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Preface

Attention has represented a core scientific topic in the design of AI-enabled
systems in the last few decades. Today, in the ongoing debate, design, and com-
putational modeling of artificial cognitive systems, attention has gained a central
position as a focus of research. For instance, attentional methods are considered
in investigating the interfacing of sensory and cognitive information processing,
for the organization of behaviors, and for the understanding of individual and
social cognition in infant development.

While visual cognition plays a central role in human perception, findings from
neuroscience and experimental psychology have provided strong evidence about
the perception–action nature of cognition. The embodied nature of sensory-
motor intelligence requires a continuous and focused interplay between the con-
trol of motor activities and the interpretation of feedback from perceptual modal-
ities. Decision making about the selection of information from the incoming
sensory stream – in tune with contextual processing on a current task and an
agent’s global objectives – becomes a further challenging issue in attentional
control. Attention must operate at interfaces between a bottom-up-driven world
interpretation and top-down-driven information selection, thus acting at the core
of artificial cognitive systems. These insights have already induced changes in
AI-related disciplines, such as the design of behavior-based robot control and
the computational modeling of animats.

Today, the development of enabling technologies such as autonomous robotic
systems, miniaturized mobile – even wearable – sensors, and ambient intelligence
systems involves the real-time analysis of enormous quantities of data. These
data have to be processed in an intelligent way to provide “on time delivery”
of the required relevant information. Knowledge has to be applied about what
needs to be attended to, and when, and what to do in a meaningful sequence,
in correspondence with visual feedback.

The individual contributions of this book meet these scientific and technolog-
ical challenges on the design of attention and present the latest state of the art in
related fields. The book evolved out of the 5th International Workshop on Atten-
tion in Cognitive Systems (WAPCV 2008) that was held on Santorini, Greece, as
an associated workshop of the 6th International Conference on Computer Vision
Systems (ICVS 2008). The goal of this workshop was to provide an interdisci-
plinary forum to examine computational models of attention in cognitive systems
from an interdisciplinary viewpoint, with a focus on computer vision in relation
to psychology, robotics and neuroscience. The workshop was held as a single-day,
single-track event, consisting of high-quality podium and poster presentations.
We received a total of 34 paper submissions for review, 22 of which were retained
for presentations (13 oral presentations and 9 posters). We would like to thank
the members of the Program Committee for their substantial contribution to
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the quality of the workshop. Two invited speakers strongly supported the suc-
cess of the event with well-attended presentations given on “Learning to Attend:
From Bottom-Up to Top-Down” (Jochen Triesch) and “Brain Mechanisms of
Attentional Control” (Steve Yantis).

WAPCV 2008 and the editing of this collection was supported in part by The
European Network for the Advancement of Artificial Cognitive Systems (euCog-
nition). We are very thankful to David Vernon (co-ordinator of euCognition) and
Colette Maloney of the European Commission’s ICT Program on Cognition for
their financial and moral support. Finally, we wish to thank Katrin Amlacher
for her efforts in assembling these proceedings.

January 2009 Lucas Paletta
John K. Tsotsos
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On the Optimality of Spatial Attention for
Object Detection

Jonathan Harel and Christof Koch

California Institute of Technology, Pasadena, CA, 91125

Abstract. Studies on visual attention traditionally focus on its physio-
logical and psychophysical nature [16,18,19], or its algorithmic applica-
tions [1,9,21]. We here develop a simple, formal mathematical model of
the advantage of spatial attention for object detection, in which spatial
attention is defined as processing a subset of the visual input, and de-
tection is an abstraction with certain failure characteristics. We demon-
strate that it is suboptimal to process the entire visual input given prior
information about target locations, which in practice is almost always
available in a video setting due to tracking, motion, or saliency. This
argues for an attentional strategy independent of computational savings:
no matter how much computational power is available, it is in principle
better to dedicate it preferentially to selected portions of the scene. This
suggests, anecdotally, a form of environmental pressure for the evolution
of foveated photoreceptor densities in the retina. It also offers a general
justification for the use of spatial attention in machine vision.

1 Introduction

Most animals with visual systems have evolved the peculiar trait of processing
subsets of the visual input at higher bandwidth (faster reaction times, lower
error rates, higher SNR). This strategy is known as focal or spatial attention
and is closely linked to sensory (receptor distribution in the retina) and motor
(eye movements) factors. Motivated by such wide-spread attentional processing,
many machine vision scientists have developed computational models of visual
attention, with some treating it broadly as a hierarchical narrowing of possibil-
ities [1,2,8,9,17]. Several studies have demonstrated experimental paradigms in
which various such attentional schemes are combined with recognition/detection
algorithms, and have documented the resulting computational savings and/or
improved accuracy [4,5,6,7,20,21].

Here, we seek to describe a general justification for spatial attention in the
context of an object detection goal (detecting targets in images wherever they
occur). We take an abstract approach to this phenomenon, in which both the
attentional and detection mechanisms are independent of the conclusions. Sim-
ilar frameworks have been proposed by other authors [3,10]. The most common
justification for attentional processing, in particular in visual psychology, is the
computational saving that accrue if processing is restricted to a subset of the
image. For machine vision scientists, in an age of ever decreasing computational

L. Paletta and J.K. Tsotsos (Eds.): WAPCV 2008, LNAI 5395, pp. 1–14, 2009.
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2 J. Harel and C. Koch

costs of digital processors, and for biologists in general, the question is whether
there are other justifications for the spatial spotlight of attention. We will address
this in three steps which form the core substance of this paper:

1. (Section 2) We demonstrate that object detection accuracy can be improved
using attentional selection in a motivating machine vision experiment.

2. (Section 3) We model a generalized form of this system and demonstrate
that accuracy is optimal with attentional selection if prior information about
target locations is not or cannot be used to bias detector output.

3. (Section 4) We then demonstrate that, even if priors are used optimally, if
there is a fixed computational resource which can be concentrated or diluted over
locations in the visual scene, with corresponding modulations in accuracy, that
it is optimal to process only the most likely target locations. We show how the
optimal extent of this spatial attention depends on the environment, quantified
as a specific tolerance for false positives and negatives.

2 Motivating Example

2.1 Experiment

An important problem in machine vision is the detection of objects from broad
categories in cluttered scenes, in which a target may only take up a small fraction
of the available pixels. We built a system to solve an instance of this “object
detection” problem: detecting cars and pedestrians wherever they occurred in
a fully annotated video of 4428 frames, captured at 15fps at VGA (640x480)
resolution.

Training images (47,459 total, of which 4,957 are positive examples) were
gathered from [11] and [12]. The object detection system worked in two steps
for each frame independently:

1. A saliency heat map [9] for the frame (consisting of color, orientation, inten-
sity, motion, and flicker channels) was computed and subsequently serialized into
an ordered list of “fixation” locations (points) using a choose-maximum/inhibit-
its-surround iterative loop. A rectangular image crop (“window”) around each
fixation location was selected using a crude flooding-based segmentation algo-
rithm.

2. The first F ∈ {1, 3, 5, 7, 9} fixation windows were then processed using a
detection module (one for cars and one for pedestrians), which in turn decided
if each window contained its target object type or not. The detection modules
based their classification decision on the output of an SVM, with input vectors
having components proportional to the multiplicity of certain quantized SIFT
[14] features over an image subregion, with subregions forming a pyramid over the
input image – this method has proven quite robust on standard benchmarks [13].

2.2 Results

We quantified the performance by recording four quantities for each choice of F
windows per frame: (1) True Positive Count (TPC) – the number of windows,
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Fig. 1. Result of running detector over entire video. As the number of windows pro-
cessed per frame increases, recall rate increases (left), while precision rate decreases
(right). Left: curves for different settings of the SVM detection threshold.

pooled over the entire video1, in which a detection corresponded to a true object at
that location. (2) False Positive Count (FPC) – windows labeled as a target where
there was actually not one, and using the False Negative Count, FNC (number of
targets undetected), (3) precision = TPC/(TPC+FPC) – fraction of detections
which were actually target objects, and (4) recall = TPC/(TPC+FNC) – fraction
of target objects which were detected.

The results for pedestrian detection are shown in Fig. 1. Results on cars were
qualitatively equivalent.

Each data point in Fig. 1 corresponds to results over the pooled video frames,
but at each frame the number of windows processed is not the same: we pa-
rameterize over this window count along the x-axis. All plots in this paper use
this underlying attention-parameterizing scheme, in which processing one win-
dow corresponds to maximally focused attention, and processing them all corre-
sponds to maximally blurred attention. The results in Fig. 1 indicate that, in our
experiment, the recall rate increases as more windows are processed per frame,
whereas the precision rate falls off. Therefore, in this case, it is reasonable to
process just a few windows per frame, i.e., implement an attentional focus, in
order to balance performance, independent of computational savings.

This can be understood by considering that lower-saliency windows are a
priori unlikely to contain a target, and so their continued processing yields a
false positive count that accumulates at nearly the false positive rate of the
detector. The true positive count, on the other hand, saturates at a small number
proportional to the number of targets in the scene. These two trends yield a
decreasing precision ratio. This is seen more directly in Fig. 2 below, where we
plot the average number of pedestrians contained in the first F fixation windows
of a frame, noting that the incremental increase (slope) per added window is
decreasing. We will see in the next section how the behavior observed here is
sensitive to incorporating priors into detection decisions.

1 Results shown are for 20% of the frames uniformally sampled from the video.
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Fig. 2. The average number of pedestrians contained in the first F windows. The dotted
line connects the origin to the maximum point on the curve, showing what we would
observe if pedestrians were equally likely to occur at each fixation. But since targets
are more likely to occur in early fixations, the slope decreases.

3 A Simple Mathematical Model of Spatial Attention for
Object Detection

In this section, we model a generalized form of the system in the experiment
above, and explore its behavior and underlying assumptions.

3.1 Preliminaries

We suppose henceforth that our world consists of images/frames streaming into
our system, that we form window sets over these images, somehow sort these
windows in a negligibly cheap way (e.g., according to fixation order from a
saliency map, or due to an object tracking algorithm), and then run an object
detection module (e.g., a pedestrian detector) over only the first w of these
windows on each frame, according to sorted order, where w ∈ {1, 2, ..., N}. We
will refer to the processing of only the first w windows as spatial attention, and
the smallness of w as the extent of spatial attention.2

We will model the behavior of a detection system as a function of w. Define3

T (w) .= # targets in first w windows
FPC(w) .= # false positives in first w windows (incorrect detections)
TPC(w) .= # true positives in first w windows (correct detections)
FNC(w) .= # false negatives (in entire image after processing w windows)
TNC(w) .= # true negatives (in entire image after processing w windows)

These counts determine the performance of the detection system, and so we will
calculate their expected values, averaged over many frames. To do this, we define
2 See Appendix for table of parameters.
3 C is for count, as in FalsePositiveCount = FPC.
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the following: For a single frame/image, let Ti be the binary random variable
indicating whether there is in truth a target at window i, with 1 corresponding
to presence. Let Di be the binary random variable indicating the result of the
detection on window i, with 1 indicating a detection. Then:

E[T (w)] =
w∑

i=1

E[Ti] =
w∑

i=1

pi, where pi
.= Pr{Ti = 1}

E[FPC[w]] =
w∑

i=1

E[FPi] where FPi =
{

1 if Di = 1 and Ti = 0
0 otherwise

=
w∑

i=1

p(Di = 1|Ti = 0) · (1 − pi) = fpr · (w − E[T (w)])

E[TPC(w)] =
w∑

i=1

E[TPi], where TPi =
{

1 if Di = 1 and Ti = 1
0 otherwise

=
w∑

i=1

p(Di = 1|Ti = 0) · pi = tpr · E[T (w)]

Where the false and true positive rates, fpr
.= p(Di = 1|Ti = 0) ∀i, and

tpr
.= p(Di = 1|Ti = 1) ∀i, are taken to be properties of the detector. Similarly,

E[FNC(w)] = n − E[TPC(w)], where n
.= E

[
N∑

i=1

Ti

]
=

N∑
i=1

pi = E[T (N)]

Since
N∑

i=1

Ti = TPC(w) + FNC(w) = # of windows with a target in image

And

E[TNC(w)] = (N − n) − E[FPC(w)], because:

N −
N∑

i=1

Ti = FPC(w) + TNC(w) = # of windows without a target in image.

3.2 Decreasing Precision Underlies Utility of Spatial Attention

We shall now use the quantities defined above to model the precision and re-
call trends demonstrated in the motivating example. But, first we must make a
modeling assumption: suppose that pi is decreasing in i such that:

E[T (w)] = n
1 − exp(−w/k)
1 − exp(−N/k)

(1)

which has a similar form to that in Fig. 2. Note that this yields E[T (0)] = 0,
and E[T (N)] = n, as above, where n represents the average number of target-
containing windows in a frame. In Fig. 3, we plot this profile for several settings
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Fig. 3. A model of the average number of targets in highest w priority windows

of k, with n = 2 and N = 1000 (more nearly continuous/graded than the
motivating experiment for smoothness).

Larger values of k correspond to E[T (w)] profiles which are closer to linear.
Linearly increasing E[T (w)] corresponds to constant pi so that

∑w
i=1 pi increases

an equal amount for each increment of w. Concave down profiles above the line
corresponding to decreasing pi profiles, in which the incremental contribution
to E[T (w)] from

∑w
i=1 pi is higher for low w. Such decreasing pi represent an

ordering of windows where early windows are more likely to contain targets than
later windows. In practice, one can almost always arrange such an ordering since
targets are likely to remain in similar locations from frame to frame, be salient,
or move, or be a certain color, etc.. Here, we are not concerned with how this
ordering is carried out, but assume that it is.

Let subscript-M denote a particular count accumulated over M frames. As
the number of frames M grows,

lim
M→∞

TM (w) = lim
M→∞

M∑
image=1

Timage(w) = M · E[T (w)]

by the Central Limit Theorem, where Timage(w) is the number of targets in
image. Using similar notation, the precision after M images have been processed
approaches:

lim
M→∞

precM (w) = lim
M→∞

TPCM (w)
TPCM (w) + FPCM (w)

=
M · E[TPC(w)]

M · E[TPC(w)] + M · E[FPCM (w)]
=

E[TPC(w)]
E[TPC(w)] + E[FPCM (w)]
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Equivalently, the recall approaches

lim
M→∞

recM (w) =
E[TPC(w)]

E[TPC(w)] + E[FNCM (w)]
.

Define prec(w) .= limM→∞ precM (w), and rec(w) .= limM→∞ recM (w).
Using the model equation (1), and the equilibrium precision and recall def-

initions, we see that we can qualitatively reproduce the experimental results
observed in Fig. 1, as seen in Fig. 4.
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Fig. 4. Equilibrium precision and recall rates using a model E[T (w)]

Simulation results suggest that this decreasing precision, increasing recall
holds under a wide variety of concave profiles E[T (w)] (including all param-
eterized in (1)), and detector rates properties (tpr, fpr). A few degenerate cases
will flatten the precision curve: a linear E[T (w)] and/or a zero false positive rate,
i.e., zero ability to order windows, and a perfect detector, respectively. Other-
wise, recall and precision pull performance in opposite directions over the range
of w, and optimal performance will be somewhere in the middle depending on
the exact parameters and objective function, e.g., area under ROC or precision-
recall curve. Therefore, it is in this context best to process only the windows
most likely to contain a target in each frame, i.e., implement a form of spatial
attention.

tpr, fpr fixed ∀i means having little faith in, or no ability to calculate,
one’s prior belief. This model is realistic if one does not have faith in, or
ability to calculate, one’s prior belief: i.e., the order of windows is known, but not
specifically P (Ti = 1). Formally, in a Bayesian setting, one would assume that
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there is a pre-decision detector output Dic ∈ θ with constant known densities
p(Dic|Ti). Then,

tpr = P (Di = 1|Ti = 1) = Pr(Dic ∈ θ+|Ti = 1), (2)

where θ+ is the largest set such that

LLR =
p(Dic|Ti = 1)P (Ti = 1)
p(Dic|Ti = 0)P (Ti = 0)

> 1 ∀Dic ∈ θ+ (3)

Very notably, the definition in (2) yields a tpr which is not the same for
all i (as modeled previously), and in particular, which depends on the prior
P (Ti = 1) = pi. Similarly,

fpr = P (Di = 1|Ti = 0) = Pr(Dic ∈ θ+|Ti = 0),

also depends on pi. Only if one assumes that P (Ti = 1) = P (Ti = 0), then (3) is
the same for all i, and so is (2). Having constant tpr and fpr ∀i is also equivalent
to evaluating the likelihood ratio as:

LLR =
(

p(Dic|Ti = 1)
p(Dic|Ti = 0)

)γ
P (Ti = 1)
P (Ti = 0)

in the limit as γ → ∞, or putting little faith into the prior distribution. This
is somewhat reasonable given the motivating experimental example in section
2. The output of the detector is somehow much more reliable than whether a
location was salient in determining the presence of a target, and the connection
between saliency and probability of a target P (Ti = 1) may be changing or
incalculable.

Importantly, if a prior distribution is available explicitly, then the false positive
counts FPC(w) saturate at high values of w which are unlikely to contain a
target, and the utility of not running the detector on some windows is eliminated,
although it still saves compute cycles.

4 Distributing a Fixed Computational Resource

In the previous section, we assume that it makes sense to process a varying
number of windows with the same underlying detector for each window. A more
realistic assumption about systems in general is that they have a fixed computa-
tional resource, and that it can be and should be fully used to transform input
data into meaningful detector outputs.

Now, suppose the same underlying two-step model as before: frames of images
stream in to our system, we somehow cheaply generate an ordered window set
on each of these, and select a number w of the highest-priority windows, each of
which will pass through a detector.

Here, we impose an additional assumption: that the more detection compu-
tations are made (equivalently, the more detector instances there are to run in
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parallel), the weaker each individual detection computation/detector must be,
in accordance with the conservation of computational resource. Below, we de-
rive a simple detector degradation curve, and then use it to characterize the
relationship between the risk priorities of a system (tolerance for false posi-
tives/negatives) and its optimal extent of spatial attention, viz., how many win-
dows down the list it should analyze.

4.1 More Detectors, Weaker Detectors

We assume that a detector DT is an abstraction which provides us with informa-
tion about a target. For simplicity, suppose that it informs us about a particular
real-valued target property x, like its automobility or pedestrianality. Then the
information provided by detector DT is:

IDT
.= H0 − HDT

.= H(P0(x)) − H(PDT (x))

where PDT (x) is the density function over x output by the detector, and H0 =
H(P0(x)) is the entropy in x before detection, where P0(x) is the prior distribu-
tion over x.

It seems intuitively clear that given fixed resources, one can get more infor-
mation out of an aggregate of cheap detectors than out fewer more expensive
detectors. One way to quantify this is by assuming that the fixed computational
resource is the number of compute “neurons” R, and that these neurons can be
allocated to understanding/detecting in just one window, or divided up into s
sets of R/s neurons, each of which will process a different window/spatial lo-
cation. There are biological data suggesting that neurons from primary sensory
cortices to MTL [15] fire to one concept/category out of a set, i.e. that the num-
ber of concepts encodable with n neurons is roughly proportional to n, and so
the information n neurons carry is proportional to log(n). Thus, a good model
for how much information each of s detectors provides is log

(
R
s

)
, where log(R)

is some constant amount of information provided if the entire computational
resource were allocated to one detector.

Let DT1 denote the singleton detector comprised of using the entire com-
putational resource R, and DTs denote one of the s detectors using only R/s
“neuronal” computational units. Then,

IDT1 = H0 − HDT1 = log(R), and IDTs = H0 − HDTs = log (R/s) ⇐⇒
HDTs − HDT1 = log(R) − log(R/s) = log(s),

that is, that the output of each of s detectors has log(s) bits more uncertainty
in it than the singleton detector.

4.2 FPC, TPC, FNC, and TNC for This System

We will assume this time that the detector is Bayes optimal, i.e. that it in-
corporates the prior information into its decision threshold. For simplicity, and
with some loss of generality, assume that the output probability density on x
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of the detectors is Gaussian around means +1 and −1 corresponding to target
present and absent, resp., with standard deviation σDT . Then, since the differ-
ential entropy of a Gaussian is log(σ

√
2πe), a distribution which is log(s) bits

more entropic than the normal with σDT1 has standard deviation s ·σDT1 , where
σDT1 characterizes the output density over x of the detector which uses the en-
tire computational resource. Therefore, since we assume we process w windows,
we will employ detectors with output distributions having σ = w · σDT1 .

The expected false positive count of our system, if it examines w windows is,
from section 3.1:

E[FPC(w)] =
w∑

i=1

p(Di = 1|Ti = 0)p(Ti = 0)

=
w∑

i=1

fpri · p(Ti = 0) (4)

To calculate fpri, we examine the likelihood ratio at window i, corresponding
to the prior pi :

LLRi =
p(Di|Ti = 1)
p(Di|Ti = 0)

pi

1 − pi

=
exp(−(Di − 1)2/2σ2)
exp(−(Di + 1)2/2σ2)

· pi

1 − pi

= exp(2Di/σ2) · pi

1 − pi

Di = 1 when LLRi > 1 =⇒

exp(2Di/σ2) >
1 − pi

pi
⇐⇒ 2Di/σ2 > log

(
1 − pi

pi

)
⇐⇒

Di >
σ2

2
log

(
1 − pi

pi

)

Thus,

fpri = p

(
Di >

σ2

2
log

(
1 − pi

pi

)∣∣∣∣Ti = 0
)

= Q

⎛
⎝ σ2

2 log
(

1−pi

pi

)
+ 1

σ

⎞
⎠

= Q

(
σ

2
log

(
1 − pi

pi

)
+

1
σ

)
(5)

where Q (·) is the complementary cumulative distribution function the standard
normal. Substituting (5) into (4) gives:

E[FPC(w)] =
w∑

i=1

Q

(
σ

2
log

(
1 − pi

pi

)
+

1
σ

)
(1 − pi). (6)
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Similarly,

E[TPC(w)] =
w∑

i=1

Q

(
σ

2
log

(
1 − pi

pi

)
− 1

σ

)
pi (7)

and the other two are dependent on these as usual: E[TNC(w)] = (N − n) −
E[FPC(w)], and E[FNC(w)] = n − E[TPC(w)].

4.3 Optimal Distributions of the Computational Resource

Equations (6)-(7) are difficult to analyze as a function of w analytically, so
we investigate their implications numerically. To begin, we use a model from
equation (1), with n = 3 expected targets per total frame, N = 100 windows,
prior profile parameter k = 20, and σDT1 = 2/N . The results are shown in Fig. 5.
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Fig. 5. Performance of an object detection system with fixed computional resource

We observe the increasing recall, decreasing precision trend for low w values,
now even with perfect knowledge of the prior. This suggests that, at least for this
setting of parameters, resources are best concentrated among just a few windows.
The most striking feature of these plots, for example of the expected true positive
count shown in green, is that there is an optimum around 20 or so windows. This
corresponds to where the aggregate information of the thresholded detectors is
peaked – beyond that, the detectors are spread too thinly and become less useful.
Note that this is in contrast to the aggregate information of the pre-threshold
real-valued detection outputs, which increases monotonically as w log(R/w).

It is interesting to understand not only that subselecting visual regions is
beneficial for performance, but how the exact level of spatial attention depends
on other factors. We now introduce the notion of a “Risk Profile”:
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w∗(α) = argmin
w

{αE[FPC(w)] + (1 − α)E[FNC(w)]} .

That is, suppose a system has penalty function which depends on the false posi-
tives and false negatives. Both should be small, but how the two compare might
depend on the environment: a prey may care a lot more about false negatives
than a predator, e.g.. For a given false positive weight α, the optimal w∗ cor-
responds to number of windows among which the fixed computational resource
should be distributed in order to minimize penalty. We find (see Fig. 6), that an
increasing emphasis on false negatives (low α), leads to a more thinly distributed
attentional resource being optimal. Thus, in light of this simple analysis, it makes
sense that an animal with severe false negative penalties, such as a grazer with
wolves on the horizon, may have evolved to spread out its sensory-cortical hard-
ware over a larger spatial region – and indeed grazers have an elongated visual
streak rather than a small fovea.

The general features of the plots shown in Fig. 5 hold over a wide range of
parameters. We summarize the numerical findings by showing the risk profiles
for a few such parameter ranges in Fig. 6.
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Fig. 6. The optimal number of windows out of 100 to process, for increasing α, the
importance of avoiding false positives relative to false negatives. sigma1 ≡ σDT1 .

The important feature of all these plots is that the optimal number of windows
w over which to distribute computation in order to minimize the penalty function
is always less than N = 100, and that the risk profiles increase to the left, with
increasing false negative count importance, for a wide range of parameterized
conditions.

5 Conclusions

We have demonstrated, first in experiment and then using a simple numerical
model, the critical importance of attentional selection for increased accuracy
in a detection task. We find that processing scene portions which are a priori
unlikely to contain a target can hurt performance if this prior information is
not utilized to bias detection decisions. However, if the computational resources
available for detection are fixed and must be distributed somehow to various
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scene portions, with a corresponding dilution in accuracy, it is best to concentrate
them on scene portions which are a priori likely to contain a target, even if
prior information biases detector outputs optimally. Note that this argues for
an attentional strategy independent of computational savings – no matter how
great the computational resource, it is best focused attentionally. We also show
how a system which prioritizes false negatives high relative to false positives
benefits from a blurred focus of attention, which may anecdotally suggest an
evolutionary pressure for the variety in photoreceptor distributions in the retinae
of various species. In conclusion, we provide a novel framework within which to
understand the utility of spatial attention, not just as an efficiency heuristic, but
as fundamental to object detection performance.
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Appendix

Table of parameters:

N # of windows available to process in a frame
w # of windows processed in a frame
n average # of target-containing windows in a frame
k poverty of prior information ⇒lower k, better a priori sorting of windows
σDT1 standard deviation of detector output, if only one detector is used
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Abstract. Saliency algorithms are applied to correlate with the overt at-
tentional shifts, corresponding to eye movements, made by observers view-
ing an image. In this study, we investigated if saliency maps could be used
to predict which image observers were viewing given only scanpath data.
The results were strong: in an experiment with 441 trials, each consist-
ing of 2 images with scanpath data - pooled over 9 subjects - belonging to
one unknown image in the set, in 304 trials (69%) the correct image was
selected, a fraction significantly above chance, but much lower than the
correctness rate achieved using scanpaths from individual subjects, which
was 82.4%. This leads us to propose a new metric for quantifying the im-
portance of saliency map features, based on discriminability between im-
ages, as well as a new method for comparing present saliency map efficacy
metrics. This has potential application for other kinds of predictions, e.g.,
categories of image content, or even subject class.

1 Introduction

In electrophysiological studies, the ultimate validation of the relationship be-
tween physiology and behavior is the decoding of behavior from physiological
data alone [1,2,3,4,5,6,7]. If one can determine which image an observer has
seen using only the firing rate of a single neuron, one can conclude that that
neuron’s output is highly informative about the image set. In psychophysical
studies it is common to show an observer (animal or human) a sequence of im-
ages or video while recording their eye movements using an eye-tracker. Often,
such studies aim to predict subjects’ scanpaths using saliency maps [8,9,10,11],
or other techniques [12,13]. The predictive power of a saliency model is typically
judged by computing some similarity metric between scanpaths and the saliency
map generated by the model [8,14]. Several similarity metrics have become de
facto standards, including NSS [15] and ROC [16]. A principled way to assess
the goodness of such a metric is to compare its value for scanpath-saliency map
pairs which correspond to the same image and different images. If this difference
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is systematic, one can apply the metric to several candidate saliency maps per
image, and asses which saliency map yields the highest decodability.

This decodability represents a new measure of saliency map efficacy. It is
complementary to the current approaches: rather than predicting fixations from
image statistics, it predicts image content from fixation statistics. The funda-
mental advantage of rating saliency maps in this way is that the score reflects not
only how similar the scanpath is to the map, but also how dissimilar it is from
the maps of other images. Without that comparison, it is possible to artificially
inflate similarity metrics using saliency heuristics which increase the correlation
with all scanpaths, rather than only those recorded on the corresponding image.
Thus, we propose this as an alternative to the present measures of saliency maps’
predictive power, and test this on established eye-tracking datasets.

The contributions of this study are:

1. A novel method for quantifying the goodness of an attention prediction
model based on the stimuli presented and the behavior.

2. Quantitative results using this method that rank the importance of feature
maps based on their contribution to the prediction.

2 Methods

2.1 Experimental Setup

In order to test if scanpaths could be used to predict which image from a set was
being observed at the time it was recorded, we collected a large dataset of images
and scanpaths from various earlier experiments (from the database of [17]). In
all of these previous experiments, images were presented to subjects for 2 s, after
which they were instructed to answer “How interesting was the image?” on a
scale of 1-9 (9 being the most interesting). Subjects were not instructed to look
at anything in particular; their only task was to rate the entire image. Subjects
were always näıve to the purpose of the experiments. The subset of images was
presented for each subject in random order.

Scenes were indoors and outdoors still images (see examples in Fig. 1), con-
taining faces and objects. Faces were in various skin colors and age groups, and
exhibiting neutral expressions. The images were specifically composed so that
the faces and objects appeared in a variety of locations but never in the center
of the image, as this was the location of the starting fixation on each image.
Faces and objects vary in size. The average size was 5% ± 1% (mean ± s.d.) of
the entire image - between 1◦ to 5◦ of the visual field. The number of faces in
the images was varied between 1-6, with a mean of 1.1± 0.48 (s.d.). 441 images
(1024× 768 pixels) were used in these experiments altogether. Of these, 291 im-
ages were unique. The remaining 150 stimuli consisted of 50 different images that
were repeated twice, but treated uniquely as they were recorded under different
experimental conditions. Of the unique images, some were very similar to each
other, as only foreground objects but not the background was changed. Since
we only counted finding the exact same instance (i.e. 1 out of 441) as correct
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Fig. 1. Examples of scanpaths/stimuli used in the experiment. A. Scanpaths of the 9
individual subjects used in the analysis for a given image. The combined fixations of
all subjects was used for further analysis of the agreement across all subjects, and for
analysis of the ideal subjects’ pool size for decoding. The red triangle marks the first
and the red square the last fixation, the yellow line the scanpath, and the red circles the
subsequent fixations. Top: the image viewed by subjects to generate these scanpaths.
The trend of visiting the faces – a highly attractive feature – yields greater decoding
performance. B. Four example images from the dataset (left) and their corresponding
scanpaths for different arbitrary chosen individuals (right). Order is shuffled. See if you
can match (“decode”) the scanpath to its corresponding images. The correct answers
are: a3, b4, c2 and d1.

prediction, in at least 150
441 × 2

440 = 0.15% of cases a nearly correct prediction
(same or very similar image) would be counted as incorrect. Hence, our datasets
are challenging and the estimates of correct prediction conservative.
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Eye-position data were acquired at 1000 Hz using an Eyelink1000 (SR Re-
search, Osgoode, Canada) eye-tracking device. The images were presented on
a CRT2 screen (120 Hz), using MATLAB’s Psychophysics and eyelink toolbox
extensions. Stimulus luminance was linear in pixel values. The distance between
the screen and the subject was 80 cm, giving a total visual angle for each im-
age of 28◦ × 21◦. Subjects used a chin-rest to stabilize their head. Data were
acquired from the right eye alone. Data from a total of nine subjects, each with
normal or corrected-to-normal vision, were used. We discard the first fixation
from each scanpath to avoid adding trivial information from the initial center
fixation. Thus, we worked with 441 × 9 = 3969 total scanpaths.

2.2 Decoding Metric

For each image, we created six different “feature maps”. Four of the maps were
generated using the Itti and Koch saliency map model [8]: (1) combined color-
intensity-orientation (CIO) map, (2) color alone (C), (3) intensity alone (I), and
(4) orientation alone (O). A “faces” map was generated using the Viola and Jones
face recognition algorithm [18]. The sixth map, which we call “CIO+F” was a
combination of the face map and the CIO map from the Itti and Koch saliency
model, which has been shown to be more predictive of observers fixations than
CIO [17]. Each feature map was represented as a positive valued heat map over
the image plane, and downsampled substantially, in line with [8], in our case to
nine by twelve pixels, each pixel corresponding to roughly 2×2 degrees of visual
angle. Subject fixation data was binned into an array of the same size. The
saliency maps and fixation data were compared using an ROC-based method
[16]. This method compares saliency at fixated and non-fixated locations (see
Fig. 2 for an illustration of the method). We assume some threshold saliency
level above which locations on the saliency map are considered to be predictions
of fixation. If there is a fixation at such a location, we consider it a hit, or true
positive. If there is no fixation, it is considered a false positive. We record the
true positive and false positive rates as we vary the threshold level from the
minimum to the maximum value of the saliency map. Plotting false positive vs.
true positive results in a Receiver Operator Characteristics (“ROC”) curve. We
integrate the Area Under this ROC Curve (“AUC”) to get a scalar similiarity
measure (AUC of 1 indicates all fixations fall on salient locations, and AUC of 0.5
is chance level). The AUC for the correct scanpath-image pair was ranked against
other scanpath-image pairs (from 1 to 31 decoy images, chosen randomly from
the remaining 440 to 410 images), and the decoding was considered successful
only if the correct image was ranked one. In the largest image set size we tried,
if any of the other 31 AUCs for scanpath/images was higher than the one of the
correct match, we considered the prediction a miss (e.g. for one decoding trial
the algorithm would be as follows: 1. Randomly select a scanpath out of the 3969
scanpaths. 2. Consider the image it belongs to, together with 1 to 31 randomly
selected decoys. We will attempt to match the scanpath to its associated image
out of this set of candidates. 3. Compute a feature map for each image in the
candidate set. 4. Compute the AUC of the scanpath for each of the 2-32 saliency
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Fig. 2. Illustration of the AUC calculation. For each scanpath, we choose the corre-
sponding image and 1–31 decoys. For each image we calculate each of the 6 feature
maps (C, I, O, F, CIO, CIO+F). For a given scanpath and a feature map we then
calculate the ROC by varying a threshold over the feature plane and counting how
many fixations fall above/below the threshold. The area under the ROC curve (AUC)
serves as a measure of agreement between the scanpath and the feature map. We then
rank the images by their AUC scores, and consider the decoding correct if the highest
AUC is that of the correct image.

maps. 5. Decoding is considered successful iff the image on which the scanpath
was actually recorded has the highest AUC score.).

3 Results

We calculated the average success rate of prediction trials, each of which con-
sists of (1) fixations pooled over 9 subjects’ scanpaths, and (2) an image set of
particular cardinality, from 2 to 32, ranked according to the ROC-fixation score
on one of three possible feature maps: CIO, CIO+F, or F. We used the face
channel although it carries some false identifications of faces, and some misses,
as it has been shown to have higher predictive power, involving high-level (se-
mantic) saliency content with bottom-up driven features [17]. We reasoned that
using the face channel alone in this discriminability experiment would provide a
novel method of comparing it to saliency maps’ predictive power.
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Fig. 3. Decoding performance with respect to image pool size. Decoding with scanpaths
pooled over 9 subjects, we varied the number of decoy images used between 1 and 31.
The larger the image set size, the more difficult the decoding. For each image set
size and scanpath we calculated the ROC over 3 feature maps: a face-channel which
is the output of the Viola and Jones face-detection algorithm with the given image
(F), a saliency map based on the color, orientation and intensity maps (CIO), and
a saliency map combining the face-channel and the color, orientation and intensity
maps (CIO+F). While all feature maps yielded a similar decoding performance for
the smaller pool size, the performance was least degraded for the F map. The face
feature map is higher than the CIO+F map and the two are higher than the CIO map.
All maps predict above chance level – shown in the bottom line as the multiplicative
inverse of the image set size.

For one decoy per image set (image set size = two), we find that the face
feature map (F) was used to correctly predict the image seen by the subjects
in 69% of the trials (p < 10−15, sign test1), while the CIO+F feature map was
correct in 68% (p < 10−14), and CIO in 66% (p < 10−12) of trials. This F >
CIO + F > CIO trend persists through all image set sizes. Pooling prediction
trials over all image set sizes (6 sizes × 441 trials per size = 2646 trials), we find
that using the F map yields a prediction that is at least as accurate as the CIO
map in 89.9% of trials, with significance p < 10−8 using the sign-test. Similarly,
F is at least as predictive as CIO+F in 90.3% of trials (p < 10−15), and CIO+F
is at least as predictive as CIO in 97.8% of trials (p < 10−21). All data points

1 The sign-test tests against the null hypothesis that the distribution of correct decod-
ings is drawn from a binary distribution (50% for the choice of 1 of 2 images, 33%
in the case of 1 of 3 images, and so forth up to 3% in the case of 1 out of 32 images).
This is the most conservative estimate; additional assumptions on the distribution
would yield lower p-values.
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in Fig. 3 are significantly above their corresponding chance levels, with the least
significant point corresponding to predictions using CIO with image set size 4:
this results in correct decoding in 33.6% of trials, compared to 25% for chance,
with null hypothesis that predictions are 25% correct being rejected at p < 10−4.

We also tested the prediction rates when fixations were pooled over progres-
sively fewer subjects, instead of only nine as above. For this, we used only the
CIO+F map (although the face channel shows the highest decoding performance
we wanted to use a feature map that combines bottom-up features to match
common attention prediction methods), and binary image trials (one decoy).
One might imagine that pooling over fixation recordings from different subjects
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Fig. 4. Performance of the 9 individual subjects. Upper panel. For the 441 scan-
paths/images, we computed the decoding performance of each individual subject. Bars
indicate the performance of each subject. Red bar on the right indicates the average
performance of all 9 subjects, with standard error bar. Average subject performance
was 79%, with the lowest decoding performance at 67% (subject 4), and the highest at
86% (subject 8). All values are significantly above chance (50%), with p values (sign
test) below 10−10. Lower panel. Performance of various combinations of the 9 sub-
jects. Scanpaths of 1, 2, . . . 9 subjects used to determine the performance differences by
using average scanpaths of multiple subjects. The performance of individual subjects
shown on the leftmost point is the average of each subjects’ performance as shown in
the upper panel. The rightmost point is the performance of all subjects combined. Each
subject pool was combined from a random choice of subjects out of the 9, reaching the
pool size.
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Fig. 5. Decoding performance based on feature maps used. We show the average de-
coding performance on binary trials using each of the 6 different feature maps, and
in each trial, the scanpath of only one individual subject. Thus, for instance, the per-
formance of the CIO+F map is exactly that shown in the average bar in Fig. 4. The
higher the performance the more useful the feature is in the decoding. The face channel
is the most important one for this dataset.

would increase the signal to noise ratio, but in fact we find that prediction per-
formance only decreases (Fig. 4) with more subjects. There are several possible
explanations for this decrease. First, in computing the AUC, we record a correct
detection (“hit”) whenever a superthreshold saliency map cell overlaps with at
least one fixation, but discard information about multiple fixations at that lo-
cation (i.e., a cell is either occupied by a fixation or not). Thus, the accuracy of
the ROC AUC agreement between a saliency map and the fixations of multiple
observers degrades with overlapping fixations. As the number of overlapping fix-
ations increases with observers, the reliability of our decoding measure decreases.
Indeed, other measures taking into account this phenomenon then can outper-
form the present metric. Second, if different observers exhibit distinct feature
preferences (say, some prefer “color”, some prefer “orientation”, etc.), the vari-
ability in the locations of such features across an image set would contribute to
the prediction in this set. It is possible that an image set is more varied along the
preferences of any one observer on average than along the pooled preferences of
multiple observers. This would make it more difficult to decode from aggregate
fixation sets.

The mean percentage of correct decoding for a single subject was 79% (chance
is 50%), (p < 10−288, sign test). For all combinations of 1 to 9 subjects used,
the prediction was above chance (with p values below p < 10−10). The lowest
prediction performance results from pooling over all nine subjects, with 66% hit
rate (still significantly above chance at 50%). Figure 4 shows the prediction for
each of the 9 subjects with the CIO+F feature map.

Finally, in order to test the relative contribution of each feature map to the
decoding, we used our new decoding correctness rate to compare feature map
types, from most discriminating to least. This was done by comparing separately
each of the 6 features maps’ average decoding performance for binary trials with 9
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individual subjects’ scanpaths. The results (Fig. 5) show that out of the 6 feature
maps the face channel has the highest performance (decoding performance of
82%, p = 0) (as shown also in Fig. 3), and the intensity map has the lowest
performance (decoding performance: 65%, p < 10−104, sign test). All values are
significantly above chance (50%).

4 Discussion

In this study, we investigated if scanpath data could be used to decode which
image an observer was viewing given only the scanpath and saliency maps. The
results were quite strong: in an experiment with 441 trials, each consisting of 32
images with scanpath data belonging to one unknown image in the set, in 73
trials (17%) the correct image was selected, a fraction much higher than chance
( 1
32 = 3%). This leads us to propose a new metric for quantifying the efficacy of

saliency maps based on image discriminability. For decoding we used the stan-
dard area under ROC curve measure with the fixations from 1 to 9 subjects on a
feature map generated by popular models for fixations and attention predictions.

The “decodability” of a dataset is a score given to the combined scan-
path/stimuli data for a given feature and as such can be used in various ways:
we here used the decodability in order to compare ideal combined subjects’ scan-
path pool and feature maps’ predictive power. Furthermore, we can imagine the
same method being used to cluster subjects according to features that pertain
specifically to them for a given dataset (i.e. if a particular set of subjects tends to
look more often on an area in the images than other [19], or tends to fixate on a
certain object/target more [20,21,22], this would result in a higher decoding per-
formance for that feature map), or as a measure of the relative amount of stimuli
needed to reach a certain level of decoding performance. Our data suggests that
clustering by such features to segregate between autistic and normal subjects
is perhaps possible based on differences in their looking at faces/objects [21].
However, our autism subjects fixations dataset is too small to reach significance.

In line with earlier results, ours show that saliency maps using bottom-up fea-
tures such as color, orientation, and intensity are relatively accurate predictors of
fixation [16,23,24,25,26] with a performance above 70% (Fig. 5, similar to the es-
timate in [15]). Adding the information from a face detector boosts performance
to over 80%, similar to the estimate in [17]. It is possible that incorporating more
complex, higher-level feature maps [27,28] could further improve performance.

Some of the images we used were very similar to each other, and so the image
set could be considered challenging. Using this novel decoding metric on larger,
more diverse datasets could yield more striking distinctions between the feature
maps and their relative contributions to attentional allocation.

Notice that in the results, in particular in Fig. 3, we computed average predic-
tive performance using fixations pooled over all 9 scanpaths recorded per image.
However, as we have shown that individual subjects’ fixations are more predic-
tive due to variability issues, these results should be even stronger than those
we have included above.
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A possibility for subsequent work is the prediction not of particular images
from a set, but of image content. For example, is it possible to predict whether
or not an image contains a face, text, or other specific semantic content based
only on the scanpaths of subjects? The same kinds of stereotypical patterns we
used to predict images would be useful in this kind of experiment.

Finally, one can think of more sophisticated algorithms for predicting scan-
path/image pairs. For instance, one could use information about previously
decoded images for future iterations (perhaps by eliminating already decoded
images from the pool, making harder decoding more feasible), or a softer rank-
ing algorithm (here we considered decoding correct only if the corresponding
scanpath was ranked the highest among 32 images; one could, however, com-
pute statistics from a soft “confusion matrix” containing all rankings so as to
reduce the noise from spuriously high similarity pairs).

We demonstrated a novel method for estimating the similarity between a
given set of scanpaths and images by measuring how well scanpaths could de-
code the images that corresponded to them. Our decoder ranked images accord-
ing to saliency map/fixation similarity, yielding the most similar image as its
prediction. While our decoder already yields high performance, there are more
sophisticated distance measures that might be more accurate, such as ones used
in electrophysiology [7].

Rating a saliency map relative to a scanpath based on its usability as a de-
coder for the input stimulus represents a robust new measure of saliency map
efficacy, as it incorporates information about how dissimilar a map is from those
computed on other images. This novel method can also be used for assessing
images sets, for measuring the performance and attention allocation for a given
set, for comparing existing saliency map performance measures, and as a metric
for the evaluation of eye-tracking data against other psychophysical data.
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Abstract. This paper proposes an artificial visual attention model which
builds a saliency map associated to the sensed scene using a novel percep-
tion-based grouping process. This grouping mechanism is performed by a
hierarchical irregular structure, and it takes into account colour contrast,
edge and depth information. The resulting saliency map is composed by
different parts or ‘pre-attentive objects’ which correspond to units of vi-
sual information that can be bound into a coherent and stable object. Be-
sides, the ability to handle dynamic scenarios is included in the proposed
model by introducing a tracking mechanism of moving objects, which is
also performed using the same hierarchical structure. This allows to con-
duct the whole attention mechanism in the same structure, reducing the
computational time. Experimental results show that the performance of
the proposed model is compatible with the existing models of visual at-
tention whereas the object-based nature of the proposed approach renders
advantages of precise localization of the focus of attention and proper rep-
resentation of the shapes of the attended ‘pre-attentive objects’.

1 Introduction

In biological vision systems, the attention mechanism is responsible of selecting
the relevant information from the sensed field of view so that the complete scene
can be analyzed using a sequence of rapid eye saccades [1]. In the recent years,
efforts have been made to imitate such attention behavior in artificial vision sys-
tems, because it allows to optimize the computational resources as they can be
focused on the processing of a set of selected regions only. Probably one of the
most influential theoretical models of visual attention is the spotlight metaphor
[2], by which many concrete computational models have been inspired [3][4][5].
These approaches are related with the feature integration theory, a biologically
plausible theory proposed to explain human visual search strategies [6]. Accord-
ing to this model, these methods are organized into two main stages. First, in
a preattentive task-independent stage, a number of parallel channels compute
image features. The extracted features are integrated into a single saliency map
which codes the saliency of each image region. The most salient regions are se-
lected from this map. Second, in an attentive task-dependent stage, the spotlight
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is moved to each salient region to analyze it in a sequential process. Analyzed
regions are included in an inhibition map to avoid movement of the spotlight
to an already visited region. Thus, while the second stage must be redefined
for different systems, the preattentive stage is general for any application. Al-
though these models have good performance in static environments, they cannot
in principle handle dynamic environments due to their impossibility to take into
account the motion and the occlusions of the objects in the scene. In order to
solve this problem, an attention control mechanism must integrate depth and
motion information to be able to track moving objects. Thus, Maki et al. [7]
propose an attention mechanism which incorporates depth and motion as fea-
tures for the computation of saliency and Itti [8] incorporates motion and flicker
channels in its model.

The previously described methods deploy attention at the level of space lo-
cations (space-based models of visual attention). The models of space-based at-
tention scan the scene by shifting attention from one location to the next to
limit the processing to a variable size of space in the visual field. Therefore, they
have some intrinsic disadvantages. In a normal scene, objects may overlap or
share some common properties. Then, attention may need to work in several
discontinuous spatial regions at the same time. If different visual features, which
constitute the same object, come from the same region of space, an attention
shift will be not required [9]. On the contrary, other approaches deploy attention
at the level of objects. Object-based models of visual attention provide a more
efficient visual search than space-based attention. Besides, it is less likely to se-
lect an empty location. In the last few years, these models of visual attention
have received an increasing interest in computational neuroscience and in com-
puter vision. Object-based attention theories are based on the assumption that
attention must be directed to an object or group of objects, instead to a generic
region of the space [10]. Therefore, these models will reflect the fact that the
perception abilities must be optimized to interact with objects and not just with
disembodied spatial locations. Thus, visual systems will segment complex scenes
into objects which can be subsequently used for recognition and action.

Finally, space-based and object-based approaches are not mutually exclusive,
and several researchers have proposed attentional models that integrate both
approaches. Thus, in the Sun and Fisher’s proposal [9], the model of visual
attention combines object- and feature-based theories. In its current form, this
model is able to replicate human viewing behaviour. However, it needs that
input images will be manually segmented. That is, it uses information that is
not available in a preattentive stage, before objects are recognized [10].

This paper presents an object-based model of visual attention, which is capa-
ble of handling dynamic environments. The proposed system integrates bottom-
up (data-driven) and top-down (model-driven) processing. The bottom-up
component determines and selects salient ‘pre-attentive objects’ by integrat-
ing different features into the same hierarchical structure. These ‘pre-attentive
objects’ or ‘proto-objects’ [11][10] are image entities which do not necessar-
ily correspond with a recognizable object, although they possess some of the
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characteristics of objects. Thus, it can be considered that they are the result of
the initial segmentation of the image input into candidate objects (i.e. grouping
together those input pixels which are likely to correspond to parts of the same
object in the real world, separately from those which are likely to belong to other
objects). This is the main contribution of the proposed approach, as it is able to
group the image pixels into entities which can be considered as segmented per-
ceptual units [10]. On the other hand, the top-down component could make use
of object templates to filter out data and shift the attention to objects which are
relevant to accomplish the current tasks to reach. However, it must be noted that
this work is mainly centered in the task-independent stage of the model of visual
attention. Therefore, the experiments are restricted to bottom-up mode. Finally,
in a dynamic scenario, the locations and shapes of the objects may change due
to motion and minor illumination differences between consecutive acquired im-
ages. In order to deal with these scenes, a tracking approach for ‘inhibition of
return’ is employed in this paper. This approach is conducted using the same
hierarchical structure and its application to this framework is the second main
novelty of the proposed model.

The remainder of the paper is organized as follows: Section 2 provides an
overview of the proposed method. Section 3 presents a description of the com-
putation of the saliency map using a hierarchical grouping process. The proposed
mechanism to implement the inhibition of return is described in Section 4. Sec-
tion 5 deals with some obtained experimental results. Finally, conclusions and
future works are presented in Section 6.

2 Overview of the Proposed Model

Fig. 1 shows an overview of the proposed architecture. The visual attention
model we propose employs a concept of salience based on ‘pre-attentive objects’.
These ‘pre-attentive objects’ are defined as the blobs of uniform color and dis-
parity of the image which are bounded by the edges obtained using a Canny
detector. To obtain these entities, the proposed method has two main stages. In
the first stage the input image pixels are grouped into blobs of uniform colour.
These regions constitute an efficient image representation that replace the pixel-
based image representation. Besides, these regions preserve the image geometric
structure as each significant feature contain at least one region. In the second
stage, this set of blobs is grouped into a smaller set of ‘pre-attentive objects’ tak-
ing into account not only the internal visual coherence of the obtained blobs but
also the external relationships among them. These two stages are accomplished
by means of an irregular pyramid: the Bounded Irregular Pyramid (BIP). The
BIP combines the 2x2/4 regular structure with an irregular simple graph [13].
In the first stage - called pre-segmentation stage- the proposed approach gener-
ates a first set of pyramid levels where nodes are grouped using a colour-based
criterion. Then, in the second stage -perceptual grouping stage- new pyramid
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Fig. 1. Overview of the proposed model of visual attention. It has two main stages:
a preattentive stage in which the input image pixels are grouped into a set of ‘pre-
attentive objects’ and a semiattentive stage where the inhibition of return is imple-
mented using a tracking process.

levels are generated over the previously built BIP. The similarity among nodes
of these new levels is defined using a more complex distance which takes into
account information about their common boundaries and internal features like
their colour, size or disparity.

A ‘pre-attentive object’ catches the attention if it differs from its immediate
surrounding. In our model, we compute a measure of bottom-up salience as-
sociated to each ‘pre-attentive object’ as a distance function which takes into
account colour and luminosity contrasts between the ‘pre-attentive object’ and
all the objects in its surrounding. Then, the focus of attention is changed de-
pending of the shapes of the objects in the scene. This is more practical that to
maintain a constant size of the focus of attention [10].

Finally, the general structure of the model of visual attention is related to
a previous proposal of Backer and Mertsching [12]. Thus, although we do not
compute parallel features at the preattentive stage, this stage is followed by a
semiattentive stage where a tracking process is performed. Besides, while Backer
and Mertsching’s approach performs the tracking over the saliency map by using
dynamics neural fields, our method tracks the most salient regions over the input
image using a hierarchical approach based on the Bounded Irregular Pyramid
[14]. The output regions of the tracking algorithm are used to implement the
‘inhibition of return’ which avoids revisiting recently attended objects. The main
disadvantage of using dynamic neural fields for controlling behavior is the high
computational cost for simulating the field dynamics by numerical methods. The
Bounded Irregular Pyramid approach allows fast tracking of a non-rigid object
without a previous learning of different objects views [14].
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3 Estimation of the Saliency Map

Most of the models of visual attention build different scales of the input image
and determine saliency by considering the vicinity of the individual pixels in
these scales. As it has been pointed out by Aziz and Mertsching [1], the use of
such coarse-to-fine scales during feature extraction provokes fuzziness in the fi-
nal conspicuity map. This drawback can be avoided by adopting a region-based
methodology for the model of attention. These region-based approaches usu-
ally work at a single scale, on blobs defined in the input image. As it has been
previously mentioned, the pixels of each blob are grouped together to define
‘pre-attentive objects’ in the scene. Following this guideline, the proposed model
of attention segments the image into perceptually uniform blobs first and then
it computes features on these ‘pre-attentive objects’. Therefore, a segmentation
step is a pre-requisite for our model of visual attention. However, contrary to
other approaches [1][10], the proposed approach associates a hierarchical repre-
sentation to each detected ‘pre-attentive object’. In this paper, this representa-
tion will be very useful to implement a fast mechanism of ‘inhibition of return’.
Future extensions of this work will include a fast template matching algorithm
which will make also use of these hierarchical representations to enhance the
salience of ‘pre-attentive objects’ with a shape similar to the objects which are
relevant to accomplish the current tasks to execute (top-down component of the
model of visual attention).

3.1 Pre-segmentation Stage

Pyramids are hierarchical structures which have been widely used in segmen-
tation tasks [15]. Instead of performing image segmentation based on a single
representation of the input image, a pyramid segmentation algorithm describes
the contents of the image using multiple representations with decreasing res-
olution. Pyramid segmentation algorithms exhibit interesting properties when
compared to segmentation algorithms based on a single representation. Thus,
local operations can adapt the pyramid hierarchy to the topology of the image,
allowing the detection of global features of interest and representing them at low
resolution levels [16].

The Bounded Irregular Pyramid (BIP) [13] is a mixture of regular and ir-
regular pyramids whose goal is to combine their advantages. A 2x2/4 regular
structure is used in the homogeneous regions of the input image and a simple
graph structure in the non-homogeneous ones. The mixture of both structures
generates an irregular configuration which is described as a graph hierarchy in
which each level Gl = (Nl, El) consists of a set of nodes, Nl, linked by a set of
intra-level edges El. Each graph Gl+1 is built from Gl by computing the nodes
of Nl+1 from the nodes of Nl and establishing the inter-level edges El,l+1. There-
fore, each node ni of Gl+1 has associated a set of nodes of Gl, which is called
the reduction window of ni. This includes all nodes linked to ni by an inter-level
edge. The node ni is called parent of the nodes in its reduction window, which
are called sons. The successive levels of the hierarchy are built using a regular
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decimation process and a union-find strategy. Therefore, there are two types of
nodes: nodes belonging to the 2x2/4 structure, named regular nodes, and vir-
tual nodes or nodes belonging to the irregular structure. In any case, two nodes
ni ∈ Nl and nj ∈ Nl which are neighbors at level l are linked by an intra-level
edge eij ∈ El.

The proposed approach uses a BIP structure to accomplish the detection
of the ‘pre-attentive objects’ and the subsequent computation of the saliency
map following a perceptual grouping approach. In this hierarchy, the first levels
perform the pre-segmentation stage using a colour-based distance to group pixels
into homogeneous blobs. In order to introduce colour information within the BIP,
all the nodes of the structure have associated 2 parameters: chromatic phasor
S � H(n), and luminosity V (n), where S, H and V are the saturation, hue and
value of the HSV colour space. The chromatic phasor and the luminosity of a
node n at level l are equal to the average of the chromatic phasors and luminosity
values of the nodes in its reduction window, i.e. the nodes of the level l-1 which
are linked to n.

The employed similarity measurement between two nodes is the HSV colour
distance. Thus, two nodes are similar or have a similar colour if the distance
between their HSV values is less than a similarity threshold T .

The graph G0 = (N0, E0) is a 8-connected graph where the nodes are the
pixels of the original image. The chromatic phasors and the luminosity values of
the nodes in G0 = (N0, E0) are equal to the chromatic phasors and luminosity
values of their corresponding image pixels. The process to build the graph Gl+1 =
(Nl+1, El+1) from Gl = (Nl, El) is briefly described below (see [13] for further
details):

1. Regular decimation process. If four regular neighbor nodes of the level l have
similar colour, they are grouping together, generating a regular node in l+1.

2. Parent search and intra-level twining. Once the regular structure is gener-
ated, there are some regular orphan nodes (regular nodes without parent).
From each of these nodes (i, j, l), a search is made for the most similar node
with parent in its neighborhood ξ(i,j,l). If this neighbor node is found, the
node (i, j, l) is linked to the parent of this neighbor node. On the contrary,
if for this node a parent is not found, then a search is made for the most
similar neighbor node without parent to link to it. If this node is found, then
both nodes are linked, generating a virtual node at level l + 1.

3. Virtual parent search and virtual node linking. Each virtual orphan node ni

searches for the most similar node with parent in its neighborhood ξni . If for
ni a parent is found, then it is linked to it. On the other hand, if a parent is
not found, the virtual orphan node ni looks for the most similar orphan node
in its neighborhood to generate a new virtual node at level l + 1. The only
restriction to this step is that the parent of a virtual node must be always a
virtual node so a virtual node cannot be linked to a regular parent. It allows
to preserve the regular nature of the regular part of the BIP.

The hierarchy stops to grow when it is no longer possible to link together
any more nodes because they are not similar. In order to perform the
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Fig. 2. a) Original images; b) pre-segmentation images; and c) obtained regions after
the perceptual grouping

pre-segmentation, the orphan nodes are used as roots. The described method
has been tested and compared with other similar pyramid approaches for colour
image segmentation [15]. This comparative study concludes that the BIP runs
faster than other irregular approaches when benchmarking is performed in a
standard sequential computer. Besides, the BIP obtains similar results than the
main irregular structures. Fig. 2.b shows the pre-segmentation images associ-
ated to the images in Fig. 2.a. It can be noted as the input images are correctly
segmented into blobs of uniform colour.

3.2 Perceptual Grouping Stage

After the local similarity pre-segmentation stage, grouping blobs aims at sim-
plifying the content of the obtained partition in order to obtain the set of final
‘preattentive objects’. Two constraints are taken into account for an efficient
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grouping process: first, although all groupings are tested, only the best groupings
are locally retained; and second, all the groupings must be spread on the image
so that no part of the image is advantaged. For managing this process, the BIP
structure is employed: the roots of the pre-segmented blobs are considered as
virtual nodes which constitute the first level of the perceptual grouping multi-
resolution output. Successive levels can be built using the virtual parent search
and virtual node linking scheme previously described. Finally, in order to achieve
the perceptual grouping process, a specific distance must be defined.

This distance has three main components: the colour contrast between im-
age blobs, the edges of the original image computed using the Canny detector
and the disparity of the image blobs. In order to speed up the process, a global
contrast measure is used instead of a local one. It avoids working at pixel resolu-
tion, increasing the computational speed. In this distance the contrast measure is
complemented with internal regions properties and with attributes of the bound-
ary shared by both regions. To perform correctly, the nodes of the BIP which
are associated to the perceptual grouping multi-resolution output store statis-
tics about the HSV values of the roots generated by the pre-segmentation stage
which are linked to them and about their mean disparity. Then, the distance
between two nodes ni and nj is defined as

Υ (ni, nj) =

√
w1(· d(ni, nj) · bi

α · (cij) + (β · (bij − cij))
)2 + w2(·disp(ni) − disp(nj))2 (1)

where d(ni, nj) is the colour distance between ni and nj and disp(x) is the mean
disparity associated to the base image region represented by node x. bi is the
perimeter of ni, bij is the number of pixels in the common boundary between ni

and nj and cij is the set of pixels in this common boundary which corresponds
to pixels of the boundary detected with the Canny detector. α and β are to
constants values used to control the influence of the Canny edges in the grouping
process. We set these parameters to 0.1 and 1.0 respectively. In the same way
w1 and w2 are two constant values which weight the terms associated with the
colour and the disparity. In our case they are set to 0.5 and 1.0, respectively.

In order to build a new hierarchy level Gl+1, the virtual parent search and
virtual node linking process described in Section 3.1 is applied. However, a dif-
ferent threshold value Tperc is employed. The grouping process is iterated until
the number of nodes remains constant between two successive levels.

After the pre-segmentation and perceptual grouping stages, the nodes of the
BIP with no parent will be the roots of the ‘pre-attentive objects’. It must be
appreciated that these ‘pre-attentive objects’ can be represented as hierarchical
structures, where the object root constitutes the higher level of the represen-
tation and the nodes of the input image linked to this root conform its lower
level. Thus, Fig. 3 presents an example of hierarchical representation of a ‘pre-
attentive object’ (only regular nodes are displayed). The base of the pyramid
(level 0) contains 64x64 pixels. Fig. 3 shows how pixels at level l are arranged
into sets of 2x2 elements to create a regular node at level l+1.
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Fig. 3. ‘Pre-attentive object’ hierarchical representation. Each image represents a con-
secutive level of the regular part of the BIP representation of a hand, starting at level 0.

Finally, Fig. 2.c shows the set of ‘pre-attentive objects’ associated to the
images in Fig. 2.a. It can be noted that the obtained regions do not always
correspond to the set of natural objects presented in the image, but they provide
an image segmentation which is more coherent with the human-based image
decomposition.

3.3 Computation of the Saliency Values

Once the input image is divided into a set of perceptually uniform blobs or ‘pre-
attentive objects’, we compute the saliency of each blob using a colour contrast
and an intensity contrast measures. As each of these blobs corresponds with
a root of the BIP structure previously generated, it contains all the necessary
information about the concerned image region such as its average chromatic
phasor and intensity and the set of neighbors of this blob.

Then, we compute the colour contrast of a ‘pre-attentive object’ Ri as the
mean colour gradient MCGi along its boundary to the neighbor blobs:

MCGi =
Si

bi

∑
j∈Ni

bij ∗ d(< Ci >, < Cj >) (2)

being bi the perimeter of Ri, Ni the set of regions which are neighbors of Ri,
bij the length of the perimeter of the region Ri in contact with the region Rj ,
d(< Ci >, < Cj >) the colour distance between the colour mean values < C >
of the regions Ri and Rj and Si the mean saturation value of the region Ri.

The use of Si in the MCG avoids that colour regions with low saturation
(grey regions) obtain a higher value of colour contrast than pure colour regions.
The problem is that white, black and pure grey regions are totally suppressed.
To take into account these regions, the luminosity contrast is computed. The
luminosity contrast of a region Ri is the mean luminosity gradient MIGi along
its boundary to the neighbor regions:

MLGi =
1
bi

∑
j∈Ni

bij ∗ d(< Ii >, < Ij >) (3)

being < Ii > the mean luminosity value of the region Ri.
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Then the final color salience of Ri is computed as:

MGi =
√

MCG2
i + MLG2

i (4)

4 Inhibition of Return

Human visual psychophysics studies have demonstrated that a local inhibition
is activated in the saliency map to avoid attention being directed immediately
to a previously attended region. This mechanism is usually called the ‘inhibition
of return’, and, in the context of artificial models of visual attention, it has been
usually implemented using a 2D inhibition map that contains suppression factors
for one or more focuses of attention that were recently attended [17][18]. How-
ever, this 2D inhibition map is not able to handle the situations where inhibited
objects are in motion or when the vision system itself is in motion. Dynamic
scenes require to be handled with a totally different process in comparison to
static scenes because the locations and shapes of the objects may change due to
motion and minor illumination differences between consecutive frames. In this
situation, establishing a correspondence between regions of the previous frame
with those of the successive frame becomes a significant issue.

In order to allow that the inhibition can track an object while it changes
its location, the model proposed by Backer et al. [19] relates the inhibitions to
features of activity clusters. However, the scope of dynamic inhibition becomes
very limited as it is related to activity clusters rather than objects themselves
[1]. Thus, it is a better option to attach the inhibition to moving objects [20].
For instance, the recent proposal of Aziz and Mertsching [1] utilizes a queue of
inhibited region features to maintain inhibition in dynamic scenes.

Our system implements an object-based ‘inhibition of return’. A list of the
last attended ‘pre-attentive objects’ is maintained at the semi-attentive stage
of the visual attention model. This list stores information about the colour and
last position of the ‘pre-attentive object’. It also stores the last hierarchical
representation associated to each ‘pre-attentive object’. When the vision system
moves, the proposed approach keeps track of the ‘pre-attentive objects’ that it
has already visited. The employed tracking algorithm [14] is also based on the
Bounded Irregular Pyramid (BIP). This tracking algorithm allows to track non-
rigid objects without a previous learning of different object views in real time. To
do that, the method uses weighted templates which follow up the viewpoint and
appearance changes of the objects to track. The templates and the targets are
represented using BIPs. Thus, the generation of the whole set of ‘pre-attentive
objects’ and the tracking of the attended ones to inhibit them are performed
into the same hierarchical framework. This will allow to reduce the computation
time associated to the whole model of visual attention.

Then, the most salient ‘pre-attentive object’ R1 of the saliency map will con-
stitute the image region to attend. When this region is analyzed, a new saliency
map is computed. In this map, the region associated to the new estimated lo-
cation of R1 is inhibited. If the image is taken from a static scene, the focus of
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Fig. 4. Saliency map computation and ‘pre-attentive objects’ selection in a static scene:
a) Left input image; b) saliency map; and c) the five most salient ‘pre-attentive objects’

attention will be shifted from one ‘pre-attentive object’ to another. Thus, Fig. 4.c
shows the ‘pre-attentive objects’ associated to the saliency map in Fig. 4.b which
will be selected after five focusing steps.

5 Experimental Results

In order to test the performance of the proposed model of visual attention, we
have compared it with the model of Itti et al. [17], using the same database
of images they use 1. This database consists of 64 colour images which contain
an emergency triangle [21]. Our results show that in 64% of the images a ‘pre-
attentive object’ inside the emergency triangle is chosen as the most salient
image region (see Fig. 5 for one example).

The proposed model of visual attention has been also examined through video
sequences which include humans and moving objects in the scene. Fig. 6 shows
a sample image sequence seen by a stationary binocular camera head. Every
10th frame is shown. The attended ‘pre-attentive object’ is marked by a black
and white bounding-box in the input frames. ‘Pre-attentive objects’ which are
inhibited are marked by a black bounding-box. If the tracking algorithm detects
that a ‘pre-attentive object’ has suffered a high shape deformation, it will be
not inhibited. Thus, it can be noted that inhibited blobs, like the green cone at
frame 11 or the hand at frame 51, are attended at different sequence frames. It
must be also noted that the activity follows the ‘pre-attentive objects’ closely,
preventing the related templates from being corrupted by occlusions. Backer
and Mertsching [12] propose to solve the occlusion problem with the inclusion
of depth information. However, depth estimation is normally corrupted by noise
and is often coarsely calculated in order to bound the computational complexity.
In our approach, the tracker is capable of handling scale changes, object defor-
mations, partial occlusions and changes of illumination. Thus, for instance, in
frame 81, an occlusion of the green cone is correctly handled by the tracking
algorithm, which is capable to recover the object before frame 91. Finally, it can

1 http://ilab.usc.edu/imgdbs/
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Fig. 5. Result on an image of the database (see text): a) Input image; b) the corre-
sponding binary mask; and c) the four most relevant ‘pre-attentive objects’

Fig. 6. Left input images of a video sequence. Attended ‘pre-attentive objects have
been marked by black and white bounding-boxes and inhibited ones have been marked
by black bounding-boxes.

be appreciated that the focus of attention is directed at certain frames to un-
interested regions of the scene. For instance, this phenomenon occurs at frame
41. These regions cannot usually be correctly tracked and they are removed
from the list of ‘pre-attentive objects’ stored at the semi-attentive stage. Other
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‘pre-attentive objects’, like the fire extinguisher at the background of the image,
are not correctly tracked as they are usually divided into several, different blobs.

6 Conclusions and Future Work

This paper has presented a visual attention model that integrates bottom-up
and top-down processing. It runs at 10 frames per second using 320x240 im-
ages on a standard Pentium personal computer when there are less than five
inhibited targets. The proposed model employs two selection stages, providing
an additional semi-attentive computation stage where the ‘inhibition of return’
has been performed. Our model divides the visual scene into perceptually uni-
form blobs or ‘pre-attentive objects’. Thus, the model can direct the attention
on candidate, real objects, similarly to the behavior observed in humans. These
‘pre-attentive objects’ are stored at the semi-attentive stage as hierarchical tem-
plates. Currently, this representation is used by the fast tracking algorithm that
implements the ‘inhibition of return’. Future work will use this representation to
conduct the top-down process which will change the bottom-up saliency value
associated to each ‘pre-attentive object’ as a function of the general tasks to
reach.

In the future, the integration of this mechanism with an attentive stage that
will control the field of attention following several behaviors will allow us to
incorporate it in a general active vision system. We have recently incorporated
the proposed visual attention model mechanism in two different applications
which are being developed. The first application is a visual perception system
whose main goal is to help in the learning process of a humanoid robot HOAP-I.
The second application is a system to autonomously acquire visual landmarks
for mobile robot simultaneous localization and mapping.
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Abstract. Classically, visual attention is assumed to be influenced by
visual properties of objects, e. g. as assessed in visual search tasks. How-
ever, recent experimental evidence suggests that visual attention is also
guided by action-related properties of objects (“affordances”, [1,2]), e. g.
the handle of a cup affords grasping the cup; therefore attention is drawn
towards the handle (see [3] for example). In a first step towards mod-
elling this interaction between attention and action, we implemented the
Selective Attention for Action model (SAAM). The design of SAAM
is based on the Selective Attention for Identification model (SAIM [4]).
For instance, we also followed a soft-constraint satisfaction approach in a
connectionist framework. However, SAAM’s selection process is guided
by locations within objects suitable for grasping them whereas SAIM
selects objects based on their visual properties. In order to implement
SAAM’s selection mechanism two sets of constraints were implemented.
The first set of constraints took into account the anatomy of the hand,
e. g. maximal possible distances between fingers. The second set of con-
straints (geometrical constraints) considered suitable contact points on
objects by using simple edge detectors. At first, we demonstrate here
that SAAM can successfully mimic human behaviour by comparing sim-
ulated contact points with experimental data. Secondly, we show that
SAAM simulates affordance-guided attentional behaviour as it success-
fully generates contact points for only one object in two-object images.

1 Introduction

Actions need to be tightly guided by vision in our daily interactions with our
environment. To maintain such a direct guidance, Gibson postulated that the
visual system automatically extract “affordances” of objects [2]. According to
Gibson, affordance refers to parts or properties of visual objects that are di-
rectly linked to actions or motor performances. For instance, a handle of a cup
affords directly a reaching and grasping action. Recently experimental stud-
ies have produced empirical evidence in support for this theory. Neuroimaging
studies showed that objects activate the premotor cortex even when no action
has to be performed with the object (e. g. [5,6]). Behavioural studies indicated
response interferences from affordances despite the fact that they were response-
irrelevant (e. g. [7,8]). For instance, a recent study by Borgh et al. demonstrated
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that pictures of hand postures (precision or power grip) can influence subsequent
categorisation of objects [9]. In their study, participants had to categorise objects
into either artefact or natural object. Additionally, and unknown to the partici-
pants, the objects could be manipulated with either a precision or a power grasp.
Borghi et al. showed that categorisation was faster when the hand postures were
congruent with the grasp compared to hand postures being incongruent with the
grasp. Hence, the participants’ behaviour was influenced by action-related prop-
erties of objects irrelevant to the experimental task. This experiment together
with earlier, similar studies can be interpreted as evidence for an automatic
detection of affordances.

Interestingly, recent experimental evidence suggests that not only actions are
triggered by affordances, but also that selective attention is guided towards
action-relevant locations. Using event-related potentials (ERP) Handy et al.
showed that spatial attention is more often directed towards the location of
tools than non-tools [10]. Pellegrino et al. presented similar evidence from two
patients with visual extinction [3]. In general visual extinction is considered to
be an attentional deficit in which patients, when confronted with several objects,
fail to report objects on the left side of their body space. In contrast, when faced
with only one object, patients can respond to the object irrespective of its loca-
tion. Pellegrino et al. demonstrated that this attentional deficit can be alleviated
when the handle of a cup points to the left. Pellegrino et al. interpreted their
results as evidence for automatically encoded affordance (without the patients’
awareness) drawing the patients’ attention into their “bad” visual field.

This paper aims to lay the foundations for a computational model of such
affordance-based guidance of attention. We designed a connectionist model which
determines contact points for a stable grasp of an object (see Fig. 1 for an
illustration). The model extracts these contact points directly from the input
image. Hence, such a model could be construed as an implementation of an
automatic detection of object affordances for grasping. To realise the attentional
guidance through affordances, we integrated the selection mechanisms employed
in the Selective Attention for Identification Model (SAIM [4]). Since this new
model performs selection for action rather than identification, we termed the new
model Selective Attention for Action Model (SAAM). Please note that SAAM is
the first model of its kind. In this paper we will present first simulation results
as well as an experimental verification of the model.

2 The Selective Attention for Action Model (SAAM)

Figure 1 gives an overview of SAAM. The input consists of black&white images.
The output of the model is generated in five “finger maps” of a “hand network”.
The finger maps encode the finger positions which are required for producing a
stable grasp of the object in the input image. At the heart of SAAM’s operation
is the assumption that stable grasps are generated by taking into account two
types of constraints, the geometrical constraints imposed from the object shape
and the anatomical constraints given by the hand. In order to ensure that the
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Fig. 1. Overall structure of the Selective Attention for Action Model

hand network satisfies these constraints we followed an approach suggested by
Hopfield and Tank [11]. In this soft-constraint satisfaction approach, constraints
define activity patterns in the finger maps that are permissible and others that
are not. Then we defined an energy function for which the minimal values are
generated by just these permissible activity values. To find these minima, a
gradient descent procedure is applied resulting in a differential equation system.
The differential equation system defines the topology of a biologically plausible
network. The mathematical details of this energy minimisation approach are
given in the next section. Here, we focus on a qualitative description of the two
types of constraints and their implementation.

The geometrical constraints are extracted from the shape of the object in the
visual feature extraction stage. To begin with, obviously, only edges constitute
suitable contact points for grasps. Furthermore, edges have to be perpendicular
to the direction of the forces exerted by the fingers. Hence only edges with a
horizontal orientation make up good contact points, since we onlyy consider a
horizontal hand orientation in this first version of the model (see Fig. 1). We
implemented horizontal edge detectors using Sobel filters [12]. Finally, to exert
a stable grasp, thumb and fingers need to be located at opposing sides of an
object. This requirement was realized by separating the output of the Sobel
filters according to the direction of the gradient change at the edge. In fact,
the algebraic sign of the response differs at the bottom of a 2D-shape compared
to the top of a 2D-shape. Now, if one assumes the background colour to be
white and the object colour to be black, the signs of the Sobel-filter responses
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Fig. 2. Excitatory connections between fingers

indicate appropriate locations for the fingers and the thumb (see Fig. 1 for an
illustration). The results of the separation feed into the corresponding finger
maps providing the hand network with the geometrical constraints. Note that,
of course, the assumptions about the object- and background-colours represent
a strong simplification. On the other hand, this mechanism can be interpreted
as mimicking the result of stereo vision. In such a resulting “depth image” real
edges suitable for thumb or fingers could be easily identified.

The anatomical constraints implemented in the hand network take into ac-
count that the human hand cannot form every arbitrary finger configuration to
perform grasps. For instance, the maximum grasp width is limited by the size
of the hand and the arrangement of the fingers on the hand makes it impossible
to place the index, middle, ring, and little finger in another order than this one.
After applying the energy minimisation approach, these anatomical constraints
are implemented by excitatory connections between the finger layers in the hand
network (see Fig. 1 and 2). Figure 2 also illustrates the weight matrices of the
connections. Each weight matrix defines how every single neuron of one finger
map projects onto another finger map. The direction of the projection is given
by the arrows between the finger maps. For instance, neurons in the thumb map
feed their activation along a narrow stretch into the index finger map, in fact,
encoding possible grip sizes. Each neuron in the target map sums up all acti-
vation fed through the weight matrices. Note that all connections between the
maps are bi-directional whereby the feedback path uses the transposed weight
matrices of the feedforward path. This is a direct result of the energy minimisa-
tion approach and ensures an overall consistency of the activity pattern in the
hand network, since, for instance, the restriction in grip size between thumb and
index finger applies in both directions. Finally, since a finger can be positioned
at only one location, a winner-takes-all mechanism was implemented in all finger
maps. Later in the simulation section we will show that this selection mechanism
also implements global selection mimicking selective attention.

2.1 Mathematical Details

The following sections documents the mathematical details of the Selection At-
tention for Action Model.
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Visual Feature Extraction. The filter kernel in the visual feature extraction
process is a simple Sobel-filter [12]:

K =

⎡
⎣−1 −2 −1

0 0 0
1 2 1

⎤
⎦ (1)

In the response of the Sobel-filter the top edges of the object are marked
with positive activation while the bottom edges are marked with negative acti-
vation. This characteristic of the filter is used to feed the correct input with the
geometrical constraint applied into the finger maps and the thumb map. The
finger maps receive the filter response with all negative activation set to zero.
The thumb map, however, receives the negated filter response with all negative
activation set to zero:

I
(fingers)
ij =

{
Rij if Rij ≥ 0,

0 else.
(2)

I
(thumb)
ij =

{
−Rij if − Rij ≥ 0,

0 else.
(3)

with Rij = Iij ∗ K whereby Iij is the input image.

Hand Network. We used an energy function approach to satisfy the anatom-
ical and geometrical constraints of grasping. Hopfield and Tank suggested this
approach where minima in the energy function are introduced as a network state
in which the constraints are satisfied [11]. In the following derivation of the en-
ergy function, parts of the whole function are introduced, and each part relates
to a particular constraint. At the end, the sum of all parts leads to the complete
energy function, satisfying all constraints.

The units y
(f)
ij of the hand network make up five fields. Each of these fields

encodes the position of a finger. y
(1)
ij encodes the thumb, y

(2)
ij encodes the index

finger, and so on to y
(5)
ij for the little finger. For the anatomical constraint of

possible finger positions the energy function is based on the Hopfield associative
memory approach [13]:

E(yi) = −
∑
ij

i�=j

Tij · yi · yj . (4)

The minimum of the function is determined by the matrix Tij . For Tijs greater
than zero, the corresponding yis should either stay zero or become active in
order to minimize the energy function. In the associative memory approach, Tij

is determined by a learning rule. Here, we chose the Tij so that the hand network
fulfils the anatomical constraints. These constraints are satisfied when units in
the finger maps that encode finger positions of anatomically feasible postures are
active at the same time. Hence, the Tij for these units should be greater than
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zero, and for all other units, Tij should be less than or equal to zero. This lead
to the following equation:

Ea(y
(g)
ij ) = −

5∑
f=1

5∑
g=1
g �=f

∑
ij

L∑
s=−L
s�=0

L∑
r=−L
r �=0

T (f �→g)
sr · y(g)

ij · y(f)
i+s,j+r. (5)

In this equation T
(f �→g)
ij denotes the weight matrix from finger f to finger g.

A further constraint is the fact that each finger map should encode only one
position. The implementation of this constraint is based on the energy function
proposed by Mjolsness and Garrett [14]:

EWTA(yi) = a · (
∑

i

yi − 1)2 −
∑

i

yi · Ii. (6)

This energy function defines a winner-takes-all (WTA) behaviour, where Ii

is the input and yi is the output of each unit. This energy function is minimal
when all yi are zero except one, and when the corresponding input Ii has the
maximal value of all inputs. Applied to the hand network where each finger map
requires a WTA-behaviour, the first part of the equation turns into:

Ea
WTA(y(f)

ij ) =
5∑

f=1

(
∑
ij

y
(f)
ij − 1)2. (7)

The input part of the original WTA-equation was modified to take the geo-
metrical constraints into account:

Ef(y
(f)
ij ) = −

5∑
f=2

∑
ij

wf · y(f)
ij · I(f)

ij , (8)

Et(y
(1)
ij ) = −

∑
ij

w1 · y(1)
ij · I(t)

ij . (9)

These terms drive the finger maps towards choosing positions at the input
object which are maximally convenient for a stable grasp. The wf factors were
introduced to compensate the effects of the different number of excitatory con-
nections in each layer.

The Complete Model. To consider all constraints, all energy functions need to
be added, leading to the following complete energy function:

E(y(f)
ij ) = a1 · Ea

WTA(y(f)
ij ) + a2 · Et/f(y

(f)
ij ) + a3 · Ea(y

(f)
ij ). (10)

The parameters ai weight the different constraints against each other. These
parameters need to be chosen in a way that SAAM successfully selects contact
points at objects in both conditions, single-object images and multiple-object im-
ages. The second condition is particularly important to demonstrate that SAAM
can mimic affordance-based guidance of attention. Moreover, and importantly,
SAAM has to mimic human-style contact points. Hereby, not only the parame-
ters ai are relevant, but also the weight matrices of the anatomical constraints
strongly influence SAAM’s behaviour.
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Gradient Descent. The energy function defines minima at certain values of yi.
To find these values, a gradient descent procedure can be used:

τẋi = −∂E(yi)
∂yi

. (11)

The factor τ is antiproportional to the speed of descent.
In the Hopfield approach, xi and yi are linked together by the sigmoid func-

tion:
yi =

1
1 + e−m·(xi−s) , (12)

and the energy function includes a leaky integrator, so that the descent turns
into

τẋi = −xi − ∂E(yi)
∂yi

. (13)

Using these two assertions, the gradient descent is performed in a dynamic,
neural-like network, where yi can be related to the output activity of neurons,
xi the internal activity, and ∂E(yi)/∂yi gives the input to the neurons.

Applied to the energy function of SAAM, it leads to a dynamic unit (neuron)
which forms the hand network:

τẋ
(f)
ij = −x

(f)
ij − ∂Etotal(y

(f)
ij )

∂y
(f)
ij

. (14)

To execute the gradient descent on a computer, a temporarily discrete version
of the descent procedure was implemented. This was done by using the CVODE-
library [15].

3 Study 1: Single-Object Images

The first study tested whether SAAM can generate expedient grasps in general
and whether these grasps mimic human grasps. To accomplish this, simulations
with single objects in the visual field were conducted. The results of the simu-
lations were compared with experimental data on grasping these objects. In the
following two sections we will at first present the experiment and its results and
then compare its outcomes with the results from our simulations with SAAM.

3.1 Experiment

We conducted an experiment in which humans grasped objects. Interestingly,
there are only very few published studies on this question. Most notably Carey
et al. examined grasps of a stroke patient [16]. However, no studies with healthy
participants can be found in the literature.

Participants. We tested 18 school students visiting the psychology department
on an open day. The mean age was 17.8 years. All participants but two were
right-handed. The left-handed participants were excluded from further analysis
because the objects had not always been mirrored correctly during the experi-
ment.
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(a) Object used in the grasping experi-
ment

(b) Conditions of the experiment

Fig. 3. Objects and Conditions of the grasping experiment

(a) Placing of experimenter and partici-
pant

(b) Example of the pictures taken during
the experiment

Fig. 4. Experimental set-up

Material. For the experiment we designed six two-dimensional object shapes.
The objects were made of 2.2 cm thick wood and were painted white. Their size
was between 11.5 × 4 and 17.5 × 10 centimetres (see Fig. 3a for an example).
By presenting the objects in different orientations we created fifteen conditions
(see Fig. 3b). Note that the shapes are highly unfamiliar, non-usable. Hence,
the influence of high-level object knowledge is limited in the experiment. We
chose this set-up in order to be compatible with the simulations in which SAAM
possesses no high-level knowledge either.

Procedure. Figure 4a illustrates the experimental set-up. During the experi-
ment participants and experimenter were situated on opposite sides of a glass
table facing each other. The glass table was divided in two halves by a 15 cm
high barrier. Participants were asked to position themselves so that their right
hand was directly in front of the right half of the glass table. In each trial the
experimenter placed one of the objects with both hands in the right half of the
glass table. The participants were then asked to grasp the object, lift it and place
it into the left half without releasing the grip. The experimenter took a picture
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(a) Condition 1 (b) Condition 2

Fig. 5. Extracted finger positions for trials testing the first and second condition. The
fingers are colour-coded: red – thumb, green – index finger, blue – middle finger, yellow
– ring finger, pink – little finger.

with a camera from below the glass table (see Figure 4b for an example). After
taking the photo, the participants were asked to return the object to the ex-
perimenter. The last step was introduced to ensure that the participants would
not release their grasp before the photo was taken. As soon as the object was
handed back to the experimenter, a new trial started by placing the next object
in the right half of the glass table. Each participant took part in two blocks with
fifteen trails each. The order of the trials was randomised.

Results. To analyse the pictures taken in the experiment, we developed a soft-
ware for marking the positions of the fingers in relation to the objects. In Figure 5
the resulting finger positions are shown for the first and second condition. Even
though the grasps show some variability, in general, participants grasped the
object in two ways: they either placed their thumb at the left side of the object
and the fingers on the right side or they placed the thumb at the bottom of the
object and the fingers on the top edges. These two different grasping positions
are indicated with two markers in Figure 5 (circle and square). Such different
grasping positions were observed in all conditions.

To determine a “typical” grip from the experimental data, averaging across
these very different grasping positions would not make sense. Therefore, we cal-
culated the mean finger positions for each set of grasping positions separately.
The resulting mean positions are shown in Figure 6 for all conditions. Grasping
positions containing only one or two samples were discarded as outliers. For the
comparison with the simulation results we only considered the grasping position
for each object chosen in the majority of trials.

3.2 Simulations

We conducted simulations with SAAM using the same objects as in the experi-
ment. Figure 7 shows two examples of the simulation results. These illustrations
also include the mean finger positions from the experimental results for a com-
parison with the simulation data. The ellipses around the mean finger positions
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Fig. 6. Mean finger positions per class for each condition of the experiment. Different
colours mark the different classes. The thumb is highlighted by a square box while
the fingers are shown as circles. The individual fingers can be identified by placing the
thumb of the right hand on the square box and position the fingers on the circles.

(a) Simulation 1: Experimental condi-
tion 9.

(b) Simulation 2: Experimental condi-
tion 10.

Fig. 7. Comparison of experimental results and simulated grasps. The ellipses indicate
the variation in the experimental data. The black dots mark the finger positions as
generated by the simulations.

illustrate the variations in the data. The comparison shows that most finger po-
sitions lie within the ellipses. Hence the theoretical assumptions behind SAAM
that geometrical and anatomical constraints are sufficient to mimic human
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behaviour have been confirmed. Note that not all experimental conditions could
be simulated with SAAM, since the model is currently only able to create hori-
zontal grasps.

4 Study 2: Two-Object Images

SAAM produced good results for single-object displays in Study 1. This set of
simulations investigated SAAM’s ability to simulate attentional processes by us-
ing input images with two objects. Figure 8 shows the simulation results. The
simulations are successful in the sense that contact points for only one object
were selected and the second object was ignored (see Conclusion for further dis-
cussions). Note that this is an emergent property of the interplay between all
constraints. The geometrical and anatomical constraints ensure that only con-
tact points around the object were selected and the WTA-constraint restricts the
contact points to one object. In addition, the weight matrices (anatomical con-
straints) determine the selection priorities of SAAM. At present we do not have
reference data from humans. It would be especially interesting to see whether
SAAM and humans have the same select preference.

(a) Attention simulation 1. (b) Attention simulation 2.

Fig. 8. Results for the simulation of two-object images. The black dots mark the re-
sulting finger positions (see arrows).

5 Conclusion and Outlook

Recent experimental evidence indicates that visual attention is not only guided
by visual properties of visual stimuli but also by affordances of visual objects.
This paper set out to develop a model of such affordance-based guidance of
selective attention. As a case in point we chose to model grasping of objects
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and termed the model the Selective Attention for Action Model (SAAM). To
detect the parts of an object which afford a stable grasp, SAAM performs a
soft-constraint satisfaction approach by means of a Hopfield-style energy min-
imisation. The constraints were derived from the geometrical properties of the
input object and the anatomical properties of the human hand. In a compari-
son between simulation results and experimental data from human participants
we could show that these constraints are sufficient to simulate human grasps.
Note that an alternative approach would have been a complex moment analysis
[17]. However, our simulations suggest that anatomical constraints render such
an analysis obsolete. In a second set of simulations we tested whether SAAM
cannot only extract object affordances but also implements the guidance of at-
tention through affordances by using two-object images. Indeed, SAAM was able
to select one of two objects based on their affordance. The interesting aspect here
is that SAAM’s performance is an emergent property from the interplay between
the anatomical constraints. Especially, the competitive mechanism implemented
in the finger maps is crucial for SAAM’s attentional behaviour. This mechanism
already proved important in the Selective Attention for Identification Model
(SAIM [4]) for simulating attentional effects of human object recognition. How-
ever, it should be noted that SAAM does not select whole objects as SAIM
does. Hence, SAAM’s implementation of selective attention is not as intuitive
as SAIM’s realisation. On the other hand, since SAAM and SAIM use similar
mechanisms, it is conceivable that they can be combined to form one model. In
such a model SAIM’s selection mechanism of whole objects can be guided by
the SAAM’s selection of contact points. Hence, this new model could integrate
both mechanisms, selection by visual-properties and by action-related properties,
forming a more complete model of selective attention.

Despite the successes reported here, this work is still in its early stages. First,
we will need to verify the priorities of object selection predicted by SAAM in the
second study. We also plan to include grasps with a rotated hand to simulate a
broader range of experimental data. Finally, there is a large amount of experi-
mental data on the interaction between action knowledge and attention (see [18]
for a summary). Therefore, we aim to integrate action knowledge into SAAM,
e. g. grasping a knife for cutting or stabbing. With these extensions SAAM will
sufficiently contribute to the understanding of how humans determine object
affordances and how these lead to a guidance of attention.

References

1. Gibson, J.J.: The senses considered as perceptual systems. Houghton-Mifflin,
Boston (1966)

2. Gibson, J.J.: The ecological approach to visual perception. Houghton-Mifflin,
Boston (1979)

3. di Pellegrino, G., Rafal, R., Tipper, S.P.: Implicitly evoked actions modulate visual
selection: evidence from parietal extinction. Current Biology 15(16), 1469–1472
(2005)



Where Do We Grasp Objects? 53

4. Heinke, D., Humphreys, G.W.: Attention, spatial representation and visual neglect:
Simulating emergent attention and spatial memory in the selective attention for
identication model (SAIM). Psychological Review 110(1), 29–87 (2003)

5. Grafton, S.T., Fadiga, L., Arbib, M.A., Rizzolatti, G.: Premotor cortex activation
during observation and naming of familiar tools. NeuroImage 6(4), 231–236 (1997)
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Abstract. Visual context provides cues about an object’s presence, po-
sition and size within an observed scene, which are used to increase
the performance of object detection techniques. However, state-of-the-
art methods for context aware object detection could decrease the initial
performance. We discuss the reasons for failure and propose a concept
that overcomes these limitations, by introducing a novel technique for
integrating visual context and object detection. Therefore, we apply the
prior probability function of an object detector, that maps the detector’s
output to probabilities. Together, with an appropriate contextual weight-
ing, a probabilistic framework is established. In addition, we present an
extension to state-of-the-art methods to learn scale-dependent visual con-
text information and show how this increases the initial performance. The
standard methods and our proposed extensions are compared on a novel,
demanding image data set. Results show that visual context facilitates
object detection methods.

1 Introduction

A standard approach for detecting an object of a known category in still images
is to exhaustively analyze the content of image patches at all image positions
and at multiple scales (see e.g. [1,2]). When a patch is extracted from an image,
it is classified according to its local appearance and associated with a detection
score. The score should correspond to the probability of the patch representing an
instance of the particular object category and is usually mapped to a probability
score. As it is known from the literature on visual cognition [3,4], cognitive
neuroscience [5,6] and computer vision [7,8,9], the human and animal visual
systems use relationships between the surrounding and the objects to improve
their ability of categorization. In particular, visual context provides cues about
an object’s presence, position and scale within the observed scene or image. This
additional information is typically ignored in the object detection task. Like in
other promising papers on visual context for object detection [10,8,11,9], we
define the context as the surrounding, or background, of the current object of
interest. This context is used to focus the attention on regions in the image where
the objects are likely to occur. Instead of searching the whole image at various
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c© Springer-Verlag Berlin Heidelberg 2009
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(a) (b) (c)

Fig. 1. A concept of using visual context for object detection. (a) A standard image
of an urban scene, (b) the focus of attention for the task of pedestrian detection using
the method in [9] and (c) the image multiplied by the focus of attention.

scales for an object, visual context provides regions of interest, i.e. the focus of
attention, where the search is restricted to. This results in speedup, but more
importantly, it can increase the detection rate by not considering incorrect object
hypotheses at unlikely positions in the first place. This concept is illustrated in
Fig. 1. In this study, we conducted experiments with the approaches of Hoiem
et al. [8] and Perko and Leonardis [9] on a specific task of detecting pedestrians
in urban scenes. We found that the first approach may fail when too many
incorrect object hypotheses are detected and the second may, in some cases,
reduce the detection rate of the original detector. A detailed analysis revealed
that these failure cases are linked to the assumption of these methods that
visual contextual information always assists the detection step. Furthermore,
the prior probability from the local appearance-based object detection method
is ignored when combined with the contextual score. We state that the prior
probability is an intrinsic property of the object detector used and is defined
as the conditional probability of the detection being correct given the detection
score. The function is used to map the detector’s output to a probability space.
In addition, the contextual information is weighted by a function depending on
the probabilistic detection score. The basic idea is as follows: if an object is well
defined by its local appearance, then context should not contribute much in the
detection phase. It can even introduce additional errors by incorrectly re-ranking
the detections. However, if the local appearance is weak, context can contribute
significantly to improve detections. Therefore, we propose to learn this prior
probability function, together with a contextual weighting, and embed it into
the existing systems for object detection. An example of this concept is given
in Fig. 2. The pedestrian in Fig. 2(b) is well defined by its local appearance
and context is not important to get an unambiguous detection. However, the
smaller pedestrians shown in Fig. 2(c) and (d) are not as easily detected based
on local appearance alone, so that visual context provides more clues about these
detections being correct.

Our contribution. We point out in which situations the current state-of-the-
art methods for performing context aware object detection decrease the initial
performance in practice and discuss the reasons for failure. In particular the ap-
proaches in [8] and [9] are evaluated and compared. We then propose a concept
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(a) (b) (c) (d)

Fig. 2. A standard image of an urban scene. (a) Three pedestrians of different size
are marked by the yellow arrows and boxes. (b-d) Close-ups of the marked objects
using nearest-neighbor interpolation for resizing. Even though humans can recognize
the objects at all three scales, it is obvious that the bigger pedestrian in (b) is easier
to detect than the ones in (c) or (d).

that overcomes these limitations. More specifically, the contextual information
is combined with the local appearance-based object detection score in a fully
probabilistic framework. We also extend this framework to multiple object de-
tectors trained for different object sizes. In addition, we present an extension to
the method in [9] to learn scale-dependent visual context information and show
how its performance increases. Then, the methods are compared on a novel de-
manding database.

Organization of the paper. Related work will be discussed in detail in Sec. 2
and the drawbacks of the state-of-the-art approaches are pointed out in Sec. 3. In
Sec. 4 we describe the extension to standard methods and how the probabilistic
framework is set up. Results are given in Sec. 5. In the discussion in Sec. 6 we
analyze the limitations of contextual processing and conclude the paper in Sec. 7.

2 Related Work

In computer vision the combination of visual context with the task of object
detection is a rather young field of research. The aim is to extract more global
information from a single image and use it to improve the performance of clas-
sical object detection methods. Technically there are two issues to be solved.
First, how to represent this kind of visual context within some data structure,
i.e. a feature vector. There is a lack of simple representations of context and
efficient algorithms for the extraction of such information from images [12]. And
second, how to combine this information with an object detection technique. For
the former the feature vectors holding contextual information are learned from
a labeled database. The LabelMe image database [13] is often used for such pur-
poses. Then for new images, the extracted feature vectors are classified using this
learned model. For the latter it is assumed that the contextual information and
the local information used for detecting objects are statistically independent.
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Therefore, their conditional probability is equal to the product of the individ-
ual probabilities [10,9]. Namely, the combined probability p is calculated using
the contextual probability pC and the local appearance-based probability pL as
p = pC · pL. Context could be also used in a cascade [11,9]. In this case, only
pixels with a contextual confidence above a threshold are used in the object
detection task. However, as the detection score is not re-ranked and therefore
only out-of-context detections (e.g. pedestrians in the sky) are filtered, the in-
crease of detection rate is negligible [14]. Before we present three methods in
detail we want to point to the current review on visual context and its role in
object recognition by Oliva and Torralba [12]. They also show how the focus of
attention extracted using visual context can be combined with classical attention
concepts, e.g. with the system of Itti and Koch [15]. Therefore, the results from
visual context can be used as the top-down saliency in approaches like [16].

The influential work from Oliva and Torralba, e.g. [17,18,19,10], introduced
a novel global image representation. The image is decomposed by a bank of
multi-scale oriented filters, in particular four scales and eight orientation. The
magnitude of each filter is averaged over 16 non-overlapping blocks in a 4×4 grid.
The resulting image representation is a 512-dimensional feature vector, which is
represented by the first 80 principal components. Despite the low dimensionality
of this representation, it preserves most relevant information and is used for
scene categorization, such as a landscape or an urban environment. Machine
learning provides the relationship between the global scene representation and
the typical locations of the objects belonging to that category. To the best of our
knowledge there exist no evaluation for the combination of this derived focus of
attention with a state-of-the-art object detection algorithm. In a real scenario a
coarse prior for the possible object location in the image does not automatically
increase the performance of an object detector. As seen later, when combined
just by multiplication the results of the detection may and often do degrade.

Hoiem et al. provided a method to extract the spatial context of a single image
[20]. The image is first segmented into so called superpixels, i.e. a set of pixels
that have similar properties. These regions are then described by low level image
features, i.e. color, texture, shape and geometry, forming a feature vector. Each
region is classified into a semantic class, namely ground, vertical and sky, using
a classifier based on AdaBoost with weak decision tree classifiers. As a result
each pixel in the input image is associated with the probabilities of belonging to
these three classes. For the task of object detection this classification provides
useful cues and they are exploited in [8] and [9]. Hoiem et al. [8] use the coarse
scene geometry to calculate a viewpoint prior and therefore the location of the
horizon in the image. The horizon, being the line where the ground plane and
the sky intersect in infinity, provides information about the location and sizes
of objects on the ground plane, e.g. pedestrians or cars. The scene geometry
itself limits the location of objects on the ground plane, e.g. no cars behind the
facade of a building. Now, the innovative part of their work is the combination
of the contextual information with the object hypotheses using inference. With-
out going into detail, the main idea is to find the object hypotheses that are
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consistent in terms of size and location, given the geometry and horizon of the
scene. As a result, a cluster of object hypotheses is determined, that fits the data
best. This contextual inference uses the global visual context and the relation
between objects in that scene. The position of the horizon is an integral part of
this system, limiting the approach to object categories that are placed on the
ground plane and to objects of approximately the same size. E.g. the approach
cannot be used to detect windows on facades or trees.

Perko and Leonardis [9] use the semantic classification of an image in [20] as
one feature set, and low-level texture features, based on Carson’s et al. Blobworld
system [21] as a second set. Both types of features are probabilistic and extracted
for each pixel in the image, which is downsampled for speedup. To define the vi-
sual context at a given position in the image, they sample those features radially
for a given number of radii and orientations, like in [11]. The extracted feature
vector is relatively low-dimensional, i.e. 180-dimensional as reported in [9]. A
significant increase of the object detection rate is reported using this kind of
contextual information, where the low-level texture-based scene representation
is more important than the high-level geometry-based representation.

3 Drawbacks of the State-of-the-Art Approaches

The mentioned state-of-the-art methods for extracting and using visual context
for an object detection task are reported to increase the performance of the initial
object detection. However, we found that this is not always the case, especially
when using a demanding image database. By demanding we mean images with
a lot background clutter and textured regions where object hypotheses are often
incorrect, and where objects occur at very different scales. We therefore collected
an image data set in an urban environment and experimented with the methods
in [8] and [9], using pedestrians as objects of interest. As done in the mentioned
papers we plotted the detection rate versus the false positives per image (FPPI),
and observed that the method by Hoiem et al. significantly decreased the initial
detection rate. In the evaluation we used the publicly available Matlab source
code1. Fig. 3(a) shows the initial detection rate using our own implementation
of the Dalal and Triggs pedestrian detector [2] and the detection rate curves
after applying the inference. Our analysis shows that there are two reasons for
this behavior. First, the contextual inference process often produces an incorrect
solution. A cluster of object hypotheses is determined that satisfies a viewpoint
estimate which is however incorrect. In such a case typically all detections in that
image are incorrect and correct detections are mostly discarded. An example is
given in Fig. 3(b-c). In our database this happens for 10.1% of the images. We
consider the horizon estimate as correct if its position w.r.t. the ground truth
horizon position deviates maximal 10% of the image’s height. Second, in this
approach the object detection score is assumed to be probabilistic. Therefore,
the support vector machine (SVM) outputs from object detection are mapped
to probabilities using the approach in [22]. However, these mapped outputs are
1 http://www.cs.uiuc.edu/homes/dhoiem/software/
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only probabilistic in the sense, that they are in the range of [0, 1]. The relation
from these scores to the probability that a detection is correct is still unknown.
This additional mapping (called the prior probability) should be learned from
training data and used to have real probabilities in this framework. As shown
in Sec. 5.2 the method performs better when incorporating this function. The
method of Perko and Leonardis [9] does not have problems when many incorrect
hypotheses are given, as the detections are treated separately (no contextual
inference). However, as the prior probability function is not modeled, locally
well defined objects could be incorrectly re-ranked. In addition, the contextual
influence is not specially related to the appearance-based score. Due to this two
aspects the method performs poor at low FPPI rates, yielding even worse results
than the initial detections not using contextual information at all. Fig. 3(a) gives
the detection rate curves. In general we noticed that the current state-of-the-art
methods for performing context aware object detection could fail in practice. We
can also predict that the methods of Torralba [10] and Bileschi [11] will likewise
lower the initial detection rate, as they are ignoring the prior object detection
probability as well, and the underlying concept is similar to [9]. Using the prior
probability from the object detector will fix these problems for all mentioned
methods.
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Fig. 3. Drawbacks of the state-of-the-art approaches that use visual context for object
detection. (a) The initial detection rate based on local appearance only yield better
results than the two evaluated methods that use contextual information. The approach
in [8] decreases the performance in general, while the one in [9] has problems at low
FPPI only. (b) An example image with object hypotheses from pedestrian detection.
(c) Due to the cluster of incorrect hypotheses in the foreground the horizon estimate
(horizontal line) is invalid, so that all detections after contextual inference are incorrect.

4 Our Extensions

Two extension to the existing methods are presented. First, we introduce a
scale extension in Sec. 4.1 and second, we explain the probabilistic framework
in Sec. 4.2.
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4.1 Scale Extension

We implemented an extension to [11] and [9], i.e. to learn and use a scale-
dependent visual context information. The mentioned methods use a fixed sized
region, i.e. one quarter of the image area, to extract the feature vector holding
the contextual information. However, when dealing with objects of an a priori
known range of sizes in the real world, e.g. pedestrians or cars, these fixed sized
regions are not representing the same semantic context for objects perceived at
different scales. Therefore, these regions should be scaled with the object’s size in
the image. Smaller objects corresponds to objects in the distance, an effect of the
projective geometry. Therefore, we simply scale the region of which the context
is gathered for the given object of interest with its size, visualized in Fig. 4. For
smaller pedestrians a smaller region is used to extract the features. These new
features are learned using an SVM as in [9]. Then, instead of extracting only one
context confidence map for one predefined size, multiple confidence maps are
calculated for a given number of scales. An example of such confidence maps is
given in Fig. 4 for six scales. The context confidence score for a given detection is
then calculated by linear interpolation using the scores of the two adjacent scales.
As a result the prior based on context is not only able to provide regions where
an object is likely to occur, it also provides the possible size of the object. It

(a) (b)

Fig. 4. Top row: The regions from which the contextual information is gathered in a
feature vector is visualized with the red and yellow circles for the two marked objects.
The blue crosses indicate the locations where the contextual information is sparsely
sampled. (a) The regions are of constant size as proposed in [11,9]. (b) Regions are
scaled according to the object’s size so that they represent similar semantic information.
Bottom row: Context confidence maps (foci of attention) based on geometry features
for six scales s for the image in the top row. Bright regions indicate locations where
pedestrians are likely to occur. It is visible that smaller objects are more likely to occur
at different locations than bigger objects.
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should be pointed out that extracting several foci of attention of course increase
the computational expanses of the whole framework. However the confidence
map extraction using the pre-learned SVM is faster than the feature extraction,
so that the multiscale approach is also applicable in practise.

4.2 Probabilistic Framework

As stated before the prior probability of the object detector used should be
modeled and applied to the whole framework. This probability function is an
intrinsic property of the detector and can be learned in the training phase.
It holds the conditional probability of the detection being correct given the
detection score, which is in the probabilistic range. This function is only valid
for one set of parameters, that means if, e.g., a detection threshold is changed the
function has to be recalculated. In our approach we label the detections as true
positives and false positives using the ground truth that exists in the learning
phase of object detection. Two histograms with 16 bins are calculated holding
the number of true and false detections. The prior probability is then extracted
by dividing the number of true detections by the number of overall detections in
each bin. To ensure a smooth function the values are filtered using average and
median filtering, where the borders, i.e. values at 0 and 1 are preserved. Then
an analytic function pa is fitted describing the prior probability. In the current
implementation a polynomial of order 6 is used. The concept is illustrated in
Fig. 5(a-b). Instead of multiplying the local appearance-based detection score L
with the contextual score pC at the given position in the image as in [10,11,9], the
final score is the product of the prior probability of the detection being correct
pa(L) with the context confidence pC weighted by the function w, defined as

pcombined = pa(L) · w · pC with w = (1 − pa(L))k + 1 . (1)

The parameter k defines the steepness of the weighting function w, where we
use k = 2 in the experiments. We experimented with different values of k and
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Fig. 5. Extraction of the prior probability function illustrated using Dalal and Triggs
pedestrian detector [2] in (a-b) and the function used to weight the influence of the
contextual information in (c). (a) Normalized histograms for true positives and false
positives, (b) approximation of the conditional probability function, smoothed prior
probability function and the polynomial fit pa. (c) Function used to weight the influence
of the contextual information, shown for different setting of the parameter k. Context
gets a higher weight for detections with lower prior probabilities.
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found out that the results improve when using the contextual weighting, i.e.
k 
= 0. However, the specific value of k in rather unimportant as long as it is the
range of [1, 4]. The function w is bounded in [1, 2] and visualized in Fig. 5(c).
This weighting models the concept that the contextual information gets higher
weight for detections with a lower local appearance-based score, and lower weight
for high-ranked detections.

5 Experimental Results

We conducted experiments using the proposed extensions described in Sec. 4
and show that the methods in [8] and [9] yield significantly better results with
these extensions. First, we evaluate the scale extension in Sec. 5.1 and second,
we analyze the probabilistic framework in Sec. 5.2. Additional results including
videos can be found on our project page2.

5.1 Scale Extension

To evaluate the results of the scale extension to [9] (see Sec. 4.1), we used the
same data set as in the original paper, the Ljubljana urban image data set3, and
compared them to the initial results. The first result is, that the positive feature
vectors are more similar (smaller standard deviation) compared to the original
method. This indicates that the contextual information grasps a more similar
semantic representation, when scaling the regions according to the object’s size.
The second result is an increase of the detection rate. Using the Seemann et al.
detector [23] the increase is 4.1%, i.e. a relative increase of 19.2% over the original
method. For the detections using Dalal and Triggs detector [2] the increase is
1.3%, i.e. relative increase of 22.3%. These numbers are calculated at a fixed rate
of 2 FPPI. Fig. 6(a) shows the detection curves for the original approach and
using the scale extension for the Seemann et al. detections. Fig. 6(b) visualizes
the contributions of the three contextual cues to the final result, where the cue
based on texture benefits most using the scale extension.

5.2 Probabilistic Framework

Darmstadt urban image data set. To test the new framework we collected
a demanding image data set containing 1572 images of the city of Darmstadt4

with a resolution of 1944 × 2896 pixels each. The images were downsampled
to 972 × 1448 pixels for our evaluation. 4133 pedestrian were manually labeled
and used as ground truth in the experiments. Each pedestrian is defined by the
corresponding bounding box, where the whole object is inside. The bounding
boxes have a fixed aspect ratio of 1 : 2, centered at the object. For the small scale
object detection task a subset of 121 images were taken (each 13th image) and

2 http://vicos.fri.uni-lj.si/research/visual-context/
3 http://vicos.fri.uni-lj.si/luis34/
4 http://vicos.fri.uni-lj.si/duis131/



Integrating Visual Context and Object Detection 63

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positives per image

de
te

ct
io

n 
ra

te

local appearance
local appearance + Perko et al.
local appearance + Perko et al. + scaling

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positives per image

de
te

ct
io

n 
ra

te

local appearance
local appearance + viewpoint
local appearance + geometry
local appearance + texture
local appearance + all contextual cues

(a) (b)

Fig. 6. Detection rate curves for the scale extension. (a) Comparison of the original
approach of [9] with our proposed scale extension. At 2 FPPI the original method
boosted the performance by 21.3%, while the new approach increased it by 25.4%, an
relative increase of 19.2%. At lower FPPI rates the boost is even more significant. (b)
Contribution of the three contextual cues to the final result.

all pedestrians were labeled, down to 12×24 pixels, resulting in 661 pedestrians.
This subset is called sub13 in the rest of the paper.

Object detectors. As seen in Sec. 5.1 and also addressed in [9] a weak object
detector can easier be boosted using contextual information than a detector
which gives very good results in the first place. As we aim for the more difficult
task, we show that even the results of the best detectors can be significantly
improved using visual context. Therefore, we use a detector based on Dalal and
Triggs [2], which is one of the best pedestrian detectors currently available.

Prior probabilities of the object detectors. Fig. 7(a) shows the prior prob-
abilities for the detectors in [2] and [23]. It is obvious, that the initial detection
scores are rather different from the observed probabilities and that the prior
probabilities vary for the two detectors. To experimentally prove our claim, that
smaller objects are more difficult to detect than larger objects, we trained our
own version of a histogram of gradients (HoG) based detector for different object
sizes. Four detectors are trained for 24×48, 32×64, 40×80 and 64×128 pixels.
Each detector then collects detections within its range, i.e. the first one collects
detections with a height from 1 to 63 pixels, the next from 64 to 79 pixels and so
forth. The four prior probability functions are shown in Fig. 7(b). As expected,
the probability of a detection being correct is higher for larger objects. For ob-
jects larger than 128 pixels in height a detection score of 1 indicates that the
detection is correct with 89%, while for smaller objects up to 63 pixels the same
score indicates a correctness of only 59%. These prior probabilities are used to
re-rank the detections. Like above, the initial detection score is quite different
from the observed probabilities. For example scores up to 0.5 only indicate a true
detection with less than 10% (see Fig. 7(b)). Therefore, all algorithms which take
the initial detector’s score within a probabilistic framework yield inaccurate re-
sults. The new detection score which corresponds to the observed probabilities
is pa(L) and should be used in the approaches in [10,8,11,9].
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Fig. 7. Prior probability functions given for different detectors. (a) For Dalal and Triggs
detector [2] and for Seemann et al. detector [23] and (b) for our HoG-based detector
trained for four different object sizes.
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Fig. 8. Detection rate curves. (a) Plotted for the original approach of [8] and [9] and
(b) for our proposed extensions using the prior probabilities and contextual weight-
ing. While the original methods decrease the accuracy, they yield good results when
incorporating the proposed extensions.
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Fig. 9. Detection rate curves plotted for the sub13 data set. Using multiple prior
functions increase the performance of the local appearance-based object detection and
of contextual inference. The detection rate is scaled to 0.7.

Results using visual context. The original results together with the results
using our proposed extensions are given in Fig. 8 for [8] and [9]. With our ex-
tensions included both methods are able to increase the initial object detection
performance, with an average boost of about 4% for [8] and 7% for [9]. Similar
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results are achieved using the sub13 data set using multiple prior functions, one
for each trained detector. Results are given in Fig. 9, where we compare the
initial detector’s performance with our concept of multiple prior functions, once
with and without using contextual inference. As expected the original method
[9] performs poorly, while the performance increases when incorporating these
probabilities.

6 Discussion

With our extension presented in Sec. 4 the two methods [8,9] for performing
visual context aware object detection are improved. However, the increase of the
detection rate is on average only about 4% for [8] and 7% for [9] (see Fig. 8).
Depending on the final application this boost is of interest or may be negligible.
An interesting question is why these novel methods are not providing stronger
cues to assist object detection. Part of the answer is illustrated within Fig. 10. In
(a) two images of our data set are shown with all object hypotheses marked, and
in (b) all detections with a score pa(L) > 0.5. In (c) the horizon estimate from
[8] is visualized with the remaining object hypotheses after contextual inference.
Even though the horizon is correctly estimated and all 11 (top row) respectively
9 (bottom row) detections satisfy the global scene geometry, only 1 of them is a
correct detection in each row. In (d) the location priors from [9] are shown for
geometry features (shown for the scale s = 1, cf. Fig. 4). These priors are robust
estimates, however they will only down-rank a few detections with a high score,
i.e. the hypothesis on the roof top in the second example. In general the problem
is that there are many object hypotheses based on a local appearance measure
that are incorrect and suit to the scene in terms of their position and size. Such
hypotheses cannot be rejected or down-ranked by visual contextual information.
Another aspect is the way how the contextual information is integrated with local
appearance-based object detection. In Eq. (1) the prior probability of the object
detector and a contextual weighting is introduced. However, the dependencies of
the individual contextual scores and the object detection score are not modeled.
Therefore, the next step would be to estimate the conditional probability density
function of all cues, which could then be used to increase the overall performance.

To put it in simple words: Visual context only provides priors for the position
and size where an object of interest is likely to occur according to the given
scene content. On the one hand, false object hypotheses fitting to the scene
layout “survive” the contextual inference. On the other hand, hypotheses that
are strongly out-of-context have weak local appearance in many cases. Due to
this aspects, the boost of the detection rate is limited using visual context as an
additional cue. However, we assume that computer vision researcher will come
up with more robust object detection methods based on local appearance. Visual
context could then be used to prune the few out-of-context hypotheses with high
detection score and to limit the search space for the detection.
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(a) (b) (c) (d)

Fig. 10. Limits of visual context aware object detection. (a) Urban scene with hy-
potheses for pedestrians, (b) object hypotheses with a score larger than 0.5, (c) horizon
estimate and detections supporting this estimate [8] and (d) focus of attention using
geometry features [9]. Best viewed in color.

7 Conclusion

Visual context provides cues about an object’s presence, position and size within
the observed scene, which are used to increase the performance of object detec-
tion techniques. However, state-of-the-art methods [8,9] for context aware object
detection could decrease the initial performance in practice, where we discussed
the reasons for failure. We proposed a concept that overcomes the limitations,
using the prior probability of the object detector and an appropriate contextual
weighting. In addition, we presented an extension to state-of-the-art methods
[11,9] to learn scale-dependent visual context information and showed how this
increases the initial performance. The methods and our proposed extensions were
compared on a novel demanding database, where the object detection rate was
increased by 4% to 7% depending on the method used.
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Abstract. Contextual cueing experiments show that targets in heteroge-
neous displays are detected faster with time when displays are repeated,
even when observers are not aware of the repetition. Most researchers
agree that the learned context guides attention to the target location and
thus speeds subsequent target processing.Because in previous experiments
one target location was uniquely associated with exactly one configuration,
the context was highly predictive. In two experiments, the predictive value
of the context was investigated by varying the number of possible target
locations. We could show that even when the context was less predictive, it
was learned and used to guide visual-spatial attention. However, the time
course of learning differed significantly: learning was faster when the num-
ber of target locations was reduced. These results suggest that not an as-
sociation of context and target is learned but that rather the precision of
the attention shift improves.

Keywords: Contextual cueing, learning, perception, visual attention,
cognitive systems.

1 Introduction

In real-world, objects usually occur in a relatively constant spatial context with
stable relationships between the context elements. For example, we are used to
find some specific objects on our desk, e.g., a computer monitor, a keyboard,
a mouse, staples of paper and a coffee cup. By knowing the locations of any
set of objects, e.g. the objects on the table in the previous example, one often
also knows (or can at least predict) the location of a single target, e.g. the
coffee cup, thereby reducing or eliminating the need to execute a detailed serial
search throughout the entire scene. A stable, meaningful scene structure may
thus be used to help guiding visual attention to behaviorally relevant targets
and may serve to constrain visual processing. In a series of studies Chun and
Jiang [1] demonstrated that if the target item was embedded in an invariant
configuration that was repeated across the experiment, reaction times (RTs) to
find the target were faster than when the target item appeared in a novel or
unrepeated configuration. This effect has become known as contextual cueing.

To investigate contextual cueing effects in the laboratory, participants are
usually asked to search through a display of objects to identify a target object.

L. Paletta and J.K. Tsotsos (Eds.): WAPCV 2008, LNAI 5395, pp. 69–84, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In the example described above, people would be presented with the picture of
a table and would be asked to look for the coffee cup. The variable of interest,
the context, is defined by the spatial arrangement of the irrelevant (distracting)
objects. For example, if the coffee cup is the object to be found (target), the
monitor, a staple of paper, pens etc. are distracting objects. The arrangement
of these distracting objects on the table, i.e. how the monitor is related to the
keyboard, to the staple of paper, and to the pens, forms the visual context.
In a typical contextual cueing experiment, a set of these displays are repeated
throughout the entire experimental session, meaning a picture of this table is
presented repeatedly. These displays are referred to as OLD context. In a control
condition, NEW context displays, which are randomly generated in each block,
e.g. other pictures of differently-looking tables and objects on it, are presented
intermingled with OLD context displays. It is important to note here that, on
a particular repeated picture, the target object is always placed at the same
location.

In this kind of experiments, usually two learning processes occur: general and
context-specific learning. General learning is reflected by decreasing reaction
times in the time course of the experiment. That means, finding the coffee cup
becomes easier (and faster) independent of the context it is presented in. This
effect is probably due to training effects, e.g., habituation to the sensory input,
allocation of attentional resources and speeded response selection mechanisms.
By general learning, RTs to targets presented in OLD and NEW contexts are
decreased as well. In addition to this general learning, context-specific learning
occurs after four to five repetitions of the OLD displays; RTs are faster in the
OLD as compared to those in the NEW context condition. This effect, that
has become known as contextual cueing, shows that participants were probably
encoding the context information, even though they were not told it was infor-
mative. In reference to the example described above, one is faster in finding the
coffee cup on a familiar table than on a new one.

Most researchers agree that, in the time course of the experiment, an associa-
tion between the context and the target location is formed and afterwards used
to guide attention to the target location [2, 3]. Importantly, the acquisition of
contextual knowledge is supposed to be implicit. That is, contextual knowledge
is acquired passivly and incidentally. This kind of learning allows complex in-
formation about the stimulus environment to be acquired without intention or
awareness [1]. That is, we are faster in finding the coffee cup on a familiar table
because we have learned where it is probably placed.

As described above, the association between the visual context and the target
location is a necessary precondition of contextual cueing. In a typical contextual
cueing experiment, this association is formed after four to five repetition of a
particualar search display. Previous experiments have investigated different fac-
tors which may influence the learning process. Jiang and Chun [4], for example,
have shown that the context has to be attended in order to obtain a contex-
tual cueing effect. In their experiments, participants performed a visual search
through context items presented in an attended color and in a to-be-ignored
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color. Contextual cueing only occurred when the repeated context was attended.
It has also been shown that the contextual cueing effect depends on the task af-
fordances. In an experiment by Endo and Takeda [5], participants learned the
spatial configurations of the contexts but not the object identities, even when
both configurations and identities were completely correlated. On the other hand,
when only object identities (or arrangements) were repeated, an effect of iden-
tity (or arrangement) learning could be observed. Furthermore, additive effects
of configuration learning and identity learning were observed when, in some tri-
als, each context was the relevant cue for predicting the target. Thus, contextual
learning occurs selectively, depending on the predictability of the target location.

To shortly summarize these results, the learned association of context and
target location is affected by the predictive value of the context. As discussed
previously, the context is defined as the arrangement of distracting objects. In
the experiments cited above, only those objects (as part of the context) were
associated with the target location which were either attended [4] or task-relevant
[5]. Although the information content of the whole context was reduced (i.e.,
only some of the objects or some features of the objects delivered information to
predict the target location), these objects, once dectected, predicted the target
location reliably. That is, although the information content of the context was
reduced in general, its value to predict the target location and to guide attention
was still high in order to solve the required task efficiently.

In this paper we want to investigate the role of information content on con-
textual cueing further. Does contextual cueing occur when the context is less
predictive for the target location?

2 Search Strategies in Contextual Cueing

In typical contextual cueing experiments, participants are presented with search
displays and asked to find a target among distractors. Assuming that there are
24 possible target locations in each trial, attention has to be shifted serially to
each of them until the relevant object is found. Thus, the probability to find the
target just by chance is quite low, namely 1:24. In these experiments, usually one
specific context (configuration) is associated with exactly one target location. For
example, if there were 24 possible target locations, 12 randomly chosen locations
were associated with 12 OLD displays, and the remaining 12 locations were used
in NEW configurations [1, 2]. If the visual system noticed that the context is
OLD vs. NEW, the probability to find the target would be already reduced to
1:12. Thus, the context is highly informative to predict the location of the target.
However, does contextual cueing still occur when the context is less predictive?

To investigate the effect of information content, we varied the number of
target locations while the number of configurations was kept constant. Thereby,
we were able to compare the size of the contextual cueing effect of a ’classical’
setting, in which each target location is associated with exactly one configuration
and in which the guidance of attention is high (Exp.1), with a modified setting,
in which the information content of the context is reduced because each target
location was associated with 4 configurations (Exp.2).
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Fig. 1. Examples of search arrays and target locations of Exp.1 (left) and Exp.2 (right).
Each object was made of 2 LEGOR© bricks (small picture). The target was a rotated T
presented at one of the marked locations (not marked in the actual experiment), the
distractors were rotated Ls.

3 Hypotheses

In our first experiment, we used 16 target locations (cf. Fig. 1, left). These 16
locations were used in both, OLD and NEW configurations to avoid a reduction
in probability just by the distinction NEW vs. OLD. At the beginning of the
experiment, the probability to find the target by chance was 1:16. As in previous
experiments, an association between OLD configurations, i.e. the arrangement of
the items, and the target locations should be learned, resulting in an additional
decrease in search times in the time course of the experiment (contextual cueing
effect).

In a second experiment, the number of target locations was reduced to 4 (cf.
Fig. 1, right) but the number of elements within each configuration and the
number of configuration were the same. Again, in each trial of the experiment,
possible target locations had to be searched to find the target. The probability
to find the target by chance decreased to 1:4 for both OLD and NEW configu-
rations. That means, finding a target should be faster in general in comparison
to 16 locations because fewer locations have to be scanned.

The probability to find a target among similar distractors at a specific location
depends, amongst others, on the number of possible target locations. If a search
displays is repeatedly presented (OLD configuration), an association between
context and target location is learned. The association reduces the number of
locations that have to be scanned to find the target. The larger the number of
possible target locations the larger the reduction of to-be-scanned locations. This
property of the context can be described as the predictive value (as part of the
information content) of the context. Is the context still used to guide attention
to the target location if the information content and thus the predictive value
of the context is low? And if so, how large is the contextual cueing effect and
how is the time course of learning? In order to examine how contextual cueing
is established we analyzed the time course of the effect, i.e. the difference in RT
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Fig. 2. Predictions of the contextual cueing effect, i.e. the RT differences between
OLD (dotted lines) and NEW (solid lines) configurations, when the number of target
locations varies (left Exp.1 and right Exp.2)

between OLD and NEW context was analyzed as a function of time, while the
number of possible target locations varied (Exp.1 vs. Exp.2).

According to our assumption, we can make two predictions (cf. Fig. 2): 1)
Reaction times should be lower when the number of possible target locations
is reduced. 2) If contextual cueing depends on the information content of the
context, the contextual cueing effect is diminished when the number of possible
target locations is reduced. That is, the RT advantage of target localization in
OLD contexts compared to NEW contexts caused by attentional guidance should
be smaller.

4 Methods

4.1 Experimental Design

We ran two experiments, which were identical in the used stimuli and the gen-
eral procedure. In both experiments, subjects were presented with 16 OLD and
16 NEW configurations in each of 30 blocks. The only difference between the
experiments was the number of possible target locations. While in Experiment
1 a target could appear at one of 16 locations (each target location was used
once for OLD and once for NEW configurations), in Experiment 2 a target was
presented at one of 4 locations (each target location was used four times for
OLD and four times for NEW configurations) (cf. Table 1).

Table 1. Number of configurations and target locations in each experiment

Number of Number of Ratio
OLD NEW Target Locations Configurations
Configurations Configurations to Locations

Experiment 1 16 16 16 1:1
Experiment 2 16 16 4 4:1
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4.2 Participants

Thirty-two paid volunteers participated in two experiments, 16 participants each
(14 female, 2 male, aged between 19 and 29 years, mean age Exp.1: 22.6 years;
Exp.2: 22.7 years). In Experiment 1, three participants were left handed; in Ex-
periment 2 all participants were right handed. All participants reported normal
or corrected-to-normal visual acuity. The study was carried out in accordance
with the ethical standards laid down in the 1964 Declaration of Helsinki.

4.3 Stimuli and Apparatus

Participants were seated in a comfortable armchair in a dimly lit and sound
attenuated room with response buttons located under their left and right index
fingers. All stimuli were presented on a 17 inch computer screen placed 100 cm
in front of the participants at the center of their field of vision.

Participants searched for one of two task-relevant objects (the target) among
other task-irrelevant objects (the distractors) and identified the target by press-
ing a response key. Each search array consisted of 12 LEGO R© objects (1.2◦ in
visual angle), which could appear within an invisible matrix of 12 x 9 locations
that subtended approximately 15.1◦ x 10.2◦ in visual angle. The objects were
designed by a CAD program (LegoCad). The software, which was developed by
Lego in cooperation with Autodesk, allows constructing simple 3D models and
machines. Two red LEGO R© bricks were used to build one object. To make the
stimulus set more realistic the objects were additionally rotated in perspective
so that they appeared to lie on a surface.

In both experiments, the target was a LEGO R© object in the form of a ’T’,
rotated 90◦ to the right or left. In Experiment 1, the target was presented at
one of 16 selected locations of the 12 x 9 matrix (Fig. 1, left). In Experiment
2, the target was presented at one of 4 selected locations (Fig. 1, right). Thus,
in Experiment 1 each target location was associated with exactly one repeated
display, whereas in Experiment 2 each target location was associated with 4
different repeated displays (cf. Table 1). Target positions were identical for all
participants of an experiment.

The distractor objects were 11 L shaped LEGO R© objects, which were pre-
sented randomly in one of four rotations (0◦, 90◦, 180◦, 270◦). The distractor
locations in each configuration were randomly sampled from all 108 possible
locations, including target locations used in other configurations. In each config-
uration, half of the objects were placed left and the other half right of fixation,
balanced for eccentricity. Configurations were generated separately for each par-
ticipant.

Similar to previous experiments, we defined the visual context as the arrange-
ment of distractor objects. The OLD set of stimuli consisted of 16 configurations,
randomly generated at the beginning of the experiment then repeated through-
out the entire experimental session once per block. The target (left- or rightwards
oriented) always appeared in the same location within any particular configura-
tion and the identities of the distractors within their respective spatial locations
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were preserved. The target type (left- or rightwards pointing T) was randomly
chosen so that the identity of the target did not correlate with any of the con-
figurations. In contrast, in the NEW set of stimuli configurations of distracting
context elements were generated randomly on each trial. Any differences in RT
between OLD and NEW configurations can be interpreted as contextual cueing.

4.4 Procedure

The whole experiment consisted of three parts: training at the beginning of the
experiment, followed by the actual experiment, and a recognition test at the end.

Participants were instructed to search for a rotated T and press one of two
buttons corresponding to whether the top of the T was pointed to the right or to
the left as soon as they could. They performed three training blocks of 32 trials
each. A trial started with a fixation cross appearing in the middle of the screen for
500 ms. Afterwards, the search display was presented for 500 ms, and participants
pressed a key to indicate the identity of the target (a left- or rightwards pointing
T). After a brief pause of 1-2 s, the following trial was initiated by the computer.
The training was necessary to familiarize participants with the experimental task
and procedure and to minimize inter-subject variability.

The experimental session consisted of 30 blocks of 32 trials each (16 OLD,
16 NEW configurations), for a total of 960 trials for each participant. Stimulus
presentation and participants’ task were identical to the training session. Feed-
back was given at the end of the block on the percentage of correct responses.
Participants were not informed that the spatial configuration of the stimuli in
some trials would be repeated, nor were they told to attend to or to encode
the global array. They were simply given instruction to respond to the target’s
identity. It was stressed that they were to respond as quickly and as accurately
as possible. A mandatory break of about 1-2 minutes was given after five blocks
each and a longer break was given after half of the experiment.

At the end of the final block, participants performed a recognition task. The
recognition served as a control measure. All 16 OLD configurations were pre-
sented again, intermingled with 16 NEWly generated configurations. Partici-
pants were asked to classify all configurations as already seen or new, respec-
tively. If learning was indeed implicit, participants should not be able to distin-
guish between OLD and NEW displays.

4.5 Data Analysis

Reaction times were measured as the time between onset of the search display
and the participant’s response. Pressing the wrong button, pressing the button
too quickly (<150 ms) and pressing it too slowly (>2000 ms) were defined as
errors. Only correct responses were entered into statistical analyses. To estimate
the general learning effect and the time point when context learning occurred,
blocks were grouped in sets of 6 blocks each into 5 epochs. Error percentages
and mean reaction times of both experiments were entered in repeated-measures
ANOVAs with factors of context (OLD vs. NEW configurations), and epoch
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(1 to 5) as within-subject factors and experiment (1 vs. 2) as between-subject
factor.

Data were analyzed according to effects across experiments (common effects)
and to effects between experiments (differences). A main effect of epoch would
reflect changing RTs (or errors) in the time course of the experiment (i.e., general
learning effect). A statistical main effect of context would reflect how repeating
the same context affected the search for the target object (i.e., contextual learn-
ing). More important, if the difference between OLD and NEW context (i.e., the
contextual cueing effect) varies over time (i.e., epochs), this would be reflected
by an interaction between both factors and that would suggest the context infor-
mation was learned over time (i.e., time course of the contextual cueing effect).

The main goal of the present experiments was to investigate the size of the
contextual cueing effect when the advantage of context was reduced. Thus, in
addition to the overall size, we also analyzed the time course of the contextual
cueing effect, namely depending on the number of possible target locations.
Statistically, this effect would be reflected by a three-way interaction between
context (OLD vs. NEW), epoch (1 to 5), and experiment (1 vs. 2).

In order to demonstrate that the knowledge of display repetition (i.e., the
context) is indeed implicit, a recognition test was performed at the end of the
experiment. The hit rate (OLD displays were correctly categorized as old) was
compared to the false alarms rate (NEW displays were wrongly categorized as
old) by a paired t -test.

5 Results

Error percentages and reaction time data are presented as a function of epoch
and context in Figure 3, separately for Experiment 1 and 2.

Fig. 3. Error rates (left panel) and reaction times (right panel) as a function of epoch
(x-axis), separately for Exp.1 (circles) and Exp.2 (triangles)



The Time Course of Attentional Guidance in Contextual Cueing 77

In both experiments, participants’ accuracy increased in the course of the
experiment, F (4,120)=19.7, p<.001, ε=.142, similarly, F (4,120)<1, reflected by
decreasing errors from, on average, about 11.8% in epoch 1 to 5.3% in epoch
5. Planned comparisons revealed a significant decrease from epoch 1 to epoch
2, F (1,30)=34.5, p<.001, and from epoch 2 to epoch 3, F (1,30)=7.2, p<.05;
error rates then remained constant on this level, all F (1,30)<1. Error rates also
varied as a function of context, F (1,30)=24.0, p<.001; searching for a target in
an OLD context was, on average, more accurate than searching in a new context
(15.2% vs. 12.8%). However, a significant interaction between epoch and context,
F (4,120)=2.8, p<.05, indicates that this advantage developed during the course
of the experiment, indicating that an OLD context had to be learned as old first.
Probably, only some of the repeated OLD displays were learned from block to
block as reflected by a reliable linear trend, F (1,30)=4.2, p<.05. These effects
were similar in both experiments since there was no interaction with the factor
experiment (Fig. 3, left panel).

Table 2. Statistical Effects of Experiment 1 and 2

Statistical Effect Description Significance
Error Rate RT

Epoch General learning effect (GLE) p<.001 p<.001
Context Contextual cueing effect (CCE) p<.001 p<.001
Epoch x Context Time course of contextual cueing effect p<.05 p<.01

Experiment General differences between experiments p<.001 p<.05
Epoch x Experiment Differences in GLE between experiments n.s. n.s.
Context x Experiment Differences in CCE between experiments n.s. n.s.
Epoch x Context Differences in time course of the CCE n.s. p=.05
x Experiment between experiments

n.s. (statistically not significant): p>.296

Similarly to error rates, RTs decreased over time, F (4,120)=11.9, p<.001,
ε=.580 (Fig. 3, right panel). Single planned comparison showed a reliable linear
trend in search time, F (1,30)=20.1, p<.001. The contextual cueing effect, defined
as an RT benefit in the OLD condition compared to the NEW condition across
all epochs, was significant, F (1,30)=43.3, p<.001. The significant interaction
between epoch and context, F (4,120)=3.6, p<.01, indicated that performance
was similar for both context types at the beginning of the experiment but that
learning of the OLD context led to faster reaction times for the latter when
compared to NEW contexts. The overall contextual cueing benefit, measured
as the difference between OLD and NEW configurations across the last three
epochs [9] was 38 ms (SD=29 ms) in Experiment 1 and 28 ms (SD=22 ms) in
Experiment 2 (Fig. 3, right panel).

The comparison between both experiments shows, that with about 20.9%,
error rate was relatively high in Experiment 1 and significantly higher than in
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Experiment 2, F (1,30)=41.1, p<.001, where errors occurred on about 7.1% of
the trials. Participants were also faster in finding the target (RT ± SD) when it
was presented at one of four possible locations (Exp.2: 838 ± 93 ms) than when
presented at one of 16 locations (Exp.1: 954 ± 160 ms). More interestingly,
although the overall contextual cueing effect did not differ between both exper-
iments, F (1,30)<1, learning was different, F (4,120)=2.4, p=.05 (cf., Fig. 4). In
Experiment 1, the contextual cueing effect can be best described as linear trend,
F (1,15)=13.5, p<.01, whereas in Experiment 2 planned comparisons of subse-
quent epochs showed that an improvement in contextual cueing only occurred
from epoch 1 to 2, F (1,15)=4.6, p<.05, and remained constant at this level, all
F (1,15)<1.

Fig. 4. Contextual cueing (RT differences between OLD and NEW configurations) as
a function of time (x-axis), separately for Exp.1 (circles) and Exp.2 (triangles)

Similarly to previous studies, the knowledge about repeated configurations
was implicit. In the recognition test, the hit rate (50.5% or 45.0%, respectively)
did not differ significantly from the false alarms rate (44.1% or 48.4%, respec-
tively), F (1,30)<1.

To summarize the results, we found contextual cueing effects of compara-
ble size in both experiments. However, the time course of contextual learning
differed, as clearly visible in Figure 4.

6 Discussion

The aim of the present experiments was to investigate how the information
content of the visual context influences the contextual cueing effect. When the
number of possible target location is reduced, the probability to find the target
by chance is enhanced and the context provides less information in order to find
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the target. Thus, one might predict that the contextual cueing effect disappears
or is at least reduced.

In both of our experiments, we observed a reliable contextual cueing effect:
Finding a target in an OLD (familiar) context was faster than finding the target
in a NEW context. Because the context (i.e., the spatial arrangement of the
distractor items in a particular configuration) was univocally associated with
the target location in that particular configuration, observers obviously used
the context to guide attention to the relevant target location. Alternatively, one
may argue that the repetition of some displays only increased sensitivity. This
account would predict facilitation from repetition, which primes early percep-
tual processing mechanisms [9]. However, recently an electrophysiological study
showed that early visual processes were not influenced by the familiarity the
visual context [7]. Additionally, Wolfe and colleagues [8] found that the search
for the target was not facilitated when a repeated context did not predict the
target location.

The more plausible interpretation is that the visual context is used to guide
visual attention to the target location. In the OLD condition, the arrangement
of the distractors, the context, and the target location were kept constant. The
target identity, however, differed. To find and identify the target, observers had to
allocate their attention to the target location. In contrast to the NEW context
condition, the context predicted the target location (but did not predict the
target identity). Faster RTs in the OLD context therefore reflect a faster shift of
attention or, in other words, the visual context guides visual-spatial attention.
This interpretation is supported by electrophysiological experiments [7, 10].

In the present experiments, contextual cueing occured independently of the
number of target locations. The size of the contextual cueing effect (as measured
as the difference between OLD and NEW displays in the last three epochs) was
similar. However, how the association between a specific repeated configuration
and the corresponding target location was learned differed. This is clearly visible
when the contextual cueing effects (i.e., the difference in RT between OLD and
NEW displays) of both experiments are plotted against time (cf. Figure 4). When
a target was presented at one of 16 possible target locations, contextual learning
was linearly increasing with each repetition (Exp. 1). When a target could occur
only at one of four possible locations, context learning was very fast (Exp. 2). It
reached its maximum already in epoch 2 (after 6 repetitions).

7 Hypotheses of Attention Shifts in Contextual Cueing

How can these effects be explained? Most researchers agree that an association
between the spatial arrangement of the distractors (or context) and the target
location is formed, which is used to guide visual-spatial attention to the target
location [e.g., 1 but see also 11]. There are (at least) two hypotheses how this as-
sociation might be learned and used afterwards. In their initial paper, Chun and
Jiang [1] proposed that contextual information is instance-based, and contextual
cueing is a form of memory-based automaticity. These theories [12] assume that
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performance improvement is based on retrieval of past solutions from instances
of past interactions stored in memory. When searching for a target, its detection
is first mediated by generic attentional mechanisms in early stages of training.
Continuing the task, memory traces of these interactions are established. These
accumulate to provide solutions to the search task more quickly than a memory-
free attentional mechanism would. It is assumed that these memory traces are
instance-based, allowing for a distinction between stimuli that were presented
in the history of perceptual interactions from novel stimuli that were not. Ac-
cording to these theories, the exact target location should be associated with
a particular configuration. This hypothesis would predict increasing contextual
cueing effects in the time course of the experiment until all repeated displays
are learned. When an OLD display is presented again, attention can be shifted
to the exact target location as the complete association is available. We call this
’instance-learning hypothesis’ in the current paper.

Alternatively, it would also be possible that not the exact target location is
associated with a specific configuration but, as a first estimation, attention is
roughly shifted close to the actual target location. For example, participants
might first learn whether a target is located left or right of fixation, next the
quadrant might be estimated before finally the exact target location may be
associated with the context configuration. Thus, during the sequence of the ex-
periment, rough estimations might first be computed for all OLD displays in a
block and improve whenever these displays are repeated (’estimation hypothe-
sis’). Presenting an OLD display again decreases RT because the area in which
one has to search for the target becomes smaller.

In both cases, the learned context is used to guide visual-spatial attention.
According to the ’instance-learning hypothesis’, attention is guided directly to
the exact location of the target but only for a learned context; the number of
learned contexts increases over time. In the case of the ’estimation hypothesis’,
however, attention is guided roughly to the target area at the beginning of the
experiment and more exactly with each repetition, resulting in decreasing search
times because the area to be inspected becomes smaller.

According to the instance-learning hypothesis, a context-target association
has to be formed for each of the 16 OLD contexts. In both experiments, each
of the 16 OLD configurations has one unique target location that has to be
associated with a particular context. As only some of these associations are
learned during blockwise repetitions, the contextual cueing effect would increase
until all of them are learned. Thus, learning should be independent of the number
of possible target locations but depend on the number of associations to be
learned (which depend on the number of OLD contexts). As the number of OLD
contexts were the same in both experiments, the time course should also be the
same.

The estimation hypothesis, however, predicts different time courses of the
contextual cueing effect for both experiments. In case of 16 target locations
(Exp.1), the area to be searched for the target is reduced only slowly in the
time course of the experiment. Because of the high number of possible target
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locations, it takes some time until attention is shifted precisely to the correct
location. Thus, the prediction would be very similar to the instance-learning
hypothesis (Fig. 5, left panel). If, however, a target can only appear at one of
4 possible locations (Exp.2), already a rough estimation of the target location
is very efficient in guiding attention to the target. Thus, learning should be
fast at the beginning of the experiment, reaching an asymptote very quickly
(Fig. 5, right panel). Comparing the time course of contextual cueing of both
experiments, our data support the estimation hypothesis.

Fig. 5. Predictions of both hypotheses. When a target appears at one of 16 possi-
ble locations, both hypotheses would predict the same time course of the contextual
cueing effect (left panel). If, however, a target appears only at one of four locations,
the instance-learning hypothesis would predict the same time course as before while
the estimation hypothesis would predict fast learning at the beginning, reaching an
asymptote soon (right panel).

Because the time course of contextual cueing differed between both exper-
iments and the time course of the second experiment followed the predictions
of the estimation hypothesis, we assume that attention is probably not shifted
directly to the exact stimulus location but the number of probable target loca-
tions is minimized by a rough estimation. Going back to the example described
at the beginning, this would mean: We do not need to know the exact location
of our cup on the desk to find it efficiently in a familiar context. Rather, we find
it faster when we only roughly know the part of the desk the cup is placed in.

This idea can be further investigated by the so-called eye tracking method,
by which participant’s eye movements are measured while they are performing
a contextual cueing task. It is well established in literature that one can esti-
mate the allocation of attention by measuring where people look at. Using this
method in a contextual cueing task allows to determine where attention has been
(fixation location). Also, the accuracy (and inaccuracy) of attentional guidance
(the distance of a fixation from the target) can be measured, as well as the
number of items that were attended before the target was found (the number
of fixations). A recent study by Peterson and Kramer [13] partly supports the
assumption that attention is not directly guided to the target location. In one
of their experiments they showed that only on 11.3% of the trials, the eyes (and
therefore also attention) went immediately to the target. For comparison, the
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chance probability that the first item inspected by the eyes was the target was
8.33%. However, the first fixation was not closer to the target in OLD than in
NEW configurations, a result that seems to contradict our interpretation of the
results. The authors argue that the brain does not notice a repeated display from
the beginning of its presentation but that recognition occurs later in the search
process. As soon as the context is recognized, attention is guided directly to the
target location.

In their model, recognition of the repeated search display plays an important
role. The authors assume that the search for the target is started in a similar way
in OLD and NEW configuration. As soon as some parts (one or more objects
and their spatial relations to each other) of the contexts are recognized, the
associated target location is retrieved from memory and applyed to the current
search display in order to guide attention. It should be noted that the term
’recognition’ does not imply that participants can explicitly remember a specific
context. This model does explain the occurence of a contextual cueing effect
in our experiments but not the different time courses. In both experiments, we
used the same number of search displays with the same number of items. Also,
the number of OLD and NEW displays was identical. Thus, the probability
to recognize a particular configuration was exactly the same. However, although
the size of the contextual cueing effect was comparable between both experiment
(that would be expected by Peterson’s and Kramer’s interpretation), the time
course across the experiment varied (a result that cannot be explained by their
findings).1

8 Application to Technical Systems

Within the engineering domain, the development of enabling technologies such
as autonomous robotic systems and ambient intelligence systems involves the
real-time analysis of enormous quantities of data. These data have to be pro-
cessed in an intelligent way to provide ’on time delivery’ of the required relevant
information. Knowledge has to be applied about what needs to be attended to,
and when, and what to do in a meaningful sequence, in correspondence with
visual feedback. Contextual cueing may be one important process that allows
shortening the computational time required to estimate where attention should
be directed to.

Depending on the proposed hypotheses, the algorithm to be implemented
would differ. The instance-based hypothesis would require instances for all pos-
sible contexts. Although very effective if a context is once learned, a slightly
different context would require learning of an additional instance. If, however,
an estimation algorithm would be implemented, the learned knowledge of the
1 However, we cannot rule out the possibility that in our experiments the learning

process itself (i.e., how the association between context and target location was
acquired) differed when the number of target locations was reduced. This alterna-
tive interpretation of the present results has to be tested further, for example, by
measuring eye movement or the underlying brain activity.



The Time Course of Attentional Guidance in Contextual Cueing 83

system could also be transferred to similar contexts and a target could still be
found efficiently when it is placed slightly beside the original target location.

Recently, some models have been developed to implement contextual knowl-
edge into attention models in order to predict its guidance [14, 15, 16]. Because
of limited space we are not able to describe them in detail but it should be noted
that visual context plays an important role in guiding visual-spatial attention.

To summarize, although visual search for a task-relevant object among task-
irrelevant objects is a demanding task for the visual information processing,
implicit learning mechanisms, such as contextual cueing, allow the visual system
to quickly extract stimulus regularities [2]. Implementing such a mechanism into
cognitive technical systems may help to develop flexible and adaptive behavior.
The current experiments provide some evidence how such a learning process
might be implemented to technical systems. A rough estimation algorithm where
to shift attention to might be the better way to simulate context information
than learning of specific context-target associations.

9 Conclusion

When search displays are presented repeatedly, an association between the con-
text (i.e., the configuration of distractors) and the target location is formed,
which guides attention and speeds up search time. Depending on the number
of locations, the time course of the contextual effect can differ even when the
averaged effect is similar. Thus, the time course of this effect provides important
information about the underlying contextual learning.
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[7] Schankin, A., Schubö, A.: Cognitive processes facilitated by contextual cueing.
Evidence from event-related brain potentials. Psychophysiology (in press)

[8] Wolfe, J.M., Klempen, N., Dahlen, K.: Postattentive Vision. Journal of Experi-
mental Psychology: Human Perception & Performance 26, 693–716 (2000)

[9] Bar, M., Biederman, I.: Subliminal visual priming. Psychological Science 9, 464–
469 (1998)

[10] Olson, I.R., Chun, M.M., Allison, T.: Contextual guidance of attention: human
intracranial event-related potential evidence for feedback modulation in anatomi-
cally early temporally late stages of visual processing. Brain 124, 1417–1425 (2001)

[11] Kunar, M.A., et al.: Does contextual cuing guide the deployment of attention?
Journal of Experimental Psychology: Human Perception & Performance 33, 816–
828 (2007)

[12] Logan, G.D.: Towards an instance theory of automatization. Psychological Re-
view 95, 492–527 (1988)

[13] Peterson, M.S., Kramer, A.F.: Attentional guidance of the eyes by contextual
information and abrupt onsets. Perception & Psychophysics 63, 1239–1249 (2001)

[14] Brady, T.F., Chun, M.M.: Spatial constraints on learning in visual search: Mod-
eling contextual cueing. Journal of Experimental Psychology-Human Perception
and Performance 33, 798–815 (2007)

[15] Backhaus, A., et al.: Contextual learning in the selective attention for identi-
fication model (CL-SAIM): Modeling contextual cueing in visual search tasks.
In: Proceedings of the IEEE-CVPR Workshop in Attention and Performance in
Computer Vision (WAPCV), pp. 1–7. IEEE-Press, San Diego (2005)

[16] Torralba, A., et al.: Contextual guidance of eye movements and attention in real-
world scences: The role of global features in object search. Psychological Re-
view 113, 766–786 (2006)



L. Paletta and J.K. Tsotsos (Eds.): WAPCV 2008, LNAI 5395, pp. 85 – 97, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Conspicuity and Congruity in Change Detection 

Jean Underwood1, Emma Templeman2, and Geoffrey Underwood3 

1 Division of Psychology, Nottingham Trent University, Nottingham NG1 4BU, UK  
jean.underwood@ntu.ac.uk  

2 School of Psychology, University of Nottingham, Nottingham NG7 2RD, UK 
lpyyeclt@nottingham.ac.uk 

3 School of Psychology, University of Nottingham, Nottingham NG7 2RD, UK  
geoff.underwood@nottingham.ac.uk 

Abstract. How does visual saliency determine the attention given to objects in 
a scene, and is the detection of change dependent upon the conspicuity of the 
changed object? Viewers’ eye movements were recorded during the inspection 
of pictures of natural scenes. Two versions of a scene were compared to deter-
mine whether or not they were the same. The two images were either available 
at the same time (Experiment 1), or consecutively (Experiment 2). When an ob-
ject was changed, it either had high or low visual saliency and it either was 
congruent with the scene or it violated the gist in that it would not be expected 
to be seen in that context. Previous studies have indicated that incongruous ob-
jects sometimes attract early attention, but the inconsistency of this effect leads 
to the question of whether it is dependent upon conspicuity rather than congru-
ity. Incongruous objects attract early eye fixations here, dismissing the explana-
tion based on visual saliency. 

1   Introduction 

When inspecting a scene, incongruous objects are identified with greater difficulty 
than corresponding objects that are consistent with the gist. In each scene with a rec-
ognizable gist – a bathroom, a roadway, or a golf course, for example - we would 
expect to see certain objects – a sink, a bar of soap, a towel, and a toothbrush in the 
case of a bathroom. If an object from another scene is present – a golf ball in the sink, 
perhaps – it can be described as violating the gist. Such an object would be recognised 
with greater difficulty than if it had appeared in a picture of a putting green.  

The conclusion that we have rapid identification of scene gist follows from Bied-
erman’s studies in which viewers attempted to identify objects in briefly presented 
photographs that were shown individually [1, 2, 3]. When pictures were cut up and re-
arranged, thereby disturbing the gist of the scene, objects that remained in their un-
jumbled locations were recognised with more difficulty. These experiments support 
the conclusion that the gist of the scene aids object identification, reflecting the facili-
tating effect of sentential context on word recognition when reading. The interaction 
between objects and their context of presentation has also been demonstrated by Dav-
enport and Potter [4]. Objects were copied onto background scenes that indicated a 
contextual gist, and objects that violated the gist were identified less well than those 
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that were consistent (for example, a football player superimposed into the foreground 
of a church interior compared to a sports field). 

The evidence from these studies suggests that the gist of a picture can be perceived 
quickly, and that context aids the recognition of objects that are consistent with the 
scene. Violations of gist result in impaired recognition, as they did with the gist-
reduced jumbled pictures used by Biederman and his colleagues [1, 2, 3] and with the 
identification of inconsistent objects pasted into Davenport and Potter’s [4] scenes. 
Objects can violate the gist by the improbability of their appearance in that scene. 
Biederman, Mezzanotte and Rabinowitz [5] found that objects in drawings had im-
paired identification when they were unlikely elements of that scene as well as when 
they violated the relational structure of the scene, for example by being drawn too 
small or by not resting on a supporting surface. This experiment again demonstrates 
that objects that violate the gist are recognised with greater difficulty than those that 
contribute to the gist.  

This conclusion, which appears from the Biederman and Davenport studies [1, 2, 3, 
4, 5], conflicts with the findings from studies of picture perception in which eye 
movements are recorded. Objects that violate the gist of the scene attract early eye 
fixations. This is paradoxical because some studies have demonstrated a recognition 
disadvantage while other studies have demonstrated that these objects are able to 
attract earlier eye fixations. Mackworth and Morandi [6] recorded eye movements 
while viewers judged which of two pictures they preferred. Regions of the pictures 
that were regarded subjectively as being most informative received more fixations, 
and non-informative regions were often not fixated at all. This suggests that our view-
ing of a picture can be guided by the processing of meaningful elements prior to their 
fixation and close inspection, and this conclusion was supported by Loftus and Mack-
worth’s [7] experiment with line drawings of simple scenes in which an incongruous 
object was fixated very early in the sequence of inspection. Viewers tended to fixate 
the anomalous object with the first fixation, and they tended to fixate these objects 
earlier than a gist-consistent object drawn in the same region of the picture.  

It is important to note that the idea of early fixations being attracted to anomalous 
objects has not gone unchallenged.  Two studies have recorded eye fixations during 
the inspection of line drawings of familiar scenes that sometimes contained objects 
that were out of place, and incongruous objects attracted early fixations in neither 
experiment [8, 9]. In a range of tasks there was no evidence of the earlier fixation of 
anomalous relative to gist-consistent objects. One possibility that might explain this 
inconsistency in the pattern of results follows from differences in the images used in 
the different experiments. The stimuli in these later studies [8, 9] were redrawn from 
photographs and were therefore visually complex with crowded and partially oc-
cluded objects in them, whereas Loftus and Mackworth [7] used simple hand-drawn 
sketches that contained sufficient information to convey the intended gist but little 
detail. Identifying any object in the complex line-drawings is difficult but with the 
simple drawings each object is readily identifiable. The possibility to be considered 
here is that the early capture of attention by incongruous objects depends upon their 
visually conspicuity.  

Attention is attracted by the conspicuity of objects and the early allocation of vis-
ual attention to an object is determined by its low-level visual saliency value relative  
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to that of other objects in the scene. During the initial viewing of an image a saliency 
map is said to be developed using low-level visual discontinuities of color, intensity 
and line orientation [10]. The saliency peaks in this map represent regions that are 
distinct from their surroundings, and attention is first attracted to the highest peak – 
the most conspicuous object or region. The semantics of the scene can be appreciated 
only after early attention has been allocated to regions according to their saliency 
ranks. After the first few fixations the meaning of the scene can be appreciated, and 
eye movements can then be made to areas of high-level interest. The model makes 
good predictions about the early locations of eye fixations on static and dynamic 
pictures in free-viewing and recognition memory tasks [11, 12, 13, 14]. A plausible 
explanation of the effect in the Loftus and Mackworth [7] is that the anomalous ob-
jects in the pictures may have been more visually salient than those used in the later 
studies [8, 9], and it may have been high saliency that resulted in the attraction of 
early fixations. Saliency does not explain why Loftus and Mackworth found a differ-
ence between consistent and inconsistent objects, however, only why the difference 
does not emerge when the objects are obscured by rich backgrounds. Our initial 
purpose was to determine whether incongruous objects attract early eye fixations in 
pictures of real-world scenes when the saliency values of the objects are known and 
controlled. Photographs rather than line-drawings were used, and the saliency values 
of objects used to determine whether early eye fixations are associated with conspi-
cuity or congruency. 

In the first experiment eye fixations were recorded while participants looked at 
pairs of pictures in a comparative visual search task [15, 16, 17]. The two pictures 
were displayed side by side and the task was to say whether they were the same or 
not.  On those trials where the two pictures were not identical, only one object was 
changed. The scenes had readily identifiable gists and were photographed in a domes-
tic environment. Each scenes was photographed a second time with just one object 
replaced, and the new object was either consistent with the gist, or it was incongruous 
in that it would not normally be found in that setting. The saliency values of all ob-
jects were determined used the Itti and Koch algorithm [10], and a set of pictures 
created in which the new object varied in its low-level conspicuity and in its high-
level congruency. 

In the second experiment the same images were used and eye fixations again re-
corded, but here the two pictures were presented sequentially. The comparative visual 
search task was used because it requires a search of objects in the scene rather than a 
search for one object. Viewers characteristically make a series of comparative brief 
fixations, looking first at an object in one picture and than at the corresponding region 
in the other picture to determine whether they are identical or not [17]. Detection of a 
difference depended upon direct fixation of the changed object in that study, and so 
we expected a high proportion of fixated target objects here. By presenting the second 
image only after the first image has been inspected and its display terminated, this 
task emphasizes the role of visual memory in change detection, whereas in the com-
parative visual search task the viewer need only remember one object at a time before 
switching fixation to the corresponding region of the paired image. The successive-
presentation version of the task requires encoding of an entire scene rather than of 
individual objects within that scene. 
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2   Experiment 1: Comparing Concurrent Images 

In this experiment viewers looked at a pairs of images to decide whether they were 
identical or whether an object had been changed. Both versions of the pair of images 
remained on the screen until a response was made. Eye movements were recorded to 
determine whether the early fixation of incongruous items were associated with their 
visual saliency. 

2.1   Method 

Twenty-four members of the university community who had normal or corrected-to-
normal vision were paid for their participation in this experiment. 

Pairs of digital color photographs were prepared for presentation on a 36 cm x 27 
cm computer monitor, with 40 pairs of identical images and 40 pairs with one object 
replaced in otherwise identical images. For the pairs containing a change, two photo-
graphs were taken from the same position, with an object replaced by another of simi-
lar size. The scenes were photographed in portrait orientation, so that they could be 
displayed side by side on the monitor, and there was a gap of 0.5 cm (0.46 deg). Each 
of the paired images was shown at a viewing distance of 60 cm and subtended 17.5 
deg x 22.5 deg at this distance.  

For the pairs of pictures that contained a changed object, four types of changes 
were made. Changed objects could vary in their visual conspicuity as well as their 
semantic congruency. The high conspicuity condition was defined by one of the ob-
jects having high saliency. For the purposes of the experiment, high saliency was 
defined as being one of three top-ranked objects according to the Itti and Koch (2000) 
algorithm, and low saliency was not in the eight most salient objects. The two condi-
tions that are marked as having conspicuous target objects have much lower mean 
ranks than do the two conditions marked as showing inconspicuous objects. The mean 
ranks for the conspicuous conditions were very similar (1.68 and 1.55 for congruent 
and incongruent changes), as were the mean ranks for the inconspicuous conditions 
(13.25 and 13.70). This close matching of the saliency ranks of the target objects 
ensures that any effects of congruency are independent and cannot be attributed to 
conspicuity. The original object was always congruent to the scene and of a saliency 
rank value of 4-7. The semantic congruency of a scene was either maintained by using 
objects normally associated with the other objects depicted (congruent), or violated by 
replacing it with an object from another scene (incongruent). In an image of a bath-
room shower, for example, a food container replaced a shampoo bottle, and for a 
congruent change in a scene showing food preparation on a kitchen worktop a potato 
replaced an apple. There were ten examples of each type of change. An example of a 
pair of images with a change is shown in Fig. 1 (top pair), with eye fixations from one 
participant superimposed on them. Fig. 1 (bottom pair) also shows an example for a 
pair of identical pictures, again with the fixations of one participant indicated.  

Forty additional photographs without any changes were prepared, with half 
containing an incongruous object. This enabled us to show participants equal numbers 
pairs without and without changes. Each of the 40 scenes was used in each of the four 
change conditions over the course of the experiment, with four images created of each 
scene. Each scene was presented in each condition to different participants, but each  
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Fig. 1. Examples of pairs of images in which there is a changed object (top) and in which the 
images are identical (bottom). Eye movements from one participant are represented by the 
super-imposed lines, and started in each case with fixation on the white space between the two 
versions of the image. Note the larger number of fixations when there is no object changed 
(bottom), and the sequence of comparative fixations from an object in one picture to the corre-
sponding region in the other picture. 

participant saw a scene only once. The images were displayed on a colour monitor 
and had a resolution of 1024 x 768 pixels. A head-mounted SMI EyeLink system was 
used to record eye movements, with recordings taken every 4 ms, with a spatial 
accuracy better than 0.5 deg. A chin rest was used to restrict head movements. The 
experiment started with a 9-point calibration procedure and once successful a set of 8 
pairs of photographs was shown for practice and to demonstrate the type of pictures 
used. Examples from all conditions were used during practice. The participants were 
instructed to first fixate a marker in the center of the computer monitor, and when the 
pair of photographs appeared they were to say whether they were the same or 
different by pressing one of two keys on the computer keyboard. The pair of pictures 
remained on the screen until the participant responded.  
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2.2   Results 

The keyboard response times were submitted to a 2x2 analysis of variance with con-
gruency and conspicuity as the factors. The means and standard errors are shown in 
Fig. 2, together with the corresponding means from Experiment 2. The anova showed 
an effect of congruency of the replacement object (F(1,23) = 10.74, p < .01), with 
faster decisions to pairs of images containing incongruent objects (2.75 s) than to 
those with a congruous object (3.15 s). There was no main effect of conspicuity 
(F(1,23) = 1.57) and no interaction (F < 1). Response accuracy (see Fig. 3) was 
greater than 85% and there were no reliable effects of saliency (F<1) or congruency 
(F(1,23) = 3.62) and no interaction (F<1). 
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Fig. 2. Response times in Experiment 1 and Experiment 2, for the four saliency/congruency 
conditions. HiSal-Cong = high saliency and congruous; HiSal-Incong= high saliency and in-
congruous; LoSal-Cong = low saliency and congruous; LoSal-Incong = low saliency and in-
congruous. 
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Fig. 3. Response accuracies in Experiment 1 and Experiment 2, for the four saliency/congruency 
conditions 
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Fig. 4. Time elapsed prior to first fixation of the changed object in Experiment 1 and Experi-
ment 2, for the four saliency/congruency conditions. Note that the large difference between 
experiments is due to the availability of two images in Experiment 1 and only one image in 
Experiment 2. 
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Fig. 5. Duration of the first fixation of the changed object in Experiment 1 and Experiment 2, 
for the four saliency/congruency conditions 

The remaining analyses determined how quickly the objects of specific interest 
were inspected, using the time and number of fixations made prior to the first fixation 
on the changed object and on its counterpart original object in the pair of images dis-
played. In the pictures of a kitchen scene in Fig. 1 (top pair), the participant has made 
comparative fixations of the box of teabags in each image before moving to a nearby 
food jar. The comparative fixation reveals that the food jar in the picture on the left 
has been replaced in the picture on the right, by a shampoo bottle (incongruous 
changed object). The response decision can then be made. Three within-groups 
anovas, each with three factors, were used to analyze the number of fixations prior to 
fixation of each object, the time elapsed before fixation of each object, and the mean 
duration of the first fixation on each object. The three factors were object of interest 
(changed original), high/low congruency, and high/low saliency. 
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The anova of the time elapsed prior to the first fixation of the objects indicated an 
effect of congruency (F(1,23) = 8.10, p < .01), with pictures containing two congru-
ous objects being fixated 1.90 s after display onset, in contrast with the corresponding 
incongruous object being fixated after 1.66 s. There was no effect of saliency (F(1,23) 
= 2.21) no effect of object inspected (F < 1), and there were no interactions. The 
means are shown in Fig. 4. 

The duration of the first fixation on an object (see Fig. 5) also showed an effect of 
congruency (F(1,23) = 4.57, p < .05), with longer fixations (231 ms) on incongruous 
objects than on their congruous counterparts (218 ms). There was no effect of sali-
ency, F < 1, no effect of object inspected (F(1,23) = 1.38) and no interactions. 

3   Experiment 2: Comparing Consecutive Images 

In Experiment 1 the participants looked at two co-present images to determine 
whether they were the same or not, and they frequently made comparative eye fixa-
tions on corresponding objects. This strategy is illustrated in Fig. 1, where successive 
fixations are made to an object in one image and then to the same region of the other 
image. This leads to the suggestion that they do not attempt to remember the whole 
scene, but that they make specific comparison between individual objects. However, 
in Experiment 2 this strategy was eliminated by showing first one image and then the 
other. This version of the task requires memory of the complete scene. The attention-
capturing effect of an incongruous object was demonstrated to some extent in Ex-
periment 1, with earlier fixation of an object that violated the gist of the scene, as in 
the Loftus and Mackworth [7] experiment with line drawings. The capture of attention 
by the incongruous object was not immediate, however, and appeared only a few 
moments of inspection. In Experiment 2 it was argued that the effect may appear 
earlier because the image containing the incongruous object appears only after inspec-
tion of the comparison image has been competed. If the first image is well-encoded 
during this inspection, then the changed object may be comparatively distinctive. 

3.1   Method 

Twenty-four participants with normal or corrected-to-normal vision were paid for 
their participation. None had been involved in Experiment 1. 

The pictures from Experiment 1 were again used here, but whereas in Experiment 1 
the two versions of an image appeared on the screen at the same time, in this experi-
ment they appeared one after the other, on opposite sides of the computer screen. The 
first image of a pair appeared on the left and the right of the screen equally often. 
Viewing conditions were otherwise the same as in Experiment 1.  

For each pair of different images, there were four variations of the changed object 
per scene, using the same four different treatment conditions of high/low saliency and 
congruent/incongruent. When a replacement object was used, it always appeared in 
the second image of each pair. As previously, each participant saw 40 pairs of images 
with an object changed, and 40 pairs where there was no difference between them. 
The eye-tracker and calibration procedure were as described in Experiment 1. 
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3.2   Results 

The response time, accuracy, and eye fixation measures were subjected to within-
groups anovas, with saliency (high vs. low) and congruency (congruent vs. incongru-
ent) as the factors. Although eye movements were recorded during the inspection of 
both images in each pair, only the data from inspection of the second image were 
analysed. 

The response times were reliably different in the congruency condition (F(1,23) = 
35.91, p <.01) with faster responses to trials containing an incongruent object (2.15 s) 
than to trials containing a congruent object (2.99 s). There was no main effect of sali-
ency (F<1) and no interaction (F<1). 

Responses also varied in accuracy according to the congruency of changed objects 
(F(1,23) = 54.35, p <.01), with more accurate responses to pictures containing an 
incongruent object (84.79%) than to pictures containing a congruent object (54.38%). 
There was no main effect of saliency (F<1) and no interaction, F<1. This pattern is 
shown in Fig. 3. 

The anova of the time elapsed prior to first fixation on a target object did not reveal 
a main effect of saliency (F<1), or of congruency (F<1), or an interaction, F<1.  

The congruency of an object influenced the duration of the first fixation (F(1, 23) = 
15.57, p <.001), with a longer fixation on an incongruent target object (254 ms) than a 
congruent target object (239 ms). There was no main effect of saliency (F<1) and no 
interaction (F<1) between the factors of congruency and saliency.  

4   Discussion 

In each experiment viewers saw two pictures of a natural scene on each trial, and 
judged whether they were the same or different. When they were different just one 
object had been changed. The new object was either high or low saliency, and was 
either semantically congruent or incongruent. In Experiment 1 the two versions of each 
picture were presented concurrently, and in Experiment 2 they appeared consecutively. 
To identify the changed object with the concurrent display (Experiment 1), the viewer 
could look at an object in one version of the picture and then check whether it was 
changed or unchanged in the other version. The iterative use of this object-by-object 
inspection strategy eventually finds the changed object, when there is one, and this 
strategy is commonly found in studies of comparative visual search [17]. With the 
consecutive display (Experiment 2) a different strategy is required, and the entire first 
image must be encoded prior to the second image becoming available. This task re-
quires a visual memory of the image to be compared against the second version of the 
picture. This consecutive comparison task was difficult – accuracy was poorer, and 
fixation durations were longer than when object-by-object inspection was possible.  

The other main difference between these two experiments involved the time that 
elapsed before the changed object was fixated. When both images were available an 
effect of semantic congruency was found – incongruent objects attracted attention and 
were fixated earlier than objects that did not violate the gist of the scene. This effect 
was not apparent with the consecutive displays when the whole scene had to be en-
coded and remembered. This task can be considered to be a one-shot version of the 
traditional change detection task with the flicker paradigm [18, 19]. When single 
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objects are changed in natural scenes that repeatedly alternate between the two ver-
sions of the image [20], detection accuracy is similar to that seen in Experiment 1. 
The poor performance in the one-shot version of change detection used here is attrib-
utable to the need to remember the detail of an entire visual scene from a single view-
ing, and our reputably excellent visual memory does not serve this task well. 

The study investigated whether incongruent objects attracted early fixations and 
whether this incongruency effect depended upon the object being visually conspicuous. 
The question about attentional capture by objects that violate the gist was prompted by 
an inconsistency in the results from previous studies of incongruity [7, 8, 9]. This ques-
tion is important because it bears on the issue of whether objects in scenes can be rec-
ognised pre-attentively using peripheral vision. If pre-attentive recognition of objects 
in natural scenes is possible, then we might expect to see informative or interesting 
objects, such as those that violate the gist, being recognised early and without foveal 
inspection. When objects attract eye fixations they must have been processed to the 
extent that the differentiating feature can be used by the eye guidance mechanism – 
whether it is a low-level feature such as colour or a high-level feature such as semantic 
incongruity. If it is the scene semantics that influence guidance then we can conclude 
that the meaning of the object/scene relationship has been recognised prior to the ob-
ject receiving focal attention. 

Experiment 1 provides partial support for the view that objects can be recognised 
prior to the fixation and that this process of recognition can be used to guide subse-
quent eye movements. The evidence is supportive in that incongruent objects that 
violated the scene gist were fixated earlier than objects that were consistent with the 
gist. Incongruent objects were fixated earlier than their congruent counterparts. Two 
other measures also indicated an effect of object congruency: the longer inspection of 
the display, and longer durations of fixations on the object, when the display con-
tained an incongruous object.  The sensitivity to the congruency between the object 
and the scene indicates that the object is identified to some extent prior to its first 
fixation. This does not establish that an incongruent object is fully identified prior to 
its first fixation, only that some characteristic has been recognized, establishing that it 
is not semantically consistent with the other objects in the scene. Prior to their fixation 
then, objects may be partially recognised and their relationship with other objects 
determined to be inconsistent. This incomplete processing may involve the recogni-
tion of the shape, colour and other visual features that together will identify the object 
as belonging to a category of items that are improbable members of that scene. In the 
kitchen scene shown in Fig. 1 for example, a bottle of the particular shape is improb-
able in the location shown, and the viewer does not need to identify it as a shampoo 
bottle to appreciate the incongruency. Detailed foveal inspection provides this fine-
grained information, but it may be the early partial identification that demands fixa-
tion of the object. When it is eventually inspected, the first fixation on the object is 
longer than if the object had been congruent with the context of the scene, and this 
long foveation was seen in both experiments. 

The results provide only partial support for the early recognition of objects because 
the first fixation of the critical object did not occur until several fixations after first 
inspection of the pictures, that is the effect was not apparent until the pictures had 
been displayed for several seconds. Loftus and Mackworth [7] reported a difference in 
the probability of fixation between congruent and incongruent objects on the second 
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fixation, suggesting that the incongruency was recognised almost immediately upon 
the appearance of the display. In Experiment 1 there was no evidence of such an early 
difference in the fixation of objects (see Fig. 4), and 1.66 s elapsed before fixation of 
the incongruous object. This was faster than the corresponding number of fixations 
prior to fixation of a congruous object (1.9 s), but not indicative of the immediate 
identification of an object that violated the gist of the scene. Unlike the earlier study 
[7], an incongruous object did not attract the first or second fixation on the picture. 
This may have resulted from our use of natural images that contained greater com-
plexity than Loftus and Mackworth’s line-drawings. More detailed inspection with 
more fixations may have been necessary in the present experiments, to build a usable 
representation of the image.  

The inconsistency between results from previous studies that have used line-
drawings [7, 8, 9] is that the incongruency effect may emerge only when the incon-
gruent object is visually salient and is conspicuous against its background scene. This 
possibility was explored by varying the saliency of the object that was changed. Itti 
and Koch’s [10] algorithm for determining visual saliency was applied to all of the 
images used, and the objects of interest had either high saliency (being one of the 
most conspicuous objects in the picture) or low saliency (being relatively inconspicu-
ous). There was no effect of conspicuity according to any of the measures taken in 
either experiment. A similar result was observed in a change detection experiment 
using the flicker paradigm [20], with incongruous objects detected most easily, but 
with no effects of saliency. In the present study an incongruent object attracted atten-
tion early and gained faster responses than those where the gist was not violated, but 
there were no indications of an effect of saliency with these or with any of the other 
measures. The incongruency effect cannot depend upon the visual conspicuity of an 
object that violates the gist of the scene as it was not the brightness or the colour of an 
incongruent object that resulted in its early fixation. The absence of an effect of sali-
ency demonstrates that the result is a consequence of the viewer’s sensitivity to the 
scene semantics rather than from low-level visual processes. 

One might argue the incongruity effect is artifact of the method, in that any incon-
gruous items were always changed items, so identification of an incongruous item 
would lead to an immediate cessation of the search. However, this assumption is con-
sistent with the response time data but cannot explain differences in fixation patterns, 
specifically the early fixation of incongruous objects  

Loftus and Mackworth’s (1978) three-stage model of scene perception is largely 
confirmed by the current evidence. These stages are the rapid determination of the 
gist of a scene, the partial recognition of objects in the scene, and the computation of 
the conditional probabilities of objects appearing in that scene. The eye guidance 
mechanism then makes use of these conditional probabilities, directing fixations to 
objects with low probability of occurrence. The first two stages must occur in parallel, 
otherwise we have the conundrum of the gist being recognised prior to identification 
of the component objects. If there is partial identification of the objects – we might 
recognise an object as a bottle, or a piece of fruit without identifying the type of bottle 
or the type of fruit – then the gist of the scene can be established as the sum of the 
features identified. An object that violates the gist may then cause a perturbation or 
discontinuity in this semantic saliency map and this activity will attract fixations as 
the viewer attempts to resolve the inconsistency. This model of scene perception may 
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resolve the paradox of why incongruent objects are difficult to identify and yet attract 
eye fixations. The partial recognition of a non-fixated object may be sufficient to 
determine that it violates the gist of the scene and that it requires more detailed in-
spection, and when it is fixated the inconsistency between the object and its context 
delays full identification. 

The difficulty of the task in Experiment 2, in which viewers’ were required to re-
member the first scene for comparison with the second, supports Rensink’s [21] co-
herence theory to some extent, in that it implies that no lasting memory of an object in 
a scene is formed once attention has left that object. If a stable visual memory of the 
first scene had been established the changes would have been detected more accu-
rately. We clearly do have visual memories of natural scenes, and so the possibility 
arises that short-term visual memories impose a high cognitive load and that makes 
their use in change detection inefficient. Object changes can be detected after long 
intervals however – after a 30 min interval [21] and even after 24 hours [22]. Holl-
ingworth [22] found that after a 20 s scene presentation, rotation changes or token 
changes of an object could still be detected above the level of chance, even though 
detection rates were impaired compared to an immediate test. It was concluded that 
this finding endorsed the robustness of visual memory theory of scene representation 
that suggests that when an object is fixated, an object representation is fixed to the 
spatial layout of the scene in short-term memory, which is then consolidated into a 
long-term memory representation [21]. According to this theory, when a target object 
was inspected, the object from the first picture that was encoded to that specific loca-
tion in a spatial memory representation should have been activated, thus allowing the 
change to be detected. However, the accuracy data do not confirm this argument. The 
discrepancy in these results with those of Hollingworth [22] may be due to task dif-
ferences. In this experiment, participants were told to search for a change whereas in 
Hollingworth’s experiment, the target object was cued. Therefore, it may not the case 
that no scene representation indexed with objects and their location was formed after 
viewing the first picture in each pair, but that access to specific object representations 
requires a retrieval cue. While this suggests that a retrieval failure may be responsible 
for the inaccuracy of the results, it cannot explain the large difference in accuracy 
between the congruent and incongruent target objects and it therefore seems unlikely. 
An alternative explanation of the poor accuracy of responses in the consecutive dis-
play task may be that the original objects were not encoded as thoroughly as required 
by the task. Yet again, an encoding failure cannot explain why trials with incongruent 
target objects were responded to more accurately than those with congruent target 
objects.  

In essence it appears from the accuracy data that visual memory representations of 
the first picture in each pair were either not created or just not used effectively. This 
complies with O’Regan’s [24] suggestion that our environment is rich enough to 
serve as its own ‘external memory’, so when presented with a scene we do not need to 
refer to our memory but instead we just process what we are looking at. The congru-
ency effect shows that we do initially identify the scene’s gist, and although it has a 
limited influence on the guidance of eye movements it does have an effect on the 
durations of fixations once a candidate object has been fixated, with fewer, longer 
fixations on incongruent objects that do not fit the gist of the scene.  
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Abstract. In prior work, we put forth a model of visual saliency moti-
vated by information theoretic considerations [1]. In this effort we consider
how this proposal extends to explain saliency in the spatiotemporal do-
main and further, propose a distributed representation for visual saliency
comprised of localized hierarchical saliency computation. Evidence for the
efficacy of the proposal in capturing aspects of human behavior is achieved
via comparison with eye tracking data and a discussion of the role of neu-
ral coding in the determination of saliency suggests avenues for future
research.

Keywords: Attention, Saliency, Spatiotemporal, Information Theory,
Fixation, Hierarchical.

1 Introduction

Certain visual search experiments demonstrate in dramatic fashion the imme-
diate and automatic deployment of attention to unique stimulus elements in
a display. This phenomenon no doubt factors appreciably into visual sampling
in general influencing fixational eye movements and our visual experience as a
whole. Some success has been had in emulating these mechanisms [2], repro-
ducing certain behavioral observations related to visual search, but the precise
nature of the principles underlying such behaviors remains unknown.

One recent proposal deemed Attention by Information Maximization (AIM) is
grounded in a principled definition for what constitutes visually salient content
derived from information theory, and has had some success in explaining certain
aspects of behavior including the deployment of eye movements [1] and other
visual search behaviors [3]. In this paper we further explore support for this
proposal through consideration of spatiotemporal visual stimuli. This includes
a comparison of the proposal against the state of the art in this domain. The
following discussion reveals the efficacy of the proposal put forth in AIM to
explain eye movements for spatiotemporal data and also describes how the model
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fits in with the big picture. Specifically, we address how the proposal fits with
distributed hierarchical attentional architectures of the sort put forth by Tsotsos
[4] for which favorable evidence has appeared in recent years.

2 AIM: Information Maximizing Saliency

In the following section, we briefly review the proposal put forth in [1], which
is applied to a set of neurons that code for content in space-time within the
evaluation included in this work. The following offers only a brief overview; for
a detailed account, readers should refer to [1].

The central premise of AIM is that saliency computation should serve to
maximize information sampled from one’s environment from a stimulus driven
perspective. Specifically, given an ensemble of neurons Ci,j that code for content
at spatial coordinates i, j with Ci,j,k, k = 1...N corresponding to the different
types of cells with receptive fields centered at i, j the self-information or surprisal
associated with Ci,j is given by −log(p(Ci,j)) with the likelihood determined by
observing the response of cells in the surround of Ci,j . Given the assumption of
independence on the response of different types of cells (an assumption made
reasonable by sparsity as discussed in the section that follows), this quantity
may be computed as

∑N
k=1 −log(Ci,j,k). Saliency in this context then amounts

to the surprisal or self-information of the response associated with a cell as
defined by its surround. In other words, saliency is inversely proportional to
the likelihood of predicting the response of any given neuron in observing the
response of neurons in its surrounding spatiotemporal context. For any given
cell type it is straightforward to derive a likelihood estimate by constructing a
probability density estimate based on cells of the same type in the surround. An
overview of the model with reference to the specifics of the implementation for
spatiotemporal stimuli is presented in the section that follows.

3 Extension to Space-Time

The general nature of the original proposal implies that it may be applied to
any set of neurons that constitute a sparse basis. For this reason, extension
to space-time is straightforward assuming the early coding of spatiotemporal
content observed in the cortex satisfies these criteria. There exist many efforts
documenting the relationship between early visual cortical neurons and coding
strategies that demonstrate that learning a sparse code for local grey-level image
content yields V1 like receptive fields similar to oriented Gabor filters [5,6]. Fur-
ther efforts have demonstrated this same strategy yields color-opponent coding
for spatiochromatic content [7] and also cells with properties akin to V1 for spa-
tiotemporal data [8]. We have employed the same data and strategy put forth
in [8] to learn a basis set of cells coding for spatiotemporal content. The data
described in [8] was subsampled taking every second frame to yield data at 25
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frames per second. The data set consists of a variety of natural spatiotemporal
sequences taken from various angles of a moving vehicle traveling in a typical
urban environment. Spatiotemporal volumes were then randomly sampled from
the videos to yield 11x11x6 (x,y,t) localized spatiotemporal volumes that served
as training data. Infomax ICA [9] was applied to the training set resulting in a
spatiotemporal basis consisting of cells that respond to various frequencies and
velocities of motion and for which the correlation between cell firing rates is mini-
mized. The basis resulting from dimensionality reduction via PCA retaining 95%
variance followed by ICA yields a set of 60 spatiotemporal cells. A subsample of
these (corresponding to 1st, 3rd and 6th frame of the volume) are shown in fig-
ure 1. Note the response to various angular and radial frequencies and selectivity
for different velocities of motion. Aside from the application to spatiotemporal
data and the different basis set, the saliency computation proceeds according to
the description put forth in [1].

An overall schematic of the model based on the learned spatiotemporal basis
appears in figure 2. A localized region from adjacent frames (3 of 6 shown)
are projected onto the learned basis. This yields a set of coefficients for the local
region that describes the extent to which various types of motion are observed at
the given location. The likelihood of each response is then evaluated by observing
the response of cells of the same type in the surround or in this implementation,
over the entire image. A sum of the negative log likelihood associated with all
of the coefficients corresponding to the given coordinate (pixel) location yields
a local measure of saliency.

Fig. 1. The receptive field profile of a subsample of the learned basis corresponding to
frames 1, 3 and 6 of the spatiotemporal volume. Note the selectivity for various angular
and radial frequencies and velocities and directions of motion.
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Fig. 2. An overview of the computation performed by AIM. A spatiotemporal volume is
projected onto a learned basis based on independent component analysis. The likelihood
of any given cells firing rate may be estimated by observing the distribution of responses
associated with cells of the same type in the surround or over the entire image. A
summation of these likelihoods subjected to a log transform then yields a local measure
of information. For a complete description the reader should refer to [1].

4 Evaluation

An evaluation of the efficacy of the model in predicting spatiotemporal fixation
patterns is achieved via comparison with eye tracking data collected for video
stimuli. The eye tracking data employed for this study was that used in [10]
and performance evaluation was carried out according to the same performance
metric described in the aforementioned work.

The data consists of eye tracking data for a total of 50 video clips and from
8 subjects aged 22-32 with normal or corrected to normal vision. Videos consist
of indoor and outdoor scenes, news and television clips and video games. Videos
were presented at a resolution of 640x480 and at 60 Hz and consist of over 25
minutes of playtime. The total number of saccades included in the analysis is
12,211.
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For any given algorithm, one may compare the saliency at fixated locations
with randomly sampled locations. The Kullback-Leibler divergence of two dis-
tributions corresponding to these quantities is given by

DKL(P, Q) =
∑

P (i)log
P (i)
Q(i)

where P and Q correspond to the distribution of randomly sampled and at-
fixation sampled saliency values respectively based on 10 bin histogram esti-
mates. The KL-divergence offers a performance metric allowing comparison of

Fig. 3. Relative saliency of each pixel for a variety of frames from different videos
allowing a qualitative assessment of model performance

Fig. 4. A histogram representation comparing saliency values at fixated versus ran-
domly located display locations. KL-divergence is 0.328 as compared with 0.241 for
the algorithm presented in [10] and 0.205 for that appearing in [2].
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various algorithms. Results are compared against those put forth in [10] and
proceeds according to the same performance evaluation strategy.

Figure 3 demonstrates the relative saliency of pixel locations for a variety
of single frames from a number of videos. Note the inherent tradeoff between
moving and stationary content as observed for the running tap, and park scene
as well as the ability to detect salient patterns on a relatively low contrast
background (rightmost frame).

Figure 4 demonstrates a histogram of the saliency associated with the fixated
locations as compared with those from uniformly randomly sampled regions. Of
note is the shift of the distribution towards higher saliency values for the distribu-
tion associated with fixated relative to random locations. The KL-divergence of
the two distributions shown is 0.328. This compares favorably with the Surprise
metric of Itti and Baldi [10] which gives rise to a KL-divergence score of 0.241
and the saliency evaluation of Itti and Koch [2] which yields a KL-divergence
score of 0.205. This result demonstrates that relative to competing proposals the
saliency associated with fixated relative to random locations is greatest for AIM.

5 Surround Suppression, Gain Control and Redundancy

An important consideration in any model that posits a specific proposal for how
saliency computation is achieved, is that of a possible neural implementation.
Perhaps the foremost consideration pertaining to neural circuitry, is the extent
to which the proposal agrees with observations concerning cortical circuitry and
neurophysiology. To this end, this section reviews a variety of classic and recent
results derived from psychophysics and imaging experiments on the nature of
surround suppression within the cortex. Necessary conditions of an architecture
that seeks to maximize information in its control of neural gain are weighed
against the experimental literature in order to evaluate the plausibility of AIM
from the perspective of a possible neural basis for its implementation. As a whole,
the discussion establishes that a variety of peculiar and very specific constraints
imposed by the implementation show considerable agreement with the compu-
tation implicated in surround suppression further providing support for AIM,
and also offering some insight on the nature of computation responsible for iso-
orientation surround suppression in early visual cortex. Debate concerning the
specific nature and form of surround suppression has rekindled in recent years,
which has resulted in a large body of interesting results that further elucidate
the details of this process. The following discussion reviews these results and
offers further insight through a meta-analysis of recent studies. In each case,
experimental findings are contrasted against the computational constraints on
AIM to establish plausibility of the proposed computation.

5.1 Types of Features

A great deal of research has focused specifically on the suppression that arises
from introducing a stimulus in the surround of a localized oriented Gabor tar-
get. The specific nature of iso-orientation (iso-feature) surround suppression as
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dictated by the details of AIM includes two key considerations: 1. Suppression
of a cell whose receptive field lies at the target location should occur only for a
surround stimulus that is the effective stimulus for this cell. For example, for a
vertically oriented Gabor target, suppression of a cell that elicits a response to the
target will occur only by way of a similar stimulus appearing in the surround. Re-
call that a fundamental assumption is that the responses of different types of cells
at a given location are such that the correlation between their responses is mini-
mal and this is a phenomenon that is observed cortically. In the domain of studies
pertaining to surround suppression, the literature is undivided in its agreement
with this assumption. When considering the cell response or psychometric thresh-
old associated with a target patch, suppression from a surround stimulus is highly
stimulus specific and is at a maximum for a surround matching the target orien-
tation, with suppression observed only for a narrow orientation band centered
around the target orientation [11,12,13,14,15,16]. This is consistent with a local
likelihood estimate in which the independence assumption is implicit. 2. Suppres-
sion should be observed for all feature types, and the nature of, and parameters
associated with suppression should not differ across feature type. This is an im-
portant consideration since studies of this type have largely focused on oriented
sinusoidal stimuli but nevertheless similar suppression associated with color, or
velocity of motion for example, should also be observed and the nature of such
suppression should be consistent with that observed in studies involving oriented
sinusoidal target and surrounds. One recent effort provides strong evidence that
this is the case through single cell recording on macaque monkeys [14]. Shen et al.
demonstrate that centre-surround fields defined by a variety of features including
color, velocity and oriented gratings all elicit suppression and with suppression
at a maximum for matching centre and surround stimuli.

5.2 Relative Contrast

Given a cell with firing rate Ni,j that codes for a specific quantity at coordinates
i,j in the visual field (e.g. a cell selective for a specific angular and radial frequency
as part of a basis representation with its centre at location i,j), a density estimate
on the observation likelihood of the firing rate associated with Ni,j as discussed
earlier in this section is given by:

p(Ni,j) =
∑

∀s,t∈Ω

f(Ni,j − Ns,t) (1)

Where f is a monotonic symmetric kernel with its maximum at f(0) and Ω
the region over which the surround has any significant impact. For further ease
of exposition in observing the behavior of equation 1, assume without loss of
generality that f comprises a Gaussian kernel. Then equation 1 becomes:

1
σ
√

2π

∑
∀s,t∈Ω

e−(Nj,k−Ns,t)2/2σ2
(2)

As there also exists a spatial component to this estimate, it may be more ap-
propriate to also include a parameter that reflects the effect of distance on the
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contribution of any given cell to the estimate of Ni,j which might appear as
follows:

1
σ
√

2π

∑
∀s,t∈Ω

Ψ(s, t)e−(Nj,k−Ns,t)2/2σ2
(3)

Ψ drops off according to the distance of any given cell from the target location,
reflecting the decreasing correlation between responses. Assuming that surround
suppression is the basis for the computation involved in AIM equation 1 demands
a very specific form for the suppressive influence of a surrounding stimulus on
the target item. According to the form of equation 3, suppression depends on the
relative response of centre and surround stimuli and should be at a maximum for
equal contrast centre and surround stimuli: Raising or lowering the contrast of a
stimulus pattern will generally result in a concomitant increase in the response of
a cell for which the pattern in question is the effective stimulus. There is therefore
a direct monotonic (nonlinear) relationship between the firing rate attributed
to centre or surround, and their respective contrasts. Support for suppression
as a function of relative centre versus surround contrast is ubiquitous in the
literature [17,18,14,11,19,20,15,21] although there is as of yet no consensus on
why this should be the specific form for the suppressive influence of a surround
stimulus. There also exists a large body of prominent studies revealing that
this suppression is indeed at a maximum for equal contrast centre and surround
stimuli [17,18,14,11,15]. Note that this implies mathematical equivalence between
surround suppression and a likelihood estimate on a given cell’s response as
defined by the response of neighboring cells and implies divisive modulation of a
cells response by a function of its likelihood. This is an important consideration
as it offers insight on the role of surround suppression which has recently become
an issue of considerable dispute [16] and implicates surround suppression as
the machinery underlying the implementation of AIM. It is also worth noting
that the suppressive impact of cells in the surround is observed to drop off
exponentially with distance from the target giving the specific form of Ψ [16].

5.3 Spatial Configuration

For the sake of exposition, let us assume that the computation under discussion
is restricted to V1. From the perspective of efficient coding, no knowledge of
structure is available at V1 beyond that which lies within a region the size
of single V1 receptive field. A pure information theoretic interpretation of the
surprisal associated with a local observation as determined at the level of V1
should reflect this implying an isotropic contribution to any likelihood estimate
in the vicinity of the target cell, regardless of the pattern that forms an effective
stimulus for the cell in question. That is, for a unit whose effective stimulus
is a horizontal Gabor pattern, equidistant patterns of the same type in the
vicinity of the target should result in equal suppression regardless of where they
appear with respect to the target and this is reflected in the implementation
put forth in [1]. It is also expected that likelihoods associated with higher order
structure over larger receptive fields are mediated by higher visual areas either
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implicitly at the single cell level or explicitly via recurrent connections. In line
with the assumption that computation is on the observation likelihood of a
pattern within a given region, and that structures are limited to an aperture
no larger than a V1 receptive field, it is indeed the case that suppression from
the surround is isotropic with respect to the location of a pattern appearing in
the surround independent of target and surround orientations [16]. By virtue
of the same consideration, one would also expect the spatial extent of surround
suppression to be invariant to the spatial frequency of a target item. This is also a
consideration that is evident in the literature [16]. In consideration of observation
likelihoods associated with more complex patterns, it is interesting to consider
the nature of surround suppression among higher visual areas. Recent studies are
discovering more and more examples of suppressive surround inhibition among
higher visual areas with the same properties and divisive influence as those that
are well established in V1. Extrastriate surround inhibition of this form has
been observed at least among areas V2 [22,23], V4 [24,25], MT [26,27,28], and
MST [29]. This is suggestive of the possibility that saliency is represented within
a distributed hierarchy, with local saliency computation mediated by surround
suppression at various layers of the visual cortex.

5.4 Fovea versus Periphery

If the role of local surround suppression is in attenuating neural activation asso-
ciated with unimportant visual input and/or redirecting the eyes via fixational
eye movements one would expect the influence of such a mechanism to be promi-
nent within the periphery of the visual field. Petrov and McKee demonstrated
that surround suppression is in fact strong in the periphery and absent in the
fovea [16]. This is consistent, as Petrov and McKee point out, with a role of
this mechanism in the control of saccadic eye movements. Furthermore, there
are additional points they highlight that support this possibility, including the
fact that the extent of suppression is invariant to stimulus spatial frequency.
Also of note, is the fact that the inaccuracy of a first saccade is proportional to
target eccentricity and this correlates with the extent of surround suppression as
a function of eccentricity [16]. Note that the cortical region over which surround
suppression is observed does not vary with eccentricity implying that computa-
tionally, an equal number of neurons contribute to any given likelihood estimate
of the form appearing in equation 1. All of these considerations are in line with
a role of this mechanism in the deployment of saccades.

5.5 Summary

We have put forth the proposal that the implementation of AIM is achieved
via local surround circuitry throughout the visual cortex. As a whole, there ap-
pears to be considerable agreement with the proposal and the specific form of
surround suppression. The demonstration of equivalence of a likelihood estimate
on the surround of a cell with the apparent form of suppressive inhibition im-
plies modulation of cell responses at a single cell level through divisive gain as
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a function of the likelihood associated with that cell’s response. This provides a
more specific explanation for the nature of computation appearing in suppres-
sive surround circuitry and further bolsters the claim that saliency computation
proceeds according to a strategy of optimizing information transmission.

6 On the Role of Neural Encoding

As discussed, probability density estimation, or any sort of neural probabilistic
inference, requires an efficient representation of the statistics of the natural world
in order to meet computational demands. The specific nature of this representa-
tion within many biological brains seems to be an encoding of natural stimuli in
a manner that minimizes the correlation or mutual dependence between neurons
[30,31,32,33,34]. A consequence of this computationally is that likelihoods in re-
gard to a neural firing rate can be considered independent of the firing rates of
neurons that code for different features. In this regard, the pop-out versus serial
search distinction may be seen as an emergent property of this coding strategy.
Since likelihoods associated with orientation statistics are considered indepen-
dently of those that represent chromatic information, the conjunction of these
features fails to elicit pop-out [3]. It is also interesting to note in support of this
line of reasoning, that as radial and angular frequency are coded jointly within
the cortex, a unique item defined by a conjunction of spatial frequency and ori-
entation does result in a pop-out stimulus [35]. In light of this observation, it
may be said more generally, that the specific nature of neuron properties has a
considerable influence on the behavior that manifests. It is well established that
search efficiency is more involved than a simple dichotomy of serial versus paral-
lel searches [36]. It has been demonstrated that one can observe a wide range of
behaviors from very efficient to very inefficient depending on the chosen stimuli.
One might suggest that the extent to which a search may be carried out efficiently
reflects the complexity of the neural code corresponding to target and distractor
elements. For stimuli that are highly natural and may be represented by the re-
sponse of a small number of neurons, one might expect a far more efficient search
than that associated with a highly unnatural stimulus that gives rise to a widely
distributed neural representation. This may also extend beyond simple V1-like
features to explain the surprising efficiency with which some search tasks involv-
ing complex stimuli are completed, such as search tasks involving 3D-shape [37],
depth from shading [38] and even very complex forms such as faces [39] which
are known to have a highly efficient cortical representation within the primate
cortex [40,41,42]. Considerations pertaining to coding may also shed some light
on the role of novelty in determining search efficiency. Inter-element suppression
of stimulus items may occur more strongly for those representations that are
relatively efficient and carried by only a small number of cells. Behaviorally this
is consistent with visual search paradigms in which familiarity with distractors
yields a relatively efficient search [43,44] assuming familiarity with target items
leads to a more efficient or even template like representation of the relevant stim-
uli. As a whole, it may be said that the role that principles underlying coding
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within the visual cortex play within attention and visual search is an aspect of
the problem that has been underemphasized. Many behaviors, in particular the
specific efficiency with which a search is conducted, may be seen as properties
that surface from very basic principles underlying the neural representation of
visual patterns, and consideration of the specific role of coding in attention and
visual search should serve as a target for further investigation.

7 Towards a Hierarchical Representation of Saliency

The preceding results demonstrate that the proposal originally tested on spati-
ochromatic data extends well to explain spatiotemporal data. A question that
naturally follows from this, is the extent to which the proposal may extend to
capture more high-level behaviors associated with neurons coding for more com-
plex stimuli and appearing higher in the cortex. As the saliency associated with
a pixel location is a simple summation of the individual saliency attributed to
each cell for each location, it is evident that saliency may be evaluated at the
level of a single cell. It follows that the same proposal that has been depicted
in a form more akin to the traditional saliency map style representation may
also reside within a distributed hierarchical representation in which the repre-
sentation of saliency is implicit and computed via local modulation as opposed
to a single explicit topographical representation of saliency. Such a proposal is
in line with models of attention that posit a distributed hierarchical selection
strategy [4]. Additionally, as the constraints on the cells involved are satisfied
among higher visual areas, one might propose that the proposal put forth in AIM
extends to higher visual areas to explain some of the apparent high-level effects
documented in the previous section. For example, a hierarchical coding structure
combined with AIM should afford some of the pop-out effects associated with
high-level features such as depth from shading assuming an appropriate code for
such features among higher visual areas.

8 Conclusion

We have considered how AIM extends to capture behaviors associated with vi-
sual patterns distributed over space and time. The plausibility of the proposal
as a description of human behavior is validated through a comparison with eye
tracking data on a wide range of qualitatively different videos. The proposal
emerges as very effective in explaining the behavioral data as was demonstrated
for the spatiochromatic case. We have also described how the proposal put forth
in AIM is compatible with distributed architectures for attentional selection [4]
including related details pertaining to coding and neural implementation. This
is an important contribution as the topic of saliency [4] is seldom discussed in
a context independent of the assumption of an explicit topographical saliency
map. Future work will aim to further explore saliency computation as a pro-
cess involving attention acting on a distributed hierarchical representation with
saliency realized via localized modulation throughout the cortex.
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Abstract. For artificial systems acting and perceiving in a dynamic world a core
ability is to focus on aspects of the environment that can be crucial for the task
at hand. Perception in autonomous systems needs to be filtered by a biologically
inspired selective ability, therefore attention in dynamic settings is becoming a
key research issue.

In this paper we present a model for motion salience map computation based
on spatiotemporal filtering. We extract a measure of coherent motion energy and
select by the center-surround mechanism relevant zones that accumulate most
energy and therefore contrast with surroundings in a given time slot.

The method was tested on synthetic and real video sequences, supporting bi-
ological plausibility.

1 Introduction

Visual attention has emerged in recent years as a powerful tool to make computer and
robot vision more and more effective in a great variety of tasks, since it allows to focus
analysis and processing on some restrained portions of images and frames. With most
approaches being biologically inspired [1],[2],[3], attention computational modelling
has made it possible to introduce a basic cognitive level between sensor data collection
and perception interpretation for high level reasoning. The design of an artificial system
required to navigate, act or reason in a dynamic world and to interact with other partners,
interpreting their intentions and movements, has to take into account in the attention
architecture a mechanism for identifying and selecting significant motion.

Sensitivity to visual motion is of course extremely important in terms of survival for
any evolved biological system, be it a prey or a predator. This is deeply rooted in the
neurology of the brain since cells in different areas of the primate cortex are assigned
to detection of different motion patterns and velocities (as explained and modelled in
[4]). Other models of motion sensing and perception according to human psychophysics
have made use of spatiotemporal filtering. Adelson and Bergen [5] showed how such
models enable motion detection and direction selection in terms of spatiotemporal ori-
ented energy, for both continuous and sampled motion. Heeger [6], starting from simi-
lar premises, extracted velocity information to obtain optical flow and compared it with
physiological processes in humans. Watson and Ahumada [7] modelled a motion sen-
sor, meant to provide quantitative information about physical stimuli displaying motion.
Simoncelli [8] presented a Bayesian framework for motion estimation based on bright-
ness conservation.

L. Paletta and J.K. Tsotsos (Eds.): WAPCV 2008, LNAI 5395, pp. 112–123, 2009.
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As to attention modulation, [9] visual motion is said to naturally draw attention in a
pure bottom-up fashion only if it is related to a new object onset that motion helps seg-
regating. During visual search, motion is effortlessly detected if, like other pre-attentive
features, it denotes a target, thus causing a pop out effect. That is, contrast to local dy-
namics in the scene attracts attention, like color or intensity contrast do. This explains
why search for a moving target among stationary distractors is easier than in the oppo-
site case or than searching for a faster moving target among slow moving distractors.
Basically, as shown in [10], the more the velocity of an element differs from that of
the surrounding the more the element is salient. In that work motion salience and thus
pop-out was defined by the amount of Mahalanobis distance between target velocity
and the mean velocity of the distractors.

Attention models or vision architectures and applications have often taken into ac-
count motion as an informative feature to detect and segment interesting objects or tar-
gets by means of optical flow computation, block matching or other motion detection
techniques [11],[12],[13],[14]. These methods consider principally differences between
subsequent frames, not accounting for a broader analysis of motion.

In this paper we apply spatiotemporal filtering to attention focus selection in dynamic
scenes. This method allows for motion evolution in the space-time domain, thus high-
lighting motion patterns as particular energy signatures in 2D planes slicing the space-
time volume [15]. The link from this smart motion detection to attention is achieved by
means of center-surround and maxima selection enhancing areas of salient motion.

In next sections we first review spatiotemporal analysis of sequences, show then how
we used it to obtain selective saliency maps and applied it to synthetic and natural video
sequences, showing selection of locations characterized by high levels of energy motion
along a given time unit.

2 Spatiotemporal Energy for Coherent Motion Distinction

As mentioned in Section 1 analysis of motion through spatiotemporal filtering has been
widely investigated by works on the perception of motion [5], [7], [6] and further de-
veloped more recently by [15]. These models showed how motion analysis based on
low level visual information is particularly straightforward in the spatiotemporal do-
main. Specifically analysis is performed on (x− y− t) volumes, obtained by collecting
together a set of consecutive frames. This representation allows analysis on a longer
time horizon rather than from frame to frame, leading to discrimination and qualitative
understanding of the unfolding of perceived motion. Moreover it has the advantage of
avoiding matching or correspondence search problem.

An x−y−t volume can be considered as constituted by a stack of 2D x−t planes or
by aligning vertically 2D y − t planes. In these planes motion is represented by slanted
tracks whose slope is proportional to velocity. Thus detecting motion in the spatiotem-
poral representation reduces to detecting oriented edges in 2D planes corresponding to
rows and columns of the frames composing the volume [5]. This can be done in low
level processing by following some basic steps we explain below.

In [16] and [15] oriented spatiotemporal energy is used to obtain a measure of mo-
tion salience with respect to some important directions characterizing coherent motion.
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Fig. 1. An example of visual popout: frames at time t, t + 5,t + 10. The faster dot is highlighted
by a red circle. The considered sequence was 256 × 256 × 40.

This latter is indeed defined by high energy derived by response to filters oriented along
spatiotemporal diagonal directions, while other insignificant types of motion (static,
unstructured, incoherent, flicker, scintillation) result in low energy along these direc-
tions. According to indications on neurophysiological plausibility in [5] and [6], we use
Gabor filters to extract motion information concerning horizontal and vertical motion
within a specific spatiotemporal frequency, i.e. (in x − t):

Go
θi

(x, t) =
1

2πσxσt
exp[−(

x2

2σ2
x

+
t2

2σ2
t

)] sin(2πωx0x + 2πωt0t) (1)

where ωv, σv , with v ∈ {x, t}, include the filter parameters encompassing the recep-
tive field linear dimension and the wavelength, while θi denotes the selected orientation
obtained suitably rotating the filter. Analogous formulation applies to the other spa-
tiotemporal dimension (y, t).

We refer to a particular spatiotemporal scale but the proceeding is extendible to mul-
tiple spatial directions and spatial and time frequencies to capture a wider spectrum of
motion information and compute salience on more channels.

For example, consider a video sequence 1 where a motion pop-out is displayed. Here
64 white dots describe a circular orbit against a black background (see some snapshots
in Fig.1). Each dot has different phase but same period, except for the dot in position
(4, 4) (referring to rows and columns of moving dots) that stands out because of its
larger velocity.

Coherent energy computation for a given space-time volume goes like this :

1. Gabor filtering and oriented energy computation. Each plane I(x, t) and I(y, t)
is filtered by the 2D Gabor filter (1) at θ1 = 45deg and θ2 = 135deg, extracting
leftward/rightward and downward/upward motion respectively. Filters are taken
in quadrature (odd and even) and responses to quadrature pairs are squared and
summed to obtain independence from phase. We hence obtain the following ener-
gies for righ/leftward (ER,EL) motion for any fixed yi:

ELyi(x, t) = (Go
θ1

(x, t) ∗ I(x, t))2 + (Ge
θ1

(x, t) ∗ I(x, t))2 (2)

ERyi(x, t) = (Go
θ2

(x, t) ∗ I(x, t))2 + (Ge
θ2

(x, t) ∗ I(x, t))2 (3)

1 http://www.scholarpedia.org/article/Image:VisualSalience Motion.gif



Motion Saliency Maps from Spatiotemporal Filtering 115

(a) (b) (c) (d)

Fig. 2. (a): The y − t plane related to column 22, i.e. evolution along time of column 22 for the
sequence of Fig.1, with y = 1 : 256 (ordinates) and t = 1 : 40frames ∼ 2sec. (abscissas).
(b): Extraction of downward edges via Gabor filtering. (c), (d): representation of upward and
downward energies for the considered plane.

Fig. 3. Left: horizontal energy summed 2 up to sec. (about 40 frames). Right: Vertical energy
summed up to 2 sec. (about 40 frames). Both figures refer to the example of Fig. 1 and 2.

Fig. 4. Comparison of energy patterns between the faster dot of the example illustrated in Fig.1
and one of the other dots. Left:frontal view (x,y axes). Right: rotated view (x,y,t axes, t=1:40
frames).



116 A. Belardinelli, F. Pirri, and A. Carbone

Here Go and Ge denote odd and even phase for a given Gabor filter. Upward and
downward edge extraction is achieved analogously by filtering planes I(y, t) for
any given xi. In Fig.2 an y − t plane and its response to upward motion are shown.
Upward and downward energy for a given plane y − t is shown in frames (c),(d) in
Fig. 2

2. Motion opponency. To extract the dominant motion, within a considered time
frame, and to discard inconsistent or flickering motion information, regarded as
not salient, opponent motion is computed. As shown in [15] indeed, only coherent
motion has a distinct signature resulting from a significant amount of motion op-
ponent energy. This must be further normalized to be made comparable with other
oriented energies. Here we show a measure of horizontal and vertical salience for
every element in the volume, obtained by:

Eh(x, y, t) =
⋃
y

|ERy(x, t) − ELy(x, t)|
ERy(x, t) + ELy(x, t) + ε

Ev(x, y, t) =
⋃
x

|EUx(y, t) − EDx(y, t)|
EUx(y, t) + EDx(y, t) + ε

(4)

Here ε is a constant avoiding dividing by 0. Horizontal energy will have negative
values as leftward motion prevails, and positive values as rightward motion prevails.
Correspondingly, the same behaviour holds for vertical energy and downward and
upward motion. In Fig. 3 horizontal and vertical energies summed along the tempo-
ral axis are shown. As it can be noted, the faster dot has a bigger overall amount of
both energies as it has described more than a whole orbit, while other dots have not
completed their orbits. In Fig.4 3D plots are shown, comparing horizontal energy
variations between the faster dot and one of the other dots.

Finally we low-pass filter obtained energies by a 5-binomial tap to remove high
frequencies.

3 Saliency Map Construction

At this point we have obtained a measure of two motion features and we have to com-
bine them together to form a sole measure of motion salience. In [16] salience of each
spatio-temporal point is given by selection of the maximal value between Eh and Ev .
We consider both channels as relevant to salience definition and compose them to-
gether as components of the total energy. Nevertheless we want our map to contain
only most relevant points, hence we perform first a local maxima and minima selec-
tion (corresponding to high rightward/upward energy and leftward/downward energy,
respectively), then we compute the total amount of energy for each point by combin-
ing the two oriented energies, and finally we produce an overall saliency map for the
considered volume.

We can, thus, distinguish coherent motion by finding the local maxima and the local
minima of the above defined oriented energies. This can be obtained by closed formulae
by taking the derivative and equating it to zero. The local extrema (i.e. a local maximum
or local minimum) can be easily identified as follows. Let
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Aα =
[

αo
1 αe
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2 −αe
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]
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2

]
(5)

and

MG =
[

Go′
θ1

(x, t) ∗ I(x, t) Go′
θ2

(x, t) ∗ I(x, t)
Ge′

θ1
(x, t) ∗ I(x, t) Ge′

θ2
(x, t) ∗ I(x, t)

]
(6)

here αw
i = 2Gw

θi
(x, t) ∗ I(x, t), with i = 1, 2 and w ∈ {o, e}. On the other hand Gw′

θi
,

with i = 1, 2 and w ∈ {o, e} is the derivative of the Gabor filter used (see 1), w.r.t. t,
namely:

Gw′
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2σ2
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cos(ωxx + ωtt) −
(
− x2

2σ2
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))

exp
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(− x2
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− t2

2σ2
t

)cos(ωxx + ωtt)
) (7)

Local maxima for Eh and Ev are thus:

max(E) =
trace(AαMG)
trace(BαMG)

(8)

Once we have found local maxima in Eh and Ev , we assign to remaining locations
null energy. We define a global energy measure by taking for each point the norm of the
vector given by the two components:

E(x, y, t) =
√

Eh(x, y, t)2 + Ev(x, y, t)2 (9)

We have now achieved a measure of the total energy developed in each point of the
spatiotemporal volume.

Subsequently to enhance in every frame locations that have displayed relevant mo-
tion and substantial contrast with respect to the surroundings, a center-surround mecha-
nism is applied. Gaussian pyramids are built on each x − y plane of the energy volume
and on-center differences are computed on each layer, by subtracting to each pixel the
mean of its surroundings. Then across-scale addiction leads to a single conspicuity map.
On-off differences were computed straightforwardly by means of integral images. Con-
spicuity maps (CM) were weighted dividing by the number of elements above a certain
threshold. We refer to [17] for details.

These maps do not take into account what has happened before, thus highlighting
local motion energy only with respect to a precise time step. That is to say, they do not
have memory. To integrate the observed energy over a given time slot, we compute for
each x − y frame a 2D saliency map SM by summing previously accumulated energy
along the temporal direction:

SM(x, y, t) =
∫ t

0
CM(x, y, τ)dτ (10)

This is consistent with the intuition that our visual system integrates in continuous time
perceived motion (visual persistence). In this way for each spatiotemporal volume pro-
cessed we find a final SM summing up relevant motion information for a given time
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Fig. 5. Final saliency map of the example sequence in Fig. 1 for a spatiotemporal interval of about
2 sec

Fig. 6. The figure illustrates the framework main processing, from the filtering stage (via odd and
even Gabor filters) to energy computation and saliency map construction
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unit. Just these last SMs could be saved at the end of every time unit and used for
successive processing and broader analysis. Flickering or incoherent motion are indeed
cancelled in the final map, as illustrated in the next section 4.

In Fig.5 the final SM, computed over a ∼ 2sec. time slot, is presented. The most
significant location corresponds to the faster dot. Summing up, the main operations
and data processing of the system are depicted in fig.6. The first layer performs Gabor
filtering along diagonal directions, the second sums squared outputs of quadrature pairs,
lowpass filters them and combines them in a single energy measure. Finally via center-
surround and integration saliency maps are produced every p frames.

4 Experiments

We have tested the described framework under different motion conditions. The results
shown below confirm the relevance of consistent motion, in contrast with other random
motions, which our framework has been able to capture. First we tried it on synthetic
sequences displaying pop-out stimuli of coherent motion. In fig.7, (a), a multitude of

(a) (b) (c)

Fig. 7. Example of coherent motion pop-out: (a) original stimulus, a square of vertical moving
dots is present bottom left, while the rest of the image displays flickering dots (316x316x40
frames). (b) A y-t plane (x=110) showing the tracks left by the dots in the square. (c) Saliency
map.

Fig. 8. Test results for a video sequence (15 fps) displaying a person walking, while the lamp is
switched on and off, generating random scintillation. Some frames (t=5,10,15,20) are shown with
their respective incremental salience maps.
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Fig. 9. Test results for a video sequence (15 fps) displaying two people shaking hands. Eye fixa-
tions of the observer are displayed with a green dot. Frames are shown with respective incremental
salience maps.

flickering dots is presented 2. Just a square of dots bottom left moves coherently (verti-
cally), as shown by tracks in one of the corresponding y − t planes (b), and as correctly
highlighted by the corresponding saliency map, (c).

2 Video: http://www.opticsinfobase.org/viewmedia.cfm?uri=oe-11-13-1577&seq=1
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Fig. 10. Left: example frame from a surveillance camera sequence. Right: corresponding saliency
map.

Apart from synthetic stimuli, used as testbed, we applied our system to real world
scenes as well. For example with people moving while some scintillation is disturbing,
or with different contemporary motions, such as people meeting and shaking hands. In
Fig. 8 we show incremental building of the saliency map for a time lag of 5 frames
(at a frame rate of ∼ 15 fps) in the case of a person walking, while another person is
switching on and off a lamp with an intermittence of 0.3sec.. Locations gaining most
coherent energy become more and more salient.

On the other hand, we have tested the framework also in comparison with human
attention. In this setting we are highlighting only the motion component of saliency, and
yet the integrated saliency (static and dynamic) is not represented, but it is interesting
to notice how the experiments emphasise the convolution of composite motion.

Fig.9 illustrates a video sequence showing the contemporary motion of two persons.
The video has been collected by a device that can project the current eye gaze. While
the system is pretty much bottom-up, one should consider that human attention is influ-
enced by the Theory of Mind, i.e. in a top-down manner, when observing other human
beings, we try to infer their mental states and thus we mostly look at their faces. Never-
theless from the experiment emerges an interesting overlapping of human attention with
some of the locations highlighted in the SM, shown in the Figure. Being the movement
more composite a 1sec lag volume was analysed as basic unit. A further study should
investigate relations between temporal scale, processed time range and the motion ob-
served in order to achieve more meaningful saliency maps.

Finally, we show one last application to a surveillance scenario in fig.103.

5 Conclusions

In this paper we presented a method to address the issue of attending to motion in
the framework of an attentive architecture. An exhaustive and complex architecture in

3 Video sequences and saliency maps available on
http://www.dis.uniroma1.it/˜belardinelli/video.htm

http://www.dis.uniroma1.it/~belardinelli/video.htm
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this sense has been presented in [4], identifying and classifying rotation and transla-
tion motion patterns in a hierarchical process embedding velocity gradient. That system
goes deeply into neural representation of the motion hierarchy, modelling sensitivities
in the different areas and tackling the feature binding problem to achieve grouping of
coherently moving features into a single object. Hence selection is helped by a strong
inhibition process on the spatial level. We focussed primarily on the selective func-
tionality of attention which can modulate in a top-down way salience and attending
of certain motion direction. As explained in [18], motion is a strong pre-attentive fea-
ture eliciting attention and conversely attention to relevant motion can help selection in
tracking tasks with moving distractors. We do not classify types of motion but rather
weight salience of motion direction, inhibiting uninteresting or uninformative temporal
evolution of motion. That is, we limit to simulation of processes in V1 and MT areas.
Our approach is based on the extraction of coherent motion information in the form
of energy along some preferred directions in the 2D planes defined by one spatial di-
mension and the temporal dimension. Spatiotemporal filtering for extraction of edges
related to oriented energy has been shown in the literature as psychophysiologically
plausible to model motion perception. We use this process to obtain feature 3D maps
related to vertical and horizontal motion and combine them to form a unique energy
map. Single conspicuity maps for every frame are formed by means of center-surround
mechanism, and summed along the temporal axis to get a final salience map.

Interesting issues arise regarding composition and selection of different spatiotem-
poral bands with respect to specific motion events and patterns. These will be tackled
in a further study. Further tests and comparisons with human attention will also provide
indications on top-down biasing of motion salience.
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to the Neural Basic of Preview Search
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Abstract. The current work aims to unveil the neural circuits under-
lying visual search over time and space by using a model-based analysis
of behavioural and fMRI data. It has been suggested by Watson and
Humphreys [31] that the prioritization of new stimuli presented in our
visual field can be helped by the active ignoring of old items, a process
they termed visual marking. Studies using fMRI link the marking process
with activation in superior parietal areas and the precuneus [4,18,27,26].
Marking has been simulated previously using a neural-level account of
search, the spiking Search over Time and Space (sSoTS) model, which
incorporates inhibitory as well as excitatory mechanisms to guide visual
selection. Here we used sSoTS to help decompose the fMRI signals found
in a preview search procedure, when participants search for a new tar-
get whilst ignoring old distractors. The time course of activity linked to
inhibitory and excitatory processes in the model was used as a regressor
for the fMRI data. The results showed that different neural networks
were correlated with top-down excitation and top-down inhibition in the
model, enabling us to fractionate brain regions previously linked to vi-
sual marking. We discuss the contribution of model-based analysis for
decomposing fMRI data.

1 Introduction

1.1 Human Visual Search over Space and Time

The visual world contains a vast amount of information, only some of which is
relevant to our behaviour. It is therefore essential to employ selection processes
to enable us to separate relevant from non-relevant information. In order to
understand both the functional mechanisms of selection, and the underlying
neural substrates, investigators are increasingly combining behavioural studies
with fMRI analyses which reflect functional activity in different brain regions as
selection takes place. However, given the limited spatial and temporal resolution
of fMRI, it is often difficult to separate the different functional processes that
may contribute to visual selection. Moreover different functional processes can
combine to influence selection. For instance, selection may be contingent on both
excitatory processes that guide attention to a target and on inhibitory processes

L. Paletta and J.K. Tsotsos (Eds.): WAPCV 2008, LNAI 5395, pp. 124–138, 2009.
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that guide attention away from distractors [5]. In such cases, fMRI contrasts
between (say) easy and difficult search operations fail to distinguish the different
functional operations involved. One way to advance the functional analysis of
fMRI data in such cases is to link the data to an explicit model of performance,
which does distinguish between the different functional processes, and which can
be used to predict the variation in fMRI signal as the different processes take
place. Here we present an example of this using the spiking Search over Time
and Space (sSoTS) model of visual search [23]. We show how sSoTS can be used
to pull-apart fMRI signals associated with excitatory and inhibitory processes
in search, providing a more detailed analysis of the relations between cognitive
and neuronal function.

It is well known that humans utilize “selection by space” to process only infor-
mation at certain locations. However, only recently have studies been designed to
examine how temporal cues can be used to guide visual selection. Traditionally,
in visual search tasks participants are asked to find a known target item amongst
irrelevant distractor items, and the time it takes participant to identify the tar-
get is measured (the reaction time (RT)). The slope of the search function (RT
relative to the display size of distractors) depends on the spatial features of the
target and distractor items. Watson and Humphreys [31] devised a new version
of visual search where the temporal as well as the spatial features of targets and
distractors were varied. They adapted a standard colour-form conjunction task,
but presented half of the distractors (the preview) prior to the other distractors
and the target (when present). They showed that this preview search condition
was facilitated relative to the standard conjunction search, with search efficiency
approximating that found when the new items were presented alone (the ‘single
feature baseline’). Watson and Humphreys [31] proposed that temporal priori-
tisation in search tasks depends, at least in part, on the active ignoring of old
items – a process they termed visual marking. Humphreys et al. [17] showed that
visual marking is disrupted when a secondary task must be conducted during
the preview, consistent with the secondary task disrupting top-down ignoring of
old items. In addition this, there is also evidence for top-down excitatory biases
influencing search. For example a positive bias for expected target properties
can offset the effects of an inhibitory bias against the features of old distractors
[16] (induced by, for example, instructions or changes in display).

There is now considerable evidence that search is contingent on a network
of neural circuits in frontal and parietal cortex that control both voluntary and
reflexive orienting of attention to visual information [7]. These neural regions also
overlap with areas involved in selecting targets on the basis of their temporal
properties [20,8], suggesting that common neural processes may mediate search
not only across space but also across time – as when we prioritise the selection
of new over old stimuli. The inter-play between the different parts of this fronto-
parietal circuit however remains much less understood.

There have now been several brain imaging studies of preview search [27,26]
which converge in demonstrating that the preview period is associated with
activation within the superior parietal cortex and the precuneus. Allen et al. [4]
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examined preview search both when a preview task was carried out alone and
under conditions of secondary task load (a visual memory task was interleaved
with preview search). In a single feature baseline, the participant had to locate
a blue house target amongst red house distractors. In a conjunction condition,
the same target had to be found amongst blue faces and red house distractors.
In the preview condition, the preview items (blue faces) appeared 2 sec before
the search display (red houses and blue house target). In the visual memory task
participants had to memorise the positions of dots presented before the preview
display. The, after the presentation of the preview, either the dots re-appeared
or the search display was presented. When the dots re-appeared the task was to
judge whether one had moved location. When the search display appeared the
task was to locate the target (left or right of screen). Figure 1 shows the different
conditions. This study used faces and houses as search items rather that the
typical lines or letters. This allowed Allen et al. [4] to draw conclusions about
the activity in stimulus-specific cortex (e.f. fusiform face area). Although there
are differences in behaviour with these more complex stimuli, crucially, Allen
et al. found a behavioural advantage for preview search which decreased when
there was a memory load. Active ignoring of the preview display was associated
with activation in a network of brain areas in posterior parietal cortex. These
same regions were active during the visual memory task and decreased their
activation for preview displays when the memory task was imposed.

Fig. 1. This figure presents the displays for the 3 conditions in Allen et al. [4], for the
three scans (Search scan, Preview scan, and Working Memory scan)
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1.2 Modelling Search

Over the past ten years, increasingly sophisticated computational models of
visual search and selection have been proposed [15,9,19,24]. The importance
of these models is that they generate a system-level account of performance,
emerging from interactions between different local components. This provides a
means of examining how interactions within a complex network generate coher-
ent behaviour.

The majority of models to-date have used relatively high-level connectionist
architectures, where (e.g.) activity within any processing unit typically mimics
the behaviour of many hundreds rather than individual neurons [see [15] for an
example]. Such models not only operate at a level of abstraction across indi-
vidual neurons (operating at a ‘mean field’ levels; see [15]), but they also very
often include network properties divorced from real neuronal structures (e.g.,
with units being both excitatory and inhibitory, depending on the sign of their
connection to other units). One exception to this approach comes from the work
of Deco and colleagues [9,11] who have simulated aspects of human attention
with models based on ‘integrate and fire’ neurons. These networks utilise biolog-
ically plausible activation functions and generate outputs in terms of neuronal
spikes (rather than, e.g., a continuous value, as in many connectionist systems).
Deco and colleagues have shown how classic ‘attentional’ (serial) aspects of hu-
man search can be simulated by such models even when the models have a
purely parallel processing architecture. This provides an existence proof that a
model incorporating details of neuronal activation functions can capture aspects
of human visual attention.

One attempt to simulate human search over time as well as space has been
made using the spiking Search over Time and Space model (sSoTS) [22,23],
which represents an extension of the original work of Deco and Zihl [9]. sSoTS
uses a system of spiking neurons modulated by NMDA, AMPA, GABA trans-
mitters along with an IAHP current, as originally presented by Deco and Rolls
[27,26] (see also Brunel and Wang [6]). sSoTS is separated into processing units
that encode the presence of independently coded features (e.g. colour and form)
(see Figure 2). The feature maps can be thought as high-level representations
for groups of low level of features. There is in addition a ‘location map’ in which
units respond to the presence of any feature at a given position. At each location
(in the feature maps and the location map), there is a pool of spiking neurons,
providing some redundancy in the coding of visual information. The feature
maps may correspond to collections of neurons in the posterior ventral cortex
(e.g., V4), while the location map may correspond to collections of neurons in
dorsal (posterior parietal) cortex. There are inhibitory interactions across differ-
ent pools in the feature maps, representing a form of lateral inhibition between
like elements. There are also inhibitory interactions between pools corresponding
to the same location in different feature maps in the same feature domain (e.g.,
between blue and green units, but not between blue and H units), so that a given
location will tend to support only one feature value within a domain. Search for
a specific item is simulated by giving additional activity into the feature maps
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Fig. 2. The architecture of the sSoTS model: The maps outlined in bold (Blue and
House maps) receive top-down excitation (for the expected target) and the maps linked
to the external inhibitory pool (the Blue and Face maps) receive the top-down inhibi-
tion (for the features of the preview)

corresponding to the properties of the target; this corresponds to an expectation
of the target. This activity combines with activity from the stimuli presented in
the search display, and the output from each pool of neurons in each feature map
is fed-forward into the map of locations. Activity in the location map provides
an index of ‘saliency’ irrespective of the feature values involved (cf.[19]), since
the location units represent the strength of evidence for ‘something’ occupying
each position, but they are ‘blind’ to the features present (which are summed
across the feature maps). There is then also feedback activation from the pool
of units corresponding to each position in the map of locations to units at the
corresponding location in the feature maps, supporting the selection of features
that are linked to the highest saliency value. Over time, the model converges
upon a target, with reaction times (RTs) based on the real-time operation of the
neurons.

Search efficiency in sSoTS is determined by the degree of overlap between
the features of the target and those of distractors, with RTs lengthening as
overlap increases and competition for selection increases. Consequently, search
for a conjunction target (having no unique feature and sharing one feature with
each of two distractors) is more difficult than search for a feature-defined target
(differing from the distractors by a unique feature). Mavritsaki et al. [22,23]
showed that search in the conjunction condition also increased linearly as a
function of the display size, mimicking ‘serial’ search.

In addition to modelling spatial aspects of search, sSoSTs also successfully
simulated data on human search over time, in the preview search paradigm [1,
20]. Provided the interval between the initial items and the search display is
over 450ms or so, the first distractors in preview search have little impact on
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behavioural performance [31,32]. The sSoTS model generated efficient preview
search when there was an interval of over 500ms between the initial preview and
the final search display. sSoTS mimics the behavioural time course due to the
contribution of two processes: (i) a spike frequency-adaptation mechanism gen-
erated from a slow Ca2+ -activated K+ current, which reduces the probability of
spiking after an input has activated a neuron for a prolonged period [21], and (ii)
a top-down inhibitory input that forms an active bias against known distractors.
The slow action of frequency-adaptation simulates the time course of preview
search. The top-down inhibitory bias matches data from human psychophysical
studies where the detection of probes has been shown to be impaired when they
fall at the locations of old, ignored distractors [3,4]. In addition, in explorations
of the parameter space for sSoTS, Mavritsaki et al. [22,23] found that active in-
hibition was necessary to approximate the behavioural data on preview search.
These results, using the sSoTS model, indicate that processes of co-operation
and competition between processing units may not be sufficient to account for
the full range of data on human selective attention and that factors such as fre-
quency adaptation are required in order to simulate the temporal dynamics of
visual attention.

1.3 Linking the Model to fMRI

As we have noted, imaging studies have shown a network of regions in poste-
rior parietal cortex (PPC) (including superior parietal cortex and precuneus,
extending into occipital cortex) associated with successful prioritisation of the
new target and successful ignoring of the old distractors. However, the increased
activation in these regions found in preview search is inherently ambiguous, be-
cause preview search is influenced by both positive expectancies for targets and
inhibitory suppression of distractors [5]. This ambiguity is not apparent in the
sSoTS model, though, where effects of top-down expectancies and inhibitory bi-
ases against distractors can be distinguished. For example, the map associated
with the feature of the old distractors that does not re-occur in the search display
(i.e., the map for face stimuli, in the experiment of Allen et al. [4]) uniquely re-
ceives top-down inhibition in sSoTS. The map corresponding to the feature of the
target not present in the old distractors (i.e. houses in Allen et al. [4]) uniquely
receives top-down activation. The changes in activity over time in these maps
may be used to predict changes in the fMRI signal linked, respectively, to top-
down expectancies and inhibition in preview search. The distinct time courses
of activation in the model may then be used to pull-apart activity from within
the regions linked to preview search, allowing us to isolate the neural regions
concerned with excitatory and inhibitory modulation of processing. We report
an analysis of fMRI data on preview search taking this approach.

2 The Architecture of sSoTs

sSoTS consists of spiking neurons organised into pools containing a number
of units with similar biophysical properties and inputs. The simulations were
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based on a highly simplified case where there were six positions in the visual
field, allowing up to 6 items in the final search displays. sSoTS has three layers
of retinotopically-organised units, each containing neurons that are activated on
the basis of a stimulus falling at the appropriate spatial position. There is one
layer for each feature dimension (“colour” and “form”) and one layer for the
location map (Figure 2). The feature maps encode information related to the
features of the items presented in an experiment – in this case, Allen et al. [4].
For Allen et al. [4], the two different features encoded are colour and object
shape, which in this case is house or face. Here the feature dimension “colour”
encoded information on the basis of whether a blue or red colour was presented
in the visual field at a given position i, (i=1,...,6) (creating activity in the red
and blue feature maps). The feature dimension “form” encoded information on
the basis of whether there is a house or face present in the visual field at a
given position i (i=1,..,6). The pools in the location map sum activity from the
different feature maps to represent the overall activity for the corresponding
positions in the visual field. Each of the layers contains one inhibitory pool (see
also [11]) and one non-specific pool, along with the feature maps.

The system used and the connections are illustrated in Figure 2. More details
about the architecture of sSoTs and the organisation of the units (neurons) in
the network can be found in Mavritsaki et al. [22].

The units in the model are integrate-and-fire neurons with sub-threshold given
by the equation

Cm
dV (t)

dt
= −gm(V (t) − VL) − Isyn(t) + IAHP (1)

Where Cm is the membrane capacitance where different values are given for
excitatory Cmex and inhibitory Cmin neurons; gm is the membrane leak con-
ductance where different values are also given for excitatory gmex and inhibitory
gmin neurons; VL is the resting potential; Isyn is the synaptic current and IAHP

is the current term for the frequency adaptation mechanism. The values for the
above parameters as well as the threshold Vtbr and the reset potential can be
found in Mavritsaki et al. [23] . The description of the synaptic currents used
(NMDA, GABA, AMPA ) can also be found in Mavritsaki et al. [7].

The parameters for the simulations were established in baseline conditions
with ‘single feature’ and ‘conjunction’ search tasks as reported by Watson and
Humphreys[31] and Allen et al. [4] (conjunction search: blue house target vs. red
houses and blue faces distractors; feature search: blue face target vs. red houses
distractors). The generation of efficient and less efficient (linear) search functions
in these conditions replicates the results of Allen et al. [4]. These same parameters
were then used to simulate preview search. The parameter w+ represents the
strength of connections between the neurons in each pool, while w− represents
the strength of connections between the pools within and across each feature
map. The target also benefited from an extra top-down input λatt given to those
feature maps that represent the target’s characteristics (i.e., the colour blue and
the letter H). The presence of an object in the visual field was signified by adding
an additional λin value given to the external input that the system received.
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Overall the input that a pool could receive was vext = vext + (λin + λatt)/Next.
In preview search top-down attention (λatt) was applied to the target’s feature
maps at the onset of the search display.

RTs were based on the time taken for the firing rate of the pool in the location
map to cross a relative threshold (thr). If the selected pool corresponded to the
target then the search was successful (a hit trial). If the pool that crossed the
threshold corresponded to a distractor rather than the target then the target
was ‘missed’. Note, however, that if the parameters were set so that the target’s
pool was the winner on every trial, only small differences in the slopes were
observed between conjunction and single feature search, due to target activation
saturating the system. Accordingly, search was run under conditions in which
some errors occurred, mimicking human data. Detailed simulations, were run
at the spiking level only, to match the experimental results [4]. Additionally, to
simulate the working memory effect, we reduced slightly the top-down inhibition
during the ‘working memory’ trials – assuming this is equivalent to the effects
generated when human participants hold another stimulus in working memory
during the preview period.

3 Applying the sSoTS Model to fMRI Data

3.1 Extraction of Activation Maps for Top Down Inhibition and
Excitation

During the preview period activation in the model is affected by several factors:
top-down excitation (for the target), top-down inhibition (for old distractors)
and passive inhibition caused by frequency adaptation. In order to be able to
compare the fMRI data with the activation patterns in the model we extracted
activation maps from the model related to the above mechanisms. For example,
consider preview search for a new blue house target amongst previewed blue
faces and new red houses distractors (see[4]). In sSoTS there is a positive bias
applied to maps representing the features of targets, for Allen et al. [4] the tar-
get is the blue house, therefore the map that encodes the shape “house” and
the map that encodes the colour “blue” receive top-down excitation. Further-
more, there is an inhibitory bias applied to maps representing the features of old
distractors (distractors presented before the presentation of the search display),
these distractors are blue faces, so the map that encodes the shape “face” and
the map that encodes the colour “blue” both receive top-down inhibition. By
tracing activity in the house, face and blue maps, we can correlate brain activ-
ity with active excitatory and inhibitory biases in the model. Note that we are
interested in activity relating to these biases and processes, not to the distractor
features or colours.

To extract the brain activity relating to these processes, we first extracted a
time course of the activity in each of the sSoTS maps (2 x shape, 2 x feature
and the location map) over the experiment of Allen et al. [4]. These time courses
were convolved with a standard estimate of the heamodynamic function and
used as regressors for the fMRI activity (see below). To estimate the activations
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Table 1. Map Extraction

Single Feature and Conjunction Map Extraction Preview Map Extraction
Maps Positive Bias SF and CJ Inhibitory Bias PV Positive Bias PV
Face NO YES NO

House YES NO YES

Blue YES YES YES

Red NO NO NO

associated with positive biases for targets and inhibitory biases against distrac-
tors (see Table 1) we compared the activations found for each map (for both the
conjunction and preview search conditions). Thus, for conjunction search, the
positive top-down bias was given by:

(Target form – distractor form)

+

(Target colour – Distractor Colour)

i.e: (House – Face+ Blue – Red)

For preview search the top-down excitation was given by:

(Map with only Positive Bias –Map with no bias)

+

(Map with Positive and Negative Bias – Map with only Negative Bias)

i.e: (House–Red+Blue–Face)

For preview search the top-down inhibition was given by:

(Map with only Negative Bias – Map with no Bias)

+

(Map with Positive and Negative Bias – Map with only Positive Bias)

i.e: (Face–Red+Blue–House)

3.2 Comparison of fMRI Data with Model Bold Responses

Activation in sSoTS was linked to the human fMRI data by taking into account
the delay that is present in the fMRI bold signal (about 5-9 sec) [12]. To do this,
activity in the model was convolved with a haemodynamic response function
[13,14,10]. Previous work by Gorchs and Deco [13] simulated the bold response
by taking the average pool activity in a given location in the model and convolved
this with a Poisson distribution. The result from the convolution was then com-
pared with bold responses taken from the fMRI data (from the corresponding
simulated region). Furthermore, instead of using the average pool activity the
synaptic activity can also be employed. Deco et al. [10] used the synaptic activ-
ity from his model and convolved it with the haemodynamic response function
suggested by Glover [14]. In our effort to compare our theoretical data with the
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fMRI experimental data we used the average synaptic activity from the pools in
the model’s feature maps. This average synaptic pool activity was then directly
compared with the observed bold data from Allen et al. [4], using the synaptic
activity as regressors for the fMRI analysis.

We note that there was no top-down inhibitory bias applied during conjunc-
tion search. However, activity in the same maps was examined in order to pro-
vide a baseline with the preview search task. After extracting the activity maps
from the model, we averaged over 20 trials for each condition and we took the
changing time course of activity reflecting top-down inhibition and top-down
excitation activity for each condition. This activity was convolved using an as-
sumed haemodynamic response function [10] to create a time series of predicted
bold activity. This time series was then used as a regressor for the fMRI data in
the contrasting search conditions.

fMRI analysis was done using FEAT, part of fsl (www.fmrib.ox.ac.uk/fsl).
The data were pre-processed as in Allen et al. [4], including correction for head
movement, within scan signal intensity normalisation, high pass temporal filter-
ing (to remove slow wave artifacts). The time course for each map in the model
was entered as a separate regressor. Positive and negative biases were estimated
by combining the regressors for each map as desribed above. Z (Gaussianised
T/F) statistic image were thresholded using clusters determined by Z>2.3 and
a (corrected) cluster significance thresholded of P=0.05.

4 Results

The behavioural results generated by sSoTS matched the classical findings on
single feature, conjunction and preview search [31]. In the single feature condi-
tion (the half set baseline), the search slope was 14 ms/item; for the preview
condition it was 12 ms/item, and it was 46 ms/item for the conjunction condi-
tion (the full set baseline). When a working memory task was added (the loaded
search condition), the slope of the preview condition increased to 19 ms/item
(see Figure 3).

We then took the time courses of activation reflecting the top-down excitatory
and inhibitory activity in sSoTS’s feature maps and applied these as regressors
to the fMRI data associated with the preview condition reported by Allen et al.
[2]. In this study we sought areas where BOLD activity was related to excitatory
and inhibitory activity. Allen et al. [4] reported activation in posterior parietal
cortex (superior parietal lobe and precuneus) linked to the dummy preview con-
dition. We found a reliable correlation (p<0.001 for all correlations) in right
lateral parietal cortex for top-down excitatory activity predicted by sSoTS. In
contrast, top-down inhibitory activity in the model was correlated with fMRI
activation in the medial precuneus (Z=50) (Figure 4). Here the model-based
analysis distinguishes two functionally different operations taking place when
observers attempt to ignore the preview and to prioritise search to new items [5].

We also examined the differences between bold activity in the preview and
conjunction search conditions in relation to the activation differences between
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Fig. 3. The slopes generated by sSoTS for single feature search (the half set baseline),
conjunction search (the full set baseline), standard preview search and preview search
with a working memory load (the loaded search condition). On the left we present the
preview and the loaded search conditions compared with the half set baseline, with
the display size matched to the number of items in the second search display in the
preview condition. On the right we show the preview and the loaded search conditions
in comparison with the full set baseline, with the display size matched to the number
of items on the final screen of the preview condition (preview + search items).

Fig. 4. This figure presents the areas that show bold activity correlated with top-
down inhibition in sSoTS (white with black outline) and those where bold activity
correlated with top-down excitation in the model (black with white outline). Top-down
inhibition in the model (maps: (1-4)+(3-2)) was associated with activity the medial
precuneus, while top-down excitation in the model (maps: (2-4)+(3-1)) was associated
with activity in the lateral parietal cortex (right hemisphere).

the these conditions apparent in sSoTS (comparing activity in the critical maps
in preview and conjunction search). In sSoTS these activation differences are
driven by the application of top-down inhibition in preview search. The results
showed a reliable correlation between the activation differences in sSoTS and
increased activation in the precuneus in preview search compared with the con-
junction condition. There was also a correlation between differences in activity
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Fig. 5. Comparisons between preview and conjunction search (the full set baseline).
The white with black outline regions reflect correlations between (i) top-down in-
hibitory activity in sSoTS and (ii) increased activation in preview compared with con-
junction search. The black with white outline regions reflect correlations between (i)
top-down inhibitory activity in sSoTS and (ii) greater activation in conjunction search
compared with preview search.

Fig. 6. Comparisons between the standard preview condition and the condition where
preview search was conducted with a working memory load (the loaded search condi-
tion) [4]. The white with black outline regions reflect correlations between (i) top-down
inhibitory activity in sSoTS and (ii) increased activation in standard preview search
compared with the loaded search condition. The blue with white outline regions re-
flect correlations between (i) top-down inhibitory activity in sSoTS and (ii) increased
activation in the loaded search condition compared with standard preview search.

in the conjunction and preview conditions in sSoTS and increased activity for
the conjunction condition over the preview condition in lateral parietal cortex
(Z=52) (see Figure 5). This may reflect the increased role of excitatory guidance
to the target in the conjunction condition.

Finally, we evaluated the differences in activity between the standard preview
condition and preview search conducted with a memory load. The differences
in activity between these two conditions in sSoTS was correlated with (i) an
increase in bold activity in the standard preview compared with the working
memory condition in the precuneus, and (ii) an increase in bold activity in
the working memory condition compared with the standard preview in lateral
parietal cortex (Z=50) (Figure 6). These results fit with there being reduced
inhibitory activity under conditions of working memory load, along with an
increased role for top-down activation for the target under the more difficult
working memory condition.
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5 Conclusions

sSoTS replicated successfully the behavioural results from Allen et al. [4]. Ac-
tivity in the model linked to top-down excitation and inhibition also correlated
with the bold signal in posterior parietal cortex. Prior fMRI studies have demon-
strated increased activity in posterior parietal cortex linked to preview search,
but differences in excitatory and inhibitory influences have not been separated.
In sSoTS the activation associated with top-down excitation and inhibition can
be distinguished. We showed that bold activity in the precuneus was associated
with top-down inhibition in the model, while activity in more lateral parietal
areas (particularly in the right hemisphere) correlated with top-down excitation
in the model. Activation in these two regions also changed across the search
conditions in accord with changes in sSoTS. Higher activation in the precuneus
in preview search compared with (i) conjunction search and (ii) the working
memory condition was correlated with greater inhibitory activity in the model.
In contrast, there was increased activity in lateral parietal cortex associated
with increased activation in (i) conjunction search and (ii) the working memory
condition, compared to standard preview search, linked to increased top-down
excitation in sSoTS. These data suggest that top-down inhibition may play a
driving role in generating efficient preview search compared with less efficient
search conditions (conjunction search and preview search with a working mem-
ory load). Top-down activation, on the other hand, appears to play a greater role
in inefficient search (conjunction search, preview search with a working mem-
ory load) than in efficient preview search. This may reflect the more prolonged
search taking place, which enables a greater role for top-down excitation, for the
target, to emerge. The analysis demonstrates that the model-based analysis can
help to identify the functional role of different brain regions in search, providing
a more accurate account of the neural substrates of visual selection.

It now remains for empirical studies to test the predictions arising from this
modelling-fMRI study. For example, damage to inferior parietal cortex ought to
mean that patients are impaired at exploiting any positive expectancy for up-
coming targets, to facilitate search. In contrast, patients with damage to more
medial and superior parietal regions (including the precuneus) ought to have
problems in suppressing irrelevant distractors. While damage to posterior pari-
etal cortex has been shown to disrupt preview search [25], the precise factors
involved, and whether they might differ across patients, has not been explored.
The analysis with sSoTS predicts that differences should emerge as finer-grained
analyses of patient sub-groups is undertaken.
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Abstract. Posner and colleagues [38,40] assert that attention comprises
three distinct anatomical areas of the brain responsible for separate
aspects of attention, namely alerting, orienting and executive control.
Based on this view of attention, the work presented here computation-
ally models the attentional networks task (ANT) which can be used to
assess the efficiency and interactions of these disparate networks, collec-
tively responsible for different functions related to attention mechanisms.
The present research builds upon the model of ANT to show the modula-
tion effects of one network on the other and suggests how the model can
be used to simulate neglect conditions related to attention. The model
is evaluated against data sets from experimental studies and the model’s
fit to data is assessed statistically. Building such models of attention
benefits computer vision research, as they are, well informed from both
cognitive psychology and neuroscience perspectives.

1 Introduction

1.1 Theories of Attention and Attentional Networks

There are various psychological theories that try to explain how the mechanism
of attention takes place. The first systematic theories of attention date back to
the 1950s, describing attention as a single phenomenon based on central bottle-
necks or limited processing capacity [7]. Later the focus shifted from attention in
general to specific theories concerning how people chose among multiple objects,
studying specific tasks. A few popular and established theories of attention are
Feature Integration Theory [50], Guided Search Theory [57] Bundesen’s Theory
of Visual Attention [8] and the phenomenon of ‘change blindness’ and Coherence
Theory [45].

Functional neuroimaging has enabled researchers to view many cognitive pro-
cesses in the window of which brain areas are activated when various attention
components are working [12,39,21,15]. There is sufficient evidence to believe that
these networks can be distinguished both at cognitive and neuroanatomical levels
[44]. This has led to a different kind of theory based on separate but collaborat-
ing attentional networks in which attention can be viewed as an organ system
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Fig. 1. The neuroanatomy of attentional networks [41, p. 6] illustrates the cortical
areas involved in the three attention networks. The alerting network (squares) includes
thalamic and cortical sites related to the norepinephrine system. The orienting network
(circles) is centered on parietal sites and the executive network (triangles) includes the
anterior cingulate and frontal areas.

or as a system of anatomical areas that consist of more specialized networks.
Based on these anatomical findings, Posner proposed his three-component the-
ory whereby attention is divided into three separate networks: namely, alertness,
selectivity and processing capacity [38], later revised and renamed as alerting,
orienting and executive control [39,40,41] (see Figure 1). Similarly, LaBarge’s
[28] triangular circuit theory of attention requires simultaneous activity of three
brain regions that are connected by a triangular circuit.

Posner and colleagues state that alerting helps us to prepare for an incom-
ing stimulus so we respond faster and more accurately. Orienting, or selective
attention, helps us deal with information overload so that we can select a tar-
get among distracters in a cluttered visual scene. Finally, control helps us deal
with conflicts in decision making related to attention. Although the attentional
networks are anatomically and functionally independent and subtended by sepa-
rate neural networks in the brain, the three networks operate under the constant
influence of one another and orchestrate together to produce efficient and adap-
tive behavior. At first glance, it may seem that the three-component theory of
attention is primarily supported from a neuroscience perspective; however, there
is also support for three networks from psychophysical studies: the mechanism
of orienting is in line with the classic theories of visual selective attention deal-
ing with tasks like cueing experiments, visual search [50,57,8], and so on. The
component of executive control relates to the phenomenon of cognitive control
and can be supported by theories of cognitive control [47,12]. Finally, alertness
provides a good explanation for theories of enhancement, giving rise to mecha-
nisms like priming and cueing. Hence, the networks theory seems to provide a
more complete view of the cognitive phenomenon of attention.
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1.2 Attentional Network Test (ANT)

There are numerous tasks that have been used to study the efficiency and inter-
actions of these attentional networks separately. For instance, alerting has been
studied using a vigilance task and warning signals. Orienting has been studied
using visual search tasks, spatial cueing experiments, and other visual selective
attention related tasks. Finally executive control, which involves conflict resolu-
tion, is well portrayed by tasks like Stroop, Flanker, Wisconsin card sort, and
so on. However, a more holistic approach would be to look at all three networks
simultaneously, during execution of a single task. One such paradigm discussed
below is the Attentional Network Test (ANT) developed as a behavioral measure
of the efficiencies of the three attentional networks within a single task [16,46].

ANT is a computer based reaction time test which is a combination of cueing
experiments [36] and a flanker task [14]. Each trial begins with a cue that in-
forms the participant that a target is coming soon and also where it will occur.
In the no-cue condition there is no signal of occurrence in time or location. The
target always appears either above or below the fixation point and consists of a
central arrow surrounded by flanking arrows that can either point in the same
direction (congruent) or in the opposite direction (incongruent). ANT uses dif-
ferences in reaction time (RT) between each experimental condition to measure
the efficiency of each network. The design of ANT is illustrated in Figure 2.

The usability of ANT is very diverse and its value can be gauged from its
wide application in the study of adults with borderline personality disorder
[26], schizophrenia [18,55], and Alzheimer’s disease [17]. Patients with attention
deficits/disorders are shown to have specific deficits in the functions specifically
of alerting and executive control [43,41,6]; autism has been shown to be related
to the orienting network, and Alzheimer’s, borderline personality disorders and
schizophrenia have been shown to be related to executive control [42].

Fig. 2. A sketch depicting the design of the ANT paradigm [53, p. 121]
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1.3 Computational Modeling of Attention

Computational modeling, a challenging task, is a quickly growing field in not
only computer vision, but also in general in cognitive science and neuroscience.
With advancements in computational modeling and progress in neuroscience,
it would be insufficient to research a cognitive phenomenon from a psychology,
neuroscience or computer vision perspective alone; rather, synergizing various
disciplines renders tremendous benefits. There are mainly two classes of models
relating to attention. There are models that emerge from the point of view of
neuroscience and also neuropsychology, built to simulate the neural mechanism of
the attentional processes of the brain; the objective is to be able to understand
how cognitive functions like perception, memory, thinking, language, decision
making, and so on arise from their neural bases. Then there is another class of
models that are mainly built to solve computer vision problems. These types of
models aim at building computational attention systems which have applications
in the field of computer vision and robotics. Typical applications include robot
navigation, surveillance tasks, industrial control, and medical imaging.

Based on these needs, there are three broad categories of modeling approaches.
A popular and useful approach is that of filter based models [27,23,24] used
mainly in computer vision applications. Generally this class of computational
model responds to the saliency of components of the visual scene such as bright-
ness, contrast and color, essentially corresponding to bottom-up attentional pro-
cesses. The performance of such models corresponds well with psychophysical
data for attention to natural scenes. Further enhancements to this approach
reflect learnt associations to regularities in natural scenes, thus contributing a
top-down aspect to attention [48,49,32,13]. An alternative approach to modeling
uses a connectionist approach which is claimed to be more biologically plausible.
A classic example of a connectionist model that simulates the Stroop task is the
model of [11] which instead of direct connections uses weight differences which
come through practice. Another example, SLAM (SeLective Attention Model)
[35] is an extension of McClelland and Rumelhart’s [31] model of visual word
recognition which adds a response selection and evaluation mechanism. Selec-
tive tuning and related work [52], is a connectionist model that achieves selective
tuning through a top-down hierarchy of winner-take-all processes. An in depth
survey of this approach can be found in [20].

The third approach uses cognitive architectures which are mainly symbolic in
nature but which may incorporate subsymbolic constructs. According to Howes
and Young [22] (quoted by [19] p302),“a cognitive architecture embodies a sci-
entific hypothesis about those aspects of human cognition that are relatively
constant over time and relatively independent of task.” Cognitive architectures
are widely used to model human behavior, offering a broad theory of human cog-
nition based on a wide selection of human experimental data, and implemented
as a running computer simulation program [2,4,33]. Various popular architec-
tures today are ACT-R [2] Soar [29] and EPIC [25]. There are a number of
examples of cognitive models found in the literature which try to model certain
aspects of attention. For example, Lovett’s [30] implementation of Stroop is a
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good example of an ACT-R implementation of a model of cognitive control. The
ACT-R theory has also been extended to include a theory of visual attention
and pattern recognition whereby production rules direct attention to primitive
visual features in the visual array [5]. The ACT-R theory itself embeds Posner’s
spotlight metaphor [36], Trieisman and Sato’s feature synthesis model [51] and
Wolfe’s guided search model [57]. The advantage of having such a theory is two-
fold: one is to model information processing limitations in obtaining information
from the screen; the second is to “remove the magical degrees of freedom in going
from a description of an experiment to a cognitive model.” [5, p. 65].

1.4 Computational Modeling of Attentional Networks

There are various models found in the literature, such as those cited above,
that are built to study a specific component of attention. However, simulating
the performance of the three together has been sparse. We have come across
two such models that implement the attentional networks, both simulating their
performance on ANT ). The first [56] is a connectionist model based on the
Leabra (local error-driven and associative, biologically realistic algorithm) [34].
The second model [53] is a symbolic model based on the cognitive architecture
of ACT-R 5.0. Wang and colleagues have also attempted to primitively link and
compare the two approaches [54].

2 Model of Attentional Networks

The work reported in this paper is based on a reimplementation of Wang and
Fan’s [53] model, extending it to study the modulation effects of the attentional
networks and proposing how this modeling effort can be applied in various at-
tention related neglect conditions. It is implemented in ACT-R 6.0 [3,1] which,
as described earlier, provides support for theory of visual attention [5] and in-
corporates both symbolic and sub-symbolic components.

2.1 Design

The model has six distinct modules which are involved in performing the generic
ANT trial: fixation and cue expectation, ‘cue or stimulus’ processing, cue process-
ing, stimulus expectation, stimulusprocessing and response.These functional com-
ponents are mapped into a number of production rules within the symbolic part of
the architecture that cover all the possible ANT conditions; however not all rules
are fired in any one particular trial, firing depending upon the cue or stimulus.

The ACT-R model interacts with the outside world using perceptual motor
modules for finding and extracting information from its Visicon (Visual Icon). It
mimics the spotlight metaphor in which a variable size spotlight moves across a
visual field, fixating on an object so that its features can be recognized. Once rec-
ognized, the object features become available for higher level processing. The im-
plemented model uses two main buffers in the vision module: the visual-location
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buffer which can see the basic features but cannot recognize the semantics (as in a
pre-attentive stage), and a visual buffer to which attention needs to be moved in
order to do higher level processing (as in the attentive stage). The way the model
deals with the visual input is a good example of the case where both pre-attentive
and attentive processes work together. Capacity limits can be related to the num-
ber of items attended. In the context of ACT-R, finsts maintain a record of the
objects that have been attended to and thus provide a mechanism which allows
one to explicitly specify how many items can be attended to and for how long.
Finsts are limited in number and how long they persist, both controlled by ACT-
R parameters: the default number of finsts is set to four, and the default decay
time is three seconds [1]. The model decides whether a stimulus is a cue or tar-
get on the basis of pre-attention, but requires full attention to process the target
and respond regarding the direction of the arrow. This is in line with ACT-R’s
theory of attention, whereby, in order for it to know what is in the environment;
it must move its attentional focus over the visual scene. It is interesting to note
here that ACT-R has the ability to prevent the system from returning to previ-
ously attended objects, thus implementing the phenomenon of ‘inhibition of re-
turn’. The model achieves this by allowing only items tagged as ‘attended new’ to
be ‘stuffed’ into the visual-location buffer. Buffer stuffing is a mechanism in the
ACT-R architecture that corresponds to the concept of bottom-up processing in
visual attention. However, based on the goals of the model, the buffer is ‘stuffed’
using certain predefined criteria and hence reflects top-down control.

The subsymbolic part of ACT-R is used in the model to implement various
parameters like rule firing time, noise, to induce randomness, utility values set
to deal with conflicting productions in case of incongruency, and so on. In the
case of multiple choices of matching productions, the internal conflict resolution
mechanism of ACT-R is applied. In ACT-R, the utility module provides support
for the productions’ subsymbolic utility value which is used in conflict. This value
is a numeric quantity associated with each production that can be learned while
the model runs or specified in advance for each production. If there are a number
of productions competing with expected utility value Uj then the probability of
choosing production i is described by formula (1).

Probability(i) =
eUi

√
2s∑

jeUj

√
2s

(1)

In this default ACT-R formula [1], the summation is over all productions which
are currently able to fire; s is the expected gain noise, that is the noise added to
the utility values, and e is the exponential function.

2.2 Results

The model is treated as a simulated human subject in an ANT experiment,
using the same dataset as used in the human studies [16], and interacting with
the same experimental software [5]. The time from the stimulus presentation
to the key press is recorded as the reaction time (RT). The efficiency of each
network is measured using formulae (2)–(4).
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Alerting efficiency = RT(no-cue) − RT(double-cue) (2)

Orienting efficiency = RT(center-cue) − RT(spatial-cue) (3)

Executive Control efficiency = RT(incongruent) − RT(congruent) (4)

Table 1 reports the results produced by the new implementation, comparing
these results with the human data and with Wang et al’s earlier implementation
[16,53] indicating a faithful reimplementation of the original ACT-R 5.0 model,
as well as reproducing a close approximation to the original human data set.

Table 1. Comparison of Results of Fan et al’s [16] Study, Wang et al’s ACT-R 5.0
model [53] and the ACT-R 6.0 model presented here

Human data Wang’s Model ACT-R 6 new model 
neutral congruent incongruent Neutral congruent incongruent neutral congruent incong 

Nocue 529 530 605 527 526 621 520 521 592 
Center 483 490 585 487 486 580 482 483 557 
Double 472 479 574 467 466 562 464 459 531 
spatial 442 446 515 441 441 522 441 441 527 

Correlation Coefficients with human data 0.99 0.97 

3 Modelling Attention Related Disorders

As mentioned earlier, ANT has been widely used to assess which attentional
networks are affected by various attention related deficits [26,55,17,43,41,6]. ANT
is considered a relatively sensitive tool for assessing attention related disorders
because it can closely determine the efficiency of individual attentional networks
corresponding to distinct areas in the brain and can be used to assess which
particular network is affected by a particular condition.

3.1 Design

The model described in Section 2 has been modified to simulate one such study
which uses a modified version of ANT to assess the role of the various attentional
networks in Alzheimer’s disease. The study models the findings of Fernandez-
Duque & Black [17] which assesses attention processes in Alzheimer’s disease
and in aging subjects. Their study uses a modified version of ANT which is
varied to take into account the cost of disengaging from an invalid location. The
modified version of ANT, in addition to a no-cue, cued and double (neutral)
cue condition, also uses an invalid cue condition in which the cue appears in a
location opposite to the target location.

The model was modified to incorporate the new invalid cue condition and,
to reflect the changes in attention network functionality demonstrated in these
studies, the following changes were made. Orienting effect was altered by tuning
the buffer stuffing mechanism of ACT-R by increasing the screen-x values that
determine what will be placed in the visual buffers using the command (set-
visloc-default :screen-x (within 20 180) :attended new). This corresponds to a
slower orienting effect because the screen-x values range wider compared to where
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the target is placed on the screen and there is a higher probability of choosing
a location other than the center arrow. The effect of lesioning the cognitive
control network, which increases the congruency effect, is modelled by using
productions that make the model refocus every time a distractor is picked up by
mistake using production: refocus-again-if-incongruent. This results in an extra
move-attention and thus the reaction time slows down. Similarly, in the case
of an invalid cue, the model calls an extra production which shifts the focus of
attention from the invalid location to the actual location of the target which
takes more milliseconds compared to valid priming. The overall rule firing time
(that is the ACT-R parameter :dat, the default activation time) is reset to 50 ms
rather than 40 ms as used in the Wang et al model [53] and its reimplementation.

3.2 Results

The overall reaction times recorded by the model and compared with human
data are given in Table 2. The model seems to fit the human data well with a
correlation of 0.95.

Table 2. The reaction times for Alzheimer’s disease(AD) subjects and model

Congruent – AD Subject Incongruent-AD Subject Congurent-Model Incongurent-model 

Nocue 851 947 545 680 
Uncued 817 982 545 680 
Cued 729 889 488 599 
Alert 761 958 520 614 

Fig. 3. The efficiencies of all three attentional networks are plotted for human data
[17] vs the model simulation in ACT-R 6.0. The correlation of the efficiencies is 0.99.
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Fig. 4. A sketch of the design of the adapted version of ANT [10]

The efficiency of each network is measured using formula (4) from the original
experiment and formulae (5)–(6). Figure 3 compares the model generated results
with the human study results. As reported in the human study [17], the alerting
cue increased the congruency effect but the presence of a spatially valid cue was
ineffective in reducing the cost of incongruency.

Alerting efficiency = RT(no-cue) − RT (neutral) (5)

Orienting efficiency = RT(uncued)− RT(cued) (6)

The results reproduced by the model are in line with the findings of experiments
studying attention related deficits in Alzheimer’s patients. The model may po-
tentially be used to see how the networks modulate each other and whether
enhancing one network could make up for deficit in the other [9]. These results
can be compared with the simulated results of the un-lesioned model, to demon-
strate the inhibitory efffect of the attentional networks.

4 Modulation Effects of Alerting, Orienting and
Executive Control

In the original ANT it is difficult to study the interactions of networks since
the alerting and orienting effects have been measured using the same variable;
that is, spatial cueing is used for orienting whereas temporal cueing is used for
alerting. In order to clearly identify the modulating effect of one network on the
other, Callejas and colleagues [9,10] modified the ANT using a separate tone
for alerting whilst retaining cueing for orienting, as illustrated in Figure 4. An
alerting sound was added to the original design of Fan et al. [16], and the new
cueing variables used were: no-cue, where the stimulus is not preceded by a
cue; cued, where a spatial cue is presented in the location where the stimulus
is expected; and un-cued, where a cue appears in a location opposite to the
location of the stimulus (invalid priming).
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Callejas et al. found that both auditory signal and visual cue exert an influence
on congruency; alerting having an inhibitory effect whereas orienting has an
enhancing effect.

4.1 Design

The experimental design used to model this study involves 2 (auditory signal)
x 3 (visual cue) x 2 (congruency) conditions. The symbolic component of the
architecture implements each condition using rules such as detect-sound, notice-
stimulus-at-cued-top-location, and so on. The model determines whether there
is a high frequency tone produced by the auditory module of ACT-R and a
flag is set indicating whether alerting is present or absent. Also, depending on
the cue type, the model presents it on the screen; if its nocue, then the target
appears without being preceded by a cue. In the case of the cued condition, the
arrows are presented in the expected correct target location and, in the case
of un-cued, the model presents the arrows in the incorrect location opposite to
that of the expected target location. In the nocue condition, the model has an
extra production which handles the ‘surprise’ condition where the target appears
without any priming effect.

In the case of no alerting sound, the model implements an extra produc-
tion which makes the system do an additional state change which increases the
overall reaction time. In the case of an alerting signal, no such state switch-
ing is required. Similarly, in the uncued condition, an extra move-attention is
required to move focus to the actual target location, whereas in the cued con-
dition, the focus is already at the target location which saves milliseconds. The
sub-symbolic component of ACT-R implements the attentional networks by us-
ing utility values and noise to help the model resolve conflicts and also make
human-like errors. Incongruency is handled by two identical productions namely
refocus-again-if-incongruent and harvest-target-directly-if-incongruent with dif-
ferent utility values (utility values are described in section 2.1).

4.2 Results

The overall reaction times recorded by the model compared with human data
are given in Table 3. Pearson correlation coefficient was used to measure the
degree of linear correlation between the two results. The coefficients came out
to be 0.89 giving a good fit to the data.

The efficiency of each network is measured using formulae (4), (6) and (7).

Alerting efficiency = RT(no-alert) − RT (alerted) (7)

The model showed similar interactions between the networks as in the original
experiment in which the alerting network has an inhibitory influence on the
congruency effect (cf.“clearing of consciousness” [37] p7401). Also, the orienting
network had an influence on the control network; that is, when the location of
the target was cued correctly, the congruency effect was smaller compared to the
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Table 3. Results generated by the ACT-R model along with human data from Callejas
et al. [9] in brackets

Mean Reaction Times  for each condition for the experiment and (the model simulation)
No alerting tone Alerting tone
No cue Cued Uncued No cue Cued uncued

Congruent 573 (577 ) 533 (527) 561( 595) 530 (545 ) 519 (475 ) 547 (545 ) 
Incongruent 644 (690 ) 617 (597 ) 648 (710 ) 625 (680 ) 603 (543 ) 659 (680 ) 

Fig. 5. Interactions between the variables. Congruency effect as a function of cueing
and alerting; Orienting effect as a function of alerting.

condition in which the location of the target was cued in the opposite location.
Interestingly, alerting speeded up the orienting of attention. The modulation
effects of the attentional networks are illustrated in Figure 5.

These results can help us to understand not only how our attentional systems
work but also explain how they function in a coordinated way to produce ef-
fective behavior. We are able to see how the control network can benefit from
the work done by the orienting network in order to resolve conflict better and
faster; the alerting system helps us prepare for a task and hence prevents the
control network from doing processing work. Also, the orienting network can
take advantage of this preparatory state of the system to speed up the orienting
process. This clearly shows that, although these networks may be anatomically
and functionally independent, they function under the influence of each other to
produce effective behavior.

5 Conclusion and Future Work

The work described in this paper is based on the assertion that the whole atten-
tional process comprises operations that help us to select a target found among
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distracters, to prepare ahead for an incoming stimulus so response is fast and
correct, and to be able to resolve conflict and exert control whenever required. In
the paper, through modeling the three components of attention, namely alerting,
orienting and executive control, to jointly explain the cognitive phenomenon of
attention, it seems we are approaching a more holistic view of the mechanisms
of selective attention. The purpose of ACT-R models described in this paper is
three-fold: (1) to facilitate simulating the behavioral study so that further pre-
dictions can be made; (2) to determine which networks may be affected or be
functioning abnormally in attentional disorders in clinical patients, by simulat-
ing the effect of Alzheimer’s on attention related conditions; and (3) to assess the
behavior and efficiency of attentional networks and to study their modulation
effects.

This work is still in progress and there are several areas that we would like to
look into in further depth. For example we have plans to model other attentional
related disorders, such as schizophrenia, in a similar fashion which may enable us
to make further predictions about the behavior and efficiencies of the networks
and potentially also suggest non-clinical methods of attention training.
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Abstract. Many models of attention have been implemented in recent
years, but comparison and further development are difficult due to the
lack of a common platform. We present JAMF, an open source simulation
framework for drag & drop design and high-performance execution of at-
tention models. Its building blocks are “Components”, functional units
encapsulating specific algorithms. Simulations are created in the graphi-
cal JAMF client by connecting Components from the server’s repository.
Today it contains Components suitable for replication and extension of
many major models of attention. Simulations are executed on the JAMF
server by translation of model definitions into binary applications, while
automatically exploiting the model’s structure for parallel execution. By
disentangling design and algorithmic implementation, the JAMF archi-
tecture combines a novel tool for rapid test and implementation of at-
tention models with a high-performance execution engine.

Keywords: Attention, Modelling, Saliency, Simulation, Software.

1 Introduction

In recent years many models of overt attention have been proposed, employing a
variety of methods, such as Bayesian techniques [1], neural networks [2], machine
learning algorithms [3] and saliency approaches [4].

To evaluate the performance of such models, their predictions must be com-
pared to real-world data. In the visual domain these data are generally acquired
by means of eye-tracking, with measurement of many subjects’ viewing behaviour
used to yield a stimulus-specific signature of overt attention. In order to gener-
ate data from attention models, they first have to be instantiated as computer
simulations.

The latter in particular is a non-trivial task lying at the interface of computer
and neuroscience: Modelling attentional processes necessitates deep understand-
ing of the subject matter, while efficient algorithmic implementation requires
advanced computer science skills. This broad set of demands makes the task
difficult for an expert from either of these domains.

A practical solution is to use existing attention simulations, such as the
iLab Neuromorphic Vision C++ Toolkit [5], as a starting point. This can in-
deed drastically reduce the amount of code which has to be implemented,

L. Paletta and J.K. Tsotsos (Eds.): WAPCV 2008, LNAI 5395, pp. 153–165, 2009.
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but introduces several other problems. First of all, learning how to use a new
framework can involve a steep learning curve, especially for non-computer sci-
entists, and may require the user to read a large amount of source code. Sec-
ond, using an existing source-code base may even introduce new complexity.
The code-base might be optimal for a specific modelling approach, but its
structure might impose limitations on the type of models that can be imple-
mented. Third, not all attention model implementations are freely available,
and such algorithms must be re-implemented by the user. The question still
remains then, of how easy it is to combine, alter and adapt existing models
to one’s own needs.

In this paper we present JAMF, a generic attention modelling framework
built to address these issues. It is free software and released under the GNU
Public License (version 2). At the heart of the framework lies a separation
in the implementation of the attention model itself and the supporting tech-
nical aspects. Models are composed of functional units, called Components,
arranged as a directed graph. Such model graphs abstract from the program-
ming code involved in implementation, and allow for purely graphical
creation of models. When using JAMF, the designer does not need to be con-
cerned with any implementation details. Additionally, Components exist inde-
pendently of the models in which they are used, allowing for efficient reuse of
existing code. The encapsulation of Components allows the framework to au-
tomatically and transparently optimize simulations for use in multi-processor
environments and leverage available performance libraries. The existing JAMF
Component base provides a useful selection of the standard functionality
needed in many attention models, e.g. feature extraction and machine learn-
ing algorithms. Development, code review and release of Components is co-
ordinated via a version control system, bug tracker, and mailing list. All of
these sources can be accessed on the project’s website, which provides addi-
tional documentation and support.1

The framework was designed with the express aim of integration into ex-
isting working environments, and provides import and export functionality for
standard mathematical analysis tools on the model developer side. Existing al-
gorithms can easily be turned into new Components – if they are already im-
plemented in C(++), a lightweight wrapper interface is all that is needed. If
they are available as Matlab functions, they can be wrapped in a special Com-
ponent for direct inclusion. Overall, we believe JAMF is an accessible and useful
framework for building working models of attention.

In the next section we describe the technical aspects of the JAMF at-
tention modelling framework, and it should be noted that such details are
needed only by Component developers. Afterwards we provide three
case studies involving different user scenarios, demonstrating how JAMF can
be used by neuroscientists. We close with a comparison of JAMF to existing
modelling frameworks.

1 http://jamf.eu/

http://jamf.eu/
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2 Design of JAMF

2.1 System Overview

In response to the requirements of easy-to-use model design and fast execution of
the resulting simulation, JAMF was designed as a client/server architecture (see
Figure 2 for an overview). The server part is written in C/C++ and contains
the functionality for running a simulation, as well as algorithmic building blocks
in the form of Components. The client part is written in Python and used for
design, parameterization, control of simulations, and data import and export. It
is designed to act as a front-end to the server, transparently encapsulating all of
its functionality. A screen shot of the client’s graphical interface is displayed in
Figure 1. The client can also be accessed directly, for example via an interactive
Python shell or from user-written programs.

Fig. 1. The JAMF client user interface, with the main window in the background. The
“Component Classes” panel on the left lists all Components available on the server.
From here, Components are instantiated and added to the graph canvas (centre panel),
where their input and output methods can be graphically connected. The right panel
displays properties of the currently selected Component and allows for specification
of parameters and inputs, as well as introspection of the Component’s output. The
top panel contains buttons allowing local data management and remote control of a
simulation. The foreground window shows the HTML documentation for a Component.
It is directly accessible through the “About” button below the Component list in the
main window.
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Fig. 2. JAMF architecture overview. By mirroring the server’s Component interface,
the client acts as a transparent proxy to all server functions. The server side on the right
provides the Component repository. On startup, its interface description is read by the
client over SSH (“off-line”) and used for design of new models. During execution of a
simulation, the model specification is sent to the server, which builds and starts the
simulation binary accordingly, while the communication channel switches to TCP
(“on-line”). This online connection to the server allows for client-side control and
inspection of the simulation parameters, inputs and outputs.

Fig. 3. Simplified communication diagram: Boxes represent (aggregated) system Com-
ponents, with their associations depicted by black lines. The paths outline information
flow: request and retrieval of Component interface descriptions (interfaces); instanti-
ation of Component classes for graph design (instances); source code generation and
simulation execution (execution); remote control and introspection of simulation (in-
trospection). The dotted box shows the portion of the server generated dynamically
on a per-graph basis.
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Client and server can run on the same physical machine, or may alternatively
be distributed on a network. As well as minimising installation and maintenance
expenses, the distributed approach allows for the use of a (possibly remote) dedi-
cated computing machine to execute the server simulations, while users can work
locally using the graphical interface. Communication between server and client
works over two channels: SSH and TCP/IP. SSH is used in the pre-simulation
environment, and TCP/IP becomes available when the simulation is executed.

Next we will outline the basic design of the framework and highlight some of
its main features. The structural relations of the architecture’s constituents are
depicted in Figure 3. Colored lines show information flow, and in the following
sections we will first describe the C implementation of Components, describe
how their interface description is read by the client (blue) and used as the basis
for building new model graphs (red). We will then show how those are translated
into simulations on the server side, executed (purple) and remotely controlled
by the client (green).

2.2 Components

Server Implementation. Components are designed as C++ wrappers around
C algorithms (see Figure 4 for a source code sample). All communication between
them is carried out exclusively by passing pointers to instances of OpenCV’s
Matrix type “CvMat”, a flexible structure that can represent matrices using any
basic numeric type.2

This results in a very simple interface, where each Component defines one
or more input methods that take exactly one matrix and store it in a private
variable, while output methods return one matrix each. Given the power of the
matrix type, the simplicity of the method’s signature does not impose any limits
on inter-Component communication. To expose parameters, a Component can
implement setters that store values similarly to input methods described above.
Parameter types are restricted to bool, int, double and string.

Note that input, output and parameter methods provide data access only –
the actual algorithms are implemented in a Component’s run() method. This
method starts with a set of preconditions, which are assertions about input
formats and parameter values. Memory management within one Component is
dealt with exclusively in the run() method and is limited to the output data.
This method is also responsible for releasing any memory that is still allocated
from previous invocations.

This construction guarantees maximal encapsulation of algorithms while still
allowing for robust automated optimization. The base Component “BasicCom-
ponent” defines default input and output functions, hence only implementation
of the run() method is necessary to create a simple Component (see Figure 4).

2 OpenCV (http://opencvlibrary.sourceforge.net/) is a popular Open Computer
Vision library originally developed by Intel. It supports the Intel Performance Prim-
itives (IPP) for architecture-specific optimizations.

http://opencvlibrary.sourceforge.net/
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1 class TimesTwo : BasicComponent

2 {

3 public:

4 run() {

5 PRE_INPUT (in);

6 // create output matrix

7 if (out)

8 cvReleaseMat (&out);

9 out = cvCreateMat (in->type , in->rows , in ->cols);

10 // do the calculation

11 cvScale(in, out , 2);

12 }

13 }

Fig. 4. Minimal Component source code: Using the default input and output channel
inherited from BasicComponent, only the algorithm logic is left to be implemented in
the Component’s run() method

To extract interface information, JAMF runs gccxml3 on Components’ header
files and filters for valid method signatures. In addition to this interface descrip-
tion, each Component is accompanied by an XML file providing end-user docu-
mentation that is rendered to HTML (PNG for formulae) for easy viewing. The
interface description and help files of all server Components are bundled into a
single “components.zip” file that acts as a complete description of the server’s
Component repository.

Client. In order to use the server’s Components for model design, the client
must access the Component interface description generated on the server. When
establishing an SSH connection to a server, the client automatically updates its
local Component description file – for every Component on the server side, it
dynamically generates a Python class mirroring the Component’s interface (blue
message line in Figure 3). It has setters parallel to a Component’s inputs and
parameters that are type aware, and output methods that can be queried for
results. In addition, each Component is accompanied by HTML documentation
describing its general function and providing details on inputs, outputs and pa-
rameters (c.f. 1). All in all, the Client wraps a server Component in a convenient
Python interface and sets up hooks to propagate changes directly to a running
server (see Section 2.5). Adding a Component to a model is easily done, simply
by instantiating such a Python class (red messages in Figure 3).

2.3 Model Graph

Output methods of instantiated Components can be connected to input methods,
thereby forming a directed model graph. When executed, the server will feed
data along these connections, passing each Component once, making up one full
3 gccxml (http://gccxml.org/) dumps gcc’s internal representation of a source file

as an XML description.

http://gccxml.org/
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“iteration”. Some Components yield a dynamic number of outputs or accept a
dynamic number of inputs. Subgraphs between such Components are executed
once for each output matrix. By default, the client will determine the execution
order by traversing the graph starting from all Components without connected
inputs and assigning an increasing “order”. Where parallel execution is possible,
for example when two Components do not depend on each others’ outputs, the
same “order” will be assigned. In addition, Components can request to be called
with a certain “frequency” with respect to the server iteration and an “offset”
to the start iteration. A set of parameterized and connected Components makes
up a model graph.

2.4 Build

To allow for later execution of the model, the source code for the simulation
first must be generated and compiled. The client’s representation of the model
is translated to an XML specification of the graph structure (purple line in
Figure 3). This XML file is sent to the server and translated into C code by
XSLT4. In this translation process, the Component’s “order” property is used to
create OpenMP5 parallel regions where possible, thereby providing transparent
multi-processor optimization (see Figure 5 for a sample graph). The generated
code is embedded directly in the server’s simulation class and linked against the
Component repository library. After successful code generation, the client can
build the simulation binary corresponding to its model graph.

2.5 Execution

After building the server binary for a specific attention model, the client can
start a simulation over the existing SSH channel. Upon startup, the server sets
up threads for TCP listening, message routing and the simulation. The client can
then login via TCP and send remote procedure calls (RPC) encoded in XML. On
the server side, XML RPC messages are converted into C structs and routed to
their target thread, as shown by the green line in Figure 3. Messages are used for
a number of purposes: to address the simulation directly for the control of model
execution; to deliver parameters and inputs to Components; or to request intro-
spection data by querying Components’ output methods, with answers routed
back to the client. On the client side, these messages are generated by calling the
respective methods of the Component instance. Parameters and inputs are set
and sent for current or future iterations, allowing the server to be programmed in
advance. The server also accepts input filenames in the form of URLs using the
HTTP, FTP, NFS or Samba protocols. Whenever such a filename is detected,
the server’s “incache” will grab the file from the source location, save it in a
4 XSLT is an XML based language for transformation of XML documents into other

text formats.
5 OpenMP (http://www.openmp.org/) is a multi-platform shared-memory parallel

programming API supported by many major compilers, including GNU’s gcc 4.2
and Intel’s icc.

http://www.openmp.org/
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local cache and optionally send a “start” command to the simulation on success.
For the outputs delivered by the server, the client offers immediate inspection
of graphical data as well as export to a variety of formats (txt, matlab, bitmap
and vector image formats, pdf). To facilitate client-independent operation, the
server optionally offers a cache for all outgoing messages (“outcache”) by serial-
izing them to disk, which allows clients to retrieve data from past iterations.

The core client engine used by the user interface can also be employed by the
user to write powerful scripts, allowing the engine to be used, for example, to
harvest a more complex Component parameter space or to run a batch job over
structured stimulus material.

3 Case Studies

In order to show the broad applicability of the JAMF framework, we here intro-
duce three user case studies. First, we show how a probabilistic attention model
can be implemented. Second, we outline how JAMF can be used to control a
robot head equipped with stereo vision. And third, we elaborate on how useful
it can be for students learning about different models of attention.

3.1 Bayesian Saliency Model

Eye tracking data shows that local features contribute to visual attention in
specific manners. In contrast to luminance, color contrasts for instance do not
contribute linearly to salience, rather exceptionally high and low color contrasts
are usually far more informative in predicting salience than intermediate level.
A recent Bayesian saliency model uses a large amount of eye-tracking data to
empirically capture the specific relation in which salience depends on the feature
values without making parametric assumptions [1].

The Bayesian model describes the salience of a feature as the conditional
probability to fixate an image location given the feature value at the location.
Salience as conditional fixation probability is measured in the ratio between the
likelihood with which feature values occur at empirically fixated points and the
respective prior probability with which they occur in the image. In other words,
salience of a particular feature value is defined in the proportion to which this
value of the feature occurred more often at fixations than in the image. This
particular model further assumes a whitening of features values according to the
distribution of features in natural images, as has been shown for contrasts in
the LGN. Hence before computing conditional fixation probabilities, absolute
feature values of the stimuli are ‘whitened’ by rank-ordering in 20 bins with
equal amounts of values (considering all feature values in the image database of
the study).

We implemented this attention model in a JAMF simulation. The model graph
for the Bayesian salience model is depicted in Figure 5. All Components nec-
essary for the simulation are contained within the JAMF standard Component
library. To analyze color-features, images have to be coded in independent in-
tensity and color channels, such as in the HSV color space. Here we use the
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Fig. 5. Conditional feature probability graph. The first three layers in the graph shown
here deal with the extraction of image features. Percentiles are computed in the fourth
layer, which are matched to feature probabilities in the fifth layer. Components within
each layer are executed in parallel. The last two layers combine probabilities and nor-
malize the result. The inset figure (bottom right) shows intermediate results. Top row,
from left to right: Red/Green contrast, 2nd order contrast, percentiles and feature prob-
abilities. Second row: Image luminance, Sobel edge detector, percentiles and feature
probabilities.

ColorSplitter Component to transform bitmap images into the the Derrington-
Krauskopf-Lennie (DKL) color space, which is a physiological color space defined
by relative excitations of the three cone types in the retina (L, M, and S). In brief
it yields channels for luminance intensity, ”constant blue” (or ”yellow-blue”) and
”tritanopic confusion” (or ”red-green”). By drag and drop, the respective inten-
sity and color channels are connected to various Components to obtain a master
saliency map. LuminanceContrast and Sobel Components calculate luminance,
color and texture contrast as well as edge intensities. The output of these Com-
ponents is again connected to the Percentiler Component, which performs the
whitening of the stimuli statistics for the respective feature, which in turn is fed
into the LUT Component to compute empirical within-channel saliency maps
using previously measured conditional fixation probabilities. Finally, these maps
are fed into the Combiner Component to obtain a master saliency map by ad-
ditive integration. Note that only this last Component has to be exchanged to
implement the multiplicative integration scheme explored in the study of Schu-
mann et al. [1].

There are several possible approaches to generate fixation sequences from the
master saliency map. For example, Itti’s [4] method of Winner-takes-all and
Inhibition-of-return is available in the Review repository, together with a Com-
ponent for non-linear amplification and combination of conspicuity maps. Both
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generative schemes were combined simply by adding the respective Component
(MaxIoR) in the final processing stage.

In summary, this example shows how JAMF can be used as a tool for rapid
implementation of innovative new modelling ideas. The existing Component base
allows neuroscientists to implement their own ideas and combine them with
existing approaches without writing a single line of code.

3.2 Robot Control

Attention models can be used to help robots interact sensibly and efficiently with
their environment. For example, implementing a model of overt attention can
provide the robot with active sensing capabilities. By identifying and tracking
interesting targets in a scene, the model can also enhance scene understanding
by directing sensors towards salient regions that can then be processed in higher
detail. Covert attention, on the other hand, can help with real-time processing
of highly complex sensory data. Most robots are equipped with only limited
processing capabilities, so it is an advantage to be able to select those parts of
the sensory input that are likely to yield the highest information gain.

JAMF’s modular structure makes it possible to include interfaces to robot
hardware as Components, both on the sensory side (IR sensors, microphones,
laser scanners, etc.) and on the actuator side. Recently, JAMF was used to imple-
ment an attention-based controller on a stereo-vision robot head with 4 degrees
of freedom. A rough sketch of the setup is shown in Figure 6. We developed a
Component that grabs frames from the head’s two cameras, and an actuator
Component that transduces spatial target points to motor movements that tilt,

Fig. 6. Schematic depiction of how JAMF can be used to create an interface for a stereo-
vision robot head. One Component retrieves video frames from the head’s cameras,
while another moves the head to target fixation points. The attention model that lies
between these two Components generates target fixations, and is treated as a black
box that can easily be exchanged.
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pan and turn the head. The attention model between these Components anal-
yses incoming camera images and generates new fixation targets for the head
actuator Component. The implementation allowed the robot head to success-
fully track interesting objects defined by their “redness”. Importantly, in such
robotic setups the attention model can be treated as a black box and is easily
interchangeable with more complex models. For example, the existing disparity
Component could be “plugged in” to provide depth features.

The Robot Control use-case demonstrates that it is straight-forward to trans-
fer attention models developed in JAMF to real-world platforms.

3.3 Classroom

Students studying existing attention models usually do so at a purely theoretical
level. There is however a qualitative difference between knowing what a model
does and seeing what it does. JAMF can help to bridge this gap between theory
and practice. The graphical client allows students to interact with an attention
model, easily explore the effects of different parameters and see how the model
reacts to different kinds of inputs. A live view of intermediate results at different
processing stages also makes it easier to understand what is happening at each
step. JAMF gives students the opportunity to develop and understand models
without requiring prior programming skills.

4 Related Work

JAMF is not the only software in the field of attention resarch – many researchers
publish their code. Most often, however, only prototypes or partial implemen-
tations in high-level languages such as Matlab are provided. Among the fully
fledged frameworks that are available, we picked four packages which solve sim-
ilar problems or solve problems in a similar way. We give a short description of
each and point out differences in a feature matrix (Table 1).

The iLab Neuromorphic Vision C++ Toolkit is developed at the University
of California and at Caltech.6 Over the years, many saliency models and exten-
sions such as Bayesian surprise [6] have been implemented in the toolkit, by the
original authors as well as by third party contributors. It comprises a set of C++
classes implementing a range of vision algorithms for use in attention models.
However, as there is no higher-level design interface and the toolkit architec-
ture is quite complex, advanced programming skills are required to leverage the
toolkit’s features. Notably, it also offers distributed execution support for Be-
owulf clusters. Although it is essentially inaccessible for non-programmers when
compared to JAMF, the number of available algorithms and their optimizations
make the iLab Toolkit an interesting option for the computer vision scientist.

LabVIEW [7] is a commercial software developed by National Instruments. It
is based on G, a graphical dataflow programming language. Similarly to JAMF, a
compiler is used to produce machine code from a graphical model. Furthermore,
6 http://ilab.usc.edu/

http://ilab.usc.edu/
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Table 1. A feature matrix of comparable applications. “Visual” indicates whether
graphical model development is supported, “Language” lists programming languages
supported for extending simulations, “Remote” indicates if the simulation can be con-
trolled and executed remotely. The “Opt.” and “Parallel” columns list employed opti-
mization and parallelization techniques.

Name License Visual Language Remote Opt. Parallel

iLab GPL - C(++) - Beowulf, manual
JAMF GPL + C(++), M + IPP OpenMP, fully auto-

matic
LabVIEW NI commercial + G - proprietary
MatLab/
SimuLink

commercial -/+ M, C, For-
tran, Ada

- IPP proprietary

TarzaNN “Open Source” + C(++) - Cluster, manual

the additonal Machine Vision Module comes with a wide range of functionality
that suffices for standard machine vision tasks, but does not include any of the
recently developed methods. Besides licensing costs and the proprietary nature of
the G language, understanding its non-standard language paradigm also places
an additional burden on new users.

Matlab is a commercial multi-purpose numerical computing environment de-
veloped by The MathWorks. It is based on the matrix-centered M language and
in broad use in education and science. Key advantages are the wide variety of
implemented algorithms and the superb documentation. Toolboxes that extend
Matlab to solve more specific problems are available seperately. One of them is
the commercial SimuLink package, an advanced simulation environment for dy-
namic systems, which allows graphical modelling. Although it could be used for
graphical attention modelling, there are no appropriate Components supplied
for this purpose. The disadvantages associated with Matlab and SimuLink are
their high price and the learning curve associated with programming in M.

TarzaNN [8] was initially developed as a joint effort by Albert Rothenstein
and Andrei Zaharescu at York University in Toronto for implementation of the
selective tuning model [2]. It is a neural network simulator that abstracts from
single neurons to layers of neurons, and was designed specifically to implement
visual attention models. Extension of the simulator is limited to the implemen-
tation of filter functions for neurons. In contrast to JAMF, TarzanNN is only
suitable for modelling a specific subset of today’s attention models.

5 Conclusion

JAMF offers a unique combination of highly-optimized algorithmic infrastruc-
ture and an easy-to-use graphical modelling interface. The existing repository
of Components is sufficient for building a wide range of model types, and while
it allows the non-programmer to rapidly implement and run simulations of vi-
sual attention, it is also easily extended with new Components. Here we have
demonstrated that the framework can be used as a suitable tool for such diverse
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tasks as the implementation of a novel attention model, or the attentional con-
trol of a stereo-vision robot head. Future work will include further extensions
of the Component base, for example with algorithms for processing auditory
information. Furthermore, we plan to use JAMF to support the development of
a multi-modal attention model for the stereo-vision robot head.
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Abstract. In this paper, we propose a biologically inspired model of
the middle stages of attention, with specific algorithmic details. Exist-
ing computational models of attention concentrate on their role in visual
feature extraction and the selection of spatial regions. However, these
methods ignore the role of attention in other stages. Extension of these
models has been proposed by augmenting the unit of attentional selection
to ”proto-objects”. In our approach, we extend attention to the middle
stages and integrate the selection process with the perceptual grouping
process. Integration is achieved by our innovative saliency driven per-
ceptual grouping strategy, extending the traditional pixel-based saliency
map to salient proto-objects. The proposed selective attention is made
in two stages. Firstly, to achieve salient region localization, our method
enhances the saliency map with region information from image segmen-
tation and selects the most salient region (proto-object). Then, regions
are organized using perceptual groupings, and their pop-out sequence is
determined. Compared with traditional attention models our model pro-
vides saliency maps with meaningful region information, by eliminating
misleading high-contrast edges, and focus of attention shifts in unit of
perceptual object rather than spatial region. These two improvements fit
to high stage vision information processing such as object recognition.
Experiments in a reduced set of images show that our proposed model
is able to automatically detect meaningful proto-objects.

1 Introduction

It is well known that the human visual system employs an attention mechanism,
due to limited processing resources, to selectively process important information
that is currently relevant to visual behaviors or visual tasks [1,2,3]. This mech-
anism deals efficiently with the balance between computing resources, time cost
and fulfilling different visual tasks in normal, cluttered or dynamic environments.

L. Paletta and J.K. Tsotsos (Eds.): WAPCV 2008, LNAI 5395, pp. 166–182, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Selective visual attention provides the brain with a mechanism of focusing
computational resources on one object at a time, either driven by low-level image
properties (bottom-up attention) or based on a specific task (top-down atten-
tion). Moving the focus of attention to locations one by one enables sequential
recognition of objects at these locations. What may appear to be a straight-
forward sequence of processes (first focus attention to a location, then process
object information) is in fact an intricate system of interactions between visual
attention and object recognition [3].

To date, there have been a number of attentional models for psychophysics
or for machine vision that use the hypothesis of the ”spotlight” or ”zoom-lens”
analogy for visual attention. Most of them are derived from Treisman’s Feature
Integrated theory [4]. However, traditional models have only concentrated on
mechanisms of visual attention based on selectivity by spatial locations. They
inherently lack mechanism to account for object-based visual selection, and hence
are not perfectly suited to work in real-world natural scenes.
Three different requirements of attention have been identified [5]:

1. attention may need to work in discontinuous spatial regions or locations at
the same time

2. attention may need to select an object composed of different visual features
but from the same region of space

3. attention may need to select objects, locations, and/or visual features as well
as their groupings for some structured objects.

For applying attention mechanisms in real and normal scenes, a computational
approach inspired by the alternative theory of object-based attention is neces-
sary [6]. In contrast to the traditional theory of space-based attention, object-
based attention suggests that visual attention can directly select discrete objects
rather than only and always continuous spatial locations within the visual field.

Recently, there has been a rapidly increasing interest in object-based attention
(c.f. [3,7,5,8,9,10]) but research into useful systematic theories is still a very
open area, especially practical models of object-based attention for real-world
applications. For example in [8] a method is proposed for salient spatial area
(as opposed to object) determination, used to guide object recognition. Several
important issues must be addressed clearly in this context:

– Early identification and segmentation of perceptual objects
– The relationship between object-based and space-based attention
– Grouping/segmentation and object-based attention. A grouping is a hierar-

chical structure of objects and space, which is also the common concept in
the literature of perceptual grouping. A grouping may be a point, an object,
a region, or a structured grouping.

– Visual saliency and visual attention. The salience of a grouping measures
how different this grouping contrasts with its surroundings and depends on
various factors, such as feature properties, perceptual grouping, dissimilarity
between the target and its neighborhood.
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In this paper, following the above criteria, we propose a novel region-based
focus of attention mechanism that is based on human attention and perceptual
region grouping. As object-based image segmentation is beyond current com-
puter vision techniques, the proposed method segments an image into regions,
which are then merged using an innovative saliency-driven perceptual organiza-
tion approach. At the same time, an attention region (AR) is created based on
the saliency map and saliency regions from an image. A hierarchical perceptual
grouping is used to select the salient regions, which are then clustered into the
Object Of Interest (OOI) using a new region merging criteria. Unlike other al-
gorithms, the proposed method allows multiple OOIs to be segmented according
to the saliency map.

The contribution of this paper can be summarized in the following 3 aspects.
Firstly, region is chosen as the perceptive unit, which makes the method more
effective in terms of perception. Secondly, compared with traditional attention
models our model provides saliency maps with meaningful region information, by
eliminating misleading high-contrast edges. Finally using both global effect and
contextual difference the proposed focus of attention shifts in unit of perceptual
objects rather than spatial regions.

The remainder of the paper is organized as follows. Section 2 gives an overview
of the proposed visual attention model. Sections 3 and 4 summarize the saliency
map generation and the perceptual grouping, respectively. In section 5, we de-
scribe the proposed Inhibition of Return principle. Section 6 presents early
results. Finally, section 7 gives some conclusions and future work.

2 Visual Attention Model

Figure 1 depicts the proposed the bottom-up model for visual attention. While
sharing same concepts with existing models of visual attention, there are a num-
ber of differences concerning implementation details as well as structural design
components that yielded the proposed object-based attention model.

On the input image, different feature dimensions (in the following simply
called features) are computed: intensity, color, color opponency and orientation,
in conformity with [10]. For each dimension, the pixel-based responses are com-
puted on different scales and for different feature types, e.g. red, green, blue and
yellow for the feature color. For each feature, we first compute an image pyramid,
from which we compute scale maps. These represent saliencies on different scales
for different feature types. The scale maps are fused into feature maps represent-
ing different feature types and these again are combined to conspicuity maps, one
for each feature, thereby strengthening important aspects and ignoring others.

First, a hybrid approach combining low-level saliency and region information
is used to produce enhanced conspicuity maps (enhanced C maps). The C maps
are enhanced with region information (from image segmentation) by averaging
the conspicuity values in each region. This approach has been also followed by
[11] to produce region enhanced saliency. The output of this phase is a ”multi-
spectral” image combining all the enhanced conspicuity maps.
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Fig. 1. Framework for modeling attention and perceptual grouping to salient objects
of interest. (Waterfall illustration from [16])

Second, the obtained ”multi-spectral” image is then segmented using the wa-
tershed transform. The watershed transform [12] is a morphological segmentation
tool often applied on the gradient magnitude of an image in order to guide the
watershed lines to follow the crest lines and the real boundaries of the regions.
The idea, in its simplest way, can be visualized by considering successive thresh-
olds of a function producing horizontal cross sections of a relief. The watersheds
will be the dividing lines of the ’touching’ cross sections. Figure 2 provides an
illustration. The gradient of the ”multi-spectral” image is obtained by combin-
ing, using the approach of [13], the gradients of the texture (from the orientation
responses) and the gradients of the enhanced conspicuity maps. This approach
allows obtaining a final gradient capturing all perceptual edges in the input RGB
image. The method is general, in the sense that it makes limited assumptions



170 T. Geerinck et al.

Watershed lineRegional minima

Fig. 2. Watershed transformation

RAG Corresponding segmentation

8

2

1

6
5

7
4

3
2

6

1
35

4
78

Fig. 3. Region Adjacency Graph

about scene content. Both textured and non-textured areas are accommodated,
as well as the region size is irrelevant. The processing adapted to local properties
of the image. allowing suppressing the intensity gradient in textured areas but
leaving it unmodified in smooth regions.

The output of the watershed segmentation is a Region Adjacency Graph
(RAG), G(P 0, E). The nodes, P 0 = {r0

1 , r
0
2, ..., r

0
m0

} are the set of regions; the
set of arcs E, connecting the nodes, are the boundaries between neighboring
regions. Each region is represented by its average feature, which in this paper is
the Lab color, (µL(r0

i ), µa(r0
i ), µb(r0

i )). A mosaic image (each region represented
by its mean color) is also associated to the RAG. Figure 3 illustrates the RAG
associated to a partition. Both are inputs to a region-based saliency map (sec-
tion 3). The purpose of the saliency map is to represent the conspicuity of each
location of the visual field, that is, salient regions extracted have higher promi-
nent importance than the other regions. Subsequently, the region with highest
saliency value is selected as attention region (AR) from the region saliency map.

Salient region extraction based on saliency map provides a good starting point
for semantic-sensitive content representation. However, perceived salient region
extraction for images is still an unsolved problem. One reason is that low-level
features are often not enough to classify some regions unambiguously without
the incorporation of high-level and human perceptual information into the classi-
fication process. Another reason for the problems is perception subjectivity. Dif-
ferent people can differ in their perception of high-level concepts, thus a closely
related problem is that the uncertainty or ambiguity of classification in some
regions cannot be resolved completely based on measurements methods.
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In this paper, we propose a new method for prominent region extraction in im-
ages in order to remove the above mentioned limitations. The segmented image is
analyzed by a number of perceptual attributes based on the mise-en-scene prin-
ciples [14]. As a set of techniques, mise-en-scene helps compose the film shot in
space and time, which are used by the film-makers to guide our attention across
the screen, shaping our sense of the space that is represented and emphasizing cer-
tain parts of it. The used perceptual attributes are the contrast of a region with its
surroundings, its Orientation Conspicuity, its compactness, and its Compositional
Balance [14] which can be interpreted as the extent to which the areas of image
space have equally distributed masses and points of interest.

Starting from the selected salient attention region (AR), an innovative saliency
driven perceptual grouping of segmented regions is proposed to obtain perceptu-
ally meaningful regions. A meaningful image segmentation groups the pixels into
disjoint regions that consist of uniform components. Facing absence of contex-
tual knowledge, the only alternative which can enrich our knowledge concerning
the significance of our segmented groups is the creation of a hierarchy guided by
the knowledge which emerges from the superficial and deep image structure.

Our main goal here, is to create a hierarchy among the gradient watersheds
which preserves the topology of the initial watershed lines and extracts homo-
geneous objects of a larger scale. The waterfall algorithm [15,16] is used here for
producing a nested hierarchy of partitions, P h = {rh

1 , rh
2 , ..., rh

mh
}; h = 1, · · ·n,

which preserves the inclusion relationship P h ⊇ P h−1, implying that each atom
of the set P h is a disjoint union of atoms from the set P h−1. For successively
creating hierarchical partitions, the waterfall algorithm removes from the cur-
rent partition (hierarchical level) all the boundaries completely surrounded by
higher boundaries (see Figure 4). Thus, the saliency of a boundary is measured
with respect to its neighborhood. The iteration of the waterfall algorithm ends
with a partition of only one region.

In our implementation of the waterfall, the saliency measure of a boundary
is based on a collection of energy functions used to characterize desired single-

(a) (b)

Fig. 4. (a) Partition with valuated frontiers and (b) example of region boundary: as
the value of edge e1 is smaller than the values of its neighboring edges (e2 to e9), it
will be removed by the waterfall algorithm
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region properties and pair-wise region properties. The single region properties
include region area, region convexity, region compactness and color variances
within the region. The pair-wise properties include color mean differences be-
tween two regions and edge strength.

Using these energy functions as region merging criteria, the saliency driven
perceptual grouping process (section 4) results in the formation of Object Of
Interest (OOI). The proposed method allows multiple OOIs to be segmented
according to the saliency map, by incorporating an inhibition of return (IOR)
mechanism (section 5), which resets the selected OOI.

Conform the previous discussion about object-based attention, the AR cor-
responds to an early formed proto-object, while the OOI corresponds to a re-
shaped hierarchical proto-object, comprised of several lower-level hierarchically
organized proto-objects.

3 Saliency Map

In the second stage of the attentional selection model, the segmented regions are
integrated together, in a competitive manner, into a saliency map S in accor-
dance with equation (1) representing the saliency of a region Ri at the current
hierarchical level h. A region’s saliency is determined by its position factor, the
sum of its contrast compared with the neighboring regions, its shape and orien-
tation.

S(Ri) =
CSR(Ri)OC(Ri)SI(Ri)

CBI(Ri)
(1)

where,

– Contrast: CSR(Ri) is the normalized mean color contrast of a region
with the surrounding regions, defined as CSR(Ri) =

∑N−1
j=0 αi,j

(
√

(∆µL(Ri, Rj))2+(∆µa(Ri, Rj))2+(∆µb(Ri, Rj))2−Td), N the number of
adjacent regions of Ri. αi,j is the ratio of the length of the common bound-
ary of Ri and Rj , over the perimeter of Ri (αi,j = Length(δRi∩δRj)

Perimeter(Ri)
). The

normalization factor Td is estimated as Td = µd − σv, with µd the mean of
the color differences Di’s, and σv =

√
1/n

∑n
i=1(Di − µd)2 the standard de-

viation of the n = k(k−1)
2 color differences between the k generated regions

after the watershed segmentation [17]. Indeed, regions, which have a high
contrast with their surroundings, are likely to be of greater visual impor-
tance and attract more attention. For instance, bright colors set against a
more subdued background are likely to draw the eye.

– Orientation Conspicuity: OC(Ri) is the orientation conspicuity defined
as the mean output value of the steerable filter (4 orientations, 3 scales)

over the pixels in the region Ri, Area(Ri); OC(Ri) =
∑

p∈Ri
Ôp

Area(Ri)
; Ôp be-

ing the normalized orientation map (at pixel p). Indeed, orientation map is
an important recognition cue, here, it is also employed to describe region
orientation information importance, and calculated as defined in [10] (see
section 2).
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– Shape Indicator: SI(Ri) is a shape indicator expressing the compactness of
the region, defined as SI(Ri) = perimeter(Ri)

Area(Ri)
. With this parameter, we try

to find a trade-off between articulated regions and more compact regions of
different sizes.

– Compositional Balance Indicator: CBI(Ri) is the compositional balance
indicator [14]. Let gc(Ri) be the center of gravity of region Ri; gc(R) the
gravitational center of all regions in the image with respect to their saliency
value and size, defined as gc(R) =

∑ regions S(Ri)Area(Ri)gc(Ri)∑ regions S(Ri)Area(Ri)
; R′ the region

whose gravitational center is the nearest neighbor of the symmetrical point
of gc(Ri) with respect to the midline of the image, this as a measure of
overall content of the image. Then,

CBI(Ri) =
{ ||gc(Ri) − gc(R)||; gc(R) ∈ Ri

||CSR(Ri)|| + ||CSR(R′)|| + ||gc(Ri) − gc(R)||; otherwise

If the salient region is located near gc(R), we know that the larger CSR and
the nearer distance between its gravitational center and the gc(R) region in
the image is, the smaller CBI of the region is, meaning the higher the pos-
sibility that it will be a salient portion of the image frame. For the second
case, the higher CBI (high CSR(Ri) and high CSR(R′)) shows that the
image frame may balance two or more elements encouraging our eye mov-
ing between these regions. If CSR(Ri) is high and CSR(R′) is low, than
CBI will be lower, resulting in a higher saliency compared to the previous
described situation, where both CSR(Ri) and CSR(R′) are high.

As such, saliency is guided by the overall content of the image, represented
inherently by the CBI factor. Note that CBI depends on the saliency of the
regions (gc(R)). Therefore the initialization of CBI uses the saliency value
of all regions, calculated as in Equation 1, omitting the CBI factor.

The region with the highest saliency value S(Ri) is selected as attention region
(AR).

4 Perceptual Grouping

The pivotal idea in the proposed model of object-based visual attention is, in
conformity with psychophysical findings, grouping based salience computation,
salience driven perceptual organization and integrated competition for focus of
attention. Perceptual grouping of segmented regions is envisaged, starting from
the salient region, to obtain perceptually meaningful regions. The salience of a
grouping measures how different this grouping contrasts with its surroundings
and depends on various factors, such as feature properties, perceptual grouping,
dissimilarity between the attention region (AR) and its neighborhood, etc.

After the selection of the AR, a perceptual grouping process is applied using
the waterfall algorithm [15], [16] based on a saliency attached to each edge of the
RAG. As such, preserving the topology of the initial watershed transformation
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on the combined gradient image, a nested hierarchy of partitions is obtained. A
grouping is considered a hierarchical structure of objects and space [2].

The region saliency mappings S(Ri) are dynamically varied according to com-
petition conditions among the groupings at different hierarchical levels of the wa-
terfall. In our implementation of the waterfall, the saliency measure of a bound-
ary is based on a collection of energy functions used to characterize desired
single-region properties and pair-wise region properties, following the formula-
tion of [18]. The single region properties include region area, region convexity,
region compactness and color variances within the region. The pair-wise proper-
ties include color mean differences between two regions and edge strength along
the shared boundary. The saliency of the boundary between two neighboring
regions Ri and Rj :

E(R̃ = Ri

⋃
Rj |Ri, Rj) = E(R̃) + E(Ri, Rj) (2)

Where E(R̃ = Ri

⋃
Rj |Ri, Rj) is the cost of merging the regions Ri and Rj , E(R̃)

is the merged region property (saliency) and E(Ri, Rj) the pair-wise property,
respectively defined as follows.

E(R̃) =Earea(R̃)
1

Ehom(R̃)

∑
c

Evarc(R̃)

(1 + |Econv(R̃)|)sign(Econv(R̃))(1 + |Ecomp(R̃)|)sign(Ecomp(R̃))

(3)

E(Ri, Rj) = Eedge(Ri, Rj)ECMDif (Ri, Rj) (4)

The factors in equations 3 and 4 need to be normalized and are defined as:

– Area
Earea(Ri) = 0.002

NM

Area(Ri)
NM being the image size. Larger area is always preferred. The normalization
factor 0.002 means a region that has a 0.2% area of the whole image will have
an energy of 1.0. A zero-area region has an infinite area energy value and a
whole image region has an area energy value of 0.002. A penalty function is
used to prevent to large regions. Typically regions are penalized when there
area is greater than ±25% of the whole image area.

– Convexity

Econv(Ri) =
Area(ConvexHull(Ri))

Area(Ri)
− 1.25

represents the region convexity energy. We assume that regions with con-
vexity larger than 1.25 are not preferred, and those with convexity energy
smaller than 1.25 are desired. Therefore, the offset for the convexity energy
is set to −1.25.

– Compactness

Ecomp(Ri) =
Perimeter(Ri)2

4πArea(Ri)
− 1.25

represents the region compactness energy.
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The compactness energy Perimeter(Ri)2

4πArea(Ri)
is always greater than or equal

to 1 (1 for a circle, 4/π for a square). We assume that regions with com-
pactness larger than 1.25 are not preferred. Again the offset for compactness
energy is set to −1.25.

- Homogeneity
Ehom(Ri) = 1 − σ(Ri)V (Ri)

represents the region’s intensity (I) homogeneity. Homogeneity is largely re-
lated to the local information extracted from an image and reflects how
uniform a region is. In [17], an interesting pixel-based homogeneity defini-
tion is presented, as a composition of two components: standard deviation
and discontinuity of intensity I. Standard deviation describes the contrast
within a local region. Discontinuity is a measure of abrupt changes in gray
levels and could be obtained by applying edge detectors to the corresponding
region.

– Color Variance
Evarc

(Ri)=
1
15

σc(Ri)

represents the color homogeneity of a region, with σc(Ri) the standard de-
viation of the color c ∈ {L, a, b} within region Ri. The normalization factor
for color variances is derived from statistical analysis of the color variance
results on image data base [18].

– Color Contrast

ECMDif (Ri, Rj)=
√

(∆µL(Ri, Rj))2+(∆µa(Ri, Rj))2+(∆µb(Ri, Rj))2 − Td

represents the normalized mean color difference. The normalization factor Td

defined previously in section 3. Following the proposal in [17], The normal-
ization factor Td (for color merging) is estimated as Td = µd − σv, with µd

the mean of the color differences Di’s, and sigmav =
√

1/n
∑n

i=1(Di − µd)2

the standard deviation of the n = k(k−1)
2 color differences between the k

regions [17].

Using these energy functions as region merging criteria, the saliency driven
perceptual grouping process results in the formation of Object Of Interest (OOI).

5 Iterative Object Popping out Process – Inhibition of
Return

A region is selected as Object Of Interest (OOI) when the local region merging
process is completed. The attempts to merge are performed in the neighborhood
of the AR. When no more merges are allowed in this neighborhood, following
the energy criteria, the local merging is completed.

The proposed method allows multiple OOIs to be segmented according to the
saliency map, by incorporating an inhibition of return (IOR) mechanism, which
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resets the selected OOI and restarts the entire procedure by selecting the new
most salient AR.

The selection procedure of the AR consists of ordering the segments in terms
of highest saliency value S(Ri), instead of using a Winner-Take-All (WTA) net-
work as proposed by [19] and the NVT [20]. Although biologically less plausible,
equivalent results are achieved with less computational resources. The segment
with highest saliency value is selected as attention region (AR). In contrast with
existing state of the art approaches ([10], [8]), we obtain directly the AR based
on our region saliency computation.

Once an OOI is focused on, another computational problem is posed: how can
we prevent attention from permanently focusing onto the same OOI? In [21],
one efficient computational strategy is proposed, consisting of suppressing the
currently attended location in the saliency map. Hence, the winner-take-all net-
work naturally converges towards the next most salient location. Repeating this
process generates attentional scanpaths. Such inhibitory tagging of recently at-
tended locations has been widely observed in human psychophysics as a phe-
nomenon called ’inhibition of return’ (IOR) [22].

Computationally, IOR implements a short-term memory of the previously
visited locations and allows the attentional selection mechanism to focus instead
on new locations. The simplest implementation of IOR, suppressing the attended
location, only represents a coarse approximation of biological IOR, which has
been shown to be object bound.

In the proposed model of object-based visual attention, we are only concerned
with covert attention, that is, shifts of the focus of attention in the absence of
eye movements. Although simple in principle, IOR is computationally a very
important component of attention, in that it allows us, or a model, to rapidly
shift the attentional focus over different items (OOIs) with decreasing saliency,
rather than being bound to attend only to the OOI of maximal saliency at any
given time.

Although pop-out detection and IOR are named as two different processes,
they are very much interdependent on each other. The IOR greatly influences the
process of pop-out by dictating what not to attend in the consequent attention
cycle. In general, two types of inhibitions are considered, top-down and bottom-
up. The top-down influence is regarded as an external stimulus coming from
long term knowledge, recent experiences, and current needs. The other type of
inhibition occurs within the attention mechanism to avoid repeatedly focusing on
the same object. The top-down influence is not included in our implementation.

It has been established by experiments in psychophysics that inhibition takes
place in terms of both location and object features [23]. Evidence is provided
for inhibition in the immediate vicinity of the attended location and a U-shaped
function has been reported which strongly suppresses the immediate surround-
ings of the attended location and gradually fades to no suppression after a limited
diameter.

In general, IOR has single influence directly on the resulting saliency map,
meaning the saliency map will not change apart from the inhibited focused region
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([20], [10]). In contrast, we consider two types of inhibition mechanisms, namely
spatial based and feature based. Introducing IOR at lower levels of the compu-
tation (as suggested in [24]), implies the evolution of the region saliency value
of all segments. The spatial inhibition inhibits the region that is selected as an
attention region (AR), and excludes this region to be refocussed on. The feature
based inhibition inhibits the influence of the focussed region on its neighborhood
regions, in terms of similarity measure calculation between two regions to obtain
the cost-value of the arcs, as well as saliency calculation of the remaining, unfo-
cussed regions. From an implementation point of view, this is achieved by simply
excluding the focussed region from the RAG. We formulate these factors as:

S′(Ri) = ξs
CSR(Ri, ξf )OC(Ri)SI(Ri)

CBI(Ri)
(5)

ξs =
{

0; Ri == OOI
1; otherwise

(6)

where ξf excludes the OOI from CSR calculation.
The human browsing behavior can be approximately modeled by two mutu-

ally exclusive statuses: the fixation status (e.g., exploiting an interesting region)
and the shifting status (e.g., covertly scrolling to the next region). The fixation
status corresponds to the static viewing of an attention objects, and the shifting
status can be simulated by covertly traveling between different attention objects.
The shifting path is the shortest path between centers of the two fixation areas
(i.e. objects of interest). The iterations of these two states compose the whole
simulation of the shifting process, forming a scan path. The saccade status can
be described as a shifting process from the most informative region to the second
one, then the third and so on.

The scan path starts with the pop-out of the most informative object of
interest. is formed by subsequently focussing on OOIs in the image. In [25],
minimal perceptible time (MPT) is introduced as a threshold for the fixation
duration when focusing on an OOI. If an attention object does not stay on the
screen longer than MPT, it may not be perceptible enough to let users catch the
information. Fixation durations are variable, typically ranging from 100 ms to
500 ms. The MPT of an OOI is proportional to its region saliency value.

Subsequently, the attended OOI is inhibited. The inhibition of return mecha-
nism works as a short term memory, and stores attended OOIs in the inhibition
map. Taking into account information from the inhibition map, the region fea-
tures are updated. Hence, the region saliency map is updated as well as the edge
energy values.

Since humans are known to make fixations on nearby objects, the saliency
map (saliency value of each region) is weighted by the proximity to the current
fixation, defined as

wsaccade,i =
1√

(gc(OOI) − gc(Ri))2
(7)
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with gc(OOI) the gravitational center of the selected Object of Interest region;
gc(Ri) the gravitational center of any remaining region. The weighted saliency
map is then calculated as

Sw(Ri) = wsaccade,iS(Ri) (8)

with S(Ri) as defined in Equation 1. The scan path determination process con-
tinues with a new AR: the newly highest salient region excluding the already
detected OOI’s. The scan path is complete when (a part of) the background is
selected, or when there are no more meaningful regions left.

6 Experimental Results

We have tested our computational model for object-based attention on natural
scene images, where a set of objects distinguishes from the background. We
attempt to determine the scan path, by subsequently focussing our attention
on Objects of Interest. As discussed in the previous sections, in a first phase,
features are calculated with respect to small regions, rather than pixel based.
This approach is illustrated in Figure 5. From these feature maps, a combined
gradient is estimated using the method described in [13], with the purpose of
eliminating misleading high-contrast edges.

Original cI cC cCO

Original ecI ecC ecCO

Fig. 5. Comparison of conspicuity maps (c) and the proposed enhanced conpsicuity
maps (ec), incorporating region information. The presented maps represent intensity
(I), orientation (O), color (C), and color opponency (CO)

The results of the scan path determination are presented in Figure 6 and in
Figure 7. The top left images depict the original image together with the starting
mosaic image. The rest of the figures illustrate the scan path. For each Object
of Interest that has gained the focus of attention, the following resulting maps
are presented:

– Mosaic Image, corresponding to the current merge results in the image (hi-
erarchical level).



Modeling Attention and Perceptual Grouping to Salient Objects 179

Fig. 6. Hats-image scan path determination. For each Object of Interest that has gained
the focus of attention, the corresponding Mosaic Image, Saliency Map, Focus of Atten-
tion (FOA) Map, and Inhibition of Return (IOR) Map are presented.

– Saliency Map, displaying the saliency value (normalized between [0-255]) of
each region at the moment when the scan path is updated.

– Focus of Attention (FOA) Map, representing the scan path. The current
Object of Interest is added to the focus of attention map, and highlighted
by means of white edges and the index in the scan sequence of Objects of
Interest.

– Inhibition of Return (IOR) Map. Whenever an Object of Interest is added
to the scan path, the IOR Map is updated after extraction of the OOI. More
concretely, the first OOI extracted in step 1 of the scan path development, is
inhibited during the subsequent scan path augmentation, and stays inhibited
until the scan path is complete.

In Figure 8, a comparison in terms of scan path determination is performed
between the presented approach of Object of Interest (OOI) scan path determi-
nation and the method for salient region extraction using the publicly available
Saliency Toolbox ( [8]). Parameters for the experiment using the Saliency Tool-
box are: equal weights for all features (color, intensities, 4 orientations), lowest
surround level 3, highest surround level 5, smallest c-s delta 3, largest cs-delta
4, saliency map level 3, iterative normalization with 3 iterations. The scan path
determined with the Saliency Toolbox selects the most salient regions iteratively,
however the method does not consider the real object borders. In the presented



180 T. Geerinck et al.

Fig. 7. Elephants-image scan path determination. For each Object of Interest that has
gained the focus of attention, the corresponding Mosaic Image, Saliency Map, Focus
of Attention (FOA) Map, and Inhibition of Return (IOR) Map are presented.

Fig. 8. Comparison of the presented approach of Object of Interest (OOI) scan path
determination to the existing Saliency Toolbox ( [8]). The subsequent focussed regions
in the scan path are numbered.

approach, we try to extract objects of interest with exact localization of object
borders.

We can conclude that our approach gives excellent results in extracting mean-
ingful, perceptual objects when objects have limited intern color differences.
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However, when large color differences occur between object parts, objects are
selected in several steps.

7 Conclusions

This work reports a novel region-based attention model. Unlike existing mod-
els, the proposed approach performs segmentation in meaningful regions as an
attentive process, during which only visually salient image regions are merged
using perceptual organization criteria. In addition, the proposed approach in-
volves a multi-scale concept allowing the segmentation of meaningful regions
at the corresponding scale, using the waterfall algorithm. Experimental results
demonstrated the usefulness of the approach.

Three extensions of the method will be investigated in future work. First,
other segmentation techniques, such as mean shift segmentation, will be used to
reduce the original number of regions in the image. Second, extending the idea
of Attention Region (AR) to Attention Window (AW) which could be created
based on the region saliency map and saliency points from an image. Using such
AW will allow a better extraction of OOIs using the proposed region merging
criteria. Finally, the current bottom-up region-based model of visual attention
needs extension towards top-down (endogenous) attentional processes. Following
the suggested clarifications on the inconsistencies in existing models for visual
attention, particularly concerning the interaction between bottom-up and top-
down processes [26], [27], the discussion has been started in cooperation with
the department of Psychology and Educational Sciences.
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Abstract. In this paper, we describe the attention mechanisms in
CHREST, a computational architecture of human visual expertise.
CHREST organises information acquired by direct experience from the
world in the form of chunks. These chunks are searched for, and veri-
fied, by a unique set of heuristics, comprising the attention mechanism.
We explain how the attention mechanism combines bottom-up and top-
down heuristics from internal and external sources of information. We
describe some experimental evidence demonstrating the correspondence
of CHREST’s perceptual mechanisms with those of human subjects. Fi-
nally, we discuss how visual attention can play an important role in
actions carried out by human experts in domains such as chess.

1 Introduction

Cognitive science studies the processes by which humans develop and manifest
intelligent behaviour. The study of visual perception has been widely recognised
as an important component of many areas of expertise. A seminal experiment
by de Groot [1] uncovered a central component of human expertise: the ability
to identify the important features of a stimulus in the domain of expertise. De
Groot’s experiments were performed on chess players, and involved a test of
recall ability. Each participant was shown a position on a chess board containing
approximately 23 pieces for a few seconds, and was then asked to reconstruct the
position from memory. Candidates for the world title managed to reconstruct
the position with few, if any, errors; average players managed much worse. As
there was no difference in the participants’ intelligence level, other visual skills
or general memory, clearly the difference was related to their level of expertise.

An explanation for the difference had to await the development of the chunk-
ing theory [2,3] and cognitive models of human learning such as EPAM (Elemen-
tary Perceiver And Memoriser) [4]; the most detailed model of chess expertise is
now CHREST (Chunk Hierarchy REtrieval STructures) [5,6,7,8], which is a ver-
sion of EPAM with the addition of templates and more sophisticated perceptual
mechanisms. The computational modelling and experiments have shown that,
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essentially, the difference in perceptual skills can be explained by two factors: the
development of a large (approximately 300,000 chunks) set of knowledge about
the domain, and the use of templates by the visual system to actively seek out
higher-order clusters of information in a stimulus.

We can summarise the role of attention within CHREST as follows. First, an
image is perceived, and, as the eye has a limited field of view, a portion of the
image has its features extracted. These features are then used to sort through
long-term memory, seeking a familiar pattern. Any retrieved pattern is placed
into short-term memory. The contents of short-term memory, some high-level
domain-specific knowledge, and any items on the periphery of the field-of-view
will all combine to guide the model’s eye to locate a new point of the image
to focus on. This process continues, and the model will attempt to build up, in
short-term memory, a set of pointers to familiar patterns in long-term memory
which ‘cover’ the image. Here we see the importance of prior experience, as the
capacity of short-term memory is limited, but experts will have larger familiar
patterns (chunks), and so can store much more relevant information in their
short-term memory. However, attention is also important, as the larger patterns
must be confirmed to be present in the image if they are to be maintained in
short-term memory. Later, we explain in detail how a set of heuristics manages
this process in a dynamic and flexible manner.

This paper continues with an overview of the CHREST architecture, details
of the attention mechanism, and summaries of some results from experiments
using CHREST to explore visual abilities. Finally, we discuss how the findings
with CHREST relate to current issues in the study of attention.

2 Overview of CHREST

CHREST is an example of a cognitive architecture, that is, an implementation of
a theory of human cognition for developing detailed models of human behaviour
in a range of domains. The strength of cognitive architectures as scientific the-
ories is that their implementation ensures a high degree of precision in the the-
ory’s formulation, providing a sufficiency proof that the proposed mechanisms
can carry out the tasks in the domain of interest. Analysis of how the theory’s
predictions match actual behaviour, using measures such as eye movements,
reaction times, and error patterns, also establish the quality of the cognitive
architecture, by confirming its behaviour against actual human data.

Together with EPAM, from which it is derived, the CHREST architecture has
been a source of successful models of human learning and perception over a 50-
year period [3]. Beyond the results discussed in this paper, these successes have
included results in: verbal learning, language acquisition [9], categorisation and
problem solving. In this section, we provide an overview of CHREST, explain its
key processes, and highlight some important empirical results. The next section
will focus in more detail on the important attention mechanisms.

Fig. 1 shows the principal components of CHREST. The architecture follows
a classic subdivision of the cognitive processes into three components: one of
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Fig. 1. The CHREST cognitive architecture

input/output and two of memory. The input/output mechanisms are used to in-
teract with the environment. Input stimuli are separated into features, and out-
put actions are converted into motor controls. The Long-Term Memory (LTM)
is used to store information in a more-or-less permanent state; all information
learnt from the environment is held in LTM. The LTM uses a discrimination
network, which is constructed incrementally during the system’s lifetime, to in-
dex a pool of familiar patterns (chunks), higher-level concepts, schemata and
productions. The final component of the architecture is the Short-Term Memory
(STM), which provides a temporary store for information retrieved from LTM
whilst considering a particular stimulus or problem. Different parts of STM re-
late to different modalities of information, such as visual or verbal. The STM
maintains an hypothesis node, which is the most informative node retrieved so
far, and is used to focus CHREST on retrieving or constructing large chunks.

CHREST is an example of a symbolic cognitive architecture, which means
that all information retrieved by and stored within a CHREST model is at a
high level. We shall use the term ‘patterns’ and ‘chunks’ throughout this paper.
A pattern is what CHREST perceives in the external world, and a chunk is
a familiar pattern, one retrieved from its internal memory. Both patterns and
chunks are represented as lists of items with their positions. For example, in
chess, the items are actual pieces, and the positions are squares on the chess
board, so (Kg1 Rf1 Ph2 Pg2 Pf2) would describe a typical castled position for
the White player.

3 CHREST’s LTM: Chunking Networks

CHREST’s long-term memory is a chunking network: a discrimination-network
representation with cognitively plausible learning mechanisms, based on the
chunking theory. The chunking network includes mechanisms for forming and
using lateral links, as well as clustering techniques, to form templates.

3.1 Learning and Retrieving Perceptual Chunks

A chunk is a familiar pattern: CHREST acquires and retrieves chunks from its
long-term memory through a set of learning and storing operations acting on a
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discrimination network. The network is formed from nodes holding the chunks;
the chunk stored at a node is known as its image. There is a root node from
which all sorting operations begin, and the discrimination network is built up
from the test links between nodes. Patterns are sorted through the network by
following those test links whose tests match the given pattern.

The network is constructed using two learning mechanisms. Discrimination
is used when a pattern is sorted to a node which has no succeeding test links
matching the pattern, and the pattern mismatches the chunk stored at the node.
The part of the pattern which mismatches the chunk is used as the test for a
new test link. Familiarisation occurs when a pattern is sorted to a node which
has no succeeding test links matching the pattern, and the pattern matches the
chunk stored at the node. If the pattern contains more information than is held
at the node, then extra information is added to the stored chunk. Thus, node
images are specialised as patterns are re-encountered.

In describing the discrimination and familiarisation operations, part of the
sorted pattern is used, either as a new test, or to augment an existing chunk.
The amount of the sorted pattern used is a function of the rest of the network
in the following sense. The part of the pattern to be used is re-sorted in the
network, and the chunk that is retrieved is used in the above processes. This
chunking process ensures that learning is slow in the initial stages of getting to
know a domain, but as the network grows, and some of the patterns become
known, the rate of learning will speed up.

Efficiency of accessing a large store of data is often a concern, as in the utility
problem [10]. However, the usable capacity of a data structure need not be
problematic if it is sufficient in the given domain [11]. Human experts typically
pick out familiar patterns in a time of around 250ms, which is easily matched
by CHREST, using a network of around 300,000 chunks [8].

3.2 Constructing Templates

The template is a critical element of CHREST’s explanation of the recall abilities
of human experts [8]. A template collects together the information stored in a
number of separate nodes so as to highlight the constant core information and
the variable information, held in slots.

Template creation is assumed to occur whenever a critical condition is met
by a specific node within the network. Similarity between nodes is made explicit
by providing similarity links between them (such links are discussed in the next
subsection). When a node has a sufficient number of such links, and the contents
of these nodes satisfy an overlap criterion, the information in these nodes is
aggregated to form a template. Work in chess [8] has assumed a threshold for
the number of similarity links of 4, with at least 5 features in common.

3.3 Lateral Links

Lateral links [12] are created when the model has retrieved two chunks (retrieved
chunks are stored in STM); two classes of lateral link may be distinguished.
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1. Clears the record of which heuristic was last used.
2. Selects a point in the centre of the field of view to start from.
3. Performs following cycle:

(a) Store the currently fixated item in the list ‘fixated-items’
(b) Gets the next fixation point using get-next-fixation (see text).

4. If timing is used and model has used its presentation time, or if the maximum
number of allowed fixations is reached, then finish.

5. Otherwise, repeat from step 3.

Fig. 2. CHREST’s perception cycle; learning occurs during get-next-fixation

The first is where the two nodes match a similarity function of some kind. The
simplest of these is the direct similarity link, as used above in the creation of
templates. More complex generative links [9] connect those nodes with similar
descendant test links. The second class of links are those where the chunks are of
different type. For instance, production links are used to associate a perceptual
pattern with its corresponding action or conclusion, and so the production link
forms a basis for the model’s problem-solving behaviour. Gobet et al. [3] provides
a summary of these links and their use in different domains; Section 5.2 provides
more details on how such links are formed.

4 CHREST’s Attention Mechanism

CHREST uses a simulated eye to retrieve information from its target stimulus.
The eye is directed to a focus of attention, the fixation point, and has a limited
field of view. Its movement is governed by a set of heuristics, which combine low-
level and high-level information. A perception-learning-perception cycle guides
CHREST’s eye movements around the current stimulus for the presentation
time; see Fig. 2. In the following, we describe the heuristics and perception
processes to be introduced in the latest release of CHREST, version 3.0.

The list of ‘fixated-items’ is part of CHREST’s short-term memory. The
fixated-items record the items and their positions fixated upon during the current
presentation cycle. Each item observed will be added to this list until a termina-
tion condition is met. This termination condition is when an empty location is
fixated, or CHREST fixates something already in the list, or the heuristic used
is a random or weak heuristic. Marking the list as fixated will then lead to the
fixated-items list being learnt as a pattern. After learning, the fixated-items list
is cleared, and CHREST will begin building a new list, as it continues its per-
ception cycle. Worth noting is the implicit connection between perception and
learning; the list of fixated items is constructed by sequences of eye fixations,
which means that information learnt by CHREST has a locality bias.

Heuristics for selecting eye fixations can come from two sources. First, there
are the generic, domain-neutral heuristics which are part of the general archi-
tecture. These heuristics include: using LTM, fixating a part of the scene not
observed yet, locating a random object on the periphery, and locating a random
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position on the periphery. Second, there are domain-specific heuristics which are
part of the model for that domain alone. For example, in the chess models there
is an heuristic to guide the eye to typical positions of the kings; attacking or de-
fending the king is the ultimate key to winning at chess, and so the king position
is an important initial factor in assessing a position. Again in chess, there is an
heuristic to guide the eye to a square attacked by the currently fixated piece.

The process get-next-fixation is responsible for applying the various
heuristics to retrieve a new fixation point. The process uses a hierarchy of heuris-
tics: first it tries to use LTM, second it tries fixating a new object or a position
suggested by the domain-specific heuristics, finally it defaults to choosing a new
random position. There is a stochastic element, which means CHREST will fail
to use an applicable heuristic in a percentage of cases (currently set at 10%).

As an example we describe in more detail the most interesting heuristic, which
selects a new square based on information in LTM. This heuristic uses pointers
into long-term memory as a basis for selecting the next fixation point. There
are two main sources. The first is the hypothesis node, held in short-term mem-
ory, which acts as an anchor, guiding CHREST to retrieve or construct the
largest chunk possible for the given stimulus. The test links of the hypothesis
node (its descendants) are considered in turn, as described below. The second
is the node retrieved by learning something from the currently perceived scene.
The process is as follows: (1) current-node is the result of learning from the
current scene; (2) if there are any remaining descendants of the hypothesis to
consider, let current-child be the first descendant, and remove it from the
remaining list; (this step attempts to retrieve the largest chunk) (3) otherwise,
let current-child be the first child-link of the current-node; (4) return the
first potential square of current-child as the next fixation point. The learning
that can occur in step (1) attempts to extend the hypothesis with information
currently perceived, or else using the list of fixated-items, if that list has been
marked as complete; hence, CHREST is biased towards learning the largest
chunk possible.

One consequence of linking low-level perceptual processes directly with the
higher-level information stored within the long-term memory is a blurring of
the boundary between primitive and complex visual objects. We assume that
CHREST initially contains single-element chunks for each of the primitive el-
ements which may occur in the given domain, e.g. if CHREST is scanning
text documents, all the single letters will be provided as primitive features.
As CHREST learns about the domain, it begins to form larger chunks, consist-
ing of groups of these primitive features. In recognition, CHREST will typically
retrieve complete chunks from the domain, bypassing the more elementary fea-
tures. Thus, in scanning text documents, CHREST soon begins to work with
words as ‘primitive’ elements, instead of single letters. Such creation and use
of higher-level features occurs in any domain, and is typical of the perceptual
knowledge acquired and used by experts. It is also a typically hard problem in
unsupervised learning tasks, especially perceptual domains [13,14].
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5 Experiments with CHREST on Attention

We describe two sets of experiments from previous work to illustrate the impact
of CHREST’s perceptual mechanisms: data from chess, on the details of the
human attention mechanism; and data from a word-recognition task, explaining
how expectations assist in disambiguating input data.

5.1 Chess

In the introduction of this paper, we mentioned de Groot’s [1] classic experiments
on chess memory. It is of interest that these experiments were motivated by a
need to understand chess masters’ perception and attention: how can a world-
class master understand more of a position after five seconds than a candidate
master after fifteen minutes? How can search be so selective with strong players,
who often consider no more than one hundred positions during their thinking,
and ignore the billions of positions that could, in principle (but not in practice),
be of interest? CHREST provides mechanisms explaining how strong players
attend to the relevant while ignoring the irrelevant. These mechanisms have
been used to explain both how players direct their attention when considering
a position, and how they can limit the number of moves they anticipate during
look-ahead search. The organisation of these two types of behaviour is hierarchi-
cal, in the sense that the pattern of eye movements is part of the explanation of
selectivity at the level of move choice. In both cases, computational simulations
have reproduced key aspects of human behaviour. Given space constraints, we
limit our attention to three classes of phenomena simulated by CHREST.

Eye Movements as Indicators of Attention. In their analysis of players’
eye movements during the brief presentation of a chess position, de Groot and
Gobet [5] identified a few striking differences between novices and masters. Mas-
ters’ eye movements were shorter on average than novices’ (260 ms vs. 310 ms),
and also showed less variability (sd = 100 ms vs. sd = 140 ms). Masters’ eyes
covered more squares on the board, and also covered more of the squares that
were important in the position. CHREST does a very good job of simulating
these data. For example, it replicates the skill effect with the average dura-
tion of eye movements (272 ms for the simulated masters vs. 315 ms for the
simulated novices) and the difference in variability (97 ms vs. 154 ms). Fig. 3
shows an example set of eye fixations; what is important is how CHREST cov-
ers approximately the same amount of the important part of the board as the
expert, whereas the novice player and model (not shown) cover a much smaller
area. CHREST also captures the skill differences in the percentage of the board
covered, and in the percentage of critical squares covered. The speeding-up of
the eye movements and the increased number of important squares fixated are
due to the fact that many more fixations are directed by the structure of the
discrimination network with the master version of the model than with the
novice version, as the discrimination network is larger with the former than
with the latter.
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Human master CHREST Master

Fig. 3. Example of a Master’s eye movements for a specific position (left) and its sim-
ulation by CHREST (right). Grey squares indicate important squares in the position.
The field of view will cover several squares around each fixation point. (After de Groot
and Gobet [5].)

More qualitatively, CHREST captures masters’ tendency to fixate perceptu-
ally salient pieces (e.g. a white knight on the black side of the board) early on,
and their tendency not to fixate parts of the board that are “normal” in a given
situation (e.g. a standard castling position).

Although we have emphasised the way perceptual knowledge helps develop
more efficient attention, it should be pointed out that masters’ attention is not
infallible. In several of the positions used by de Groot and Gobet, immediate
threats (e.g. checkmate in one move) were missed by some of the masters. The
longer the distance between the two pieces, the more likely it was for the threat
to be missed. Assuming that chunks play a key role in rapidly identifying threats,
as we have done in this paper, this result is in line with the way CHREST learns
chunks, giving precedence to relations of proximity, as described next.

The Structure of Chunks: An Archaeology of Attention. A crucial as-
sumption in CHREST is that the information stored as chunks is a reflection
of the attention mechanisms used during learning. This offers an indirect way
of testing how attention is directed when playing chess. Concurrent and retro-
spective protocols [1,5] suggest that a fair amount of attention is directed to
consideration of moves and counter moves. However, they also suggest that at-
tention is directed to patterns of pieces. Chase and Simon [15] analysed the
structure of the groups of pieces replaced together in a memory task, and found
that a surprisingly small number of these groups contained relations of attack.
The vast majority of these groups contained relations of proximity, same colour
and defence. This result turns out to be robust, and has been replicated by [16]
with a larger sample. In a simulation of the memory experiment used by Chase
and Simon, Gobet [17] showed that CHREST closely simulates the detail of the
pattern of relations found in chessplayers’ chunks. This outcome supports the
importance given by CHREST to proximity during the acquisition of chunks.
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Selectivity in Choosing a Move. A characteristic of experts is the rapidity
with which they can propose solutions. For example, chess grandmasters literally
‘see’ the good moves straight away [1,18]. With very short decision times, less
than 10 seconds, their choice will not always be the best possible move, however,
it will almost always be a very plausible move in the position. CHUMP (CHUnks
and Moves Patterns) [19] is a variant of CHREST that implements the idea that
recognising patterns of chess pieces on the board makes it possible to access
information about moves in long-term memory, and thus to rapidly identify fairly
good moves. CHUMP uses two different but linked discrimination networks to
store two types of knowledge: first, patterns of pieces (the kind of chunks acquired
by CHREST), and, second, moves and sequences of moves (see the next section
for more on multi-modal learning in CHREST). During learning, the program
scans positions taken from master games, and patterns of pieces are associated
with moves. When selecting a move in a position in the test phase, patterns
of pieces act as conditions, and moves as actions. If different patterns suggest a
move, and/or if the same patterns suggest different moves, the conflict is resolved
by using a function combining the number of different chunks voting for a given
move and the number of times the move has been associated with a given pattern.

CHUMP provides a demonstration that the idea of selectivity through recog-
nition and association can be implemented in a computer program. However, it
should be pointed out that the level of play of CHUMP is rather low. This is
because it plays chess by pure pattern recognition, without being able to look
ahead, and it is well established that look-ahead abilities are important in play-
ing chess and other board games at a high level [20].

5.2 Expectations

Expectations are important in guiding what we look at and how effectively we
can recognise what we see. Expected objects are recognised with greater accu-
racy than unexpected objects, particularly in noisy domains [21]. Expectations
may also relate to complex collections of objects, or schemata. Perceptual classi-
fication of objects within a familiar schema can be quicker than when the objects
are not in the schema. For instance, Biederman [22] describes an experiment in
which participants took longer to identify a fire-hydrant when positioned above
street level than when at its expected position. Finally, noisy or ambiguous scenes
may be reconstructed, if the visible elements are constrained to fit a compati-
ble schema; Lindsay and Norman [23] describe such an experiment with words
composed of distorted or ambiguous letters.

The main lesson from the results described above is that perception is not a
simple flow of information from scene to memory, but instead perception is an
active process, with the attention forcing a shift of fixation point to different parts
of the scene based partly on what is observed and partly on what is expected
(or anticipated) to be present. CHREST has been used to construct a model
of this process, and demonstrate the qualitative results described above [24].
The key factor in supporting this process was for CHREST to support links
between visual information, representing the scene being analysed, and verbal
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Fig. 4. Learning to associate information across two modalities: (1) visual pattern is
sorted through LTM, and a pointer to the node retrieved is placed into visual STM;
(2) verbal pattern is sorted through LTM, and a pointer to the node retrieved is placed
into verbal STM; and (3) a naming link is formed between the two nodes at the top of
the STMs. (Taken from [24].)

information, representing the interpretation of the scene. The links between these
two input modalities are formed when the model is presented with visual and
verbal information simultaneously, as illustrated in Fig. 4.

In the situation depicted, the model is presented with a visual stimulus and
a verbal label. Both the stimuli are sorted through the long-term memory, and
pointers to the retrieved nodes are placed in their respective short-term memory.
A naming link is formed between the two nodes at the top of the two short-term
memories. This naming link can be used in future to retrieve the verbal label
from a visual stimuli. By a similar process, sequences of letters and words can
be acquired and stored in the network.

The attention mechanism can use this stored information in various ways.
First, verbal priming (e.g. being told to find particular words) can be used to
highlight specific visual chunks, which the attention mechanism will then at-
tempt to locate. Second, when part of a chunk is located, the visual or verbal
information can be used to identify schemata which can guide the attention
mechanism. For instance, verbally learning a sequence of words can be used to
trigger recognition of the visual representations of those same words.

6 Discussion

In this paper, we have described CHREST and shown how it provides an account
of the links between perception, attention, learning, memory and action. Thus,
CHREST addresses several key issues in the study of attention, and in partic-
ular how it links to other aspects of human cognition. One of the differences
of CHREST with respect to other theories of attention is the level at which it
works; CHREST is a symbolic system, meaning that information is stored at a
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‘meaningful’ level. The basic information used by CHREST in the chess experi-
ments is the piece-on-square, which encodes that a piece is located at a particular
position of the board. This perspective distinguishes our work from that by other
authors on perception, such as Tsotsos [25] or Wolfe [26]. CHREST’s perspec-
tive is psychological, but related to high-level conceptual processing, and is not
concerned with neurological or other low-level processes.

The key contribution of this paper is to show how a symbolic treatment of
attention can affect our understanding of attention in high-level areas of human
cognition, and we now review some of these areas.

Perception is cognition. This was the central focus of the studies reported in de
Groot and Gobet’s book [5]. This role has sometimes been overlooked in recent
attempts to provide general architectures of cognition. For example, in both
Soar [27] and ACT-R [28], perception is considered, but its role is not as central
as in CHREST. As we have seen, in CHREST the central theoretical construct
is that of a perceptual chunk, and the learning of chunks directly depends on
perceptual mechanisms.

Attention directs learning, and that which has been learned directs attention.
This relates to the previous point. Expertise in a domain develops because the use
of fairly weak heuristics leads to the acquisition of more perceptual knowledge.
These heuristics can be either general (“look at a part of the scene you don’t know
anything about”) or domain-specific (“verify whether your Queen is attacked”).
With sufficient experience, this perceptual knowledge enables the fluid and rapid
behaviour that is characteristic of experts’ intuitive decision making.

Action is closely linked to perception. The entire CHREST architecture rests
on the assumption that many actions are elicited by perceptual patterns. This is
particularly the case with expert behaviour, where the link between action and
perception is made automatic.

Attention is directed by a combination of top-down and bottom-up processes.
The CHREST simulations show how novices rely more on weak heuristics to
direct their attention, while the masters rely more on the structure of the dis-
crimination network to suggest the next fixation position. Note that some of the
(top-down) heuristics used by the masters may also be useful as information-
seeking devices. Top-down heuristics are also important to make sure that global
goals are heeded.

Context matters in focusing attention. In CHREST, this is readily captured
by the fact that the fixations directed by the discrimination network are sensitive
to even fine details in the context. Indeed, different positions lead to different eye
movement patterns. Just like human masters, CHREST does not use stereotyped
sequences of eye movements, but adapts these as a function of the environment.

Attention is crucial at many levels. While this paper has focused on the role
of attention in the first seconds of presentation of a new complex stimulus, it
should be pointed out that, in a full model, attention would be essential at several
levels. For example, when chess players examine a position in order to choose the
best move, attention would be selective, not only in selecting the next fixations,
but also in deciding which moves should be selected for further consideration,
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and also in deciding what part of the information currently gathered about
the position is worth the cost of storing in long-term memory. In both cases,
selectivity – and not just random guess – is made possible by knowledge acquired
over years of dedicated practice [15].

Why is attention limited? And why is the capacity of short-term memory
limited? From an evolutionary standpoint, limits in attention and short-term
memory capacity make sense; when facing a danger, organisms that immediately
identify the presence of the danger are more likely to survive (and reproduce)
than organisms that have to process the many stimuli they focus on, and sift
through masses of information in their short-term memory. Indeed, Simon [29]
argued that selective attention is a key feature of the broader notion of bounded
rationality – the assumption that humans make decisions in science, business
and everyday life with only a small amount of search. Thus, selective attention
enables rapid decisions that may not be optimal, but that are good enough.

While CHREST is a computational architecture of cognition that captures
many of the aspects of attention as studied in cognitive psychology, it was not
developed as a model of attention only. As we have seen earlier, it also captures
many aspects of (high-level) perception, learning, memory and decision-making.
CHREST may also have interesting things to say about machine learning and
robot perception. For example, chunking turns out to be a robust statistical
learning mechanism, and we have provided several examples in this paper of
how chunking is linked to attention.

The way attention is used in CHREST can also shed light on questions cen-
tral to the development of autonomous intelligent systems. The frame problem
is such a question. How can a system notice the relevant changes in the environ-
ment, while ignoring the irrelevant changes? Due to the various limitations that
characterise CHREST, it actually does not face the frame problem. Together,
CHREST’s attentional restrictions implemented by a limited capacity memory
enable it to pay attention just to a few features of the environment. With in-
creasing expertise in a domain, the perception-learning-perception cycle we have
discussed above leads to increasingly rapid and adequate decisions, whilst not
necessarily increasing the attention span of the system.

Evolutionary considerations highlight two factors important in modulating
attention, which we have started incorporating into CHREST: emotions and
motivations. In a classic paper, Simon [30] argued that, with systems charac-
terised by serial organisation and control hierarchy, motivation refers to what is
controlling attention at a specific time; in particular, given that these systems
have multiple goals, motivation controls how attention is focused on a specific
goal. Furthermore, it is necessary to have a provision for interrupt mechanisms;
Simon proposes that at least two sources inform these mechanisms: first, drives
(for example, hunger), and, second, the information gained by EPAM’s process
of noticing. In particular, emotional tags might be added to perceptual chunks
during the learning process. Later on, the emotions associated with these chunks,
in particular when they are negative, such as fear, may direct attention to spe-
cific aspects of the environment. For example, a chess master might have suffered
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a painful loss in a given type of position. In future games with the same type
of position, her attention is likely to be modulated by the knowledge of this
previous game, and the emotions associated with it – for better or for worse.

7 Conclusion

In this paper, we have described how the CHREST cognitive architecture ex-
plains, simulates and employs attention mechanisms. Two aspects of CHREST’s
implementation are central to explaining the attention mechanism in humans:
the first is the tight cycle of perception-learning-perception; the second is the use
of discrete chunks of information, both in long-term and short-term memory. The
perception-learning-perception cycle guides the attention mechanism through a
set of heuristics, which select a new fixation point by combining bottom-up and
top-down information. The discrete nature of chunks enables a limited short-
term memory to refer to a far larger store of information, and also supports
the use of cross-modal or image-action associations. As CHREST’s problem-
solving and action abilities are further extended, we anticipate greater insights
will emerge about the link between an expert’s selective attention and their
ability to produce rapid and skillful responses.
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Abstract. We propose a framework of visual attention grounded on
earlier attentional and perceptual models to serve as a basis for the de-
velopment of computational vision systems. The framework is build on
generally established knowledge about the neural basis of human atten-
tion, models developed by Briand [1][2], Itti and Koch [3][4], and Wolfe
[5][6] and our own results that call for adaptations of the existing mod-
els [7][8]. In this paper we concentrate on the interaction of bottom-up
and top-down processes to understand the mechanisms underlying ex-
ogenous and endogenous attention. Two series of studies are reported to
support the proposed adaptation of the earlier models. First, we claim
that the visual feature binding is a common process for exogenous and
endogenous attention [7]. Secondly, we demonstrate the ability to preset
the bottom-up feature maps by demonstrating the phenomenon of In-
hibition of Return (IOR) with endogenous cueing, suggesting that IOR
affects processing before focusing attention [8].

Keywords: visual attention, endogenous attention, exogenous attention,
feature integration, inhibition of return.

1 Introduction

An essential research topic in the area of ‘Computational Vision’ is the devel-
opment of an efficiently working attention system. Several models of attention
in computer vision have been suggested in earlier studies, but only few of these
models have incorporated mechanisms for both bottom-up, image-activated pro-
cesses, and top-down, task-depending processes. In the present paper we make
suggestions for alterations to these models, specifically related to the interaction
of bottom-up and top-down processes in early vision.

Research over the last three decades has demonstrated that selection of in-
coming information in humans is achieved by the allocation of spatial attention,
facilitating the processing of selected objects without shifting gaze direction
[9][10][11]. Making attentional shifts allows us to combine chunks of sensory in-
formation resulting from localized visual analysis problems, to build a mental
representation of our visual world. The allocation of spatial attention appears
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to be jointly determined by task-dependent (endogenous) and image-based (ex-
ogenous) factors [12].

1.1 Exogenous and Endogenous Attention: Bottom-Up Versus
Top-Down

First, spatial attention can be voluntarily directed. We actively and deliberately
select and focus on what we believe is important, usually aimed at achieving
an immediate visual goal (goal-driven). This is called endogenous attention and
is considered top-down, because higher brain regions are involved at the outset
[9][13][14]. According to Posner and Snyder [15] and Jonides [16], top-down ori-
enting is resource-limited, and is affected by expectancies and concurrent mem-
ory load.

A second important mode of operation is largely unconscious and driven by
external objects (or their specific attributes) that stand out from their envi-
ronment. These conspicuous stimuli attract attention automatically (attentional
capture [16][17]) and independently of intentions [14][18], even if the stimulus
is irrelevant for the ongoing task. The ability to allocate attention rapidly to
salient objects is of particular behavioral importance, because it constitutes a
powerful alerting system, allowing the organism to detect quickly a possible
prey, mates, or predators in our environment. This mode of attentional con-
trol is known as exogenous attention and is considered to function primarily in
a bottom-up manner, because principally it operates stimulus-driven. Bottom-
up orienting (as a process) is resource-free, cannot be suppressed, is unaffected
by subject’s expectancies or by concurrent memory load and does not require
conscious awareness1 [15][16].

2 Disclosing the Mechanisms Underlying Exogenous and
Endogenous Attention

In a first series of studies, we focused on the work and model of Briand and
Klein concerning the role of spatial attention in visual feature binding [1][2][19].
Treisman’s feature integration theory (FIT) was an attempt to define one of the
purposes of focused attention [20]. Treisman and colleagues found that certain
elementary object features such as color or form, could be detected massively
parallel over the entire visual field, while conjunctions of these features could not.
They hypothesized that for detecting elementary visual features pre-attentive
processing is sufficient, but that focused attention is necessary for binding the
elementary visual features of an object into a unitary percept that enables proper
identification and detection of the object.

1 Note that in section 3.1, we will demonstrate that it is possible to realize top-
down presetting of the low-level input maps, which are the source of bottom-up
orienting. Accordingly, an upcoming stimulus-driven orienting process has already
been affected by top-down influences before it has started.
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Briand and Klein wondered whether the focused attention needed in feature
binding (‘Treisman’s glue’) is the same as Posner’s attentional spotlight that
enhances the efficiency of the detection of events within its beam [1][2][9]. There-
fore, Briand and Klein combined a variant of Treisman’s feature/conjunction
task with Posner’s (cost-benefit) orienting paradigm, making use of both en-
dogenous and exogenous cueing conditions. Briand et al. found that spatial cue-
ing effects were larger for conjunction targets than for feature targets, but only
in the exogenous condition. In the endogenous cueing condition, no such inter-
action between cue validity and search type (feature-conjunction) was present.
With endogenous cueing, the cost-benefit pattern was equivalent for feature and
conjunction search.

According to Briand et al., the interaction between cue validity and search
type, observed exclusively in exogenous cueing, suggests that exogenous atten-
tion affects the spatial attentional system that performs the binding function
attributed to spatial attention by Treisman’s FIT [20]. Because the endogenous
cueing condition does not show this interaction, endogenous attention must be
based on a different attentional mechanism, which operates independent of fea-
ture binding.

Briand proposes an attentional framework grounded on the idea of the exis-
tence of separable attentional subsystems: exogenous attention being controlled
by the posterior attention system and endogenous attention being controlled
by the anterior attention system [2]. This idea was promoted by Posner and Pe-
tersen and involves the assumption that each system controls different processing
aspects of attentional orienting [21].

Note that in this framework (see Figure 1), the terms exogenous and endoge-
nous respectively correspond with the posterior and the anterior attention sys-
tem and that only exogenously controlled spatial attention directly affects feature

Fig. 1. Schematic model illustrating the processing stages that may be influenced by
exogenously controlled (posterior) and endogenously controlled (anterior) attention
systems (Taken from Briand [2])
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integration. The endogenous system acts upon several stages in perceptual pro-
cessing and is able to control and modulate the exogenous attention system.

2.1 Challenging Briand’s Study: Global Pop-Out

In our studies however, we challenge Briand’s conclusions, based on results of
variations of Briand and Klein’s experimental design [7]. Briand presented two
colored letters at one side of the fixation point. Such a target differs significantly
from its surrounding, and will capture attention in a bottom-up way. The induc-
tion of such a global pop-out could have altered cueing effects in Briand’s results,
because pop-out always directs attention automatically to the valid location of
the upcoming target. Since endogenous cues do not direct attention automati-
cally, they can easily be ignored to the advantage of the global pop-out. As a
result, the endogenous cueing effect will weaken and thus also the interaction
between cue validity and search condition will drop. In an exogenous condition,
the cue is processed automatically and cannot be ignored. Consequently, global
pop-out cannot exert such a strong influence on the effect of cueing, and ac-
cordingly the cue validity - search type interaction will be less violated. In sum,
a discrepancy in the effect of a global pop-out between both cueing conditions
could seriously misrepresent a true comparison of both attentional modes.

We first simulated Briand’s design, i.c. task-relevant stimuli were presented
on a single side of fixation. In a second experiment, we adjusted Briand’s design
presenting task-relevant stimuli on both sides of fixation. In Experiment 1, we
replicated Briand’s results, whereas in Experiment 2 with 2-sided stimulus pre-
sentation, results showed the presence of a target type x validity interaction for
both endogenous and exogenous cueing. Thus, when in the endogenous cueing
condition the reaction time pattern is not distorted by the automatic attentional
capture by means of a single sided task-relevant stimuli presentation, a target
type x validity interaction is found. This suggests that although exogenous and
endogenous attention have different origins, they influence stimulus binding in
a similar way.

3 Inhibition of Return: High-Level or Low-Level
Mechanism?

A second adaptation of the early attentional models concerns the phenomenon of
IOR. This is an inhibitory mechanism of attention, which is thought to promote
exploration of previously unattended objects in the scene during visual search
or foraging by preventing attention from returning to already-attended objects
or locations. Some early models of artificial vision situate IOR at the level of
focused attention [3][4]. The assumption is that attention is drawn to the most
salient feature in a visual display in a bottom-up manner. After attention has
been focused there by a ‘winner-takes-all’ mechanism, the item is identified as
being a target object or not. If this most salient ‘object’ is not a target, a feedback
loop is assumed, inhibiting the object location in the saliency map, and the next
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most salient object is selected. As the inhibitory process is rather object-based,
since a location can be inhibited only after the object-identification process has
finished, high-level visual processing is essential.

Although such a high-level object-based IOR mechanism may exist, it does
not correspond to the IOR phenomenon observed in most attention research.
In these IOR studies, the subject is precued on the ‘location’ of a subsequently
appearing target, which participants have to detect or localize as quickly as
possible. Typically both the validity of the location cue (valid vs. invalid) and
the time between precue and target onset (cue target interval, CTI) are ma-
nipulated. First, attention is captured by the onset of a peripheral location cue
which predicts with a certain validity the location of the soon appearing target,
e.g. a brief illumination of the frame around one of the possible target locations,
that automatically captures attention due to its sudden onset. When the CTI is
larger than approximately 250ms, individuals are slower to respond to a target
at the location that has been previously cued (valid cue) compared to a tar-
get at a location that has not been cued (invalid cue). This IOR reaction-time
pattern is the reverse of a normal cueing-effect, in which benefits are observed
with validly cued targets and costs with invalidly cued targets. This pattern of
results seems to indicate that after attention is reoriented back to the center
of the screen, subjects seem to give attentional preference to locations where
attention has not been guided before. Since the target has not yet appeared at
the time attention is reoriented to the center of the screen, no high level feature
binding and target identification processes have been activated yet. Accordingly,
if inhibition of subsequent processing at the cued location is observed, the inhi-
bition process is situated before feature binding. This location-based inhibition
of previously attended locations is mostly found with exogenous cueing, but not
with endogenous orienting of attention. We conducted a series of 4 experiments,
in which we manipulated low-level visual processing by means of endogenous
cues [8]. Herewith, we tried to demonstrate that IOR is triggered only when the
low-level visual routes are being activated.

3.1 Low-Level Location Inhibition Affects Processing before
Focusing Attention: Presetting the Bottom-Up Feature Maps

Sensory information is distributed to several distinct retinotopically organized
visual feature maps (see [22][23] for neurological support). To locate the most
conspicuous feature, features are mutually compared for each feature dimension
(color, orientation, motion). Accordingly, a conspicuity map for each of these
dimensions is constructed. Eventually the most conspicuous feature, derived from
the combination of conspicuity maps, will serve as bottom-up guidance for the
attentional system, and is responsible for attentional capture.

After attention is drawn to the most conspicuous feature-location of the vi-
sual display in a bottom-up manner, that particular location is inhibited and/or
other locations in the visual display are privileged for being attended to. With
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endogenous orienting our intentions rather than the conspicuity of features, guide
attention. Consequently, usually no low-level inhibition process is triggered. This
would explain why in general no IOR occurs under endogenous cueing conditions.
We assume that if a location-bound IOR is indeed situated at low-level visual
processing and if we can guide attention intentionally (top-down) by modulating
the low-level input maps (visual buffer), it should be possible to find location-
bound IOR also with endogenously triggered orienting.

In order to realize top-down presetting of the low-level input maps (also see:
Attentional Set [24][25][26][27][28]; Guided Search [5][6]), we set up two experi-
ments with two possible target locations, left and right from fixation. Before the
target was presented, there were two cues: a primary color cue, that informed
the subjects of the use of the second cue, and a location cue that shortly marked
the two possible target locations with a different color [8]. Top-down information
was provided by means of the color cue presented prior the location cue. That is,
the color cue informed the subject of which color of the location cue they had to
pay attention to, before they had to detect the target (‘endogenous’ cueing). Since
with the location cue both possible target locations were simultaneously marked
by a color flash, the cue did not attract attention exogenously to one particular
location. When the target appeared at the location where the second cue color was
identical to the primary cue color, the experimental trial was considered as a valid
cued trial. When the target appeared at the other location, the trial was consid-
ered invalid. Subjects were never informed about the cue validity, which was 50
percent. During the experiment subjects were online checked whether they car-
ried out the cueing instruction properly. In the first experiment, the primary cue
was presented once before a large number of trials (blocked). In the second ex-
periment, the primary cue color was randomized and presented before each trial.
In both experiments, CTI was manipulated. When the CTI was short, subjects
reacted faster to a target at the cued location compared to the uncued location.
However, when CTI was longer, we found the expected IOR effect, that is, faster
reaction times for targets at the uncued location compared to the cued location.
Thus, we observed the assumed IOR under endogenous cueing for the long CTI
conditions and a normal cue facilitation-effect after short CTI’s.

As a control, another two similar endogenously cued detection tasks were
set up, but without presenting the color information prior to the location cue.
In this way, no presetting of the low-level input map was possible. In a first
control experiment, the colored peripheral flashes and the central endogenous
cue were presented simultaneously. In a second experiment, the endogenous cue
was presented after the location cue. In these control conditions, subjects did
no longer have the time to preset the low-level input maps. As expected, we did
not find any IOR, but a normal facilitation cueing effect was found for all CTI.

Although in general, no IOR is observed with endogenous cueing, we were able
to demonstrate the phenomenon by rerouting top-down endogenous attention to
the low-level input maps. Hereby, we conclude that location-IOR is situated at
the low-level visual processes and needs to be distinguished with the possible
coexistence of a higher order IOR [3][4].
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4 Consequences for the Existing Attention Frameworks

Considering our findings in relation to the results of Briand and our conclusions re-
garding a low-level IOR, revising the earlier models is inevitable for understanding
the attentional network and essential for developing a humanoid attention system.
In the following chapter, we propose an adapted two component framework of vi-
sual attention, grounded on (a) the attentional or perceptual models of Briand and
Klein [1][2][19], Itti and Koch [3][4], and Wolfe [5][5], (b) the conclusions based on
our own studies and their impact on the original models [7][8], as well as (c) rea-
sonably well-established facts about the neural basis of attention.

4.1 Assembling a Two Component Attentional Framework

As discussed earlier, visual stimuli have two ways of attracting attention and con-
sequently penetrating to higher levels of awareness: being volitionally brought
into the attentional focus (top-down), or by means of automatic attentional cap-
ture (bottom-up). However, one has to keep in mind that in everyday life both
attentional systems are continuously interacting. In Figure 2 we developed a ten-
tative model for visual attention, based on the earlier models and complemented
with adaptations based on our research results.

4.2 Neuroscientific Grounds

Much evidence has been accumulated in favor of a two-component framework for
the control of attentional orienting and focusing within a visual scene. Neurophysi-
ological studies with monkeys and data from brain-injured patients have indicated
that the posterior parietal cortex [29][30], lateral pulvinar nucleus of the thalamus
[31][32], and superior colliculus [21][33] are involved in attentional orienting and
focusing. On the other hand, the anterior cingulated cortex (a) appears to play a
special role in target detection and selection of task relevant stimuli [34][35], (b)
has major connections to the amygdala, which plays a critical role in emotion [36],
(c) to the posterior parietal cortex and possibly the pulvinar nucleus, (d) and even
to dorsolateral prefrontal cortex and parahippocampal cortex, which are involved
in short-term visual-spatial and long-term object memory, respectively [37]. The
anatomy and neurophysiology of the anterior cingulated suggests that this system
provides top-down assistance, out of its involvement with several other cognitive
functions, to the posterior attention system, which operates on the basis of simple
stimulus features and automated routines.

4.3 Attentional Selection: Bottom-Up Guidance of Attention

In bottom-up guidance of attention, the process starts with and is guided by
external stimuli in the visual field. In a first phase, as in most models of vi-
sual attention, visual features (horizontal, slanted, red, blue, ) are extracted
pre-attentively and in parallel from the retinal image (see Figure 2). The sen-
sory information is distributed to several retinotopically organized visual feature
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Fig. 2. The adapted two-component, winner-take-all (WTA) framework of spatial vi-
sual attention grounded on the models of Briand and Klein [1][2][19], Itti and Koch
[3][4], and Wolfe [5][6], and based on our behavioral studies [7][8]

maps. Note already, that we do not imply that feature extraction is purely feed
forward, as top-down influences from information, gathered about the retinal im-
age and/or the target searched for, can possibly preset the feature maps (Guided
Search, [5][6]; Attentional Set [24][25][26][27][28]; and [8]). The processing in this
stage is capacity unlimited and attention is diverged.

In a next phase, the retinotopic visual feature maps are combined per feature
dimension (e.g. color, orientation, motion) to detect conspicuous features. The
localization of conspicuous features is implemented by center-surround difference
mechanisms for each feature dimension (see also [3][4]). Activities in the resulting
conspicuity maps are mutually compared to locate the most conspicuous feature
over all feature dimensions. Eventually the most conspicuous feature, derived
from the combination of conspicuity maps, will serve as bottom-up guidance for
the posterior attention system, which will determine the target of attentional
orienting and focusing. As a consequence, unique anomalies within a feature
dimension will automatically attract our attention2. This phenomenon is named
“attentional capture” or also “the pop-out effect”. It is also in this phase that

2 Note that conspicuity maps can have different weights by nature (e.g. the color
map has a higher weight than the orientation map) and additionally can be pre-
attentionally dynamically adjusted by top-down attentional biases or prior expe-
rience through inhibition or activation of certain feature maps (e.g. when we are
looking for red apples at the greengrocer’s, our susceptibility for all what is red will
increase and/or our sensitivity for other features will be inhibited).
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unbalanced presentation of stimuli can elicit an unwanted attentional capture (or
bottom-up guidance) in cueing experiments. When comparing endogenous and
exogenous cueing effects, this global pop-out due to the presentation of salient
stimuli, will primarily interact in conditions intended to measure endogenously
guided attention. This influence was clearly demonstrated in our first series of
experiments.

4.4 Attentional Selection: Top-Down Guidance of Attention

Attention can also be directed by top-down information from intentions created
by prior knowledge (strategy, instructions, experience). In this case, the posterior
attentional system is guided by the higher-level anterior system that tries to
determine the focus of attention. Accordingly, the posterior attention system
is common for both exogenous and endogenous attention in the model. This
common system is responsible for the actual orienting of the attentional focus to
visually informative locations within our visual field [21][33], and affects feature
integration. This arrangement is grounded on the results of our experiments in
this study: we demonstrated that although exogenous and endogenous attention
have different origins, they influence stimulus binding in the same way. Note,
that this reasoning implies that we no longer treat endogenous/exogenous and
anterior/posterior, respectively, as analogous terms.

4.5 Interacting Attentional Routines: Winner-Take-All

In the posterior attentional system, the location that will be attended to is de-
termined by the result of the winner-take-all (WTA) interaction between the
‘endogenous’ top-down guidance and the ‘exogenous’ bottom-up guidance rou-
tine. On the one hand, internal (top-down) information from other cognitive
functions acts upon the attentional orienting system, i.e. the posterior atten-
tion system. On the other hand, externally received low level visual information
tries to modulate the orienting of attention through a bottom-up mechanism
of conspicuousness. A winner-take-all arbitration between both attention modes
is proposed, since either the most conspicuous object derived from the exoge-
nous routine or the most dominant object (or area) arisen from the endogenous
routine, is attentionally selected for further processing. Note however, that this
does not exclude the possibility of a serial combination of both attentional rou-
tines: attention may be oriented endogenously to an area after which the most
conspicuous object within that area is selected.

By strategically activating and/or inhibiting retinotopic feature maps (i.c.
top-down attentional set), the bottom-up visual processing routine can also be
modulated by endogenous factors. For instance, when you know that what you
are looking for is blue, the visual system will favor stimuli that activate the blue
feature map for further processing. This will also favor all what is blue in the
battle for most conspicuous feature. Yantis and Jonides [38] found that sudden
onsets do not necessarily attract attention automatically (exogenous/bottom-
up), due to endogenous control modulation. Our studies with endogenous cues
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further support the claim that feature maps can be strategically preset. Knowing
in advance which color is the relevant cue, creates the opportunity to preset that
particular feature map.

4.6 Inhibition of Return (IOR)

IOR is a process that directs our attention to locations that have not previ-
ously been attended to, rather than to the previously attended locations. As
we discussed earlier, this inhibitory mechanism cannot be located at the level
of stimulus identification and is probably situated before the process of feature
binding. IOR is assumed to be an automatic process, guided by the posterior
attentional network. For these reasons we expect the mechanism to operate at
the bottom-up attentional route after the WTA-interaction (see Figure 2). At
this stage, the battle for attention has been won by the most conspicuous feature
and the attention is being focused to its location. After a delay, attention will be
oriented back to a neutral position (fixation) by the posterior attention system.
At that time the posterior system feeds back to the retinotopic input maps, in
order to inhibit the previously attended (most conspicuous) location.

The localization of IOR in the bottom-up information stream is further sup-
ported by our series of experiments with endogenous cues. Giving subjects pre-
knowledge about the color to be looked for, resulted in a regular cost-benefit
pattern for short CTI’s, and an IOR (i.c. a reversed cost-benefit pattern) for
longer CTI’s, just as it does for exogenous cues. In general IOR is not found in
endogenous cueing tasks without top-down attentional set. This shows that IOR
is located before the process of focused attention, since focused attention is a
common element in the exogenous and endogenous attentional route.

Since we do not want to exclude the possibility of a high-level object-based
IOR process in the adapted attentional framework, a top-down object location
inhibition path is suggested (see Figure 2). After an object has been identified
as being a non-target, the object location is retrieved from the object file and
subsequently top-down (voluntarily) inhibited in the retinotopic input maps.

4.7 The Oculomotor System

As most attentional theories assume a strong relationship between visual atten-
tion and saccades, an overt attention module is suggested. An oculomotor system
is driving the saccadic eye movements and is accordingly determining the part of
our visual environment that feeds the retinal image. In the current framework,
this oculomotor system can be activated through top-down processes, through
bottom-up processes, as well as through the combination of bottom-up and top-
down processes.

First, our eyes can be intentionally (top-down) guided without visual stimuli
in the environment. For instance, it is possible to intentionally direct our eyes
to the left or to the right without seeing anything (e.g. in a dark room).

Second, our eyes can be guided automatically to the area of a conspicuous ob-
ject or feature that captured attention through bottom-up attentional guidance.
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Accordingly, the goal of the saccade is determined by the spatial coordinates of
the conspicuous object. However, since we are able to inhibit making eye move-
ments, top-down processes are also able to inhibit the oculomotor system from
directing a saccadic eye movement to the most conspicuous object area.

A final oculomotor trigger, and probably the most common trigger, is the com-
bination of both top-down and bottom-up guidance (cf. Guided Search [5][6]).
Clark suggested that voluntary eye movements occur through high-level modu-
lation of the low-level substrate that underlies the reflexive bottom-up guided
saccadic eye movements [39]. In the framework, this kind of modulation was
already made possible through the top-down attentional set route, modulating
the low-level retinotopic input maps. Support for this idea is found in the ob-
servation of IOR in endogenous cueing experiments when the endogenous cues
trigger the oculomotor system [40][41]. In general, no IOR is found with endoge-
nous cueing. However with top-down modulation of the low-level input maps,
the IOR phenomenon could also be observed after endogenous cueing [8].

4.8 Focusing Visual Attention: Feature Binding and Further Visual
Computation

As explained before, focused visual attention is required to ensure the correct
integration of features (feature binding) to specify objects. When object fea-
tures are processed, the integrated and complex object properties are stored in
object files, together with their spatial location. The central representation of
the retinal image is constituted of these serially accumulated object files, which
are approachable from our memory to realize object and scene recognition. Note
that in the model, the object properties (“what”) and their location (“where”)
originate from focused vision and the ‘posterior attention system’ respectively.
The dual route idea is taken from Ungerleider and Mishkin [42]. Their research
indicated that the visual cortex is organized into two distinct pathways both
originating in the primary visual cortex. The ventral stream which reaches the
inferotemporal cortex is involved in the identification of objects, whereas the
dorsal stream, which projects into the parietal cortex, is engaged in the vi-
sual spatial localization of objects (for an alternative view, see [43]). Single-cell
recording studies in monkeys have found cells in inferior temporal cortex to fire
in response to shape or color, while cells in posterior parietal cortex fire in re-
sponse to location, size or motion of an object [44]. From introspection, as well
as from several psychophysical studies, we know that we do not only notice the
world within our focus of attention. We are able to make simple judgements
about non-attended visual elements, although those judgements are limited and
less accurate than those made in the presence of attention [4][20][45]. In the
model this is represented by direct links between the visual buffer and the ob-
ject files, where there is no connection with the process of feature integration
(see Figure 2). Notice that this implies that judgements only can be made on the
basis of raw unbound features. Even when a feature triggers an exogenous orien-
tation, no attentional resources are required to make a judgement about this sin-
gle feature, in contrast with conjunction judgements, where feature integration
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demands additional attentional resources. Since attentional orienting and fo-
cusing is shortcut, simple feature judgements will be faster than conjunction
judgements. This double pathway provides us with an explanation for the inter-
action between target type (feature and conjunction) and cue condition (valid
or invalid), reported in the exogenous condition of Briand and Klein [1][2] and
in our endogenous and exogenous studies, where we avoided the occurrence of a
global pop-out.

5 General Conclusion

The simulation of a visual attention network in computational vision systems is a
complex issue, and has resulted in the development of several models, each devel-
oped with their own specific accent or target application. The present suggested
adaptations have been based on earlier models developed by Wolfe [5][6], Itti
and Koch [3][4], and Clark [39]. More specifically, we have concentrated on the
interaction between bottom-up and top-down mechanisms of information pro-
cessing and the suggested ideas in this respect expressed in the model of Briand
[2] and Klein [19]. The adaptations that we suggest are based on two series of
experiments of which we have explained the general outlines and results.

In a first series of experiments we demonstrated that the integration of stimu-
lus features can be controlled by both exogenous and endogenous attention cues,
implicating that the anterior attentional system controls the posterior attentional
system, and in this way indirectly influences feature binding. The implications
for modeling are that exogenous and endogenous attention have to be explained
in terms of interactions between an anterior and a posterior attentional network
and how these networks are related to the bottom-up and top-down informa-
tion processing streams. In a second series of experiments we demonstrated that
IOR, which has mostly been linked to exogenous cueing, can also be elicited with
endogenous cues. These results can be explained by assuming that (a) low-level
input feature maps can be preset on the basis of top-down influences if there is
sufficient time for presetting before the bottom-up process starts, and (b) that
IOR is also a relatively early attentional mechanism, situated at the level of
conspicuity maps, but is nevertheless also possible for endogenous cues because
of the presetting of feature maps.

Finally, an effort was made to incorporate an oculomotor system that is re-
lated to the covert attention system, and is accounting for overt attentional
phenomena. The overt attentional system determines the selection of the visual
environment that feeds the retinal image and provides the visual system with
external visual data.

The suggested adaptations can clarify some inconsistencies in existing models
for visual attention, and particularly concerning the interaction between bottom-
up and top-down processes. Future research can be concentrated on finding sup-
port for the exact location and workings of the IOR mechanism, and in how far
different levels of IOR can be present. On the other hand, the current atten-
tional framework needs being converted to a computational vision system and
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consequently being validated with human experimental data. This conversion is
started in cooperation with the department of Electronics and Informatics and
tries to implement adapted computer vision models [46].
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Abstract. Attention and memory are very closely related and their aim is to 
simplify the acquired data into an intelligent structured data set. Two main 
points are discussed in this paper. The first one is the presentation of a novel 
visual attention model for still images which includes both a bottom-up and a 
top-down approach. The bottom-up model is based on structures rarity within 
the image during the forgetting process. The top-down information uses mouse-
tracking experiments to build models of a global behavior for a given kind of 
image. The proposed models assessment is achieved on a 91-image database. 
The second interesting point is that the relative importance of bottom-up and 
top-down attention depends on the specificity of each image. In unknown im-
ages the bottom-up influence remains very important while in specific kinds of 
images (like web sites) top-down attention brings the major information. 

Keywords: Visual attention, saliency, bottom-up, top-down, mouse-tracking. 

1   Introduction 

The aim of computational attention is to automatically predict human attention on 
different kinds of data such as sounds, images, video sequences, smell or taste, etc… 
This domain is of a crucial importance in artificial intelligence and its applications are 
numberless from signal coding to object recognition. Intelligence is not due only to 
attention, but there is no intelligence without attention.  

Attention is also closely related to memory through a continuous competition be-
tween a bottom-up approach which uses the features of the acquired signal and a top-
down approach which uses observer’s a priori knowledge about the observed signal. 
While eye fixations add novel information to both short-term and long-term memory 
[1], long-term spatial context memory is able to modify visual search [2]. In this pa-
per, a new model of bottom-up attention and a way to build top-down models of at-
tention are proposed. An assessment of this approach is achieved which leads to a 
discussion on the relative importance of bottom-up and top-down influence. 

In the next section, a state of the art in computational attention is achieved. The 
third section presents an original bottom-up computational attention which highlights 
the regions within an image which remain rare during the forgetting process. The 
fourth section proposes a way of building top-down models which contain the mean 
behavior of the observers for specific images. Section 5 achieves a computational 
attention algorithm assessment on a 91-image database. Finally, this section is fol-
lowed by a discussion and a conclusion.    
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2   Computational Attention: A State of the Art 

The result of attention algorithms is called an “attention map” which is a mono-
dimensional intensity matrix with the same size as the input image and which pro-
vides higher intensities for the most important areas of the initial image (visual field). 
If only bottom-up attention is taken into account this attention map is often called the 
“saliency map” of the input signal.  

The number of computational models has recently exploded as a confirmation of 
the maturity of the knowledge acquired within the biological, psychological and neu-
roscience domains. Several classifications of these methods are obviously possible, 
and most of them have similar philosophies, however it is possible to distinguish two 
main ideas. Attention may be due to: 

• Local properties (a feature saliency depends on its neighborhood) 
• Global properties (a feature saliency depends on the whole visual field). 

If biological evidences supporting the local approaches are numerous, global ap-
proaches are for instance less well biologically motivated. This situation is normal as 
the local behavior of the cells on their classical receptive field (CRF) is obvious. Nev-
ertheless, recent experiments in visual attention [3], [4] brought interesting confirma-
tions for a global integration of features information all over the visual field. This is 
possible thanks to the impressive neuronal network which includes an important 
amount of “horizontal cells” which connect more or less directly the cells from the 
whole visual field.  

2.1   Mostly Local Methods 

In 1998, Itti et al. ([5], [6], [7]), set up the most well-known computational attention 
model. Based on the Koch and Ullman model [8], Itti proposed the extraction of three 
main features: luminance, chrominance, and orientation. These features are processed 
in parallel and then fused within a single saliency map. 

Milanese et al. ([9], [10]) proposed an attention approach also based on the seminal 
architecture of Koch and Ullman. They added two more features which are contours 
amplitude and curvature. The normalization step is done by using Gaussian filtering 
and gradient descent-based relaxation before getting the mean of the maps. 

Chauvin et al. [11] used the Koch and Ullman architecture with Gabor filtering to 
get multi-resolution information. Additional computations reinforcing collinear and 
longer contours are also added. This model only deals with the luminance features, 
avoiding the difficult normalization step, but loosing important color information. 

Petkov et al. [12] proposed a lateral inhibition technique to distinguish object con-
tours from image texture. Le Meur et al. ([13], [14]) achieved a computational model 
of visual attention which is one of the closest to the local processing biological reality 
within the human visual system. Also based on the Koch and Ullman architecture, it 
integrates biological data for intermediate maps data fusion. 

2.2   Mostly Global Methods 

Mudge et al. [15] suggested as early as 1987 that object components saliency may be 
inversely proportional to their occurrence within the image. Osberger and Maeder [16] 
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used a segmentation approach to separate the image into several homogenous areas. 
Five features were used in assigning a relative importance to the segmented areas. The 
problem of this kind of approaches is that errors within the segmentation may induce 
errors in the attention map. 

Walker et al. [17] suggested that saliency may be related to the probability that a 
feature has to be misclassified with all the other features within an image. 

Oliva et al. ([18], [19]) had a similar approach to Mudge et al. by stating that atten-
tion should be inversely proportional to the existence probability of a pixel. They 
modeled this probability with a Gaussian and used multi-resolution wavelet decompo-
sition. Results seem similar to Itti’s model as compared to eye tracking results. An 
interesting fact is that results are better than Itti’s model if additional top-down infor-
mation is used.  

Bruce and Jernigan [20] integrated this idea by turning it into an information the-
ory approach within the Koch and Ullman architecture. They afterwards [21] used 
ICA (Independent Component Analysis) to compare local features (local random 
patches of the image) in an image patches database obtained from the current image 
but also from other images.  

Liu et al. [22] used image segmentation as Osberger and Maeder, but the mean 
shift [23] technique let it provide a more robust segmentation. They also assumed that 
centered regions may have higher attention scores. In section 4 of this paper it will be 
shown that this assumption is verified only in the case of natural scene images!   

Itti and Baldi [24] also published a probabilistic approach of surprise based on the 
Kullback-Leibler divergence which is the energy of the so-called “net surprisal” 
within the information theory. The idea is that attention is due to a more or less im-
portant difference between what was expected to happen and the actual observation. 
This method has been integrated into Itti’s model architecture and it provides better 
results compared to the original approach. 

Stentiford [25] proposed a method related with Walker’s ideas, but he defined no 
specific feature. Random pixel neighborhoods (forks) are directly compared and they 
are declared as matching if the distance between the two neighborhoods is below a 
threshold. If few matches are observed, the pixel is assigned with a high saliency 
score. The method provides very interesting results and its main advantage is to re-
main very general. It takes into account intensity, colors, directions and shapes mostly 
to smaller scales. 

Boiman and Irani ([26], [27]) used comparisons between gradient-based patches of 
different sizes to define occurrence probabilities. One of the main originalities of this 
method is in the fact that not only different patches from the images are compared 
with other patches in the same image or in a database, but also the relative patches’ 
positions were taken into account.  

The author proposed ([28], [29], [30]) a global rarity approach of attention but not 
much local information was taken into account.   

The approach proposed here is based on the fact that visual attention is the first fil-
ter which selects regions in an image which may be interesting to memorize. This fact 
implies that during the forgetting process, rare regions are kept in mind while the 
others are forgotten. The proposed model will use both global rarity and local contrast 
information and thus it has properties from both local and global approaches.    
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3   Bottom-Up Attention: An Unsupervised Signal-Based Approach 

This section describes a bottom-up attention approach which could also be seen as an 
unsupervised attention. Bottom-up attention uses the acquired image characteristics to 
predict its important regions and acts like a gate to memory. This model is somehow 
based on Edgar Alan Poe’s proposition: “observing attentively is remembering 
clearly”. Unsupervised attention is thus very important in remembering and it is able 
to keep in mind the details or rare regions within the image. Without attention, these 
important details are forgotten which implies a loss of crucial data.  

When performing a remembering task about an already visited place for example, 
people remember a rough image about this place. The process of forgetting may be 
modeled by a low-pass filtering whose kernel size increases in time. Here, a set of six 
low-pass filters with increasing kernel sizes is used for each grey level of the image. 
The number of grey levels is reduced to 11 to speed up computation and avoid noise. 
The size of the largest low-pass filter kernel is chosen to be close to the half of the 
image. If the original image is larger or smaller than the largest filtering kernel size, it 
is resized to better fit the scale decomposition. 

This idea is illustrated in Fig. 1 where the sky (big upper rectangle) and a pool 
(small rectangle in the middle) have the same grey level (let’s say “blue”). At the 
higher resolution (top row on Fig. 1), two pixels (one in the middle of the sky and the 
other one in the middle of the pool) have the same global occurrence which is equal to 
the number of “blue” pixels. When going from top images to bottom images in Fig. 1, 
low-pass filter kernels sizes (neighborhood sizes) are larger, thus the images are for-
gotten more and more. The occurrences of the two pixels have different behaviors 
(plots of the left column: sky; plots on the right column: pool). If the pixel within the 
sky has a slowly decreasing occurrence, the pool pixel’s occurrence decreases very 
fast when larger and larger neighborhoods are taken into account (larger low-pass 
kernels). The pool pixel has an occurrence which gets rapidly very small while the 
sky pixel keeps a higher occurrence even when taking into account larger neighbor-
hood sizes. 

In order to quantify the behavior for each pixel, the sum on the scale space is used. 
This sum can be visualized in Fig. 1 on the right and left columns as the area behind 
the occurrence variation plots function of the neighborhood size. The occurrence 
probability of a pixel is obtained by the normalization of this sum and the self-
information represents the attention score for the pixel (Eq. 1). 
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In Equation 1, nk is the occurrence value of the current pixel within the kth resolution 
level. In the current implementation there are seven different resolutions and the one 
corresponding to k=1 means the grey level is unfiltered. S is a constant which is equal 
to the total number of resolutions (here S=7). Ij is the jth grey level of the image I and 
Card(Ij) is its cardinality.  
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Fig. 1. From top to down: the decreasing resolution (increasing low-pass filtering kernel or 
neighborhood size) of an initial image grey level, From left to right: the occurrence behavior of 
a pixel in the upper red rectangle (“the sky”) during the forgetting process; an image grey level; 
the occurrence behavior of a pixel in the lowest red rectangle (“the pool”) during the forgetting 
process 

In the current implementation, instead of simply using grey levels, their contrast 
maps are used. These maps are obtained as follows: for the grey level j(j is set be-
tween 1 and 11 in the current implementation), the pixels equal to j are assigned with 
the value 1 while pixels different from j are assigned with a value between 0 and 1. 
This value will be close to 1 if the pixel has a similar value with j and close to 0 if this 
pixel has a grey level, very different from j.  

The color images are handled within an opposition color system. For each of the 
components (luminance, red-green opposition, blue-yellow opposition) a separate 
attention map is computed: the final map is obtained by adding the maps with a higher 
weight on the luminance which contains more information. 



 Relative Influence of Bottom-Up and Top-Down Attention 217 

4   Top-Down Attention: A Supervised Application-Driven Approach 

While a bottom-up approach uses signal characteristics to achieve attention computa-
tion, the top-down approach mainly uses feedbacks from the memory (a priori knowl-
edge) and it depends on the task or the application to be achieved. Top-down attention 
can be seen as a supervised attention. In this section, a top-down approach for still 
images is proposed. The idea is to model the observers’ behavior depending on the 
kind of images they look at.  

Observers’ behavior can be modeled by using eye-tracking or other alternative 
methods such as mouse-tracking to detect their gaze path. The mean of the gaze path 
of several observers is called a priority map and it highlights, for one image, the areas 
where the mean of a set of observers mostly looks as it is shown in Fig. 2. 

 

Fig. 2. Left: original image, right: a priority map obtained by mouse-tracking 

A top-down model can be achieved by using the mean of the priority maps obtained 
for a specific set of images (images with common meaning). Three sets of images [31] 
(set1, set2 and set3) were used within these tests to build three different top-down models:  

• The first image set is made from 26 natural scene images. Some examples are 
available in Fig. 4, first row.  

• The second image set is made from 30 various advertisement images. Well-known 
trade marks were chosen as they have a huge advertising presence. Some examples 
are available in Fig. 5, first row. 

• The third image set is made from 35 various web sites. The web sites of the 12 can-
didates to the French presidential election of 2007 are analyzed along with university 
and lab web sites, institutional and government web sites. Some commercial web 
sites have also been added. These media do not intend to provide the same informa-
tional content that is why it is interesting to see if there is a common attentional be-
havior to all these websites. Some examples are available in Fig. 6, first row. 

It is important to highlight the fact that a top-down model built in that way needs 
two main requirements to be meaningful: 

• The first one is about the number of observers who provide their mouse track paths 
which should be high enough to get a realistic observer mean. Here, 40 to 60 ob-
servers’ mouse paths per image were recorded. There were neither advertisement 
or web experts nor a specific age or gender class of observers: they can reasonably 
be considered as general public.  

• The second requirement is about the homogeneity of the image set. The more the 
set of images is specific, the more the top-down model is accurate.  
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Fig. 3 displays the three top-down models from left to right: the sets presenting 
natural images, advertisements and web sites. For the natural scene images, the mean 
priority map is mostly centered and it oddly looks like a centered Gaussian. The two 
other models are quite similar: high scores are detected in the top-left corner of the 
image decreasing towards the center. Nevertheless, the models used for advertise-
ments and web sites also have some differences. Fig. 3 shows that the advertisement 
model is less selective than the web sites one: structures on its center are also quite 
well highlighted.  

 

Fig. 3. Left to right: top-down models for a set of natural images, advertisements, web sites 

The web sites model is a typical structured document model. The natural images 
model is typical of unknown unstructured images. The advertisements model seems to 
be a mix between these two extreme models. Its structure is close to a structured 
document one (human contribution is high), but it also covers the central areas of the 
image and the opposite corners where logos may often be found. This experiment 
shows how observers’ attention behavior is different depending on the set of images. 

To mix the bottom-up maps with the top-down maps a simple multiplication be-
tween those two normalized maps is used here. 

5   Computational Attention Evaluation 

5.1   Algorithms Comparison: A Qualitative Approach 

The bottom-up attention model proposed in section 3 and the Itti’s reference bottom-
up saliency map [5] were compared from a qualitative point of view on the 91-images 
database. The top-down models proposed in the previous section (Fig. 3) were also 
used for this comparison. As discussed in section 5.5, comparisons between these two 
methods are not very easy as the nature of the attention map is not the same.  Never-
theless, for most of the images, the proposed method seems to perform better for the 
bottom-up algorithm alone but also when it is used along with the corresponding top-
down model: Itti’s model often overestimates some spatial orientations and local 
contrast cues. 

Figs. 4, 5 and 6 show for each set of the database three examples of images. The 
original images are presented in the first row. It should be known that those images 
were initially color images and they were resized in order to better fit into the figures. 
They were only chosen for the pertinence of the test results and not for their content. 
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Fig. 4. Examples from the natural scene images set. First row: original images, Second row: 
mouse-tracking priority maps (gold standard here), Third row: Itti’s method (bottom-up), 
Fourth row: Itti’s method (bottom-up + corresponding top-down model), Fifth row: proposed 
method (bottom-up), Sixth row: proposed method (bottom-up + corresponding top-down 
model). 
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Fig. 5. Examples from the advertisement images set. First row: original images, Second row: 
mouse-tracking priority maps (gold standard here), Third row: Itti’s method (bottom-up), 
Fourth row: Itti’s method (bottom-up + corresponding top-down model), Fifth row: proposed 
method (bottom-up), Sixth row: proposed method (bottom-up + corresponding top-down 
model). 
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Fig. 6. Examples from the web sites images set. First row: original images, Second row: 
mouse-tracking priority maps (gold standard here). Third row: Itti’s method (bottom-up), 
Fourth row: Itti’s method (bottom-up + corresponding top-down model), Fifth row: proposed 
method (bottom-up), Sixth row: proposed method (bottom-up + corresponding top-down 
model). 
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5.2   Algorithms Comparison: A Quantitative Approach 

The bottom-up attention model proposed in section 3 and the Itti’s reference bottom-up 
saliency map [5] are both compared to the mouse-tracking priority maps of a 91-image 
database. Both bottom-up methods are then multiplied to three top-down models concern-
ing the three categories of images within the database and compared again with the mouse-
tracking data. The priority maps are the results of several low-pass filterings, thus they are 
very smooth. In order for all compared algorithms and priority maps to have the same spa-
tial characteristics (smooth areas) the algorithm proposed in section 3 is low-pass filtered. 

5.3   Algorithms Comparison: Bottom-Up Information Only 

To obtain quantitative results, the classical absolute value of the linear correlation 
metric is used here. The correlation value goes from 0 (no similarity between the 
images) to 1 (there is a linear relationship between them).  

Fig. 7 displays the correlation coefficient between the mouse-tracking priority 
maps and both Itti’s bottom-up algorithm (dotted plot) and the proposed bottom-up 
algorithm (solid plot) for all images in the database. Very often, the tested images 
have better correlation coefficients for the proposed algorithm than for Itti’s one.  

Table 1 shows the mean and standard deviation of the correlation coefficients for 
the three sets of images. 

 

Fig. 7. Correlation coefficient between the priority maps and both the bottom-up algorithm of 
Itti (dotted plot) and the proposed bottom-up algorithm (solid plot). From left to right: natural 
scene database, advertising database, web sites database. The Y axis represents the correlation 
coefficient with the mouse-tracking results and the X axis the image number from the database. 

Table 1. Bottom-up linear correlation mean (MEAN) and standard deviation (STD) results for 
the three sets of images 

Image set Itti MEAN Itti STD Mancas MEAN Mancas STD 
Natural Images 30% 18% 52% 19% 
Advertisements 17% 14% 43% 18% 
Web Sites 9% 10% 31% 19% 

5.4   Algorithms Comparison: Both Bottom-Up and Top-Down Information 

In this section, the same top down models (those proposed in section 4 and displayed 
in Fig. 3) were added to Itti’s and to the proposed (Mancas) bottom-up algorithms. 
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High results improvements may be observed (Fig. 8) compared to the previous section 
where no top-down influence was taken into account. Moreover, even with the same 
top-down models, one may see that the bottom-up model remains very important as 
results of the proposed bottom-up method are better in terms of linear correlation than 
those of Itti’s bottom-up model for 90 images on 91. 

 

Fig. 8. Correlation coefficient between the priority maps and both the bottom-up and top-down 
attention algorithms based on Itti (dotted plot) and on Mancas (solid plot). From left to right: 
natural scene database, advertising database, web sites database. The Y axis represents the 
correlation coefficient with the mouse-tracking results and the X axis the image number from 
the database. 

Table 2 summarizes the mean and standard deviation of the correlation coefficients 
for the three sets of images. A simple comparison with Table 1, where no top-down 
information was used shows the importance of the top-down step in attention. 

Table 2. Bottom-up & top-down linear correlation mean (MEAN) and standard deviation 
(STD) results for the three sets of images 

Image set Itti MEAN Itti STD Mancas MEAN Mancas STD 
Natural Images 34% 17% 74% 12% 
Advertisements 18% 14% 53% 16% 
Web Sites 13% 11% 69% 9% 

5.5   Algorithms Comparison: A Discussion 

The bottom-up influence is higher for natural scene images than for websites images 
for example. For both Mancas and Itti methods, the bottom-up attention alone (Table 
1) provides the best results for natural scene images, while this score decreases with 
the advertisement set and even more with the web sites set.  

Moreover, the results of Table 2 show that the 74% of correlation for natural im-
ages (Mancas method) is due to 52% bottom-up and 22% top-down. On the other 
side, the result of 69% of correlation for the web site images is due to only 31% of 
bottom-up and to 38% top-down influence. A similar behavior can also be detected on 
the figures of the Itti method of Table 2.  

A very interesting conclusion of these observations is that the more one knows 
about an image, the higher the top-down influence part will be. On the other side, for 
an unknown image, the bottom-up attention mechanism will be very important. Thus, 
if the role of top-down information in attention is always very important, its part in 
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the attention process depends on the amount of knowledge that a mean observer may 
have on a given kind of images.  

Nevertheless, advertisements score enhancement between Table1 and Table 2 is 
lower than expected: as advertisements are a mix between unstructured (natural 
scenes) and structured (web sites) documents, the influence of the top-down attention 
should be higher than for natural scene images. This is not the case because the top-
down model used here only includes document structure and not faces and text which 
are also very powerful top-down stimuli. These stimuli proved to be very important 
for advertisements where faces and text are often very present.  

The correlation results of Table 1 and Table 2 also need some remarks. The use of 
the linear correlation may not be the best metric to compare computational attention 
algorithms and other distances could be taken into account. Moreover, Itti’s saliency 
map which focuses very highly on precise areas in an image may be penalized by the 
use of the linear correlation coefficient. It is thus quite difficult to precisely compare 
these two methods which have different behavior as there is no standard method for 
attention algorithms assessment. However, a precise analysis of both qualitative and 
quantitative results on the overall database shows that the proposed bottom-up algo-
rithm outperforms the bottom-up algorithm proposed by Itti.  

The purpose of this section was to show that the correlation coefficients between 
the mouse-tracking priority maps and the proposed algorithm become very interesting 
and they can be considered as a quite good approximation of human attention. These 
correlation figures demonstrate that the use of attention to predict human gaze makes 
sense if both bottom-up and top-down information are used. 

6   Conclusion 

A bottom-up or unsupervised computational attention algorithm is presented which 
performs better than Itti’s reference model on the test database. However, several im-
provements should be added to this algorithm, mainly to handle spatial orientations.  

A top-down or supervised attention model based on the mean of the eye-tracking 
or mouse-tracking priority maps was also proposed. It proved to highly increase the 
results of the bottom-up algorithms and to finally provide a good approximation of 
human gaze. Other top-down influences should also be added to improve the results 
as face or text detection. Faces and text are known as very informative and that is why 
they represent very important top-down influences especially if there are few faces or 
few text within the images.  

The encouraging results presented here confirm the more and more widely ac-
cepted idea that the automatic prediction of human attention for still images becomes 
quite accurate if both bottom-up and top-down information is used while bottom-up 
information alone remains insufficient. An issue in computational attention is the lack 
of a standard assessment method and database to really prove the pertinence of those 
approaches in predicting human attention.  

An interesting point was found about the relative importance of bottom-up and 
top-down influences: the bottom-up mechanism is very important for new images, 
while for structured document where people are used with, the top-down influence is 
higher than the bottom-up one. These results, which can be seen in sections 5.3 and 
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5.4, show that there is a complex relationship between bottom-up and top-down atten-
tion. On one side, bottom-up attention aims in learning which areas of an image are 
the most relevant: this process is mainly used for new images and situations. On the 
other side, once some situations are learnt using bottom-up attention, top-down atten-
tion uses this information to select some areas of the current image by inhibiting those 
where there are very few chances to find relevant information.  

Bottom-up and top-down attention interaction aims in optimizing reactions to both 
novel and already experienced situations.   
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Abstract. Every field of science requires standardization of metrics and
measurement methods for detecting true advancement in research. Ef-
forts on computational models of visual attention models have increased
in the recent years and now it is important to have standard measur-
ing techniques in this area in order to avoid undue deceleration in its
progress. This paper performs a review of the evaluation techniques used
by different researchers in the field and brings them in an organized struc-
ture. Further methods and metrics are also proposed that would lead to
more objective and quantitative evaluation of the attention models.

1 Introduction

Every field of science has a way for objectively evaluating the outcome of pro-
cesses by representing the quantities with magnitudes measured in suitable units.
The magnitudes are obtained through well-defined measurement methodologies
and, when needed, some standard calculations. Despite having an age of a couple
of decades, the field of attention modeling still lacks standard metrics and meth-
ods for measuring and evaluating outcome of a model. The number of emerging
models has increased in the recent years and each model claims to be performing
better than the contemporary ones in one aspect or the other. Such claims may
not always reflect true advancement because the evaluation method could be
measuring a characteristic that either has trivial relevancy to the actual need
of progress in the field or leads to a biased comparison. It is now an appropri-
ate time to devise standards for benchmarking performance of the models in
order to prevent the research in this area from iteratively circling or adopting
an extremely low pace of true progress.

This paper is an attempt towards designing standard metrics and methods for
evaluation of visual attention models using which the degree of success for output
of a model could be measured and the model’s results could be compared to some
benchmark data. Due to complex and multi facet nature of attention’s output
there exist many aspects that can be evaluated. Standardization is needed for
each aspect for a fair and justifiable evaluation. In this discussion, the evaluation
techniques used in available work on visual attention are reviewed to collect them
together, the factors that can be evaluated in a computational model of visual
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attention and the relevant yardsticks are analyzed, and further proposals are
made to make the evaluation mechanism quantifiable. We prefer the measures
that obtain the quantity of the efficiency or performance in the range between
0 and 1 due to ease of comparison using such values and their scalability.

The research on the phenomenon of attention has a history of two and a half
centuries. Results of experiments reported in literature on psychophysics and
neurobiology provide valuable ground-truth data in different formats, such as
activity spots and scan paths, to build computational models of attention and
to verify their output. Performance evaluation of an attention model requires an-
swers to many questions. The first question is to decide the aspect of attention
(AA) that should be evaluated. For example, evaluation of an attentive visual
search has different criteria as those for free viewing. The second question re-
quires to decide the evaluation aspect (EA), for example the aspect of evaluation
could be validation of the model’s output by comparing it with results of natural
attention or to test the model’s competence by measuring the level of success in
achieving a predefined task. The output of attention has various styles, in which
saliency maps, fixated locations, and scan path sequences are commonly known.
The third question asks that which output format (OF) should be used to eval-
uate a particular aspect of attention, for example in order to measure a model’s
efficiency in discovering salient locations it may be suitable to use fixation spots
obtained in a given time rather than a scan path recorded for an unrestricted pe-
riod. Each of these output formats conveys information that can be interpreted
in different ways, for example, a fixation map can be viewed in perspective of
FOA locations, order of fixations, or both. In this regard, the fourth question is
to decide the perspective of results (PR) that suits best to the evaluation aspect.
Every perspective of observing results of an attention model will need a special
metric and measurement method, hence, the fifth question requires to associate
a proper measurement method (MM) to the chosen perspective of results and
also to define methods to extract readings from the model’s output required for
that measurement.

Yet there is another question that demands selection of proper benchmark
data with which the model’s output should be compared. We will not address
this question in this discussion except for the recommendation that nature of the
selected benchmark data should match the task given to the artificial attention
mechanism under evaluation. Answers for the other questions will be investigated
here assuming that the reference data suites well to the model’s active behavior.

2 A Survey of Available Techniques

In this section we perform a survey of existing techniques in which useful tools
and metrics for evaluation of attention models under different contexts will be
collected together. These techniques will be analyzed in context of their method-
ology and measurement metrics to obtain a comprehensive synopsis of available
evaluation tools. An analysis is performed in the next section.
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In the evaluation scheme used in [1], a comparison of locations is performed
with results of spatial frequency output maps in a subjective manner. The met-
rics used for measuring acceptability of a model’s output are number of fixations
before attending a target (salient objects marked by human subjects), number
of fixations incident on objects of human interest (such as faces, flags, persons,
buildings, or vehicles), and variation in these quantities after introducing increas-
ing amount of artificial noise in the input. Acceptability of fixations is decided
by human subjects.

For the evaluation scheme used in [2] subjects were required to free-view natu-
ralistic and artificial images while their eye movements were recorded and the re-
sulting fixation locations were compared with the saliency maps produced by the
model. Each salience map was linearly normalized to have zero mean and unit
standard deviation. Next, the normalized saliency values were extracted from
each point corresponding to the fixation locations along a subject’s scan path
and the mean of these values, named as normalized scan path salience (NSS), was
taken as a measure of the correspondence between the salience map and the scan
path. NSS values greater than zero suggest a greater correspondence, a zero in-
dicates no correspondence, and negative values indicate an anti-correspondence
between fixations and model-predicted salient points.

According to [3] an attention model should be able to explore all locations
that can be of interest for a human observer. They get the salient objects marked
by human subjects and then measure that in how many fixations these objects
get covered by the model. They compare the model’s performance on the basis
of false fixations before focusing on the first required object and false fixation
before covering 50%, 75%, and 100% of the target locations.

The main objective of the work in [4] is to adapt large images into videos for
small size displays like mobile phones such that all the important locations for
human vision are covered in the small video representing the image. Evaluation
is done on locations as well as sequence of fixations by including queries in the
questionnaire for human evaluators. The questions ask whether all the important
Regions of Interest (ROIs) in the image are focused in the video clip and if the
display order of the focused ROIs in the video clip with the order the user would
focus on the same ROIs in the given image. A similar but simpler scheme for
evaluating down sampled images is proposed in [5].

The scheme given in [6] makes a comparison of ROI clusters. The compared
two sets of ROIs are clustered using a distance measure derived from a k-means
pre-evaluation. Any two ROIs in the compared sets that are closer than a certain
distance are considered as coincident and those far apart than this distance as
non-coincident. The value of similarity metric Sp, representing common ROIs
in the two sets, is obtained through the following process. In order to compare
the sequence of fixations each ROI from ground truth is labeled with a sepa-
rate letter and these letters are concatenated in the order of appearance of the
corresponding ROI to form a ”ground-truth-string”. A similar string is created
for the output of the attention model. All the coincident ROIs are labeled with
the same alphabetic character. Calculating the cost of transforming one string
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into the other compares the two obtained strings. Costs are defined for insertion,
deletion and substitution of letters. The minimum costs of this transformation
are computed using dynamic programming approach.

The method discussed in [7] extends the above mentioned technique [6] by
arguing that the said method has a limitation of defining two regions of interest
with equal importance as one ROI has to be always preferred over another in
order to set up the ground truth and its labeling order. The proposed hybrid
approach claims to be able to handle situations of order uncertainties in ROIs.
They assign numbers to the ROIs according to the relative order and store the
strings in a matrix. These operations are repeated and average of the iterations
is obtained in a resultant matrix. Such matrices are created for ground-truth
and the test case. Now the magnitude of the normalized cross-correlation of the
two matrices gives the measure of similarity between the sets of ROIs.

The evaluation scheme presented in [8] proposes that a system should be
able to attend to the same features in a scene, whether or not the scene has
been translated, rotated, reflected or scaled. They quantify the performance of
an attention system through two measures. The first looks for gross error rate,
that records the percentage of fixations in the test image that are not within
a threshold radius of any fixation in the transformed image, once the geomet-
ric transformation is compensated for. The second measure is a form of the
Hausdorf distance metric that measures positional noise. Having the Hausdorf
distance h(A, B) = median(min‖a − b‖2), the positional noise is measured as
max(h(A, B), h(B, A)) where A is the set of fixations from the original test im-
age and B is the set of compensated fixations from the transformed test image.
As long as fewer than half the locations are outliers, this statistic reflects the
positional noise between the two sets of fixations.

The work in [9] proposes to compare the sequence of ROIs identified by an at-
tentional algorithm to those foveated by human observers. Two methods of tem-
poral analysis are presented, namely, head-based and time-based. Head-based
analysis is used to locate sequences of still images, from the live input, where
the head is stable (but the eyes may not be). Based on estimates of head sta-
bility, this analysis technique presents a still image to the attentional model for
variable periods of viewing time. The scanpath generated from the analysis of
head movements is compared with the scanpath followed by the given model
using the string editing technique proposed in [6]. The time-based analysis ap-
proach assumes a constant frame rate of 10 fps hence the attentional model
is constrained to locate ROIs within a constant time period of 100 ms, hence
human fixations and ROIs from the model are compared over frames collected
every 100 ms. To allow comparison between ROIs from the model and human
fixations in both approaches, human fixations are identified via velocity based
analysis of eye movements over the same input given to the attentional model.

The model of [10] have used a method to compare saliency maps based upon
linear correlation coefficient, which measures the strength of a linear relationship
between two variables. This measure allows to compare two variables by provid-
ing a single scalar value between 1 and −1 where the correlation close to ±1
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represents an almost perfectly linear relationship between the two variables. For
p and h being the fixation density maps by the model and humans respectively,
the correlation constant cc(p, h) is computed as cc(p, h) = cov(p, h)/(σpσh),
where cov(p, h) is the covariance value between p and h while σp and σh are the
standard deviation for p and h respectively.

The method proposed in [11] names its metric as score-s. This score is higher
if the fixated locations along a scanpath have higher saliency as compared to
rest of the input. Human response is expected to have a high score and a model
scoring higher than the other will be considered better. The score is computed as
s = (1/N)

∑
fk∈T S(fk)− µS in which the first term corresponds to the average

value of N fixations fk from an eye trajectory T . The second term µS is average
value of the saliency map.

A method to evaluate saliency maps by comparing them to a benchmark map
is proposed in [12]. A bi-directional comparison procedure compares only the
salient areas of the source map with the corresponding areas of the target map.
The source and the target are swapped while processing in the opposite direction.
In each direction d the matching points md out of the total compared points
Ns

d are counted. The similarity measure in one direction is taken as σd = md/N
s
d

which will give a 1 for identical saliency areas and 0 for a total mismatch. The
optimistic similarity σo = max(σ1, σ2) is considered as the measure of agreement
between the two maps.

The model in [13] measures the improvements in selectivity gained by using
top-down attention by counting the number of FOA hits and misses of traffic-
relevant items like signal-boards and cars in video streams. The evaluation is
feedback oriented as human viewers have to decide if the model has fixated on a
correct location or not. For evaluation, a FOA is counted as a hit if at least half
of the target object is within the FOA. An FoA is considered as a miss when
a non-target is found while traffic-relevant and undetected targets still exist in
the scene. The completeness is defined as the ratio of undetected targets that
have been left in the image to detected targets. A high completeness score is
considered as a measure of success.

The evaluation method for top-down attention in [14] measures performance
of the search system using two metrics, namely, the average number of fixations
per search, and the average search time in seconds. Less number of fixations
before reaching the target is considered as indication of success. Shorter search
time of course comes as a byproduct. The search model in [15] also uses the
criteria of hit number to reach the target for evaluation of top-down search
performance. They also use a metric of detection rate in which they measure
if the target was fixated within the first 10 FOAs. The model presented in [16]
performs evaluation of the top-attention by measuring the reaction time versus
the number of items in a display. They also use number of attentional shifts
before detection of target as a metric.

The assessment scheme in [17] has used percentage of erroneous fixations with
respect to the total number of target elements as a measure of performance and
percentage of erroneous fixations against quantity of distortions produced by
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different compression rates as a measure of robustness. In [18] the runtime of
the model for a certain number of foci of attention is used as a measure of
competence.

3 Analysis

In this section we analyze the exiting evaluation techniques in light of the ques-
tions mentioned in the first section. Answers to the said five questions will follow
a hierarchical fashion because different answers to the first question will lead to
branches each of which will require an independent answer to the second ques-
tion. This branching will continue down to the fifth question. Figure 1(a) shows
a tree built by possible answers to these questions. A parse through this tree
from its root to one of the leaves will formulate the nature of the evaluation
methodology. As answer to the first question regarding aspect of attention the
current literature indicates two aspects namely, bottom-up (B) and top-down
(T). As some methodologies can be used to evaluate either of the two pathways
we can add an option of pathway-neutral (N) as an answer to the first question.
For each of these attention aspects we can have two possible answers to the sec-
ond question regarding aspect of evaluation, which are validation-test (V) and
competence-test (C). Validation tests verify the correctness of a model’s results
by comparing them with benchmark results while competence tests measure the
level of success or efficiency in context of a particular task, for example ability
to cover target locations in restricted number of fixations.

The design of tests in each evaluation aspect will requires a specific type of
output; hence the answer to the third question is a list of output-styles that
can be produced by attention models. We include the commonly known styles
of saliency map (M), fixation points (F), and scan path (P) in the current list.
As each of these results can be viewed through different perspectives such as
locations (L), saliency magnitudes (S), and order of sequence (O), therefore we
assign these three answers to the fourth question.

Each of the above mentioned output perspectives has to go through a mea-
surement methodology, which will convert the data of attention output into a
set that could be used in comparison of models. The measurement methods used
so far in the available evaluation schemes can be categorized into three groups,
namely equivalence (E), feedback (D), and runtime of attention model (R). The
equivalence methods compare the model’s output with the benchmark results
using some algorithms running on a computer while feedback methods use opin-
ion of human subjects to measure the acceptability of the results. The underlined
labels in figure 1(a) represent copies of the node represented by that label, for
example V means that the hierarchy below V is repeated at the place.

There has to be one or more metrics for each methodology articulated by
following a parse through the tree given in figure 1(a). Here we gather a set of
commonly used metrics and arrange them into a small hierarchy in order to elu-
cidate their utility. We organize the metrics into three categories namely degree
(ε), rate (σ), and similitude (ψ). The degree metrics evaluate the performance of
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(a) Evaluation methods (b) Evaluation metrics

Fig. 1. Hierarchichal organization of methods and metrics for evaluation of visual at-
tention models

Table 1. Analysis of existing techniques for evaluation of attention models. Column
headers: AA = attention aspect, EA = evaluation aspect, OF = output format, PR
= perspective of results, MM = measurement method, MC = metric category. See
section 3 for description of symbols given in columns 2 to 5. The subscripts in the 6th
substitutes for φ in εr

φ and εt
φ. φ = N for noise, for rotations about angles of 90, 180

and 270 degrees we have φ = R90, φ = R180, and φ = R270 respectively, φ = S for
size of input image, φ = DR for distractors, φ = DN for distortion in input, φ = ST
for search time, and φ = ET for exploration time.

Method AA EA OF PR MM MC Metric
[1] B C P L D ε,σ εe, εr

N , σs

[2] B V P L E ψ ψa

[3] N V P L D σ σe

[4] B V F L, O D ε εa
φ

[6] N V F L, O E ψ ψa, ψo

[7] N V F L, O E ψ ψa, ψo

[8] N C F L E σ, ε σe, ψf , εt
R90, εr

R180, εt
R270

[9] N V P L, O E ψ ψa, ψo

[10] B V M L E ψ ψa

[11] B C M S E ε εs

[12] B V M L E ψ, ε ψa, εt
S

[13] T C F L D ε εs, εe

[14] T C F L D ε εe, εt
ST

[15] T C F L D, R σ, ε σe, εt
DR

[17] B C F L D σ,ε σs, εr
DN

[18] N C F L R σ εt
ET

a model on measures involving only one quantity like number of attempts before
fixating on the target, the rate metrics consist of ratio between two quantities
such as rate of successful fixations against total attempts, and the similitude
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metrics quantify the level of correspondence between model’s output with some
benchmark results. In the existing literature metrics belonging to the degree cat-
egory include the measures like count of successful hits (εs), count of erroneous
hits (εe), level of robustness against a given phenomenon (εr

φ), level of approval
of results by human observers in context of a certain phenomenon (εa

φ), and
processing time against some phenomenon (εt

φ) like time taken against number
of distractors. Under the category of rates we can include error rate (σe), suc-
cess rate (σs), and error rate depending upon some phenomenon (σe

φ) such as
number of errors against noise in the input. In similitude category, the metrics
of match between focused areas (ψa), resemblance of positions of fixations (ψf ),
correspondence of saliency magnitudes (ψs), and similarity between order of fix-
ations (ψo) can be found in literature. Figure 1(b) demonstrates the hierarchy of
these metrics in pictorial form. Table 1 summarizes the results of analysis of the
existing evaluation techniques according to the above mentioned criteria. The
techniques marked as N have performed evaluation of bottom-up attention but
they are categorized as pathway-neutral keeping in view their extendibility to
top-down attention.

4 Proposed Metrics and Methods

In this section we propose some metrics and methods to evaluate performance of
attention models in which the outcome of the efficiency measure would remain
between 0 and 1, 0 being the worst performance and 1 representing the best. We
have concentrated on metrics that measure model performance against already
known number and locations of targets because it is a better way to benchmark
efficiency of models and compare them with each other.

4.1 Competence Tests

At first, we would like to introduce an evaluation method to measure the capa-
bility of a model to respond on a particular phenomenon, for example testing
the capability to detect saliency with respect to a specific feature in specially
designed synthetic images in which one or more objects are explicitly salient due
to the examined feature. The measure of performance on that particular feature
can be the ratio between the number embedded salient objects Ns and the num-
ber of objects found by the model, Nf . As this metric is meant for testing ability
of a model to fulfill a specific purpose therefore the model must find the given
objects within Ns fixations, i.e., we are judging whether the model is suitable
for the purpose or not. Hence, for a purpose φ, the measure of success σs

φ will
be computed as

σs
φ =

Nf

Ns
f ∈ {1, ..., Ns}

As Nf ≤ Ns is true in all cases due to the counting method described above,
hence 0 ≤ σs

φ ≤ 1. A slightly modified version of this metric can be used for time
critical systems in which the targets have to be detected in a particular period of
time. In this case the system will be allowed to fixate for a time t and the number
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of attended locations will be counted as Nt. If, out of these attended locations,
N t

s locations are among the targets then, keeping in view that N t
s ≤ Nt is always

true, the success rate σs
φ(t) of the system will be calculated as

σs
φ(t) =

N t
s

Nt

The generalized form of the above mentioned metrics is to judge a model’s
capability to cover the already known number of targets without specification
of a particular phenomenon, as done by some of the existing techniques. Such
metric is pathway-neutral because the targets could be considered salient in
bottom-up context and also as pre-defined objects (or locations) that should
be attended in a top-down search. Having Ns salient objects in a given-scene
a model will be allowed to keep on fixating for Na number of times until all
required locations are covered, hence Na ≥ Ns is always true. Practically it is
possible that a model may not be able to reach some targets at all. Therefore,
in order to avoid running of a system for an indefinite period of time we propose
to impose a maximum limit for Na. In most of that cases this limit could be set
to N2

s while for Ns ≤ 2 it could be set to a constant value such as 10 or 15. Now
the generalized detection rate σd of the model can be defined as

σd =
Ns

Na

An efficient model will yield σd = 1 whereas detection rates close to zero will
show inefficiency.

For quantifying the general error rate of a model we propose a simple method
in which the fixations falling outside the target locations will be counted as
erroneous fixations Ne. Its ratio to the fixations taken to cover all targets Na

gives the error rate σe as

σe =
Ne

Na

We introduce another metric using which the explorative capabilities of mod-
els will be measured. This measure will be the inverse of the tendency of a
model to repeat fixations on already attended locations. If ND distinct targets
from the total Ns locations are covered by a model in Na fixations then the
degree of exploration capability εx will be computed as

εx = 1 − Na − ND

Na

A model that does not repeat fixation on any of the attended locations before
covering all salient locations will yield a value of 1 for εx while lower values will
be obtained for model that tends to revisit already attended locations.

4.2 Validation Tests

For location sensitive evaluation, we propose to measure average distance be-
tween fixations performed by the two models under consideration. The model
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m under evaluation will be allowed to fixate for Na times while the benchmark
dataset consists of Ns salient locations. The evaluation method will pick the
fixated locations, F b

i , from the benchmark dataset one by one and find the dis-
tance of F b

i from the corresponding fixation Fm
j by the model m. Having such

distances for n locations the performance measure ψf of the model m with re-
spect to the benchmark model in terms of similarity of fixation positions will be
computed as

ψf = 1 −
∑Ns

i=1 ∆
(
F b

i ,ℵ(F b
i , Fm

j ∀ 1 ≤ j ≤ Na)
)

Ns∆max

where ∆(., .) computes the spatial distance between two given locations. It can
be extended to distance between two locations in space when carrying out exper-
iments on active vision. ℵ(., .) picks the fixation Fm

j from the set of Na fixations
by the model m that corresponds to the currently picked benchmark fixation
F b

i . To be designated as a corresponding fixation, the Fm
j should be on the same

location as F b
i , cover the object pointed by F b

i fully or partially, or be on an
adjacent object having feature similarity to F b

i . When no corresponding Fm
j is

found for F b
i , ∆(., .) returns ∆max to reduce the magnitude of ψf . The Fm

j once
found corresponding to some F b

i is excluded from further processing. ∆max is
the maximum distance that can be involved during the current experiment. For
a rectangular image with length L and width W , we suggest to compute ∆max as

∆max =
√

L2 + W 2

The value of ψf will be close to 1 for a good equivalence between the given model
and the benchmark while lower values will reflect a poor match.

For sequence sensitive evaluation, the difference of sequence number between
the currently picked benchmark location F b

i and the corresponding Fm
j will

be determined. Having data of such differences for Ns fixations, the sequence
disparity measure ψo will be computed as

ψo = 1 −
∑Ns

i=1 ∆o
(
F b

i ,ℵ(F b
i , Fm

j ∀ 1 ≤ j ≤ Na)
)

NsNa

where ∆o(., .) calculates the absolute difference between the sequence order num-
bers of the given F b

i and its corresponding Fm
j . When no corresponding fixation

is found for F b
i , ∆o(., .) returns Na to depreciate the overall value of ψo. For a

perfect match of sequence ψo will gain a value of 1 while poor similarity will be
represented by lower values down to zero.

5 A Sample Implementation

The metrics proposed in section 4 were applied to three different attention mod-
els proposed in [1], [3], and [19] respectively. It may be noted that the objective



Towards Standardization of Evaluation Metrics 237

(a) Clr (b) Orn (c) Size (d) Conj (e) Lab

(f) Ns = 1 (g) Ns = 4 (h) Ns = 1 (i) Ns = 6 (j) Ns = 5

Fig. 2. (a) to (e) Samples from input dataset used in evaluation experiments. Captions
under the images represent the code used as reference for respective image. (f) to (j)
Salient locations marked by human observers.

(a) Nf = 1 (b) Nf = 4 (c) Nf = 0 (d) Nf = 4 (e) Nf = 4

(f) Nf = 0 (g) Nf = 1 (h) Nf = 0 (i) Nf = 1 (j) Nf = 2

(k) Nf = 1 (l) Nf = 2 (m) Nf = 1 (n) Nf = 6 (o) Nf = 3

Fig. 3. (Top row) Ns fixations performed by Itti’s model [1] on images shown in fig-
ure 2. (Middle row) Ns fixations by E-Saliency model [3]. (Bottom row) Ns fixations
by Region-Based model [19]. The fixation by this model in the left most column is
repainted in order to improve its visibility on the red region.
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(a) (1, 0, 1) (b) (4, 0, 4) (c) (16, 16, 15) (d) (36, 2, 5) (e) (25, 5, 7)

(f) (16, 0, 16) (g) (16, 0, 14) (h) (5, 16, 5) (i) (36, 2, 9) (j) (15, 5, 9)

(k) (1, 0, 1) (l) (10, 6, 10) (m) (1, 0, 1) (n) (6, 0, 6) (o) (11, 4, 10)

Fig. 4. (Top row) Na fixations performed by Itti’s model [1] on images shown in figure
2. (Middle row) Na fixations by E-Saliency model [3]. (Bottom row) Na fixations by
Region-Based model [19]. The triplets written below each image represent the values
(Na, Ne, ND). The fixation in subfigure (k) is repainted in order to make it visible on
the red region.

here is not to measure competence of the models rather to demonstrate working
of the proposed evaluation methodology. Strength of each model under discus-
sion may lie in specific areas and the used input samples do not necessarily
represent those particular aspects. It is important to declare that these results
are raw observations recorded as samples for the demonstration of the evalua-
tion scheme, hence it is not recommended to consider them as reference data for
actual benchmarking purposes.

The five input samples in figure 2(a) to (e) represent the test data used in
evaluation experiments. For these experiments the Ns salient objects were de-
termined by human observers by marking those object that are most likely to
be focus of attention. They are marked with their most probable sequence num-
bers as shown in figure 2(f) to (j). The three models under consideration were
executed to determine Nf for which the models were allowed to fixate for Ns

times for each input. Similarly Na was found by letting the systems fixate until
all of the Ns locations were covered or the maximum limit of Na was reached.
Figure 3 shows the fixations by the three models while finding out Nf and figure
4 shows the fixations for Na times. The computed values of σs

φ, σd, εx, ψf , and
ψo are plotted in figure 5.
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(a) σs
φ (b) σd

(c) εx (d) ψf

(e) ψo

Fig. 5. (a) to (c): Plot of values obtained for success rate σs
φ, target detection rate σd,

and degree of exploration capability εx for the models of [1], [3], and [19]. (d) and (e):
Plot of values obtained for fixation position match ψf and sequence order match ψo

against the human response shown in figure 2.

6 Conclusion

Standardization of yardsticks and methods to obtain comparable quantities is
very important for truthful growth in every field of science. Keeping in view the
deficiency of such standards for evaluation of attention models we have performed
a survey of the existing techniques and tools for this purpose. After analyzing the
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utility and functionality of these metrics and methods some metrics of objective
nature have been proposed that may serve the purpose of advancing towards
the required standardization. Although a final solution in not attained but this
contribution is expected to stimulate further work into this direction in order
to achieve the ultimate objective. In the proposed methods for evaluation the
computation schemes were devised to make the outcome of evaluation within a
unit amount. Being in a standardized or normalized form, such quantities are
easily scalable when plotting graphs and also easily comparable in tabular rep-
resentations. This can be considered as a significant advantage over the existing
metrics. The proposed methods for extracting basic ingredient quantities for the
metrics can be carried out by human feedback as well as through algorithmic ap-
proach. These methods are kept simple and easily measurable to avoid influence
of non-relevant factors into evaluation process.

One aspect that has become noticeable during design and experimentation
of these evaluation mechanisms is the requirement of standardization in output
format of attention models. The evaluation would become not only more ob-
jective and fair but able to be processed by algorithmic means independent of
human intervention if all models produced output in the same format. There is a
special need to standardize the shape and size of saliency spots and the fixation
windows.

The range of values that represent the saliency magnitudes should also be
standardized so that the comparisons of models may not get disrupted due to dif-
ferent magnitude representations. It would also be helpful in justified evaluation
if the images used by the models had standardized dimensions and bit-depths.
This homogenization is needed especially for the time sensitive comparisons in
which difference of image size can make a significant variation in response time.
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3D color scenes. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562,
pp. 469–478. Springer, Heidelberg (2005)

12. Aziz, M.Z., Mertsching, B.: Fast and robust generation of feature maps for region-
based visual attention. Transactions on Image Processing 17, 633–644 (2008)

13. Michalke, T., Gepperth, A., Schneider, M., Fritsch, J., Goerick, C.: Towards a
human-like vision system for resource-constrained intelligent cars. In: ICVS 2007,
Bielefeld University eCollections, Germany, pp. 264–275 (2004)

14. Hawes, N., Wyatt, J.: Towards context-sensitive visual attention. In: Second Inter-
national Cognitive Vision Workshop (ICVW 2006) (2006)

15. Frintrop, S., Backer, G., Rome, E.: Goal-directed search with a top-down modu-
lated computational attention system. In: Kropatsch, W.G., Sablatnig, R., Han-
bury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 117–124. Springer, Heidelberg
(2005)

16. Navalpakkam, V., Itti, L.: Modeling the influence of task on attention. Vision
Research, 205–231 (2005)

17. Aziz, M.Z., Mertsching, B.: An attentional approach for perceptual grouping of
spatially distributed patterns. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.)
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Abstract. The first question answered in this paper is whether or not learning 
attention control in the decision space is feasible and how to develop an online 
as well as interactive learning approach for such control in this space, in case of 
feasibility. Here, decision space is formed by the decision vector of the agents 
each has allowed to dynamically observe just a subset of all available sensors. 
Attention control in this new space means active and dynamic selection of these 
decision agents to contribute in making final decision. The second debate is 
verifying the advantages of attention control in decision space over that in per-
ceptual space. According to the tight coupling of attention control and motor ac-
tion selection, in order to answer above mentioned questions, attention control 
and motor action selection are formulated in a unified optimization problem and 
reinforcement learning is utilized to solve it. In addition to the theoretic com-
parison of learning attention control in perceptual and decision space in terms 
of computational complexity, two proposed approaches are tested on a simple 
traffic sign recognition task.  

Keywords: Attention Control, Learning, Multi-modal perceptual space, Deci-
sion fusion, Mixture of Experts, Soft Decision. 

1   Introduction 

Basically, attention control can be assumed as an active intelligent filter which trims 
down the dimension of the huge input sensory space and prevents reaching it entirely 
to the further processing units. In other words, it is a must for an agent to purposefully 
reduce the computational burden of sensory input processing before performing any 
cognitive task; such as object recognition or scene interpretation.  

The great significance of attention control is in fact because of these requirements: 
reduction of probable confusion among multiple dimensions of the perceptual space, 
faster response and dealing with dynamicity of perceptual space. The mentioned dy-
namics is in sense of reliability and accuracy of multiple sensors or processing ele-
ments. These requirements in face of limited processing power necessitate a dynamic 
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attention control strategy rather than designing just a simple sensor selection algorithm. 
The tight coupling of attention control and motor action selection in a sequential deci-
sion making is another concern which makes the problem even more challenging. 
There are not enough works done in the field of learning attention while learning the 
desired behavior. It means attention control strategy is task-dependent. As a result, we 
couple motor actions with those that are performed solely for change of attention fo-
cus. The later ones are called perceptual actions and include those are mental only –
like giving more weights to color in comparison to shape for example- and the actions 
that involve control of physical sensors –such as saccadic movements. We call selec-
tion of pure motor actions decision making.  

It is clear that information bottleneck gives meaning to attention control however; 
here we raise this question that what type of information should be attentively proc-
essed? In other words, we are interested to know if attention control is restricted to 
active sensor selection or there is another information space where attention control 
can be learnt more effectively or robustly. In this paper, we chose decision space – or 
more accurately the probability vector of selecting actions- as a candidate information 
space to apply attention control in it and compare the results with those we attain in 
the sensory space. To perform the mentioned comparison, we model attention control 
as an optimization problem and choose reinforcement learning for solving this prob-
lem. The reason behind such a choice is to provide the potential for interactively solv-
ing the problem when the agent is acting in its world. By doing so, the agent learns 
the attention control strategy in concert with learning its task in the framework of ex-
pected reward maximization.  

In this paper, we first review the related works on learning attention control. After 
that, two proposed approaches are described in details. Then, we will express the test-
bed and the results taken. Finally a comprehensive discussion, conclusions and future 
works are given. 

2   Related Works 

Surely, we implicitly know what we mean by attention. But, a psychological defini-
tion may be a good starting point: focusing mind in a clear manner on one of many 
subjects or objects that may simultaneously stimulates the mind [1]. Adopting engi-
neering perspective, it can be considered as a filtering process which trims down the 
input sensory space to help us focusing on some thing which is more valuable to  
be processed, i.e., worth-focusing. Let’s look at the attention problem from action 
perspective and this means using active perception instead of processing the entire 
sensory space. This is the viewpoint we have adopted and tried to realize it through 
learning. In this section, the review of related works is done with more focus on learn-
ing aspects of attention. Unfortunately, there are a few researches on learning and 
formation of attention control; rather they are mostly related to the attention model-
ing. [2] presents an RL1 based approach in which visual, cognitive and motor proc-
esses are integrated to help an agent learn how to move its eyes in order to generate an 
efficient behavior of a human expert while reading. Using two spatial and temporal 
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modeling parameters (fixation location of eyes as well as their fixation time) the op-
timal behavior is learned. In [3] a framework for attention control is presented which 
performs actively in high level cognitive tasks. It contains three phases: the first phase 
is learning attention control as in active perception. Then in the second phase it ex-
tracts those concepts learned previously and finally using mirror neurons it abstracts 
the learned knowledge to some higher level concepts. Continuing this work is one of 
our main motivations, but we are focused here on learning in the decision space rather 
than in perceptual space. In [4] attention control is applied in object recognition task 
but in a limited image database. The main idea is using information theoretic meas-
ures to find discriminative regions of the image in a general to specific manner. In [5], 
as a continuation of [4], a 3-step-architecture is presented which firstly extracts atten-
tion center according to information theoretic saliency measures. Then, by searching 
in pre-specified areas found from first step decides whether the object is available in 
the image and finally a shift for attention will be suggested. The final step is done 
using Q-Learning with the goal of finding the best perceptual action according to the 
search task. This research is related to our work because it also couples decision mak-
ing and attention control and uses reinforcement based learning approach. In [6] two 
approaches for attention control are presented in a robotic platform with neck, eyes 
and arms. The first approach is a simple feed forward method uses back-propagation 
learning algorithm while the second uses reinforcement learning and a finite state 
machine for state space representation. Their results confirm that the second approach 
generates better performance in terms of finding previously observed objects even 
with fewer movements in head and neck and also in attention center shift. In [7] some 
approaches based on hidden states in reinforcement learning are proposed for active 
perception in human gesture recognition. This work proposes some solutions for per-
ceptual aliasing. This problem is realized when there is a many to many correspon-
dence among environment’s state and agent’s state. In such a situation, the agent’s 
decision making has ambiguity and in order to reduce it, the agents decide to perform 
perceptual actions. This problem can be handled by merging similar (from utility per-
spective) states or splitting one state due to non-homogeneity in utility measure. The 
approaches for merging / splitting states presented in [7] are called Utile Distinction 
Memory and Perceptual Distinction Approach. Moreover, in order to handle the prob-
lem of requiring more than one shot observation, an approach called Nearest Se-
quence Matching is proposed which uses a chain of recent observations (state / action) 
to declare current state. The results show that by learning, they can find more infor-
mative set of features to attend for gesture recognition rather than just selecting them 
in a pre-specified manner. Unfortunately, it is mentioned that the computation load of 
these approaches are very high and can be problematic in real complex applications. 
In papers reviewed till now, the control policy was spatial. In [8] some biological evi-
dences are presented which show that attention can also be directed to particular vis-
ual features, such as a color, orientation or a direction of motion. They showed effects 
of shifting attention between feature dimensions, rather than specific values of a given 
feature. In one condition the monkey was required to attend to the orientation of a 
stimulus in a distant location. In a second condition it was required to attend to the 
color of an un-oriented stimulus in the distant location. Finally, inspired from Mirror 
Neuron idea in [9], there is an indirect biological support for the action-based repre-
sentation in the decision space as what we proposed in this paper. So, it can be  
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assumed that for each stimulus in perceptual space, there is a corresponding action-
based representation in the decision space and we have proposed two approaches for 
learning attention control in both spaces. Furthermore, according to the discussion 
presented by Rizzolatti in [10], there is a close relation between attention processes 
and motor planning processes. In fact, as claimed in their theory, there is a strict link 
between covert orienting of attention and programming explicit ocular movements. 

3   Our Approach 

Two approaches proposed here are based on these main concepts: Virtual Sensors and 
Decision Agents. Before going further into details, we define virtual sensor and deci-
sion agent. A virtual sensor is a processing element that gets the sensory information 
and extracts some high level features. A physical sensor can be regarded as a virtual 
sensor with the identity information processing function. According to this definition, 
attention control mechanism controls the physical sensors as well as the virtual ones, 
see Fig. 2.  

A decision agent is a processing unit that resides inside the main agent and looks at 
the world through a set of virtual sensors. Its output is a probability vector. Element i 
of that vector is the suggested probability of selecting action i by that decision agent. 
Note that each action can be a pure motor action, a perceptual one or a combination of 
both. See Fig. 3.   

As mentioned before, we have taken some primary steps to resolve the main prob-
lem of proposing a general framework for learning attention control in a dynamic and 
multi-modal perceptual space. Since, attention control and decision making are very 
closely correlated problems, we employ attention control alongside of decision mak-
ing once in a high-dimensional perceptual space and once in a decision space. There-
fore, in this paper, two models are proposed for a sequential, multi-step learning in 
each high dimensional space and the advantages and disadvantages are verified. 

To summarize, in sensory space, based on the agent’s current state, it learns which 
virtual sensors to look at in the next step in order to make the most beneficial deci-
sion, see Fig. 2. In that figure, the agent is at state S and has a set of action pairs each 
composed of a motor actions and a perceptual one; i.e. A={(aP, aM}} where A is the 
agent’s action set. In other words, the agent takes a perceptual action (aP) to select a 
virtual sensor and a motor action (aM) to affect its environment.   

Similarly, in decision space, the agent tries to find those decision agents –or local 
experts as such entities are named in multi-agent domain- to consult with to find the 
best decision, see Fig. 3. Again, in this scenario, the agent employs its perceptual ac-
tion to select a decision agent. Note that any attentive selection –either selection of a 
virtual sensor or choosing a decision agent- involves processing the related sensory 
information.  

In addition, it is worth mentioning that the selection strategy is sequential. It means 
that a selection is done after the selected entities are processed. It is also important to 
note that, similar to any motor action, each virtual sensor selection (and its process-
ing) or expert consultation has a cost and the agent needs to minimize the total cost. 
The associated cost is related to the complexity of each virtual sensor or decision 
agent.  



246 M.S. Mirian et al. 

As Fig. 2 shows, learning attention control in the sensory space is straightforward. 
The agent tries to select (or in fact to attend to) those more relevant virtual sensors to 
the task at hand. It is done implicitly by learning a mapping between the agent’s state 
and its optimum action in that state.  

Learning attention control in the decision space looks more complex however; it is 
a new approach to the complicate problem of attention control. The approach benefits 
many interesting aspects of distributed and multi-agent systems as the agent’s mind is 
composed of local decision makers each looking at a portion of sensory information. 
These local decision makers (when trained) form our local experts and the final deci-
sion of the agent can be shaped through a mixture of experts strategy. 
Although the real world can be modeled by a MDP [11] from an absolute agent’s 

point of view, our agent is a partial observer. So, we need to propose a POMDP ap-
proach. But to keep the problem manageable at this stage, we considered one coupled 
optimization problem in MDP framework. The Markov decision process provides the 
general framework to outline sequential attention for optimal decision making. A 
MDP is defined by a 4-tuple (States, A, δ, R) with state set States, action set A, prob-
abilistic transition function δ and reward function R. In each transition, the agent re-
ceives reward from a critic according to R : S × A→ R, Rt ∈ R. The agent must act to 
maximize the utility Q(s, a). The decision process in sequential attention control is 
determined by the sequence of choices on perceptual actions - either in sensory or 
decision space- at specific states, see Fig. 1.  

 

Fig. 1. A simple view of sequential perceptual state change 

Fig. 1 simply shows the sequential change of agent’s mental state due to perform-
ing multiple perceptual actions. At first, the agent’s state is null, i.e. it knows nothing 
about the world’s state. After a while, it decides to percept dimi and its state changes 
accordingly. This continues until it can specifically decide which motor action is the 
most suitable to be performed. The following sections explain both learning models 
former in sensory space and latter in decision space. 

3.1   Approach 1- Learning Attention control in Perceptual Space: Attentive 
Sensor Selection 

In this approach, we want the agent to learn which features to attend in a state in order 
to gain maximum reward or in fact can perform the task as efficiently as possible 
from the critic’s perspective, See Fig. 2.  

Assume that the agent is allowed to use maximum m physical sensors to percept 
the environment and based on this information should perform one best action among 
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k available actions consisting of both perceptual and motor actions. Each physical 
sensor is equipped with a set of processing layers, let’s say n. As mentioned before, 
we can assume each physical sensor plus its processing layer as a virtual sensor. The 
agent can either turn on all sensors at once which is very computationally expensive, 
time-consuming and maybe redundant or it can try to build up its percept based on a 
subset of its whole sensors; here, those it has found more rewarding. This can be 
thought as a very rough definition of agent’s attention control problem. When a learn-
ing episode starts, the agent should decide whether to perform more perceptual  
actions to reduce ambiguity in its perception or just perform a motor action and ter-
minate the episode. In this setting, action and state sets (A and S respectively) are de-
fined as: 

A = {perceptual_action, null} x {motor_action, null} (1) 

S = {s = (o1, o2, …, om) : oi = fj(sensori) }    i = 1,…, m        j = 1,…, n (2) 

Where 

fj(sensori) {v1, v2, …, vf, null}  (3) 

the output value of each sensor processing takes maximum fi+1 values for sensor i 
including null when that sensor is not attended. For example, if we have a virtual sen-
sor for temperature with three fuzzy labels, a two-valued-color and a two-valued-
shape, S is: 

S= {Hot, Cold, null} x {Red, Blue, null} x {Circle, Rectangle, null}. Note that a 
learning episode start from the null state and after a number of perceptions or after a 
time, when a motor action is performed, the current episode will end. Performing per-
ceptual actions have different constant costs. This cost is a function of power con-
sumption of the sensor and the associated processing time of its processing function. 
Also, when a correct motor action is performed a positive value is assigned to it. This is 
the common strategy of Reward Function of the MDP frameworks used in both ap-
proaches. Fig. 2 is a schematic view of the proposed decision making strategy coupled 
with attention problem (from sensor selection perspective) using RL as a learning 

 

 

Worl

f1 (S1) 

S 
Attentive  

Sensor 
Selection 

action = arg Max (E(r) | State) 

Motor Action

Reward 

fi (Sj) 

fn (Sm) 

STM 

Perceptual Action

Action 

 

Fig. 2. Schematic view of attentive sensor selection method 
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method. In Fig. 2, f1, f2,.., fn are processing functions like: dominant color finding, 
color segmentation, shape detection, straight line extraction, template matching on 
vision sensor and so on. STM is short term memory and here keeps the required pre-
sent and past observations. The agent’s state is in fact kept in STM. 

3.2   Approach 2- Learning Attention Control in Decision Space: Attentive 
Decision Fusion 

In this section, a general method for learning attention control is proposed in the deci-
sion space, see Fig. 3. Here, one simple implication from the decision space is pro-
posed. 

Again assume we have m sensors each observed by a tiny agent. These tiny agents 
are in fact our local decision makers. When they learned the decision making task 
individually in their own partial sensory space (and the learning is saturated), they 
start to propose their decisions (if the fuser asked them) and based on their non-
greedy opinions, the agent should make the best decision which is actually performing 
one action among k available actions. The agent can either consider decisions made 
by every local expert, which is not a reasonable policy, or it can learn to build up its 
decision profile based on a subset of the whole decision set and on a need basis. After 
this introduction, let’s define the decision space: 

Decision sub-space is a sub-space formed by Boltzman probabilities of se-

lecting each motor actionj  on the condition of
iSstate  (as i-th sensor concerns) when 

the learning by agenti is finished.  

It means for each partial observation done by each tiny agent, there is one selection 
probability for a motor action. This definition named “decision template” is similarly 
introduced in [12]. Putting these templates together we will find a decision profile. It 
is noticeable that instead of using greedy decisions of each agent (their hard deci-
sions) we used their soft decisions in order not to miss any probably helpful informa-
tion. The mathematical definition of this subspace is expressed here: 

∑
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in which 
iOjD | is the agenti’s decision to select actionj on condition to the environ-

ment state Oi (which is the environment state from agenti's point of view) and 

),( jS actionstateQ
i

 is the Q-value of selecting jaction  in 
iSstate . Therefore, by 

concatenating these conditional probabilities, we will find decision template of agenti: 

[ ]
iiii OMOOO DDDD ||2|1 ...||=  (5) 

in which M is number of motor actions. The reason behind such conditional definition 
is that each decision is attached to a specific situation and the real environmental state 
is the link of the local or partial states (observed by each tiny agent). As in Attentive  
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Sensor Selection, when a learning episode starts, the agent should decide whether to 
perform more perceptual actions (consult more experts) to find a more descriptive 
state or just perform a motor action and terminate the episode. Note that a learning 
episode start from the null state and after a number of perceptions or after a time, 
when a motor action is performed, the current episode will end. Performing percep-
tual actions (consultation with experts) have different constant costs. Also, when a 
correct motor action is performed a positive value is assigned. In this setting, action 
and state sets (A and S respectively) are defined as: 

A = {perceptual_action, null} x {motor_action, null}  (6) 

S = {s = )|(),...,|(),|( 21 nullDnullDnullD OmOO } (7) 

Fig. 3 shows the learning strategy for decision making coupled with learning attention 
control in the decision space. 
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Fig. 3. The schematic view of Attentive Decision Fusion method 

4   Testbed, Evaluation Measures and Simulation Results 

In this section, first we introduce our testbed. Then the evaluation measures for com-
paring these two proposed learning strategies are defined. Finally the simulation re-
sults are given and analyzed. 

4.1   Testbed 

As a decision making problem, a simple cognitive task of Traffic Sign Classification 
is considered: “At the beginning of each episode, a single sign is shown to the agent. 
Using Attentive Sensor Selection or Attentive Decision Fusion it should decide which 
action to perform to minimize the total cost (of processing a feature or consulting a 
decision agent)”. There is a one to one correspondence between the signs and motor 
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actions to perform. This is obviously a simple classification task which may be re-
solved with no attention control policy. But, there are some reasons for selecting such 
testbed to test our basic ideas: 

• Without losing generality, any real cognitive application can be considered as a 
classification problem with a vast number of classes and different input data and it 
has the potential of extension to more complex tasks. 

• This is a primary step of our ongoing research and we need to gradually test the 
ideas and make sure if they work. Therefore, the complexity of task should be kept 
small enough in order not to dominate the learning strategy.  

• It is surely required in any real autonomous vehicle driving / assistant application 
which maybe a very good testbed for this research according to the great need to 
attention control in such applications. 

There are three virtual sensors for the agent to percept the environment:  

• Virtual Color Sensor to detect the dominant color of the sign 
• Virtual  Shape Sensor to detect the border shape of the sign 
• Virtual Content Sensor to detect the text or symbol inside the sign. 

We can consider three types of perceptual actions corresponding to attending these 
specific sensors (in Attentive Sensor Selection) or to consider the decision made by 
the agent observes these sensors (in Attentive Decision Fusion). The complexity of 
each processing function is implicitly considered in the cost of selecting that percep-
tual action. Fig. 4 shows the selected subset of traffic signs for classification. 

 
    

    

Fig. 4. Selected Traffic Signs for Recognition 

According to the selected signs, we can define: 

• C = Colors detected by Virtual Color Sensor = {Blue, Red} 
• S = Shapes detected by Virtual Shape Sensor = { , , } 
• CN = Contents detected by Virtual Content Sensor {P, 15, , , }. 

4.2   Evaluation Measures and Simulation Results 

There are two sets of measures for evaluation of the proposed approaches. The first set 
which is tightly coupled to reward function design is accumulative reward and recognition 
rate. The second set contains secondary measures to evaluate our approaches: perceptual 
steps taken after learning and required number of episodes to complete the learning. 
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Approach 1- Learning Attention control in Perceptual Space: Attentive Sensor 
Selection 
In order to show the effectiveness of the first approach, we compare it with the case 
where there is no attention control and the agent can utilize all its sensors at once. The 
results are shown in Table 1. 

Table 1. Results of Simulating Approach 1 (Attentive Sensor Selection) 

 Measures With Attention Control 
(Attentive Sensor Selection) Without Attention Control 

Recognition
Rate after 
learning

100% 100% 

perceptual 
steps
taken 

2.1 3 

Average
Reward
gained 
during
learning 

Fig. 5. The accumulative reward during learning in perceptual space

 

The results justify that if we have enough time and processing power, there is no 
need to control the attention and the agent can learn the task even more quickly as its 
state space is three times smaller. However, when the attention control is necessary, 
Attentive Sensor Selection can gain perfect recognition rate while taking smaller num-
ber of perceptual steps; which means faster response and consuming less processing 
power.  

In order to evaluate the amount of computational efficiency found by using the first 
approach, two other sets of results are also generated: 

o Learning the task in uni-modular spaces 
o Learning the task in bi-modular spaces (Color + Shape, Shape + Content and Color 

+ Content): This is when the agent has pair of fixed sensors to percept the envi-
ronment and selects its motor action accordingly.  

Table 2 shows the recognition rate of the mentioned cases as well as the average 
reward of Attentive Sensor Selection vs. fixed bi-modular selection. The results 
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clearly confirm that using Attentive Sensor Selection for attention control in the input 
sensory space can significantly enhance both the accumulative reward and also the 
recognition rate (a direct measure of success in decision-making). This is because, the 
agent autonomously and efficiently selects best pair of sensors to attend according to 
the state situated in, or maybe in some cases it pays to attend to all available sources 
to find the most rewarding decision.  

Table 2. Results of Simulating Approach 1 (comparing with fixed selection in sub-modalities 

Learning in Uni-modular Space Learning in bi-modular Space 
Color 20% Color + Shape  46% 
Shape  30% Shape + Content  80% 
Content  50% Color + Content 88% 

1

2

3

 

Fig. 6. The accumulative reward of Attentive Sensor Selection vs. fixed bi-modular sen-
sor selection 

 
Approach 2- Learning Attention Control in Decision Space: Attentive Decision 
Fusion 
The effectiveness of the second approach (Attentive Decision Fusion) is shown in 
comparison with the first approach (Attentive Sensor Selection). Learning in decision 
space starts with learnt pre-knowledge of each decision agent. It means, in the first 
step the decision agents learn the task in a parallel manner. Then, each proposes a 
decision vector to the main agent. The main agent uses the Max operator and selects 
the action with the highest probability value. All decision agents update their knowl-
edge knowing the selected action and received reward. The agent starts learning atten-
tion control in decision space when the first step is finished. Note that, to have a fair 
comparison with attention control in sensor space, the learning cost of the first step is  
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added to the cost of attention control in the decision space. The results show that the 
agent has learned attention control in decision space however; learning attention con-
trol in decision space is slower than learning it in the sensory space. Moreover, the 
number of perceptual steps taken in decision space is larger than that in the perceptual 
space. A detailed comparison is given in the next section.  

Table 3. Results of comparing two approaches 

  
 

Attentive Sensor Selection Attentive Decision Fusion 

Recognition 
Rate(Test) 

100% 100% 

Perceptual 
Steps (Test) 

2.1 2.8 

Required  
episodes2  

1000 1900 

Average  
Reward 
(Learning) 

 
Fig. 7. The accumulative reward during learning to compare methods 

 

5   Discussions 

The results show the feasibility of attention control in decision space. There are some 
general advantages for learning in this new space. The major ones are listed below: 

• The local knowledge gained by different experts is utilized in a distributed manner 
by decision agents to make a unified and more confident decision. This is in fact 
the main justification behind any fusion algorithm.  

• Decision agents share the decision space.  So, their decisions can be verified to an-
ticipate which decision agents are redundant, which decisions are more informative 

                                                           
2 The number of episodes required to reach a perfect recognition rate. 
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and even which ones contain complementary information. It is obvious that there is 
no such information straightforward available in perceptual space. This information 
can be utilized to further reduce the learning time in decision space.  

•  By attention control in decision space, we can take advantage of diverse available 
types of learning methods for decision agents. In fact, each decision agent can use 
the most suitable learning method regardless of what methods the other ones em-
ploy. This benefit is gained because all agents share the decision space. Possibility 
of using different learning methods across decision agents enables the designer to 
use dissimilar types of information -such as training data, expert knowledge, etc- 
and sensors for training different decision agents.  

• Another issue to discuss is the fact that, transferring the attention control learning 
from perceptual space to decision space results in learning decision fusion. Deci-
sion fusion has some major advantages (like reliability, robustness and survivabil-
ity) not only because of fusion [13] but also due to its boosting characteristics. 
Schapire in [14] describes: “Boosting is a general method for improving the accu-
racy of any given learning algorithm. It refers to a general and provably effective 
method of producing a very accurate prediction rule by combining rough and mod-
erately inaccurate rules of thumb.” The reason behind the claim that our proposed 
structure for attention control in decision space implements boosting is that “while 
the performance of each local expert (decision agent) is less than or equal to 
chance, by using learning attention control we can improve the performance con-
siderably.” Despite the motioned general benefits, the proposed representation of 
the decision space seems not to be theoretically compact. This problem can be 
quantified through a simple order computation for the two approaches which 
comes in Table 4: 

Table 4. Comparing Order of State-Action for both approaches  

 In Decision Space In Feature Space 
Parameters M: Number of Motor Actions 

m: number of sensors 
f: discretization level in sensory space 
c: discretization level in decision space 
n: number of decision agents 
k: number of sensors observed by each decision agent 

Theoretical 
Order of 
States-Action 

 
M .(n fk + cn(M-1)) 

 
M. fm 

M = 9 m = n = 3 f =4 c = 10 k = 1 Example 
(Theoretical 
Number of 
State-Action) 

 
10 24 

 
576 

M. (nfk + C) 
C = number of sparse points  
in decision space   

M. fm Practical 
Number of 
State-Action 

1008     with C ≤ 100  576 
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Above computation theoretically shows that the number of states in decision 
space is very large and expresses state explosion. While, as tested in practice, the 
number of exiting states in decision space is very much fewer than cn(M-1). It means 
that the agent does not even go into most of the theoretically mentioned states. In 
other words, the space is considerably sparse. So, there is no need to reserve any 
space for non-existing states and be aware of their values; which results in reason-
able learning speed. We are not sure if the mentioned sparseness is hold such 
strongly in all practical cases. Therefore, it is one of our main concerns to find a 
more compact representation for the decision space to preferably speed up the 
learning and become robust to missing information and noise. One solution is not 
quantizing the decision space and using continuous space RL methods [15]. 

6   Conclusions and Future Works 

The proposed approaches are our primary steps taken to bold the main requirements 
of a general framework for learning attention control in a multi-modal as well as dy-
namic perceptual space during learning to perform a complex decision making task, 
such as autonomous driving which surely contains many different distracters. It is 
expected that if there were many distracters, the attention control algorithm would try 
to remove those irrelevant dimensions thus accelerate learning process considerably. 
The main outcome of the paper is to show that learning attention control is feasible in 
decision space and the results are comparable with those attained in the perceptual 
space. Learning attention control in decision space benefits some interesting advan-
tages over learning attention control in perceptual space. The major ones are sharing 
the common space (decision space) among tiny decision agents, utilizing not neces-
sary similar learning algorithms for decision agents and finally making a more confi-
dent decision. There are many extensions planned for the proposed approach and the 
most important one is finding a more compact and yet meaningful decision space to 
learn attention in it with preferably higher advantages such as faster learning speed, 
lower cost and maybe more robustness. Another extension is learning to expand the 
perceptual space in a gradual manner.  
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Abstract. In this paper a system for visual attention manipulation is introduced 
and formally described. This system is part of the design of a software agent 
that supports naval crew in her task to compile a tactical picture of the situation 
in the field. A case study is described in which the system is used to manipulate 
a human subject’s attention. To this end the system includes a Theory of Mind 
about human attention and uses this to estimate the subject’s current attention, 
and to determine how features of displayed objects have to be adjusted to make 
the attention shift in a desired direction. Manipulation of attention is done by 
adjusting illumination according to the calculated difference between a model 
describing the subject’s attention and a model prescribing it. 

1   Introduction 

In the domain of naval warfare, it is crucial for the crew of the vessels involved to be 
aware of the situation in the field. Examples of important questions that should be 
addressed continuously are “in which direction are we heading?”, “are we currently 
under attack?”, “are there any friendly vessels around?”, and so on. To assess such 
issues, one of the crew members is usually assigned the Tactical Picture Compilation 
Task (TPCT): the task to identify and classify all entities in the environment (e.g., 
[11]).  This is done by monitoring a radar screen for radar contacts, and reasoning 
with the available information in order to determine the type and intent of the contacts 
on the screen. However, due to the complex and dynamic nature of the environment, 
this person has to deal with a large number of tasks in parallel. Often the radar 
contacts are simply too numerous and dynamic to be adequately monitored by a single 
human, which compromises the performance of the task. 

For these reasons, it may be useful to offer the human some support from an 
intelligent ambient system, consisting of software agents that assist him in the 
execution of the Tactical Picture Compilation Task. For example, in case the human is 
directing its attention on the left part of a radar screen, but ignores an important 
contact that just entered the radar screen from the right, such an agent may alert him 
about the arrival of that new contact. To be able to provide this kind of intelligent 
support, the system somehow needs to maintain a model of the cognitive state of the 
human: in this case the human’s focus of attention. It should have the capability to 
attribute mental, and in particular attentional (e.g., [12], [13], [14]) states to the 
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human, and to reason about these. In psychology and philosophy this characteristic is 
often referred to as Theory of Mind (or ToM, see, e.g., [1]). According to [7], agents, 
both human and software, can exploit a Theory of Mind for two purposes: to 
anticipate the behaviour of other agents (e.g., preparing for the consequences of 
certain actions that the other will probably perform), and to manipulate it (e.g., trying 
to influence the actions that the other will perform). In case of an intelligent system to 
support naval crew members, both purposes are relevant, but require a different type 
of support. This study is related to the latter type, the type that tries to manipulate the 
focus of attention. 

A number of approaches in the literature address the development of software 
agents with a Theory of Mind; e.g., [16], [7]. Usually, such agents maintain, in one 
way or the other, a model of the epistemic (e.g., beliefs) and/or motivational states 
(e.g., desires, intentions) of other agents. However, for the situation sketched above, 
such agents ideally also have insight in another agent’s attentional states. After all, if 
a supportive agent is to find out whether the human is ignoring some contact, it needs 
to have some knowledge about which contacts the person is paying attention to. This 
idea is in line with the theories of cognitive scientists like Gärdenfors [9], [10], who 
claims that humans have a Theory of Mind that is not only about beliefs, desires, and 
intentions, but also about other mental states like attentional, emotional, and 
awareness states. 

The current paper is the result of a project that aims to develop intelligent agents to 
support naval crew members in the Tactical Picture Compilation Task, based on the 
ideas described above. To this end, four models have been developed. First, a 
dynamical model of human attention is needed, which estimates where the person’s 
attention is, based on information about features of objects on the screen and the 
person’s gaze. Second, a reasoning model is needed to reason through the first model 
in order to generate beliefs on attentional states at any point in time. Third, a model is 
needed that compares the output of the second model with some normative attention 
distribution, and determines whether there is a discrepancy. Finally, a model is needed 
that uses the output of the third model to determine how to alert the human that he is 
ignoring something important. An initial version of the first two models has already 
been developed and were adopted from this earlier work ([5], [6], respectively [2]). 
The current paper has its focus on the development of the other two models. 

Section 2 presents a brief introduction of the existing literature on attentional 
processes, which helps to understand the choices made within this paper. Next, 
Section 3 formally describes the different models within the supportive software 
agent, and presents some simulations that were performed to test the behaviour of the 
model at a conceptual level. In Section 4, the whole approach is applied in a real-
world a case study, using human gaze data and a tactical picture compilation task 
environment. Finally, Section 5 is a discussion. 

2   Manipulation of Attention 

Typically, a person’s attention is influenced both by top-down and by bottom-up 
processes. The former means that observers orient their attention in a goal-directed 
manner, as a consequence of their expectations or intentions [19]. For example, when 
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searching for a friend in the crowd, attention is guided top-down [20]. In contrast, the 
latter means that attention is elicited by a (highly salient) trigger from the 
environment. For example, one green circle among several blue circles will “pop-out” 
and attention will be directed to this object [22].  

In this project the focus is primarily on adjusting the features of a specific location, 
such that only bottom-up attention is manipulated. Features that are mainly known to 
influence attention are intensity (luminance), colour and orientation. Previous 
research shows that attention can be elicited both by the contrast with stimuli at other 
locations [12], [15], [17] and the abrupt change of a feature, like luminance [21], [23] 
or form [23].  

Several cognitive models on attention have been proposed and show that it is 
possible to predict attention allocation based on a saliency map, calculated from 
features of a stimulus, like luminance, colour and orientation [13], [18]. These models 
are not dynamic in the sense that they are based on existing information from the 
environment. However, if indeed the change of a specific feature (like luminance) can 
cause an attention shift in the human performing a task considered, a model can be 
used to realise this change. This way, humans who have to direct their attention to a 
large number of locations in parallel can be supported to adequately perform their task. 

3   Formalisation of a Theory of Mind for Attention 

In this section it is shown how the Theory of Mind for attention within the software 
agent was designed. First, in Section 3.1 the general setting is described, 
distinguishing four models. In subsequent subsections 3.2, 3.3, 3.4, and 3.5 these four 
models are described in more detail. 

3.1   Overall Setting 

A Theory of Mind enables an agent to analyze another agent’s mind, and to act 
according to the outcomes of such an analysis and its own goals. For the general case 
such processes require some specific facilities.  

 

(1) A representation of a dynamical model is needed describing the relationships 
between different mental states of the other agent. Such a model may be based on 
qualitative causal relations, but it may also concern a numerical dynamical system 
model that includes quantitative relationships between the other agent’s mental states. 
In general such a model does not cover all possible mental states of the other agent, 
but focuses on certain aspects, for example on beliefs and desires, on emotional states, 
on the other agent’s awareness states, or on attentional states as in this paper. 
(2) Furthermore, reasoning methods to generate beliefs on the other agent’s mental 
state are needed to draw conclusions based on the dynamical model in (1) and partial 
information about the other agent’s mental states. This may concern deductive-style 
reasoning methods performing forms of simulation based on known inputs to predict 
certain output, but also abductive-style methods reasoning from output of the model 
to (possible) inputs that would explain such output.  
(3) Moreover, when in one way or the other an estimation of the other agent’s 
mental state has been found out, it has to be assessed whether there are discrepancies 
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between this state and the agent’s own goals. Here also the agent’s self-interest comes 
in the play. It is analyzed in how far the other agent’s mental state is in line with the 
agent’s own goals, or whether a serious threat exists that the other agent will act 
against the agent’s own goals. 
(4) Finally a decision reasoning model is needed to decide how to act on the basis of 
all of this information. Two types of approaches are possible. A first approach is to 
take the other agent’s state for granted and prepare for the consequences to 
compensate for them as far as these are in conflict with the agent’s own goals, and to 
cash them as far as they can contribute to the agent’s own goals (anticipation). For the 
navy case, an example of anticipation is when it is found out that the other agent has 
no attention for a dangerous object, and it is decided that another colleague or 
computer system will handle it (dynamic task reallocation). A second approach is not 
to take the other agent’s mental state for granted but to decide to try to get it adjusted 
by affecting the other agent, in order to obtain a mental state of the other agent that is 
more in line with the agent’s own goals (manipulation). This is the case addressed in 
this paper. 

 

In this paper the general pattern sketched above is applied to the way in which a 
(software) agent can attempt to adjust the other (human) agent’s attention, whenever 
required. To this end the software agent uses four types of facilities: 

 

• A dynamical model for attention 
Representation of a dynamical attention model: a model that provides as 
output an estimation of the current attention distribution, based on input 
about features of objects on the screen and the other agent’s gaze. 

• A reasoning model to generate beliefs about attentional states 
These methods are used to estimate the attention given inputs about features 
of the objects and the other agent’s gaze. 

• A discrepancy assessment model 
This concerns a model to determine whether it is desirable that the attention 
distribution is changed, and to which extent: the discrepancy between actual 
and desirable attentional states 

• A decision reasoning model 
This is a model to determine how, given a desire to adjust the attention 
distribution in certain respects, the inputs for the attention model have to be 
changed, to obtain an attention distribution as output, which is adjusted as 
desired. 

The dynamical attention model is taken over from [5], [6] and is only briefly 
summarised below. The second model is kept relatively simple: beliefs on the 
attentional state are generated just based on (internal) simulation of the attention 
model. The third and fourth model form the most crucial part of this paper.  

3.2   The Dynamical Attention Model Used 

The attention distribution at time t is an assignment of attention values AV(s, t) to a 
set of attention spaces s. Attention spaces are squares within a grid. The attention 
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distribution is assumed to have a certain persistency. At each point in time the new 
attention is related to the previous attention, by 

 

where  is the decay parameter that results in the decay of the attention value of space 
s at time point t – 1. Note that higher values for  result in a higher persistency and 
lower decay and vice versa. Here AVnorm(s,t) is determined by a normalisation process 
keeping the total amount of attention fixed. This is described by: 

 

Here AVnew(s,t) is defined as follows. An important aspect of the visual attentional 
state is human gaze behaviour. Therefore the relative distance of each space s to the 
gaze point (the centre) is an important factor in determining the attention value of s. 
Mathematically this is modelled by the formula above, where AVpot(s,t) is the 
potential attention value of s at time point t. The term r(s,t) is taken as the Euclidian 
distance between the current gaze point and s at time point t (multiplied by an 
importance factor α which determines the relative impact of the distance to the gaze 
point on the attentional state, which can be different per individual and situation): 

 

Here the potential attention value AVpot(s,t) is calculated as follows, based on the 
properties of the space (i.e., of the types of objects present) at that time (for instance 
features such as colour, intensity, and orientation contrast, amount of movement). For 
each of such a feature a specific saliency map describes its potency of drawing 
attention; e.g., [8], [13], [14] Because not all features are equally highlighting, an 
additional weight for every map is used. Formally the above can be described as 
shown above, where for any feature there is a saliency map M, for which M(s,t) is the 
unweighted potential attention value of s at time point t, and wM(s,t) is the weight for 
saliency map M, where 1 ≤ M(s,t) and 0 ≤ wM(s,t) ≤ 1. The exact values for the 
weights depend on the specific application. 

3.3   Reasoning Model to Generate Beliefs About Attentional States  

The reasoning method to generate beliefs about attentional states is kept simple. The 
model described in Section 3.2 as a dynamical system model (based on a difference 
equation) is just used by the software agent as an internal simulation model to 
generate new attentional states out of the previous ones and information about the 
current features of the objects. This is done by a forward reasoning method (forward 
in time) as described in [2]. This reasoning method can be used to make predictions 
on future states, or on making an estimation of the current state based on information 
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acquired in the past. This reasoning method occurs in the literature in many variants, 
in different contexts and under different names, varying from, for example, 
computational (numerical) simulation based on difference or differential equations, 
qualitative simulation, causal reasoning, execution of executable temporal logic 
formulae, and forward chaining in rule-based reasoning, to generation of traces by 
transition systems and finite automata. The basic specification of this reasoning model 
can be expressed as follows, where belief(leads_to_after(I, J, D)) (the belief that when 
state I holds at time T, then J will hold after time duration D) is used as the agent’s 
internal representation format for dynamical system models, and belief(at(I, T)) as a 
representation of its information on the world (including human processes) at 
different points in time; moreover, →→ means that when the antecedent holds, the 
consequent will follow. Here, I and J are predicates that may represent world states 
like ‘AV(s,t) = 0.5’ or ‘luminance value 0.8 is assigned to s’. 
 

Belief Generation based on Positive Forward Simulation 
If it is believed that I holds at T and that I leads to J after duration D, then it is 
believed that J holds after D. 

belief(at(I, T)) ∧ belief(leads_to_after(I, J, D))  →→   belief(at(J, T+D))  

If it is believed that I1 holds at T and that I2 holds at T, then it is believed that I1 and 
I2 holds at T. 

belief(at(X1,T))  ∧  belief(at(X2, T)) →→  belief(at(and(X1, X2), T))  

This is done by calculations following the formulae described above. 

3.4   A Model to Determine Discrepancy between Actual and Desirable Attention 

The discrepancy between actual and desirable attention can be determined as soon as 
a model is available for what the desirable attention distribution is (sometimes called 
a prescriptive model). For the case addressed in this paper this means that in a 
computational manner it is assessed which objects deserve attention, an assessment on 
the basis of features such as distance, speed and direction of an object1. In fact, this is 
close to the first part of the task the human is performing: identification of the 
relevant objects to be handled.  

3.5   A Decision Model for Attention Adjustment 

The model for adjustment of the attention distribution has as input the discrepancy 
determined by the model described in Section 3.4, and also makes use of the 
explicitly represented dynamical model as described in Section 3.2. The general idea 
is that the relations between variables within this model are followed in a backward 
manner, thereby propagating the desired adjustment from the attentional state variable 
to the features of the object at the screen. The general pattern behind this operation on 
a dynamical model representation is illustrated in Figure 1. Here v1 is the (desired)  
 

                                                           
1 It is assumed that the agent has tactical domain knowledge that enables it to make such 

assessments. 
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Fig. 1. Dependencies between variables in a dynamical system model 

output of a model, and by branches the variables on which this depends are depicted, 
until the leaves where actual adjustments can be made2. 

This is a form of desire refinement: starting from the root variable, by a step-by-
step process a desire on adjusting a parent variable is refined to desires on 
adjustments of the children variables, until the leave variables are reached. The 
starting point is the desire on the root variable, which is the desired adjustment of the 
attentional state; this is determined by. 

belief(av(s)<h)  ∧  desire(a(v)>h)  ∧  belief(has_value(av(s), v)) →→ desire(adjust_by(av(s), (h-v)/v)  

Note that here the adjustment is taken relative (expressed by division of the difference 
h-v by v). Suppose as a point of departure (given the discrepancy assessment) an 
adjustment ∆v1 is desired, and that v1 depends on two variables v11 and v12 that are 
adjustable (the non-adjustable variables can be left out of consideration). Then by 
elementary calculus as a linear approximation the following relations between 
required adjustments can be obtained: 

∆v1 =  ∆v11 +  ∆v12
 

This formula is used to determine the desired adjustments ∆v11 and ∆v12, where by 
weight factors µ11 and µ12 the proportion can be indicated in which the variables 
should contribute to the adjustment: ∆v11/∆v12 =  µ11/µ12. 

∆v1 =  ∆v12 µ11/µ12  +   ∆v12  =   ( µ11/µ12+   ) ∆v12
 

So the adjustments can be made as follows: 

∆v12  =   

∆v11  =  µ11/µ12 =   

 

Special cases are µ11 = µ12 = 1 (absolute equal contribution) or µ11 = v11  and µ12 = v12 
(relative equal contribution: in proportion with their absolute values). As an  
 

                                                           
2 For the moment, deterministic relationships between variables are assumed. However, in a 

later stage, the agent might learn such relationships. 



264 T. Bosse et al. 

example, consider a variable that is just the weighted sum of two other variables (as is 
the case, for example, for the aggregation of the effects of the features of the objects 
on the attentional state): 

v1 =   w11v11 + w12v12 

For this case 

  =  w11        =  w12 

and 

∆v11  =      ∆v12  =   
 

For example when µ11 = µ12 = 1 this results in 

∆v11  =      ∆v12  =   
 

Assuming w11  + w12  =  1 in addition, this results in ∆v11  = ∆v12  = ∆v1 

Another setting, which actually has been used in the model is to take µ11 = v11 and 
µ12 = v12. In this case the adjustments are assigned proportionally; for example, when 
v1  has to be adjusted by 5%, also the other two variables on which it depends need to 
contribute an adjustment of 5%. Thus the relative adjustment remains the same 
through propagations: 

   =    / v11   =      =     
 

This shows the general approach on how desired adjustments can be propagated in a 
backward manner through a dynamical model. Thus a desired adjustment of the 
attentional state as output at some point in time can be related to adjustments in the 
features of the displayed objects as inputs at previous points in time. For the case study 
undertaken this approach has been applied, although at some points in a simplified 
form. One of the simplifications made is that due to the linearity of most dependencies 
in the model, adjustments have been used that just propagate without any modification. 
An example of a rule specified to achieve this propagation process is: 

desire(adjust_by(u1, a))  ∧  belief(depends_on(u1, u2))  →→  desire(adjust_by(u2, a)) 
 

Here the adjustments are taken relative, so, this rule is based on ∆u2 / u2 = ∆u1 / u1  as 
derived above for the linear case. When at the end the leaves are reached, which is 
represented by the belief that they are directly adjustable, then from the desire an 
intention to adjust them is derived. 

desire(adjust_by(u, a))  ∧  belief(directly_adjustable(u))  →→  intention(adjust_by(u, a)) 
 

If an intention to adjust a variable u by a exists with current value b, the new value b+ 
α*a*b to be assigned to u is determined; here α is a parameter that allows the modeler 
to tune the speed of adjustment: 
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intention(adjust_by(u, a))  ∧  belief(has_value_for(u, b)) →→   
performed(assign_new_value_for(u, b+ α*a*b))  

This rule is applied for variables that describe features f of objects at locations s, i.e., 
instances for u of the form feature(s, f). Note that each time the adjustment is 
propagated as a value relative to the overall value.  

3.6   Simulation Results 

To test whether the approach described above yields the expected behaviour, it has 
been used to perform a number of simulation experiments in the LEADSTO 
simulation environment [4]. This environment takes a specification of causal 
relationships (in the format as shown in the previous sections) as input, and uses this 
to generate simulation traces. The simulations shown here address a slightly 
simplified case, where the radar screen has been split up in 4 locations. For the time 
being, it is assumed that each location contains one contact, and that these contacts 
stay within their locations. The features of the contacts that are manipulated are 
luminance, size, and level of flashing. Initially, each contact starts with the same 
features, but during the simulation these features are manipulated, based on the 
prescribed (or desired) attention. This desired attention is generated randomly, where 
every 50 time units a next location is selected where the attention should be. 
Furthermore, the behaviour of the human gaze is generated as follows: after each 
adaptation of the features, the gaze moves to one of the four locations, with a 
probability that is proportional to the saliency of the contact at that location.  

 

 

Fig. 2. Model-based reasoning process. First it is intended (several times) to adjust a feature 
value at location 2, then at location 1, then at location 3, and finally at location 4. 

The results of an example simulation run are depicted in Figures 2 to 5. In these 
figures, time is on the horizontal axis, and the different state of the process is shown 
in the vertical axis. A dark line indicates that a state is true at a certain time point. 
Note that some information has been omitted due to space limitations. Figure 2 shows 
the model-based reasoning process of the agent, in terms of desires and intentions. 
Figures 3, 4, and 5 show, respectively, the estimated attention, the human’s gaze, and 
the value of the feature “luminance” at different locations over time. As shown in 
Figure 2, initially it is desired that at least 50% of the human’s attention is at location 
2 (desire(av(2)>0.5)). Since this is not the case (see Figure 3), the luminance of the  
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Fig. 3. Estimated attention at different locations. Initially the highest attention value is estimated 
to be at location 2 (with a peak around time point 55), then at location 1, then at location 3, and 
finally at location 4. 

 

Fig. 4. Dynamics of gaze. The vertical axis denotes the location of the gaze, which switches 
between location 1, 2, 3, and 4. 

contact at location 2 is increased (see Figure 5). As a result, the human’s gaze shifts 
towards this location (see Figure 4), which increases his attention for location 2. In 
the rest of the simulation, this pattern is repeated for different locations. 
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Fig. 5. Values of feature ‘luminance’ at different locations. First the luminance at location 2 is 
increased, then at location 1, 3, and 4 (note that values are normalised). 

4   Case Study 

To test the approach in a real world situation, and obtain an initial validation, a case 
study with human subjects while executing the Tactical Picture Compilation Task was 
undertaken. In Section 4.1 the environment is explained, Section 4.2 discusses some 
implementation details of the system tailored to the environment, and in Section 4.3 
the first results are discussed. 

4.1   Environment 

The task used for this case study is an altered version of the identification task 
described in [11] that has to be executed in order to build up a tactical picture of the 
situation, i.e. the Tactical Picture Compilation Task (TPCT). The implementation of 
the software is done in Gamemaker [25]. In Figure 6 a snapshot of the interface of the 
task environment is shown. The goal is to identify the five most threatening contacts 
(ships). In order to do this, participants have to monitor a radar display where contacts 
in the surrounding areas are displayed. To determine if a contact is a possible threat,  
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Fig. 6. A snapshot of the interface of the used task environment 

different criteria have to be used. These criteria are the identification criteria (idcrits) 
that are also used in naval warfare, but are simplified in order to let naive participants 
learn them more easily. These simplified criteria are the speed (depicted by the length 
of the tail of a contact), direction (pointer in front of a contact), distance of a contact 
to the own ship (circular object), and whether the contact is in a sea lane or not (in or 
out the large open cross). Contacts can be identified as either a threat (diamond) or no 
threat (square). 

4.2   Implementation 

The system is further developed and evaluated using Matlab. The output of the 
environment described in Section 4.1 was used and consisted of a representation of all 
properties of the contacts visible on the screen, i.e. speed, direction, if it is in a sea 
lane or not, distance to the own ship, location on the screen and contact number. In 
addition, data from a Tobii x50 eye-tracker [24] were retrieved from a participant 
executing the TPC task. All data were retrieved several times per second and were 
used as input for the system. Once the system was tailored to the TPC case study, the 
eventual implementation of it was done in C#. The output of the implementation of 
the system causes the saliency of the different objects on the screen to either increase 
or decrease, which may result in a shift of the participant’s visual attention. As a 
result, the participant’s attention is continuously manipulated in such a way that it 
pays attention to the objects that are considered relevant by the system. The results of 
this implementation are described below. 

4.3   Results 

The first results of the implemented system are best described by a number of 
example snapshots of the outcomes of the system in three different situations over 
time (see Figure 7). 
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Fig. 7. Estimation of the participant’s attention division (left figures) and reaction of the system 
(right figures) in three different situations 

On the left side of Figure 7 the darker dots correspond to the system´s estimation 
of those contacts to which the participant is paying attention. On the right side of the 
figure, the darker dots correspond to those contacts where attention manipulation is 
initiated by the system (in this case, by increasing its saliency). On both sides of the 
figure a cross corresponds to the own ship, a star corresponds to the eye point of gaze, 
and the x- and y-axes represent the coordinates on the interface of the TPCT. In the 
pictures to the left, the z-axis represents the estimated amount of attention. The darker 
dots on the left side are a result of the exceedance of this estimation of a certain 
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threshold (in this case .03). Thus, a peak indicates that it is estimated that the 
participant has attention for that location. Furthermore, from top to bottom, the 
following three situations are displayed in Figure 7: 

1. After 37 seconds since the beginning of the experiment, the participant is not 
paying attention to region A at coordinates (7.5,1.5), while no attention 
manipulation for region A is initiated by the system. 

2. After 39 seconds, the participant is not paying attention to region A, while 
the attention should be allocated to region A, and therefore attention 
manipulation for region A is initiated by the system. 

3. After 43 seconds, the participant is paying attention to region A, while no 
attention manipulation for region A is done by the system, because this is not 
needed anymore. 

The output of the attention manipulation system and the resulting reaction in terms 
of the allocation of the participant’s attention in the above three situations, show what 
one would expect of an accurate system of attention manipulation. As shown in the 
two pictures at the bottom of Figure 7, in this case the agent indeed succeeds in 
attracting the attention of the participant: both the gaze (the star in the bottom right 
picture) and the estimated attention (the peak in the bottom left picture) shift towards 
the location that has been manipulated. 

5   Discussion 

An important task in the domain of naval warfare is the Tactical Picture Compilation 
Task:  the task to identify and classify all entities in the environment and determine 
the consequences in terms of tactical possibilities and constraints. However, due to 
the complex and dynamic nature of the environment, it is very difficult for a single 
human to perform this task adequately. Therefore, the current paper proposes to offer 
the person some support from an intelligent software agent that assists him in the 
Tactical Picture Compilation Task (TPCT). To this end, a number of models have 
been developed: 1) a dynamical system model for attention, 2) a reasoning model to 
generate beliefs about attentional states using the attention model for forward 
simulation, 3) a discrepancy assessment model, and 4) a decision reasoning model, 
again using the attention model, this time for backward desire propagation. This paper 
presented an initial version of such a supporting agent, focusing especially on the last 
two models, where the first two were adopted from earlier work in [5], [6], and [2]. 
This software agent is an example of a model-based intelligent ambient agent, as 
described in [3]. Within this type of agent an explicitly represented (dynamical 
system) model of human functioning plays an important role, for the case considered 
here the model of the human’s attention. Such a model forms a basis for the 
application of dedicated model-based reasoning methods, as was also illustrated here: 
forward simulation reasoning and backward desire propagation reasoning. 

After testing the system at a conceptual level by simulation, it has been 
implemented in a case study where participants have to perform a simplified version 
of the TPCT. Although no elaborated experimental validation has been performed as 
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yet, initial results indicate that the agent is indeed able to adapt the features of objects 
in such a way that they attract the human’s attention if necessary.  

Concerning future work, an important challenge would be to perform a more 
elaborated validation of the supportive system. This can be done is several steps. 
First, to obtain more data, the experiment introduced in this paper will be performed 
with a larger number of participants. The resulting data can then be used to check 
(possibly using automated analysis tools) whether the supporting agent is successful 
in various situations. As part of this validation, also different strategies and parameter 
settings will be tested. For example, does adapting the shape of an object provide 
better results than adapting its luminance, or adapting multiple features? Similarly, in 
addition to manipulation of bottom-up attention, is it useful to manipulate top-down 
attention as well? Furthermore, in a later stage of the project, it is planned to evaluate 
whether the software agent indeed improves the task performance of the user. 
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