more granular checks
through a set of static and dynamic tools;

2. support for dynamic policies: as long as the client is connected to a network,
its run-time state should be continuously monitored, to detect whether it
has been infected by a malware after being successfully attacked. Moreover,
the policy can be changed according to changes in the client configuration;

3. mutual attestation: as an example, in a peer-to-peer environment, all the
parties should be mutually assured of the integrity of any other peer;

4. scalability: the overhead of an attestation should be negligible.

Fig. 1. Overall Architecture

VIMS Components Description. VIMS defines a set of components and
a protocol that rules the information exchange among these components and
define the format of the various messages. These components are (see Fig. 1):
(i) the C-VM, i.e. the client virtual machine; (ii) the A-VM, i.e. the assurance
virtual machine, paired with the C-VM; (iii) the REM-S, which is a generic
application server. VIMS also defines a protocol. In the more general case, a
client software running on the C-VM contacts the REM-S to open a connection
to access some services offered either by the REM-S of by a network that the
REM-S interfaces. Before allowing the client to connect and access the service,
the REM-S establishes an out-of-band control channel with the A-VM of the
node that runs C-VM. The IP address of the A-VM is statically known and
paired with that of the C-VM. As long as the C-VM and the REM-S interact,
the REM-S and the A-VM periodically exchange information through the control
channel about (i) the security policy to be applied and (ii) the results of the
executed checks that are used to evaluate the C-VM integrity. The protocol
exploits the out-of-band control channel also to inform the REM-S that the C-
VM has been compromised either before or during the communications between
the C-VM and the REM-S.

VIMS may exploit the TPM and vTPM to apply the consistency checks on
the C-VM starting from a valid root-of-trust, which is located in the hardware.
With respect to systems that are based on TPM mechanisms only, VIMS can
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implement a semantic attestation that applies consistency checks based upon the
semantic behaviour of the processes. In this case, a static tool is firstly applied
to analyse the source code of the program run by a process to be attested.
Then, the A-VM uses the output of this tool to monitor the status of the C-VM
memory and the run-time system call sequence that a process produces. In this
way, VIMS can apply rigorous and granular semantic checks at run-time, which
are strictly more powerful that those based upon the hash of the running code
only.

The A-VM exploits virtual machine introspection (VMI) [22] to retrieve crit-
ical data structures in the memory of the C-VM and evaluate a set of assertions
on these structures. Each assertion is an invariant for the original application
that constrains the values in the data structure and that is violated any time
the application has been attacked. By evaluating these assertions VIMS can:
(i) guarantee the integrity of critical kernel data structures; (ii) assure that a
process invokes only a predefined set of system calls.

In this way, VIMS implements a semantic integrity attestation because by
applying rigorous and granular semantic checks that are more powerful than
those based upon hashes of running code only. In fact, by monitoring the C-
VM’s current behaviour, the A-VM monitors not only the binaries that have
been loaded by the OS, but also their dynamic integrity.

The A-VM can apply alternative security policies, which can be parametrised
according to: (i) the frequency of the execution of security checks; (ii) their
granularity, i.e. which data structures and software code need to be checked for
integrity. VIMS exploits the features of the TPM to build a hash chain on the
client system. This hash chain is used to measure a predefined sequence of code
loads, such as the authenticated boot of the VMM and of the kernel of the A-VM
from the BIOS and boot-loader. The TPM provides measurements that indicate
that the VMM is safely started, so that it can initialise the local A-VM to assure
it is started in a safe state. The A-VM enables the REM-S to retrieve these hash
values, which are called measurements. This list is protected by the A-VM and
cannot be accessed by the C-VM. In this way, the REM-S can establish trust at
first into the A-VM measurements and then into the run-time properties of the
C-VM.

After the A-VM has been safely initialised, it periodically applies virtual ma-
chine introspection to check the integrity of the software run by the C-VM.
The A-VM uses the message returned by the TPM quote operation to send an
authenticated hash chain to the REM-S to validate the integrity of the code
contained in the hash chain that belongs to the client.

Threat Model. As far as concerns the definition of the threat model, the most
important feature is the availability of a TPM. If the TPM is not available
on the system that runs the C-VM and the A-VM, a transparent root-of-trust
cannot be guaranteed. In this case, the reliability of integrity measurements can
be guaranteed if and only if:
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– the VMM is trusted; this requires that no remote software interface is open
to an adversary and its state cannot be altered by a physical access to the
system;

– the public and private keys of the A-VM cannot be tampered with or, in
case of the private key, disclosed;

– the REM-S is trusted: this is fairly reasonable, since we assume the server
runs in a controlled environment.

On the other hand, if the client subsystem is equipped with a TPM, then the
main assumptions to trust VIMS measurements are:

– TPM and CPU are trusted;
– the BIOS that initiates chain of measurements of the VMM and of the A-VM

is trusted;
– Memory cannot be hacked at run-time (e.g. via DMA).

Obviously, in both cases, the C-VM is untrusted, so it may be infected by
malware, and so on. The A-VM and the REM-S initially establish trust based
on certificates signed by a trusted Certification Authority.

Formal Model. We have defined a formal model to deduce which chains of
trust can be created and which components can be trusted according to the
trust relations among components, i.e. C-VMs, A-VMs and TPM in the system.
The model defines a partially ordered set of tests, i.e. checks to be applied to a
component, and of policies, where a policy is a pair including a set of tests and
a frequency to apply such tests. Then, each component c can define:

a) a set of trusted components trusted(c);
b) a policy to be applied to trust a component that does not belong to trusted(c);
c) the policy it can apply to each other component. An empty policy denotes

that c cannot test a component;
d) invoke(c, p), which is a set of components that can use c to apply a policy

p to other components, i.e. they can invoke the policy that c can apply to
other components;

e) a policy to be applied to a component that does not belong to invoke(c) but
want to use c.

For each instance of the model, we can compute, for each component c, the
set of components c trusts. This set is computed as the fixed point of a set of
equations that relates the set of components that c trusts and those that c can
invoke to apply a policy. In practice, the computation of the fixed point corre-
sponds to that of the transitive closure of the two sets for all the components.
Several versions of the model can be defined and the main difference is related to
the component that has to invoke a test. In one version, a component a invoke
a policy applied by b to be trusted by c. In another version, c invokes the policy
applied by b to check whether a may be trusted.

A physical architecture and a mapping of the various components onto this
architecture defines an instance of the model because, as an example, a VM may
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trust other VMs that run on a physical node only if this node includes a TPM
component or a VM can test another one, e.g. it can apply a non empty policy,
only if both the VMs run on the same node. The formal model makes it possible
to prove in advance, given an architecture, a mapping and a version of the model,
whether a chain of trust between two components exists. Furthermore, the proof
is automatic because the computation of the fixed point of the set of equations
can be fully automated.

A more general model may also consider the communication among com-
ponents so that a component a trusts another component b only if there are
c1, . . . , cn components that a trusts and that can guarantee the confidentiality
and/or the integrity of communications between a and b.

3.1 C-VM Measurements

We describe now in more detail how VIMS measures the integrity of the C-VM
and the corresponding interactions among the various VIMS components.

To verify the integrity of the C-VM, VIMS implements the following steps:

1. verification of the initial C-VM integrity by applying a set of measurements
to its configuration. These measurements consist of a set of hash computa-
tions of the code of running processes and of the C-VM kernel, i.e. critical
data structures, code and kernel modules. If the client system is equipped
with vTPM, VIMS can extend the root-of-trust to the physical platform;

2. the A-VM communicates the results of the measurements to the REM-S;
3. as soon as the REM-S has received the A-VM measurements, it can choose

the security policy to be applied. To determine an optimal compromise be-
tween the attestation level and the corresponding overhead, the range of
possible policies varies from the one that periodically computes the hashes
on the running software to the one that monitors the sequences of OS in-
vocations by critical C-VM processes. Furthermore, the assurance level is
dynamic, i.e. after receiving a set of measurements the REM-S can change
the assurance level to better satisfy its security requirements.

The C-VM runs unmodified client software, and it does not need to be aware
of being checked by a distinct VM so that the semantic attestation may be
fully transparent to the C-VM. To measure the integrity of the C-VM, starting
with the TPM, the following steps are required. Firstly, the TrustedBoot [23] is
loaded and the TPM applies a set of measurements on the boot-loader, so that
from now on all the steps can be measured from boot to kernel loading and its
modules. Attestation requires that the measurements of the C-VM are certified
through the keys protected in the TPM and that the remote party can establish
trust on the client integrity based upon these measurements. By computing
the hash of the running software, signed by the private key of the TPM, the
remote party can be assured of the trustworthiness of the data received. In
this way, VIMS creates a chain-of-trust from the BIOS up to the VMs that
certifies the integrity of the VMM and of the A-VM. Then, further controls can
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be periodically applied through virtual machine introspection as requested by
the REM-S. The corresponding results are exchanged through the attestation
protocol between the A-VM client and the attestation module on the REM-S.

3.2 A-VM

The A-VM should be something relatively self-contained and non-changing.
Moreover, it should run a minimal kernel without any Internet service and
the functionalities it implements should not be directly accessed by any user.
Moreover, a stable trusted A-VM may help in attesting to a variety of C-VM
applications. The REM-S must trust that the A-VM is not misbehaving.

The A-VM directly accesses and examines the memory of the C-VM through
virtual machine introspection to detect attacks or erroneous updates of client
applications or of the underlying OS. After the A-VM has been safely initialised
by the VMM, it applies a set of introspection checks to the pages storing the
kernel code, the system call dispatch table, the interrupt descriptor table, and
other critical kernel data structures that should never be modified. Hence, the
A-VM periodically computes their hashes to check they have not been changed.
Moreover, the A-VM retrieves the list of the kernel modules and verifies both
their integrity and that they are authorised kernel modules. These checks are also
applied to critical user-level applications on the C-VM, such as the VPN client,
anti-virus software and the likes. If the current hash of a running application
or of a kernel module differs from the stored values, the REM-S tears down the
connection. Furthermore, the A-VM can also evaluate a set of invariants on data
structures or on the sequence of invocations of an application to discover anoma-
lous values due to an attack. Anytime the behaviour of a process differs from
the one computed by a static analysis of the application source code, the current
C-VM behaviour is flagged as anomalous. VIMS static tools over-approximate
the process behaviour so that no false positives can occur. The A-VM manages
a database that stores a set of distinct security policies that it applies on request
by the REM-S. Each policy defines the granularity level of the controls, that in
turn determines the measurements to be applied, and their frequency.

3.3 Attestation Protocol

The very basic steps of the attestation protocol among the C-VM, the REM-S
and the A-VM are (see Fig. 1):

1. the C-VM requires the REM-S to establish a connection to access some
resources;

2. the REM-S opens a control channel with the A-VM after the usual creden-
tials checks;

3. the REM-S starts the attestation protocol with the A-VM and it transmits
a list with the initial parameters;

4. the A-VM applies introspection to retrieve measurements on the objects
inside the list; afterwards, the A-VM verifies the correspondence among the
hash of the code of the running processes and kernel structures;
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5. the A-VM returns to REM-S, on the control channel, the results of the hash
that have been computed;

6. in case of successful results, the REM-S set on the A-VM the security policy
that the A-VM should apply and connects grants the access to C-VM.

Further features of the protocol are: (i) the control channel between the A-
VM and the REM-S exists as long as the C-VM and the REM-S are connected;
(ii) the A-VM can apply specific consistency checks on the C-VM on request by
the REM-S; (iii) the database of measurement configurations on the A-VM can
be extended at run-time through proper REM-S requests; (iv) the REM-S can
request a specific action after a timeout has been elapsed.

4 Current Implementation

Xen [24] 3.1.0 is the adopted technology to create the virtual machines based
on Debian Etch 4.0 with Linux kernel 2.6.18. We adopted the tool described in
[25] to define the semantic checks to be applied to the critical processes running
on the C-VM, and an introspection library [26] to compute the assertion on the
C-VM memory.

The following A-VM modules have been developed either to implement the
attestation protocol or to apply the measurements:

– assurance module: a client plugin, running on the A-VM, to manage the
remote attestation protocol;

– a vTPM module interface (if TPM is present);
– a database for measurements and security policies;
– an interface for the low-level introspection function.

The following REM-S modules have been implemented:

– an attestation module;
– a database for measurements and policies;
– an OpenVPN plugin [27];
– a plugin for ghttpd web-server;
– a vTPM module interface.

The modules to execute the attestation protocol have been implemented in
Java. The attestation library on the server-side is composed of 4 Java classes
of about 1500 lines of code, whereas the assurance module on the client-side is
about 1000 lines of Java code, including a small wrapper to interface with the
introspection functions.

The following sections discuss two test-cases we have implemented. In the first
one, the C-VM used a VPN client to access a remote Intranet through a VPN
server executing on the REM-S. The Intranet hosted critical SCADA devices
that could be remotely accessed and monitored. We have modified the VPN
server to handle the remote attestation protocol and applied the static tool to a
VPN client to define its profile that is used by the A-VM to monitor its run-time
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Table 1. Example of Attestation Response

<attestation>
<response>

<overallresult>suspicious</overallresult>
<nonceid>89892345</nonceid>
<AssuranceIp>192.168.1.1</AssuranceIp>
<reqpolicy>timeout</reqpolicy>
<timemillis>20000</timemillis>
<assurancelevel>4</assurancelevel>
<measuresaggregate>
<measureschain>

<measure>
<idmeasure>TPM-Boot</idmeasure>

<hash>7844e409c39fad83bb65f7dac4c8a53e</hash>
<status>trusted</status>
<object>TPM.Measure</object>
<name>boot</name>

</measure>
<measure>

<idmeasure>0</idmeasure>
<hash>7844e409c39fad83bb65f7dac4c8a53e</hash>
<status>trusted</status>
<object>kernel.struct</object>
<name>idt_table</name>

</measure>
.................

<measure>
<idmeasure>78</idmeasure>

<hash>0000e409c39fad83bb65f7dac4c8a53e</hash>
<status>trusted</status>
<statusprofile>wrong</statusprofile>
<object>process</object>
<name>modprobe</name>
</measure>

</measureschain>
</measuresaggregate>

</response>
</attestation>

behaviour. In the second case, a browser accessed a simple web-server which has
been extended to exploit the attestation module.

Java SSL libraries and TPM/J [28] has been used to access the TPM values.
Moreover, Java SSL libraries have been used to create the secure connections
and to define the services of interest, i.e. the client interaction either to create a
VPN connection or to send a HTTP request to REM-S. Finally, OpenVPN and
the web-server have been extended with plugins to enable remote attestation.

4.1 Attestation Module

The attestation module on the REM-S is at the core of the attestation protocol,
and it is used to initialise the protocol and to exchange messages between the
REM-S and the A-VM. The protocol is triggered each time a C-VM requires the
REM-S to open a connection, such as a VPN to the remote network or a HTTP
request to a web-server in the considered examples. Before allowing the client to
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connect, the REM-S exploits the attestation module, which is a daemon service
waiting for input to start the handshaking phase. In the VPN connection, this
module is an OpenVPN plugin that starts up the daemon as soon as it receives a
request through the function ConnectionRequest(IPClient). The attestation
module, once activated, maps the IP address of the requesting C-VM into the
IP address of the corresponding A-VM, and it opens a connection to it.

The handshaking among the REM-S and the A-VM includes the mutual au-
thentication and the exchange of the initial protocol parameters. If the hand-
shake is successfully completed, the A-VM applies the initial set of measurements
to the C-VM and sends to the REM-S a message including the results of the
checks and the hashes computed by the TrustedBoot. The message is signed with
the private key of the A-VM to prevent manipulation of the results. To attest
the A-VM integrity and discover the current C-VM configuration, the attestation
module on the REM-S compares the results against those in the database and
defines an initial security level. This level is communicated to the A-VM that
stores it in its database and it applies the monitoring according to the adopted
security policy.

The attestation module can apply one of two policies, based on a XML-
encoded policy (see Tab. 1 for an example of an attestation response from the
A-VM): (i) on-demand or (ii) timeout-based. In an on-demand policy, the REM-
S can request specific measurements to the A-VM, such as semantic checks on a
running process, as long as the C-VM and the REM-S are connected. Instead, in
a timeout-based policy, the A-VM periodically applies a set of checks and sends
to the REM-S the corresponding results.

A-VM / REM-S Interactions. Currently, the protocol between the A-VM
and the REM-S includes the following steps (see Fig. 2):

1. ConnectionRequest(username, password):
– open a connection from the C-VM to the REM-S;
– check user’s credentials;

2. ConnectionRequest(Username, IP); the Attestation module is activated;
3. if in the previous step the client is authenticated, then the attestation module

uses Retrieve(A-VM Information, C-VM IP) to query the database;
4. the attestation module queries its database to retrieve the IP address of

A-VM though the Response(A-VM IP) function;
5. OpenConnection(A-VM IP): the attestation module establishes a control

channel with the A-VM;
6. [sign A-VMKey] AttestationHandshake(Ip REM-S, nonce): the attesta-

tion module sends the handshake message with some parameters, signed
with the public key of the A-VM;

7. [sign REM-SKey]AttestationResponse(ResultsChain({ProcIDs = res-
ults}, {KernelStructures=results}, {TPM measures}), nonce): the
A-VM computes hash values of the running applications and the A-VM
compares these results against those in its database. It sends the result to
REM-S chained with the measurements of the underlying system done by
the TPM;
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Fig. 2. Attestation Protocol Overview

8. Check-Results: the attestation module compares each result sent by the
A-VM against the expected one;

9. the attestation module sends the current assurance policy and level to the
A-VM;

10. [sign A-VMKey]setAssurancePolicy(level, policy): the REM-S sends
to the A-VM an XML configuration file storing the security policy that the A-
VM should apply, e.g.: (AssuranceLevel = 1, timeout). The parameters
of this function are:
– level: the required assurance level, i.e. an ID paired with a set of controls

stored in the A-VM database;
– policy: The field policy can have the value timeout or on-demand,

depending on whether the checks need to be applied for each elapsed
timeout or on-demand by the REM-S.

11. Authorization(Message, [timeoutSession]): the REM-S opens or closes
the connection with C-VM and it may set a timeout session (the field
message is the response, e.g. HTTP:403). In case of “on-demand” policy,
the A-VM may cache the next requests to apply the same checks in future.
Moreover, if the policy is “timeout”, the A-VM caches the timeout with
the paired assurance level. When the timeout is elapsed, it applies the set of
measurements associated to that level and it sends the results to the REM-S.
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Fig. 3. C-VM: Transparent Solution

A-VM / C-VM Interactions. By exploiting the same introspection library,
we have defined two distinct C-VM architectures whose names describe the kind
of introspection applied on the monitored machine. In the “transparent” archi-
tecture (see Fig. 3), the monitoring is fully transparent to the C-VM and the
interactions between the components are those described in the previous section.
In this case, the C-VM cannot run any software that VIMS can use to estab-
lish the integrity of the C-VM. Instead, the “not-transparent” architecture (see
Fig. 4), increases the amount of information that VIMS can access to measure
the integrity of the C-VM at the cost of transparency. This solution embeds
further functions in the introspection library to verify the integrity of the C-VM
and it increases the interactions between the A-VM and the C-VM. An example
is the one where the C-VM runs a collector that retrieves information from local
IDSes, firewall, anti-virus and sends alerts to a director on the A-VM. In this
case, some steps of the protocol between A-VM and REM-S have been modified:

– OpenConnection(A-VM IP): the REM-S requires the A-VM to open a con-
trol channel;

– the assurance module accepts requests of:
• remote attestation fromtheREM-S(if the securitypolicy is“on-demand”);
• alerts from the director.

– the requests can be:
• [sign A-VMKey]AttestationRequest(assuranceLevel, policy,
nonce): remote attestation requests from the REM-S. This case is the
same that in the transparent solution;

• Alert(alarmCode): it happens when director sends an alert;
• ActivateMeasures(getMeasures(alarmCode)): the assurance module,

according to the code sent by the director, requires the A-VM to apply
further consistency checks;
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• an elapsed timeout that triggers security checks on those components
listed in the policy database: the A-VM applies the measurements cor-
responding to the adopted assurance level and it returns to the REM-S
the hashes or semantic results for each measured object.

– finally, REM-S closes the connection with the A-VM and the C-VM.

Fig. 4. C-VM: Not Transparent Solution

5 Performance Results

This section shows a preliminary performance evaluation of the current VIMS
prototype. According to this preliminary evaluation, the overhead of the protocol
for remote attesting the C-VM is acceptable and almost negligible anytime the
A-VM only compares the computed hashes against those in its database.

Figure 5(a) shows the overhead of the IOzone [29] benchmark when the attes-
tation requires some introspection checks with respect to the case where these
checks are not applied. Timeout is the length of interval in-between two consec-
utive measurements, i.e. two computations of the hashes of interest. The corre-
sponding performance degradation is fairly low.

Figure 5(b) shows the overhead computed by IOzone on the REM-S when 3
clients establish a VPN connection to the REM-S. As in the previous case, the
latency of the network masks the attestation protocol overhead.

Figure 6(a) and 6(b) show the performance results of a set of tests on the
simple web-server handling a set of request to a login page using HTTP. In these
tests, the httperf benchmark tool [30] has been used to measure the web-server
performance under stress when opening a number of HTTP connections ranging
from 20 to 200, where each connection transmits 10 requests. The figures show
that the response time increases significantly when attestation is applied and
the REM-S load decades after about 1600 connection per sec.
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(a)

(b)

Fig. 5. Average Client Attestation Overhead(a) and VPN Server Attestation Over-
head(b)

We also evaluated the overhead due to the semantic integrity checks enforced
by the A-VM on the kernel code and on the software running inside the C-VM.
To this purpose, the C-VM ran the VPN client while the A-VM checked the
memory pages that store kernel and application code by computing their hashes
and comparing them against the values in the database. Furthermore, the A-VM
also monitors the system call sequence issued by the VPN client. The period of
time in-between two consecutive hash computations was set to 2 seconds. The
relative overhead was less than 15% in the worst case.

6 Future Works and Conclusions

A secure handling of critical information requires the continuous monitoring of
the integrity of the systems that try to access such information. This, in turn,
requires that these systems are highly reliable and resilient against attacks by
unauthorised remote users or by malware software. In some cases, a control
system can be delegated to apply integrity checks on another one, to verify that
it satisfies some predefined security requirements.

In this paper we have described Virtual machine Integrity Measurement Sys-
tem (VIMS), an architecture to enable a network to evaluate and gain some
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(a)

(b)

Fig. 6. Httperf Results with Attestation (a) and Without (b)

assurance about the integrity of a remote party that is willing to join the net-
work. As an example, this happens when remote nodes wish to access a corpo-
rate VPN or when a browser is requiring resources to a web-server using HTTP.
To this purpose, VIMS exploits virtualization and introspection to verify the
integrity of the software components that the remote client is running and to
attest it to the server that interfaces the network. Virtualization allows the client
system to run a shadow VM that applies the integrity checks in a transparent
way to the VM that is trying to join the private network. The adoption of VIMS
may enable network administrators to protect private resources by remote sys-
tems that are trying to join the Intranet and that may be affected by spy-ware,
rootkits that may infect critical resources.

An area of future research considers the exploitation of an USB dongle as
a secure root-of-trust of the VMM and the A-VM to increase the portability
of this architecture to those contexts where the adoption of a TPM chip gives
rise to privacy concerns. Finally, VIMS can be extended with the description
and implementation of a more granular user-based security policy to define the
operations that remote users can invoke.
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Abstract. Trusted Computing (TC) as envisioned by the Trusted Com-
puting Group promises a solution to the problem of establishing a trust
relationship between otherwise unrelated platforms. In order to achieve
this goal the platform has to be equipped with a Trusted Platform Mod-
ule (TPM), which is true for millions of contemporary personal comput-
ers. The TPM provides solutions for measuring the state of a platform
and reporting it in an authentic way to another entity. The same crypto-
graphic means that ensure the authenticity also allow unique identifica-
tion of the platform and therefore pose a privacy problem. To circumvent
this problem the TCG proposed a trusted third party, the Privacy Cer-
tification Authority (PrivacyCA).

Unfortunately, currently no PrivacyCA is generally available. In this
paper we introduce our freely available implementation of a PrivacyCA.
In addition, our PrivacyCA is itself a trusted service. It is capable of re-
porting its state to clients. Furthermore, we use a novel way to minimize
the Trusted Computing Base of Java-based applications in conjunction
with hardware-supported virtualization. We automatically generate the
service interface from a structural specification. Thus, to the best of our
knowledge, we were not only first to make this crucial service publicly
available, but now also provide a trustworthy service whose privacy pol-
icy can be attested to its users by employing TC mechanisms.

Keywords: Trusted Computing, Privacy, PKI, Virtualization, Java,
Trusted Computing Base.

1 Introduction

Today’s computing landscape is plagued by a variety of software-based attacks
and threats such as viruses, phishing attacks, and trojan horses. It is increas-
ingly difficult to find suitable countermeasures in this hostile environment. The
recent rise of the concept of Trusted Computing introduces a way to improve the
security of current computer systems. The Trusted Computing Group (TCG)
specified the Trusted Platform Module (TPM), which allows to provide crypto-
graphically qualified and tamper-resilient statements on the software configura-
tion of a machine.

However, the use of protected cryptographic mechanisms alone is not sufficient
to convince remote machines or human users that a complex software service can
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actually be trusted. To enable a decision based on the statements made by a TPM
and the associated trust levels, keys need to be vouched for. This necessitates
a Public Key Infrastructure (PKI). The full potential of this approach becomes
apparent on the Internet, as it allows a remote, independent party to decide on
the trustworthiness of a host or a particular service.

A particular incarnation of the PKI concept is the PrivacyCA, which serves
to protect the privacy of the user in a trust-enabled networked environment. It
confirms that keys are protected by a specification-compliant TPM implementa-
tion and thus may be trusted under certain conditions – but without revealing
the specific identity of the TPM and the user.

It is an important aspect, that a PrivacyCA requires knowledge of private in-
formation of a computer’s configuration. Therefore it must be trusted. However,
until now, no architecture or implementation has considered this requirement.
We describe the architecture of a PrivacyCA service, which is designed to be
trusted. It not only provides privacy but is also able to attest its integrity and
behavioral policy. To overcome the complexity of deciding on the trustworthi-
ness we minimize the TCB of this Java-based service. Our approach allows for
versatile application scenarios and also integrates well with other services on vir-
tualized platforms. The reference implementations we present provide the first
actually operational instance of a PKI for Trusted Computing.

Outline. The remainder of the paper is organized as follows: Section 2 gives a
short introduction to Trusted Computing mechanisms and motivates the need for
a trusted third party PrivacyCA service in this environment. It also discusses
a set of guidelines to follow so the trustworthiness of such a service can be
achieved in practice. In Section 3 we outline the most important components and
processes of a Trusted Computing supporting public key infrastructure. Putting
theory to practice, Section 4 presents the practical implementation experience
of a PrivacyCA service and the optimizations employed. Section 5 discusses
potential use cases. The paper considers related work in Section 6 and concludes
in Section 7.

2 Background

2.1 Trusted Computing Platforms

The Trusted Computing Group (TCG) [27] has defined a set of specifications to
evolve current computer architectures into Trusted Platforms. The TCG does not
claim that a Trusted Platform guarantees perfect security under all conditions
and for all possible applications, but rather considers a system trustworthy if it
behaves in the expected manner for the intended purpose.

To provide a hardware anchor for trust, the Trusted Computing Group has
specified the Trusted Platform Module [31]. Similar to a Smart Card, the TPM
features cryptographic primitives, but is physically bound to a specific platform.
A tamper-resilient casing contains hardware implementations of cryptographic
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operations for public-key cryptography, key generation, hashing, and random-
number generation. With these components the TPM is able to enforce security
policies on cryptographic keys, such as the Endorsement Key (EK) which pro-
vides it with a unique identity.

The TCG not only specifies TPM hardware but also defines an accompanying
software infrastructure called the TCG Software Stack (TSS) [30]. The stack
consists of different modules. Applications can access Trusted Computing func-
tionality by using the Trusted Service Provider (TSP) interface. The Trusted
Core Services (TCS) are implemented as a single system service. Among the
main functionalities implemented in the TCS are key management, key cache
management, TPM command generation and synchronisation. The TCS com-
municates with the TPM via the TSS Device Driver Library (TDDL).

A system configuration and therefore the system’s behavior is defined by the
software it executes. We consider the sum of all the software required by a
specific service to form its Trusted Computing Base (TCB). For a typical service
this includes a hypervisor, an operating system, and possibly a language-based
virtual machine that executes the service. On a trusted platform, this is reflected
in the chain-of-trust which is unique for each specific service. Here, each software
component is measured before it is given control to, starting with the Core
Root-Of-Trust for Measurement (CRTM), typically the BIOS. This process also
covers boot loader, kernel, libraries, binary and interpreted application code and,
following the transitive trust model, leads to a continuous chain of evidence.

To prevent tampering with the platform measurements the TPM stores them
in a set of Platform Configuration Registers (PCRs). Thus, a report on the PCR
state reflects the exact state of a system. Presented with such a report an external
stakeholder can form an informed opinion about a system’s trustworthiness. This
central concept of a TC-enabled platform is known as Remote Attestation. The
authenticity and integrity of this report must be preserved even if the TCB is
compromised or the network channel is insecure. To this end, the TPM acts
as Core Root-Of-Trust for Reporting (CRTR). Upon request, it performs the
TPM Quote operation which signs the PCR state with a TPM hosted signing-
capable key.

This specific keys are referred to as Attestation Identity Keys (AIKs). The
TCG specification guarantees that these keys never leave the protection of a
standard-compliant TPM. To ensure that the signature on an attestation report
is actually made by a TPM-protected AIK, the used key must be vouched for
within the framework of a PKI. Another use for AIKs is to certify the policies
of other key types.

2.2 PrivacyCA

The TCG remote attestation architecture requires that an attestant sends a very
detailed description of its system state to an attester. This raises the question
of privacy protection. For one thing this information might be used to facilitate
attacks. Another problem is that reusing the same key for all reporting operations
allows to trace the TPM and thus the platform. In some scenarios that might be
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Fig. 1. Overview of AIK creation, certification and usage with a PrivacyCA. Steps 5-9
can take place at a later time and may be repeated.

a desirable feature, but typical end users should value their privacy. Therefore it
is of interest, that access of independent external services cannot be correlated
(i.e. to create a behavioral or marketing profile of an user).

Hence, the TCG specifications [28] define the PrivacyCA service to protect
the privacy of the users. Its task is to issue AIK certificates, which guarantee that
a given AIK is owned and secured by a TPM that enforces the TCG-specified
policies for AIKs. It is crucial that the issued AIK certificates do not contain
any kind of link to the identity of the specific TPM. By employing more than
one AIK per TPM it becomes possible to mask the identity of the users.

A general overview of the life cycle of an AIK and its practical application
in a remote attestation scenario is provided in Figure 1. At first, a RSA key is
generated within the protection of the TPM. In order to obtain an AIK certifi-
cate for it, the trusted platform and the PrivacyCA execute a cryptographically
secured protocol. A request package describing the AIK and a set of platform
specific certificates is transmitted. The PrivacyCA checks the information. If the
request conforms to the CA policy, an AIK certificate is returned. It is encrypted
so that only the TPM indicated in the request can extract it. Now the AIK key
can be used, whenever an attester requests the attestation of the trusted plat-
form. Then the system state description, which is signed with the private part of
the AIK and the AIK certificate are provided. The Attester can now verify the
correctness of the signature after confirming the validity of the certificate with
the help of the PrivacyCA’s revocation service.

The mode of operation of a specific PrivacyCA is regulated by its policy, which
defines two important properties: Who is allowed to acquire an AIK and how
much information about the AIK request and the issued certificates is retained?

In a restricted deployment scenario for example, the PrivacyCA issues and
validates AIK certificates only for well-known clients. This requires an initial reg-
istration step. In this case it might make sense to store all information acquired
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during an AIK cycle. In open scenarios, where the PrivacyCA issues certificates
to a large set of customers that are not necessarily known beforehand a more
liberal policy might be required. The policy options for a PrivacyCA range from
”record nothing” over ”know enough for the specific operation, forget details
after its completion” to ”store and log everything”. The choice of PrivacyCA
and privacy policy and consequently the intended level of privacy should be left
to the end-user.

In conclusion, a PrivacyCA takes the role of a trusted third party. It must
be trusted by both parties in the remote attestation process. More specifically,
the attestant must be ensured that his privacy is protected in accordance to a
specific policy, whereas the attester must be assured that a remote attestation
report is indeed issued by a TPM.

2.3 Guidelines for Building a Trustworthy Service

In the Trusted Computing scenario envisioned by the TCG, services like a Pri-
vacyCA take the role of a trusted third party. Ideally such a service should be
provable secure. Of course, its trustworthiness not solely depends on its design,
but also on its practical implementation as well. This includes the trustworthi-
ness of the TCB it is executed on. Regrettably, the downright complexity of the
overall system renders a fully formally verified approach infeasible with today’s
technology.

Still, by following a pragmatic combination of currently available technolo-
gies and practices, a high level of trust can be achieved. We now summarize
a comprehensive set of simple, heuristically determined and generally accepted
guidelines.

Guideline 1. Apply Virtualization.
Virtualization support allows the execution of several virtual machines in par-
allel on the same computer. A hypervisor or Virtual Machine Monitor (VMM)
manages the compartments1 and enforces their separation. The application of
virtualization in a TC context is not a new notion [10]. It allows to isolate
trusted services in compartment of their own, which helps restricting a possible
subversion to a small part of the overall system.

Guideline 2. Restrict the Trusted Computing Base to a minimum.
Today’s platforms are versatile. In regard to the trustworthiness of the platform
this is a drawback. Every service with an external interface provides a point of
attack. It is therefore sensible to deactivate every service and component that
is not strictly necessary for the execution of the trusted service. We propose
an even stricter approach: Remove every superfluous component. The rational is
that even if a component does not provide a point of attack it may make security
analysis and inspection of the overall system more complex.
1 Note that such hardware-emulating compartments are often called “Virtual Ma-

chines”. In this paper we use the term exclusively for the language-based Java Virtual
Machine.
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Guideline 3. Use formal methods to proof the security of the service interface.

A formal verification of the security of the complete TCB would be desir-
able. However, the level of complexity of contemporary software architectures
is formidable. Yet, the main point of attack of a service is its network protocol
interface, which limits the scope. Thus, we suggest to use formal and automated
mechanisms for interface specification, analysis [16] and implementation.

Guideline 4. Use a safe programming language.

The programming language a service is written in has a paramount influence
on the security properties of the service. A language that allows direct mem-
ory access through the use of pointers, or does not automatically perform range
checking is inherently more unsafe than a language that does [9]. While it is pos-
sible to create safe programs in a wide variety of languages, there is a noticeable
difference in the complexity and error-proneness to do so.

Guideline 5. The source code of the service should be available to the public
for inspection.

Kerckhoff stated [14] that the security of a cryptographic system should solely
rely on the secrecy of the key. The rest of the system should be open for in-
spection. We propose to apply a similar principle to trusted computing. Publicly
available source code does not only increase the trust in a service, but in addition
adds all the other advantages of public review and criticism to the development.
For the same reason a trusted service should be deployed on a platform that is
composed of other mature open source components.

Guideline 6. Use Trusted Computing.

Ensuring trustworthiness is a two-way process [23]. A client should be able to
trust a service and vice versa. Trusted Computing helps to achieve this goal by
measuring the platform and employing remote attestation. As mentioned above
a trustworthy service should use these tools and the TPM-based capabilities
available on modern platforms.

3 Trusted Computing PKI Primitives

In the following sections we outline the TCG specified components and proce-
dures that facilitate the creation of a PKI service. We will discuss specific keys,
certificates and protocols and their intended role. In this discussion, we only
consider the elements relevant to the PrivacyCA concept.

Security credentials in general may be represented in different formats. The
credential standard document of the TCG [33] describes credentials in the con-
crete instantiation of either X.509 certificates [13] or attribute certificates [8].
Additionally, some TPM functions produce binary blocks of data the internal
structures of which do not conform to any standard.
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3.1 Endorsement Key and EK Certificate

Every TPM hosts a unique Endorsement Key (EK). The asymmetric key pair is
stored in non-volatile memory inside the TPM. It is impossible to retrieve the
private part of the key. A corresponding TPM Endorsement certificate contains
the public part of the key pair. This certificate represents an assertion that a
certain TPM conforms with the TCG specifications and that the private En-
dorsement Key is indeed protected by the TPM. The Endorsement certificate is
signed by the entity which created and inserted the EK.

As the Endorsement Key uniquely identifies a TPM and hence a specific plat-
form, the privacy of the platform user or users might be at risk if the EK is
employed for remote attestation operations. As a consequence, the TCG rigor-
ously restricted the set of operations that can be performed with the EK. For
instance it is used during the taking of ownership of the TPM by the user. No-
tably it cannot be used to sign PCR values or arbitrary data. This policy is
enforced by the TPM.

3.2 Platform Certificate

A system manufacturer vouches for the components of a platform (except the
TPM) with a Platform Endorsement (PE) credential. It represents an assertion
that the specific platform incorporates a properly certified TPM and the neces-
sary support components. A PE states that the platform architecture conforms to
TCG specifications. A reference to the specific TPM on the platform is included.

3.3 Conformance Certificate

A platform Conformance Credential (CC) attests that the overall design of a
platform satisfies the TCG specifications. It asserts the proper design of the
Trusted Computing subsystem and its correct integration into the platform. The
CC is described in [29], but was not updated in the newer [33] TCG specifications.
The newer specification focuses on the EK, PE and AIK (see next section)
credentials alone. Thus, for the scope of this paper, we consider its status obsolete
and do not consider it further.

3.4 Attestation Identity Key and AIK Certificate

As an alternative to the unique and privacy sensitive EK, the TCG introduced
Attestation Identity Keys (AIKs) and the associated AIK certificates. AIK cer-
tificates do not contain any information that links the certificates to the specific
platform hosting the AIKs. The AIK certificates assure that the identity keys
are indeed TPM hosted.

AIK protocol. In order to create an AIK certificate, the trusted client plat-
form with a TPM and the PrivacyCA service execute a cryptographic protocol.
The TCG specified the TPM interaction and the PrivacyCA actions, but did
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not stipulate a transmission protocol for the exchange of the request and re-
sponse packets. The flow of an AIK creation is illustrated in Figure 2. The steps
performed are as follows2

1. A client application, running on a machine equipped with a TPM, invokes
the Tspi TPM CollateIdentityRequestTSS function to initiate a new AIK
creation.

2. The TSS invokes the TPM MakeIdentity TPM function to create a new
attestation-identity RSA-key-pair (AIK). The TPM returns a structure con-
taining the public AIK, signed with the private AIK key.

3. The TSS assembles the request to the PrivacyCA into a structure containing
- amongst other information - the signed blob returned by the TPM and the
EK and PE certificates of the platform. This request is encrypted with the
public key of the PrivacyCA PCAPub, which must be known to the client
beforehand.

4. The request is forwarded to the PrivacyCA. The PrivacyCA decrypts the
request and validates its content. In doing so, it also validates the certificates
contained by the request.

5. On successful validation the PrivacyCA issues an AIK certificate, encrypted
with a symmetric key. The symmetric key along with a hash of the public
AIK is in turn encrypted with the public key of the EK of the TPM EKPub

(obtained from the EK certificate in the request). This assures that the result
package can only be decrypted by the intended recipient TPM. The result
is transported back to the client system.

6. The client application calls the TSS Tspi TPM ActivateIdentity function
with the response from the PrivacyCA. The TSS subsequently requests the
platforms TPM to decrypt the response package with the private part of the
EK. If the referenced AIK is available on the TPM, the symmetric key is
returned.

7. On successful completion of this protocol, the returned key is used to decrypt
the response from the PCA containing the AIK certificate.

An activated AIK is a pair of an TPM identity key and the associated certificate
issued by a third party PrivacyCA service. The AIK certificate attests that the
key pair is bound to a TPM. It contains information fragments from both lower
level certificates, EK and PE, to identify the TPM and platform model, but
does not contain enough unique information to allow pinpointing to the specific
physical hardware.

Additionally, an AIK certificate contains a client chosen arbitrary label string
which allows for later recognition in a set of AIK certificates. Well defined label
strings support the user of the platform in associating a key to a specific task,
while they do not allow other parties to guess the identity of the platform and
hence the user. This label is a specific TCG certificate extension and must not
be confused with standard certificate naming fields.
2 Note that some details are omitted for clarity of presentation. For a complete de-

scription please refer to the TCG specifications [28], [30] and [31].
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Client PrivacyCA

Collate Identity Request
⏐⏐�

TSS: setup data structures

Make Identity
⏐⏐�

TPM: create new RSA
identity key pair, sign

public part with private

AIKPub, SAIKpriv (AIKPub)
⏐⏐�

TSS: build request,
encrypt with PCAPub

−−−−−−→ decrypt+validate request

⏐⏐� Success

TSS: request TPM to
decrypt response with TPM

EKPriv

←−−−−−− issue AIK cert,
encrypt with TPM EKPub

Activate Identity
⏐⏐�

TPM: check for AIK

Symmetric key
⏐⏐�

TSS: decrypt remains,
obtain AIK certificate

Fig. 2. Overview of the AIK certification procedure with a PrivacyCA

4 Implementations

We implement the core components of a trusted PrivacyCA service following
the considerations outlined in the previous sections. Our PrivacyCA allows the
creation and validation of EK and AIK certificates and also provides a simple,
yet sufficient API for certificate retrieval and revocation.

We eschew the creation of a special purpose platform from scratch, instead
we start out using a well maintained off-the-shelf operating system and mature
library components. We based our implementation on Java running on Linux.
This is a pragmatic approach which offers a good balance of prototyping speed,
maturity, features, invested effort and security. We expect this concept to be
versatile and trustworthy enough for all but the most security critical intended
purposes. In the next sections we describe the implementation choices we made
for each of the components in greater detail.
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4.1 TCcert

As outlined in Section 3, the TCG’s specification of the EK, PE and AIK cer-
tificates requires the definition of new types of certificate extensions for X.509
type certificates [33] and attribute certificates [8].

General purpose PKI tools currently do not support these extensions and we
are not aware of any publicly available library that does. We present a Java
library called TCcert which enables us to create these certificates. This allows
us to provide the basic building blocks for a Trusted Computing PKI. The fol-
lowing credentials are currently supported by TCcert for certificate creation and
validation

– TPM Endorsement Key (EK) credential,
– Platform Endorsement (PE) credential and
– Attestation Identity Key (AIK) credential.

4.2 A PrivacyCA Based on XML

Interaction of distinct entities connected by a network requires a common pro-
tocol understood by all participants. Several protocols exist that are already
employed in PKIs and for credential management. For trusted computing a pro-
tocol should be able to support common PKI services as well as TC specific
attributes, queries and data structures. The TCG considered this infrastructure
problem in [32]. The two candidates mentioned are the CMC protocol [17] for
X.509 certificates and the XKMS protocol [18] for XML-based credentials. The
XKMS option initially appeared attractive because its ability to wrap legacy
CA services designed for X.509 certificates and express certificate management
in XML.

Our first PrivacyCA implementation which uses an XKMS based protocol
was released at [19] in the middle of 2007. It proofs that it is possible to use
an unmodified XKMS schema to encode the messages required by a TC enabled
PKI. However, not all TC associated operations map to XKMS operations in a
straightforward way. The AIK cycle uses pure binary data blobs and this prop-
erty conflicts with the intention of using plain text XML structures. Furthermore,
the proof of possession expected by certain PKI commands is not always fea-
sible with TC keys. The TPM policy does not allow e.g. identity keys to sign
arbitrary externally supplied data, as this would allow to fabricate fake trust
statements. Finally, the application of this solution to a deployment scenario
demonstrated that XML introduces an implementation overhead and external
dependencies that significantly increase the binary size of the TCB. Therefore,
we discontinued this approach.

4.3 An Efficient PrivacyCA Protocol

A PrivacyCA which offers a high level of trustworthiness requires a communi-
cation protocol that offers a complete set of PKI operations, but at the same
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create_aik_request =

"CREATE_AIK_REQUEST" "\n"

"Blob: " base64 >clsbuf %save_blob "\n"

".\n"

@do_create_aik_request;

create_aik_response =

"CREATE_AIK_RESPONSE" "\n"

"Blob1: " base64 >clsbuf %save_blob1 "\n"

"Blob2: " base64 >clsbuf %save_blob2 "\n"

".\n"

@do_create_aik_response;

Fig. 3. Example of formal specification for the autogenerated parser

time allows for a small-sized implementation. Keeping the guidelines discussed
in Section 2.3 in mind we set out to design and build a PrivacyCA prototype by
employing state-of-the-art techniques and technologies.

Communication Protocol. For a compact and robust communication proto-
col we devised a simple ASCII-text based solution. The basic structure of most
commands is simply a command identifier followed by the data. Data items are
line based, each line terminated by a new line character. The data type identifier
and the actual data are separated by a colon followed by a space. Binary data
payload is transmitted as Base64 encoded strings.

This is a very basic approach and thus not very prone to implementation
errors. The server side parser is constructed using the Ragel state machine com-
piler3, resulting in mostly automatically generated parsing code. Ragel generates
executable finite state machines from a regular-expression like, formal descrip-
tion of the expected valid input data stream. Furthermore, it allows to generate
code for multiple target languages, not only for Java, and thus we hope this
encourages development of clients in alternative languages.

The following short example (cf. Figure 3) illustrates the specification of the
request and response of the aik create command which is used to generate the
implementation.

Command Set. We implement a sufficient set of commands that enables our
implementation to serve as a foundation for a trusted computing PKI. This
also includes commands for creating and validating EK certificates, which are
currently missing for the majority of shipping TPMs. Other commands allow
basic tasks such as creation and revocation of AIK certificates.

Our prototype of a PrivacyCA supports the following operations to enable
the identity keys concept of the TCG.

ekcert create. This command creates a TPM endorsement certificate for a
given public key. To our knowledge currently only one vendor, Infineon,

3 A. Thurston, Ragel State Machine Compiler, http://www.complang.org/ragel/

http://www.complang.org/ragel/
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supplies an EK for its TPMs. In order to support TPMs from other vendors
it is necessary to supply those TPMs with EK certificates, otherwise it is
unreasonable to provide them with AIK certificates.

ekcert validate. This function validates a TPM endorsement certificate. Our
PrivacyCA recognizes certificates issued by Infineon and certificates issued
by our own ekcert create command.

aik create. implements the AIK certificate creation cycle as specified by the
TCG (see section 3.4). By default, all AIK certificates issued are saved in a
local storage.

aik validate. provides a function to validate the AIK certificates issued by our
PrivacyCA. The certificate to be checked is submitted by the client and the
PrivacyCA returns whether the given certificate is valid.

aik locate. offers a search function for retrieval of a specific AIK certificate.
The AIK label serves as the search key.

aik revoke. Provides the revocation of individual certificates. The copy in the
local storage is removed. Thus, the certificate is no longer available for
aik locate.

tcb quote. asks the PrivacyCA to quote itself. The PrivacyCA uses the TPM
to perform a quote of the system state and returns it to the attester.

Furthermore, a trusted-third-party service like our PrivacyCA should use an
end-to-end secure connection for communication with its clients. The current
implementation uses unprotected communication channels, however the service
can be easily upgraded with Transport Layer Security (TLS). To establish an
encrypted TLS-session, we propose to use a session key derived from the same
known public PrivacyCA key, which is already necessary for the aik create com-
mand.

4.4 A Reduced Compartment Image

To facilitate the functional assessment and the security analysis of the service
and its TCB, the code base should be as small as possible. Therefore, it should
only include components that are crucial for its operation. This extends to even
removing unnecessary parts of said components. It would be tempting to intu-
itively argue that fewer Lines-of-Code generally equals less defects. However, we
caution that the vulnerability density is not always linear to size. Still, we believe
that the overall reduction of code base complexity aids the goal of detecting and
understanding security issues and furthers the goal of a trustworthy service and
is thus worth exploration.

Software Layers. The TCB of our PrivacyCA service, which is written in
Java, can be grouped into the following layers: PrivacyCA service, JVM/JRE,
OS runtime support, OS kernel and the TPM. The top layer is our Java Priva-
cyCA implementation. In order for the Java bytecode to execute, a Java Runtime
Environment (JRE) with a Java Virtual Machine (JVM) is required. The JVM
makes use of the native environment to use system specific functions like graph-
ics, printing and sound. The native environment is a set of high-level application
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PrivacyCA application

JVM/JRE

OS runtime support

OS kernel

Platform / TPM

Fig. 4. The Trusted Computing Base of the PrivacyCA service consists of several layers

libraries, the C/C++ standard libraries and operating system functions. The
operating system kernel implements the low-level services.

This full software stack is able to run directly on hardware as well as in a
virtualized compartment, unaware of the surrounding virtualization layer. We
optimized the TCB for the execution of our PrivacyCA service, by starting out
with an off-the-shelf configuration and then reducing the included functionality
in the respective layers to the absolute minimum. In addition, we employed
free-licensed open source components only.

Java Environment. To provide the best possible Java compatibility and al-
low reuse of existing code we chose IcedTea4, which is based on Sun’s official
OpenJDK5. The actual subset of the Java environment which is necessary for
the PrivacyCA is small. Through the use of Java’s class loading profiling fea-
ture, we identified the crucial classes. The monitoring of the system dynamic
linker/loader ld.so produced a list of the necessary native libraries. To allow
error handling, the required set of Exception and Error were also added. This
approach reduces the Java runtime for a specific application to a more man-
ageable size in the range of 10 to 20MB. Note that this approach requires
manual intervention and reasonable completeness is only achievable for small
applications.

We add cryptographic functionality using IAIK JCE6 and TC support using
IAIK jTSS, a pure Java TSS [26].

A Small Kernel. The minimal TCB guideline requires an OS which is small
in size, yet powerful enough to support the stripped down JVM. Of the open
source operating systems, GNU/Linux is widely used and actively maintained
by a large global community. It is a suitable environment to host IcedTea. In
addition, the kernel build system allows a fine-grained selection of only those
capabilities required by our application. Our configuration consists of essential
kernel functionality and a small set of drivers to enable execution directly on
hardware or in a virtualized compartment environment (e.g. Xen).

4 http://icedtea.classpath.org/
5 http://openjdk.java.net/
6 http://jce.iaik.tugraz.at/sic/products/core_crypto_toolkits/jca_jce

http://icedtea.classpath.org/
http://openjdk.java.net/
 http://jce.iaik.tugraz.at/sic/products/core_crypto_toolkits/jca_jce
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Table 1. Overview of the size of the PrivacyCA software components

Layer Component Size [kB]
OS Kernel Linux Kernel 900
OS Runtime BusyBox 750

Baselayout-lite 61
C Libraries libstdc++ 3545

uClibc 1103
GCC Runtime 42

Java Core Stripped Icedtea JRE 8792
Java Application PrivacyCA Server Core 200

lib IAIK JCE 818
lib IAIK jTSS 312
lib TCcert 49

A Minimal Runtime. The standard glibc system library uses about 20 to
25 MB disk space on a typical installation. Additional system and shell tools
required for the boot process accumulate to over 3 MB. A component reduced
boot process is implementable by employing the compact Busybox7 toolkit. It
supplies a minimal userland program environment. A minimal set of configura-
tion files needed for starting and running a GNU/Linux system is provided by
the sys-apps/baselayout-lite package made available from the Embedded Gentoo
project8. Furthermore, we chose the uClibc9 as an alternative C library with a
drastically reduced footprint.

A Minimal PrivacyCA Compartment Prototype. The PrivacyCA service
built from the above components is bundled into a single compartment image.
Note that the privacy policy configuration is an intrinsic part of the image file.
Thus it implicitly can be measured into the TPM at compartment startup. A
current snapshot and associated source code is available for download from [19].

The size of the components in a current snapshot of our prototype are pre-
sented in Table 1. The complete compartment has a total size of approximately
17 Megabytes.

5 Use Cases

The general availability of a small-sized, versatile PrivacyCA compartment en-
ables multiple deployment scenarios for further research and gathering of prac-
tical experience. We describe multiple such scenarios, where our system archi-
tecture provides added value over conventional service implementations.

Scalability of PrivacyCAs. In a future Trusted Computing-enabled Internet a
PrivacyCA potentially has to serve millions of users. A certain pressure to employ
7 http://www.busybox.net/
8 http://www.gentoo.org/proj/en/base/embedded/
9 http://www.uclibc.org/

http://www.busybox.net/
http://www.gentoo.org/proj/en/base/embedded/
http://www.uclibc.org/
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a multitude of certificates exists as the use of more AIKs per user increases
a users anonymity to service providers. This necessitates a powerful, scalable
certification authority infrastructure that is capable of issuing and validating a
great number of certificates.

Scalability of a PrivacyCA service can be achieved through hosting many
small PrivacyCA compartments. This is done by hosting a sufficient number
of compartments in parallel using virtualization technology on a set of server
machines. The preservation of a services’ trustworthiness is of crucial importance.
The vision of such a Trusted Virtual Datacenter (TVDc) setting is an active
area of research, see e.g. [25] and [5]. We are optimistic that current TVDc
related research results can be adapted to construct a massively scaled trusted
PrivacyCA datacenter.

Compact PrivacyCA Service for Restricted or Mobile Environments.
As our PrivacyCA consists of open source components only, it is open to in-
spection and analysis by the community. It is also compact and self-contained:
once evaluated it is easy to show that any given instance has not been changed
through TC attestation mechanisms. Furthermore, self-contained services are
easy to deploy, especially for in-house PrivacyCA services of organizations which
presumably will precede Internet-wide use. The services’ compactness also allows
usage on performance restricted systems, such as trusted mobile phones [22].

Trusted Core for Large Java Applications. To increase the security of ap-
plications in the Nizza virtualization architecture, [24] suggest to extract security
critical modules out of legacy applications. Each of these modules is transferred
into a separate, trusted compartment called AppCore which features a small
TCB. We believe that our reduced Java environment is ideally suited to imple-
ment similar modifications for Java applications.

6 Related Work

To our knowledge the first experimental public PrivacyCA service10 was put into
operation by us at IAIK in 2007. It served as a basis for the advanced version
presented in this paper. In a seemingly private effort11 another PrivacyCA was
started in 2008, but with limited functional scope. Zic and Nepal [35] presented
a scenario employing a prototype PrivacyCA service but to the best of our
knowledge this service has not been released.

As an alternative to the trusted third party concept of a PrivacyCA, [6] pro-
poses Direct Anonymous Attestation (DAA). TPM implementations are avail-
able, however the required software and service infrastructure has not yet been
provided for. It remains a theoretical concept so far.

TC-enabled hardware platforms [7] support hardware enforced virtualization.
Generally, a hypervisor like the Xen [3] virtual machine monitor or the Fiasco/L4
10 http://opentc.iaik.tugraz.at/
11 http://www.privacyca.com

http://opentc.iaik.tugraz.at/
http://www.privacyca.com
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[12] μ-kernel, allows the creation, execution and hibernation of isolated compart-
ments. Modern trusted platforms [10,20,15] could in the near future employ these
hardware features, given proper virtualization of the TPM [4,25,5,21].

A significant body of research on Java virtual machines and using Java as an
operating system or a component thereof exists. Yet, Java is still evolving and
thus older results may not reflect newer research developments or requirements.
The results of [11], [34] or projects (SanOS12) are currently not maintained.
Also, mobile Java platforms such as Sun’s KVM13 may be smaller, however
their feature set is restricted and not compatible with general Java applications
or libraries. More recent efforts like JNode14 or [1] do not consider small binary
size as a goal, thus resulting in a TCB that is too large for our purposes. The Java
Kernel15 project divides JRE libraries into separate bundles, which are later
fetched at runtime as required. Reliance on a full-featured Windows environment
introduces additional overhead. Anderson et al. [2] created a small sized Xen
library OS running exclusively on top of the Xen hypervisor. Due to the lack of
basic features it is not able to run a modern Java Runtime Environment such as
OpenJDK.

7 Conclusion

This paper describes the creation of a trustworthy PrivacyCA service. We present
and follow a set of guidelines that allow to achieve practical trustworthiness
with a novel combination of state-of-the-art methods. These methods include
formal yet compilable protocol specifications, the minimization of the TCB and
the utilization of hardware-supported virtualization. Foremost, our PrivacyCA
service lays the foundation for easy attestation of its state and consequently the
privacy policy it guarantees to its clients.

The PrivacyCA is implemented as a self-contained image that can be executed
stand-alone or by the Xen hypervisor. While the image is of minimal size, it
contains a bare-bone operating system and a Java Runtime Environment. Our
process can also be applied to support other services with a highly trustworthy
environment. The PrivacyCA service protocol is partially auto-generated from a
formal state-machine description. We outline several use-cases and incorporate
the results of operating an experimental public prototype setup.

Future work will consider use cases in the context of distributed computing
and advanced certification mechanisms for virtual TPMs. An integration of the
newest TCG credential type, a unified credential [33], may stimulate new work
flows. We also desire to work on closing the gap between automatic generation
of an implementation and the formal security analysis of network protocols and
to apply this to future extended PrivacyCA interfaces.

12 http://www.jbox.dk/sanos/
13 http://java.sun.com/products/cldc/wp/KVMwp.pdf
14 http://www.jnode.org/
15 http://java.sun.com/javase/6/6u10faq.jsp

http://www.jbox.dk/sanos/
http://java.sun.com/products/cldc/wp/KVMwp.pdf
http://www.jnode.org/
http://java.sun.com/javase/6/6u10faq.jsp
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Abstract. A Trusted Platform Module (TPM) offers a number of basic
security services which can be used to build complex trusted applica-
tions. One of the main functionalities of a TPM is the provision of a
protected storage, including access management for cryptographic keys.
To allow for scalability in spite of the resource constraints of the TPM,
keys are not stored inside the TPM, but in encrypted form on external,
untrusted storage. This has the consequence that the actual key storage
is not under control of the TPM, and it is therefore not possible to revoke
individual keys. In this paper we introduce two basic methods to imple-
ment key revocation without major changes to the TPM command set,
and without inhibiting backwards compatibility with the current speci-
fication. Our methods introduce no overhead for normal operation, and
a reasonable small effort for managing revocable keys.

1 Introduction

One of the basic functionalities of a Trusted Platform Module (TPM) as proposed
by the Trusted Computing Group [9] is the secure storage of cryptographic
encryption and signature keys. By protecting these keys with hardware measures,
they cannot easily be removed in offline attacks or altered through the operating
system. To reduce the amount of non-volatile memory required inside the TPM,
it acts as an access control device for externally stored keys rather than storing
all keys itself. Only the storage root key (SRK ) remains permanently in the
TPM and is used to encrypt all other externally stored keys. This strategy offers
the same security level as if all keys were stored internally.1 This design choice
allows to reduce the production costs of a TPM, but introduces the problem
that the TPM is not able to reliably destroy externally stored keys once they

1 The TPM does store other keys for internal use, especially the endorsement key;
however these keys do not play a role in the context of the present paper.
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get compromised. Thus, if an attacker once acquires access rights to a TPM-
maintained key and an encrypted version of that key, he can always access that
key through the TPM hardware.

One secure way to prevent a compromised key from being used in the future
is to delete the storage root key. However, this makes all non-migrateable keys
maintained by the TPM unusable, which may be unacceptable in applications
where a single TPM needs to manage a large number of keys. To alleviate the
problem, a mechanism to revoke TPM keys is required; however, such a mecha-
nism is not provided by the TPM specification of the Trusted Computing Group.

In this paper, we analyse two ways of implementing a TPM key revocation
scheme and propose appropriate extensions to the TPM specification. It seems
unavoidable to make changes to the TPM command set, as some additional veri-
fication of the validity of a key is required inside the TPM. Our methods attempt
to minimise the amount of modification required, and can be implemented in a
way that does not affect the compatibility of existing applications. In particu-
lar, we propose two revocation schemes: one is based on blacklisting of revoked
keys, while the other one employs a whitelist approach. Both approaches require
additional communication with and computation in the TPM: either loading a
key has a communication complexity linear in the number of revoked keys, or re-
voking a key has a communication complexity linear in the number of revocable
keys. In the last part of the paper, we propose to use a combination of blacklists
and whitelists to ensure practicability of the key revocation scheme.

While our approach is applicable to all keys maintained by the TPM, the
main application of key revocation lies in authentication keys for external ser-
vices. In this application it is infeasible to guarantee that a party whose ac-
cess is to be revoked can be banned from accessing the TPM—for example
because he still uses the platform and is just banned from using a single ser-
vice, or because an aggressive attacker may gain illicit access to a machine (the
reason why keys where stored in the TPM in the first place). Thus, a mech-
anism is required to block the use of single keys, while other authentication
keys should remain functional. In addition, a variant of the proposed protocol
allows to change the authorisation information required to access a TPM key
in a way that reliably invalidates old authorisation information for an attacker
that holds a copy of the old TPM information; this allows for a substantially
more secure key management for any application using TPM keys with a long
lifetime.

2 Related Work

Efficient key revocation has been studied in various settings, especially in the
context of public key infrastructures [4], or in wireless sensor networks [10]. Those
applications show little connection to the TPM case though, as they usually deal
with a large number of networked participants. There is relatively little work on
TPM key revocation; while the Trusted Computing Group spent quite some
effort on the revocability of TPMs [1] and some work has been done on key
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management issues such as key migration [2], we are not aware of any schemes
that allow to revoke individual TPM keys.

Some authors considered TPM-based applications that share some similarities
with the key revocation problem. In [3], limited trusted memory is used to store
a database in untrusted storage. As in our application, it is important that an
attacker cannot replay an old version of the database: in some sense, the TPM
key storage can be seen as a database of keys. Sarmenta et. al. [5] propose
efficient ways to implement count objects based on a TPM by using hash trees.
An externally stored counter poses similar challenges as an externally stored
key: it must not be possible to set the counter to an old value, while a key must
contain a protected flag that marks him as valid or invalid. While it is possible
to translate the hash-tree approach to key management, we believe that the
problem of key revocation can be solved in a simpler way that fits better into
the TPM architecture.

3 Basic Key Revocation Protocol Suite

Key revocation can be implemented either with a blacklist or a whitelist ap-
proach. While blacklists allow for an efficient (constant time) revocation of
keys and introduce a performance penalty once a key is loaded into the TPM,
whitelists provide fast (constant time) access to keys, but require a costly revo-
cation operation.

A blacklist is an externally stored list of keys that have been revoked; integrity
of the list is assured through a hash chain. The list is bound to the TPM by a
cryptographic key and a register, which securely stores the last element of the
hash chain within the TPM. Whenever a key is revoked, a new entry to the
blacklist is created, and the TPM updates its internally stored hash. Whenever
a key is loaded into the TPM, the blacklist is fed sequentially through the TPM,
its integrity is checked and its entries are compared to the key to be loaded. If
the key is on the blacklist, the TPM aborts the loading process. Thus, the use
of a key gets expensive once a large number of keys are revoked.

In contrast, in a whitelist approach, a special whitelist blob, containing a
(keyed) hash of a counter and the key, is produced for every key that is not
revoked. Due to the use of a keyed hash, the blob is only accessible to the
TPM. Inside the TPM, we need one secure counter. A key is only valid if the
counter value stored in the associated whitelist key blob matches the internal
TPM counter. To revoke a key, the TPM increments its internal secure counter
and updates (re-creates) all non-revoked whitelist blobs by incrementing the
contained counter value. This approach allows for very efficient (constant time)
verification of the revocation status of a key. However, the revocation process
itself is relatively complex, as the TPM needs to re-authenticate every single
whitelist key blob corresponding to a non-revoked key.

In both approaches, we change the implementation of the TPM LoadKey com-
mand. Furthermore, we require an additional command, which is used to pass
the entire black- or whitelist through the TPM in a sequential manner, either
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during use or during revocation of the key. In the following sections, we provide
implementations for both the blacklist and whitelist approach. For simplicity,
the algorithm descriptions show only the input/output parameters which are
accessed in the algorithms; additional parameters are given in the TPM specifi-
cation [8].

For efficiency and compatibility reasons, we do not make every key revocable
by default. Rather, on generation of a key, a user can choose whether a key
should be revocable or not. This way, old applications can use the TPM without
any modification, and the data structures needed for revocation information do
not need to be bloated with keys that are not required to be revocable.

4 Blacklist Implementation

In the blacklist approach, we store an authenticated list of revoked keys in exter-
nal memory. The list of keys is kept in the form of a hash chain, which allows easy
authentication, sequential access and addition of new revoked keys. Furthermore,
we securely store the last element of the hash chain (called TPM.lastHash in the
sequel) inside the TPM for verification purposes; thus, only a small amount of
secure persistent storage is required. Note however, that the blacklist must be
stored on an external device in a way that is not accessible to an attacker, since
malicious modifications (e.g., integrity changes or deletions) invalidate the whole
list and allow denial of service attacks, as all revocable keys cannot be loaded in
the future once the integrity of the blacklist is broken.

In order to keep the option of using non-revocable keys for less critical tasks
without any performance penalties, we add a special field revocable to each key
blob generated by the TPM. Once a key is loaded, the TPM checks the flag
and only executes the standard key loading process if the key is marked as non-
revocable. The revocable flag can be realized by introducing the new mask value
0x00000016 to the TPM KEY FLAGS structure [6]. As not all possible mask values
are used in the current version of the specification, this can be done with minimal
effort. Since the TPM KEY FLAGS structure is not protected by encryption, the flag
also needs to be integrated to the TPM STORE ASYMKEY structure [6] to ensure its
consistency and integrity.

In addition, another flag needs to be added to the TPM STORE ASYMKEY struc-
ture. This flag (called checked in the sequel) indicates whether a revocable key
has been validated against the blacklist. This flag has the same characteristics
as a semaphore and is used to deliver state information between the command
which loads the key (TPM LoadKey) and a new TPM command that validates
the loaded key against the blacklist (TPM ShowRevListElement, see below for
the implementation).

Structure of the blacklist, Setup of the system. The blacklist contains the public
keys of all revoked keys, authenticated by the TPM and stored in the form of a
hash chain. For authentication we use the storage root key (SRK). Alternatively,
a different key which is a direct child of the SRK may be utilized; this requires
both the SRK and an additional key to be loaded into the TPM. However, since
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the TPM only possesses a very limited number of key slots, this concept may
deplete the TPM’s available key-slots and restrain the ability to load additional
keys. Every element rev element of the hash chain has the following structure:

〈key, Hash(REVOC LABEL‖ key ‖ SRK‖ prevHash)〉 ,

where key denotes the public key that is revoked, SRK denotes the private
storage root key, REVOC LABEL is a label that indicates that the hash value is
intended solely for the construction of a revocation list, and prevHash denotes
the hash of the previous entry in the revocation list (the latter is set to a constant
value 0k for the first list element). The usage of SRK in the hash makes the hash
keyed: only the TPM, which is owner of the SRK, is able to generate hashes and
verify hash values. The elements of the hash chain can easily be stored in a new
TPM structure TPM REV ELEMENT of the following type:

typedef struct tdTPM_REV_ELEMENT {
TPM_STRUCT_VER ver;
TPM_STORE_PUBKEY pubKey;
TPM_REV_ELEMENT_HASH Hash;
} TPM_REV_ELEMENT;

The blacklist is managed by a software stack; however, only the TPM is able to
operate on the blacklist.

To initialize the revocation mechanism, the hash TPM.lastHash (which is
securely stored within the TPM) is set to 0k, indicating the absence of a revoca-
tion list. This needs to happen whenever a new SRK is defined, i.e., as a part of
the TPM TakeOwnership command. Furthermore, the commands for generating
keys (such as TPM CreateWrapKey) have to be modified in order to initialize the
required fields revocable and checked, where the latter one is set to false by
default.

Revocation of a key. A key can be revoked by a call to the new TPM command
TPM RevokeKey: the command takes the handle keyHandle of the key to be
revoked and a handle srkHandle to the SRK. Thus, we assume that a key is
available when it is revoked (this excludes the possibility of revoking keys which
are not present). The command simply generates the new entry of the hash chain
using the hash of the last revocation list element that is stored securely within
the TPM. Furthermore, it updates this hash and returns the new revocation list
entry (see Algorithm 1). Note that the command does, for performance reasons,
not verify the integrity of the existing hash chain. Moreover, it does not check
whether the hash chain already contains an entry for the key in question. We
assume that all our commands are executed inside an established authorisation
session (e.g., TPM OSAP or TPM OIAP) [7]. The purpose of this session is to verify
authorisation and to establish an authorisation handle between the TPM and the
software stack for the different keys. Since some of the commands introduced by
us require authorisation of multiple keys with different authorisation knowledge,
it is necessary to establish multiple authorisation sessions to the TPM. This is
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Algorithm 1. Algorithm TPM RevokeKey
Input : srkHandle, keyHandle

Output: returnCode, revElement

newHash := Hash(REVOC LABEL || keyHandle.pubKey || SRK || TPM.lastHash)
TPM.lastHash := newHash
return RET REVOKE KEY ACK, newHash

similar to the TPM ActivateIdentity command that requires two concurrent
OSAP sessions (Cf. [8], pp. 153). Note that the data-structures used here do not
directly allow to maintain a TPM-key, but replace its authorisation information
(i.e., blacklist the old version and bind the key to a new one); however, this can
easily be added if such a functionallity is desired.

Usage of a TPM key. Every TPM key that is used in an application must
be loaded by the function TPM LoadKey. If the loaded key is revocable it can-
not be directly used (key.revocable is set to true): The TPM rather has to
check whether the key is present on the revocation list. Thus, the TPM re-
quires the application (or the TSS) to execute a number of calls to the function
TPM ShowRevListElement, which sequentially feeds all entries of the revocation
list through the TPM. This function checks the integrity of the hash chain and
verifies that the key to be loaded is not present on the blacklist. The function
aborts with failure (RET FAIL) if the hash chain is invalid, requests further calls
until the end of the hash chain is reached (RET REVOC) or returns RET OK. In
the latter case it sets a flag indicating that the key is ready to use. Finally, to
terminate the process of loading a key, another call to TPM LoadKey is required,
which returns the key handle for subsequent use. Note that the revocation test
is only performed when a key is loaded into the TPM, not every time it is used.
It is thus possible that a key got revoked, but still resides inside the TPM in
usable form. To alleviate the problem, it may be necessary to flush all revoked
TPM keys from the TPM cache; however, this incurs a performance penalty.

Algorithm 2 shows the necessary changes to the TPM LoadKey command. If
the key inKey refers to a revocable key, it is first checked whether the revocation
list has already been tested against the given key (inKeyPlain.Keyflags.checked
is set to true); in this case, the command performs all operations that are
normally performed when loading a key; otherwise the encrypted inKey structure
is returned along with the return code RET REVOC indicating that the key needs
further processing by the function TPM ShowRevListElement.

The implementation of the command TPM ShowRevListElement is given in
Algorithm 3. It takes a handle to the SRK, the encrypted inKey structure re-
turned by TPM LoadKey, one element of the revocation list, a handle to the parent
key, and information on the authorisation session (one Nonce of the authorisa-
tion session for the parentHandle). It is necessary to integrate information of
the authorisation session to ensure that the check against the blacklist is fresh.
Thus, to successfully load a revocable key, the TPM LoadKey command must use
parts of the same authorisation data as TPM ShowRevListElement.
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Algorithm 2. Additional performed actions of the TPM LoadKey command
Input : parentHandle, inKey, Nonce

Output: returnCode, inKeyHandle, inKey

inKeyPlain := Decrypt(inKey, parentHandle)
if inKeyPlain.Keyflags.revocable = true then

if inKeyPlain.Keyflags.checked = (true ||Nonce ) then
Continue as denoted in TPM specification
return TPM SUCCESS, inKeyHandle

else
inKeyPlain.Keyflags.checked := (false ||Nonce)
inKey = Encrypt(inKeyPlain, parentHandle)
return RET REVOC, inKey

else
Continue as denoted in TPM specification
return TPM SUCCESS, inKeyHandle

The algorithm validates the hash chain, assures that all subsequent calls are
performed with the same public key and makes sure that the key is not present
on the revocation list. For this purpose, the TPM needs to internally store two
hash values: the hash (prevHash) of the previously validated blacklist entry and
a hash of the public key (previnKey). Both can be realized as additional fields
of the TPM STANY DATA structure. Once the end of the hash chain is reached
(this can be realized by comparing TPM.lastHash with the hash of the current
revocation entry), the TPM subsequently checks whether the given public key
corresponds to the private key stored in the inKey structure. If this is the case,
the label inKeyPlain.Keyflags.checked is changed and the inKey structure is
returned.

Authorisation. It is not straightforward to decide which party—the TPM owner,
the key owner, or even an external party—should have the right to revoke an
individual key. The blacklist approach can easily be extended to allow each of
the above choices; a simple modification of the TPM RevokeKey command allows
to implement the desired authorisation for key revocation, and even to decide
at key creation who is allowed to revoke that particular key. An unauthorised
party then simply is not able to create the corresponding blacklist entry.

Consolidation. The effort to load a revocable key increases linearly with the
size of the blacklist, as all entries have to be passed through the TPM before
a revocable key can be used. It is therefore desirable to have a consolidation
protocol which removes the contents of the blacklist: the consolidation protocol
generates a new SRK in parallel to the old one, copies all non-revoked keys into
a new key tree under the new SRK, and then deletes the old SRK. As all old
key blobs are useless without the old SRK, and only non-revoked keys will be
transferred, the blacklist can be deleted and the TPM is again in a state with
an empty blacklist.
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Algorithm 3. Algorithm of the TPM ShowRevListElement command
Input : srkHandle, revElement, parentHandle,

inKey, Nonce

Output: returnCode, inKey

if undefined(prevHash) then
prevHash=0k

curHash := Hash(REVOC LABEL || revElement.pubKey || SRK || prevHash)
if (curHash ! = revElement.Hash) || (revElement.pubKey = inKey.pubKey) then

return RET FAIL

if not(undefined(previnKey)) then
if previnKey != Hash(inKey.pubKey) then

return RET FAIL

previnKey := Hash(inKey.pubKey)
prevHash := curHash
if curHash = TPM.lastHash then

inKeyPlain := Decrypt(inKey, parentHandle)
if inKeyPlain.Keyflags.checked = (false ||Nonce) then

if inKeyPlain contains public key corresponding to previnKey then
inKeyPlain.Keyflags.checked := (true ||Nonce)
inKey := Encrypt(inKeyPlain, parentHandle)
return RET OK, inKey

else
return RET FAIL

else
return RET REVOC

However, this approach encounters a number of practical problems. A TPM
allows to store keys in a tree structure (e.g., the SRK may encrypt a user key
which then itself encrypts a signature key). Thus, it may happen that a non-
revocable key is used to protect a revocable key. In this case it is important to also
change the non-revocable key to prevent it from being used to decrypt the old,
revoked key once the blacklist is cleaned. Another problem is that the keys may
have different access rights, and the appropriate key owners may not be available
to authorise usage of the keys; the consolidation protocol thus would need to
circumvent all access control mechanisms, which leads to additional complexity
in the implementation. Finally, the key tree needs to be presented to the TPM in
the right order, as parents need to be transferred before their children. While it
is possible to implement a consolidation protocol that takes all above-mentioned
problems into account, the added complexity may not be worth the effort. In
situations where keys need to be revoked very often, a different strategy based
on whitelists (as described in the next section) is much more favorable.

Hash trees. When the number of revoked keys is expected to be large, another
strategy to limit the efforts of loading a key can be employed. Instead of a hash
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chain, the blacklist can be arranged in a tree structure. In this case, we first
compute a short (e.g., 64 bit) hash of the key to be loaded, which determines
the position of the key within the hash tree in the natural way: the hash is
interpreted as a binary string, where each bit indicates for each level of the tree
whether to continue in the left or right subtree. Every leaf node stores a hash
of the form Hash(REVOC LABEL‖ key ‖ SRK), while every non-leaf node stores a
hash of both children. Note that for efficiency reasons we do not store the entire
tree, but omit subtrees that contain only empty leaf nodes (by replacing the
entire subtree with a special node). Furthermore, the hash contained in the root
of the tree is stored within the TPM.

To revoke a key, we compute the short hash of the public key which determines
its position within the hash tree; subsequently, we update the path from this leaf
to the root and re-create all required hashes. The new root hash of the tree is
copied to the TPM. When loading a key, we have to determine whether the key
is present within the hash tree. Note that, due to the fact that we know the
position where a key is stored in a tree, we only need to examine one path in
the tree, namely the path from the root node to the position indicated by the
short hash of the key. If the integrity of this path is ensured and the key is not
present in the leaf node, the key can be loaded. In this implementation both the
use and the revocation of a key requires logarithmic effort.

5 Whitelist Implementation

The blacklist approach described above has the disadvantage that with an in-
creasing number of revoked keys, the effort of loading a revocable key into the
TPM increases as well. If a large number of keys needs to be revoked—for exam-
ple, because a policy requires frequent key updates, or there is reason to believe
that the platform has been temporarily compromised—this can quickly render
usage of keys very cumbersome. A consolidation protocol can resolve this issue,
but is difficult to implement. Therefore, it is worthwhile to consider the opposite
approach, and implement revocation through a whitelist of allowed keys.

In this case, the TPM creates a separate whitelist blob for every revocable
key. The whitelist blob contains a hash of the corresponding key and a counter
indicating the current version of the whitelist, i.e., the number of revocation
operations performed. The TPM maintains a secure counter TPM.revCounter
which stores the current version number. A key is only declared valid if the
counter value stored inside its associated whitelist blob is equal to the counter
value TPM.revCounter. Whenever a key is revoked, the counter in all whitelist
blobs corresponding to non-revoked keys must be incremented to keep them
up-to-date.

As opposed to the key blob itself, the whitelist blobs are not part of the
key hierarchy; rather, they are encrypted and authenticated with a dedicated
key, called the whitelist root key (WRK), which is situated directly under the
storage root key. This allows to update the whitelist without running into the
same access control problems encountered in the blacklist consolidation case,
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Algorithm 4. Additional actions performed by TPM CreateWrapKey
Input : parentHandle, wrkHandle, keyInfo

Output: returnCode, wrappedKey, whitelistblob

Set wrappedKey.Keyflags.revocable according to keyInfo
Generate key as denoted in specification
if keyInfo.Keyflags.revocable = true then

whitelistblob :=
Hash(REVOC LABEL || keyInfo.pubKey ||WRK ||TPM.revCounter)

return TPM SUCCESS, wrappedKey, whitelistblob

as an update to the whitelist (a key revocation or creation of a whitelist blob
for a new key) only requires access rights to the WRK. Using a separate WRK
also allows for external whitelist updates: the WRK may be migrated onto a
trusted (external) device, which is then capable of computing a new whitelist
without any involvement of the TPM; the only operation required to hap-
pen inside the TPM is the counter update. This also resolves another prob-
lem encountered in the blacklist consolidation protocol: if a key is missed dur-
ing the update, it is still possible to generate the new whitelist entry after the
transformation.

Key creation. Key creation commands remain largely unchanged, except that a
whitelist blob needs to be returned in conjunction with the key blob (note that
this operation requires the WRK to be loaded into the TPM). The necessary
modifications to the TPM CreateWrapKeyCommand are shown in Algorithm 4.

Use of key. When a key is loaded, its whitelist blob must be presented to the
TPM as well. The TPM hashes the public key together with the WRK and the
current counter TPM.revCounter and compares the hash to the whitelist blob.
Only if this hash is correct, the algorithm proceeds as in the specification (Al-
gorithm 5 shows the implementation). Thus, preparing the key for use requires
only constant time, independent of the size of the whitelist.

Algorithm 5. Additional actions performed by TPM LoadKey
Input : parentHandle, wrkHandle, inKey, whitelistblob

Output: returnCode, keyHandle

inKeyPlain := Decrypt(inKey, parentHandle)
if inKeyPlain.Keyflags.revocable = true then

hashval := Hash(REVOC LABEL || inKey.pubKey ||WRK ||TPM.revCounter)
if hashval ! = whitelistblob then

return RET FAIL

Continue as in the specification
return TPM SUCCESS, keyHandle
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Algorithm 6. Algorithm of the TPM WhitelistTransformKey command
Input : wrkHandle, parentHandle, revokedHandle, whitelistblob

Output: returnCode, whitelistblob

hashval :=
Hash(REVOC LABEL || revokedHandle.pubKey ||WRK ||TPM.revCounter)

if hashval = whitelistblob then
whitelistblob :=

Hash(REVOC LABEL || revokedHandle.pubKey ||WRK ||TPM.revCounter+1 )
return TPM SUCCESS, whitelistblob

else
return RET FAIL

Revocation. To revoke a key, all whitelist blobs of non-revoked keys need to be
updated (i.e., their counter values need to be incremented). This can be per-
formed with the command TPM WhitelistTransformKey (Algorithm 6), which,
after appropriate authorisation, takes a key blob, increments the counter value
stored in it, and returns a new blob. Once all whitelist elements are transferred,
TPM WhitelistCommit (Algorithm 7) must be executed, which increments the
whitelist counter within the TPM. From this point on, the TPM only accepts
whitelist blobs with the new counter value.

As the whitelist blob does not need to be protected by the same access con-
trol mechanisms used for the main key blob, updating the corresponding blobs
does not require special authorisation. This is necessary to allow revocation of a
key by a party that does not have access rights to other keys. However, calling
TPM WhitelistCommit is critical for the functioning of the TPM (a wrong call
invalidates all keys and may result in denial-of-service attacks). It is thus re-
quired to have owner authorisation to perform a call to TPM WhitelistCommit.
In addition, we recommend to make WRK exportable, so it can be stored
on an external device. This allows keys to be transferred even after a call to
TPM WhitelistCommit, and even to revoke keys on a temporary basis.

Algorithm 7.. Algorithm of the TPM WhitelistCommit command
Input : wrkHandle

Output: returnCode

TPM.revCounter++
return TPM SUCCESS

6 Combined Black- and Whitelists

As noted above, the black- and the whitelist approaches both optimise the ef-
ficiency of one of two important functions. The blacklist implementation allows
key revocation with constant effort, but loading a revocable key into the TPM
needs communication that is linear in the number of already revoked keys. It
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is possible to remove the blacklist through a consolidation protocol; however
due to authentication issues this protocol is unjustifiably complex. The whitelist
approach allows to very efficiently load keys into the TPM; it only requires to
store a very small additional whitelist blob. The price to pay is an expensive
revocation (the effort is linear in the number of revocable keys in the system).
Furthermore, all key blobs must be available during revocation, unless an ex-
ternal trusted party is allowed to re-authenticate keys. The whitelist and black-
list approaches also differ in flexibility of authorising a key revocation. In the
blacklist approach, the process of revoking a key needs the TPM to create a
new blacklist entry. However, it is possible to use any desired scheme to autho-
rise that action, and even different schemes for different keys. In the whitelist
model, in contrast, an item has to be created for all keys but the one to be
revoked, which calls for restricting the right to perform key revocation to the
TPM owner.

A pragmatic approach to combine the advantages of both schemes is to use
both of them in parallel. Essentially, we suggest to use the blacklist approach for
normal key revocation as described above, but additionally maintain a whitelist
to efficiently consolidate the blacklists. Thus, if a key is revoked, it is first put
on the blacklist and the TPM will refuse to load each key on the blacklist. In
addition, during the creation of a revocable key, a whitelist blob is created, and
the TPM will also refuse to load any key that has no valid whitelist blob. If at any
time the blacklist becomes too long (and thus, loading a key becomes inefficient),
the TPM owner can consolidate the blacklist by creating a new whitelist for all
keys that are not on the blacklist.

This approach requires a slightly different TPM WhitelistTransformKey com-
mand, as an additional test—whether the key is present on the blacklist—must
be performed. If the key is on the blacklist, no new whitelist blob is created,
and the transform command instead returns an error. The second modification
is that the TPM WhitelistCommit command also resets the TPM internal hash
value for the blacklist to 0k. By using this approach, we gain the best of both
worlds: revoking a key can be done with constant effort, while the blacklists can
stay short enough to allow for efficient key usage. Furthermore, the expensive
whitelist update operation only needs to be performed infrequently. Also, the
scheme enables to use flexible authorisation methods to determine who is al-
lowed to revoke a key. The only commands that necessarily need owner rights do
not revoke keys themselves, but only rearrange already revoked keys to increase
performance.

7 Conclusions

We have investigated two complementary approaches to implement TPM-based
key revocation. While both seem to be reasonably practical on their own, the
combination can achieve key revocation with a very low overhead and with min-
imal changes to the TPM specification. We have shown that both concepts can
be realized without breaking backwards compatibility. In addition, our proposed
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scheme is very flexible in terms of authorising the revocation: depending on the
use-case, keys can be revoked by the key owner, the TPM owner, or even by
external parties.
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Abstract. During many crises, access to sensitive emergency-support
information is required to save lives and property. For example, for ef-
fective evacuations first responders need the names and addresses of
non-ambulatory residents. Yet, currently, access to such information may
not be possible because government policy makers and third-party data
providers lack confidence that today’s IT systems will protect their data.
Our approach to the management of emergency information provides
first responders with temporary, transient access to sensitive informa-
tion, and ensures that the information is revoked after the emergency.
The following contributions are presented: a systematic analysis of the
basic forms of trusted communication supported by the architecture; a
comprehensive method for secure, distributed emergency state manage-
ment; a method to allow a userspace application to securely display data;
a multifaceted system analysis of the confinement of emergency informa-
tion and the secure and complete revocation of access to that information
at the closure of an emergency.

Keywords: Information Assurance, Computer Security, Policy Enforce-
ment, Secret Protection (SP), Transient Trust, Emergency Response.

1 Introduction

In a crisis, first-responders can often save lives and limit damage if they have
access to certain sensitive or restricted information. Examples of such emergency
information are: building floor plans, schematics for infrastructure or transit
systems in a city, or medical records of victims. However, government policy
makers and third-party data providers lack confidence in the ability of emergency
IT systems to protect their data relative to confidentiality, sensitivity, privacy,
liability, and other concerns, and are unwilling to release such data, even on a
temporary basis, to civilian first responders[1].
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In this paper, we address the essential confidentiality, integrity, access con-
trol, revocation and data containment capabilities needed in future emergency
response systems. We show how a platform based on commercial off-the-shelf
technology can be used for the secure management of emergency information
and we detail how it can (1) communicate securely with a trusted authority,
first responders, and information providers; (2) manage distributed emergency
state with high integrity and assurance; and (3) enable emergency access to sen-
sitive information while strictly maintaining its confinement as well as revoking
access with high assurance.

In the sections that follow, we show how a handheld Emergency Device, the
E-Device, utilizing the latest generation separation kernel technology [2,3] and
state-of-the-art hardware security concepts [4], can be a trusted foundation for
secure crisis response.

2 Secure Platform Architecture

The secure platform architecture of the E-Device (see Fig. 1) is based on a
commercial general-purpose processor (nominally an x86) enhanced with the
Authority-Mode Secret Protection (SP) architecture features [4], a Trusted Man-
agement Layer (TML) — comprising a least privileged separation kernel [2], and
a security services layer that virtualizes certain separation kernel resources —
and trusted software programs that run in one of the TML-provided partitions.
These hardware/software components, with the addition of a Trusted Software
Module (TSM) application supported by SP, form the Trusted Computing Base
(TCB) for our E-Device.

2.1 Secure Software Stack

The trusted software for the E-Device utilizes Intel x86 privilege levels to protect
the resources in each level from the subjects in less-privileged domains. The two
most privileged layers are collectively referred to as the TML, while the next most
privileged layers house a trusted executive and the Trusted Path Application
(TPA).

The TML provides software-based security enforcement, and is supported by
security features of the underlying Intel x86 and SP hardware. While support for
many different client OSes is not the focus of this research, the TML is designed
to provide to the commodity OS a standard execution environment with respect
to platform hardware features.

The TML manages all system hardware resources (e.g., memory, devices,
processors, etc.). It reserves some resources for its own use, and exports other
resources in the form of processes, memory segments, I/O devices, raw disk vol-
umes, segment volumes, etc. The TML separates all exported resources into dis-
tinct partitions, governs the flow of information between partitions and between
individual exported resources, and protects raw disk volumes by encryption.

The TML creates three types of partitions: Emergency, Trusted and Nor-
mal. A normal partition and an emergency partition each run a commodity
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Fig. 1. Security architecture instantiated for an emergency scenario

(untrusted) OS. The Trusted Partition runs an extremely compact trusted ex-
ecutive. Information flow rules and partition definitions provided to the TML
define a partial ordering of flows between partitions, indicative of a multilevel
security (MLS) policy, and corresponding security labels may be associated with
partitions.

The TML manages interactive user sessions through what is referred to as
partition focus, whereby the user can interact with one partition at a time, via
the system keyboard and screen.

For applications in the trusted partition, the trusted executive provides simple
OS-like support. The trusted executive manages passwords and provides user
authentication services. The TPA is invoked by pressing what is known as the
secure attention key (SAK), such as Ctrl-Alt-Delete. When the TML detects the
SAK, it changes partition focus to the Trusted Partition, which starts the TPA.
The TPA provides a variety of other security services to the user, including:
setting the security sensitivity label for a session, changing a password, and
shutting down the E-Device.

2.2 Trusted Software Protected by SP Hardware

A novel aspect of our architecture is provided by SP’s Trusted Software Module
(TSM). TSMs have two critical characteristics: they are protected from observa-
tion and modification by non-TSM software (including the OS), and they have
exclusive access to SP crypto-transforms and to two processor-resident data
registers.

A TSM is defined to be code that is executable in a special processor mode
called Concealed Execution Mode (CEM) that is entered via the Begin CEM
instruction. Once in CEM, special SP instructions can be executed — SP derive,
Secure Load, Secure Store, and End CEM — and special SP registers can be
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used — Device Root Key (DRK) and Storage Root Hash (SRH). Other CEM-
only instructions are provided to read and write the SRH register. Also, when
in CEM, the processor checks the integrity of each instruction cache line of the
TSM with respect to compiled-in signatures based on the DRK.

The Secure Load and Secure Store instructions cause memory locations to
be tagged as TSM-only while they reside in on-chip caches, and to be auto-
matically encrypted and hashed when they move to off-chip memory to prevent
unauthorized observation or modification. CEM execution is suspended during
an interrupt and is automatically resumed upon return, with data in processor
registers protected from the OS by the hardware.

The protection of TSM code can be viewed as being independent from the
protection of the underlying OS, as follows. The trustworthiness of a program is
generally understood to be limited by the trustworthiness of the programs that
it depends on. The TSM, which runs in the Emergency Partition “on top of” an
untrusted OS, does not make calls to the OS (i.e., and can not, since the OS is
not a TSM) and so a TSM is not “functionally” dependent on the OS, and can
actually be more trustworthy than the OS itself.

SP stores two master secrets in non-volatile registers on-chip, which provide
the roots of trust for the E-Device’s operations. The DRK, which never leaves
the processor, protects the integrity of TSM code and is also used by SP derive
to cryptographically derive new keys for the TSM. The SRH can only be read
or written by the TSM, and provides it with a small amount of on-chip storage,
which can be used to store the output of crypto-hashing operations for protecting
larger persistent data structures such as key chains (a hierarchy of keys) and the
policies regarding use of those keys. This allows the TSM to moderate all access
to the protected data and enforce the corresponding policies on each access.

The Authority can communicate with the E-Device during operation, pro-
viding updates to keys and policies in its persistent secure storage and to send
new encrypted data to the E-Device. When establishing a secure communication
channel, the parties use derived keys. Therefore, the E-Device’s ability to gener-
ate those keys and communicate demonstrates that it still has the correct DRK
value and signed TSM code, and serves as an implicit authentication, since only
the E-Device and the Authority know the DRK.

3 Information Sharing during an Emergency

Our concept for emergency response involves a network of participants (the
Emergency Network), including a coordinating Authority, the expected first
responders, and third party data providers who maintain information that is
expected to be useful during an emergency. The Authority manages the distri-
bution of keys and policies via its own secure computing facility, and coordi-
nates emergency response for a given crisis, including alerting all entities on the
Emergency Network of the emergency and disseminating emergency data to first
responders.
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Fig. 2. Emergency Network Architecture

While E-Devices may be owned by various emergency network participants,
their correct configuration is the responsibility of the authority, and they will be
operated in the field by first responders. Fig. 2 shows the emergency network.

The operation of the Emergency Network is governed by prearranged organi-
zational security policies [5]. These include the lattice-based MLS policy enforced
by the TML and the access policy enforced by the TSM in the application domain.

3.1 Emergency Operation

The Authority maintains a binary global emergency state, i.e., ON or OFF, and
notifies the authorized E-Devices of any state changes. The E-Devices may grant
access to emergency information if the state is ON, and must deny access when
OFF. Secure synchronization of the global state is discussed below.

When an emergency is declared, the Authority sends state-change notifica-
tions to the E-Devices. Once the TML interprets the message, it prompts the
user to access the Emergency Partition, via the TPA.

While the emergency is in effect, the user can access any active partition the
user is cleared to see, including the preconfigured Emergency Partition. Within
the Emergency Partition, finer granularity application-specific access controls on
emergency data may be provided by an application domain Emergency Manage-
ment TSM.

When the emergency is over, the Authority announces a change to the global
emergency state, prompting the TML to start the emergency closure process. It
displays an end-of-emergency message which prompts the user to change focus
to the Trusted partition (to be completed within a configurable period), revokes
access to the Emergency Partition, and restores the Emergency Partition to its
original state.
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4 New Security Mechanisms

This section presents a systematic analysis of the available secure communica-
tion channels and describes mechanisms for completing the trust chain from the
remote Authority to the E-device, and to its Emergency Partition and display,
including: emergency state management, trustworthy display and mechanisms
for revocation of sensitive data.

4.1 Secure Communication Channels

A secure communications protocol protects against message content disclosure
and modification, as well as traffic analysis and insertion or deletion of packets.

We consider a channel to be a secure channel if it uses a secure protocol, the
protocol is implemented correctly, and the channel endpoints are secure against
both the modification of their behavior and against unauthorized disclosure of
channel and keying information.

The E-Device, while simple, supports several different forms of secure commu-
nications channels, which provide emergency systems designers with flexibility in
constructing new systems. Three basic channels are shown in Fig. 3: the Trusted
Channel (A), the TSM-TSM Channel (D), and the Trusted Path (B).

A Trusted Channel (A) is a secure channel between two TCBs (e.g., a TML
or a trusted system) [6]. A TSM-TSM Channel (D) provides cryptographic as-
surance against message disclosure and modification between application TSMs,
e.g., on different machines. A Trusted Path (B) is a secure channel between a
user and the TML on the E-Device, implemented by the TPA.

A Remote Trusted Path (E) is a secure channel between a remote user (e.g.,
the Authority) and a TML, which is constructed by combining a Trusted Path
with the remote end of a Trusted Channel. An Extended Trusted Channel (F)

Fig. 3. Types of Channels
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is a secure channel created by extending the I/O interface of a Trusted Channel
to the TML interface of a given partition, which allows applications to securely
interact with a remote TCB.

A Trusted Application Display (C), discussed below, enables an application
(i.e., the Emergency Partition TSM) executing in the context of an insecure OS
to securely write to the screen, which is managed by the TML. A Remote Trusted
Display (G) connects a TSM-TSM Channel with a Trusted Application Display
so a remote system, such as that used by the Authority, can display data to the
local user with assurance against message disclosure and modification.

The TML exports to partitions virtual NICs (see Fig. 4), which are logical
devices, each with an IP address, for use by the OS and applications in a specific
partition.

The TML manages the negotiation of session keys and cryptographic algo-
rithms, as well as the cryptographic transformation of data for encrypted chan-
nels via the IPsec “security association” paradigm [7], although the entire IPsec
suite is not required (e.g., crypto-transforms are statically assigned). An Ex-
tended Trusted Channel therefore embodies the mapping of a partition ID to a
remote IP address and a security association. Communication channels, display
channels and logical devices are configured during E-Device initialization with
information such as: each channel’s remote TCB address, and security level; var-
ious keying material; and the mapping of Extended Trusted Channels to specific
partitions. Security levels are also assigned to partitions and physical devices.

An out-of-band distributed “root” secret key that is shared with the TCB at
the other end of a trusted channel is the basis for channel session keys [8]. For
trusted channels between the E-Device and the Authority, the DRK is used as
the root secret. For other trusted channels, such as those with third party data

Fig. 4. Networking Support of the TML
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providers, a shared secret key is stored by a TSM in the TML’s Trusted Channel
Manager instead.

Nonces to support generation of session keys are dynamically exchanged or
periodically distributed. The TSM hashes the nonce with the root secret to
derive a temporary shared secret, with which it can generate a session key using
a standard key exchange protocol, such as TLS. Alternatively, the derived value
itself could be used as a session key. All communications between endpoints
within the emergency network use these channels.

4.2 Emergency State Management

As discussed above, the Authority manages the global emergency state with
emergency state management messages. State management consists of the fol-
lowing steps: (1) message generation; (2) message transmission; and (3) message
processing on the E-Device. Each of these steps needs to be trustworthy to ensure
consistent and correct emergency state management.

In addition to the emergency state, the Authority maintains a counter of the
number of state changes it has issued; also, it maintains a record of the acknowl-
edged state and counter values for each E-Device, along with its DRK. When
the Authority changes the global state, it must securely synchronize with each E-
Device. On the individual E-Device, local emergency state and a state transition
counter are maintained by a state-management (E-State) TSM in the TML.

When the Authority declares an emergency, it increments its counter associ-
ated with the E-Device and generates an emergency state management message
for each E-Device that consists of: (a) a command type indicator (indicating a
state update message); (b) a payload of the new state and counter, encrypted
with an encryption key derived from the DRK; (c) a signature (cryptographic
keyed hash) of the encrypted payload and command, using a signing key derived
from the DRK; and (d) two nonces to derive the encryption and signing keys.

The emergency state management message is sent to the E-Device through a
Remote Trusted Path channel. Only the E-Device to which the emergency state
management message was intended is able to successfully process the message.
The E-State TSM independently 1 verifies the originator of the state manage-
ment message. For emergency state management, two functions, Update State
and Get State are implemented on the E-Device. The Update State function
checks the integrity of the message using the signature, and the counter. It also
generates a response to the Authority by generating a signature over the message
using a signing key derived from the signing nonce and the DRK. The E-State
TSM sends the signature back to the Authority over the trusted channel, but
does not need to send the message payload or nonce, since the Authority already
has the initial update message.

The TML, via its TSM, uses Get State to retrieve the new state, as discussed
in Section 3.1. To ensure that the update of emergency state is trustworthy, only
1 Decoupling the channel authentication from message authentication allows for flex-

ibility to incorporate ad-hoc and/or peer-to-peer transmission of emergency state
management messages in the future.



Securing Emergency Response Data 141

the TML can pass update messages from the trusted channel with the Authority
into the E-State TSM; and only the E-State TSM can invoke Update State and
Get State.

For high-threat deployment environments, enhanced assurance is provided by
a version of SP that includes state management primitives in its ISA. Instead of
implementing them in the E-State TSM software, this version, includes registers
for a state variable and a state transition counter, as well as instructions for the
Update State and Get State functions. With these hardware enhancements, even
the TSM does not have the ability to directly modify the emergency state on
the device.

4.3 Containment of Emergency Data

The organizational security policy enforced by the E-Device requires that emer-
gency information from the data providers only be accessible to authorized users
acting within the emergency partition, and only during a proper emergency de-
clared by the Authority. MAC policy enforcement (by the TML) and DAC policy
enforcement (by the Emergency Management TSM) jointly restrict information
flows on the E-Device before, during and after the emergency.

Emergency data is installed at the Authority’s secure facility or sent to the
E-Device from the Authority and data providers over Trusted Channels, and is
confined in the Emergency Partition. The data may be further encrypted so that
it can only be accessed by the Emergency Management TSM application, which
can enforce more granular access policies within the Emergency partition.

The Authority establishes an Extended Trusted Channel to the Emergency
Partition. The Emergency Partition and the Authority are allocated an “emer-
gency” MLS label that is distinct from that associated with other partitions.
The TML attaches the “emergency” label to data it receives over the channel,
restricting the data to only this partition of the E-Device. Data flows for emer-
gency management are shown in Fig. 5, as follows: (1) the Authority propagates
changes to the global emergency state and receives confirmation from the de-
vice; (2) the Authority sends keys, policies, and revocations to the Emergency
Management TSM, via an Extended Trusted Channel managed by the Trusted
Channel Manager (TCM); (3) the authority sends encrypted emergency data to
the Emergency Partition, via an Extended Trusted Channel; (4) data providers
provide additional data for the authority to send to the E-Device; (5) when
needed, the Emergency Management TSM decrypts the emergency data with
keys and policies in its storage.

Trusted channels between the TML and the Authority are protected using
freshly negotiated channel secrets for each connection, based on the DRK rather
than a stored root key. As a result, only parties with access to the DRK (the
Authority and the E-Device) can authorize an Extended Trusted Channel to the
Emergency Partition.

Aside from these secure channels, the information cannot flow out of the
Emergency Partition, e.g., to any other partition, device or network, ensur-
ing that emergency data cannot be revealed outside of the equivalence class of
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Fig. 5. Data Flow for Emergency Management

components labeled as “Emergency.” Additionally, the Emergency Partition it-
self is only made available to the user by the TML and TPA when an emergency
has been declared, as previously described. This temporal restriction limits the
threat of malicious insiders, and in combination with the partition’s spatial sep-
aration, provides defense in depth for the confinement of emergency information.

The Authority provides its own emergency data to the E-Device, and can
convey data provided by third party data providers. When the latter data is
proxied through the Authority and the third party has no direct communication
with the E-Device, the third party does not need and is not given the privileges
associated with the “Emergency” label.

If a third party is considered trusted, it can be included in the “Emergency”
equivalence class and allowed to establish an Extended Trusted Channel directly
to the Emergency Partition. Since the Third Party does not have access to the E-
Device’s DRK, it and the Emergency Management TSM share an “emergency”
key, which is stored locally in the TSM’s persistent secure storage. Even when
third party data is provided directly, the TSM on the E-Device can still be
configured to only accept policies for that data directly from the Authority.

All emergency data sent over the Extended Trusted Channel is encrypted by
the Authority or data provider prior to transmission using keys only available
(on the E-Device) to the TSM. This enables the TSM to enforce its discretionary
access control policy on use of the data by the responder or any software within
the Emergency Partition, and audit the use of the data, even though it executes
alongside untrusted software in the Emergency Partition.

Within the Emergency Partition, the TSM can release data to untrusted,
feature-rich commercial applications for display. However, there is no assurance
that untrusted applications will accurately display data when asked. Some infor-
mation, e.g., that which is critical and easy to manipulate, may require greater
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protection. For this, we provide the high-integrity Trusted Application Display
mechanism, which allows an application-TSM to send text-only emergency data
directly to a reserved region of the display via a secure call to the TML that
bypasses the untrusted software in the Emergency Partition.

The trusted display mechanism provides an unspoofable means for an appli-
cation domain program to display messages with high integrity such that they
cannot be observed or modified by any untrusted software in the system. This
mechanism is available to the TSM in the Emergency Partition and the TPA
running in the Trusted Partition. Both the TSM and TPA are designed to be
evaluated to ensure their correct behavior, which helps to ensure that the correct
data is input to the trusted display mechanism.

The TML virtualizes the video graphics card such that it appears to each
partition that it has control of the screen. These virtual devices pass input to
the TML’s secure display driver, which divides the physical display into two
regions. One region is restricted for the TML-controlled high-integrity display
(for example, the bottom two lines of text on the screen). The remaining region
of the screen is exported to the partition with focus as normal.

High integrity data to be displayed is encrypted and either comes directly
from the Authority for Remote Trusted Display or is chosen to be released by
the TSM during its operation for Trusted Application Display. To pass the data
securely to the TML, the TSM is divided into two pieces: an application-TSM
in the partition and a kernel-TSM in the TML. The former is responsible for
preparing the data for display and the latter for passing the plaintext data to
the TML securely. SP’s CEM protects the data as it is passed between privilege
levels through the untrusted software in the Emergency Partition.

The application-TSM first decrypts the data using keys in its storage, and
then stores the resulting display text in a memory buffer (at a known location)
using Secure Store instructions. This data is now only accessible in plaintext to
TSM code. An x86 call-gate is used to transition from the application-TSM to the
kernel-TSM without an interrupt. The kernel-TSM uses Secure Load instructions
to read from the CEM-protected memory buffer and regular Store instructions
to write the cleartext data to the TML buffer. It then exits CEM mode and
invokes the TML-provided Trusted Screen Handler, which sends the data to
the TML’s Trusted Screen Driver for display in the restricted display region.
Finally, the kernel-TSM code re-enters CEM and returns to the call gate in the
application-TSM, with a return value indicating the success or failure of the
display operation.

To complete the data lifecycle, access to emergency data must be rescinded
once the emergency is over. Data revocation takes place through complementary
mechanisms, using both mandatory and discretionary access control.

The coarsest granularity of revocation available to the Authority is to declare
the emergency to have ended. As described in Section 4.2, this results in the
closing of the Emergency Partition to users and applications, and restores its
code and data to the pre-emergency state. Stopping application activity and
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overwriting the entire partition effectively removes all data generated or released
inside the partition.

A finer-granularity of revocation is provided by the Emergency Management
TSM itself, as described in [4]. Over and above the TSM-enforced policies re-
stricting access to data based on expiration dates, usage counts, search query
restrictions, etc., at its discretion, the Authority can communicate with the TSM
and direct it to modify policies, keys, and other emergency restrictions to revoke
access to existing data, for example, in preparation for ending the emergency.

Guarantees to the Authority and third parties about revocation and the state
of the E-Device depend on connectivity and availability of the TSM. If the E-
Device is disconnected temporarily from the network, or an application TSM
managing communication with the Authority is subject to a functional denial of
service attack, the Authority will be unable to synchronize the local emergency
state with its own global state. An emergency expiration timer is provided by the
TML, such that if connectivity with the Authority cannot be established within
a defined time, the TML can end the emergency on the E-Device. The use of this
timer may not be appropriate for all responders and is therefore configurable.

Once communication is restored, the E-Device can attest to the Authority that
the requested updates to emergency state, policy, and keys have been made.

5 System Security Analysis

Overall system security can be understood in terms of the threats to which it
will be exposed and how the system is capable of counteracting those threats.

5.1 Threat Model and Assumptions

We assume that the E-Device is initialized securely with TML-, TSM- and SP-
specific keys. We also assume that the third parties and the Authority securely
exchange the required keying material and protect their own keys from exposure.

We assume the standard Dolev-Yao model [9], that arbitrary parties can cap-
ture, modify or insert network traffic. Intentional or malicious network-level de-
nial of service — as opposed to prevention of process functionality at the work-
station — is outside the threat model. The threat model and analysis for SP,
which includes spoofing, splicing and replay of TSM code, intermediate data
in registers and memory, and secure persistent storage, are discussed in [4], in-
cluding the protection of emergency data encrypted with TSM keys. The threat
model for the TML is that applications of the TML, including guest OSs other
than the trusted executive, are not trusted to conform to its policies, and may in
fact be hostile. For example, at runtime, the software executing above the TML
may attempt to access keys used by the TML to establish secure channels — and
application software or the commodity operating systems may attempt to write
emergency data to a location outside the partition or attempt to access high
integrity information through low integrity mechanisms. The trusted executive
is only trusted to manage its applications in a manner that does not introduce
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covert channels between applications that are at different security levels. The
persistent disk storage is encrypted and signed, and so is protected against, e.g.,
theft of the E-Device.

TCB software at the Authority, third parties and in the E-Device is assumed
to behave correctly and securely. But, application TSMs are subject to inconsis-
tencies in their execution environment, such as denial of access to the processor,
as they execute independently from the trusted software that controls physical
resources.

5.2 Security Capabilities

The architecture presented in this paper combines the secure execution and key
confidentiality provided by SP hardware with information containment assur-
ance provided by the TML. Further, secure boot ensures that the correct TML
configuration is loaded on boot and SP’s code integrity checking (CIC) ensures
syntactic runtime integrity of TML code. This ensures that large classes of soft-
ware attacks that involve code modification are prevented.

The DRK acts as the shared secret between the E-Device and the Authority.
On the E-Device, the confidentiality provided by the SP hardware ensures that
software never has access to the DRK directly, ensuring this shared secret is
always protected with high assurance.

Software is only allowed to use the DRK to derive other keys, which is sufficient
for mutual authentication and secure channel establishment. The SP hardware
along with the TSM ensures that all computation involving keys derived from
the DRK, including intermediate data, never leaves the processor chip in un-
encrypted form. This avoids the possibility of any software outside the TSM
getting access to derived keys. Since this is an invariant of the TSM and SP
hardware, keys used for secure channels are always protected. The TML code
is protected by the CIC mode of the SP processor, ensuring that the access
control polices enforced by the TML cannot be changed by code modification
attacks. The privilege levels provided by hardware ensure that subjects with
lesser privilege than the TML cannot read or write to objects in the TML. This
ensures that the TML always sets up the secure channels between the different
endpoints on the E-Device and the Authority/third parties as configured.

A Trusted Path provides bidirectional security: (1) ensuring that user input
to the TCB is accurately and securely received by the TCB, via a keyboard-to-
TCB data pipeline (where the keyboard is a proxy for the user); and (2) ensuring
that output from the TCB is seen by the user, without ambiguity or compromise,
via the TCB-to-screen data pipeline (where the screen is a proxy for the user).

The Trusted Path is a secure channel, since it is secure and it provides a
direct connection to the TCB endpoint via a secure interface provided by the
TML, with no intervening untrusted components. The Trusted Channel is a
secure channel, since it is assumed to use secure protocols and the endpoints are
secure.

The E-Device has three TSMs: one is an Emergency Partition application,
and the other two are TML modules. Since these TSMs provide system security
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services, they are considered to be part of the TCB and are built to the same
level of assurance as the TML. When they communicate, the TSMs on both
ends of the TSM-TSM Channel have access to DRK-derived keys as well as
CEM-protected memory, so the receiver can validate the integrity of messages
and ensure confidentiality. The TSMs on the E-Device similarly share the same
DRK-derived keys with the Authority, and two TSMs on different devices can
be provided a shared secret by the Authority. We further assume that a TSM-
TSM Channel to the Authority or another E-Device utilizes a Trusted Channel,
adding another layer of protection over the network.

Any data used, transmitted, or displayed by an application-TSM is still subject
to a functional denial of service by the untrusted OS, which may prevent its exe-
cution or tamper with its encrypted data — but the tampering will be detected.

In the Extended Trusted Channel, the TML makes Trusted Channels available
to partitions as logical I/O devices, which provides a secure channel between the
I/O device interface and the trusted component at the other end of the Trusted
Channel. The Extended Trusted Channel can provide plain-text or encrypted
data to a given partition (where the cryptographic functions are provided by
applications in the partition).

In Normal and Emergency Partitions, a commercial OS manages the logical
I/O device, and makes it available to its applications via an abstraction such as
a socket. The security of the Extended Trusted Channel from the perspective of
the OS application then depends on the security of the OS and any encryption
of the data.

The Trusted Application Display is a uni-directional secure channel between
the local application TSM and the user, assuming continuity in execution of the
TSM and protection of TSM message data. Continuity of execution depends
on the TSM’s processing environment, including the ability of the application
domain OS to schedule the TSM and other applications consistently and avoid-
ance of attacks on application-TSM code, data buffers, or communications to the
TML. While these would constitute a functional denial of service attack on the
TSM, they could not compromise the confidentiality or integrity of the display
data. Of course, the confidentiality of displayed data is not protected from out
of band analog mechanisms, e.g., visual observation of the screen.

Combining a TSM-TSM Channel with the Trusted Application Display chan-
nel results in a Remote Trusted Display channel that is a single-direction chan-
nel whose security depends on the security of the component channels (i.e., the
TSM-TSM Channel and Trusted Application Display channel discussed above).

Emergency state management message generation is a security critical opera-
tion. Only the Authority is able to generate valid messages for a given E-Device as
they are based on the device-specific DRK, known only to the authority and the
E-Device. Since SP hardware ensures software never has access to the DRK and
the authority secures its copy of DRK, arbitrary parties cannot generate a valid
message. Since the emergency state change generates a response that is also cryp-
tographically signed by a DRK-derived key, the authority can be assured that the
emergency state management was correctly processed by the intended E-Device.
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There are several layers of protection that detect and prevent replay attacks
on emergency state management messages: (a) all messages are transmitted over
secure primary channels such that only the subjects with access to the endpoints
of the secure channels can see even the encrypted message; (b) the TSM in
the TML could also overlay a secure mutual-authentication protocol between
the TSM and the Authority to prevent other parts of the TML from accessing
the encrypted emergency state management message; (c) since the message is
encrypted using keys derived from the DRK, only the TSM on the correct E-
Device can decrypt and process the message; (d) the monotonically increasing
counter ensures that a given message is never processed twice.

Once the emergency is declared, and the E-Device successfully changes its
emergency state, the Emergency Partition is enabled and the user is able to
access it. The TML ensures that the Emergency Partition can write only to
channels leading to the Authority and to trusted data providers. Further, no
other partition on the E-Device can read content in the emergency partition
labeled as “Emergency.” The TML ensures only known virtual device abstrac-
tions of trusted pre-configured physical devices are presented to the OS in
the Emergency Partition, thus avoiding the possibility of the user being able
to attach a device with unconstrained information flow properties to the
partition.

When the emergency data is decrypted and displayed within the Emergency
Partition, the untrusted applications or OS may keep parts of the clear text
emergency data in memory and/or write it to disk, but the TML’s Emergency-
partition separation policy ensures that the data remains in the Emergency Par-
tition. While all data in memory is erased or otherwise invalidated on a shutdown
of the E-Device, the data on the disk may still be accessible if the Emergency
Partition is still present. Any offline attacks on emergency data on disk are pre-
vented as the TML protects all data on disk by encryption with keys derived
from the DRK. These encryption keys are derived as needed and are never re-
vealed or stored. These properties ensure emergency data containment during
the emergency. When the declaration of emergency is rescinded, the Emergency
Partition becomes inaccessible to the user and its contents are encrypted and
stored for audit purposes or immediately deleted.

Applications in the Emergency Partition are not expected to display high
integrity content, as both the applications and the OS are not trusted. Instead,
high integrity information is displayed on the reserved portion of the screen, via
the Trusted Application Display, with data that is appropriately encrypted and
hashed. Since the TML manages the physical display, no partitions are given
direct access to the portion of the screen reserved for high integrity display.

6 Validation

We have implemented an E-Device prototype that provides a worked example of
how the coherent integration of complementary hardware and software security
mechanisms can enhance security, and validates elements of our overall approach.
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6.1 Prototype Implementation

The prototype demonstrates the feasibility of TSM technology as well as key
layering and partitioning mechanisms in the TML.

The prototype TML runs on bare hardware on the x86 platform and provides
multiple partitions which the user can switch between using the Secure Attention
Key. The partitions each run a primitive trusted executive, providing I/O to the
user-space application running above it. Authority-mode SP features, which have
been independently prototyped [4], are provided here by a trusted kernel module
which emulates its behavior and security properties.

Our prototype implementation of the integrated architecture demonstrates
the feasibility of: (a) emergency management operations using remote trusted
path; (b) the ability for the Authority and data providers to disseminate keys
and data to the emergency partition; (c) the use of the trusted display mech-
anism provided by the TML to applications to securely display high integrity
data; (d) protection of the code integrity of TSMs and its secure storage by
the SP hardware; (e) prevention of access to TSM secure storage by the un-
trusted OS or untrusted applications; and (f) detection of simulated attacks
on the remote trusted path, key/data usage policies, and confidentiality and
integrity of emergency data using standard cryptographic algorithms. For the
prototype, it is assumed that the TML-managed trusted channels for secure
communication with the Authority and data providers are in place and the key
management messages between the E-Device and the Authority/data providers
are pre-computed.

7 Related Work

Previous work in processor-based cryptographic support include: SP [4], sepa-
ration kernels [2], and “least privilege” security architectures [3]. We note that
cryptographic coprocessor mechanisms [10,11] do not provide processor-level pro-
tection for system software and data, and may be more vulnerable to attack by
elements within the platform. Also, while IBM announced an architecture [12]
featuring processor-based encryption for protecting data on chip and in transit to
remote systems, little information is available regarding system trustworthiness,
or the separation of information based on events or mandatory policies.

The Turaya [13,14] and MILS [15,16] architectures are designed to host com-
mercial operating systems and security services as parallel application-domain
entities, with certain interactions between those entities controlled by a micro-
kernel (e.g., L4) and a separation kernel, respectively. The security architecture
presented here differs from these efforts in that it does not rely on application
domain programs for enforcement of the primary underlying security policy, and
it provides an interface for the enforcement of intra-OS least privilege policies
as well as inter-OS sharing policies. Additionally, the Turaya and MILS efforts
do not address the temporal confinement, revocation, and distributed state-
change issues inherent to emergency management of information, and they do not
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provide processor cryptographic transformations or processor protection of crit-
ical keying material.

Trusted Channels provide point-to-point encrypted tunnels between a TML
and a remote TCB that has at least as much assurance of security enforcement
as the TML. Trusted Channels are similar to Virtual Private Networks [17]
although VPNs are usually expected to support arbitrary and changing sets of
network nodes rather than point-to-point connections.

The “trusted path” has been understood as a requirement for secure com-
puter systems since the early 1970s [18], and has been implemented in many
high assurance [19,20] and commercial systems [21,22]. In our work, the Trusted
Path Application implements a traditional user interface for trusted interac-
tion between the user and the TCB (TML). The Remote Trusted Path extends
the user’s ability to communicate, from the local TCB to a remote TCB. Our
work differs from previous remote trusted path results (e.g., [23,6]) in that the
security of the communication is rooted in a processor-resident secret key, for
communication with the Authority.

The Xen “hypervisor” provides support for security policies by way of “do-
mains” that are similar to TML partitions. Security labels can be associated
with a domain, and a security policy can be defined to describe resource isola-
tion or controlled inter-domain information flow [24]. However, Xen was built
specifically to provide hardware-assisted virtualization of operating systems [25]
rather than a more generic operating environment with other services, such as
those provided by the TML.

With the Extended Trusted Channel we replace the Trusted Path’s human
interface to the TCB with a direct programmatic interface, which allows appli-
cations to interact with a remote TCB (via a Trusted Channel). Similarly, for
the Trusted Application Display, the TML exports a programmatic interface for
submitting data to the TCB for display. A TML-resident TSM subsequently de-
crypts the data and then the TML displays it on the screen in a reserved area.
Securing the computer display against subversion has been reflected in early work
on multilevel windowing [26], and subsequent hardware and software-supported
development [27,28]. Our work differs from these developments in providing a
means for an application executing in the context of an insecure operating system
to securely write to the screen.

In its Global Information Grid (GIG), the US Government has recognized
that, in emergencies, the need to access information may be more important than
the need to protect the information, and has developed extensive technical and
policy roadmaps to support that vision [29,30]. Our framework for management
of emergency information advances these concepts by providing a theory and
concrete realization to confine information made available under extraordinary
circumstances and to rescind access after the completion of those circumstances.

OASIS provides the EDXL standard [31] for information exchange during
emergencies, such as payload and message encryption. Our architecture provides
a trusted context for the management of EDXL data.
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8 Conclusions

To address the inability of existing IT systems to support integrated informa-
tion sharing, temporary emergency data access, and secure revocation of that
access, we have developed an architectural solution that integrates hardware-
anchored cryptographic protection with a high assurance software architecture
that provides data separation and security services. We have proposed a secure
hardware-software platform for an E-Device that can provide trustworthy dis-
semination and revocation of access to sensitive data during an emergency.

We described the architectural support for trusted communication channels,
including a remote trusted path between the authority and the E-Device, as well
as trusted display channels in the E-device. We integrated the SP protocols for
DRK-based key-generation into the trusted channel mechanism to protect the
storage of channel keys and ensure the authentication of parties who will gain
access to the Emergency Partition.

We presented a comprehensive design for the management of distributed emer-
gency state, which is critical for effective emergency response. We also described
the Trusted Application Display to allow user-space applications to securely com-
municate with the user via direct x86-style call gates to a kernel-TSM. We also
described the multifaceted containment of emergency data and reliable revoca-
tion of access at the end of the emergency, using a combination of hardware and
software mechanisms and trust chains.

Finally, we have built a prototype that validates key concepts of the architec-
ture, indicating the feasibility of using commodity mobile and wearable platforms
for secure emergency-response data dissemination. In the future, in-depth usabil-
ity and performance testing, as well as formal system security verification, will
further validate this work.
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Abstract. Service Oriented Architectures currently provide little or no
evidence that each remote component has been implemented correctly.
This is a problem for businesses hoping to exploit the potential benefits
of SOA. We present a technique called Trustable Remote Verification,
which lets providers create behavioural guarantees of their web services.
Our approach is flexible, using Extended Static Checking for verification
and has the significant advantage of requiring no additional trusted third
party.

1 Introduction

As applications and services move online, we are implicitly expected to place
more trust in the developers and providers of these systems. But how do we
know if a remote service is trustworthy? Bugs and vulnerabilities will continue
to exist, and while dedicated providers might be considered more capable of
administering systems than end users, they also become valuable targets for
attack. As a single point of failure, a poorly implemented service will affect
everyone who relies upon it. We therefore need some way of establishing trust
in remote systems.

There are several issues to overcome before being able to trust an online appli-
cation. Fundamentally, the users of a web service have no information about the
quality of its implementation. Furthermore, most services only have a WSDL[1]
description, which contains little semantic information, only method names and
basic data types. Without a more detailed behavioural interface, trustworthiness
is difficult to establish. If we do not know how it should work, whether or not
it has been programmed correctly becomes irrelevant. Finally, software installed
at a service will frequently be patched and upgraded, usually without warning
or notification. As a result, a relying party will potentially need to reassess it
before every request.

We have developed a solution to some of these problems which uses trusted
computing and tools for specifying and verifying Java programs. A brief overview
of these in given in Section 2. In Sections 3, 4 and 5 we refine the problem,
introduce the idea of Trustable Remote Verification, and present details of our
prototype. It is then evaluated and compared against existing solutions in Section
6. Future work is discussed in Section 7 and in Section 8 we conclude.
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2 Background, Definitions and Related Work

2.1 Remote Attestation

Remote attestation is an authentication technique for trusted computing plat-
forms. It uses the ‘TPM Quote’ operation to create a signed record of the attest-
ing computer’s Platform Configuration Registers (PCRs)[2]. These are intended
to be used to record the platform’s boot process, including the bios, bootloader,
OS and applications. A quote can therefore be considered trustworthy evidence
of what software has been run on the attesting platform. This is a valuable piece
of information, as it potentially gives a remote user the ability to identify and
make a judgement about the software that is running.

In a basic server implementation, PCRs are held on a separate chip, the
Trusted Platform Module (TPM), and store a 20 byte SHA-1 hash value. These
values can only be modified by software through the extend(..) command.
This appends the current PCR value to the supplied input, hashes it, and stores
the result in the PCR. A PCR value therefore reflects a chain of individual
hashes. The TPM Quote operation takes a number of these PCR values and
signs them with the private half of an Attestation Identity Key (AIK), which
is held within the platform’s TPM. This AIK must have a credential, issued
by a trusted third party (a ‘Privacy CA’), which typically states that the plat-
form has a valid TPM[3]. Upon receiving a quote, therefore, it is necessary
to check that the AIK used has been certified by a trustworthy Privacy CA.
Quotes can also contain a nonce, set by the challenger, in order to guarantee
freshness.

On platforms which support authenticated boot, every piece of code executed
in the boot process is hashed and extended into a PCR. This is done sequentially
(a chain of trust), with each preceding step extending a measurement of the next
before allowing it to execute. This means that a malicious piece of code cannot
be run without its identity first being recorded. So long as every step in the
process is trusted to perform measurements faithfully, it is possible to attest
that a platform is only running known pieces of software. Remote attestation
is therefore about reporting system integrity measurements, as the modification
of any executable will be noticed. This is obviously attractive from a system
security perspective, as it becomes possible to identify a machine which has
been infected with a virus or rootkit.

However, attestation does not necessarily give any indication of a platform’s
security state but rather its execution state[4]. Sadeghi and Stüble[5] introduce
the notion of ‘Property-Based Attestation’ (PBA) in order to simplify the pro-
cess. In PBA, platforms provide a list of guaranteed security properties, rather
than just a binary integrity measurement. This can be implemented in a num-
ber of ways, but generally relies upon at least one party being able to match the
PCR values to security properties, and then issuing certificates to this end. PBA
is a level of indirection which can take some of the burden from the attestation
requester.
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2.2 Web Services

Web services are a well-established approach to creating large, component-based
applications[6]. Services communicate and describe themselves using standard
data formats, such as SOAP[7] and WSDL, and have interoperability as a pri-
mary requirement. Each service offers some kind of useful functionality, but the
real benefit of SOA is that they can be combined together easily, allowing the
rapid creation of new, custom applications. These workflows also have the po-
tential to be very reliable, as services can be chosen and composed together at
the last minute. This means that an individual fault can be dynamically avoided
by choosing alternative services where necessary.

However, many of the perceived advantages rely upon better specification and
assurance of the component services. Without knowing precisely how each will
behave, it is difficult to use them in combination with any confidence. Testing web
services is also difficult, as they might exist in different administrative domains
or operate on live data. This becomes more of an issue when considering services
with critical functionality, such as in financial, medical or valuable intellectual
property scenarios. Remote verification of web services therefore seems necessary,
but few methods of doing so have been developed.

2.3 JML and Design by Contract

The Design by Contract (DbC) approach advocates having a ‘precise defini-
tion of every module’s claim and responsibilities’[8] in order to create reliable
and, importantly, reusable components. This is exactly what we would like to

/*@ requires

@ accFrom != null && accTo != null && amount > 0;

@

@ ensures

@ ((accFrom.getBalance() == \old(accFrom.getBalance())) &&

@ (accTo.getBalance() == \old(accTo.getBalance())) ) &&

@ (errLog.content.theSize == \old(errLog.content.theSize+1))

@ ||

@ ((accFrom.getBalance() == (\old(accFrom.getBalance()) - amount)) &&

@ (accTo.getBalance() == \old(accTo.getBalance()) + amount) &&

@ (transLog.content.theSize == \old(transLog.content.theSize+1)));

@*/

public void makeTransfer(Account accFrom, Account accTo, int

amount) {

...

}

Fig. 1. An example web method, complete with JML annotations. Two outcomes are
specified: either the account balances change in the expected way, or both remain the
same. An entry is added to the transaction log in the first case, and to the error log in
the second.
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achieve with web services. Module interfaces are annotated with pre- and post-
conditions in the form of requires and ensures clauses. There are also class
invariants, which express ‘general consistency constraints that apply to every
class instance as a whole’[8]. Several annotation languages exist for the DbC
methodology, including Eiffel, Spec# and JML, the Java Modeling Language.
JML[9] offers other language features, including specification of exceptions, non-
null annotations and class ownership. A simple example of JML can be found in
Figure 1.

2.4 ESC/Java2

The annotations introduced by Design by Contract can be used for automatic
source-code checking. This is usually performed with a static analyser, which
attempts to verify assertions without ever executing the code. One such analyser
is ESC/Java2[10], an extended static checker for Java and JML. It translates code
and annotations into logical terms, and then runs these through the Simplify
theorem prover, producing either a counter example or an ‘ok’ result.

3 A Basic Web Service Behavioural Attestation Model

For the purposes of this work, we assume a simple scenario where a service
requester (R) wants to use a web service (W ). Before doing so, R wants to find
out two things: what software is being run at W and what that software promises
to do. The first part can (in theory) be achieved through remote attestation,
but the second is more difficult. The approach we have taken is to add JML
annotations to the service end point. This means that each web method can
include pre- and post- conditions, as well as other formal properties. Although
only Java services are supported, similar methods could be used with Spec# for
.Net services, or any other Design by Contract language.

However, we have yet to show that the annotations attached to a service are
really implemented. In this basic architecture, a Trusted Compilation Service (C)
fulfils this role. The source code (Wsrc) of W is compiled and checked against its
annotations (Wann) by C, using a method such as model checking. A certificate
is then produced by C which contains a hash of the compiled application (Wbin),
a list of any dependent libraries used in the compilation process and an assertion
stating which program properties hold. W can then present this certificate to R,
along with a fresh remote attestation1, and R will have a much greater level of
confidence that W has the promised behaviour.

There are a number of assumptions. R must trust that C will do a thorough
analysis of the source code at W . W must trust C with all the source code,
which may not be possible. More fundamental assumptions include:

1 The fresh attestation must, of course, contain an entry which is identical to Wbin.
If it does not, then the certificate produced by C cannot be used to validate this
service.
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– C must be capable of analysing the source code at W . This is not a trivial
task, and may depend on the availability of numerous code libraries, oper-
ating system features, and so on.

– The middleware and OS running at W must also be trusted by C and R.
– All important configuration settings must be either made available to C or R.

This might be undesirable if they contain passwords or confidential settings.
– The middleware and OS must be attestable. Each part of the software stack

must support integrity measurement. It must be possible for R to receive a
remote attestation from W and interpret it. This implies the existence of an
integrity management infrastructure, which has a list of ‘known-good’ pieces
of software. Every binary running at W will need to be on this list.

Overall, this is a proposal for using Remote Attestation to establish meaningful
properties of a web service. However, there are a number of drawbacks, including
the requirement for a trusted third party, C. The rest of this paper introduces
Trustable Remote Verification, which allows us to remove C altogether.

4 Trustable Remote Verification

There are generally two approaches to program verification. It can be done by a
trusted third party, but they may charge a high price for their services. They are
also a target for attack, and should be avoided if at all possible. The alternative
is to verify an application locally. If source code can be inspected before com-
pilation, any errors can potentially be spotted before it is run. However, given
the size of any complex application, even a highly skilled programmer would
struggle to spot potentially erroneous behaviour in source code. This has been
improved by Proof Carrying Code[11], where the majority of the effort is carried
out by the application distributor. However, this is not a suitable solution for
web services, where all applications are running remotely. Users have no idea
what source code is being run at the service, and have no way of verifying it.
Neither third-party nor local analysis can be considered appropriate and instead
we require some way to let the provider perform verification, and then prove to
users that they have done so.

4.1 Overview

Trustable Remote Verification (TRV) uses TPM attestations as credentials. The
service provider performs program analysis using a local machine (the verifica-
tion platform, V ) and then attests the result. To do this, V must be booted into
a trustworthy OS, which measures every step of the process and extends each
into a PCR. After authenticated boot, the annotations (Wann) which represent
the service contract are measured. These will specify some important property
of the service which the requester requires (see Figure 1 as an example). Then
a program verifier (TV ) is measured and loaded, and the source code (Wsrc) is
analysed against its annotations. The result of this step (TVres) is also measured
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Fig. 2. An overview of the Trustable Remote Verification process, showing the order
of execution and all items measured into PCRs

and extended into a PCR. Next, the source code is compiled by a trusted com-
piler, TC. A hash of it and all the compiled binaries (Wbin) are measured and
extended. At the end of the verification process, a quote (Vquote) is produced
which contains two sets of PCRs, holding measurements:

Vquote =
{

PCR 0..15 = { [ boot process at V ] }
PCR 21 = { TV, TC, Wann, TVres, Wbin }

}
AIKV

(1)

This is a credential, which will be used by the provider to show that a pro-
gram binary, Wbin, was compiled from source code which was verified against
its annotations, with analysis result TVres. In the ideal case, TVres would state
something simple such as ‘verified’. The credential can be checked by making sure
that TV , TC and the boot process are all trustworthy, checking that TVres does
not show any errors and finally verifying that the annotations are sufficiently
strong for the program to be trusted.

At runtime, the service provider attests in the normal way, creating another
quote:

Wquote =
{

PCR 0..15 = { [ boot process at W ] }
PCR 21 = { Lbin }

}
AIKW

(2)

Where Lbin is the measurement of the binary that has been loaded at service
runtime and will be accepting requests. In order for the Vquote credential to be
useful, Lbin must be equal to Wbin.

4.2 Assumptions

Trustable Remote Verification relies on several assumptions:

– The platform performing verification has a valid TPM which has not been
tampered with.

– A PKI infrastructure for issuing AIKs exists and all platforms have valid
AIKs and certificates available to them.

– There exists a verifier, a piece of software which can read the program con-
tract and source code and automatically decide whether the latter corre-
sponds with the former. This must run without any user interaction, and
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Fig. 3. The chain of trust for Trustable Remote Verification, showing execution order
and measurement storage

be trusted to work properly by the client. In our proof-of-concept imple-
mentation we have JML annotations as a contract and use ESC/Java2 for
verification.

– There is a simple operating system and boot loader, again trusted by the
client, which the verifier can run on without interference. This will measure
all programs executed on the platform, and is itself measured as part of the
boot process.

– The verifier, compiler and operating system have SHA-1 identities known to
the client.

– Any third-party libraries that the verified application uses are either anno-
tated and verified with the service, or their identities are published by the
server and trusted by the client.

– All configuration files used by the web service or the verifier are made avail-
able to the client.

4.3 The New Chain of Trust

TRV decouples the process of certification and application execution. This means
that once the web service binary has been verified, it can be run on any service
which supports authenticated boot, and the same credential can certify it. This
is desirable from an end-user perspective, as the amount of effort required to es-
tablish trust in a set of remote services (perhaps implemented for load-balancing
reasons) is greatly reduced. The disadvantage is that the chain of trust is now
longer, and contains potentially two TPMs, one for the web server (TPMW ) and
one for the verifier (TPMV ).

5 Prototype Implementation

We developed two parts of this system: the credential-creation stage on V and
requester validation stage at R. In our prototype, services are written in Java,
with methods from one class exposed as a web service. This class is annotated
with JML assertions, which are the properties that this service promises to fulfil.
ESC/Java2 is used as the program verifier (TV ) and Ant plus the standard



160 J. Lyle

Sun JDK are used as the compiler (TC). The result of compilation is a WAR2

file which is run from the Glassfish Application Server. We did not implement
authenticated boot for either the verification or web service, but several potential
candidates exist for this purpose[12].

5.1 Server Credential Creation Stage

The program verification stage requires the following steps:

1. The service source code and configuration files are placed onto V .
2. An AIK certificate is obtained from a Privacy CA.
3. The trustworthy OS with authenticated boot is started.
4. The OS measures the JVM, and then runs the verifier. This measures the

following items into the TPM:
– The front-end JML annotations of the service.
– All libraries and files necessary for compilation.
– The WAR archived created by compiling the service.
– The output of running ESC/Java2.

5. A quote (Vquote) is created, signed by the AIK, containing 2 sets of PCR
values. One has the trustworthy OS and application measurements and the
other has all the measurements made by the verifier.

Additionally, an archive is created to help the service requester validate the
measurements. This includes references to external libraries, ESC/Java2 output,
JML annotations and a log of the entire process. This is used by the requester
to validate the process later on. References to external libraries should point to
where the end user can download the library to verify its identity.

Varch = { Vquote, [ libraries ], Wann, TVres, log , [ config files ] } (3)

The compilation stage and WAR file creation is complicated by incompati-
bilities. Java web service annotations are only valid in Java 1.5 and above but
ESC/Java2 can only interpret version 1.4 source code. As a result, the service
must be written in Java 1.4 and then wrapped by an automatically-generated
Java 1.5 front-end class.

5.2 Credential Validation Steps

The service requester, R, must obtain and verify the credential that was created
using the steps in Section 5.1. This requires the requester to download Varch and
obtain a fresh attestation of the web service’s current configuration, Wquote, and
then do the following:

1. Check that the software running on W , as reported in Wquote is trustworthy.
2. Check that the currently-running web service application, Lbin, matches the

verified service identity Wbin, included in Varch.
2 Web application archive http://java.sun.com/developer/technicalArticles/

Servlets/servletapi/

http://java.sun.com/developer/technicalArticles/Servlets/servletapi/
http://java.sun.com/developer/technicalArticles/Servlets/servletapi/
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3. Check the AIK used to sign Wquote and Vquote.
4. Check the freshness of Wquote. Vquote is not time dependent, so a freshness

check is unnecessary.
5. Check that V ’s OS and boot process are trustworthy.
6. Check that the verification program (including TV and TC) is trustworthy.

We imagine checking against a public list of verifiers (with available source
code) which are known to be sound and complete.

7. Varch contains a log of the verification process, which will need to be checked
against the PCR values held in Vquote.

8. Each individual step described in the log must now be verified. The server
must provide any comparison resources that the client does not have access
to. This includes:
– All configuration files used in the verification process.
– The external libraries used and any assumptions made about them.
– The verification result itself.
– The verified service annotations.

Additionally, some useful service properties must be described in the annota-
tions, and the verification result should not show any situation where they do
not hold. With our sample implementation, some of the checks described are
performed manually, but it would be feasible to create automated tools. Part 1
and 5 require an integrity management infrastructure, such as IMI [13].

5.3 Configuration Files and Compilation with Ant

Because the credential-creation step is complex, involving program compilation
and creation of web service artifacts, there are a number of configuration op-
tions. These could potentially make the verification process untrustworthy (for
example, running ESC/Java2 on one piece of software and then compiling and
measuring another). Therefore, we measure the configuration files and include
them in Varch.

Program compilation can also be complicated, involving libraries, configura-
tion, and archive creation. As a result, most Java developers use Ant rather
than just javac . For the compilation step of our prototype, we have to deal
with the same issues, so reusing the Ant build file seems sensible. However, Ant
is a powerful tool and it would be possible to write a malicious build file to
avoid verification. In order to stop this from happening, the build file must be
measured into the quote and included in Varch. It must also be checked by the
requester, along with all the libraries and files it references. In our prototype
this is done manually.

Another problem arises from runtime configuration. Most applications are de-
signed to work differently at runtime depending on how they are configured. If
any of the security properties of a service can be violated by a change of set-
tings file, then they will (correctly) not pass the verification step of our system.
The same is true for a service which depends upon a running database or human
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input. Essentially, any system that can be made to violate its specification after
compilation will be a problem. The alternative method discussed in Section 7
does not have this limitation.

6 Evaluation

6.1 Benefits of Trustable Remote Verification

In our proposed system it is possible to determine, with a fairly high level of
assurance, something about what a remote service will do when invoked. This
something will range from a complete logical description of the functionality of
the service, down to perhaps a simple invariant. In the example given in Figure
1, we gain the knowledge that the method makeTransfer will at least revert
back to our previous state rather than fail in an unknown way. We also know
that the error log is guaranteed to keep track of any failures. In terms of security,
we could use assertions about information flow to be sure of confidentiality. JML
has been used before for security properties[14].

JML’s ability to express useful properties (and ESC/Java2’s ability to check
them) is a significant consideration when evaluating the prototype. There are
properties that cannot be expressed or checked, and the properties that the
service provider has asserted may not be important to the requester. Because
ESC/Java2 requires a significant amount of supporting JML, time must be spent
annotating the source code for each particular property. However, this time can
be justified by considering some of the other benefits of Design by Contract, such
as improving documentation and overall code robustness. Furthermore, we must
also assume that the requester will correctly understand the given properties,
and not misinterpret a set of conditions or invariants which may be complex.
More research is needed to find out where Trustable Remote Verification would
be most beneficial, but it is likely to be services which have simple properties
to assert, such as the conditions in which an exception will be thrown, or the
correct implementation of simple mathematical functions.

No additional third party is required to create the service credentials, beyond
a Privacy CA which may exist already. However, as noted in Section 5.2, an
integrity measurement infrastructure will be needed for verifying the trusted
software components, such as TC and TV . This may require a trusted third
party. The client and server-side code needed to implement these features is
fairly small (the prototype is under 3000 lines of code), with the only significant
extra requirement being an operating system that supports authenticated boot.
Furthermore, this system allows for software update, as each new version of a
service can be re-verified and a new credential produced. This can be part of
the standard build-cycle for a project. Another key benefit to this system over
the basic architecture is that the source code of the service never needs to be
revealed, not even to a third party. This would be attractive to a company with
valuable or confidential code.
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6.2 Trustworthiness of the Architecture

The strength of TRV can be measured by how difficult it is for a provider to
falsely claim that a service has certain properties. Any system can be broken
through weaknesses in its trusted components, so we will now assess ours. We
rely upon one (or more) TPMs, a verification OS, verification tool, compiler and
the software stack running at the web service. TPMs are designed to be immune
to software attack, and hardware attacks are non-trivial. They are therefore
unlikely to be the weakest point in the system.

The verification environment also needs to be a trusted component. However,
the verification OS can be small and simple and only needs to be able to run
a program verifier and compiler. It does not need network access, or the ability
to accept user input at runtime. Future CPUs which run bytecode might be
a good way of avoiding vulnerabilities, as might a microkernel-based OS. The
verifier and compiler, on the other hand, are a bigger issue. They are necessarily
complex systems, which accept input in the form of program code and configu-
ration files. Arguably, however, we must already trust the compilers we use, and
there are several open source compilers which have gone through considerable
scrutiny. A weakness in the verifier would be a problem. If it produced false
negatives, it could then potentially certify a system which does not maintain its
properties. We offer no solution to this problem, but expect that creating one
acceptable verifier or compiler is likely to be easier than creating many perfect
applications.

Perhaps the most significant trusted element is the rest of the software running
at the web service. If a bug or vulnerability causes it to behave in an unexpected
manner, then the properties guaranteed by the web service application are ir-
relevant. This is likely to happen, as the amount of code running which has not
been formally checked greatly outweighs the small amount that has. It includes
the service middleware, operating system, and any libraries that the service re-
lies upon. This ‘middleware problem’ has been discussed in a grid scenario by
Cooper and Martin[15], and solutions involving virtualization sound promising.
This problem is true of almost all trusted computing systems involving legacy
applications, and ours is no exception.

Overall, TRV is clearly limited in the level of trust it can establish, and is
not appropriate for extremely high assurance systems. Instead, it would work
best as an additional check for service providers who are attempting to improve
their perceived reliability in the marketplace. In such a scenario, one threat is
that a company with normally good intentions tries to subvert the system for
a new version of their service. They might try to rush a new feature, at the
expense of verification. TRV would make this much more difficult to do, and
so the provider would be more likely to spend the extra effort on verification
instead.

6.3 Related Work

Haldar et al. [16] introduce Semantic Remote Attestation, a technique for veri-
fying the remote behaviour of a platform. They use a Trusted Virtual Machine
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(TVM) to attest to high-level properties of the running code. The presence of
the TVM is attested first using normal methods, then the TVM can report
on properties such as class hierarchies, Java VM security constraints and run-
time dynamic state. Arbitrary properties can also be tested by requesting the
TVM accept and run code written by the requester. This is a powerful tech-
nique, offering remote users the ability to make better trust decisions. How-
ever, the focus of this work is on dynamic feedback and testing rather than
showing formal properties. We feel that our work compliments this by proving
different semantic properties. Our approach is also significantly different, not
relying on a runtime virtual machine, thus removing any potential performance
issues.

Yoshihama et al. [17] and Monetoh et al. [13] have created and extended
a web service attestation architecture called WS-Attestation. It uses a third
party Validation Service (VS), which maintains an integrity database, linking
software hash values to known application identities. The VS also has access
to a vulnerability database. The idea is that the attesting platform reports its
integrity measurement to the requester along with a certificate issued by the
VS. This certificate can state a more easily interpreted property, such as the
number of known vulnerabilities. However, this system is best suited to ver-
ifying the integrity of the OS and middleware of a platform, rather than of
a custom application, which is unlikely to have any entries in the vulnerability
database. It is also not clear how properties beyond vulnerability counts might be
established.

Betin-Can et al. [18] use a design for verification approach to verify services.
They introduce the ‘Peer Controller Pattern’ which separates out the message
exchange from the logic, simplifying the verification process. An explicit be-
havioural interface is also generated. Assertions that are known to hold in indi-
vidual services are then combined and the behaviour of the whole system can be
checked with regard to synchronizability. Individual implementations are consid-
ered to conform with their interfaces if their call-sequences are acceptable to its
state machine. This is verified using the JavaPathFinder model checker. It seems
an excellent approach when considering concurrency issues, but does depend on
all source code being available to the verifier, with trust in remote parties being
less of an issue.

Tsai et al. [19] describe a framework (‘WebStrar’) for web service assurance.
Services are registered and a series of tests are performed on it. Each service
has a specification written in OWL-S and this is checked via ‘Completeness and
Consistency’ analysis and model checking of the specification and verification
patterns. There is also a step involving positive and negative test cases, which all
go towards ranking the services in terms of reliability. This approach is a logical
way of gaining assurance, but does have some issues. Testing is not appropriate
in a situation where the service operates on live data, and it is also not clear
whether the tested services have any obligation to re-register in the case of a
change to their implementation.
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7 Observations and Future Work

7.1 Runtime Checking and Compile-Time Translation

A similar but alternative approach to the one taken in our prototype is to use
the JML compiler[9], jmlc, as opposed to the Java compiler. Jmlc adds runtime
assertion checks into the program bytecode in addition to normal compilation.
These will raise an exception if any of the preconditions, postconditions or in-
variants fail. Except for a small performance hit, this behaviour is transparent
unless one of the assertions is violated.

The advantage of this scheme is that we no longer need to perform static
analysis. This was one of the issues identified in Section 6.2. As a result, runtime
components such as configuration files and databases can be accessed without
breaking the assertions. However, the major downside is that an untrustworthy
service can make promises, and then break when they are not fulfilled. This might
result in lost data and an unreliable system. The best this would be able to say
is that if the service does not fail, it will work as expected. However, despite
these limitations it may be worth investigating in the future. This approach is
similar to earlier work by Haldar et al. [16].

7.2 Multiple Verifications and the New Chain of Trust

One useful property of our system is that the credential-creation process is en-
tirely separate from the runtime attestation. As a result, we can extend our
prototype to offer multiple, potentially independent verifications and certificates
for the same service. For example, one service provider could first verify their
source code with ESC/Java2, producing a certificate, and then do the same with
an alternative program analyser. This might satisfy users who will only trust a
particular analysis program.

We can go even further, and let multiple organisations verify the same service.
Assuming they are given the source code, they can all independently run a verifier
and produce a certificate. This significantly strengthens the chain of trust, as it
is no longer ‘anchored’ by just one TPM. Figure 3 is no longer as big a problem,
as the top chain can be put in parallel with several others. This might be useful
for high-assurance systems, such as e-voting.

7.3 Using a Dynamic Root of Trust

One way in which we could optimise our proposed TRV system, with respect of
the number of integrity measurements, would be to use a dynamic root of trust.
Rather than measuring every part of the boot process, including the BIOS, we
could use either AMD’s Secure Virtual Machine (SVM) architecture or Intel’s
Trusted Execution Technology (TXT) to dynamically load and measure (‘late
launch’) a trustworthy operating system. McCune et al. [20] provide a good
summary of these technologies. This would reduce the number of measurements
that the service requester needs to verify, and therefore make the overall system
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Cert A0
Pre:      ... 
Post:     X and Y 
Verifier: ESC/Java2

Cert A1
Pre:      ... 
Post:     X and W
Verifier: SPIN

Cert A2
Pre:    W 
Post:    Y
Verifier: None

Cert B1
Pre:      ...
Post:     Z
Verifier:

Trusted
Third Party

Cert B0
Pre:      ... 
Post:     Q or Z
Verifier: ESC/Java2

Fig. 4. The challenge of verifying service workflows

trustworthiness easier to quantify. With the recent development of a suitable
bootloader[21] this would be a sensible future improvement.

7.4 Verifying Multiple Services

We have not considered verifying web services which themselves contact other
services. This is quite a common scenario, and a significant limitation of our
prototype. However, there do not seem to be any obvious reasons why any ser-
vices which have also followed this scheme could not be incorporated. These ‘sub
services’ could be wrapped by a stub object, which asserts the same annotated
properties. This would not be verified, and instead all the certificates could be
presented to the user. Implementing this in a user friendly and secure manner
would be a challenge.

Presenting multiple service certificates presents another set of problems.
Firstly, what happens if one of the sub services is not considered trustworthy?
This could be for a number of reasons, for example the verification tool might be
out of date, or the AIK certificate could have expired. The implications of this
may affect all or part of the overall combined service. Secondly, do we still trust
a system with so many trusted components? If a TPM was successfully attacked
on any of the sub services it might compromise the whole process. Finally, it
is possible that we will be contacting services which do not use this certifica-
tion system. They may have a different trust mechanism, or none at all. How to
weight the trustworthiness of this service is an open question.

8 Conclusion

We have introduced the idea of Trustable Remote Verification, a technique which
allows a service provider to verify its own software and create a trustworthy
guarantee of the result. The main advantages are that no new third parties
are needed, and providers can easily create a new verification result whenever
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necessary. Furthermore, one verification can be used as a credential for many
platforms. We have also identified the key shortcomings and limitations to our
work, including the large amount of necessarily trusted code, and the need for an
annotated, verifiable service. However, our prototype implementation uncovered
few additional issues, and we feel justified in persuing these ideas further. Overall,
this technique has great potential, and could be a viable way of adding assurance
to Service Oriented Architectures. Future work will concentrate on finding where
the best applications of this idea are, what properties it can guarantee, and
whether architectural approaches can be used to reduce the trusted computing
base of verified services.
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Abstract. Secure management of logs in an organisational grid envi-
ronment is often considered a task of low priority. However, it must be
rapidly upgraded when the logs have security properties in their own
right. We present several use cases where log integrity and confidential-
ity are essential, and propose a log reconciliation architecture in which
both are ensured. We use a combination of trusted computing and virtu-
alization to enable blind log analysis, allowing users to see the results of
legitimate queries, while still withholding access to privileged raw data.

1 Introduction

The notion of a Virtual Organisation (VO) runs commonly through many defi-
nitions of what constitutes a grid: “many disparate logical and physical entities
that span multiple administrative domains are orchestrated together as a sin-
gle logical entity” [15]. The rise of many types of organisational grid systems,
and associated security threats, makes the provision of trustworthy audit-based
monitoring services necessary; for instance, to monitor and report violation of
service-level agreements [18], or to detect events of dubious user behaviour across
multiple domains and take retrospective actions [17].

In reality, a lot of these audit-based controls are prone to be compromised
due to the lack of verification mechanisms for checking the correctness and the
integrity of logs collected from different sites; and also because some of these
logs are highly sensitive, and without the necessary confidentiality guarantees,
neither trusts the other to see the raw data. Many log anonymisation techniques
have been proposed [9,12,19] to solve the latter issue; however, adapting such
techniques and assuring that these anonymisation policies will be correctly en-
forced at a remote site, is a whole new security issue. The problem with existing
solutions is that they provide only weak protection (or none) for such security
properties upon distributed log collection and reconciliation (Section 3).

In our previous work [8] we have proposed a logging infrastructure using the
driver virtualization in Xen that enables trustworthy generation and storage of
the log data. In this paper, we take a step further and describe a log reconciliation
method for guaranteeing their integrity and confidentiality.
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The rest of the paper is organised as follows. In Section 2, we present a num-
ber of motivational examples and highlight distinct security challenges with pro-
cessing distributed log data. Section 3 discusses the security gaps of existing
solutions. Then, in Section 4, we present the trustworthy log reconciliation re-
quirements which address these security gaps. Mindful of such requirements, we
describe a reconciliation infrastructure for a VO in Sections 5 and 6. Finally, in
Section 7 we discuss the contribution of this paper and the remaining work.

2 Motivational Examples

2.1 Healthcare Grids and Dynamic Access Control

The first example application arises in the context of a healthcare grid. In ‘e-
Health’, many data grids are being constructed and interconnected in order to
facilitate the better provision of clinical information. Each clinic (an independent
legal entity) participating in the grid owns and manages physical databases which
together form the virtualized clinical data and log stores. To motivate the use
cases described later in this section we use an abstract view of the VO (see Figure
1): each node consists of external and internal services where the virtualization
of data sources takes place; it also has its own local data and logs; a standard
external service enables communication between different nodes.

Consider the following example in the context of Figure 1. A simplified health-
care grid consists of two nodes, a GP Practice (GP ) and a Specialist Clinic (SC).
A patient in GP is often referred to SC to see a specialist. We shall assume that
a single table at each clinic (T1, T2) is made accessible to a researcher R, and
that the National Health Index (NHI) uniquely identifies a patient across the
grid to enable the linking of data. R is carrying out a study that looks at asso-
ciation between smoking status (T1) and development of lung cancer (T2) in the
population of Oxfordshire.

R has originally been granted full access to both T1 (at GP ) and T2 (at SC)
to conduct this research. By joining the data across two clinics, R would have
access to potential identifiable information about patients: for example, R could

Fig. 1. Abstract View of the Virtual Organisation



Trustworthy Log Reconciliation for Distributed Virtual Organisations 171

find out that patient 1, born on the 20/05/88 and living in OX2 5PS who has
Dr. Anderson as their GP, is a smoker and has a lung cancer.

GP Practice (GP ) T1

NHI DOB GP Smoke Risks

1 20/05/88 Dr. Anderson yes overweight
2 30/07/88 Dr. Anderson no allergies

Specialist Clinic (SC) T2

NHI Postcode LungCancer

1 OX2 5PS yes
2 OX2 6QA no

In a secure VO, as soon as R finds out from querying T2 that patient 1 has
lung cancer, R’s access on T1 for patient 1 needs to be restricted to, for example,
only the NHI and Smoke fields. For GP to have restricted R’s access rights to
information pertaining to patient 1 on T1, would have required GP to collect
data access logs from SC to build up a picture of what R already knows, and
to update its own access control policies to prevent R from collecting potential
identifiable information. Although, in general, SC would never give out patients’
lung cancer status in the form of audit logs to an untrusted GP .

This type of distributed audit approach has been suggested [17] to detect
patterns of behaviour across multiple administrative domains by combining their
audit logs. However, the problem arises from the fact that log owners do not trust
other sites to see their privileged raw logs. This approach will only work if log
owners can be assured of confidentiality during transit and reconciliation.

2.2 The Monitorability of Service-Level Agreements (SLAs)

The provision of Service-Level Agreements (SLAs) and ensuring their monitora-
bility is another example use for trustworthy log reconciliation.

A SLA is a contract between customers and their service provider which spec-
ifies the levels of various attributes of a service like its availability, performance
and the associated penalties in the case of violation of these agreements. Con-
sider a case where the client receives no response for a service (for which they
have entered into a SLA) within the agreed interval of time, complains to the
provider that a timely response was not received and requests financial compen-
sation. The provider argues that no service request was received, and produces
a log of requests in their defense. There is no way for the client to find out the
truth: the provider could have delivered tampered evidence regarding this event.
The problem with this type of SLA is that it is defined in terms of events that
the client cannot directly monitor, and they must take the word of the provider
with respect to the service availability.

Skene et al [18] suggest a way of achieving the monitorability with trusted
computing. This involves generating trustworthy logs, ensuring that unmodified



172 J.H. Huh and J. Lyle

logs have been reported by both parties and that these logs have been used
for monitoring SLAs. For instance, if the client is able to verify with remote
attestation that trustworthy logging and reporting services operate at a remote
site, then the client may place conditions on any event of their interest and
construct more useful SLAs. This approach needs to guarantee the integrity of
all service request/response logs to an evidential standard (i.e. to a standard
acceptable for judicial usages) upon distributed reconciliation and analysis. A
monitoring service would then be able to generate a reliable SLA report for the
client to make claims.

Logs often contain sufficient information to be used as evidence in a variety
of context. However, the inability of a site to verify the integrity of logs collected
from other sites and the lack of guarantees that their own logs are being used
unmodified at remote sites, make it extremely challenging for one to adapt the
usual audit-based monitoring method to the VO.

3 Relevant Work and a Gap Analysis

Having identified the security challenges of imposing audit-based controls, we
are now in a position to present a gap analysis on existing solutions.

DiLoS (Distributed General Logging Architecture for Grid Environments) [5]
provides general logging facilities in service oriented grid environments to enable
tracking of the whole system. One of its application models is to facilitate ac-
counting for resource-providing services: to measure and annotate who has used
which services, and to bill usage prices. In this accounting domain, however,
DiLoS does not consider the log integrity issues and the possible threats that
have been covered in Section 2.2. Without security mechanisms to protect log
integrity, their architecture cannot be relied upon to perform calculating and
billing functions.

Piro et al [14] have developed a more secure and reliable data grid accounting
system based on metering resource usage. All communications are encrypted [13];
but a privileged user may still configure the Home Location Register (HLR), a
component that collects remote usage records for accounting, to disclose sensitive
usage records. A rogue resource owner may modify the Computing Element
(CE), which measures the exact resource usage, in order to fabricate records
and prices for profit.

The NetLogger Toolkit [20] provides client application libraries (C, Java,
Python APIs) that enable one to generate log messages in a common format. It
also includes monitoring tools for log collection and analysis at a central point.
Again, the log integrity and confidentiality threats discussed in the previous
section undermine their approach: access requests are processed without any au-
thorisation policy enforcement, and the logs are transferred across the network
in an unencrypted and unsigned format. No attempt is made to safeguard the
logs while they are being collected and processed at the reconciliation point.

Similar security problems undermine other existing grid monitoring tools such
as APEL (Accounting Processor for Event Logs) [3], which builds accounting
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records from system and gatekeeper logs generated by a site; and GMS (Grid
Monitoring System) [11], a system that captures and stores job information in
a relational database, and supports resource usage monitoring and visualising.

4 Trustworthy Log Reconciliation Requirements

To fill the security gaps identified above, we provide a high-level overview of the
key requirements with respect to our motivational examples.

Log Migration Service. Due to the number of potential security vulnerabili-
ties, complex grid middleware services can not be relied upon to perform trusted
operations [4]. Instead the security controls required for safe log data transfer
need to operate within a more secure migration service. This implies data flow
encryption and signing requirements upon log access and transfer requests. These
are integral in preventing intruders from sniffing the logs processed through inse-
cure grid middleware, and from launching man-in-the-middle type of attacks. It
is also possible for a log owner to deliver fabricated logs, as the service provider
might do in the SLA example. To provide a safeguard against such a threat, the
migration service needs to access the signed logs (and the original logs) directly
from the protected log storage. This would give sufficient information for an end
user to verify the log integrity.

Log Reconciliation Service. Our examples have a common set of requirements
for a trustworthy reconciliation service. They require each site to negotiate with
others and grant permissions to view their logs. These sites (before granting per-
missions) need to be assured that their logs will not be compromised and will be
used without modification. The integrity and the confidentiality of the collected
logs as well as the processed results (e.g. summaries on SLA violation) need to be
protected to prevent a malicious user from modifying or stealing them.

To make it harder for insiders to gain unauthorised access and modify the
reconciled logs, this service needs to run in a strongly isolated compartment
with robust memory protection. It should also be a small and simple code to
minimise the number of security holes that might be exploited.

Blind Analysis of the Logs. Returning to our healthcare example, imagine
that SC has agreed to share their logs with GP for dynamic access control. But
at the same time they are unwilling to let the system administrator at GP see
the actual contents of the logs; or only let part of the data be seen as a summary
information. For example, “R’s access rights on T1 for a patient with NHI 1,
aged 20 and living in OX2 area, have been restricted to NHI and Smoke fields.”.
Such anonymisation of end results ensures that the administrator cannot find
out about a patient’s lung cancer status, and yet, still know exactly how the
access control policy has been changed for R.

Log owners need to be assured that any sensitive information contained in
their logs will only be revealed to an extent that has been agreed and stated in



174 J.H. Huh and J. Lyle

anonymisation policies: this requires a mechanism, possibly within the reconcil-
iation service, to carry out a blind analysis of the collected logs so that a user
only sees the running application and the end results, which are just sufficient
for them to carry out post log analysis or to know about the important system
updates.

5 Trustworthy Logging Architecture

In our previous work [8], we have developed a logging architecture based on
Virtual Machine (VM) isolation and remote attestation (see Figure 2). Upon
installation of this architecture, each VO participant will be capable of generating
and storing log data, and proving to other sites that these logs are trustworthy.

The Trusted Computing Group (TCG) [1] has developed a series of technolo-
gies based around a Trusted Platform Module (TPM) which helps to provide two
novel capabilities [7]: a cryptographically strong identity and reporting mecha-
nism for the platform, and a means to measure reliably a hash of the software
loaded and run on the platform (from the BIOS upwards); such measurements
are stored and retrieved from Platform Configuration Registers (PCRs) in the
TPM. These provide the means to seal data so that it is available only to a par-
ticular platform state, and to undertake remote attestation: proving to a third
party that a remote device is in a particular software state. TPM-generated
Attestation Identity Keys (AIKs) are used to sign PCR values and to prevent
tracking of platforms. These trusted computing capabilities can be used in a vir-
tualized environment where a physical host is segmented into strongly isolated
compartments to make attestation feasible (with robust memory protection),
and to limit the impact of any vulnerability in attested code. Our architecture
uses the Xen Virtual Machine Monitor (VMM) [2] to achieve this isolation: a
thin layer of software operating on top of the hardware to enable VM abstraction
and control the way a VM accesses the hardware and peripherals.

All log security functions are enforced by the log security manager VM, a small
amount of code running inside back-end driver VMs and the log analysis manager
VM; each of which has been designed to perform a small number of simple
operations so that it can be compartmented with a high degree of assurance.

Fig. 2. Abstract View of Trusted Logging Services
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Attestation of these compartments, the Policy Enforcement Point (PEP) and
the VMM is sufficient for one to establish trust with a VO platform, and to
be assured that its log security functions have not been subverted; this is our
Trusted Computing Base (TCB).

A small number of trusted back-end driver VMs are responsible for generating
all logging requests upon use of device drivers. All other VMs must communicate
with one of these driver VMs to access the physical hardware. Inside these VMs,
the log transit component collects important I/O details and submits requests
to the log security manager. Applications and middleware services running in
other compartments are no longer relied upon to generate trustworthy log data.

The log security manager performs a range of security functions through the
following services:

– The logging service ensures that no adversaries can access or modify the
log data dispatched from log transits. It filters out untrustworthy logging
requests and verifies their integrity before storing them.

– The reconciliation service facilitates trustworthy reconciliation and transfor-
mation of the collected logs. It enables blind analysis of the logs by enforcing
anonymisation policies.

– The migration service is an external service which facilitates secure commu-
nication between VMs in one or more sites by enforcing security controls
required for safe log transfer.

End-user applications only have access to the externally facing visualisation
service running inside the log analysis manager, which provides the minimal
interface necessary for user applications to interactively analyse the processed
log information. A compartment manager within the PEP executes a job in a
per-user log access VM configured with trustworthy services. The grid services
compartment isolates the middleware stack and is untrusted; it performs resource
brokering and job scheduling.

6 Trustworthy Log Reconciliation

Based on the work in previous section and the requirements analysed in Section
4, we present a trustworthy reconciliation infrastructure.

6.1 The Configuration Resolver

We expand our abstract view of the VO to include a Configuration Resolver
(CR) that manages metrics about the available sites in the VO and their current
software configurations. To become part of the VO a site needs to first register
itself with the CR by submitting the PCR representations of its TCB and log
access VM image files, and a credential containing its public key for which the
private-half has been sealed to both PCR values. The CR then creates a Con-
figuration Token (CT ) from this information:
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CT = (PCRAIKS(N)(TCB), PCRAIKS(N)(LA), credAIKS(N)(PK))

A trustworthy PCR(TCB) value proves that secure logging VMs have been
responsible for generating and protecting the log data; this allows a participant to
have high confidence in the correctness of the logs stored in node N . Furthermore,
a trustworthy PCR(LA) value guarantees the security configurations of a log
access VM. A value of PCR(LA) is stored in a resettable PCR 23 because these
VM image files will be remeasured and verified by the PEP at run-time before
being launched.

The CR acts as a token repository in our system and offers no other complex
functionality. The burden of verifying tokens is left to the participant. This is
attractive from a security perspective, as the CR can remain an untrusted com-
ponent. The worst that a malicious CR can do is affect the availability of the
infrastructure. However, the simple CR does increase the management overhead
on each node. They will all need the ability to check tokens. This involves main-
taining a list of trustworthy software (a white-list), and keeping a revocation list
of compromised TPMs and platforms. The security of our system depends on the
proper management of this information. We suggest that a suitable compromise
might be to devolve some of this functionality to local proxy-CRs, which would
perform the token filtering for one specific administrative domain. This keeps
control local to one site, but would decrease the effort at each individual node.

To conform to existing standards, we imagine that CR would be implemented
as a WS-ServiceGroup [10]. Each node would then be a member of this CR’s
group, and have a ServiceEntry in its list. The membership constraints would
be simple, requiring only a valid token and identity. We assume that there is
a public key infrastructure available to verify their identity. As a result, the
levels of indirection introduced by the TCG to prevent any loss of anonymity
are unnecessary. We would suggest that the Privacy CA is not a key component
of the system, and a publically-available one could be used. AIKs can be created
as soon as the platform is first installed, and should very rarely need updating.

6.2 Trustworthy Log Reconciliation Infrastructure

With the resolver in place, security procedures of the reconciliation infrastructure
have been carefully designed. Our healthcare example in Section 2.1 has been
revisited to explain these procedures.

Creation and Distribution of a Log Access Grid Job. All end user in-
teractions with a clinic node are made via the visualisation service. It provides
the minimal interface (APIs) necessary for development of grid-enabled applica-
tions. An analysis tool should be designed to allow a user to select acceptable
host configurations and user credentials, and enter the log access code/query (1,
numbers refer to Figure 3).

A system administrator at GP , using one of these tools, requests for dynamic
updates on the local access control policies. The visualisation service requests
for the list of available configuration tokens (CT s) (2, 3, Figure 3); the list is
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Fig. 3. Creation and Distribution of a Log Access Grid Job

forwarded to the log migration service running inside the log security manager
(4, Figure 3). The migration service makes a list of acceptable hosts by com-
paring each CT against a user-specified white-list. It then creates a set of grid
jobs, each of which contains the administrator’s credential, log access code, job
description, a nonce (NGP ) and an Attestation Token (AT ) that can be used by
any SCs to verify the security state of the system running at GP (5, Figure 3);
AT consists of the following information:

AT = (PCRAIKS(GP )(TCBGP ), credAIKS(GP )(PK))

credAIK(GP )(PK) is GP ’s PK credential which identifies the corresponding
SK as being sealed to PCR(TCBGP ).

For each job, the credential, the code and NGP are encrypted with a PK(SC)
obtained from a CT to prevent an adversary from modifying the code and to
ensure that the credential is only revealed to a trustworthy SC. The use of the
nonce, NGP , is explained further on in this section. After encryption, these jobs
are sent across the network via an untrusted grid middleware compartment which
can only read the job description to identify the target SC; jobs are submitted
to the PEPs of their target nodes that handle job submission (6, Figure 3).

Operations of a Trusted Log Access VM. In Figure 4 we take a closer
look at how a job gets processed at one of the target nodes, SCA. Any security
processing required before becoming ready to be deployed in a per-user log access
VM is done through the PEP: it compares PCRAIKS(GP ) (from AT ) with its set
of known-good values stated in a policy to verify that the job has been created
and dispatched from a correctly configured log security manager; this is how
the job is authenticated at SCA (1, Figure 4). Upon successful attestation, the
PEP first measures the local copy of log access VM image (and a configuration
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Fig. 4. Submission of a Grid Job, Creation and Operations of a Log Access VM

file), and resets PCR 23 with the new measurement, PCR(LAA); this image
consists of the guest OS and the trusted middleware stack (authorisation policy
management and migration services) which provides a common interface for
a job to access the logs. The PEP then attempts to unseal the decryption key,
SK(SCA) (bound to PCR(TCBA) and PCR(LAA)), in order to decrypt the job.
Note that SK(SCA) will only be available if SCA is still running with trustworthy
configurations and the VM image files have not been subverted. This is intended
to guarantee that only a trusted VM has access to the decrypted credential, code
and NGP .

If these security checks pass, the compartment manager launches a trusted
VM from the verified VM image files, and deploys the decrypted job on top
of the middleware stack (2, Figure 4). The migration service first requests the
policy management service to decide whether the administrator is authorised to
view the requested logs (3, 4, Figure 4). If the conditions are satisfied, the code
gets executed. A log anonymisation policy (Pols) specified by the log owner,
which states what part of the requested log data should be available to the
administrator at GP , is also selected (5, Figure 4): in this scenario Pols would
restrict disclosure of LungCancer status (see T2). Existing log anonymisation
techniques such as FLAIM [19] can be used in specifying these policies, in order
to sanitise the sensitive data while pertaining sufficient information for analysis.

The migration service then generates a secure message containing these re-
sults (6, Figure 4):

R = {Logs, Pols, NGP}PK(GP )

GP ’s nonce, NGP , is sufficient to verify that this message has been generated
from a trusted VM and unmodified code has been executed. The entire mes-
sage is encrypted with PK(GP ) so that it can only be decrypted if the system



Trustworthy Log Reconciliation for Distributed Virtual Organisations 179

Fig. 5. Reconciliation of Collected Logs

at GP is still configured to match PCR(TCBGP ) (from AT ); a compromised
system will not be able to decrypt this message. An attacker will not be able to
tamper with it since the private-half, SK(GP ), is strongly protected inside the
TPM.

Reconciliation of Collected Logs. This message arrives at the PEP of GP ’s
system where it is decrypted using SK(GP ) (1, Figure 5). The decrypted message
is then forwarded to the migration service which compares the returned NGP

with the original nonce (2, Figure 5). A matching value verifies the correctness
and the integrity of the collected Logs.

The internal reconciliation service reconciles the logs collected from SCA,
SCB and SCC and updates the access control policies according to what users
have previously seen from these three specialist clinics (3, Figure 5). During
this process Pols are enforced to fully anonymise the log data. Attestation
of GP ’s log security manager (1, back in Figure 4) is sufficient to establish
that these anonymisation policies will be imposed correctly during reconcil-
iation. VM isolation and its robust memory protection prevent an attacker
from accessing the memory space of the log security manager to steal the raw
data.

A summary of the policy updates is then generated using the anonymised data
and forwarded to the original requestor, the visualisation service (4, 5, Figure
5). The administrator only sees this summary information on how the policies
for their patient data have been updated for different users, and performs blind
log analysis (6, Figure 5). VM Policy Attestation [6] may be used on the log
analysis VM to verify that it does not permit the summary to be exported to
an unauthorised device.
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Table 1. Trustworthy Log Reconciliation Features

Security Goals Trustworthy Log Reconciliation Features

Logs need to be protected
from the grid middleware
services

Isolation of untrusted grid middleware services; the log
migration service encrypts logs using a log owner’s public
key for which the private-half is strongly protected inside
log owner’s TPM.

A log requester needs to be
able to verify the integrity of
the collected logs

Trustworthy log-generating sites are selected from config-
uration token verification; only a trusted log access VM
is able to decrypt the grid job and return the logs from a
remote site.

A log owner needs to be
assured that their logs will
be safeguarded from compro-
mise and used unmodified at
remote sites

Attestation token (part of the grid job) is used to ver-
ify the trustworthiness of a log requester’s platform and
its reconciliation services; the logs are encrypted using re-
quester’s public key for which the private-half is sealed to
a trustworthy configuration.

Blind log analysis Log anonymisation policies are enforced by the reconcilia-
tion service and the raw data never leaves the log security
manager; an end user only sees the fully anonymised data.

6.3 Observations

Configuration Token Verification. The trustworthiness of our architecture
is dependent on the ability for each participant to make the right decision about
the security provided by software at other nodes. The identity of this software is
reported in the PCR values contained in the CT s. We imagine that these values
will then be compared to a white-list of acceptable software. However, this as-
sumes prior knowledge of all trusted node configurations, which may not be the
case if the VO is particularly large. Such a scalability issue is magnified when
considering settings files, many of which will have the same semantic meaning
but different measured values. It is difficult to assess how big a problem this is,
but future work may look at using Property-Based Attestation [16] as a potential
solution.

Node Upgrades. The most significant overhead of our system is the cost of up-
grading existing nodes to support the new infrastructure. This involves installing
the Xen VMM and various logging VMs. While this is a large change, the advan-
tage of our architecture is that legacy operating systems and middleware can still
be used in their own VMs. The overall administration task is therefore not so
large. Furthermore, virtualization is increasing in popularity, and it seems likely
that the scalability and management advantages will persuade VO participants
into upgrading to a suitable system anyway.

7 Conclusions and Future Work

In this paper, we have described a trustworthy log reconciliation infrastructure to
facilitate audit-based monitoring in distributed virtual organisations with strong
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guarantees of the log integrity and confidentiality. Table 1 summarises how our
infrastructure satisfies the security requirements analysed in Section 4.

Prototype implementations of some of these features will be constructed and
their inherent security and practicality will be carefully evaluated.

We intend to extend and generalise this work into a Digital Rights Manage-
ment (DRM) framework in the future. Our reconciliation and migration VMs,
as the root of trust, will enforce DRM policies to protected data and ensure that
they are safeguarded wherever they move in a virtual organisation.
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Abstract. We discuss five attack strategies against BitLocker, which
target the way BitLocker is using the TPM sealing mechanism. BitLocker
is a disk encryption feature included in some versions of Microsoft Win-
dows. It represents a state-of-the-art design, enhanced with TPM sup-
port for improved security. We show that, under certain assumptions,
a dedicated attacker can circumvent the protection and break confiden-
tiality with limited effort. Our attacks neither exploit vulnerabilities in
the encryption itself nor do they directly attack the TPM. They rather
exploit sequences of actions that Trusted Computing fails to prevent,
demonstrating limitations of the technology.

1 Introduction

One promise of Trusted Computing is better protection of system integrity. Vari-
ous applications can profit from mechanisms that protect software on a computer
from being tampered with. To this end, a v1.2 TPM supports authenticated
boot, keeping track of the boot process and eventually basing operations such
as sealing and attestation upon the result. This is one step short of what theory
suggests for best security: stopping the boot process of fixing the issue as soon
as a manipulation has been detected [1,2].

This leads to the question what the implications of this difference are in prac-
tice. We explore this question for one particular software design and application:
BitLocker. Included with some editions of Microsoft Windows Vista and Win-
dows Server, BitLocker encrypts volumes on disk and uses the sealing function
of a v1.2 TPM for part of its key management. We devise several scenarios for
targeted attacks that break the confidentiality BitLocker is supposed to protect.

Note that there are two distinct attack strategies against which BitLocker
should ideally protect. Opportunistic attacks use only what is easily obtained
under common real-world conditions. An example is recovering data on a disk or
computer that has been bought in used condition from somebody else, or stolen
somewhere. A targeted attack is different in that the attacker attempts to get
access to data on a specific, predetermined disk or machine, usually within some
time and resource constraints. According to Microsoft, BitLocker is designed
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to withstand at least opportunistic attacks. Considering targeted attacks as we
are doing here may be beyond its specification. However, disk encryption along
with TPM-based key management might be expected and perceived to be more
powerful than what the manufacturer is willing to promise, and we deem it useful
to explore the actual security properties and limitations regardless of claims and
cautionary notes.

The remainder of this paper is organized as follows. Section 2 briefly describes
the design of BitLocker, focusing on its key management and how it is using the
TPM. Our adversary model and security considerations are outlined in section 3.
Section 4 describes attack scenarios that seem feasible and either yield secret key
or data or achieve some important steps towards a successful attack. Causes and
contributing factors are discussed in section 5. Section 6 outlines our practical
implementation of the attack, followed by the conclusions in section 7. Related
literature is referenced where appropriate but not specifically discussed.

2 An Overview of BitLocker

This section only mentions facts about BitLocker that we will use in this paper.
For further details refer to the documentation available from the manufacturer
[3,4] and from unofficial sources [5].

2.1 Integrity Model and Design Constraints

BitLocker works, at boot time, as a component of the boot loader and later
as a driver of the operating system kernel. Its design assumes that the kernel
boots from a BitLocker-protected volume, that BitLocker sufficiently protects
the integrity of data on this volume, and that anything that happens after initi-
ating the OS boot process is sufficiently controlled by other security mechanisms.
We do not challenge these assumptions here; see [6,7,8] for two known attacks
against the running system.

According to these assumptions, BitLocker has to protect the integrity of the
boot loader and its execution environment up to the point where the kernel can
be read from the locked volume. This code is read from an unencrypted part
of the disk and needs to be supplied with a secret key for the AES algorithm.
This is where the TPM is being used in. BitLocker uses the sealing function
to store all or part of its key material in such a way that it becomes accessible
only if the platform configuration as represented by the PCR values is in line
with the reference configuration. The reference configuration is determined by
the administrator accepting the current system configuration at some point in
time. This adoption of a reference configuration is initially done during BitLocker
activation but can be repeated at any time from the running Windows system.

2.2 Key Management and Recovery Mechanisms

Apart from special cases—BitLocker can also be operated without a TPM or
with all key material being managed by the TPM—key material is divided. One
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part is managed by the TPM and released only if the platform is in the trusted
state, the other is supplied by the user as a password and/or key file on a USB
memory stick.

If the TPM works as desired, there is no way according to the design to gain
access to all required key material if the platform state measured is different
from the reference state. This is intended if the platform state is modified by
an attack, it is not, if state is modified for a legitimate reason and the change
can not be reverted easily, e.g. after BIOS update or hardware repair. BitLocker
therefore offers two recovery mechanisms, the recovery password and the recovery
key. Both are designed to circumvent the TPM and supply BitLocker with its
secret key independent of the current platform state. The recovery mechanisms
don’t correct the problem, though. This is left to the administrator who, after
the recovery boot, may set a new reference state from the running system.

The actual encryption key does not change during the recovery process.

2.3 User Experience

The user experience hides most of the details. When switching on their PC, users
will see a text-mode prompt for their PIN and/or USB stick. If the platform is not
in reference state they will next be prompted for their recovery key or password.
Otherwise the boot process will resume after the PIN or USB key have been
provided. Depending on how the computer is being used, users may experience
a recovery prompt from time to time, e.g. after accidentally leaving a bootable
CD or DVD in the drive or when a bootable USB stick is plugged into their
computer.

3 Security Considerations

3.1 Security Objectives

The primary security objective is confidentiality of any data stored on the en-
crypted volume. Encryption alone, however, cannot guarantee confidentiality as
a system security property. Its scope has—at least—two intrinsic limitations.
First, disk encryption is not expected to protect cleartext data before en- or af-
ter decryption. The system must provide further security mechanisms to provide
such protection. Second, encryption does not solve confidentiality problems but
rather shifts them: from the data to the key(s). Encryption therefore cannot be
more secure than its key management allows it to be.

A secondary objective is integrity of the data stored on disk. We consider
integrity here only insofar as it is a prerequisite for protecting cleartext data
and keys.

3.2 Attack Success Conditions

There are several distinct conditions that, if achieved by an attacker, would
violate the primary security objective:
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– The attacker obtains all or some ciphertext and breaks the encryption.
– The attacker obtains the cleartext from place or situation where cleartext is

normally handled. The attacker works outside the scope of the encryption
in this case and exploits a vulnerability elsewhere.

– The attacker obtains all or some ciphertext as well as sufficient key material,
and decrypts the ciphertext.

An attack may achieve everything at once, or it may comprise a sequence of
steps, each of which brings the attacker closer to success. We assume that steps
can be arranged in arbitrary sequence. But we require that no step except the
last one may spoil continuation, e.g. by preventing necessary subsequent steps
or by clearly alerting the user to the ongoing attack before it is finished.

3.3 Attack Situations

When accessing the system, the attacker may encounter one of several different
situations. Situations can be thought of as a set of parameters that the attacker
does not control. The situation found, together with capabilities, determine what
the attacker can achieve during the visit. Though not being able to control the
situation, in a targeted attack the attacker can wait for the right moment. Some
parameters, however, may have a very low probability of changing. An exam-
ple is the configuration of a disk encryption scheme once it has been installed.
Situational parameters are:

– The time and channel available for undetected interaction with the target
system. This is really a continuum but we can roughly distinguish three
classes of physical access: brief visits (up to few minutes), temporary control
of the device (up to a few days), and permanent possession. Another channel
is remote communication. We assume that the attacker must successfully
install software on the target machine to gain such a channel, and the channel
is available only while this software is running.

– The boot state of the target computer. The system may be powered on and
fully booted, or it may be powered off. When it is running, encryption keys
are present in RAM. The attacker can power it down at the risk of the
change being noticed by the user. If the system is powered off, the attacker
is not able to fully boot the system without the user-managed secrets. He
may boot his own software, however; this is indeed one of the actions that
using a TPM should protect against.

– System configuration. There is a vast amount of system configurations that
an unprepared attacker may encounter. For a particular target system, how-
ever, the configuration rarely changes. If it does, and the system has a TPM
and uses it, expected or deliberate changes are likely to be accepted, changing
the reference configuration.

If the attacker encounters the system running and has enough time available,
the attack is successful immediately: keys can be read from memory using one
of the known online attack techniques, and used to decrypt disk contents.
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3.4 Adversary Capabilities

With physical access to the target system the attacker can perform one or multi-
ple actions depending on the time available, the state of the system and whether
(later) detection is acceptable or not. We are thinking along the lines of [9] here
but do not attempt to establish a comprehensive model. Our lists below are
likely incomplete.

Brief visits During a brief visit the attacker could:

Power off or on the system, depending on its current state. Powering off implies
that the original state cannot be restored if the attacker does not know
the secrets requested at boot time. Although the change is noticeable, the
attacker may get away with it if the change is plausible to the user. If the
system is originally powered off, the attacker can revert to the original state
at any time. The attacker will not be able to boot into the regular system
without knowing the boot-time secrets.

Modify boot code if the system is powered off or can plausibly be left in this
condition. Whether and when such a modification might be detected by the
user depends on various side conditions, particularly on the use of a TPM
and the actions the code performs. We can expect such code to be executed
at least once.

Steal the system, turning a brief visit into permanent possession of the ma-
chine. Theft will usually be detected. The attacker may or may not be able
to preserve the boot state of the machine, depending on whether it has a
sufficiently charged battery or not.

Replace the machine with one that looks exactly the same. This requires some
preparation and investment but seems feasible. In addition to getting hands
on the target machine permanently the attacker retains the ability of inter-
acting with the target user. The attack will be noticed as soon as the copy
behaves differently than the target would, or any other distinguishing feature
becomes visible and noticed.

Copy small amounts of data from the disk but not an entire volume or disk.
This leaves no traces if the system is powered off, or changes its state if it
was powered on. (We assume the software running on the machine cannot be
exploited to this end.) Copying entire disks fails not because of any security
mechanism but due to the amount of time required.

Possibly copy small amounts of RAM contents if a DMA-capable interface is
available and supported, and the system is up and running.

Temporary control. If the attacker can spend more, but sill limited time with
the system, additional actions become available:

Install a concealed hardware extension such as a key logger. Whether the system
has to be powered down if encountered running depends on the type of
extension and various details of the hardware design.
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Copy the entire disk or an entire volume of data. This leaves no traces if the
system is powered off, or may change its power state if it was powered on.
However, given sufficient time the attacker may be able to disconnect the
disk from the system without resetting the machine, connect it to another
machine, copy all data, and reconnect the drive to the target machine.

Non-destructive attacks against a TPM or other hardware components such as
a TPM reset attack [10,11]. Such attacks may have specific prerequisites. A
reset attack against a TPM, for instance, requires that the attacker knows the
proper sequence of PCR values during regular boot. One way of obtaining this
sequence would be to record it during such a boot process, which requires the
ability to boot the unmodified system to the point where the TPM is used.

Permanent access. An attacker in permanent possession of the target system
has all the capabilities described above. The difference from temporary control
is that the attacker does not have to hide anything from the user. Destructive
attacks become an option.

Communication. Communication with the attacker is possible whenever the at-
tacker manages to run his own software on the target system or controls existing
software with communication capabilities. There are different modes of commu-
nication. The most common are: storing data locally where they can be picked
up later; transmitting data through a network interface card to the local wired
or wireless network; or using an IP network if the computer is connected to
one. None of these options requires that the attacker uses the operating system
installed on the target system.

4 Attack Strategies

4.1 Plausible Recovery

The attacker modifies the BitLocker code on disk, adding a backdoor. Such a
backdoor could be as simple as saving a clear key in some location on disk or
elsewhere in the system from where it can be retrieved later. This modification
will of course be detected the next time the system is started by a legitimate user.
However, the attacker hopes that the user applies one of the TPM-independent
recovery mechanisms to overcome the problem. The attacker later visits the
system again to collect the key. Encrypted volume data could be copied during
each visit to the target system as the actual encryption key does not usually
change.

Requirements This attack requires:

– that recovery mechanisms are used at all, and
– that the attacker can physically access the target machine at just the right

time without taking it away permanently, and
– that the reported platform validation error seems plausible for the victim.
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One obvious implementation of this attack would be to wait for a situation
that plausibly changes the state of the platform, such as a repair. It may also
be possible to provoke such a situation. The attacker will then have to sneak
into the process somewhere before the user accepts the seemingly legitimate
modification. This would mask the malicious change with the legitimate one.

Result. If the attack succeeds, the attacker has successfully planted a backdoor
into the system in such a way that all software-based security features could be
circumvented. The attack is unlikely to be noticed by the victim. In order to get
both the encrypted data and the secret key the attacker will have to visit the
target system at least twice. However, the backdoor may also use other channels
to leak cleartext data, possible increasing the risk of detection.

4.2 Spoofed Prompt

Similar to the plausible recovery attack, the attacker modifies BitLocker on the
target system and lives with the fact that the TPM will detect this modification.
The attacker adds code that spoofs the user interface of BitLocker up to the point
where the user has given up his secrets. The malicious code may spoof either the
normal-operations UI or the prompt for a recovery key.

Requirements. This attack requires that the attacker can physically access the
target system. It is not necessary that the attacker takes the system away per-
manently.

Result. The attack is easily detected as soon as secrets have been provided to the
spoofed prompt. After detection it is generally possible to prevent the attacker
from interacting with the compromised system again. Also, the TPM will refuse
to unseal its part of the key material while the platform is in this modified state.
If a recovery prompt is successfully spoofed and operated by the user, the attack
will yield sufficient key material for decryption of a volume.

Extensions. Although it may work under some circumstances, this attack does
not appear very critical. However, the next subsection describes a more critical
extension.

4.3 Tamper and Revert

The tamper and revert attack extends the spoofed prompt attack. Instead of
simply accepting that platform modifications can be detected, the attacker at-
tempts to exploit tampering yet hiding it. This becomes surprisingly easy if one
additional boot cycle is possible. The attacker could make a temporary modi-
fication to TPM-verified code. If we stick to the spoofed prompt example, this
means to add a cleanup function to the malicious code, whose purpose it is to
restore the former platform state. After a reboot—which might be initiated by
the malicious code after showing a bogus error message—the platform state as
measured will be compliant with the reference PCR values again.
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Requirements. Requirements are similar to those of the spoofed prompt attack.
In addition the attacker needs to get away with a boot cycle after platform
integrity failure without disturbing the victim so much as to spoil further steps
of the attack. Depending on how the credentials or keys obtained are transmitted
to the attacker, a further visit to the system may or may not be required.

Results. This attack yields copies of keys controlled by the user. In a simple
implementation these keys will end up in clear somewhere on the target system
itself but more sophisticated approaches can be imagined, for instance sending
the key somewhere using a built-in WLAN interface. Additional effort is required
on the attacker’s part to gain access to TPM-managed key material.

4.4 Replace and Relay

This is a hardware-level phishing attack. The attacker replaces the entire target
machine with another computer prepared for the attack. The replacement, when
turned on, produces all the messages and prompts that the original machine
would have produced. Up to the point where BitLocker would start, it takes all
user inputs (via keyboard or USB) and relays them to the attacker, e.g. using
radio. The attacker, being in possession of the unmodified original system, uses
this information to start up the stolen computer.

Requirements. This attack requires that:

– the attacker is capable of replacing the BitLocker-protected machine alto-
gether with an identically-looking copy, and

– the machine is plausibly turned off or in suspend-to-disk mode when the
legitimate user returns, and

– the replacement device is capable of relaying user input to the attacker.

The attacker will have to remain—or leave some device—in proximity to the
target until the next boot is initiated by the victim. The attacker will also need
some prior knowledge of non-secret facts, specifically everything that might be
needed to perfectly reproduce the user experience.

Result. As a result of this attack, the attacker receives the user-controlled secrets.
Depending on the mode in which BitLocker is deployed on the target system,
the result is either key material or authentication credentials or both. Either one
can be used in conjunction with the unmodified system to start up the operating
system. Security mechanisms of the operating system remain intact; another
attack will be required to actually access any encrypted data. Such attacks exist
[8,7]. The attack will likely be noticed right after the victim provided credentials
or keys to the spoofed machine. This attack may be combined with any attack
that yields the TPM-managed portion of the key material.

Extensions and Variants. A more sophisticated version of this attack involves
two-way communications, turning the replacement into a terminal of the stolen
target machine. This would probably require quite some additional effort but
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might extend the time span between success and detection of the attack. All
variants of this attack may also be attempted against recovery mechanisms,
which yields sufficient key material to decrypt disk contents immediately.

4.5 Preemptive Modification

This attack is similar to the plausible recovery attack, but at a different point in
time. The recovery attack targets systems on which BitLocker has already been
activated. Preemptive modification attacks earlier, before BitLocker has been
activated at all.

When defining the reference state for future booting, the operator has no
choice other than using the current platform state. BitLocker does not provide
the user with any means of verifying that this current state has or hasn’t any
particular property. If an attacker manages to modify critical parts of the plat-
form before BitLocker is activated, this modification therefore goes unnoticed
and will be incorporated into the trusted (but not trustworthy) platform state.

Requirements. Preemptive modification requires that the attacker gets physical
access to the target system before BitLocker is activated. Arbitrary modifica-
tions are possible at that time that would weaken the security of the BitLocker
instance affected forever. Another physical visit may be required later to retrieve
a disk image for decryption or leaked cleartext. However, the system may also
be modified in such a way that it leaks data at runtime. Everyone who gets
physical access to the machine or OS installation media before BitLocker setup
is a potential attacker.

Results. The attacker potentially gains read and write access to all data handled
on the system throughout its lifetime. This attack is hard to detect unless there
are additional means of verifying the integrity of executable code against external
references.

5 Causes and Contributing Factors

This section identifies factors that make the overall system—a PC with BitLocker
and Trusted Computing technology—vulnerable to the attacks described above.
Factors include fundamental properties of the security mechanisms involved as
well as features in the design and implementation of BitLocker and the Trusted
Computing platform.

Authenticated boot. Theory states that secure booting requires an appropriate
action if the measured state deviates from the reference. The boot process
could be stopped or it may be possible to fix the issue once it had been
detected [2]. So far, however, we have only authenticated boot. The TPM
does not enforce a trusted platform state, it only refuses to unseal a key if
the state is currently not trusted. This leaves loopholes for attacks, but also
makes it easier to provide recovery mechanisms if they are desired.



192 S. Türpe et al.

No trusted path to the user. BitLocker uses secrets to authenticate the user:
the PIN and key material. The channel between the legitimate user and the
system in a trusted state is prone to spoofing and man-in-the-middle attacks
(replace and relay; spoofed prompt; and tamper and revert). or specifically,
the system lacks context-awareness and the user is unable of authenticating
the system. Similar problems exist elsewhere, e.g. ATM skimming. Both
directions of authentication can be discussed separately:
No context-awareness. The BitLocker has no means of determining whether

the computer is under control of a legitimate user or somebody else. It
simply assumes that whoever provides the correct key or credential is a
legitimate user. Although requesting a PIN or key may be interpreted as
authentication, it is not a very strong one, and adding stronger authen-
tication may be difficult.

Lack of system authentication. While BitLocker is capable of authenticating
its user at least in the weak sense described above, the user has no means
of verifying authenticity and integrity of the device. Keys and passwords
are to be entered into an unauthenticated computer.

History-bounded platform validation. The Trusted Computing platform detects
and reports platform modifications only within the scope of the current boot
cycle. BitLocker uses this feature through the sealing function of the TPM
and does not add anything. The system is therefore unable to detect, and
react to, any tampering in the past that has not left permanent traces in the
system.

Incomplete diagnostic information. If current and reference state are out of
sync, it is difficult or even impossible for the user or administrator to de-
termine the exact cause(s). This leaves the user with a difficult choice: to
use recovery mechanisms blindly, or not to use them at all. The lack of di-
agnostic information contributes to the plausible recovery attack. Note that
detailed diagnostic information may not be required where a trusted state
can be enforced, e.g. by re-installing software from trusted sources.

Lack of external reference. This is another issue that has already been discussed
in the literature. BitLocker is capable only of using any current platform state
as a reference for future boot cycles. There are no means of verifying that this
reference state is trustworthy, opening the road to preemptive modification
attacks.

Recovery mechanisms that circumvent the TPM altogether. Except for TPM
reset and preemptive modification, all attacks described above do or may
profit from the recovery mechanisms built into BitLocker. These mechanisms
pose a particularly attractive target as they yield a key that is independent
from the TPM and thus can be used more flexibly. The plausible recovery
attack would not even be possible without recovery mechanisms.

Online attacks. Disk encryption does not protect from online attacks [6,7,8] and
is not expected to do so. They must be considered, however, as they offer a
straightforward way of finishing the attack once the attacker has obtained
the target system along with sufficient secrets to complete the boot process.
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Table 1. Attack scenarios and contributing factors

Replace
and relay

Plausible
Recovery

Spoofed
prompt

Tamper
and revert

Preemptive
modification

Authenticated boot • •
No trusted path to user • • •

No context awareness •
Lack of system

authentication
• •

History-bounded
platform validation

•

Incomplete diagnostic
information

•

Lack of external
reference

• •

Online attacks • • •
Recovery mechanisms
circumventing TPM

• • • •

Unprotected disk space • • •
Confidentiality as
security objective

• • • • •

Large amount of unprotected disk space. This is a secondary contributing fac-
tor to attacks involving purposeful, detectable modification of the platform
(plausible recovery; spoofed prompt; tamper and revert). Large amounts of
disk space are available for the attacker to install software or data in. This
may be difficult to avoid, though.

Confidentiality as the security objective. The security objective of disk encryp-
tion also has an impact on attacks. In order to achieve this objective, the
attacker has to obtain a small amount of protected data—the key—along
with a larger amount of unprotected data—the ciphertext—or a functioning
decryption device. This entails a great deal of flexibility on the attacker’s
part: individual steps of the attack can be executed in almost arbitrary se-
quence, and there is little the victim can do to restore secrecy once it has
been lost. The latter is what Whitten and Tygar call the barn door property
[12].

Table 1 shows how these causes and factors contribute to the attacks described
before. Each column represents an attack, each line a cause or factor. If a factor
contributes to an attack—makes it possible, makes it easier, or makes the result
more useful for the attacker—the respective cell is marked with an X. The last
two lines contain question marks in all cells: the authors do not fully understand
the impact of these factors yet.
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Fig. 1. Spoofed BitLocker PIN-entry screen

6 Proof-of-concept Implementation

We have fully implemented the tamper and revert attack described in section 4.3,
in order to show its practical feasibility.

The attacker installs the BitLocker PIN Trojan on the victim’s computer
by starting it from a specially prepared USB drive which contains a stripped
down Linux system. This takes less than two minutes and requires no
interaction.

The BitLocker PIN Trojan consists of a boot loader installed into the MBR
and a second stage that is loaded from an unencrypted NTFS partition which is
part of every BitLocker installation. An installation tool is responsible for storing
the second stage along with the old MBR as a normal file into a continuous area
of the unencrypted NTFS partition. The LBA address of the beginning of the
file is written into the MBR.

At the next boot, the MBR boot loader loads this file and transfers control to
it. A fake BitLocker prompt is displayed (see figure 1); the entered PIN is stored
in the NTFS partition, the original MBR is restored and the system rebooted.
Later, the entered PIN can be read from the NTFS partition.

7 Conclusion

We outlined five strategies for targeted attacks against BitLocker, a TPM-
supported, software-based disk encryption system. All five strategies require
and exploit physical interaction of the attacker with the target computer. While
Trusted Computing is expected to help protect against such attacks, our
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research shows this is not necessarily the case. Using a TPM for key management
in a straightforward way provides only very limited protection against a dedi-
cated attacker. None of our attack strategies targets the TPM as such. They
all exploit the way it is being used by one particular implementation of disk
encryption.

Designers as well as users of disk encryption solutions should be aware of
these attack strategies in order to realistically assess how much security they get
out of trusted computing. The most important lesson to be learned is that even
with Trusted Computing a system needs additional physical protection for good
security. This has been known for the running system [7]; our research shows
that it is true as well if the attacker gains physical access only when the system
is powered off. Even if direct physical attacks are excluded from consideration,
Trusted Computing does not offer the same level of protection as conventional
measures of physical security [13,14]

Out of the contributing factors discussed above, three seem crucial. First,
Trusted Computing as of today is limited to authenticated boot. The technology
cannot enforce any policy for a program, malicious or not, that does not require
any support from the TPM to run. Second, to successfully attack an encryption
scheme one needs to find just one way to obtain a small secret, the key. The
TPM helps protect keys but only during part of their life cycle. Third, the
user is forced to trust the computer with his secrets, regardless of its state.
There is no way for the user to detect skillful tampering and man-in-the-middle
attacks.

A proof-of-concept implementation of the tamper and revert attack shows
that malicious manipulation of boot code is not only a theoretical issue.

Our work leads to several questions for further research:

– Design standards and evaluation criteria for TPM-supported disk encryp-
tion. The point of this paper is not to dismiss Trusted Computing as useless
but rather to get a better idea how it should be used in particular applica-
tions to achieve the security properties desired.

– More generally, it seems that the exact role of Trusted Computing technology
within applications is still unclear. Like any technology, Trusted Computing
provides primitives and building blocks that need to be employed and ar-
ranged in meaningful ways. We hope that a set of patterns will emerge over
time to show developers how to apply Trusted Computing properly.

– Solutions to particular problems, such as establishing trusted channels be-
tween the user and the TPM, or providing useful diagnostic and reference
information for users and operators to help them in making their security
decisions.

– Modeling of attacker capabilities. We have not found a practical method
that would have allowed us to model and analyze in a systematic way what
an attacker might do to a system. An easy way of describing a system and
analyzing what could or could not be done to it would be helpful.
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Abstract. Virtual Private Networks are a popular mechanism for building com-
plex network infrastructures. Such infrastructures are usually accompanied by
strict administrative restrictions on all VPN endpoints to protect the perimeter of
the VPN. However, enforcement of such restrictions becomes difficult if these
endpoints are personal computers used for remote VPN access. Commonly em-
ployed measures like anti-virus or software agents fail to defend against unan-
ticipated attacks. The Trusted Computing Group invested significant work into
platforms that are capable of secure integrity reporting. However, trusted boot
and remote attestation also require a redesign of critical software components to
achieve their full potential.

In this work, we design and implement a VPN architecture for trusted plat-
forms. We solve the conflict between security and flexibility by implementing a
self-contained VPN service that resides in an isolated area, outside the operating
system environment visible to the user. We develop a hardened version of the
IPsec architecture and protocols by addressing known security issues and reduc-
ing the overall complexity of IPsec and IKEv2. The resulting prototype provides
access control and secure channels for arbitrary local compartments and is also
compatible with typical IPsec configurations. We expect our focus on security and
reduced complexity to result in much more stable and thus also more trustworthy
software.

1 Introduction

VPNs are a simple and cost effective way to manage and control complex networks.
With increasing user mobility however, the VPN perimeter also becomes increasingly
complex. Mobile systems are expected to serve as secure VPN gateways, workstations
and personal devices at the same time. As a result, it becomes increasingly difficult to
assure the security of such systems. Allowing them to connect to a VPN potentially
undermines perimeter security and may expose the network to outside attacks. Vendors
try to solve this conflict with proprietary security software and software agents, but such
solutions increase complexity of the software stack while decreasing interoperability
with other software solutions.

With trusted computing, the state of a system can be measured at boot time. A hard-
ware anchor is used to vouch for the correctness of measurement reports, so that the
integrity of a system can be verified by remote parties before granting any kind of ac-
cess. The measurement itself however is not sufficient to trust the system. The integrity
of a software configuration is only useful if the software itself can be trusted to fulfill
the security requirements. This implies a resistance to attacks and misconfiguration that

L. Chen, C.J. Mitchell, and A. Martin (Eds.): Trust 2009, LNCS 5471, pp. 197–216, 2009.
© Springer-Verlag Berlin Heidelberg 2009



198 S. Schulz and A.-R. Sadeghi

current commodity systems do not achieve. We follow architecture proposed in [1] to
separate volatile userspace environments from components that are critical to system
security and to allow strong isolation of userspaces for the different roles assumed by
the user.

An architecture similar to ours is described in in [2]. However, their work does not
consider integration with trusted computing technologies. and proved unsuitable for our
work to build up on.

1.1 Contribution

This work adapts the IPsec security architecture for a robust and reliable VPN ser-
vice for trusted platforms. In our design, critical functionality is externalized into iso-
lated, self-contained security services in a trusted hypervisor environment. We use a
central security policy from trusted storage to establish secure channels between iso-
lated userspace environments and to connect them to other IPsec networks. As a result,
our architecture enables coexistence of arbitrary userspace environments with restricted
workspaces while reliably enforcing the platform owner’s network access policy.

To harden our VPN security service, we investigate a simplified IPsec architecture
supporting only tunnel mode with ESP1 protection [3] and IKEv22 key negotiation [4].
By removing unnecessary functionality and features that allow insecure IPsec operation
modes, we resolve known security issues in IPsec and significantly reduce the complex-
ity of architecture and implementation.

We have implemented a prototype based on the L4 microkernel to verify the fea-
sibility of our solution, to evaluate its interoperability with commodity IPsec imple-
mentations, and to measure the complexity in terms of code size. Finally, we discuss
compatibility and security of our architecture and suggest feature improvements.

1.2 Applications

Our architecture has significant security-benefits for users that assume different roles
during their work. The typical example for home users is online banking, where the
sVPN architecture allows to setup a fully isolated userspace environment with strong
administrative restrictions to secure banking sessions. Similar use-cases can be found
in corporate environments, where access to critical network resources is often restricted
to machines with specific software configurations. In such setups, the sVPN service re-
solves the conflict between flexibility and security by moving all critical functionality
out of the userspace environment. Once we finish our integration with trusted storage
and remote attestation, our architecture also allows to verify the state of a peer’s secu-
rity subsystem, enforce arbitrary security requirements on connected userspaces. Ad-
ditionally, our design also delivers a very simple and usable way to deploy secure and
IPsec-compatible VPNs. Since our design also focuses on minimal complexity for the
critical components, environments with high security demands may also benefit from
the possibility of formal code-reviews of the critical components of their VPN. Finally,

1 Encapsulated Security Payload.
2 Internet Key Exchange version 2.
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our implementation also provides virtualized IPsec gateways that can be used to con-
solidate hardware resources in more complex VPN setups.

1.3 Outline

We present the general idea of our architecture in section 2, followed by a requirements
analysis in section 3. In section 4, we investigate related VPN designs and security ar-
chitectures for microkernel environments. Section 5 reviews the security of the IPsec
architecture we leverage on. Based on these results, we design a secure compartmen-
talized VPN service in in section 6. Section 7 presents our prototype implementation
and compares its code-complexity with standard implementations. In sections 8 and 9,
we discusses how our modifications influence compatibility and security. We conclude
with summary of results and suggestions for future work.

2 High-Level Architecture

Figure 1 shows the VPN architecture of two platforms connected through a wide area
network (WAN). The right system shows a commodity IPsec implementation, while the
left system shows the design proposed in this work.

In commodity systems, IPsec packet processing is typically implemented as part
of the network stack in the kernel. An IPsec boundary enforces the IPsec security pol-
icy (BYPASS, DISCARD, PROTECT) on all traffic that passes through it, dividing the system
into a "protected" and "unprotected" area. Userspace environments (compartments) in
the "protected" area use the VPN service by specifying the PROTECT-target on specific
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Local insecured IPC
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"B"

protectedprotected
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...storagePRNG IKE
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Fig. 1. Overview of the sVPN architecture interfacing with a commodity IPsec implementation
through WAN/Internet. The sVPN security service processes all data passing through a local
channel between "B" and the "Uplink Provider", according its IPsec policy. By applying IPsec
protection to some of the data streams, local channels are logically extended into secure remote
channels that reach through the unprotected area to a peer IPsec gateway.
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traffic flows. The IPsec boundary then provides a secure channel through the "unpro-
tected" area. The channel ends at a peer IPsec boundary, which decapsulates the data
and forwards it to its local "protected" area. In such systems, key negotiation is typically
handled by the "protected" endpoints of the channel. With only a single IPsec boundary,
such systems also support only a single "protected" area that must be shared between
all userspace applications.

The left-hand system in contrast provides multiple isolated userspace environments
by design. Virtualization of legacy operating systems and basic operating system func-
tionality is provided by a trusted hypervisor, which is accompanied by an environment
of system and security services. Since the different userspace environments have poten-
tially conflicting security requirements, they build separate "protected" areas in IPsec
that require a dedicated logical IPsec boundary for policy enforcement. Similarly, the
key negotiation component is not part of any particular userspace environment anymore
but must be implemented as a neutral security service of the system. Both components
are thus implemented as self-contained security services in the trusted hypervisor envi-
ronment. They are configured by the platform owner and do not rely on any untrusted
components to maintain their security. Once packets are processed, the "unprotected"
area has the non-critical task of delivering the data to the destination IPsec gateway. Fig-
ure 1 thus only shows a single common uplink provider for post-processing and uplink
management.

The proposed compartmentalized architecture is called sVPN architecture through-
out this paper, our prototype implementation of it is called sVPN service or just sVPN.
In includes the two mentioned security services in the hypervisor environment and some
untrusted applications for pre- and post-processing.

3 Requirement Analysis

3.1 Functional Requirements

IPsec Virtualization. In contrast to typical IPsec implementations, the sVPN service
has to be able to provide its VPN service for multiple "protected" areas with potentially
conflicting security requirements.

/R1/ sVPN must establish bidirectional channels between local compartments and
manage a separate IPsec security policy database (SPD) and security association
database (SAD) for each channel.

Usability. To let users to benefit from the enhanced security of our design, it is nec-
essary that the user interface provides high usability and prevents typical configuration
errors.

/R2/ sVPN must provide a usable VPN configuration interface that is able to de-
fine and deploy secure VPNs and prevents accidental use of insecure cryptographic
primitives, operation modes or authentication schemes.

/R3/ sVPN must depend on as few components as possible to implement its security.
These dependencies must be specified and easy to understand.
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Compatibility. Interoperability with other IPsec-based VPN solutions is strongly de-
sired, as long as it does not conflict with the security of the VPN service.

/R4/ sVPN must be compatible with IPsec in typical VPN configuration.
/R5/ sVPN must provide basic support for the canonical key exchange protocol for

IPsec VPNs (i.e., IKEv2).

Security Subsystem. We optimize our VPN service for low internal complexity to
facilitate formal security analysis and to reduce the possibility of security flaws in the
implementation.

/R6/ The sVPN architecture must isolate components that must be trusted to meet the
security requirements.

/R7/ All critical subcomponents and the services they depend on must be of manage-
able internal complexity with simple communication interfaces.

3.2 Security Requirements

Adversary Model. To simulate the susceptibility of complex applications to local and
remote attacks, we assume an adversary to have full access to all userspaces a legal user
of the platform has access to. In contrast to legal users however, adversaries are assumed
to have no physical access to the platform. An adversary is considered successful if he
manages to extract secret key material from the sVPN security service or if he is able to
violate the sVPN security policy, for example by creating additional channels between
local compartments. In addition, when attacking only from "unprotected" compartments
or networks, i.e. without implicit knowledge of transmitted data, he is also considered
successful if he manages to extract data that is labeled with PROTECT in the sVPN
security policy.

The attack model for the sVPN security service is stronger than that of traditional
IPsec-based VPN solutions. The main difference is that local compartments which in-
terface with sVPN are assumed to be compromised, thus providing an attacker with re-
liable access to data transfers and statistics about resource usage to launch side-channel
attacks (e.g. timing attacks, traffic pattern analysis). We assume however that isolation
provided by the hypervisor also protects against side-channel attacks based on shared
resources[5,6]. Therefore, we only considers side-channel attacks in form of traffic pat-
tern analysis.

Further, we assume that the IPsec architecture has no security flaws aside from those
mentioned in section 5.1, i.e. that the core IKEv2 protocol, the ESP protocol and the
IPsec architecture itself are sound. Based on these assumptions, we identify the following
requirements for the sVPN architecture to remain secure in the described attack model.

Virtualization Security. sVPN has to provide a logically isolated IPsec boundary for
every compartment that uses the service, thus isolating every connected userspace en-
vironment into a separate "protected" area.

/S1/ sVPN must be able to identify endpoints of a local channel and must enforce the
corresponding IPsec policy for that channel.
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/S2/ Communication channels between local compartments that are not directed
through sVPN must be restricted by the hypervisor such that they can not be used
to circumvent the security enforced by sVPN.

/S3/ Although acting as a common endpoint for multiple local channels, sVPN must
not break isolation between compartments that are not allowed to establish a chan-
nel between each other.

IPsec Security. sVPN must provide a secure VPN service through secure authentica-
tion, key management and secure channels.

/S4/ The sVPN architecture must provide a secure channel for deploying IPsec policy
and authentication secrets to the sVPN service.

/S5/ sVPN must never disclose any key data to untrusted components. Accessibility
of key material must be minimized to the necessary sub-components of sVPN.

/S6/ sVPN must be able to directly authenticate the user of a "protected" area when
required so by IPsec policy.

/S7/ The IPsec compatible remote channels provided by sVPN must be secure.
/S8/ sVPN must be able to enforce restrictions on the configuration of compartments

that request a particular VPN access.

Since non-critical functionality of sVPN, including receiving and sending of data, is ex-
ternalized to the connecting "protected" and "unprotected" compartments which are ex-
pected to be compromised, it is not possible to protect against DoS in the adversary model
described above. If a DoS resistance similar to commodity IPsec implementations is de-
sired, it can thus be implemented in the traffic pre-processing in untrusted compartments.

4 Related Work

Hypervisor-based operating systems environments with userspaces on multiple virtual
machines have recently been reconsidered as a base for increased security. The idea to
externalize security subsystems into a hypervisor environment resulted in several new
architectures like sHype, Terra, EROS, Nizza and Perseus [7,8,9,10,1,11].

A conceptionally similar setup can be found in many microkernel operating systems,
but their current IPsec implementations do not exploit the features of their environment
for additional security. They exist only in form of adapted versions from monolithic
systems or university classes 3.

With µSINA, the authors of [2] present a comparable redesign of IPsec for Nizza.
In their architecture, a "network hub" is added to the operating system environment of
a Fiasco/L4 microkernel. It processes traffic between two paravirtualized Linux com-
partments that run on top of the microkernel (L4Linux compartments), enforcing IPsec
policies and traffic protection. µSINA aims for enhanced reliability and security by
minimizing the attack surface of critical components. An implementation of the IPsec
packet processing component is provided with the Viaduct security service.

3 See for example www.cis.syr.edu/~wedu/seed/Labs/IPSec/, where simple IPsec pro-
cessing is regularly implemented on Minix 3.

www.cis.syr.edu/~wedu/seed/Labs/IPSec/
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µSINA was later supplemented by a key negotiation component [12]. To manage the
high complexity of the IKEv1 protocol, this component was implemented as a port of
the isakmpd server from the OpenBSD project. Two adapter components for translation
to Unix sockets and the servers native management interface PF_KEYv2 [13] where
added to simplify the port.

However, the Viaduct source code is difficult to read, poorly documented and con-
tains considerable amount of non-critical code, for example to route packets between
compartments. We were also unable to test it since the development was discontinued
and does not work with the current DROPS environment. From the descriptions of the
IKEv1 implementation in [12], it is also obvious that µSINA suffers from the high
complexity of the IKEv1 standard.

In contrast to µSINA, we do not aim for a generic IPsec implementation. As de-
tailed in the following sections, we propose a more abstract VPN service instead that
implements only a reduced set of the IPsec functionalities and exploits the potential
of secure virtualization and trusted computing architecture. The resulting design solves
many common security issues of VPN endpoints and maximizes the leverage on policy
enforcement available through remote attestation.

5 IPsec Security

The IPsec security standard was first specified in 1995 [14]. It is a collection of Internet
standards that provide access control, integrity protection and authentication, confiden-
tiality and partial protection against packet replay.

The Internet Engineering Task Force (IETF) published the latest version of the ar-
chitecture in [15], featuring mainly a simplified design and description. The associated
Internet Key Exchange (IKE) protocol was subject to a major redesign and published
as version 2 (IKEv2) in [4]. IPsec uses two protocols to implement its security ser-
vices on a per packet basis, Authenticated Header (AH) and Encapsulated Security
Payload (ESP). While the latest version of AH was published without major modifi-
cations [16], the current revision of ESP [3] was enhanced with extended Traffic Flow
Confidentiality (TFC) and Combined Cipher Modes. The term IPsec is used throughout
this work to refer to this latest revision of architecture and protocols.

The reader is referred to [17] for an introduction to IPsec or [18] for a review that
focuses on cryptographic aspects. For a discussion of the IKE protocol design and al-
ternatives see [19].

5.1 Security Issues

One of the early known security evaluation of IPsec is the comprehensive analysis in
[20]. Its authors criticize the complexity of the architecture, point out several design
weaknesses and also demonstrate some simple attacks. Their concerns have been con-
firmed when systematic design flaws where found in IPsec operation modes that use
ESP without integrity protection[21,22]. In addition, concerns about information leak-
age due to traffic analysis led to the advanced TFC scheme introduced in [23]. This
criticism from the academic community found only limited recognition in the IETF,
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with the result that insecure configurations are still part of the standard and thus also
still in operation. Based on these works and our own review of the latest revision of the
IPsec standards and implementations, we identify the following security issues in the
current specifications.

/P1/ Encryption-only ESP. While previous attacks on ESP encryption without au-
thentication or with AH-based authentication have been blamed on implementa-
tions, [22] shows that it is indeed a flaw in the standard to allow encrypted traffic to
be unauthenticated or make use of other layers to authenticate the traffic.

/P2/ Traffic Flow Confidentiality. To prevent information leakage via traffic flow
analysis, the authors of [23] propose a combination of payload padding, injection
of dummy packets and recombination of payloads. But although the problem is
acknowledged, only a small subset of the proposed traffic obfuscation mechanisms
was standardized in the latest version of ESP. In addition, even these simplified TFC
measures are not yet implemented in commodity operating systems like Linux and
OpenBSD.

/P3/ Manual Keying. Manual keying poses a serious security threat. It provides no
forward or backward secrecy and enables attacks through observation of ciphertext
block collisions. IPsec however demands explicit support for manual keying for
IPsec packet processing [15], even though any secure key provisioning could be
adapted to use the automated keying interface. As a result, popular IPsec instruction
guides4 tend to discuss manual keying in great detail and it must be assumed that
such configurations are in widespread use.

/P4/ Pre-Shared Key (PSK) Authentication. The IKEv2 specification [4] describes
authentication based on pre-shared keys, a feature that is also much appreciated
in IPsec configuration guides5 and likely in broad use. As also pointed out in the
specification, PSK authentication is only secure when keys with high entropy are
used. However, although such an assumption does typically not hold when keys are
chosen or transmitted by humans, the specification requires ("MUST") PSK support
for scenarios where the initiator uses a shared key and the responder uses public-key
authentication, clearly a scheme that addresses password-based user authentication.
The specification also fails to mention any rate limit behavior to counter brute force
attacks on short PSKs.

/P5/ Pseudo User Authentication. The IKEv2 authentication mechanisms
themselves are not aware of the type of entity that provides authentication data. The
two most common authentication mechanisms, public-key authentication based on
X.509 certificates (PKIX) and pre-shared keys, are both often used to authenticate
users. However, none of the major IKEv2 implementations currently support "di-
rect" user authentication. Instead, the shared key or secret key is typically stored on
the local disk, in files that are assumed to be accessible only to the platform admin-
istrator. Authentication secrets are thus actually used as tokens, allowing simple
attacks like theft or use of the access in absence of the user.

/P6/ Complexity. The complexity of IPsec and particularly IKEv1 has often been
subject to criticism, for example in [20] and [24]. Subsequent versions of the

4 http://www.ipsec-howto.org/
5 http://wiki.bsdforen.de/howto/ipsec-vpn

http://www.ipsec-howto.org/
http://wiki.bsdforen.de/howto/ipsec-vpn
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architecture and particularly IKE include some improvements. However, the com-
plexity of the IPsec architecture and IKEv1 still leads to insecure deployments and
even incompatibilities in the key exchange. This complexity is not necessary how-
ever. It was noted in [20] already that transport mode is a subset of tunnel mode and
that security features provided AH can by large be replaced by a corresponding con-
figuration and application of the ESP protocol. The IKEv2 is much more simple in
design than IKEv1, but still has considerable complexity, e.g. in the SA negotiation
payloads and the general payload design (wire format). Simpler key negotiation
schemes like SKIP [25] and JFK [19] have been proposed, but not accepted for the
standard.

/P7/ Miscellaneous Issues. Both versions of IKE employ hash-cookies, simple chal-
lenges to efficiently filter spoofed initialization requests, thus mitigating DoS at-
tacks [26]. More advanced protection against DoS is possible by forcing initiators
to invest computation resources, but such proposals have been discarded by the
IETF due to unclear patent encumbrance6. Also, since timeout lengths, retransmis-
sion counts and session keep-alive behavior for UDP packet transfer in IKE is not
specified, it is trivial to fingerprint IKE servers by observing such behavior [27].

To achieve the security requirements, sVPN has to implement measures against the
mentioned problems. Section 6.6 presents measures taken to mitigate /P1/ to /P6/.
/P7/ is not covered in this work however, since any information leaked this way is not
considered sensitive. As already mentioned in 3, DoS protection is not necessarily a
task of the sVPN service and shall be discussed separately in section 6.2.

6 sVPN Design

The IPsec architecture uses secure channels essentially to bind transferred data to cryp-
tographic identities. This mapping is used to enforce a security policy for each trans-
ferred data packet and provides the secure access control and secure channels needed in
sVPN. In this section we describes how the sVPN architecture was designed to comply
with our requirements and how the IPsec issues discussed in 5.1 are resolved.

6.1 IPsec Virtualization

As described in requirement /R1/, sVPN must be able to implement an isolated IPsec
boundary for each "protected" area. For a secure IPsec virtualization as defined in re-
quirements /S1/ to /S3/, sVPN must also be able to identify endpoints of a requested
channel and locate the corresponding IPsec policy.

We therefore extend the IPsec policy for sVPN with fields for the source and destina-
tion identity of local channels. These identities can be arbitrary labels that are provided
to sVPN by other security services. To establish remote channels with other IPsec gate-
ways it must be possible to unambiguously address and authenticate the destination
of a channel. In particular, a standard IPsec implementation must be able to request a

6 http://www.ietf.org/mail-archive/web/ipsec/current/msg02606.html

http://www.ietf.org/mail-archive/web/ipsec/current/msg02606.html
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channel to a specific compartment "protected" by sVPN. To achieve this level of inter-
operability, existing methods for identification and authentication of peers must be used,
which is why sVPN behaves like multiple VPN gateways. It uses separate IP addresses
for identification on the network layer and separate cryptographic identities for unam-
biguous authentication during key exchange. If multiple IPs for a single host are not
available, NAT (Net Address Translation) can be used to map them to a single address.
This limitation is inherent to the IPsec architecture.

6.2 Critical Components

Requirement /R6/ is achieved by aggressively delegating functionality into the un-
trusted "protected" and "unprotected" endpoints of each local channel. This process is
restricted by /R7/, which requires all critical functionality to reside in trusted compo-
nents, i.e. in the security service in the hypervisor environment. Based on our security
requirements, we identify the following functions as critical.

– The virtualized policy enforcement described in /S1/ requires that identification,
classification and policy matching algorithms are implemented in trusted compo-
nents.

– /S3/ requires that any component that is connected to multiple local channels that
should remain isolated must be trusted.

– To meet requirement /S5/, authentication and key exchange via IKEv2 and IPsec
traffic processing must be trusted. Availability of key material is reduced by divid-
ing the trusted sVPN security service into two separate modules, the IKEv2 server
iked and the ipsec traffic processing component. As a result, the bulk traffic pro-
cessing component is isolated from any kind of long-term authentication keys or
key negotiation internals.

– /S6/ and /S7/ require the complete IKEv2 key negotiation and IKE SA manage-
ment to be trusted, as well as the traffic processing components for ESP encapsu-
lation, TFC padding, replay-protection and lifetime management of sessions and
keys.

Any remaining functionality is not critical and should be provided by other compart-
ments. Examples are IP routing, packet fragmentation, hardware drivers and NAT
traversal. Since the protected and unprotected compartments need to function correctly
to establish a connection, DoS protection is only relevant if these are not compromised.
Therefore, this feature can be delegated to untrusted components as well.

The rather generic analysis of critical subcomponents is sufficient since our choices
in interfaces and components are limited by complexity limitation /R7/.

6.3 Usability

We address our usability requirements /R2/ and /R3/ by providing a more abstract
VPN service instead of a universal IPsec implementation. This allows us to ignore spe-
cial use cases of IPsec and make additional assumptions about the user’s intentions. As a
result, we can ignore the IPsec transport mode as well as AH encapsulation and enforce
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secure usage of ESP encapsulation. This reduces the complexity of our key negotiation
and traffic processing components and facilitates the design of a usable configuration
interface. We solve the deployment issue mentioned in /R2/ and /S4/ by leveraging
trusted storage, a basic trusted computing service that allows secure transport and stor-
age of information by sealing data to known-good system states. [28]

6.4 Compatibility

As described in /R4/ and /R5/, sVPN is required to provide basic interoperability with
other IPsec-based VPNs. We implement this by staying compatible with certain oper-
ation modes of IPsec, namely authenticated ESP encryption in tunnel mode, and by
providing a IKEv2 implementation that is sufficiently compatible with standard imple-
mentations to negotiate this particular configuration. We leverage the flexibility of the
IKEv2 negotiation to activate additional non-standard features if supported by the peer.
A more detailed discussion of interoperability issues follows in section 8.

6.5 Remote Users

Since VPN access for remote users is one of the main use cases of VPN technology,
requirement /R4/ implies support for this scenario in sVPN. Apart from direct user
authentication required by /S6/, IP configuration of the remote "protected" compart-
ment is also desirable in this use case. For sVPN, we currently rely on higher level
protocols like the Layer 2 Tunneling Protocol (L2TP, see [29]) to provide dynamic IP
configuration.7

For direct user authentication, we aim to leverage trusted user I/O paths of the oper-
ating system to protect the user’s login credentials when unsealing the IPsec authenti-
cation key from trusted storage. The actual authentication keys are always asymmetric
and either imported from an existing PKI or automatically generated by the configura-
tion frontend, which also provides secure deployment. For more complex authentication
mechanisms, remote attestation of the peer’s TCB will allow to delegate critical func-
tionality to other security services which then vouch for successful authentication of the
correct user.

6.6 IPsec Hardening

Section 5.1 discussed several issues in IPsec that need to be resolved to meet our re-
quirements for sVPN. Unfortunately, the manipulation of IPsec internals is limited by
our compatibility requirements /R4/ and /R5/, with the result that our IKEv2 imple-
mentation still suffers from high complexity when compared to our processing compo-
nent. Nevertheless, our modifications address all identified problems except for finger-
printing and DoS, which we declared minor.

7 Native IKEv2 support through IKE configuration payloads and traffic selector narrowing is
still under investigation. Although simpler in design, these would also add non-critical func-
tionality to the security service.
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/M1/ ESP protection. To prevent attacks based on /P1/, sVPN enforces ESP encap-
sulation with encrypted authentication for all traffic that is labeled PROTECT in the
security policy. Weak ciphers are not supported.

/M2/ Advanced TFC. To mitigate /P2/, ESP processing supports Traffic Flow Con-
fidentiality (TFC) padding as specified in [4] as well as advanced TFC features
described in [23]. Both are negotiated if supported by the peer or enforced by
policy.

/M3/ Manual Keying and PSKs. To prevent weak keys and exploitable key manage-
ment as mentioned in /P3/ and /P4/, our processing component exposes only a
low-level interface for automated configuration of keys and policies. To resolve
problems with weak PSKs, PSK authentication is not supported in sVPN.

/M4/ User Authentication. As described in 6.5, sVPN authenticates users either
through direct user authentication or by leveraging other security services and
trusted storage. We expect these mechanisms to supersede the often weak and com-
plex authentication schemes provided by EAP or PSK and to discourage the behav-
ior described in /P5/.

/M5/ Reduced Complexity. To mitigate the complexity issues described in /P6/,
transport mode and AH protection are not supported in sVPN. It implements only
the minimal set of functionalities of the IKEv2 specification, which additionally
was stripped of authentication in X.509 certificate-based public key infrastruc-
tures (PKIX). Instead, sVPN currently authenticates peers based on raw RSA keys
and key fingerprint whitelists. Leveraging remote attestation, sVPN may also dele-
gate authentication to trusted remote security services.

7 Implementation

We implemented a prototype as a proof-of-concept, to identify interoperability issues
and to estimate complexity of the solution. It encompasses the two critical sVPN com-
ponents ipsec and iked as well as simple adapters named tun2ipc and udp2ipc for con-
nectivity with userspace compartments.

Turaya was chosen as the operating system environment. It is open source and im-
plements the PERSEUS security framework based on the L4/Fiasco microkernel and
microkernel environment of the DROPS project [30,31]. With L4Linux, a paravirtu-
alized version of the Linux kernel, L4/Fiasco is also able run Linux systems as guest
VMs. Access control for inter-process communication (IPC) and secure identification
of compartments through the compartment manager is not yet implemented in Turaya.
Our prototype currently simulates this functionality through a local name registration
service.

7.1 sVPN Architecture

Figure 2 provides a more detailed view of the sVPN architecture. It shows a platform
with two virtualized L4Linux compartments running on top of the Fiasco hypervisor
and its environment. The two critical sVPN components reside in the hypervisor envi-
ronment, next to other security services like trusted storage and the randservice random
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Fig. 2. Detailed architecture of sVPN. A single platform acts as a VPN gateway with two physical
network interfaces. The "protected" compartment routes plaintext traffic between the LAN and
sVPN. The "unprotected" compartment is responsible for routing the secured data streams into
the WAN.

number generator. The two L4Linux compartments have established a local channel
through the ipsec module and each also connect to a physical network interface. By
configuring the sVPN security policy such that one compartment is in the "protected"
and one in the "unprotected" area, the platform is transformed into a VPN gateway,
processing traffic between its two interfaces.

Traffic Processing. The tun2ipc adapters establish a local point-to-point IP connection
between the "protected" and "unprotected" compartments. The connection is set up by
connecting to the ipsec module and requesting a forwarding to the destination compart-
ment. The adapters then translate between the socket interface expected by the Linux
userspace and the ip2ipc IPC interface of the sVPN service. The ipsec module accepts
the local connection request only if corresponding policy entries exist in the SPD. In
that case, a dedicated filter thread is spawned to handles the actual traffic processing for
this channel. The filter thread then finalizes the local ip2ipc connection by establishing
the second part to the actual destination of the channel. Once the connection is estab-
lished, each thread is responsible for enforcing the locally relevant subset of the security
policy. Interface and implementation are further simplified by making all ip2ipc chan-
nels unidirectional. The destination tun2ipc adapter is responsible for establishing the
ip2ipc connection in the other direction, provoking another filter thread to be spawned
with corresponding subset of SPD and SAD.

To identify relevant subsets of SPD and SAD, each SPD entry in sVPN also contains
two labels identifying source and destination of the ip2ipc channel they apply to, and
each SAD entry is linked to an SPD entry. With the relevant parts of SPD, SAD and
a unidirectional channel, traffic processing is straight forward. The filter threads have
to enforce one of the policy targets (DISCARD, BYPASS, PROTECT) on all traffic they
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Fig. 3. Schematic overview of the iked and ipsec security modules and IPC channels. Arrows
indicate the possible direction of a call, order of calls represents a possible session flow for that
interface. The iked component creates a ConState structure for each handshake attempt and main-
tains a list of active SPIs.

receive, which is trivial to achieve for the first two targets. If PROTECT is specified or an
encapsulated package is encountered, the packet must be de- or encapsulated with ESP.
All required information for ESP processing is contained in the SAD entries available
to the thread. If the required SAD entry is not available, the packet is discarded. In case
of encapsulation, missing SAD entries additionally trigger a request to the iked module
to establish the required SAs. In case of decapsulation, the frames are once more parsed
and matched against the SPD to check if the protected environment is allowed to receive
this packet. At this point, the SPD would typically specify BYPASS or DISCARD as the
target, but re-encapsulation with a different SA is also possible.

Successfully processed IP frames are forwarded to the adapter of the destination
compartment. An ip2ipc adapter or its environment may implement additional uncritical
pre- and post-processing of received traffic, like IP (de-)fragmentation, NAT or band-
width management. Our prototypes simply forward all IP frames between the ip2ipc
channel and the L4Linux socket interface.

Key and Protocol Negotiation. The key negotiation component iked is a simplified
IKEv2 implementation. On startup, it retrieves SPD and long-term authentication keys
from trusted storage and establishes the local policy and udp2ipc connections to the ipsec
and udp2ipc components. The udp2ipc adapter essentially provides a UDP socket to iked,
allowing it to send and receive IKEv2 UDP traffic. As can be seen in figure 3, the pos-
sible calls for ip2ipc and udp2ipc are very similar, the main difference is that udp2ipc
attaches to a UDP socket and that the incoming IPC connection comes from the same
iked thread. Like the ip2ipc adapter, it may implement uncritical traffic transformations
like defragmentation or even handle IKEv2 protocol features like DoS protection cookies
and NAT traversal support. The policy interface between ipsec and iked is used prelimi-
nary by iked to initialize the ipsec SPD at startup and manage the ipsec SAD at runtime.
The ipsec component only uses it to request a refresh for expired or not yet negotiated
SAD entries. Both ends are also able to submit a reset command in case database in-
consistencies are detected, e.g. when one component was manually restarted.

As IPsec key negotiation does not require high throughput, iked is implemented
as a simple single-threaded application. SA negotiation requests from ipsec or remote
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IKEv2 servers trigger a simple IKEv2 negotiation and that negotiates authenticated en-
cryption with tunnel mode ESP encapsulation and the strongest available cipher suite.
Features like NAT detection, DoS protection, endpoint configuration or renegotiation
of SAs are not supported. If desired, these should be implement in the untrusted com-
partments. On success, the resulting SAs pair is uploaded to the ipsec SAD, possibly
replacing previous instances for that SPD entry.

7.2 Complexity

We estimate the complexity of the prototype by counting lines of source code (LoC)
with SLOCCount8, which excludes comments from the measurements. As it is cus-
tom, our measurements do not include external libraries and cryptographic primitives.
However, the two critical components do not make use of use any complex libraries
and the cryptographic primitives are comparatively easy to verify. Although the Mikro-
SINA project did not document how LoC were measured, their reports for the Viaduct
component do not substantially deviate from our own measurement of it with SLOC-
Count (3,575 LoC). Our prototype has a total code-complexity of 5,187 LoC includ-
ing adapter components. The critical subcomponents iked and ipsec have a complexity
of only 2,919 and 839 LoC, respectively, plus 917 LoC for common SPD and SAD
management. Although our prototype still misses some important features, the differ-
ence to standard IPsec implementations is impressive. The Mikro-SINA adaption of the
isakmpd IKEv1 server in [12] has an estimated 22,800 critical LoC if unnecessary com-
ponents were to be removed. We counted 46,600 and 30,800 LoC for the IKEv1 and
IKEv2 implementations of the strongSwan project, plus 30,000 lines of IKE specific
libraries. Our ipsec module is significantly less complex than the Mikro-SINA Viaduct
(839+917 vs. 3,575 LoC), since we exclude transport mode and AH encapsulation. For
comparison, a sample of obviously IPsec related files in Linux 2.6.269 results in a sim-
ilar figure of about 3,500 LoC.

7.3 Current Status

Our prototype successfully establishes ESP tunnels with a standard IPsec implementa-
tion and the strongSwan IKEv2 server. The connection was established with PSK au-
thentication however, since raw public key authentication is not yet implemented in iked
and strongSwan. The negotiated SAs for IKEv2 and ESP use AES-128, SHA-1 and the
standard Diffie-Hellman groups from [4]. The current implementation still misses some
necessary functionality like timeout handling and public key authentication for iked and
advanced TFC for ipsec. Still, we do not expect their complexity to rise anywhere near
the size of standard implementations.

8 Interoperability Issues

The IPsec modifications /M1/ to /M5/ and the untypical compartmentalized architecture
potentially result in interoperability problems with standard IPsec implementations. As

8 SLOCCount by David A. Wheeler: http://www.dwheeler.com/sloccount/
9 include/net/{ip.h,ah.h,esp.h,xfrm.h,ipcomp.h} net/ipv4/{esp4.c,ah4.c,xfrm4*,ipcomp.c}.

http://www.dwheeler.com/sloccount/
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will be seen in this section however, most modifications are simply a matter of appro-
priate configuration of the IPsec peer. We shall also discuss some optional features like
IPComp and NAT detection that conflict with our compartmentalized design approach.

IPsec Modifications. To reduce implementation complexity and improve security, sec-
tion 6.6 specified modifications to the IPsec implementation in sVPN. As described be-
low however, most of these modifications are only a question of correct configuration
so that interoperation with standard IPsec implementations is still possible.

/M1/ Authenticated Encryption and Primitives. Employed cryptographic algorithms
and their combination are by design negotiated during key exchange and subject to
SPD configuration. Standard IPsec implementations tend to include as many strong and
required suites as possible, increasing the chance to find a common cipher suite.

/M2/ Advanced TFC Padding. Similarly to the extended TFC, support for advanced
TFC padding can be negotiated during IKEv2 key exchange. It thus does not interfere
with standard implementations except when enforced by sVPN policy.

/M3/ Manual Keying and PSK. Manual key provisioning and pre-shared key authenti-
cation are alternative key distribution models supported by IPsec, along with public key
authentication and others. sVPN in contrast supports only public key authentication.
However, any resulting interoperability problems are an intended trade off for com-
plexity and security. If desired, it is possible to use alternative key management systems
instead and directly interface with the policy IPC interface of the ipsec module.

/M4/ No direct User Authentication. Although identity types are supported in the
IKEv2 protocol, the authentication mechanism is ignorant of the type of entity that is
authenticated. However, direct user authentication can obviously not be enforced on
IPsec implementations that do not support remote attestation or direct user authenti-
cation. The enhanced user authentication can only be beneficial to the platform that
supports it, possibly decreasing the security of the overall network security.

/M5/ Transport Mode, AH, raw RSA Keys. Missing support for transport mode and the
AH protocol should not result in unsolvable interoperability issues since their use is a
matter of policy configuration and negotiated via IKE. The same applies for raw RSA
key authentication, although this authentication mode is less commonly supported by
other IKEv2 implementations.

Automated NAT Traversal. IPsec uses UDP encapsulation of ESP payloads for com-
patibility with NAT, adding 8 bytes of overhead per packet to traverse NAT routers
[32,33]. In IKEv2, existence of NAT is automatically detected during SA negotiation
and UDP encapsulation is activated. In sVPN however, udp2ipc abstracts from the UDP
socket interface and currently just provides a channel ID instead of ports and addresses,
relieving iked from any layer 3 protocol handling. Additionally, NAT detection is not a
critical feature and should ideally be implemented in untrusted components.
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From a security perspective, the best solution may be to add fake NAT detection pay-
loads into the IKEv2 exchange and thus transform the automated detection into a man-
ual configuration option controlled by the adapters. Alternatively, the udp2ipc adapters
could provide network layer information to iked when establishing a new udp2ipc chan-
nel, thus enabling iked to implement NAT detection.

IP Fragmentation. As discussed in section 7 of the specification in [15], the IPsec
architecture has systematic issues with fragmentation. For sVPN, the relevant places
where fragmentation may be encountered are ESP encapsulation and decapsulation,
where header information may be missing for correct policy matching of packets or
authentication of ESP fragments may fail. Additionally, the ip2ipc channel also imposes
a limitation to the size of packets that may have been defragmented to larger frames in
the untrusted compartment.

Our approach is similar to the suggestions in [15]. At startup, our ipsec processing
thread searches their sub-SPD for any entries that require knowledge of higher layer
protocols. If such entries are not encountered, any kind of packet can be parsed accord-
ing to policy. Otherwise, it will drop any fragmented packets and leave defragmentation
to the sending adapter or its environment. For successful decapsulation, the security
service has no choice but to rely on the sending compartment to defragment the ESP
frames. Fragmented frames are dropped based on IP header information, since they will
always fail to authenticate. The behavior is optimized by setting the Don’t Fragment
bit in the IP header of outgoing ESP frames. The Maximum Transmission Unit (MTU)
of the ip2ipc IPC channel is also handled in the adapter components. They must watch
the size of defragmented ESP frames or other payloads and inform the sender on the
limited maximum segment size if required.

IP Compression. The IP compression standard IPComp specified in [34] compresses
IP payloads, inserting itself as a logical protocol layer between the payload and the IP
layer before encryption of the packet. While it should be implemented in the tun2ipc
adapters, IPComp changes the information available to ipsec. The protocol type is
changed to indicate a compressed payload and the transport layer information is not
directly available to the ipsec module. Therefore, IPComp has to be applied between
processing steps in the ipsec component and can not be delegated to untrusted compo-
nents.

9 Security Considerations

In this section, we re-evaluate our design based on our security requirements in 3.2 to
show that all demands are met.

/S1/ For local IPC channels, identification of the endpoints is an implementation de-
tail that should be solved by the operating system’s IPC mechanisms. We also
extended the standard SPD entries by two fields to specify source and destination
identity each rule applies to. Even without OS support, this already allows us to
implement secure identification by providing random unique identification labels
to the untrusted compartments at startup time. Requirement /S1/ is thus fulfilled.



214 S. Schulz and A.-R. Sadeghi

/S2/ We fulfill this requirement since we assume that the hypervisor enforces isola-
tion between all local compartments and channels. It follows directly that any
interconnection of compartments is thus be routed through sVPN or other trusted
services.

/S3/ This requirement is fulfilled by a correct implementation of the trusted service,
i.e. logically isolated processing of channels in the service. We implemented this
by launching a separate processing thread for each local channel. The threads do
not share any writeable resources; they could even be encapsulated in separate L4
tasks so that the memory isolation is enforced by the kernel.

/S4/ This requirement is fulfilled since sVPN is designed to retrieve its IPsec policy
and authentication secrets directly from trusted storage. The sealing functionality
of trusted computing systems protects the configuration data using public key
cryptography and local attestation of the environment that requests accesses to
the data.

/S5/ As discussed in section 6.2, we implement all critical functionality, including all
functionality that requires long-term authentication secrets or session keys, in the
sVPN security service. Keys are only transmitted inside this module or in a local
isolated channel between sVPN and trusted storage. The interfaces exposed by
sVPN are equivalent to those exposed by standard IPsec implementations. Based
on the security of the IKEv2 and ESP protocols, it follows that no covert channels
exist to retrieve key material. Additionally, we reduced the availability of short-
and long-term keys to the required subcomponents.

/S6/ As a trusted component in the security services layer, our service is able to di-
rectly connect to other trusted security services. These in turn are able to estab-
lish physical presence of a user or to enforce arbitrary authentication schemes.
Although not yet implemented in our prototype, our design thus fulfills /S6/.

/S7/ We hardened our traffic processing based on our review of IPsec security issues in
section 5.1. Additionally, we aim to provide optional advanced protection against
traffic flow analysis (advanced TFC). Except for possibly weak authentication
modes, which we addressed through direct user authentication in section 6.5,
there are no relevant security issues with IKEv2. There are thus no known prob-
lems with the secure channels provided by sVPN.

10 Conclusion

We proposed an adaption of the IPsec architecture for VPNs in trusted computing en-
vironments. In accordance with the PERSEUS security concepts, we isolated critical
functionality into self-contained subcomponents of minimal complexity. We solved sev-
eral security issues of IPsec by reducing the framework to a simple VPN service and
discussed how additional features can be integrated in a compatible fashion.

The result is a high-security VPN service that should provide a high usability. The
architecture solves the conflict of interest between owner and user in the remote user use
case, allowing companies to deploy machines that are highly secure regarding access to
the company VPN and applications, but use flexible compartments to suite the needs of
the employees. Its small code-size and modular design make sVPN an ideal target for
future research on secure channels in trusted environments.
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11 Further Work

As noted in section 7.3, our implementation is far from complete. We also postponed
investigation of IKE mobility extensions [35] , resistance against timing-based side-
channel attacks and detailed performance optimizations.

For remote attestation, the Trusted Network Group (TNG) proposes an extensive
framework in [36]. However, these specifications seem to add significant overhead to
sVPN. It remains an open question if similar flexibility can be achieved through other
means or if this level of flexibility is even required.
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Abstract. In this paper we present Merx, a secure payment system that
enables a user to delegate a transaction to a third party while protecting
the user’s privacy from a variety of threats. We assume that the user does
not trust the delegated person nor the merchant and wishes to minimize
the information transmitted to the user’s bank. Our system protects the
user from fraud perpetrated by the delegated party or by the merchant.
The scheme has a number of other applications such as delegating the
withdrawal of cash from Automated Teller Machines (ATM) and allow-
ing companies to restrict an employee’s expenses during business trips.
Merx is designed to be used with mobile phones and mobile computing
devices, especially in situations where end-users do not have access to the
Internet. We evaluate the performance of the proposed mechanism and
show that it requires negligible overhead and can be gradually deployed
as it is able to piggyback on existing payment-network infrastructures.

1 Introduction

A new form of mobile electronic payments is on the horizon and is already
being used in a few advanced markets. This technology, based on Near Field
Communications (NFC), allows people to use their mobile phones to pay for
tickets, goods and services in a practical and fast way. Users simply wave their
mobile phone over a pad and they’re done [1]. Mobile phones with e-wallet and
credit card capabilities will soon replace our wallets and the paper currency
within as the means of paying for shopping, a restaurant bill or even as a way
to give “virtual pocket money” to your children before they go on holiday.

While these NFC-based mobile payment systems are ideal for in-person trans-
actions, they do not (yet) allow users to delegate purchases. Mobile systems are
not alone in failing to address this need, as most other existing electronic pay-
ment schemes also fail to provide usable delegated payment functionality.

Traditional payment methods require that users place significant trust in those
to whom they delegate tasks. Parents cannot prevent their teenage children, away
on holiday, from spending food money on alcohol and other unapproved prod-
ucts. Servants and cooks may opt to purchase lower quality food with the week’s
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budget and keep the money that they saved for themselves. Companies cannot
be sure how their traveling employees are spending their per diem budget. Many
people in remote areas of developing countries without banking services nearby
must give their ATM card and Personal Identification Number (PIN) to friends
or family who are themselves making the journey to the ATM several hours away
[2]. While these individuals only wish to have a moderate sum withdrawn, they
must trust their friends not to completely drain their account.

We present a system for securely delegating a payment or withdrawal task to
a third party (e.g. the concierge, in an example setting involving a customer, a
concierge, a merchant and a bank). We provide a means for restricting the items
that can be purchased. Our system is privacy preserving, in that the account
holder does not reveal her shopping list to the bank, yet it provides a means for
the bank and merchant to communicate in order to prevent un-approved items
from being purchased. Our scheme does not suffer from the problems of double
spending. Furthermore, merchants do not learn the customer’s name or bank
account details. The scheme allows for a shopping list to be partially fulfilled by
multiple merchants, without requiring that the consumer specify them ahead of
time. The scheme also enables the consumer to restrict which delegated parties
may retrieve the items, as well as restricting, should she wish, which merchants
are permitted to sell the selected items.

Our proposed payment system provides privacy preserving transaction dele-
gation to users with mobile phones and portable computing devices. Our scheme
is not dependent on mobile Internet access or NFC capabilities. As we will show
in the following sections, our system can also be used by fixed computers with
or without Internet service. However, the most likely usage scenario involves a
user delegating payments with her smart-phone, PDA or laptop.

When considering the problem of payment delegation in the real-life scenarios
that we have described, it is easy to see that the existing payment methods,
such as cash, credit cards and even some digital payment schemes, simply do
not provide the needed functionality. As we show below, existing schemes that
permit payment delegation are simple and prone to abuse. Later, in the related
work section, we show why the Internet-based solutions lack the features required
for real-world mobile commerce.

The Problems of Delegation Using Cash: The simplest of the traditional dele-
gation methods involves giving someone cash and telling them what they can
and cannot purchase. The security of this system relies completely on trust. The
payer has no way of knowing if the delegated party will run off with the money
or attempt to purchase inferior-quality goods and pass them off as the genuine
article.

The Problems of Delegation Using Credit Cards: Many businesses give their
employees corporate credit cards. This method of delegation also involves a fairly
significant amount of trust. Information on the individual items purchased is not
provided to the credit card company by the merchants but rather the merchant
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ID only. Thus, the business has no reliable method of knowing which items an
employee has purchased.

Another significant problem which credit cards introduce is that of insider
theft, or a data loss incident by the merchant. For a credit card transaction to
process successfully, the customer, or concierge must provide her credit card de-
tails to the merchant during the sale. A malicious merchant, a corrupt employee,
or an intrusion by hackers and subsequent theft of data from the merchant’s
database can result in the theft of a customer’s credit card information. While
most credit card companies place minimal, if any liability on the customer in
cases of credit card fraud, the very act of disputing invalid charges, canceling
a credit card and requesting a new one can be time consuming and disruptive.
Any scheme which prevents the merchant from gaining access to the customer’s
credit card information will avoid these problems.

The Problems of Delegation Using Reimbursement. Another delegation scheme
commonly used by businesses requires that employees pay for all expenses with
their own funds, collect receipts, and then submit expense reports afterwards.
This system has a number of downsides. Employees often resent the loan they
are essentially making to their employer. Prolonged business travel or legitimate
large purchases can result in financial difficulties for employees. Employees can
also forge false receipts.

The rest of the paper is organized as follows: In Sec. 2 we discuss related work
in the field of electronic payment systems. In Sec. 3 we present the system model
and the proposed solution. In Sec. 4 we evaluate the privacy protections provided
by our solution and the processing and communication overhead. Section 5 shows
example applications of our payment delegation method., and Sec. 6 concludes
the paper.

2 Related Work

There has been a considerable amount of research into electronic payment sys-
tems over the past few years. [3] lists several of these payment schemes. The
underlying characteristic of all of the proposed systems is obviously “security.”
Other desirable properties include scalability, anonymity, non-repudiation, dele-
gability, and various others that are specific to certain applications. We can split
most of the electronic payment techniques into two groups: macro and micro-
payments. While macro-payments are typically used to exchange high value
sums, micro-payment techniques [4,5,6,7,8,9,10,11] involve far smaller amounts of
money that are typically used to pay for Internet-based services such as stream-
ing multi-media, software downloads, VoIP etc. The major features that dif-
ferentiate our scheme from existing payment systems are: delegability and the
ability to function offline. Other differences are cited in the later sections, after
introducing the technical details of our approach.

Anonymity is an appealing feature for numerous applications. The challenging
problem with anonymity is that it typically contradicts non-repudiation, an es-
sential property in payment systems. The iKP scheme [4], one of the first papers
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to tackle this issue, is also quite similar to our system. iKP (where i=1, 2, or
3) is a set of protocols where the security and complexity of the system increase
with i. The protocols implement credit card based transactions between a cus-
tomer, a merchant, and a bank while using the existing payment networks for
gradual deployment. A requirement of the 1KP protocol is that the bank must
create an asymmetric encryption key pair and publish its public key. Customers
and merchants must have a copy of the bank’s public key in order to engage in
commerce. While the bank’s communications can be authenticated through the
use of public key based signatures, a customer can only authenticate herself in
1KP by using her credit card number and PIN which she then encrypts with the
bank’s public key. The 2KP protocol is similar, although both the merchant and
bank are required to have asymmetric cryptographic keys. 3KP further requires
that the customer also have a public and private encryption key pair. Unlike our
system, the iKP protocols do not support delegation1. As a result, our goals of
attempting to control which items can be purchased and a desire to keep them
secret from the bank are both not possible with the iKP protocols.

Until recently, research into payment delegation was almost completely absent
from the literature. The projects most relevant to our work is the research done
by Patil et al. [12,13,14,15]. In [12,13] the authors propose a micro-payment
system called e-coupons. Their system is secure, like most payment schemes.
However, they also provide transaction delegation in such a way that users do
not have to obtain an authorization from the bank before each payment. An
e-coupons user wishing to delegate payments first requests a “PayWord” [8]
chain from the bank, which enables them to pre-register multiple transaction
delegations for a single vendor. The user must sync with each vendor before a
PayWord chain can be used. The user can also delegate control of a portion of
a PayWord chain to other agents. For Internet-based commerce, it is perfectly
reasonable to require users to synchronize with the bank and vendor before
any actual exchange of goods. However, this requirement can be a significant
problem for real life scenarios in which users might not have regular Internet
access. Furthermore, the e-coupons scheme requires that the delegating person
know the identity of the merchants ahead of time, which is almost impossible in
many situations. Finally, the e-coupons system does not allow the customer to
remain anonymous with respect to the merchant.

Our delegation solution applies to the real-life scenarios discussed above with-
out the need for any apriori customer contact with the bank or the merchants.
It is secure, preserves the anonymity of the user, and can involve one or sev-
eral merchants without extra preparation overhead. In fact, our solution keeps
the apriori contacts between all involved parties to an absolute minimum: with-
out contacting the bank or the merchant(s), the user passes the “token” to the
concierge at the same time as the shopping list. The concierge passes the token
to the merchant as she purchases at the checkout. The merchant contacts the

1 More precisely, iKP assumes that the issuer and inquirer (the customer and concierge
in our protocol) share some level of trust, an assumption that runs contrary to one
of the central design requirements for our system.
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bank only during the payment. We believe that reducing the number of apriori
contacts is vital for a system to succeed in real-life scenarios.

In addition to keeping the number of contacts to a minimum, our technique
preserves the privacy of the user foremost. The concierge obviously has no access
to the user account number or PIN (similar to e-coupons), and the user’s identity
is kept hidden from the vendor, and even optionally from the concierge, unlike
e-coupons. The shopping items are kept hidden from the bank, while still giving
it control over what is allowed to be purchased. The e-coupons system can hide
the purchased items from the bank, however, it is not possible to control what
can be bought from a given vendor. For these reasons, we believe that e-coupons
and the other payment schemes are not suited to real-world delegated payments.

One of the key standards for securing electronic payments is SET [11], origi-
nally developed by VISA and MasterCard. In spite of the strong industry back-
ing, SET failed to gain market share due to a number of reasons, one of which was
the logistics of client-side certificate distribution, i.e. requiring every user to have
an asymmetric key pair. Merx leverages the level of trust that customers usually
share with their banks, to keep the “default requirements” for the customers to a
minimal level, and therefore increase the chance of rapid market penetration.

Finally, mobile-banking (commonly known as m-banking) [16] is a rapidly
growing industry, that aims to bring financial services to the world’s under-
banked via the millions of deployed mobile phone handsets. M-banking schemes
are similar to Merx, in that they function primarily using the customer’s phone.
However, the m-banking products already on the market do not allow for dele-
gation of payments, controlled purchases are limited to specific products, nor do
they function when the customers are in areas without cellular connectivity.

3 System Model

We will first introduce the actors who interact using Merx2, their goals, and
what they will hope to get out of the scheme. We then provide the technical
description of the whole system.

3.1 The Actors

Without loss of generality, we consider an example scenario in which a customer
delegates a concierge to purchase goods from a merchant, where the payment is
processed by the customer’s bank.

The Customer: This person would like to have a third party, the concierge,
purchase one or more items for her. She wants to be sure that the concierge can
only buy the items that she has specified, within the price constraints she has
dictated. She also requires that the merchant does not know who she is, that
the bank does not know what she bought, and that neither the concierge nor
merchant should be able to learn her credit card or bank account information.

2 From Latin, “merchandise, goods”.
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The Concierge: This person is hired by the customer to visit one or more
merchants and purchase items listed on a supplied shopping list. Depending on
how the list is transmitted to the concierge (possible methods include Bluetooth,
Multimedia Messaging Service (MMS), email and a paper print out) and how
items are delivered to the customer, it is quite possible that the concierge may
never learn the customer’s identity. The concierge will not learn the customer’s
financial details, including her bank or credit card account numbers.

The Merchant: The merchant is a business with goods or services to sell.
It wants to be sure that the customer’s banking information provided by the
concierge is valid and that the items are authorized (by the user, then the bank)
before it permits the transaction. The merchant will not learn the identity nor
the financial details of the customer.

The Bank: The customer has a pre-existing relationship with the bank. This
can be a more traditional bank account, a debit card, or a credit card. The
bank will never learn which items the customer has purchased. It will, however,
learn the maximum price specified for each item as well as a maximum value for
the entire shopping list. The bank will enforce these limits by refusing to allow
transactions with a total price higher than the customer specified maximum
value. Working with the merchant, the bank will also ensure that only those items
described in the shopping list will be approved for purchase by the customer.
In other use cases, the bank can be substituted by a mobile phone operator
charging its susbscribers using their monthly bills.

Unlike most of the various existing techniques cited before, we reduce the
number of interactions between the different actors to an absolute minimum:
Neither the customer nor the concierge need to contact the bank and/or mer-
chant prior to the actual sale of goods. Reducing the requirements for contact
between the actors is of high practical relevance since we are primarily focusing
on in-person retail experiences, rather than online purchases. Furthermore, this
is essential to permit the creation of tokens when the customer and concierge do
not have Internet access.

3.2 Secure and Privacy-Preserving Delegation System

The customer creates a shopping list (Fig. 1(a)) and the corresponding token
(Fig. 1(b)). She transmits them both to the concierge, who acts as the delegated
party. The concierge then passes the token and the list of items to be purchased
to the merchant, which validates the purchases with the bank. This process will
be described in detail below.

Creating The Token: We now gradually present our solution, along with the
motivation for each added component.

– Motivation: The customer wishes to securely communicate her account in-
formation to the bank, while keeping her account number (Acct#) and PIN
secret from the merchant and concierge.



Merx: Secure and Privacy Preserving Delegated Payments 223

(a) List (b) Decrypted token (c) Token QR code

Fig. 1. A sample Merx shopping list, with the decrypted contents of the corresponding
token and its QR code

Solution: Encrypt the token using the bank’s public key and require that
the user enter her PIN each time a token is created.3

(. . . Acct#, P IN . . .)BankPubK

Advantages:
• If the concierge’s mobile phone is stolen, a printed copy of the token is

lost or if the concierge is malicious, the customer’s Acct# and PIN are
not revealed.

• If the merchant accidentally loses a copy of the transaction data or suffers
from a data breach, the customer’s Acct# and PIN are kept safe.

• The merchant does not learn the customer’s identity.
• If enough customers delegate the same concierge, it is possible to gain

some level of anonymity with respect to the merchant. As the number
of customers delegating any one concierge grows, the anonymity set also
increases. One example of this is a grocery delivery service used by several
customers.

• If customers transmit their data to the concierge via Bluetooth, MMS,
fax or the Internet, it is even possible to be anonymous with regard to
the concierge (using some kind of drop-box for the delivery of goods
afterwards).

3 To validate the PIN locally, and avoid giving the concierge a token with an invalid
PIN, a hash of the PIN concatenated to a salt value (h(PIN ||salt)) can be encrypted
and stored on the phone. This data will be encrypted with the phone’s PIN, which
the user will be required to enter (along with her bank PIN) each time a token is
created.
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– Motivation: Restrict the concierge to purchasing only those pre-selected
items specified by the customer.
Solution: Include the list of items in the token.

(. . . item0 . . . itemi . . .)BankPubK

– Motivation: Prevent the bank from learning which items are to be purchased.
Solution: Compute a unique item identifier for each item, made by hashing
the concatenation of the item number and the transaction ID. Then, create a
256-bit unique random number for each item. Finally, concatenate the item
identifier and the random number, and hash this result. This will act as a
privacy-preserving item hash, which can be given to the bank.

(. . . h(item0||TransactionID||r0) . . . h(itemi||TransactionID||ri)
. . .)BankPubK

When items are purchased by the concierge, the merchant will calculate the
hash of the item and its associated random number, and send the hash to
the bank to validate the purchase.
Advantages:
• The transaction can be split into n sub-transactions4.

– Motivation: Restrict the concierge role to a specific individual.
Solution: Include the Concierge’s ID in the token and/or require a transac-
tion PIN at time of purchase.

(. . . ConciergeID, T ransactionPIN . . .)BankPubK

– Motivation: Forbid double spending.
Solution: Include a transaction identifier in the token, e.g. a timestamp and
a unique, randomly generated transaction ID:

(. . . T imeStamp, T ransactionID . . .)BankPubK

– Motivation: Set a maximum total price for all transactions authorized by a
token.
Solution: Include a maximum total price field in the token, which the bank
will verify before permitting a transaction.

(. . . TransTotal . . .)BankPubK

– Motivation: Include open options in the token to enable future features, e.g.
disallow specific merchants.

4 From a brute-force attack computation point of view, h(item||TransactionID||r)
is equivalent to h(item||r∗) where r∗ is orders of magnitude larger than r.
h(item||TransactionID||r) is used instead to save storage space.
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(. . . options . . .)BankPubK

– Motivation: Protect the transaction token from tampering by malicious per-
sons.
Solution: Use a Keyed-Hash Message Authentication Code (HMAC) to make
the token tamper evident. This is done by including a 256-bit randomly gen-
erated key, MacKey in the token, which is used to compute the HMAC of
the encrypted token. Both the HMAC and encrypted token will be given to
the concierge, merchant and bank.
(. . . MacKey . . .)BankPubK

The resulting token format therefore is:

TransToken = Acct#, P IN, h(item0||TransactionID||r0) . . .
h(itemi||TransactionID||ri), T ransTotal, ConciergeID, T imeStamp, . . .
TransactionID, MacKey, options)BankPubK

With an associated Transaction HMAC calculated by5:

TransHMAC = HMACMacKey(TransToken)

A sample Merx shopping list with the corresponding token and its QR code
are shown in Fig. 1. The customer transmits the token, its HMAC, along with
the list of items item0 . . . itemi and the associated random numbers r0 . . . ri (in
clear text) to the concierge by one of many mediums including using MMS,
Bluetooth, Infrared, Display on Mobile, or a paper print-out.

From Concierge to Merchant: Once at the place of business, the concierge
transmits the token (using MMS, Bluetooth, infrared, reader/camera/OCR) and
the list of only those items that will be purchased to the merchant. Giving the
merchant the complete shopping list (item0 . . . itemi) with each item’s random
number (r0 . . . ri) will enable a malicious merchant to submit charges to the
bank for authorized but not as yet purchased items. In order to ensure that
the concierge maintains control over the items for which the merchant can re-
quest payment, the concierge gives the merchant using any of the communication
methods mentioned above:

– the token,
– itemi of each item purchased from this merchant,
– ri of each item purchased from this merchant,
– ConciergeID or transaction PIN, if specified by the customer at time of token

creation,

5 Computing an HMAC of the encrypted token, a.k.a. Encrypt-then-MAC, is the
most robust among the 3 choices [17,18]: Encrypt-and-MAC, MAC-then-encrypt,
and Encrypt-then-MAC.
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From Merchant to Bank: The merchant computes the hash of each of the
actually purchased items h(item0||TransID||r0) . . . h(itemi||TransID||ri) and
passes them along with the encrypted transaction token to the bank.

The bank decrypts the token using its private key and then:

– checks the token integrity using the HMAC
– validates the customer’s account number and PIN, ensuring that sufficient

funds are available in her account,
– looks up the token’s transaction ID in a database of previously redeemed

tokens. It then verifies that none of the items to be purchased have already
been bought using that token,

– compares the concierge ID or transaction PIN transmitted by the merchant
to the one contained in the encrypted token,

– compares the actually purchased items as computed by the merchant
h(h(item0||TransID)||r0) . . . h(h(itemi||TransID)||ri) to those in the en-
crypted token,

– checks the additional options in the token,

then approves or rejects the transaction accordingly.

3.3 Specification language

So far we have assumed that the user can convey her shopping or restriction
needs in an intuitive way to the bank. When it gets to the implementation,
a specification language must be designed [19], similar to the ones used in su-
permarkets nowadays: groups (e.g. drinks), sub-groups (e.g. alcohol), sub-sub-
groups, ..., down to the individual items (e.g. beer). This grouping should be
further combined with “black list”, “white list” that permit the user to specify
which groups/items are allowed, and which are not. Using such a specification
language, a company can give its employees, going on a business trip, some to-
kens for buying given items (e.g. food, drink), while restricting others (e.g. strong
alcohols). Though essential to the deployment of Merx for large scale automatic
usage, and since it is orthogonal to the security and privacy aspects, we keep
this specification language out of scope of this paper.

3.4 A Revocation Protocol

The customer can contact the bank using any secure method (online, phone, in
person) to revoke a given token. The customer will need to provide the unique
transaction token ID or the entire token, as well as confirming her account num-
ber and PIN to prove that she created the token. The requirement to transmit
her PIN to the bank can be eliminated through the use of a zero knowledge
based key exchange protocol [20,21], but this is beyond the scope of our paper.

Should the customer wish to permit concierges to revoke tokens, such as in
cases where the concierge loses a token that has not been locked with a transac-
tion PIN, the customer would need to include a unique and random revocation
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number within the options field of the transaction token at time of token cre-
ation. This number would then be communicated to the concierge along with
the encrypted token and shopping list, as well as instructions on how to contact
the bank in case of loss.

4 System Performance

In this section we evaluate our scheme and its ability to withstand a number of
different attackers with a variety of capabilities. We also evaluate the system’s
communication and processing overhead.

4.1 Adversarial Model

We consider a multi-role adversarial model that takes into consideration what
the adversary is assumed to be able to do during an attack against the system.

1. A malicious concierge is able to save and later access transaction tokens and
shopping lists. She can attempt to modify and reproduce the saved tokens
and lists at a later date as well as attempt to use them with non-colluding
merchants. In cases where the user discloses her identity to the concierge,
that concierge may disclose the user’s identity to others.

2. A malicious merchant is able to save and later view transaction tokens,
shopping lists, concierge IDs and any other data given to it during previous
transactions. It may later attempt to redeem them with a non-colluding
bank.

3. A malicious bank is able to save and later view transaction tokens and any
data given to it by merchants.

4. A malicious customer, willing to fraudulently repudiate his shopping bills.
5. A colluding concierge and merchant is the combination of adversaries (1) and

(2). The concierge works with the merchant to try and defraud the customer
or to evade the restraints imposed by the shopping list.

6. A colluding merchant and bank is the combination of adversaries (2) and
(3). The merchant and bank work together to try to reveal the identity and
full shopping list of the customer.

7. A colluding concierge and bank is the combination of adversaries (1) and
(3). The concierge and bank work together to reveal the identity and full
shopping list of the customer.

4.2 Security and Privacy Analysis

We now explore the options available to each adversary, and describe which
sensitive information they know and can potentially reveal to those with whom
they collude. This can also be seen visually in Figure 2.
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Fig. 2. A representation of the information that each potentially malicious party knows
and what they can provide to those other entities with whom they collude. One can
easily see the advantage over existing payment systems, for instance the one-time-use
credit cards: using Merx the merchant does not know who the customer is.

A Malicious Concierge: This attacker has very few options. Any attempts
at modifying, forging or replaying transaction tokens will be detected by the
bank and rejected. If the customer sends the token to the concierge via an
electronic medium, the concierge may never never learn the customer’s identity.
Furthermore, the concierge never learns the customer’s account number and PIN,
and thus, it is impossible to later create fraudulent tokens.

The size of the customer’s anonymity set [22] increases as the number of
other customers employing a single concierge (or a delivery service) increases.
Customers who purchase uncommon items will reveal some information, enabling
the linking of multiple transactions even though the customer’s true identity
remains unknown.

A Malicious Merchant: This adversarial scenario includes both corrupt mer-
chants and situations involving an insider attack, where an employee of the
merchant misuses or steals customer records. As the merchant never learns the
customer’s name or account information, any system breach or data loss inci-
dent involving the merchant’s computer systems will not result in the release of
identifiable customer data or billing information. The only link to the customer
that the merchant has is the identity of the concierge. This link can be further
weakened if the customer communicates with the concierge electronically.
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A Malicious Bank: The bank is prohibited from learning the individual items
that a customer purchases at each merchant. The bank is only able to learn
how many total items are on a shopping list, how many items from the list have
been purchased at each merchant, and the total transaction cost charged by each
merchant.

Customers have their anonymity reduced when large shopping lists are broken
up into smaller transactions. In situations where consumers wish to permit the
purchase of a number of fixed and uniquely priced items from multiple merchants,
it may be possible for the bank to learn which items the customer listed in their
shopping list.

For example, this attack is possible when a concierge buys a single item from
each of several merchants. While the bank does not know which items have been
purchased, it does know how much each item costs, due to the the fact that each
transaction was for a single item. Bank employees can later visit the merchant’s
store and attempt to find all items sold by the merchant for any particular price.
This item identification risk can be mitigated through the purchase of variable
price/quantity items (such as bulk weight food items), items from merchants
that charge the same price for a large variety of different goods, or by requiring
per-merchant transactions to consist of at least two or more items.

Repudiation Issues: Relying on shared PINs that are known to both the
customer and the bank for authentication can lead to repudiation issues: the
customer may try to dispute a given shopping bill by accusing the bank of forging
it. This same problem exists under the existing banking system, and with the
finger pointing that has occurred with “phantom withdrawals.” That particular
problem has been mostly solved through legal liability. In many countries, the
burden is on the bank to prove that the charge was valid, not for the customer
to prove that it was fraudulent [23].

Our scheme provides customers and banks with the same level of trust that
they currently have using existing banking technologies (ATM, credit card
charges without a signature, etc.). To avoid many repudiation issues, just as
with 3KP [4], the bank could require that specific customers (e.g. who usually
perform highly valuable transactions) sign transaction tokens with their private
keys. This of course introduces the overhead of issueuing public/private key pairs
for those customers. By assuming a level of mutual trust between the bank and
the customer equal to the relationship that already exists with “traditional”
bank accounts, we are able to keep the default authentication of Merx as PIN-
based, and introduce key pairs for a fraction of customers, should they or the
market demand it.

In addition to the repudiation issues between a customer and a bank, there is
also the possibility of a dispute between the customer and merchant. In the case
that a merchant sells a concierge a defective or poor quality item, the customer
would not discover the problem until the concierge delivered the goods. This
situation is in no way unique to our scheme, and is a major problem for cash-
based transactions. This problem is beyond the scope of our scheme, as we focus
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on giving customers at least the same level of protection that they have with
cash-based transactions.

A Colluding Concierge and Merchant: The bank does not learn the price
charged for each item and instead relies on the merchant to enforce the maximum
price specified for each item in the shopping list. Thus, in this collusion scenario,
the merchant can also overcharge for individual items. This risk can be mitigated
by requiring that merchants transmit the price of each item to the bank, but
this will result in a loss of purchase privacy for the customer.

It is not possible to protect the privacy of the customer’s shopping list from
the bank, without at the same time enabling a colluding merchant and concierge
to bypass the shopping list restrictions. This more advanced adversary is able to
neutralize the enforcement of shopping lists. For example, the customer can list
apples on her shopping list, yet the concierge can instead purchase oranges. The
colluding merchant will provide the concierge with oranges but send the bank
a transaction with the (hashed) apple item in the shopping list. The maximum
total price specified in the transaction token will at least protect the customer
from more egregious abuses.

A Colluding Merchant and Bank: This advanced adversary is able to neu-
tralize the privacy protection associated with shopping lists. The merchant can
reveal the complete shopping list to the bank, and thus permit the bank to create
a full record of every item purchased by the customer at that merchant.

The bank is also able to share the customer’s information with the merchant,
and thus strip the customer of her anonymity. In such a situation, the merchant
will know who the customer is, and the bank will know every item that the
customer purchases from the colluding merchant.

A Colluding Concierge and Bank: This is a more extreme case of the
previous adversary. Whereas a colluding merchant and bank are only able to
violate the customer’s privacy for that specific merchant, a colluding concierge
and bank are able to do so for all transactions. Thus, the bank is able to create
a complete list of every item purchased through the concierge by the customer.

If the customer has attempted to hide her identity from the concierge by
transmitting the transaction tokens electronically, this collusion will strip the
customer of her privacy. The bank can reveal the customer’s identity to the
concierge, while the concierge can reveal the complete list of purchased items to
the bank.

A Law Enforcement Investigation: In situations where government agents
or law enforcement officers are able to compel multiple actors to disclose trans-
action information, the customer’s anonymity and transaction privacy are lost.
For purposes of privacy analysis, a search warrant executed on the bank and
a merchant is the same as the collusion scenario outlined above in section 4.2.
Our system is not designed to protect the customer’s purchase privacy against
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government investigations. Customers wishing that level of protection may want
to stick with cash.

As we can see, Merx provides high levels of security and privacy against in-
dividual actors. The collusion between non-trusted parties leads to minor “con-
trollable” effects. The only severe damages result from collusions involving the
bank. However, such collusions are the least likely to occur in everyday life.

4.3 Communication and Processing Overhead

In this section we evaluate the additional costs, processing, and communication
overhead our system requires from all parties. The main observation is that the
delegation mechanism we propose, in its most basic form, requires no additional
hardware. It is a simple software solution using off-the-shelf components that
piggyback on the existing payment-network infrastructure.

For the numerical evaluation, we assume the customer uses a low-capacity
mobile device (200MHz processor, 64MB RAM), whereas the merchant and the
bank use an average speed server or desktop PC (Intel P4 2.8Ghz, 500MB RAM).
We chose the SHA256 algorithm for all hashes, which we compute using the
free OpenSSL library. GnuPG, an open-source implementation of Pretty Good
Privacy was used for all encryption. We selected GnuPG’s default algorithms
of El Gamal with 2048 bit keys (public key encryption) and AES (symmetric
encryption) as these provide sufficient security while being quick to compute
on a mobile platform. While we have chosen these particular algorithms, the
scheme is flexible, and alternative encryption/hashing technologies could easily
be substituted.

The processing time results shown in Fig. 3 are averaged over 10 runs for each
number of items. The confidence intervals are very small, therefore omitted from
the figure.

The Customer: To use such a system, the customer must have access to either
a mobile telephone or a computer. These devices do not necessarily need to be
owned by the customer. In many cases, she merely needs to have temporary
access to them. If the customer owns the device, the she can store her account
number in it. If she is borrowing the device from someone else, she will need to
find a way to input her account number. This can be done manually (e.g. by
entering a 16+ digit number), or perhaps by reading a QR code printed onto
the back of her bank card with a camera phone.

Figure 3 shows the processing time required to create a token, for a given
number of items in the shopping list. We can observe that in spite of the low-
processing power of the customer’s device, the processing delay is still acceptable
even for an exaggerated number of items. For low number of items, the processing
delay remain below 10 s.

The total size of an encrypted transaction token for 10 items is approximately
1.6 KBytes, with an additional 1 KByte required for the shopping list. For a
transaction involving 50 items, the token grows to nearly 3 KBytes while the
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Fig. 3. Processing time for the customer, merchant and bank, with respect to the
number of purchased items

shopping list grows to 4.5 KBytes, as the shopping lists are currently transmitted
in plain text and are not compressed.

Depending on the level of personal interaction that the customer wishes to
have with the concierge, the method of transmission and technical requirements
will differ. A transaction token can be electronically transmitted using email,
instant message, Bluetooth, IR, or MMS. The token, and its HMAC, can also
be printed on to paper by representing them as a QR codes which can then be
hand-delivered or faxed to the concierge.

With Bluetooth 2.0 transmission rates of 2.1 Mbit/s, it is clear that a user
should be able transmit the token, its HMAC, and the shopping list to the
concierge in under a second (plus the time required to setup and teardown the
Bluetooth connection). If the user is not near to the concierge, the user can use
MMS on her phone to transmit the token and shopping list. 3G cellular networks
typically offer speeds of 144Kbit/s in a high-velocity moving environment, 384
Kbit/s in a low-velocity moving environment, and 2 Mbit/s in a stationary en-
vironment. Again, it takes less than a second for the token, its HMAC, and the
shopping list to be transmitted.

The Concierge: If the token has been electronically transmitted to the
concierge, she will either need to bring it to the merchant in electronic form,
using a mobile phone or any other mobile computing device, or print it out onto
paper. The technical requirements for the concierge’s device will depend on the
receiving equipment that the merchant has. There are no processing tasks to
be performed by the concierge, as she merely relays the token and shopping list
given to her by the customer. It is therefore possible for the concierge to sim-
ply receive paper printouts of the token and shopping list, which she can then
hand-deliver to the merchant when she purchases items.

The Merchant: The merchant must have a means of reading in the transac-
tion tokens. At the most basic and inter-operable level, the merchant will need



Merx: Secure and Privacy Preserving Delegated Payments 233

to have the ability to read QR codes. To accept electronic tokens, the merchant
will also need to support either MMS, Bluetooth or IR. All of these tasks can be
accomplished with a camera-enabled smart phone. Complex integration with the
merchant’s existing computerized point-of-sale system will of course require ad-
ditional hardware. The merchant will also need a way to transmit the encrypted
transaction tokens, the HMACs, and hashes of the purchased items to the bank
in order to validate the transaction. However, most merchants already have an
electronic transmission system that enables them to process ATM and credit
card transactions. The transaction token system can easily piggyback on the
existing financial transaction transfer infrastructure, although the engineering
task of this integration is beyond the scope of our work [24]. On the other hand,
point-of-sales that already support mobile-phone payments, e.g. [25] widely de-
ployed in Japan, would require simple software updates.

Smaller merchants may use a basic credit card machine with a 56Kbps modem,
while the larger firms may use a sophisticated point of sale system connected to
an ISDN line or even use a VPN over a broadband Internet connection. Even for
these smaller merchants, the transmission time required to send a 1.6 KBytes
transaction token for 10 items and a 1 KByte transaction request (listing the
price of each item, as well as the hash of each item and associated random
number) remains under 1 s. For the larger merchants with an even faster con-
nection to a payment processor, the transmission time for the transaction token
is negligible.

For a merchant to be able to process a Merx transaction, it must calculate
a SHA256 hash for each itemi, ri pair before sending the list of hashes and the
transaction token to the bank. Thus, in addition to transmission time analyzed
above previously, we must also consider the time required to compute the item
hashes. On the merchant’s machine, a SHA256 hash takes approximately 10ms.
Therefore, even with 100 item hashes to calculate, the merchant will only intro-
duce a 1 second delay to the retail checkout process.

Figure 3 shows that the time required for the merchant’s server to process a
token is approximately 4 s for 500 items. For a lower and more common number
of items, the processing time is below 1 s.

The Bank: The bank already communicates with merchants during transac-
tions over the existing financial network, so that credit card numbers can be
verified. Merx additionally requires that the bank decrypts the transaction to-
ken, verify the contents and then transmit a message back to the merchant. In
order to stop double spending and allow transactions to be broken up into mul-
tiple sub-transactions serviced by different merchants, the bank must keep track
of and remember the contents of a transaction token for a significant time in the
future.

Let us assume that the bank stores 100 Bytes of information per item pur-
chased (which includes the item hash, the price paid, the customer’s account
number, and a time stamp), as well as an additional 100 Bytes for every trans-
action token that has been used at least once. Thus, the storage overhead for a
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transaction token with 100 purchased items is approximately 11 KByte. Assum-
ing storage costs of $250 per GByte for a Fiber Channel RAID system ($7 per
month for three years), the storage costs for a transaction token and 100 items
is approximately 1/4 of a penny.

Figure 3 shows that the processing time for the bank increases very slowly with
the number of items in the shopping list, however it remains less than 500ms
even for a transaction token with 500 items. Comparing the cumulative delays
(≈ 4s for transmission + processing) of the concierge, bank, and merchant, to the
typical values of queuing delays at cash desks in [26], shows that the additional
overhead introduced by Merx remains negligible.

Insider theft is a major threat to the financial service industry [27]. While
customers can buy shredders, monitor their credit reports and take other
pro-active steps to protect themselves against identity theft, there is little that
they can do to stop a corrupt merchants (or their employees) from saving a copy
of the customer’s credit card information. Due to pro-consumer legislation, the
banks are often responsible for this fraud. As a result, the banks often bear the
financial consequences of merchant insider theft. In our scheme, the credit card
or account details are stored in an encrypted token. As the merchant has no way
of reading this information, there is no way for a corrupt employee to write down
the user’s account number for later use. By switching to Merx, banks should be
able to significantly reduce their exposure to merchant insider theft.

5 Example Applications

Merx, as described in the previous sections, has various use cases such as:

– Delegated concierge service
– Corporate environments, where the employer delegates payments to her em-

ployees during business trips. Merx gives the company more control over
the payments, while offering more flexibility to the employee. Moreover, the
employer has the option of keeping her identity hidden to the merchant.

– Family situations where parents typically give money to their children (e.g.
going on vacation), taking the risk of having it stolen, or simply used by the
children for unwanted purchases

In addition to the above scenarios, Merx can be slightly modified to support other
appealing applications such as ATM withdrawal delegation, or self-delegated
travelers cheques.

5.1 ATM Withdrawal Delegation

PIN and password sharing is common amongst married couples and even some
trusted friends [2]. Unfortunately, banking policies do not reflect the reality of
the real world trust relationships. Often, financial rules stipulate that the banks
will only be held responsible for fraud in cases where the customer has not shared
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their login information with anyone else. Thus, when users share their account
authentication information with spouses or trusted friends, they lose any form of
legal liability protection in cases of fraud, even when the fraud is later committed
by complete strangers [2].

People in remote areas of the world often live and work very far from the
nearest bank or ATM. Out of necessity, people must rely on their friends, family
members or even neighbors for access to banking facilities. Typically, one person
will travel to the nearest large town and take care of everyone else’s business
for them. This person will carry a large number of ATM cards, each with an
accompanying PIN written down on a piece of paper [2].

This system requires a huge amount of trust, in that the trusted person could
choose to draw down everyone else’s accounts, and then leave the country. Users
are not able to convey their intent (e.g. “Please allow Tom to withdraw 40
dollars from my account”), and instead must give complete control over their
bank account to that trusted person.

While mobile-phone based e-banking would also provide a solution to this
problem (in that customers could transfer money online to the account of the
concierge, who would then withdraw it), this would require that each customer
have access to online banking facilities. This is often not a practical requirement
in remote parts of the world, and so our scheme is designed to work without
access to the Internet. Users can be offline when they create transaction tokens.

We propose two adaptations of Merx to this problem. Both schemes require
that the user wishing to delegate withdrawal have access to a mobile phone or
computer. The first requires that the user have access to a printer or a Bluetooth
enabled mobile phone and that the bank deploy a Bluetooth compatible ATM
machine. The second solution does not require Bluetooth mobile support, can
be used with a pen and paper and only requires that the bank deploy a software
upgrade to enable the ATM machine to support long PINs.

The first solution works as follows:
Alice, who is staying at home, has asked her friend Bob to go to the ATM in

the nearest large town, which is 8 hours away by bus. Using her mobile phone,
Alice thus creates a transaction token, and its HMAC:

TransactionToken = (Acct#, P IN, T imeStamp, Amount, ConciergeID,
T ransactionPIN, MacKey, n)BankPubK

Where n is a random nonce added to protect against dictionary attacks target-
ing the user’s PIN. This token is then either transmitted to Bob’s mobile phone
via a Bluetooth connection or Alice prints the token in a computer-readable
form, such as using QR codes.

If Bob tries to modify the transaction token in any way, it will be rejected
by the bank. As he does not have Alice’s PIN, he cannot create a valid to-
ken. Thus, the security of this scheme depends on Alice maintaining the privacy
of her PIN, which is an existing requirement for the security of her bank account.
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Furthermore, if Bob tries to reuse the same token twice, the bank will reject
it. This of course requires that the bank must maintain a list of all redeemed
tokens.

The second solution works as follows:
If Bob does not have a mobile phone, or the bank’s ATM machine does not

support Bluetooth, it is not possible to use the previously described scheme.
We must then fall-back to a more limited protocol, which uses the existing
infrastructure.

This scheme still requires that Alice have access a mobile phone or a com-
puting device, but it does not need to support Bluetooth. Alice must, at some
previous time, have established a long shared key (LongPIN) with the bank.
This key must be suitably large, such that it is resistant to a dictionary attack.

If Alice is willing to type in her authentication details each time, it is possible
for her to use someone else’s phone to generate the token. This puts her at risk
of PIN theft through keyboard sniffing and other attacks, and so it would be far
safer for her to use her own device. However, in cases where users are willing to
risk these additional threats, it is possible for a large group of people to share a
single mobile phone to generate their delegated ATM withdrawal tokens.

Using her mobile phone, Alice then creates the transaction token:

TransactionToken = h(Acct#||LongPIN ||T imestamp||
Amount||BobID, T ransactionPIN)

Alice can then write this hash down on a piece of paper, along with her account
number, the timestamp, the transaction PIN and the amount to be withdrawn.
We use SHA256 as our hash, which can be written as a 64 character string. This
is short enough that it is reasonable to expect someone to type it into an ATM
by hand.

5.2 Self-delegated Travelers Cheques

The delegated concierge scheme described before can be modified slightly to
provide traveler cheque functionality. A user can either assign the ConciergeID
to be her own ID, or to protect against cases where she loses her wallet and all
other forms of identification, a password or one time PIN can be substituted for
the ConciergeID field.

The transaction token can also specify loose requirements for the kinds of
items or services that can be purchased. Examples of this can include a travelers
cheque limited to one train ticket priced less than 100 dollars, a night in a 4 star
or below hotel or a meal in a restaurant that cost less than 30 dollars.6

Such travelers cheques could be photocopied, allowing an individual to keep
multiple copies on her person, should she be robbed or lose her wallet. A copy
could be kept online by emailing it to herself. Likewise, business travelers could

6 Again, the flexibility of such a system typically depends on the specification language
used, as discussed in Section 3.3.
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leave a copy with their secretaries back at the office, who could then fax them
the transaction token upon demand.

Advantages Over Existing Travelers Cheques and money wiring

Travelers cheques are a stored payment medium, and not in any way a form of
credit. In contrast with Merx, travelers Cheques have the following drawbacks:

– They cannot be photocopied, transmitted by fax or email.
– They must be paid up-front, therefore making the customer lost the interests.
– Travelers cheques are often used by customers in emergencies. However, due

to the requirement that the customer purchase travelers cheques before they
are used, it may be reasonable for someone to go into unforeseen debt, due
to the circumstances of the situation.

– If lost, the issuing authority must be contacted to get them canceled and
have new ones issued, therefore introducing undesirable delays.

As for the advantages over wiring money

– Banks typically charge a fairly significant commission or fee for a wire trans-
fer.

– The two banks, at the sender’s and recipient’s locations, must be open for
the money wiring to occur.

– Wiring money also requires the co-operation of someone on the other end of
the transaction, which in emergency situations in foreign countries, can be
rather difficult.

6 Conclusion

In this paper we present a secure and privacy preserving payment delegation sys-
tem, Merx, for end-users with mobile devices not necessarily connected to the
Internet. It allows users to delegate a third party that will purchase a specific
list of items from a merchant, keeping the user’s ID secret from the merchant,
and the list of items secret from the bank, while securing the transactions from
any fraudulent acts. The same mechanisms can be used to delegate money with-
drawal from ATMs, for controlling children’s expenses, or employees’ expenses
during business trips. When the user delegates himself for the transaction, the
mechanism works as a secure travelers cheques solution. The user is required to
use a computing device, which can be a shared one. The transactions can be
performed using SMS, Bluetooth/IR, camera phones, or even using a pen and a
paper. Finally, we evaluate the performance of our system at thwarting different
levels of attack models, and its capacity and communication overhead. Merx
can be gradually deployed since it can be used over existing payment network
infrastructures.
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Abstract. This paper examines how a secure agent transfer protocol
based upon TCG-defined mechanisms can be improved using
property-based platform state information. In doing so, we demonstrate
a practical implementation of property-based platform attestation using
an enhanced version of the component property certificates defined in
[16]. To illustrate our solution we provide examples of properties and
component property certificates given a mobile aglet that is destined to
execute on a group of devices, where the mobile aglet originator wishes
to protect the confidentiality of the aglet code.

1 Introduction

A mobile agent, which is comprised of code, data and execution state, is defined
as “an autonomous, reactive, goal-oriented, adaptive, persistent, socially aware
software entity, which can actively migrate from host to host” [27]. Mobile agents
have long been heralded as an important software paradigm in tackling prob-
lems such as bandwidth shortages, unreliable network connections, pre-defined
and rigid system architectures, and network latency [13,18], which persist in the
mobile environment due to the physical characteristics/constraints of the con-
nections [26]. If, however, these persistent, autonomous programs are permitted
to roam freely in a mobile network, interacting with systems and other agents
to fulfil their predefined goals, the risk of a mobile host with malicious intent
damaging a mobile agent or a malicious agent damaging a mobile host becomes
a very real danger. While the topic of host protection has been widely discussed,
see for example [4,9,12,17,19,29,30,39,40], a relative dearth of information exists
on mobile agent protection. Recent research [3] suggests that the deployment of
trusted computing technology in a mobile agent setting can solve many security
issues intrinsic to mobile agent protection. However, the use of binary platform
state information has proved to be problematic. In this paper we examine how
a secure agent transfer protocol which leverages trusted computing functional-
ity can be enhanced using property-based platform state information in order
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to provide mobile agent protection. In doing so, we extend and demonstrate a
practical use of component property certificates, as defined in [16].

Sections 2, 3 and 4 review the necessary background material. In section 2
trusted computing concepts are explored. Section 3 highlights prior art relating
to trusted computing and agent protection. In section 4 the concept of property-
based attestation is introduced. The remainder of the paper describes a property-
dependent agent transfer protocol. Section 5 identifies the security requirements
that the protocol should satisfy and section 6 defines a key migration-based
agent transfer protocol currently supported by the Trusted Computing Group
(TCG) specification set. Following a discussion of why a TCG mechanism based
protocol is not sufficient in this particular scenario, the assumptions upon which
our protocol is based are outlined in section 7. Section 8 develops the concept
of property-based state information and property certificates (with examples
pertaining to the aglet environment). In section 9 a secure agent transfer pro-
tocol which leverages property-based platform state information is defined and
analysed. We conclude in section 10.

2 Trusted Computing Fundamentals

A Trusted Platform (TP) is one that will behave in a particular manner for
a specific purpose. The TCG’s Trusted Platform Module (TPM) specifications
[34,35,36] are central to the implementation of a trusted computing platform.
These specifications describe a microcontroller with cryptographic coprocessor
capabilities that provides a platform with a number of special purpose regis-
ters for recording platform state information; a means of reporting this state to
remote entities; secure volatile and non-volatile memory; random number gener-
ation; a SHA-1 hashing engine; and asymmetric key generation, encryption and
digital signature capabilities. The current documentation from the TCG also
encompasses a vast set of specifications ranging from those relating to trusted
personal computers [32], server systems [31], and to specifications for trusted
networking [33]. The TCG Mobile Phone Working Group (MPWG) has recently
published the TCG Mobile Trusted Module (MTM) specification [37,38] (namely,
a TPM designed for a handheld mobile device) which enables the development
of a Trusted Mobile Platform (TMP).

Trusted computing, as currently defined by the TCG, is built upon five funda-
mental concepts: integrity measurement, authenticated boot, secure boot, platform
attestation, and protected storage.

– An integrity measurement is defined in [23] as the cryptographic digest or
hash of a platform component (i.e., a piece of software executing on the
platform).

– During an authenticated boot, a pre-defined set of platform components is
reliably measured and the resulting integrity measurements condensed and
reliably stored to form a set of platform integrity metrics.

– During a secure boot, a pre-defined set of platform components is reliably
measured, the resulting measurements verified against their expected values,
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and stored as above. A secure boot mechanism is required in a TMP, but is
not mandated in other implementations.

– Platform attestation enables a T(M)P to reliably report information about
its current state (namely, the integrity metrics reflecting (all or part of) the
platform’s software environment).

– Using its protected storage functionality a TPM/MTM can generate an un-
limited number of asymmetric key pairs. For each of these pairs, private key
use and mobility can be constrained. The notions of binding, the process of
encrypting data so that only a particular TPM/MTM can decrypt it, and
sealing, the process of encrypting data so that only a particular TPM/MTM
can decrypt it when the TPM/MTM’s host platform is in a particular state,
are also of fundamental importance to trusted computing.

For a platform to be considered trusted, it must first obtain the following core
credentials from an endorsement Certification Authority (CA), a platform CA,
and one or more conformance CAs, respectively.

An endorsement credential: Each TPM is, and each MTM may be, associ-
ated with a unique asymmetric encryption key pair called an Endorsement
Key (EK) pair. An endorsement credential binds the public component of
this key pair to a TPM/MTM description and vouches that a TPM/MTM
is genuine. The endorsement CA is typically the TPM/MTM manufacturer,
with the binding taking the form of a digital signature created using a signing
key of the manufacturer.

A platform credential: A platform credential asserts that a TPM/MTM has
been correctly incorporated into a design conforming to the TCG specifica-
tions. The platform CA is typically the platform manufacturer. In order to
create a platform credential, the platform CA must examine the endorsement
credential, the conformance credentials relevant to the trusted platform, and
the platform to be certified.

One or more conformance credentials: Conformance credentials vouch
that a particular type of TPM/MTM and associated components (such as a
RTM and the connection of the RTM and TPM to a motherboard) conform
to the TCG specifications. Conformance CAs must be entities with sufficient
credibility to evaluate platforms containing TPMs/MTMs, and are typically
conformance testing facilities.

In order to address privacy concerns resulting from routine use of an EK, the
TCG introduced the ability for a TPM/MTM to generate and use an arbitrary
number of pseudonyms, in the form of Attestation Identity Key (AIK) pairs. In
order for a relying party to have assurance that an AIK represents a trusted
platform, a platform must obtain an AIK certificate from a mutually trusted
third party. Two approaches to AIK certification have been proposed by the
TCG. In the first approach, a trusted third party, referred to as a Privacy-
Certification Authority (P-CA), verifies a trusted platform’s core credential set
and provides assurance that an AIK is bound to a genuine trusted platform in
the form of an AIK credential. However, this approach has attracted a certain
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amount of criticism, as a P-CA is capable of linking all the AIK credentials it
issues to a specific platform via the EK, putting the P-CA in a position where it is
able to defeat the anonymity protection provided by the use of AIKs. The second
approach, Direct Anonymous Attestation (DAA), was introduced to counteract
this criticism. DAA requires a DAA CA, which can produce an anonymous DAA
credential for a trusted platform, which in turn can be used by the platform to
sign AIK credentials. Using this approach, trusted platforms can generate and
use AIKs which cannot be easily linked to a particular EK by any third party.
As privacy is not always of concern in a trusted mobile platform an MTM may
be only be provisioned with a single certified AIK pair which attests that it is
indeed genuine and is integrated into a trusted mobile platform.

The specification set produced by the TCG, however, is by no means the only
work on trusted computing. Trusted computing also encompasses new processor
designs [1,7,11] as well as Operating System (OS) support [22,23] which facilitate
software isolation, i.e. the unhindered execution of software. For the interested
reader, introductory texts on trusted computing include [2,15].

3 Trusted Computing and Mobile Agent Security

The use of trusted hardware as a method of protecting mobile agents can be
traced back to Wilhelm, Staamann and Butty [41] who define a Trusted Pro-
cessing Environment (TPE) to consist of a Computer Processing Unit (CPU),
random access memory, read only memory, and non-volatile storage, all of which
executes in a virtual machine. An agent executes within this isolated TPE, where
it remains protected from observation by the host OS.

The use of trusted computing in agent systems has been proposed in
[6,20,21,25]. [6,20,21] describe how non-mobile agents can be used in the preser-
vation of user privacy. Recently, a trusted computing enhanced mobile agent
platform called SMASH was proposed, [25]. In this system trusted computing is
deployed to form a middleware-based instantiation of some aspects of Wilhelm,
Staamann and Butty’s proposal [41].

Most recently, in [3] Balfe and Gallery examined how trusted computing func-
tionality could be used to protect sensitive agent information (be it code, data or
state information) by demonstrating how an agent originator can extend their
control over environments in which their agent will subsequently execute. In
each approach described in [3], access to an agent is made provisional on the
host platform’s PCRs containing a particular set of binary integrity metrics,
which is proved to be problematic. For example, an agent platform may leave
itself open to attack from an incoming agent if its exact configuration (including
all system vulnerabilities) is revealed. Privacy issues are also associated with
such revelations. In conjunction with this, since a software component’s binary
changes every time a patch or update is applied, and as a mobile agent may
potentially make numerous hops, it becomes next to impossible for an agent
originator to choose a unique set of platform integrity metrics which reflect a
platform state that meets his/her requirements and which all destination hosts
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satisfy, given updates, patches and the multiplicity of agent platform configura-
tions/installations.

4 Property-Based Attestation

As an alternative to traditional binary integrity metric-based mechanisms, as
described in section 2, the concept of property-based attestation and sealing has
been introduced [10,24,28,42]. Using this approach, a platform’s state is defined
in terms of its security-related properties rather than a set of integrity metrics.
In this way a platform’s exact implementation details can be hidden, as can its
vulnerabilities. In conjunction with this, properties of components do not change
as often as software component binary integrity measurement values, thereby
alleviating problems relating to patches and updates. Properties are also easier
to understand, which can be helpful when writing meaningful policies. Three
fundamental approaches to property-based attestation and sealing have been
explored: delegation-based, the use of code control, and code analysis/property
derivation [5].

Papers such as [24,28,42] describe a delegation-based approach, where a chal-
lenger platform or attestor is required to prove that a trusted third party has
certified properties of its software state. The proof takes the form of property
certificates, i.e. signed statements which describe the security properties of soft-
ware components. Nagarajan, Varadharajan and Hitchens [16] refine this notion,
and discuss certificates which describe course-grained platform properties, fine-
grained properties of individual components, and mid-level properties of groups
of components.

The property derivation approach of Halder, Chandra and Franz in [10] uses a
language-based Trusted Virtual Machine (TVM) in order to facilitate property-
based attestation. A TVM (such as the Java Virtual Machine) derives various
properties of applications running within it on behalf of a remote party. For
example, code analysis may be completed on the code by the TVM. In this
scheme, software up to and including the TVM may be verified using binary
attestation.

The TVM described above also employs code control/policy enforcement,
whereby the code is under the control of the TVM, which monitors its exe-
cution. This approach is also adopted in [14], where SELinux and its associated
policies are attested to, and the policies are enforced by the operating system.

5 Security Requirements

In order to provide comprehensive mobile agent protection, and so that a wide
range of agent applications can be supported, the following requirements must
be fulfilled by the property-dependent agent transfer protocol.

1. Destination host platform trust verification, so that the status of an agent
host platform as a genuine TP and its security-properties can be verified.
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2. Confidentiality of the agent code, data and state information in transit be-
tween and in storage on host platforms, so that unauthorised reading can be
prevented.

3. Integrity protection of the agent code, data and state information in transit
between and in storage on host platforms, so that any unauthorised alter-
ation can be prevented, be it malicious or accidental.

4. Confidentiality and integrity protection of the agent code, data and state
information during execution.

5. Availability of the required resources and services to an agent during
execution.

6 A TCG Mechanism-Based Agent Transfer Protocol

The mobile agent architecture model upon which our protocol is based involves
three parties: an agent originator platform (AO); an agent host platform (AH);
and a trusted third party property certifier (TTP ). AO is the trusted (mo-
bile) agent platform from which an agent (A) originates, whereas AH represents
the trusted (mobile) agent platform upon which incoming agents execute. Each
trusted (mobile) agent platform is supported by a TCG compliant TPM or MTM
(in the protocol description a TPM or MTM will be denoted by TM). In this
model an agent originator does not need to have a long term relationship with
the host platforms upon which its agent executes.

As shown in [3,8] there are a number of ways by which standard TCG func-
tionality may be used to meet security requirements 1 — 5, as listed in section 5.
All methods, however, utilise facets of the TCG protected storage functionality,

Fig. 1. TCG migration — Key exchange phase
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as described in section 2. For this particular scenario involving multi-hop mo-
bile agents, an approach founded upon TCG key migration is most appropriate.
This approach essentially involves a key distribution phase and an agent transfer
phase.

Figure 1 illustrates the key distribution phase of an approach based on TCG
key migration. In this case each agent host possesses an AIK pair (which identifies
it as a genuine TP). Each agent host platform’s TM has also been used to
generate a non-migratable key pair and to certify (sign) the public key from this
pair using a private AIK. The agent originator generates a migratable key pair
using his/her TM where private key use is bound to a specified host platform
state. The public key from this key pair is used to protect the outgoing mobile
agent. This key pair needs to be ‘migrated’ to all trusted (mobile) agent platforms
which require agent access.

Prior to key pair migration a trusted (mobile) agent platform must forward its
AIK-certified non-migratable public key to the agent originator for verification.
Once this has been completed, and the agent originator has been convinced that
he/she is communicating with a genuine TP, the agent originator key pair can
be migrated under the protection of the public non-migratable trusted (mobile)
agent platform TM public key. The key distribution phase described above may
be completed while the agent is in transit or prior to its distribution. Once the
key distribution phase has been completed, the mobile agent can be protected
with the agent originator’s public migratable key and distributed as shown in
figure 2.

Problems, however, surround the use of TCG-defined platform state infor-
mation (namely the PCR values) to restrict trusted (mobile) agent platform
access to incoming executables. A mobile agent is designed to hop from host to

Fig. 2. TCG migration — Agent transfer phase
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host. Given the huge number of possible platform configurations, and given the
abundance of updates and patches, it is difficult if not impossible for an agent
originator to choose one platform state to which the agent originator migratable
private key (and therefore agent access) is bound. In order to overcome these
problems we propose a property-based secure agent transfer protocol.

7 System Assumptions

We now examine how the secure agent transfer protocol based upon the TCG-
defined mechanism described in the previous section can be improved using
property-based platform state information. In doing so, we demonstrate a prac-
tical use case for property-based platform attestation using an enhanced version
of the component property certificates defined in [16]. To illustrate our use case
we provide examples of properties and component property certificates given a
mobile aglet that is destined to execute on a group of devices, where the mobile
aglet originator wishes to protect the confidentiality of the aglet code. The fol-
lowing pre-conditions need to be satisfied for use of the protocol described later
in this paper.

1. It is assumed, for the purposes of illustration, that the agent originator and
host platforms support an aglet system architecture. An aglet is a mobile
Java agent that supports the concepts of autonomous execution and dynamic
routing on its itinerary [13]. An aglet system architecture is comprised of an
aglet runtime layer and a communication layer. The main elements in an
aglet runtime layer’s core framework include a context, i.e. the runtime en-
vironment in which an aglet executes, and a security manager. A security
manager protects both the host and aglets from malicious entities. The se-
curity manager uses aglet permissions, message permissions, and a policy
database, in which security policies for aglet contexts are stored. Privileges
may be defined through the association of one of the following resource types
with a set of permissions: local file system; network sockets; local windows;
Java properties; system resources such as memory and CPUs; security infor-
mation; contexts; aglets; and messages.

Aglets leverage this runtime environment. An aglet originator may also de-
fine a set of aglet preferences for each aglet generated. The following methods
can be restricted by the originator of an aglet: clone; deactivate; dispatch;
retract; dispose; get AgentClassName/AgletContext/CodeBase/Identifier/
Itinerary/Message Manager/Property/Property Keys/Text; send Message;
set Itinerary/Property/Text; subscribe/unsubscribe (all) messages [13]. Each
aglet is represented by a proxy, which acts as a shield object that protects
the aglet from malicious entities. The aglet proxy provides a common way
of accessing the aglet behind it. When invoked, the proxy object consults a
security manager, which in turn uses context and aglet policies to determine
whether the caller is permitted to perform the method.

2. It is assumed that both the aglet originator platform and the aglet host
platform are Trusted Aglet Platforms (TAPs) or indeed Trusted Mobile Aglet
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Platforms (TMAPs). Therefore, a fundamental component in both the aglet
originator platform and the aglet host platform is a TPM or, in the case
of a TMAP, an MTM. One or more of these tamper evident modules, TM ,
is assumed to be bound either physically or cryptographically to each aglet
originator and aglet host platform.

3. The aglet originator platform and the aglet host platform enable software
isolation through the deployment of mechanisms described in section 2.

4. Both the aglet originator platform and the aglet host platform also incor-
porate a trusted computing extension which is capable of determining the
properties of a particular system configuration given a set of property cer-
tificates and a list of entities trusted to issue property certificates, and of
deciding whether a particular system configuration provides a specific prop-
erty.

5. As a TMAP has more than one stakeholder, for example, the device man-
ufacturer, network operator and potentially numerous service providers, all
TMAPs contain a set of engines, namely constructs that can “manipulate
data, provide evidence that they can be trusted to report the current state of
the engine, and provide evidence about the current state of the engine” [38].
Upon start-up and reset of the TMAP device manufacturer engine, the soft-
ware state of the engine is measured, verified and stored to the appropriate
MTM PCRs (i.e. securely booted).

6. Upon the start-up and reset of the remaining TMAP engines, the software
state of each is measured and stored to the appropriate MTM PCRs.

7. In the case of a TAP it is assumed upon platform start-up and reset that the
software state of the platform is measured and stored to the TPM PCRs.

8. Each TAP or TMAP engine has at least one AIK pair.
9. The public signature verification key from the pair referred to in point 8 is

certified by a P-CA trusted by both the agent originator and agent hosts.
10. The initial platform from which the mobile aglet originates, AO, is considered

trustworthy.
11. The agent originator platform possesses a signature key pair.
12. The public signature verification key from the pair referred to in point 11

is certified by a certification authority trusted by both the agent originator
and agent hosts.

13. Every aglet host platform can acquire a set of software component prop-
erty certificates to which the platform conforms from a trusted third party
property certifier.

8 Required Properties

As described in [16], properties of computing platforms can be expressed using
various levels of granularity. For the purpose of this paper we extend the concept
of more granular component property certificates proposed in [16] for use in
the delegation-based models described in [24,28]. Figure 3 illustrates a property
granularity pyramid for use in defining properties of trusted platforms.
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Fig. 3. Property granularity pyramid

At the top of the pyramid, properties are defined at a high level. Here, prop-
erties express an overall purpose or function. Properties at the lowest level of
the pyramid are fine-grained. More generally, as we descend from the top of the
pyramid, properties are expressed with an increasing focus on the implementa-
tion details. The pyramid is comprised of the following four levels (numbered
1–4).

– On top of the hierarchy are classes. A class is defined as a common intent
regarding the services that belong to the class.

– A service addresses a class of security requirement.
– Services are provided using one or more service elements.
– A mechanism is used to implement a service element in a system.

Level 1 and 2 properties do not reveal platform implementation details and pro-
vide more privacy for the attesting party. However, there is less flexibility for
expressing fine-grained access control policies based on these properties. On the
other hand, properties at the lower levels of the pyramid provide greater flexi-
bility for expressing policies although they may compromise the privacy of the
attesting party. In the context of an agent environment, upper level properties
allow an agent originator to specify host platform requirements without restrict-
ing an agent host platform to a specific configuration. To illustrate our solution
we provide examples of component properties in the context of a mobile aglet,
destined to execute on a group of T(M)APs, whose code the aglet originator
wishes to confidentiality protect during execution [13].

‘Aglet code confidentiality’ is a class of security service, as shown in figure 4,
which may be broken down into three core services — ‘aglet code confidentiality
during transmission’, ‘aglet code confidentiality during storage’ and ‘aglet code
confidentiality during execution’. Confidentiality of aglet code in transit and
while in storage on a host platform are provided through asymmetric encryption
deployed in the secure transfer protocol described in section 9. In order to ensure
confidentiality of aglet code during execution, a host on which the aglet executes
must possess certificates which indicate that it provides a particular service
and/or incorporates service elements/mechanisms which provide this particular
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Fig. 4. Property granularity pyramid for aglet code confidentiality

grant

codeBase "http://some.host.com", owned by "RHUL" {
{
// aglet protections

protection com.ibm.aglet.security.AgletProtection

"*", "dispatch,dispose,deactivate,activate,retract";

};

Fig. 5. Aglet code confidentiality

service. The service ‘aglet code confidentiality during execution’ may be provided
by a number of service elements, namely, software integrity, software isolation,
a trustworthy aglet environment and the implementation of aglet code access
control policies, as shown in figure 4. A trustworthy aglet environment and a
set of aglet access control policies ensure that the aglet is protected from other
aglets executing in the context and indeed the host itself. Software isolation
ensures that the aglet environment is executed in an isolated compartment such
that malicious software executing in parallel cannot gain unauthorised access.
Finally, software integrity implies that the software isolation mechanism can be
verified as correct. A selection of mechanisms that provide these service elements
include a secure boot mechanism, an up-to-date isolation layer, an up-to-date
and reputable aglet environment and aglet access control policies (such as that
shown in figure 5).

The sample policy statement, defined in figure 5, permits the host to dispatch,
dispose, deactivate, activate and retract an aglet owned by ‘RHUL’ and originat-
ing from ‘http://some.host.com’ but does not at any stage permit aglet cloning.
Properties describing a secure boot mechanism, an up-to-date isolation layer
or an up-to-date and reputable aglet environment may include identification,
version and update information for each of the components.
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9 A Property-dependent Agent Transfer Protocol

In order to meet all requirements defined in section 5, and in order to provide an
efficient solution given a multi-hop agent, we modify the protocol described in
section 6 to incorporate the use of property-based platform state information. In
this case, due to the modified T(M)P architecture assumed in section 7, we have
TPM/MTM functionality as defined by the TCG and a TPM/MTM extension.
This TM extension must enable the generation of a key pair where private key
use is contingent on a platform fulfilling a specific set of properties. It must also
support key use once a platform fulfills the set of properties to which private key
use is bound. In order to do this the extension must be able to determine the
properties of a particular system configuration given a set of PCR values, a set
of property certificates and a list of entities trusted to issue property certificates.

9.1 Key Generation

In order to implement key generation a variant of the TPM CreateWrapKey
command functionality is required. Rather than specifying the state constraints
to which private key use is bound in terms of PCR values (as is the case
when defining the PCRInfo parameter of the keyInfo parameter input to the
TPM CreateWrapKey command) this new functionality inputs a new keyInfo
parameter, for example propertyInfo, which allows state constraints to be spec-
ified as:

– the property/properties to which a platform must comply prior to private
key use;

– the identity/identities of the third parties trusted to certify the properties
specified; and

– the public key(s) of the root third party/parties trusted to certify the prop-
erty/properties specified.

Private key use can be made dependent on a high level property, namely a level
2 property such as ‘aglet code confidentiality during execution’. Alternatively,
depending on the requirement of the agent originator, it may be dependent on
a level 3 property such as ‘software isolation’ or indeed a level 4 property where
a particular isolation layer in a set version with the required updates must be
provided by a specified provider. An agent originator may even choose to ‘mix
and match’ the properties required of an agent host platform.

9.2 Property Certificates

Each property certificate contains a validity period, component identifers, a set of
properties to which the component complies, and an identifier for and a digital
signature of a property certifier. When defining level 4 properties a property
certificate will contain the integrity measurement (i.e. the hash) of a component
in the ‘Component Identifiers’ field and the properties to which it complies in
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Fig. 6. Level 2 property certificate

Fig. 7. Level 3 property certificate

the ‘Properties’ field. Given a level 2 or 3 property, however, the ‘Component
Identifiers’ field may contain the integrity measurement of a component or a
set of properties which identify a (set of) component(s). The ‘Properties’ field
will list properties which the component(s) fulfill(s). Property certificates which
define the level 2 property of ‘aglet code confidentiality during execution’, the
level 3 property of ‘software isolation’, the level 4 properties of isolation layer
‘name’, ‘version’, ‘software provider’ and ‘update status’ may be defined as shown
in figures 6, 7 and 8.
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Fig. 8. Level 4 property certificate

Once the agent originator key pair has been communicated to each T(M)AP,
the T(M)AP can decrypt and examine the properties to which private key use
is bound and the root third parties trusted to certify the properties specified.
Following this, the T(M)AP must acquire the required property certificates.
This could involve a T(M)AP providing the specified TTP(s) with the required
properties it must fulfill in return for all relevant property certificates.

If, for example, the key is bound to the level 4 property set {Name =
XEN on V T − x, V ersion = 3.0, Software provider = Citrix, Updated >
May 2009 || TTP2} the agent host could request all certificates where the name
is XEN on VT-x, the version is 3.0, the software provider is Citrix and the up-
dated date is after May 2009 from TTP2, or, alternatively, it could send the
measurement of its isolation layer in return for all certificates pertaining to this
measurement. Once these certificates have been retrieved a chain can be con-
structed from an integrity measurement representing a platform component to
a root trusted third party-certified property/set of properties to which private
key use is bound.

If, for example, the key is bound to the level 3 property set {Service element
name = software isolation || TTP1} the agent host could initially request
all certificates where the property field indicates that the service element name
is software isolation from TTP1. Once it has received these it must examine
the identifiers for components which fulfill the property ‘software isolation’,
for example in the case of the Level 3 property certificate shown in figure
7, the ‘Component Identifiers’ are {Name = XEN on V T − x, V ersion =
3.0, Software provider = Citrix, Updated > May 2009 || TTP2}. It must
then in turn request of TTP2 all certificates where the ‘Properties’ field in-
dicates that the component’s name is XEN on VT-x, the version is 3.0, the
software provider is Citrix and the updated date is after May 2009. There is now
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sufficient information to build a chain representing a platform component to a
root trusted third party-certified property/set of properties to which private key
use is bound. Using this method provides two advantages in the mobile agent
environment. Firstly, it adds a level of abstraction which allows a mobile agent
originator to bind a key to a property which multiple platforms with different
state configurations can fulfill. Secondly, it enables a mobile host platform to
control the release of platform state information.

9.3 Property Mapping

Once the agent originator has generated and migrated an asymmetric key pair
as described in sections 9.1 and 9.2, the agent originator can sign and encrypt
any sensitive agent code, data, and state information (or indeed a symmetric
key used to confidentiality and integrity protect an agent) using the agent orig-
inator public key, in the knowledge that this sensitive information can only be
accessed by a destination host platform to which the agent originator key pair
has been migrated and only when that platform fulfills the required security
property/properties.

In order to use the private key the properties to which key use is bound must
be compared to the properties which the host platform satisfies. A variant of the
TPM Unbind command functionality is required in this instance. Assuming we
have a full set of TM PCRs, the corresponding stored measurement log (which
names and lists the measurements of all components which have been reliably
stored to the PCRs), and a set of property certificates, collected as described in
the previous section, this command variant will result in the following actions.

– The {Security properties, TTP ID, TTP public key} sets to which private
key use is bound are examined.

– The integrity of the stored measurement log is initially verified against the
integrity metrics stored in the PCRs.

– Each integrity measurement is then compared against those held in all re-
trieved certificates.

– When a match is found between an integrity measurement and a level n
property certificate, the properties of this component are compared against
the component identifiers listed within the retrieved level n − 1 certificates.

– When a match is found, the public key of the TTP listed in the component
identifiers field of the level n − 1 property certificate is used to verify the
integrity of the level n property certificate.

– The property defined in the level n−1 property certificate is then compared
against the component identifers held in all retrieved level n − 2 property
certificates.

– When a match is found the signature of the TTP who signed the level n− 1
property certificate is verified using a key belonging to the TTP identified
in the level n − 2 certificate.

This process continues until a match is found between the security property from
a {Security properties, TTP ID, TTP public key} set to which private key
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use is bound and one defined in a property certificate and the certificate can
be verified using the public key associated with the TTP identified within the
{Security properties, TTP ID, TTP public key} set. This process is repeated
until all required properties have been fulfilled.

Suppose that the agent originator private key is bound to the level 3 prop-
erty ‘software isolation’ and the identity and public key of the property certi-
fier, TTP1. On receipt of the incoming aglet, the certificates shown in figure
7 and 8 are input into a T(M)AP trusted computing extension. The integrity
of the stored measurement log is verified against the integrity metrics stored
in the PCRs. The measurement of the platform’s isolation layer is matched to
the component identifiers held in the property certificate shown in figure 8. This
measurement is mapped to a set of properties shown in figure 8 and these proper-
ties are in turn mapped to the service component property of ‘software isolation’
(to which private key use is bound) using the certificate shown in figure 7. The
integrity of the level 4 property certificate is then verified using the public key of
TTP2 listed in the level 3 certificate and the level 3 certificate is verified using
the public key of TTP1 contained within the property set to which private key
use is bound.

By design, once an aglet has executed, it is re-encrypted with the agent orig-
inator public key prior to its migration, or indeed re-protected in terms of con-
fidentiality and integrity using its associated symmetric key(s) which is/are in
turn protected using the agent originator public key. The protocol can be broken
down into four phases: agent host key generation; agent originator key genera-
tion; key transfer; and mobile agent transfer.

9.4 Stage 1: Agent Host Key Generation

1. AH → AH TM : TPM CreateWrapKey. The keyInfo input parameter is
used to request the generation of a non-migratable key.

2. AH TM : Generates a non-migratable asymmetric key pair. A TPM Key
structure, which contains the public key PAH and the encrypted private key
SAH , is output.

3. AH → AH TM : TPM LoadKey2 — Request to load the TPM Key gener-
ated in step 2.

4. AH TM : Loads the TPM Key.
5. AH TM → AH : Outputs a handle to where the decrypted private key from

the TPM Key is loaded.
6. AH → AH TM : TPM LoadKey2 — Request to load the TPM Key struc-

ture, which contains the AH attestation identity key pair as described in
assumption 9.

7. AH TM : Loads the TPM Key.
8. AH TM → AH : Outputs a handle to where the private AIK is loaded.
9. AH → AH TM : TPM CertifyKey2. The keyHandle and certHandle input

parameters are used to specify the handles of the key to be certified (loaded
in step 4) and the private attestation identity key to be used to certify the
key (loaded in step 7).
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Fig. 9. Stage 1:Agent host key generation

10. AH TM : Signs H(certifyInfo) using the chosen private attestation identity
key.
The certifyInfo structure describes the key-to-be-certified, including any
authorisation data requirements, a digest of the public key-to-be-certified,
160 bits of external data, and a description of the platform configuration
data required for the release and use of the certified key.

11. AH TM → AH : PAH || SIGAH (H(certifyInfo)) || AH TM AIK
Certificate

Following stage 1 of the protocol AH is in possession of an AIK-certified non-
migratable key pair, PAH and SAH . The protocol message flow is illustrated in
figure 9.

9.5 Stage 2: Agent Originator Key Generation

1. AO : Chooses the property/properties with which AH must comply in order
to gain access to the agent it wishes to protect, and the identities and public
keys of the property certification authorities trusted to certify that a (set
of) software component(s) provide(s) the property/properties specified, e.g.
{Security properties, TTP ID, TTP public key}.

2. AO → AO TM : TPM CreateWrapKey variant. The keyInfo input parame-
ter is used to request the generation of a migratable key pair. The migration
authorisation data for the new key is set to a value known only to AO, so
that the key pair can only be migrated by AO. An agent host which has
imported the key will not be able to migrate the key. In order to ensure that
the private key from this key pair can only be used when the host platform
conforms to a set of properties rather than a set of PCR values, the pcrInfo
parameter of keyInfo must be changed. For example, a new keyInfo input
parameter called propertyInfo could be defined to hold a parameter called
propertiesAtRelease which contains {Security properties, TTP ID, TTP
public key} sets.



A Property-Dependent Agent Transfer Protocol 257

Fig. 10. Stage 2:Agent originator key generation

3. AO TM : Generates an asymmetric migratable key pair, TPM Key, which
contains the public key, PAO , and the encrypted private key, SAO , where
private key use is dependent on the host platform’s conformance to a set of
properties, and key pair migration is dependent on proof of knowledge of the
migration authorisation data.

Following stage 2 AO is in possession of a CA-certified signing key pair (as per
assumptions 11 and 12) and a migratable key pair, PAO and SAO . The protocol
message flow is illustrated in figure 9.

9.6 Stage 3: Agent Creation and Key Transfer

1. AO : Creates a mobile agent, A.
2. AO : Formulates the itinerary for A.
3. AO → AH : Requests the certified public key generated in stage 1 for every

AH on A’s itinerary.
4. AH → AO : Transmits PAH || SIGAH (H(certifyInfo)) || AH TM AIK

Certificate.
5. AO : Verifies AH TM AIK Certificate for each AH .
6. AO : Verifies SIGAH (H(certifyInfo)) for each AH using the public AIK of

the AH contained in its corresponding AH TM AIK Certificate.
Through verification of the AIK signature, SIGAH (H(certifyInfo)), the
agent originator can verify whether or not the corresponding private key is
stored within a genuine T(M)AP TM.

7. AO → AO TM : TPM AuthorizeMigrationKey.
Using this command AO can authorise each AH public key under which the
private key, SAO , will be migrated.

8. AO → AO TM : TPM CreateMigrationBlob.
Using this command AO indicates the key pair to be migrated and proves
knowledge of the key’s migration authorisation data.

9. AO TM : Encrypts the migratable private key, SAO , with the AH public key
authorised in step 7, EPAH

(SAO).
10. AO TM → AO : EPAH

(SAO ).
11. AO → AH : PAO || EPAH

(SAO ).
12. AH → AH TM : TPM ConvertMigrationBlob.

Using this command, EPAH
(SAO) is decrypted. Both SAO and PAO are then

imported into the local AH TM key hierarchy.
13. AH : Examines {Security properties, TTP ID, TTP public key} sets to

which private key use is bound.
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Fig. 11. Stage 3:Agent key transfer

14. AH → TTP : Requests the necessary property certificates from the specified
third party property certifiers as described in section 9.3.

15. TTP → AH : The requested property certificates, for example those shown
in figures 6, 7, 8.

Following stage 3, AH is in possession of AO’s migratable key pair, where use
of the private key SAO by AH is dependent on the platform conforming to a
set of AO-defined security properties. The protocol message flow is illustrated in
figure 11.

9.7 Stage 4: Mobile Agent Transfer

1. AO : Signs A using its private signing key and encrypts the result using PAO ,
EPAO

(A || SIGAO(A)).
Alternatively, AO may generate a symmetric key(s) in order to confidentiality
and integrity-protect A and then sign and encrypt the symmetric key(s) as
shown above.

2. AO → AH : EPAO
(A || SIGAO(A)).

3. AH → AH TM : TPM LoadKey2 — Request to load the private key, SAO ,
which has been migrated to each AH in the agent’s itinerary.

4. AH TM : Loads the TPM Key.
5. AH TM → AH : Outputs a handle to where the private key, SAO , from the

TPM Key is loaded.
6. AH → AH TM : Variant of TPM Unbind(EPAO

(A || SIGAO(A))). In order
to use SAO the properties of AH must conform to those to which SAO is
bound.

7. AH TM Extension : Examines the {Security properties, TTP ID, TTP
public key} sets to which SAO is bound.

8. AH → TM : TPM PCRRead
9. AH TM → AH : PCR V alues
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Fig. 12. Stage 4: Mobile agent transfer

10. AH TM Extension : Verifies the stored measurement log entries (which
name and contain the measurement of each platform component) against
the PCR values to ensure their integrity.

11. AH TM Extension : Attempts to build a chain from the properties to
which SAO use is bound and the integrity measurements which reflect the
platform’s state as described in section 9.3.

12. AH TM Extension :Verifies the property certificates within each chain.
13. AH TM : Decrypts EPAO

(A || SIGAO(A)) if all properties are fulfilled.
14. AH : Verifies SIGAO(A) using the public key certificate of AO.
15. AH : Executes A.
16. AH : Re-encrypts the agent and the agent signature and forwards the agent.

The protocol message flow for stage 4 is illustrated in figure 12.

9.8 Security Remarks

In this protocol a mobile agent (or indeed a symmetric key used to confidentiality
and integrity protect the agent) is signed and encrypted such that it can only be
decrypted and executed upon a host platform which has retrieved the required
private key and which satisfies certain security properties. In this way:

1. A platform is verified as trusted prior to the migration of the agent origi-
nator key pair through the validation of the AH TM AIK Certificate and
SIGAH (H(certifyInfo)) as shown in steps 5 and 6 in stage 3. The security
properties of a host’s software environment are verified as trusted prior to
key use (i.e. agent decryption).

2. The confidentiality of the aglet code, data and/or state information is pro-
tected in transit between and in storage on a host platform through the use
of asymmetric encryption using the public agent originator key PAO .
(a) Secure encryption/decryption key pair generation: The migratable key

pair (which is used to protect the confidentiality of the agent) is gener-
ated securely within the TPM or MTM of the mobile agent originator.

(b) Secure encryption/decryption key pair transmission: As stated above,
the migratable key pair is initially generated within the agent originator
TPM/MTM and must then be securely transmitted to each mobile host.
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In order to do this, the agent originator takes an AIK-certified public
non-migratable key from a mobile host, and verifies that it is from a non-
migratable key pair and has indeed been generated within a TPM/MTM.
The private key from the agent originator key pair is then encrypted
using the public key from the mobile host’s non-migratable key pair and
migrated to the mobile host in conjunction with the corresponding public
key.

(c) Confidentiality-protected agent transmission, storage and access control:
The mobile agent is then encrypted using the agent originator public
key. The agent remains encrypted while in transit to and in storage on
the mobile host, until its use. Because the corresponding private key
is known only to TPM/MTMs to which it has been migrated and can
only be used on the platform when it fulfills particular properties, an
attacker cannot compromise the confidentiality of the agent in transit or
in storage.

3. The integrity of the aglet code, data and/or state information is protected
in transit between and in storage on host platforms through the use of a
digital signature SIGAO(A).
(a) Secure signature/verification key pair generation: The signature key pair

is generated securely by the mobile agent originator. The TPM/MTM
may be used for key pair generation and private key storage to enhance
the security of its protection.

(b) Secure verification key transmission: Is is assumed that the agent origina-
tor public signature verification key is certified by a trusted certification
authority.

(c) Integrity-protected agent transmission and storage: The mobile agent is
digitally signed by the mobile agent originator. This signature can be
verified by an agent host prior to agent execution to verify that the
agent has not been accidentally or maliciously modified.

4. Binding the use of SAO to a set of properties as described in stage 2 steps 1–3
allows AO to ensure A is protected as required when executing and also that
the required services are available. Properties can be chosen such that the
confidentiality and/or integrity of agent code, data and state is protected,
for example.

10 Conclusions and Future Work

This paper explains how trusted computing technologies can be extended to
protect mobile agents from attack. We outline the shortcomings of previous
solutions [3] that focus on the use of binary integrity measurements to allow
an agent originator to extend their control over subsequent environments in
which their agents will execute. Instead we examine how a TCG mechanism-
based secure agent transfer protocol can be enhanced to incorporate the use of
property-based state information. We extend the work completed on property
component certificates in [16] through the definition of a property granularity
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pyramid and provide examples of properties (and property certificates) that
can be used in the context of a mobile agent environment. If this solution is
to succeed, however, further work must be completed in the area of property
derivation/definition and certification. We are currently refining the property
granularity pyramid defined in this paper and investigating its application.
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