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Preface

During the last decade, the French-speaking scientific community developed
a very strong research activity in the field of Knowledge Discovery and Man-
agement (KDM or EGC for “Extraction et Gestion des Connaissances” in
French), which is concerned with, among others, Data Mining, Knowledge
Discovery, Business Intelligence, Knowledge Engineering and Semantic Web.
This emerging research area has also been strongly stimulated by the rapid
growth of information systems and the web semantic issues.

The success of the first two French-speaking EGC Conferences in 2001 and
2002 resulted naturally in 2002 in the foundation of the International French-
speaking EGC Association1. The Association organizes since then regular
conferences and workshops with the aim of promoting exchanges between
researchers and companies concerned with KDM and its application in busi-
ness, administration, industry or public organizations.

The recent and novel research contributions collected in this book are ex-
tended and reworked versions of a selection of the best papers that were
originally presented in French at the EGC 2009 Conference held in Stras-
bourg, France on January 2009.

Structure of the Book

The volume is organized in four parts.

Part I includes five papers concerned by various aspects of supervised learn-
ing or information retrieval.

The first paper by Matthias Studer and his colleagues considers complex
objects such as state sequences for which we can compute pairwise dissim-
ilarities and proposes an original ANOVA-like approach for measuring the
information that a predictor provides about their discrepancy. The technique
can be extended in the form of a regression tree for complex objects, which
1 Association “Extraction et Gestion des Connaissances” (EGC), www.egc.asso.fr
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is convincingly demonstrated through an application on sequential data de-
scribing Swiss occupational trajectories.

Extension to multiple factors and as a tree structured analysis to find out
how covariates can explain the object discrepancy. Application to the study
of Swiss occupational trajectories.

In the second article, Nicolas Voisine, Marc Boullé and Carine Hue propose
a parameter free Bayesian approach to evaluate the overall quality of a deci-
sion tree grown from a large data base. This permits to transform the learning
problem into an optimization one consisting in searching the tree that op-
timizes the overall criterion. Extensive experimentation results demonstrate
that such optimal trees reach similar predictive performance as state-of-the-
art trees, while being much simpler and hence easier to understand.

Thanh-Nghi Do and his colleagues are interested in random forest ap-
proaches for very-high-dimensional data with dependencies. They introduce
a new oblique decision tree method with SVM-based split functions that work
on randomly chosen predictors. Comparative experiments show that the pro-
posed approach makes on very-high-dimensional data clearly better in terms
of precision, recall and accuracy than random forests of C4.5.

The contribution of Nguyen-Khang Pham and his associates deals with
large scale content-based image retrieval. The authors propose a solution
based on Correspondence Analysis (CA) of SIFT local descriptors and in-
troduce an original incremental CA algorithm that scales to huge databases.
Response time is further improved by accounting of contextual dissimilarities
during the search process. The efficiency of the proposed process is assessed
through a series of tests performed on a database of more than 1 million of
images.

In the last paper of this first group, Emanuel Aldea and Isabelle Bloch
examine structural representations of images for machine learning and image
categorization. Resorting to a graph representation in which edges describe
spatial relations, they derive metrics between images by means of a graph
kernel approach that explicitly accounts for spatial interactions. The authors
extend their approach to the case of fuzzy spatial relations and study its
behavior in the context of discriminative learning by means of a series of
experimentations.

Part II presents five papers concerned with unsupervised learning issues.
The first of them by Gilles Hubert and Olivier Teste proposes a new OLAP

operator in the context of multidimensional databases that proves very useful
to facilitate multigranular analyses. Multigranular analyses aim at looking at
the same data at different aggregation levels, which usually supposes to run
multiple analyses. The proposed tool permits to switch from one granularity
level to the other on the fly during the analysis.

The paper by Sébastien Lefèvre is concerned with image segmentation, an
issue that can be seen as a data clustering problem with spatial constraints.
Such problems are classically solved by running first a unconstraint clustering
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method and submitting then the results to additional spatial post-processing.
The author proposes here a new solution able to perform image segmentation
in a same single round of analysis.

Nistor Grozavu and his associates propose two Self-Organizing-Map-based
algorithms for the selection of relevant features through unsupervised
weighting. The proposed methods provide also as a byproduct the charac-
terization of clusters. The interest of the methods is demonstrated through
a series of experimental results.

The next paper by Guillaume Cleuziou deals with overlapping clustering
and presents two extensions of overlapping k-means (OKM). The first one
generalizes the k-medoids method to overlapping clustering and proves useful
in organizing non metric data from their proximity matrix. The second one,
suitable for metric data, is a weighted version of OKM that allows for non-
spherical clusters.

The last paper of this second group by Romain Bourqui and his co-authors
deals also with overlapping clusters but in a dynamic social network setting.
Such networks are modeled as graphs and the aim is to decompose it into
similar sets of nodes. The paper provides a very efficient algorithm that can
detect major changes in the network as it evolves over time.

Part III includes two papers on data streaming and two on security.
Nesrine Gabsi and colleagues present a new approach to build historical

summaries of data streams. It is based on a combination of sampling and
clustering algorithms. The benefit of this combination is empirically demon-
strated.

The paper by Lionel Vinceslas and associates is about the mining of se-
quential patterns in data streams for which it proposes an algorithm that
works online using a deterministic finite automaton as a summary structure.

The two next papers are about intrusion detection. Goverdhan Singh and
colleagues are concerned by the rate of false alarms in outlier-based intru-
sion detection systems. They attempt to reduce that rate by looking at the
repetition of intrusions from one system to another and propose solutions for
separating the outliers from the normal behavioursin a streaming environ-
ment and for comparing the outliers of two systems.

Nischal Verma and associates address the problem of intrusion detection
on Internet applications and propose a new secure collaborative approach.
The main advantage of the proposed method is both to detectnew attacks
by using information stored in different sites and to ensure that private data
will not be disclosed.

Part IV The last four papers are about ontologies and semantic.
The first one by Fayçal Hamdi and his co-authors proposes a two promis-

ing ontology-partitioning methods designed to take alignment objective into
account in the partitioning process.
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The paper by Farid Cerbah is concerned with the automatic construc-
tion of rich semantic models or ontologies from relational databases. An im-
portant limitation of such automatic processes is that that they most often
end up with flat models that simply mirror the definition schemas of the
source databases. The paper shows how relevant categorisation patterns can
be identified within the data by combining lexical filtering and entropy-based
criteria.

The article by Alina Dia Miron and her associates is concerned with formal
languages for describing ontologies. It considers OWL Description Logic for
which it adapts semantic analysis techniques that permit to exploit individ-
ual spatio-temporal annotations to limit the scope of the queries and thus
increase efficiency.

The last paper by Alain Lelu and Martine Cadot attempts to find links and
anti-links between presence-absence attributes. By mean of a randomization
approach the proposed method checks if the co-occurrences in a series of
randomized data sets is significantly above (anti-link) or below (link) than the
co-occurrences in the original data set. The scope of the method is illustrated
on a collection of texts.
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Discrepancy Analysis of Complex Objects Using
Dissimilarities

Matthias Studer, Gilbert Ritschard, Alexis Gabadinho, and Nicolas S. Müller

Abstract. In this article we consider objects for which we have a matrix of dis-
similarities and we are interested in their links with covariates. We focus on state
sequences for which pairwise dissimilarities are given for instance by edit distances.
The methods discussed apply however to any kind of objects and measures of dis-
similarities. We start with a generalization of the analysis of variance (ANOVA) to
assess the link of complex objects (e.g. sequences) with a given categorical vari-
able. The trick is to show that discrepancy among objects can be derived from the
sole pairwise dissimilarities, which permits then to identify factors that most reduce
this discrepancy. We present a general statistical test and introduce an original way
of rendering the results for state sequences. We then generalize the method to the
case with more than one factor and discuss its advantages and limitations especially
regarding interpretation. Finally, we introduce a new tree method for analyzing dis-
crepancy of complex objects that exploits the former test as splitting criterion. We
demonstrate the scope of the methods presented through a study of the factors that
most discriminate Swiss occupational trajectories. All methods presented are freely
accessible in our TraMineR package for the R statistical environment.

Keywords: Distance, Dissimilarities, Analysis of Variance, Decision Tree, Tree
Structured ANOVA, State Sequence, Optimal Matching.

1 Introduction

The analysis of dissimilarities is used in a wide range of areas. It includes biol-
ogy with the analysis of genes and proteins (sequence alignment), ecology with the
comparison of ecosystems, sociology, network analysis where similarity is a central

Matthias Studer · Gilbert Ritschard · Alexis Gabadinho · Nicolas S. Müller
Department of Econometrics and Laboratory of Demography, University of Geneva,
Switzerland
e-mail: matthias.studer@unige.ch

F. Guillet et al. (Eds.): Advances in Knowledge Discovery and Management, SCI 292, pp. 3–19.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010



4 M. Studer et al.

notion or the automatic analysis of texts to name just a few. When analyzed ob-
jects are not directly measurable or complex, such as sequences or ecosystems
for instance, it may be convenient to think in terms of dissimilarities between ob-
jects. Having such dissimilarities, it is customary to perform a cluster analysis to
get a reduced number of groups for facilitating interpretation. Once the groups are
identified, it is common practice to measure the relationship between these objects
and other variables of interest by using, for instance, association test or logistic
regression.

However, by focusing on clusters we loose indeed information, which may lead
to unfair conclusions, particularly for borderline objects. Similarly, it is possible
that some associations become less significant through this reduction of informa-
tion. The latter is not controlled and grouping choices, usually made on statistical
ground, may hide others alternatives that might show more interesting associations
with some explanatory factors.

In this article we present a set of methods to analyze dissimilarities directly, i.e.
without any prior clustering. They will allow us to measure the relationship between,
on the first hand, one or more covariates and, secondly, objects described using
dissimilarities. We begin by studying the link with a single variable building on the
test introduced by Anderson (2001). We extend then the analysis by introducing a
new test of the homogeneity of object discrepancy and propose, for the case of state
sequences, a new way to display the results. As a second step, we present the method
from McArdle and Anderson (2001) which enables us to include several variables
at the same time. Finally, we introduce a method based on induction trees that leads
to a better interpretation of the results. The method is similar to the one presented
in Geurts et al. (2006) but is more general since it is not limited to distances that
can be expressed as kernels. The criteria is also similar to the one used by Piccarreta
and Billari (2007) in an unsupervised setting. Finally, we give a short overview on
how to perform the presented methods in R by means of TraMineR. The scope
of the discussed methods is illustrated throughout the article by applying them on
occupational trajectory data.

2 The Illustrative Data Set

Let us start with a short application issue that will serve as illustration throughout
this article. We consider the study of occupational trajectories and expose the prob-
lematic so that examples and their interpretations will be clearer for the reader. We
are interested in the construction of professional trajectories and factors that may in-
fluence it. We focus on the study of working rates following the work of Levy et al.
(2006). We know that, while men’s trajectories are relatively homogeneous and ex-
hibit three main phases, namely “education”, “full time work” and “retirement”,
those of women are much more varied. Thus, their average curve of working rates
has a camel shape with a decrease in working rate when children are very young
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and a recovery thereafter. This average curve results however from very distinct
trajectories. Some women stop working completely or reduce their working rates
and then some of them return to work while others do not. In addition, some women
go back and forth between work and at home activity.

Besides the effects of sex on the trajectories, we are interested in testing the dif-
ferences in trajectories between generations (2 categories), family types — number
of children (4 cat.) and marital status (4 cat.) — and socio-economic situations —
father social status (10 cat.), income (4 cat.) and education (3 cat.). We are also in-
terested to test whether trajectories of younger generations are significantly more
diverse than those of older ones, and thus show a pluralization of trajectories.

To answer these questions, we use the data from the biographical retrospective
survey conducted by the Swiss Household Panel1 in 2002. We know, for each in-
dividual and every year, his occupational situation distinguishing between the fol-
lowing states: full time work, part-time work, negative break (eg., unemployment),
positive break (eg., travel), at home and training. We focus on the period between
ages 25 and 40 which is the key period regarding professional career deployment.
We retain all cases without missing data, that is 1560 trajectories. Since all retained
individuals are aged 40 at the survey time they are all born before 1962.

3 Measuring Association Using Dissimilarities

We now present a method based on the ANOVA principle to evaluate the association
between, on the one hand, objects characterized by a matrix of dissimilarities and,
secondly, a categorical variable. We take as a starting point the method introduced by
Anderson (2001) for analyzing ecosystems. We retain the more geometric approach
of Batagelj (1988) in its generalization of the Ward criterion. Finally, we apply these
methods on our example.

3.1 General Principles

Following the ANOVA principles, we seek to determine the part of the variance that
is “explained” by a given partition. The ANOVA is based on the notion of “sum of
squares” that is the sum of the squared Euclidian distances between each value and
the mean. This sum of squares, or inertia, can also be expressed as the average of
the pairwise squared Euclidian distances (d2

e,i j). These relationships are formalized
by Eq. (1).

SS =
n

∑
i=1

(yi− ȳ)2 =
1

2n

n

∑
i=1

n

∑
j=1

(yi− y j)2 =
1
n

n

∑
i=1

n

∑
j=i+1

d2
e,i j (1)

1 http://www.swisspanel.ch
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The concept of sum of squares can be generalized to other dissimilarity measures in
two alternative ways. Anderson (2001) proposes to replace the Euclidian distance
de,i j in Eq. (1) with any possibly non-Euclidian measure of dissimilarity di j yielding:

SS∗∗ =
1
n

n

∑
i=1

n

∑
j=i+1

d2
i j (2)

However, we prefer to substitute the non-Euclidean dissimilarity di j for the squared
Euclidean distance d2

e,i j rather than for the distance itself as proposed by Batagelj
(1988). We argue shortly for this choice in Sec. 3.2 below. The retained generaliza-
tion of SS reads thus:

SS∗ =
1
n

n

∑
i=1

n

∑
j=i+1

di j (3)

We use this expression for measuring the discrepancy of our complex objects. In-
deed, using SS = SS∗ in the definition s2 = 1

n SS of the sample variance we get a
fairly intuitive measure of the object discrepancy. Since the variance is theoretically
defined for Euclidean distances, we prefer the term “discrepancy” for this more gen-
eral setting. Interestingly, the discrepancy s2 is equal to half the average pairwise
dissimilarity, that is:

s2 =
1

2n2

n

∑
i=1

n

∑
j=1

di j (4)

When generalizing the notion of sum of squares to non-Euclidean measures of dis-
similarity, the Huygens theorem, Eq. (5), that states that the total sum of squares
(SST ) is the between sum of squares (SSB) plus the residual within sum of squares
(SSW ) remains valid (Batagelj, 1988).

SST = SSB + SSW (5)

We can thus apply the analysis of variance (ANOVA) machinery to our complex
objects.

The terms in Eq. (5) can all be derived from formula (3). The total sum of squares
(SST ) and the within sum of squares (SSW ) are computed directly with formula (3),
SSW being simply the sum of the within sums of squares of each subgroup. The
between sum of squares SSB is then obtained by taking the difference between the
SST and SSW . Using Eq. (5) we can assess the share of discrepancy explained by a
categorical or discretized continuous variable. In the spirit of ANOVA, this reduc-
tion of discrepancy is due to a difference in the positioning of the gravity centers
(or centroids) of the classes. This interpretation holds for any kind of distance even
though the concept of class center is not clearly defined for complex non numeric
objects (Batagelj, 1988). It is likely that the gravity centers will not belong to the
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object space, exactly as the mean of integer values may be a real non integer value.
Hence, conceptually, we look for the part of the discrepancy that is explained by
differences in group positioning and we measure this part with the R2 formula (6).
Alternatively, we may consider the F that compares the explained discrepancy to
the residual discrepancy. The F formula is given in Eq. (7), where n is the number
of cases and m the number of parameters.

R2 =
SSB

SST
(6)

F =
SSB/(m−1)
SSW /(n−m)

(7)

The statistical significance of the association, i.e. of the explained part of discrep-
ancy cannot be assessed with the F test as in classical ANOVA. Indeed, the F statis-
tic (7) does not follow a Fisher distribution with our complex objects for which
the normality assumption is hardly defendable. We consider therefore a permuta-
tion test (Anderson, 2001; Moore et al., 2003). This test works as follows. At each
step we change the complex object assigned to each case by means of a randomly
chosen permutation, which is equivalent to jointly permute the content of the rows
and columns of the distance matrix. We thus get a Fperm value for each permuta-
tion. Repeating this operation p times we end up with an empirical non parametric
distribution of F that characterizes its distribution under independence, i.e. assum-
ing the objects are assigned to the cases independently of their profile in terms of
explanatory factors. From this distribution, we can assess the significance of the ob-
served Fobs statistic by evaluating the proportion of Fperm that are higher than Fobs. It
is generally admitted that 5000 permutations are necessary to assess a significance
threshold of 1% and 1000 for a threshold of 5%.

3.2 Generalization Conditions

As mentioned above, we can generalize Eq. (1) either by substituting the dissimilar-
ity d for the Euclidean distance de or for its square d2

e . In this subsection, we justify
our preference for the latter solution, i.e. equation (3). Firstly, in the Euclidian case,
the second equality in Eq. (1) which links the sum of deviations to the mean to
the sum of pairwise differences follows from properties of signed deviances and
pairwise differences which do not hold for unsigned distances. Secondly, with this
choice, the non negativity of the contribution of any object to the total discrepancy
automatically results when the dissimilarity satisfies the triangle inequality.

In the Euclidian case, the equality (1) can be established by showing first the
following result (Späth, 1975):

n

∑
i=1

(yi− x)2 =
n

∑
i=1

(yi− ȳ)2 + n(ȳ− x)2 (8)
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Indeed, we have:

yi− x = (yi− ȳ)+ (ȳ− x) (9)

(yi− x)2 = (yi− ȳ)2 + 2(yi− ȳ)(ȳ− x)+ (ȳ− x)2

n

∑
i=1

(yi− x)2 =
n

∑
i=1

(yi− ȳ)2 + n(ȳ− x)2 + 2
n

∑
i=1

(yi− ȳ)(ȳ− x) (10)

Since, ∑n
i=1(yi − ȳ) = 0, the last term in (10) vanishes which yields Eq. (8). The

equality (1) results then by setting x = y j in (8) and summing over j = 1, · · · ,n.
Clearly, equality (9) does not hold if we replace differences yi−x, yi− ȳ and ȳ−x

with non negative dissimilarities. Likewise, the last term in (10) would not vanish
with non negative dissimilarities. Using the second solution (3), we do not have to
care about the deviation between objects. We just postulate that there exists a signed
deviation measure in the object space.

We now turn to our second argument regarding the contribution of an object
x to the total discrepancy. This contribution dxg̃ can be seen as the dissimilarity
between x and its (possibly virtual) gravity center g̃. Using the same scheme (3) of
generalization, it can be obtained by substituting dxg̃ to (ȳ− x)2 in Eq. (8) and by
isolating this term, which yields (Batagelj, 1988):

dxg̃ =
1
n

( n

∑
i=1

dxi−SS
)

=
1

2n2

n

∑
i=1

n

∑
j=1

(
2 ·dix−di j

)
(11)

This contribution to the discrepancy is non negative when the dissimilarity measure
respects the triangle inequality. Indeed, according to Eq. (11), dxg̃ is minimal when
each di j is maximal. Under the triangle inequality di j cannot exceed dxi + dx j and
hence, dxg̃ reaches its minimum when di j = dxi +dx j for all i and j. This minimum is
zero which implies dxg̃ ≥ 0. The non negativity of the contribution of x cannot be de-
duced from the triangle inequality property of the dissimilarity if we use definition (2)
of SS, i.e. if we replace the squared Euclidean distance with the squared similarity.

With the retained approach, negative contributions to the discrepancy can occur
with semi-metric dissimilarities, that is when the triangle inequality does not hold.
The “dissimilarity” dxg̃ becomes negative when adding x reduces the discrepancy
between the other objects. This can be the case when the distance between two objects,
say y and z, becomes shorter when we can pass through x, i.e. when dyz > dyx + dxz.
Such situation is quite usual in social network analysis. For instance, let us consider a
social network between x, y and z where the dissimilarity is equal to 1 for two people
that meet often and is equal to 10 when they never meet. The dissimilarity dxg̃ would
then be negative if x often meets y and z while y never meets z. From a social network
perspective, we would say that x plays a cohesive role in the network.

Though a negative contribution to the discrepancy makes sense for social net-
works, it is not the case for most applications. Hence, the results should be
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interpreted with caution when the dissimilarity measure is only semi-metric. In par-
ticular, one should be ready to admit and give sense to negative contributions to the
discrepancy.

3.3 Application

We now illustrate the proposed test on our example data about the study of occupa-
tional trajectories. We use optimal matching (OM) for measuring the dissimilarities
between trajectories that are indeed represented as state sequences. The OM dis-
similarity, also known as the edit distance, is the minimal cost of transforming one
sequence into the other using two types of transformation operations, namely indel
(insert or delete) and substitution of elements. The transformation cost is determined
by assigning indel and substitution costs. For our example, we computed the OM
distances with an indel cost set to 1 and substitution costs at 2. Notice that the OM
dissimilarity respects the triangle inequality. Indeed, dissimilarity being the minimal
cost for transforming a sequence y into z, we necessarily have dyz ≤ dyx + dxz.

The discrepancy of the occupational trajectories of the whole data set is 0.501
which is equal to half of the average edit distance (1.02). It is 0.118 for men and
0.614 for women indicating that women’s trajectories exhibit wider variety.

Table 1 summarizes the results of the discrepancy analysis for the whole popula-
tion as well as for men and women separately. In each case we considered individ-
ually each of the available predictive factors. The p-values of the tests are based on
1000 permutations.

Table 1 Association test with occupational trajectories

Total Men Women
Variable F R2 Sig F R2 Sig F R2 Sig

Sex 477.995 0.235 0.000
Father soc. status 1.578 0.009 0.029 2.085 0.026 0.005 1.205 0.013 0.163
Income 1.349 0.003 0.182 3.086 0.013 0.006 3.553 0.013 0.000
Education 18.486 0.023 0.000 20.632 0.054 0.000 6.287 0.015 0.000
Cohort 17.037 0.011 0.000 6.330 0.009 0.001 14.911 0.018 0.000
Children 13.704 0.026 0.000 1.006 0.004 0.391 25.740 0.085 0.000
Marital status 9.744 0.018 0.000 1.783 0.007 0.047 18.078 0.061 0.000

Not surprisingly, sex explains the biggest part of the discrepancy of trajectories
with a R2 that reaches 0.235. In other words, the sex variable explains 23.5% of
the discrepancy. The relationship is statistically significant since the Fobs = 477.995
was never attained amongst the thousand permutations. As for the other covariates,
results show that the Father’s social status and Education impact primarly male tra-
jectories while women’s trajectories are more strongly influenced by familial factors
such as the number of children and the marital status. than female trajectories.
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In summary, these first results show that the occupational trajectory is signif-
icantly influenced by most of the considered predictive variables. From the high
significance of the significance tests, differences in the positioning of the gravity
centers of groups of sequences clearly exist. Nevertheless, it is difficult to under-
stand and interpret these differences at this stage.

Fig. 1 Differences of trajectories according to sex

Figure 1, which presents a new way of displaying the differences between groups
of sequences, should help interpretation. The first two charts show men and women
trajectories using index-plots (Scherer, 2001). In these figures, each sequence is
represented by a time line split into segments colored according to the corresponding
occupational state.

To improve readability of the index-plots, we ordered the sequences according
to the first dimension of a PCA (Principal Coordinate Analysis) (Gower, 1966). If
ordering sequences by an underlying dimension facilitates the interpretation of the
index-plot, the plots provide conversely useful information for interpreting the PCA
axis. For instance, we observe in our case that the sequences are organized in a
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continuum ranging from full-time trajectories to trajectories where we stay at home
during the whole sequence. The axis can thus be read as a Full-time - At home axis.

The final chart exhibits the evolution of the strength of association between the
categorical covariate and a sliding two period long sub-sequence of the trajectory.
For each unit of time, we extracted a sub-sequence of two consecutive states for
which we calculated the distance matrix and the share of discrepancy explained
by the covariate. This representation helps at identifying the periods over which the
sequences are most differentiated by gender. It appears that gender differences reach
their peak around 35 years old.

4 Homogeneity of Discrepancy

In some situations, it may be of interest to test whether the discrepancies within
the groups differ significantly. From a geometric point of view, we are interested in
measuring differences in the diameter of the distribution of sequences within each
group. In classical analysis of variance, we could use a Bartlett’s test (Snedecor
and Cochran, 1989) that supposes equal variances under H0 or, in other words, the
homogeneity of variances. This test is based on the statistical distribution of the
statistic T defined by Eq. (12), where s2

i stands for the discrepancy within group i.
All terms in this equation can be calculated with the formulas already introduced.
As for the F , it is not possible in our non-Gaussian case to assume that this statistic
T has a known distribution. We use therefore again permutation tests to assess the
significance of differences in discrepancy.

T =
(n−m) ln

(
∑m

i=1
(ni−1)
(n−m) s2

i

)−∑m
i=1(ni−1) ln(s2

i )

1 + 1
3(m−1)

[
∑m

i=1
1

ni−1 − 1
n−m

] (12)

In the previous section, we found that men’s discrepancy is 0.118 against 0.614 for
women. This relatively high difference is confirmed by the Tobs which is 460.017,
a value that was attained by none of the thousand permutations. This allows us to
state that the discrepancies differ significantly with the sex of the respondent. More
interestingly from a sociological point of view, the discrepancy of the people born
after 1945 is significantly higher than those born earlier. We thus have clear evidence
that the diversity of occupational trajectories increased for younger generations.

5 Multi-factor Discrepancy Analysis

In Sec. 3.3 we examined the bivariate association between the trajectory and
each of the covariates considered independently. We consider here the general-
ization to the multi-factor case and adopt for that the framework of the general
multivariate analysis of variance. Several authors have considered such analyses
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from pairwise distances (Excoffier et al., 1992; Gower and Krzanowski, 1999; An-
derson, 2001; Zapala and Schork, 2006). We adopt the approach and formalism of
McArdle and Anderson (2001) who conducted a multi-factor analysis of ecosystems
on the bases the pairwise semi-metric distance of Bray-Curtis. However, as for the
simple discrepancy analysis and unlike McArdle and Anderson (2001) we substitute
the pairwise dissimilarity measure for the squared Euclidean distance rather than for
the distance itself.

Formally, we consider the multivariate regression model: Y = Xβ+ε , where Y is
the n×t matrix with n observed values of t response variables and X the n×m matrix
with the values of m predictors including a first column of ones corresponding to the
constant.

In the Euclidean case, the sum over the t response variables of their sums of
squares can be derived by means of the same Gower matrix as that used in PCA
(Gower, 1966). Similarly to McArdle and Anderson (2001), we generalize this anal-
ysis to any type of dissimilarities. Let 1 be a vector of ones of length n, I the identity
matrix and A a matrix with generic element ai j = − 1

2 di j, where di j is the dissimi-
larity between cases i and j, which we substitute for the squared Euclidean distance
in the original Gower’s formulation. The Gower matrix reads as follows

G =
(

I− 1
n

11′
)

A
(

I− 1
n

11′
)

(13)

with in our case a matrix A that results from the available pairwise dissimilarities.
The total sum of squares SST is equal to the trace of G. McArdle and Anderson
(2001) show that the explained sum of squares SSB and the residual sum of squares
SSW can be written as

SSB = tr
(
HGH

)
(14)

SSW = tr
[(

I−H
)
G
(
I−H

)]
(15)

where H = X(X′X)−1X′ is the idempotent matrix usually known as “hat” matrix in
linear regression. Using these two quantities we can derive a global pseudo-R2 and a
global pseudo-F statistic by applying Eqs. (6) and (7). Formula (14) and (15), how-
ever, allow us to account of any number of covariates and specifically of categorical
factors through their contrast or indicator coding.

As in the single discrepancy analysis, the F distribution is not relevant for the
pseudo-F and we consider again permutations tests for assessing its significance.

We may also consider the contribution of each covariate to the total discrepancy
reduction. As with multi-factor ANOVA there are different ways of looking at these
individual contributions. Shaw and Mitchell-Olds (1993) distinguish for instance a
Type I and a Type II method. Type I is incremental. Covariates are successively
added to the model and the contribution of each covariate is measured by the SSB

increase that results when it is introduced. With this method the measured impact of
each factor depends on the order in which they are introduced. With Type II, known
to be robust in the absence of interaction effects, the contribution of each covariate
is measured by the reduction of SSB that occurs when we drop it out from the full
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model, i.e. from the model with all covariates. We retain this second method and
hence compute the following F for each covariate v

Fv =
(SSBc −SSBv)/p
SSWc/(n−m−1)

(16)

where the SSBc and SSWc are the explained and residual sums of squares of the full
model, SSBv the explained sum of squares of the model after removing variable v,
and p the number of indicators or contrasts used to encode the covariate v.

Let us look at what this gives for our illustrative example. Table 2 shows the
results for two models, the complete model with all variables and a model obtained
after removing non significant covariates through a backward stepwise process.

Table 2 Multi-Factor Discrepancy Analysis

Full Model Backward Model
Variable Fv ΔR2

v Sig Fv ΔR2
v Sig

Sex 477.196 0.218 0.000 488.627 0.224 0.000
Education 8.230 0.008 0.000 10.986 0.010 0.000
Income 0.868 0.001 0.542
Father’s soc. status 1.167 0.005 0.241
Cohort 11.586 0.005 0.000 13.670 0.006 0.000
Children 9.887 0.014 0.000 10.313 0.014 0.000
Marital status 4.621 0.006 0.000 5.073 0.007 0.000

Ftot R2
tot Sig Ftot R2

tot Sig

Global 29.557 0.297 0.000 63.602 0.291 0.000

From the global statistics, the set of covariates provide overall significant infor-
mation about the diversity of occupational trajectories.

In the full model, the sex remains the most significant covariate. If we remove
this variable, the R2 of the model (= 0.297) decreases by 0.218. This difference is
significant since we have Fsex = 477.196, a value never attained with a thousand
permutations. On the contrary, the income is for instance not significant. Removing
it from the model reduces the R2 by only 0.001 and results in a Fincome value of
0.868, which was exceeded for 0.542 · 1000 = 542 of the thousand permutations.
Likewise, the father’s social status loses its significance in the multi-factor case.
Indeed, it becomes non-significant as soon as we control for the education level,
these two variables being strongly correlated and education being more significant.

The multi-factor approach provides information about the proper effect of the
covariates on the occupational trajectory, that is the part of the its total effect that
is not accounted for by already introduced factors. It is in that sense complemen-
tary to the single univariate discrepancy analysis that informs on the raw effect of
each covariate. Nevertheless, while the method permits us to know which effects
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are significant, it does not tell us much about what the effects are, i.e. about how
occupational trajectories may change with the value of the covariates. We propose
for that a tree approach which can be seen as an extension of the graphical display
shown in Fig. 1.

6 Tree Structured Analysis

This section introduces a new method based on the principle of induction trees for
analyzing the discrepancy of objects described by a dissimilarity matrix. Induction
trees work as follows (Breiman et al., 1984; Kass, 1980). They start with all indi-
viduals grouped in an initial node. Then, they recursively partition each node using
values of a predictor. At each node, the predictor and the split are chosen in such a
way that the resulting child nodes differ as much as possible from one another or
have, more or less equivalently, lowest within discrepancy. The process is repeated
on each new node until some stopping criterion is reached.

Recursive partitioning is known to provide an easily comprehensible view of
how each newly selected covariate nuances the effect of covariates introduced at
earlier levels. This requires indeed to display suitable information about the distri-
bution in each node. We could represent the centrotype, i.e. the observed object that
minimizes the dissimilarity (11) with the group gravity center. It would be more in-
structive to also render the within group discrepancy. Though this is not obvious for
any kind of complex objects, displaying index-plots as those used in Fig. 1 provides
a good solution for state sequences.

Beside the displayed node content, the originality of our approach resides in the
use of a splitting criterion derived from the pairwise dissimilarities, namely the uni-
variate pseudo-R2 that we described in Sec. 3. We select thus at each node the
predictor and binary split for which get the highest pseudo-R2, i.e. the split that
accounts for the greatest part of the object discrepancy. An alternative would be
to use the significance of the univariate pseudo-F. However, since this significance
must be determined through permutation tests we would end-up with an excessive
time complexity if we had to repeat it for each predictor and possible split. We con-
sider therefore the F significance only as a stopping criteria, i.e. we stop growing a
branch when we get a non-significant F for the selected split. This requires to run
the permutations only once at each node, which remains tractable.

Using the pseudo-R2 as splitting criterion condemns us to build binary trees.
Indeed, the R2 does not penalize for the number of groups and would hence always
select the maximal number of groups if we allowed n-ary splits. The R2 adjusted for
the number of groups as it is used in multiple regression would not be a satisfactory
solution since it is known to insufficiently penalize complexity. On the other hand,
information criteria such as the BIC seem hardly derivable in our setting where we
do not know the distribution of our statistics (R2, F or SSW ) under the independence
hypothesis.

It is worth mentioning that our tree building procedure resembles that proposed
in Geurts et al. (2006). However, our formulation is more general since it works
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with any kind of metric and non metric dissimilarities, while Geurts et al. (2006)’s
solution is restricted to dissimilarities that can be derived through the kernel trick.
For growing a tree from semi-metric dissimilarities we should indeed be ready to
accept and give sense to possible negative contributions to the variance.

Before looking at the example, let us add a few words about computational as-
pects. First, we can highlight that it is not necessary to recompute SSW from scratch
for each possible binary split that can be derived from a same predictor. Our algo-
rithm makes use of partial results first collected into a symmetric m×m matrix E,
where m is the number of different observed values of the predictor. Each element
ek� of E is defined as ek� = ∑i∈k∑ j∈� di j, that is as the sum of dissimilarities be-
tween on the one hand, cases that take the k-th value of the predictor and, on the
other hand, those that take the �-th value. The residual sum of squares for a group
of values G is then equal to SSG,res = 1

nG
(∑k∈G∑�≥k,�∈G ek�). Reusing this way the

same partial sums of dissimilarities may save a great amount of computation time
especially for categorical predictors with few different values.

Secondly, we may exploit the fact that the R2 can only decrease when merg-
ing categories. From matrix E we can compute the R2

ori that measures the part of
discrepancy explained by the predictor in its original form, i.e. with all its distinct
values. It then follows that this R2

ori is an upper bound for the best R2 that would
result from a binary split based on the considered predictor. Hence, when the R2

ori
of the current predictor does not exceed the R2 of the previously found best split, it
becomes unnecessary to test the splits for the current predictor.

The global quality of the tree can be assessed through the association strength be-
tween the objects and the leaf (terminal node) membership. The global multi-factor
pseudo-F gives us a way of testing the statistical significance of the obtained seg-
mentation and the global pseudo-R2 the part of the total discrepancy that is explained
by the tree.

Figure 2 shows the dissimilarity tree grown for our example of occupational tra-
jectories. The used stopping criteria are a p-value of 1% for the F test, a minimal
leaf size of 100 and a maximal depth of 5. In each node we see the plot of the
individual sequences as well as the node size and the discrepancy within the node
(var). At the bottom of each parent node we indicate the retained split predictor with
the associated R2 while the definition of the binary split may be inferred from the
indication at the top of the child nodes.

The overall tree R2 is 0.302, which is higher than for the models in Table 2. The
tree has thus a better explanatory power. We get this higher value by retaining only
4 predictors against 5 for the backward model. This may be explained by interac-
tion effects that the tree automatically accounts for and that were not considered in
the multi-factor discrepancy analysis. We thus can point out here that birth cohort
and number of children interact in their effect on female occupational trajectories
while birth cohort interacts with education in their effect on men trajectories. This
automatic detection of interaction is indeed a fundamental property of all induction
trees.

By looking at the displayed individual sequences, we are now able to gain knowl-
edge about what the effect of the predictors are. Clearly, men are characterized by



16 M. Studer et al.

training
at home
negative break
positive break
full time work
part−time work

Fig. 2 Regression tree based on pairwise dissimilarities between sequences

full time trajectories while part time and at home are typically found in women’s
trajectories. Among men, the choice of part-time seems to be related with higher
education. For women, occupational trajectories are more diversified. Those who
had at least one child have higher chance to experience part time work when they
were born after 1945. This birth cohort effect is, however, less pronounced among
those women who had more than two children.

7 Discrepancy Analysis in R with TraMineR

The methods presented in this article are all implemented in TraMineR (Gabadinho
et al., 2009) our free package for the R statistical environment (R Development Core
Team, 2008). We shortly show here how simple it is to use them. Assume that we
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have the following R objects defined in our environment: dm a matrix of dissimilar-
ities between cases, mydata a data.frame with the covariates and mysequences an
object containing the state sequences.

Univariate discrepancy analysis and test for homogeneity of discrepancy is per-
formed by calling the dissassoc function. This function takes three arguments: a
dissimilarity matrix, a factor and the number of permutation (R = 1000 by default).
The results presented in Sec. 3 were obtained with the following code:

R> dissassoc(dm, group = mydata$sex, R = 1000)

Likewise, we generated the bottom part of Fig. 1 by means of function seqdiff with
the code below.

R> mysequences.diff <- seqdiff(mysequences, group = mydata$sex)
R> plot(mysequences.diff)

The multi-factor results given in Table 2 were obtained with the dissmfac function.
The model is specified with a classical R formula in which the left hand side is
the dissimilarity matrix. The data argument specifies the data.frame containing the
covariates.

R> dissmfac(
+ dm ~ sex + cohort + education + fathsoc + income + children + marital,
+ data = mydata, R = 1000)

Tree structured analysis of dissimilarities is carried out with the disstree function.
The dissimilarity matrix and the predictors are passed to the function in the same
way as in dissmfac. Stopping criteria can be set with the following arguments: min-
Size for the minimum node size, maxdepth for the maximum tree depth and pval
for the minimum required p-value. The R option permits to control the number of
permutations used for computing the significance.

R> mytree <- disstree(
+ dm ~ sex + cohort + education + fathsoc + income + children + marital,
+ data = mydata, minSize = 100, maxdepth = 5, R = 1000, pval = 0.01)
R> print(mytree)

The resulting tree can then be plotted by calling the dot program of GraphViz2,
which is an open source graph visualization software (Gansner and North, 1999).
Assuming GraphViz is on the path, we get a tree similar to that of Fig. 2 but with
density plots instead of the index-plots just with the steps below. The plot is gener-
ated in file mytree.dot.svg.

R> seqtree2dot(mytree, filename = "mytree", seqs = mysequences,
+ plottype = "seqdplot")
R> shell("dot -Tsvg -O mytree.dot")

2 http://www.graphviz.org/
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8 Conclusion

The aim of this article was to propose tools for investigating how complex objects
characterized by their pairwise dissimilarities are related to covariates or predictive
attributes. The methods proposed are inspired from the classical ANOVA frame-
work. The basic trick consists in extending results that express the classical sum
of squares SS in terms of pairwise squared Euclidean distances to the case of any
possibly non metric dissimilarity. We designate this general setting as discrepancy
analysis. We proposed first a pseudo-R2 and a pseudo-F test for the univariate case
in which each covariate is examined separately. For this same univariate case we
discussed also a way of testing the homogeneity of the discrepancies among groups.
We then discussed the multi-factor case where we assess the impact of a covariate
by controlling for the effect of the other factors. Eventually, we introduced an origi-
nal tree structured method for discrepancy analysis. For both the univariate and tree
structured settings we considered also the question of depicting the effect of the co-
variates. The difficulty is here to find a suited way of representing the distribution of
the objects. We showed that index-plots prove useful when objects are of state se-
quences. However, more general solutions that could be used for any type of objects
would here be necessary and we are presently working on that.

The work presented leaves certainly place to improvements on several aspects.
For instance, we plan to further explore alternatives to the R2 splitting criteria used
in dissimilarity trees. We are looking for a way to use p-values of pseudo-F statistics
and for a penalized criteria that would permit n-ary splits.

Acknowledgements. This work is part of the Swiss National Science Foundation research
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A Bayes Evaluation Criterion for Decision Trees

Nicolas Voisine, Marc Boullé, and Carine Hue

Abstract. We present a new evaluation criterion for the induction of decision trees.
We exploit a parameter-free Bayesian approach and propose an analytic formula
for the evaluation of the posterior probability of a decision tree given the data. We
thus transform the training problem into an optimization problem in the space of
decision tree models, and search for the best tree, which is the maximum a pos-
teriori (MAP) one. The optimization is performed using top-down heuristics with
pre-pruning and post-pruning processes. Extensive experiments on 30 UCI datasets
and on the 5 WCCI 2006 performance prediction challenge datasets show that our
method obtains predictive performance similar to that of alternative state-of-the-art
methods, with far simpler trees.

Keywords: Decision Tree, Bayesian Optimization, Minimum Description Length,
Supervised Learning, Model Selection.

1 Introduction

Building decision trees from training data is a problem which has begun to be treated
in 1963 by Morgan and Sonquist. The first method is a regression tree which predicts
a numerical variable (Morgan and Sonquist, 1963). Following this seminal work,
the decision trees and regression trees problem of building has long been popular in
machine learning.

Decision tree is a predictive model of a categorical variable and regression tree is
a predictive model of a numerical variable. We may refer to the overviews Kohavi
and Quinlan (2002), Breiman et al. (1984); Murthy (1998); Breslow and Aha (1997)
for more details about the main decision-tree methods.
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A decision tree is a classifier expressed as a hierarchical partition of the learning
space. The partitions are represented by connected nodes. A node having children
is called internal node and is defined by a segmentation rule. Other nodes are called
leaves and represent a decision process by assigning the majority class to each in-
stance of the node. The two first referenced algorithms are CHAID (Kass, 1980)
and ID3 (Quinlan, 1986). However, the CART (Breiman et al., 1984) and C4.5
(Quinlan, 1993) decision trees are the benchmark methods with the highest reported
performance.

The induction of an optimal decision tree from a data set is NP-hard (Naumov,
1991). Thus, learning the optimal decision tree requires exhaustive search and is
limited to very small data sets. As a result, heuristic methods are required to build
decision trees. These methods could be divided into two groups: global and top-
down. The last group has the academic preference and referenced decision trees use
top-down heuristics.

There are two kinds of top-down decision trees. First ones are based on a pre-
pruning procedure (cf. CHAID and ID3), partitioning at each level of the tree the
training (sub) set into subsets according to a selected segmentation variable. The
choice of the variable among all the variables is made according to a segmenta-
tion criterion which provides the best partition. The procedure starts at the root of
the tree and stops at the terminal nodes (leaves) when the criterion can no more be
improved. The choice of the variable, the number of segments and the definition
of the segmentation characterize the process of segmentation. The segmentation
for numerical variables is called discretization and the segmentation for categori-
cal variables is called grouping. There is not usually a global criterion to optimize
segmentation process; each node splitting is optimized regardless of the others. The
main decision trees (ID3, CHAID, CART, and C4.5) exploit a criterion based on
information theory or statistical decision theory for evaluating segmentation. For
example, C4.5 uses the gain ratio measure based on entropy, CART uses the Gini
Index based on information gain measure and CHAID uses the CHI-Squared statis-
tic with a threshold to take the best decision. However, pre-pruning suffers from the
horizon effect (Breiman et al., 1984). The issue of pre-pruning algorithms is to stop
the development of nodes until the decision tree is sufficiently accurate and to limit
overfitness. Since Breiman work, new algorithms based on a post-pruning (CART,
C4.5) have been studied. The construction of decision trees by post-pruning consists
of two steps. The first step is to build a tree by continuing the process of segmenta-
tion as deep as possible, even if the tree overfits the data. The second step prunes the
decision tree by removing nodes which minimize a pruning criterion. Learning time
is longer than in the case of pre-pruning algorithms, but the performance of the tree
is improved (cf. C4.5). Some pruning criteria are based on the estimated error rate of
classification (C4.5). Other pruning criteria are based on a validation set (CART).
Both approaches need to define heuristic parameters. A third, less-used approach
exploits the principle of Minimum Description Length (Quinlan and Rivest, 1989;
Wallace and Patrick, 1993).
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Nowadays, decision trees are a mature class of models for which is just expected
slight improvement of performance. Nevertheless, the reduction of the size of the
trees and the automation of learning process are still important issues.

The decision tree performance mainly depends of the structure of trees. Too small
trees obtain poor performance (Breiman et al., 1984). Too large trees overfit the
training dataset and their performances collapse on the test dataset. Improving de-
cision trees requires better segmentation criterion and pruning criterion. The post-
pruning methods are likely to select noisy variables which are not pruned in the
pre-pruning step. This might be frequent in the case of large numbers of variables.
The main issue of building decision trees is to select the best variables, to segment
them correctly and to decide when to stop. The reference methods (C4.5, CART,
ID3 and CHAID) use several parameters to learn their optimal tree : parameters
for the choice of variables, discretization of numerical variables, grouping of cate-
gorical variables, and settings of the pruning criterion. None of these methods of-
fers comprehensive and consistent criterion, taking into account the structure of the
tree, selection of variables, segmentation and the performance of the tree. Wallace
and Patrick as a result of the work of Rivest and Quinlan use a MDL approach to
define a global pruning criterion taking into account the tree structure and the dis-
tribution of the classes in the leaves (Wallace and Patrick, 1993). Their lookahead
algorithm pre-prunes decision trees by selecting sub-trees which minimize MDL
criterion. This MDL criterion does not provide the best pruning, Quinlan and Rivest
who had given the idea have not integrated in final C4.5 decision trees. MDL cri-
teria have been exploited both as a selection criterion of segmentation variable and
post-pruning criterion. However, MDL approach is a promising way with theoretical
foundation to reduce the size of decision trees and to improve learning automation.
But referenced MDL approaches remain incomplete, since they do not take into
account all the trees parameters.

In this article, we propose a complete criterion by using a Bayesian approach
according to a parsimony principle close to the Minimum Description Length ap-
proach. The aim is to transform the learning problem in a simple optimization
process of one single parameter-free criterion. The MODL approach has already
proved its interest in the selection of variables, the supervised discretization of nu-
merical variables (Boullé, 2006), grouping of categorical variables (Boullé, 2005)
and supervised classification model, with the Selective Naive Bayes (Boullé, 2007).
Our goal is to develop a decision tree using the MODL approach, to evaluate
and compare its performance with benchmark decision trees : J48(C4.5 (Quinlan,
1993)) and SimpleCART(CART (Breiman et al., 1984)) from the WEKA software
(Garner, 1995) which is an academic reference. The article is organized as follows.
Section 2 summarizes the MODL approach in the case of supervised discretization.
Section 3 describes the extension of this approach to decision trees. Section 4 de-
scribes optimization algorithms. Section 5 reports comparative evaluations of the
method. Finally, section 6 concludes the article.
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2 The MODL Approach

For the convenience of the reader, this Section summarizes the MODL approach in
the case of supervised discretization of numerical variables (Boullé, 2006).

The objective of supervised discretization is to induce a list of intervals which
partitions the numerical domain of a continuous input variable, while keeping the
information relative to the output variable. A trade-off must be found between in-
formation quality (homogeneous intervals in regard to the output variable) and sta-
tistical quality (sufficient sample size in every interval to ensure generalization).

In the MODL approach, the discretization is turned into a model selection prob-
lem. First, a space of discretization models is defined. The parameters of a specific
discretization model are the number of intervals, the bounds of the intervals and
the frequencies of the output values in each interval. Then, a prior distribution is
proposed on this model space. This prior exploits the hierarchy of the parameters:
the number of intervals is first chosen, then the bounds of the intervals and finally
the frequencies of the output values. The prior is uniform at each stage of the hi-
erarchy. Finally, we assume that the multinomial distributions of the output values
in each interval are independent from each other. A Bayesian approach is applied
to select the best discretization model, which is found by maximizing the proba-
bility p(Model|Data) of the model given the data. Using the Bayes rule and since
the probability p(Data) is constant under varying the model, this is equivalent to
maximizing p(Model)p(Data|Model).

Let N be the number of instances, J the number of output values, I the num-
ber of input intervals. Ni denotes the number of instances in the interval i and Ni j

the number of instances of output value j in the interval i. In the context of su-
pervised classification, the number of instances N and the number of classes J are
supposed to be known. A discretization model M is then defined by the parameter

set
{

I,{Ni}1≤i≤I ,
{

Ni j
}

1≤i≤I,1≤ j≤J

}
.

Using the definition of the model space and its prior distribution, Bayes formula
can be used to calculate the exact prior probabilities of the models and the prob-
ability of the data given a model. Taking the negative log of the probabilities, this
provides the evaluation criterion given in Formula 1.

logN + log

(
N + I−1

I−1

)
+

I

∑
i=1

log

(
Ni + J−1

J−1

)
+

I

∑
i=1

log
Ni!

Ni1!Ni2! . . .NiJ!
(1)

The first term of the criterion stands for the choice of the number of intervals and
the second term for the choice of the bounds of the intervals. The third term corre-
sponds to the parameters of the multinomial distribution of the output values in each
interval and the last term represents the conditional likelihood of the data given the
model, using a multinomial term. Therefore “complex” models with large numbers
of intervals are penalized.
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Once the evaluation criterion is established, the problem is to design a search al-
gorithm in order to find a discretization model that minimizes the criterion. In Boullé
(2006), a standard greedy bottom-up heuristic is used to find a good discretization.
In order to further improve the quality of the solution, the MODL algorithm per-
forms post-optimizations based on hill-climbing search in the neighbourhood of a
discretization. The neighbors of a discretization are defined with combinations of
interval splits and interval merges. Overall, the time complexity of the algorithm is
O(JN logN).

The MODL discretization method for supervised classification provides the most
probable discretization given the data. Extensive comparative experiments report
high performance (Boullé, 2006). The case of value grouping of categorical vari-
ables is treated in Boullé (2005) using a similar approach.

3 MODL Decision Trees

In this section, we apply the MODL approach to decision trees by defining explicitly
a family of models and by introducing a global evaluation criterion of trees resulting
from a Bayesian approach of model selection.

3.1 Definition

A decision tree is a classification model which aims at predicting a categorical out-
put variable from a set of numerical or categorical input variables. One advantage of
decision trees is that they provide understandable models, based on decision rules.
The issue is to induce a tree with high predictive performance while keeping its size
as small as possible. This turns into a difficult problem of finding a trade-off be-
tween the performance of the model and the complexity of the structure of the tree,
in order to ensure a good generalization of the model.

The MODL approach for decision trees consists in selecting the model with the
highest probability given the data from a family of decision trees. As for the case
of discretization (cf. Section 2), we apply a Bayesian approach to select the deci-
sion tree with the highest posterior probability p(Tree|Data), which is equivalent to
maximize:

p(Tree)p(Data|Tree)

where p(Tree) is the prior probability of the tree and
p(Data|Tree) is the likelihood of the data given the model.

Let us introduce the following notations:

• N : number of instances,
• J : number of output values,
• T : a model of decision tree,
• K : set of K input variables,
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I. Node 1

X1
I1

{N1i.}1≤i≤I1

I. Node 2

X2

I2
{N2i.}1≤i≤I2

I. Node 3

X3
I3

{N3i.}1≤i≤I3

Leaf 5

{N5. j}1≤ j≤J

Leaf 6

{N6. j}1≤ j≤J

Leaf 7

{N7. j}1≤ j≤J

Leaf 4

{N4. j}1≤ j≤J

Fig. 1 Example of decision tree. The internal nodes (I. Node) represent the decision rules
and the leaves represent the distribution of the output values.

• KT : subset of KT input variables used by tree T ,
• ST : set of internal nodes of tree T ,
• LT : set of terminal nodes (leaves) of tree T ,
• Xs : segmentation variable of node s,
• Ns. : number of instances in node s,
• VXs : number of values of variable Xs in node s, in the categorical case,
• Is : number of child nodes of node s,
• Nsi. : number of instances in the ith child of node s,
• Nl. j : number of instances of output value j in leaf l.

A decision tree model is defined by its structure, the distribution of the instances in
this structure and the distribution of output values in the leaves (cf. Figure 1). The
structure of the decision tree model consists of the set of internal nodes ST (nodes
with at least two children), the set of leaves and the relations between these nodes.

The distribution of the instances in this structure is defined by the partition of
the segmentation variable in each internal node and by the distribution of the output
values in each leaf. A decision tree model T is thus defined by:

• the subset of variables KT used by model T , that is the number of selected vari-
ables KT and the choice of the KT variables among K,

• the number of child nodes Is,
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– if Is = 1 then the node is a leaf,
– if Is > 1 then the node is an internal node,

• the distribution of the instances in each internal node s:

– the segmentation variable Xs,
– the number of parts (intervals or groups of values) Is,
– the distribution of the instances on this parts (child nodes) {Nsi.}1≤i≤Is ,

• the distribution of the output values in each leaf l:
{

Nl. j
}

1≤ j≤J.

3.2 Evaluation Criterion

The evaluation criterion we propose here is the negative logarithm of the poste-
rior tree probability given the data. As the data probability is constant whatever the
model, the criterion is defined as

c(Tree) =− log p(Tree)p(Data|Tree)

We choose the prior model probability p(Tree) by exploiting the hierarchy of the
modelization parameters. This hierarchy enables to describe dependence relation-
ships between parameters. The prior choice comes from hierarchical extensions of
the Bayesian approach. In the case of a complex parameter set, the uncertainty of
high level parameters is expressed first, then, conditionally, the uncertainty on low
level parameters. Bayes law enables us to express p(Tree) according to a parsimony
principle close to the Minimum Description Length approach and according to prior
distributions for these parameters.

There are many ways to define such parameters hierarchy. The first would consist
in defining the structure then the segmentations, then the class distribution for the
leaves. In this article, we propose to exploit the implicit tree hierarchy by defining
the model at the root level independently of its children. Then, in a recursive way,
the nodes are described from the root children to the leaves. The prior probability of
a MODL decision tree is thus defined as :

p(Tree) = p(KT )×
∏

s∈ST

p(Is)p(Xs|KT )p(Nsi.|KT ,Xs,Ns., Is)

∏
l∈LT

p(Il)p(Nl. j|KT ,Nl.) (2)

The first line in equation 2 represents the prior probability of variable selection. The
second line is related to internal node probability and the last line represents leaf
node probability.



28 N. Voisine, M. Boullé, and C. Hue

Prior Probability of Variable Selection

For the variable selection parameters, we reuse the prior introduced by Boullé
(2007) in the case of the selective naive Bayes classifier. We propose a hierarchic
prior, by first choosing the number of selected variables and second choosing the
subset of selected variables. For the number KT of variables, we propose to use
a uniform prior between 0 and K variables, representing (K + 1) equiprobable al-
ternatives. For the choice of the KT variables, we assign the same probability to
every subset of KT variables. The number of combinations

( K
KT

)
seems the natural

way to compute this prior, but it has the disadvantage of being symmetric. Beyond
K/2 variables, every new variable makes the selection more probable. Thus, adding
irrelevant variables is favored, provided that this has an insignificant impact on the
likelihood of the model. As we prefer simpler models, we propose to use the number
of combinations with replacement

(K+KT−1
KT

)
.It thus gives :

P(KT ) =
1

K + 1
1

(K+KT−1
KT

)

Prior Probability of an Internal Node

Knowing the selected variables and the parent nodes, the internal node can be de-
fined by status (either internal node or leaf), segmentation parameters (the segmen-
tation variable, the segmentation numbers and distribution of instances in segments.
We consider that, for each internal node, the choice of the segmentation variable
is independent and equal for all the selected explicative variables. To express the
probability of the size of the segmentation of a given internal node, the simplest
assumption of equiprobability leads to p(Is|KT ,Xs,Ns.) = 1

Ns
for a numerical vari-

able and p(Is|KT ,Xs,Ns.) = 1
Vs

for a categorical variable. However, we obtained with
such prior very cautious trees, as the higher the instances number, the lower the prior
probability. That is why we propose here a prior inspired from the Minimum De-
scription Length approach. Rissanen proposes an optimal coding of integers and
gives the associated probability in Rissanen (1983). This universal prior is defined
so that the small integers are more probable than the large integers, and the rate of
decay is taken to be as small as possible. According to Rissanen, this prior is "uni-
versal" because its resulting code length (negative log of the probability) realizes
the shortest coding of large integers. This prior is attractive even in the case of finite
sets of integers, because it makes small integers preferable to large integers with the
slightest possible difference. The optimal length, in bits, of an integer Is is :

CRis(Is) = log2(2.865)+ log2(Is)+ log2(log2(Is))+ ...

We then obtain the universal prior probability of Is segments :

p(Is|KT ,Xs,Ns.) = 2−CRis(Is)
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Moreover, by using the fact that an internal node has at least two children, the status
of the node has not to be explicitly described. Only the number of segments, either
one for a leaf or between 2 and Ns children for an internal node, are described.

For a numerical variable, the prior probability of the segmentation intervals is
obtained similarly to the univariate MODL discretization (cf. section 2) :

1
KT

2−CRis(Is) 1
(Ns+Is−1

Is−1

)

For a categorical variable, the prior probability is obtained similarly to the univariate
MODL grouping method (Boullé, 2005) :

1
KT

2−CRis(Is) 1
B(VXs , Is)

B(X ,Y ) is the number of divisions of the X values into Y groups (with eventually
empty groups). When X =Y , B(X ,Y ) is the Bell number. In the general case, B(X,Y)
can be written as a sum of Stirling numbers of the second kind S(X,y) :

B(X ,Y ) =
Y

∑
y=1

S(X ,y)

S(X ,y) stands for the number of ways of partitioning a set of X elements into y
nonempty sets.

Prior Probability of a Leaf

To end up, it remains to define the prior of leaves probability, that is to say the class
distribution for each leaf. Assuming the distributions are equiprobable, it remains to
calculate the number of multinomial distributions of Nl. instances among J classes :

2−CRis(1) 1
(Nl.+J−1

J−1

)

As internal nodes, the terms 2−CRis(1) corresponds to the choice of the size of the
segmentation, which is 1 for leaves.

Likelihood Probability

We have now to explicit the likelihood probability of the data given the model.
The data distribution depends only of tree leaves. Knowing the multinomial model
defined on one leaf, we deduce the likelihood :

p(Data|Tree) =∏
l∈L

Nl.!
Nl.1!Nl.2!...Nl.J!
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Endly, taking the negative logarithm of its posterior probability, the optimal tree cost
is :

Copt(T ) = log(K + 1)+ log

(
K + KT −1

KT

)
+

+ ∑
s∈STn

logKT +CRis(Is) log2 + log

(
Ns. + Is−1

Is−1

)
+

+ ∑
s∈STc

logKT +CRis(Is) log2 + logB(VXs , Is)+

+ ∑
l∈LT

CRis(1) log2 + log

(
Nl. + J−1

J−1

)
+

+ ∑
l∈LT

log
Nl.!

Nl.1!Nl.2!...Nl.J!

where STn and STc are the internal nodes sets using respectively numerical or cate-
gorical segmentation variable. It is noteworthy that, using Stirling’s approximation,
the last multinomial term of the formula is asymptotically equal to the target entropy
in the leaves of the tree (Cover and Thomas, 1991). Thus, the whole crietrion clearly
relates to an entropy-based impurity measure, with a penalization for complex trees.

4 Optimization Algorithms

The induction of an optimal decision tree from a data set is NP-hard (Naumov,
1991). The exhaustive search algorithm is then excluded. In this article we exploit
a pre-pruning algorithm 1 and a post-pruning algorithm 2. The pre-pruning algo-
rithm starts with the root node and searches the best partition according to the cri-
terion presented above. The leaves are segmented while the criterion is improved.
For each leaf, the partition is performed according to the univariate MODL dis-
cretization or grouping methods, then the global cost of the tree is updated by ac-
counting for this new partition. The partition is really completed if the global cost
is improved. The optimum is then searched with successive local optimums at leaf
levels. This algorithm is close to those used in ID3 and CHAID decision trees. The
difference lies in the fact that the segmentation of two leaves is not conducted inde-
pendently as the criterion is global. One leaf node can not be segmented unless it is
the best choice of segmentation. In practice, the additivity of the criterion enables
to update only the cost of the considered node. The algorithm does not guarantee
to find the global optimum but its maximal complexity is O(KJN2Log(N)), in the
case of an unbalanced tree. Its is O(KJN(LogN)2) on average in the case of a bal-
anced tree. This algorithm is deterministic and thus it always leads to the same local
optimum.
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Algorithm 1. Top-Down algorithm with pre-pruning for optimal tree search
Require: T the root tree
Ensure: the tree T̂ which minimizes the proposed criterion

T ∗ ← T
while criterion improvement do

T̂ ← T ∗
for all leaf l of the tree do

T ′ ← T ∗
for all variable X of K do

Search the partition rule on the leaf l according X which best
improves the criterion
TX ← T ∗+PX (l)
if c(TX ) < c(T ′) then

T ′ ← TX

end if
end for
if c(T ′) < c(T ∗) then

T ∗ ← T ′
end if

end for
end while

Unfortunately, the pre-pruning algorithm creates small and under-fitted decision
trees. To go above this horizon effect, we have also exploited our criterion with a
post-pruning algorithm (Breiman et al., 1984). The post-pruning algorithm consists
in two steps. The first step is the top-down building of the deepest tree by choosing
the best univariate MODL partitions for each leaf, even if it does not lead to an
improvement in the global criterion. The tree with the minimum cost is memorized
during this step. This step ends when there are no more MODL informative variables
left. Starting from the obtained deepest tree, the second step considers only nodes
consisting of leaves, and prunes the node which leads the best improvement of the
criterion. Only the internal node whose children are all leaves are candidates for
pruning. Like in the first step, the tree with the minimum cost is memorized. This
algorithm is also deterministic and it always leads to the same local optimum. At
least, this algorithm guaranties to find a decision tree with a better cost than the tree
resulting of algorithm 1. This means that the posterior probability of the tree can
only be improved using the post-pruning algorithm.

5 Experiments

This section presents an experimental evaluation of our supervised decision trees
methods described in the previous sections.
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Algorithm 2. Top-Down algorithm with post-pruning for optimal tree search
Require: T the root tree
Ensure: the tree T̂ which minimizes the proposed criterion

T ∗ ← T
while there are MODL informative variables for one leaf node do

T̂ ← T ∗
for all leaf l of the tree do

T ′ ← T ∗
for all variable X of K do

Search the partition rule on the leaf l according X which best
improves the criterion
TX ← T ∗+PX (l)
if c(TX ) < c(T ′) then

T ′ ← TX

end if
end for
T ∗ ← T ′

end for
end while
while the tree is not reduced to its root do

T̂ ← T ∗
for all internal node s of the tree whose children are all leaves do

Ts ← T ∗ −children(s)
if c(Ts) < c(T ′) then

T ′ ← Ts

end if
T ∗ ← T ′

end for
end while

5.1 Experiments Setup

We conduct the experiments on two collections of data sets: 30 data sets from the
repository at University of California at Irvine (Blake and Merz, 1996) and 5 data
sets from the WCCI 2006 performance prediction challenge (Guyon et al., 2006).
These data sets represent a large diversity of number of variables, instances and
classes, with numerical and/or categorical variables. A summary of some properties
of these data sets is given in Table 1 for the UCI data sets and in Table 4 for the
challenge data sets.

We evaluate two versions of the pre-pruning algorithm 1 and the post-pruning
algorithm 2, with binary trees and N-ary trees. For binary trees, we constrain the
univariate partition (discretization or grouping) of each node to build at most two
subparts, related to two child nodes. On the opposite, internal nodes of N-ary trees
can have more than two children. For more convenience, we call our decision tree
family MTrees (MODL Trees). Our evaluated methods are:
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Table 1 UCI Data Sets. The properties of the used UCI data sets are : number of instances,
number of variables, number of classes and majority accuracy

Name Variables Instances Classes Majority
Accuracy

Adult 15 48842 2 0.76
Australian 14 690 2 0.56
Breast 10 699 2 0.66
Crx 15 690 2 0.56
German 24 1000 2 0.70
Glass 9 214 6 0.36
Heart 13 270 2 0.56
Hepatitis 19 155 2 0.79
HorseColic 27 368 2 0.63
Hypothyroid 25 3163 2 0.95
Ionosphere 34 351 2 0.64
Iris 4 150 3 0.33
LED 7 1000 10 0.11
LED17 24 10000 10 0.11
Letter 16 20000 26 0.04
Mushroom 22 8416 2 0.53
PenDigits 16 10992 10 0.10
Pima 8 768 2 0.65
Satimage 36 6435 6 0.24
Segmentation 19 2310 7 0.14
SickEuthyroid 25 3163 2 0.91
Sonar 60 208 2 0.53
Spam 57 4307 2 0.65
Thyroid 21 7200 3 0.93
TicTacToe 9 958 2 0.65
Vehicle 18 846 4 0.26
Waveform 21 5000 3 0.34
WaveformNoise 40 5000 3 0.34
Wine 13 178 3 0.40
Yeast 9 1484 10 0.31

• MTp : MTree with post-pruning top-down algorithm.
• MTp(2) : MTree with post-pruning top-down algorithm and a binary tree

structure.
• MT : MTree with pre-pruning top-down algorithm algorithm.
• MT(2) : MTree with pre-pruning top-down algorithm and a binary tree structure.
• NMT : Naive MODL tree is a top-down building of the deepest tree by choosing

the best univariate MODL partition, without any pruning.

We compared our methods with J48 and SimpleCART which are implementations
of C4.5 and CART in open-source data mining software WEKA (Garner, 1995). We
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take as parameters those defined by default in the software. We evaluate the accuracy
(ACC), the area under the ROC curve (AUC)(Fawcett, 2003), the number of nodes
(internal nodes and leaves) and the training time. Provost et al. (1998) propose to use
receiver operating characteristic (ROC) analysis rather than the accuracy to evaluate
induction models (Provost et al., 1998). The ACC criterion evaluates the accuracy of
the prediction, no matter whether the conditional probability of the predicted class
is 51% or 100%. The AUC criterion evaluates the ranking of the class conditional
probabilities. In a two-classes problem, the AUC is equivalent to the probability that
the classifier will rank a randomly chosen positive instance higher than a randomly
chosen negative instance. In our experiments, we use the approach of Provost and
Domingos (2001) to calculate the multi-class AUC (Provost and Domingos, 2001).

We collect and average the four criteria owing to a stratified 10-fold cross
validation, for the seven evaluated methods on the thirty five data sets. In 10-fold
cross-validation, the original data set is partitioned into 10 subsamples. Of the 10
subsamples, a single subsample is retained as the test data for testing the model, and
the remaining 9 subsamples are used as training data. The cross-validation process
is then repeated 10 times.

5.2 UCI Results

The geometric means of the four criteria for each method are summarized in Table 2.
The great diversity of the data sets increases the variance of the criterion. Therefore
we prefer to support our analysis on the geometric mean, which allows comparing
the criterion ratios between the various methods. The full results are also reported
in Table 3.

Table 2 Evaluation of the methods on UCI data sets : accuracy, AUC, size (number of nodes),
training time and tree cost

Train data set Test data set
Method Acc. AUC Acc. AUC Size Time Copt(T)

MT(2) 0.845 0.914 0.819 0.889 17.5 0.5 524
MT 0.841 0.915 0.813 0.884 19.4 0.5 565
MTp(2) 0.840 0.910 0.822 0.891 17.4 0.6 508
MTp 0.834 0.905 0.817 0.890 19.5 0.6 547
NMT 0.879 0.959 0.762 0.844 142.3 0.8 1095
sCART 0.854 0.921 0.822 0.876 30.7 1.0 ×
J48 0.929 0.962 0.834 0.881 77.1 0.1 ×

Overall J48 obtains the best geometric mean of accuracy and MTp(2) obtains
the best geometric mean of AUC. In most of the cases, AUC and accuracy results
are close (cf. Table 3). These weak differences are not surprising, since the decision
trees are a mature technology and the differences of performance are often marginal.



A Bayes Evaluation Criterion for Decision Trees 35

0.5

0.6

0.7

0.8

0.9

1

0.5 0.6 0.7 0.8 0.9 1

Train AUC

Te
st

 A
U

C J48
MTp(2)
sCART

Fig. 2 Train vs test AUC on 30 UCI data sets

On the other hand, the complexity of the tree structure is approximately four times
less with MTree than with J48 and twice less than with SimpleCART. This property
makes the interpretation of our trees considerably easier for the domain expert, and
their deployment faster. Concerning training time, MTree is five times slower than
J48 and twice faster than SimpleCART. Binary MTrees have better accuracy and
AUC than N-ary MTrees. Constraining the algorithms to build binary trees leads to
a better optimization of the criterion and a better predictive performance with only
a slight impact on the tree size. The test results show that the tree cost of unpruned
MTrees (NMT) is twice that of pruned MTrees, while the test performances (Acc
and AUC) are far worse. It is noteworthy that the criterion of binary MTrees is
smaller than the one of N-ary MTrees. This shows that the performance (accuracy
and AUC) of the MTree trees is clearly correlated with the value of the tree criterion.
MTp(2) is slightly prone to overfitting but it overfits less the data than the other
methods. Figure 2 clearly shows that the differences between train and test AUC on
30 UCI data sets are lower with MTree than with J48 or SimpleCART.

A detailed analysis of the results (cf. Table 3) shows that MTree accuracy are
worse with data sets having correlated variables such as Letter or image segmen-
tation. On the other hand for marketing data sets such as Adult, MTree is slightly
better while having ten times less nodes than J48.

5.3 Prediction Challenge Results

This section reports the results obtained by our method on the performance predic-
tion challenge of Guyon et al. (2006). The purpose of the performance prediction
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Table 3 Test accuracy, AUC and tree size of post-pruned decision tree on UCI data sets,
using ten-fold cross validation

Accuracy AUC Tree Size
Data Set MTp(2) MTp sCart J48 MTp(2) MTp sCart J48 MTp(2) MTp sCart J48
Adult 0.864 0.862 0.863 0.860 0.910 0.911 0.888 0.886 124.8 176.1 120.2 1099
Australian 0.852 0.852 0.857 0.852 0.904 0.903 0.878 0.881 6.2 6.2 5.8 46.2
Breast 0.937 0.957 0.949 0.946 0.965 0.969 0.948 0.948 9.6 8.7 15.8 23.4
Crx 0.861 0.861 0.852 0.861 0.914 0.914 0.866 0.894 7 7 3.6 27.1
German 0.692 0.692 0.750 0.739 0.682 0.682 0.722 0.692 3.2 3.2 19.4 140.6
Glass 0.597 0.649 0.705 0.659 0.778 0.811 0.848 0.793 7.8 8.2 20 47
Heart 0.733 0.719 0.785 0.767 0.808 0.810 0.792 0.755 7.2 7.7 14.2 33.8
Hepatitis 0.806 0.806 0.786 0.838 0.642 0.642 0.598 0.697 3 3 9.6 17.8
HorseColic 0.843 0.843 0.875 0.878 0.822 0.822 0.861 0.864 5.6 5.6 10 19.6
Hypothyroid 0.992 0.992 0.992 0.992 0.979 0.976 0.957 0.95 5.8 10.4 10.8 11.8
Ionosphere 0.898 0.889 0.898 0.915 0.901 0.908 0.896 0.895 5.2 7.9 8.8 27.4
Iris 0.953 0.933 0.953 0.960 0.975 0.963 1.000 0.990 5 4 8 8.4
LED 0.705 0.705 0.725 0.729 0.920 0.920 0.916 0.920 29 29 110 62.2
LED17 0.735 0.735 0.735 0.722 0.951 0.951 0.957 0.891 75.6 75.6 123.8 890
Letter 0.768 0.738 0.869 0.879 0.975 0.966 0.965 0.964 461.2 531.8 2091.2 2321.6
Mushroom 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 12.6 14 13.4 29.8
PenDigits 0.945 0.903 0.963 0.966 0.991 0.984 0.991 0.992 170.6 247 363.4 375.6
Pima 0.741 0.740 0.751 0.738 0.764 0.767 0.725 0.749 8.4 6.9 16.2 37.4
Satimage 0.853 0.852 0.868 0.873 0.972 0.971 0.981 0.979 76 72.3 165.2 551.4
Segmentation 0.938 0.938 0.958 0.971 0.989 0.989 0.998 0.998 31.2 46.1 76.6 82.6
SickEuthyroid 0.978 0.979 0.977 0.979 0.961 0.956 0.96 0.941 11.4 12.5 14 26.2
Sonar 0.735 0.735 0.712 0.712 0.746 0.746 0.722 0.735 4.8 4.8 14.2 29.2
Spam 0.912 0.911 0.922 0.935 0.953 0.955 0.94 0.943 44.8 54.1 131.2 192.2
Thyroid 0.995 0.992 0.996 0.997 0.997 0.996 0.996 0.99 14.4 23 22.4 30.6
TicTacToe 0.923 0.866 0.932 0.851 0.965 0.921 0.963 0.899 42.8 49.1 67.2 135.4
Vehicle 0.676 0.661 0.701 0.726 0.890 0.877 0.926 0.932 24.4 28.2 104.8 136
Waveform 0.756 0.745 0.777 0.759 0.912 0.904 0.903 0.845 72.4 90.4 136.6 541.8
WaveformNoise 0.744 0.751 0.767 0.751 0.907 0.906 0.903 0.847 70.4 84.4 121.4 580.4
Wine 0.917 0.917 0.894 0.939 0.946 0.951 0.963 0.975 8.6 7.4 9.2 9.8
Yeast 0.565 0.542 0.309 0.503 0.776 0.779 0.501 0.749 16.8 22.8 1.4 96.6
Ar. Mean 0.830 0.825 0.837 0.843 0.896 0.895 0.885 0.886 45.5 54.9 127.6 254.4
Geo. Mean 0.822 0.817 0.822 0.834 0.891 0.890 0.876 0.881 17.7 19.9 30.7 77.1
Mean Rank 2.6 2.8 2.3 1.9 2.0 2.2 2.6 2.8 1.3 1.8 2.7 4.0

challenge is “to stimulate research and reveal the state-of-the-art in model selec-
tion”. Five data sets are used in the challenge (cf. Table 4). The ada data set comes
from the marketing domain, the gina data set from handwriting recognition, the hiva
data set from drug discovery, the nova data set from text classification and the sylva
data set from ecology.

Table 4 WCCI Challenge Data Sets. The properties of the used UCI data sets are : number
of instances, number of variables, number of classes and majority accuracy

Name Variables Instances Classes Majority
Accuracy

ada 48 4562 2 0.75
gina 970 3468 2 0.51
hiva 1617 4229 2 0.96
nova 16969 1929 2 0.72
sylva 216 14394 2 0.94
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The detailed results of our evaluation are presented in Table 5. Unfortunely, we
cannot report the results of simpleCART and J48 on all the data sets, since some
of these data sets are too large given the Weka implementation of simpleCART and
J48. Overall, MTree with post-pruning is the best method. It comes first on most of
the data sets for the AUC, accuracy and tree size criteria.

Table 5 Test accuracy, AUC and tree size of post-pruned decision tree on prediction chal-
lenge data sets, using ten-fold cross validation

Accuracy AUC Tree Size
Data Set MTp(2) MTp sCart J48 MTp(2) MTp sCart J48 MTp(2) MTp sCart J48
ada 0.847 0.847 0.842 0.846 0.887 0.890 0.860 0.860 22.0 23.6 28.1 224.0
gina 0.881 0.863 0.894 0.867 0.923 0.913 0.918 0.862 47.8 49.1 64.4 247.7
hiva 0.966 0.966 - 0.955 0.622 0.622 - 0.659 6.0 6.0 - 64.4
nova 0.866 0.866 - - 0.817 0.817 - - 17.6 17.6 - -
sylva 0.989 0.989 0.991 0.990 0.991 0.991 0.981 0.954 26.2 41.4 41.0 105.2

6 Conclusion

The Bayesian criterion presented in this article gives a complete criterion to evaluate
a decision tree by taking into account the structure of the tree, the choice of the ex-
planatory variables, the segmentation in each internal node and the distributions of
the classes in each leaf. This corresponds to an exact analytic evaluation of the pos-
terior probability of a tree given the data and results in a parameter-free evaluation
criterion. We have tested two optimization algorithms. The first one is a pre-pruning
heuristic and the second one is a post-pruning heuristic which leads to a better opti-
mization and obtain the better performance. Evaluations on 30 UCI data sets show
that MTrees obtains state of the art performance while being much less complex.
The evaluation on prediction challenge data sets show that our method gets the best
results and builds the less complex decision trees. It is also noteworthy that binary
trees are better on average than N-ary trees. Therefore designing new algorithms is
a promising direction to get better performance. Another direction of research is to
use MODL trees with random forest or Bayesian Model Averaging.
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Abstract. The random forests method is one of the most successful ensemble meth-
ods. However, random forests do not have high performance when dealing with
very-high-dimensional data in presence of dependencies. In this case one can ex-
pect that there exist many combinations between the variables and unfortunately
the usual random forests method does not effectively exploit this situation. We here
investigate a new approach for supervised classification with a huge number of nu-
merical attributes. We propose a random oblique decision trees method. It consists
of randomly choosing a subset of predictive attributes and it uses SVM as a split
function of these attributes. We compare, on 25 datasets, the effectiveness with clas-
sical measures (e.g. precision, recall, F1-measure and accuracy) of random forests of
random oblique decision trees with SVMs and random forests of C4.5. Our proposal
has significant better performance on very-high-dimensional datasets with slightly
better results on lower dimensional datasets.
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1 Introduction

Since the nineties the machine learning community studies how to combine multiple
classifiers into an ensemble of classifiers to build models that are more accurate than
a single one. The purpose of ensemble classifiers is to reduce the variance and/or
the bias in learning algorithms. Bias is the systematic error term (independent of the
learning sample) and variance is the error due to the variability of the model with
respect to the learning sample randomness. Buntine (1992) introduced Bayesian
techniques for tree averaging to reduce the variance in learning methods. Stacking
method (Wolpert, 1992) aims at minimizing the bias of learning algorithms. Fre-
und and Schapire (1995) proposed Boosting to simultaneously reduce the bias and
the variance while the Bagging method proposed by Breiman (1996) reduces the
variance of a learning algorithm without increasing its bias too much.

The random forests approach proposed by Breiman (2001) has been one of the
most successful ensemble methods. Random forests algorithm creates a collection
of unpruned decision trees (built so that at each node the best split is done from
a randomly chosen subset of attributes) from bootstrap samples (sampling with re-
placement from the original dataset). The generalization error of a forest depends
on the strength of the individual trees in the forest and on the dependence between
them. Random forest algorithm constructs unpruned trees for keeping low bias and
uses the randomization for controlling high diversity between trees in the forest. Two
classifiers are diverse if they make different errors on new data points (Dietterich,
2000a). Random forests approach gives high accuracy compared with state-of-the-
art supervised classification algorithms, including AdaBoost (Freund and Schapire,
1995) and SVM (Vapnik, 1995). As mentioned in Breiman (2001) random forests
method is fast, robust to noise and does not overfit unlike AdaBoost algorithm which
is sensitive to noisy data (Dietterich, 2000b). Random forests algorithm has been
shown to build accurate models with practical relevance for classification, regres-
sion and novelty detection (Breiman, 2001).

The tree construction of habitual random forests only picks, at each node, a single
attribute for node splitting. Thus the individual trees are less efficient when dealing
with data having dependencies among attributes, as it could be the case with very-
high-dimensional datasets.

In this paper which is an extended version of Do et al. (2009), we propose to use
linear proximal SVMs (Fung and Mangasarian, 2001) for performing multivariate
node splitting during the tree construction (in order to use dependencies between at-
tributes), producing individual classifiers that are stronger than in the usual forests.
Numerical test results on UCI (Asuncion and Newman, 2007), Statlog (Michie et al.,
1994) and very-high-dimensional Bio-medical (Jinyan and Huiqing, 2002) datasets
show that our random forests of oblique decision trees are often more accurate than
random forests of C4.5 (Quinlan, 1993) and SVM in terms of precision, recall,
F1-measure and accuracy (van Rijsbergen, 1979). In particular our proposal has
significant better performance on very-high-dimensional data with better -but not
significant- results on lower dimensional datasets.
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The paper is organized as follows. Section 2 briefly introduces random forests
and our random forests of oblique decision trees for classification. The experimental
results are presented in Section 3. We then conclude in Section 4.

2 Random Forests of Oblique Decision Trees

In early bagging approach proposal of Breiman (1996), an ensemble of decision
trees is built from bootstrap samples drawn with replacement from the original
dataset. Then, the predictions of these trees are aggregated, by a majority vote in
classification tasks or by an average for regression problems. Ho (1995) also pro-
posed the random subspace method which randomly selects a subset of attributes for
growing each tree. Amit and Geman (2001) used a random selection of attributes for
the search of the best split at each node. Finally, these approaches were extended and
formalized in the term of random forests by Breiman (2001).

2.1 Random Forests

The random forests algorithm of Breiman (2001) aims at creating a collection of
high performance decision trees with high diversity between individual trees in the
forest. He proposed to use two strategies to keep low bias and low dependence
between trees in the forest. For reaching out to low bias, he proposed to build the
individual trees without pruning, i.e. which are grown to maximum depth. To the
diversity control of the trees, he also proposed to uses a bootstrap replica from the
original training set to construct the trees and randomly choose a subset of attributes
on which to base the calculation of the best split at a decision node.

Let us consider the classification task with m datapoints xi(i = 1,m) and n at-
tributes, a decision tree (denoted by DT) in a random forest of k trees (denoted by
RF= {DTi}i=1,k) is constructed as follows:

• The training set is a bootstrap replica of m individuals, i.e. a random sampling
with replacement from the original training set.

• For each node of the tree, randomly choose n′ attributes (n′ << n, e.g. n′ =
√

n)
and calculate the best split based on one of these n′ attributes.

• The tree is grown to its maximal depth without pruning.

To classify a new individual, the prediction phase uses an unweighted majority vote
of the trees for a classification task or an average-up for a regression task. Breiman
proposed to use datapoints of out-of-bag (about 36.8% of the original training set
are out of the bootstrap sample) to estimate important attributes and the error in the
forest while adding a new tree. The random forests algorithm exhibits high accu-
racy. Furthermore, it is also fast, robust to noise and does not overfit. Breiman also
extended random forests for unsupervised learning tasks (Breiman, 2001).
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Recently, Robnik-Sikonja proposed in Robnik-Sikonja (2004) some possibilities
for improving random forests. He investigated strategies to increase strength or to
increase diversity of individual trees in the forest. He used several attribute evalua-
tion measures instead of just one. He also proposed the use of weighted voting.

An another idea proposed by Geurts et al. (2006) aims at building totally ran-
dom trees. They proposed and studied an algorithm called Extra-Trees. It uses the
whole training set instead of a bootstrap replica to build the trees. At each level of
the tree, the method randomly chooses an attribute to split the data (if it is an con-
tinuous attribute then the cut-point is also chosen randomly), i.e. independently of
the class labels. As mentioned in Geurts et al. (2006) the explicit randomization of
the splitting in the Extra-Trees could reduce variance more strongly than the weaker
randomization schemes used by habitual random forests. Obviously, the algorithm
is very fast for training, but the strength of the individual trees in the forest may
be reduced. The algorithm Extra-Trees is close to the algorithm PERT (for perfect
random tree ensembles) proposed in Cutler and Guohua (2001).

Fig. 1 Single attribute (left) and bi-variate (right) node splitting

2.2 Oblique Decision Trees

The tree construction of habitual random forests picks a single attribute for node
splitting (Breiman et al., 1984; Quinlan, 1993; Ho, 1995; Amit and Geman, 2001;
Cutler and Guohua, 2001; Robnik-Sikonja, 2004; Geurts et al., 2006). Thus, the
strength of individual trees is reduced, particularly when dealing with datasets hav-
ing dependencies among attributes. For example in figure 1, any univariate splitting
(perpendicular to axes) can not totally separate the data into two classes but the bi-
variate splitting, i.e. H1 (combination of two attributes) perfectly classifies the data
into two classes (some ensemble methods can deal with this problem if they use a
large number of trees, see for example Cutler and Guohua (2001) and Geurts et al.
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(2006)). Therefore, the univariate splitting used by the usual tree construction is not
robust in this case.

At the opposite, multivariate splitting criteria -where several attributes may par-
ticipate in a single node split test-, may dramatically improve the trees performance.
The problem of constructing an oblique decision tree is well known to be NP-hard
(Heath, 1992). Most of the multivariate splitting criteria are based on linear combi-
nation of the input attributes. As pointed out by Rokach and Maimon (2005) find-
ing the best linear combination can be achieved in different ways. For example,
linear programming (Bennett and Mangasarian, 1994), linear discriminant analysis
(Loh and Vanichsetakul, 1988; Yildiz and Alpaydin, 2005) or linear combinations
of attributes (Breiman et al., 1984). With multivariate splitting criteria each test is
equivalent to a hyperplane with an oblique orientation to the axes. Because of the
computational intractability of finding an optimal orientation for these hyperplanes,
heuristic methods were proposed to produce good trees like in the algorithm OC1
(Murthy et al., 1993, 1994). Indeed, the greedy approaches can deal only with low
dimensional datasets due to combinatorial explosion.

The OC1 approach was extended by Wu et al. (1999) by modifying the splitting
criterion of the basic OC1 algorithm or by post-processing OC1 output. While these
modifications outperform the basic OC1 on the correctness and the robustness to
noise, the optimal hyperplanes are found with standard SVMs through the resolution
of a quadratic programming. Therefore, the proposed approach has a high cost for
the learning task.

Our investigation aims at performing multivariate node splitting during tree con-
struction, thus producing individual oblique classifiers that are stronger than the
usual random forests. As a whole our method combines both advantages of oblique
splitting and ensemble methods in an efficient manner.

2.3 Random Forests of Oblique Decision Trees

Our random forest algorithm constructs a collection of oblique decision trees (de-
noted by RF-ODT) in the same framework of random forests proposed by Breiman
(2001). The main difference is that each random oblique decision tree (ODT) in the
forest (RF-ODT= {ODTi}i=1,k) uses linear SVMs for performing multivariate node
splitting as proposed in Do et al. (2009). Our proposal is thus an hybridization of
decision trees with SVMs. SVMs are here used in the growing phase to create the
oblique trees.

Others works proposed hybridization in a post-growing phase, to attach classi-
fiers to the tree’s leaves as for example, genetic algorithm (Carvalho and Freitas,
2004), neural network (Zhou and Chen, 2002; Maji, 2008), SVM (Xu et al., 2006)
or multiple-classifier (Cohen et al., 2007). Recently Simon et al. (2009) proposed to
embedded multiple proximal SVM into a binary tree architecture for multi-classes
problem.
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We propose to use linear proximal SVMs (Fung and Mangasarian, 2001) to
build oblique splits on randomly chosen attributes because they are very fast for
training and give good accuracy when compared with standard SVMs (see for ex-
ample the experiments by Do and Poulet (2006) where one million datapoints in
20-dimensional input space are classified into two classes in 13 seconds on a PC
(2.4 GHz Pentium IV, 512 MB RAM)).

Fig. 2 Linear separation of the datapoints into two classes

Briefly, consider the linear binary classification task depicted in figure 2, with m
datapoints xi(i = 1,m) in n dimensions (attributes). It is represented by the [m× n]
matrix A, having corresponding labels yi = ±1, denoted by the [m×m] diagonal
matrix D of ±1 (where D[i, i] = 1 if xi is in class +1 and D[i, i] =−1 if xi is in class
-1). A SVM algorithm tries to find the best plane to separate the classes, i.e. the
one farthest from both class +1 and class -1. Any point falling on the wrong side of
its supporting plane is considered to be an error. Therefore, SVMs simultaneously
maximize the distance between two parallel supporting planes for each class and
minimize the errors.

Classical SVMs pursue these goals with the quadratic program (1):

min
w, b, z

ψ(w,b,z) = (1/2)‖w‖2 + cz (1)

s.t. : D(Aw− eb)+ z≥ e

where e is the column vector of 1, z ∈ Rm is the non negative slack vector, and
c ∈ R1 a positive constant; w and b be the normal vector and the scalar of the plane
respectively; z and c are used to tune errors and margin size.

The plane (w,b) is obtained by solving the quadratic programming (1). Then, the
classification function of a new datapoint x based on the plane is:

predict(x) = sign(w.x−b)
Unfortunately, the computational cost requirements of the SVM solutions in (1)

are at least the square of the number of training datapoints, making classical SVM
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intractable for large datasets. The proximal SVM proposed by Fung and Mangasar-
ian (2001) modified the quadratic programming (1) by using the equality instead of
the inequality constraints and a least squares 2-norm error in the objective function
ψ . They also changed the formulation of the margin maximization to the minimiza-
tion of 1/2‖w,b‖2. Thus substituting for z from the constraint in terms of w and
b into the objective function ψ of the quadratic programming (1) yields an uncon-
strained problem (2):

min
w, b

Ψ (w,b) = (1/2)‖w,b‖2 +(c/2)‖e−D(Aw− eb)‖2 (2)

In the optimal configuration for (2), the gradient with respect to w and b should be
zero. This yields the linear equation system of (n+1) variables (w1, w2, . . . , wn, b)
as follows:

(w1, w2, . . . , wn, b)T = (
1
c

I + ET E)−1ET De (3)

where E = [A − e], I denotes the identity matrix.

The proximal SVM formulation (3) requires thus only the solution of linear equa-
tions of (n + 1) variables (w1,w2, . . . ,wn,b) instead of the quadratic programming
(1). Its complexity is linear with the number of training datapoints. If the dimension
of input space is small enough (less than 104), even if there are millions of data-
points, the proximal SVM algorithm is able to classify them in an efficient manner.
Numerical test results have shown that this algorithm gives similar accuracy com-
pared to standard SVM like LibSVM (Chang and Lin, 2001) but the proximal SVMs
are much faster than standard SVMs. Another non-standard SVM, the Least-Squares
SVM proposed by Suykens and Vandewalle (1999) also replaces standard SVM op-
timization inequality constraints with equalities; so its performance is very close
to the proximal SVM. Our proposal is thus efficient in comparison with methods
discussed in this paper.

Therefore, we propose to use proximal SVMs for performing multivariate node
splitting during oblique trees construction. Furthermore, at a decision node of the
tree, the n′ randomly chosen attributes (n′ << n, e.g. n′ =

√
n) brings out to low-

dimensional problems where the proximal SVM algorithm is very fast compared
with other ones. In addition, the costs re-balancing method (Veropoulos et al., 1999)
is also used to deal with the class imbalance problem at multivariate node split-
ting. The random forests of oblique trees algorithm builds an ensemble of unpruned
oblique trees according to the classical top-down procedure (see Figure 3). Note
that our algorithm not only improves the strength of the individual trees in the for-
est using oblique splitting during tree construction but also keeps the high diversity
between them as it is done with usual random forests method. It means that our
forests create a collection of random oblique trees using a bootstrap replica from the
original training set to construct oblique trees and a random subset of attributes on
which to build multivariate splitting at each node.
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Fig. 3 Random Forest of Oblique Decision Trees

3 Evaluation

We here report the comparisons of the performance of random forests of oblique
trees, of random forests of C4.5 and of SVMs. Random forests of oblique decision
trees (RF-ODT) and random forests of C4.5 decision trees (using C4.5 program by
Quinlan (1993)) have been implemented in C++ and C respectively. We also use the
highly efficient standard SVM algorithm LibSVM (Chang and Lin, 2001).

In order to test the statistical signification of the observed results we used both
the Student test and the sign test. Indeed, these two tests give complementary point
of views on the data.

3.1 Experiments Setup

The experimental setup used fifteen very-high-dimensional datasets from the Bio-
medical repository (Jinyan and Huiqing, 2002) and ten standard datasets from UCI
(Asuncion and Newman, 2007) and Statlog (Michie et al., 1994) repositories.

In order to evaluate performance for binary classification tasks, we pre-processed
multi-class (more than two classes, denoted by an asterisk in the tables 1 and 2)
datasets as two-class problems. In the tables 1 and 2 the fourth column shows how
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Table 1 Description of very-high-dimensional datasets

ID Datasets #Datapoints #Dimensions Classes Protocols
1 Colon Tumor 62 2000 tumor, normal loo
2 ALL-AML-Leukemia 72 7129 ALL, AML trn-tst
3 *MLL-Leukemia 72 12582 MLL, rest trn-tst
4 Breast Cancer 97 24481 relapse, non-relapse trn-tst
5 Duke Breast Cancer 42 7129 cancer, normal loo
6 Prostate Cancer 136 12600 cancer, normal trn-tst
7 Lung Cancer 181 12533 cancer, normal trn-tst
8 Central Nervous System 60 7129 positive, negative loo
9 Translation Initiation Site 13375 927 positive, negative 10-fold

10 Ovarian Cancer 253 15154 cancer, normal loo
11 Diffuse Large B-Cell Lymphoma 47 4026 germinal, activated loo
12 *Subtypes of Acute Lymphoblastic (Hyperdip) 327 12558 Hyperdip, rest trn-tst
13 *Subtypes of Acute Lymphoblastic (TEL-AML1) 327 12558 TEL-AML1, rest trn-tst
14 *Subtypes of Acute Lymphoblastic (T-ALL) 327 12558 TEL-ALL, rest trn-tst
15 *Subtypes of Acute Lymphoblastic (Others) 327 12558 Others, diagnostic groups trn-tst

Table 2 Description of standard datasets

ID Datasets #Datapoints #Dimensions Classes Protocols
16 Bupa 345 6 1, 2 10-fold
17 Breast Cancer Wisconsin 569 30 M, B 10-fold
18 Pima 768 8 1, 2 10-fold
19 *Segment 2310 19 1, rest 10-fold
20 Spambase 4601 57 spam, non-spam 10-fold
21 *Opticdigits 5620 64 0, rest trn-tst
22 *Satimage 6435 36 1, rest trn-tst
23 *Pendigits 10992 16 9, rest trn-tst
24 *Letters 20000 16 A, rest 10-fold
25 *Shuttle 58000 9 1, rest trn-tst

we convert multi-class to two-class ( for example with the OpticDigits dataset, the
digit "0" is mapped to the +1 class and the remaining digits are considered as the
-1 class). The performance of the classification algorithms is analyzed in terms of
precision, recall, F1-measure and accuracy. The test protocols are presented in the
last column of the tables 1 and 2. With datasets having training set (trn) and testing
set (tst) available, we used the training data to tune the parameters of the algorithms
for obtaining a good accuracy in the learning phase. For Random forests, we tuned
the number of trees in the forests and the number of random attributes at each node
splitting. For LibSVM, we tuned the positive constant c for tradeoff of errors and
the margin size (c = 105 for the 15 high dimensional datasets). Then the obtained
model is evaluated on the test set. If the training set and testing set are not available
then we used cross-validation protocols to evaluate the performance. With datasets
having less than three hundred datapoints, the test protocol is leave-one-out cross-
validation (loo). It involves using a single datapoint from the dataset as the testing
data and the remaining datapoints as the training data. This is repeated such that
each datapoint in the dataset is used once as the testing data. With dataset having
more than three hundred datapoints, 10-fold cross-validation is used to evaluate the
performance. The dataset is partitioned into 10 folds. A single fold is retained as
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the validation set, and the remaining 9 folds are used as training data. The cross-
validation process is then repeated 10 times (folds). The results from the 10 folds
are then averaged to produce the final result.

3.2 Classification Results on Very-High-Dimensional Datasets

For dealing with very-high-dimensional datasets we varied the size of the forest (k)
from 50 to 500 trees and the number of random attributes (n′) for each node of
the tree from 100 to 500. Then the good parameter values were chosen (table 3).
With the standard SVM algorithm LibSVM, the linear kernels are appropriate for
very-high-dimensional datasets having a very large number of dimensions and few
datapoints.

The main result of the carried out experiments (table 4) is that RF-ODT out-
performs RF-C4.5 and LibSVM. Overall, using paired Student ratio test, one can
see that RF-ODT significantly improves the mean accuracy (table 5) of 3.6 per-
cent points compared to RF-C4.5 (p-value = 0.0462) and 6.4 points compared to

Table 3 Parameter values of random forest algorithms

ID Datasets #Random dimensions #Trees
1 Colon Tumor 100 200
2 ALL-AML-Leukemia 100 300
3 *MLL-Leukemia 500 100
4 Breast Cancer 100 500
5 Duke Breast Cancer 200 500
6 Prostate Cancer 250 100
7 Lung Cancer 250 100
8 Central Nervous System 500 100
9 Translation Initiation Site 150 200

10 Ovarian Cancer 500 100
11 Diffuse Large B-Cell Lymphoma 150 200
12 *Subtypes of Acute Lymphoblastic (Hyperdip) 150 500
13 *Subtypes of Acute Lymphoblastic (TEL-AML1) 150 500
14 *Subtypes of Acute Lymphoblastic (T-ALL) 200 100
15 *Subtypes of Acute Lymphoblastic (Others) 500 500
16 Bupa 4 50
17 Breast Cancer Wisconsin 10 50
18 Pima 5 50
19 *Segment 10 50
20 Spambase 20 50
21 *Opticdigits 20 50
22 *Satimage 6 200
23 *Pendigits 8 50
24 *Letters 8 50
25 *Shuttle 5 50
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Table 4 Classification results on very-high-dimensional datasets

Dataset Precision Recall F1-measure Accuracy
ID LibSVM RF-C4.5 RF-ODT LibSVM RF-C4.5 RF-ODT LibSVM RF-C4.5 RF-ODT LibSVM RF-C4.5 RF-ODT

1 68.18 76.19 82.61 75.00 72.73 86.36 71.43 74.42 84.44 80.65 82.26 88.71
2 100 95.24 95.24 95.00 100 100 97.44 97.56 97.56 97.06 97.06 97.06
3 75.00 100 100 100 100 100 85.71 100 100 93.33 100 100
4 69.23 83.33 84.62 75.00 83.33 91.67 72.00 83.33 88.00 63.16 78.94 84.21
5 85.00 94.12 90.00 94.44 80.00 90.00 89.47 86.49 90.00 90.48 88.10 90.48
6 73.53 75.76 100 100 100 96.00 84.75 86.21 97.96 73.53 76.47 97.06
7 88.26 93.75 93.75 100 100 100 93.75 96.77 96.77 98.66 99.33 99.33
8 47.62 45.46 61.91 55.56 23.81 61.91 51.28 31.25 61.91 68.33 63.33 73.33
9 83.13 92.58 90.78 84.42 73.83 79.75 83.77 82.15 84.91 92.15 92.30 93.20

10 100 98.78 100 100 100 100 100 99.39 100 100 99.21 100
11 91.30 95.65 92.00 87.50 91.67 95.83 89.36 93.62 93.88 89.36 93.62 93.62
12 95.46 95.24 100 95.46 90.91 95.46 95.46 93.02 97.67 98.21 97.32 99.11
13 100 100 100 100 96.30 96.30 100 98.11 98.11 100 99.11 99.11
14 100 100 100 100 100 100 100 100 100 100 100 100
15 92.59 100 100 39.68 29.63 55.56 55.56 45.71 71.43 64.29 83.93 89.29

Table 5 Accuracy comparison on very-high-dimensional datasets

Accuracy LibSVM RF-C4.5 RF-ODT RF-ODT vs LibSVM RF-ODT vs RF-C4.5
mean 87.28 90.07 93.63 6.35 3.57

standard deviation 13.65 22.31 21.69 9.41 6.32
student ratio 2.61 2.19

p-value 0.0204 0.0462
result of RF-ODT gain* gain*

RF-ODT win 10 9
RF-ODT tie 4 6

RF-ODT defeat 1 0
p-value 0.0117 0.0039

result of RF-ODT gain* gain**

LibSVM (p-value = 0.0204). The comparison dataset by dataset using the sign test
shows that on the 15 datasets, RF-ODT systematically prevails on RF-C4.5 (9 wins,
6 ties, 0 defeat, p-value = 0.0039) and is beaten once only by LibSVM (10 wins, 4
ties, 1 defeat, p-value = 0.0117).

For a more detailed assessment of the performance of RF-ODT facing RF-C4.5
and LibSVM, in addition to the error rate, we also calculated the precision, the
recall and the F1-measure (van Rijsbergen, 1979). The precision for a class is the
number of datapoints correctly labeled as belonging to the class divided by the total
number of datapoints labeled as belonging to the class. The recall for a class is
the number of datapoints correctly labeled as belonging to the class divided by the
total number of elements that actually belong to the class. The F1-measure is a
synthesis of the precision and the recall, which is defined as the harmonic mean of
these both quantities. Compared to the arithmetic mean, the harmonic mean has the
particularity to be more sensitive to the minimum of the precision and the recall.

Regarding the comparison of RF-ODT with RF-C4.5, one can see that the gain
ensured by RF-ODT is above all due to the increase of the recall (table 7) which is
significantly improved of 7.1 percent points on average (Student p-value = 0.0296).
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Table 6 Precision comparison on very-high-dimensional datasets

Precision LibSVM RF-C4.5 RF-ODT RF-ODT vs LibSVM RF-ODT vs RF-C4.5
mean 84.62 89.74 92.73 8.11 2.99

standard deviation 15.30 14.69 10.38 9.26 7.68
student ratio 3.39 1.51

p-value 0.0044 0.1540
result of RF-ODT gain**

RF-ODT win 11 6
RF-ODT tie 3 6

RF-ODT defeat 1 3
p-value 0.0063 0.5078

result of RF-ODT gain**

Table 7 Recall comparison on very-high-dimensional datasets

Recall LibSVM RF-C4.5 RF-ODT RF-ODT vs LibSVM RF-ODT vs RF-C4.5
mean 86.80 83.06 90.17 3.37 7.11

standard deviation 18.37 24.94 14.13 6.98 11.37
student ratio 1.87 2.42

p-value 0.0828 0.0296
result of RF-ODT gain*

RF-ODT win 6 8
RF-ODT tie 6 6

RF-ODT defeat 3 1
p-value 0.5078 0.0391

result of RF-ODT gain*

Table 8 F1-measure comparison on very-high-dimensional datasets

F1-measure LibSVM RF-C4.5 RF-ODT RF-ODT vs LibSVM RF-ODT vs RF-C4.5
mean 84.67 84.54 90.84 6.18 6.31

standard deviation 15.61 27.15 22.65 6.90 9.88
student ratio 3.47 2.47

p-value 0.0038 0.0269
result of RF-ODT gain** gain*

RF-ODT win 12 10
RF-ODT tie 2 5

RF-ODT defeat 1 0
p-value 0.0034 0.0020

result of RF-ODT gain** gain**

The comparison of the recalls, dataset by dataset, shows that RF-ODT is beaten only
once by RF-C4.5 (8 wins, 6 ties, 1 defeat, p-value = 0.0391). The empirical gain
on the precision (table 6), which worth 3 percent points, due to the excellent perfor-
mance of RF-ODT on the datasets 6 and 8, is not significant. The dataset by dataset
results (6 wins, 6 ties, 3 defeat, p-value = 0.5078) support those comments. As re-
sults in table 8, the F1-measure obtained from RF-ODT is significantly improved
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by 6.3 points on average compared with the F1-measure obtained from RF-C4.5
(p-value = 0.0269).

The comparison dataset by dataset gives a very significant advantage to RF-ODT
(sign-test p-value = 0.0020) which is never defeated by RF-C4.5. Indeed, RF-ODT
is the winner 10 times out of 15 and there is equality 5 times out of 15.

The comparison of RF-ODT with LibSVM gives an opposite result. The superi-
ority of RF-ODT on LibSVM is mainly due to the increase of the precision. In fact,
RF-ODT improves the LibSVM precision of 8.1 percent points on average (table
6), which is very significant (p-value = 0.0044). Out of the 15 datasets, RF-ODT
is beaten only once by LibSVM (11 wins, 3 ties, 1 defeat, p-value = 0.0063). RF-
ODT improves the LibSVM recall of 3.4 percent points on average (table 7), which
is not quite significant. However, we note that the 6 wins (especially on datasets 1, 4
and 15) are larger than the 3 defeats. Overall, the F1-measure is improved (table 8)
by 6.2 points on average (p-value = 0.0038), which is very significant. The dataset
by dataset comparison supports this conclusion (12 wins, 2 ties, 1 defeat, p-value
= 0.0034).

3.3 Classification Results on Standard Datasets

It is interesting to complement the above experiments by comparing the accuracies
of RF-ODT and RF-C4.5 on standard benchmarks. Ten datasets (table 2) are used,
each of them having a number of variables comprised between 6 and 64 and a ratio
between the number of dimensions and the number of datapoints which does not
exceed 5%.

These experiments (table 9) suggest that RF-ODT is at least as effective as
RF-C4.5 when the datasets are standard. Indeed, RF-ODT improves the RF-C4.5
accuracy of 0.6 percent points on average, but this advantage is tiny and not sig-
nificant. The differences between the accuracies of RF-ODT and RF-C4.5 on each
dataset are small, except for Bupa dataset where RF-ODT ensures an increase of 4
percent points. However, it must be noticed that RF-ODT wins 8 times out of 10
against RF-C4.5, which is almost significant (p-value = 0.0547).

Table 9 Accuracy comparison of random forests on standard datasets

Accuracy RF-ODT vs RF-C4.5
mean 0.69

standard deviation 3.10
student ratio 0.70

p-value 0.5001
result of RF-ODT non significant

RF-ODT win 8
RF-ODT tie 0

RF-ODT defeat 2
p-value 0.1094

result of RF-ODT almost significant
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Table 10 Execution time

Dataset Execution time Dataset Execution time
ID RF-C4.5 RF-ODT RF-C4.5/RF-ODT ID RF-C4.5 RF-ODT RF-C4.5/RF-ODT

1 2.96 0.66 4,48 14 4.00 4.30 0,93
2 3.96 3.42 1,16 15 74.68 86.20 0,87
3 5.98 17.97 0,33 16 0.21 0.28 0,75
4 11.38 6.58 1,73 17 1.87 0.15 12,47
5 7.41 6.81 1,09 18 0.93 0.83 1,12
6 3.09 2.49 1,24 19 1.87 0.20 9,35
7 1.30 2.50 0,52 20 10.08 3.65 2,76
8 3.33 5.88 0,57 21 2.79 1.07 2,61
9 797.10 671.00 1,19 22 7.83 3.74 2,09

10 29.97 22.99 1,30 23 4.90 1.35 3,63
11 2.55 1.73 1,47 24 8.62 1.56 5,53
12 19.82 10.37 1,91 25 28.07 6.56 4,28
13 17.70 11.96 1,48 Mean 42.10 34.97 1,20

The whole experiments confirm the validity of our approach: RF-ODT at least
match RF-C4.5 on standard datasets and outperforms RF-C4.5 on very high dimen-
sional databases, which is the pursued aim.

3.4 Execution Time

Before to compare the RF-ODT execution time and the RF-C4.5 one, let us anal-
yse the theoretical complexity of the both algorithms. Considering m datapoints
and n attributes, RF-C4.5 constructs the k trees of the forest with the complexity
O(kqn′mlog(m)), where q = 1 if the attributes are nominal, q = 2 if the attributes are
numerical and n′ << n. Our RF-ODT algorithm has complexity O(kp(n′+ m)n′2),
p being the average depth of the different trees.

In practice, the size of oblique trees is smaller than the size of C4.5 ones. An
oblique tree generally has a smaller depth. In addition, at each node of each RF-ODT
tree, the subset of attributes is reduced. For these reasons, the RF-ODT execution
time is faster than the RF-C4.5 one. The experiments to compare the RF-ODT and
RF-C4.5 execution time were performed on a PC (Pentium 2,4 GHz, 1 Go RAM,
Linux Mandriva 2008). Execution time is given in Table 10.

In addition, we evaluated our proposal on Forest cover type is which a very
large dataset (Asuncion and Newman, 2007). It comprises 495141 datapoints for
the learning set and 45141 datapoints for the test set. We constructed random forest
of 30 trees to learn each of the two largest classes (Spruce-Fire: 211840 datapoints
and Lorgepole-Pine: 283301 datapoints with 54 attributes). The learning time of
RF-ODT is 801.61 seconds with a precision of 99.98%, while the learning time
of RF-C4.5 is 17484 seconds with a precision of 99.57%. Therefore our RF-ODT
is 22 times faster than the usual RF-C4.5, while it slightly improves the precision
(0.41%).
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4 Conclusion and Future Works

We presented random forests of oblique decision trees that achieve high perfor-
mances for classification tasks. The main ideas are to use linear proximal SVMs
for performing multivariate node splitting during tree construction, producing indi-
vidual classifiers that are stronger than in a classical forests. Numerical test results
on standard datasets and very-high-dimensional datasets have shown that our ran-
dom forests of oblique decision trees algorithm is usually more accurate in terms
of precision, recall, F1-measure, accuracy compared with random forests of C4.5
and SVM. It has significant better performance on very-high-dimensional data with
better -but not significant- results on lower dimensional datasets. In addition our
proposal is very efficient and it can be parallelized. A parallel implementation that
exploits the multicore processors can greatly speed up the learning tasks.

Extension of the proposed approach for imbalanced datasets, multi-class classi-
fication, regression problems and feature selection tasks are under progress. In the
near future we intend to provide more empirical test on large benchmarks and com-
parisons with other oblique trees methods.
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Abstract. In this paper, we investigate the intensive use of Correspondence Anal-
ysis (CA) for large scale content-based image retrieval. Correspondence Analysis
is a useful method for analyzing textual data and we adapt it to images using the
SIFT local descriptors. CA is used to reduce dimensions and to limit the number
of images to be considered during the search step. An incremental algorithm for
CA is proposed to deal with large databases giving exactly the same result as the
standard algorithm. We also integrate the Contextual Dissimilarity Measure in our
search scheme in order to improve response time and accuracy. We explore this in-
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1 Introduction

The goal of Content-Based Image Retrieval (CBIR) systems is to operate on col-
lections of images and to extract relevant images in response to visual queries. This
task is not easy because of two gaps: the sensory gap and the semantic gap (Smeul-
ders et al., 2000). While the sensory gap is the gap between the object in the real
world and a picture of this same object which is subject to accidental distortions,
background clutter, occlusion, etc., the semantic gap is the gap between low-level
content and higher-level concepts.

Recently, the use of local descriptors has drastically increased the power of im-
age analysis techniques. Global descriptors are computed on the whole image while
local descriptors are extracted from specific points. Using local descriptors allows
to find images which share one or several visual elements with the query. First,
the methods based on a voting algorithm have been used for image retrieval. These
methods describe an image as a set of local descriptors computed at some particular
points called interest points. Given a query, each of its descriptors is matched in-
dependently with the descriptors of the images in the database, based on a distance
which measures the similarity between the descriptors. Finally, the image similar-
ity measure is computed by counting the number of matching descriptors (Amsaleg
and Gros, 2001; Berrani et al., 2003; Lowe, 1999, 2004a; Mikolajczyk and Schmid,
2001, 2004a; Mohr et al., 1998; Schaffalitzky and Zisserman, 2003; Schmid and
Mohr, 1997; Tuytelaars and Gool, 1999). Later, the methods initially developed for
textual data analysis such as tf*idf weighting (Salton and Buckley, 1988), LSA (La-
tent Semantic Analysis) (Deerwester et al., 1990), PLSA (Probabilistic Latent Se-
mantic Analysis) (Hofmann, 1999), LDA (Latent Dirichlet Allocation) (Blei et al.,
2003) have been adapted to images (Bosch et al., 2006; Lienhart and Slaney, 2007;
Sivic et al., 2005; Sivic and Zisserman, 2003). In textual data analysis, these meth-
ods use the bag-of-words model. The input of such methods is a two-way table,
often called contingency table, crossing documents and words. Applying them to
images requires to replace documents by images and to define “visual words”.

Among these methods, LSA, PLSA, and LDA are very costly in time and in mem-
ory when dealing with huge image databases. As a consequence, we will focus, in
this paper, on the use of Correspondence Analysis for large scale image retrieval and
especially on four aspects: (i) CA provides a better distance between images com-
pared to tf*idf and PLSA (Pham and Morin, 2008); (ii) we propose an incremental
version of CA algorithm (which computes exactly the same results as the usual algo-
rithm) to deal with very large databases; (iii) We introduce a very efficient retrieval
scheme using a relevant indicator of CA: the quality of representation. This scheme
is based on inverted files (Nistér and Stewénius, 2006; Sivic and Zisserman, 2003)
that avoid comparing the query to all images in the database. Nevertheless, our in-
verted files are not built directly from visual words but from topics which have been
found by CA; and (iv) we also present the integration of the Contextual Dissimilarity
Measure (CDM) (Jegou et al., 2007) in our retrieval scheme.
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The organization of the paper is the following: section 2 deals with the construc-
tion of visual words and its use for image representation. Section 3 is devoted to a
short presentation of CA. In section 4, we describe an incremental version of the CA
algorithm and in section 5, we use the previous results to large scale image retrieval.
Finally, we show some experimental results, before concluding.

2 Representation of Images

2.1 Construction of Visual Words

The words computed from images are called visual words and form a vocabulary of
N words. This computation is made in two steps: (i) computation of local descrip-
tors for a set of images and (ii) vector quantization of those descriptors into clusters
which are called, by definition, visual words. The computation of the local descrip-
tors in an image is also a two step process: interest point detection and descriptor
computation.

• Interest point detection - The Harris detector (Harris and Stephens, 1988) has
been used in Schmid and Mohr (1997) for image retrieval. The interest points
extracted from this detector are rotationally invariant whereas scale invariant
interest point detectors have been proposed in Lindeberg (1998); Lowe (1999,
2004b); Mikolajczyk and Schmid (2001). The interest points are extracted at dif-
ferent scales. The automatic scale selection is carried out by selecting the extrema
of a function over scales (e.g., Difference-of-Gaussian or normalized Laplacian-
of-Gaussian). To achieve invariance with respect to affine transformations, Miko-
lajczyk et al. have proposed an affine-adapted Harris detector and an iterative al-
gorithm for detecting affine and scale invariant interest points (Mikolajczyk and
Schmid, 2002, 2004a).

• Descriptor computation - The descriptor of each interest point is computed at
the selected scale in the region around the interest point. Many different descrip-
tors have been proposed in research literature: shape context (Belongie et al.,
2002), steerable filters (Freeman and Adelson, 1991), SIFT (Lowe, 2004b), PCA-
SIFT (Ke and Sukthankar, 2004), GLOH (Mikolajczyk and Schmid, 2005). A
comparative performance evaluation of various descriptors is reported in Miko-
lajczyk and Schmid (2005). Among descriptors, the SIFT descriptor is the most
used due to its discriminating power (Bosch et al., 2006; Lienhart and Slaney,
2007; Pham and Morin, 2008; Sivic et al., 2005; Sivic and Zisserman, 2003;
Willamowski et al., 2004). Each SIFT descriptor is a 128-dimensional vector.

Once local descriptors have been computed, the next step is to quantize them into
clusters using the well known k-means algorithm, though other methods (k-medoids,
histogram binning, etc) could be used too. Each cluster corresponds to a visual word.
After building the visual vocabulary, each local descriptor is assigned to the clos-
est cluster. At the end of the process, an image is described by the list of visual words
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Fig. 1 Detected interest points by an Hessian-Affine detector

its descriptors belong to. We then obtain a two-way table crossing the images and
the visual words, called contingency table.

3 Correspondence Analysis

CA is an exploratory data analysis technique designed for simple two-way tables
containing some measure of correspondence between the rows and the columns. It
was developed by Benzécri (Benzecri, 1973; Greenacre, 1984; Lebart, 1984) for
textual data analysis. CA applied on a table crossing documents and words allows
to answer the following questions: Are there similarities between some words ?
Between some documents ? Are there some relationships between words and doc-
uments ? CA such as factorial methods is based on the eigen decomposition of a
matrix. The rows and columns of a data matrix (i.e. contingency table) are assumed
to be points in a high-dimensional Euclidean space, and the method aims to redefine
the dimensions of the space so that the principal dimensions capture the greatest
variance possible (i.e. the inertia of the projected points is maximum), allowing for
representations of both words and documents in a same lower-dimensional space
(called factor space).

Besides, CA provides some relevant indicators: every word or document repre-
sented as a point in the low dimensional factor space can be characterized by its
contribution to the inertia of an axis or its quality of representation (Greenacre,
2007; Morin, 2004).

Let F = { fi j}M,N( fi j ≥ 0) be a contingency table with dimensions M×N (N < M,
M is the number of documents and N is the number of words). We normalize F and
get X = {xi j}M,N by:

s =
M

∑
i=1

N

∑
j=1

fi j (1)

xi j =
fi j

s
, ∀i = 1,2, . . . ,M; j = 1,2, . . . ,N (2)
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Let’s note:

pi =
N

∑
j=1

xi j , ∀i = 1,2, . . . ,M q j =
M

∑
i=1

xi j , ∀ j = 1,2, . . . ,N (3)

P =

⎛

⎜
⎜
⎜
⎝

p1 0
p2

. . .
0 pM

⎞

⎟
⎟
⎟
⎠

Q =

⎛

⎜
⎜
⎜
⎝

q1 0
q2

. . .
0 qN

⎞

⎟
⎟
⎟
⎠

(4)

In order to determine the best lower-dimensional space where the data are to be pro-
jected (images and visual words), we compute the eigenvalues and the eigenvectors
of the matrix V of dimension (N×N):

V = XT P−1XQ−1 (5)

where XT is the transposed matrix of X .
We then obtain the eigenvalues λ and the eigenvectors μ :

λ =

⎛

⎜
⎜
⎜
⎝

λ1

λ2
...
λN

⎞

⎟
⎟
⎟
⎠

, μ =

⎛

⎜
⎜
⎜
⎝

μ11 μ12 . . . μ1N

μ21 μ22 . . . μ2N
...

...
. . .

...
μN1 μN2 . . . μNN

⎞

⎟
⎟
⎟
⎠

where 1 = λ1 ≥ λ2 ≥ . . .≥ λN ≥ 0.
After removing the first eigenvalue (i.e. the trivial eigenvalue which is equal

to one), we only keep the K(K < N) largest positive eigenvalues and the associ-
ated eigenvectors1. These K eigenvectors define an orthonormal basis of the K-
dimensional space. The number of dimensions of the problem is thus reduced from
N to K. The documents are projected in the new space:

Z = P−1XA (6)

where P−1X represents the row profiles2 and A = Q−1μ is the transition matrix as-
sociated to CA. The words are also projected in the same space:

1 Like other dimension reduction methods, K is chosen empirically (e.g., by the way of
cross-validation).

2 CA is based on relative values. The sample size is not important for the construction of
the factor space. The data table can be expressed as proportions (percentages) relative to
the row or column margins. The rows (columns) containing the relative frequencies for the
singles words (documents) are called row profiles (column profiles).
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W = Q−1XT Z diag(λ )−
1
2 (7)

where diag(λ ) =

⎛

⎜
⎜⎜
⎝

λ1 0
λ2

. . .
0 λK

⎞

⎟
⎟⎟
⎠

(8)

A new document (e.g., the query) r = [r1 r2 · · · rN ] will be projected in the factor
space through the transition formula (6):

r̂i =
ri

∑N
j=1 r j

, ∀i = 1,2, . . . ,N (9)

and Zr = r̂A (10)

This CA will used to index images. By applying CA on the contingency table cross-
ing the images and visual words (i.e. we consider images as documents and visual
words as words), we obtain a new representation of images (i.e. CA-based repre-
sentation): the matrix Z. The similarity of a query and an image is thus measured
on the new representation. For instance, the cosine similarity between a query r and
the image i of the database is computed by:

similarity(r, i) = cos(Zr,Zi) (11)

=
∑K

k=1 ZrkZik

‖Zr‖‖Zi‖ (12)

where Zrk and Zik are respectively the coordinates of the query r and the image i on
axis k, ‖Zr‖ and ‖Zi‖ are the Euclidean norm of Zr and Zi respectively.

4 Incremental CA Algorithm

As mentioned in section 3, the CA problem requires to compute the eigenvectors and
eigenvalues of a particular matrix V (formula 5). In the case of large scale databases,
the matrix X is too large to be stored entirely into memory. For instance, let us
assume that each image is described by a 5 000-dimensional vector, then a database
of one million images occupies an amount of 1000000×5000×4 bytes≈ 18 GB
in memory. Therefore, we need to find an incremental procedure for computing the
matrix V , with the same result as the non-incremental algorithm.

First, let’s rewrite formula 5:

V = V0Q−1 where (13)

V0 = XT P−1X (14)
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The matrix X is divided into blocks of rows. Suppose that there are B blocks, de-
noted by:

X =

⎛

⎜
⎝

X[1]
...

X[B]

⎞

⎟
⎠ . (15)

Then we compute P[1],P[2], . . . ,P[B] and Q[1],Q[2], . . . ,Q[B] in the same way for Q and
P by replacing X with X[i] for i = 1,2, . . . ,B. It is clear that:

P =

⎛

⎜
⎜
⎜
⎝

P[1] 0
P[2]

. . .
0 P[B]

⎞

⎟
⎟
⎟
⎠

and (16)

Q =
B

∑
i=1

Q[i]. (17)

If we denote:

V[i] = XT
[i]P

−1
[i] X[i] (18)

then

V0 =
B

∑
i=1

V[i]. (19)

Both formulas 17 and 19 are the key parts for the incremental algorithm.
Once V is constructed, the eigen problem is thus solved for a small matrix (e.g.,

size of 5000× 5000). Since only a part of the eigenvectors is used for the projec-
tion stage, this problem can be solved efficiently by some advanced algorithms like
LAPACK (Anderson et al., 1999).

The mapping of images into the factor space can be done following the same
algorithm: the new image representation Z is computed by blocks. The main steps
of incremental version of CA algorithm are described in Algorithm 1.

5 Large Scale Image Retrieval

In this section, we describe the two main contributions of our work: an efficient
search scheme using inverted files, and the integration of the Contextual Dissimilar-
ity Measure in our retrieval scheme. These contributions make the retrieval robust
and efficient.



64 N.-K. Pham et al.

Algorithm 1. Incremental CA algorithm

Q = 01

V0 = 02

for i = 1 to B do3

load block X[i] into memory4

compute P[i], Q[i] from X[i]5

Q = Q+Q[i]6

V[i] = XT
[i]P

−1
[i] X[i]7

V0 = V0 +V[i]8

V = V0Q−19

compute K eigenvalues λ and eigenvectors μ of V10

compute the transition matrix A = Q−1μ11

for i = 1 to B do12

load block X[i] into memory13

compute P[i] from X[i]14

Z[i] = P−1
[i] X[i]A15

5.1 Retrieval Scheme

We use the method described in Pham and Morin (2008) to accelerate the retrieval
stage. It is a two phase algorithm. The first step consists in filtering non relevant
images and the second step performs a sequential search in a list of candidates.

The main idea is based on a relevant indicator of CA: the quality of representation
of an image on an axis. It has been shown that CA applied to images allows to build a
correspondence between axes and image topics3. The better the representation of an
image by an axis, the closer the relation between this image and the corresponding
topic. The relevance of the database images with respect to a particular query is
proportional to the number of topics they share with the query.

This filtering of non relevant images is achieved by using inverted files based on
the quality of representation of images.

Definition 1 (Quality of representation). The quality of representation of an image
i on the axis j is the squared cosine of the angle between the axis j and the vector
which joins the gravity center of the cloud of points-images to the image i:

cos2
j(i) =

Z2
i j

∑K
k=1 Z2

ik

(20)

where Zi j is the coordinate of the image i on axis j in the factor space.

3 An image topic corresponds to a group of homogeneous images or a group of images
sharing a common subject.
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The closer the squared cosine of an image on a certain axis is to 1, the closer its
projection on this axis is to its real position in the original space. A low quality of
representation means that the current axis does not represent the considered image
very well.

Definition 2 (Inverted file). Given a threshold ε > 0, an inverted file F+
j (F−

j ) as-
sociated to the positive (respectively negative) part of the axis j is a set of images
having a quality of representation superior to ε and lying in the positive (respec-
tively negative) part of the axis j.

F+
j = {i | cos2

j(i) > ε and Zi j > 0} (21)

F−
j = {i | cos2

j(i) > ε and Zi j < 0} (22)

The threshold ε is set to the average quality of representation (i.e. 1
K where K is the

number of axes). The number of inverted files is 2K.
Note that the two parts of an axis (positive and negative) are often very different,

even opposite (cf. Fig. 2).

Algorithm 2. Search algorithm using inverted files

Project r into factor space (cf. Formula 10)1

Determine topics to which r belongs et take corresponding inverted files2

Merge selected inverted files and compute the number of topics that images share with r3

Filter non relevant images to construct a list of candidates4

Search k nearest neighbors of r in the candidate list5

Given a query r, the search procedure using inverted files is described in
Algorithm 2. The search begins by filtering non relevant images. r is first projected
into the factor space and Zr is obtained by (10). Then, the representation quality fac-
tors of the query with respect to all axes are computed and the axes corresponding
to the greater factors are selected. The inverted files attached to the selected axes
are merged. As a consequence, the number of topics that an image i shares with the
query r is equal to the number ti of occurrences of i in the merged list. Thus it is
possible to filter images that are less relevant, by eliminating those with a low ti.
The set of remaining images after the filtering step is the so-called list of candidates
whose size is much smaller than that of the original database. Finally, the last re-
trieval stage considers only this list of candidates. This ensures the efficiency of the
method.

In the previous algorithm, the number ti plays a key role with respect to the pres-
ence or absence of an image in the list of candidates. The choice of an appropriated
threshold is done experimentally using a majority vote technique (Pham and Morin,
2008). In this case, an image i will be kept in the list of candidates if it shares at
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Fig. 2 Two corresponding image topics of an axis: natural landscape (positive part) and build-
ing (negative part)

least half of its topics with the query. In case of very numerous axes, this criterion
becomes too severe, possibly leading to an empty list of candidates.

This filtering rule should be weakened in the context of k-nearest neighbor
searches. In this context, we return the k nearest images of the query to the user
who evaluates their relevance. After the merging step, the images sharing no topic
with the query are rejected. However, the merged list remains very large and needs
to be reduced further. The possibility that an image is the nearest neighbor of the
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query is estimated by its ti. Therefore, the ti’s can be considered as a rough measure
of similarity, allowing us to narrow down the merged list to a list of candidates.

The threshold θ (i.e. images whose ti < θ will be filtered) can be chosen such that
the size of the list of candidates is greater than a given value, min-size, which de-
pends on the database’s size and/or on k (e.g., 0.1% of database’s size, 50k or 100k).
Searching the k nearest neighbors of the query is finally achieved by a sequential
search in the list of candidates.

Another use of the ti’s is the iterative search with user interaction where the search
engine first takes some images with high ti, performs a refined search, and presents
the most relevant images to the user; at the next iteration, images with lower ti will be
taken into account and merged with the remaining images of the previous iteration;
a refined search will be carried out and so on... until the user stops the search.

5.2 Contextual Dissimilarity Measure

The Contextual Dissimilarity Measure (CDM) proposed in Jegou et al. (2007) is
based on the integration of contextual information in the retrieval process. This mea-
sure takes into account the neighborhood structure of the points (or the images in the
image retrieval context) to improve the quantity defined hereafter, and referred to as
the neighborhood symmetry rate, of the k nearest neighbors (k-NN) search scheme
and as a consequence to improve the dissimilarity measure between images. This reg-
ularization is performed in the spirit of a local Mahalanobis distance for each image.

Let us consider the neighborhood N(i) of a given image i obtained by a partic-
ular search framework (ε-search or k-NN search) and |N(i)| the cardinal of this set
(which is a constant within the k-NN framework). The neighborhood symmetry rate
of the search framework is obtained by:

S =
1
M

M

∑
i=1

(
1

|N(i)| ∑j∈N(i)
sym(i, j)

)

(23)

where M is the number of images in the database and the sym(i, j) = 1 if i is a
neighbor of j and j is a neighbor of i, 0 otherwise.

By definition, the neighborhood symmetry rate is maximized in the ε-search
framework due to the distance symmetry property.

In order to improve the neighborhood symmetry rate of the k-NN search, each
image is associated with a weight inversely proportional to the density of its neigh-
borhood. This weighting scheme favors isolated images and penalizes images lying
in dense areas.

Let the neighborhood N(i) of an image i, obtained by a k-NN search framework,
be the set of its k nearest neighbors (∀i, |N(i)|= k). The neighborhood distance dn(i)
is, by definition, the mean distance of the image i to all its neighbors:

dn(i) =
1

|N(i)| ∑j∈N(i)
d(i, j) (24)
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where d(i, j) is the distance (or any dissimilarity measure) between two images i
and j.

The quantity dn(i) is computed for all images. The contextual dissimilarity mea-
sure dCDM(i, j) between two images i and j is defined by:

dCDM(i, j) = d(i, j)

(
d̄n

2

dn(i)dn( j)

)α

(25)

where 0 < α < 1 is a smoothing factor and d̄n is the geometric mean of the neigh-
borhood distances obtained by:

d̄n =

(
M

∏
i=1

dn(i)

) 1
M

(26)

where M is the number of images in the database.
It is possible to use the arithmetic mean instead of the geometric mean. This leads

to similar results.
Let us rewrite formula 25:

dCDM(i, j) = d(i, j)

(
d̄n

2

dn(i)dn( j)

)α

= d(i, j)
(

d̄n

dn(i)

)α(
d̄n

dn( j)

)α

= d(i, j)δ (i)δ ( j) (27)

where δ (i) =
(

d̄n

dn(i)

)α
(28)

The k nearest neighbors of a query r are thus obtained by:

k-NN(r) = k-argmin
j

{d( j,r)δ ( j)} (29)

The δ (i)’s are called regularization terms (or distance update terms) and stored
within the database.

5.3 Integration of CDM in Retrieval Scheme

When the database becomes large, one of the disadvantages of CDM is the compu-
tation complexity of the regularization terms δ (i) which is quadratic with respect
to the number of images in the database. To overcome this problem, Jegou et al.
(2007) proposed a retrieval scheme using a clustering as a pre-processing step. The
neighborhood of an image i is then searched in a small number of clusters only (e.g.,
in 1% of the database), those whose centers (or centroids) are the nearest to i.
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However, the choice of such a small number of clusters based on their center
makes the approximate neighborhood far from the ideal because the number of
neighboring clusters of an image increases exponentially with the space dimension.
Therefore, if the number of selected clusters is too small, the risk of obtaining a bad
neighborhood increases and the accuracy decreases.

We propose here an approach that dynamically selects a group of potential neigh-
bors of a given image using the inverted files described in 5.1 for computing regu-
larization terms. The approach allows us to find a good neighborhood for an image
by examining only a very small group of points (e.g., 0.05% of the database). As a
consequence, the computation complexity is considerably reduced while preserving
the accuracy. There are two possible implementations:

• off-line: as used in Jegou et al. (2007), regularization terms δ (i)’s are computed
once before the search. This solution is appropriated to static databases where
updating is rare.

• on-the-fly: during the search, regularization terms are dynamically computed on
the list of candidates only. In this way, updating is no longer a problem.

6 Numerical Results

6.1 Image Datasets

We performed experiments on the Nistér Stewénius dataset, namely N-S dataset
(Nistér and Stewénius, 2006). This dataset consists of 2 550 scenes taken from 4
different viewpoints. Hence the dataset contains a total of 10 200 images. Figure 3
shows some images from the dataset.

We used the software extract_feature of Mikolajczyk and Schmid (2004b) to ex-
tract and compute local descriptors (Hessian-affine interest point detector and SIFT
descriptors). The number of visual words is fixed to 5 000. The choice of N (5000
in this case) is done empirically. We have experimented with different values of N

Fig. 3 Images from the Nistér Stewénius dataset
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(1000, 2000, 5000, and 10 000). The result slightly improved (but not very much)
when N increases.

To evaluate the scalability of our approach, we merged the N-S dataset with one
million images downloaded from FlickR.

6.2 Baseline Methods

The tf*idf weighting (used in Sivic and Zisserman, 2003) is considered as a base-
line method. We compared the CA-based search to the PLSA-based approach (Hof-
mann, 1999). In this case, an image is represented by its topic distribution, P(topic |
image)4.

6.3 Evaluation Metrics

To evaluate the method performance, we compute the precision for the first 3 re-
trieved images (P@3) because there are only 3 relevant images for a given query.
We also present the Mean Average Precision (MAP) and the Mean Average Normal-
ized Rank (MANR) of the methods.

Average Precision (AP) is a single valued measure computed as the area under
the precision–recall graph and reflects performance over all recall levels. MAP is
an algebraic mean of the AP’s for all queries.

The average normalized rank (ANR) for a particular query is obtained by:

ANR =
1

M ∗Mrel

(
Mrel

∑
i=1

rank(i)− Mrel(Mrel + 1)
2

)

(30)

where M is the number of images in the dataset; Mrel is the number of relevant
images for the query and rank(i) is the rank of the ith relevant image. In essence,
ANR is zero if all Mrel relevant images are returned first. The ANR measure lies
in the range 0 to 1, with 0.5 corresponding to random retrieval. Similar to MAP,
MANR is obtained by averaging the ANR’s.

We also report the N-S score Nistér and Stewénius (2006). The N-S score is the
number of relevant images among first 4 returned images (including the image used
for the query).

6.4 CA versus Other Methods

Table 1 shows the performance of the different methods: tf*idf, PLSA and CA with
different K (the number of topics in the case of PLSA or the number of considered
axes in the case of CA). For all methods, we perform an exhaustive search using the

4 An implementation in Matlab of PLSA (by J. Verbeek) is found at http://lear.
inrialpes.fr/~verbeek/software.php. The number of iterations of the EM
algorithm for all experimentations is fixed to 100.
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Table 1 Performance of different methods on N-S dataset. PLSA-1: PLSA with the cosine
similarity and PLSA-2: PLSA with the J-S measure

Methods N-S score P@3 MAP MANR
tf*idf 2.785 0.595 0.632 0.020
PLSA-1, K = 100 2.825 0.608 0.651 0.010
PLSA-1, K = 200 2.833 0.611 0.656 0.011
PLSA-1, K = 300 2.745 0.582 0.628 0.011
PLSA-1, K = 400 2.706 0.569 0.613 0.012
PLSA-1, K = 500 2.631 0.544 0.591 0.014
PLSA-2, K = 100 3.122 0.707 0.742 0.009
PLSA-2, K = 200 3.154 0.718 0.762 0.009
PLSA-2, K = 300 3.116 0.705 0.753 0.010
PLSA-2, K = 400 3.059 0.686 0.740 0.011
PLSA-2, K = 500 3.061 0.687 0.738 0.012
AFC, K = 100 3.123 0.708 0.747 0.007
AFC, K = 200 3.195 0.732 0.770 0.006
AFC, K = 300 3.217 0.739 0.776 0.006
AFC, K = 400 3.222 0.741 0.777 0.006
AFC, K = 500 3.225 0.742 0.778 0.006
AFC, K = 600 3.225 0.742 0.778 0.006

cosine similarity for measuring the similarity of images. We have also tested PLSA
with another similarity measure: the Jensen-Shannon divergence (J-S measure). This
measure is based on the Kullback Leibler divergence (K-L divergence). The J-S
measure of two distributions x et y is obtained by:

dJS(x,y) =
1
2

(
dKL(x,

x + y
2

)+ dKL(y,
x + y

2
)
)

(31)

where dKL is the K-L divergence:

dKL(x,y) = ∑
i

xi log
xi

yi
(32)

PLSA and CA considerably improve the quality of the results compared to the sim-
ple tf*idf weighting. For PLSA, the J-S measure gives better results than the co-
sine similarity. However, the computation time for J-S measure is much higher than
the one for the cosine similarity (about 50-60 times slower due to the computation
of logarithm functions). CA performs better than PLSA whatever the number of
topics K.

6.5 Large Scale Evaluation

For large scale evaluation, we have successively merged 10 200 images of the N-S
dataset with 100 000, 200 000, 500 000 and one million images from FlickR. We
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Table 2 CA without Contextual dissimilarity measure, in comparison to the tf*idf clustering-
based method

Database size min-size recall
CA tf*idf

P@3 time (ms) P@3 time (ms)
200 0.847 0.676 14.8

100K + 10200 300 0.872 0.681 15.1 0.609 34.3
500 0.896 0.684 15.7
200 0.841 0.660 24.6

200K + 10200 300 0.863 0.663 25.0 0.596 71.4
500 0.885 0.664 25.5
200 0.811 0.637 62.9

500K + 10200 300 0.832 0.640 63.8 0.576 179.2
500 0.856 0.641 65.5
200 0.779 0.623 172.3

1M + 10200 300 0.800 0.625 172.6 0.559 355.9
500 0.823 0.627 172.8

compute the precision for the first 3 returned images (P@3) of the tf*idf and CA
methods. Due to memory limitation, we could not perform PLSA on these large
datasets. In these experimentations, we use our approximative search method (based
on inverted files) instead of a sequential search and we compare with a clustering-
based method described in Jegou et al. (2007) where the dataset is organized in
500 clusters (using k-medoids algorithm). For a given query, a sequential search is
performed on 50 nearest clusters (10% of the dataset).

CA without CDM

Table 2 shows the results of both tf*idf and CA methods using the cosine similarity.
The “min-size” column provides the minimum size of the list of candidates used to
determine the threshold θ (cf. Section 5.1); the “recall” column represents the recall
rate of the list of candidates (the number of relevant images divided by 3). The last
columns provide the results (P@3 and response time) obtained with two methods:

1. CA retrieval using inverted files
2. tf*idf retrieval using clustering technique

It is clear that our method outperforms the clustering-based method in terms of
both precision and response time. With a database of million images, a list of 500
candidate images (0.06% of the database) contains 82.3% of relevant images. This
explains why our method performs efficiently without any reduction in the quality
of the results.

CA with CDM

As shown in table 2, the percentage of relevant images in the lists of candidates
(“recall” column) is relatively high. This means that the precision can be improved
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Table 3 Combination of CA and CDM. CA-1: combination of CA and off-line CDM; CA-2:
CA with on-the-fly CDM and tf*idf + CDM: combination of CDM and clustering.

Database size min-size CA-1 CA-2 tf*idf + MDC time
200 0.735 0.735 25.8

100K + 10200 300 0.737 0.744 0.696 36.7
500 0.741 0.749 71.5
200 0.721 0.725 35.9

200K + 10200 300 0.724 0.731 0.683 46.3
500 0.725 0.735 81.2
200 0.699 0.705 75.1

500K + 10200 300 0.701 0.711 0.660 86.5
500 0.705 0.715 121.3
200 0.677 0.688 183.5

1M + 10200 300 0.684 0.696 0.643 195.3
500 0.688 0.701 231.2

if an appropriate measure is used. This is why we integrate CDM into our retrieval
scheme.

We show the precision for the first 3 returned images in table 3. CA-1 refers the
off-line CDM integration and CA-2 to the CDM on-the-fly. The “tf*idf + CDM” is
the method used in Jegou et al. (2007) which combines CDM and clustering. The
response time for the CA with on-the-fly CDM is shown in “time(ms)” column.
The response time for the CA-1 and “tf*idf + CDM” methods remains unchanged
compared to the methods without CDM in Table 2 because regularization terms are
computed off-line. With CA-1, we fixed min-size to 300 for the computation of the
regularization terms. While with CA-2, the regularization terms are computed for
all images of each list of candidates whose size varies from 200 to 500 as shown
in the “min-size” column. For the sake of comparison, we set |N(i)| to 10 and α
to 0.6 as proposed in Jegou et al. (2007). The results show that our method (off-
line or on-the-fly) outperforms the clustering-based method. CA-2 still performs
faster than “tf*idf + CDM” although regularization terms are computed on-the-fly.
A possible explanation is the fact that the lists of candidates contain good neighbors.
Therefore (i) approximate regularization terms are very close to ideal ones (which
are computed exhaustively) while the clustering-based method does not lead to good
regularization terms and (ii) A small number of clusters does not contain enough
relevant images for a query and thus the precision decreases.

7 Conclusion and Future Work

We have presented, in this paper, an intensive use of Correspondence Analysis for
large scale content-based image retrieval. In a first step, CA is used instead of tf*idf
to improve the computation of distances between images. Then in order to deal with
large scale databases, we have proposed an incremental version of CA algorithm
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that loads only a small block of data into memory at an instant t. The incremental
algorithm provides exactly the same results as the non incremental one. Next, one
of the indicators of CA, the quality of representation, is used to build a retrieval
scheme based on inverted files that avoids the comparison of the query with all
the images in the database. Finally we proposed an improvement of this retrieval
scheme by integrating the Contextual Dissimilarity Measure (Jegou et al., 2007).
The numerical results show that:

• CA is more effective than tf*idf and PLSA,
• results are still improved (better precision) as the Contextual dissimilarity mea-

sure is integrated in our retrieval scheme, either in the off-line or on-the-fly ways.

With the proposed method, only 0.06% of database is explored (in less than one
eight of a second) and these 0.06% contain 82.3% of the relevant images. A first
perspective would be to parallelize the CA algorithm. Another one is to explore the
use of this method with very high dimensional data (> 100000).
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Toward a Better Integration of Spatial Relations
in Learning with Graphical Models

Emanuel Aldea and Isabelle Bloch

Abstract. This paper deals with structural representations of images for machine
learning and image categorization. The representation consists of a graph where
vertices represent image regions and edges spatial relations between them. Both
vertices and edges are attributed. The method is based on graph kernels, in order
to derive a metrics for comparing images. We show in particular the importance
of edge information (i.e. spatial relations) in the specific context of the influence
of the satisfaction or non-satisfaction of a relation between two regions. The main
contribution of the paper is situated in highlighting the challenges that follow in
terms of image representation, if fuzzy models are considered for estimating relation
satisfiability.

Keywords: Image Interpretation, Spatial Relations, Fuzzy Reasoning, Kernel
Methods.

1 Introduction

Generic machine learning algorithms do not cope with complex data such as images
directly, a preprocessing step being usually required in order for them to perform
various tasks. Among the solutions used to adapt image data to algorithm inputs, we
discuss in this article a representation method as a structure which encodes explicitly
image parts and spatial interactions in a graphical model.

Discriminative learning algorithms that are well suited for this kind of graphi-
cal models have been created (Kashima et al., 2003) and optimized (Mahé et al.,
2004) in view of specific applications in computational chemistry and biology.
An adaptation for coping with graphical models extracted from images is required
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nevertheless, since the properties of the information encoded in the graphical struc-
ture is fundamentally different than in the context of biological or chemical struc-
tured data analysis.

In a larger context, image interpretation methods use primarily the visual features
of low-level or high-level interest elements. However, spatial information concern-
ing the relative positioning of these elements is equally beneficial, as it has been
shown previously in segmentation and structure recognition. Therefore, an interest
for the integration of spatial information in the learning framework has emerged re-
cently. The fact that spatial information is often perceived and expressed in a manner
which is close to natural language, along with the fact that the absence of a spatial
interaction is also relevant, hint at the usefulness of fuzzy spatial information for
image representation. Fuzzy representations actually permit to assess at the same
time the imprecision degree of a relation (e.g., “close to” or “to the left of” ) and the
gradual transition between the satisfiability and the non-satisfiability of a relation.

The objective of this article is to explore the limits of spatial information rep-
resentation and its integration in the learning process within the context of image
classifiers that make use of graph kernels. In the first part of our work, we present
the advantages that labeled graphs provide for representing images, along with the
general learning strategy employed by the corresponding SVM classifier. We con-
tinue with a short reminder on the use of spatial information in some related graph
representations, and on the particularities of spatial information for image represen-
tation. The results show that spatial information complements the visual features of
distinctive elements in images and that adjusting the kernel functions for the fuzzy
spatial representations is beneficial in terms of performance.

2 Knowledge Representation by Labeled Graphs

In the domain of machine learning, generic supervised statistical algorithms accept
input data in the form of numerical arrays or sequences and return a numerical value
or indicate a specific category. Nowadays, input data are increasingly provided in
complex configurations: as trees, graphs or other relational structures. These data
arise very often from health and life sciences, but also from image processing, rea-
soning models for forecasting and decision making, etc. We witness accordingly the
apparition of complex tasks that require the extraction of relations and structural
dependencies out of input data. This situation suggests the emergence of learning
methods adapted for these tasks and coping with large quantities of data.

In a structured data representation by graphical models, vertices may represent
for instance atoms (Kashima et al., 2003), simple chemical structures with specific
properties (Mahé et al., 2006), proteins (Borgwardt and Kriegel, 2007), segmen-
tation regions in images (Aldea et al., 2007a; Harchaoui and Bach, 2007), while
edges encode specific interactions such as interdependence and scheduling, or spa-
tial relations (adjacency, distance, relative localization, topology). In the context and
particularly for image processing tasks, key sources of imprecision must be taken
into account, concerning the objects and their imprecise delimitation and the relative
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essence of the interaction information, often depicted using natural language. The
graph structure and labeling integrate therefore the information that we possess con-
cerning the basic elements that form the input objects, their features, the interactions
among them but equally our confidence level for these types of information.

In the case of an image, one possible approach for the extraction of a graphical
model is by building an adjacency graph upon the output of image segmentation.
Graph vertices are associated with image regions and are labeled according to spe-
cific region features, related to size, color, texture. Usually, these numerical values
are continuous, as opposed to discrete values that we may encounter in other appli-
cations (a chemical symbol, a protein identification reference or a nucleotide). The
only structural information being used is the region adjacency, implicitly encoded
by the graph edges. Extensions of this basic graphical model take into account more
complex spatial and topological information using a richer labeling of the edges.

The next step consists in using a Support Vector Machine (SVM) (Vapnik, 1998)
to classify the structures that were extracted. Given a positive definite function K,
denoted as the kernel function of the classifier, a set of training objects X and a set
of labels Y associated to the elements of X, such that yi ∈ {−1,+1} for any xi ∈ X,
the output of the classifier for a new object x is:

y(x) = sgn

( |X|
∑
i=1

αiyiK(xi,x)

)

(1)

where αi is the Lagrange multiplier in the optimization solution associated to the
training object xi.

An important observation is that the classifier only needs the value of the kernel
function between pairs of examples, as a similarity estimation. An additional advan-
tage of this approch is that it allows classifying elements issued from spaces which
are not naturally endowed with inner products (such as graph, tree or string spaces),
as long as we use a valid kernel function.

Furthermore, we describe the specific marginalized kernels that are being used in
labeled graph analysis.

2.1 Marginalized Kernels

Given a generic class of objects X, we assume that the constituents x ∈ X are gen-
erated according to a latent variable model which consists of the visible variable x
and of a hidden variable θ , being considered jointly in a pair z = [θ ,x]. As we need
a kernel K(x,x′) for the visible variables, we define first a joint kernel Kz(z,z′) for
the mixed pair, which is used in a marginalized kernel (Tsuda et al., 2002) defined
as the expectation of the joint kernel over all the values of the hidden variable:

K(x,x′) =
∫

θ ,θ ′∈Θ
p(θ |x)p(θ ′|x′)Kz(z,z′)dθdθ ′ (2)
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whereΘ refers to the domain of the hidden variable. In a discrete setting, the value
of the marginalized kernel is estimated with:

K(x,x′) = ∑
θ ,θ ′∈Θ

p(θ |x)p(θ ′|x′)Kz(z,z′) (3)

The difficulties to be considered when estimating marginalized kernels are the com-
putational burden which is related to the dimension of Θ , and the estimation from
the data of the probabilistic model p(θ |x). Therefore, the choice of the model p(θ |x)
should maximize the relevance for the specific data x ∈X under the tractability con-
straint of K(x,x′). With respect to the properties of the function K(x,x′), as long as
the joint kernel Kz(z,z′) is positive semidefinite, the kernel K(x,x′) is also positive
semidefinite, since the class of positive semidefinite kernels is closed under addition
and multiplication (Genton, 2001); the kernel may also be interpreted as the inner
product of the two vectors p(θ |x) and p(θ ′|x′).

2.2 Building SVM Classifiers for Graphs

The graph similarity is assessed using a marginalized kernel function and is em-
ployed in a SVM classifier. This similarity, related to a specific feature a, between
two graphs G and G′ extracted from images is evaluated with a kernel that sums the
similarities between all possible pairs of random walks in the two graphs (Kashima
et al., 2003), weighted by their probability of apparition.

In reference to other applications that used this type of marginalized graph ker-
nel (Mahé et al., 2004), the labeling space for vertex features is continuous and
multidimensional. The similarity function for feature values has to be less discrim-
inative than the Dirac delta function usually employed in the discrete case. There-
fore, we use Gaussian kernels with variance σ2 in order to evaluate the similarity
krb f

a (a1,a2) between two values a1 and a2 of the numerical feature a :

krb f
a (a1,a2) = exp

(
−‖a1−a2‖2

2σ2

)
(4)

Specific kernels have been shown to be adapted for other types of features. These
kernels usually employ a well known distance between features that they kernelize;
examples include a χ2-kernel between histograms :

kχ2(h1,h2) = e−αχ
2(h1,h2) (5)

or a L1/L2 distance based kernel between multichannel mean color levels. In case
of texture features, we use a distance metric defined in Arivazhagan et al. (2006) on
descriptors (Bernardino and Santos Victor, 2006) based on the means and standard
deviations of Gabor filter energy responses.
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Given the two graphs G and G′ to compare, Equation (4) is used to evaluate
the similarity kv,e(h,h′) between two random walks h = {x1, . . . ,xn} in G and h′ =
{x′1, . . . ,x

′
n} in G′, by combining the similarity functions kv for a vertex feature v and

ke for an edge feature e along h and h′:

kv,e(h,h′) = kv(vx1 ,vx′1)
n

∏
i=2

ke(exi−1xi ,ex′i−1x′i)kv(vxi ,vx′i) (6)

This general equation may be simplified if we take into account only a region feature
(as it happens with adjacency graphs) or if we take into account only an edge feature.
In order to simplify the computation, we fix the value of the missing function to 1
(however, the element that is not considered for similarity computation must exist,
otherwise a random walk containing the element could not exist).

At this point, we can underline the link between our specific kernel and the formal
marginalized model depicted in Section 2.1. The input graph G represents the visible
variable, and the random walk h represents the hidden variable. Therefore, the graph
kernel between G and G′ is computed by adding the similarities between all possible
random walk kernels h and h′, weighted by their probability of apparition:

Kv,e(G,G′) =∑
h
∑
h′

kv,e(h,h′)p(h|G)p(h′|G′) (7)

This function is subsequently used with a support vector machine (SVM) in order to
build an image classifier. The matrix Kv,e defines the similarity between the graphs
to compare.

3 Spatial Relations in the Context of Graph Learning

The spatial context has been taken into account in computational biology and chem-
istry when representing structured data. With few exceptions (Mahé et al., 2006),
spatial relations being used are binary and model rigorously the presence of an inter-
action between two elements of the structure. Even under this binary relation model,
it has been shown that information brought by the absence of interactions may in-
crease prediction performance, in relevant applications. For example, in protein-
protein interaction (PPI) networks the absence of protein interactions is relevant for
disease prediction. Therefore, a complement graph G̃ of the initial interaction graph
G, which encodes the absence of interactions, has been proposed Borgwardt and
Kriegel (2007). The resulting composite kernel:

K∗(G,G′) = K(G,G′)+ K(G̃,G̃′) (8)

leads to noteworthy improvements in classification accuracies on disease outcome
prediction for cancer patients.

As to the extraction of spatial information for image representations, the situa-
tion is more complex. First of all, spatial interactions present an inherent semantic
variability which goes well beyond the binary case mentioned above. Secondly, the
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integration of fuzzy spatial information and region feature information turns out
to be more complicated than the direct method depicted in Equation 8. However,
this type of spatial information has been shown to enrich the description of im-
ages and to be useful for segmentation and structure recognition purposes. Below,
we examine how we can use spatial information in learning and, more specifically,
categorization.

We could just add fuzzy information on the existing edges of the image repre-
sentation graph, but using strict adjacency for the underlying structure may pose
robustness issues. Indeed, in cases where adjacency relies on a small number of pix-
els, the resulting graph may differ according to the segmentation method. Adding
edges that represent more than the implicit strict adjacency relation does not only
help with encoding structural information, but at the same time improves the robust-
ness of the representation.

For our application, we use a topological spatial relation represented by an ex-
tended degree of adjacency, described below. Note that other relations could be
added as well, using the same framework.

3.1 Distance between Regions

The distance between two regions R1 and R2 is computed as the minimal Euclidean
distance between two points pi ∈ R1 and q j ∈ R2:

d(R1,R2) = min
pi∈R1,q j∈R2

(dEuclidean(pi,q j)) (9)

Distance, as well as orientation, may not always be relevant, for instance the distance
between two regions is the same if those two regions are adjacent by only one pixel,
or if a region is surrounded by another region. Therefore we propose to consider a
topological feature that measures the adjacency length between two regions.

3.2 Adjacency Measure Based on Fuzzy Satisfiability

One way to estimate this measure is to compute the matching between the area
“near" a reference region and another region. This measure is maximal in the case
where the reference region is embedded into the second, and is minimal if the two
regions are far away from each other.

Fuzzy representations are appropriate to model the intrinsic imprecision of sev-
eral relations (such as “near") and the necessary flexibility for spatial reason-
ing (Bloch, 2005). We define the region of space in which a relation to a given
object is satisfied as a fuzzy set. The membership degree of each point to this fuzzy
set corresponds to the satisfiability degree of the relation at that point (Bloch, 2005).
Note that this representation is in the image space and thus may be more easily
merged with a representation of another region.

The spatial relation “near" is defined as a distance relation. A distance relation
can be defined as a fuzzy interval f of trapezoidal shape on �+. A fuzzy subset μd
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of the image space S can then be derived by combining f with a distance map dR

to the reference object R: ∀x ∈ S, μd(x) = f (dR(x)), where dR(x) = infy∈R d(x,y).
In our experiments, the fuzzy interval f is defined with the following fixed values:
0, 0, 10, 30 (Figure 1a). We exemplify using a butterfly image (Figure 1b) and the
result of a segmentation exhibiting four distinct regions (Figure 1c). We illustrate the
distance map to the region represented by the left wing (Figure 1d) and the fuzzy
subset corresponding to the relation “near the left wing" (Figure 1e) which uses the
distance map and the fuzzy interval defined above. Similarly, we compute fuzzy
subsets for the right wing (Figure 1f) as well as for any other regions designated by
the segmentation.
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Fig. 1 (a) Fuzzy interval for the distance relation. (b) Input image. (c) Segmentation result,
four distinct regions. (d) Distance map to the region represented by the left butterfly wing. (e)
Fuzzy subset corresponding to the relation “near the left wing" (red corresponds to highest
values). (f) Fuzzy subset corresponding to the relation “near the right wing".
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So far we have defined the area of the image in which the relation “near to" a ref-
erence object is defined. The next step consists in estimating the matching between
this fuzzy representation and the other region. Among all possible fuzzy measures,
we choose as a criterion a M-measure of satisfiability (Bouchon-Meunier et al.,
1996) defined as:

Sat(near(R1),R2) =
∑x∈S min(μnear(R1)(x),μR2(x))

∑x∈S μnear(R1)(x)
(10)

where S denotes the spatial domain. It measures the precision of the position of the
object in the region where the relation is satisfied. It is maximal if the whole object is
included in the kernel of μnear(R1). Note that the size of the region where the relation
is satisfied is not restricted and could be the whole image space. If the object R2

is crisp, this measure reduces to
∑x∈R2

μnear(R1)(x)
∑x∈S μnear(R1)(x)

, i.e. the portion of μnear(R1) that is

covered by the object R2.

3.3 Adjacency Measure Based on Fuzzy Resemblance

Beside satisfiability, we also choose a symmetric measure, the M-measure of resem-
blance (Bouchon-Meunier et al., 1996) defined as :

Res(near(R1),R2) =
∑x∈S min(μnear(R1)(x),μR2(x))

∑x∈S max(μnear(R1)(x),μR2(x))

This measure is maximal if the object and the relation are identical: this resemblance
measure accounts for the positioning of the object and for the precision of the fuzzy
set as well.

In Figure 1(e) and Figure 1(f) we have illustrated the fuzzy subsets corresponding
to the two wings. With the fuzzy satisfiability measure defined above, we get a
response of 0.100 for “right wing near the left wing" and 0.109 for “left wing near
the right wing". It is equally worth noting that the two regions are disconnected with
respect to the strict pixel adjacency.

In the remaining sections, we will denote by a spatial relation R one of these mea-
sures of fuzzy adjacency, but we underline the fact that R could be substituted for
other functions that estimate the interaction between elements of the image struc-
ture. The choice of the spatial relation of adjacency for our illustration is immediate
because fuzzy adjacency information extends naturally one of the most simple and
pertinent relations between image regions, the strict adjacency. However, taking into
account more complex spatial relations such as “parallel to” or “along”, along with
their fuzzy measures of satisfiability (Vanegas et al., 2009; Takemura et al., 2005),
is possible as long as these spatial relations are appropriate for the content of the
input images.
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4 Fuzzy Spatial Information and Discriminative Models

We can see that fuzzy spatial relations for images extend very conveniently the bi-
nary relations that are being used in other domains and achieve to merge at the
same time information concerning the presence and the absence of an interaction.
However, there are difficulties that arise when using this type of relations for dis-
criminative learning.

In the context of image representation using spatial relations, related work has
been done using binary relations (Deruyver et al., 2009) supported by a specific on-
tology, using a count vector (Lebrun et al., 2008) which estimates simple relative
positioning, or using fuzzy spatial relations (Aldea et al., 2007b). Each independent
spatial relation builds in itself a novel data representation, therefore additional work
may be necessary in order to make use of different spatial features simultaneously
and efficiently. In this part of the article, we focus on the fact that a single fuzzy
spatial relation creates by itself an infinite set of different representations. Rather
than using multiple spatial relations for learning, we try to underline the specific
challenges that a discriminative learning algorithm has when using a family of rep-
resentations generated by the same fuzzy spatial relation.

Very often, there is a correlation between the value of a fuzzy spatial relation and
the information gain: if the response is high, it means that the relation that the func-
tion has been designed for is much present. Consequently, low responses may be
frequent (e.g. in the case of the “near" spatial relation) and may not bring the same
amount of information. Discriminative learning, and discriminative learning for la-
beled graphs in particular, makes intensive use of similarity assessments between
input objects. The similarity score between two graphs increases if these graphs ex-
hibit many similar substructures. Complete graphs must be used if we compute a
spatial relation value between all possible regions; therefore, if very low relation
values are frequent (close to, or equal to 0), the graph kernel function will over-
increase the graph similarity measure.

A straightforward solution to this situation is to threshold the spatial relation
values, so that edges will exist only when the fuzzy adjacency estimation between
two vertices is beyond a minimum value θ . However, the strict adjacency graph
does not necessarily belong to this set G of threshold graphs. In terms of graph edit
distance (Riesen et al., 2007), let us consider for an image the adjacency graph G
and an element Gθ ∈ G:

Gθ = {V(G);(v1;v2) ∈ V2(G)|R(v1,v2)≥ θ} (11)

where R(v1,v2) is the generic spatial relation function between regions (vertices) v1

and v2.
Obviously, the vertex sets of G and Gθ are identical, as representations of the

same image segmentation. We denote by V(G) the vertex set of graph G, and by
E(G) its edge set. Under these circumstances, the graph edit distance dg.e.(G,Gθ )
between G and Gθ is generated by strictly adjacent regions that are not close enough
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in terms of θ -fuzzy adjacency and non strictly adjacent regions that are close in
terms of θ -fuzzy adjacency:

dg.e.(G,Gθ ) = card{(v1;v2) ∈ V2(G)|(v1,v2) ∈ E(G)∧R(v1,v2) < θ}
+ card{(v1;v2) ∈ V2(G)|(v1,v2) ∈ E(G)∧R(v1,v2)≥ θ} (12)

In practice this means that if we extend the spatial information beyond the intuitive
strict adjacency between regions, we get for each spatial relation R a graph set G

instead of a single graph representation of the image, and learning using spatial
relations should be adapted to this situation. More precisely, we should know which
of these graphs is more appropriate for learning.

The graph or graphs G∗ ∈ G that minimize dg.e. are the closest (structurally) to the
adjacency graph G. These are the projections of G in the set G, and are ideally robust
generalizations of G with respect to the spatial relation R. However, G∗ and G might
still exhibit various differences (the edge sets E(G) and E(G∗) are not identical),
therefore the structural information within might still be partially disjunct.

The element that bridges the informational gap between G and G is the complete
graph G f , which includes (structurally) any element Gθ ∈ G, as well as the strict ad-
jacency graph G. Ideally, the learning algorithm should exhibit the best performance
with G f , but then it should be able to cope well with the noise generated by a lot of
similar low-information edge labels.

5 Experiments and Results

5.1 Data Set

The Internet Brain Segmentation Repository (IBSR) data set1 contains real clini-
cal data and is a widely used 3D healthy brain magnetic resonance image (MRI)
database. It provides eighteen manually-guided expert brain segmentations, each of
them being available for three different views, along reference planes: axial, sagittal
and coronal. Each element of IBSR is a set of slices that cover the whole brain.

The main purpose of the data set is to provide a tool for evaluating the perfor-
mance of segmentation algorithms. However, the fact that it is freely available and
that it offers high quality segmentations as input data makes it also useful for our
experiments.

5.2 Experimental Setup

Image categorization between images belonging to different views in the data
set (sagittal, coronal, axial) is performed with a 100% success rate for many of

1 The MR brain data sets and their manual segmentations were provided by the Cen-
ter for Morphometric Analysis at Massachusetts General Hospital and are available at
http://www.cma.mgh.harvard.edu/ibsr/
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 2 Samples from IBSR data set. 2(a), 2(b) Two slices of the sagittal view of the same 3D
MRI volume representing the two categories. 2(c), 2(d) Coronal view. 2(e), 2(f) Axial view.
The original images are presented below their corresponding manual segmentations.

Table 1 Identification of the slices composing the database in each view of the 3D volume,
for the three possible views: sagittal (S), coronal (C) and axial (A)

View Slices Slices cat. 1 Slices cat. 2

S 256 121, 122, 123 126, 127, 128
C 128 58, 59, 60 64, 65, 66
A 256 121, 122, 123 126, 127, 128

the features that we take into account; as a result, we build a more challenging
categorization problem between images belonging to the same view; a secondary
benefit of this approach is that by choosing certain slices we can control the diffi-
culty of the task. Since the brain is made up of consecutive slices in any of the three
views and the brain structure varies progressively, we want to create one category
using three consecutive slices which are at the same level over all the eighteen 3D
brain segmentations. A second category is being built using three consecutive slices
which are positioned at a certain distance from the first block; as the distance be-
tween the two blocks of slices decreases, the difficulty of the categorization task
increases. We found out that choosing a distance of only two or three slices between
the training blocks, along with category intra-variability, would account for a dif-
ficult categorization task. Table 1 references the total number of slices in each 3D
brain view and the indices of slices being used for defining each category; Figure 2
presents typical category elements for all views. Each brain view will provide three
images for each category, thus creating a category definition of 54 images.

Concerning the graph construction and labeling, nodes are represented by man-
ually segmented regions while edges account for spatial relations between regions.
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For vertex labeling, we use normalized region visual features: the mean gray level
(which is normalized according to the lightest and darkest regions in the image), the
relative region area (normalized according to the total image area) and the normal-
ized region compacity, defined as the normalized ratio between its surface and its
squared perimeter. For this work specifically, we will experiment with the coronal
view and with the mean gray level as region feature. Spatial relations based on adja-
cency measures being considered between image regions build up the edge labeling,
respectively.

We perform n-fold cross validation on the training set (n = 10), and we repeat
the classification task m times (m = 10); the performance given below is the mean
value of these m executions.

5.3 Categorization with Strict Adjacency Structures

Given a region feature and a spatial relation within the strict adjacency graph,
we use RBF kernels (Equation 4) with thresholds that are adapted to the range
[0,1] of these normalized features (see Figure 3), and we set up a grid search in
the σ parameter space for each of the two kernel functions. For each element of
the grid, we try multiple values for the regularization parameter C of the SVM,
C ∈ {10−2,10−1, . . . ,106}. Figure 3 presents the best classification performance for
each pair (σvertex,σedge), for the values and features specified on the axis.

5.4 Categorization with Fuzzy Adjacency Structures

Next, we analyze the impact of adding structural information which is not necessar-
ily tied to the strict adjacency between image regions. For a given segmentation and
for a certain spatial relation R, the complete graph encodes all the possible relations
between vertices, as edge labels.

The histograms in Figure 4 present the satisfiability and resemblance values en-
coded within all the complete graphs in the dataset. From these figures, we notice
that the first type of measure takes the maximum value more often, while the fre-
quency of low values is very significant. For the second measure, maximum values
are quite low even for adjacent regions (the maximum value in all the dataset being
0.39), and low values are very frequent, too.

In order to estimate the impact of different spatial relation thresholds θ on the
structure of elements in the threshold graph set G, we compute the number of dif-
ferences between the set of strict adjacency edges and θ -thresholded edges with
respect to the relation R, using Equation 12. The difference profiles for the satisfia-
bility and resemblence relations are presented in Figure 5(a) and Figure 5(b). Given
any of the adjacency graphs G in the dataset, the threshold θ that would minimize
the structural difference between G and Gθ ∈ G is given by the value corresponding
to the minimum in the difference profile, θ∗.

For our dataset, the optimal threshold for the satisfiability measure is θ sat∗ =
0.911. This high value proves the fact that most of the times, strictly adjacent
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(a) Using the gray level region attribute and the resemblance measure,
the best performance, 97.72%, is attained for σvertex = 0.1 and σedge =
0.005.
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(b) Using the gray level region attribute and the satisfiability measure,
the best performance, 96.51%, is attained for σvertex = 0.1 and σedge =
0.002.

Fig. 3 Categorization performance for the gray level region attribute and two different mea-
sures of fuzzy adjacency, using grid search in the space of kernel parameters. At this point,
we model input data using strict adjacency graphs.
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(a) Histogram of the satisfiability measure. Null values are the most
frequent ones, but maximal values are frequent too.
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(b) Histogram of the resemblance measure. Null values are equally the
most frequent ones, but this measure penalizes very fast the absence of
a strong adjacency and the maximum value in all the dataset is 0.39.

Fig. 4 Distribution of the two measures of fuzzy adjacency for all the edges in the set of
complete graphs representing the dataset
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(a) Satisfiability edge dissimilarity count
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(b) Resemblance edge dissimilarity count

Fig. 5 For a given measure (satisfiability or resemblance) threshold θ , we show the number
of different edges between the set of strict adjacency graphs of the dataset and the set of θ -
threshold graphs associated to the strict adjacency graphs. The minimal value accounts for the
highest structural similarity between the strict adjacency graphs and the θ -threshold graphs.
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Table 2 Categorization performance for (gray level - spatial relation) image information. The
parameters for the kernel functions are the optimal values found using the grid search. In the
third column, the strict adjacency graph is used, but no spatial relation labels are added to the
graph. In the fourth column, we use fuzzy adjacency labeling on the strict adjacency graph.
Afterwards, we use different θ -threshold fuzzy adjacency graphs.

Region feature Spatial relation Strict adj. Strict adj. Fuzzy graphs
No relation Fuzzy labeling

Gray level Resemblance 58.18% 97.72% θ=0.00 (82.90%)
θ=0.01 (82.92%)
θ=0.02 (86.43%)
θ=0.05 (84.38%)
θ∗=0.075 (74.43%)
θ=0.10 (76.23%)
θ=0.20 (69.90%)
θ=1.00 (61.73%)

Gray level Satisfiability 57.04% 96.51% θ=0.00 (79.07%)
θ=0.1 (70.83%)
θ=0.25 (68.18%)
θ=0.5 (76.75%)
θ=0.75 (77.51%)
θ∗=0.911 (77.29%)
θ=1.00 (62.85%)

regions account for satisfiability values that go beyond the threshold, as it is
perceivable from the high proportion of maximum values. The second measure has
a different behavior; it penalizes very fast the absence of a strong adjacency. In this
case, the R values associated to the strict adjacency relation are scattered on a larger
interval, thus the optimal threshold is situated further from the maximum value:
θ ress∗ = 0.075.

In Table 2 we compare the categorization performances for different settings in-
volving spatial relations. As a reference, we use the best classifier detected for a
certain region feature-spatial relation pair, using grid search. This classifier relies
on the strict adjacency graph extracted from the image, but the edges are labeled
using the spatial relation value between the corresponding vertices. The interest of
incorporating spatial relation information to the labeling is proven by the weak per-
formance of the classifier on the adjacency graph which uses only the region feature
information (the edge kernel ke being fixed set as ke = 1, cf. Section 2.2).

Next, we pass to the threshold graphs Gθ in the set G. In our setting, the spa-
tial relations R are represented using values in [0,1], therefore the threshold θ is
also a number in [0,1]. We estimate the categorization performance along the set G;
reference elements are the complete graph G f = G0, Gθ∗ the projection of G in G,
and G1.
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Results in Table 2 show that once we pass to a structure which is based entirely
on thresholded fuzzy spatial relations, we do not improve the best performance
witnessed on the strict adjacency graph structure. Within the set G, the projection
Gθ∗ of G performs well and the classifier performance may be improved by lower-
ing slightly the threshold below the value of θ∗, which accounts for adding edges
with spatial information. However, θ values that are far from θ∗, including the value
θ = 0 that corresponds to the complete graph, account for a poorer performance.
This shows that in the presence of a richer information, the performance does not
necessarily improve. The explanation is that the high frequency of low values for
the edge labels leads to artificially high similarity estimations between graphs and
masks the similarity of meaningful high label values. While the spatial information
is definitely helpful in image interpretation, its generic integration into graphical
models remains a difficult task and kernel functions for SVMs that cope with spatial
information should be adapted specifically to different types of spatial relations.

6 Conclusion

In this article, we studied the benefits offered by image representations using labeled
graphical models, as well as by employing fuzzy descriptors for spatial information.
Graphical models allow for a flexible integration between intrinsic visual features
of image parts and the spatial interactions taking place. We showed that fuzzy in-
formation is highly beneficial for the learning process when we use it to enrich the
labeling of strict adjacency graphical structures, but that loose spatial interactions
may screen more relevant spatial information and that generic kernel functions are
not well adapted to take into account the entirety of spatial relations within images.
Future work will try to adapt the graph similarity estimation to the specificity of
spatial relations in order to benefit from information concerning the presence and
the absence of interactions.
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Multigranular Manipulations for OLAP
Querying

Gilles Hubert and Olivier Teste

Abstract. Decisional systems are based on multidimensional databases improving
OLAP analyses. This chapter describes a new OLAP operator named “BLEND”
that performs multigranular analyses. This operation transforms multidimensional
structures when querying in order to analyze measures according to several granu-
larity levels like one parameter. We study valid uses of this operation in the context
of strict hierarchies. Experiments within a R-OLAP implementation show the light
cost of the operator.

Keywords: Decision Support Systems, Multidimensional Databases, OLAP Query-
ing, Multigranular Analysis.

1 Introduction

Decision support systems are experiencing a great boost in development because
of their capacity to effectively support analyses on available data in the organiza-
tions. These decision systems are elaborated starting from the operational system
of an organization: the data identified as relevant for decision makers are extracted,
transformed, then loaded (Vassiliadis et al., 2002) in a centralized storage space
called data warehouse. In order to improve querying and analysis of these stored
data, specific techniques of data organization were developed (Kimball, 1996) based
on multidimensional databases (MDB). This type of modeling considers the data
to be analyzed as points in a space with several dimensions, thus forming a dat-
acube of data (Gray et al., 1996). Decision makers who use these systems visual-
ize an excerpt of the datacubes, generally a “slice” with only two dimensions of a
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cube. From this structure, called multidimensional table (Gyssens and Lakshmanan,
1997), the decision maker can interact with operations. The best known operations
are drilling operations which consist in modifying the graduation of an analysis
axis (levels of granularity) and rotations which consist in changing the cube slice.
One speaks about online analysis or about OLAP (“On-line Analytical Processing”)
(Ravat et al., 2008).

This environment offers an adapted framework to decision makers’ analyses;
however the imposed structure can prove to be imperfect or become obsolete. Let
us consider sale amounts analyzed according to French customers and American
customers. Within this framework, a decision maker may want to use the graduation
according to the country for the French customers while wishing to use a different
graduation simultaneously, for example the states for the customers of the USA.
Indeed, for some analyses, it is necessary to compare a country like France with
different geographic entities like states to compare information equivalent in size,
population size, etc. The objective of this paper is to propose a solution allowing
these manipulations described as multigranular.

2 Related Work

There exist mainly two approaches for MDB modeling: an approach based on the
datacube metaphor whereby an MDB is represented by cubes; and an approach
known as multidimensional modeling whereby a MDB is represented by a star or
constellation schema (Kimball, 1996). Several field surveys (Chaudhuri and Dayal,
1997; Vassiliadis and Sellis, 1999) and comparative studies (Abelló et al., 2006;
Ravat et al., 2008) are available.

One of the first works extends the aggregation operation in the OLAP con-
text (Gray et al., 1996). Since then, a great number of operations were defined;
however due to lack of consensus on a reference model, the proposals for OLAP
operations still were neither clearly identified nor defined within an algebra fol-
lowing the example of the relational approach. A comparative study of the many
existing proposals is available in Romero and Abelló (2007).

To our knowledge no proposal can answer our problems. The closest solutions
propose mechanisms aiming at personalizing an MDB by transforming its values
and its structures. In Espil and Vaisman (2001) the rule-based language IRAH is
introduced to allow decision makers to change value groupings between two gradu-
ations. However, this approach does not make it possible to transform the hierarchi-
cal structures of the graduations initially defined in the MDB. This approach does
not allow multigranular analyzes by combining existing graduations; e.g., it allows
a cisgenic organism denoted (C1, CIS) to become a transgenic organism denoted
(C1, TRA). Our approach aims at generating a new graduation both composed of
organisms (C1) and categories such as transgenic (TRA). More recently, Favre et al.
(2007) introduced a mechanism based on “If-Then” rules in order to integrate users’
knowledge to change the MDB schema. This mechanism allows users to add new
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graduations individually. Although these solutions allow a certain adaptation of a
MDB it raises two problems: firstly, the transformation process is tricky and tedious
because based on the definitions of rules expressed by the decision maker, and sec-
ondly, coherence and confidence with the stored decisional data are not guaranteed
any more. Introducing direct means to access values in update mode renders inop-
erative the usual processes of data cleaning and consolidation.

Other works in MDB evolution context proposed operations to transform the hi-
erarchies modeled initially (Blaschka et al., 1999; Hurtado et al., 1999; Eder et al.,
2003). In Blaschka et al. (1999), an operation to insert a new parameter is presented.
The operation “Reports Levels”, defined in Hurtado et al. (1999), makes it possible
to transform the hierarchical organization of parameters. Other transformation oper-
ations such as “Split” related to parameter values are described in Eder et al. (2003).
This work offers a framework allowing the evolution of hierarchies, but does not re-
ally correspond to multigranular transformations. These operations can be diverted
to transform an MDB. However, our goal is different as it aims to help reorganize
the values between two graduations, and this, during the analysis process, without
impacting the data physically stored in the MDB.

3 Contribution and Organization

The main contribution of this article is the proposal of a new manipulation in MDB
facilitating multigranular analyses. A multigranular analysis combines the same an-
alyzed measurements according to data resulting from several parameters: for exam-
ple, we make possible the analysis of agricultural surfaces according to geographical
values of different levels such as USA and European surfaces.

We extend the OLAP algebra, defined in our laboratory (Ravat et al., 2008), by
the multigranular analysis operator “BLEND”. We carry out a study of the various
possible uses of the operator in the context of strict hierarchies (Malinowski and
Zimányi, 2006). We propose an operation that transforms the current hierarchy and
the contours limits of the operator. Lastly, we experiment the operation in the context
of a R-OLAP implementation.

An advantage of the suggested solution, is to make possible this type of analysis
during analysis runtime whereas it would require complete data reorganization as
well as associated ETL processes in a traditional context. The construction of an
MDB is a tedious task and difficult to reproduce according to each analytical need.
Applying these transformations during analysis runtime without impacting the real
data organization facilitates sharing the MDB.

Section 4 presents the MDB model, i.e. the conceptual representation we adopt.
We define a new operator called “BLEND” in Sect. 5. We show the various pos-
sible cases of multigranular manipulation authorized in the context of strict hierar-
chies (Malinowski and Zimányi, 2006). Section 6 describes the implementation of
the operator in a R-OLAP context.
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4 Multidimensional Modeling and OLAP Manipulations

This section describes our multidimensional framework based on a conceptual view
displaying MDB structures as a graphical conceptual view. Our model allows users
to disregard technical and storing constraints and sticks closer to decision makers’
view (Golfarelli et al., 2002). It allows a clear distinction between structural ele-
ments and values and offers a workable visualization for decision makers (Gyssens
and Lakshmanan, 1997).

A constellation regroups several analysis subjects (facts), which are studied ac-
cording to several analysis axes (dimensions) possibly shared between facts. It
extends star schemas (Kimball, 1996) commonly used in the multidimensional
context.

Definition 1. A constellation C is defined as (NC,FC,DC,StarC) where:

• NC is a constellation name,
• FC = {F1, . . . ,Fm} is a set of facts,
• DC = {D1, . . . ,Dn} is a set of dimensions,
• StarC : FC → 2DC associates each fact to its linked dimensions.

A dimension models an analysis axis; i.e. it reflects information according to which
analysis subjects will be analyzed. A dimension is composed of attributes (dimen-
sion properties).

Definition 2. A dimension, noted D ∈DC, is defined as (ND,AD,HD) where:

• ND is a dimension name,
• AD = {aD

1 , . . . ,aD
u }∪{idD,All} is a set of attributes,

• HD = {HD
1 , . . . ,HD

v } is a set of hierarchies.

Dimension attributes (also called parameters or levels) are organized according to
one or more hierarchies. Hierarchies represent a particular vision (perspective) of a
dimension. Each attribute represents one data granularity according to which mea-
sures can be analyzed; for example, along the store dimension, a hierarchy could
group individual stores into cities and cities into countries. Weak attributes (attribu-
tive properties) complete the parameter semantics, e.g. the name of an individual
store.

Definition 3. A hierarchy of a dimension D, noted H ∈ HD, is defined as (NH ,
ParamH,WeakH) where:

• NH is a hierarchy name,
• ParamH = 〈idD, pH

1 , . . . , pH
v ,All〉 is an ordered set of attributes, called parame-

ters, which represent useful graduations along the dimension, ∀k, pH
k ∈ AD,

• WeakH : ParamH → 2AD−ParamH
is a function possibly associating each parameter

to one or several weak attributes.
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All hierarchies of a dimension start with a same parameter, noted idD called root
parameter and end with a same parameter, noted All called extremity parameter.

A fact reflects information that has to be analyzed according to dimensions. This
analyzed information is modeled through one or several indicators, called measures;
for example, a fact data may be sale amounts occurring in shops every day. The
notation D ∈ StarC(F) represents that the dimension D is linked to the fact F .

Definition 4. A fact, noted F ∈ FC, is defined as (NF ,MF ) where:

• NF is a name of fact,
• MF = { f1(mF

1 ), . . . , fw(mF
w)} is a set of measures associated with an aggregate

function.

Constellation schemas depict MDB structures whereas user analyses are based on
tabular representations (Gyssens and Lakshmanan, 1997) where structures and data
are displayed. The visualization structure that we define is a multidimensional table
(MT), which displays data from one fact and two of its linked dimensions.

Definition 5. A multidimensional table T is defined as (S,L,C,R) where:

• S = (FS,MS) represents the analyzed subject through a fact FS ∈ FC and a set of
projected measures MS = { f1(m1), . . . , fx(mx)} where ∀i ∈ [1..x],mi ∈MF ,

• L = (DL,HL,PL) represents the horizontal analysis axis where
PL = 〈All, pHL

max, . . . , pHL
min〉, HL ∈ HDL and DL ∈ StarC(FS), HL is the current

hierarchy of DL,
• C = (DC,HC,PC) represents the vertical analysis axis where

PC = 〈All, pHC
max, . . . , pHC

min〉,HC ∈ HDC and DC ∈ StarC(FS), HC is the current
hierarchy of DC,

• R = pred1∧ . . .∧ predt is a normalized conjunction of predicates (restrictions of
dimension data and fact data).

Example 1. We consider an MDB to analyze the surface of parcels of land with ge-
netically modified (GM) organisms around the world. The constellation is composed
of one fact and three dimensions (see Fig. 1). The graphical notations we adopt are
inspired from the notations of (Golfarelli et al., 1998). According to formal defini-
tions the graphical constellation is defined as follows:

(‘C1’, {FDISTRIBUTION},{DORGANISM,DDATE,DGEOGRAPHY},{(FDISTRIBUTION ,
{DORGANISM,DDATE,DGEOGRAPHY})})

The fact denoted FDISTRIBUTION is defined as follows:
(‘DISTRIBUTION’, {SURFACE})
The dimension denoted DGEOGRAPHY is defined as follows:
(‘GEOGRAPHY’, {PARCEL, STATE, REGION, COUNTRY, CONTINENT,

DENSITY}, {HGEO, HST}) where:

• HGEO = (‘GEO’, 〈PARCEL, REGION, COUNTRY, CONTINENT〉,
{(COUNTRY, {DENSITY})})

• HST = (‘ST’, 〈PARCEL, STATE, COUNTRY, CONTINENT〉, {(COUNTRY,
{DENSITY})})
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A decision maker displays data into multidimensional tables; T1 displays surfaces
according to continents and organism types. This MT is transformed into T2 using a
combination of drill-down and roll-up operations for displaying surfaces according
to country and organism varieties. T2 allows the decision maker to compare parcels
with GM organisms (GTS-Soya, Corn BT176 and Mon 810) as well as parcels with-
out GM organisms.

Fig. 1 Star schema example (constellation composed of only one fact) and two multidimen-
sional tables resulting from OLAP operations

5 Operator “BLEND”

In order to answer our problems of multigranular analyses, we define an operation
to transform dimension parameters. This operation named “BLEND” is applied to
an MT in order to modify the headings of the lines or the columns.

5.1 Algebraic Operator

Definition 6. The operation of multigranular transformation of a MT is defined by:
BLEND(TSRC,D,Psup(ssup),Pinf (sinf ), pred) = TRES

• TSRC = (SSRC,LSRC,CSRC,RSRC) is the source MT to transform
• D ∈ {DLSRC,DCSRC} is one of the dimensions of the MT TSRC

• Psup and Pinf are consecutively displayed parameters of the dimension D such that
Psup is the parameter hierarchically higher than Pinf ,
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• ssup ∈ {+,−} and sinf ∈ {+,−} are tags indicating the conservation (+) or not
(−) of the parameter associated in TRES; the use of the tags and their various
combinations are studied in an exhaustive way in the following section 5.2,

• pred is a selection predicate that determines the values resulting from the pa-
rameters Psup and Pinf to build the definition field of the new parameter noted
Psup_Pinf ∈ TRES,

• TRES is the resulting MT.

The predicate pred is used to compute the sets Esup and Einf , which gather the values
resulting from the parameters Psup and Pinf taking part in the construction of the new
parameter field:

• Esup contains the values of Psup selected by pred,
• Einf contains the values of Pinf selected by ¬ pred.

Constraint 1. The predicate noted pred in the definition of operator “BLEND” is
valid if and only if Esup ∩ ancestor(Einf ) = ∅ with:

• ancestor(Einf ) indicates the values of dom(Psup) related to Einf ,
• dom(Psup) indicates the field definition of Psup.

For simplicity we will say that pred must define two sets of values “disjoined” in
comparison with the hierarchical organization.

Constraint 2. The composition of “BLEND” operators is not commutative. The
user must build his manipulations taking into account the order of the param-
eters Psup and Pinf , but also the order of the combinations of the multigranular
transformations.

5.2 Transformation Cases

The operator “BLEND” modifies the existing hierarchy by substituting a new pa-
rameter to one of the existing parameters (or both) or by integrating a new parameter
in addition to the existing parameters. The interest of the operation is to allow the
user to transform the existing hierarchy by the user replacing the initial hierarchy
considered obsolete directly in the MT without reconstructing the MDB.

The integration of the new parameter can be carried out according to four
scenarios:

• either the parameter replaces both existing Psup and Pinf (Tab. 1-a);
• or the parameter replaces the Pinf parameter (Tab. 1-b);
• or the parameter replaces the Psup parameter (Tab. 1-c);
• or the parameter is inserted between the parameters Psup and Pinf (Tab. 1-d).

The tags added to the two parameters Psup and Pinf indicate the selected scenario.
The tag (−) indicates that the parameter must not appear in the result while the tag
(+) indicates the opposite. In this way it is possible to transform two parameters
by creating a new multigranular parameter, while maintaining whole or part of the
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possibilities of initial navigations (with drilling operations). For example, in Tab. 1,
the scenario (a) removes the possibilities of drilling on the countries and the states
(only the multigranular parameter is available) whereas (d) maintains the two initial
parameters.

It is important to note that we present here only the possibilities which maintain
strict hierarchies (Malinowski and Zimányi, 2006) in which any value of the lower
parameter can be dependent on only one value of the higher parameter.

5.3 Operator Closure Property

The definition of the “BLEND” operator respects the closure property: it is applied
to a MT and produces a new MT. This property allows chaining successive opera-
tions in order to operate complex transformations.

Example 2. Let us consider a complex analysis in which a decision maker wishes
to compare the cereal surfaces between American states, a country such as Brazil
and the Asian continent. This analysis is multigranular on three levels since it uses a
continent, a country, and American states (subdivisions of a country). Starting from
the MT T2, we chain the two following multigranular transformations:

BLEND(BLEND(T2 , Geography, Country (−), State (−), Country<>‘USA’),
Geography, Continent (−), Country-State (−), Continent=‘Asia’) = T3

The following figures illustrate the sequence of the two operations with the corre-
sponding multigranular transformations.

State

Parcel

Country

Continent America

USA Brazil

IowaMinnesota Goias

Asia

India

PunjabMaharashtra Rajasthan

P1 P2 P3 P4 P5 P6

BLEND

(a) Structure (b) Values

P7

Fig. 2 Initial structure of Geography in T2

The sequence of the two “BLEND” operations induces a multigranular transfor-
mation of the data of T2. The resulting table T3 is presented in Fig. 5.
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Parcel

Country-State

Continent America

BrazilIowaMinnesota

Asia

India

… … … … …

BLEND

(a) Structure (b) Values

…

Fig. 3 Intermediate structure of Geography after the first “BLEND” Fig. 2

Parcel

Continent-Country-State BrazilIowaMinnesota Asia

… … … … …

(a) Structure (b) Values

…

Fig. 4 Final structure of Geography in T3 after the second “BLEND” Fig. 3

Fig. 5 Principle of multigranular transformations
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Table 1 Four possibilities of modification of the hierarchy

Parcel

Country-State

Continent America

BrazilIowaMinnesota

Asia

India

… … … … … …

Esup Einf∪∪∪∪

(a) BLEND (TSRC, Geography, Country (−), State (−), Country <>‘USA’)

America

USA Brazil

IowaMinnesota

Asia

India

… … … … … …

Brazil IndiaCountry-State

Parcel

Country

Continent

Esup Einf∪∪∪∪

(b) BLEND (TSRC, Geography, Country (+), State (−), Country <>‘USA’)

State

Parcel

Country-State

Continent America

IowaMinnesota Goias

Asia

PunjabMaharashtra Rajasthan

… … … … … …

IowaMinnesota Brazil India

Esup Einf∪∪∪∪

(c) BLEND (TSRC, Geography, Country (−), State (+), Country <>‘USA’)

State

Parcel

Country

Country-State

Continent America

USA Brazil

IowaMinnesota Goias

Asia

India

PunjabMaharashtra Rajasthan

… … … … … …

IowaMinnesota Brazil India

Esup Einf∪∪∪∪

(d) BLEND (TSRC, Geography, Country (+), State (+), Country <>‘USA’)
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5.4 Special Cases of the Operator

Empty Selection

The predicate noted pred in the definition of “BLEND” could be an empty selection
for the parameters Psup or Pin f . If Esup, respectively Ein f , is empty, then the operation
is also valid. This special case consists in deleting the parameter Psup, respectively
Pin f . Note that it is possible to obtain this result using another combination of opera-
tors from the OLAP algebra (Ravat et al., 2008). Note also that due to the definition
of the operator, Esup and Ein f cannot be empty at the same time.

Example 3. Let us consider a new operation that combines countries having a strong
population density (Density > 20) with states having a week population density.
This multigranular transformation is defining as follows:

BLEND (T3, Geography, Country (ssup), State (sin f ), Density > 20)
where ssup ∈ {+,−} and sin f ∈ {+,−}.

If country densities of the USA, Brazil and India are respectively 31.15, 21.60, and
300.24 hab/km2, then the predicate ‘Density > 20’ provides the following sets:
Esup = {‘USA’, ‘Brazil’, ‘India’} and Ein f = ∅. This special case where Ein f = ∅

consists in keeping the countries and deleting their states from the current analysis.

Root Parameter

Using the root parameter in the “BLEND” operator implies a dimension multigran-
ular transformation and the associated measure values have to be recalculated. More
precisely, deleting the root parameter values requires the aggregation of the associated
measure values; e.g., each aggregated value is linked to an upper parameter value.

Example 4. Let us consider a multigranular transformation using the root parameter
named ‘Parcel’. The decision maker wants to compare state surfaces of the USA and
parcels of others countries. This multigranular transformation is defined as follows:

BLEND (T3, Geography, State (ssup), Parcel (sin f ), Country = ‘USA’)

This operation calculates sets such as Esup={‘Minnesota’, ‘Iowa’} and Ein f =
{‘P3’, ‘P4’, ‘P5’, ‘P6’}. In the resulting multidimensional table, measure values
that are linked to the USA (‘P1’, ‘P2’ and ‘P7’) are aggregated to be linked to the
states of Esup. In the same way of the roll-up operations, the multigranular transfor-
mation uses the aggregation function defined from the initial constructor operation
noted DISPLAY (see Fig. 1); in this example the SUM function is used.

Aggregation Functions

In this paper, we study the operator using the aggregation SUM. This approach can
be generalized with every additive function (Golfarelli et al., 1998).

The operator would be applied using other aggregation functions such as average,
maximum. However, note that the average is an algebraic function (Gray et al.,
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1996; Lenz and Thalheim, 2001); i.e. the implementation of the operator is more
difficult because only part of the results may be pre-calculated using views, the
rest must be calculated from detailed data. For example, the surface of continent is
calculated by summing surfaces of countries whereas the temperature of continent
cannot be calculated by averaging temperatures of countries. The temperature of a
continent is calculated by averaging temperatures of the most detailed data.

6 Experiments within R-OLAP Context

The “BLEND” operation is implemented within the Graphic-OLAP tool (Ravat
et al., 2008) we have developed in our laboratory using the Java language and the
Oracle DBMS. This prototype is implemented according to a R-OLAP approach:
the architecture is based on a relational storage of the data and metadata while pre-
senting various interfaces to the user.

The constellation of facts and dimensions is implemented through tables: a set
of meta-tables describes the multidimensional structure and a set of tables stores
the decisional data available for the analysis. To simplify, our presentation is lim-
ited to the tables that store the detailed data; we do not approach the problems of
optimization by materialized views (Zhuge et al., 1998; Kotidis and Roussopoulos,
1999). Within this simplified framework, the queries specified by the user are trans-
lated into an extraction SQL query on the tables storing the decisional data. Note
that the database’s structure complexity increases the metadata size. We do not take
into account the quantity of meta-data because it does not impact the query process
compared to the detailed data.

Example 5. The star schema (see Fig. 1) is stored in R-OLAP as a set of relations:
DATES(id_dates, month, monthdesc, quarter, year, fouryear)
ORGANISMS(id_organisms, variety, category, organismtype)
GEOGRAPHY(id_geography, parcel, state, region, country, density, continent)
DISTRIBUTION(id_repartition, id_dates#, id_organisms#, id_geography#,

surface)

Let us reconsider the “BLEND” operations illustrated in Figs. 1, 2 and 3. The MT
T3 of Fig. 5 is obtained from the result of extraction queries generated by Graphic-
OLAP. Table 2 shows the SQL queries generated for each operation.

6.1 Experiments with Standard Relational SQL

The experiments we made aim at estimating the operator costs. We study the cost of
“BLEND” by translating this algebraic operator into its equivalent SQL query over
the star schema. Two queries are compared:

• The first query (R1) uses an attribute that stores the multigranular transforma-
tion. This query simulates MDB, which would be modeled according to the user
multigranular transformation needs.
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Table 2 SQL translation of “BLEND”

BLEND(T2, Geography, Country(−), BLEND(Ti, Geography, Continent(−),
State(−), Country <> ‘USA’) = Ti Country-State(−), Continent = ‘Asia’) = T3

SQL translation: SQL translation:

SELECT SUM(surface) AS superficy, SELECT SUM(surface) AS surface,
continent, country_state, variety continent_country_state, variety
FROM FROM
(SELECT surface, continent, (SELECT surface,
pays AS country_state, variety continent AS continent_country_state, variety
FROM T2 WHERE country<>’USA’ FROM Ti WHERE continent=’Asia’
UNION ALL UNION ALL
SELECT surface, continent, SELECT surface,
state AS country_state, variety country_state AS continent_country_state, variety
FROM T2 WHERE NOT (country<>’USA’)) FROM Ti WHERE NOT (continent=’Asia’))
GROUP BY continent, country_state, variety; GROUP BY continent_country_state, variety;

• The second query (R2) calculates the multigranular transformation from the star
schema.

Tuples were generated into the ROLAP database’s relations according to the
following:

• |ORGANISM|= 250
• 10 ≤ |GEOGRAPHY|≤ 100
• |DISTRIBUTION|= |ORGANISM|× |GEOGRAPHY|

Each relation was completed by multiple indexes on foreign keys. Values were gen-
erated using a random function but we make sure that the sizes of generated sets
noted Esup and Ein f are similar.

(a) (b)

Fig. 6 Experiment results of BLEND costs

The costs are calculated from the system cost (cost provided by the explain plan
of Oracle 11g Application Server). The experiments aim at showing how much the
operator “BLEND” costs. The size represents the number of tuples in GEOGRA-
PHY (from 10 to 100) and DISTRIBUTION (from 250×10 to 250×100); the size
of ORGANISM is fixed to 250 tuples. Figure 6(a) compares the queries. Naturally
(R2) is more expensive than (R1) due to computation of multigranular transforma-
tion. The cost is not very important (between 18% and 2%). As Fig. 6(b) shows,
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this result is interesting because the cost falls according to the relation sizes are
increased.

We also investigated if results remain similar when sizes of Esup and Ein f are
different. We use |GEOGRAPHY|= 200 and |DISTRIBUTION|= 50000. Figure 7
shows costs of (R2) when sizes of Ein f and Esup are modified: the axis x represents
GEOGRAPHY size whereas |DISTRIBUTION|= |ORGANISM|× |GEOGRAPHY|.
We can see that cost is constant, and the size difference between Ein f and Esup seems
not to influence the BLEND operator cost.

Fig. 7 R2 cost according to the data distribution between Esup and Ein f

6.2 Experiments with Oracle SQL3/OLAP

We performed second experiment series in Oracle SQL3/OLAP using the GROUP
BY CUBE operator. We compared (R2) with its equivalent query (R3) using the
cube operator (Gray et al., 1996). Figure 8 compares queries (R2) and (R3). We can
note that the Oracle GROUP BY CUBE implementation is faster than the standard
GROUP BY operation.

Fig. 8 Comparison with cube operator
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7 Conclusion

This paper deals with complex analyses consisting in combining parameters of dif-
ferent granularities. Such analyses known as multigranular are not easily performed
with traditional systems since they require organizing the data according to each
analysis. We introduce a new algebraic operator for OLAP manipulations, called
“BLEND”. We study the limits of its use on strict hierarchies. The approach allows
transforming a hierarchy by maintaining the initial possibilities of navigation. In or-
der to establish the feasibility of this proposal, the operator has been implemented
in a R-OLAP context within the Oracle DBMS.

In the short term, a first prospect is to carry out a study on the possible techniques
of operator optimization, in particular by exploiting lattices of materialized views set
up within the MDB. The expression of the operation in our graphic language (Ravat
et al., 2007) also constitutes a direct extension of this work. We also project to study
other principles of multigranular transformations in more complex contexts such as
non-strict hierarchies.

References

Abelló, A., Samos, J., Saltor, F.: YAM2: a multidimensional conceptual model extending
UML. Inf. Syst. 31(6), 541–567 (2006),
http://dx.doi.org/10.1016/j.is.2004.12.002

Blaschka, M., Sapia, C., Höfling, G.: On Schema Evolution in Multidimensional Databases.
In: Mohania, M., Tjoa, A.M. (eds.) DaWaK 1999. LNCS, vol. 1676, pp. 153–164.
Springer, Heidelberg (1999)

Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology. SIGMOD
Rec. 26(1), 65–74 (1997), http://doi.acm.org/10.1145/248603.248616

Eder, J., Koncilia, C., Mitsche, D.: Automatic Detection of Structural Changes in Data
Warehouses. In: Kambayashi, Y., Mohania, M.K., Wöß, W. (eds.) DaWaK 2003. LNCS,
vol. 2737, pp. 119–128. Springer, Heidelberg (2003)

Espil, M.M., Vaisman, A.A.: Efficient intensional redefinition of aggregation hierarchies in
multidimensional databases. In: DOLAP 2001: Proceedings of the 4th ACM international
workshop on Data warehousing and OLAP, pp. 1–8. ACM, New York (2001),
http://doi.acm.org/10.1145/512236.512237

Favre, C., Bentayeb, F., Boussad, O.: Dimension Hierarchy Updates in Data Warehouses: a
User-driven Approach. In: 9th International Conference on Enterprise Information Sys-
tems (ICEIS 2007), Funchal, Madeira, Portugal, pp. 206–211 (2007)

Golfarelli, M., Maio, D., Rizzi, S.: Conceptual Design of Data Warehouses from E/R Schema.
In: HICSS 1998: Proceedings of the Thirty-First Annual Hawaii International Conference
on System Sciences, vol. 7, pp. 334–343. IEEE Computer Society, Washington (1998),
http://dx.doi.org/10.1109/HICSS.1998.649228

Golfarelli, M., Rizzi, S., Saltarelli, E.: WAND: A CASE Tool for Workload-Based Design of
a Data Mart. In: SEBD, pp. 422–426 (2002)

Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data Cube: A Relational Aggregation Op-
erator Generalizing Group-By, Cross-Tab, and Sub-Total. In: ICDE 1996: Proceedings of
the Twelfth International Conference on Data Engineering, pp. 152–159. IEEE Computer
Society, Washington (1996)



112 G. Hubert and O. Teste

Gyssens, M., Lakshmanan, L.V.S.: A Foundation for Multi-dimensional Databases. In:
VLDB 1997: Proceedings of the 23rd International Conference on Very Large Data Bases,
pp. 106–115. Morgan Kaufmann Publishers Inc., San Francisco (1997)

Hurtado, C.A., Mendelzon, A.O., Vaisman, A.A.: Maintaining Data Cubes under Dimension
Updates. In: International Conference on Data Engineering, vol. 0, pp. 346–355 (1999),
http://doi.ieeecomputersociety.org/10.1109/ICDE.1999.754950

Kimball, R.: The data warehouse toolkit: practical techniques for building dimensional data
warehouses. John Wiley & Sons, Inc., New York (1996)

Kotidis, Y., Roussopoulos, N.: DynaMat: a dynamic view management system for data ware-
houses. In: SIGMOD 1999: Proceedings of the 1999 ACM SIGMOD international con-
ference on Management of data, pp. 371–382. ACM, New York (1999),
http://doi.acm.org/10.1145/304182.304215

Lenz, H.-J., Thalheim, B.: OLAP Databases and Aggregation Functions. In: SSDBM 2001:
Proceedings of the 13th International Conference on Scientific and Statistical Database
Management, pp. 91–100. IEEE Computer Society, Washington (2001)

Malinowski, E., Zimányi, E.: Hierarchies in a multidimensional model: from conceptual mod-
eling to logical representation. Data Knowl. Eng. 59(2), 348–377 (2006),
http://dx.doi.org/10.1016/j.datak.2005.08.003

Ravat, F., Teste, O., Tournier, R., Zurfluh, G.: Graphical Querying of Multidimensional
Databases. In: Ioannidis, Y.E., Novikov, B., Rachev, B. (eds.) ADBIS 2007. LNCS,
vol. 4690, pp. 298–313. Springer, Heidelberg (2007)

Ravat, F., Teste, O., Tournier, R., Zurfluh, G.: Algebraic and Graphic Languages for OLAP
Manipulations. IJDWM 4(1), 17–46 (2008)

Romero, O., Abelló, A.: On the Need of a Reference Algebra for OLAP. In: Song, I.Y., Eder,
J., Nguyen, T.M. (eds.) DaWaK 2007. LNCS, vol. 4654, pp. 99–110. Springer, Heidelberg
(2007)

Vassiliadis, P., Sellis, T.: A survey of logical models for OLAP databases. SIGMOD
Record 28(4), 64–69 (1999), http://doi.acm.org/10.1145/344816.344869

Vassiliadis, P., Simitsis, A., Skiadopoulos, S.: Modeling ETL activities as graphs. In:
Lakshmanan, L.V.S. (ed.) DMDW. CEUR Workshop Proceedings, vol. 58, pp. 52–61
(2002) CEUR-WS.org

Zhuge, Y., Garcia-Molina, H., Wiener, J.L.: Consistency Algorithms for Multi-Source Ware-
house View Maintenance. Distrib. Parallel Databases 6(1), 7–40 (1998),
http://dx.doi.org/10.1023/A:1008698814840



A New Approach for Unsupervised
Classification in Image Segmentation

Sébastien Lefèvre

Abstract. Image segmentation is a fundamental problem in image analysis and
understanding. Among the existing approaches proposed to solve this problem, un-
supervised classification or clustering is often involved in an early step to partition
the space of pixel intensities (i.e. either grey levels, colours or spectral signatures).
Since it completely ignores pixel neighbourhoods, a second step is then necessary
to ensure spatial analysis (e.g. with a connected component labeling) in order to
identify the regions built from the segmentation process. The lack of spatial infor-
mation is a major drawback of the classification-based segmentation approaches,
thus many solutions (where classification is used together with other techniques)
have been proposed in the literature. In this paper, we propose a new formulation of
the unsupervised classification which is able to perform image segmentation with-
out requiring the need for some additional techniques. More precisely, we introduce
a kmeans-like method where data to be clustered are pixels themselves (and not
anymore their intensities or colours) and where distances between points and class
centres are not anymore Euclidean but topographical. Segmentation is then an itera-
tive process, where at each iteration resulting classes can be seen as influence zones
in the context of mathematical morphology. This comparison provides some effi-
cient algorithms proposed in this field (such as hierarchical queue-based solutions),
while adding the iterative property of unsupervised classification methods consid-
ered here. Finally, we illustrate the potential of our approach by some segmentation
results obtained on artificial and natural images.
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1 Introduction

Classification methods, either supervised or unsupervised, have always been very
useful tools in the field of digital image analysis and processing, especially with the
aim of image segmentation or image understanding. Conversely, images can be seen
as semi-structured complex data which offer new perspectives and new challenges
to the field of data mining and knowledge discovery.

We study here the existing link between these two fields, i.e. image processing
and data mining. More precisely we focus on the role of (unsupervised) classifi-
cation in solving one of the main problems of image processing, i.e. image seg-
mentation. A segmentation, or a partition of an image into regions, can indeed be
obtained from an unsupervised classification applied on all pixel values (e.g. grey
levels, colours or spectral signatures) followed by a spatial analysis (e.g. connected
component labeling). Despite being very commonly used, this segmentation strat-
egy is not perfect since spatial information is taken into account only in a second
step and is completely ignored during the classification phase. Thus numerous ad-
hoc solutions have been proposed to solve this problem, as we will see in Sec. 2.2.

Instead of proposing yet another ad-hoc technique for classification-based image
segmentation, we consider here the following question: is it possible to apply such a
classification directly in the (spatial) space of image pixels ? If so, it would provide a
straight way to use classification methods to solve the image segmentation problem.
Of course, such a strategy would require some adaptations to let the classification
method be able to produce directly a relevant segmentation result without any help
from additional postprocessing. Main concepts within the classification paradigm
(e.g. data space, similarity or distance measure) have to be rethought in the context
of image segmentation. Moreover underlying algorithms may benefit from advances
in the image processing field. Our contribution concerns such an approach, and we
focus more precisely on one of the most famous unsupervised classification algo-
rithms, i.e. the kmeans method. Thus we reformulate here the kmeans algorithm in
the context of image segmentation, which does not require any additional step.

This chapter is organised as follows. Sec. 2 recalls how unsupervised classifi-
cation (and especially partitional clustering) is used to solve the problem of image
segmentation. After pointing out the major drawbacks of the classical segmentation-
by-clustering paradigm, we then review the main solutions proposed in the litera-
ture. Our proposal is explained in more details in Sec. 3. Basically it consists in
performing classification directly in the pixel space rather than in the intensity space.
This requires avoiding the use of Euclidean distance and gravity centres classically
used in the kmeans algorithm. In Sec. 4, we study the link with the field of mathe-
matical morphology, in order to benefit from efficient algorithms. Thus the proposed
scheme of unsupervised classification for image segmentation can also be seen as
an iterative morphological segmentation process. Finally, we illustrate in Sec. 5
our approach by some first segmentation results obtained on artificial and natural
images.
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2 On the Limitations of Classification for Image Segmentation

In this section, we introduce the main notations and explain why image segmenta-
tion cannot be achieved with classification. We then draw up an overview of existing
approaches proposed with the aim of adapting classification methods to the problem
of image segmentation.

2.1 Segmentation versus Classification

An image is usually defined as a function f : E → T which assigns to each pixel
p = (x,y) taken in space E ⊂ N

2, a value v = f (p) in T. This value may be for
instance a grey level (T = {0, . . . ,255}), a colour described by its tristimulus chro-
matic representation (T = {0, . . . ,255}3 or T = [0,1]3 after normalisation) or a spec-
tral signature (T ⊂ R

n for an image with n spectral bands).
Segmentation aims at partitioning the pixel space E of an image f into a set of

K regions {Rk}1≤k≤K which are homogeneous according to a given criterion (e.g.
the values v of pixels composing each region). Thus it is a function π : E→ C which
assigns to each pixel p the index k of component or region Rk to which it belongs. Each
region Rk is built as a connected component (see Fig. 1(b)), i.e. a set of adjacent pixels
(or neighbours two by two) with value k. More formally, we define a discrete path Ppq

from pixel p to pixel q as the set of pixels Ppq = {pi}0≤i≤m with p0 = p, pm = q, and
∀i ∈ {0, . . . ,m−1}, pi is adjacent to pi+1. Two pixels p = (xp,yp) and q = (xq,yq)
are consideredλ -adjacent if their λ -distance equals 1, that is dλ (p,q) = 1. We define
4-distance, 8-distance and Euclidean distance respectively by:

d4(p,q) =|xp− xq|+ |yp− yq| (1)

d8(p,q) =max(|xp− xq|, |yp− yq|) (2)

dE(p,q) =
√

(xp− xq)2 +(yp− yq)2 (3)

but these terms used in discrete geometry / digital image processing are equivalent
to more general notions of city-block / Manhattan / boxcar / absolute value (for d4)
and Chebyshev / maximum value (for d8) distances. The neighbourhood of a pixel
p is written N(p) and defined as the set of pixels q adjacent to p. Each path Ppq

is associated with a cost ω(Ppq), which may be defined as the number of pixels it
contains, or relying on distances between pixels such as:

ω(Ppq) =
m

∑
i=1

d(pi−1, pi) (4)

with d a given distance measure, e.g. Eqs. (1) to (3). Finally, a region Rk, as a
connected component, verifies ∀p,q ∈ Rk, ∃Ppq such that ∀pi ∈ Ppq, pi ∈ Rk or in
other words π(pi) = k.

Unsupervised classification or data clustering aims at gathering data into homo-
geneous sets called classes or clusters. Applied on a digital image, the classification
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may be represented as a function π : E→ C which assigns to each pixel p the index
k of the class Ck to which it belongs. Similarly to the case of regions Rk, the content
of classes Ck is expected to be homogeneous (e.g. pixels composing a given class
share similar v values). However, contrary to regions Rk produced by a segmenta-
tion, classes Ck do not have the property of connexity, i.e. they are not assumed to
be connected components, as illustrated by Fig. 1(c).

(a) (b) (c)

(d) (e) (f)

Fig. 1 Difference between segmentation and classification: (a) input image, (b) region seg-
mentation, (c) spectral classification, (d) spatially refined classification, (e) spatial classifica-
tion, (f) spatial/spectral classification

Here we focus more precisely on the case of unsupervised classification using a
kmeans-like approach (Kaufman and Rousseeuw, 1990). In this algorithm, the num-
ber K of classes {Ck}1≤k≤K is a priori defined (even if there exists some other par-
titional algorithms which overcome this condition). Each class Ck is characterized
by its centre noted ck. Initialisation of the class centres may rely on some assump-
tions available on the data, or may be performed randomly if no such knowledge is
available. The algorithm consists of two iterative steps performed until convergence.
First, for each pixel the distance to the different class centres are computed and the
pixel is assigned to the class with the closest centre. Then class centres are updated
by using the new data partition.

When involved to solve the problem of image segmentation, the kmeans algo-
rithm is applied in the pixel value space T rather than the pixel space E, i.e. data to



A New Approach for Unsupervised Classification in Image Segmentation 117

be classified are the pixel values v rather than directly the pixels p. Alg. 1 describes
this process, which tends to minimise a global cost function J, e.g. defined by:

J =
K

∑
k=1
∑

p∈Ck

(
d( f (p),ck)

)2
(5)

Algorithm 1. original kmeans algorithm for image segmentation
Input: Image f : E→ T : p �→ f (p)
Input: Number K of classes
Output: Set of classes {C}K or classification map π : E→ C : p �→ π(p)

/* initialisation of classification map and class centres */
foreach pixel p do π0(p)← /0
foreach class centre ck do c0

k ← RANDOM (T)
/* iterative assignment-update process */
repeat

l ← l +1
foreach pixel p do /* pixel-to-class assignement */

computation of distances to the different class centres, i.e. d( f (p),cl−1
k )

assignment to the class with closest centre, i.e. π l(p) = argmink d( f (p),cl−1
k )

foreach class centre ck do /* update of class centres */
cl

k = avg{ f (pi) | π l(pi) = k} with avg the average function

until π l = π l−1 /* stability partition as convergence criterion */

The distance d involved in the algorithm and in Eq. (5) is the Euclidean distance
computed in the n-dimensional space T, that is dE(v,w) =

√
∑n

i=1(vi−wi)2 with
v = (v1, . . . ,vn) and w = (w1, . . . ,wn). The convergence criterion (partition stability)
may be somewhat relaxed and replaced by a convergence of the cost function, or
even a finite number of iterations.

In the previous algorithm (see also Fig. 1(c)), it is clear that the location of a pixel
p (i.e. its coordinates (x,y)) has been completely ignored, contrary to its value f (p).
Two pixels p and q with close values f (p) and f (q) will then be most probably
assigned to the same class Ck even if they form two disjoint connected components
in the classification map π . Thus some additional processings are required to obtain
a segmentation (i.e. a partition of the image into homogeneous, connected classes).

2.2 Classification Relying on Spatial Information

In order to obtain a segmentation from a classification, it is necessary to involve
spatial information (Haralick and Shapiro, 1985). We give here a brief survey of
main approaches addressing this problem in the literature. In this survey, we do not
consider approaches such as Markov Random Fields which combine classification
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and spatial regularisation, even if these approaches can be seen as generalisations
of classification methods such as kmeans (Pappas, 1992). We focus instead on ap-
proaches such as kmeans or fuzzy cmeans.

The most commonly adopted solution consists of a postprocessing, where a con-
nected component labeling is applied on the classification result (see Fig. 1(d)). It
aims at gathering into a single region Rk all adjacent pixels p which have been as-
signed to the same class Cj. A region Rk is then a connected component verifying
∀p ∈ Rk, π(p) = j in the classification map. A class Cj is thus split into several
regions Rk (unless if it already ensures the connexity property).

However, applying a classification at the pixel level and then gathering pixels of
similar class into connected components often results in a segmentation map where
many regions contain only a single isolated pixel (instead of a pixel aggregate).
So a filtering step can be involved in order to remove these isolated pixels and to
reassign them to neighbouring regions. In the case of a fuzzy classification, the
postprocessing to be applied can be even a segmentation algorithm such as region
growing (Eum et al., 1996), region merging (Chen and Lu, 2002), or marker-based
watershed (Lezoray and Cardot, 2002).

Involving spatial information can also be done through a preprocessing step. This
can be a segmentation into regions, which result (i.e. regions) will be further pro-
cessed with a subsequent classification (but in this case the result is rather a region-
based classification than a segmentation). Moreover, one can describe each pixel p
by its value v but also by its coordinates (x,y) (Krishnapuram and Freg, 1992) as
illustrated in Figure 1(f). It is also possible to perform an image interpolation, where
the estimated value f̂ (p) in each pixel p is computed from its 4 or 8 neighbours (e.g.
through a mean or median). Classification is then applied on pixels using values f̂
alone or in complement with initial image f (Turi, 2001; Chen and Zhang, 2004).

Another way is to consider spatial information directly within the classification
algorithm. In Ilea and Whelan (2008), textural information can be associated with
colour information. While the former is measured by a gradient, the latter is obtained
by applying a kmeans on a smoothed image (resulting from an anisotropic filtering)
and represented in two different colour spaces. The dissimilarity measure between
a pixel and a class relies on these information, which are related to pixels but also to
classes, and updated at each iteration in order to track the evolution of class content.

In Liew et al. (2000), the dissimilarity between a pixel and a class centre within
the fuzzy cmeans algorithm is defined using the neighbourhood of the pixels: contri-
bution of each neighbour (computed as a distance to the corresponding class centre)
is proportional to the similarity between this neighbour and the considered pixel
(the similarity being measured in the feature space). This approach is inspired from
Tolias and Panas (1998) where similarity between the pixel to be classified and its
neighbour modifies the class membership probability of this pixel (by adding or re-
moving of a constant). This similarity between neighbours can be directly computed
in the class membership space (Noordam et al., 2000; Xia et al., 2007). A similar
approach using a probabilistic classification based on neighbour kriging indicators
is proposed in Pham (2001).
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Applying a classifier in a multiscale framework, through a hierarchical method,
offers another mean to take into account spatial context. In Luo et al. (2003), the au-
thors propose a new algorithm where the following steps are applied successively:
image subsampling, computation of features related to colour and texture, spatially
constrained classification, and region merging. These two last steps are performed
iteratively at each level of the hierarchy, thus allowing to isolate the main connected
components (and to aggregate remaining pixels to these components), and then to
apply once again the kmeans algorithm independently on each connected compo-
nent. This principle of successive classifications is also presented in Cheng and Sun
(2000) where clusters are built only from pixels with homogeneous neighbourhood.
Finally, the kmeans algorithm can be applied on a sliding window within the image,
where class centres are propagated during image scan (Leydier et al., 2004).

To summarize, various solutions for spatialising classification methods have been
proposed, in order to make them adequate for image segmentation: preprocessing,
postprocessing, new attributes, multiscale approach, classification correction of one
pixel depending on its neighbours, etc. However, to the best of the author’s knowl-
edge, applying a classification directly in the spatial domain (i.e. pixel space) has
not been studied yet, despite the fact that it seems a very intuitive solution to con-
sider the spatial behaviour of the segmentation. So we propose in next section such
a solution, which can be seen as a spatial classification using the kmeans algorithm.

3 Another Usage of Classification in Image Segmentation

To be applied successfully on the problem of image segmentation, a classification
method has to rely on spatial information. Instead of using additional steps in the
classification process, here we rather reformulate the classification in a spatial con-
text. Thus we propose to spatialise the classification method in order to make it
usable to perform image segmentation.

3.1 Spatial Classification

We have pointed out in Sec. 2.1 that the only difference between a segmentation and
a classification was the lack of spatial connexity constraint in the result of the lat-
ter. Modifying the behaviour of a classification algorithm in order to ensure spatial
connexity of the produced classes (or regions in this context) is a way to elaborate a
classification method intrinsically able to solve the problem of image segmentation.
Since various classification algorithms exist, we have decided here to focus on one
of its most representative, the kmeans algorithm, and to study how the spatial con-
nexity property can be provided to it. In other words, our contribution is related to
the spatialisation of the kmeans algorithm.

Spatial information is directly present in images through notions of connexity and
adjacency between neighbouring pixels. Thus we propose to apply the classification
in the pixel space E and not anymore in a feature space (e.g. the pixel value space
T). The different operations (distance d between points and class centres during
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assignment step, update of class centres with mean function avg during update step)
are also performed in the space E, considering p rather than f (p) in the different
formula. Similarly, class centres ck will be defined in E (i.e. they are image pixels)
and not anymore in T. Thus the criterion to be optimized in the clustering process is
slightly modified to become

J =
K

∑
k=1
∑

p∈Ck

d(p,ck) (6)

while the original criterion given in Eq. (5) was using f (p).
However, applying directly the kmeans algorithm in the space E will not have

the expected result for segmentation: since image pixels are regularly located on a
square grid of finite size, ignoring pixel values during pixel-to-class assignment step
will lead to a result independent of the image content (Fig. 1(e))! An intermediary
solution has to be elaborated in order to take into account both pixels p and their
values f (p) during the computation of distance d(p,ck) between pixels and class
centres. This will be studied in next section.

Another problem has also to be solved to ensure an adequate behaviour of the
kmeans algorithm in the context of segmentation. It is related to the inherent inabil-
ity of the algorithm to deal with non convex sets. During a segmentation step, it is
not feasible to assume that all regions would be convex. In the case of a concave
region, updating the class (or region) centre based on the computation of the gravity
centre can result in locating the centre outside the class. As we will see in the next
section, we rely on the assumption that the centre belongs to its region or class to
ensure the spatial connexity of produced classes. Thus we need to replace the grav-
ity centre by another measure and we propose to use here a kind of median (thus
leading to a kmedian-like algorithm rather than a kmeans-like one). Moreover, we
propose to keep class centres in E (i.e. choosing the class centres among the pixels
present in the image), like a kprototypes approach (Han et al., 2001) (but we still
keep the overall process of the kmeans algorithm). In order to obtain such a median
measure in E, we propose to define the class centre as its central or inner most pixel,
that can be obtained by means of techniques from mathematical morphology (Soille,
2003). Implementation details will be given in Sec. 4.

Let us notice that we have chosen to consider here independently the pixel space
E and the pixel value space T. We could have formulate directly a solution in the
space E×T, e.g., by setting some constraints on the classes to be obtained or by
defining some appropriate representation and allocation functions. But applying a
classification in such a space E×T would have brought a much higher computa-
tional complexity. Nevertheless, since our algorithm shares some common proper-
ties with dynamic clouds (Diday, 1971) or kmedoids (Kaufman and Rousseeuw,
1990) for instance, the link with such methods should be studied more deeply.
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3.2 Topographic Distance and Connexity Property

When assigning a pixel to a given class, we have to take into account both pixel co-
ordinates and value. Thus we propose to combine p and f (p) through a topograph-
ical distance for which we give some definitions below. Let us notice that updating
class centres can also rely on this distance and on values p and f (p), as we will see
further.

Let us represent an image as a topographical surface, where each pixel p is asso-
ciated to its elevation, i.e. its value f (p). In this context, the cost of a path Ppq can
be reformulated by taking into account its topography or the observed difference in
height between p and q, using both the difference between values f (p) and f (q)
and the (spatial) distance d(p,q) between pixels p and q (or more precisely, be-
tween their respective locations, involving a distance measure among those already
defined in Eqs. (1)-(3)). Thus, several definitions for the topographical cost of a path
have been proposed (Prêteux, 1992; Meyer, 1994; Philipp-Foliguet, 2000). The cost
term introduced by Prêteux (1992) can be simply formulated in the case of a finite
discrete image as the highest pixel on the path:

ω(Ppq) = max
pi∈Ppq

f (pi) (7)

or in other words the path ridge, with the convention ω(Ppp) =−∞.
Meyer (1994) considers the steepest slope defined for a pixel p as

δ (p) = max
q∈N(p)

f (q)< f (p)

(
f (p)− f (q)

d(p,q)

)
(8)

which can be simply computed with a morphological erosion. The topographical
cost between two neighbouring pixels is defined as

q ∈N(p), ω(p,q) =

⎧
⎪⎨

⎪⎩

δ (p) if f (p) > f (q)
(δ (p)+ δ (q))/2 if f (p) = f (q)
δ (q) if f (p) < f (q)

(9)

The topographical cost of a whole path is then computed as

ω(Ppq) =
m

∑
i=1

(d(pi−1, pi) ·ω(pi−1, pi)) , Ppq = {pi}0≤i≤m (10)

Philipp-Foliguet (2000) proposes a simpler definition which avoids to seek for
ridges or steepest slopes, using a weighting coefficient κ (usually κ = 1) :

ω(Ppq) =
m

∑
i=1

(κ ·d(pi−1, pi)+ | f (pi−1)− f (pi)|) , Ppq = {pi}0≤i≤m (11)
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Finally, whatever the definition of the topographical cost in use, the topographical
distance dT (p,q) is defined as the minimum cost of a path from p to q:

dT (p,q) = min
Ppq

(ω(Ppq)) (12)

Let us notice that dT is a true distance function only with the definition of Philipp-
Foliguet. In the other cases, we have ∀p,q, dT (p,q) = 0 � p = q. Prêteux proposes
to use exp(dT (p,q)) while Meyer presents different techniques for modifying the
topographical surface in order to deal with the problematic case of plateaus (where
we have dT (p,q) = 0 with p = q). Let us state that another pseudo-distance measure
(i.e. a distance function that does not satisfy the identity of indiscernibles) could be
obtained by simply defining the cost as

ω(Ppq) =
m

∑
i=1

| f (pi)− f (pi−1)|, Ppq = {pi}0≤i≤m (13)

In the following, we will use a simplified version of the Philipp-Foliguet measure:

ω(Ppq) =
m

∑
i=1

ω(pi−1, pi), Ppq = {pi}0≤i≤m (14)

and consider a 8-distance where the topographical cost ω(p,q) between two neigh-
bouring pixels p and q is given by

ω(p,q) = | f (p)− f (q)|+ ε, q ∈N8(p) (15)

with the convention ω(p, p) = 0, and ε � ∇ f being a very small term (i.e. lowest
than the minimal absolute difference between values of two neighbouring pixels)
ensuring the identity of indiscernibles. An illustration of this distance is given in
Fig. 2 through the computation of a distance transform from a given point in a grey
level image.

We recall that our goal is to ensure the spatial connexity of classes Ck produced by
the classification algorithm. Let us check that this property is verified by the pixel-
to-class assignment step. Using the definition introduced in Sec. 2.1, a class Ck is
connected if ∀p,q∈Ck, ∃Ppq such that ∀pi ∈ Ppq, pi ∈Ck. To simplify, we will use
in this case the notation Ppq ∈ Ck. The assignment of a pixel p to Ck is performed
if dT (p,ck) < dT (p,c j), ∀ j = k. Obviously the centre ck of the class Ck will stay
assigned to Ck since dT (ck,c j) > dT (ck,ck) = 0, ∀ j = k. The connexity notion can
then be written as ∀p,q ∈Ck, ∃(Ppck ,Pqck) ∈Ck or simply by ∀p ∈Ck, ∃Pck p ∈Ck.
Let us denote by q the pixel preceding p in this path Pck p of minimal cost, we
have then q = argminpi∈N(p) dT (ck, pi) and dT (ck, p) = dT (ck,q)+dT (q, p). We can
prove the connexity of Ck by showing that the assumption q ∈Ck is not valid. Let us
assume q ∈Cj, j = k, we have then dT (ck,q) > dT (c j,q). Combining the previous
formula, we obtain dT (ck, p) > dT (c j,q)+dT (q, p)≥ dT (c j,q). This inegality is not
valid since it would mean the assignment of p to Cj. So the proposed scheme for
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min

max

Fig. 2 Illustration of the topographical distance computed from the top-left pixel (from left to
right): input image, topographical distance transform, look-up table representing the distance
scale

pixel-to-class assignment ensures to produce connected classes during the classifi-
cation process.

4 Implementation Issues

The kmeans algorithm1 that we proposed here differs from its original version only
on the few following aspects, as underlined in Algorithm 2: (1) the space where
pixels are represented and centres are selected (E instead of T); (2) the distance
measure dT (p,ck) which is not Euclidean anymore but rather topographical; (3) the
class centre computation method which does not rely on the mean but rather on
the median. These changes ensure our algorithm an adequate behaviour for image
segmentation, since the resulting classification is also intrinsically a segmentation.
Moreover, they provide a link with the field of mathematical morphology, which
brings some efficient implementations.

Indeed, the topographical distance has been used in the context of mathematical
morphology to define segmentation methods such as watershed or skeleton by influ-
ence zone (Prêteux, 1992; Meyer, 1994). The pixel-to-class assignment step of our
kmeans algorithm can then be seen as a morphological segmentation with markers
corresponding to class centres. Thus it is possible to benefit from algorithmic de-
velopments in mathematical morphology, and especially hierarchical queue-based
algorithms for marker-based segmentation for which we can find implementation
details in the book of Soille (2003).

1 Let us observe that the term kmeans is not perfectly adequate here, since our algorithm is
more of kmeans-like type.



124 S. Lefèvre

Algorithm 2. Proposed kmeans algorithm for image segmentation
Input: Image f : E→ T : p �→ f (p)
Input: Number K of classes (i.e. regions)
Output: Set of classes {C}K or classification (i.e. segmentation) map

π : E→ C : p �→ π(p)

/* initialisation of classification map and class centres */
foreach pixel p do π0(p)← /0
foreach class centre ck do c0

k ← RANDOM (E)
/* iterative assignment-update process */
repeat

l ← l +1
foreach pixel p do /* pixel-to-class assignment */

computation of topographical distances to the different centres, i.e. dT (p,cl−1
k )

assignment to the class with closest centre, i.e. π l(p) = argmink dT (p,cl−1
k )

foreach class centre ck do /* update of class centres */
cl

k = medT {pi | π l(pi) = k} with medT the topographical median function

until π l = π l−1 /* stability partition as convergence criterion */

As already stated, updating class centres can also be done using morphological
methods. We propose to define the centre ck of class Ck as the topographical me-
dian medT of Ck. More precisely, we follow some definitions of multidimensional
medians given in the literature (Small, 1990), and consider the convex hull peeling
paradigm to determine the inner most element among data (or cluster elements).
Adapted to the topographical context, the topographical median medT of a class Ck

is identified as the furthest pixel from the cluster borders. It can be obtained using
the maximum of the distance transform between pixels of Ck to the background de-
fined by E \Ck (the background may be cleverly limited to exterior borders of Ck).
This centre is defined by

ck = argmax
p∈Ck

d(p,E\Ck) (16)

with
d(p,X) = min{d(p,x) | x ∈ X} (17)

the distance of p to the set X . The distance d(p,x) can be the Euclidean distance
dE or preferably the topographical distance dT , thus ensuring a better stability to
the algorithm since it is the same distance measure which is used in the assign-
ment step. Coherence between these two steps reinforces algorithm convergence
through the optimisation of the quality criterion given in Eq. (6) and considering
topographical distances. However this convergence cannot be completely ensured
since the proposed centre computation scheme can result in outliers (i.e. the class
centre maximizes the distance to other classes but may not minimize the distance
within its class) and subsequently in oscillations within the iterative process. Thus,
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in order to guarantee the algorithm convergence, another criterion may be involved:
maximal number of iterations, minimal displacement of class centres between two
iterations, convergence of the global cost function, etc. Let us remark that we do
not observe any lack of convergence with results given in Sec. 5. Nevertheless, this
problem of convergence will be the topic of further studies.

A naive implementation of the proposed algorithm consists in seeking for the
shortest path in a graph to measure the distances dT (p,ck) between pixels and class
centres. This requires O(P2) operations per pixel, or O(P) if optimal data structures
are used, with P the number of pixels. Considering that this computation has to be
performed for all pixels and all classes, this results in a global complexity of O(KP3)
(or O(KP2) with appropriate data structures) per iteration, with K the number of
classes.

Since our method can be assimilated to an iterative morphological segmentation,
using efficient morphological algorithms based on hierarchical queues helps to limit
the algorithm computational complexity. Indeed this complexity can be independent
of the number of classes K, roughly O(P) by iteration. More precisely, during the
assignement step, we do not compute exhaustively the K distance transforms since
it is sufficient to know in each pixel which is the closest centre. By propagating
distances from class centres, we can process and classify iteratively the pixels of
increasing distances inserted in the queue (where only the first occurence of each
pixel is considered). Updating class centres can be obtained using the same principle
and requires to apply K incomplete distance transforms (each one being limited to
its related class), which is equivalent to process only once each pixel. Complexities
of these two steps are thus linear in O(P). Let us also observe that since the final
distances between pixels and classes centres are only sums of local topographical
distances between neighbouring pixels, these local distances may be precomputed in
order to further limit computation time (this requires a buffer of size 4 or 8 times the
image size, depending on the adjacency in use, i.e. 4- or 8-adjacency). To compare,
we recall that kmeans algorithm has a cost equal to O(KP) per iteration, K being
possibly high (but still lower than P) since it corresponds here to the number of
objects present in the image and not anymore to the number of classes.

Algorithm 3 describes the proposed efficient implementation of the topographical
kmeans algorithm for image segmentation. It relies on the TOPO( f ,{sk,Sk}) func-
tion defined in Algorithm 4 which returns both a classification map π and a distance
transform function φ from a set of initial points sk which classes Sk are assumed to
be known. As we have already noticed, this function is used twice in order to com-
pute both distances to the class centres in the assignment step and distances to the
class borders in the updating step. Thus we distinguish both results and note them
respectively (π ,φ) and (π̄, φ̄ ). As for the TOPO function, it assumes the following
operations being available to manipulate the hierarchical queue: NOTEMPTY checks
if the queue contains at least one element, INSERT(a,b,c) insert the element a of
class b at priority c, and REMOVE returns and removes the current triplet (a,b,c)
from the queue. A hierarchical queue may be implemented as an array of FIFO
queues (each queue being indexed by its priority), thus this last operation seeks for
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Algorithm 3. Efficient proposed kmeans algorithm for image segmentation
Input: Image f : E→ T : p �→ f (p)
Input: Number K of class (i.e. regions)
Output: Set of classes {C}K or classification (i.e. segmentation) map

π : E→ C : p �→ π(p)

/* initialisation of classification map and class centres */
foreach pixel p do π0(p)← /0
foreach class centre ck do c0

k ← RANDOM (E)
/* iterative assignment-update process */
repeat

l ← l +1
/* pixel-to-class assignement */
(π l ,φ l)← TOPO( f ,{cl−1

k ,π(cl−1
k )})

/* update of class centres */
Ω l ←{pi | ∃q ∈N(pi), π l(q) = π l(pi)} /* identify border pixels */
(π̄ l , φ̄ l)←TOPO( f ,{Ω l,π l(Ω l)}) /* distance transform from borders */
foreach class Ck do

cl
k = max{φ̄ l(pi) | π̄ l(pi) = k} /* use the furthest points from the borders

*/

until π l = π l−1 /* stability partition as convergence criterion */

Function TOPO( f ,{sk,Sk}).

Input: Image f : E→ T : p �→ f (p)
Input: Set {sk,Sk} of initial pixels sk with related classes Sk
Output: Classification (i.e. segmentation) map π : E→ C : p �→ π(p)
Output: Topographic distance transform φ : E→ R : p �→ φ(p)

/* initialisation of π , φ , and the hierarchical queue */
foreach p ∈ E do

π(p)← /0
φ(p)← 0

foreach sk do INSERT (sk,Sk,0)
/* scan all pixels with increasing dT */
while NOTEMPTY do

(p,Cp,dp)← REMOVE
if π(p) = /0 then continue /* ignore already labeled pixels */
π(p)←Cp /* assign the pixel to the class with closest centre */
φ(p)← dp /* set the distance between the pixel and the closest class centre */
foreach q ∈N(p), π(q) = /0 do /* process all unlabeled neighbouring pixels
*/

dq ← dp +dT (p,q) /* propagate topographical distance */
INSERT (q,Cp,dq) /* add the pixel to the queue */

return π,φ
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the non-empty queue of lowest priority and returns and removes the oldest element
within this queue.

5 Experiments

In order to underline the potential interest of our proposal, we have performed some
experiments both on artificial and natural images. Fig. 3 shows the behaviour of
our algorithm compared to a standard kmeans applied on grey levels, facing an in-
creasing level of noise. We consider 3 classes (i.e. regions) in our algorithm while
2 classes (expected to be black and white) are used for the standard kmeans. As
we can observe in this figure, noise robustness achieved by the proposed algorithm
seems satisfactory, contrary to the original kmeans method.

Fig. 3 Classification results on an artificial image with an increasing level of Gaussian noise
(from left to right): noisy input image (top), proposed classification with 3 regions (middle),
kmeans performed on intensities with 2 classes (bottom)

The iterative process of the kmeans algorithm is illustrated in Fig. 4. Even if
the centres are randomly located on the image, the proposed algorithm manages to
correctly identify the objects present in the image as clusters in the classification
paradigm. Borders between classes (i.e. regions) are displayed in white while the
colours represent distances from the closest class centre, using the same colour scale
as in Fig. 2, i.e. increasing from magenta to red.

Similarly to the standard use of the kmeans procedure in unsupervised classi-
fication, the number k of classes should be chosen very carefully. As observed in
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(a) (b) (c)

(d) (e) (f)

Fig. 4 Illustration of the iterative topographical kmeans process: (a) input image, topograph-
ical distances from centres φ l and resulting classification borders Ω l after iteration l = 1 (b),
l = 2 (c), l = 3 (d), l = 4 (e), and l = 5 (f) where convergence has been observed

Fig. 5, an appropriate number of classes (i.e. equal to the number of objects to be
segmented) will help the algorithm to produce the expected result. On the contrary
a too low or too high value of k may result in undersegmentation and oversegmen-
tation, respectively.

Fig. 5 Influence of the number of classes: (left) correct segmentation with 11 classes, (centre)
undersegmentation with 6 classes, (right) oversegmentation with 16 classes

Finally, let us reuse the introductory image of Fig. 1. Here we have compared our
algorithm with a standard kmeans applied on the pixel colours (represented as RGB-
valued vectors) to produce 6 colour clusters, followed by a connected component
labeling to identify all connected groups of pixels sharing the same colour class.
The 1800 regions produced by this approach are shown in Fig. 6 (centre). On the
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Fig. 6 Relevance of the proposed classification scheme: colour input image (left), spectral
k-means followed by connected component labeling (centre), topographical k-means (right)

contrary, we can define the expected number of regions as classes in the kmeans
algorithm with our approach. Thus we have segmented the marbles using 60 classes
(i.e. 60 regions), as illustrated by Fig. 6 (right). The result, despite not being perfect,
is rather satisfactory and shows the relevance of our proposal.

6 Conclusion

Classification is one of the most common solutions to solve the problem of image
segmentation, i.e. transforming an image from the space of pixels to a set of objects
which can be subsequently analysed in order to understand the image content. How-
ever, classification methods are often applied on the pixel value space, thus ignoring
spatial information despite its primordial importance in the context of segmentation.
In order to solve this problem and consider the spatial context of each pixel within a
classification procedure, the numerous solutions proposed in the literature share the
need for additional steps in the classification-based image segmentation process.

In this chapter, we propose a completely different approach which consists in
applying the classification in the spatial domain (of the pixels) rather than in the
spectral domain (of the pixel values). Thus we can keep the classification method as
is (with some adaptations related to the spatial application of the method) and avoid
to rely on additional ad-hoc steps. We illustrate our proposal with the spatialisation
of the kmeans algorithm, by replacing the Euclidean distance by a topographical dis-
tance and by modifying the class centre computation scheme. Besides, a link with
the field of mathematical morphology provides efficient algorithms for segmenta-
tion, with a complexity in O(P) (i.e. linear and not depending on the number of
classes k).

This new approach for unsupervised classification in image segmentation brings
several perspectives. Among the major future works, we can mention the need to
overcome the problems related to the kmeans algorithm (e.g. choice of initial class
centres, prior knowledge of the number of classes). Another research direction is
to consider a fuzzy paradigm since this has already shown some interest over hard
classification (see for instance the Fuzzy C-Means algorithm), and to perform a



130 S. Lefèvre

fuzzy assignment of pixels to classes (Philipp-Foliguet, 2000). Moreover, it could
be relevant to involve spatial constraints within the classification (Han et al., 2001)
which in the context of segmentation may be adequate to deal with high gradient
areas observed on region borders. A study on robustness and efficiency of the al-
gorithm and experiments on larger datasets are worth being made to understand the
pros and cons of our proposal. In particular, we will further study the problem of al-
gorithm convergence. Finally, we also consider to compare our proposal with other
recent methods for classification and segmentation, such as mean shift (Comaniciu
and Meer, 2002), path-based clustering (Fischer and Buhmann, 2003) or its exten-
sion called robust path-based spectral clustering (Chang and Yeung, 2008), since we
believe our contribution is not limited to the kmeans algorithm.

Acknowledgements. The author wishes to thank his colleague Dr. Alexandre Blansché from
LSIIT – CNRS / University of Strasbourg for pointing out the possible lack of convergence
of the proposed algorithm, which will be the topic of further studies.
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Cluster-Dependent Feature Selection through a
Weighted Learning Paradigm

Nistor Grozavu, Younès Bennani, and Mustapha Lebbah

Abstract. This paper addresses the problem of selecting a subset of the most rele-
vant features from a dataset through a weighted learning paradigm. We propose two
automated feature selection algorithms for unlabeled data. In contrast to supervised
learning, the problem of automated feature selection and feature weighting in the
context of unsupervised learning is challenging, because label information is not
available or not used to guide the feature selection. These algorithms involve both
the introduction of unsupervised local feature weights, identifying certain relevant
features of the data, and the suppression of the irrelevant features using unsuper-
vised selection. The algorithms described in this paper provide topographic cluster-
ing, each cluster being associated to a prototype and a weight vector, reflecting the
relevance of the feature. The proposed methods require simple computational tech-
niques and are based on the self-organizing map (SOM) model. Empirical results
based on both synthetic and real datasets from the UCI repository, are given and
discussed.

Keywords: Topographic Clustering, Self-organizing Map, Unsupervised Features
Selection, Cluster Characterization, Weighted Learning.

1 Introduction

Data mining, or knowledge discovery in databases (KDD), an evolving area in in-
formation technology, has received much interest in recent studies. The aim of data
mining is to extract knowledge from data (Wang and Huang, 2009). The data size
can be measured in two dimensions, the size of features and the size of observations.
Both dimensions can take very high values, which can cause problems during the
exploration and analysis of the dataset. Models and tools are therefore required to
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process data for an improved understanding. Indeed, datasets with a large dimen-
sion (size of features) display small differences between the most similar and the
least similar data. In such cases it is thus very difficult for a learning algorithm to
detect similarity variables that define the clusters. This is the so-called “curse of
dimensionality".

Feature selection is commonly used in machine learning, wherein a subset of the
features available from the data are selected for application of a learning algorithm.
The best subset contains the features that give the highest accuracy score. This is an
important stage of preprocessing and is one of two ways of avoiding the curse of
dimensionality. The main objectives of dimensionality reduction are thus:

• to facilitate the visualization and data understanding;
• to reduce the required storage space;
• to reduce the learning time;
• to identify the relevant features.

The number of observations can be reduced through unsupervised learning and fea-
ture selection. The importance of each feature depends on the size of the learning
dataset - for a small sample size, eliminating a relevant feature can reduce the er-
ror. Note also that irrelevant features can be very informative when used together.
Several methods can be used to reduce the size of features.

• Selection: a subset of features is chosen from the initial data space;
• Transformation: new features are built in a transformed space - an output space.

We aimed to reduce the described space size using unsupervised learning by selec-
tion through feature weighting. To select for relevant features, we combined feature
weighting with feature selection. In feature selection, the task is reduced to simply
eliminating the features that are completely irrelevant. Feature selection is com-
monly used in supervised learning (Yacoub and Bennani, 2000; Bennani., 1999;
Fukunaga, 1990; Almuallim and Dietterich, 1991). This method is based on maxi-
mizing certain functions of predictive accuracy.

Feature weighting is an extension of the selection process whereby the features
are assigned continuous weights, which can be regarded as degrees of relevance.
Continuous weighting provides more information about the relevance of various
features. Clustering and feature weighting are thus clearly linked. Applying these
tasks in sequence can reduce the performance of the learning system. Therefore, a
new algorithm for clustering and for feature weighting is needed. Feature weighting
for unsupervised learning has received interest only recently; this paper may there-
fore serve as a useful guideline to future researchers.

We have focused on models that are based on both dimensionality reduction and
clustering, using self-organizing maps (SOM Kohonen, 2001) in order to character-
ize clusters. SOM models are often used for visualization and unsupervised topo-
logical clustering, this technique allowing projection in low dimensional spaces that
are generally two dimensional. A number of previous studies have already described
extensions and reformulations of the SOM model (Bishop et al., 1998; Lebbah et al.,
2007; Verbeek et al., 2005).
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Several important research topics in cluster analysis and feature weighting have
been previously discussed (Frigui and Nasraoui, 2004; Wang et al., 2008; Tsai and
Chiu, 2008; Huang et al., 2005; Blansche et al., 2006; Dy and Brodley, 2004). In par-
ticular Dy et al. propose a probabilistic model for feature selection in unsupervised
learning using an expectation-maximization (EM) method (Dy and Brodley, 2004).
Frigui and Nasraoui (2004) proposed two local weighting unsupervised clustering
algorithms based on fuzzy c-means algorithms (SCAD1 and SCAD2) to categorize
the unlabeled data and determine the best feature weights within each cluster. Two
further studies (Wang et al., 2008; Huang et al., 2005) describe an approach that
minimizes the same objective function as used by Frigui et al., but which addition-
ally estimates the global feature weighting. The proposed mechanism for feature
weighting has also been extended for a fuzzy k-means algorithm (Li and Yu, 2006)
and subspace clustering (Jing et al., 2007). Similar techniques, based on k-means
and weighting have been developed by other researchers (Tsai and Chiu, 2008; Huh
and Lim, 2009).

In contrast to the global weighting approach based on the SOM method, which
considers a single weight vector for the map (Guérif and Bennani, 2007; Benab-
deslem and Lebbah, 2007), our local weighting algorithms characterize each cell of
the map by a prototype and weight vector, with each component reflecting the cor-
responding feature relevance. These weight vectors are thus used for local feature
selection, characterizing clusters with the best subset of features. For the feature se-
lection task, we used a method inspired from Cattell (1966)’s scree test, which was
initially developed for the selection of principal components.

In the following sections, we introduce the classical self-organizing maps (SOM)
(section 2) and then discuss both the lwo-SOM (local weighting observation) and
lwd-SOM (local weighting distance) methods (section 3). We present the feature
selection algorithm and the principle of Cattell’s algorithm in section 4. In section
5, we show experimental results obtained for several datasets. These datasets allow
us to demonstrate the use of this algorithm for topological clustering and feature
weighting. Some conclusions are discussed at the end of the paper, as are and future
perspectives for research in this area.

2 Classical Self-organizing Map (SOM)

Self-organizing maps are increasingly used as tools for the visualization of data,
as they allow projection in low, typically bi-dimensional spaces. The basic model
proposed by Kohonen consists of a discrete set C of cells called “map”. This map
has a specific topology defined by an undirected graph, which is usually a regu-
lar, two-dimensional grid. For each pair of cells ( j,k) on the map, the distance
δ ( j,k) is defined as the length of the shortest chain linking cells j and k on the
grid. For each cell j this distance defines a neighboring cell; a kernel positive func-
tion K (K≥ 0 and lim

|y|→∞
K(y) = 0) is introduced to determine the neighboring area.
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We define the mutual influence of two cells j and k by K j,k. In practice, as for
classical topological maps, we use a smooth function to determine the size of the
neighboring area: K j,k = exp(−δ ( j,k)

T ). Using this kernel function, T becomes a pa-
rameter of the model. As in the Kohonen algorithm, we decrease T from an initial
value Tmax to a final value Tmin.

Let ℜd be the Euclidean data space and E = {xi; i = 1, . . . ,N} a set of observa-
tions, where each observation xi = (x1

i ,x
2
i , ...,x

d
i ) is a vector in ℜd . For each cell j

of the grid (map), we associate a referent vector (prototype) wi = (w1
i ,w

2
i , ...,w

d
i )

which characterizes one cluster associated to cell i. The set of referent vectors is
denoted by W = {w j,w j ∈ ℜd}|W|

j=1. The set of parameter W has to be estimated
iteratively by minimizing the classical objective function defined as follows:

R(χ ,W) =
N

∑
i=1

|W|
∑
j=1

K j,χ(xi)‖xi−w j‖2 (1)

where χ assigns each observation xi to a single cell in the map C. This cost function
can be minimized using both stochastic and batch techniques (Kohonen, 2001).

3 Local Weighting Learning Paradigm and SOM

One disadvantage of the classical SOM algorithms is that they treat all features
equally. This is not desirable for many applications of clustering, in which obser-
vations are defined by a large number of features. A cluster provided by SOM is
often characterized by only a subset of features rather than by the entire features set.
The presence of other features may therefore prevent the discovery of the specific
cluster structure associated to each cell. The relevance of each feature changes from
one cluster to another. Thus, the question remains how to compute feature relevance
(weights) automatically during SOM learning process. Feature weighting is an ex-
tension of the feature selection procedure, whereby features are assigned continuous
weights, which can be considered as degrees of relevance (Blansche et al., 2006).

The proposed approach for SOM clustering and feature weighting aims to se-
lect both the optimal prototypes and feature weights at the same time. Each pro-
totype w j = (w1

j ,w
2
j , ...,w

d
j ) corresponding to cell j is allowed to have its own set

of local features weights π j = (π1
j ,π2

j , ...,πd
j ). We denote the set of weight vectors

(|Π |= |W |) by Π = {π j,π j ∈ℜd}|Π |j=1.

In the following section, we present two versions of local feature weighting using
SOM: observation weighting and distance weighting.

3.1 Local Weighting Observations : lwo-SOM

We based our method on initial work describing the supervised model w-LVQ2
(Yacoub and Bennani, 2000). This approach adapts weights to filter the observation
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during the learning process. Using this model, we weighted observations x using
weight vectors π before computing the distance. The objective function was rewrit-
ten as follows:

Rlwo(χ ,W,Π) =
|E|
∑
i=1

|W|
∑
j=1

K j,χ(xi)‖π jxi−w j‖2 (2)

Minimization of Rlwo(χ ,W,Π) was performed by iterative repetition of the follow-
ing three steps until stabilization. The initialization step determines the prototype set
W and the set of associated weights Π , at each training step (t +1). An observation
xi is then randomly chosen from the input dataset and the following operations are
repeated:

• Minimize Rlwo(χ ,Ŵ,Π̂ ) with respect to χ by fixing W and Π . Each weighted
observation (π jxi) is assigned to the closest prototype w j using the assignment
function, defined as follows:

χ(xi) = argmin
j

(‖π jxi−w j‖2)

• Minimize Rlwo(χ̂ ,W,Π̂) with respect to W by fixing χ and Π . The prototype
vectors are updated using the gradient stochastic expression:

w j(t + 1) = w j(t)+ ε(t)K j,χ(xi) (π jxi−w j(t))

• Minimize Rlwo(χ̂ ,Ŵ,Π) with respect to Π by fixing χ and W. The update rule
for the feature weight vector π j(t + 1) is:

π j(t + 1) = π j(t)+ ε(t)K j,χ(xi)xi (π j(t)xi−w j(t))

As in the traditional stochastic learning algorithm of Kohonen, we denote the learn-
ing rate at time t by ε(t). The training is usually performed in two phases. In the
first phase, a high initial learning rate ε(0) and a large neighborhood radius Tmax are
used . In the second phase, a low learning rate and small neighborhood radius are
used from the beginning.

3.2 Local Weighting Distance: lwd-SOM

Unlike lwo-SOM, the local distance weighting involves weighting the distance be-
tween observations and prototypes. We propose to minimize the following objective
function:

Rlwd(χ ,W,Π) =
N

∑
i=1

|W|
∑
j=1

K j,χ(xi)(π j)β‖xi−w j‖2 (3)

where β is the discrimination coefficient.
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The lwd-SOM cost function is minimized in three steps:

1. Minimize Rlwd(χ ,Ŵ,Π̂ ) with respect to χ by fixing W and Π . The equation is
defined as follows:

χ(xi) = argmin
j

(
(π j)β ‖xi−w j‖2

)

2. Minimize Rlwd(χ̂ ,W,Π̂ ) with respect to W by fixing χ and Π . The prototype’s
vectors are updated using the following equation:

w j(t + 1) = w j(t)+ ε(t)K j,χ(xi)(π j)β (xi−w j(t))

3. Minimize Rlwd(χ̂,Ŵ,Π) with respect to Π by fixing χ and W. A weighting
vector π j(t + 1) is updated according to the following equation:

π j(t + 1) = π j(t)+ ε(t)K j,χ(xi)β (π j(t))β−1‖xi−w j(t)‖2

In addition, the parameter β needs to be provisionally fixed. As with the lwo-SOM
algorithm, we start with a large initial value for the learning radius which decreases
during the learning process allowing quantization of the prototypes. At the end
of the learning phase, the lwd-SOM model represents a k-means model with si-
multaneously weighted features (SCAD, Frigui and Nasraoui 2004, or w-k-means,
Huang et al. 2005).

4 Automatic Characterization of Clusters through Feature
Selection

Feature selection for clustering or unsupervised feature selection is used to identify
the feature subsets that accurately describe the clusters. This improves the inter-
pretability of the induced model, as only relevant features are involved in it, without
degrading its descriptive accuracy. Additionally, the identification of relevant and
irrelevant features with SOM learning provides valuable insight into the nature of
the cluster-structure.

Feature selection for clustering analysis is difficult because, unlike supervised
learning, there are no class labels for the dataset and no obvious criteria to guide
the search Wiratunga et al. (2006). Feature selection in clustering must provide fea-
tures that describe the "best" homogeneous cluster. Here, we used the weight set Π
and prototype set W provided by lwo-SOM and lwd-SOM. We then clustered the
map and used selection to characterize the resulting clusters associated with cells
and group of cells. For map clustering we used traditional hierarchical clustering
combined with the Davies-Bouldin index to choose the optimal partition (Vesanto
and Alhoniemi, 2000). We then used a scree-test-like method to select the most im-
portant features. The subjective scree test is a graphical method first proposed by
Cattell (1966) for principal components analysis (PCA).
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The basic idea of the scree test is to generate a curve associated with eigenval-
ues, allowing random behavior to be identified (a simple line plot). Cattell suggests
to find the place where the smooth decrease of eigenvalues appears to level off to
the right of the plot. To the right of this point, presumably, one finds only "factorial
scree". Non graphical solutions to the Cattell scree test are also proposed (Raîche
et al., 2006): an acceleration factor and the optimal coordinates index. The accel-
eration factor indicates where the elbow of the scree plot appears. It corresponds
to the acceleration of the curve, i.e. the second derivative. Frequently this scree is
appearing where the slope of the hill changes drastically to generate the scree. It is
why many studies choose the criterion eigenvalue where the slope changes quickly
to determine the number of components for a PCA. It is what Cattell named the
elbow. So, they look for the place where the positive acceleration of the curve is
at his maximum. Cattell’s scree test and Bartlett’s chi-square test for the number of
factors to be retained from a factor analysis are shown to be based on the same ratio-
nale, with the former reflecting subject sampling variability, and the latter reflecting
variable sampling variability (Horn and Engstrom, 1979). Eigenvalues considered
in Cattell’s scree method can be interpreted as the degree of relevance of each factor
axis. Hence, in our case, we use this method by analogy to choose the variables rep-
resented by their relevance vector Π . The purpose is to detect, the ’scree’ where the
slope of the relevance graph changes radically which corresponds to the position of
the variable from which the pertinence π becomes not significant. The number of
variables retained is equal to the number of values preceding this ’scree’. We there-
fore needed to identify the point of maximum deceleration in the curve.

Figure 1 shows an example of a curve generated using a weight vector. We ob-
served the scree on the 19th feature which means that the irrelevant features have

Fig. 1 An example of the automatic scree method using a particular weight vector. The axes
X and Y correspond to features and weights, respectively. The scree is indicated by the vertical
bar.
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index values lying in the range [20− 40]. We used an automated process to apply
this technique to each weight vector π j = (π1

j ,π2
j , ...,πd

j ). We thus executed the
following steps:

Scree Test Acceleration Factor

1. Sort the weights in descending order π j. Thus we obtain a new order π j =
(π .

j,1,π
.
j,2, ...,π

.
j,i, ...,π .

j,d); where i indicates the index order.
2. Compute the first difference d fi = π .

j,i−π .
j,i+1;

3. Compute the second difference (acceleration) acci = d fi−d fi+1;
4. Find the scree: maxi (abs(acci)+ abs(acci+1));
5. Retain all the features displayed before the scree (we used the initial index values

of features before sorting).

5 Experimental Protocol

We performed several experiments on five known problems from the UCI Reposi-
tory of machine learning databases (Asuncion and Newman, 2007).

Dataset nb. observations nb. features nb. classes
Waveform 5000 40 3
WDBC 569 32 2
Isolet 1559 617 2
Madelon 2000 500 32
SpamBase 4601 57 2

• Waveform dataset: This dataset consists of 5000 observations divided into three
classes (Figure 2). The original dataset included 40 features, 19 of which were
attributed to noise, with mean 0 and variance 1. Each class was generated from a
combination of 2 of 3 "base" waves.

• Wisconsin Diagnostic Breast Cancer (WDBC): This dataset includes 569 obser-
vations with 32 features (ID, diagnosis, 30 real-valued input features). Each ob-
servation is labeled as benign (357) or malignant (212). Features are computed
from a digitized image of a fine needle aspirate (FNA) of a breast mass. They
describe characteristics of the cell nuclei present in the image.

• Isolet dataset: This dataset was generated as follows. 150 subjects spoke the name
of each letter of the alphabet twice, giving 52 training examples from each sub-
ject. Subjects were grouped into sets of 30 speakers each, referred to as isolet1,
isolet2, isolet3, isolet4, and isolet5. The data consisted of 1559 observations and
617 features. All features were continuous, real-valued features within the range
-1.0 to 1.0.

• Madelon dataset: MADELON is an artificial dataset, with continuous input fea-
tures. It formed part of the NIPS 2003 feature selection challenge. This dataset
is a two-class classification problem which contains data points grouped into 32
clusters placed on the vertices of a five dimensional hypercube and randomly la-
beled +1 or -1. The five dimensions constitute five informative features. Fifteen
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Fig. 2 Waveform dataset. 3 classes of waves

linear combinations of these features were added to form a set of 20 (redundant)
informative features. Based on these 20 features, the examples can be separated
into the two classes (corresponding to the +/-1 labels).

• SpamBase dataset: The SpamBase dataset is composed of 4601 observations de-
scribed by 57 features. Every feature describes an e-mail and its category: spam
or not-spam. Most of the attributes indicate whether a particular word or charac-
ter occurs frequently in the e-mail. The run-length attributes (55-57) measure the
length of sequences of consecutive capital letters.

To evaluate the quality of clustering, we compared results to a "ground truth". We
used the clustering accuracy for measuring the clustering results. In general, the
results of clustering are usually assessed on the basis of some external knowledge
about how clusters should be structured. The only way to assess the usefulness of a
clustering result is indirect validation, whereby clusters are applied to the solution
of a problem and the correctness is evaluated against objective external knowledge.
This procedure is defined by (Jain and Dubes, 1988) as "validating clustering by ex-
trinsic classification", and has been used in many other studies. To use this approach
we therefore need labeled datasets, where the external (extrinsic) knowledge is the
class information provided by labels. Thus, the identification of significant clusters
in the data, by lwo-SOM or lwd-SOM will be reflected by the distribution of classes.
A purity score can thus be expressed as the percentage of elements in a cluster that
have been assigned a particular class.

We also validated our approaches in supervised case learning paradigms. We
used the K-fold cross validation technique, repeated s times for s = 5 and K = 3,
to estimate the performance of lwo-SOM or lwd-SOM. For each run, the dataset
was split into three disjoint subsets of equal size (15 runs for each dataset). We used
two subsets for training and then tested the model on the remaining subset using
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all features and selected features (selected on the cells or on clusters). The labels
generated were compared to the real labels of the test set for each run.

We used the purity index to evaluate the quality of map segmentation. This index
shows the correspondence between the class of data and cluster label, which is com-
puted using the majority vote rule . A high value for this measure indicates a high
level of homogeneous clustering. A purity index value close to 0 is indicative of poor
clustering, whereas an index value close to 1 is indicative of a good clustering result.

5.1 Results on Waveform

We used this dataset to show a good level of performance for both algorithms
(lwd-SOM and lwo-SOM) for simultaneous clustering and feature weighting. All
observations were used to generate a map with 26×14 cells dimension. Both learn-
ing algorithms provided two vectors for each cell: the referent vector
w j = (w1

j ,w
2
j , ...,w

d
j ) and weight vector π j = (π1

j ,π2
j , ...,πd

j ), where d = 40. Prepar-
ing data for clustering requires some preprocessing, such as normalization or stan-
dardization. In the first experimentation step, we normalized the initial dataset to
obtain more homogeneous data (Figure 3(a)). We used variance normalization, rep-
resenting a linear transformation that scales the values such that their variance is
equal to 1.

We created 3D representations of the referent vector and weight vector pro-
vided by classical SOM and by our methods (lwd-SOM and lwo-SOM). The axes
X and Y indicate the features and the referent indexes, respectively. The ampli-
tude indicates the mean value of each component. Examination of the three graphs
(3(b),3(c),3(d)) shows that the noise represented by features 19 to 40 may be
clearly detected with low amplitudes. This visual analysis of the results clearly
shows that the new algorithm lwo-SOM provides the best results. Both graphs of
weights Π and prototypes W show that features associated to noise is irrelevant
with low amplitude. Visual analysis of both weight vectors (figure 3(e) and figure
3(f)) showed the weight vectors obtained with lwo-SOM to give a more accurate
representation of the data structure (features relevance) than the weight vectors ob-
tained with lwd-SOM. The lwo-SOM algorithm provides good results because the
weight vectors work as a filter for observations and estimates the referents that re-
sult from this filtering. We applied the selection task to all parameters of the map
before and after map clustering to check that it was possible to automatically select
the features using our algorithms. This task involves detecting major changes for
each input vector represented as a signal graph. We used hierarchical classification
(Vesanto and Alhoniemi, 2000) for clustering the map.

After lwo-SOM map clustering, we obtained three clusters with a purity index
equal to 0.7076. Using lwd-SOM resulted in six clusters. However, in lwd-SOM
map, clustering with the product ΠW led to the generation of three clusters (purity
index equal to 0.6803), which were significant in our example. This demonstrates
that when there is no cluster (labels) information, feature weighting can be used to
find and characterize homogeneous clusters.
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(a) normalized dataset (b) (W provided by SOM)

(c) (W provided by lwo-SOM) (d) W provided by lwd-SOM

(e) Π provided by lwo-SOM (f) Π provided by lwd-SOM

Fig. 3 3D visualization of the referent vector and weight vector. The axes X and Y indicate
features and the referent index values, respectively. The amplitude indicates the mean value
of each component of map 26×14 (364 cells).
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Table 1 Comparison of the selected features for each cluster using classical methods and our
new methods (lwo-SOM, lwd-SOM). [i− j] indicates the set of selected features

Db # real SOM lwd-SOM lwo-SOM
cluster W ΠW W

wave- 3 cl1: [12-20] cl1: [6-15] cl1: [3-8; 11-16]
form cl2: [10-18] cl2: [4-10] cl2: [8-11; 14-19]

cl3: [1-8; 14-20] cl3: [7-19] cl3: [3-20]
cl4: [9-13]
cl5: [2-10]

Purity 0,6620 0,6803 0,7076

The characterization of clusters with the "Scree Test" algorithm is provided in
Table 1. For each algorithm, we present the features selected for each cluster. Both
techniques (lwo-SOM, lwd-SOM) provided three clusters characterized by different
features. By contrast, segmentation of the map using classical SOM provided six
clusters with a purity index value of 0.662. Map segmentation was performed using
hierarchical clustering with all the features. For clusters cl1, cl2 and cl3, the features
selected using lwd-SOM were also selected using lwo-SOM. We found that both
algorithms lwo-SOM and lwd-SOM identified relevant and informative features,
giving more accurate results than classical SOM. The new and classical methods
were compared after segmentation of the map. We investigated the effect of selected
features before and after, or without segmentation by testing this selection process
in the supervised paradigm and computing the accuracy index for each method.

6 Results for Other Datasets

We tested our algorithms on additional datasets with different characteristics. To
demonstrate the potential benefits of simultaneous clustering and feature weight-
ing, we used the referent and weight vector for map clustering. For both algorithms
proposed, we showed the feature selection results obtained for the Isolet, Madelon,
WDBC and SpamBase datasets.

Table 2 shows the comparison between the results obtained from the four datasets:
we compared the characteristics of all clusters for each dataset and found that our
two methods lwo-SOM and lwd-SOM provided similar results. We recall that lwo-
SOM and lwd-SOM characterize clusters in an automated unsupervised manner.
Validation of the results obtained was difficult because these methods used unsuper-
vised learning. Therefore, we compared our methods using supervised validation
techniques.

Table 3 provides a comparison of the accuracy of classification for various
datasets after running a 3-fold cross-validation five times. We compared different
situations in which the features were selected using our methods (lwo-SOM, lwd-
SOM) or classical SOM. We found that our methods performed better than SOM
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Table 2 Comparison of selected features for each cluster using our methods (lwo-SOM, lwd-
SOM). [i− j] indicates the set of selected features

Db. # clu-. lwd-SOM lwo-SOM
ster using ΠW using W

wdbc 2 cl1-cl9:[4;24] cl1-cl9:[4;24]
Made- 2 cl1:[1] cl1:[1]
lon cl2: [91, 281, 403-424] cl2: [242, 417-452]

26 cl1-cl13: cl1-cl13:
Isolet [1-330, 450-617] [5-302, 434-488]

[545-551, 586-593]
SpamB 2 cl1: [56]; cl2:[57] cl1:[56]; cl2: [57]

Table 3 Comparison of purity scores with ±SD after running a 3-fold cross-validation five
times (15 runs for each). b/a - before and after segmentation; Sel f. - selected features by cell;
Sel cl. - selected features by cluster

Db. b/a method
sel/cl SOM lwo-SOM lwd-SOM

b. 0.7488±0.0117 0.8178±0.0104 0.7833±0.0201
Waveform Sel f. 0.7158±0.0085 0.8310±0.0096 0.8281±0.0108

Sel cl. 0.7479±0.0293 0.8289±0.0118 0.8279±0.0131
b. 0.7786±0.05 0.7975±0.04 0.7792±0.047

Isolet Sel f. 0.7409±0.052 0.7863±0.043 0.7608±0.041
Sel cl. 0.6786±0.061 0.7821±0.047 0.7796±0.048
b. 0.8941±0.042 0.9203±0.037 0.9052±0.041

wdbc Sel f. 0.8923±0.047 0.9152±0.04 0.9023±0.043
Sel cl. 0.891±0.046 0.9145±0.041 0.9014±0.042
b. 0.8958±0.041 0.8669±0.041 0.8568±0.043

Spam Sel f. 0.8579±0.039 0.8754±0.04 0.8727±0.043
Sel cl. 0.6184±0.044 0.8564±0.041 0.8534±0.042

made- b. 0.6541±0.041 0.6803±0.04 0.6752±0.039
lon Sel f. 0.6608±0.038 0.7017±0.041 0.6914±0.04

Sel cl. 0.6524±0.052 0.7163±0.042 0.7089±0.047

for the various situations (using all features, features selected by cell and features
selected by cluster). In all cases local weighting observation lwo-SOM gave a sig-
nificantly higher classification accuracy than other algorithms. Means and standard
deviation (SD) for the accuracy index values were computed for 15 independent
runs. We found that the proposed methods lwo-SOM and lwd-SOM performed sig-
nificantly better and were more consistent than the traditional SOM for the various
tested cases.
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7 Conclusions and Future Work

We have described a process for selecting relevant features in unsupervised learn-
ing paradigms using two new approaches. These new methods are based on the
SOM model and feature weighting. Both learning algorithms lwo-SOM and lwd-
SOM provide cluster characterization by determining the feature weights within
each cluster. We described extensive testing using a novel statistical method for
unsupervised feature selection. Our approaches demonstrated the efficiency and ef-
fectiveness of this method in dealing with high dimensional data for simultaneous
clustering and weighting. The models proposed in this paper were tested on a wide
variety of datasets (Table 1), showing a better performance for the lwo-SOM al-
gorithms than for the lwd-SOM or classical SOM algorithm. We also showed that
through different means of visualization, lwo-SOM and lwd-SOM algorithms pro-
vide various pieces of information that could be used in practical applications. This
paper offers several perspectives for future work. We can extend both models to take
into account possible correlations between features and the robustness to noise. We
can also, extend the algorithms to treat other types of features (categorical, mixed
features) using an appropriate measure or distance.
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Two Variants of the OKM for Overlapping
Clustering

Guillaume Cleuziou

Abstract. This paper deals with overlapping clustering and presents two extensions
of the approach OKM denoted as OKMED and WOKM. OKMED generalizes the well
known k-medoid method to overlapping clustering and help in organizing data with
any proximity matrix as input. WOKM (Weighted-OKM) proposes a model with
local weighting of the clusters; this variant is suitable for overlapping clustering
since a single data can matches with multiple classes according to different features.
On text clustering, we show that OKMED has a behavior similar to OKM but offers to
use metrics other than euclidean distance. Then we observe significant improvement
using the weighted extension of OKM.

Keywords: Overlapping clustering, medoid-based clustering, local weighting.

1 Introduction

Overlapping clustering is a specific task in Pattern Recognition, it consists in organiz-
ing a dataset into clusters that contain similar data and such that data belong to at least
one cluster. This type of clustering is a natural way to organise data for a large num-
ber of real world applications. Information Retrieval requires to cluster documents by
domain and each document is potentially multi-domains. In Bioinformatics the gene
to cluster can reach into several metabolic pathways. In Natural Language Processing
a verb can satisfy to multiple sub-categorization framework, etc.

As for usual clustering, there are no more trivial solutions to obtain absolute
overlapping clusters. Furthermore, the search space (set of coverages) is much more
big in case of overlaps than in case of crisp clustering.

During the four last decades some solutions have been proposed specifically for
overlapping clustering. Dattola (1968) used a reallocating approach with multiple
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assignments of the data based on a predefined threshold. Jardine and Sibson (1971)
introduced the k-ultrametrics that lead to fundamental studies on overlapping hi-
erarchies: pyramids (Diday, 1987) or weak hierarchies (Bertrand and Janowitz,
2003). More recently, under the pressure of applications in Information Retrieval
or Bioinformatics, new investigations have been led in order to extend the parti-
tioning models (k-means or CEM) for overlapping considerations. In such a way
Banerjee et al. (2005a) proposed the Model-based Overlapping Clustering (MOC)
that generalizes CEM (Celleux and Govaert, 1992) and Cleuziou (2008) extended
the well-known k-means approach (MacQueen, 1967) with OKM (Overlapping k-
means). The two last solutions are very closed and the main differences concern (1)
the way to define intersections between clusters and (2) the algorithm associated
(initialization and assignments). A more theoretical and experimental comparison is
presented in Cleuziou and Sublemontier (2008).

The underlying model common to OKM and MOC provides a general frame-
work allowing the exploration of many tracks. For example, many extensions of
k-means have been proposed: to determine a suitable number of classes k (D.Pelleg
and Moore, 2000), to limit the risk to obtain a locally optimal solutions (Likas et al.,
2003) or to initialize the algorithm intelligently (Peña et al., 1999). In the present
study we chose to explore two specific variants for OKM in order to provide a so-
lution to practical problems in the domain: (1) the necessity to diversify the metrics
used and (2) the possibility for a data to be a assigned to different clusters on the
basis of different sets of features.

We then propose first the extension OKMED that uses the medoid-based cluster-
ing framework and allows to organize a dataset into overlapping clusters given any
proximity matrix as input. OKMED requires to define judiciously the notion of over-
lap representative and begs a theoretical complexity problem that can be easily get
round with practical heuristics.

The second contribution is a weighted extension WOKM that generalizes OKM

by introducing local weighting for each cluster. WOKM takes a leaf out of the
weighted k-means algorithm proposed by Chan et al. (2004) and refers more fun-
damentally to the “adaptative distances” introduced by Diday and Govaert (1977) ;
it seems to be particularly suitable for overlapping clustering: by attaching different
weights for the features in each cluster, a data is seen differently from one cluster
to another, then a same data can naturally belongs to different clusters for different
reasons (features). We will show that the translation from the initial weighted parti-
tioning model to the overlapping one is not trivial and we will propose algorithmic
solution allowing to ensure the convergence of the method. The efficiency of the
proposed solutions will be assessed by experiments on real datasets.

The paper is organized in four main sections: Section 2 gives the general formal
framework of the overlapping models OKM and MOC in order to better understand
the two following sections that concern the variants OKMED and WOKM respec-
tively. Before to conclude, Section 5 is dedicated to experiments performed on real
text clustering datasets and various multi-labelled benchmarks.
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2 MOC and OKM : Formal Framework

The model MOC proposed by Banerjee et al. (2005a) and the model OKM pro-
posed by Cleuziou (2008) are some (overlapping) extensions of the methods based
on reallocation around mobile centers. MOC is initially formalized in term of over-
lapping mixture models. However, the optimization of the objective criterion (log-
likelihood) requires :

• a restriction in the generative model: constant and equal variances,
• a simplification in the algorithm: CEM rather than EM.

In such a way, MOC can be seen as an optimization method based on an inertia
criterion that is formalized as a least square criterion.

Let X = {xi}n
i=1 be a dataset in R

p, the objective function used in the models
MOC and OKM can be expressed in the following common formalism:

J({πc}k
c=1) = ∑

xi∈X

‖xi−φ(xi)‖2 (1)

In criterion (1) the {πc}k
c=1 denote the k overlapping classes and φ(xi) denotes the

representative of xi into the clustering scheme, called “image” of xi by Cleuziou
(2007). The image is obtained by a combination of class centers {mc}k

c=1 for the
classes where xi appears: a sum in the model MOC and an arithmetic average in the
model OKM:

φMOC(xi) = ∑
mc∈Ai

mc ; φOKM(xi) =
∑mc∈Ai

mc

|Ai| (2)

with Ai = {mc|xi ∈ πc} be the set of the class centers where xi appears.
The previous objective criterion suggests two remarks:

• the objective criterion (1) is an inertia criterion as for the least square criterion
used in k-means; indeed it expresses the inertia of the data {xi}n

i=1 with respect
to their respective image {φ(xi)}n

i=1 in the clustering.
• in case of partitioning (non-overlapping clusters), each data belongs to only one

cluster (∀i, |Ai| = 1); for both models the image φ(xi) of xi matches with the
center mc of the cluster where xi appears; the objective criterion is then exactly
the least square criterion (sum of the distances to the center), in this way MOC

and OKM generalize k-means.

The optimization1 of the objective criterion (minimization) is performed by the it-
eration of the two traditional steps: the computation of the class parameters (the
centers {mc}k

c=1) and the assignment of each data to the clusters (single or multi-
assignment in our case). The algorithms MOC and OKM use different heuristics

1 The problem is not convex and the optimization process allows to provide a locally optimal
solution as for analogous partitioning methods.
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for the initialization of the parameters and for the multi-assignment step that is a
combinatorial problem.

3 OKMED as a Generalization of k-Medoids

3.1 Motivation and Medoid-Based Methods

The medoid-based methods consists in aggregating the data around representatives
or prototypes of the clusters, the prototypes - denoted as medoids being chosen
among the data themselves. In this way it differs from centroid-based methods
where the cluster prototypes do not necessary belong to X.

The algorithm PAM (Partitioning Around Medoids) proposed by Kaufman and
Rousseeuw (1987) is considered as a reference in this research field. PAM builds a
partition of the data by iterating two steps: assignment of each data to its nearest
medoid and updating of the medoid for each cluster.

During the second step, medoids updating consist in searching among the set of
data belonging to the cluster, the one that minimizes the sum of the distances with
any other data into the cluster.

The two main advantages of these methods are: firstly their robustness as regards
to the outliers and secondly the possibility they offer to use any metric since they
only require a proximity matrix over the dataset; the second point specifically moti-
vates the present study. Indeed, the current overlapping models MOC and OKM are
limited for the moment to a restricted family of metrics: the Bregman divergences,
and the extension to other measures is not trivial. Roughtly speeking, a Bregman
divergence d f is defined as

d f (x,y) = f (x)− f (y)−〈x− y,∇ f (y)〉

with f a strictly convex function; the squared euclidean distance and the
Kullback-Leibler divergence are two of the widely used Bregman divergences (see
Banerjee et al. (2005b) for more details on Bregman divergence).

3.2 The Model OKMED

We propose, for the model OKMED, to generalize the objective criterion (1) of
the original model OKM, to any distance or dissimilarity between the data. Let
X = {xi}n

i=1 be a dataset and d be a dissimilarity from X×X→ R
+, the objective

criterion for OKMED is given by:

J({πc}k
c=1) = ∑

xi∈X

d2(xi,φ(xi)) (3)

Again, the objective aims at minimizing the inertia of the data with respect to their
image. The notion of image has to be redefined using cluster medoids rather than
centroids: the image φOKMED(xi) of the data xi in the clustering {πc}k

c=1 is then
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defined as the data from X that minimizes the sum of the dissimilarities with all the
medoids of the clusters where xi appears:

φOKMED(xi) = argmin
x j∈X

∑
mc∈Ai

d(x j,mc) (4)

Let us notice that, with this new definition, the computation of an image requires to
test all the data in X. In practice, each image computation can be performed only
once per combination2 of assignments Ai observed.

We can finally mention that in case of single assignments (crisp partitioning),
each data xi belonging to only one cluster πc, the image φ(xi) is exactly the medoid
mc. Thus k-medoids must be considered has a special case of the model OKMED,
via the objective criterion (3) previously defined.

3.3 The Algorithm OKMED

In the same way that aggregating methods, we propose an algorithm that aims at
minimizing the criterion (3) by iterating two steps: assignments of the data and up-
dating of the parameters (medoids). Figure 1 gives the description of the algorithm.

OKMED(D,k,tmax ,ε)

Input: D a dissimilarity matrix from (n×n) over the dataset X, k the number of expected
clusters, tmax: the maximum number of iterations (optional), ε: a convergence parameter
(optional).
Output: {πc}k

c=1: a set of overlapping clusters that covers X (coverage).

1. Pick randomly k medoids {m(0)
c }k

c=1 in X,
t=0.

2. For each data xi ∈ X compute the assignments

A(t+1)
i = ASSIGN(xi,{m(t)

c }k
c=1)

derive a clustering {π(t+1)
c }k

c=1 such that π(t+1)
c = {xi|m(t)

c ∈ A(t+1)
i }

3. For each cluster π(t+1)
c successively, compute the new medoid

m(t+1)
c = MEDOID(π(t+1)

c ,k)

4. If {π(t+1)
c } is different from {π(t)

c } or t < tmax or J({π(t)
c })− J({π(t+1)

c }) > ε , then

t = t +1 and GoTo step 2; Else return the final clustering {π(t+1)
c }k

c=1.

Fig. 1 Algorithm OKMED

2 The number of possible such combinations is theoretically high, however only few combi-
nations are observed in real situations.
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The assignment of a data to one or several clusters is performed by the func-
tion ASSIGN that uses an heuristic proposed by Cleuziou (2008). Its adaptation for
OKMED consists for each data xi, in considering the medoids with a specific order
(from the nearest to the farthest from xi according to D) and to assign xi to the as-

sociated cluster while the inertia d(xi,φ(xi)) decreases. The new assignment A(t+1)
i

is stored only if it improves the previous assignment A(t)
i as regards to the objec-

tive criterion ; by the way, the criterion is ensured to decrease at this step of the
algorithm.

The updating of the parameters concerns the search of new representatives or
medoids for each cluster that improve the objective criterion. The heuristic we pro-
pose for the search is formalized by the function MEDOID (cf. Figure 2); it searches
a relevant medoid rather than the best (or optimal) medoid, in the sense of the ob-
jective criterion, for two main reasons:

• firstly because it is preferable to limit the medoid evaluations which are very
costly in our overlapping context since they require, for each data belonging to
the cluster, the computation of its image using the possible new medoid.

• then, in order to avoid as possible to choose a data that belongs to many other
clusters as medoid for a cluster ; a data belonging only to the considered cluster
would be preferred if it allows to improve the objective criterion.

MEDOID(πc ,k)

Input: πc a cluster over the dataset X, k the number of expected clusters.
Output: mc the medoid for cluster πc.

1. Compute the inertia of the data from πc:

J(πc) = ∑
xi∈πc

d2(xi−φ(xi))

2. For b from 1 to k do:

For each x j ∈ πc such that |A j|= b do:

compute the images φ(xi)′ with mc = x j for each xi ∈ πc

compute the new inertia for πc

J′(πc) = ∑
xi∈πc

d2(xi−φ ′(xi))

if J′(πc) < J(πc) return x j (new medoid for πc)

Fig. 2 Updating of the cluster medoids

Each one of the two steps - assignment and medoid computation - allows to im-
prove the objective criterion (3) ; thus, by noticing that the set of solutions is finite3

3 Set of overlapping clustering with n data and k clusters.
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we can conclude on the convergence of the algorithm OKMED. The final clustering
refers to a local optimum of the objective criterion depending of the initialization
performed.

Finally, if the non-overlapping algorithm PAM has a quadratic complexity, the
computation of the images in OKMED is costly and induces a complexity in O(tn3k),
where t, n and k denote the number of iterations, the size of the dataset and the
number of clusters respectively.

4 Local Weighting and Overlapping Clustering with WOKM

4.1 Motivation and Initial Model

Let us consider as example the problem of text clustering where each text is de-
scribed by a vector of word frequencies, given a fixed vocabulary. If the aim is to
organize texts based on the domain (or thematic), we can logically think that some
texts deal with only one domain (specific sub-vocabulary) and some other texts deal
with several domains (mixed sub-vocabularies). By the way, overlapping clustering
is clearly a better organizational structure compared to a crisp partitioning. However,
with the models mentioned previously (MOC and OKM), even if a multi-domain
data has a strong opportunity to be assigned to several clusters, the presence of a
sub-vocabulary S1 tends to penalize the assignment to a cluster impacted by another
sub-vocabulary S2.

Clustering models with local weighting of the clusters aim precisely at avoiding
this phenomenon by allowing a data to be assigned to a cluster as regards to a subset
of features that are important for the cluster concerned. By the way, the presence of
a sub-vocabulary S1 (subset of features) would be ignored during the process of as-
signment to a cluster that is impacted only by a sub-vocabulary S2 . Intuitively, local
weighting models are particularly suitable in the overlapping clustering framework.

In this section, we extend the weighting-k-means model (WKM) proposed by
Chan et al. (2004) to the overlapping context. WKM generalizes the least square
criterion used in k-means by mean of a feature weighting that is different for each
cluster. Let X = {xi}n

i=1 a dataset in R
p, the objective criterion used in WKM is as

follows:

J({πc}k
c=1) =

k

∑
c=1

∑
xi∈πc

p

∑
v=1

λβc,v|xi,v−mc,v|2 with ∀c,
p

∑
v=1

λc,v = 1 (5)

The term λc,v used in (5) denotes the weight associated to feature v in cluster c and β
is a parameter (> 1) that regulates the influence of the local weighting in the model.

With this framework, we propose in the next section the model WOKM that gen-
eralizes both OKM and WKM models.
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4.2 The Model WOKM

The integration of the local weights to the clusters into the objective criterion used
in overlapping clustering (1) is not trivial. Indeed, the inertia measures the scattering
of the data with respect to their image rather than their cluster representative. We
then have first to define the image of a data into the framework with local weights.
We propose to define the image of xi by a weighted average of the cluster centroids
for xi:

φWOKM(xi) = (φ1(xi), . . . ,φp(xi)) with φv(xi) =
∑mc∈Ai

λβc,vmc,v

∑mc∈Ai
λβc,v

(6)

The previous definition ensures: on the one hand the model to be general and on the
other hand an intuitive construction for the data images in the weighted overlapping
clustering. In addition, let us notice that the image of a data xi characterizes a point
in R

p that is representative of the intersection of the clusters from Ai. Because a
vector of weights λc is associated to each cluster πc, we must propose a weighting
for the overlaps, in other words we must propose a vector of weights γi for the
images φ(xi). This vector is defined as follows:

γi,v =
∑mc∈Ai

λc,v

|Ai| (7)

From this definition it results the following objective criterion for the model WOKM:

J({πc}k
c=1) = ∑

xi∈X

p

∑
v=1

γβi,v|xi,v−φv(xi)|2 (8)

The criterion (8) is subjects to the following constraint ∀c, ∑p
v=1λc,v = 1 on the local

weights of the clusters, this weights being encapsulated into the definition of the
image weights {γi}. Let us notice that the model we propose generalizes previous
models:

• in case of single assignments (crisp partitioning), if xi ∈ πc then φv(xi) = mc,v

and γi,v = λc,v; the objective criterion (8) is then equivalent to the one used in
WKM (5).

• in case of uniform weighting (∀c, ∀v, λc,v = 1/p), γi,v = 1/p and φWOKM(xi) =
φOKM(xi); the objective criterion (8) is then equal to the one used in OKM (1).

4.3 The Algorithm WOKM

The optimization of (8) is performed with an algorithm that iterates three steps:
assignment, cluster centers updating and weights updating (cf. Figure 3).
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WOKM(X,k,tmax ,ε)

Input: X a dataset over R
p, k the number of expected clusters, tmax the maximum number

of iterations (optional), ε a convergence parameter (optional).

Output: {πc}k
c=1: a set of overlapping clusters that covers X (coverage).

1. Pick randomly k centres {m(0)
c }k

c=1 from R
p or from X,

Initialize the weights {λ (0)
c,v } in an uniform manner (λ (0)

c,v = 1/p),t = 0.

2. For each data xi ∈ X compute the assignments

A(t+1)
i = ASSIGN(xi,{m(t)

c }k
c=1)

derive a clustering {π(t+1)
c }k

c=1 such that π(t+1)
c = {xi|m(t)

c ∈ A(t+1)
i }

3. For each cluster π(t+1)
c successively, compute the new centroid

m(t+1)
c = CENTROID(π(t+1)

c )

4. For each cluster π(t+1)
c successively, compute the new weights

λc,. = WEIGHTING(π t+1
c )

5. If {π(t+1)
c } differs from {π(t)

c } or t < tmax or J({π(t)
c })−J({π(t+1)

c }) > ε , then t = t +1

and GoTo step 2; Else, return the clustering {π(t+1)
c }k

c=1.

Fig. 3 Algorithm WOKM

The assignment step (ASSIGN) is similar with the corresponding step in al-
gorithms OKM and OKMED: the data is assigned to its nearest clusters while

∑p
v=1 γ

β
i,v|xi,v−φv(xi)|2 decreases.

The second step (CENTROID) that updates the cluster centers can be performed
on each cluster successively by considering the other centroids fixed; the associated
convex optimization problem is solved by defining the new optimal center m∗

c for
cluster πc as the center of gravity of the dataset {(x̂c

i ,wi)|xi ∈ πc}; x̂c
i denoting the

cluster center πc that would allow the image φ(xi) to match exactly with the data xi

itself (∀v, |xi,v−φv(xi)|= 0) and wi denotes the associated vector of weights defined

as follows: wi,v =
γβi,v(

∑ml∈Ai
λβl,v
)2 (see the Appendix for more details on the problem

solving).
The third step (WEIGHTING) updates the vectors of local weights {λc}k

c=1; the
optimization problem with constraint (∑p

v=1λc,v = 1) cannot be directly solved be-
cause the vectors λc are mutually dependant, contrary to the non-overlapping model
that refers to the theorem from Bezdek (1981) to determine optimal weights. We
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then propose a new heuristic based on the Bezdeck theorem; the heuristic consists
for each class in:

1. computing a new weighting λc,v for the cluster πc by estimating on each feature
the variance of the data that belong only to πc:

λc,v =

(
∑{xi∈πc| |Ai|=1}(xi,v−mc,v)2

)1/(1−β )

∑p
u=1

(
∑xi∈πc| |Ai|=1(xi,u−mc,u)2

)1/(1−β )

2. storing the computed weighting only if it improves the objective criterion (8)
associated to the model of WOKM.

Let us notice that the heuristics used for the assignments and the weights updating
are both performed in such a way that the objective criterion decreases in order to
ensure the WOKM algorithm to converge.

As for the non-overlapping approach, the algorithm WOKM has a complexity
linear on the size of the dataset (n). The order of complexity is O(tnpk log k) where
p denote the size of the feature set.

5 Experiments

In this section we present experiments that aim at observing the behavior of the two
variants OKMED and WOKM. The first dataset (Iris) is commonly used in catego-
rization or clustering, it helps in making a first impression about the efficiency of a
new classification method. The second dataset Reuters-215784 (Apté et al., 1994)
concerns the text clustering task that matches exactly with the target application do-
mains since the texts are precisely multi-labelled. Finally, the overlapping clustering
approaches are tested and compared on three other multi-labelled benchmarks with
different properties (different numbers of data, features, clusters and different sizes
of overlaps).

For each experiment, the proposed evaluation compares the obtained clustering
with respect to a referent clustering given by the labels5. The comparison is quan-
tified with the F-measure that combines precision and recall over the set of data
associations retrieved or expected. Let Πr and Πo be the referent and obtained clus-
terings respectively, let Nr and No be the set of associations (pairs of points associ-
ated in a same cluster) in Πr and Πo :

precision =
|No∩Nr|
|No| ; recall =

|No∩Nr|
|Nr| ; F −measure =

2×precision× recall
precision+ recall

The feature assignment also reported in the following experiments quantifies the
importance of the overlaps in an overlapping clustering, it is defined by the average
number of clusters each data belongs to.

4 http://www.research.att.com/∼lewis/reuters21578.html
5 The labels associated to each data are not used during the clustering process.
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5.1 Preliminary Experiments on the Iris Dataset

The Iris dataset (from the UCI repository) (D.J. Newman and Merz, 1998) contains
150 data defined over R

4 and equitably distributed over three classes ; one of these
classes (setosa) is known to be clearly separated from the two others.

The values reported in Table 1 result from the average on 500 runs with k = 3.
The methods being sensible to the initialization step, the initial cluster centers differs
from one run to another but for each run the different algorithms have the same
initialization.

Table 1 Comparison of the models on Iris

Precision Recall F-measure Assignment
k-means 0.75 0.82 0.78 1.00
k-medoids 0.75 0.84 0.79 1.00
Weighted k-means 0.85 0.89 0.86 1.00
OKM 0.57 0.98 0.72 1.40
OKMED 0.61 0.88 0.71 1.16
WOKM 0.62 0.98 0.76 1.32

The results on the non-overlapping methods are given as a rough guide; since the
dataset is not multi-labelled the overlapping methods are logically penalized by the
evaluation process.

However a first result to notice is the F-measure obtained with OKMED that is
almost equal to the F-measure observed with OKM; since this phenomenon is also
observed on their correspondent non-overlapping models (k-medoids and k-means
respectively) we shown experimentally that the model and the algorithm associated
to OKMED generalizes k-medoids. We also notice, through the Assignment feature,
that OKMED induces smaller overlaps than OKM; this is explained by the fact that
in OKMED the set of possible images φ(xi) for the data xi is finite (and limited to X)
contrary to the model OKM with images computed in R

p.
About the weighted clustering models, we observe that the weighted models out-

perform unweighted correspondent models. With this experiment we thus confirm
that WOKM must be considered as a generalization of WKM and above all that our
intuition about the contribution of local weights into the overlapping framework
seems to be verified.

5.2 Experiments on the Reuters Dataset

The second series of experiments is performed on the Reuters dataset that is com-
monly used as benchmark for Information Retrieval tasks. Because the number of
runs per test is high and to allow the multiplication of the tests (different meth-
ods, different parameters k, etc.) we consider only a subset of 300 texts described
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Fig. 4 OKMED with different metrics

by word frequencies; the vocabulary being composed of 500 words with highest
tf×idf.

In order to show the contribution of OKMED via the unrestricted set of metrics
it allows to employ, a comparison between (1) OKM, (2) OKMED with euclidean
distance and (3) OKMED with Kullback-Leibler divergence6 (or I-Divergence) is
reported in Figure 4 with different values for parameter k.

We observe that OKMED has a behaviour stable for the different metrics and
above all we notice that the use of the I-Divergence allows to outperform other
solutions as regards to the precision. The seeming superiority of OKM on the F-
measure is actually due to excessive overlaps inducing a recall artificially high.

Finally, the curves reported in Figure 5 detail the contribution of the weighted
clustering models, especially on the overlapping framework.

Local weighting seems not to significantly contribute in non-overlapping models
(k-means w.r.t. WKM), the contribution is noticeable in case of overlapping clus-
tering and it results:

1. a restriction on the size of the overlaps (lower average number of assignment per
data);

2. a limited repercussion (of the diminution of the overlaps) on the recall;
3. a significant improvement of the precision.

Generally speaking, the local weighting introduced with WOKM seems allowing
to adjust the model OKM by a limitation of the parasitic (or excessive) multi-
assignment.

6 Frequently used for text analysis.
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Fig. 5 Influence of the local weighting of the clusters

5.3 Comparative Study on Three Multi-labelled Datasets

We complete the preliminary experiments with a comparative study on three multi-
labelled datasets with numerical features. It concerns different domains, the datasets
have different number of data (instances), features and clusters (labels) and their
overlaps (cardinality) are more or less important (cf. table 2).

Table 2 Quantified description of the multi-labelled datasets

name domain instances features labels cardinality
Emotions music 593 72 6 1.87
Scene multimedia 2407 294 6 1.07
Yeast biology 2417 103 14 4.24

The dataset emotions (Tsoumakas et al., 2008) contains 593 songs with a duration
of 30 seconds, described with 72 rhythmic or timber features and manually labelled
by experts through 6 emotional labels (happy, sad, calm, surprised, quiet, angry).

The scene dataset (Boutell et al., 2004) is made up of color images described
with color and space features (spatial color moments). Originally, one label was
associated to each image (or scene) among the set of labels: beach, sunset, fall
foliage, field, mountain, urban. After a human re-labeling, approximately 7.4% of
the images belonged to multiple classes.
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Finally, yeast (Elisseeff and Weston, 2001) is formed by micro-array expression
data and phylogenetic profiles. The input dimension is 103. Each gene is associated
with a set of functional classes.

The values in Tables 3 report precision, recall, F-measure, average assignments
(or cardinality) and CPU time (in seconds) obtained with different overlapping clus-
tering algorithm. They result from the average on 5 runs using the euclidean distance
and a parameter k that corresponds to the true number of labels.

Table 3 Quantitative comparison of OKM, WOKM, OKMED and MOC on multi-labelled
datasets

Precis. Emotions Scene Yeast
OKM 0.49±0.01 0.23±0.00 0.78±0.00

WOKM 0.49±0.01 0.21±0.00 0.78±0.00

OKMED 0.49±0.01 0.24±0.01 0.79±0.00

MOC 0.48±0.01 0.42±0.02 0.80±0.00

Recall. Emotions Scene Yeast
OKM 0.65±0.07 0.94±0.02 0.86±0.03

WOKM 0.65±0.07 0.59±0.07 0.86±0.03

OKMED 0.53±0.06 0.74±0.08 0.29±0.02

MOC 0.21±0.01 0.40±0.05 0.94±0.01

F-meas. Emotions Scene Yeast
OKM 0.56±0.03 0.36±0.00 0.82±0.01

WOKM 0.56±0.03 0.31±0.01 0.82±0.01

OKMED 0.50±0.03 0.36±0.01 0.42±0.03

MOC 0.30±0.01 0.41±0.03 0.86±0.00

Assign. Emotions Scene Yeast
OKM 1.98±0.2 2.43±0.06 4.69±0.10

WOKM 1.98±0.2 1.20±0.24 4.69±0.10

OKMED 1.91±0.2 2.17±0.08 2.19±0.11

MOC 1.00±0.0 1.00±0.00 6.05±0.05

CPU time Emotions Scene Yeast
OKM 3±1.2 38±12.8 55±32

WOKM 23±8.0 106±110 559±279

OKMED 20±7.5 4259±1089 1419±217

MOC 1±0.5 50±0.02 2048±359

We first notice that OKMED performs as well as OKM on scene and obtain lower
results on the two other datasets. This result is mainly due to the smaller overlaps al-
lowed by OKMED, and particularly on the yeast dataset since the overlaps produced
by OKM are twice greater than for OKMED. The higher complexity of the medoid-
based algorithm is clearly observed experimentally with the time costs reported on
the last table: few seconds are sufficient to deal with the 593 instances from emo-
tions and more than 20 minutes are required to deal with the 2,400 instances from
scene and yeast.

The motivations for the weighted variant of OKM is confirmed by this experi-
ment since we observe that WOKM produces overlaps more realistic (smaller) as
regard to the true cardinality of the datasets (e.g. on scene). Conversely, OKM pro-
ducing excessive multi-assignments, it obtains logically higher F-measure due to
the (imperfect) evaluation process.

At last, but not at least, the MOC approach fails in discovering a suitable overlap-
ping structure. It results in either no overlaps (for emotions and scene) or too much
overlaps (yeast). The other evaluation scores are thus difficult to compare between
very different structuring.
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6 Conclusion and Perspectives

We proposed in this paper two contributions in the domain of overlapping clustering.
The first contribution is the model OKMED that draw one’s inspiration from medoid-
based partitioning methods; OKMED allows to consider any proximity measure as
input for the overlapping clustering task contrary to the original model OKM which
is - at the moment - restricted to the euclidean distance. The second contribution
aims at introducing local weighting framework into overlapping clustering models,
by means of the algorithm WOKM.

As illustrated in Figure 6, the models OKMED and WOKM are presented as gen-
eralizations of both:

• crisp-partitioning models: k-means, k-medoids and weighted-k-means,
• overlapping models: OKM and MOC.

Fig. 6 Theoretical organization of the clustering models

We proposed for each model an algorithm that leads to an overlapping clustering
with strategies driven by the associated objective criterion. The two models have
been tested, compared and validated with experiments on suitable multi-labelled
datasets from very different domains.

We plan to progress in the extension of the overlapping clustering family of
methods by investigating other relevant variants such as the self-organizing maps
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(Kohonen, 1984) or kernelized clustering (Dhillon, 2004) in the overlapping frame-
work. In addition, the two models proposed in the present study could be used as
a basis framework for the development of a new approach that would combine the
benefits of both models into a medoid-based overlapping clustering capturing clus-
ter shapes.
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Appendix

The updating of the centroids aims at finding the new cluster centers that make the
WOKM objective criterion (8) to decrease. Each cluster center is updated succes-
sively in such a way that for each component v and each cluster πc∗ the computation
of mc∗,v is a convex optimization problem:

Jc∗,v = ∑
xi∈πc∗

γβi,v (xi,v−φv(xi))
2 = ∑

xi∈πc∗
γβi,v

(

xi,v− ∑mc∈Ai
λβc,vmc,v

∑mc∈Ai
λβc,v

)2

(9)

Given the parameters {λ}, {mc,v}c=c∗ and the assignments {Ai} fixed, the mini-
mization of the objective criterion (8) is performed by the minimization of Jc∗,v that

is reached for
∂Jc∗,v
∂mc∗ ,v

= 0.

∂Jc∗,v
∂mc∗,v

= ∑
xi∈πc∗

2.γβi,v

(
λβc∗,v

∑mc∈Ai
λβc,v

)(
∑mc∈Ai

λβc,vmc,v

∑mc∈Ai
λβc,v

− xi,v

)

The problem is then to find mc∗,v such that

∑
xi∈πc∗

γβi,v

(
λβc∗,v

∑mc∈Ai
λβc,v

)(
λβc∗,vmc∗,v

∑mc∈Ai
λβc,v

+
∑mc =mc∗∈Ai

λβc,vmc,v

∑mc∈Ai
λβc,v

− xi,v

)

= 0



166 G. Cleuziou

⇔ ∑
xi∈πc∗

γβi,v

(
λβc∗,v

∑mc∈Ai
λβc,v

)2(
mc∗,v− x̂i

c∗
)

= 0 (10)

Where x̂i
c∗ in (10) denotes the cluster center mc∗ that would allow the image φ(xi)

to match exactly with the data xi itself (∀v, |xi,v−φv(xi)|= 0) :

x̂i
c∗ =

(

xi,v−
∑mc =mc∗∈Ai

λβc,vmc,v

∑mc∈Ai
λβc,v

)

.
∑mc∈Ai

λβc,v
λβc∗,v

Finally, the solution of (10) is given by

mc∗,v =

⎛

⎜
⎝
∑xi∈πc∗ γ

β
i,v.x̂i

c∗

(
∑mc∈Ai

λβc,v
)2

⎞

⎟
⎠/

⎛

⎜
⎝

∑xi∈πc∗ γ
β
i,v

(
∑mc∈Ai

λβc,v
)2

⎞

⎟
⎠ (11)

In other words, the solution mc∗,v is the center of gravity of the dataset {(x̂c
i ,wi)|xi ∈

πc} where wi denotes the associated vector of weights defined as follows:

wi,v =
γβi,v(

∑mc∈Ai
λβc,v

)2 .



A Stable Decomposition Algorithm for Dynamic
Social Network Analysis

Romain Bourqui, Paolo Simonetto, and Fabien Jourdan

Abstract. Dynamic networks raise new challenges for knowledge discovery. To ef-
ficiently handle this kind of data, analysis methods have to decompose the network,
modelled by a graph, into similar sets of nodes. In this article, we present a graph
decomposition algorithm that generates overlapping clusters. The complexity of this
algorithm is O(|E| ·deg2

max + |V | · log(|V |))). This algorithm is particularly efficient
because it can detect major changes in the data as it evolves over time.

Keywords: Overlapping Clustering, Clusters Evolution, Social Network Analysis.

1 Introduction

A graph is a data structure used to organise large scale relational data; it is used
in many application fields such as biology, micro-electronics and social sciences.
Graph are particularly well suited for knowledge discovery, since there exists many
algorithms to mine their structure and understand their underlying properties (e.g.
Newman and Girvan, 2004; Palla et al., 2007; Suderman and Hallett, 2007). Much
attention has been given to the problem of identifying clusters in these networks. In
the social sciences, clusters may represent groups of individuals sharing the same
interests (communities), while, in biology, they may represent proteins involved in
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the same biological processes (e.g. Newman and Girvan, 2004; Palla et al., 2007;
Bader and Hogue, 2003). Clustering methods visual abstraction of the network to be
built by aggregating clusters into single nodes. These abstractions are particularly
interesting with dealing with large networks, as they reduce the number of elements
displayed (Auber et al., 2003).

Finding communities in a network is generally related to structural decomposi-
tion. Decomposition algorithms compute sets of elements (clusters) sharing one or
more properties. To evaluate the quality of a decomposition one usually compares
the interconnections within and between clusters. More precisely, a good decompo-
sition will have a high intra-cluster density and a low inter-cluster density1.

Dynamic data, in our case dynamic networks, are increasingly present, requir-
ing knowledge discovery methods. Automatic data extractions are continuously im-
proved and databases are populated quickly in biology (e.g. quantitative data on
a organism evaluating according to environmental changes) and in the social sci-
ences (e.g. co-citation networks, movie actor networks). Consequently, it is not only
a question of identifying communities at a single time instant but it is also under-
standing the evolution of communities over time. In other words, structural changes,
such for instance merges, expansions, splits of communities (Palla et al., 2007).

In this article, we will approach the problem of dynamic network analysis by us-
ing static graph decomposition. This step can be used to detect topological changes
in the graph as part of a larger framework, where dynamic graphs are turned into
sequences of static graphs, decomposed in communities, and compared within con-
secutive time stamps.

This article is organised as follows. In section 2, we present the overall approach.
In section 3, the decomposition algorithm is described. We evaluate the “stability”
of the decomposition on a social network in section 4. Finally, we draw some con-
clusions in section 5.

2 Methodology

Our decomposition algorithm is part of the framework depicted in figure 1. The first
step turns the dynamic network into a set of static graphs. If we consider a dynamic
graph G, defined on a time interval [0..T ], this transformation consists in building
a set of static graphs {G[0,τ[, ...,G[T−τ,T ]}, where τ is the discretisation factor and
G[t,t+τ[ is the static graph corresponding to the time period [t, t + τ[ (i.e. this graph
contains all the nodes and edges of the dynamic graph present during the period
[t, t + τ[).

The main idea behind our approach is that if the graph changes little (assuming
that the discretisation factor is relevant) then two static graphs describing two con-
secutive periods have similar topological structures. Therefore, if our algorithm is
stable enough, we will obtain a “similar” decomposition. To compare these decom-
positions, we introduce a similarity measure.

1 Density is defined as the number of edges divided by the maximal number of possible
edges.
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Fig. 1 Three main steps of our method

In this article, we present a new algorithm that is fairly stable when few topologi-
cal changes occour between two networks. This algorithm is divided into three steps.
Firstly, the strength metric (Auber et al., 2003) is computed on edges and nodes. Sec-
ondly, we look for a maximal set of independent nodes (i.e. nodes at least at distance
two from each other). Finally, we build sets “around” these independent nodes.

3 Algorithm

3.1 Strength Metric

Auber et al. (2003) introduced a new metric called Strength to quantify the contribu-
tion of an edge (or a node) to the cohesion of its neighbourhood. More precisely, this
metric counts for each edge, the number of cycles of length 3 and 4 going through
that edge and then normalises the value by the maximum number of such cycles.
As result, if a node or an edge forms part of a community its Strength value will be
high.

To formally define Strength (Auber et al., 2003; Chiricota et al., 2003), we de-
fine some notation. Let u and v be two nodes of graph G = (V,E). We denote
Mu(v) = NG(v) \ (NG(u)∪ {u}) the neighbours of v (excluding u) that are not in
the neighbourhood of u. We denote Wuv = NG(u)∩NG(v) as the set of nodes in both
the neighbourhoods of v and u. Let A and B be two set of nodes, we note E(A,B) the
set of edges linking a node in A to a node in B. Finally, s(A,B) = |E(A,B)|/(|A| · |B|)
is the ratio between the number of edges linking A and B to the maximum number
of edges that could link these two sets2. Strength metric value of an edge e = (u,v)
is:

2 When A = B, then s(A,A) = s(A) = 2 · |E(A)|/(|A| · (|A|−1)).
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ws(e) =
γ3,4(e)
γmax(e)

(1)

Where:
γ3,4(e) = |Wuv|+ |E(Mv(u),Mu(v))|+ |E(Mv(u),Wuv)|

+ |E(Wuv,Mu(v))|+ |E(Wuv)|
(2)

γmax(e) = |Mv(u)|+ |W(u,v)|+ |Mu(v)|+ |Mv(u)||Mu(v)|
+ |Mv(u)||Wuv|+ |Wuv||Mu(v)|+ |Wuv|(|Wuv|−1)/2

(3)

The authors subsequently define the Strength ws(u) of node u as follows:

ws(u) =
∑e∈inc(u) ws(e)

deg(u)

Where inc(u) is the set of edges incident to u and deg(u) the degree of u.
The time complexity to compute Strength is O(|E| ·deg2

max) where degmax is the
maximum degree of a node in the graph.

3.2 Extracting a Maximal Independent Set

In this step, the algorithm finds community centres used to identify clusters. To do
so, we develop a method inspired by MISF (Maximal Independent Set Filtering)
of Gajer and Kobourov (2000). Our approach extracts a maximal set ν ∈ V such
that ∀u,v ∈ ν , distG(u,v) ≥ 2, where distG(u,v) is the theoretical graph distance
between u and v. Selecting nodes at distance 2 in the graph allows to obtain a rep-
resentative sampling of the nodes in the network. Moreover, the number of selected
nodes defines the number of communities in the network. Finally, this technique
guaranties the uniqueness of each group found by our algorithm (two sets can not
contain exactly the same set of nodes).

Given that nodes in ν will be centres of the communities, these nodes should not
be pivots in the network. In fact, if we consider a pivot as a centre of a cluster, this
cluster may contain several communities. For instance, in figure 2.(b), the “central”
node has been chosen as a community centre, resulting in the generation of a single
group.

Pivots of the network can be identified using Strength metric, as they have a rela-
tively low Strength value. Thus, nodes with a high Strength value are preferentially
added to the set ν (see figure 2.(c)). To select this set of nodes, we developed the
algorithm 1. In this algorithm, nodes are first sorted by increasing Strength value.
Then, the first node of the list still in the graph is added to ν , and it and its neigh-
bours are removed from graph. This last step is repeated until the graph contains no
nodes, allowing to guarantee that the nodes in ν are at least at distance two in the
graph.

The time to sort the list of nodes is O(|V | · log(|V |)) and in space O(|V |). We can
easily prove that the for loop time and space complexity is O(|V |+ |E|). The overall
cost of set ν computation is in time O(|V | · log(|V |)+ |E|) and in space O(|V |+ |E|).
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Fig. 2 (a) Subgraph of the “Hollywood graph” or actors graph where vertices represent actors
and two vertices are linked if the corresponding actors were involved in a common movie.
Color of each vertex corresponds to its strength value, from the lowest in yellow to the high-
est in blue. (b) If the red vertex is chosen as a community “centre”, we then could obtain
one unique cluster containing the whole network. (c) If the community “centres” have high
strength values, then we obtain 3 clusters corresponding to the 3 movies of that network

Algorithm 1. Extraction of the set ν . The sortNodeWithStrength(G,
sorted_nodes) method sorts the vertices of G by decreasing Stength values and
store the result in sorted_nodes.

Input: A graph G = (V,E)
Output: A maximal set ν of vertices at distance at least 2
vector<node> sorted_nodes;
sortNodeWithStrength(G, sorted_nodes);
for unsigned int i from 0 to (number of vertices in G) do

node u = sorted_nodes[i];
if u in G then

append(ν ,u);
foreach node v in neighbourhood of u do

remove(G, v);
end
remove(G, u);

end
end

3.3 Group Extraction

Algorithm 2 allows to extract clusters based on set ν . In this algorithm, we build
“spheres of radius 1” in the graph around nodes of ν . For each node u in ν , every
edge (u,v) with a Strength value greater than a fixed threshold ε is added to the
community of u. To compute the threshold, we assume that the sparser the network
is, the sparser communities are. Thus, the threshold ε is computed according to
the number of edges of graph G = (V,E) and to the maximum number of edges
of the complete graph K|V | with |V | nodes. In algorithm 2, the threshold ε was
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determinated empirically and can be modified in order to build clusters that are
more or less tolerant to noise.

Algorithm 2. Building groups of vertices
Input: A graph G = (V,E), the Strength of each edge, a maximal set ν
Output: A set D of groups of vertices
double ε = 2 · |E|/(|V | · (|V |−1));
foreach node u in ν do

Group curGroup = createNewGroup();
append(curGroup, u);
foreach edge e = (u,v) adjacent to u do

if Strength(e) > ε then
append(curGroup, v);

end
end
append(D, curGroup);

end

For each node u in ν , algorithm 2 goes through edges incident to u and
runs in O(deg(u)). The overall time complexity is O(∑u∈ν deg(u)). Given that
∑u∈V deg(u) = 2 · |E|, algorithm 2 has a time complexity of O(|E|) and a space
complexity of O(|V |+ |E|).

Finally, we can conclude that the overall complexity of the decomposition algo-
rithm is O(|E| ·deg2

max + |V | · log(|V |)) and in space O(|V |+ |E|).

4 Algorithm Application

4.1 Material

We chose as a case study a subset of the dataset used in InfoVis 2007 Constest
(InfoVis 2007 Contest, 2007). This dataset comes from the well known IMDb (In-
ternet Movie Database). We extracted a set of 432 movies involving 4025 actors and
built a graph as follows: a node in the graph is an actor and two nodes are connected
by an edge if the corresponding actors were involved in at least one common movie.
The resulting network contains 4025 nodes and 41216 edges (see figure 3). This
benchmark is particularly well suited for our study since it contains many commu-
nities. In fact, every movie is a clique connecting all the actors who played in this
movie, and cliques share nodes when an actor played in several movies.

We evaluate the quality of our decomposition algorithm in two different ways.
First, we use a generalisation of the MQ measure introduced by Mancoridis et al.
(1998). This generalisation takes into account the cases where nodes can belong
to several clusters. Secondly, we measure the sensitivity of the decomposition to
structural changes of the network during the dynamic process. To evaluate this level
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Fig. 3 Subgraph of the “Hollywood graph”. This subgraph corresponds to a set of 432 movies
and contains 4025 vertices (actors) and 41216 edges. Color of each vertex corresponds to its
strength value (from the lowest values in yellow to the highest in blue).

of structural stability, we compare the decomposition obtained on the original graph
to a decomposition obtained after several structural modifications to the network.

4.2 Decomposition Quality

Widely accepted definitions of a “good” decomposition of a graph is a high intra-
cluster density and a low inter-cluster density. This can be evaluated using a
generalisation of the MQ measure introduced by Mancoridis et al. (1998) that
takes into account overlapping clusters. This generalisation had been presented by
Bourqui and Auber (2008). Considering a graph G = (V,E) and a decomposition
C = {C1,C2, ...,Ck} of nodes in G. MQOver is defined as follows:

MQOver = MQ+−MQ−
Over (4)

Where

MQ+ =
1
k∑i

s(Ci,Ci) (5)
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And

MQ−
Over =

1
k(k−1)∑i ∑j =i

sOver(Ci,Cj) (6)

Where sOver(Ci,Cj) =
|E(Ci,Cj\i)|
|Ci|·|Cj\i | and Cj\i = Cj \ (Cj ∩Ci). In this equation, MQ+

models the internal cohesion of clusters C1, ...,Ck while MQ−
Over models the external

cohesion of clusters.

Fig. 4 Optimal decomposition (a) and the result of our algorithm (b) of the graph from
Figure 3. Each group is surrounded by a purple convex hull.

We applied our decomposition algorithm to the sub-network of the movie ac-
tor network (see Figure 3). Figure 4.(b) shows the result obtained on this graph. In
this Figure, each cluster found by our algorithm is surrounded by a purple convex
hull. The value of MQOver is 0.95 showing that our algorithm gives excellent results
according to this measure. Figure 4.(a) shows what we consider as the optimal de-
composition (i.e. every cluster represents a movie). We can first visually note the
similarity of these two decompositions. Upon further investigations, it appears that
our algorithm finds 421 clusters of which 404 match perfectly the optimal decom-
position. Our algorithm thus found 93% of the optimal decomposition (and 96% of
the clusters found correspond to movies). Each of the 17 clusters obtained by our
algorithm that do not fit the optimal solution are in within a cluster of the optimal
decomposition.

4.3 Sensitivity to Modifications

In order to evaluate the sensitivity of our algorithm to structural changes in the
network, we compare the decomposition of the original network (reference decom-
position) to the decompositions obtained after a given number of random addi-
tions/removal of edges. In this section, we explain the similarity measure used to
compare the two decompositions. Then, we present the results of our case study.
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4.3.1 Similarity Measure

To measure the similarity between two decompositions, we use a metric inspired by
Brohée and van Helden (2006) which is based on representativeness. Two decom-
positions are considered similar if and only if the first one is representative of the
second and vice-versa.

To define the representativeness of two decompositions, we first have to define
representativeness of two clusters. Let ci and c j be two clusters, we say that the
cluster ci is representative of cluster c j if and only if ci contains a large number
of elements of c j. Formally, the directed cluster representativeness is defined as
follows:

ρci→c j =
|ci∩ c j|
|c j| ρc j→ci =

|ci∩ c j|
|ci|

And the undirected cluster representativeness is defined as:

ρcic j =
√
ρci→c j ·ρc j→ci

This measure corresponds to the geometric mean of directed representativeness of
clusters ci and c j.

We can, in a similar way, define the degree of representativeness of a decomposi-
tion with regards to another one. Let us consider two decompositions C and C′, we
say that C is representative of C′ if and only if for each cluster c′ of decomposition
C′, the decomposition C contains a representative cluster of c′. Given that clusters
of “small” size tend to bias this metric, we gives a higher representativeness to large
clusters. We define the directed clustering representativeness as follows:

σC→C′ =
∑

ci∈C′
max
c j∈C

ρc jci |ci|

∏
ci∈C′

|ci|

This formula corresponds to the weighted average of best representativeness of each
cluster in C′ by clusters in C.

We can then define the undirected clustering representativeness as follows:

σCC′ =
√
σC→C′ ·σC′→C

A possible modification of this metric could be obtained by using a simple product
instead of the geometric mean during the computations of the undirected representa-
tiveness. It better distinguishes similar decompositions from different ones, as “bad”
associations are more heavily penalised. In the next section, we use this modified
version of the similarity metric.
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4.3.2 Experimental results

To measure the sensitivity of our decomposition algorithm, we first generate a col-
lection of 100000 graphs from the graph shown on figure 3 using algorithm 3.

Algorithm 3. Generation of the dataset used to evaluate the stability of our
decomposition algorithm. The getOperation() function returns ’edge addition’
with a probability 0.5, ’edge deletion’ otherwise. The constants NB_TESTS
and MAX_OPERATIONS were respectively set to 50 and 2000.

Input: subgraph G = (V,E) of the Hollywood graph
Output: A set Collection of graphs
for unsigned int i = 0 to i == NB_T EST S do

Graph H = G;
for unsigned int j = 0 to j == MAX_OPERATIONS do

Operation op = getOperation();
if op == ’edge deletion’ then

node src = getRandomNode();
node tgt = getRandomNode();
edge e = edge(src, tgt);
while e is not element of H do

src = getRandomNode();
tgt = getRandomNode();
e = edge(src, tgt);

end
deleteEdge(H, e);

end
else /* op == ’edge addition’ */

node src = getRandomNode();
node tgt = getRandomNode();
edge e = edge(src, tgt);
while e is element of H do

src = getRandomNode();
tgt = getRandomNode();
e = edge(src, tgt);

end
addEdge(H, e);

append(Collection, H);
end

end

We then compare the decomposition obtained on the original graph to those ob-
tained on the graphs of the generated sample collection. Figure 5 shows our results.

In Figure 5.(a), the blue line shows the average number of perfect cluster matches
according to the number of edges removed or added to the original network. The
standard deviation is depicted in red for each of these average values. We see on this
plot that for up to 2000 modifications of the graph, our algorithm finds on average
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Fig. 5 (a) Average number of perfect matching (in blue) according to the number of addition
or deletion operations previously done and the corresponding standard deviation (in red). (b)
Average value of the similarity metric (in blue) according the number of addition or deletion
operations previously done and the corresponding standard deviation (in red).

between 250 and 421 perfect clusters when compared to the original decomposition.
Moreover we can see that the standard deviations are relatively low, between 0.44
and 10.34. In Figure 5.(b), the blue line shows the average value of the similarity
metric according the number of edges removed or added to the original network.
The red line shows the standard deviation. Average values of the similarity metric
remain between 0.9 and 1. This interval is very good in terms of similarity, and it
shows standard deviation values between 0.0002 and 0.007.

Considering thereafter the naive sensitivity measure of computing the percentage
of perfect matching, our algorithm preserves on average 78% of the clusters. More-
over, average values of this similarity measure are also high, showing the stability
of our decomposition algorithm.

5 Conclusion

In this article, we present a new algorithm for the analysis of dynamic graphs as
the main step of a framework which detects topological changes. This method is
based on the transformation of the dynamic graph into a set of static graphs and on
the graph decomposition in potentially overlapping clusters. Our main assumption
is that is if the structure of the network does not change drastically in the dynamic
process, then decomposition obtained on two consecutive graphs should contain a
similar community structures.

We show in this article that our algorithm is stable with respect to minor changes
in the network. Given that in our approach two similar graphs should have similar
decompositions, our algorithm detects major changes in the network. In addition,
our algorithm offers a O(|E| ·deg2

max + |V | · log(|V |)) time complexity.
Finally, we give a generalisation of the Brohée and van Helden (2006) similarity

measure for overlapping decompositions. This new measure allows us to compare



178 R. Bourqui, P. Simonetto, and F. Jourdan

the decompositions of two graphs corresponding to two consecutive time frames to
detect high impact structural changes in the network.
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An Hybrid Data Stream Summarizing Approach
by Sampling and Clustering
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Abstract. Computer systems generate a large amount of data that, in terms of space
and time, is very expensive - even impossible - to store. Besides this, many appli-
cations need to keep an historical view of such data in order to provide historical
aggregated information, perform data mining tasks or detect anomalous behavior in
computer systems. One solution is to treat the data as streams being processed on
the fly in order to build historical summaries. Many data summarizing techniques
have already been developed such as sampling, clustering, histograms, etc. Some
of them have been extended to be applied directly to data streams. This chapter
presents a new approach to build such historical summaries of data streams. It is
based on a combination of two existing algorithms: StreamSamp and CluStream.
The combination takes advantages of the benefits of each algorithm and avoids their
drawbacks. Some experiments are presented both on real and synthetic data. These
experiments show that the new approach gives better results than using any one of
the two mentioned algorithms.
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1 Introduction

Nowadays, several modern applications generate large amounts of data in a con-
tinuous and unbounded fashion. Examples of such applications include network-
monitoring applications, financial monitoring and many others. Storing, querying
and mining of such data are highly computational challenging tasks. It is very costly
to store all data before the analysis process. One solution is to adopt a real time pro-
cessing called Data Stream processing. Golab and Özsu (2003) define a data stream
as a continuous sequence of ordered elements, arriving in the real time with impor-
tant rates. It is impossible to control the order in which elements arrive, neither is it
feasible to locally store a stream in its entirety . It is necessary to process these data
‘on the fly’.

Much works (Babcock et al., 2002; Golab and Özsu, 2003; Ma et al., 2007) show
that it is not feasible to simply load the arriving data into a traditional database
management system (DBMS). They are not designed to load large amounts of con-
tinuous data. Conventional DBMS are ill-equipped to fulfill the needs of applica-
tions. Therefore, a new class of systems ‘the Data Stream Management Systems’
(DSMS) are being developed by the database community to satisfy the require-
ments of stream based applications. Several academic and commercial DSMS, such
as Stream (Arasu et al., 2003), Aurora (Abadi et al., 2003), have been designed to
handle transient data streams on-line.

Moreover, DSMS enable users and applications to issue continuous queries that
are evaluated over data streams or over windows (finite portion of stream) (Babcock
et al., 2002). Since data arrive continuously, these queries tend to be long running.
To be processed in real time, queries must be specified before the beginning of
streams. However, in many applications, there is a need to query any portion of
the stream without specifying in advance what to analyze. In this case, the system
will not respond to these queries as all the data have not been previously saved. It
is therefore necessary to keep an historical summary of the stream. Many studies
have been carried out on specialized summary techniques (Gemulla and Lehner,
2008; Guha et al., 2001; Flajolet and Martin, 1985), which are structures dedicated
to a particular task. The proposed approach focuses on non-specialized summaries,
which aim at providing approximate results for any analysis tasks (e.g. answering
queries or applying mining algorithms). These summaries must cover the whole
stream and enable to run queries over any past part of the history of the stream. To
the best of our knowledge, few works have approached this issue, with the exception
of those of Csernel et al. (2006) and Aggarwal et al. (2003).

In this chapter, we focus on the long-term preservation of data streams. Our goal
is to develop a data summary which is non-specialized (operational on a large set
of applications), adaptable to stream changes, and of good quality (representative
of the original stream) throughout a large period of time. The new approach builds
such historical summaries of data streams and offers a good compromise between
the two existing algorithms (StreamSamp and CluStream) both in terms of accuracy
and run-time. The combination takes advantages of the benefits of each algorithm
and avoids their drawbacks. Given that we use CluStream (Aggarwal et al., 2003),
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only the case of quantitative data can be considered. It is possible to run queries on
the constructed summary, and get answers that approximate, as much as possible,
the case where all data are used.

The chapter is organized as follows: in section 2, we discuss the different kinds
and algorithms for data stream summaries; in section 3, we discuss our new ap-
proach called ’Hybrid approach’ for summarizing data streams; section 4 reports
the performances studied on real and synthetic data sets; we conclude in Section 5
with mentioning some directions for further work.

2 Data Stream Summaries

In recent years many summary structures have been developed which can be used
with various mining and query processing techniques. Some structures are devoted
to a particular type of treatment i.e. counting distinct elements (Flajolet and Mar-
tin, 1985), checking over the existence of an element in a set (Bloom, 1970). The
choice of a specialized summary method depends on the needs and the problems
to be solved. In general, we aim at building summary structures that have wide ap-
plicability across a broad class of problems. Those are non-specialized summaries,
the focus of this chapter. We describe in section 2.1 some data stream summarizing
techniques while section 2.2 and 2.3 are focused on describing algorithms used in
our Hybrid approach.

2.1 Non-specialized Summary

In an ideal context, a non-specialized summary has to provide approximate results
for any analysis that we wish make on the original data. According to Csernel
(Février 2008) this summary must meet four conditions: (1) responding to queries
related to any fixed time horizon, (2) treating a wide range of queries (selection,
median, etc.), (3) allowing monitored analysis of data like decision trees and (4)
authorizing exploratory analysis tasks such as clustering. Queries may be addressed
at the present and related to past data. A non-specialized summary can be defined
by reducing the memory space, we call this memory organization or by temporal
dimension, we call this temporal dimension organization as explained below.

2.1.1 Memory Organization

These techniques conserve summaries either of the entire data stream or that fo-
cus on recent observations. There are two major techniques which can be used for
summary construction: sampling and histograms.

Sampling Methods. These methods are among the simplest methods for summary
construction in data streams. They are directly outcome from statistics aiming at
providing information by a representative sample from a large population. More-
over, it is relatively easy to use these summaries with a wide variety of applications
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since their representation is not specialized and uses the original representation of
the elements. Usually these techniques need to have access to all elements in order
to select a representative sample. This constraint makes it difficult to use in data
streams context given the unbounded feature of streams. To overcome this prob-
lem, sequential sampling algorithms have been developed like reservoir sampling
methods.

Reservoir based methods (Vitter, 1985; Al-Kateb et al., 2007; Park et al., 2004)
are widely used to sample data streams. They allow the incremental construction
of uniform, random and pre-defined size samples without knowing in advance the
number of elements in the stream. Elements are added to the reservoir with proba-
bility n/(t + 1) where n corresponds to the reservoir’s length and t is the index of
the element to be inserted. The drawback of this technique is that it disfavors re-
cent elements. More sophisticated techniques have been developed; they maintain a
random sample on a sliding window (Aggarwal, 2006).

Histograms. Another method for data summarization is histogram construction. We
consider here an histogram as a discrete representation of the distribution of both
qualitative or quantitative data. In this method, data values are divided into classes
or groups (called buckets) and the frequency of each bucket is stored. Thus, storage
space is represented by the number of buckets in the histogram. This technique
allows to keep more information on the observed data but with a larger memory
space and sometimes greater complexity in the histogram update. However, in the
histogram we loose the distribution of elements within a bucket; this is a source
of inaccuracy. This technique is also employed for a multitude of tasks such as
approximate query answering and data mining (Ioannidis and Poosala, 1999).

In the literature, several types of histograms have been proposed: V-Optimal His-
togram, Equi-Width Histograms and End-Biased Histograms (Muthukrishnan et al.,
2005). These techniques are adapted in the context of data streams (Guha et al.,
2001; Puttagunta and Kalpakis, 2005). For example, in the case of a V-Optimal His-
togram, Jagadish et al. (1998) showed how to compute such histograms with O(N)
space requirements and O(N2B) time, where N is the size of the data set and B is the
number of buckets. This algorithm cannot be applied in the context of data streams
because of its complexity. Guha and Harb (2005) extend this algorithm in the con-
text of data streams. The proposed approach uses O(B2logN) space and O(B2logN)
time per data element to construct a V-Optimal Histogram.

The methods described above do not keep informations describing the whole data
stream. Only the recent past is considered. However, the aim of our approach is to
answer queries about the distant past, expressed at a recent time. For that, we have
to combine these methods with a temporal approach.

2.1.2 Temporal Dimension Organization

These techniques keep summaries which cover the full stream by using bounded
space in a particular kind of windowing system. These windows have a variable
size that increases with time. The idea is that the most recent elements are the most
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interesting. The most recent time is kept at the finest granularity and the more distant
one is registered at a coarser granularity. There are two main techniques for temporal
dimension organization: the tilted time frame model and the progressive logarithmic
tilted time frame model (Snapshot system) (Aggarwal, 2007).

Tilted Time Frame Model. There are two kind of tilted window models: the natural
tilted time frame model and the logarithmic tilted time model. In the first model,
the time frame is structured in multiple granularity based on natural time scale. As
shown in Fig 1, in this model, we can compute an aggregate in the last quarter with
the precision of a minute, or in the last hour with the precision of a quarter, and so
on until the whole year with the precision of a month. In the second one, the time
frame is structured in multiple granularity according to the logarithmic scale.

We can use these structures to maintain summaries covering time periods of vary-
ing sizes. Summaries have a set size but spread over time periods of varying length,
shorter for the present and longer for the distant past.

Progressive Logarithmic Tilted Time Frame Model. As in the tilted time frame,
this model allows an efficient processing of temporal dimension organization. The
goal is to take different snapshots describing the system state (the system state can
be characterized by some statistics, clusters position, etc.). Each snapshot is repre-
sented by its timestamp. Snapshots are stored at different levels of granularity in
a pyramid-shaped structure. This structure favors recent time frames to older ones.
Depending on time, the number of stored snapshots is increasingly weak. The Fig 2
illustrates an example of progressive tilted time frame model. In this example, we
suppose that there are 5 frames and each takes maximal 3 snapshots. Given a snap-
shot number N, if N mod 2a = 0, then we insert the snapshot into the frame number
a. If there are more than 3 snapshots, we delete the oldest snapshot.

These tilted time models ensure that the total amount of data to retain in memory
is small. They provide a natural way to control the incremental data insertions in
new frames.

Fig. 1 Natural tilted time
frame window

Fig. 2 Progressive tilted
time frame window
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2.2 CluStream: A Clustering Approach

Recently, the clustering problem has also been studied in the context of data streams
(Aggarwal et al., 2003; Zhang et al., 1996). They use a micro-clustering based
stream mining framework which is designed to capture summary statistics about the
stream. This summary information is defined by two structures: the micro-clusters
and the pyramidal time frame. The first one allows to maintain statistical information
about the data locality in terms of micro-clusters, while the second structure stores
the micro-clusters at snapshots in time which follows a logarithmic time frame pat-
tern. In this technique, the snapshots are stored at different levels of granularity
depending on their age.

We discuss in this chapter the CluStream algorithm. It is essentially based on a
clustering of numerical data. However, it provides a structure particularly adapted
to summaries of data streams. Aggarwal has adapted the Cluster Feature Vector
(CFV) structure to the context of data streams. This structure was already used by
Zhang et al. (1996) for large databases. The CFV structure maintains statistics about
elements in a micro-cluster. It contains the number of elements of a given micro-
cluster and, for each attribute, the sum of its values as well as the sum of all their
values squared. In Aggarwal et al. (2003), Aggarwal added to the CFVs the temporal
attribute of each element.

CluStream proceeds in three steps: the first one is the initialization step in which it
uses k-means algorithm to create the first q micro-clusters. The second step manages
the evolution of micro-clusters. It is an on-line phase and proceeds as follows: when
a new stream element arrives, CluStream assigns it to the nearest cluster. For that,
its distance from the centroid of each micro-cluster is calculated. Then, the CFV of
this cluster is updated accordingly without storing the belonging of this element to
the cluster. However, if no micro-cluster is found close enough to the new element,
a new one is created. It will contain only that element. As a rule, a new cluster is
created if the stream element is either an outlier or it corresponds to the beginning of
a new cluster because of evolution of the stream. In order to create this new micro-
cluster and preserving a constant number of micro clusters, the oldest cluster is
destroyed or two older micro-clusters are merged. The algorithm keeps the elements
of the identifiers of merged clusters. While the above process of updating is executed
at the arrival of each stream element, another process is executed at each clock time.

At each clock time, the algorithm takes snapshots. It consists of storing on disk
the CFV of all micro-clusters. Those snapshots are then saved according to a pyra-
midal time frame. They are classified into different orders which can vary from 1 to
log(T ), where T is the clock time elapsed since the beginning of the stream. To free
memory space, the least recent snapshot are also deleted.

The third step is an off-line phase and is characterized by post-analysis which can
be applied to the stored snapshots. The mathematical features of CFVs make pos-
sible to follow micro-clusters evolution. Information stored about clusters, such as
timestamps and elements of the identifiers of merged clusters, allows implement-
ing the subtraction of two snapshots. Thus, one can determine the approximate
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micro-clusters for a pre-specified time horizon. This can provide a version of the
summary for different time horizons.

On the basis of a clustering technique coupled with a pyramidal time frame struc-
ture, CluStream keeps representative snapshots even for old stream elements. This
allows the monitoring of the data stream over time. However, one weakness of the
algorithm is that the process of distance calculations is expensive. A second limi-
tation concerns the high number of parameters which depend on the nature of the
stream and the arrival speed of elements.

2.3 StreamSamp

StreamSamp is an algorithm based on random sampling of data streams (Csernel
et al., 2006). Upon arrival, the stream elements are sampled in a purely random way
with a fixed sampling rate α and placed in a sample. When this sample reaches a
given size T , StreamSamp stores it with the dates marking its starting and ending
point. The order 0 is associated with this sample. Because of the boundlessness of
the stream, it is impossible to permanently store all the samples created. To reduce
space, the StreamSamp summary structure is based on the tilted time frame model
where samples cover periods of time of varying length.

When the number of samples of a given order i reaches a given limit L, the two
oldest samples of this order are merged into a single sample of size T and it receives
the order i + 1. This new sample has the same size T , but it covers a time period
twice longer. It is built by randomly keeping T/2 elements of each of its parent
samples.

Moreover, StreamSamp allows the exploitation and analysis of the created sum-
mary. To process a time period, the samples belonging to this period are concate-
nated. Thus, a sample on any given part of the stream or the whole stream can
be created. If samples of different orders have to be concatenated, they must be
weighted differently (by giving a weight of 2i to all the elements of a sample of
order i) so as to keep the same representativity for each element of the final sample.

The summary created by StreamSamp has the particularity of being small and
quickly designed. It does not depend on the speed of the stream. However, the qual-
ity of the summary produced for old time periods is likely to deteriorate. Indeed, old
elements have an increasing weight for a constantly fixed sample size. Therefore, if
a sample contains recent elements (much lower weight) and some old elements, the
latter will increase the errors in the results of query answers. The use of tilted time
frame model does not favor (in terms of accuracy) another period except the recent
past.

3 An Hybrid Approach of Non-specialized Summaries

The work presented in this chapter is based on combining a sampling and a clus-
tering approach. We propose a new algorithm for improving quality (in terms of
accuracy and representativeness) of non-specialized summaries. This new approach
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combines the benefits of StreamSamp and CluStream while avoiding their disad-
vantages. Since the new approach involves CluStream, only quantitative data can be
considered.

Stream elements are first sent into the StreamSamp process which keeps random
samples. When the samples are no longer representative in term of some criteria de-
tailed below (section 3.1), the sample’s elements are sent to the CluStream process.

To meet CluStream timeline, samples must be sent in order: samples with higher
orders must be moved away before the lower order samples. The samples inclusion
into CluStream must be done element by element. The insertion of elements de-
pends on their weights. Two strategies can be applied: (i) Each element is inserted
w times (w represents the weight of the corresponding sample), (ii) each element is
multiplied by its weight and inserted once in the corresponding micro-cluster. The
second technique is adopted because it reduces the complexity of the algorithm. The
transition from one process to another is not a random procedure but has to respect
two criteria. The transition criteria that is defined below allows us to determine when
a sample is still representative.

3.1 Transition Criteria

The choice of the transition criteria is based on inherent features of the two pro-
cesses: StreamSamp is controlled by random sampling while CluStream is guided
by updating evolutionary micro-clusters. In order to preserve a summary with good
quality designed by our Hybrid approach, we have to maintain a good quality for
these two processes. The first criterion called variance criterion monitors the ran-
dom re-sampling which leads to a degradation of the StreamSamp summary. The
second criterion is based on the preservation of centroid positions which is a CluS-
tream representation mode. The main idea is to transit from one process to another
based on a simultaneous checking of these two criteria. The first criterion is checked
for each attribute while the second one is checked considering all attributes together.

3.1.1 Variance Criterion

The variance criterion aims to measure the ’quality’ of samples resulting from
StreamSamp. As explained in section 2.3, StreamSamp involves re-sampling and
hence deteriorates the quality of summary. Indeed, the number of elements at a
given time period is reduced by half at each re-sampling step. The quality of a sam-
ple is measured by estimating the relative error of aggregates such as mean, median,
variance, etc. We consider in this paper only the mean aggregate for error estimating.

To check the quality of StreamSamp summaries, we consider the merger (E1∪E2)
of two independent samples E1 and E2 having the same weight and we compute the
mean estimator x̂. Since a simple and random sampling is used, we know that with
a confidence of 95%, we have the inequality

∣∣
∣x− x̂(E1∪E2)

∣∣
∣≤ Student(0.05)

√
Var(x̂(E1∪E2))
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Where E1 and E2: Two samples that have to be merged, Student(0.05)= 1.96, x̂:
the estimator of the mean and x: the real mean.

The variance Var(x̂(E1∪E2)) is estimated using the following formula:

Var(x̂(E1∪E2)) = (1− 2n
N

)(
1

2n
)[

1
2n−1 ∑

k∈E1∪E2

(xk− x)2]

where n: sample size, N: size of the involved population

To ensure a satisfied quality for a merger sample, we define a bound err that error
estimator must not exceed. The criterion is expressed using the following inequality:

1.96
√

Var(x̂(E1∪E2))

x̂(E1∪E2)
≤ err

However, even if the criterion is met, we do not decide to merge unless the second
criterion about centroids’s position is checked.

3.1.2 Centroids’ Position Criterion

In our transition approach, the life cycle of a sample is composed by two comple-
mentary phases. The first step is the evolution of the sample in StreamSamp . The
second is the insertion of the sample elements in the CluStream process. It is there-
fore important to take into consideration the constraints related to each process. In
the previous section, we have defined the constraint based on the StreamSamp pro-
cess (variance criterion). Within the same logic, we have to control the centroids’
behaviors when inserting elements in CluStream. In fact, CluStream brings together
the “closest” elements into the same micro-cluster. Unlike the classical approach of
CluStream in which the algorithm processes the whole stream, in our CluStream
version, the algorithm will only process a sampled stream.

The random re-sampling process leads to a deterioration of the built summary
quality. This fact may cause a considerably change of the centroids’ positions which
will be calculated on the remaining samples. Consequently, the precision on the
centroids’ position will deteriorate. We aim at maintaining a minimum precision on
the centroids’ position. We have therefore added a second criterion which is based
on the conservation of centroids’ position.

In order to maintain this precision, we calculate at each re-sampling process,
the distance between the centroid (G) (calculated from the samples to be merged
(E1 ∪ E2)) and the centroid (G) (calculated from the estimated sample (E3)). As
shown in fig. 3, the distance between (G) and (G) must be below a threshold D.
Otherwise, the required precision is no longer respected.

D = ε× ∑
E1∪E2

(d2(x,xi))
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Fig. 3 Distance computation between the centroids G and G

Algorithm 1. Hybrid approach algorithm
Require: E1,E2 : Samples to merge, n : Sample size, w : weight of E1 and E2

err : Threshold for the variance criterion
ε : Threshold for the centroids’ position criterion
Test: Boolean variable
Test ⇐ True
for each attribute i do

if Variance_Criterion(i) == False then
Test ⇐ False

end if
end for
if Test == True AND Centroid_Criterion() == T RUE then

mergeSamples(E1,E2)
else

Max ⇐Max(sampleWeights)
for i = Max to w do

MovetoClustream(Ei) {moving sample having i as weight}
end for

end if

where ε is a user defined parameter fixed following the centroids’ evolution, and
∑

E1∪E2

(d2(x,xi)) the intra-cluster inertia of the sample made up from (E1∪E2).

3.1.3 Conclusion

As shown in Algorithm 1, if one of these two conditions (variance criterion and cen-
troids’ position criterion) is no longer respected, the sampling process is stopped and
replaced by CluStream. Thus the corresponding sample elements move to CluStream.
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4 Empirical Results

Series of tests have been conducted to evaluate our Hybrid approach. We aim at
assessing the performance of our algorithm and comparing it with CluStream and
StreamSamp used alone.

4.1 Environment of Tests and Data Sets

All of our experiments have been run on a PC with an Intel Core 2 Duo 1.66 Ghz
computer processor and 1000 MB memory which runs Windows XP professional
operating system. All algorithms are coded in the Java programming language. For
testing the effectiveness of our algorithm, we have compared it to CluStream and
StreamSamp. The Hybrid approach is implemented according to the description
in this chapter while CluStream and StreamSamp are done according to Aggarwal
et al. (2003) and Csernel (Février 2008). To make the comparison fair, the three
algorithms use the same amount of memory to store their summaries. To test the ac-
curacy of estimating the mean query, median and the runtime evaluation a synthetic

Algorithm 2. MovetoClustream function
Require: E : Samples to be sent to CluStream

xi : Elements of sample E
w : weight of sample E
S : The current set of micro-clusters
nClusters : number of micro-clusters
S = {}
for i = 0 to n do

xi = xi ∗w
if S is empty then

createMicroCluster(xi) {create a micro-cluster containing the singleton
xi}

else
computeDistance(xi ,M) {M is the closest micro-cluster to xi}
if xi is inside Boundary then

addStatistics(xi,M)
else

createMicroCluster(xi)
|S| ⇐ |S|+1
if |S|==nClusters+1 then

remove(S) {remove the least recently updated
micro-cluster from S;}

end if
end if

end if
end for



192 N. Gabsi, F. Clérot, and G. Hébrail

dataset is mainly be used. However, we use a real dataset to compare algorithms’
performance on classification tasks.

Real dataset. To test the algorithms’ performance on classification tasks, we used
a relatively stable dataset the Forest CoverType. This is one of the largest databases
in the UCI Repository. It contains 581012 elements. The data set is defined by 54
variables of different types: continuous and categorical. Each element belongs to
a class from 7 target classes. The elements represent the forest cover type at a 30
× 30 meter grid, obtained from US Forest Service Region 2 Resource Information
System. The goal is to predict the forest cover type from these variables.

Synthetic dataset. To test performances of the different algorithms, we generated
a synthetic data set containing 10000 elements. Each element is a vector with 3
continuous attributes which follow different distributions (Gaussian, Exponential
and Uniform distribution). Table 1 illustrates the different distribution parameters.
The parameters of different distributions are chosen in order to have the same mean
and standard deviation values. We make older the generated elements to analyze the
different distributions’ behaviors on evaluating statistics for querying at different
ages of the summaries.

In all experiments, we studied the robustness and efficiency of algorithms for
estimating queries that grow old over time. In this section, we present the results
for querying tasks (median and mean) and data mining tasks (clustering and classi-
fication). Furthermore, other kinds of queries can be applied such as Count, Sum,
Quantiles, etc.

The algorithm parameters are presented in table 2. We repeated StreamSamp
and Hybrid approach 100 times because these two techniques include a sampling
step. If they are executed just once, the result will be depend on the drawing. The
algorithm parameters L (number of windows over a time period) and T (window
size) of StreamSamp were set to ensure more progressive merges.

Table 1 The attributes used in tests

Elements Attribute 1 Attribute 2 Attribute 3

1 → 10000 Uni f (−7.32,27.32) Exp(1/10) N(10,10)

Table 2 Algorithms parameters for evaluations

StreamSamp CluStream Hybrid approach

T = 500 # clusters = 75 err = 4.10−2

α = 100% k-means = 10 iterations ε = 10−3

L = 12 # Snapshots per order (L) = 80
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4.2 Mean Evaluation

We estimate the mean aggregate over the kept summaries (built using StreamSamp,
CluStream and the Hybrid approach). We compare the obtained results over the
same time period [0-10000] evaluated at different timestamps. The synthetic data
set is used to build these summaries.

To estimate this aggregate on the summary generated by StreamSamp, we take all
elements having timestamp between 0 and 10000. We multiply each element value
xi by its weight wi and we divide by the sum of weights (∑xiwi

∑wi
).

For Clustream, two snapshots are kept at the beginning of the stream and at the
end of the studied period [0-10000]. The substraction of these snapshots gives all
micro-clusters included in this period. The mean aggregate is correctly evaluated.
It corresponds to the centroid of all these micro-clusters. To estimate this aggre-
gate, we use the same formula as StreamSamp (∑xiwi

∑wi
). The values correspond to the

micro-clusters’ centroid and the weights are the number of elements in the micro-
cluster.

In the Hybrid approach, we can find elements in the StreamSamp process and
in the CluStream process. To calculate the mean, we firstly extract, on the period
[0-10000], all elements from StreamSamp and all micro-clusters from CluStream.
Then, we use the same formula as StreamSamp and CluStream.

At different observations time (t = 10000, t = 20000, etc.), we calculate the rel-
ative mean error to evaluate the algorithms’ performance. The relative error of an
estimate X̂0 is |X̂0−X0|/X0.

The same behavior is observed for all studied attributes. We only present results
of the first attribute. As shown in fig. 4, the relative mean error calculated on Stream-
Samp increases with the aging period [0-10000].
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Fig. 4 Mean Evaluation. [note that Clustream correctly estimate the mean]
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Clustream has the same aggregated value for the mean given that keeps two snap-
shots (at the beginning and the end of the studied period). On the first time horizon
[0-30000], the Hybrid approach is similar to StreamSamp. From t = 30000, samples
in Hybrid approach begin to move to CluStream.

These results confirm the deterioration of StreamSamp’s performance over time.
It becomes difficult to estimate this aggregate on distant past because there is no el-
ements covering the period [0-10000]. However, CluStream correctly estimates the
mean queries because it keeps the value mean exactly. The Hybrid approach gives
better mean’s estimations than the pure StreamSamp algorithm for an old fixed time
period. When all elements move to CluStream, the Hybrid approach is stabilizing.

4.3 Median Evaluation

The aim of this experiment is to study the performance of the different approaches on
median estimation. Like the mean evaluation, we study the aging period [0-10000].
The estimated error is calculated according to positions in ranking values:

error = |EstimatedPosition−RealPosition| / Window Size

The Real Position is calculated over the original dataset (5000 in our case) while,
the Estimated Position is calculated over the resulted summary and the Window Size
represents the original number of elements (10000 in our case).

With StreamSamp, the estimated position is easily calculated because the sam-
pling process preserves elements’ structure. We firstly extract all elements included
on [0-10000] and we sort them according to attribute value. We choose the element
which divides the distribution into two equal parts (until reaching ∑weights

2 ). The
estimated position corresponds to the rank of this element in the original data set.

To calculate the estimated median position, we calculate the sum of all weights.
Then, we sort elements according to the attribute value. We choose the element
which divides the distribution into two equal parts.

However, in the Clustream algorithm, stream elements are absorbed in micro-
clusters. For that, on period [0-10000], we use the centroids of micro-clusters as
elements and the number of their elements as weight. We calculate the estimated
position according to the process described above (with StreamSamp: sorting, ex-
tracting, ranking).

In the Hybrid approach, we can have the two processes (StreamSamp and CluS-
tream) running in parallel. We extract from StreamSamp all samples included on [0-
10000]. For CluStream, we search the closest snapshots kept between 0 and 10000
to extract the micro-clusters. We merge the elements from StreamSamp summary
with the centroids of micro-clusters. Then, we calculate the estimated position, ac-
cording to StreamSamp and CluStream:

• Sorting: we sort the new set of elements;
• Extracting: we extract the median value. It can be resulted from StreamSamp or

CluStream. If the median value corresponds to a micro-cluster centroid, it can be
not found in the original data set;
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• Ranking: we extract the position of the median value from the original data set. If
the value is not found, we search the position of the nearest lowest value and the
the position of the nearest highest value from the original data set. The estimated
position is the mean of these borders.

The results are shown in fig. 5. Like the mean evaluation, the relative median error
calculated on StreamSamp increases with the aging period [0-10000]. The relative
median error is calculated once on Clustream given that it keeps two snapshots. At
the beginning, the Hybrid approach follows the behavior of StreamSamp. However,
it tries to stabilize towards the end when all samples pass to CluStream.
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Fig. 5 Median Evaluation

The re-sampling process (in StreamSamp) deteriorates the median estimation
over time. However, the Hybrid approach takes advantages of StreamSamp before
its degradation. Then, its performances follow the CluStream process.

4.4 Clustering Evaluation

Clustering is the process of organizing objects into groups whose members are sim-
ilar in some way. The similarity is based essentially on a distance criterion. To eval-
uate the performance of the different approaches on clustering process, we calculate
at different timestamps, the intra-class inertia1 for a clustering performed on the
period [0-10000]. For CluStream, we initialize the process with 15 clusters. For
StreamSamp, and for samples generated by StreamSamp in the Hybrid approach,
we apply the K-means algorithm to create 15 clusters.

1 Intra-class inertia : Sum of square of distances between elements and the centroid of the
closest cluster.
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We compare our approach to the K-means algorithm applied once to all the
[1-10000] elements. As was expected in fig. 6, K-means gives the best results given
that it is applied to the original data set. However, StreamSamp deteriorates more
and more over time with the aging period [0-10000]. Clustream gives close perfor-
mances to K-means. The hybrid approach has a similar behavior to StreamSamp on
[0-40000] and converges to an accuracy close to the CluStream behavior.
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Fig. 6 Intra Cluster Inertia

4.5 Classification Evaluation

To evaluate the models generated by the different algorithms, we use a cross-
validation procedure. This method estimates how accurately a predictive model per-
forms in practice.

We evaluate the performances of the generated models using the different sum-
marizing algorithms. The models are constructed using the CoverType dataset at
different timestamps, over the fixed period [0-10000]. The model resulted from the
original dataset ([0-1000] in this task) is our reference model.

To calculate the error in the StreamSamp process, we use the summary built
over the period [0-10000]. To take into account the weight, each element value is
multiplied by its weight. The model resulted will be evaluated with cross-validation
method. The advantage of sampling based algorithms is to keep intact elements
representation. Thus, it is easy to use this representation with the CART algorithm
(another algorithms like SVM can be used) in order to construct the model.

CluStream keeps only the mean and variance of each micro-cluster. The original
element values and the labels are lost. We need to process the resulted summary in
order to be able to apply the CART algorithm over the data. Two pre-processing
have to be considered : (i) generating element values, (ii) adding label attribute.
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Fig. 7 Disjonctive table
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Fig. 8 Classification evaluation

Fig. 9 Runtime Evaluation (logarithmic scale)

For the first process, we use the information kept in micro-clusters to generate ni

elements (ni is the number of elements in the micro-cluster), following a Gaussian
distribution. This operation is repeated 100 times because of randomly generation
process. The result corresponds to the mean of these different drawings.

For the second process, we have to associate each generated element to one
label. To distinguish element belonging their labels, we need to transform the
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label attribute in a disjunctive table. As shown in fig. 7, if we have three labels, we
would add three binary attributes to the dataset. The label associated to an element
will have ’1’ as value while all the others will have ’zero’. We use the probability
(Mean/ni) to associate a label to an element. The Covertype data set contains 7 la-
bels. However, predicting 7 labels is difficult. To achieve this, we transform the data
set to 2 labels: most frequent label ’A’ (a majority), and the rest ’B’.

The Hybrid approach contains samples generated by StreamSamp and micro-
clusters generated by CluStream. We transform micro-clusters using the method
described above and we concatenate it with samples. The CART algorithm is applied
in order to generate the model.

As shown in fig. 8, we compared the derived models constructed by algorithms
to the reference model (without summarizing operations). StreamSamp built the
closest model to the reference because it used the real data unlike Clustream which
built the worst model since all the data was generated. The Hybrid approach follows
StreamSamp performances on recent time periods, and it tries to stabilize towards
the end when all samples pass to CluStream.

The StreamSamp performances deteriorate over the time but it remains efficient
for the classification task. The Hybrid approach presents better results than CluS-
tream in more recent periods since it uses data from StreamSamp, however, the
results deteriorated when elements moved to CluStream.

4.6 Runtime Evaluation

In a data stream framework, the run-time execution is a very important feature of
processing stream data. For this evaluation, we take account the global elapsed time
for the data stream processing. We are not interested in the aging period [0-10000].
As shown in fig. 9, for the same volume of data in the stream, CluStream requires
much more time than StreamSamp and the Hybrid approach. In CluStream and Hy-
brid approach curves, the peak corresponds to the initialization phase of micro-
clusters. StreamSamp provides the best performances. However, it is important to
clarify that the Hybrid approach is slower than StreamSamp but much faster than
CluStream.

5 Discussion and Conclusions

In this chapter, we have developed an efficient method, called ’Hybrid approach’,
for summarizing data streams. The aim is to propose a representative summary of
the history of the stream data. We have presented a transition strategy from the
StreamSamp algorithm to the CluStream algorithm while taking into consideration
the advantages of both methods. The transition from one process to another is not
a random procedure but respects a number of criteria. If one of these criteria is no
longer checked, the merge process of samples in StreamSamp is stopped and the
elements of the samples are sent to CluStream.
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Several experiments are presented with real and synthetic data. They show that
the new approach almost always gives better results than using any one of the two
mentioned algorithms.

We present the results for querying tasks (median and mean) and data mining
tasks (clustering and classification). The mean of a sample is a sufficient statistic,
but not the median. Therefore, re-estimating the mean over time is an easiest task
than the median estimation.

To meet CluStream timeline, samples must be sent in order: samples with higher
orders (lower timestamp) must be moved away before the lower order samples
(higher timestamp). The drawback of this approach is that some samples are obliged
to move early to CluStream while they are still checking the transition criteria. This
occurs when the transition criteria are no longer observed for two samples of order
i while sample of order k (k� i) still satisfy these criterion. Studies are underway to
develop techniques in order to avoid this inconvenience.

A natural extension of this work concerns the integration of qualitative data.
With StreamSamp the problem of using categorical variables does not arise. As for
CluStream, there are extensions which deal with categorical variables (HClustream
(Yang and Zhou, 2006), SCLOPE (Kok Leong Ong et al., 2004)). Integrating qual-
itative data in our approach is possible provided that the transition parameters are
redefined.

We evaluated our approach over querying and data mining tasks. A second per-
spective could concern the evaluation of the Hybrid approach over different selec-
tions on the stream.
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SPAMS: A Novel Incremental Approach for
Sequential Pattern Mining in Data Streams

Lionel Vinceslas, Jean-Emile Symphor, Alban Mancheron, and Pascal Poncelet

Abstract. Mining sequential patterns in data streams is a new challenging prob-
lem for the datamining community since data arrives sequentially in the form of
continuous rapid and infinite streams. In this paper, we propose a new on-line algo-
rithm, SPAMS, to deal with the sequential patterns mining problem in data streams.
This algorithm uses an automaton-based structure to maintain the set of frequent
sequential patterns, i.e. SPA (Sequential Pattern Automaton). The sequential pat-
tern automaton can be smaller than the set of frequent sequential patterns by two or
more orders of magnitude, which allows us to overcome the problem of combina-
torial explosion of sequential patterns. Current results can be output constantly on
any user’s specified thresholds. In addition, taking into account the characteristics
of data streams, we propose a well-suited method said to be approximate since we
can provide near optimal results with a high probability. Experimental studies show
the relevance of the SPA data structure and the efficiency of the SPAMS algorithm
on various datasets. Our contribution opens a promising gateway, by using an au-
tomaton as a data structure for mining frequent sequential patterns in data streams.
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1 Introduction

Concerned with many applications (e.g. medical data processing, marketing, safety
and financial analysis), mining sequential patterns is a challenging problem within
the datamining community. More recently these last years, many emerging applica-
tions, such as traffic analysis in networks, web usage mining or trend analysis, gen-
erate a new type of data, called data streams. A data stream is an ordered sequence
of transactions, potentially infinite, that arrives in a timely order. The characteristics
of a data stream can be expressed as follows (cf. Lin 2005):

• Continuity. Data continuously arrive at a high speed.
• Expiration. Data can be read only once.
• Infinity. The total amount of data is unbounded.

Therefore, mining in data streams should meet the following requirements as well
as possible. Firstly, owing to the fact that past data cannot be stored, the methods
can provide approximate results but accuracy guarantees are required. Secondly, the
unbounded amount of data supposes that the methods are adjustable according to
the available resources, especially for the memory. Lastly, a model is needed which
adapts itself to continuous data stream over a time period.

Previous Work

Initially, the first work deal with the case of static databases and propose exact meth-
ods for mining sequential patterns. We can quote as an example, the algorithms GSP,
PSP, FreeSpan, SPADE, PrefixSpan, SPAM and PRISM, respectively proposed by
Srikant and Agrawal (1996); Masseglia et al. (1998); Han et al. (2000); Zaki (2001);
Pei et al. (2001); Ayres et al. (2002); Gouda et al. (2007). Thus, the first algorithms
mentioned above for mining sequential patterns are not adapted any more in the con-
text of data streams. In Raïssi and Poncelet (2007), authors propose to use sampling
techniques for extracting sequential patterns in data streams. Nevertheless, the con-
text is quite different from our proposal since they mainly focus on a summarization
of the stream by using a reservoir sampling-based approach. In that case, the sam-
pling could be considered as a static database and then any sequential pattern mining
algorithm can be applied. It was shown in Garofalakis et al. (2002), that methods,
said to be approximate, are well adapted to the context of data streams. However, the
principal difficulty resides in the search of a trade-off between time and memory per-
formances, and the quality of the mining results as well as in recall as in precision.
So far, the literature concerning the mining of sequential patterns in data streams is
relatively poor. In Chang and Lee (2005), the authors proposed the algorithm eISeq,
using a tree-based data structure. This algorithm is a one pass algorithm, which pro-
cesses the stream sequentially, transaction per transaction. However, the longer the
sequential patterns are, the less this algorithm is performant. That is due to the gen-
eration of all the sequential sub-patterns which increase exponentially. For example,
if < a1, · · · ,ai > is a sequential pattern, there are (2i−1) sequential sub-patterns to
be created. To alleviate this difficulty , the GraSeq algorithm have been presented in
Li and Chen (2007). Their approach is based on an oriented graph data structure to
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limit the sequential-sub-patterns generation phase. However, this approach supposes
a costly pre-processing step for regrouping the transactions.

Our Contribution

In this paper, we propose a new one-pass algorithm: SPAMS (Sequential Pattern
Automaton for Mining Streams). SPAMS is based on the on-line and the incremen-
tal building and updating of an automaton structure: the SPA. The SPA (Sequential
Patterns Automaton) is a deterministic finite automaton, which indexes the frequent
sequential patterns in data streams. The remainder of the paper is organized as fol-
lows. Section 2 states the problem formally. In Section 3, we recall some prerequisite
preliminary concepts and we present our approach in section 4. Experimental studies
are provided in the section 5 and the conclusion is presented in the last section.

2 Problem Definition

In this section, we give the formal definition of the problem of mining sequential
patterns in data streams. First, we give a brief overview of the traditional sequence
mining problem by summarizing the formal description introduced in Srikant and
Agrawal (1996). Second, we examine the problem when considering streaming data.
Let I = {i1, i2, . . . , im} be a set of literals called items and let DB a database of cus-
tomer transactions where each transaction T consists of customer-id, transaction
time and a set of items involved in the transaction. An itemset is a non-empty set of
items. A sequential pattern s is a set of itemsets ordered according to their times-
tamp and is denoted by < s1s2 · · ·sn >, where s j, for j⊆ [1..n], is an itemset. A k se-
quential pattern is a sequential pattern of k items or of length k. A sequential pattern
S′ =< s′1s′2 · · ·s′n > is a sub-pattern of another sequential pattern S =< s1 s2 · · · sn >,
denoted S′ ≺ S if there exists integers i1 < i2 < · · · i j · · · < in such that s′1 ⊆ si1 ,
s′2 ⊆ si2 , · · · , s′n ⊆ sin . All transactions from the same customer are grouped together
and sorted in an increasing order and are called a data sequence. A support value
(denoted supp(S)) for a sequential pattern gives its number of actual occurrences in
DB. Nevertheless, a sequential pattern in a data sequence is taken into account only
once to compute the support even if several occurrences are discovered. A data se-
quence contains a sequential pattern S if S is a sub-pattern of the data sequence. In
order to decide whether a sequential pattern is frequent or not, a minimum support
value (denoted σ ) is specified by the user, and the sequential pattern is said to be
θ -frequent if supp(S)≥ σ , where σ = �θ ×|DB|� with θ ∈]0;1] and |DB| the size
of the database. Given a database of customer transactions, the problem of sequen-
tial pattern mining is to find all the sequential patterns whose support is greater than
a specified threshold minimum support. Extended to the case of data streams, this
problem can be expressed as follows. Formally, a data stream DS can be defined as a
sequence of transactions, DS = (T1,T2, · · · ,Ti, · · · ), where Ti is the i-th arrived trans-
action. Each transaction, identified by a Tid, is associated with an Cid identifier (cf.
the example in Table 1). Mining frequent sequential patterns remains to find all the
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Table 1 A data sequence built on I = {a,b,c,d}

C1 < (b,d) (a,b,d) (a,c,d) >
C2 < (b,c,d) (b,d) >
C3 < (a,b) (c) >

sequential patterns, whose support value is equal or greater than the fixed minimum
support threshold for the known part of the data stream at a given time.

3 Prerequisites on Statistical Covers

We briefly present in this section the required theoretical materials on statistical
covers that we have presented in Laur et al. (2007). So, we recall the following
theorem.

Theorem 1. ∀θ ,0 < θ ≤ 1,∀δ ,0 < δ ≤ 1, we denote by m and m∗ respectively the
(θ -frequent and θ -infrequent) number of sequential patterns in the known part of
the stream and in the whole stream. If we choose ε such that:

ε ≥
√

1
2m

ln
m∗

δ
,

then Recall= 1 and respectively Precision= 1 with a probability of at least
1− δ , when discarding all the sequential patterns that are not θ ′-frequent from the
observation, where θ ′ = θ − ε and respectively θ ′ = θ + ε .

The parameter δ is the statistical risk parameter potentially fixed by the user and
the values θ ′ = θ ± ε are the statistical supports.

The sup-(θ ,ε)-cover is the near-optimal smallest set of sequential patterns with a
probability of at least 1−δ ) containing all the sequential patterns that are θ -frequent
in the whole stream (eventually infinite). There are no false negative results with
high probability. The inf-(θ ,ε)-cover is the near-optimal biggest set of sequential
patterns with a probability of at least 1−δ ) containing only sequential patterns that
are θ -frequent in the whole stream (eventually infinite). In this set, there are no
false positive results with high probability, but false negative ones. We provided the
proof of this theorem in Laur et al. (2007). By near-optimal, we express that any
technique obtaining better bounds is condemned to make mistakes (the criterion
to be maximized is not equal any more to 1). We precised also, that there is no
assumption on the distribution of the stream.

4 The SPAMS Approach

Our approach is based on the incremental construction of an automaton which in-
dexes all frequent sequential patterns from a data stream. For the mining process, we
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do not make the assumption of an ideal data stream where transactions are sorted by
customers. In fact, we make no assumptions either on the order of data, or on cus-
tomers, or on the alphabet of the data. It’s a real incremental approach for knowledge
discovery in data streams. Moreover, to obtain the best quality of approximation, in
both recall and precision, we also index the (θ − ε)-frequent sequential patterns
of the statistical cover, in addition to those θ -frequent. In this way, we retain the
minimum number of candidates, which limits the combinatorial explosion.

4.1 SPA: The Sequential Patterns Automaton

In a more formal way, we define in this section the automaton of sequential patterns,
SPA. For further information on the automata theory, we suggest the presentation
made by Hopcroft and Ullman (1979).

Definition 1 (Finite state automaton). A finite state automaton A is a 5-tuple such
that A = (Q,Σ ,δ ,I,F), where Q is a finite set of states, Σ an input alphabet, δ ⊆
Q×Σ ×Q is a set of transitions, I⊆ Q and respectively F ⊆ Q are the set of initials
and finals states.

Definition 2 (Deterministic finite state automaton). A finite state automaton A =
(Q,Σ ,δ ,I,F) is deterministic if and only if it exists a unique initial state (i.e. |I|= 1)
and if ∀ p,q ∈ Q and α ∈ Σ , (p,α,q),(p,α,q′) ∈ δ ⇒ q = q′.

The label of a transition t going from a state qi to a state q j, denoted t = qi
α�−−→ q j

is the symbol α . A path in A is a sequence c = t1, · · · , tn of consecutive transitions.
The label of a path c is denoted |c|= α1 · · ·αn , or c : q0

w�−−→ qn with w = |c|. A label
is also called a word. A path c : qi

w�−−→ q j is said to be successful if and only if qi ∈ I

and q j ∈ F. A word w is said to be accepted or recognised by the automaton A if it
is the label of a successful path.

Definition 3 (Language accepted by a DFA). Let A = (Q, q0, F, Σ , δ ) be a de-
terministic finite state automaton (DFA). The language accepted or recognised by
A, denoted L(A), is the set of all accepted words:

L(A) =
{

w⊆ Σ∗ | ∃ c : q0
w�−−→ q j, q j ∈ F

}

Definition 4 (The Sequential Patterns Automaton). The sequential patterns
automaton (SPA) is a deterministic finite state automaton, i.e. a 5-tuple SPA =
(Q, q0, F, Σ , δ ), whose accepted language L(SPA) is the set of frequent
sequential patterns.

Definition 5 (The sequence item). Let SPA = (Q, q0, F, I, δ ) be the automaton of
sequential patterns. We add to the set Σ , a special item called the sequence item,
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denoted arbitrarily #. This item is an item that separates itemsets within sequential
patterns (cf. figure 1).

q0

1

q1

1

q2

1

q3

1

q4

1

q5

1

q6

1

a b # a b c

Fig. 1 An automaton indexing the sequential pattern < (a,b)(a,b,c) >

Definition 6 (The sink state). Let SPA = (Q, q0, F, I, δ ) be the automaton of se-
quential patterns. We add to the set Q, a special state called the sink state, denoted
q∞. It’s a temporary state used by the transition function to generate the other states
of the automaton.

Definition 7 (Support of a state). Let SPA = (Q, q0, F, I, δ ) be the automaton of
sequential patterns, and q ∈ Q, a final state. We define the support of the state q,
denoted |q|, as an integer representing the support of sequential patterns recognised
in this state.

Lemma 1. Let Lq ⊆L(SPA) be the set of words (i.e. sequential patterns) recognised
in the state q ∈ Q. According to definition 7, the following assertion is definitely
obvious:

∀ wi,wj ∈Lq ⊆ L(SPA) (1 ≤ i, j ≤ |Lq|) , supp(wi) = supp(wj)

Property 1. Let SPA = (Q, q0, F, Σ , δ ) be the sequential patterns automaton:

∀qi
α�−−→ q j ∈ SPA (qi,q j ∈ Q, α ∈ Σ) , |qi| ≥ |q j|

Proof. Let c1 : q0
w�−−→ qi and c2 : qi

α�−−→ q j ∈ SPA be two paths (α ∈ Σ ; w ∈ Σ∗).
According to the Apriori property (Agrawal and Srikant, 1994) (i.e. for any frequent
itemset, all sub-itemsets are frequent), if z = w ·α is the label of a successful path
c3 : q0

z�−→ q j, then c1 is also a successful path and supp(w) ≥ supp(z). According
to definition 7, supp(w) = |qi| and supp(z) = |q j|. This shows that |qi| ≥ |qj|

Property 2. Let SPA = (Q, q0, F, Σ , δ ) be the sequential patterns automaton,
R(Q,α) be the set of reachable states by α and R(Q,β ) be the set of reachable
states by β :

∀α,β ∈ Σ , R(Q,α)∩R(Q,β ) = /0
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4.2 The SPAMS Algorithm

4.2.1 Notations

In the following, we define some of the notations used in SPAMS:

� T is the set of transition of the automaton.
� Ts is the set of ingoing transitions on the state s ∈ Q.
� |Ts| is the number of ingoing transitions on the state s ∈ Q.
� Q# is the set of reachable states by the sequence item.
� Qcid is the set of reachable states for a customer id cid.
� Tr is the set of reachable transitions, i.e. transitions labelled by the item being

processed.
� C is the set of customers id.
� Cs is the set of customers id for a state s ∈ Q, i.e. the customers whose indexed

sequential patterns use the state s.

4.2.2 Presentation

According to definition 7, a state may recognise several sequential patterns whose
support is the same. So, if the support of one or more sequential patterns recognised
in a state q, has to change (i.e. their support is incremented by 1), the definition 7
is no longer respected. To resolve this problem, we make a copy q′ of the state
q: all sequential patterns recognised in the state q are not moved. We move only
on the state q′, the sequential patterns whose support has changed. This is done
by a movement of some ingoing transitions from the state q to the state q′. It is
evident that all sequential patterns recognised in the state q′ have the same support
(cf. definition 7). Finally, we create the same outgoing transitions of the state q for
the state q′.

Our algorithm is divided into three main modules which are INSERT, PRUNE and
NEXT.

The INSERT module: This module is called by the SPAMS algorithm for each item
read from the data stream. Let cid be the customer id, and α ∈ Σ the item being
processed. This module is responsible for the creation of new transitions in the au-
tomaton, and therefore of the application of definition 7. So, the INSERT module
will try to create all necessary transitions of the form s

α�−−→ s′. Therefore, we need to
know the corresponding states s and s′. The state s is obtained by scanning the list
of reachable states for the customer id cid, denoted Qcid . This means each customer
id has its own set of reachable states. We proceed in the following way:

� First, if this customer id is new (cid /∈ C), we update the following sets:
C = C∪{ cid } , Qcid = { q0 } and Cq0 = Cq0 ∪{cid}.

� Then, for each state s ∈ Qcid , if there is no state s′ ∈ Q such that the transition
s

α�−−→ s′ exist, we create a new transition to the sink state (T = T∪{s
α�−−→ q∞})
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and update the set: Tr = Tr ∪ {s
α�−−→ q∞}. Otherwise, if the transition s

α�−−→ s′

exists, we update the set: Tr = Tr ∪{s
α�−−→ s′}.

� For each state s′ such that s
α�−−→ s′ ∈ Tr, we make the following step:

• If the state s′ = q∞ and |Ts′ |= |Ts′ ∩Tr|, then:
1. we update the set: Qcid = Qcid ∪{ s′ }.
2. if the customer id cid /∈ Cs′ , then |s′| = |s′|+ 1 and we update the set: Cs′ =

Cs′ ∪ { cid }.
3. if |s′|< min_sup, we call the prune module: PRUNE(s′)
• Otherwise (i.e. s′ = q∞ or |Ts′ | = |Ts′ ∩Tr|):
1. we create a new state p and update the set: Qcid = Qcid ∪{ p }.
2. we also update the set: Cp = Cs′ ∪ { cid }
3. if the customer id cid /∈ Cs′ , then |p|= |s′|+ 1, otherwise |p|= |s′|
4. if the item α is the sequence item, we update the set: Q# = Q#∪{ p }
5. for each ingoing transition s

α�−−→ s′ ∈ Tr, we delete it and create the ingoing

transition s
α�−−→ p : T = T \

{
s

α�−−→ s′
}
∪
{

s
α�−−→ p

}

6. for each outgoing transition s′
β�−−→ s′′ ∈ T (β ∈ Σ , s′′ ∈Q) , we create the same

outgoing transition for the state p : T = T∪
{

p
β�−−→ s′′

}

7. if |p|< min_sup, we call the prune module: PRUNE(p)

� We update the set of reachable transitions: Tr = /0

The PRUNE module: This module is called by the INSERT module in order to prune
a state from the automaton. Not only does it erase the concerned state but also the
states and transitions reachable from itself.

The NEXT module: When the module INSERT has processed all items of a transac-
tion, for a given customer id (cid), the module NEXT is called. This module works
as follows:

1. We save the set Qcid : Z = Qcid

2. We update the set Qcid : Qcid = Qcid \ {Qcid ∩Q−∪{q0}}
3. We call the module INSERT giving as parameters the customer id (cid) and the

sequence item (#).
4. We update the set Qcid : Qcid = Z∩Q#∪{q0}

C1,T1︷ ︸︸ ︷
(1,1,b) (1,1,d)

C2,T4︷ ︸︸ ︷
(2,4,b) (2,4,c) (2,4,d)

C1,T2︷ ︸︸ ︷
(1,2,a) (1,2,b) (1,2,d) · · ·

Fig. 2 Example of an unordered data stream generated from table 1
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4.2.3 An Example of Construction

To illustrate the functioning of our algorithm, we process the example of Table 1, as
an unordered stream database (cf. figure 2), using θ = 0.4 as the support threshold.
Thus, we work in the general case of data streams, i.e. without assuming any order-
ing of transactions by customer id. Figures 3, 4, 6, 7, 8 and 10 illustrate the module
INSERT, i.e. the reading and the insertion of an item (cf. Section 4.2.2 for further
explanation). Figures 5 and 9 illustrate the module NEXT, i.e. the end of the call to
the module INSERT, which also corresponds to the end of processing every item of
a transaction (cf. Section 4.2.2 for further explanation).
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Fig. 7 Reading and insertion of item c (transaction 2)
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Fig. 8 Reading and insertion of item d (transaction 2)
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Fig. 10 Reading and insertion of item a (transaction 3)

4

#

4

2

2

#

4

#

4

4

2

4

#

#

4

1

3

1

2

#

1

#
#

4

1

4

3 #

4

3

4

3

3

3

#

3

4

2

2

#

4

1

4

#

3

3

2

#

3

#

#

#

4

4

3

4

4

3

4

#

4

#

1

2

4

2

1

3

1

#

4

#

4

1

3

#

4

4

#

1

24

25

26

27

20 2122

23

28
29

1

3

2

5
4

7

6

98

38

1110

13

12

15
14

17

16

1918

31

30

37

3635

34

33

32

Fig. 11 This is the resulting automaton generated by SPAMS, indexing all frequent sequen-
tial patterns of the statistical cover (θ = 0.4): the filled states have a support equal or greater
than θ , while the white states have a support belonging to [θ − ε;θ ].

After processing Table 1 as a stream database, the resulting automaton has 38
states and 80 transitions, and contains 233 sequential patterns: this automaton in-
dexes sequential patterns whose support is equal or greater than the statistical sup-
port threshold θ − ε (cf. Fig. 11). By traversing the automaton, we can extract the
sequential patterns whose support is strictly greater than θ . In this case, 12 states
and 19 transitions are used to index the corresponding sequential patterns, i.e. 19
sequential patterns (cf. Table 2).
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Table 2 Set of sequential patterns extracted by SPAMS using Table 1 as stream database
(θ = 0.4)

< (1) >:2 < (2) >:3 < (2)(4) >:2 < (2,4)(4) >:2 < (4)(2) >:2
< (1)(3) >:2 < (2)(2) >:2 < (2,4) >:2 < (3) >:3 < (4)(2,4) >:2
< (1,2) >:2 < (2)(2,4) >:2 < (2,4)(2) >:2 < (3,4) >:2 < (4)(4) >:2
< (1,2)(3) >:2 < (2)(3) >:2 < (2,4)(2,4) >:2 < (4) >:2

4.2.4 SPAMS Pseudo-code

In the following, we present the pseudo-code of our algorithm. In Section 4.2.2,
the module INSERT is the subject of a detailed explanation from which it is easy to
deduce the pseudo-code. It’s the same for the module NEXT. Thus, we choose to
present only the pseudo-code of the main module of our algorithm as well as that of
the module PRUNE (cf. Algorithms 1 & 2).

Algorithm 1. MAIN()
Data: Stream, θ
Result: SPAθ
begin

Create two states q0 and q∞ : Q←− { q0, q∞ }
T ←− /0
cid ←− NULL
tid ←− NULL
C ←− /0
Cq0 ←− /0
Cq∞ ←− /0
δ ←− 0.01
minSup←− 0
for each (cid′, tid′, α) ∈ Stream do

if (cid = cid′) or (tid = tid′) then
NEXT(cid)
cid ←− cid′
tid ←− tid′

INSERT(α, cid)

end

5 Experimental Results

We have now designed a great number of performance tests in order to highlight
our algorithm efficiency. We have used a SPAMS implementation in C++, using the
Standard Template Library (STL) and the ASTL (Maout, 1997) library, compiled
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Algorithm 2. PRUNE()

Data: s′, α, Tr, cid
begin

for each s
α�−−→ s′ ∈ T do

Delete the transition s
α�−−→ s′ : T ←− T \

{
s

α�−−→ s′
}

if s
α�−−→ s′ ∈ Tr then

Tr ←− Tr \
{

s
α�−−→ s′

}

for each s′ β�−−→ s′′ ∈ T do
PRUNE(s′′, β , Tr, cid)

Qcid ←− Qcid \{ s′ }
for each cid′ ∈ Cs′ do

Qcid′ ←− Qcid′ \ { s′ }
Delete the set Ws′

Delete the state s′ : Q←− Q \{ s′ }
end

with the option -03 of the g++ compiler on a 700MHz Intel Pentium(R) Core2 Duo
PC machine with 4G memory, running Linux Debian Lenny.

Several experiments have been carried out in order to test the efficiency of our
approach. Empirical experiments were done on synthetic datasets (cf. Table 3) gen-
erated by the IBM data generator in Srikant and Agrawal (1996).

Table 3 Parameters used in datasets generation

Symbols Meaning

D Number of customers in 000s
C Average number of transactions per customer
T Average number of items per transaction
N Number of different items in 000s
S Average length of maximal sequences

We illustrate on Figs. 12-(i), 12-(ii) the time and the memory consumption per-
formances of SPAMS, for different support values, on small medium and large
datasets, respectively D7C7T7S7N1, D10C10T10S10N1 and D15C15T15S15N1.
Figures 12-(iii), 12-(iv), 12-(v), 12-(vi) represent the evolution of the running time,
the memory and the number of customers in relation to the number of transactions
on the dataset D15C15T15S15N1, with a fixed support value of 40%. Figure 12-
(viii) illustrates that the statistical support used tends to the support threshold θ
during the insertion of new transactions, which reduce the (θ − ε)-frequent patterns
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Fig. 12 Self performance evaluation of SPAMS over small, medium and large datasets

of the statistical cover. To calculate the ε parameter (see section 3), we have cho-
sen the value of 0.01 for the statistical risk parameter δ . These experiments show
that we have found a satisfactory compromise between time performances, memory
consumption and the quality of the mining results in recall as well as in precision
(cf. Fig. 12-(vii)). They also show the applicability and the scalability of the SPAMS
algorithm for mining data streams.

6 Conclusion

In this paper, we bring an original contribution by proposing a new one-pass algo-
rithm, named SPAMS, enabling the building and the maintaining of an automaton
data structure: the SPA, which indexes the frequent sequential patterns in a data
stream. The SPA is built from scratch and is updated on the volley, as a new trans-
action is inserted. The current frequent patterns can be output in real time based on
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any user’s specified thresholds. Thus, the SPA is a very informative and flexible data
structure, well-suited for mining frequent sequential patterns in data streams. With
the SPA, our contribution opens a promising gateway, by using an automaton as a
data structure for mining frequent sequential patterns in data streams. Furthermore,
taking into account the characteristics of data streams, we propose a well-suited
method, said to be approximate, since we can provide near optimal results with a
high probability, while maintaining satisfactory performances of the SPAMS algo-
rithm. Experimental studies show the scalability and the applicability of the SPAMS
algorithm. In the future, we will examine how to extend this work to mine closed
sequential patterns on sliding windows.
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Mining Common Outliers for Intrusion
Detection

Goverdhan Singh, Florent Masseglia, Céline Fiot, Alice Marascu,
and Pascal Poncelet

Abstract. Data mining for intrusion detection can be divided into several sub-topics,
among which unsupervised clustering (which has controversial properties). Unsu-
pervised clustering for intrusion detection aims to i) group behaviours together de-
pending on their similarity and ii) detect groups containing only one (or very few)
behaviour(s). Such isolated behaviours seem to deviate from the model of normality;
therefore, they are considered as malicious. Obviously, not all atypical behaviours
are attacks or intrusion attempts. This represents one drawback of intrusion detec-
tion methods based on clustering. We take into account the addition of a new feature
to isolated behaviours before they are considered malicious. This feature is based on
the possible repeated occurrences of the bahaviour on many information systems.
Based on this feature, we propose a new outlier mining method which we validate
through a set of experiments.

Keywords: Intrusion Detection, Anomalies, Outliers, Data Streams.

1 Introduction

Intrusion detection is a very important topic of network security and has received
much attention (Lee and Stolfo, 1998; Dokas et al., 2002; Lazarevic et al., 2003;
Patcha and Park, 2007) since potential cyber threats make the organizations vulner-
able. Intrusion Detection Systems (IDS) are intended to protect information systems
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against intrusions and attacks and are traditionally based on the signatures of known
attacks (Roesch, 1998; Barbara et al., 2001). Therefore, new kinds of attacks have
to be added to the signature list regularly. The main drawback is that in case of an
emerging attack (the recent discovery of a new security hole for instance), the IDS
will ignore it since this new attack has not been listed yet in the signature database.

Protecting a system against new attacks, while keeping an automatic and adaptive
framework is an important topic in this domain. One solution to this problem can be
based on data mining tools. Data mining tools have been used to provide IDS with
more adaptive detection approaches of cyber threats (Dokas et al., 2002; Bloedorn
et al., 2001; Wu and Zhang, 2003). Among these data mining approaches, predictive
models are built to improve the database of signatures used by existing IDS (Wu and
Zhang, 2003). Other ones, whose category this chapter refers to, make use of data
mining to detect anomalies from which the intrusions are deduced (Lazarevic et al.,
2003; Eskin et al., 2002; Chimphlee et al., 2005). The overall principle is generally
to build clusters (or classes) of usage and, afterwards, to find the outliers (i.e. events
that do not belong to any class or cluster corresponding to a normal usage). Actually,
outlier detection aims to find records that deviate significantly from a well-defined
notion of normality. It has a wide range of applications, such as fraud detection for
credit card (Aleskerov et al., 1997), health care (Spence et al., 2001), cyber security
(Ertoz et al., 2004) or safety of critical systems (Fujimaki et al., 2005). However,
the main drawback of detecting intrusions by means of anomaly (outliers) detection
is the high rate of false alarms. In both cases (building a model or detecting outliers)
an alarm can indeed be triggered because of a new kind of usages that has never
been seen before; so it is considered abnormal. Considering the large amount of new
usage patterns emerging in the Information Systems, even a weak percentage of false
positive gives a very large amount of spurious alarms that would be overwhelming
for the analyst. Reducing the rate of false alarms is thus crucial for a data mining
based intrusion detection system in a real-world environment.

Therefore, the goal of this chapter is to propose an intrusion detection algorithm
based on the analysis of usage data coming from multiple partners in order to re-
duce the number of false alarms. Our main idea is that a new usage is likely to be
related to the context of the information system on which it occurs (so it should
only occur on this system). Meanwhile, when a new security hole has been found
on a system, the hackers would use it in as many information systems as possible.
Thus a new anomaly occurring on two (or more) information systems is rather an
intrusion attempt than a new kind of usage. Let us consider Ax, an anomaly detected
in the usage of web site S1 corresponding to a php request on the staff directory for a
new employee: John Doe, who works in room 204, floor 2, in the R&D department.
The request has the following form: staff.php?FName=John\&LName=Doe
\&room=204\&floor=2\&Dpt=RD. This new request, due to the recent re-
cruitment of John Due in this department, should not be considered as an attack.

Let us now consider Ay, an anomaly corresponding to a real intrusion. Ay is
caused by a security hole of the system (for instance a php vulnerability) and might,
for instance, look like: staff.php?path=../etc/passwd%00. In this re-
quest, one can see that the parameters are not related to the data accessed by the
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php script, but rather to a security hole discovered on the staff script. If two or more
firms use the same script (say, a directory requesting script bought from the same
software company) then the usage of this security hole is certainly repeated from one
system to another and the request having parameter path=../etc/passwd%00
will be the same for all the victims.

We propose to provide the end-user with a method that has only one parameter: n,
the number of desired alarms. Based on the analysis of the usage data coming from
the different partners, our algorithm will detect n common outliers they share. Such
common outliers are likely to be true attacks and will trigger an alarm. In a real-
world application of this technique, privacy preserving will be a major issue in order
to protect partners’ data. We focus on clustering and outlier detection techniques in
a distributed environment. However, privacy issues in our framework are currently
being studied.

The chapter is organized as follows. In Section 2 we present the motivation of this
approach and our general framework. Section 3 gives an overview of existing works
in this domain. Section 4 presents COD, our method for detecting outliers and trig-
gering true alarms. Eventually, our methods is tested through a set of experiments
in Section 5 and Section 6 gives the conclusion.

2 Motivation and General Principle

In this section, we present the motivation of our work, based on the main drawbacks
of existing anomaly-based methods for intrusion detection and we propose COD, a
new algorithm for comparing the anomalies on different systems.

2.1 Motivation

Anomaly-based IDS (Eskin et al., 2002; Chimphlee et al., 2005) can be divided into
two categories: semi-supervised and unsupervised. Semi-supervised methods use a
model of “normal” behaviours on the system. Every behaviour that is not considered
as normal is an anomaly and should trigger an alarm. Unsupervised methods do
not use any labelled data. They usually try to detect outliers based on a clustering
algorithm.

Obviously, anomaly-based IDS will suffer from a very high number of false
alarms since a new kind of behaviour will be considered as an anomaly (and an
attack). Actually, anomalies are usually extracted by means of outlier detection,
which are records (or sets of records) that significantly deviate from the rest of the
data. Let us consider, for instance, a dataset of 1M navigations collected during one
week on the Web site of a company (say, a search engine). In this case, a false alarm
rate of 2% represents 20,000 alarms that could be avoided. Reducing the number
of false alarms is linked to the detection rate. However, the primary motivation of
our work is to lower the rate of false alarms. We propose to improve the results of
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unsupervised IDS by means of a collaborative framework involving different
network-based systems. Section 3 gives an overview of existing IDS based on the
principles presented above and on the existing collaborative IDS. However, to the
best of our knowledge, our proposal is the first unsupervised IDS using the common
anomalies of multiple partners in order to detect the true intrusion attempts. The
main idea of our proposal is that multiple partners do not share the same data, but
they share the same systems (the Web server can be Apache or IIS, the data server
can run Oracle, the scripts accessing the data can be written in PHP or CGI, etc).
When a security hole has been found in one system (for instance, a php script with
specific parameters leading to privileged access to the hard drive), then this weak-
ness will be the same for all the partners using the same technology. Our goal is to
reduce the rate of false alarm based on this observation, as explained in section 2.2.

2.2 General Principle

In this chapter we present COD (Common Outlier Detection) a framework and al-
gorithm intended to detect the outliers shared by at least two partners in a collabo-
rative IDS. Outliers are usually small clusters. Some outlier detection methods are
presented in section 3. As explained in section 2.1 the main drawback of clustering-
based IDS is that they obtain a list of outliers containing both normal atypical usages
and real intrusions; so the real intrusions are not separated from the normal atypical
behaviors. Our goal is to compare such outlier lists from different systems (based on
a similar clustering, involving the same distance measure). If an outlier occurs for at
least two systems, then it is considered as an attack. COD is based on the following
assumptions:

• An intrusion attempt trying to find a weakness of a script will look similar for all
the victims of this attack.

• This attack will be quite different from a normal usage of the system.
• The distance between normal usage patterns will be low, which makes it possi-

ble for most of them to group in large clusters (remaining unclassified normal
patterns are the false alarms of methods presented in Section 3).

We propose to detect intrusion attempts among the records of a Web server, such
as an Apache access log file. For each access on the Web site, such a file keeps
record of: the IP, the date, the requested URL and the referrer (as well as other
information less important in our situation). Our main idea is that the anoma-
lies occuring on two different systems, are highly probable to be attacks. Let us
detail the short illustration given in section 1 with Ax, an anomaly that is not
an attack on site S1. Ax is probably a context based anomaly, such as a new
kind of usage specific to S1. Therefore, Ax will not occur on S2. As an illustra-
tion, let us consider a php request on the staff directory for a new employee:
John Doe, who works in room 204, floor 2, in the R&D department. The re-
quest will have the following form: staff.php?FName=John\&LName=Doe
\&room=204\&floor=2\&Dpt=RD. This new request, due to the recent re-
cruitment of John Due in this department should not be considered as an attack.
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However, with an IDS based on outlier detection, it is likely to be considered as an
intrusion, since it is not an usual behaviour.

Let us now consider Ay, an anomaly corresponding to a true intrusion. Let us
consider that Ay is based on a security hole of the system (for instance a php vul-
nerability). Then Ay will be the same for every site attacked through this weak-
ness. For instance, a php request corresponding to an attack might look like:
staff.php?path=/../etc/passwd%00. In this request, one can see that the
parameters are not related to the data accessed by the php script, but rather to a se-
curity hole that has been discovered on the staff script that returns passwords. If
this script is provided by a software company to many firms, the usage of this se-
curity hole will repeatedly occur on different sites and the request having parameter
path=/../etc/passwd%00will be the same for all the victims.

For clarity of presentation we present our framework on the collaboration of two
Web sites, S1 and S2 and we consider the requests that have been received by the
scripts of each site (cgi, php, sql, etc). Our goal is to perform a clustering on the
usage patterns of each site and to find the common outliers. However, that would
not be enough to meet the second constraint of our objective: the request of only
one parameter, n, the number of alarms to return. Our distance measure (presented in
section 4.1) will allow normal usage patterns to be grouped together rather than to be
mixed with intrusion patterns. Moreover, our distance measure has to distinguish an
intrusion pattern from normal usage patterns and also from other intrusion patterns
(since different intrusion patterns will be based on a different security hole and will
have very different characteristics). Our algorithm performs successive clustering
steps for each site. At each step we check the potentially matching outliers between
both sites. The clustering algorithm is agglomerative and depends on the maximum
distance (MD) requested between two objects.

Let us consider that n, the desired number of alarms, is set to 1 and the usage
patterns are distributed as illustrated in figure 1. Let us also consider that, for these
sites, cluster A at step 1 is the only one corresponding to an intrusion attempt. For
the first step, MD is initialized with a very low value, so the clusters will be as
tight and small as possible. Then we check correspondences between outliers of S1

and S2. Let us consider the clustering results on S1 and S2 at step 1 in figure 1.
There are two matching outliers between both sites (A and B). That would lead to
2 alarms (just one of the alarms being true) which represents more than the number
of alarms desired by the user. We thus have to increase the clustering tolerance (i.e.
increase MD) so that bigger clusters could be built. The clusters configuration at
step n is illustrated in figure 1. The only common outlier is A, which corresponds
to the intrusion attempt. Furthermore, this will trigger one alarm, as desired by the
user, and there is no need to continue increasing MD until step m.

As explained in section 1, we want to propose an algorithm that requires only
one parameter, n, the maximum number of alarms desired by the end-user. Actually,
this work is intended to explore the solutions for monitoring a network in real time.
Then, the potential alarms will be triggered at each step of the monitoring (for
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Fig. 1 Detection of common outliers in the usage patterns of two Web sites

instance with a frequency of one hour). A first batch of usage data is clustered on
each site and n alarms are triggered. Depending on the number of true or false
alarms, the user might want to adjust n for the next step, until no false alarm is
returned. Our assumption is that the intrusions are situated in the first part of the list
representing the common outliers sorted by similarity.

Obviously, such a framework requires a good privacy management of each part-
ner’s data. This is a very important issue in our framework and we propose solutions
in this volume (Verma et al., 2010).

Our challenge is to reply to important questions underlying our method ; what is
the distance between two usage patterns? How to separate clusters in order to give
the list of outliers? How to detect common outliers?

Our main algorithm, corresponding to the framework presented in this section, is
given in section 4.1. Our distance measure and our clustering algorithm are given
in section 4.2. As explained in section 4.3 our outlier detection method is param-
eterless, thanks to a wavelet transform on the cluster distribution. In contrast to
most previous methods (Jin et al., 2001; Zhong et al., 2007; Portnoy et al., 2001;
Joshua Oldmeadow et al., 2004) it neither requires a percentage of clusters nor de-
pends on a top-n parameter given by the user. The correspondance between outliers
of S1 and S2 also has to be parameterless. As explained in section 4.4 it will find the
clusters that are close enough to trigger an alarm automatically.
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3 Related Work

Atypical data discovery is a really active research topic for now few decades. The
problem of finding in databases patterns that deviate significantly from a well-
defined notion of normality, also called outlier detection, has indeed a wide range of
applications, such as fraud detection for credit card (Aleskerov et al., 1997), health
care (Spence et al., 2001), cyber security (Ertoz et al., 2004) or safety of critical
systems (Fujimaki et al., 2005).

Over time many outlier detection techniques have been developped, leading to
an important number of surveys and review articles (Hodge and Austin, 2004;
Chandola et al., 2008). Some of them focus on the topic of outlier detection in
the context of intrusion detection in computer networks (Lazarevic et al., 2003;
Patcha and Park, 2007). We focus on this specific area and we propose an unsuper-
vised anomaly-based detection system. On the opposite to semi-supervised anomaly
detection systems, consisting of describing normal behaviours to detect deviating
patterns (Marchette, 1999; Wu and Zhang, 2003; Vinueza and Grudic, 2004), un-
supervised techniques do not require a preliminary identification of the normal us-
age by a human expert. Our application will thus be more usable in a real-world
context.

Statistic community has quite extensively studied the concept of outlyingness
(Barnett and T. Lewis, 1994; Markou and Singh, 2003; Kwitt and Hofmann, 2007).
Statistical approaches construct probability distribution models where outliers are
objects of low probability (Rousseeuw and Leroy, 1996; Billor et al., 2000; Lee and
Xiang, 2001) However, within the context of intrusion detection, dimensionality of
data is high. Therefore, to improve overall performance and accuracy, it has become
necessary to develop data mining algorithms using the whole data distribution as
well as most of data features (Knorr and Ng, 1998; Breunig et al., 2000; Aggarwal
and Yu, 2001).

Most of these approaches are based on clustering-based outlier detection algo-
rithms (Ester et al., 1996; Portnoy et al., 2001; Eskin et al., 2002; He et al., 2003; Pa-
padimitriou et al., 2003). Such techniques rely on the assumption (Chandola et al.,
2008) that normal points belong to large and dense clusters while anomalies (or out-
liers, atypical instances) either do not belong to any clusters (Knorr and Ng, 1998;
Ramaswamy et al., 2000; Duan et al., 2006) or form very small (or very sparse) clus-
ters (Otey et al., 2003; Chimphlee et al., 2005; Pires and Santos-Pereira, 2005; Fan
et al., 2006). In other words anomaly detection consists in identifying the elements
situated very far from significant clusters; these elements can be either isolated or
grouped in small clusters. Depending on the approach, the number of parameters
required to run the algorithm can be high and will lead to different outliers. To avoid
this, some works return a ranked list of potential outliers and limit the number of
parameters to be specified (Ramaswamy et al., 2000; Jin et al., 2001; Fan et al.,
2006).

However, the major drawback of all the anomaly-based intrusion detection tech-
niques is represented by the very high number of false alarms triggered. On the con-
trary, misuse techniques (i.e. approaches that detect elements similar to well-known
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malicious usage) will precisely detect attacks, but they will miss every intrusion
that differs from those already known attack signatures. Therefore, some works pro-
posed collaborative frameworks in order to improve the performance and both true
and false alarm rates (Valdes and Skinner, 2001; Locasto et al., 2004; Yegneswaran
et al., 2004). These approaches rely on a propagation process in a distributed IDS
IP blacklist after individual misuse or anomaly detection. This communication can
also lead to more accurate results and it does not allow the system to uncover totally
unknown attacks or to avoid high false alarm rates.

For these reasons we propose an anomaly detection approach that uses collab-
oration between systems in order to discriminate attacks from emerging or novel
usage behaviours, thus leading to a reduced number of false alarms. To the best of
our knoweldge, this is the first proposal for such an IDS.

4 COD: Common Outlier Detection

The principle of COD consists in successive clusterings on usage patterns of differ-
ent partners sites, until the number of common outliers become equal to the number
of alarms desired by the user. We present here an algorithm designed for two in-
formation systems. Extending this work to more than two systems would require a
central node coordinating the comparisons and triggering the alarms, or a peer-to-
peer communication protocol. This is not the goal of this chapter, since we want to
focus on proposing solutions to the following issues:

• Clustering the usage patterns of a Web site with different levels of MD.
• Proposing a distance measure adapted to intrusion detection.
• Identifying the outliers after having clustered the usage patterns.
• Comparing the outliers given by each partner.

Our objects are the parameters given to script files in the requests received on a
Web site. In other words, the access log file is filtered and we only keep lines cor-
responding to requests with parameters to a script. For each such line, we separate
the parameters and for each parameter we create an object. Let us consider, for
instance, the following request: staff.php?FName=John&LName=Doe. The
corresponding objects are o1 =John and o2 =Doe. Once the objects are obtained
from the usage data of multiple Web sites, COD is applied and gives their common
outliers.

4.1 Main Algorithm

As explained in section 2.2, COD processes the usage patterns of both sites step
by step. For each step, COD gives a set of clusters and analyzes them in order to
detect the intrusions. The pseudo-code of COD is given in figure 2. First, MD is
set to obtain very tight and numerous clusters (a very short distance is allowed
between two objects in a cluster). Afterwards, MD is relaxed by 0.05 step by step in
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order to increase the size of the resulting clusters and to decrease their number and
to obtain less alarms. When the number of alarms desired by the user is reached,
COD ends.

Algorithm Cod
Input: U1 and U2 the usage patterns of sites S1 and S2

and n the number of alarms.
Output: I the set of clusters corresponding

to malicious patterns.

1. MD← 0 ;
2. MD← MD+0.05 ;
3. C1 ←Clustering(U1,MD) ;

C2 ←Clustering(U2,MD) ;
4. O1 ← Outliers(C1) ; O2 ← Outliers(C2) ;
5. I ←CommonOutliers(O1,O2,MD) ;
6. If |I| ≤ n then return I ;
7. If MD = 1 then return I ; // No common outlier
8. Else return to step 2 ;

End algorithm Cod

Fig. 2 Algorithm Cod

4.2 Clustering

COD clustering algorithm (given in figure 3) is based on an agglomerative principle.
The goal is to increase the volume of clusters by adding candidate objects, until the
Maximum Distance (MD) is broken (i.e. there is one object oi in the cluster such
that the distance between oi and the candidate object oc is greater than MD).

Distance between objects. We consider each object as a sequence of characters.
Firstly, we need to introduce the notion of subsequence in definition 1.

Definition 1. Let S = s1,s2, . . . ,sn be a sequence of characters having length n, a
subsequence is a subset of the characters of S with respect to their original order.
More formally, V = v1,v2, . . . ,vk, having length k≤ n, is a subsequence of S if there
exist integers i1 < i2 < .. . < ik such that s1 = vi1 , s2 = vi2 , . . . sk = vik .

Our distance is based on the longest common subsequence (LCS), as described in
definition 2.

Definition 2. Let s1 and s2 be two sequences. Let LCS(s1,s2) be the length of the
longest common subsequence corresponding to s1 and s2. The distance d(s1,s2)
between s1 and s2 is defined as follows:

d(s1,s2) = 1− 2×LCS(s1,s2)
|s1|+ |s2|
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Example 1. Let us consider two parameters p1=intrusion and p2=induction.
The LCS between p1 and p2 is L=inuion. L has length 6 and the dissimilarity
between p1 and p2 is d = 1− 2×L

|p1|+|p2| = 33.33%. Which also means a similarity of
66.66% between both parameters.

Centre of clusters. When an object is inserted into a cluster we maintain the centre
of this cluster, as it will be used in the CommonOutliers algorithm described in
Figure 6. The centre of a cluster C is the LCS among all the objects in C. When
object oi is added to C, its center Cc is updated. The new value of Cc is the LCS
between the current value of Cc and oi.

Algorithm Clustering
Input: U , the usage patterns

and MD, the Maximum Distance.
Output: C, the set of as large clusters as possible,

respecting MD.

1. Build M, the distance matrix between each pattern in U ;
2. ∀p ∈ M,Neighboursp ← sorted list of neighbours for p (the first usage pattern in the list

of p is the closest to p).
3. DensityList ← sorted list of patterns by density ;
4. i ← 0 ; C ← /0 ;
5. p← next unclassified pattern in DensityList ;
6. i++ ; ci ← p ;
7. C ←C +ci ;
8. q← next unclassified pattern in Neighboursp ;
9. ∀o ∈ ci, If distance(o,q) > MD then return to step 5 ;

10. add q to ci ;
11. Cc ← LCS(Cc,q) ; //Cc is the center of C
12. return to step 8 ;
13. If unclassified patterns remain then return to step 5 ;
14. return C ;

End algorithm Clustering

Fig. 3 Algorithm Clustering

4.3 Wavelet-Based Outlier Detection

Most previous work in outlier detection requires a parameter (Jin et al., 2001; Zhong
et al., 2007; Portnoy et al., 2001; Joshua Oldmeadow et al., 2004), such as the per-
centage of small clusters that should be considered as outliers, or the top-n outliers.
Their key idea is generally to sort the clusters by size and/or tightness. We consider
that the clusters given by COD are as tight as possible. In order to extract outliers,
our idea is to sort the clusters by size and to consider the smallest clusters as outliers.
Therefore, the problem is how to separate the “big” clusters from the “small” ones,
small and big being subjective measurements. Our solution is based on an analysis
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of the clusters distribution, after the sorting operation. An example of general dis-
tribution of clusters is illustrated by Figure 4 (screenshot made with our real data).
In Marascu and Masseglia (2009), the authors proposed to cut down the distribution
by means of a wavelet transform. This technique is illustrated by figure 4, where
the y axis stands for the size of the clusters, whereas their index in the sorted list is
represented on x, and the two plateaux allow separating small and big clusters. With
a prior knowledge on the number of plateaus (we want two plateaus, the first one
standing for small clusters, or outliers, and the second one standing for big clusters)
we can cut the distribution in a very effective manner. Actually, each cluster mapped
to the first plateau will be considered as an outlier.

Fig. 4 Detection of outliers by means of Haar Wavelets

The advantages of this method, for our problem, are illustrated in figure 5. De-
pending on the distribution, wavelets will give different indices (where to cut). For
instance, with few clusters having the maximum size (see graph with solid lines
from figure 5 ), wavelets cut the distribution in the middle. Meanwhile, with a large
number of big clusters (see graph with dashed lines from figure 5), wavelets increase

Fig. 5 Self-adjusting detection of outliers
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accordingly the number of clusters in the little plateau (taking into account the large
number of big clusters).

4.4 Comparing Outliers

Since we aim to propose an algorithm requiring only one parameter (the number
of alarms), we must avoid introducing a similarity degree for comparing two lists
of outliers. For this purpose, our algorithm (given in figure 6) uses the centre of
outliers. For each pair of outliers, CommonOutliers calculates the distance between
the centers of these outliers. If this distance is below the current MD (C.f. Subsection
4.2), then we consider these outliers similar and we add them to the alarm list. The
centre of an outlier is the LCS of all the objects contained by the outlier. The distance
between two outliers is given by the LCS between their centers.

Algorithm CommonOutliers
Input: O1 and O2, two lists of outliers

and MD, the maximum distance.
Output: A, the list of alarms (common outliers).

1. A← /0
2. ∀i ∈ O1 do
3. ∀ j ∈O2 do
4. centrei ← centre(i) ;
5. centre j ← centre( j) ;
6. If distance(centrei,centre j) < MD

Then A← A+ i∪ j ;
7. done ;
8. done ;
9. Return A ;

End algorithm CommonOutliers

Fig. 6 Algorithm CommonOutliers

5 Experiments

The goal of this section is to offer an analysis of our results (i.e. the number of
outliers and of true intrusions and the kind of intrusions we have detected).

5.1 Datasets

Our datasets come from two different research organizations: Inria Sophia-Antipolis
and IRISA. We have analyzed their Web access log files from March 1 to March
31. The first log file represents 1.8 Gb of rough data and the total number
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of objects (parameters given to scripts) is 30,454. The second log file repre-
sents 1.2 Gb of rough data and the total number of objects is 72,381. COD was
written in Java and C++ on a PC (2.33GHz i686) running Linux with 4Gb of
main memory. The parameters generated automatically by the scripts were re-
moved from the datasets since they cannot correspond to attacks (for instance
“publications.php?Category=Books”). This can be done by listing all
the possible combinations of parameters in the scripts of a Web site.

5.2 Detection of Common Outliers

As described in Section 2.2, COD proceeds by steps and slowly increases the value
of MD, which stands for a tolerance value used in the clustering process. In our
experiments, MD has been increased by steps of 0.05 from 0.05 to 0.5. For each step
the measures are reported in table 1. The meaning of each measure is as follows. C1

(resp C2) is the number of clusters in site 1 (resp. site 2). O1 (resp. O2) is the number
of outlying objects in site 1 (resp. site 2). %1 (resp %2) is the fraction of outlying
objects on the number of objects in site 1 (resp. site 2). For instance, when MD
is set to 0.3, for site 1 we have 6,940 clusters (built from the 30,454 objects) and
5,607 outlying objects, which represents 18.4% of the total number of objects in
site 1. COD is the number of common outliers between both sites and %FP is the
percentage of false positive alarms among the common outliers. For instance, when
MD is set to 0.05, we find 101 alarms among which 5 are false (which represents
4.9%). One first observation is that outliers cannot be directly used to trigger alarms.
Obvioulsy, it is not realistic to check a number of alarms as high as 5,607, even in
one month. Meanwhile, the results of COD show its ability to separate malicious
behaviours from normal usages.

Our false positive patterns correspond to rare normal requests common to both
sites. For instance, on the references interrogation script of Inria Sophia-Antipolis,
a user might request the papers of “John Doe” and the request would look like
publications.php?FName=John\&LName=Doe. If another user requests
the papers of “John Rare” from the Web site of IRISA, the request would be

Table 1 Results on real data

Measure \MD 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
C1 14165 11922 10380 8974 7898 6940 6095 5390 4863 4316
O1 13197 10860 8839 7714 6547 5607 5184 4410 3945 3532
%1 43.3% 35.6% 29% 25.3% 21.5% 18.4% 17% 14.4% 12.9% 11.6%
C2 37384 30456 25329 21682 19080 16328 14518 12753 10984 9484
O2 35983 27519 24032 20948 18152 14664 12738 11680 10179 8734
%2 49.6% 37.9% 33.1% 28.9% 25% 20.2% 17.5% 16.1% 14% 12.1%
COD 101 78 74 70 67 71 71 85 89 90
%FP 4.9% 5.12% 4% 2.85% 1.5% 2.8% 2.8% 10.6% 11.2% 16.6%
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biblio.php?FName=John\&LName=Rare and the parameter “John” would
be given as a common outlier and would trigger an alarm. As we can see, %FP is
very low (usually we have at most 5 false alarms in our experiments for both Web
sites) compared to the thousands of outliers that have been filtered by COD.

Another deduction from these experiments is that a low MD implies very small
clusters and numerous outliers. These outliers are shared by both sites, among which
some are false alarms due to rare but common normal usage. When MD increases,
the clustering process becomes more agglomerative and alarms are grouped to-
gether. In this case, one alarm can cover several ones of the same kind (e.g. the
case of easter eggs explained further). At the same time, the number of outliers cor-
responding to normal usage decreases (since they are also grouped together). Even-
tually, a too large value of MD implies the building of clusters that do not really
make sense. In this case, outliers become larger, and the matching criterion would
be too tolerant, leading to a large number of matching outliers which includes also
the normal usages.

In a streaming environment, one could decide to keep 70 as the number of desired
alarms and watch the ratio of false positive alarms. If this ratio decreases, the end-
user should increase the number of desired alarms.

5.3 Execution Times

Processing one month of real data: We want to show that COD is suitable both
for off-line and for on-line environments. First, regarding off-line environments, we
report in Figure 7 the time responses of COD for the results presented in subsec-
tion 5.2. These results have been obtained using real log files corresponding to one
month navigations from Inria Sophia-Antipolis and IRISA Websites; this represents
approximately 1,8 Bg et 1.2Gb. We consider that preprocessing the log files and

Fig. 7 Execution times of COD for one month of real data
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obtaining the clusters and outliers for each site can be done separately and by differ-
ent computers. That is why Figure 7 reports the maximum time for Sophia-Antipolis
(Log1) and IRISA (Log2) for these three steps (preprocessing, clustering and out-
lier detection). Foreach user threshold, we also report the execution time of common
outlier detection (COD). Eventually, the total time (the addition of preprocessing,
clustering, outlier detection and common outlier detection times) foreach threshold
is reported. The global time for these two log files (corresponding to one month) is
2819 minutes (the addition of all the total times).

Once this knowledge is obtained (i.e. the outliers for each site), when new trans-
actions arrive in the system (new navigations on the site, for instance) we want to
extract the outliers for this set of new navigations, and compare them to the existing
ones. The time responses obtained for this real-time situation are reported hereafter.

Time response for one day: After one day the navigations represent approximately
60 Mo of rough data and 2500 objects in average after preprocessing. Parsing one
day of data needs 73 seconds in average. Clustering and outlier detection needs
82 seconds. Common outlier detection requires to compare 715 outliers (average
number of outliers for one day) to 21,460 known outliers (average number for one
month) over 5 thresholds. The total time of common outlier detection for one day of
navigations is 43 minutes.

Time response for one hour: The total time for detecting outliers shared by one
hour of navigations of the first site, with one month of navigations of the partner site
is less than 2 minutes.

5.4 A Sample of Our Results

None of the attacks found in our experiments has been successful on the considered
Web sites. However, our security services and our own investigations allow us to
confirm the intrusion attempts that have been discovered by our method:

• Code Injection: A recent kind of attack aims to inject code in PHP scripts by
giving a URL among the parameters. Here is a sample of such URLs detected by
COD:

– http://myweddingphotos.by.ru/images?
– http://levispotparty.eclub.lv/images?
– http://0xg3458.hub.io/pb.php?

Depending on the PHP settings on the victim’s Web server, the injected code
allows modifying the site. These URLs are directly, automatically and massively
given to scripts as parameters through batches of instructions.

• Passwords: Another kind of (naive and basic) attack aims to retrieve the pass-
word file. This leads to outliers containing parameters like ../etc/password
with a varying number of ../ at the beginning of the parameter. This is probably
the most frequent attempt. It is generally not dangerous but shows the effective-
ness of our method.
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• Easter Eggs: This is not really an intrusion but if one adds the code
?=PHPE9568F36-D428-11d2-A769-00AA001ACF42 to the end of any URL
that is a PHP page, he will see a (funny) picture on most servers. Also on April
1st (April Fool’s Day), the picture will replace the PHP logo on any phpinfo()
page. This code (as well as two other ones, grouped into the same outlier) has
been detected as a common outlier by COD.

6 Conclusion

We have proposed i) an unsupervised clustering scheme for isolating atypical be-
haviours and ii) a new feature for characterizing intrusions. This new feature is
based on the repetition of an intrusion attempt from one system to another. Actu-
ally, our experiments show that atypical behaviours (up to several thousands for one
day at Inria Sophia-Antipolis) cannot be directly used to trigger alarms since most
of them correspond to normal (though atypical) requests. Yet, this very large num-
ber of outliers can be effectively filtered in order to find true intrusion attempts (or
attacks) if we consider more than one site. In our experiments, by comparing the
outliers of two sites, our method kept only less than one hundred alarms, reducing
the amount of atypical behaviours up to 0.21%. Eventually, our method guarantees
a very low ratio of false alarms, thus making unsupervised clustering for intrusion
detection effective and efficient.

Acknowledgements. The authors want to thank Laurent Mirtain, the person in charge of
intrusion detection of Inria Sophia-Antipolis, for his assistance in identifying attacks in our
access log files.
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Intrusion Detections in Collaborative
Organizations by Preserving Privacy

Nischal Verma, François Trousset, Pascal Poncelet, and Florent Masseglia

Abstract. To overcome the problem of attacks on networks, new Intrusion Detec-
tion System (IDS) approaches have been proposed in recent years. They consist in
identifying signatures of known attacks to compare them to each request and de-
termine whether it is an attack or not. However, these methods are set to default
when the attack is unknown from the database of signatures. Usually this problem
is solved by calling human expertise to update the database of signatures. However,
it is frequent that an attack has already been detected by another organization and it
would be useful to be able to benefit from this knowledge to enrich the database of
signatures. Unfortunately this information is not so easy to obtain. In fact organiza-
tions do not necessarily want to spread the information that they have already faced
this type of attack. In this paper we propose a new approach to intrusion detection
in a collaborative environment but by preserving the privacy of the collaborative or-
ganizations. Our approach works for any signature that may be written as a regular
expression insuring that no information is disclosed on the content of the sites.
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1 Introduction

The fast growing computational Grid environments has increased risk of attack and
intrusion. Thus misuse detection has become a real concern for companies and or-
ganizations. Whereas earlier attacks focused on Web servers which were often mis-
configured or poorly maintained, the most recent ones take advantage of Security
service and Web application weaknesses which become more vulnerable (Heady
et al., 1990; Graham, 2001; Escamilla, 1998). To overcome this problem, new ap-
proaches called Intrusion Detection Systems (IDS) have been developed. Installed
on networks, they aim to analyze traffic requests and detect malicious behavior (eg
Prelude-IDS, Snort). They can be classified into two broad categories (e.g. McHugh
et al. 2000; Proctor 2001): the Anomaly Detection Systems which attempt to de-
tect attacks and the Abuse Detection Systems which detects unknown comport-
ment so called abuse from a specification of allowed ones. Within this paper, we
particulary focus on anomaly detection. Their principle mostly consist of match-
ing new requests which signatures of attacks represented as regular expressions.
For example, an attack which seeks to recover the password file of a system (e.g.
abc/../de/../../../fg/../etc/passwd) may be detected by matching with the following
regular expression (/[ˆ ./]*/..)*/etc/passwd. These signatures are often obtained by
using machine learning techniques or from specialized sites (e.g. OSVDB Database
2008).

Even if these systems are widely used today, the essential problem is that they
do not know how to manage attacks outside their own signature database. When
a request is not recognized by the IDS, an alarm is triggered to require external
valuation.

Recently approaches called Collaborative Intrusion Detection Systems (CIDS)
(e.g. Cuppens and Miege 2005; Zhou et al. 2007; Janakiraman et al. 2003; Locasto
et al. 2005; Zhang and Parashar 2006) have been proposed. In comparison with iso-
lated IDS, CIDS significantly improve time and efficiency of misuse detections by
sharing information on attacks between distributed IDS from one or more organi-
zations. The main principle of these approaches is to exchange information using
peer to peer links. However the exchanged information are mostly limited to IP ad-
dresses of requests (e.g. Cuppens and Miege 2005; Janakiraman et al. 2003; Locasto
et al. 2005) and consider that data can be freely exchanged among the peers. The
last constraint is very strong: companies, for reasons of confidentiality, do not want
to spread out that they were attacked and therefore are unwilling to give any infor-
mation on it. In this article we propose a secure collaborative detection approach,
called SREXM (Secure Regular Expression Mapping), which ensures that private
data will not be disclosed. Via our approach, regular expressions from the various
collaborative sites can be matched without disclosing any information from the lo-
cal IDS to the outside. Collaborative sites are free to work with signatures of attacks
or non-attacks and may give information on the type of intrusion detected. Thus,
when new request is checked, the response will be one of: it is an attack (with its
type if available), it is a non-attack, or undefined (if none of the IDS data leads to a
positive or negative conclusion). To our knowledge, very few studies are concerned
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with this topic of security in such collaborative environment. The only works (Wang
et al., 2005; Locasto et al., 2005) consider both collaborative and security aspects.
In its context, security mainly concerns information on IP addresses and ports. It
uses Bloom’s filters to manage data exchanges. Our problem is different in that, we
want to exchange data, i.e. more complex than IP addresses and ports. In fact we
wants to exchange and parse regular expressions on the full request.

The article is organized as follows. In section 2, we present the problem. An
overview of our approach is given in section 3. The various algorithms are described
in section 4. Finally section 5 concludes and presents various perspectives.

2 Problem Statement

DB is a database such as DB = DB1
⋃

DB2 ...
⋃

DBD. Each database DBi is equiv-
alent to a tuple < id,Sexp > where id is the identifier of the database and Sexp

is a set of regular expressions. Each regular expression expi ∈ Sexp is expressed
as a deterministic automaton (e.g. Hopcroft et al. 2000) by the tuple aexpi =<
State,Trans, Init,Final >. In this tuple aexpi , State is the set of states of the au-
tomaton, Init is the initial state, Final is the set of final states and Trans is the set
of transitions. Each transition is a quadruplet (SInitial , Condition, SFinal, Length)
meaning that if the automaton is in state SInitial and that Condition is checked then
automaton current state changes to SFinal and move the current position in the fil-
tered string of the amount given by Length. In our approach, we also associate a
value to each final state. This value is used to specify whether or not it is an attack
(boolean 0 or 1), but may also provide the type of the attack (integer).

Example 1. Consider the following regular expression: (/[̂./]*/..)*/etc/passwd. Its
associated automaton is described in Figure 1. The left table is the matrix of transi-
tions where Conditions are indexes in the second table which contains the effective
patterns to be matched with the request string. For example, to move from state S6

to final state F, we have to check that the request string at current position contains
the word “passwd”.

Definition 1. Given a database DB = DB1
⋃

DB2 ...
⋃

DBD and a request string R,
the securized approach in such a collaborative environment consist in finding a reg-
ular expression exp from DB such that matching(exp,R) = TRUE while ensuring
that none of the databases DBi provide any information from its content to anyone.

3 The SREXM Approach

This section will provide an overview of the secure architecture SREXM (Secure
Regular Expression Mapping). It is to answer the problem of privacy preserving
in a collaborative environment. Inspired by the work of Kantarcioglu and Vaidya
(2002), this architecture offers the advantage of achieving the various operations
while ensuring that neither party may have access to private data contained in the
initial databases. In addition to the client site S which is responsible to provide the
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I cond1 S1 1
S1 cond2 I 2
S1 cond3 S2 1
S1 cond4 S3 1
S2 cond5 S2 1
S2 cond6 I 3
S3 cond7 S2 1
S3 cond8 S4 1
S4 cond9 S2 1
S4 cond10 S5 1
S5 cond11 S2 1
S5 cond12 S6 1
S6 cond13 I 2
S6 cond14 F 6

cond1 /
cond2 ..
cond3 [ˆ./e]
cond4 e
cond5 [ˆ./]
cond6 /..
cond7 [ˆ./t]
cond8 t
cond9 [ˆ./c]
cond10 t
cond11 [ˆ./]
cond12 /
cond13 ..
cond14 passwd

Fig. 1 Automaton associated to the Regular Expression exp

DB1

DBD

4
5

2

4

2

5

3

7
7

2 13

6 6
1

Non−Colluding Site Non−Colluding Site
NC1 NC

Processing Site
PS

2

Site
Control Site

CTRL

Fig. 2 General Architecture of SREXM

request to be tested, the architecture requires four non-collaborative and semi hon-
est sites (Goldreich, 2000): they follow the protocol correctly, but are free to use the
information they have collected during the execution of the protocol. These inde-
pendent sites collect, store and evaluate information in a secure way. The different
functions provided by these sites are:

• The Control Site CTRL: CT RL is used to rule the various operations needed to
match the regular expression. To do this, it interacts with the two non colluding
sites NC1 and NC2.
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• Non Colluding Sites NC1 and NC2: These two symmetric sites collect garbled
data from all databases as well as the garbled request to be tested from S. Under
the control of CT RL and by interaction with PS, they perform several secure
operations in order to insure that none of them will be able to infer any of the
intermediate results or the final result which is returned to site S.

• The Processing Site PS: This site is used both by NC1 and NC2 to process, the
various operations needed, in a secure way. Like NC1 and NC2, PS also can-
not deduce any pertinent value of intermediate or final result from the data it
processes.

The exchange of data between the different sites is done by using the secure method

SENDS(+
V |−V)′ which sends the vector of bits V =

+
V⊕ −

V to NC1 and NC2. It is defined

in order to send
+
V to NC1 and

−
V to NC2 (or vice versa). A random vector R is used for

secure transmission such that
+
V = R and

−
V =V⊕R. This method is used in particular

to send the data from the databases DBi and to send the request from site S. Thus,
the process described in figure 2 starts in the following way. First, the site S sends
its request to NC1 and NC2 using the SENDS method (See arrow number 1 in figure
2). More precisely, the request R is taken in its boolean form: a vector of bits. A
random vector of bits AR is then generated with the same size as the request R to
compute the new vector ZR = AR

⊕
R. ZR is sent to NC1 and AR to NC2 (or vice

versa). Each database DBi decompose the transition matrix in three tables: the first
contains the transitions of the automaton, the second the conditions and the third
the lengths of the shifts. To encode the transition matrix, the indexes of these tables
are randomly mixed. The databases first send the table of transition to CT RL, then,
using SENDS, the associated tables of conditions and lengths are sent to NC1 and
NC2 in the same order of indexes as the one used when sent to CT RL (See arrow
number 2). From this point, the computation of the request is done under the control
of CT RL. Via the NCOMPARES, it will ask NC1 and NC2 to test the condition of
index i from the table of conditions (See arrow number 3). At this point, NC1 has

part of the request to be tested
+
R, part of the condition

+
ST Ri and the current position

pos in the request R. In the same way, NC2 has
−
R,

−
ST Ri and the position pos in the

request. Then NC1 et NC2 just have to extract the substring of the request starting

at position pos and of same length the string to compare (
+

ST Ri or
−

ST Ri). The next
step consist in the comparison of the two string in a secure way. This is performed
by sending requested data to PS using the NCMPS protocol (See arrow number
4). Under completion, the result of the comparison is divided in two parts, one is
owned by NC1 and the other by NC2 such that none are able to infer its real value.
Both parts are then securely returned to CT RL (see arrows 5 and 6) which uses the
result to change the state of the automaton. The process is repeated under control
of CT RL unless the automaton is ended (it moves to a final state of the automaton
or the request does not match). The action of maintaining the position pos in the
request is done by CT RL through the secure operation INCRS whose aim is to shift
the position according to the displacement length associated with the transition. This
is done by sending the index in the table of lengthes to NC1 and NC2 that will update
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the value of pos. When the automaton reaches a final state, CT RL or matching of
the request fails, CT RL aggregates the results (attack, non-attack, unknown) using
the secure method AGGREGATES. The aggregated result is split between NC1 and
NC2 and kept while data has to be performed on the same request. At the end of the
process, the final aggregated result is sent to S.

4 The Secure Algorithms

In this section, we present the various algorithms used in SREXM approach.

In order to simplify writing, we consider the following notations: Let (+
X|−X) ←

hS(+
Y1...

+
Yn|−Y1...

−
Yn) be a tripartite computation of any function hS between NC1, NC2

and PS where NC1 owned some of the entries
+
Y1...

+
Yn and gets part of the result

+
X and

similarly NC2 owned some of the entries
−
Y1...

−
Yn and gets part of the result

−
X . The

final result is obtained by applying the binary operator XOR (
⊕

) between
+
X and

−
X. However, this does not mean that NC1 sends exactly

+
Y1...

+
Yn to PS an receives the

result
+
X from PS. In fact, NC1 garbles its inputs

+
Y1...

+
Yn by adding random noise and

gets
+
Y ′1...

+
Y ′n which are securely sent to PS. Similarly, NC2 sends its garbled inputs

to PS. At the end of the process, both sites receive a part of garbled result from PS

(respectively
+
X ′ and

−
X ′). This intermediate result may now be used as input of further

computation. We will also use the following simplifications:

1. gS(+
x,

+
y|−x,−y)⇔ gS(+

x|−x;
+
y|−y)

2. Si hS() is a 2 argument function then hS( +
X1, · · · , +

Xn| −X1, · · · , −Xn) will correspond to

hS(hS(· · ·hS(hS( +
X1,

+
X2| −X1,

−
X2);

+
X3| −X3) · · · ); +

Xn| −Xn).

4.1 The Algorithm NCOMPARES

The evaluation of the condition NCOMPARES(Str|Str) (See Algorithm 1) associ-
ated with a transition is controlled by the controller CT RL. It sends the index i of a

string in the table of conditions to NC1 and NC2. Thus NC1 only hold the part
+

ST Ri

and NC2 the other part
−

ST Ri such that the real string is STRi = +
ST Ri ⊕ −

ST R1. Each

NC1 and NC2 sites also holds its part of the request (+
R|−R) and the current position in

the request (pos). After extracting the substring of the request R starting at position
pos and of same length with STRi, the comparison is performed via NCMPS. The

operator NCMPS( +
S1,

+
S2| −S1,

−
S2) → (+

b|−b) (see section 4.4) compares two sequence

of bits of same length S1 = +
S1 ⊕ −

S1 and S2 = +
S2 ⊕ −

S2 and returns a boolean value

b = +
b⊕−

b such that b is false if S1 and S2 are identical and otherwise true. The final
result is returned to CT RL.
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Algorithm 1. Algorithm NCOMPARES

Data: (i|i) The index of the condition to be tested is sent to NC1 and NC2 by CTRL.

Result: (+
b|−b) two booleans such that b = +

b⊕−
b is false when ST Ri matches the substring

starting a current position of the request. Otherwise, it is true.

1. NC1 ccomputes Len1 = length( +
ST Ri); NC2 ccomputes Len2 = length( −

ST Ri).
// By definition Len1 = Len2

2. If ( (pos+Len1 > length(+
R))||(pos+Len2 > length(−R)) )

then return (+
b|−b) = (1|0)

3. NC1 computes
+
S = +

Rpos · · · +
Rpos+Len1−1

4. NC2 computes
−
S = −

Rpos · · · −Rpos+Len2−1

5. compute (+
b|−b) = NCMPS(+

S|−S) using PS, NC1 and NC2.

Complexity: The complexity of NCOMPARES is same as the one of NCMPS (see
section 4.4).

COMPARES does not allow NC1 or NC2 to get knowledge on the result of the com-
parison. They can only deduce the length of left part of the request which have been
successfully matched by the automaton (in fact the value of pos). But even if they
could obtain the list of strings that has been matched successfully, as they only hold
random data in the table of condition, they can only infer that a random sequence of
length pos has matched the beginning of the request. However, they can not deduce
neither whether the filtering was successful or not nor the value associated with the
final state in case of successful filtering. At the level of CTRL no information on the
length of the filtered part of the query can be inferred. Indeed CT RL has no access
to the real data (request, condition strings, lengthes). It only knows indexes. The
only information it can obtain is the path followed by the automaton to provide an
answer.

4.2 The Algorithm INCRS

The request R to be tested is split between NC1 and NC2, in a secure way. The start-
ing position pos is known by both NC1 and NC2. Any modification to this position
is controlled by CT RL via the INCRS(len|len) operation. When the automaton is
sent to CT RL and data to NC1 and NC2, these two also receives a table with indexes
aleatory sorted and which contains the lengths of movements. The goal of this sort
is to avoid any direct correspondence between the index of conditions and lengths.
The INCRS method just sends the index to be used to NC1 and NC2 and each one
updates the position pos according to the value found in the table.

When an increment is triggered by CTRL, there is no way for NC1 or NC2 to
know which condition had activated it. In fact CTRL may execute unnecessary
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computation. On CTRL side, neither the information of the length may be avail-
able nor inferred as it knows only indexes.

4.3 The Algorithm AGGREGAT ES

Aggregation of results simply consists to securely retain the first valid result ob-
tained by CT RL, i.e. when an automaton has matched the request and lead in a final
state. The objective of AGGREGATES is to conceal from NC1 and NC2, the fact
that an automaton has filtered the request (and associated value Wf ) or not. This
is done by setting a state bit to 1 if the automaton has filtered the request and 0
otherwise. Depending on the value of this bit, the information stored in the accu-
mulator between NC1 and NC2 will be either the value of the final state Wf or a
random vector. The implementation of AGGREGATES require the secure operators
∨S( +

S1,
+
S2| −S1,

−
S2)→ (+

V |−V) and
∧S( +

S1,
+
S2| −S1,

−
S2)→ (+

V |−V) which implements respectively
a secure computation of bitwise operators OR and AND on vectors of bits of same
length (S1 and S2) and returns the sequence V . At the end of the process SREXM,
NC1 and NC2 both sends the value of their part of the accumulator to the client site
S. Finally S has just need to take XOR of the received values to get the result.

For each regular expression (automaton), the values Vf associated with final states
are encoded with random numbers R1 and R2 by computing Wf = Vf ⊕ R1 ⊕R2.
CT RL knows Wf , NC1 knows R1 and NC2 knows R2. We consider that the length of
WF is identical in all databases.

Algorithm 2. Algorithm AGGREGATES

Data: Y = +
Y ⊕ −

Y of length n + 1 whose first bit is the bit of state set by CT RL.

//
+
A and

−
A are the aggregated values respectively kept by NC1 and NC2.

// n + 1 is the length of A.

1. NC1 computes
+
Z = +

Y ⊕0R1; NC2computes
−
Z = −

Y ⊕0R2;
2. ∀k ∈ 1..n NC1,NC2 and PS compute

( +
Bk| −Bk) =

∧S(
∨S( +

Z0,
+
Ak| −Z0,

−
Ak) ;

∨S(¬ +
Z0,

+
Zk| −Z0,

−
Zk) )

3. NC1, NC2 and PS compute ( +
B0| −B0) =

∨S( +
Z0,

+
A0| −Z0,

−
A0)

4. NC1 and NC2 respectively computes
+
A = +

B and
−
A = −

B.

Property 1. AGGREGATES prohibits NC1 and NC2 to access the value stored in
the accumulator. They even do not know if the value stored in the accumulator has
changed or not.

Proof : The data (
+
Y |−Y) held by NC1 and NC2 are randomized by CTRL. It is

therefore impossible to know the value of Y and obviously that of Y0 (i.e. the state
bit indication whether the automaton has reached a final state or not). As operators∨S and

∧S returns values garbled with random noise, from the point of view of NC1

(respectively NC2) the received value
+
B (respectively

−
B) is pure random and thus
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independent from the values of
+
Y and

+
A (respectively

−
Y and

−
A). In particular, although

NC1 and NC2 know the initial value of A (0 at the beginning of the process), it is
impossible for them to deduce whether this value has been changed or not, once
AGGREGATES has been used.

Complexity: The methods
∨S and

∧S are used 2n + 1 and n times respectively on
one bit. By reusing the complexity of operators

∨S and
∧S (see section 4.4), NC1

and NC2 therefore perform 34n + 12 binary operations, generate 6n + 2 aleatory
bits, send 12n+4 bits and receive 10n+4 bits (including parameters). PS performs
12n + 4 binary operations, generates 3n + 1 aleatory bits, receives 12n + 4 bits
(6n + 2 from NC1 and NC2 each) and sends 6n + 2 bits (3n + 1 to NC1 and NC2

each). Obviously this has to be compared with the length of inputs (n + 1 bits).

Remarks: The two mechanisms bufferization of data sent by the databases and ag-
gregation of results fulfil databases anonymization. Indeed, even if the client can
identify which databases are sending data to SREXM, it can not infer the one which
gave the final result. The aggregated value may be returned to the client immediately
after a valid match. However, in this case, NC1 and NC2 are able to infer the identity
of the database who gave the answer. To improve the anonymization, it is neces-
sary to wait, for example until each data from all databases have been processed.
Meanwhile this approach is secure, but it is unfortunately not effective because too
expensive in term of time. To minimize time cost, we can return intermediate val-
ues to the clients each time n results are aggregated which lower the time overcost
to n/2. In fact both anonymization mechanisms have different costs: the buffering
essentially introduces space cost while aggregation introduces computing time cost.
It is of course possible to mix the two mechanism and adapt parameters to adjust
anonymization process according to the needs and bearable costs.

Algorithm 3. The Algorithm
∧S

Data: (+
X,

+
Y | −X,

−
Y) vector of bit/s are such that

+
X and

+
Y are in NC1, and

−
X and

−
Y are in NC2

Result: (AR|BR) is such that AR⊕BR = (+
X⊕ −

X)
∧

(+
Y ⊕ −

Y)
1. NC1 and NC2 mutually generate and exchange four random vectors of bits RA, R′A, RB

and R′B such that:
+
X
′
= +

X
⊕

RA,
+
Y
′
= +

Y
⊕

R′A,
−
X
′
= −

X
⊕

RB and
−
Y
′
= −

Y
⊕

R′B.

2. NC1 sends
+
X ′ and

+
Y ′ to PS.

3. NC2 sends
−
X ′ and

−
Y ′ to PS.

4. PS computes
+
C = +

X ′
∧ −

Y ′ and
−
C = +

Y ′
∧ −

X ′ and generates a random vector of bit/s RPS.

5. PS sends A′PS = +
C
⊕

RPS to NC1 and B′PS = −
C
⊕

RPS to NC2.

6. NC1 computes AR = A′PS
⊕

(+
X
∧

R′B)
⊕

(+
Y
∧

RB)
⊕

(+
X
∧ +

Y)
⊕

(RB
∧

R′A)

7. NC2 computes BR = B′PS
⊕

(−X
∧

R′A)
⊕

(−Y
∧

RA)
⊕

(−X
∧ −

Y)
⊕

(RA
∧

R′B).
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4.4 The Algorithms NCMPS,
∧S and

∨S

In this section, we define three algorithms used to implement the secure operator for
string comparison, the basic principle of these algorithms is to add uniform random
noise to the data which could be deleted from the final result.

The
∧S protocol begins with NC1 and NC2 who modify their data by doing

XOR them with random values (see step 1 in algorithm ). NC1 and NC2 share
these random values (also see step 1). Garbled data are then send to PS (step 2
and 3) which is now able to compute

∧
in a secure way (step 4). In fact, PS

gets only garbled inputs indistinguishable from random and unrelated to each oth-
ers and thus calculates random values from its point of view. To avoid NC1 and
NC2 from inferring the final result, it does XOR with random noise to the values
it calculates before sending them back to NC1 and NC2 (step 5). Now NC1 and
NC2 may both obtain their part of the final result by removing the random noise
they added on step 1 (see step 6 and 7). The final result is obtained bay comput-

ing AR⊕BR = A′PS
⊕

(+
X
∧

R′B)
⊕

(+
Y
∧

RB)
⊕

(+
X
∧ +

Y)
⊕

(RB
∧

R′A)
⊕

B′PS
⊕

(−X
∧

R′A)
⊕

(−Y
∧

RA)
⊕

(−X
∧ −

Y)
⊕

(RA
∧

R′B) où A′PS
⊕

B′PS = (+
X
∧

R′B)
⊕

(+
Y
∧

RB)
⊕

(−X
∧

R′A)
⊕

(−Y
∧

RA)
⊕

(+
X
∧ +

Y)
⊕

(−X
∧ −

Y)
⊕

(RA
∧

R′B)
⊕

(RB
∧

R′A)
⊕

RPS
⊕

RPS.
Using the property of the XOR operator: R

⊕
R = 0, we get the desired re-

sult: AR⊕BR = +
X
∧ +

Y
⊕ +

X
∧ −

Y
−
X
∧ +

Y
⊕ −

X
∧ −

Y . Which is a re-written form of

(+
X
⊕ −

X)
∧

(+
Y
⊕ −

Y). However, this operation is never performed by the non collab-
orative sites and the final result is kept shared between NC1 and NC2.

The
∨S protocol is identical to the

∧S protocol except for the last two
steps (steps 6 and 7) performed by NC1 and NC2. Thus we get the fi-

nal result: AR⊕BR = +
C′
⊕

(+
X
∧

R′B)
⊕

(+
Y
∧

RB)
⊕ +

X
⊕ +

Y
⊕

(+
X
∧ +

Y)
⊕

(RB
∧

R′A)
⊕ −

C′
⊕

(−X
∧

R′A)
⊕

(−Y
∧

RA)
⊕ −

X
⊕ −

Y
⊕

(−X
∧ −

Y)
⊕

(RA
∧

R′B). This reduce to the de-

sired result: AR⊕BR = +
X
⊕ +

Y
⊕

(+
X
∧ +

Y)
⊕

(+
X
∧ −

Y)
⊕ −

X
⊕ −

Y
⊕

(−X
∧ +

Y)
⊕

(−X
∧ −

Y).
Which is a re-written form of (+

X ⊕ −
X)
∨

(+
Y ⊕ −

Y).

Algorithm 4. The algorithm
∨S

Data: (+
X,

+
Y |−X,

−
Y) vectors of bits such that

+
X et

+
Y belongs to NC1,

−
X and

−
Y

belongs to NC2.

Result: (AR|BR) is such that AR⊕BR = (+
X
⊕ −

X)
∨

(+
Y
⊕ −

Y).
1..5. These steps are same as initial 5 steps of

∧S function.

6. NC1 computes AR =A′PS
⊕

(+
X
∧

R′B)
⊕

(+
Y
∧

RB)
⊕ +

X
⊕ +

Y
⊕

(+
X
∧ +

Y)
⊕

(RB
∧

R′A).
7. NC2 computes BR =B′PS

⊕
(−X
∧

R′A)
⊕

(−Y
∧

RA)
⊕ −

X
⊕ −

Y
⊕

(−X
∧ −

Y)
⊕

(RA
∧

R′B).

Property 2.
∧S and

∨S forbid NC1 to gain any information of private data of NC2

(and vice versa). Moreover, the PS learns none of their private inputs.
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Proof : From the protocol, B′PS is the only value that NC2 can learn from the private
data of NC1. Due to the noise, RPS, added by PS, NC2 is still not able to deduce

the values of
+
X or

+
Y . As the roles of NC1 and NC2 are interchangeable, the same

argument holds for NC1, not able to learn the private inputs
−
X or

−
Y of NC2. However,

one key security aspect of not leaking any information to PS is achieved by
randomizing the inputs before transmitting them to the Processing Site. Due to the
randomization performed during the initial step, it just infers a stream of uniformly
distributed values, and cannot distinguish between a genuine and a random value.

Complexity: Length of bit vector is 1: For the operator
∧S, NC1 and NC2 each per-

forms 10 binary operations (6
⊕

and 4∧).
∨S does two more

⊕
that means 12 binary

operations. For both operators NC1 and NC2 generate 2 random bits, exchange 2×2
random bits and send 2× 1 bits to PS. PS generates 1 random bit and performs 4
binary operation (2

⊕
and 2

∧
) and returns 2 bits to NC1 and NC2 each.

The NCMPS() method compares two vectors of bits by using the secure
∨S

method. The result of NCMPS() consists of 2 bits. One is sent to NC1 and the
other is sent to NC2. XOR of these two bits is 0 if the vectors are similar, otherwise 1.

Algorithm 5. The Algorithm NCMPS

Data: Half part of V and W is owned by NC1 and the other part is owned by
NC2

Result: (+
R|−R) is such that

+
R⊕−

R = 0 if V = W else 1

1. NC1 computes X ← +
V ⊕ +

W where X = (X1,X2, · · · ,Xl) and l is the length of
vector V and W .

2. NC2 computes Y ← −
V ⊕ −

W where Y = (Y1,Y2, · · · ,Yl).
3. (+

R|−R)← ORS(X1,X2, · · · ,Xl|Y1,Y2, · · · ,Yl)

Complexity: Length of bit vector is l: CMPS executes l ⊕ operations and l− 1
∨S.

Thus NC1 and NC2 compute 13l− 12 binary operations, generate 2l− 2 aleatory
bits, receive 4l−3 bits (including inputs) and send 5l−4 bits (including the result).
On PS side, PS computes 4l− 4 binary operations, generates l − 1 aleatory bits,
receives 4l−4 bits and sends 2l−2 bits.

Property 3. NC1 and NC2 gain no information of the real values which are com-
pared and of the result of the comparison.

Proof: The input data sent to NC1 and NC2 are garbled with random values. Thus
they cannot distinguish them from random values. In the same way, all values
returned by

∨S are also garbled with unrelated random bits. Thus NC1 and NC2 only
gets random values and then cannot infer the actual values of the inputs or results. If
PS keeps history of intermediate results, it might deduce a part of the aleatory bits
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that were used to encode its results sent to NC1 and NC2. However, this gives no
information of actual data.

5 Conclusion

In this paper, we proposed a new approach of secured intrusion detection in a col-
laborative environment. Via our approach an application can use knowledge from
foreign databases to identify whether a request corresponds to an attack or not. We
have demonstrated that the proposed architecture ensured that it is impossible to
identify which database has given the answer and that none of the internal compo-
nents of the architecture can infer knowledge on the databases or on the request from
the data they got. Our approach may also provide the type of the attack when they
are specified in the databases. Our current work concern the study of the removal
of the fourth semi-honest site CT RL by trying to dispatch its proceedings on the
automaton on the three other ones. In parallel, we try to improve the management
of the automaton (i.e. introduce more powerful comparison operators).
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Part IV
Ontologies and Semantic



Alignment-Based Partitioning of Large-Scale
Ontologies

Fayçal Hamdi, Brigitte Safar, Chantal Reynaud, and Haïfa Zargayouna

Abstract. Ontology alignment is an important task for information integration sys-
tems that can make different resources, described by various and heterogeneous
ontologies, interoperate. However very large ontologies have been built in some
domains such as medicine or agronomy and the challenge now lays in scaling up
alignment techniques that often perform complex tasks. In this paper, we propose
two partitioning methods which have been designed to take the alignment objec-
tive into account in the partitioning process as soon as possible. These methods
transform the two ontologies to be aligned into two sets of blocks of a limited size.
Furthermore, the elements of the two ontologies that might be aligned are grouped
in a minimal set of blocks and the comparison is then enacted upon these blocks.
Results of experiments performed by the two methods on various pairs of ontologies
are promising.

Keywords: Ontology Matching, Ontology Partitioning.

1 Introduction

The fast development of internet technology engendered a growing interest in re-
search on sharing and integrating sources in a distributed environment. The Seman-
tic Web (Berners-Lee et al., 2001) offers possibility for software agents to exploit
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representations of the sources contents. Ontologies have been recognized as an es-
sential component for knowledge sharing and the realisation of the Semantic Web
vision. By defining the concepts of specific domains, they can both describe the
content of the sources to be integrated and explain the vocabulary used by users
in requests. However, it is very unlikely that a single ontology covering whole dis-
tributed systems can be developed. In practice, ontologies used in different systems
are developed independently by different communities. Thus, if knowledge and data
must be shared, it is essential to establish semantic correspondences between the
ontologies of these systems. The task of alignment (search for mappings between
concepts) is thus particularly important for integration systems because it allows
several heterogeneous systems, which each has its own ontology, to be used jointly.
This research subject has resulted in numerous works (Shvaiko and Euzenat, 2005).

The current techniques of alignment are usually based upon similarity measures
between pairs of concepts, one from each ontology. These measures are mostly
based on the lexical characteristics of the concept labels and/or on the structural
characteristics of the ontologies (Rahm and Bernstein, 2001; Noy and Musen, 2000;
Reynaud and Safar, 2007) which involve comparing the description of each concept
in one ontology with the description of all concepts in the other. Theses techniques
are often tested on small ontologies (a few hundred concepts). When ontologies are
very large, for example in Agronomy or Medicine, ontologies include tens of thou-
sands of concepts (AGROVOC1 : 28 439, NALT 2 : 42 326, NCI3 : 27 652), and the
effectiveness of the automatic alignment methods decreases considerably in terms
of execution time, size of memory used or accuracy of resulting mappings. A possi-
ble solution to this problem is to try to reduce the number of concepts given to the
alignment tool, and for this purpose to partition both ontologies to be aligned into
several blocks, so the processed blocks have a reasonable size.

We propose two methods of partitioning guided by the task of alignment. These
methods are partially inspired by co-clustering techniques, which consist in ex-
ploiting, besides the information expressed by the relations between the con-
cepts within one ontology, the information which corresponds to the inter-concept
relations which can exist across both ontologies. The fact that concepts of both
ontologies can have exactly the same label and can be connected by a relation of
equivalence is an example of relation easy to calculate even on large ontologies, and
which we will use to our benefit. Our methods will thus start by identifying, with a
similarity measure strict and inexpensive to calculate, the couples of concepts from
the ontologies which have identical labels, and will base itself on these concepts,
called anchors, to make the partitions.

The rest of the paper is organized as follow. In the next section, we present the
context of our work and some related works in the domain of partitioning, and then
we detail more precisely the algorithm of partitioning PBM used by the alignment
system FALCON (Hu et al., 2006, 2008) on which we based our propositions. In
Section 3 we detail our two methods of partitioning. In Section 4 we present and

1 http://www4.fao.org/agrovoc/
2 http://agclass.nal.usda.gov/agt/
3 http://www.mindswap.org/2003/CancerOntology/
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analyse the experimental results which demonstrate the relevance of these methods.
Finally, we conclude and we give some perspectives in section 5.

2 Context and State of the Art

The problem which we are interested in is the scalability of the ontologies alignment
methods.

2.1 Context

An ontology corresponds to a description of an application domain in terms of con-
cepts characterized by attributes and connected by relations. The ontology alignment
task consists in generating in the most automatic way relations between the con-
cepts of two ontologies. The types of these matching relations can be equivalence
relations isEq, subsumption relations isA or proximity relations isClose. When the
ontologies are very large, the efficiency of automatic alignment methods decreases
considerably. The solution which we consider is to limit the size of the input sets of
concepts given to the alignment tool. In order to do this we partition both ontologies
to be aligned into several blocks, so only blocks of reasonable size are processed.
The two sets of blocks obtained will then be aligned in pairs, each pair made from
a block from each set, and the objective consists in minimizing the number of pairs
to be aligned.

Our contribution is the elaboration of a partitioning algorithm adapted to the
task of alignment and usable on all ontologies containing a hierarchy of labelled
concepts. It only exploits the relations of subsumption between concepts and their
labels. Partitioning a set E consists in finding disjoined subsets E1,E2, ...,En, of
elements semantically close i.e. connected by an important number of relations.
The realisation of this objective consists in maximizing the relations within a subset
and in minimizing the relations between different subsets.

The quality of the result of a partitioning will be appreciated according to the
following criteria:

• The size of generated blocks: blocks must be smaller than the maximum number
of elements that the alignment tool can handle.

• The number of generated blocks: this number must be as low as possible to limit
the number of pairs of blocks to be aligned.

• The degree of blocks cohesiveness: a block will have a strong cohesiveness if
the structural relations are strong inside the block and weak outside. This degree
groups the elements which can possibly match into a minimal number of blocks
and thus reduces the number of comparisons to be made.

The fact that the partitioning algorithm only uses, in a light treatment, the subsump-
tion relationships between the concepts allows very large ontologies to be parti-
tioned. It is thus a scalable approach.
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2.2 State of the Art

In real application domains the ontologies are becoming increasingly large and
many works as Stuckenschmidt and Klein (2004), Grau et al. (2005) and Hu et al.
(2006) are interested in ontology partitioning.

Thus the work reported in Stuckenschmidt and Klein (2004) aims at decompos-
ing ontologies into independent sub-blocks (or islands), in order to facilitate dif-
ferent operations, such as maintenance, visualization, validation or reasoning, on
the ontologies. This method is not adapted to our problem because the process of
blocks generation imposes a constraint on the minimal size of the generated blocks
which is not appropriate for alignment. In addition, it builds many small blocks,
which has a negative impact on the final step of alignment. Works presented in the
Modular Ontology conference (Haase et al., 2007) focus specifically on the prob-
lems of reasoning and seek to build modules centred on coherent sub-themes and
self-sufficient reasoning. For example, the work of Grau et al. (2005) are very rep-
resentative of this issue, and guarantee that all the concepts connected by links of
subsumption are grouped together into a single module. For ontologies containing
tens of thousands of subsumption relations (as AGROVOC and NALT) this type of
constraint can lead to the creation of blocks with badly distributed sizes, unusable
for alignment. However, this technique is used by the MOM system to align (the-
oretically) large ontologies, but the tests presented in Wang et al. (2006) are only
applied on ontologies of less than 700 concepts.

In our knowledge, only PBM Partition-based Block Matching system, integrated
into the ontology matching system FALCON (Hu et al., 2006, 2008) has been cre-
ated in order to align ontologies, but we will see that its method of decomposition
does not take completely into account all the constraints imposed by this context, in
particular the fact of working simultaneously with two ontologies.

2.3 The PBM Method

The PBM4 method proposed in Hu et al. (2006) consists in decomposing into
blocks each ontology independently, by the clustering ROCK algorithm (Guha
et al., 2000), and then by measuring the proximity of each block of an ontology
with every block of the other ontology in order to align only the pairs of concepts
belonging to the closest blocks.5 To make the partition, while ROCK considers that
the links between the concepts all have the same value, PBM introduced the concept
of weighted links mainly based on a structural similarity between concepts.

4 The description of the PBM algorithm we present here is based upon the implementation
available at: http://iws.seu.edu.cn/projects/matching/

5 The blocks are built as sets of concepts, and an intermediate step, used by PBM but which
we are not describing here, is needed to retransform them into ontology fragments.
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2.3.1 Weighted Links

Let ci, c j be two concepts of the same ontology O, ci j their smallest common ances-
tor and depthO f (c) the distance in number of edges between the concept c and
the root of O. PBM measures the value of the link connecting ci and c j called
Links(ci,c j) using the measure of Wu and Palmer (1994):

Links (ci,c j) =
2 ∗ depthO f (ci j)

depthO f (ci)+ depthO f (c j)

To prevent high calculation cost of similarity between each pair of concept, PBM

considers only the concepts which satisfy the following relation:
∣
∣depthO f (ci)−depthO f (c j)

∣
∣≤ 1

2.3.2 Partitioning Algorithm

For partitioning two ontologies in blocks, PBM is based on two essential notions:
the cohesiveness within a block and the coupling between two separate blocks. Co-
hesiveness is a measure of the weight of all links connecting concepts belonging to
the same block, and coupling is a measure of the weight of all links connecting con-
cepts of two different blocks. Theses notions are calculated with the same measure
called goodness:

goodness(Bi,B j) =
∑ci∈Bi,c j∈B j

Links (ci,c j)

sizeO f (Bi) · sizeO f (B j)

Cohesiveness(Bi) = goodness(Bi,Bi), Coupling(Bi,B j) = goodness(Bi,B j) where
Bi = B j.

Given an ontology O, the algorithm takes for input the set B of n blocks to partition,
where each block is initially reduced to a single concept of O, and a k desired num-
ber of output blocks or a parameter ε1 limiting the maximum number of concepts
in each block. It first initializes the cohesiveness value of each block as well as the
coupling value. For each iteration, the algorithm chooses the block which has the
maximum cohesiveness value and the block which has the maximum coupling value
with the first block. It replaces theses two blocks by the result of their fusion and
updates coupling values of all blocks by taking this new block into account. The
algorithm stops when it reaches the desired number of blocks or when all blocks
have reached the size limit or there is no block whose cohesiveness is larger than
zero.

2.3.3 Identification of Pairs of Blocks to Align

Once the separate partitioning of both ontologies is achieved, the evaluation of
the proximity between blocks is based on anchors, i.e. from previously known



256 F. Hamdi et al.

mappings between the terms of both ontologies, defined by string comparison tech-
niques or defined by an expert. The more two blocks contain common anchors, the
more they are considered close.

Let k (resp. k′) be the number of blocks generated by the partitioning of an
ontology O (resp. O′) and Bi (resp. B′j) be one of these blocks. Let the function
anchors(Bu, B′v) that calculates the number of anchors shared by two blocks Bu and
B′v and let ∑k′

v=1 anchors(Bi,B′v) be the number of anchors contained in a block Bi.
The Proximity relation between two blocks Bi and B′j is defined as follows:

Proximity(Bi,B
′
j) =

2.anchors(Bi,B′j)

∑k
u=1 anchors(Bu,B′j)+∑k′

v=1 anchors(Bi,B′v)

The aligned pairs of blocks are all the pairs whose proximity is greater than a
given threshold ε2 ∈ [0,1]. A block may be aligned with several blocks of the other
ontology or with none, depending on the value chosen for this threshold.

Example. We applied the PBM algorithm, available online, to two toy ontologies to
visualize its behaviour and facilitate later comparison with our own methods.

Figure 1 shows these two ontologies after a partitioning achieved with the control
variable representing the maximum size of merged blocks fixed at 3 concepts, i.e. a
block exceeding this size cannot be merged. So the blocks thus generated contain at
most 6 concepts, and as OS has 13 concepts, this value ascertained we would get at
least 3 blocks.

Fig. 1 The blocks built by PBM

Figure 2 shows the anchors which are supposed to be shared between both on-
tologies. Block BS1 contains 2 anchors, one of which is shared with BT 1 while the
other is shared with BT 2. Block BS2 only contains one anchor, shared with BT 1.
Block BS3 contains 3 anchors two of which are shared with BT 1 while the third is
shared with BT2.

Shared-anchors based proximity calculations must be performed on every possi-
ble pairs of blocks (6 pairs in this case). As the (BS1, BT 1) pair only has one common
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Fig. 2 Anchors identification

anchor while the blocks have, in order, 2 and 4 common anchors, Proximity(BS1,
BT 1) = 0.33. The other results are: Proximity(BS1, BT2) = 0.5, Proximity(BS2,
BT 1) = 0.4, Proximity(BS2, BT2) = 0, Proximity(BS3, BT 1) = 0.57, Proximity(BS3,
BT 2) = 0.4.

The number of pairs actually aligned varies according to the threshold value.
Lowering the threshold multiplies alignments and the chances one has of finding
mappings, but also increases runtime costs. With a high threshold, less time is spent
aligning far blocks but this can result in the loss of potential mappings. When the
threshold is set to 0.4, the (BS1, BT 1) pair is not aligned and the common anchor is
not discovered in the mappings. When the threshold is set to 0.33, all the anchors
are discovered in the mappings, but every possible pair of blocks, except the pair
without common anchor (BS2, BT 2) has to be aligned.

This method allows PBM to decompose very large ontologies. Nevertheless this
decomposition is made a priori, without taking into account the objective of align-
ment, because it is applied to each ontology independently from the other. Partition-
ing is done blindly, some anchors may not be in the blocks finally aligned and the
resulting alignment does not necessarily include all desired mappings. Finally, the
calculation of the relevant blocks to be aligned is expensive (in processing time).

Despite these criticisms, the decomposition algorithm PBM is, among all existing
partitioning algorithms, the most adapted to the task of alignment since it allows
control of the maximum size of the generated blocks.

We propose two methods that reuse this algorithm by modifying how it generates
blocks. Our idea is to consider, as soon as possible during the partitioning, all the
existing data relative to the alignment between the concepts of both ontologies and
to try to simulate, at least in the second method, co-clustering.
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3 Alignment Oriented Partitioning Methods

To take into account as soon as possible the objective of alignment, our methods are
going to lean on two facts: on one hand the couples of concepts stemming from both
ontologies which have exactly the same label and can be connected by a relation of
equivalence and on the other hand the possible structural asymmetry of the two
ontologies to be aligned.

Even on large ontologies, it is possible to identify, with a similarity measure
strict and inexpensive to calculate, concepts which have a label in common across
ontologies. As in PBM, we call these couples concept anchors but we will use them
to generate partitions.

The structural asymmetry of both ontologies is used to order their partitioning
and to choose the method to do it: if one ontology is more structured than the other,
it will be easier to decompose it into blocks with a strong internal cohesiveness and
its decomposition can serve as a guide for the decomposition of the other ontology.
In what follows, the most structured ontology will be called the target, OT and
the less structured, the source, OS. The first method that we propose, called PAP

(Partition, Anchor, Partition), consists in beginning by decomposing the target OT ,
then by using identified anchors, to force the partitioning of OS to follow the pattern
of OT . In so doing, this first method partially breaks the structure of the source OS.
This is not a problem when the source is poorly structured.

However, if OS is well-structured, the PAP method is inadequate and we suggest
another partitioning method, called APP (Anchor, Partition, Partition) which follows
more closely the structure of both ontologies. The APP method partitions OT by
favoring the fusion of blocks sharing anchors with OS, and partitions OS by favoring
the fusion of blocks sharing anchors with the same block generated from OT .

3.1 The PAP Method

The PAP method consists in beginning by decomposing the target OT , then by
forcing the partitioning of OS to follow the pattern of OT . To achieve this, the
method identifies for each block BTi from OT all the anchors belonging to it. Each
of these sets will constitute the kernel or center CBSi of a future block BSi to be
generated from the source OS. The alignment of the pairs of blocks allows to find,
in the final step of alignment, all the equivalence relations between anchors. The
PAP method consists of four steps besides the calculation of anchors:

Partition OT into several blocks BTi. Partitioning is done according to the PBM

algorithm.

Identify the centers CBSi of the future blocks of OS. The centers of OS are deter-
mined from two criteria: the pairs of anchors identified between OS and OT , and the
blocks BTi built from the target ontology OT .

Let the function Anchor(E,E ′), whose arguments E and E ′ are each an ontology
or a block, returns all concepts of E which have the same label as the concepts of
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E ′. For each block BTi built in the previous step, the centers of future blocks of OS

are calculated as follows:

CBSi = Anchor(OS,BTi)

Partition the source OS around the centers CBSi. After identifying the centers of
the future blocks OS, we apply the PBM algorithm with the following difference.
Instead of inputing the set of the m concepts as m blocks, each reduced to a single
concept, we introduce the n centers identified in the previous step, as distinct blocks
but with several concepts and other concepts of OS that have no equivalents in OT ,
each one in an individual block. The cohesiveness of the blocks representing the
centers OS is initialized with the maximum value.

Identifying the pairs of blocks to align. Each block BSi built from a center is
aligned with the corresponding block BTi. The algorithm can lead to the consti-
tution of BS j blocks containing no anchors and which, in the current state of our
implementation, are not taken into account in the matching process. The treatment
of these blocks without anchors is a perspective of this work, still under study.

Example. On the toy example presented earlier, Fig. 3 shows first the decomposition
of OT achieved by the PBM algorithm, then the identification of the centers CBSi of
the future blocks of OS. These will be built from the blocks generated for target BT 1

and BT2. CBS1 = {c5, c9, c10, c13} and CBS2 ={c2, c6}.

Fig. 3 The centers CBSi identified from BTi

Figure 4 shows OS blocks resulting from the partition of OS around the centers.
The test on the maximum size of constructed blocks being performed according to
PAP method after the initial block grouping, block BS1 becomes larger than the size
limit so no other block can be grouped with it. It is the same for BS2. Thus this parti-
tioning reveals a block without anchor, BS3, which will not be aligned. The aligned
pairs are (BS1, BT 1) and (BS2, BT2), immediately identifiable by construction.
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Fig. 4 Partition of OS around the centers CBSi identified in precedent step

3.2 The APP Method

The idea of this method is to partition both ontologies at the same time, i.e. to
co-cluster. The problem is that we cannot really treat these ontologies in parallel
because of their large size. To simulate the parallelism, we partition the target
ontology by favoring the fusion of blocks sharing anchors with the source, and we
partition the source by favoring the fusion of blocks sharing anchors with the same
block generated from the target. Then we take into account the equivalence relations
between ontologies identified since the partitioning of OT , which makes the search
for resembling blocks easier and improves alignment results. Unlike the PBM

algorithm and our PAP method, this partitioning method is alignment-oriented: it
simplifies the subsequent task of aligning both ontologies. The APP method has
three steps:

Generate OT blocks. To generate blocks of the target OT , we use the PBM algo-
rithm by modifying the definition of the goodness measure to take into account the
equivalence relations between both ontologies. We add a coefficient representing the
proportion of anchors that are shared in a block B j of OT . The more anchors a block
contains, the more this coefficient increases its cohesiveness or its coupling value
respectively to other blocks. As a result, during the generation of blocks, the choice
of the block that has the maximum value of cohesiveness or coupling depends not
only upon relations between concepts inside or outside the blocks of OT , but also
upon the anchors shared with OS.

Let α ∈ [0,1], Bi and B j be two blocks of OT , |Anchor(B j,OS)| represents the
number of anchors in B j and |Anchor(OT ,OS)| represents the total number of an-
chors. The goodness equation becomes:

goodness(Bi,B j) = α

(
∑ci∈Bi,c j∈B j

LinkS (ci,c j)

sizeO f (Bi) · sizeO f (B j)

)

+ (1−α)
|Anchor(B j,OS)|
|Anchor(OT ,OS)|
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Fig. 5 Built blocks from OT by the APP method

Generate OS blocks. Again we modify the goodness measure to take into account
at the same time the values of links between OS concepts, the anchors shared
between both ontologies and the blocks built for OT . Let the block Bi of OS be
the block with the maximum value of cohesiveness and the block Bk of OT be the
block which shares the highest number of anchors with Bi. The new calculation
of goodness favors the fusion of Bi with B j, which contains the highest number
of anchors in common with Bk. This gathers in a single source block the anchors
shared with one target block.

Let α ∈ [0,1], Bi and B j be two distinct blocks of OS. Let Bk be the block of OT

which shares the highest number of anchors with Bi. The goodness equation be-
comes:

goodness(Bi,B j) = α

(
∑ci∈Bi,c j∈B j

LinkS (ci,c j)

sizeO f (Bi) · sizeO f (B j)

)

+ (1−α)
|Anchor(B j,Bk)|
|Anchor(OT ,OS)|

Identification of blocks pairs. The alignment is done between the blocks sharing
the highest number of anchors; a block of OS can only align itself with a single
block of OT .

Example. Figures 5 and 6 also display results obtained upon our toy example. Fig. 5
shows the blocks from OT built according to the APP method, favoring anchor
grouping. Fig. 6 shows the blocks built in OS, favoring the construction of blocks
sharing anchors with these of OT while taking the structure of OS into account.

Every source block is only aligned once with the block with which it has the
greatest number of common anchors, identified by construction. So we align the
pairs (BS1, BT 1), (BS3, BT1) and (BS2, BT 2).

BT 3 takes no part in the alignment process because it shares its single common
anchor with BS1 and BS1 has more anchors in common with BT1 than with BT 3.
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Fig. 6 Built blocks from OS by the APP method

This results in the loss of an anchor match, (c2, c5), but reduces alignment runtime.
We can hope that the co-clustering building of the blocks takes inter-ontologies
relationships more into account.

4 Experiments

We have implemented the two methods presented previously and experiments were
made on various ontologies in order to compare partitioning methods through their
suitability for alignment. Generated blocks were aligned by pairs using the align-
ment software developed within our team, TaxoMap (Hamdi et al., 2008).

The experiments were first realized on ontologies in the geographical area, sup-
plied by COGIT6. These ontology sizes are limited so it is possible to align them
directly - without having to partition - and to obtain reference mappings. They are
also well known in the team which enabled us to analyse the semantic relevance
of the generated blocks. Other experiments were then made on two pairs of large
ontologies which our tool fails to align because of scalability problems.

4.1 Experiments on Geographic Ontologies

Target ontology BDTopo, is composed of 612 concepts related by subsumption links
in a hierarchy seven levels deep. Source ontology BDCarto includes 505 concepts
in a hierarchy of depth 4. The results of the direct alignment carried out without
ontologies partitioning are presented in Table 1.

To make the partitions, the maximum size of merger blocks was fixed at 100
concepts, i.e. a block exceeding this size cannot be merged. So the blocks thus gen-
erated contain at most 200 concepts. Table 2 lists the number of blocks generated
for each ontology.

6 The COGIT laboratory (Conception Objet et Généralisation de l’Information To-
pographique), National Geographical Institute.
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Table 1 Relations identified by aligning BDCarto to BDTopo

Ontologies Target Size Source Size isEq isClose isA Σ

BDTopo-BDCarto 612 505 197 13 95 305

Table 2 Partitioning of BDTopo and BDCarto with the different methods

Target Ontology BDTopo Source Ontology BDCarto
Methods Anchors Generated

blocks
Isolated
concepts

Largest
block

Generated
blocks

Isolated
concepts

Largest
block

PBM 191 5 0 151 25 22 105
PAP 191 5 0 151 10 16 143
APP 191 6 0 123 10 16 153

Target ontology BDTopo is the main ontology for COGIT. It is well constructed,
compact and highly structured. The root is only linked to two direct children of depth
1, which are direct parents to a limited number of nodes. It is easy to partition into
semantically relevant blocks, whether by the PBM method which is mainly based on
the structural relations between concepts, by the PAP method, which uses the PBM

algorithm for the partitioning of the target and so gives the same results for it, or
by the APP method. Both possible decompositions, consisting of 5 or 6 blocks, are
relevant.

On the opposite side, source ontology BDCarto is less structured and much dis-
persed. The root is linked to almost thirty direct children, and many sub-trees con-
tain no more than about ten elements. Decomposition is more delicate. The PBM

algorithm generates a big number of small blocks comprising no more than 5 or
6 concepts, 19 blocks do not contain anchors, and 22 blocks contain only one iso-
lated concept. By using the information on the shared anchors, our methods allow
to aggregate to larger blocks more than half of these small blocks and many isolated
concepts, while maintaining its semantic consistency. The generated partition, less
dispersed, is therefore more understandable for the humans and more efficient for
the next phase of blocks alignment.

The choice of the pairs of blocks to align differs according to the method used:

PBM: among the 25 generated blocks only 6 source blocks contain anchors. Theses
6 blocks are aligned with the target blocks for which the ratio of shared anchors on
the sum of anchors present in the two blocks is higher than a given threshold ε , fixed
here at 0.1. This threshold is reached by 9 pairs of blocks, 9 alignments are made.

PAP: the 5 source blocks, built starting from the 5 blocks of the target which contain
anchors, lead in all to 5 alignments.
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APP: the 7 selected pairs are those which maximize the number of shared anchors
of the 7 source blocks containing anchors and which each participates only in one
alignment.

Table 3 shows the number of mappings we obtain by matching the different pairs
of blocks chosen by our alignment tool, TaxoMap. The results presented show that
even by matching fewer pairs of blocks than in the PBM method, matching blocks
generated by our methods give better results in number of identified mappings.

Table 3 Relations identified by the alignment of blocks generated by different methods

Methods Aligned Pairs isEq isClose isA Σ Precision Recall

PBM 9 118 13 52 183 0.96 0.57
PAP 5 192 10 55 257 0.97 0.81
APP 7 147 11 61 219 0.97 0.69

If we analyse the results7 of the two classical alignment measures to compare the
relevance of the techniques, the precision (the number of correct mappings identified
after partition compared to the full number of returned mappings after partition)
and the recall (the number of correct mappings identified after partition compared
to the number of reference mappings), we see that our methods have a much better
recall. Indeed, these methods take into account the equivalence relations between
the labels in the partitioning process, which brings together the concepts that have
relations between them in blocks which will be considered thereafter as pairs to
align, while the PBM method partitions ontologies independently from each other
and makes only an a posteriori alignment. The PAP method allows in particular,
by construction, to find all mappings corresponding to the anchors and thus has a
higher recall. We are currently working upon heuristics which could be applied,
after the partitioning step, on isolated blocks and which would increase the recall of
our methods.

The fact that the different methods have a precision lower than 1. means that
all three of them find mappings which had not been identified by the alignment of
the unpartitioned ontologies. Although these mappings are here considered to be
invalid, they are not necessarily wrong. Indeed, for every source concept, our tool
produces a single mapping with one concept of the target ontology, that which it
considers the best, even if several concepts of the target could be matched. If the
two concepts involved in a reference mapping are no longer compared because they
are divided into non-aligned blocks, another mapping, which will not necessarily be
uninteresting, can be found for the source concept. The study of the quality of these

7 These results were calculated automatically by the API of alignments evaluation available
on the Web, http://oaei.ontologymatching.org/2008/align.html, by providing in reference
the file generated by direct alignment by TaxoMap without partition.
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new mappings, as well as more advanced analysis of the relative qualities of our two
methods, will be carried out in complementary work.

4.2 Experiments on Large Ontologies

We tested the two different methods on two pairs of large ontologies (Library and
FAO). These pairs of ontologies are used as test in the evaluation campaign OAEI
(Ontology Alignment Evaluation Initiative) in which alignment tools compete each
year on ontologies of diverse sizes and domains.

For both tests (Library and FAO), the comparison between our methods and the
PBM method is complex because the FALCON system was not a participant to the
2008 OAEI campaign and we did not participate to the FAO test in the 2007 cam-
paign. Furthermore, as the FAO pair of ontologies was not a test case provided by
the 2008 campaign, we did not access the reference mappings. Despite of this, we
present in this section, two kinds of experiments. First, we provide a comparison be-
tween our results and those obtained by the participants having done the Library test
in 2008. Second, we use the FAO test to compare the number of blocks generated
by our methods and the PBM algorithm.

4.2.1 Library Test

The Library set of tests is made of two thesauri, GTT and Brinkman, in Dutch.
These two thesauri are used by the National Library of the Netherlands to indexed
the books of two large collections. GTT thesaurus contains 35,194 concepts and
Brinkman contains 5,221 concepts. Each concept has (exactly) one preferred label,
but also synonyms (961 for Brinkman, 14,607 for GTT). The organizers of the test
in 2007 showed that both thesauri have similar coverage (2,895 concepts actually
have exactly the same label) but differ in granularity and that the thesauri structural
information was very poor. GTT (resp. Brinkman) contains only 15,746 (resp 4,572)
hierarchical broader links. Its structure being particularly poor (it has 19,752 root
concepts), GTT thesaurus was considered as the source in our experiments.

As both ontologies are very imbalanced and as the number of retrieved anchors
was limited to 3,535, which is not much with respect to the size of the source, we
only experimented with the PAP method. We set the maximum size for a block to
be grouped to 500.

Table 4 Partitioning of Brinkman and GTT

Target Thesaurus Brinkman Source Thesaurus GTT
Methods Anchors Generated

blocks
Isolated
concepts

Largest
block

Generated
blocks

Isolated
concepts

Largest
block

PAP 3 535 227 0 703 2 041 16 265 517
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The PAP method returned 227 blocks for Brinkman, the larger of which had 703
concepts, and 2,041 blocks for GTT, the larger of which had 517 concepts. 16,265
concepts of GTT remained isolated.

As over 1,800 blocks of GTT contained no anchors, we only aligned 212 pairs
and identified 3,217 matches, only 1,872 of which were equivalence relations (Ex-
actMatch).

Table 5 Relations identified by the alignment of blocks generated by the PAP method

Methods Aligned
Pairs

isEq isGeneral isClose isA Σ Precision Recall

PAP 212 1 872 40 274 1 031 3 217 0.88 0.41

The reason why so few equivalence relations were returned, with respect to the
number of identified anchors, is that both thesauri contain a large number of syn-
onyms. We identified 3,535 anchors while only 2,895 concepts were supposed to
have the same label. This means that at least 640 anchors concern source concepts,
among which at least 2 labels are considered equivalent to 2 other target labels,
which are not necessarily associated to the same concept. The problem here is that
if a source concept is anchored to 2 distinct target concepts, at best both these target
concepts belong to the same block, and the target concept is linked by an Exact-
Match relation to only one of these concepts. In the worst case, the 2 target concepts
belong to distinct blocks and the PAP method does not know to which block the
source concept should be linked. So the PAP method sets it to become an isolated
concept.

Table 6 Results of the systems taking part in the Library test

Participant ExactMatch Precision Coverage
DSSim 2 930 0.93 0.68
TAXOMAP 1 872 0.88 0.41
Lily 2 797 0.53 0.37

Even though several anchors have disappeared, precision and coverage evalu-
ated only upon equivalence relations (ExactMatch) by the organizers of the test, and
presented in Table 6, place our system TAXOMAP running the PAP method, in rea-
sonable position. Among the other two participants, DSSim 8 (Nagy et al., 2008)
got better results than us but Lily 9 (Wang and Xu, 2008) did worse.

8 The authors of DSSim say they partition the ontologies but do not explain how.
9 The authors of Lily say they process the ontologies according to a method which is not

based upon partitioning but they refer to a yet unpublished article.
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4.2.2 FAO Test

The FAO set of tests (2007) comprises two ontologies : AGROVOC and NALT, which
consist respectively of 28 439 and 42 326 concepts. AGROVOC is a multilingual
ontology built by FAO (Food and Agriculture Organization). It covers the fields of
agriculture, forestry, fisheries, environment and food. NALT is the thesaurus of NAL
(National Agricultural Library) on the same subject.

The most important ontology, NALT, is used as the target and AGROVOC is used
as the source. The maximum size of merger blocks is fixed at 2 000 concepts.

Table 7 Partitioning of AGROVOC and NALT

Target Ontology NALT Source Ontology AGROVOC

Methods Anchors Generated
blocks

Isolated
concepts

Largest
block

Generated
blocks

Isolated
concepts

Largest
block

PBM 14 787 47 4 3 356 318 492 2 830
PAP 14 787 47 4 3 356 252 199 2 939
APP 14 787 47 4 3 118 95 199 3 534

Despite there are no reference mappings which make possible to analyse the
quality of produced alignments, we nevertheless present the results of partitioning
in Table 7 because they seem us relevant. Table 7 shows that in this experiment, as
in the previous one, partitioning according to our methods minimized the number
of isolated concepts, and in particular according to the APP method, minimized the
number of generated blocks, leading to partitions that might be less dispersed.

Among the 47 blocks built for OT according to the PAP method, only 42 contain
anchors. So 210 of the 252 blocks built for OS take no part in the alignment process
which matches 42 pairs of blocks. The APP method matches 25 pairs of blocks.

5 Conclusion

As current tools for ontology alignment lose their effectiveness on large ontologies,
the objective of this work was to study the techniques of ontology partitioning ori-
ented towards the alignment task.

The two methods we propose take the PBM algorithm for ontology partitioning,
developed for the alignment system, but instead of applying the algorithm, as PBM,
successively and independently on each ontology, we try to take into account as
soon as possible in the partitioning process the context of the alignment task.

Our methods are applied on two ontologies simultaneously, and use alignment-
related data. These alignment-related data are easy to extract, even from large on-
tologies. They include pairs of concepts, one concept from each ontology, which
have the same label, and structural information on the ontologies to align.

The PAP method is well suited for ontologies of a dissymmetrical structure. It starts
by decomposing the best structured ontology and then forces the decomposition of the
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second ontology following the same pattern. The APP method can be applied when
both ontologies are well structured. It favors the generation of blocks of concepts,
which are related, from one ontology to the other, by equivalence links.

The fact that the partitioning algorithms only use data easy to extract, in a
light treatment, allows very large ontologies to be partitioned. It is thus a scalable
approach.

Our methods were tested on different ontology couples. The results presented
here show that they can build partitions less dispersed by limiting the number of
generated blocks and isolated concepts. For the experiment where we have reference
mappings, we have been able to see that our partitions lost fewer mappings.

We are currently working upon heuristics which could be applied, after the parti-
tioning step, on isolated blocks and which would increase the recall of our methods.

We currently continue the experiments to analyse the qualities of our two meth-
ods when both ontologies are heavily unbalanced (in terms of size and structure) or
when the number of concepts with identical labels is limited.

Acknowledgements. This research was supported by the French National Research Agency
(ANR), through the GeOnto project ANR-O7-MDCO-005 on “Creation, Comparison and
Exploitation of Heterogeneous Geographic Ontologies” (http://geonto.lri.fr/) and through the
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Learning Ontologies with Deep Class
Hierarchies by Mining the Content of
Relational Databases

Farid Cerbah

Abstract. Relational databases are valuable sources for ontology learning. Previ-
ous work showed how precise ontologies can be learned and be fruitfully exploited
to solve practical problems, such as ensuring integration and interoperation of het-
erogeneous databases. However, a major persisting limitation of the existing ap-
proaches is the derivation of ontologies with flat structure that simply mirror the
schema of the source databases. In this paper, we present the RTAXON learning
method that shows how the content of the databases can be exploited to identify
categorization patterns from which class hierarchies can be generated. This fully for-
malized method combines a classical database schema analysis with hierarchy min-
ing in the stored data. RTAXON is one of the methods implemented in RDBToOnto,
a comprehensive tool that support the transitioning process from access to the data
to generation of populated ontologies.

Keywords: Ontology Learning, Data Mining, Maximum Entropy, Relational
Databases, Reverse Engineering.

1 Introduction

In companies that need to produce and manage technical knowledge on complex
engineering assets, as in aerospace and automotive industries, a large proportion of
technical corporate repositories are built upon relational databases. These reposito-
ries are without doubt among the most valuable sources for building highly accurate
and effective domain ontologies. However, undertaking such a transitioning process
to ontologies without adequate software support might be deemed too tedious and
costly by many practitioners. In this context, the availability of robust learning tools
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to derive ontologies from relational databases can be a strong argument to convince
potential adopters.

Ontology learning from relational databases is not a new research issue. Several
approaches and tools have been developed to deal with such structured input. Past
contributions showed how precise ontologies can be learned and be fruitfully ex-
ploited to solve practical problems, such as ensuring integration and interoperation
of heterogeneous databases. However, a major persisting limitation of the existing
methods is the derivation of ontologies with flat structure that simply mirror the
schema of the source databases. Such results do not fully meet the expectations of
users that are primarily attracted by the rich expressive power of semantic web for-
malisms and that could hardly be satisfied with target knowledge repositories that
look likes their source relational databases. A natural expectation is to get at the
end of the learning process ontologies that better capture the underlying conceptual
structure of the stored data.

Ontologies with flat structure is the typical result of learning techniques that ex-
clusively exploit information from the database schema without (or just marginally)
considering the data. A careful analysis of existing databases shows that additional
definition patterns can be learned from the data to significantly enrich the base struc-
ture. More particularly, class hierarchies can be induced from the data to refine
classes derived from the relational schema.

In this paper, we define a comprehensive approach to ontology learning from rela-
tional databases that combines two complementary information sources: the schema
definition and the stored data. We show how the content of the databases can be
exploited to identify categorization patterns from which class hierarchies can be
generated.

The remainder of the paper is organized as follows. We introduce in Sect. 2 a
motivating example to illustrate the idea of combining the two sources in the learn-
ing process. In Sect. 3, we review previous work on ontology learning applied to
relational databases and the related issue of database reverse engineering. Sect. 4
is the core of this contribution. We give an extensive description of our formalized
approach. Sect. 5 describes the experiments we conducted to validate the imple-
mented method. Section 6 provides an overview of RDBToOnto, the tool in which
the learning method is implemented. Then, we conclude with some directions for
further research.

2 A Motivating Example

We start by depicting the typical transitioning process on an academic example.
Figure 1 shows the input and the potential output of such of a process when applied
on an extract of a database from a food delivery service application.

The derivations applied to get the target ontology can be divided in two inter-
related parts. The first part, named (a) in the figure, includes derivations that are
motivated by the identification of patterns from the database schema. In this ex-
ample, each relation (or table) definition from the schema is the source of a class
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Fig. 1 An example of ontology building by exploiting both the schema and the data

in the ontology. Such simple mappings from relations to classes are often relevant
though many exceptions need to be handled (for instance, as we will see later on,
some relations are more likely to be translated as class-to-class associations). To
complete the class definitions, data type properties are derived from some of the
relation attributes. The links between tables in the schema show the external refer-
ences made through foreign key relationships (the primary keys are the underlined
attributes in the relation definitions). These binary key-based associations are the
most reliable input for linking classes and, in our example, each of the four foreign
key relationships is translated into an object property.

The derivations applied to obtain this upper part of the ontology are well covered
by current methods and, if applied on this database example, most of the methods
would actually provide this result as output. However, by looking closer at the data,
it can be noticed that the process could go further. In the Products table, we can see
that additional structuring patterns could be exploited to make the ontology more ac-
curate. More particularly, the (b) part of the derivations shows how the Product class
can be refined with subclasses derived from the values of Category column in the
source Products table. In the same vein, the Supplier class could be extended with
a two-level hierarchy by interpreting the values in both City and Country columns
of the corresponding table (resulting in subclasses Sweden Supplier−→ Stockholm
Supplier, Göteborg Supplier, etc).

These are typical examples of subsumption relations that can be discovered by
mining the database content. One of the key issues addressed in this work is the
identification of relation attributes that may serve as good categorization sources
and we show how these specific learning mechanisms can be consistently integrated
in a comprehensive learning approach to the global ontology construction problem.
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3 Related Work

Ontology learning from relational databases is a relatively recent issue. However, it
can benefit from early work in the domain of database reverse engineering whose
goal was to extract object-oriented models from relational models (Behm et al.,
1997; Premerlani and Blaha, 1994; Ramanathan and Hodges, 1997). The core of
the transformation rules for database reverse engineering purposes are still relevant
in the context of ontology learning. The most reliable rules have been reused as
a starting point and extended in several approaches that have ontologies as target
models (Stojanovic et al., 2002; Astrova, 2004; Li et al., 2005).

Most approaches are based on an analysis of the relational schemas. However,
to some extent, analysis of the database content has been investigated yet both in
reverse engineering and ontology learning. In Tari et al. (1997), the reverse engi-
neering method includes a thorough analysis of data correlations between tuples in
order to identify additional relations not made explicit in the schema. The impact of
these data exploration mechanisms are limited since data correlation in this context
is to be interpreted as correlations between key values, i.e. between identifiers of the
tuples1. However, the non-key attributes are not considered. In Astrova and Stantic
(2004), the same key value correlations are reinterpreted in the context of ontology
learning. In addition, the analysis is extended by considering equality and overlap
between attribute names, but attribute extensions are not involved in the process.

Several approaches are including in their transitioning process specific rules for
identifying inheritance relationships. However, efforts are also concentrated on re-
lationships based on key value correlations, and more particularly on key value in-
clusion. For example, in the schema of figure 1, the Customers table might have
been refined by the designers with the additional tables PrivateCustomer and Com-
panyCustomer. A way to link these specialized tables to the main Customers table
would be to share primary key values. In practice, the rules based on the identifica-
tion of such key-based constructs are not the most productive since these modelling
schemes are only found in carefully designed databases.

In Lammari et al. (2007), the identification of "Generalization/Specialization" re-
lations is based on a precise interpretation of null value semantics. This approach
somewhat takes advantage of the unsuitability of the relational model to properly
express inheritance. Typically, when all instances (i.e tuples) of a generic concept
and its sub-concepts are gathered into a single table, some attributes may only be
relevant for some subconcepts, and thus filled for instances of these sub-concepts
but left empty for the others. For example, in an Employees relation that includes all
employees of a flight company, attributes FlightHours and LicenceNumber would
be filled with null values in entries corresponding to non-members of the flight
staff. Partitioning of a relation on the basis of null values and their cooccurrences
may reveal the underlying concept hierarchy. This hierarchy identification approach

1 The basic idea is to exploit the fact that "objects" unambiguously identified by unique keys
all over the database may have their descriptions spread in different tables. The key value
correlations may reveal the implicit links between the involved tables.
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involves an analysis of non-key attribute extensions. On this respect, this approach
and the one we propose in this paper fall in the same category.

Some approaches are using forms, often automatically generated from the source
database (Astrova, 2004; Benslimane et al., 2007). Though forms can hardly be con-
sidered as the primary source compared to the database schema and data, such more
or less structured input can be used as a complementary source. More particularly, to
name elements of the resulting ontology model, user-oriented concept names found
in the forms can be more explicit than those given to relations and attributes in the
relational schema.

As a related issue, mapping languages (Bizer, 2003; de Laborda and Conrad,
2005; Barrasa et al., 2004) are declarative means that provide convenient ways to
map relational models to pre-existing ontologies and to automatically generate in-
stances from the data. For database integration needs, Relational.OWL (de Laborda
and Conrad, 2005) is an ontology of the relational model that can be used as a neu-
tral representation to ensure interoperability of database systems.

4 Combining Schema and Data Analysis

The primary motivation in the design of the RTAXON method was to combine the
most robust rules for exploiting relational schemas with data mining focused on
the specific problem of concept hierarchy identification. One of the key issues ad-
dressed in this work is the identification of relation attributes that may serve as good
categorization sources and we show how these specific learning mechanisms can
be coherently integrated into a comprehensive learning approach to ontology con-
struction. In this prominent part of the paper, we start by introducing some basic
notations and definitions that will be used to describe our approach. Then, we out-
line the steps of the overall ontology learning process (Sect. 4.2) before providing a
detailed description of the data mining step for hierarchy identification (Sect. 4.3).

4.1 Preliminary Definitions

A relational database schema D is defined as a finite set of relation schemas
D = {R1, . . . ,Rn} where each relation schema Ri is characterized by its finite set
of attributes {Ai1, . . . ,Aim}. A function pkey associates to each relation its primary
key which is a set of attributes K ⊆ R.

A relation r on a relation schema R (i.e. an instance of R) is a set of tuples which
are sequences of |R| values. Similarly, a database d on D is defined as a set of
relations d = {r1, . . . ,rn}. By convention, if a relation schema is represented by
a capital letter, the corresponding lower-case letter will denote an instance of the
relation schema.

A projection of a tuple t on a set of attributes X ⊆ R, denoted t[X ], is defined as a
restriction on t, resulting in the subsequence with values corresponding to attributes
of X . The projection of a relation r on X , denoted πX(r), is defined by πX(r) =
{t[X ] | t ∈ r}.
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The concept of inclusion dependency (e.g. Abiteboul et al. 1995) is used to ac-
count for correlations between relations. An inclusion dependency is an expression
R[X ] ⊆ S[Y ] where X and Y are respectively attribute sequences of R and S rela-
tion schemas, with the restriction |X | = |Y |. The dependency holds between two
instances r and s of the relation schemas if for each tuple u in r there is a tuple v in
s such that u[X ] = v[Y ]. Informally, an inclusion dependency is a convenient way to
state that data items are just copied from another relation.

Foreign key relationships can be defined as inclusion dependencies satisfying the
additional property: Y = pkey(S). The notation R[X ] ⊆ S[pkey(S)] will be used for
these specific dependencies.

Formal descriptions of ontology fragments will be expressed in OWL abstract
syntax.

4.2 The Overall Process

The transformation process is basically a composition of automated steps. The main
steps of this process are: database normalization, class and property learning and
ontology population.

It should be mentioned that some of the features and processing steps involved
in this specific method are reused from the RDBToOnto framework (see Sect. 6)
and can be exploited in the design and implementation of other methods.

- Database Normalization

In early approaches, this stage is not integrated in the learning process. It is quite
common to consider as input relational databases that are in some normal form,
often 2NF or 3NF (e.g. Abiteboul et al. 1995). It is assumed that the transformation
process can be easily extended to cope with ill-formed input by incorporating at
the early stages of the process a normalization step based on existing algorithms.
Though theoretically acceptable, this assumption has some drawbacks in practice.
Many databases we used to experiment the process had redundancy problems and
substantial normalization efforts were often required to build up acceptable input
for ontology construction. More particularly, data duplication between relations is
a recurring problem that might have a negative impact on the resulting ontologies.
Such data duplications can be formalized as inclusion dependencies where the set of
attributes from the source relation are not restricted to the primary key (i.e inclusion
dependencies that are not foreign key relationships). To eliminate these duplications,
the database need to be transformed by turning all these inclusion dependencies into
foreign key relationships. More formally, each attested dependency R[X ]⊆ S[Y ] with
Y = pkey(S) is replaced by the foreign key relationship R[A]⊆ S[pkey(S)] where A
is a newly introduced foreing key attribute, and all non key attributes in X together
with corresponding data in r are deleted from the relation.

This preliminary step is semi-automated as the inclusion dependencies to be
processed are defined manually and the database transformation is performed
automatically.
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- Class and Property Identification

This is the core step of the ontology learning process where relations of the database
are explored to derive parts of the target ontology model. The database schema is
the first information source exploited through the application of prioritized rules that
define typical mappings between schema patterns and ontology elements, namely
classes, datatype and object properties. We give in table 1 three of the most reliable
rules which are also employed in several existing approaches. The first trivial rule
states that every relation can potentially be translated as a class though relations can
be consumed by more specific rules with higher priority, such as the third rule. The
second rule is also a simple mapping from a foreign key relationship to a functional
object property. The third rule is intended to match a relation with a composite pri-
mary key and two key-based attributes. Such bridging relations are only introduced
in the database to link two other relations through key associations. They are turned
into many-to-many object properties.

Content of the relations is the second information source allowing to refine with
subclasses some of the classes obtained by applying schema-based mapping rules.
This additional part is central in the RTAXON method (see Sect. 4.3).

- Ontology Population

Final step aims at generating instances of classes and properties from the database
content. For a given class, an instance is derived from each tuple of the source re-
lation. Moreover, if refinement into subclasses has been successfully applied on the
class, the instances need to be further dispatched into the subclasses.

4.3 Extracting Hierarchies from the Data

In Sect. 2, we introduced through an example the issue of hierarchy mining from
database content, showing how classes derived from the schema can be refined with
subclasses extracted from the stored data.

More specifically, our motivating example provides illustration of some mod-
elling patterns attested in many databases where specific attributes are used to assign
categories to tuples. These frequently-used patterns are highly useful for hierarchy
mining as values of categorizing attributes can be exploited to derive subclasses.

Our method for hierarchy mining is focused on exploiting the patterns based on
such categorizing attributes. Finding these patterns is a difficult task compared to
the matching operations required to identify patterns which are based solely on the
schema definition, as in rules of table 1.

We describe below the pattern identification procedure. Then, we discuss the
generation of the subclasses from the identified patterns.

4.3.1 Identification of the categorizing attributes

Two sources are involved in the identification of categorizing attributes: the names
of attributes and the redundancy in attribute extensions (i.e. in column data). These
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Table 1 Three reliable rules that match patterns in the database schema. In the Target part,
the variable in bold holds the Uri of the generated ontology fragment. sourceOf assertions
provide traceability to control the process

Relation to Class
Source Preconditions Target
R ∈D ¬ ∃C | R = sourceO f (C) class(CR)

Foreign key Relationship to Functional Object Property
Source Preconditions Target

ObjectProperty(PA
R0[A]⊆ R1[pkey(R1)] R0 = sourceO f (C0) domain(C0)

R1 = sourceO f (C1) range(C1)
Functional)

Composite Key Relation to Object Property
Source Preconditions Target
R0 ∈ D ObjectProperty(PR
|R0|= 2 R1 = sourceO f (C1) domain(C1)
pkey(R0) = {K1,K2} R2 = sourceO f (C2) range(C2))
R0[K1]⊆ R1[pkey(R1)]
R0[K2]⊆ R2[pkey(R2)]

two sources are indicators that allow to find attribute candidates and select the most
plausible one.

- Identification of lexical clues in attribute names

Categorizing attributes are often lexically marked. When used for the purpose of
categorization, the attributes may bear names that reveal their specific role in the
relation (i.e. classifying the tuples). In example of figure 1, the categorizing attribute
in the Products relation is clearly identified by its name (Category). The lexical clue
that indicates the role of the attribute can just be a part of a compound noun or of
an abbreviated form, as in the attribute names CategoryId or CatId. Our candidate
filtering method relies on a simple segmentation procedure that aims at identifying
clues from a predefined list of frequently used lexical items. We further discuss in
Sect. 5 on evaluation the experimental setting of this predefined list of clues.

With an extensive list of lexical clues, the filtering step based on lexical clues can
be effective (see Sect. 5). However, experiments on complex databases showed that
this step often ends up with several candidates. Furthermore, attributes that can play
a categorization role are not necessarily defined with lexically marked names. In the
example of figure 2, the attributes Country and City can be seen in some application
contexts as good categorization sources even though no lexical clues can be found
in the attribute names. These facts motivate the need for complementary ways to
characterize the potentially relevant categorizing attributes. Additional filtering
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Fig. 2 An example of a categorization pattern where the categories to be exploited for hier-
archy generation are further defined in an external relation

mechanisms can help to make a decision even when no lexical clues can be found
or to choose between lexically pre-filtered attributes. Information diversity in the
attribute extension appears to be a good complementary source in this selection
process.

- Filtering though entropy-based estimation of data diversity

We make the assumption that a good candidate for tuple categorization might exhibit
some typical degree of diversity that can be formally characterized using the concept
of entropy from information theory.

Entropy is a measure of the uncertainty of a data source. In our context, attributes
with highly repetitive values will be characterized by a low entropy. Conversely,
among attributes of a given relation, the primary key attribute will have the highest
entropy since all values in its extension are distinct.

Informally, the rationale behind this selection step is to favor the candidate that
would provide the most balanced distribution of instances within the subclasses.

We give in what follows a formal definition of this step.
If A is an attribute of a relation schema R instantiated with relation r, the diversity

in A is estimated by:

H(A) =− ∑
v∈πA(r)

PA(v) . logPA(v) (1)

PA(v) =
|σA=v(r)|

|r| (2)

• πA(r) is the projection of r on A defined as πA(r) = {t[A] | t ∈ r}. This set is
the active domain of A. In other words, πA(r) is the set of values attested in the
extension of A. Each value v of the set πA(r) is a potential category (to be mapped
to a subclass in the ontology).
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• σA=v(r) is a selection on r defined as σA=v(r) = {t ∈ r | t[A] = v}. This selection
extracts from the relation r the subset of tuples with A attribute equal to v. In this
specific context, the selection extracts from the relation all entries with (potential)
category v.

• PA(v) is the probability of having a tuple with A attribute equal to v. This parame-
ter accounts for the weight of v in A. It can be estimated by the relative frequency
of v (i.e. maximum-likehood estimation).

Let now C ∈ R denote the subset of preselected attributes using lexical clues. A first
pruning operation is applied to rule out candidates with entropy at marginal values:

C′ = { A ∈C |H(A) ∈ [ α, Hmax(R) . (1−β ) ] } (3)

• Hmax(R) is the highest entropy found among attributes of the relations
(Hmax(R) = maxA∈R H(A))

• α and β are parameters such that α,β ∈ [0,1].

As said earlier, Hmax(R) is often the entropy of the primary key attribute.
If, after this pruning step, several candidates still remain2, we ultimately select

the attribute that would provide the most balanced organization of the instances.
This amounts to look for the attribute whose entropy is the closest to the maximum
entropy for the number of potential categories involved. This maximum entropy is
given by :

H̃max(A) = log |πA(r)| (4)

This reference value, which is derived from the entropy expression (1), is represen-
tative of a perfectly balanced structure of |πA(r)| categories with the same number
of tuples in each category. Note that this value is independent of the total number of
tuples (|r|).

The final decision aims at selecting the attribute A∗ whose entropy is the closest
to this reference value:

A∗ = arg min
A∈C′

δ (A) (5)

Where

δ (A) =
|H(A)− H̃max(A)|

H̃max(A)
(6)

4.3.2 Generation and population of the subclasses

As shown in first rule of table 2, the generation of subclasses from an identified
categorizing attribute can be straightforward. A subclass is derived from each value
type of the attribute extension (i.e. for each element of the attribute active domain).

However, proper handling of the categorization source may require more com-
plex mappings. The second rule in table 2 matches a more specific pattern where

2 Note that all candidates can be eliminated. In this case, the first candidate is arbitrarily
chosen.
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Table 2 Complex rules for hierarchy generation based on identification of categorizing at-
tributes (A = catAtt(r)). Within the target part of the rule, the variable in bold holds the Uri
of the generated fragment in the ontology.

Categorizing Attribute Values to Subclasses
Source Preconditions Target
r ∈ d R = sourceO f (C) ∀v ∈ πA(r)
A = catAtt(r) class(Cv partial

C)

Categorizing Attribute (Indirect) Values to Subclasses
Source Preconditions Target
r ∈ d
A = catAtt(r)
R[A]⊆ S[pkey(S)] R = sourceO f (C) ∀v ∈ πB1(r)
pkey(S) = {B0} class(Cv partial C)
S = {B0,B1}
|πB0(r)|= |πB1(r)|

values to be used for subclass generation are issued from another relation. The struc-
turing scheme handled by this rule is encountered in many databases. We give in
figure 2 an example where this scheme is applied. In this example, the categoriz-
ing attribute CatId in Albums relation is linked through a foreign key relationship to
a relation Categories in which all allowed categories are compiled. More suitable
names can be assigned by using the values from the second attribute Description
of the Categories relation instead of the numerical key values. In addition, a more
exhaustive hierarchy can be derived by considering also the categories that have no
corresponding tuples in the Albums relation, such as Tango category.

Classes of the resulting hierarchy are populated by exploiting the tuples from
the same source relation. An instance is generated from each tuple. The extra task
of dispatching the instances into subclasses is based on a partitioning of the tuples
according to values of the categorizing attribute.

Formally, for each value v of A∗, the corresponding class is populated with the
instances derived from the tuples of the set σA∗=v(r) = {t ∈ r | t[A] = v}.

5 Evaluation

To evaluate RTAXON, we gathered a set of 30 databases from different domains.
Several technical databases with complex structure were included in this set. We
carried out a thorough analysis of these databases to set up a reference list of cate-
gorizing attributes. 127 categorizing attributes have been identified from 340 tables.
In the selected attributes, the categorisation role is lexically marked through differ-
ent types of clues.
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Table 3 Performance of the RTAXON selection procedure. In 35% of the decisions made,
the second entropy-based filtering step was required to resolve conflicts between several can-
didates which resulted from the first filtering step based on lexical clues. 78% accuracy was
achieved by this second step.

Precision Recall F-Measure w/ conflict res. Acc. conflict res.
75% 72% 73,5% 35% 78%

As attested by the evaluation results outlined in table 3, good performance is
achieved on our representative test set. It is worth noting that this performance level
was obtained by carefully fitting the list of lexical clues exploited in the first filtering
step. In this context, finding the right balance between precision and recall amounts
to find the proportion of word stems (vs full clue words) to be included in this
clue list. Because of the large proportion of attributes with abbreviated names, good
recall cannot be obtained without exploiting clue stems. For example, the stem cat is
required to identify the categorizing attributes Catname, CatId and SubcatItemId, all
encountered in our test set. The counterpart is that such short clues have a negative
impact on the precision. In our evaluation scheme, we only included the stems of
the most frequently used clue words. For instance, the clue word Family, which is
identified as a relevant but not very frequent indicator, is included in the list without
its stem (fam). Consequently, the selection process fails to identify some relevant
attributes (e.g. Productfam) of our test set.

In 35% of the attribute selections performed, more than one candidate resulted
from the first filtering step based on the lexical clues. The conflicts are solved by
invoking the complementary step based on data diversity estimation. 78% accu-
racy was achieved by this conflict resolution step which has the expected effect of
properly excluding the non-relevant attributes. In the definition of the selection pro-
cedure (Sect. 4.3), we made the simplifying assumption that only one categorizing
attribute can be found in a given table. However, the fact is that several candidates
filtered on a lexical basis can be relevant. This is often the case in complex databases
where tables may include several categorizing attributes to classify the data from
different dimensions. Being able to keep in the end two or even more attributes can
lead to better modelling options, especially within an ontology-based representation
framework where multiple class hierarchies are allowed. Further investigations are
needed in this respect to extend the RTAXON method while keeping the same level of
performance.

To better assess the relevance of the entropy-based filtering, we compared maxi-
mum entropy, which is taken as the reference value in our approach, with three other
basic measures. The selection process was unchanged (i.e. the selection of the can-
didate whose score is the closest to the reference value). The three basic measures
considered were the mean, the minimum and the maximum of the active domain
cardinalities over the table attributes. Typically, the aim of the selection based on
the mean reference value is to favor attributes with an "intermediate" number of
distinct values. In the four settings, the process starts by excluding attributes with
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Fig. 3 Comparison of the maximum entropy value with alternative reference values (mean,
minimum and maximum of the active domain cardinalities over the table attributes). The
selection is considered successful if a categorizing attribute is in the first k ranked attributes

marginal scores (see expression (3) in section 4.3). This first operation has the effect
of ruling out columns with many duplicated values and, conversely, columns with
many different values (such as primary keys).

The comparison was performed on a set of 207 attributes obtained by extend-
ing the original set of lexically marked categorizing attributes used for the global
evaluation. We complemented this set with potentially relevant attributes identified
in our database collection but which are not lexically marked. The results of this
comparison are given in figure 3. In the defined evaluation scheme, the selection is
considered successful if at least one of the categorizing attributes is in the first k
ranked attributes. The selection based on maximum entropy clearly outperforms the
three others. These figures are strong arguments in favor of a fine characterization
of the attribute information diversity to find good structuring patterns. Maximum
entropy principles ensures the good ranking of the attributes that would provide bal-
anced distributions of instances in subclasses. However, a side effect that needs to
be better controlled is the positive influence on attributes with a larger number of
potential classes.

6 The RDBToOnto Tool

The RTAXON method is implemented in RDBToOnto3, see also Cerbah (2008), a
highly configurable tool that eases the design and implementation of methods for on-
tology learning from relational databases. It is also a user oriented tool that supports
the complete transitioning process from access to the input databases to generation
of populated ontologies. The settings of the learning parameters and control of the
process are performed through a full-fledged dedicated interface.

3 http://www.tao-project.eu/researchanddevelopment/demosanddownloads/RDBToOnto.html
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A basic principle in the design of RDBToOnto is to allow the derivation of an
exploitable ontology in a fully automated way. By using the tool with its default
configuration, a user can get a populated ontology by simply providing as input the
Uri of the input database. However, it also allows the user to iteratively refine the
result by adding local constraints. Several types of constraints are pre-defined while
allowing (experienced) users to define new ones. More particularly, local constraints
can be included to complement the categorization work performed by RTAXON. To
further refine the ontology structure, the user can specify categorization patterns
that have been missed by the automated mechanisms (i.e. by selecting relevant cat-
egorization attributes through the interface). The generation stage is still fully auto-
mated through application of table 2 rules.

An additional benefit of the semi-automated approach is the ability to handle
more complex categorization patterns. In this perspective, it is possible to deal with
patterns where two categorizing attributes are combined and from which two-level
hierarchies can be derived. We discussed a typical illustration of such a pattern in our
initial example (Sect. 2 and figure 1). We showed how a geography-based hierarchy
of suppliers could be constructed from Country and City attributes in the Suppliers
relation. Automated identification of such patterns is not covered by RTAXON. In the
current state of the method, these patterns based on two categorizing attributes are
signaled by the user through local constraints. However, the automated generation
of the two-level hierarchy and its population are supported by the method4.

Local constraints on instance naming are also highly useful when building fine-
tuned ontologies. Instead of letting the system assign arbitrary names to instances,
it is possible to specify through local constraints attached to source relations how
names should be derived from attribute values (e.g., to an Employees source relation,
it is possible to attach a constraint specifying that instance names should be formed
by combining values of FirstName and LastName attributes).

A set of reusable components can be directly exploited to implement new learn-
ing methods and the user interface can be extended to handle the specific local con-
straints of the new methods.

Additionally, database readers for some of the most common database formats
are included in the tool and new ones can be integrated. The database normalization
task described in Sect. 4.2 is also supported by a reusable component.

7 Conclusion and Further Work

We presented a novel approach to ontology learning from relational databases that
shows how well-structured ontologies can be learned by combining a classical anal-
ysis of the database schema with a task specifically dedicated to the identification of

4 The rules are based on the same principle as those defined in table 2. If A and B are
the attributes that stand respectively for first and second levels of the hierarchy, classes
of the first level are generated from the set πA(r), classes of the second level from the set
πB(r) and the subsumption relation are established with respect to couples of the projection
πAB(r).
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categorization patterns in the data. The formalized method is fully implemented and
included in the RDBToOnto platform as the main learning component. The method
was validated on a representative set of databases.

A major direction for improvement is the extension of the method to deal with the
identification of more complex categorization patterns. We showed that the method
has been extended to cover two-level hierarchies. However, the automated part is
restricted to the generation of the hierarchies whereas the patterns are supposed to
be given as input to the process. Such patterns that are based on several categoriz-
ing attributes might be identified by analyzing cooccurrences between values of the
involved attributes.

The pattern identification step of the method critically depends on the two ex-
ploited information sources (occurrences of lexical clues in attribute names and data
diversity in attribute extensions). Diversifying the sources is a way to reduce this de-
pendency. Typically, the use of prior knowledge can help to recognize categorizing
attributes. For example, geographical (e.g. country and city names) and temporal
data are often used in databases to structure information. Null values as explored
in Lammari et al. (2007) may also provide a complementary source that could be
combined with the sources already exploited in the RTAXON method.
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Semantic Analysis for the Geospatial Semantic
Web

Alina Dia Miron, Jérôme Gensel, and Marlène Villanova-Oliver

Abstract. Semantic analysis is a new search paradigm for the Semantic Web, which
aims the automatic extraction of semantic associations existing between individuals
described in RDF(S) graphs. In order to infer additional semantic associations and
to increase the accuracy of the analysis, we propose here, to adapt semantic analysis
for OWL-DL ontologies. We also show that by taking into account spatio–temporal
information which is usually attached to resources, new and possibly interesting
semantic associations can be discovered. Moreover, we propose to handle spatial
and temporal contexts in order to limit the scope of the analysis to a given region
of space and a given period of time, considered interesting from the user’s point
of view. For reasoning with spatial and temporal information and relations we use
ONTOAST, a spatio–temporal representation and querying system, which is com-
patible with OWL-DL.

Keywords: Geospatial Semantic Web, Semantic Analysis, Spatio-temporal Anno-
tations, OWL.

1 Introduction

Nowadays, one of the most popular Web usages is information search (de Kunder,
2008). Current query systems and search engines retrieve relevant Web documents
by applying syntactic matching between given keywords and textual content of Web
documents. However, with the tremendous amount of digital data available on the
Web, problems of data relevance and information overload become acute.
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The Semantic Web (Berners-Lee et al., 2001) addresses those issues and
promises to increase the performances and the relevance of search engines, by an-
notating the content of any Web resource with machine understandable ontological
terms. By adding a descriptive layer to conventional Web pages, the Semantic Web
supports the evolution of data towards knowledge and marks the beginning of a new
stage in the exploration of Internet. This new stage requires the development of new
search paradigms. Semantic analysis (Sheth et al., 2002) is one of them. It aims
at answering semantic queries like "Is instance x in any way connected to instance
y?", by retrieving all the paths that connect individual1 x to individual y within the
considered ontology graphs.

1.1 Semantic Analysis

Different types of real world objects are often connected in complex and unexpected
ways. There lies the interest of using semantic analysis techniques, which offer new
perspectives in the discovery of connections between seemingly unrelated individu-
als. This new search paradigm also offers the means to associate a context with each
query, in order to handle the user’s interests as well as for eliminating the irrelevant
results. Semantic analysis has been successfully used in domains such as homeland
security, biomedical patents discovery, detection of conflict of interests.

However, so far, semantic analysis has only been defined for RDF(S) graphs and
suffers from the limited expressive power of RDF(S). Namely, it only exploits ex-
plicit knowledge, as RDF(S) does not provide other axioms beside subClassOf
and subPropertyOf. Also, it is impossible to define in RDF(S) the equivalence
and equality relations between resources, so the scope of the semantic analysis re-
search is limited considerably.

So far, semantic analysis has mainly focused on the thematic dimension of meta-
data, analyzing, for instance, the collaboration relations existing between two per-
sons, members of an organization. Thus, semantic analysis completely ignores the
implicit connections resulting from a spatial and temporal proximity between indi-
viduals, which reveal to be very important in domains such as homeland security.
In this context, the study of the spatial proximity between known members of dif-
ferent terrorist cells at some given instants and/or intervals of time, can result in the
identification of hidden collaboration relations.

Moreover, if we study the current developments on the Web, with the growing
popularity of spatial Web applications such as Google Earth, Mappy, ViaMichelin,
Geoportail, Virtual Earth 3D, to name a few, arises the idea of a future Géospatial
Web, where resources are geo-tagged or, in other words, annotated using spatial in-
formations. Egenhofer pushes the argument even further and imagines a Geospatial
Semantic Web, in which the spatial and temporal annotations are well formalized us-
ing ontologies (Egenhofer, 2002), and automatically exploited by agents and query

1 The terms individual and object are used in this paper as synonyms, for designating an
instance of a concept.
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engines. In this context, spatial and temporal annotations on Web resources become
publicly available and could be exploited by semantic analysis for two purposes:

1. the inference of additional semantic associations and
2. the rejection of those which are incompatible with some given spatio–temporal

context(s).

For instance, given the ontological description of two persons who lived in the same
residential area ten years ago, a spatio-temporal semantic analysis may deduce that
these two persons are very likely to know each other. So, the inferred proximity of
their houses can be automatically taken into account for suggesting that there might
be a link between those two persons.

1.2 Spatial and Temporal Reasoning for the Semantic Web

While many of the requirements for capturing semantics and expressing ontologies
are successfully addressed by the Semantic Web initiative, there is still a fundamen-
tal lack when considering the existing standard descriptions (Agarwal, 2005) and
reasoning mechanisms (Egenhofer, 2002; O’Dea et al., 2005) dealing with spatial
and temporal information. Since geospatial reasoning is mainly based on mathe-
matical computations, logical formalisms upon which rely the ontology languages
recommended by W3C (RDF(S), OWL) prove to be unsuited for handling such
data. As a consequence, the processing of spatial and temporal information needs
to be performed using external formalisms and tools. Once obtained, the results of
such computations should be integrated back into the ontological space, becoming
available for future reasoning activities.

In (Miron et al., 2007b), we have proposed the use of a system called ONTOAST
as an answer to the lack of specialized spatial and temporal inference engines de-
fined on top of OWL or RDF(S) ontologies. ONTOAST is a spatio–temporal on-
tology modeling and query environment. ONTOAST supports reasoning on spatial,
temporal and thematic knowledge and can be used for the Semantic Web thanks to
its compatibility with OWL-DL (Miron et al., 2007a).

In this paper, we illustrate the use of ONTOAST for the discovery of semantic
associations (Anyanwu and Sheth, 2003; Halaschek et al., 2004; Sheth et al., 2002).
We propose here a Semantic Association Discovery Framework that uses the spatial
and temporal reasoning capabilities of ONTOAST for limiting the semantic search
space and for inferring new semantic associations. In the first case, the ONTOAST
reasoner filters the ontological knowledge with respect to some specified thematic,
spatial and temporal query contexts. In the second case, by exploiting spatial in-
formation in the description of OWL individuals and object properties, ONTOAST
renders explicit some implicit qualitative spatial relations. Those qualitative rela-
tions are then used for inferring new and possibly interesting semantic associations,
such as “individual x lived veryClose to individual y, for two years”, “individual x
worked inside the same building as individual y”, etc. as showed in section 4.5.

We also describe in this paper the spatial ontology GeoRSS-Simple, that we have
used for attaching spatial information to Web resources. We have extended this
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ontology by a set of qualitative spatial relations. We equally present here the OWL-
Time ontology that we use for describing qualitative and quantitative temporal
information.

The paper is organized as follows. In section 2 the definition of semantic associ-
ations in the context of OWL-DL ontologies is presented. Section 3 illustrates the
architecture of the semantic framework we propose for semantic association dis-
covery. The semantic association discovery approach as well as the context defini-
tions are discussed in section 4. Section 5 presents some related work and section 6
concludes.

2 Semantic Analysis for OWL-DL Ontologies

The concept of semantic association was first introduced by (Sheth et al., 2002)
for describing the indirect relations2 that link two individuals x and y, within a
considered RDF(S) graph, G. A semantic association (also called ontology-path)
is formally defined in (Anyanwu and Sheth, 2003; Halaschek et al., 2004) as a
sequences x(P1 •P2 • . . .•Pn)y of RDF entities so that there exists a set of ob-
jects o1,o2, . . . ,on−1 defined in G which respect the following constraint: xP1o1 ∧
o1P2o2∧ . . .on−1Pny, where ∀i ∈ [1,n] ,Pi is an object property defined in G whose
extension includes the object pairs (oi−1,oi) ,o0 = x and on = y. For example, in
the simple ontology illustrated in Fig. 1, a semantic association can be identified
between individuals pers3 and pers5:

pers3 (studentO f • collaboratesWith)pers5.

pers3

pers4
pers5

teacherOf

collaboratesWith

Teacher Student

Person

teacherOf

studentOf

TBox

ABox

studentOf

collaboratesWith

Legend

class

object

property

subClassOf

instanceOf

Fig. 1 A simple RDF(S) graph. The upper part represents the terminological knowledge
(TBox) and the lower part represents the assertional knowledge (ABox).

2.1 Using OWL-DL Instead of RDF(S)

The choice of using RDF(S) as an ontology modeling language can be considered
as too restrictive considering its limited expressive power when compared to more

2 That implies a set of intermediary individuals and relations.
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powerful formalisms such as Description Logics or Object Knowledge Represen-
tation Languages. Reasons for this are the limited number of axioms supported by
RDF(S), only subClassOf and subPropertyOf, and the absence of axioms
to support the definition of RDF(S) graphs alignment. Moreover, given their XML
based syntax, RDF(S) graphs are difficult to understand and manipulate by non-
expert users. Those observations motivate our work for adapting semantic analysis
techniques to OWL-DL ontologies. Our idea is, on the one hand, to obtain more
expressive power for defining complex ontologies and, on the other hand, to per-
form extended inferences that explore, for example, OWL-DL axioms or ontology
alignments.

RDF(S)

OWL

LIG pers2

pers1

hasAffiliation

collaboratesWith

pers3

pers4

UJF

pers5

studiesAt

teacherOf

collaboratesWith

studentOf
hasEmployee

LIG pers2

pers1

hasAffiliation

collaboratesWith

pers3

pers4

UJF

pers5

studiesAt

teacherOf

collaboratesWith

studentOf
hasEmployee

sameAs

graph1.rdf graph2.rdf

onto1.owl onto2.owl

Fig. 2 Simple examples of ontologies modeled using RDF(S) and OWL-DL

In order to illustrate the advantages of using OWL-DL ontologies instead of
RDF(S) graphs as a basis for semantic analysis, let us study the situation illustrated
in Fig. 2, where pers2 in graph1.rdf is indeed the same individual as pers3 in
graph2.rdf, and the query for semantic associations linking individuals pers1

and pers4. In RDF(S), one cannot define two resources as being equal, so the two
graphs graph1.rdf and graph2.rdf remain disconnected. In this situation, no
association can be discovered between pers1 and pers4. In the second case, when
the same information is modeled in OWL-DL, one can define an equality relation
between pers2 and pers3. This creates a bridge between ontologies onto1.owl
and onto2.owl. In this case, at least one semantic association is found between
pers1 and pers4 :

pers1 (collaboratesWith • studentO f )pers4.

Moreover, in OWL-DL one can also define object properties as being in-
verse, functional, inverse functional or symmetrical. For instance, by defining
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studentOf and teacherOf as being inverse properties, the implicite relations
teacherOf

(
pers4,pers3

)
and studentOf

(
pers3,pers5

)
can be in-

ferred using a reasoner such as Pellet or RacerPro. If we also define the
collaboratesWith relation as being symmetrical, two new semantic associ-
ations can be discovered between pers1 and pers4:

pers1 (collaboratesWith • studiesAt• hasEmployee• collaboratesWith)pers4,
pers1 (collaboratesWith • studentO f • collaboratesWith)pers4.

2.2 A Formal Definition of Semantic Associations

2.2.1 OWL Vocabulary

We consider an OWL vocabulary V , formally defined by (Patel-Schneider et al.,
2004) as consisting of a set of literals VL and seven sets of URI references: VC,
VD, VI , VDP, VIP, VAP, and VO, where VC is the set of class names and VD is the set
of datatype names of a vocabulary. VAP represents the annotation property names,
VIP, the individual-valued property names, VDP, the data-valued property names,
VI the individual names, and VO the ontology names of a vocabulary. The same
source (Patel-Schneider et al., 2004) defines an OWL interpretation as a tuple of the
form: I =< R,EC,ER,L,S,LV >, where R is the set of resources of I, LV represents
the literal values of R, and L is an interpretation that provides meaning to typed
literals. The mapping S provides meaning for URI references that are used to denote
OWL individuals, and helps provide meaning for annotations. EC provides meaning
for URI references that are used as OWL classes and datatypes while ER provides
meaning for URI references that are used as OWL properties.

We also consider O (O ⊆ R, O
⋂

LV = /0 ) as being a non empty set of class in-
stances (objects), the set of object property instances Γ (Γ ⊆ 2O×O), and the set Λ
containing the datatype property instances ( Λ ⊆ 2O×LV ). Considering the fact that
we search for links between individuals in an OWL concrete model, we are only in-
terested in a subset of the mappings EC and ER defined for the interpretation model
I. Thus, we define the function ExtC (ExtC : VC → 2O) as being a specialization of
the EC mapping for providing meaning for URI references that are used as OWL
classes (ExtC(Cl) ⊆ 2O,Cl ∈ VC). We also consider ExtR : VIP → Γ , (ExtR(Rel) ⊆
Γ ⊆ 2O×O,Rel ∈VIP) and ExtD : VDP →Λ , (ExtD(Att)⊆Λ ,Att ∈VDP), as two sub
mappings of ER which provide meaning for URI references that are used as OWL
object properties respectively OWL datatype properties.

2.2.2 Ontology Graph

For any OWL-DL ontology,Ω , it is possible to build an oriented graph G, as defined
by equation 1, whose set of vertices, VG, contains the individuals and literal values
defined in the declarative part of Ω (ABox).
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G = (VG,EG) ,where VG = O∪LV and EG = Γ ∪Λ ,

EG ⊆ {(i, j) |i ∈ O, j ∈O∪LV,∃Rel ∈VIP : (S (i) ,S ( j)) ∈ ExtR (Rel)∨∃Att ∈VDP :

(S (i) ,S ( j)) ∈ ExtD (Att)} (1)

The set of directed edges, EG, corresponds to the object properties (or tuples3),
introduced in the declarative part ofΩ (ABox) or inferred using the property axioms
defined in the terminological part of Ω (TBox).

2.2.3 Semantic Associations - Definition

In this context, we say that two individuals x and y (x,y ∈ VG) are semantically
associated with respect to the graph G, if the latter contains at least one path that
starts with the vertex x, passes through a series of intermediate objects (oi ∈VG, i ∈
[1,n− 1]) connected by tuples (ei ∈ EG, i ∈ [1,n]) and reaches the vertex y. For
describing the ontology-paths in an unambiguous way, in this paper, we use the
following notation:

ontology− path(x,y) = x
e1→ o1

e2→ . . .
en−1→ on−1

en→ y,

oi ∈VG,0≤ i≤ n,x = o0,y = on,e j ∈ EG,1≤ j ≤ n.
(2)

Our work focuses on inference techniques that are able to deduce temporal and
spatial relationships between objects described in an ontology graph G, and that can
lead to the discovery of new ontology-paths. To this end, we propose the use of a
semantic association discovery framework whose architecture is presented in the
next section.

3 Geospatial and Temporal Semantic Analysis Framework

Our proposal is based on the use of ONTOAST (which stands for ONTOlogies
in AROM-ST4) as a spatio-temporal ontology modeling and semantic query envi-
ronment. ONTOAST (Miron et al., 2007b) is an OWL-DL compatible extension
of the Object Based Representation System AROM (Page et al., 2001), a generic
tool designed for knowledge modeling and inference. The originality of this system
stands in its powerful and extensible typing system and in its Algebraic Model-
ing Language (Moisuc et al., 2005) used for expressing operational knowledge in
a declarative way. This language allows one to specify the value of a variable us-
ing numerical and symbolic equations involving various elements of the knowledge
base. ONTOAST is built upon the spatio-temporal module AROM-ST. The interest
of using ONTOAST lies in its predefined set of qualitative spatial and temporal as-
sociations (presented in details in (Miron et al., 2007b)). Those associations can be

3 A tuple is an instance of an object property.
4 AROM-ST is a spatio-temporal extension of the AROM Object Knowledge Representation

System.
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used in order to complete data on the modeled objects as well as to allow for a more
flexible query formulation.

Thus, ONTOAST ontologies are flexible enough to handle the coexistence of, on
the one hand, quantitative spatial and temporal data in the form of exact geometries
and time intervals or instants and, on the other hand, imprecise data in the form of
qualitative spatial and temporal relations. These two kinds of information comple-
ment one another and offer advanced reasoning capabilities. ONTOAST takes into
account three categories of qualitative spatial relations: topology, orientation and
distance. They can be automatically inferred from existing knowledge when they
are needed, or explicitly defined by users. In order to perform similar inferences on
temporal data, ONTOAST manages a set of qualitative temporal relations (before,
after, starts/started-by, finishes/finished-by, during/contains, equals, meets/met-by,
overlaps/overlapped-by).

This paper presents the use of ONTOAST in the semantic association discovery
process. Fig. 3 illustrates the Semantic Analysis Framework that we propose. It
contains five main modules in charge respectively of the Knowledge Acquisition,
the Query Interface, the Ontology-path Discovery, the Result Classification and the
Result Visualization. They are organized as distinct modules built on top of the
ONTOAST System. In order to use the reasoning facilities provided by ONTOAST,
ontological knowledge has to be translated into the AROM formalism and stored
into a local object-oriented Knowledge Repository (see step 1 in Fig. 3).

ONTOAST
Knowledge Repository
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Interface

Ontology-path
Discovery

Result
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Result
Visualization
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Fig. 3 Overview of the ONTOAST Framework for the discovery of semantic associations

Once ontological knowledge is imported into the ONTOAST Knowledge Reposi-
tory, spatial and temporal semantic inferences can be activated. During the ontology-
path discovery process, Knowledge Repository data are filtered using the Spatial
and Temporal Contexts Specification, in order to reduce the search space (step 2 in
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Fig. 3). Filtered ontological knowledge is exploited by the Ontology-path Discov-
ery module which searches for the semantic associations between two individuals
(step 3 in Fig. 3). The Spatial and Temporal ONTOAST Reasoner is used both in
the filtering phase (for inferring spatial characteristics and temporal validity for indi-
viduals) and in the Ontology-path Discovery phase (for inferring spatial connections
between individuals). The obtained ontology-paths are then transfered to the Result
Classification module (step 4 in Fig. 3) which calculates their relevance using the
context specifications (step 5 in Fig. 3). Finally the Result Visualisation module
presents the results to the user (step 6 in Fig. 3).

Obviously the handling of spatial and temporal information increases the scope
of the semantic analysis, but raises at the same time new representation and rea-
soning challenges. For instance, the limited typing system adopted by RDF(S) and
OWL does not offer support for spatial extensions. As a consequence, in order to
model spatial data in OWL, dedicated concepts which simulate spatial datatypes
have to be used. For example, a polygon (instance of a Polygon class) will be rep-
resented by a list of Points (x,y) objects connected to a given Coordinate System.
Nevertheless, this solution has several disadvantages. First of all it is not very easy
to use by non-expert users as the handling of complex ontological concepts and
properties is required. Second of all, at present, there is no standard spatial ontol-
ogy for describing spatial information. Thus the automatic reconciliation of spatial
descriptions defined with respect to distinct spatial ontologies can be extremely dif-
ficult to realize. Moreover, the exploitation of spatial informations in the context of
the Semantic Web is very difficult due to the current absence of spatial reasoners
capable of handling RDF(S) graphs and/or OWL ontologies.

3.1 Spatial Information

Several geospatial ontologies which model geometric features have been proposed
up to now. An assessment study which compares 45 geospatial and temporal on-
tologies relevant to geospatial intelligence, from the annotation, qualitative reason-
ing and information integration points of view, has recently been published (Ressler
and Dean, 2007). Following the recommendation of the authors, we have chosen the
GeoRSS-Simple5 OWL encoding as a reference spatial ontology. GeoRSS-Simple
is a very lightweight format for spatial data that developers and users can quickly
and easily integrate into their applications and use for expressing semantic annota-
tions with little effort. It supports basic geometries (point, line, box, polygon. . . ) and
covers the typical use cases when encoding locations.

The geospatial descriptions are centered on two spatial concepts: _Geometry and
_Feature. The _Geometry class, together with its five specializations (see Fig.4) —
Envelope, LinearRing, LineString, Point and Polygon— can be used for modeling
spatial locations as individuals. This can reveal useful when exact geometrical in-
formation is not available for a spatial object, say l, which can instead be spatially
characterized using the spatial relations that hold between l and other spatial objects

5 http://georss.org/simple
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in the ontology. One can, for instance, simply define a spatial location l, as being a
Polygon instance, without specifying its border. Then, for situating l in space, one
can link it to an address a, by a relation like the NOf direction relation. When using
the _Feature concept, one has a simpler model, which describes spatial information
by means of well formed string or double values, designated using the data prop-
erties line, point, pos, etc. (see Fig. 4). The ONTOAST spatio-temporal reasoner
is designed to recognize spatial data types modeled using the ontological concepts
defined in the GeoRSS-Simple ontology.

Fig. 4 General OWL ontology defining Spatial Objects. It integrates the QualitativeSpatial-
Relations ontology (ont prefix), a reference ontology we have chosen for modeling qualitative
spatial relations compatible with ONTOAST, and the GeoRSS ontology (gml prefix), the ref-
erence ontology for modeling geometric features.

In order to represent in OWL qualitative spatial relations that can be handled by
the ONTOAST reasoner, we propose the use of a QualitativeSpatialRelations on-
tology. This ontology contains two generic types of spatial relations, Direction and
Topology, modeled using object properties. The Direction relation has nine special-
izations which allow the expression of cardinality directions (Nof, Sof, Eof, Wof,
CenterOf, NEof, NWof, SEof, SWof ) existing between spatial objects. Specializa-
tions of the Topology relation have also been defined: Disjoint, Contains, Crosses,
Touches, Equals, Intersects, Overlaps and Within.

Distance relations are more difficult to represent since they come with attributes
specifying, for example, the metric system employed when calculating the distance
(Euclidian distance, shortest road, drive time, etc.), the scale, or the distance type
when regions of space are described (average border points, gravity centers, admin-
istrative centers, etc.). Since OWL-DL does not allow object properties to have some
attributes, distances between spatial objects are reified as objects of the DistanceRe-
lation (see Fig.4 ). Four specializations (VeryFar, Far, Close, and VeryClose) of the
DistanceRelation allow the specification of absolute distances between concepts.
Fig.4 illustrates the general OWL ontology we have used for annotating spatial
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objects. With this ontology, spatial information can be attached to SpatiallyChar-
acterizedObject’s instances in four ways: a) using the isLocatedAt object property,
which designates a concrete geometry (instance of _Geometry) for the specified
geographic object, b) using the isLocatedAt object property that refers to an Ad-
dress, c) using the location object property that designates a concrete spatial feature
(instance of _Feature) and d) through the use of a qualitative spatial relation with
another SpatiallyCharacterizedObject.

3.2 Temporal Information

While the Web Ontology Language offers no data type support for modeling spa-
tial information, things are different for temporal information. OWL offers sev-
eral dedicated data types: xsd : dateTime, xsd : date, xsd : gYearMonth, xsd :
gMonthDay, xsd : gDay, xsd : gMonth, that can be used for associating temporal
characteristics with individuals. However, complex temporal configurations cannot
be expressed by exclusively using those time data types. For example, if one is in-
terested in expressing that the exact temporal extent of the event e1, is unknown and
that e1 happened before a certain instant, one has to use temporal concepts which
model temporal instants or/and intervals and adapted temporal relations defined in
a reference temporal ontology.

Standardization efforts have been made so far (Hobbs and Pan, 2005, 2006),
which resulted in the definition of an expressive ontology of time: OWL-time. In
Fig.5, we present the fragment of the OWL-time ontology used in this work. The
ontology considers two types of temporal entities: instants and intervals. Instants
represent punctual moments of time. One instant can be defined using i) the in-
DateTime object property which specifies its concrete date-time description, ii) the
inXSDDateTime data property, or iii) one or several qualitative temporal relations
(after, before, hasEnd, hasBeginning) the instant satisfies with respect to another
instant and/or interval. Intervals are defined by specifying the earliest and the latest
instants they include (through the hasBeginning, hasEnd object properties). Proper
intervals are special intervals whose beginning and end instants are different.

Fig. 5 Graphical representation of a fragment of the OWL-time ontology
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Thirteen qualitative temporal relations are defined between proper inter-
vals, inspired by Allen’s temporal calculus (Allen, 1983): intervalEquals,
intervalBefore, intervalMeets, intervalOverlaps, intervalStarts, intervalDuring,
intervalFinishes, intervalAfter, intervalMetBy, intervalOverlappedBy, intervalStart-
edBy, intervalContains, intervalFinishedBy. We consider that temporal characteris-
tics can be attached to temporal objects through the use of the holds object property
which has two specializations: atTime, and during, as illustrated in Fig. 6. We have
added a generic object property, qualTempRel, to our reference temporal ontology,
which is a generalization of the thirteen qualitative temporal relations defined be-
tween proper intervals in the OWL-time ontology.

Fig. 6 Reference ontology defining Temporally Characterized Objects. It specifies utility
relations for attaching temporal validity to objects.

Nonetheless, one cannot use the temporal datatypes, nor the temporal concepts
defined by the OWL-time ontology for expressing object property validity within
the decidable frontiers of OWL-DL. This is because, in OWL-DL, the domain and
range of data properties and object properties cannot contain object property based
expressions. An interesting approach is presented in (Gutierrez et al., 2005), and
consists in stamping RDF triples with instants or intervals of time. Since current
OWL recommendations do not support temporal stamps, we propose to simulate
them through special annotations handled by the ONTOAST parser. Three examples
of temporal annotations are shown in Fig.7. The first two assign temporal intervals
to tuples (instances of object properties) and the last one stamps the corresponding
tuple with a temporal instant.

Fig. 7 Examples of temporal annotations on OWL DL tuples, described using the Functional-
Style Syntax defined for OWL 2.
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4 Query Approach

Searching for semantic associations between two individuals can be achieved by
applying classical algorithms of graph path discovery between two given vertices.
In the open Geospatial Semantic Web environment, those algorithms can return a
high number of results. It is therefore necessary to establish some filter criteria that
limit the search space according to the user’s interests. In the following sections
three such filters are presented.

In order to illustrate our approach for the discovery of geospatial and tempo-
ral semantic association, in the reminder of this section, we refer to an ontology
describing collaboration relationships existing between researchers (Fig.9). Let us
consider a query that searches for the existing links between two persons, pers2 and
pers4.

4.1 Semantic Association Discovery Approach

The Ontology-path Discovery module of the Semantic Analysis Framework pre-
sented in section 3 integrates the depth first discovery algorithm presented in Fig. 21.
Ontology-paths between two given individuals x and y are inferred using a progress
stack (called stack) and a result stack, pPath, both containing intermediate tuples.
They are initialized with a virtual tuple, having as objects the start individual (see
lines 2-3). At each step of the algorithm, if advance in the graph if possible, all the
tuples having as subject the current individual (source) and which satisfy the con-
text specifications are added to the stack (see lines 5-9). If, on the contrary, there is
no tuple having as subject the current source, the last considered tuple is eliminated
from the pPath and from the work stack as well. When adding an intermediate tuple
to the pPath, the absence of cycles and the length constraint (LMax) are checked
(line 15). If the current tuple t, blocks the construction of a valid ontology-path, t is
eliminated (lines 24-28) both from the stack and from the pPath. The algorithm is
executed as long as the stack contains possible path alternatives (line 29). In order

1.source=start
2.push(pPath, create Tuple (null, null, source))
3.push(stack, create Tuple (null, null, source))
4.do
5.   if hasTuples(source)
6.     if getSubject(top(stack))=source
7.        for each tpl in tuples(source)
8.           if inCtx(tpl)
9.               push(stack, tpl)
10.    else
11.     pop(pPath)
12.     pop(stack)
13.     source=getObject(top(stack))
14.t=top(stack)
15.if size(pPath) Lmax and not contains(pPath,t)

and not cycle(pPath,getObject(t))
16.   push(pPath, t)
17.   if getObject(t)=stop
18.     add(resultSet, pPath)
19.     pop(pPath)
20.     pop(stack)
21.     source=getSubject(top(stack))
22.   else source=getObject(t)
23.else
24.   if contains(pPath,t)
25.     pop(pPath)
26.   if size(stack) >1
27.     pop(stack)
28.     source= getSubject(top(stack))
29.while size(stack)>1
30.return resultSet

pPathDiscovery(start, stop, Lmax)

Fig. 8 The ontology-path discovery algorithm
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to add a tuple t to the current ontology-path, its elements must satisfy the Tempo-
ral and Spatial Context specifications, defined in sections 4.3 and subsec:4.2. Those
tests are performed by the inCtx function (see line 9). The set of inferred ontology-
paths is kept by the variable resultSet which is a list of lists (see lines 18, 30).

In the worst case scenario, when all objects in G are connected to each other
by a maximum of dmax direct tuples, the maximum complexity of this algorithm is
O(dLmax+1

max ) . This case is highly improbable since the instances of object properties
described in ontologies rarely hold between all pairs of objects. Moreover, the use of
contexts considerably limits the computations. Nevertheless, we intend to optimize
this first version of algorithm, following the approach presented in (Tarjan, 1981),
which provides promising fast algorithms for solving path problems.

In the case when no temporal and spatial filters are applied, the algorithm exhaus-
tively discovers all paths linking pers2 to pers4 in the ontology of Fig.9. Results
obtained in this case are illustrated in table 1. These results can be further refined
using the contextual information attached to the query, as shown in the following
sections.

Fig. 9 Graphical representation of an OWL ABox describing a small social network in the
research domain

Table 1 Ontology-paths linking pers2 and pers4 in the ontology illustrated by Fig.9

p1 = pers2
collaboratesWith→ pers1

studentO f→ pers4

p2 = pers2
collaboratesWith→ pers1

studiesAt→ UIP
hasEmployee→ pers4

p3 = pers2
collaboratesWith→ pers3

isAuthorO f→ paper1
hasAuthor→ pers1

studentO f→ pers4

p4 = pers2
collaboratesWith→ pers3

isAuthorO f→ paper1
hasAuthor→ pers1

studiesAt→ UIP
hasEmployee→ pers4

4.2 Thematic Context

The thematic context for a semantic query captures the user’s thematic interest in or-
der to exclusively present her/him the semantic associations which may be relevant
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from her/his point of view. Concretely, within the target ontologies, one or more
regions of interest Ct1, Ct2,. . . , Ctl can be defined, in the form of sets of classes and
object properties not necessarily disjoint. Once a class/object property is included
into a region of interest Cti, all of its subclasses/sub properties are also considered as
being part of the context Cti. The user can assign different weights to those regions
(w1, . . .wl), for quantifying their importance. The weights are then used to calculate
the rank of the discovered semantic associations. The thematic context also assumes
the definition of a context parameter: the context deviation. It represents an integer
value which specifies the maximum number of successive elements (individuals and
object properties instances) included by an ontology path that can be outside of all
regions of interest. In other words, a context deviation equal to 3 tell us that the
valid ontology paths cannot contain more than 3 successive elements which are not
included in any region of interest. The thematic context can be seen as a filter that
limits the discovery of semantic associations to the regions of interest as well as to
their immediate neighborhood.

For instance, in the ontology illustrated in Fig.9, if the user is exclusively in-
terested in direct collaboration and student/teacher relations between persons, then
he/she defines the thematic context Ct1={Person, collaboratesWith, studentOf}. As-
suming that the user wants the resulting ontology paths to remain in this thematic
region of the ontology, then the context deviation should be a small number, let us
say 2. In this situation the ontology paths p3 and p4 are eliminated from the re-
sult list, because they contain three successive elements isAuthorO f , paper1 and
hasAuthor, which are not part of any context and thus considered as irrelevant for
this query.

4.3 Temporal Context

The first type of context we consider for a query is the temporal context CTemp.
It acts as a filter and narrows down the search area to ontology-paths that meet
a certain qualitative relation with a given temporal interval or instant. The tem-
poral context is specified using an interval of the type (start_date,end_date) or
(date,duration), together with a topological relation. The implicit topological re-
lation is the inclusion, but all the topological temporal AML operators defined in
(Miron et al., 2007b) can be used: before/after, starts/started-by, finishes/finished-
by, during/contains, equals, meets/met-by, overlaps/overlapped-by. When a time in-
terval is specified through a pair (date,duration), the temporal attributes describing
tuples or objects are compared to the interval [date,date + duration]. The implicit
temporal interval starts with the beginning of time and holds up to the present mo-
ment, but it can be adapted to the user’s preferences.

When analyzing an instance e (tuple or object) candidate for its integration into an
ontology-path, the system compares its validity, given by its temporal data, specified
using the ontology illustrated in Fig.7 (for individuals) and using annotation stamps
(for tuples), to the temporal context CTemp. If the entity has no temporal attributes,
the system considers that it has always existed and that it is eternal.
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On the example shown in Fig.9, let us consider that the user is only interested in
collaboration relations valid during the period [2005,2008]. He/she will thus specify
the temporal context of the query as being CTemp = ([2005,2008],overlaps). This
will eliminate from the resulting ontology-paths p3 and p4 (see Fig. 9). The reason
is the validity of the tuple (collaboratesWith pers2 pers3) given by its temporal
stamp: [2003,2004]. The interval [2003,2004] does not satisfy the overlaps relation
with the CTemp interval[2005,2008], so the ontology-paths construction cannot be
completed.

4.4 Spatial Context

The ONTOAST spatial reasoner can be used to filter and eliminate from the set
of results the ontology-paths which contain intermediate objects or/and tuples that
do not satisfy a given qualitative spatial relation with a specified region of the ge-
ographical space. We define the spatial query context CSpatial , as the pair (spatial
object, qualitativeSpatialRelation), where qualitativeSpatialRelation is one of the
spatial relations described in section 3 (see Fig. 4). Similarly to the case of the tem-
poral context, during the analysis of an instance e candidate for integration into a
ontology-path p, the system compares its spatial characteristics given by its geome-
try or inferred by the system (in the case of objects), to the spatial context CSpatial . If
e is not consistent with CSpatial , it will not be taken into account as a possible inter-
mediate object in a ontology-path. The instances which have no associated spatial
extent are considered as being consistent with the spatial context CSpatial .

Let us consider that, in the example illustrated in Fig.9, address1 and address2

describe two places in Paris at one street away from each other, address3 is located
in Versailles, polygon1 describes the geometric limits of all the sites administrated
by the Computer Science Laboratory from Paris and point2 represents geospatial
coordinates in England. Now, if the user is only interested in connections between
researchers from the French Region Ile de France he/she imposes as a spatial filter
for the semantic query CSpatial = (IleDeFrance,contains). IleDeFrance must be a
spatial object defined within the accessible ontologies. Pers3, whose current loca-
tion (England) does not satisfy the inclusion relation becomes inconsistent with the
specified context. In consequence, the construction of the ontology-paths passing by
pers3 (p3 and p4 from Table 1) cannot be completed.

4.5 Spatial Inference for Ontology-Path

The ONTOAST spatial reasoner can also be used by an extended ontology-path dis-
covery algorithm which aims at identifying individuals who can be linked through a
relevant spatial relation that stands between them. The algorithm has the following
steps:

• If x is not a spatial object or if its geometry is unknown, the system builds the
set Sx containing the spatial objects that are related to x by ontology-paths α1,
α2,. . . , αz of a given maximum length lMax:|αi| ≤ lMax,∀i ∈ [1,z] and which are
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consistent with the specified contexts. For a spatial object x with known geometry
the set Sx exclusively contains the object itself.

• The same steps are taken for building the set Sy.
• Among the objects contained by the sets Sx \ Sy and Sy, the system exhaustively

infers the existence of qualitative spatial relations. The qualitative relations in-
ferred this way are added up to the ontology and the newly obtained ontology-

paths: αi
spatial_relation→ β j will be taken into account as a result of the semantic

analysis.

Using this algorithm, new ontology-paths can be discovered. For example, in
the ontology of Fig. 9, after building the sets Spers2 = {address1, polygon1} and
Spers4 = {address2,address3} the ONTOAST spatial reasoner checks which qual-
itative spatial relations exist between pairs: address1 and address2, address1 and
address3, polygon1 and address2, polygon1 and address3. Let us focus on the
possible inferences from the first pair. Several geocoding Web Services exist nowa-
days (Yahoo!Maps, Google Maps, MapPoint, . . . ), that support address trans-
formation into corresponding latitude and longitude coordinates. So, obtaining
geographic positions from address specifications is relatively easy. The obtained
quantitative spatial information will be used by the ONTOAST spatial reasoner for
inferring, through geometric computations, the spatial relations existing between
addresses. Knowing that address1 is in a close proximity of and at North from
address2, the tuples veryClose(address1,address2), No f (address1,address2) and
dis joint(address1,address2) will be added up to the ontology, which facilitates then
the discovery of three new ontology-paths as illustrated in table 2.

Table 2 Ontology-paths linking pers2 and pers4 discovered using inferred spatial relations

p5 = pers2
currentLocation→ address1

ob ject→ veryClose1
sub ject→ address2

currentLocation→ pers4

p6 = pers2
currentLocation→ address1

No f→ address2
currentLocation→ pers4

p7 = pers2
currentLocation→ address1

dis joint→ address2
currentLocation→ pers4

5 Related Work

Besides the related work previously cited, (Sheth et al., 2002; Anyanwu and Sheth,
2003; Halaschek et al., 2004), another interesting approach is presented in (Perry
and Sheth, 2008). The authors propose the integration of RDF ontologies and OR-
ACLE databases, through the use of ORACLE Semantic Data Store. The latter pro-
vides the ability to store, infer and query semantic data in the form of simple RDF
descriptions or RDFS ontologies. Spatial attributes attached to ontological objects,
modeled in RDF using coordinates lists (for example, instances of the Point class),
are translated into values of a spatial datatype in ORACLE (SDO_GEOMET RY ).
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Those translations are very useful as all the ORACLE Spatial query facilities, in-
cluding its topological and proximity operators, are available. However, this ap-
proach does not make it possible to combine qualitative and quantitative reasoning.

Another related approach, proposed by (Balmin et al., 2008), aims at the dis-
covery of interesting relationships between objects described in XML documents.
It is based on the use of SEDA, an interactive search tool that exploits the struc-
tures of the target XML trees as well as the textual content of XML elements. A
query in SEDA consists of a set of query terms specified in the form of (context,
search_query) pairs. The context represents a node name or a root-to-leaf path while
the search_query is any full-text search expression comprising a simple bag of key-
words, a phrase query or a boolean combination of those. The result of a SEDA
query is a set of tuples, where each tuple represents a connected sub-graph with
m nodes, one for each query term. The main disadvantage of this approach comes
from its lack of semantics as it exclusively exploits structural information and tex-
tual descriptions. The resulting tuples that link the specified query terms are built
using the inclusion relation (which has no specified semantics and whose meaning
can differ from one level of the XML tree to another) defined between XML ele-
ments, and are dependent exclusively on the structure of the analyzed document.
This approach makes no distinction between objects and relations so the resulting
tuples are not chains of composed relations, as presented in this article, but chains
of heterogeneous XML elements.

Another framework built for link discovery within RDF(S) and OWL ontologies
is Silk (Volz et al., 2009). Silk features a declarative language for specifying which
types of links should be discovered between data sources as well as which conditions
entities must fulfill in order to be interlinked. So this framework can be used for
computing user specified relationships between entities described within different
data sources (RDF(S) graphs and/or OWL ontologies ), based on various similarity
metrics applied to the target entities and the graph around them. What distinguishes
our framework from Silk is the purpose of the search. Our framework discovers
semantic associations whose structures are not known a priori and which respect
given contextual restrictions. Silk is used in ontology alignment scenarios to verify
which objects respect the conditions imposed by a certain type of link, and that are
specified by the user.

6 Conclusion and Future Work

In this paper, we have studied ways of improving the analytical power of semantic
associations. We propose a means for exploiting the temporal and spatial dimensions
of Semantic Web resource descriptions in order to discover new ontology-paths link-
ing two given individuals. Using ONTOAST as a spatial reasoner for OWL ontolo-
gies, new inferences can be produced that lead to new and possibly helpful insights
into the ways in which individuals are connected within ontological domains.

We currently consider the possibility of introducing a new module of Trust man-
agement into the Semantic Analysis Framework. Its purpose would be, on the one
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hand, to filter the ontological knowledge and, on the other hand, to communicate
with the Result Classification Module for determining the weights of the discovered
semantic associations.

As a primary future goal, we intend to implement a prototype of the Semantic
Analysis Framework and to test our algorithms on an extended ontological base in
order to quantify their relevance and performance in real world semantic association
discovery scenarios. We also plan a detailed performance study using large synthetic
OWL datasets.

We also plan to explore the definition of more complex spatial and temporal
contexts, built using conjunctive and/or disjunctive regular contexts. For instance,
it will be interesting to express a spatial context that represents the French or the
South African territory except the territories of the Isere French department:

CSpatial = {(France∨SouthA f rica)∧ (¬Isere) , qsr : contains}.
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Statistically Valid Links and Anti-links
Between Words and Between Documents:
Applying TourneBool Randomization Test to a
Reuters Collection

Alain Lelu and Martine Cadot

Abstract. Neighborhood is a central concept in data mining, and a bunch of
definitions have been implemented, mainly rooted in geometrical or topological
considerations. We propose here a statistical definition of neighborhood: our
TourneBool randomization test processes an objects × attributes binary table in or-
der to establish which inter-attribute relations are fortuitous, and which ones are
meaningful, without requiring any pre-defined statistical model, while taking into
account the empirical distributions. It ensues a robust and statistically validated
graph. We present a full-scale experiment on one of the public access Reuters test
corpus. We characterize the resulting word graph by a series of indicators, such as
clustering coefficients, degree distribution and correlation, cluster modularity and
size distribution. Another graph structure stems from this process: the one convey-
ing the negative “counter-relations” between words, i.e. words which “steer clear”
one from another. We characterize in the same way the counter-relation graph. At
last we generate the couple of valid document graphs (i.e. links and anti-links) and
evaluate them by taking into account the Reuters document categories.
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1 Introduction: Rationale and Objective

The definition of the neighborhood is a central issue in data mining: this concept is
at the heart of supervised methods, such as K-nearest neighbors learning, or unsu-
pervised ones, as those based on graphs. Numerous definitions have been proposed:

• K-nearest neighbors, and their derivatives: reciprocal neighbors (Benzécri,
1982), K-reciprocal neighbors (Lelu, 2004).

• Relative neighbors (Toussaint, 1980): two points are deemed neighbors if no
other point stands in the “lune” they define, i.e. the intersection of the two spheres
centered in these points, which common radius is the inter-point distance.

• Gabriel neighborhood: two points are deemed neighbors if no other point lies in
the sphere which diameter is their distance (Gabriel and Sokal, 1969).

• The Delaunay triangulation (Delaunay, 1934; Goodman and O’Rourke, 2004) is
such as no other point lies in the sphere circumscribed to any simplex resting on
these points.

These definitions rely on geometric and topologic concepts (Scuturici et al., 2005);
their advantage resides in their adaptiveness to orders-of-magnitude density con-
trasts, frequent in sparse high-dimensional spaces. But they are not immune to side-
effects, such as spurious linking between two extraneous elements.

We will explore here another track, i.e. we will derive links between neighbor-
ing rows or columns of a datatable from statistical considerations. We will limit our
study to binary, all-or-none features describing a set of instances or observations.
From this point of view, two features will be considered significantly linked if their
co-occurrence in the instances is greater than expected under the hypothesis of ran-
dom distribution; and symmetrically for two instances. We will go into this notion
of statistical expectation further on.

Note that one of the novelties of our approach is to define and take into account
the notion of “anti-link”: in the same way as a feature pair (resp. an instance pair)
may share more instances (resp. features) than expected, they also may share signif-
icantly less instances (resp. features) than expected.

In section 2 we will first introduce our TourneBool randomization test and argue
about it, as our objective consists in deriving two graphs pairs out of a binary data
table, i.e. the statistically valid relations and counter-relations between the features
on the one hand, and between the instances on the other hand. In the third section we
will expose and discuss the application of our test to the RCV1 Reuters test corpus.
Conclusions and perspectives will be outlined in the last section.

2 The TourneBool Randomization Test

2.1 Local vs. Context-Embedded Tests

A common way to define the significance of the relation between two binary at-
tributes X and Y is to consider the sole four values of the two-way table relating X
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and Y , usually noted a, b, c, d (see Table 1), and compare them to their theoretical
values in case of unrelatedness. A statistical test is then used for the comparison.

Table 1 The four elementary components of the local association indices between X an Y

Y non Y

X a b
non X c d

The independence Chi-square test(Morineau et al., 1996) is well-known, but not
systematically used, for it is not well-fitted to a widespread class of datatables such
as those issued from text databases. This test is actually irrelevant in case of strongly
unbalanced counts: none of the four â, b̂, ĉ, d̂ theoretical values in the case of inde-
pendence has to be too low, say less than 5 or 4 (Yates, 1934). It is also irrelevant
in case of large counts, where it tends to be always positive - textual data generally
use to fall into this category. Amongst other tests more fitted to unbalanced data, we
will cite (1) the linkage likelihood test (Lerman and Peter, 2003), which includes a
probabilistic model of the imbalance, (2) the exact test (Fisher, 1936), which pro-
ceeds by counting the number of different configurations of a, b, c and d, under the
constraint of given margins a + b, c + d, a + c, b + d.

The tests based on the only four cells of Table 1 share a common feature with the
Chi-square independence test: the relations extracted by these tests express local as-
sociations between two variables, whatever the values of the remaining ones. Indeed
we think that this position cannot be defended, as can be easily shown with a simple
thought experiment: if two binary variables are massively true for a large common
set of instances, and seldom true outside this set, a local point of view would con-
clude to a strong association between them. But what if the other variables were also
systematically true for the same set of instances ? The abovementioned association
would express nothing but a general redundancy phenomenon in the data, and noth-
ing worth of interest. Hence the necessity to consider all the variables for whatever
conclusion about two variables.

Generally speaking, these local tests are unsuitable for the type of data mostly
encountered in the data mining tasks: large numbers of variables, with very het-
erogeneous distributions - typically: “Zipf-like” power-law distributions (Newman,
2005). The use of these tests brings out problems that are increasingly noticed
by statisticians, such as the multiple comparisons problem (Jensen and Cohen,
2000), the issue of the exhaustive sample (Press, 2004), or the relative independence
(Bavaud, 1998).

Another research line is now possible, thanks to the growing performances of the
computer resources, and the progress of their massive interconnection: the compar-
ison with full-scale random simulations is feasible, and is an alternative to the tra-
ditional comparisons with asymptotic theoretical statistic distributions. In this way,
noise may be added to the original datatable (bootstrap and Jacknife methods), or
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purely random tables may be generated, submitted to the same structural constraints
as the original one.

Two possibilities arise at this step: one may generate random versions of a datat-
able, starting from its sole margins: we have tried this approach in Cadot and Napoli
(2003), with the drawback of having to cope with the problem of multiple ‘1 values
in the same cells, which problem we have empirically solved, without proving the
universality and convergence of the solution.

Or one may generate the random versions starting from the original database
itself, by a sequence of elementary transformations keeping the row and column
margins constant. This is the direction we eventually chose, when designing our
TourneBool method and test: a method for generating random versions of a bi-
nary datatable with prescribed margins, and the ensuing test for validating rela-
tions between rows or between columns. It is to be noted that the principles of
generation of random matrices with prescribed margins seem to have been discov-
ered independently several times, in various application domains: ecology (Con-
nor and Simberloff, 1979; Cobb and Chen, 2003), psychometrics (Snijders, 2004),
combinatorics (Ryser, 1964). As for our team, one of us presented (Cadot, 2005)
a permutation algorithm based on rectangular flip-flops, incorporating a monitored
convergence of the algorithm. Its theoretical legitimation can be found in Cadot
(2006), based on the original notion, to the best of our knowledge, of cascading flip-
flops: we have shown that any Boolean matrix can be converted into any other one
with the same margins in a finite number of such cascades. These cascading flip-
flops are themselves compositions of elementary rectangular flip-flops. The novelty
of our approach stays in that we use the resulting randomized matrices for testing
the validity of the statistical links between pairs of Boolean variables, whatever the
nature of the relation: positively linked variables on the one hand, or “anti-linked”
variables which co-occurrence is less than expected on the other hand. Other authors
(Gionis et al., 2007) have also used randomized versions of an observed matrix, but
with a different goal, in order to compare, in the original matrix and in the simulated
ones, the global number of links which frequency count exceeds a given threshold
(“frequent itemsets”).

2.2 Step 1: Generating the Randomized Matrices

As is the case for all other randomization tests (Manly, 1997), the general idea
comes from the exact Fisher test (Fisher, 1936), but it applies to the variables taken
as a whole, and not pairwise. It behaves as a sequence of elementary flip-flops which
do not modify the row and column sums. These flip-flops preserve the irreducible
background structure of the datatable, but break up the meaningful links specific
to a real-life data table. Consider for example a text vs. words incidence matrix:
if some words appear in nearly all the texts, they will appear as such in all the
simulated matrices too, and no link between these words will ensue. Now consider
a few long texts systematically comprising none of these considered frequent words:
the simulated matrices will not reproduce this interesting feature, which will only
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be brought to light by comparison to the original one. In this way, comparing with
simulations allows one to depart the background structural part of a linkage out
of the other part, the one we are interested in. The background structure depends
on the application domain, and on the distributions of the margins. For example,
most of texts×words datatables have a power-law distribution of the words, and
a binomial-like one for the number of unique words in the texts. This background
structure induces our “statistical expectation” of no links conditionally to the type
of corpus. Getting rid of the background structure enables our method to process
any type of binary data, both (1) taking into account the marginal distributions, (2)
doing this without any need to specify the statistical models of these distributions.

The number of rectangular flip-flops is controlled by two Hamming distance
measures between matrices (i.e. number of cells with opposite values): 1) between
the current random matrix and the one generated at the previous step, 2) between
the current random matrix and the original one. The initial number of flip-flops is
increased as long as these distances are growing. The value of this parameter is
deemed optimal when they stabilize - in practice, about several times the number of
ones in the original matrix. No bias, i.e. residual remnant of the original matrix, can
be attributed then to the randomization process.

2.3 Step 2: Establishing the Links and Anti-links

The principle for extracting the links is as follows: Let mi and m j two words simulta-
neously occurring in p0 texts (p0 ≥ 0) of the original corpus, and in pk texts (pk ≥ 0)
of each k-th random simulation of the datatable (k in [1,K]). The link between mi

and m j may be assigned to one of the three following cases:

• if p0 is greater than the near-entirety of the pk’s, then link(mi,m j) > 0 (attraction)
• if p0 is lesser than the near-entirety of the pk’s, then link(mi,m j) < 0 (repellency)
• else: link(mi,m j) = 0 (independence given the corpus1)

In the first case, we will call it a significantly positive link, or shortly speaking, a
link. In the second one we will call it a significantly negative link, or “anti-link”. We
will label the third one “null link”, or non-significant link.

For example, Fig. 1 shows the ordered set of the 100 values pk for a word pair
throughout 100 simulations (k spanning from 1 to 100). If we choose an alpha risk
threshold2 of 10%, we set up two limits (marked by triangles in Fig. 1): the value p =
2 corresponds to k = 6, the value p = 22 to k = 95. So the bilateral 90% confidence
interval of p in the case of no link between mi and m j is estimated by the interval
[2,22], which includes the 90 less extreme values in the set of pk’s.

1 And not independence given presumed repartition laws, as is the case with parametric
tests.

2 Alpha risk: risk of making a mistake when deeming significant a value of p due to plain
randomness; it corresponds to the notion of “false positive” in the context of clinical tests.
The notion of “false negative” corresponds to the Beta risk: the risk of making a mistake
when deeming “due to randomness” a significant p.
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Fig. 1 Example of ordered sequence of the pk values (numbers of co-occurrences between
two words mi and m j throughout 100 simulations)

Depending on the p0 value (i.e. the number of word co-occurrences in the orig-
inal data-table) lying or not in this confidence interval, the link will be deemed
non-significant or significant. In this example a p0 value of 0 or 1 will qualify the
word pair as significantly and negatively linked, i.e. the infrequency of their co-
occurrence in the texts must be meaningful; as an example, it is the case we encoun-
tered for the words “USA” and “Middle Ages” in a sample of encyclopedic corpus.
We may denominate “repellent” this kind of anti-link. A p0 value of 23, 24 or more
will indicate a significant positive link of indisputable co-occurrence. In contrast,
for p0 = 2,3, ...,21,22 the relation is imputed to chance, and the conclusion is that
the two words are not linked by meaning, but by the background structure of the
corpus. Using this test enables one to bring to light the meaningful word associ-
ations, in a robust and statistically valid manner. Of course a crucial parameter is
the way of splitting the texts: small statistical text units such as sentences or parts-
of-speech will yield short-range associations, often due to frozen expressions or
phrases; longer units such as scientific abstracts or newswires will yield the same
associations, plus longer-range thematic links.

We present in the gray box (page 313) our TourneBool algorithm for finding out
the significant links, whether positive or negative. Data are disposed in a Boolean
table, in which columns figure the variables among which links are searched for; e.g.
columns are words, rows are texts, with ones or zeros at the intersections, depending
on a given word being present or not in a given text.

When using this algorithm, one must fix the values of three parameters: the num-
ber of rectangular flip-flops for generating non-biased random matrices, the number
of randomized matrices, the alpha risk. The two last parameters are fixed in ac-
cordance with the usual compromises: on the computer science side, the trade-off
between speed and quality - the more simulated matrices, the higher the quality of
estimation, but the longer the computation time, too... We use to ask for 100 or 200
simulations. On the statistical side, the trade-off between the alpha and beta risks:
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TourneBool algorithm

Let M a (n, p) boolean matrix, with n objects in rows and p variables in columns.

Main : TourneBool

1. build q randomized versions of M
2. for each column pair (i, j) of M

• compute the p0 value of p, i.e. the number of co-occurrences of the
column pair (i, j) of M.

• build the confidence interval of p after the list of the q randomized
matrices.

• compare p0 to the bounds of the confidence interval; 3 cases:
– if it is lesser than the lower bound, the link is declared significantly

negative, and is thus kept on,
– if it is greater than the upper bound, it is declared significantly

positive, and is thus kept on,
– if the original 2−itemset support p0 in M stays in between this

interval, it is declared unsignificant and is thus eliminated.

Building a randomized version of M

Choose a number r of rectangular flip-flops to execute.

1. copy M to Mc
2. repeat r times :

• randomly choose a row pair and a column pair with replacement
• if the zeros and ones alternate at the vertices of this rectangle in Mc, then

modify Mc moving each value into its complement to 1, else do nothing.
3. store Mc

Building the confidence interval, at risk alpha, of the number p:

1. for each randomized version Mk of M compute the number pk of
co-occurrences of the two columns i and j (dot product of the two columns).
Store all the pk in a list.

2. sort the list in ascending order. The lower bound is the list element with rank
q×al pha/2, and the upper bound the one with q× (1−al pha)/2 rank.
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the smaller the alpha value, the lesser the risk of extracting links due to the sole
chance, but also the greater the beta risk of rejecting significant and meaningful
links. Our experience is to fix the value to the usual 5% or 1%. As for the first pa-
rameter (the number of elementary flip-flops), our rule of thumb is to start with four
times the number of ones in the matrix, and adjust it, if necessary, considering the
sequence of the computed Hamming distances.

It is to be noted that the permutation tests, from which emanate the randomization
tests, have been proven to be the most “powerful” ones, i.e. to minimize the beta risk
for a given alpha risk (Droesbeke and Finne, 1996).

2.4 Scaling the Method

After a first promising application to a small corpus (Lelu et al., 2006), we have
scaled up the implementation of our algorithm in order to process real-size corpora.
The time and space complexities for the first step (generating k randomized versions
of the initial matrix) are respectively O(k× v) and O(n×m× v), where n and m are
the row and column numbers, v the number of ones in the matrix. As composed
of independent processes, this step is fitted to direct parallelization. The last step
consists of making use of the randomized matrices for determining the type of each
link - positive, negative or null. As a direct implementation would imply storing
100 or 200 contingency tables of size (n,n), we have split this task into parallel
processes, each one in charge of the same fraction of all the contingency tables.
The application of this method to a Reuters test corpus (23,000 newswires, 28,000
words) as described below was executed in 36 hours as three parallel processes on
a standard quadcore PC.

3 Application to the RCV1 Reuters Corpus

Thanks to D. Lewis and Reuters news agency3 (Lewis et al., 2004), several
newswires test corpora have been made available to the machine learning commu-
nity, in order to compare the methods and results on a common and public access
basis.

We used the RCV1 training corpus - 23,149 newswires supplied with their lem-
mas (see Fig. 2) and their document categories. We chose this delivery to avoid
disturbances due to a proprietary indexing, as our focus is on the processing of a
given and publicly available indexed corpus, not on the indexation process. As can
be seen in Fig. 2, the lemmas amount to simple word truncations, limiting the size
of the vocabulary to a few ten thousands terms, but at the same time creating many
ambiguities for basic English words. No noun phrases or named entities, known for
being much less equivocal, are provided.

3 Lewis, D. D. RCV1-v2/LYRL2004: The LYRL2004 Distribution of the RCV1-v2
Text Categorization Test Collection (12-Apr-2004 Version) http://www.jmlr.org/
papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm.
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Fig. 2 Example of a Reuter’s newswire indexed by lemmas

Fig. 3 Characterizing the lemmas in the RCV1 Reuters corpus: horizontally, occurrences of
each lemma in the corpus. Vertically: number of repetitions of these occurrences in the corpus.
The coordinates are log-log. For example one may read: there are 7,100 lemmas occurring
two times.

Each newswire in the training set is manually attributed one or several descriptive
categories among 101. The main objective when delivering such corpus is to assess
the quality and the generalization ability of machine learning methods. Our goal
is slightly different: after characterizing the two graph pairs (links and anti-links)
representing respectively the relations between words and between newswires, we
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Fig. 4 Characterizing the newswires in the RCV1 Reuters corpus: horizontally, occurrences
of unique lemmas in each newswire. Vertically: number of repetitions of these occurrences
in the corpus. The coordinates are log-log. For example one may read: 324 newswires are
composed of 26 unique words.

will use the Reuters categories as a first attempt to assess the ability of our method
to agree (or not) with links issued from a human expertise, in a non-supervised way.

To begin with, let us examine a few statistics on our corpus: after eliminating the
words with unique occurrence, which support, by definition, no relational informa-
tion, the size of the vocabulary amounts to 28,450 lemmas, from a0 to zywnociowej;
each newswire features a mean value of about 75 unique lemmas. The occurrence
distribution of the lemmas has a typical Zipf-like appearance (Fig. 3), i.e. a power-
law distribution with a power coefficient of around -1.5. The distribution of the
number of unique lemmas per newswire is markedly skewed and unbalanced, with
a mode around 26 (Fig. 4).

3.1 Word Graphs: Links and Anti-links

Our TourneBool method has generated the adjacency matrices of the link graph
between words at the confidence threshold of 99%. This graph comprises 28,450
vertices and 1.4 million links (see Table 2). Its density is 0.0071. As a comparison,
the raw word co-occurrence matrix is much denser (0.0406). In the same way, the
anti-link graph comprises 245,000 negative links (density: 0.0012).
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Table 2 Comparison of three word graphs, which adjacency matrices are 1) the raw co-
occurrence matrix, 2) the matrix of valid links, 3) the matrix of valid anti-links

Graph of
FOR WORDS: raw co- valid valid

occurrences links anti-links

Number of vertices 28,450 28,450 28,450
Number of links 16.0 M 1.4 M 0.24 M
Density 0.0406 0.0071 0.0012
Mean degree 578 100.7 17.2
Degree correlation between neighbors -0.390 +0.017 -0.370
Cliquishness coefficient 0.808 0.305 0.294

Total number of clusters n.a. 21
21,200

Number of clusters of size one n.a. 3
20,000

Maximal value of the modularity index for the clusters n.a. 0.276 0.011

Characterizing graphs
It is a dozen years since what is now known as “complex networks” started to be

extensively studied (Watts and Strogatz, 1998). Out of our specific research domain on
text databases, the graph formalism of this approach impacts as dissimilar applications
as the study of social networks, especially when mediated by Internet, or the gene
interaction networks... As our statistical validation process of word links is an all-or-
none process, an unoriented graph representation is well-fitted to a large-scale set of
such links. As far as the number of involved texts and words is generally well above
10,000, one can define these relations as those of a complex network, and we will use
here a few standard indicators for characterizing such graphs:

• number of vertices and edges,
• graph density: number of edges / maximum potential number of edges,
• mean degree of the vertices, and degree distribution,
• Pearson’s correlation coefficient between degrees of neighboring vertices,
• mean and distribution of the clustering coefficients of the vertices (“cliquishness”

indicators: from 0 when no neighbors are mutually linked, to 1 when they constitute
a complete clique),

• clusters (or “communities”) of densely linked vertices (words or texts in our ap-
plication domain). We used the WalkTrap open access software4(Pons and Latapy,
2006) for this task.

4 WalkTrap http://www-rp.lip6.fr/~latapy/PP/walktrap.html
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The mean degrees of the link and anti-link graphs are respectively 100.7 and
17.2, contrasting with 578 for the raw co-occurrence graph. The degree correlation
between neighboring vertices is negligible (+0.017) for the links (“non-assortative”
network), but frankly negative (-0.37) for the anti-links (“anti-assortative” network)
as is the case of the co-occurrence network (-0.39): vertices with quite a different
number of links tend to aggregate. It follows that the process of statistical validation
of the co-occurrence links has deeply altered the structure of this baseline network.

We will not show the degree distribution of words, similar to the words-per-
newswire distribution (Fig. 4), and not as scattered as the corresponding feature
of the raw co-occurrence matrix; this contrasts with the same feature for the anti-
link graph, which follows a clear power-law. As for most of the complex networks,
the mean clustering coefficients are rather high: 0.305 for links, 0.294 for anti-links,
while the co-occurrence graph exhibits a prominent 0.808.

The WalkTrap graph clustering software (see footnote 4), when parametered with
a reasonable 6-steps random walk, has provided us with a hierarchical cluster tree
that we have severed at the maximum value of the modularity index: the word links
yield 21 clusters, the size of which is greater than 55 for 13 of them; two of them
include more than 7000 words, in a very unbalanced repartition. When examining
their word content, this clustering seems odd: one of the clusters is mainly made of
first names, another one mainly gathers town names of Great Britain... in any case,
they mix, with various proportions, place names, person or firm names, together
with content words, for example in aeronautics, chemistry or computer science. A
possible explanation may reside in the operation principle of the lemmatizer:

1. Many frequent words in English have just a syntactic or rhetorical function, in-
dependent of the thematic context, and do not give rise to valid links;

2. A good proportion of middle-frequency words belong to the general English and
are akin to characterize thematic contexts (economy, business, politics, trans-
portation,...), but the lemmatization process may have heavily pruned and re-
grouped them (phon, promot, activ, typ,...), turning them into non-contextual
elements;

3. The named entities, with longer and often non-English names (zurawsk, zvon-
cakov, zyuganov,...), have better resisted this treatment, and have retained, more
than others, their thematic content.

This hypothesis could be tested by indexing, for comparison, the same corpus in a
linguistically more elaborate way, i.e. extracting at least noun phrases and named
entities.

Considering now the word anti-links graph, WalkTrap yields 21,000 isolated el-
ements, 143 clusters of size 2 to 10, 31 of size 11 to 50, 2 of size around 500, and
2 of size 2300. In this case the interpretation seems still trickier5, though one may
notice that the large clusters mix general English words with other elements.

5 The interpretation of clusters of anti-linked elements is difficult indeed: the common-sense
relation of closeness is transitive (“My friend’s friends are my friends”), but the repel-
lency one is different (“My enemies’ enemies have no reasons to be my friends, nor my
enemies”).
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3.2 Newswires Graphs: Links and Anti-links

In the same way as for words, we have applied our TourneBool method for extract-
ing the adjacency matrices of links and anti-links between the 23,149 newswires,
at the confidence threshold of 99%. The link graph is composed of 6.4 million
edges, hence its density is 0.048. As a comparison, the word graph is much less
dense: 0.007. The anti-link graph comprises 3.0 million edges (density: 0.0224),
when the corresponding word graph is 18-fold sparser (0.0012). The mean degree
is 558.4 (resp. 259.4), while it is 100.7 (resp. 17.2) for the word graphs. The de-
gree correlation between neighboring vertices amounts to a rather strong +0.238 for
the links (assortative network), while being negligible (+0.017) for the word graph
(non-assortative network); the anti-links network is anti-assortative (-0.248), as is
the corresponding word graph (-0.370).

The general shape of the degree distribution of the newswires (Fig. 5) is somehow
similar to the distribution of the words-per-text one (Fig. 4) while the degree distri-
bution of the anti-links graph evokes, to some extent, a power-law shape (Fig. 6).
The mean clustering coefficients are a bit higher than those of the word graphs:
0.342 vs. 0.305 for the links, 0.387 vs. 0.294 for the anti-links.

Each newswire is attributed one or several thematic categories by the Reuters
indexers. The repartition of these 101 overlapping categories is very uneven (Fig. 7);
the most important one (CCAT: corporate / industrial) involves nearly half of the
newswires, and the whole corpus is covered by the only top-5 categories. Better

Fig. 5 RCV1 Reuters corpus: graph of the valid links between newswires; horizontally, de-
grees of the newswires. Vertically: number of repetitions of these degrees. The coordinates
are log-log.
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Fig. 6 RCV1 Reuters corpus: graph of the valid anti-links between newswires; horizontally,
degrees of the newswires. Vertically: number of repetitions of these degrees. The coordinates
are log-log.

Fig. 7 Size repartition of the 101 overlapping Reuters categories: horizontally, ranking of the
categories by decreasing size. Vertically: size of the categories. The coordinates are log-log.
For example there are 10,786 newswires in the largest category.
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than unsupervised methods such as clustering, unavoidably arbitrary to some extent,
these categories will help us to assess the relevance of our links and anti-links. We
will limit ourselves in the present study to an overall check, and to a qualitative
confirmation:

1. It should be desirable that a statistically valid link could correspond to at least one
common Reuters category at both side of the link. This idea may be approximated
by computing the density of valid links for the complete sub-graph (i.e. clique)
corresponding to each category.

2. Conversely, it should be desirable that a anti-link could join two newswires with
no common category. This can be tested by computing the density of anti-links
for the complete sub-graph (i.e. clique) corresponding to each category: the hy-
pothesis is verified if the density is zero, or negligible.

Actually, while the overall density of the valid links graph is 0.04, the link densi-
ties exceed this value for the near-entirety of the classes. They even exceed 0.5 in
19 of them. Table 3 shows the title of a few such classes in strong agreement with
TourneBool links, and the titles of classes in the opposite case. One can verify that
the classes in full agreement involve sharp and factual themes in economics and
finance, when classes in low agreement are either large, fuzzy themes, such as Cor-
porate / Industrial, or classes dealing with subjects out of economics and finance,
such as arts, health, crime, science, foreign affairs,...We suggest the hypothesis that
the words of the general journalistic english language are poorly represented and

Table 3 The top-15 Reuters categories correctly (left) / poorly (right) accounted for by the
valid positive links between texts

Correctly related categories Poorly related categories

C1511: ANNUAL RESULTS C13 : REGULATION / POLICY
E121: MONEY SUPPLY C32 : ADVERTISING / PROMOTION
E13 : I NFLATION / PRICES CCAT: CORPORATE / INDUSTRIAL
E131: CONSUMER PRICES G159: EC GENERAL
E132: WHOLESALE PRICES GCAT: GOVERNMENT / SOCIAL
E14 : CONSUMER FINANCE GCRIM: CRIME, LAW ENFORCEMENT
E141: PERSONAL INCOME GDIP: INTERNATIONAL RELATIONS
E142: CONSUMER CREDIT GDIS: DISASTERS AND ACCIDENTS
E143: RETAIL SALES GENT: ARTS, CULTURE, ENTERTMT.
E31 : OUTPUT/CAPACITY GENV: ENVIRMT., NATURAL WORLD
E311: INDUSTRIAL PRODUCTION GHEA: HEALTH
E513: RESERVES GODD: HUMAN INTEREST
E61: HOUSING STARTS GPOL: DOMESTIC POLITICS
E71: LEADING INDICATORS GSCI: SCIENCE AND TECHNOLOGY
M11: EQUITY MARKETS GSPO: SPORTS
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ambiguous when lemmatized, whereas the specific vocabulary and recurrent named
entities of the specialized economic and financial stories are more preserved.

The computed anti-link density successfully confirms our hypothesis of no anti-
links between words of the same category: the mean density is 0.0055, with a max-
imum of 0.063.

4 Conclusions, Ongoing Directions

We have shown in this paper that, starting from a binary instances×attributes ma-
trix, and taking as an example a real-size texts×words matrix, it is possible to derive
two pairs of statistically valid graphs, one pair for the links and anti-links between
instances, and the same for the attributes, using a set of randomized versions of
the data matrix. This contrasts (1) with the geometric and topologic approaches for
deriving the neighborhoods without any statistical validation, (2) with purely local
and pairwise statistical tests. The whole data table is involved for determining each
link or anti-link, and not the sole a, b, c, d values. The resulting graphs do take into
account the marginal distributions, for each link or anti-link, but without assuming
whatever formal distribution law. Any application domain where the data can be
expressed as sparse binary matrices, and which marginals are irreducible to classic
statistical distributions may benefit from our approach.

In a first attempt to characterize these graphs, we have investigated their structural
differences with the graphs issued from the raw co-occurrence tables, by means of
a few usual graph structure indicators. We have also tried to assess the semantic rel-
evance of these graphs, but we have come up against limits due to the crude type of
lemmas delivered as text attributes: when clustering the lemmas’ graph no clearly
interpretable clusters emerged; however, we could check that the texts’ anti-link
graph was highly compatible with the Reuters’ pre-defined categories, and that the
link graph was in global agreement with these categories, with an excellent agree-
ment for about 20% of them, i.e. the most factual and specific ones.

Lots of work remain to be done: we have to extend the variety of graph struc-
tural indices, we have to compare our graphs to graphs issued from geomet-
ric or local-statistics methods, we have to compare them to the structure of the
instances×attributes bipartite graph, ... These comparisons will have to be worked
out theoretically, as well as empirically. The interpretations must involve experts of
the application domains, especially for the anti-links graphs, the case of which is
quite a departure from the usual way of thinking, and perhaps has to involve graph
patterns (star shapes ?) rather than clusters.

Acknowledgements. We are indebted to Richard Dickinson for his precious help improving
the English correctness of our text.
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