
Chapter 1
Geometry

1.1 Riemannian and Lorentzian Manifolds

1.1.1 Differential Geometry

We collect here some basic facts and principles of differential geometry as the foun-
dation for the sequel. For a more penetrating discussion and for the proofs of var-
ious results, we refer to [65]. Classical differential geometry as expressed through
the tensor calculus is about coordinate representations of geometric objects and the
transformations of those representations under coordinate changes. The geometric
objects are invariantly defined, but their coordinate representations are not, and re-
solving this contradiction is the content of the tensor calculus.

We consider a d-dimensional differentiable manifold M (assumed to be con-
nected, oriented, paracompact and Hausdorff) and start with some conventions:

1. Einstein summation convention

aibi :=
d∑

i=1

aibi . (1.1.1)

The content of this convention is that a summation sign is omitted when the same
index occurs twice in a product, once as an upper and once as a lower index. This
rule is not affected by the possible presence of other indices; for example,

�i
jb

j =
d∑

j=1

�i
jb

j . (1.1.2)

The conventions about when to place an index in an upper or lower position will
be given subsequently. One aspect of this, however, is:

2. When G = (gij )i,j is a metric tensor (a notion to be explained below) with in-
dices i, j , the inverse metric tensor is written as G−1 = (gij )i,j , that is, by raising
the indices. In particular

gij gjk = δik :=
{

1 when i = k,

0 when i �= k,
(1.1.3)

the so-called Kronecker symbol.
3. Combining the previous rules, we obtain more generally

vi = gij vj and vi = gij v
j . (1.1.4)
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2 1 Geometry

4. For d-dimensional scalar quantities (φ1, . . . , φd), we can use the Euclidean met-
ric δij to freely raise or lower indices in order to conform to the summation
convention, that is,

φi = δijφ
j = φi. (1.1.5)

A (finite-dimensional) manifold M is locally modeled after R
d . Thus, locally, it

can be represented by coordinates x = (x1, . . . , xd) taken from some open subset
of R

d . These coordinates, however, are not canonical, and we may as well choose
other ones, y = (y1, . . . , yd), with x = f (y) for some homeomorphism f . When the
manifold M is differentiable—as always assumed here—we can cover it by local co-
ordinates in such a manner that all such coordinate transitions are diffeomorphisms
where defined. Again, the choice of coordinates is non-canonical. The basic content
of classical differential geometry is to investigate how various expressions repre-
senting objects on M like tangent vectors transform under coordinate changes. Here
and in the sequel, all objects defined on a differentiable manifold will be assumed
to be differentiable themselves. This is checked in local coordinates, but since coor-
dinate transitions are diffeomorphic, the differentiability property does not depend
on the choice of coordinates.

Remark For our purposes, it is often convenient, and in the literature, it is custom-
ary, to mean by “differentiability” smoothness of class C∞, that is, to assume that all
objects are infinitely often differentiable. The ring of (infinitely often) differentiable
functions on M is denoted by C∞(M). Nonetheless, at certain places where analy-
sis is more important, we need to be more specific about the regularity classes of the
objects involved. But for the moment, we shall happily assume that our manifold M

is of class C∞.

A tangent vector for M at some point p represented by x0 in local coordinates1

x is an expression of the form

V = vi
∂

∂xi
. (1.1.6)

This means that it operates on a function φ(x) in our local coordinates as

V (φ)(x0)= vi
∂φ

∂xi |x=x0

. (1.1.7)

The summation convention (1.1.1) applies to (1.1.7). The i in ∂
∂xi is considered to

be a lower index since it appears in the denominator.
The tangent vectors at p ∈M form a vector space, called the tangent space TpM

of M at p. A basis of TpM is given by the ∂
∂xi , considered as derivative operators

1We shall not always be so careful in distinguishing a point p as an invariant geometric object from
its representation x0 in some local coordinates, but frequently identify p and x0 without alerting
the reader.
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at the point p represented by x0 in the local coordinates, as in (1.1.7).2 Whereas,
as should become clear subsequently, this tangent space and its tangent vectors are
defined independently of the choice of local coordinates, the representation of a tan-
gent space does depend on those coordinates. The question then is how the same
tangent vector is represented in different local coordinates y with x = f (y) as be-
fore. The answer comes from the requirement that the result of the operation of the
tangent vector V on a function φ, V (φ), be independent of the choice of coordinates.
Always applying the chain rule, here and in the sequel, this yields

V = vi
∂yk

∂xi

∂

∂yk
. (1.1.8)

Thus, the coefficients of V in the y-coordinates are vi
∂yk

∂xi . This is verified by the
following computation:

vi
∂yk

∂xi

∂

∂yk
φ(f (y))= vi

∂yk

∂xi

∂φ

∂xj

∂xj

∂yk
= vi

∂xj

∂xi

∂φ

∂xj
= vi

∂φ

∂xi
(1.1.9)

as required.
More abstractly, changing coordinates by f pulls a function φ defined in the x-

coordinates back to f �φ defined for the y-coordinates, with f �φ(y)= φ(f (y)). If
then W =wk ∂

∂yk is a tangent vector written in the y-coordinates, we need to push it
forward as

f�W =wk ∂x
i

∂yk

∂

∂xi
(1.1.10)

to the x-coordinates, to have the invariance

(f�W)(φ)=W(f �φ) (1.1.11)

which is easily checked:

(f�W)φ =wk ∂x
i

∂yk

∂φ

∂xi
=wk ∂

∂yk
φ(f (y))=W(f �φ). (1.1.12)

In particular, there is some duality between functions and tangent vectors here. How-
ever, the situation is not entirely symmetric. We need to know the tangent vector
only at the point x0 where we want to apply it, but we need to know the function φ

in some neighborhood of x0 because we take its derivatives.
A vector field is then defined as V (x) = vi(x) ∂

∂xi , that is, by having a tangent
vector at each point of M . As indicated above, we assume here that the coefficients
vi(x) are differentiable. The vector space of vector fields on M is written as �(TM).
(In fact, �(TM) is a module over the ring C∞(M).)

2As here, we shall usually simply write ∂
∂xi in place of ∂

∂xi (p) or ∂
∂xi (x0), that is, we assume that

the point where a derivative operator acts is clear from the context or the coefficient.
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Later, we shall need the Lie bracket [V,W ] := VW −WV of two vector fields
V (x)= vi(x) ∂

∂xi ,W(x)=wj(x) ∂
∂xj ; its operation on a function φ is

[V,W ]φ(x) = vi(x)
∂

∂xi

(
wj(x)

∂

∂xj
φ(x)

)
−wj(x)

∂

∂xj

(
vi(x)

∂

∂xi
φ(x)

)

=
(
vi(x)

∂wj (x)

∂xi
−wi(x)

∂vj (x)

∂xi

)
∂φ(x)

∂xj
. (1.1.13)

In particular, for coordinate vector fields, we have
[

∂

∂xi
,

∂

∂xj

]
= 0. (1.1.14)

Returning to a single tangent vector, V = vi ∂
∂xi at some point x0, we consider a cov-

ector or cotangent vector ω = ωidx
i at this point as an object dual to V , with the

rule

dxi

(
∂

∂xj

)
= δij (1.1.15)

yielding

ωidx
i

(
vj

∂

∂xj

)
= ωiv

j δij = ωiv
i . (1.1.16)

This expression depends only on the coefficients vi and ωi at the point under con-
sideration and does not require any values in a neighborhood. We can write this as
ω(V ), the application of the covector ω to the vector V , or as V (ω), the application
of V to ω.

The cotangent vectors at p likewise constitute a vector space, the cotangent
space T �

pM .
We have the transformation behavior

dxi = ∂xi

∂yα
dyα (1.1.17)

required for the invariance of ω(V ). Thus, the coefficients of ω in the y-coordinates
are given by the identity

ωidx
i = ωi

∂xi

∂yα
dyα. (1.1.18)

Again, a covector ωidx
i is pulled back under a map f :

f �(ωidx
i)= ωi

∂xi

∂yα
dyα. (1.1.19)

The transformation rules (1.1.10), (1.1.19) apply to arbitrary maps f :M →N from
M into a possibly different manifold N , not only to coordinate changes or diffeo-
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morphisms. So, we can always pull back a function or a covector and always push
forward a vector under a map, but not always the other way around.

The transformation behavior of a tangent vector as in (1.1.8) is called contravari-
ant, the opposite one of a covector as (1.1.18) covariant.

A 1-form then assigns a covector to every point in M , and thus, it is locally given
as ωi(x)dx

i .
Having derived the transformation of vectors and covectors, we can then also de-

termine the transformation rules for other tensors. A lower index always indicates
covariant, an upper one contravariant transformation. For example, the metric
tensor, written as gij dx

i ⊗ dxj ,3 with gij = 〈 ∂
∂xi ,

∂
∂xj 〉 being the inner product of

those two basis vectors, operates on pairs of tangent vectors. It therefore transforms
doubly covariantly, that is, becomes

gij (f (y))
∂xi

∂yα

∂xj

∂yβ
dyα ⊗ dyβ. (1.1.20)

The purpose of the metric tensor is to provide a Euclidean product of tangent vec-
tors,

〈V,W 〉 = gij v
iwj (1.1.21)

for V = vi ∂
∂xi , W = wi ∂

∂xi . As a check, in this formula, vi and wi transform con-
travariantly, while gij transforms doubly covariantly, so that the product as a scalar
quantity remains invariant under coordinate transformations.

Similarly, we obtain the product of two covectors ω,α ∈ T �
x M as

〈ω,α〉 = gijωiαj . (1.1.22)

We next introduce the concept of exterior p-forms and put

�p :=�p(T �
x M) := T �

x M ∧ · · · ∧ T �
x M︸ ︷︷ ︸

p times

(exterior product). (1.1.23)

On �p(T �
x M), we have the exterior product with η ∈ T �

x M =�1(T �
x M):

�p(T �
x M)−→�p+1(T �

x M)

ω 
−→ ε(η)ω := η ∧ω.
(1.1.24)

An exterior p-form is a sum of terms of the form

ω(x)= η(x)dxi1 ∧ · · · ∧ dxip

3Subsequently, we shall mostly leave out the symbol ⊗, that is, write simply gij dx
idxj in place

of gij dxi ⊗ dxj .
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where η(x) is a smooth function and (x1, . . . , xd) are local coordinates. That is,
a p-form assigns an element of �p(T �

x M) to every x ∈M . The space of exterior
p-forms is denoted by 
p(M).

When M carries a Riemannian metric gij dx
i ⊗ dxj , the scalar product on the

cotangent spaces T �
x M induces one on the spaces �p(T �

x M) by

〈dxi1 ∧ · · · ∧ dxip , dxj1 ∧ · · · ∧ dxjp 〉 := det(〈dxiμ, dxjν 〉) (1.1.25)

and linear extension.
Given a Riemannian metric gij dx

i ⊗ dxj , also, in local coordinates, we can
define the volume form

dvolg :=
√

det(gij )dx
1 ∧ · · · ∧ dxd. (1.1.26)

This volume form depends on an ordering of the indices 1,2, . . . , d of the local co-
ordinates: since the exterior product is antisymmetric, dxi ∧ dxj = −dxj ∧ dxi ,
it changes its sign under an odd permutation of the indices. Thus, when we have

a coordinate transformation x = f (y) where the Jacobian determinant det( ∂xi

∂yα ) is
negative, dvol changes its sign; otherwise, it is invariant. Therefore, in order to have
a globally defined volume form on the Riemannian manifold M , we need to exclude
coordinate changes with negative Jacobian. The manifold M is called oriented when
it can be covered by coordinates such that all coordinate changes have a positive Ja-
cobian. In that case, the volume form is well defined, and we can define the integral
of a function φ on M by

∫
φ(x)dvolg(x). (1.1.27)

We shall therefore assume the manifold M to be oriented whenever we carry out
such an integral. We can then also define the L2-product of p-forms ω,α ∈
p(M):

(ω,α) :=
∫
〈ω(x),α(x)〉dvolg(x). (1.1.28)

We now assume that the dimension d = 4, the case of particular importance for the
application of our geometric concepts to physics. Then when ω is a 2-form, ω ∧ ω

is a 4-form. We call ω self-dual or antiself-dual when the + resp. − sign holds in

ω ∧ω=±〈ω,ω〉dvolg. (1.1.29)

When ω+ is self-dual, and ω− antiself-dual, we have

〈ω+,ω−〉 = 0 (1.1.30)

that is, the spaces of self-dual and antiself-dual forms are orthogonal to each other.
Every 2-form ω on a 4-manifold can be decomposed as the sum of a self-dual and
an antiself-dual form,

ω= ω+ +ω−. (1.1.31)
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We return to arbitrary dimension d .

Definition 1.1 The exterior derivative d :
p(M)→
p+1(M) (p = 0, . . . ,dimM)

is defined through the formula

d(η(x)dxi1 ∧ · · · ∧ dxip )= ∂η(x)

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxip (1.1.32)

and extended by linearity to all of 
p(M).

The exterior derivative enjoys the following product rule: If ω ∈ 
p(M),ϑ ∈

q(M), then

d(ω ∧ ϑ)= dω ∧ ϑ + (−1)pω ∧ dϑ, (1.1.33)

from the formula ω ∧ ϑ = (−1)pqϑ ∧ω and (1.1.32).
Let x = f (y) be a coordinate transformation,

ω(x)= η(x)dxi1 ∧ · · · ∧ dxip ∈
p(M).

In the y-coordinates, we then have

f ∗(ω)(y)= η(f (y))
∂xi1

∂yα1
dyα1 ∧ · · · ∧ ∂xip

∂yαp
dyαp (1.1.34)

which is the transformation formula for p-forms. The exterior derivative is compat-
ible with this transformation rule:

d(f ∗(ω))= f ∗(dω), (1.1.35)

which follows from the transformation invariance

∂η(x)

∂xj
dxj = ∂η(f (y))

∂xj

∂f j

∂yα
dyα = ∂η(f (y))

∂yα
dyα. (1.1.36)

Thus, d is independent of the choice of coordinates. d satisfies the following impor-
tant rule:

Lemma 1.1

d ◦ d = 0. (1.1.37)

Proof We check (1.1.37) for forms of the type

ω(x)= f (x)dxi1 ∧ · · · ∧ dxip
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from which it extends by linearity to all p-forms. Now

d ◦ d(ω(x))= d

(
∂f

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxip

)

= ∂2f

∂xj ∂xk
dxk ∧ dxj ∧ dxi1 ∧ · · · ∧ dxip = 0,

since ∂2f

∂xj ∂xk = ∂2f

∂xk∂xj and dxj ∧ dxk =−dxk ∧ dxj . �

In the preceding, we have presented one possible way of conceptualizing trans-
formations, the one employed by mathematicians: The same point p is written in dif-
ferent coordinate systems x and y, which are then functionally related by x = x(y).
Another view of transformations, often taken in the physics literature, is to move the
point p and consider the induced effect on tensors. Let us discuss the example of a
1-form ω(x)dx. Within the fixed coordinates x, we vary the points represented by
these coordinates by

x 
→ x + εξ(x)=: x + εδx (1.1.38)

for some map ξ and some small parameter ε, and we want to take the limit ε→ 0.
We have the induced variation of our 1-form

ω(x)dx 
→ ω(x + εξ(x))d(x + εξ(x))=: ω(x)+ εδω(x). (1.1.39)

By Taylor expansion, we have

ω(x + εξ(x))d(x + εξ(x))=
(
ωi(x)+ ε

∂ωi

∂xk
ξk(x)

)(
dxi + ε

∂ξ i

∂xk
dxk

)

+ higher order terms (1.1.40)

from which we conclude that for ε→ 0

δω= ∂ωi

∂xk
ξkdxi +ωi

∂ξ i

∂xk
dxk. (1.1.41)

Of course, since ∂ξ i

∂xk dx
k = dξ i , the last term in (1.1.41) agrees with the one required

by (1.1.18).
To put the preceding into a slogan: For setting up transformation rules in geom-

etry, mathematicians keep the point fixed and change the coordinates, while physi-
cists keep the same coordinates, but move the point around. The first approach is
well suited to identifying invariants, like the curvature tensor. The second one is
convenient for computing variations, as in our discussion of actions below.

So far, we have computed derivatives of functions. We have also talked about
vector fields V (x) = vi(x) ∂

∂xi as objects that depend differentiably on their ar-
guments x. Of course, we can do the same for other tensors, like the metric
gij (x)dx

i ⊗ dxj . This naturally raises the question about how to compute their
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derivatives. This encounters the problem, however, that in contrast to functions, the
representation of such tensors depends on the choice of local coordinates, and we
have described in some detail that and how they transform under coordinate changes.
Precisely because of that transformation, they acquire a coordinate invariant mean-
ing; for example, the operation of a vector on a function or the metric product be-
tween two vectors are both independent of the choice of coordinates.

It now turns out that on a differentiable manifold, there is in general no single
canonical way of taking derivatives of vector fields or other tensors in an invariant
manner. There are, in fact, many such possibilities, and they are called connections
or covariant derivatives. Only when we have additional structures, like a Riemannian
metric, can we single out a particular covariant derivative on the basis of its com-
patibility with the metric. For our purposes, however, we also need other covariant
derivatives, and therefore, we now develop that notion. We shall treat this issue
from a more abstract perspective in Sect. 1.2 below, and so the reader who wants to
progress more rapidly can skip the discussion here.

Let M be a differentiable manifold. We recall that �(TM) denotes the space of
vector fields on M . An (affine) connection or covariant derivative on M is a linear
map

∇ : �(TM)⊗R �(TM)→ �(TM),

(V,W) 
→ ∇VW

satisfying:

(i) ∇ is tensorial in the first argument:

∇V1+V2W =∇V1W +∇V2W for all V1,V2,W ∈ �(TM),

∇fVW = f∇VW for all f ∈ C∞(M),V,W ∈ �(TM);
(ii) ∇ is R-linear in the second argument:

∇V (W1 +W2)=∇VW1 +∇VW2 for all V,W1,W2 ∈ �(TM)

and it satisfies the product rule

∇V (fW)= V (f )W + f∇VW for all f ∈ C∞(M),V,W ∈ �(TM).

(1.1.42)

∇VW is called the covariant derivative of W in the direction V . By (i), for any
x0 ∈M , (∇VW)(x0) only depends on the value of V at x0. By way of contrast, it also
depends on the values of W in some neighborhood of x0, as it naturally should as
a notion of a derivative of W . The example on which this is modeled is the Euclidean
connection given by the standard derivatives, that is, for V = V i ∂

∂xi ,W =Wj ∂
∂xj ,

∇eucl
V W = V i ∂W

j

∂xi

∂

∂xj
.
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However, this is not invariant under nonlinear coordinate changes, and since a gen-
eral manifold cannot be covered by coordinates with only linear coordinate trans-
formations, we need the above more general and abstract concept of a covariant
derivative.

Let U be a coordinate chart in M , with local coordinates x and coordinate vec-
tor fields ∂

∂x1 , . . . ,
∂

∂xd (d = dimM). We then define the Christoffel symbols of the
connection ∇ via

∇ ∂

∂xi

∂

∂xj
=: �k

ij

∂

∂xk
. (1.1.43)

Thus,

∇VW = V i ∂W
j

∂xi

∂

∂xj
+ V iWj�k

ij

∂

∂xk
. (1.1.44)

In order to understand the nature of the objects involved, we can also leave out
the vector field V and consider the covariant derivative ∇W as a 1-form. In local
coordinates

∇W =W
j

;i
∂

∂xj
dxi, (1.1.45)

with

W
j

;i :=
∂Wj

∂xi
+Wk�

j
ik. (1.1.46)

If we change our coordinates x to coordinates y, then the new Christoffel symbols,

∇ ∂

∂yl

∂

∂ym
=: �̃n

lm

∂

∂yn
, (1.1.47)

are related to the old ones via

�̃n
lm(y(x))=

{
�k
ij (x)

∂xi

∂yl

∂xj

∂ym
+ ∂2xk

∂yl∂ym

}
∂yn

∂xk
. (1.1.48)

In particular, due to the term ∂2xk

∂yl∂ym , the Christoffel symbols do not transform as

a tensor. However, if we have two connections 1∇ , 2∇ , with corresponding Christof-
fel symbols 1�k

ij , 2�k
ij , then the difference 1�k

ij − 2�k
ij does transform as a tensor.

Expressed more abstractly, this means that the space of connections on M is an
affine space.

For a connection ∇ , we define its torsion tensor via

T (V,W) := ∇VW −∇WV − [V,W ] for V,W ∈ �(TM). (1.1.49)

Inserting our coordinate vector fields ∂
∂xi as before, we obtain

Tij := T

(
∂

∂xi
,

∂

∂xj

)
=∇ ∂

∂xi

∂

∂xj
−∇ ∂

∂xj

∂

∂xi
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(since coordinate vector fields commute, i.e., [ ∂
∂xi ,

∂
∂xj ] = 0)

(�k
ij − �k

ji)
∂

∂xk
.

We call the connection ∇ torsion-free or symmetric if T ≡ 0. By the preceding
computation, this is equivalent to the symmetry

�k
ij = �k

ji for all i, j, k. (1.1.50)

Let c(t) be a smooth curve in M , and let V (t) := ċ(t) (= ċi (t) ∂
∂xi (c(t)) in local

coordinates) be the tangent vector field of c. In fact, we should instead write V (c(t))

in place of V (t), but we consider t as the coordinate along the curve c(t). Thus, in

those coordinates ∂
∂t
= ∂ci

∂t
∂

∂xi , and in the sequel, we shall frequently and implicitly
make this identification, that is, switch between the points c(t) on the curve and
the corresponding parameter values t . Let W(t) be another vector field along c, i.e.,
W(t) ∈ Tc(t)M for all t . We may then write W(t)= μi(t) ∂

∂xi (c(t)) and form

∇ċ(t)W(t)= μ̇i(t)
∂

∂xi
+ ċi (t)μj (t)∇ ∂

∂xi

∂

∂xj

= μ̇i(t)
∂

∂xi
+ ċi (t)μj (t)�k

ij (c(t))
∂

∂xk

(the preceding computation is meaningful as we see that it depends only on the
values of W along the curve c(t), but not on other values in a neighborhood of
a point on that curve).

This represents a (nondegenerate) linear system of d first-order differential oper-
ators for the d coefficients μi(t) of W(t). Therefore, for given initial values μi(0),
there exists a unique solution W(t) of

∇ċ(t)W(t)= 0.

This W(t) is called the parallel transport of W(0) along the curve c(t). We also say
that W(t) is covariantly constant along the curve c.

Now, let W be a vector field in a neighborhood U of some point x0 ∈M . W is
called parallel if for any curve c(t) in U , W(t) :=W(c(t)) is parallel along c. This
means that for all tangent vectors V in U ,

∇VW = 0,

i.e.,

∂

∂xi
Wk +Wj�k

ij = 0 identically in U, for all i, k,

with W =Wi ∂

∂xi
in local coordinates.
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This now is a system of d2 first-order differential equations for the d coefficients
of W , and so, it is overdetermined. Therefore, in general, such W do not exist. Of
course, they do exist for the Euclidean connection, because in Euclidean coordi-
nates, the coordinate vector fields ∂

∂xi are parallel.
We define the curvature tensor R by

R(V,W)Z := ∇V∇WZ −∇W∇V Z −∇[V,W ]Z, (1.1.51)

or in local coordinates

Rk
lij

∂

∂xk
:=R

(
∂

∂xi
,

∂

∂xj

)
∂

∂xl
(i, j, l = 1, . . . , d). (1.1.52)

The curvature tensor can be expressed in terms of the Christoffel symbols and their
derivatives via

Rk
lij =

∂

∂xi
�k
jl −

∂

∂xj
�k
il + �k

im�m
jl − �k

jm�m
il . (1.1.53)

We also note that, as the name indicates, the curvature tensor R is, like the torsion
tensor T , but in contrast to the connection ∇ represented by the Christoffel sym-
bols, a tensor. This means that when one of its arguments is multiplied by a smooth
function, we may simply pull out that function without having to take a derivative of
it. Equivalently, it transforms as a tensor under coordinate changes; here, the upper
index k stands for an argument that transforms as a vector, that is contravariantly,
whereas the lower indices l, i, j express a covariant transformation behavior. The
curvature tensor will be discussed in more detail in Sect. 1.1.5.

A curve c(t) in M is called autoparallel or geodesic if

∇ċ ċ= 0. (1.1.54)

Geodesics will be discussed in detail and from a different perspective in Sect. 1.1.4.
Here, we only display their equation and define the exponential map. In local coor-
dinates, (1.1.54) becomes

c̈k(t)+ �k
ij (c(t))ċ

i (t)ċj (t)= 0 for k = 1, . . . , d. (1.1.55)

This constitutes a system of second-order ODEs, and given x0 ∈ M , V ∈ Tx0M ,
there exist a maximal interval IV ⊂ R containing an open neighborhood of 0 and
a geodesic

cV : IV →M

with cV (0)= x0, ċV (0)= V . We can then define the exponential map expx0
on some

star-shaped neighborhood of 0 ∈ Tx0M :

expx0
: {V ∈ Tx0M : 1 ∈ IV }→M,

V 
→ cV (1).
(1.1.56)

We then have expx0
(tV )= cV (t) for 0≤ t ≤ 1.
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A submanifold S of M is called autoparallel or totally geodesic if for all x0 ∈ S,
V ∈ Tx0S for which expx0

V is defined, we have

expx0
V ∈ S.

The infinitesimal condition needed for this property is that

∇VW(x) ∈ TxS

for any vector field W(x) tangent to S and V ∈ TxS.
Now, let M carry a Riemannian metric g = 〈·, ·〉.
We say that ∇ is a Riemannian connection if it satisfies the metric product rule

Z〈V,W 〉 = 〈∇ZV,W 〉 + 〈V,∇ZW 〉. (1.1.57)

For any Riemannian metric g, there exists a unique torsion-free Riemannian con-
nection, the so-called Levi-Cività connection ∇g . It is given by

〈∇g
VW,Z〉 = 1

2
{V 〈W,Z〉 −Z〈V,W 〉 +W 〈Z,V 〉

− 〈V, [W,Z]〉 + 〈Z, [V,W ]〉 + 〈W, [Z,V ]〉}. (1.1.58)

The Christoffel symbols of ∇g can be expressed through the metric; in local coor-
dinates, with gij = 〈 ∂

∂xi
∂

∂xj 〉, we use the abbreviation

gij,k := ∂

∂xk
gij (1.1.59)

and have

�k
ij =

1

2
gkl(gil,j + gjl,i − gij,l), (1.1.60)

or, equivalently,

gij,k = gjl�
l
ik + gil�

l
jk = �ikj + �jki . (1.1.61)

The Levi-Cività connection ∇g respects the metric in the sense that if V (t),W(t)

are parallel vector fields along a curve c(t), then

〈V (t),W(t)〉 ≡ const, (1.1.62)

that is, products between tangent vectors remain invariant under parallel transport.

1.1.2 Complex Manifolds

We start with complex dimension 1. The Euclidean space R
2 can be made into the

complex vector space C
1 on which multiplication by complex numbers of the form

a + ib is defined, with i =√−1. Conventions:

z= x + iy = x1 + ix2, z̄= x − iy. (1.1.63)
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In the physics literature, z and z̄ are formally viewed as independent coordinates.
We define

∂z := ∂

∂z
= 1

2
(∂x − i∂y), ∂z̄ = ∂

∂z̄
= 1

2
(∂x + i∂y). (1.1.64)

This is arranged so that

∂zz= 1, ∂zz̄= 0, (1.1.65)

and so on. A function f :C→C is called holomorphic if

∂z̄f = 0. (1.1.66)

Mathematicians write f (z) for any function of the complex variable z. Physicists
instead write f (z, z̄), reserving the notation f (z) for a holomorphic function, that
is, one satisfying (1.1.66) because that relation formally expresses independence of
the coordinate z̄. Similarly, g :C→C is antiholomorphic if

∂zg = 0. (1.1.67)

Another reason for the physics convention is to consider the complexification C
2

with coordinates (z, z′) of the Euclidean plane C= R
2. The slice defined by z̄= z′

then yields the Euclidean plane, while (z, z′)= i(s + t, s − t) gives the Minkowski
plane with metric dt2 − ds2.

When we use the conformal transformation z = ew , with w = τ + iσ , −∞ <

τ <∞ and 0 ≤ σ < 2π , and pass from w = τ + iσ to the light cone coordinates
ζ+ = τ + σ , ζ− = τ − σ (a so-called Wick rotation), we obtain the Minkowski
metric in the form dζ+dζ−.

In complex coordinates, the Laplace operator (see (1.1.103), (1.1.105) below)
becomes

�= ∂2

∂x2
+ ∂2

∂y2
= 4

∂2

∂z∂z̄
. (1.1.68)

We next have the 1-forms

dz= dx + idy, dz̄= dx − idy. (1.1.69)

This is arranged so that

dz(∂z)= 1, dz(∂z̄)= 0, (1.1.70)

and so on, the analogs of (1.1.15). For a vector v1 ∂
∂x
+ v2 ∂

∂y
, we write

vz := v1 + iv2, vz̄ := v1 − iv2, (1.1.71)

and (in flat space)

vz := 1

2
(v1 − iv2), vz̄ := 1

2
(v1 + iv2). (1.1.72)
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In this notation, the Euclidean (flat) metric on R
2, g11 = g22 = 1, g12 = 0, becomes

gzz̄ = gz̄z = 1

2
, gzz = gz̄z̄ = 0, gzz̄ = gz̄z = 2, gzz = gz̄z̄ = 0.

(1.1.73)
This is set up to be compatible with (1.1.4). Thus, (1.1.72) becomes a special case
of

vz = gzzv
z + gzz̄v

z̄. (1.1.74)

The area form for this metric is

i

2
dz∧ dz̄= dx ∧ dy. (1.1.75)

The conventions become clearer when we observe
√
g11g22 − g2

12 dx ∧ dy =
√
gzzgz̄z̄ − g2

zz̄ dz∧ dz̄. (1.1.76)

Also, for a twice covariant tensor,

Vzz = 1

4
(V11 + 2iV12 − V22), Vz̄z̄ = 1

4
(V11 − 2iV12 − V22),

Vzz̄ = Vz̄z = 1

4
(V11 + V22)

(1.1.77)

of which (1.1.73) is a special case.
The divergence is (in flat space)

∂x1v
1 + ∂x2v

2 = ∂zv
z + ∂z̄v

z̄. (1.1.78)

The divergence theorem (integration by parts, a special case of Stokes’ theorem) is
here

∫




(∂zv
z + ∂z̄v

z̄)
i

2
dz∧ dz̄= i

2

∮

∂


(vzdz̄− vz̄dz) (1.1.79)

with a counterclockwise contour integral around 
.
We now turn to the higher-dimensional situation. The model space is now C

d , the
d-dimensional complex vector space. The preceding expressions defined for d = 1
then get equipped with coordinate indices:

z= (z1, . . . , zd), with zj = xj + iyj (1.1.80)

using (x1, y1, . . . , xd, yd) as Euclidean coordinates on R
2d , and

zj̄ := xj − iyj .

Likewise

∂k̄ :=
∂

∂zk̄
:= 1

2

(
∂

∂xk
+ i

∂

∂yk

)
, (1.1.81)
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and so on. Then, a function f :Cd →C is holomorphic if

∂k̄f = 0 (1.1.82)

for k = 1, . . . , d .

Definition 1.2 A complex manifold of complex dimension d (dimC M = d) is a dif-
ferentiable manifold of (real) dimension 2d (dimR M = 2d) whose charts take val-
ues in open subsets of C

d with holomorphic coordinate transitions.

A one-dimensional complex manifold is also called a Riemann surface, but that
subject will be taken up in more depth in Sect. 1.4.2 below.

Let M again be a complex manifold of complex dimension d . Let T R
z M := TzM

be the ordinary (real) tangent space of M at z. We define the complexified tangent
space

T C

z M := T R

z M ⊗R C (1.1.83)

which we then decompose as

T C

z M =C

{
∂

∂zj
,

∂

∂zj̄

}
=: T ′zM ⊕ T ′′z M, (1.1.84)

where T ′zM = C{ ∂
∂zj
} is the holomorphic and T ′′z M = C{ ∂

∂zj̄
} the antiholomor-

phic tangent space. In T C
z M , we have a conjugation mapping ∂

∂zj
to ∂

∂zj̄
, and so

T ′′z M = T ′zM . The same construction is possible for the cotangent space, and we
have analogously

T �C
z M =C{dzj , dzj̄ } =: T �′

z M ⊕ T �′′
z M. (1.1.85)

The important point is that these decompositions are invariant under coordinate
changes because those coordinate changes are required to be holomorphic. In par-
ticular, we have the transformation rules

dzj = ∂zj

∂wl
dwl, dzk̄ =

(
∂zk

∂wm

)
dwm̄ = ∂zk̄

∂wm̄
dwm̄ (1.1.86)

when z= z(w).
The complexified space 
k(M;C) of k-forms can be decomposed into subspaces


p,q(M) with p+ q = k. 
p,q(M) is locally spanned by forms of the type

ω(z)= η(z)dzi1 ∧ · · · ∧ dzip ∧ dzj̄1 ∧ · · · ∧ dzj̄q . (1.1.87)

Thus


k(M)=
⊕

p+q=k


p,q(M). (1.1.88)
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We can then let the differential operators

∂ = 1

2

(
∂

∂xj
− i

∂

∂yj

)
(dxj + idyj ) and

∂̄ = 1

2

(
∂

∂xj
+ i

∂

∂yj

)
(dxj − idyj )

(1.1.89)

operate on such a form by

∂ω= ∂η

∂zi
dzi ∧ dzi1 ∧ · · · ∧ dzip ∧ dzj̄1 ∧ · · · ∧ dzj̄q (1.1.90)

and

∂̄ω= ∂η

∂zj̄
dzj̄ ∧ dzi1 ∧ · · · ∧ dzip ∧ dzj̄1 ∧ · · · ∧ dzj̄q . (1.1.91)

∂ and ∂̄ yield a decomposition of the exterior derivative d :

Lemma 1.2

d = ∂ + ∂̄ . (1.1.92)

Moreover,

∂∂ = 0, ∂̄ ∂̄ = 0, (1.1.93)

∂∂̄ =−∂̄∂. (1.1.94)

Proof

∂ + ∂̄ = 1

2

(
∂

∂xj
− i

∂

∂yj

)
(dxj + idyj )+ 1

2

(
∂

∂xj
+ i

∂

∂yj

)
(dxj − idyj )

= ∂

∂xj
dxj + ∂

∂yj
dyj = d.

Consequently,

0= d2 = (∂ + ∂̄)(∂ + ∂̄)= ∂2 + ∂∂̄ + ∂̄∂ + ∂̄2

and decomposing this into types yields (1.1.93), (1.1.94). �

1.1.3 Riemannian and Lorentzian Metrics

In local coordinates x = (x1, . . . , xd), a metric is represented by a nondegenerate,
symmetric matrix

(gij (x))i,j=1,...,d (1.1.95)
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smoothly depending on x. Being symmetric, this matrix has d real eigenvalues, and
being nondegenerate, none of them is 0. When they are all positive, the metric is
called Riemannian. When only one is positive, and therefore d − 1 ones are nega-
tive, it is called Lorentzian.4 The prototype of a Riemannian manifold is Euclidean
space, R

d equipped with its Euclidean metric; the model for a Lorentz manifold is
Minkowski space, namely R

d equipped with the inner product

〈x, y〉 = x0y0 − x1y1 − · · · − xd−1yd−1

for x = (x0, x1, . . . , xd−1), y = (y0, y1, . . . , yd−1). (It is customary to use the in-
dices 0, . . . , d − 1 in place of 1, . . . , d in the Lorentzian case, in order to better
distinguish the time direction corresponding to 0 from the spatial ones.) This space
is often denoted by R

1,d−1.
The product of two tangent vectors v,w ∈ TpM with coordinate representations

(v1, . . . , vd) and (w1, . . . ,wd) (i.e. v = vi ∂
∂xi ,w =wj ∂

∂xj ) is then, as in (1.1.21),

〈v,w〉 := gij (x(p))v
iwj . (1.1.96)

In particular, 〈 ∂
∂xi ,

∂
∂xj 〉 = gij . In a Lorentzian manifold, a vector v with 〈v, v〉> 0

is called time-like, one with 〈v, v〉< 0 space-like, and a nontrivial one with ‖v‖ = 0
light-like.

A (smooth) curve γ : [a, b] →M ([a, b] a closed interval in R) is called time-
like when 〈γ̇ (t), γ̇ (t)〉> 0 for all t ∈ [a, b]. Light- or space-like curves are defined
analogously.

Similarly, the length or norm of v is given by

‖v‖ := 〈v, v〉 1
2 (1.1.97)

if 〈v,w〉 ≥ 0, and

‖v‖ := −(−〈v, v〉) 1
2 (1.1.98)

if 〈v,w〉< 0. On a Riemannian manifold, of course all vectors v �= 0 have positive
length.

Starting from the product (1.1.96), a metric then also induces products on other
tensors. For example, for cotangent vectors ω= ωidx

i, λ= λidx
i ∈ T ∗pM , we have

〈ω,λ〉 = gij (x(p))ωiλj , (1.1.99)

4The conventions are not generally agreed upon in the literature (see [81] for a systematic survey
of the older literature). The one employed here seems to be the one followed by the majority
of physicists. Sometimes, however, for a Lorentzian metric, one requires d − 1 positive and 1
negative eigenvalues. Of course, this simply changes the convention adopted here by a minus sign,
without affecting the geometric or physical content. The latter convention looks natural when one
wants to add a temporal dimension to already present spatial ones. The convention adopted here,
in contrast, is natural when one starts with kinetics described by ordinary differential equations
derived from a positive definite Lagrangian. Thus, the temporal dimension is the primary one and
counted positively, whereas the additional spatial ones then lead to field theories.
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that is, the induced product on the cotangent space is given by the inverse of the
metric tensor. As a check, the reader should verify that this expression is invariant
under coordinate transformations, with the transformation behavior of the metric
now presented (or recalled from (1.1.20)).

Let y = f (x). v and w then have representations (ṽ1, . . . , ṽd ) and (w̃, . . . , w̃d)

with ṽj = vi
∂f j

∂xi , w̃
j = wi ∂f

j

∂xi . The metric in the new coordinates, denoted by
hk�(y), then satisfies

hk�(f (x))ṽkw̃� = 〈v,w〉 = gij (x)v
iwj . (1.1.100)

Therefore, the transformation rule is the one given in (1.1.20),

hk�(f (x))
∂f k

∂xi

∂f �

∂xj
= gij (x). (1.1.101)

Given a metric (gij (x))i,j=1,...,d , we put

√
g :=

√
det(gij ) (1.1.102)

and define the Laplace–Beltrami operator (Laplacian for short) acting on C∞(M)

as

� :=�g := 1√
g

∂

∂xi

(√
ggij ∂

∂xj

)
. (1.1.103)

We assume that our manifold M is compact (and, as always, without boundary). We
then have the integration by parts formula, using 〈., .〉 for the product on 1-forms
induced by the Riemannian metric g,

∫
〈df, dg〉√gdx1 · · ·dxd =

∫
gij ∂f

∂xi

∂g

∂xj

√
gdx1 · · ·dxd

=−
∫

f�g
√
gdx1 · · ·dxd (1.1.104)

where
√
gdx1 . . . dxd is the volume form dvolg for the Riemannian metric as de-

fined in (1.1.26). (Note that we are always assuming that our manifold M is oriented.
This avoids sign ambiguities in the volume form and permits global integration as
in (1.1.104).)

In the Euclidean case, the Laplacian is simply the sum of the pure second deriv-
atives,

�=
d∑

i=1

∂2

(∂xi)2
(1.1.105)

(cf. also (1.1.68) above). For the Minkowski metric, we have

�= ∂2

∂(x0)2
−

d−1∑

i=1

∂2

∂(xi)2
, (1.1.106)

and this operator is often denoted by � in the literature.
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Generalizing (1.1.98), the metric g induces a product 〈ω,ν〉 on p-forms, see
(1.1.25), and we can then define the formal adjoint d∗ of the exterior derivative d

via
∫
〈dμ,ν〉dvolg =

∫
〈μ,d∗ν〉dvolg (1.1.107)

for a (p− 1)-form μ and a p-form ν. (Since d :
p(M)→
p+1(M), i.e., d maps
p-forms to (p + 1)-forms, d∗ : 
p+1(M) → 
p(M) maps (p + 1)-forms to p-
forms.) On functions, we then have

�f =−d∗df. (1.1.108)

More generally, one defines the Hodge Laplacian on p-forms by

dd∗ + d∗d. (1.1.109)

Since d∗f = 0 for functions, i.e, 0-forms f (for the simple reason that there do
not exist forms of degree −1), this is a generalization of (1.1.108)—up to the sign,
and these differing sign conventions unfortunately cause a lot of confusion. We then
have the general integration by parts formulae for p-forms

∫
〈d∗dμ,ν〉dvolg =

∫
〈dμ,dν〉dvolg =

∫
〈μ,d∗dν〉dvolg (1.1.110)

and
∫
〈(dd∗ + d∗d)μ, ν〉dvolg =

∫
(〈dμ,dν〉 + 〈d∗μ,d∗ν〉) dvolg

=
∫
〈μ, (dd∗ + d∗d)ν〉dvolg. (1.1.111)

Let us briefly explain the relation with the cohomology of the (compact, oriented)
manifold M . A p-form ω is called closed if

dω= 0, (1.1.112)

and it is called exact if there exists some (p− 1)-form η with

ω= dη. (1.1.113)

Because of d ◦ d = 0, see (1.1.37), any exact form is closed. Two closed p-forms
ω1,ω2 are considered as cohomologically equivalent if their difference is exact, i.e.,
if there exists some (p− 1)-form η with

ω1 −ω2 = dη. (1.1.114)

The equivalence classes of p-forms constitute a group, the pth (de Rham) cohomol-
ogy group Hp(M) of M . When M carries a Riemannian metric g, one can identify
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a natural representative for each cohomology class as the unique form μ that mini-
mizes

∫

M

〈ω,ω〉dvolg (1.1.115)

in its equivalence class. This minimizing form μ is then harmonic in the sense that

(dd∗ + d∗d)μ= 0, (1.1.116)

or equivalently (as follows from (1.1.111) and the nonnegativity of the two terms in
the middle integral)

dμ= 0 and d∗μ= 0. (1.1.117)

Thus, a harmonic form is closed (dμ= 0) and coclosed (d∗μ= 0).
Since M is compact, the dimension bp(M) (called the pth Betti number of M) of

Hp(M) is finite. This follows for instance from the fact that the elements of Hp(M)

are identified with the solutions of the elliptic differential equation (1.1.116). It is
a general result in the theory of elliptic partial differential equations that their solu-
tion spaces satisfy a compactness principle.

1.1.4 Geodesics

The length of a smooth (or at least rectifiable) curve γ : [a, b]→M is

L(γ ) :=
∫ b

a

∥∥∥∥
dγ

dt
(t)

∥∥∥∥dt =
∫ b

a

√
gij (x(γ (t)))ẋi (t)ẋj (t)dt (1.1.118)

where we abbreviate ẋi (t) := d
dt
(xi(γ (t))). Thus, time-, light-, or space-like curves

have positive, vanishing, or negative length, respectively
The action of a time-like curve γ is

S(γ ) := 1

2

∫ b

a

∥∥∥∥
dγ

dt
(t)

∥∥∥∥
2

dt = 1

2

∫ b

a

gij (x(γ (t)))ẋi (t)ẋj (t)dt. (1.1.119)

Here, γ is considered as the orbit of a mass point, which explains the name “ac-
tion”. In the mathematical literature, the action is often called energy, an unfortunate
choice of terminology.

A massive particle in a Lorentzian manifold travels along a world line x(τ) with
arclength

s =
∫ τ1

τ0

(
gαβ(x(τ ))ẋ

α(τ )ẋβ(τ )
) 1

2 dτ,

where we assume gαβẋ
αẋβ > 0 along the world line. Thus, the movement is time-

like. When in place of gαβẋαẋβ > 0, we have

gαβẋ
αẋβ = 0,
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then the particle is massless, that is, a photon. gαβẋαẋβ < 0 would correspond to
a movement with speed higher than that of light and is excluded.

By Hölder’s inequality, for a time-like curve γ ,

∫ b

a

∥∥∥∥
dγ

dt

∥∥∥∥dt ≤ (b− a)
1
2

(∫ b

a

∥∥∥∥
dγ

dt

∥∥∥∥
2

dt

) 1
2

(1.1.120)

with equality precisely if ‖ dγ
dt
‖ ≡ const. This means that

L(γ )2 ≤ 2(b− a)S(γ ), (1.1.121)

again with equality only if γ has constant norm.
The distance between p,q ∈M is

d(p,q) := inf{L(γ ) : γ : [a, b]→M with γ (a)= p,γ (b)= q}. (1.1.122)

By the change of variables formula, if γ : [a, b]→M is a curve, and σ : [a′, b′] →
[a, b] is a change of parameter, then

L(γ ◦ σ)= L(γ ). (1.1.123)

This is no longer so for the action, as follows with a little reflection on the equality
discussion in (1.1.121). It is instructive to look at the stationary points of the action:

Lemma 1.3 The Euler–Lagrange equations (see Sect. 2.3.1 below) for the action S

are

ẍi (t)+ �i
jk(x(t))ẋ

j (t)ẋk(t)= 0, i = 1, . . . , d, (1.1.124)

where �i
jk are the Christoffel symbols (1.1.60).

Proof As will be derived in Sect. 2.3.1 below, the Euler–Lagrange equations of
a functional

I (x)=
∫ b

a

f (t, x(t), ẋ(t))dt

are given by

d

dt

∂f

∂ẋi
− ∂f

∂xi
= 0, i = 1, . . . , d.

Thus, for our action S,

d

dt
(gik(x(t))ẋ

k(t)+ gji(x(t))ẋ
j (t))− gjk,i(x(t))ẋ

j (t)ẋk(t)= 0

for i = 1, . . . , d,
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hence

gikẍ
k + gji ẍ

j + gik,�ẋ
�ẋk + gji,�ẋ

�ẋj − gjk,i ẋ
j ẋk = 0.

Renaming indices and using gik = gki, we get

2g�mẍm + (g�k,j + gj�,k − gjk,�)ẋ
j ẋk = 0

and from this

gi�g�mẍm + 1

2
gi�(g�k,j + gj�,k − gjk,�)ẋ

j ẋk = 0.

Because of gi�g�m = δim and thus gi�g�mẍm = ẍi , (1.1.124) follows. �

Definition 1.3 A geodesic is a curve γ = [a, b] →M that is a critical point of the
action S, that is, satisfies (1.1.124).

Briefly interrupting our discussion, we point out that (1.1.124) is the same as
(1.1.55). In other words, taking up the discussion at the end of Sect. 1.1.1, for the
Levi-Cività connection, the two definitions of a geodesic, being autoparallel as in
Sect. 1.1.1, or being a critical point of the action functional S as defined here, are
equivalent. In particular, we can also write the geodesic equation invariantly, as in
(1.1.54), with a slight change of notation:

∇ d
dt
ẋ = 0. (1.1.125)

We now return to the discussion of geodesics as critical points of S. We say that
a curve γ is parametrized proportionally to arc length if 〈ẋ, ẋ〉 ≡ const.

Lemma 1.4 Each geodesic is parametrized proportionally to arc length.

Proof For a solution of (1.1.124),

d

dt
〈ẋ, ẋ〉 = d

dt
(gij (x(t))ẋ

i (t)ẋj (t))

= gij ẍ
i ẋj + gij ẋ

i ẍj + gij,kẋ
i ẋj ẋk

= −(gjk,� + g�j,k − g�k,j )ẋ
�ẋkẋj + g�j,kẋ

kẋ�ẋj

= 0, since gjk,�ẋ
�ẋkẋj = g�k,j ẋ

�ẋkẋj .

Consequently, 〈ẋ, ẋ〉 ≡ const., and hence the curve is parametrized proportionally
to arc length. �

As already discussed in Sect. 1.1.1, the next result follows from the Picard–
Lindelöf theorem about the local existence and uniqueness of solutions of systems
of ODEs.
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Lemma 1.5 For each p ∈M , v ∈ TpM , there exist ε > 0 and precisely one geodesic

c : [0, ε]→M

with c(0)= p and ċ(0)= v. This geodesic c depends smoothly on p and v.

We now assume that the metric g on M is Riemannian, even though results corre-
sponding to those stated below also hold in the case of other signatures, in particular
for Lorentzian metrics.

If x(t) is a solution of (1.1.124), so is x(λt) for any constant λ ∈R. Denoting the
geodesic of Lemma 1.5 by cv ,

cv(t)= cλv

(
t

λ

)
for λ > 0, t ∈ [0, ε].

In particular, cλv is defined on [0, ε
λ
].

Since cv depends smoothly on v, and {v ∈ TpM : ‖v‖ = 1} is compact, there
exists ε0 > 0 with the property that for ‖v‖ = 1, cv is defined at least on [0, ε0].
Therefore, for any w ∈ TpM with ‖w‖ ≤ ε0, cw is defined at least on [0,1]. Thus,
as in (1.1.56):

Definition 1.4 Let p ∈M , Vp := {v ∈ TpM : cv is defined on [0,1]}.
expp : Vp →M,

v 
→ cv(1)
(1.1.126)

is called the exponential map of M at p.

One observes that the derivative of the exponential map expp at 0 ∈ TpM is the
identity. Therefore, with the help of the inverse function theorem, one checks that
the exponential map expp maps a neighborhood of 0 ∈ TpM diffeomorphically onto
a neighborhood of p ∈M. Since TpM is a vector space isomorphic to R

d (on which
we choose a Euclidean orthonormal basis), we can consider the local inverse exp−1

p

as defining local coordinates in a neighborhood of p. These local coordinates are
called normal coordinates with center p. In these coordinates, a basis of TpM that is
orthonormal with respect to the Riemannian metric g is identified with a Euclidean
orthonormal basis of R

d . This is the first part of the next lemma:

Lemma 1.6 In normal coordinates, the metric satisfies

gij (0) = δij , (1.1.127)

�i
jk(0) = 0 (and also gij,k(0)= 0) for all i, j, k. (1.1.128)

Proof (1.1.127) follows from the fact that the above identification � : TpM ∼= R
d

maps an orthonormal basis of TpM w.r.t. the metric g (that is, a basis e1, . . . ed with



1.1 Riemannian and Lorentzian Manifolds 25

〈ei, ej 〉 = δij onto an orthonormal basis of R
d . For (1.1.128), in normal coordinates,

the straight lines through the origin of R
d are geodesic, as the line tv, t ∈R, v ∈R

d ,
is mapped onto ctv(1) = cv(t), where cv(t) is the geodesic, parametrized by arc
length, with ċv(0)= v.

Inserting now x(t) = tv into the geodesic equation (1.1.124), we obtain, using
ẍ(t)= 0,

�i
jk(tv)v

j vk = 0, for i = 1, . . . , d.

In particular at 0, i.e., for t = 0,

�i
jk(0)v

j vk = 0 for all v ∈R
d , i = 1, . . . , d.

Using the symmetry �i
jk = �i

kj , this implies

�i
�m(0)= 0

for all i and also for all �,m. By definition of �i
jk , at 0 ∈R

d , we obtain

gi�(gj�,k + gk�,j − gjk,�)= 0

for all free indices, hence also

gjm,k + gkm,j − gjk,m = 0.

Permuting the indices yields

gkj,m + gmj,k − gkm,j = 0,

which we add to obtain, for all indices,

gjm,k(0)= 0. �

This is a very useful result. When one has to check tensor equations, one can
do this in arbitrary coordinates because by the definition of a tensor, results are
coordinate independent. Now, it is often much easier to check such identities in
normal coordinates at the point under consideration, making use of the vanishing of
all first derivatives of the metric and all Christoffel symbols. We shall often employ
this strategy in the sequel.

In fact, we can even achieve a little more: Let c(s) : (−a, a)→M be a geodesic
parametrized by arclength, that is, 〈ċ(s), ċ(s)〉 = 1 for−a < s < a (see Lemma 1.4).
Let v1(0), . . . , vd(0) be an orthonormal basis of Tc(0)M with v1 = ċ(0), and let
vi(t) ∈ Tc(t)M be the parallel transport of vi(0) along the geodesic c(s). We define
coordinates by mapping (x1, . . . , xd) in some neighborhood of 0 ∈R

d to

(c(x1), expc(x1)(x
2v2(x1)+ · · · + xdvd(x1))). (1.1.129)
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Lemma 1.7 The coordinates just described satisfy

gij (x
1,0, . . . ,0) = δij , (1.1.130)

�i
jk(x

1,0, . . . ,0) = 0, (1.1.131)

(and also gij,k(x
1,0, . . . ,0) = 0) (1.1.132)

for all −a < x1 < a, i, j, k.

Proof By Lemma 1.4, g11(x
1,0, . . . ,0) is constant, in fact ≡ 1 by our ar-

clength assumption, as a function of x1. Therefore, also g11,1(x
1,0, . . . ,0) = 0.

Moreover, since the Levi-Cività connection ∇ respects the metric (see (1.1.62)),
gjk(x

1,0, . . . ,0)
= 〈vi(x1), vj (x1)〉 = δjk for the other values of j, k. Therefore, also

gjk,1(x
1,0, . . . ,0)= 0 for all j, k. (1.1.133)

We continue to evaluate all expressions at (x1,0, . . . ,0). All rays tv for v in the
span of v2, . . . , vd are mapped to geodesics, because the exponential map is applied
to them. So, we obtain, as in the proof of Lemma 1.6, that

�i
�m(x1,0, . . . ,0)= 0

for i = 2, . . . , d and all �,m. By definition of �i
jk, we obtain gi�(gj�,k +

gk�,j − gjk,�) = 0 at (x1,0, . . . ,0) ∈ R
d for all free indices, hence also gjm,k +

gkm,j − gjk,m = 0 for m = 2, . . . , d . Permuting the indices to get gkj,m + gmj,k −
gkm,j = 0, adding these relations and combining them with (1.1.133) finally yields
gjm,k(x

1,0, . . . ,0)= 0 for all indices. �

1.1.5 Curvature

We now want to discuss the curvature tensor R of the Levi-Cività connection ∇ . We
recall (1.1.51):

R(X,Y )Z =∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z. (1.1.134)

In local coordinates (cf. (1.1.52)),

R

(
∂

∂xi
,

∂

∂xj

)
∂

∂x�
=Rk

�ij

∂

∂xk
. (1.1.135)

We put

Rk�ij := gkmRm
�ij , (1.1.136)
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i.e.

Rk�ij =
〈
R

(
∂

∂xi
,

∂

∂xj

)
∂

∂x�
,

∂

∂xk

〉
. (1.1.137)

There exist different sign conventions for the curvature tensor in the literature. We
have adopted here a convention that hopefully minimizes conflict between them.
As a consequence, the indices k and l appear in different orders at the two sides
of (1.1.137).

The curvature tensor satisfies the following symmetries:

R(X,Y )Z =−R(Y,X)Z, i.e. Rk�ij =−Rk�ji (1.1.138)

for vector fields X,Y,Z,W .

R(X,Y )Z +R(Y,Z)X+R(Z,X)Y = 0, (1.1.139)

or with indices

Rk�ij +Rkij� +Rkj�i = 0 (1.1.140)

(the first Bianchi identity).

〈R(X,Y )Z,W 〉 = −〈R(X,Y )W,Z〉, (1.1.141)

with indices

Rk�ij =−R�kij . (1.1.142)

〈R(X,Y )Z,W 〉 = 〈R(Z,W)X,Y 〉, (1.1.143)

with indices

Rk�ij =Rijk�. (1.1.144)

∂

∂xh
Rk�ij + ∂

∂xk
R�hij + ∂

∂x�
Rhkij = 0 (1.1.145)

(the second Bianchi identity). In order to practice tensor calculus, we give a proof
of (1.1.145) in local coordinates. We recall (1.1.53):

Rk
lij =

∂

∂xi
�k
jl −

∂

∂xj
�k
il + �k

im�m
jl − �k

jm�m
il . (1.1.146)

Since all expressions are tensors, we may choose normal coordinates around the
point x0 under consideration, i.e., for all indices

gij (x0)= δij , gij,k(x0)= 0= �k
ij (x0) (1.1.147)

(1.1.146) then becomes

Rk�ij = 1

2
(gjk,�i + g�k,ij − gj�,ki − gik,�j − g�k,ij + gi�,kj )
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= 1

2
(gjk,�i + gi�,kj − gj�,ki − gik,�j ), (1.1.148)

and also, differentiating (1.1.146) and using once more the vanishing of all terms
containing first derivatives of gij at x0,

Rk�ij,h = 1

2
(gjk,�ih + gi�,kjh − gj�,kih − gik,�jh). (1.1.149)

This yields the second Bianchi identity:

Rk�ij,h +R�hij,k +Rhkij,� = 1

2
(gjk,�ih + gi�,kjh − gj�,kih − gik,�jh

+ gj�,hik + gih,�jk − gjh,�ik − gi�,hjk

+ gjh,ki� + gik,hj� − gjk,hi� − gih,kj�)

= 0.

The sectional curvature of the plane spanned by the (linearly independent) tangent
vectors X = ξ i ∂

∂xi , Y = ηi ∂
∂xi ∈ TxM is defined as

K(X ∧ Y) := 〈R(X,Y )Y,X〉 1

|X ∧ Y |2 , (1.1.150)

(|X ∧ Y |2 = 〈X,X〉〈Y,Y 〉 − 〈X,Y 〉2), with indices

K(X ∧ Y)= Rijk�ξ
iηj ξkη�

gikgj�(ξ iξ kηjη� − ξ iξ j ηkη�)
= Rijk�ξ

iηj ξkη�

(gikgj� − gij gk�)ξ iηj ξkη�
.

(1.1.151)
The Ricci curvature in the direction X = ξ i ∂

∂xi ∈ TxM is defined as the average of
the sectional curvatures of all planes in TxM containing X,

Ric(X,X)= gj�

〈
R

(
X,

∂

∂xj

)
∂

∂x�
,X

〉
, (1.1.152)

and the Ricci tensor is thus the contraction of the curvature tensor,

Rik = gj�Rijk� =R
j
ijk. (1.1.153)

(1.1.144) implies the symmetry

Rik =Rki. (1.1.154)

The scalar curvature is the contraction of the Ricci curvature,

R = gikRik =Ri
i . (1.1.155)

For d = dimM = 2, the curvature tensor is determined by the scalar curvature:

Rijk� =R(gikgj� − gij gk�). (1.1.156)
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For d = 3, the curvature tensor is determined by the Ricci tensor. For d > 3, the part
of the curvature tensor not yet determined by the Ricci tensor is given by the Weyl
tensor

Wijk� =Rijk� + 2

d − 2
(gi�Rkj − gikR�j + gjkR�i − gj�Rki)

+ 2

(d − 1)(d − 2)
R(gikg�j − gi�gkj ). (1.1.157)

1.1.6 Principles of General Relativity

General relativity describes the physical force of gravity and its relation with the
structure of space–time. The fundamental physical insight behind the theory of gen-
eral relativity is that the effects of acceleration cannot be distinguished from those
of gravity. The presence of matter changes the geometry of space, and acceleration
is experienced in relation to that geometry. In particular, the geometry of space and
time is dynamically determined by the physical laws, and in contrast to other phys-
ical theories, is thus not assumed as independently given. These physical laws in
turn are deduced from symmetry principles, more precisely from the principle of
general covariance, that is, that the physics should be independent of its coordinate
description. For this, Riemannian geometry has developed the appropriate formal
tools.

Let M be a Lorentz manifold with local coordinates (x0, x1, x2, x3) and metric

(gαβ)α,β=0,...,3.

We recall the Christoffel symbols

�α
βγ =

1

2
gαδ(gβδ,γ + gγ δ,β − gβγ,δ),

and those objects from which the essential invariants of a metric come, that is, the
curvature tensor Rα

βγ δ = �α
βδ,γ − �α

βγ,δ + �α
ηγ �

η
βδ − �α

ηδ�
η
βγ , and its contractions,

the Ricci tensor (1.1.154), Rαβ = R
γ
αγβ , and the scalar curvature (1.1.156), R =

gαβRαβ .
The Einstein field equations couple the metric gαβ of the underlying differen-

tiable manifold with the matter and fields on that manifold. These equations involve
the Ricci curvature and are

Rαβ − 1

2
gαβR = κT αβ. (1.1.158)

Here, κ = 8πg

c4 where g is the gravitational constant. (T αβ)α,β is the energy–
momentum tensor. It describes the matter and fields present. When T is given,
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the Einstein equations then determine the metric of space–time.5 The presence of
a nonvanishing energy–momentum tensor in the field equations makes space–time
curved. The curvature in turn leads to gravity. (1.1.158) is equivalent to

Rαβ − 1

2
gαβR = κTαβ. (1.1.159)

Taking the trace in (1.1.159) leads to R − 2R = κT , that is,

R =−κT . (1.1.160)

(T = gαβTαβ ; note that the dimension of M is 4.) Using (1.1.160), (1.1.159) be-
comes equivalent to

Rαβ = κ

(
Tαβ − 1

2
gαβT

)
. (1.1.161)

In the special case where (Tαβ) = 0, that is, when neither matter nor fields are
present, (1.1.161) becomes

Rαβ = 0, (1.1.162)

i.e., the Ricci curvature of M vanishes.
Hilbert discovered that the Einstein field equations can be derived from a varia-

tional principle. In fact, they are the Euler–Lagrange equations for the action func-
tional

L0(g)=
∫

M

R
√−g dx =

∫

M

RdVolM(x), (1.1.163)

called the Einstein–Hilbert functional. To see this, we consider a family

gt
αβ = gαβ + thαβ

of metrics with (hαβ) having compact support if M is not compact itself. Quantities
obtained from the metric gt

αβ will always carry a superscript t ; for example,

Rt
αβ

is the Ricci tensor of gt
αβ . We also put

δgαβ = d

dt
(gt

αβ)|t=0
= hαβ,

δRαβ = d

dt
(Rt

αβ)|t=0
, etc.

5Classically, the topology of M is assumed fixed. However, it turns out that the equations may
lead to space–time singularities, like black holes, which will then affect the underlying topology.
Such singularities can occur and are sometimes even inevitable, even if suitable and physically
natural restrictions are imposed on the energy–momentum tensor, like nonnegativity. We do not
pursue that issue here, however, but refer to [56]. There, also the cosmological implications of
such singularities are discussed.
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Finally, we shall use the abbreviation

γ := √−g.

We then have

d

dt
L0(g

t )|t=0 =
∫

M

δ(Rγ )dx. (1.1.164)

Now

δ(Rγ )= δ(gαβRαβγ )= gαβγ δRαβ +Rαβδ(g
αβγ ).

We now claim that

gαβδRαβ = divV

(
= 1

γ

∂

∂xα
(γ V α)

)
(1.1.165)

for the vector field V with components

V γ = gαβδ�
γ
αβ − gγαδ�

β
βα. (1.1.166)

Proof of (1.1.165): Let p ∈M . We introduce normal coordinates near p; thus, at p,
the metric tensor is diagonal and

gαβ,γ (p)= 0 and �α
βγ (p)= 0 for all α,β, γ.

In particular, at p

∂

∂xα
γ = 0 for all α.

In these coordinates, (1.1.165) then follows from the definition of the Ricci ten-
sor. While the Christoffel symbols �α

βγ , as the components of a connection, do not
transform tensorially, the δ�α

βγ do transform tensorially as derivatives, that is, as
infinitesimal differences of connections. The right-hand side of (1.1.165) is thus
a tensor, and so is the left-hand side. The equality of two tensors can be checked in
arbitrary coordinates. Since we have just verified (1.1.165) in normal coordinates,
(1.1.165) then also holds in arbitrary coordinates, and we have completed its proof.

We now get
∫

M

δ(Rγ ) =
∫

gαβγ δRαβ dx +
∫

Rαβδ(g
αβγ )dx

=
∫

divV γ dx +
∫

Rαβδ(g
αβγ )dx

=
∫

Rαβδ(g
αβγ )dx (1.1.167)

by Gauss’s theorem, since V has compact support.
Now

δγ =−1

2
γ−1δdet(gαβ)= 1

2
γgαβδgαβ
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and moreover

δgαβ =−gαγ gβγ δgγ δ (from gαβgβγ = δαγ )

and therefore

δ(gαβγ )= γ

(
1

2
gαβgγ δ − gαγ gβδ

)
δgγ δ. (1.1.168)

(1.1.164), (1.1.167), (1.1.168) imply

δL0 =
∫

M

(
1

2
gαβR −Rαβ

)
γ δgαβ dx = 0. (1.1.169)

If this holds for all variations δgαβ with compact support, we have

Rαβ − 1

2
gαβR = 0, (1.1.170)

which implies, as in the derivation of (1.1.162), that

Rαβ = 0. (1.1.171)

Einstein also tentatively introduced a cosmological constant � that has the effect of
changing the Einstein–Hilbert functional (1.1.163) to

L�(g)=
∫

M

(R − 2�)
√−g dx (1.1.172)

and the Einstein field equations (1.1.158) to

Rαβ − 1

2
gαβR+�gαβ = κT αβ. (1.1.173)

While a nontrivial cosmological constant is presently appearing in some cosmolog-
ical models, we put it to 0 for our present discussion. It is straightforward, however,
to include a nontrivial � in the subsequent formulas.

In the presence of some matter fields φ, we assume a Lagrangian

L1 =
∫

M

F(g,φ,∇gφ)
√−g dx (1.1.174)

depending on the fields and their covariant derivatives w.r.t. the Levi-Cività connec-
tion, as well as possibly also directly on the metric g. When we consider a variation
δgαβ of the metric that does not change the fields, we put

δL1 = 1

2

∫

M

T αβδgαβdx. (1.1.175)

In other words, the energy–momentum tensor is defined as the variation of the matter
Lagrangian w.r.t. the metric. In order to fully justify (1.1.175), we need to observe
that all the variations of all metric dependent terms in L1 are proportional to δgαβ .
For the volume form, this has been verified in (1.1.168). The covariant derivative ∇g

occurring in (1.1.175) also depends on the metric (see (1.1.60)). One easily com-
putes, for example in normal coordinates, that the variation δ�α

βδ of the Christoffel
symbol is proportional to a combination of covariant derivatives of δgαβ , and that
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the covariant derivatives can then be integrated away by parts in the computation of
δL1. When one then considers the full Lagrangian

L := L0 + κL1, (1.1.176)

with κ as a coupling constant, we thus obtain from (1.1.169) and (1.1.175), for
variations δgαβ of the metric,

δL=
∫

M

(
1

2
gαβR−Rαβ + κT αβ

)
γ δgαβ dx. (1.1.177)

Thus, when δL= 0 for all variations of the metric, we obtain (1.1.158).
For a more extended discussion of this variational principle, we refer to the pre-

sentation in [81] or [56].
Finally, we mention the so-called semiclassical Einstein equations

Rαβ − 1

2
gαβR = κ〈ψ |T̂αβ |ψ〉 (1.1.178)

where the energy momentum tensor Tαβ in (1.1.159) is replaced by the expectation
value of the energy–momentum operator with respect to some quantum state ψ . This
quantum state in turn depends on the metric g through the Schrödinger equation.
Here, we are invoking concepts that find their natural place in the second part of
this book. Equation (1.1.178) arises in the context of quantum fields on an external
space–time. The coupling of a quantum system to a classical one in (1.1.178) leads
to questions of consistency which we do not enter here. We refer to the discussion
in [74].

Variational principles will be taken up in more generality below in Sect. 2.3.1,
and in Sect. 2.4, the energy–momentum tensor will appear again. Also, we shall see
there that a consequence of Noether’s theorem (see Sect. 2.3.2) is that under the
fundamental assumption of general relativity, namely invariance of L under coordi-
nate transformations—that is, diffeomorphism invariance—the energy–momentum
tensor is divergence free.

1.2 Bundles and Connections

1.2.1 Vector and Principal Bundles

Let M be a differentiable manifold. In this section, we present the basic aspects of
the theory of vector and principal bundles. We point out that we have already studied
one particular vector bundle over M in Sect. 1.1.1, its tangent bundle TM .

A fiber bundle (or simply, a bundle) over M consists of a total space E, a fiber
F (both of them also differentiable manifolds), and a projection π : E →M such
that each x ∈M has a neighborhood U for which E|U = π−1(U) is diffeomorphic
to U × F such that the fibers are preserved. This means that there exists a diffeo-
morphism

ϕ : π−1(U)→U × F
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with

π = p1 ◦ ϕ. (1.2.1)

(p1 :U × F →U is the projection onto the first factor.)
ϕ is called a local trivialization of the bundle over U . Let {Uα} be an open cov-

ering of M with local trivializations {ϕα}. If

Uα ∩Uβ �= ∅,
we obtain transition maps

ϕβα :Uα ∩Uβ →Diff(F ) (= group of diffeomorphisms of F)

via

ϕβ ◦ ϕ−1
α (x, v)= (x,ϕβα(x)v). (1.2.2)

Omitting the base point, which is fixed by (1.2.1), from our notation, we shall usu-
ally simply write

ϕβα = ϕβ ◦ ϕ−1
α .

We have

for x ∈Uα: ϕαα(x)= idF , (1.2.3)

for x ∈Uα ∩Uβ : ϕαβ(x)ϕβα(x)= idF , (1.2.4)

for x ∈Uα ∩Uβ ∩Uγ : ϕαγ (x)ϕγβ(x)ϕβα(x)= idF . (1.2.5)

E can be reconstructed from its transition maps:

E =
∐

α

Uα × F/∼ (1.2.6)

with

(x, v)∼ (y,w) :⇔ x = y and w = ϕβα(x)v

(x ∈Uα,y ∈Uβ,v,w ∈ F).

When we have some (differentiable) fα :Uα →Diff(F ), we can replace the trivial-
ization ϕα over Uα by

ϕ′α = fα ◦ ϕα, (1.2.7)

and conversely, we can obtain any trivialization ϕ′α over Uα in this manner via

fα := ϕ′α ◦ ϕ−1
α

(ϕ−1
α assigns to each x the diffeomorphism inverse to ϕα(x)). (1.2.8)

If fα,fβ are as above, the transition maps change according to

ϕ−1
βα = ϕ′β ◦ ϕ′α−1 = fβ ◦ ϕβα ◦ f−1

α . (1.2.9)
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The special case where all transition maps take their values in an Abelian subgroup
A of Diff(F ) yields some additional structure: The transition maps {ϕβα} then define
a Čech cocycle on M with values in A, because (1.2.4) and (1.2.5) imply

δ({ϕβα})= 0

for the boundary operator δ. By (1.2.9), two such cocycles {ϕβα} and {ϕ′βα} define

the same bundle if {ϕ−1
βα ◦ ϕ′βα} is a coboundary. Thus, in this case, we can consider

a bundle as a cohomology class in H 1(M,A).6

A section of E is a smooth map

s :M →E

satisfying

π ◦ s = id.

We denote the space of sections by C∞(E) or �(E).
For our purposes, we shall only need two special (closely related) types of fiber

bundles. The fiber F will be either a vector space V or a Lie group G. The important
general principle here is to require that the transition maps respect the corresponding
structure. Thus, they are not allowed to assume arbitrary values in Diff(F ), but only
in some fixed Lie group G. G is called the structure group of the bundle.

According to this principle, the fiber of a vector bundle is a real or complex
vector space V of some real dimension n, and the structure group is Gl(n,R) or
some subgroup. A bundle whose fiber is a Lie group G is called a principal bundle,
and the total space is denoted by P . The structure group is G or some subgroup, and
it operates by left multiplication on the fiber G. Right multiplication on G induces
a right action of G on P via local trivializations:

P ×G→ P, (x, g) ∗ h= (x, gh) for p = (x, g) ∈ P,

with the composition rule (p ∗ g)h = p ∗ gh. This action is free, that is, p ∗ g =
p ⇔ g = e (neutral element). The projection π : P → M is obtained by simply
identifying x ∈M with an orbit of this action, that is,

π : P → P/G=M.

The groups Gl(n,R), O(n), SO(n), U(n) and SU(n) will be the ones of interest
for us. Acting as linear groups on a vector space, they preserve linear, Euclidean, or
Hermitian structures. For example, a Euclidean structure, that is, a (positive definite)
scalar product, is an additional structure on a vector space. According to the general
principle, if we have such a structure on our fiber, it has to be respected by the tran-
sition maps. As before, this restricts the transformations permitted. In our example,
we thus allow only O(n) in place of Gl(n,R). Such a restriction of the admissi-
ble transformations by imposing an additional structure that has to be preserved is
called a reduction of the structure group.

6We assume here that M is connected; otherwise, in place of A itself, we should utilize the locally
constant sheaf of A.
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Principal and vector bundles are closely related. Let P →M be a principal bun-
dle with fiber G, and let the vector space V carry a representation of G. We then
construct a vector bundle E with fiber V using the following free right action of G
on P × V :

P × V ×G→ P × V,

(p, v) ∗ g = (p ∗ g,g−1v).

The projection

P × V → P →M

is invariant under this action, and

E := P ×G V := (P × V )/G→M

is a vector bundle with fiber

G×G V = (G× V )/G= V

and structure group G. Via the left action of G on V , the transition maps for P yield
transition maps for E. Conversely, if we have a vector bundle with structure group
G, we construct a G-principal bundle P by

∐

α

Uα ×G/∼

with

(xα, gα)∼ (xβ, gβ) :⇔ xα = xβ in Uα ∩Uβ and gβ = ϕβα(x)gα.

(Here, {Uα} is a local trivialization of E with transition maps ϕβα ; these transition
maps are in Gl(n,R). Since the elements gα are in the structure group G which
is assumed to be a linear group, that is, a subgroup of Gl(n,R), we can form the
product ϕβα(x)gα .) P can be viewed as the bundle of admissible bases of E. In
a local trivialization, each fiber of E is identified with R

n or C
n, and each admissible

base is represented by a matrix with coefficients in R or C. The transition maps then
effect a base change. In each local trivialization, the action of G on P is given by
matrix multiplication.

All standard operations on vector spaces extend to vector bundles. If we have
a vector bundle E with fiber Vx over x, we can form the dual bundle E� with fiber
the dual space V �

x of Vx . Applying this construction to the tangent bundle TM

yields the cotangent bundle T �M . If E1 and E2 are vector bundles, we can form the
bundles E1⊕E2, E1⊗E2 and E1∧E2 by performing the corresponding operations
on the fibers. In particular, from the cotangent bundle T �M , we obtain the bundle
�p(M) introduced in (1.1.23), whose sections are the exterior p-forms.
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1.2.2 Covariant Derivatives

Let E be a vector bundle over M . We may view E as a family of vector spaces
parametrized by M . A local trivialization ϕ over U identifies the fibers over U with
each other. Changing the local trivialization then also changes this identification of
the fibers. The identification thus depends on the choice of a local trivialization and
is therefore not canonical. Hence, while we can decide whether a section of E is
differentiable because all transition maps depend differentiably on x and therefore
do not affect the differentiability of a section in some local trivialization, there is
no canonical way to specify the value of its derivative. In particular, we do not have
a criterion for a section being constant along a curve in M .

Therefore, in order to be able to differentiate a section, we need to introduce and
specify an additional structure on E, a so-called covariant derivative or connection.
We point out that this includes and generalizes the concept of a covariant derivative
developed in Sect. 1.1.1 for the tangent bundle.

A covariant derivative is an operator

D : �(E)→ �(E)⊗C∞(M) �(T ∗M)

with the following properties: For σ ∈ �(E),V ∈ TxM , we write

Dσ(V )=:DV σ

and require (for all x ∈M):

(i) D is tensorial in V :

DV+Wσ =DV σ +DWσ ∀V,W ∈ TxM, σ ∈ �(E),

DfV σ = fDV σ ∀V ∈ TxM, f ∈ C∞(M), σ ∈ �(E).

(Remark: It does not really make sense to multiply an element V ∈ TxM by
a function f ∈ C∞(M). What the preceding rule means is that when we take
a section V ∈ �(TM) of the tangent bundle, the value (DV σ)(x) depends only
on the value of V at the point x, but not on the values at other points. This is
not so for σ as rule (iii) shows.)

(ii) D is linear in σ :

DV (σ + τ)=DV σ +DV τ ∀V ∈ TxM, σ, τ ∈ �(E).

(iii) D satisfies the product rule:

DV (f σ)= V (f )σ + fDV σ ∀V ∈ TxM, f ∈ C∞(M), σ ∈ �(E).

An example, which is not really typical, but in a certain sense a local model, is the
trivial bundle M ×R over M , where we can put

DV σ := dσ(V )= V (σ)

to obtain a covariant derivative. In the general case, let ϕ be a trivialization of E

over U ,

E|U ∼=U ×R
n (=ϕ(π−1(U))).
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Via this local identification, a base of R
n yields a base μ1, . . . ,μn of sections of E|U .

Any section σ can then be written over U as

σ(x)= ak(x)μk(x).

Then

Dσ = (dak)μk + akDμk. (1.2.10)

Since (μj )j=1,...,n is a base of sections, we can write

Dμk =A
j
kμj . (1.2.11)

Here, for each x, A(x)= (A
j
k(x))j,k=1,...,n is a T ∗x M-valued matrix, that is, an ele-

ment of gl(n,R)⊗ T ∗x M . In symbols,

A ∈ �
(
gl(n,R)⊗ T ∗M|U

)
.

In our trivialization, we write this as

D = d +A. (1.2.12)

We now wish to determine the transformation behavior of A under a change of the
local trivialization. Let {Uα} be an open covering of M that yields a local trivializa-
tion with transition maps

ϕβα :Uα ∩Uβ →Gl(n,R).

D defines a T ∗M-valued matrix Aα on Uα . Let the section μ be represented by
μα on Uα . A Greek index α here is not a coordinate index, but refers to the chosen
covering {Uα}. Thus

μβ = ϕβαμα on Uα ∩Uβ.

This implies

ϕβα(d +Aα)μα = (d +Aβ)μβ on Uα ∩Uβ. (1.2.13)

On the left-hand side, we have first computed Dμ in the local trivialization deter-
mined by Uα and then transformed the result into the local trivialization determined
by Uβ , while on the right-hand side, we have directly expressed Dμ in the latter.
We conclude

Aα = ϕ−1
βα dϕβα + ϕ−1

βαAβϕβα. (1.2.14)

We have thus found the transformation behavior. Aα does not transform as a ten-
sor, because of the term ϕ−1

βα dϕβα . The difference of two connections, however,
does transform as a tensor. The space of all connections on a given vector bundle
is therefore an affine space. The difference of two connections is a gl(n,R)-valued
1-form.

Having a connection D on a vector bundle E, it is now our aim to extend D

to associated bundles, requiring suitable compatibility conditions. We start with the
dual bundle E∗. Let

(·, ·) :E ⊗E∗ →R
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be the bilinear pairing between E and E∗. The base dual to some base μ1, . . . ,μn

of E is denoted by μ∗1, . . . ,μ∗n, i.e.,

(μi,μ
∗j )= δ

j
i . (1.2.15)

We then define the connection D∗ on E∗ by requiring

d(μ, ν∗)= (Dμ,ν)+ (μ,D∗ν) (1.2.16)

for all μ ∈ �(E), ν ∈ �(E∗). In our above notation

D = d +A, D∗ = d +A∗. (1.2.17)

From (1.2.15) (cf. (1.2.11)) we then compute

0= d(μi, μ̂
j ) = (Ak

i μk,μ
∗j )+ (μi,A

∗
l
j
μ∗l )

= A
j
i +A∗i

j
,

i.e.,

A∗ = −A. (1.2.18)

We now construct a connection on a product bundle from connections on the fac-
tors. If E1 and E2 are vector bundles over M with connections D1, D2, we obtain
a connection D on E :=E1 ⊗E2 by

D(μ1 ⊗μ2)=D1μ1 ⊗μ2 +μ1 ⊗D2μ2

(μi ∈ �(Ei), i = 1,2). (1.2.19)

We apply this construction to End(E)=E⊗E∗ to obtain a connection that is again
denoted by D. For a section σ = σ i

jμi ⊗μ∗j , we then have

D(σ i
jμi ⊗μ∗j ) = dσ i

jμi ⊗μ∗j + σ i
jA

k
i μk ⊗μ∗j − σ i

jA
j
kμi ⊗μ∗k

= dσ + [A,σ ]. (1.2.20)

Thus, the connection induced on End(E) operates via the Lie bracket. In a slightly
different interpretation, we can view a connection D as a map

D : �(E)→ �(E)⊗
1(M).

Using the notation


p(E) := �(E)⊗
p(M),

we extend D to a map

D :
p(E)→
p+1(E)

by

D(μω)=Dμ∧ω+μdω (1.2.21)
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(where μ ∈ �(E),ω ∈
p(M), and we have written μω in place of μ⊗C∞(M) ω.7)
The curvature of a connection D is now defined as

F :=D2 :
0(E)→
2(E).

D is called flat if

F = 0.

Since the exterior derivative d satisfies (1.1.37), i.e.,

d ◦ d = 0

we obtain the de Rham complex


0 d−→
1 d−→
2 d−→ . . . (
p =
p(M)).

The sequence


0(E)
D−→
1(E)

D−→
2(E)
D−→ . . .

however, is not necessarily a complex, since in general F �= 0. For μ ∈ �(E)

(=
0(E)), we compute

F(μ) = (d +A) ◦ (d +A)μ

= (d +A)(dμ+Aμ)

= (dA)μ−A dμ+A dμ+A∧Aμ

(the minus sign arises because A takes values in 1-forms), that is,

F = dA+A∧A. (1.2.22)

If we write

A=Aj dx
j

in local coordinates, with Aj ∈ �(gl(n,R))= �(End(E)), (1.2.22) becomes

F = 1

2

(
∂Aj

∂xi
− ∂Ai

∂xj
+ [Ai,Aj ]

)
dxi ∧ dxj . (1.2.23)

F is a map from 
0(E) to 
2(E), i.e.,

F ∈
2(E)⊗ (
0(E))
∗ =
2(End(E)

)
.

Therefore, according to our rules (1.2.20) and (1.2.21),

DF = dF + [A,F ]
= dA∧A−A∧ dA+ [A,dA+A∧A] (by (1.2.22))

= dA∧A−A∧ dA+A∧ dA− dA∧A+ [A,A∧A]

7We leave it to the reader to (easily) verify that (1.2.21) is well defined, even though the decompo-
sition μ⊗C∞(M) ω is not canonical.
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= [A,A∧A]
= [Ai dx

i,Aj dx
j ∧Ak dx

k]
= AiAjAk(dx

i ∧ dxj ∧ dxk − dxj ∧ dxk ∧ dxi

− dxi ∧ dxk ∧ dxj + dxk ∧ dxj ∧ dxi)

= 0.

We thus obtain the Bianchi identity:

Theorem 1.1 The curvature of a connection D satisfies

DF = 0. (1.2.24)

The Bianchi identity can also be derived in a conceptually more interesting man-
ner from the equivariance of the curvature (f ∗FD = Ff ∗D , FD = curvature of D)
under bundle automorphisms f , that is, diffeomorphisms commuting with the group
action (cf. [95]).

Using the notation of (1.2.13), we now wish to determine the transformation
behavior of the curvature F of a connection D. From (1.2.14),

Fα = dAα +Aα ∧Aα

= d(ϕ−1
βα dϕβα)+ d(ϕ−1

βαAβϕβα)

+ ϕ−1
βα dϕβα ∧ ϕ−1

βα dϕβα + ϕ−1
βα dϕβα ∧ ϕ−1

βαAβϕβα

+ ϕ−1
βαAβ ∧ dϕβα + ϕ−1

βαAβ ∧Aβϕβα.

Because of

d(ϕ−1
βα )=−ϕ−1

βα dϕβαϕ
−1
βα

the derivatives of ϕβα cancel, and we obtain

Fα = ϕ−1
βαFβϕβα. (1.2.25)

Thus, F transforms as a tensor, in contrast to A.

1.2.3 Reduction of the Structure Group.
The Yang–Mills Functional

We now wish to implement the general principle formulated above that additional
structures on the fibers of a bundle lead to restrictions on the admissible transfor-
mations. In the previous section, Gl(n,R) was the structure group of our vector
bundle. This reflected the fact that we only had a linear (vector space) structure on
our fibers, but nothing else. We shall now consider vector spaces with a structure
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group G⊂ Gl(n,R). The group G will then be interpreted as the invariance group
of some structure on the fibers. Let g be the Lie algebra of G. For a connection
D on the vector bundle E with fiber R

n, we then require compatibility with the
G-structure. To make this more precise, we consider local trivializations

ϕ : π−1(U)→U ×R
n

of E whose transition functions preserve the G-structure, that is, ones that trans-
form G-bases μ1, . . . ,μn (meaning that the matrix with the columns μ1, . . . ,μn is
contained in G) into G-bases. Linear algebra (Gram-Schmidt) tells us that we can
always construct such trivializations. In such a trivialization, we also require of

D = d +A

that

A ∈ �(g⊗ T ∗M|U). (1.2.26)

Let us consider some examples. G = O(n) means that each fiber of E possesses
a Euclidean scalar product 〈·, ·〉. Via a corresponding local trivialization, for each
x ∈ U , we then obtain an orthonormal base e1(x), . . . , en(x) of the fiber Vx over x

depending smoothly on x, namely ϕ−1(x, e1, . . . , en), where e1, . . . , en is an ortho-
normal base of R

n w.r.t. the standard Euclidean scalar product. We then want that
the Leibniz rule holds, i.e.,

d〈σ, τ 〉 = 〈Dσ,τ 〉 + 〈σ,Dτ 〉, (1.2.27)

that is, we require that 〈·, ·〉 is covariantly constant. This implies in particular

0= d〈ei, ej 〉 = 〈A ei, ej 〉 + 〈ei,A ej 〉, (1.2.28)

that is, A is skew symmetric, A ∈ o(n). A connection D satisfying the Leibniz rule
is called a metric connection.

Analogously, for G= U(n) we have a Hermitian product on the fibers, and the
corresponding Leibniz rule implies

A ∈ u(n). (1.2.29)

We then speak of a Hermitian connection.
AdE is defined to be the bundle with fibers (AdE)x ⊂ End(Vx) consisting of

those endomorphisms of Vx that are contained in G. AdE = P ×G g, where P is the
associated principal bundle G acts on g by the adjoint representation. Analogously,
Aut(E) is the bundle with fiber G, now considered as the automorphism group of
Vx , that is,

Aut(E)= P ×G G,

where G acts by conjugation. (Thus, Aut(E) is not a principal bundle.) (The reason
for this action is the compatibility with the action

P × V ×G→ P × V, (p, v) ∗ g = (pg,g−1v),
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because with (p,h) ∗ g = (pg,g−1hg), we obtain g−1hg(g−1v)= g−1(hv), since
G acts on V from the left.) Sections of Aut(E) are called gauge transformations,
and the group of gauge transformations is called the gauge group.

A section s ∈ �(Aut(E)) operates on a connection D by

s∗D = s−1 ◦D ◦ s, (1.2.30)

hence, for μ ∈ �(E)

s∗(D)μ= s−1D(sμ), (1.2.31)

and, with D = d +A

s∗(A)= s−1ds + s−1A s. (1.2.32)

In our present notation, the transformation rule (1.2.25) for the curvature F of D

becomes

s∗(F )= s−1 ◦ F ◦ s. (1.2.33)

Here, we consider F as an element of 
2(AdE)= �(AdE ⊗�2T ∗M), and s acts
trivially on the factor �2T ∗M . The induced product on the fibers AdEx ⊗�2T ∗x M

that comes from the bundle metric of E and the Riemannian metric of M will be
denoted by 〈. , .〉.

Definition 1.5 Let M be a compact Riemannian manifold with metric g, E a vector
bundle with a bundle metric over M, D a metric connection on E with curvature
FD ∈
2(AdE). The Yang–Mills functional applied to D is

YM(D) :=
∫

M

〈FD,FD〉dvolg. (1.2.34)

We now recall from Sect. 1.2.2 that the space of all connections on E is an affine
space; the difference of two connections is contained in 
1(EndE). Therefore, the
space of all metric connections on E is an affine space as well; the difference of
two metric connections is contained in 
1(AdE). For deriving the Euler–Lagrange
equations for the Yang–Mills functional, the variations to consider are therefore

D + tB with B ∈
1(AdE).

For σ ∈ �(E)=
0(E),

FD+tB(σ )= (D + tB)(D + tB)σ

=D2σ + tD(Bσ)+ tB ∧Dσ + t2(B ∧B)σ

= (FD + t (DB)+ t2(B ∧B))σ, (1.2.35)
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as D(Bσ)= (DB)σ −B ∧Dσ . Therefore,

d

dt
YM(D + tB)|t=0 = d

dt

∫
〈FD+tB,FD+tB〉|t=0

= 2
∫
〈DB,FD〉. (1.2.36)

Using the definition of D∗ (1.2.17), this becomes

d

dt
YM(D+ tB)|t=0 = 2

∫
〈B,D∗FD〉.

This vanishes for all variations B if

D∗FD ≡ 0. (1.2.37)

Definition 1.6 A metric connection D on the vector bundle E with a bundle metric
over the Riemannian manifold M satisfying (1.2.37) is called a Yang–Mills connec-
tion.

In tensor notation, FD = Fij dx
i ∧ dxj , and we want to express (1.2.37) in local

coordinates with the normalization gij (x)= δij . In such coordinates,

d∗(Fij dx
i ∧ dxj )=−∂Fij

∂xi
dxj ,

and hence from (1.2.18)

D∗FD =
(
−∂Fij

∂xi
− [Ai,Fij ]

)
dxj .

The Yang–Mills equation (1.2.37) in local coordinates thus reads

∂Fij

∂xi
+ [Ai,Fij ] = 0 for j = 1, . . . , d. (1.2.38)

In the preceding, we have defined the Yang–Mills functional for metric connec-
tions, i.e., ones with structure group G = O(n). Obviously, the same construction
works for other compact structure groups, in particular for U(m) and SU(m). Those
groups operate on the fibers of complex vector bundles. For a complex vector bun-
dle, one has the structure group Gl(m,C), that is, those of complex linear maps,
and a Hermitian structure then, as explained, is a reduction of the structure group
to U(m). We now consider complex vector bundles, as for them, we can define im-
portant cohomology classes from the curvature of a connection, the so-called Chern
classes, as we shall now explain. Thus, E now is a complex vector bundle of Rank
m, that is, with fiber C

m, over the compact manifold M . D is a connection on E

with curvature

F =D2 :
0 →
2(E). (1.2.39)

F satisfies the transformation rule (1.2.25):

Fα = ϕ−1
βαFβϕαβ. (1.2.40)
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Therefore, we can consider F as an element of AdE. Since E is a complex vector
bundle with structure group gl(m,C), AdE = EndE =HomC(E,E). Thus,

F ∈
2(AdE), (1.2.41)

that is, F is a 2-form with values in the endomorphisms of E. Therefore, i
2π F

(the factor is simply chosen for convenient normalization) has eigenvalues λk, k =
1, . . . ,m, which are 2-forms. We then define exterior forms cj (E) ∈ 
2j (M),
j = 1, . . . ,m, on M via

m∑

j=0

cj (E)tj = det

(
i

2π
tF + Id

)
=

m∏

k=1

(1+ λkt). (1.2.42)

From the Bianchi identity (1.2.24), i.e., DF = 0, one concludes that dcj (E) = 0
for all j . Thus, the cj (E) are closed and therefore represent cohomology classes.
One also verifies that these classes do not depend on the choice of the connection D

on E. These cohomology classes are called the Chern classes of the complex vector
bundle E over M . Thus, from an arbitrary Hermitian connection on the bundle E,
we can compute topological invariants of E and M .

For j = 1,2, we get

c1(E)= i

2π
trF, (1.2.43)

c2(E)− m− 1

2m
c1(E)∧ c1(E)= 1

8π2
tr(F0 ∧ F0), (1.2.44)

where

F0 := F − 1

m
trF · IdE is the trace-free part of F . (1.2.45)

We now consider a U(m) vector bundle E over a four-dimensional oriented Rie-
mannian manifold M . We let D be a Hermitian connection on E with curvature
F =D2. As explained in (1.1.29), (1.1.31), we can decompose F0 into its self-dual
and antiself-dual components

F0 = F+
0 + F−

0 . (1.2.46)

We recall (1.1.30), i.e., that the exterior product of a self-dual 2-form with an
antiself-dual one vanishes, and obtain

tr(F0 ∧ F0)= tr(F+
0 ∧ F+

0 )+ tr(F−
0 ∧ F−

0 )

=−|F+
0 |2 + |F−

0 |2 (1.2.47)

by (1.1.29) (note that the trace is the negative of the Killing form of the Lie alge-
bra u(m), that is, A · B =− tr(AB), which explains the difference in sign between
(1.2.47) and (1.1.29)).

From (1.2.44), we obtain by integration over M

(c2(E)− m− 1

2m
c1(E)2)[M] = − 1

8π2

∫
(|F+

0 |2 − |F−
0 |2)

√
gdx1 ∧ · · · ∧ dxd.

(1.2.48)
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The Yang–Mills functional then can be decomposed as

YM(D)=
∫

M

(
1

m
| trF |2 + |F0|2

)√
gdx1 ∧ · · · ∧ dxd

=
∫

M

(
1

m
| trF |2 + |F+

0 |2 + |F−
0 |2
)√

g dx1 ∧ · · · ∧ dxd. (1.2.49)

Since trF represents the cohomology class −2πic1(E), the cohomology class of
trF is fixed, and

∫

M

| trF |2√g dx1 ∧ · · · ∧ dxd

becomes minimal if trF minimizes the L2-norm in this class (trF therefore has
to be a harmonic 2-form, see (1.1.115), (1.1.117)). Next, because of the constraint
(1.2.48), that is, because the difference of the two integrals of F+

0 and F−
0 is fixed

by the topology of M and E, and therefore,
∫ |F0|2 becomes minimal if one of them

vanishes, i.e.,

F+
0 = 0 or F−

0 = 0, (1.2.50)

i.e. if F0 is antiself-dual or self-dual. Which of these two alternatives can hold de-
pends on the sign of (c2(E)− m−1

m
c1(E)2)[M].

We now assume that the structure group of the complex vector bundle E is re-
duced to SU(m). Thus, the fiber of AdE is su(m) which is trace-free. Therefore, if
D is an SU(m) connection, its curvature F ∈
2(AdE) satisfies

trF = 0. (1.2.51)

Consequently, by (1.2.43)

c1(E)= 0,

and by (1.2.44), (1.2.48)

c2(E)[M] = − 1

8π2

∫

M

(|F+|2 − |F−|2)√gdx1 ∧ · · · ∧ dxd.

Thus again, the difference of the two parts of the Yang–Mills functional is topolog-
ically fixed, and as in (1.2.49),

YM(D)=
∫

M

(|F+|2 + |F−|2)√gdx1 ∧ · · · ∧ dxd

is therefore minimized if F is (anti)self-dual; again, which of the two possibilities
can hold depends on the sign of c2(E)[M]. We conclude that:

Theorem 1.2 For a vector bundle E with structure group SU(m) over a compact
oriented four-dimensional manifold M , an SU(m) connection D on E yields an
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absolute minimum for the Yang–Mills functional if its curvature F is self-dual or
antiself-dual.

For a systematic presentation of four-dimensional Yang–Mills theory, we refer
to [31].

1.2.4 The Kaluza–Klein Construction

Here, we take up the discussion of Sect. 1.1.6 and combine it with a bundle construc-
tion. The idea was first put forward by Theodor Kaluza in order to unify gravity with
electromagnetism. Although this was not successful in its original form, the general
idea is still important and alive today.

Kaluza’s ansatz was to consider, in place of the Lorentz manifold M , a fiber
bundle M̄ over M . Kaluza took the real axis R as the fiber. This was then modified
by Oscar Klein who chose the fiber S1, that is, the compact Abelian Lie group U(1),
and this is also what we shall do here. Subsequently, we shall consider more general
fibers. Following the physics literature, we shall always assume that M̄ is a principal
fiber bundle.

We obtain a metric

ḡ = π∗g + Ā⊗ Ā (1.2.52)

on M̄ where π : M̄ →M is the projection, g is the Lorentz metric on M , and Ā is
the 1-form for some U(1) connection on M̄ . (More precisely, Ā= π∗A where A is
the connection form on M .) As in Sect. 1.1.6, we take the total scalar curvature as
our action functional, that is,

L(ḡ)=
∫

M̄

R̄
√−ḡ dx0 · · ·dx3dξ, (1.2.53)

where R̄ is the scalar curvature of ḡ and ξ is the fiber coordinate. To rewrite this
functional, we first give the formulae for the Ricci curvature of ḡ. Let V̄ be a unit
vector field in the fiber direction. Because of the form (1.2.52) of the metric, this
simply means that V̄ is dual to Ā. For each tangent vector field X on M , we consider
the horizontal lift X̄h determined by

π∗X̄h =X and ḡ(X̄h, V̄ )= 0.

Let F be the curvature form for the connection A, i.e.,

F = dA (and π∗F = dĀ)

(note that A is a U(1) connection, hence Abelian, and so, here we do not have an
A∧A term in the formula for the curvature).

We then have, for the Ricci tensor R̄(·, ·) of ḡ,

R̄(X̄h, Ȳh)=R(X,Y )+ 2F ◦ F(X,Y ), (1.2.54)
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where R(·, ·) is the Ricci tensor of M , and in local coordinates with

F = Fαβ dxα ∧ dxβ,

we have

(F ◦ F)αβ = gγ δFαγ Fδβ =−gγ δFαγ Fβδ (1.2.55)

and

R̄(X̄h, V̄ ) = −d∗F(X), (1.2.56)

R̄(V̄ , V̄ ) = |F |2 = FαβFαβ. (1.2.57)

In particular, the scalar curvature satisfies

R̄ = tr R̄(·, ·)=R− |F |2, (1.2.58)

where, of course, R is the scalar curvature of g. Upon integration over the fibers,
(1.1.177) hence becomes

L(ḡ)=
∫

M

(R − |F |2)√−g dx, (1.2.59)

that is, the sum of the Einstein–Hilbert functional of the base and the Yang–Mills
functional of the fiber. If the Einstein field equations for the vacuum hold for such
a metric on M̄ , then, by (1.1.162), M̄ has to have vanishing Ricci curvature, and then
by (1.2.57), F has to vanish. Since F is supposed to represent the electromagnetic
field, this does not constitute a desirable physical consequence of this ansatz.8

We can extend this construction to principal fiber bundles π : M̄ →M with com-
pact non-Abelian structure group G. For that purpose, let g′ be a G-invariant metric
on the fiber, which we can then extend to all of T M̄ with the help of a connection
(given by a 1-form A). Let g again be a metric on the base M . For tangent vectors
W̄ , Z̄ on M̄ , we put

ḡ(Z̄, W̄ )= g(π∗Z̄,π∗W̄ )+ g′(Z,W)

(where Z,W denote the projections of Z̄, W̄ onto the fibers), obtaining a metric
on M̄ . If Ū and V̄ are tangential to a fiber, we obtain, with notation analogous to
that above,

R̄(X̄h, Ȳh)=R(X,Y )− 2gγ δg′(Fαγ ,Fβδ)X
αYβ

(
X =Xα ∂

∂xα
,Y = Yα ∂

∂xα

)
, (1.2.60)

8In an alternative interpretation, one might consider ḡ as consisting of g and A and interpret the
Euler–Lagrange equations for (1.2.59) as coupled Einstein–Maxwell equations for the metric g

and the potential A. In that case, the undesired consequence that F has to vanish does not follow,
but then we have a coupling rather than a unification of gravity and electromagnetism.
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R̄(X̄h, V̄ )=−g′(d∗F(X), V̄ ) (1.2.61)

R̄(Ū , V̄ )= R̄′(Ū , V̄ )+ det(gγ δ)
1
2
∑

α,β

g′(Fαβ, Ū)g′(Fαβ, V̄ ). (1.2.62)

The action functional becomes

L(ḡ)=
∫

M̄

(R +R′ − |F |2) dvolM̄ . (1.2.63)

(Here, R is integrated on the base and the result is multiplied with the volume of the
fiber, whereas R′ can be integrated on any fiber, by G-invariance, and the result is
multiplied with the volume of M—assuming M to be compact again.)

The Einstein field equations for the vacuum now no longer require the vanishing
of F . |F |2 has to be constant, however, when those equations hold, and base and
fiber must have constant scalar curvature. In fact, taking the trace in (1.2.62) yields
constant scalar curvature in the fiber direction when the field equations hold, and
because the scalar curvature of the metric on the fiber bundle is constant, the scalar
curvature in the fiber direction also has to be constant. Taking the trace in (1.2.60)
then yields constant scalar curvature on the base.

1.3 Tensors and Spinors

1.3.1 Tensors

We have already encountered the tangent bundle TM of a manifold M ; its dual
bundle is the cotangent bundle T �M . The fiber of the tangent bundle over p ∈M is
the tangent space TpM , and the fiber of the cotangent bundle is the cotangent space
T �
pM .

Definition 1.7 A p times contravariant and q times covariant tensor (field) on
a differentiable manifold M is a section of

TM ⊗ · · · ⊗ TM︸ ︷︷ ︸
p times

⊗T �M ⊗ · · · ⊗ T �M︸ ︷︷ ︸
q times

. (1.3.1)

We recall that on a complex manifold, we have the decompositions

T CM = T ′M ⊕ T ′′M, T �CM = T �′M ⊕ T �′′M, (1.3.2)

which are invariant under (holomorphic) coordinate changes, and the transformation
rules (1.1.86),

dzj = ∂zj

∂wl
dwl, dzk̄ = ∂zk̄

∂wm̄
dwm̄ (1.3.3)
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when z = z(w). We can therefore also speak of covariant tensors of type (r, s),
meaning sections of

T �′M ⊗ · · · ⊗ T �′M︸ ︷︷ ︸
r times

⊗T �′′M ⊗ · · · ⊗ T �′′M︸ ︷︷ ︸
s times

. (1.3.4)

(Contravariant tensors are defined analogously, with the tangent bundle in place of
the cotangent bundle.)

For simplicity, we now consider the case of complex dimension 1, that is, of
a Riemann surface, in order not to have to bother with too many indices. The reader
will surely be able to transfer the subsequent considerations to the case of an arbi-
trary (finite) dimension. We return to the conceptualization of variations described
in (1.1.22), (1.1.39), (1.1.41) and perform a variation

z 
→ z+ εf (z)=: z+ εδz (1.3.5)

with a holomorphic f . We want to determine the induced variation δω of an (r, s)-
form, that is, of an object of the type


(z, z̄)= ω(z, z̄)(dz)r (dz̄)s . (1.3.6)

Here, r and s are called the conformal weights of ω. Analogously to (1.1.41), we
obtain the induced variation

δf,f̄ 
(z, z̄)= (r(∂zf )+ s(∂z̄f̄ )+ f ∂z + f̄ ∂z̄)
(z, z̄). (1.3.7)

r + s is called the scaling dimension, because for z 
→ λz,λ ∈R,


= ω(z, z̄)(dz)r (dz̄)s 
→ λr+sω(λz,λz̄)(dz)r (dz̄)s . (1.3.8)

r − s is called the conformal spin, because for z 
→ e−iϑ z,


= ω(z, z̄)(dz)r (dz̄)s 
→ e−i(r−s)ϑω(e−iϑz, eiϑ z̄)(dz)r (dz̄)s . (1.3.9)

1.3.2 Clifford Algebras and Spinors

Let V be a vector space of dimension n over a field F , which we shall take to be R

or C in the sequel, equipped with a quadratic form Q : V × V → F . We then form
the Clifford algebra Cl(Q) as the quotient of the tensor algebra

⊕
k≥0 V ⊗ · · · ⊗ V︸ ︷︷ ︸

k times
of V by the two-sided ideal generated by all elements of the form

v⊗ v−Q(v,v). (1.3.10)

In other words, the product in the Clifford algebra is

{v,w} := vw+wv = 2Q(v,w). (1.3.11)

Let e1, . . . , en be a basis of V . This basis then satisfies

eiej + ej ei = 2Q(ei, ej ). (1.3.12)
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The dimension of Cl(Q) is 2n, a basis being given by

e0 := 1, eα1eα2 · · · eαk
, with 1≤ α1 < · · ·< αk ≤ n. (1.3.13)

We define the degree of eα1 · · · eαk
to be k. The degree of e0 is 0. We let Clk(Q)

be the vector space of elements of Cl(Q) of degree k. We also let Clev(Q) and
Clodd(Q) denote the space of elements of even and odd degree, resp. We have

Cl0(Q)=R or C

Cl1(Q)= V,
(1.3.14)

whereas

Cl2(Q)=: spin(Q) (1.3.15)

is a Lie algebra with bracket

[a, b] := ab− ba. (1.3.16)

It acts on Cl1(Q)= V via

τ(a)v := [a, v] = av − va. (1.3.17)

(Using (1.3.11), one verifies that for a ∈ Cl2(V ), v ∈ Cl1(V ), we have av − va ∈
Cl1(V ).)

The simply connected Lie group with Lie algebra spin(Q) is then denoted by
Spin(Q) and called the spin group. According to the general theory of represen-
tations of Lie groups (see e.g. [45]), representations of spin(Q) lift to ones of
Spin(Q).

Example

1. Q= 0: This yields the so-called Grassmann algebra with multiplication rule

ϑiϑj + ϑjϑi = 0,

for some basis ϑ1, . . . , ϑn.
2. For F =R, consider the quadratic form Q with

Q(ei, ei)=
{

1 for i = 1, . . . p,

−1 for i = p+ 1, . . . , n,
Q(ei, ej )= 0 for i �= j

for some basis e1, . . . , en of V . Putting q := n−p, we denote the corresponding
Clifford algebra by

Cl(p, q).

p = 0 yields the Clifford algebra Cl(0, n) usually considered in Riemannian
geometry. Of course, for given n, the Clifford algebra Cl(p, q)(p + q = n) de-
pends on the choice of p ∈ {0, . . . , n}. This is no longer so for the complexifica-
tion

ClC(n) := Cl(p, q)⊗R C (p+ q = n).
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In fact, we have

ClC(m)∼=C
2n×2n

for m= 2n,

ClC(m)∼=C
2n×2n ⊕C

2n×2n

for m= 2n+ 1.

We define the Pauli matrices

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
.

(1.3.18)
They form a basis of the space of 2× 2 Hermitian matrices. We have

{σi, σj } := σiσj + σjσi = 2δij σ0 for i, j = 1,2,3. (1.3.19)

(Note the + sign here: {σi, σj } is an anticommutator, not a commutator.)
The correspondence

e0 
→ σ0, e1 
→ σ1, e2 
→ σ3, e1e2 
→ −iσ2

thus yields a two-dimensional representation of Cl(2,0), whereas mapping

e1 
→ σ1, e2 
→ iσ2, e1e2 
→ −σ3

yields one of Cl(1,1) and

e1 
→ iσ1, e2 
→ iσ2, e1e2 
→ −iσ3

yields one of Cl(0,2). The representations of Cl(2,0) and Cl(1,1) are both isomor-
phic to the algebra of real 2 × 2 matrices, whereas that of Cl(0,2) is isomorphic
to the quaternions H. In particular, for later reference, we emphasize that we have
displayed here real representations of Cl(2,0) and Cl(1,1).

Looking at Cl(2,0), which will be of particular interest for us, and extending the
representation to the complexification, we make the following observation which
we will subsequently place in a general context. ie1e2 is represented by σ2, and
it anticommutes with both e1 and e2. Therefore, the representation of Cl2(2,0) =
spin(2,0) leaves the eigenspaces of ie1e2 invariant. In contrast, e1 and e2, that is,
the elements of Cl1(2,0), interchange them. (In particular, as a representation of
spin(2,0), the representation is reducible; the two parts themselves are irreducible,
however. Here, this is trivial, because they are one-dimensional, but the pattern is
general.) The eigenvalues of ie1e2 are ±1, and its eigenspaces are generated in our
representation by the vectors

(
1
i

)
and

(
1
−i

)
.

The correspondence

e0 
→ σ0, . . . , e3 
→ σ3

yields a two-dimensional representation of Cl(3,0).
We define the Dirac matrices

γ 0 =
(
σ0 0
0 −σ0

)
, γ j =

(
0 σj

−σj 0

)
, for j = 1,2,3,
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γ 5 = iγ 0γ 1γ 2γ 3 =
(

0 σ0
σ0 0

)
,

where each 0 represents a 2× 2 block; i.e., the γ i are 4× 4 matrices. The matrix γ 0

is Hermitian, while γ 1, γ 2, γ 3 are skew Hermitian. (This is expressed in the formula
γ 0γ μγ 0 = γ μ†

for μ= 0,1,2,3.) They satisfy

{γ 0, γ 0} = 2I = {γ 5, γ 5},
{γ j , γ j } = −2I for j = 1,2,3,

{γ i, γ k} = 0 for i �= k,

where I is the 4× 4 identity matrix. Thus, we obtain a four-dimensional represen-
tation of Cl(1,3) and ClC(4), called the Dirac representation, by

ei 
→ γ i−1 for i = 1,2,3,4.

(Note: it might be better to denote the Dirac matrices by γ 1, . . . , γ 4 instead of
γ 0, . . . , γ 3. Here, however we follow the convention in the physics literature;
γ 5 will subsequently be denoted by � when we consider arbitrary dimensions.)
We also consider

σμν = 1

2
[γ μ, γ ν],

where [., .] is an ordinary commutator. (Note: in the physics literature, there is an
additional factor i in the definition of σμν .)

In the Dirac representation, we have

σ 0i =
(

0 σi

σi 0

)
, σ ij =−

∑

k

εijki

(
σk 0
0 σk

)

(
εijk :=

⎧
⎪⎨

⎪⎩

1 if (i, j, k) is an even permutation of (1,2,3)

−1 if (i, j, k) is an odd permutation of (1,2,3)

0 otherwise.

)

In the Weyl representation, we instead define

γ 0 =
(

0 −σ0
−σ0 0

)
, γ j =

(
0 σj

−σj 0

)
, for j = 1,2,3,

γ 5 = iγ 0γ 1γ 2γ 3 =
(
σ0 0
0 −σ0

)
.

In this case, we have

σ 0i =
(
σi 0
0 −σi

)
, σ ij =−

∑

k

εijki

(
σk 0
0 σk

)
.

Therefore, the action of the σμν is reducible into two subspaces of (complex) di-
mension 2 each. Finally, we have the pseudo-Majorana representation, where all γ μ
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are purely imaginary:

γ 0 =
(

0 σ2
σ2 0

)
, γ 1 =

(
iσ3 0
0 iσ3

)
,

γ 2 =
(

0 −σ2
σ2 0

)
, γ 3 =

(−iσ1 0
0 −iσ1

)
.

We now wish to consider representations of Cl(2n,0) and ClC(2n) more abstractly.
We consider the algebra generated by a basis γ1, . . . , γ2n of R

2n satisfying

{γμ, γν} = 2δμν

and set

a1 : = 1

2
(γ1 + iγ2), a

†
1 :=

1

2
(γ1 − iγ2),

...
...

an : = 1

2
(γ2n−1 + iγ2n), a

†
n := 1

2
(γ2n−1 − iγ2n)

in R
2n ⊗ C. In the physics literature, the ai, a

†
i are called fermion annihilation

and creation operators. We equip C
n with the coordinates z1 = x1 + ix2, . . . , zn =

x2n−1 + ix2n. We let �(0,q)
C

n be the space of (0, q)-forms, i.e. the vector space of
differential forms generated by

dzī1 ∧ · · · ∧ dzīq , 1≤ i1 < · · ·< iq ≤ n (dz1̄ = dx1 − idx2, etc.)

We let ε(dzj̄ ) denote the exterior multiplication by dzj̄ from the left, i.e.,

ε(dzj̄ )(dzj̄1 ∧ · · · ∧ dzj̄q )= dzj̄ ∧ dzj̄1 ∧ · · · ∧ dzj̄q ,

sending (0, q)-forms to (0, q + 1)-forms. Likewise, we let ι(dzj̄ ) be the adjoint of
ε(dzj̄ ) w.r.t. the natural metric on C

n; thus

ι(dzj̄ )(dzj̄1 ∧ · · · ∧ dzj̄q )

=
{

0 if j �∈ {j1, . . . , jq},
(−1)μ−1dzj̄1 ∧ · · · ∧ ̂

dzj̄μ ∧ · · · ∧ dzj̄q ) if j = jμ.

We then obtain the desired representation by

a
†
j 
→ ε(dzj̄ ),

ak 
→ ι(dzk̄).

Of course, one verifies that the formulae

{ai, aj } = 0, {a†
i , a

†
j } = 0, {ai, a†

j } = δij

are represented by

{ε(dzj̄ ), ε(dzk̄)} = 0, {ι(dzj̄ ), ι(dzk̄)} = 0, {ε(dzj̄ ), ι(dzk̄)} = δjk.
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The space

S :=�(0,·)
C

n :=
n⊕

q=0

�(0,q)
C

n

on which ClC(2n) thus acts is called spinor space. The elements of S are called
((complex) Dirac) spinors. Since by (1.3.14), V is a subspace of its Clifford algebra,
it therefore operates by multiplication on any representation of that Clifford algebra,
in particular on S. This is called Clifford multiplication.

The representation S is not irreducible as a representation of spin(2n,0), how-
ever. To see this, we consider the “chirality operator”

� := i
n
2 γ1 · · ·γ2n

(for 2n= 4, one often writes γ5 in place of � as explained above)

(with the usual exponential series, we can also write � = exp(iπN), with the “num-
ber operator” N :=∑n

j=1 a
†
j aj ).

{�,γμ} = 0 for μ= 1, . . . ,2n,

�2 = 1.

Thus, we may decompose ClC(n) into the eigenspaces ClC(n)± of � for the eigen-
values ±1, and these eigenspaces are interchanged by Clifford multiplication with
any v ∈C

n\{0}. Thus

P± := 1

2
(1± �)

project onto the eigenspaces of �, and we get a corresponding decomposition

S = S+ ⊕ S−

into “positive and negative chirality spinors” (also called right- and left-handed
spinors), or “Weyl spinors”. If p − q ≡ 0,1,2 mod 8, one may also find a real
representation of Cl(p, q). The corresponding spinors are called real or Majorana
spinors. An important example is n= 4,p = 3, q = 1. Likewise, for q −p ≡ 0,1,2
mod 8, there exist imaginary or pseudo-Majorana spinors.

The Lie algebra so(n) consists of skew symmetric matrices. It is generated by
the matrices Mij with coefficients

(Mij )ab = δiaδ
j
b − δ

j
aδ

i
b.

They satisfy the commutation rules

[Mij ,Mkl] = −δikMjl + δjkMil + δilMjk − δjlMik.

These rules are also satisfied by

σij := −1

4
(γiγj − γjγi)
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where γ1, . . . , γn are a basis of R
n with {γi, γj } = −δij . (Note that this differs by

a factor − 1
2 from the convention employed in the definition of the Dirac and Weyl

representations above.)
Thus

Mij 
→ σij

yields a representation of so(n) on R
n; in fact, we may identify so(n) with

spin(0, n). Since spin(0, n) = Cl2(0, n) we thus get an induced representation of
so(n) on the spinor space S. This representation, however, does not lift to one of
SO(n), but only to one of Spin(0, n), the two-sheeted cover of SO(n).

In the case when n is even, since each σij is a sum of products of two γi , and
since Clifford multiplication with each γi interchanges the eigenspaces of S± of �,
σij leaves these eigenspaces invariant.

To summarize: We have established an isomorphism so(n)←→ spin(n). Thus,
so(n) operates on Cl1(0, n), and each representation of the Clifford algebra Cl(0, n)
therefore induces a representation of so(n). In particular, in this manner, we obtain
the spinor representation of so(n) (which induces a double valued representation of
SO(n)).

Remark The presentation here partly follows that of [22]. The original reference for
Clifford modules is [6].

1.3.3 The Dirac Operator

As explained, since the vector space V is a subspace of the Clifford algebra Cl(Q), it
operates on any representation of that Clifford algebra. We can thus multiply a vec-
tor, an element of V , with a spinor, an element of S, that is, we have Clifford multi-
plication

V × S→ S. (1.3.20)

In fact, since multiplication by an element of V interchanges S+ and S−, we have
an operation

V × S± → S∓. (1.3.21)

Denoting the representation by γ and letting ∂
∂xi be the partial derivative in the

direction of ei , we can define the Dirac operator

/D := γ (ei)
∂

∂xi
, (1.3.22)

which operates on spinor fields. The square /D ◦ /D of the Dirac operator is then
a linear combination of second derivatives; that linear combination depends on the
quadratic form Q defining the Clifford algebra. If the quadratic form Q is repre-
sented by the identity matrix, that is, if we consider the Clifford algebra Cl(n,0),
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the square of the Dirac operator is the (negative definite) Laplace operator (see
(1.1.103), (1.1.105))

�=
∑

i

∂2

∂x2
i

. (1.3.23)

In order to develop some structural insights, it is now useful to start with the com-
plex case, or more precisely with a complex vector space V with a nondegenerate
quadratic form Q. As Q is nondegenerate, it induces a nondegenerate bilinear form
〈., .〉, w.r.t. which V is self-dual. Moreover, on a representation S of the Clifford al-
gebra Cl(Q), we can find a nondegenerate bilinear form (., .) that is invariant under
multiplication by v ∈ V = Cl1(Q):

(vs, t)= (s, vt) (1.3.24)

for all s, t ∈ S. We can then use (., .) to identify S with its dual S�, and (1.3.20) then
induces morphisms

� : S� × S� → V (1.3.25)

and

�̃ : S × S→ V. (1.3.26)

In (1.3.25), to any two elements of S�, we assign a vector v ∈ V that operates on
a pair σ, τ of elements of S by (vσ, τ ), cf. (1.3.20), (1.3.24).

Using bases {sa} and {eμ} of S� and V , we write (1.3.25) as

�(sa, sb)= �
μ
abeμ. (1.3.27)

These morphisms are symmetric and equivariant w.r.t. the representation of Cl(Q).
Turning to the real case, the situation is not as convenient: we cannot always find real
versions of these morphisms; they only exist in certain cases. This depends on the
classification of Clifford algebras. They always exist for the Minkowski signature,
that is, for the Clifford algebra Cl(1, n− 1), in any dimension n. They also exist for
Cl(2,0), the case of particular interest for us.

1.3.4 The Lorentz Case

Let us also exhibit the relation between the orthogonal group and the spin group
in the Lorentz case. There exist many references on this topic, including the clas-
sic [81]. Let x = (x0, x1, x2, x3) ∈R

1,3. We put

〈x, x〉 = x0x0 − x1x1 − x2x2 − x3x3. (1.3.28)

The subgroup of Gl(4,R) that preserves 〈x, x〉 is the Lorentz group O(1,3). It con-
sists of two components that are distinguished by the value of the determinant, +1
or −1, and have otherwise the same properties. Thus, we consider the identity com-
ponent SO(1,3) where the determinant is +1, without essential loss of generality.
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We shall see that the corresponding spin group is Sl(2,C), the group of complex
2× 2-matrices with determinant 1. To x, we associate the Hermitian matrix

X := xμσμ =
(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
, (1.3.29)

where σ0, . . . , σ3 are the Pauli matrices. We first note that

〈x, x〉 = detX. (1.3.30)

Since we have

Tr(σμσν)= 2δμν, (1.3.31)

we obtain

xμ = 1

2
Tr(Xσμ) (1.3.32)

as the inverse of the equation expressing X in terms of x.
In the physics literature, one writes the Hermitian matrix X as

(
X11̇ X12̇

X21̇ X22̇

)
. (1.3.33)

By the Hermitian condition, Xαβ̇ =Xβα̇ so that X11̇ and X22̇ are real. In this nota-
tion, (1.3.32) becomes

x0 = 1

2
(X11̇ +X22̇), x1 = 1

2
(X12̇ +X21̇),

x2 = i

2
(X12̇ −X21̇), x3 = 1

2
(X11̇ −X22̇).

We may use the relation (1.3.29) between a vector x and a Hermitian matrix X

to define an operation of Sl(2,C) on R
1,3 as follows:

For A ∈ Sl(2,C), we put

T (A)X :=X′ :=AXA†. (1.3.34)

With indices, this is written as

X′σ τ̇ =Aσ
βĀ

τ̇
γ̇ X

βγ̇ . (1.3.35)

Here, the dotted indices refer to the transformation according to the conjugate com-
plex of A, and this then explains the convention employed in (1.3.33). The fact that
two As appear in (1.3.34) suggests that one consider this expression as a product:
Instead of the 4-vector X, we take two spinors φ,χ that transform according to

φ′α =Aα
βφ

β, χ ′γ̇ =A
γ̇

δ̇
χ δ̇. (1.3.36)

Their product then transforms like X in (1.3.35),

φ′σχ ′τ̇ =Aσ
βĀ

τ̇
γ̇ φ

βχγ̇ . (1.3.37)
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Using the above formulae, we can express (1.3.34) as a transformation of the
vector x:

x′μ = 1

2
Tr(Xσ′μ)= 1

2
Tr(AXA†σμ)= 1

2
xν Tr(AσνA

†σμ). (1.3.38)

Thus,

x′ = Bx, (1.3.39)

with

Bμ
ν =

1

2
Tr(AσνA

†σμ)= 1

2
Tr(σμAσνA

†) (1.3.40)

as the trace is invariant under cyclic permutations.
One may check from this that (1.3.34) induces a Lorentz transformation, but this

can more easily be derived from the fact that (1.3.34) maps Hermitian matrices to
Hermitian matrices and preserves the determinant (since A ∈ Sl(2,C) has deter-
minant 1), and (1.3.30) then implies that 〈·, ·〉 = x0x0 − x1x1 − x2x2 − x3x3 (see
(1.3.28)) is preserved.

Also, this yields a homomorphism

T : Sl(2,C)→ SO(1,3)

with kernel {±1} (± identity in Sl(2,C) leads to the identity in SO(1,3) in (1.3.34)),
and image the identity component of the Lorentz group.9 Sl(2,C) is the universal
cover of the identity component of the Lorentz group, which is doubly connected.
Therefore, in the physics literature, representations of Sl(2,C) are usually consid-
ered as double-valued representations of SO(1,3).

We also observe that the homomorphism T in (1.3.34) maps SU(2) to SO(3).
Namely we have, for A ∈ SU(2),

Tr(T (A)X)= Tr(AXA†)= Tr(AXA−1)= Tr(X)= 2x0

in the notations of (1.3.29). Thus, T (A) preserves x0, and since 〈x, x〉 = x0x0 −
x1x1 − x2x2 − x3x3 is also preserved, it preserves

x1x1 + x2x2 + x3x3

and therefore yields an orthogonal transformation of the x1, x2, x3 space. As before,
this yields a twofold covering of SO(3), and SU(2)∼= Spin(3).

Since SO(1,3) acts by automorphisms on R
1,3 which can be considered as

a group of translations, we can form the semidirect product SO(1,3) � R
1,3 where

(B,b) ∈ SO(1,3) � R
1,3 operates on R

1,3 via x 
→ Bx + b and where “semidi-
rect product” refers to the obvious composition rule. The group of all isometries
of Minkowski space is the semidirect product O(1,3) � R

1,3, the Poincaré group,
but it suffices for our purposes to consider its connected component containing the
identity. Again, it is covered by Sl(2,C) � R

1,3.

9The Lorentz group has four connected components, all isomorphic to SO(1,3), and we obtain the
other components by space- and time-like reflections from the identity component.
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The irreducible unitary representations of Sl(2,C) � R
1,3 were classified by

Wigner. We sketch here those aspects of the representation theory that are directly
relevant for elementary particle physics. A mathematical treatment to which we re-
fer for further details and which emphasizes the applications in physics is given
in [98], whereas a comprehensive presentation from the perspective of physics can
be found in [103]. Since R

1,3 is a normal subgroup of Sl(2,C) � R
1,3, the study

of the representations proceeds by describing the orbits of the action of Sl(2,C)

on R
1,3, identifying the isotropy group of a point on each orbit, called the “little

group” in physics, and then finding the representations of those isotropy groups. We
know from (1.3.28) that

m2 := 〈x, x〉 = x0x0 − x1x1 − x2x2 − x3x3 (1.3.41)

is preserved by the action of Sl(2,C) on R
1,3. In particular, each orbit must be

contained in a level set of m2. Physically, m is the mass of the particle defined
by the representation, and it then suffices to consider the case m ≥ 0. Using the
identification (1.3.29) of x ∈R

1,3 with the matrix

X := xμσμ =
(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
,

for m2 > 0, we can select the point
(±m 0

0 ±m

)
,

depending on whether x0 > 0 or < 0. Since this is a multiple of the identity matrix,
its isotropy group, that is, the group of matrices leaving it invariant under conjuga-
tion, see (1.3.34), is SU(2). As described for instance in [45, 75, 98], the irreducible
unitary representations of SU(2) come in a discrete family, parametrized by a half
integer

L= 0,
1

2
,1,

3

2
, . . . (1.3.42)

which can be identified with the spin of the particle. Thus, the class of representa-
tions corresponding to an orbit with m2 > 0 is described by the continuous parame-
ter m2 and the discrete parameter L from (1.3.42).

A point on an orbit with m2 = 0 is
(

2 0
0 0

)
,

and its isotropy group is defined by the invariance condition

A

(
2 0
0 0

)
A† =

(
2 0
0 0

)
.

This implies that A has to be of the form

A=
(
eiθ z

0 eiθ

)
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for some z ∈C, θ ∈R. Looking at the conjugation
(
eiθ 0
0 eiθ

)(
1 z

0 1

)(
eiθ 0
0 eiθ

)
=
(

1 ze2iθ

0 1

)
,

we see that the isotropy group, denoted by Ẽ(2), is a double cover (because of the
angle 2θ ) of the group of Euclidean motions SO(2) � C. By the same strategy as
before, for determining its representations, we should look at the orbits of the SO(2)
action on C which are the origin 0 and the concentric circles about 0. The repre-
sentations corresponding to the latter do not occur in elementary particle physics.
So, we are left with the origin whose isotropy group, the little group, is SO(2). Its
irreducible representations are all one-dimensional and labeled by

s = 0,±1

2
,±1, . . . (1.3.43)

where the factor 1
2 corresponds to the fact that the rotations were about an angle 2θ .

The key for understanding the representations of SU(2) is the following. The Lie
algebra su(2) is generated by

tμ := i

2
σμ, μ= 1,2,3 (1.3.44)

with the Pauli matrices σμ, see (1.3.18). They satisfy

[tμ, tν] = εμνσ tσ (1.3.45)

with the totally antisymmetric tensor εμνσ . The real matrices

e+ := −i(t1 − it2)=
(

0 1
0 0

)
, e+ := −i(t1 + it2)=

(
0 0
1 0

)
, (1.3.46)

h := −it3 = 1

2

(
1 0
0 −1

)
, (1.3.47)

yield a basis of the Lie algebra sl(2,R) and satisfy

[h, t+] = t+, [h, t−] =−t−, [t+, t−] = 2h. (1.3.48)

From this, one deduces that when ρ is a representation of sl(2,C) on a vector space
V and vλ is an eigenvector of ρ(h) with eigenvalue λ, then ρ(t±)vλ are eigenvec-
tors of ρ(h) with eigenvalues λ ± 1. One then finds that the possible values of λ

are L,L − 1, . . . ,−L for some half integer L = 0, 1
2 ,1, . . . , see e.g. [45, 75, 98].

Since the eigenvalues are nondegenerate, the dimension of this representation is
then 2L+ 1.

1.3.5 Left- and Right-handed Spinors

We now put the transformation rule (1.3.37) for the product of two spinors into
a more general perspective that will be needed below in Sect. 2.2.1 for defining La-
grangians for spinors. According to our previous general discussion, in the present
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case of R
4 ∼=C

2, the spinor space is a four-dimensional complex vector space, i.e.,
isomorphic to C

4. We have already seen in Sect. 1.3.2 that the spinor representation
is not irreducible as a representation of the spin group, but splits into the direct sum
of two chiral representations, i.e., each spinor can be written as

ψ =
(
ψL

ψR

)
. (1.3.49)

ψL is called a left-handed, ψR a right-handed spinor.
A ∈ Sl(2,C) then acts via

ψL 
→AψL,

ψR 
→ (A†)−1ψR.
(1.3.50)

With A= (A
j
k)j,k=1,2, we have

ψi
L 
→Ai

kψ
k
L,

ψi
R 
→ Ãi

kψ
k
R with Ãi

kĀ
j
k = δij .

From (1.3.40), we also get with the help of (1.3.31)

Bμ
ν σν =A†σμA (1.3.51)

(note that here the summation convention is used even though the position of the
indices is not right—it would be better to write the σ s with upper indices, but we
refrain here from changing an established convention). Putting

S(A)=
(
A 0
0 (A†)−1

)
, ψ =

(
ψL

ψR

)
, (1.3.52)

the action of A is described by

ψ 
→ S(A)ψ. (1.3.53)

In the Weyl representation, with

γ 0 =
(

0 −σ0
−σ0 0

)
,

we then have

S−1 = γ 0S†γ 0. (1.3.54)

Finally (1.3.51) implies

S−1γ μS = Bμ
ν γ ν. (1.3.55)

For two left-handed spinors (see (1.3.49)) φ,χ,

φχ := εαβφ
αχβ (1.3.56)

transforms as a scalar under the spinor representation; namely
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εαβA
α
γ φ

γA
β
δ χ

δ =A1
γ A

2
δφ

γ χδ −A2
γ A

1
δφ

γ χδ

= (A1
1A

2
2 −A2

1A
1
2)φ

1χ2 + (A1
2A

2
1 −A2

2A
1
1)φ

2χ1

= det A(φ1χ2 − φ2χ1)

= εαβφ
αχβ (since det A= 1 for A ∈ Sl(2,C)).

Similarly

φασμ,αα̇χ̄
α̇ (1.3.57)

transforms as a vector, for μ= 0,1,2,3. This can be better understood by consid-
ering full spinors

ψ =
(
ψL

ψR

)
. (1.3.58)

Following the physics notation, in the Lorentzian case, we define ψ† as the complex
conjugate of ψ , and the Dirac-conjugated spinor as

ψ̄ :=ψ†γ 0. (1.3.59)

In the Riemannian case, the γ 0 is omitted, that is,

ψ̄ :=ψ†. (1.3.60)

Thus, returning to the Lorentzian case, ψ̄ω = ψ̄LωR + ψ̄RωL. Then in the Weyl
representation,

ψ̄γ μω (1.3.61)

transforms as a vector. In fact, applying a transformation A ∈ Sl(2,C), we get

ψ†S(A)†γ 0γ μS(A)ω= ψ̄γ 0S(A)†γ 0γ μS(A)ω

= ψ̄S−1γ μSω by (1.3.54)

= Bμ
ν ψ̄γ νω by (1.3.55),

which is the required formula. Since ψ̄γ μω = ψ†γ 0γ μω = ψ
†
LσμωL − ψ

†
RσμωR ,

we also see why (1.3.57) transforms as a vector.

1.4 Riemann Surfaces and Moduli Spaces

1.4.1 The General Idea of Moduli Spaces

We start with some general principles; their meaning may become apparent only
after reading the rest of this section, and the reader is advised to proceed when these
principles are unclear and return to them later. It may be helpful, however, to try to
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understand the sequel in the light of these principles. In any case, the present section
is more abstract and has more of a survey character than the preceding ones.

One is given a mathematical object with some varying structure. An example of
such an object is a differentiable manifold S, and the structure could be a complex
structure, a Riemannian metric—perhaps of a particular type—and so on. One wants
to divide out all invariances; for example, one wants to identify all isometric metrics.
The invariances usually constitute a (discrete or Lie) group. The resulting space
of invariance classes is then a moduli space. This already suggests that there will
be a problem (more precisely, singularities of the moduli space) caused by those
particular instances of the structure that possess more invariances than the typical
ones, for example, those Riemannian metrics that are highly symmetric. The reason
is obvious, namely that for those instances, we need to divide out a larger group of
invariances than for the other ones.

Heuristic guiding principle
The moduli space for structures of some given type carries a structure of the same
type.

So, for example, we expect a moduli space of Riemannian metrics to carry a Rie-
mannian metric itself, a moduli space of complex structures to be a complex space
itself, a moduli space of algebraic varieties to be an algebraic variety itself.

Typically, the space of such structures is not compact, that is, these structures
can degenerate. One then wishes to compactify the moduli space. The compact-
ifying boundary then also contains (certain) degenerate versions of the structure.
The choice of admissible degenerate structures—which need not be unique—can be
subtle and should be carried out so that the resulting space is a Hausdorff space.

Often, one also wishes to get a fine moduli space Mfine . Let p be a point in
the (ordinary, or coarse) moduli space M representing an instance g of a structure.
Mfine then should be the fibration over M with the fiber over p being that g.

1.4.2 Riemann Surfaces and Their Moduli Spaces

A Riemann surface can be defined in several different ways, that is, through differ-
ent types of structures. While these notions turn out to be equivalent in the end, they
lead to different approaches to the moduli space of Riemann surfaces and equip that
moduli space with different structures, according to the above principle. We shall
now explain these different structures and also illustrate why they are interesting, in
particular how they lead to different mathematical constructions and applications.
For more details and proofs, we refer to [64] and other references cited subsequently.
A profound knowledge of Riemann surface theory is useful for understanding con-
formal field theory and string theory mathematically. Let S be a compact differen-
tiable orientable surface of genus p. If not explicitly stated otherwise, we assume
p > 1.

The basic point is that one and the same such differentiable surface can carry
a continuum of different Riemann surface structures. That is, there are many pairs
"1,"2 of Riemann surfaces that are both diffeomorphic to S, but not equivalent as
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Riemann surfaces. The moduli problem then consists of defining and understanding
the space of all such Riemann surfaces (modulo holomorphic equivalence).

1. A Riemann surface " is a discrete (fixed point free, cocompact) faith-
ful representation of the fundamental group π1(S) into G := PSL(2,R), deter-
mined up to conjugation by an element of G. The moduli space is the space of
such representations modulo conjugation.

More precisely: A Riemann surface " is a quotient H/�, where H = {z =
x + iy ∈ C : y > 0} is the Poincaré upper half plane and � is a discrete group of
isometries with respect to the hyperbolic metric

1

y2
dz∧ dz̄. (1.4.1)

� is a subgroup of the isometry group PSL(2,R) of H .10 Here, PSL(2,R) =
SL(2,R)/±1, acting on H via z 
→ az+b

cz+d
, with a, b, c, d satisfying ad − bc = 1

describing an element of SL(2,R). � should operate properly discontinuously and
freely. It thus should not contain elliptic elements. This excludes singularities of the
quotient H/� arising from fixed points of the action of �. In order to exclude cusps,
that is, in order to ensure that H/� is compact, parabolic elements (see insertion
below) of � also have to be excluded. Thus, all elements of � different from the
identity should be hyperbolic.

Insertion: Here, a transformation z 
→ az+b
cz+d

of H is called hyperbolic if it has

two fixed points on the extended real axis R̄ = ∂H ∪ {∞}, parabolic if it has one
fixed point on R̄, and elliptic if it has a fixed point in H . Since the fixed points
are computed to be a−d

2c ± 1
2c

√
(a + d)2 − 4, the transformation is hyperbolic iff

|a + d|> 2. The standard example of a hyperbolic transformation is z 
→ 2z, with
fixed points at 0 and ∞, and a parabolic one is given by z 
→ z

z+1 , which has its
unique fixed point at 0. A hyperbolic transformation γ maps the hyperbolic geo-
desic l between its two fixed points p1,p2 (the semicircle through p1 and p2 or-
thogonal to the real axis) into itself, that is, it is a translation along the hyperbolic
geodesic l. We can then easily visualize the operation of γ on H ; it simply maps
each geodesic orthogonal to l to another such geodesic orthogonal to l, with the
shift already determined by the operation of γ on l. When we consider the example
z 
→ 2z, the invariant geodesic is the imaginary axis. The invariant geodesic in H

becomes a closed geodesic on the surface H/�, with length given by the length
of the shift. A parabolic transformation does not have a fixed geodesic, but instead
rotates any geodesic through its fixed point into another such geodesic. Therefore,
a parabolic transformation does not produce a closed geodesic in the quotient.

� is isomorphic to the fundamental group π1(S). Thus, a Riemann surface is
described by a faithful representation ρ of π1(S) in G := PSL(2,R). This essen-
tially leads to the approach of Ahlfors and Bers to Teichmüller theory. Here, we
need to identify any two representations that only differ by a conjugation with an

10The isometries of H are the same as the conformal automorphisms of H , because of the confor-
mal invariance of the metric.
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element of G. Thus, we consider the space of faithful representations up to conju-
gacy. A representation can be defined by the images of the generators, that is, by
2p elements of G, and this induces a natural topology on the moduli space. In par-
ticular, this allows us to compute the dimension of the moduli space: Each of the
2p generator images is described by three real degrees of freedom (a, b, c, d sat-
isfying the relation ad − bc = 1) which altogether yields 6p degrees of freedom.
From this, we first need to subtract 3, the degrees of freedom for one generator,
because the generators a1, b1, . . . , ap, bp of π1(") are not independent, but satisfy
the relation a1b1a

−1
1 b−1

1 · · ·apbpa−1
p b−1

p = 1. We also need to subtract another 3
to account for the freedom of conjugating by an element g of PSL(2,R). Thus, the
(real) dimension of the moduli space of representations of π1(") in PSL(2,R) mod-
ulo conjugations is 6p−6. This moduli space of representations of the fundamental
group yields the Teichmüller space Tp . The moduli space Mp is a branched quotient
of that space.

Singularities of the moduli space arise when the image � of ρ has more automor-
phisms than such a generic subgroup of G (whose only automorphisms are given
by conjugations). Degenerations arise from limits of sequences of faithful, that is,
injective representations ρn that are no longer injective. Just as the Riemann sur-
faces are obtained as quotients H/�, the moduli space Mp itself is likewise a quo-
tient Tp/C of the Teichmüller space Tp by a discrete group, the so-called mapping
class group. (This Teichmüller space Tp is a complex space diffeomorphic—but not
biholomorphic—to C

3p−3. The complex structure was described by Bers through a
holomorphic embedding into some complex Banach space. For recent results about
this complex structure, we refer to [14]. Tp parametrizes marked Riemann surfaces,
that is, Riemann surfaces together with a choice of generators of the first homology
group. Since all automorphisms of a hyperbolic Riemann surface act nontrivially on
the first homology, Teichmüller space does not suffer from the problem of the mod-
uli space, that Riemann surfaces with nontrivial automorphism groups can create
singularities.)

This approach is also useful because it can be generalized to moduli spaces of
representations of the fundamental group of a Kähler manifold in some linear al-
gebraic group G. This is called non-Abelian Hodge theory and leads to profound
insights into the structure of Kähler manifolds. In particular, because such repre-
sentations can be shown to factor through holomorphic maps, this leads to the at
present strongest approach to a general structure theory of Kähler manifolds via the
Shafarevitch conjecture, see, e.g., [70–72].

2. A Riemann surface " is a 1-dimensional complex manifold. The moduli
space is the semi-universal deformation space for such complex structures.

More precisely: A Riemann surface " is S equipped with an (almost) complex
structure. The relationship with 1 depends on the Poincaré uniformization theorem,
which states that each compact Riemann surface of genus p > 1 can be represented
as a quotient of H as in 1. Conversely, each quotient H/� as in 1 obviously inherits
a complex structure from H , since � operates by complex automorphisms on H .

The moduli space Mp is then constructed as a universal space for variations of
complex structures. This means that if N is a complex space fibering over some
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base B with the generic (=regular) fiber being a Riemann surface of genus p, we
then obtain a holomorphic map h : B0 →Mp where B0 ⊂ B are the points with
regular fibers. In this manner, Mp , as a moduli space of complex structures, acquires
a complex structure itself that is determined by the requirement that all these h

be holomorphic. Ideally, we would also like to have a holomorphic map hf ine :
N0 →Mp,f ine, N0 being the space of regular fibers in N , mapping the fiber over
q ∈ B0 to the fiber over h(q) in Mp,f ine, but this is not always possible due to the
difficulties with Riemann surfaces with nontrivial automorphisms. More precisely,
Mp,f ine does not exist as such. A slight modification, however, leads to such a fine
moduli space; namely, we only need to equip our Riemann surfaces additionally
with some choice of a root of the canonical bundle in order to prevent nontrivial
automorphisms. This is called a level structure. This gives a finite ramified cover
of Mp . That cover is free of singularities and then yields a fine moduli space. (The
Teichmüller space briefly described above is also a singularity-free cover of the
moduli space, but, in contrast to the fine moduli space just introduced, it is an infinite
cover and therefore not amenable to the constructions and techniques of algebraic
geometry.) It is more subtle to understand what happens at the singular fibers. Here,
we need a suitable compactification Mp of Mp through certain singular Riemann
surfaces. This, however, is better understood through the subsequent approaches to
Mp described below.

This construction is useful because, for example, it allows a geometric proof of
the theorems of Arakelov-Parshin and Manin on the finiteness of the number of such
fibrations of genus p over a given compact base B and the finiteness of the number
of holomorphic sections of any given such fibration, see [69]. The idea is to show
that because of the geometric properties of Mp and Mp , there can only be finitely
many such holomorphic maps h : B →Mp or (after taking care of the above need
to take finite covers) from N into a compactified fine moduli space.

3. A Riemann surface is an algebraic curve, described by homogeneous poly-
nomial equations. The moduli space is the space of coefficients of these polyno-
mials modulo projective automorphisms.

More precisely, a Riemann surface can be locally described as the common zero
set of two homogeneous polynomials in three variables. The relationship with 2
depends on the Riemann–Roch theorem, which yields the existence of meromorphic
functions.

Insertion: We briefly describe the relevant concepts. A line bundle L on " is
given by an open covering {Ui}i=1,...,m of " and transition functions gij ∈ O∗(Ui ∩
Uj ) (O∗ denoting the nonvanishing holomorphic functions) satisfying

gij · gji ≡ 1 on Ui ∩Uj for all i, j, (1.4.2)

gij · gjk · gki ≡ 1 on Ui ∩Uj ∩Uk for all i, j, k. (1.4.3)

Two line bundles L, L′ with transition functions gij and g′ij , resp., are called iso-
morphic if there exist functions φi ∈ O∗(Ui) for each i with

g′ij =
φi

φj

gij on each Ui ∩Uj .



68 1 Geometry

By multiplying transition functions we can define products of line bundles. The
Abelian group of line bundles on " is called the Picard group of ", Pic("). The
Picard group Pic(") is isomorphic to the group of divisors Div(") modulo linear
equivalence. (Divisors are finite formal sums

∑
nαpα with nα ∈ Z,pα ∈". The ad-

dition in Z induces a group structure on these divisors. Divisors are linearly equiva-
lent when their difference is the divisor defined by a meromorphic function. This is
verified when one expresses a divisor D in terms of its local defining functions:

{
(Ui, fi) : fi

fj

∈ O∗(Ui ∩Uj )

}
.

The function fi is meromorphic on Ui . When pα ∈Ui , we require that fi has a zero
(pole) of order nα at pα if nα > 0(< 0). At all other points, fi has to be holomorphic
and nonzero.

We put

gij := fi

fj

on Ui ∩Uj

to define a line bundle, denoted by [D].
Let L be a line bundle with transition functions gij . A holomorphic section h of

L is given by a collection {hi ∈ O(Ui)} of holomorphic functions on Ui satisfying

hi = gijhj on Ui ∩Uj .

The zeros of a holomorphic section of a line bundle L define an effective (i.e., all
ni > 0) divisor E, and when L= [D], that divisor is linearly equivalent to D, that
is, E −D is the divisor of a meromorphic function. In general, the zeros and poles
of a meromorphic section of L define a divisor D with [D] = L. The degree of
a divisor is the sum of its coefficients, and from this one then defines also the degree
of the line bundle [D]. Thus, the degree of a line bundle counts the zeros minus the
poles of a meromorphic section.

The Riemann–Roch theorem for line bundles is then

Theorem 1.3 Let L be a line bundle on the compact Riemann surface " of genus p.
Then the dimension of the space of holomorphic sections of L satisfies the relation

h0(L)= degL− p+ 1+ h0(K ⊗L−1) (1.4.4)

where K is the canonical bundle of ", that is, the line bundle of holomorphic
1-forms.

The equivalent formulation in terms of divisors replaces h0(L) by h0(D), the
dimension of the space of effective divisors linearly equivalent to D.

Thus, the Riemann–Roch theorem can be viewed as an existence theorem for
meromorphic functions, or, equivalently, for holomorphic sections of line bun-
dles, whenever the right-hand side of (1.4.4) is positive. For example, degK =
2p−2 and h0(K)= p, degK2 = 2 degK = 4p−4 and h0(K2)= 3p−3 for p > 1;
K2 is the line bundle whose sections are holomorphic quadratic differentials, that
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is, locally of the form ϕ(z)dz2 with a holomorphic ϕ. Collections of holomorphic
sections of a line bundle L define mappings into projective spaces because a change
of the local representation of L multiplies them all by the same factor. One then
needs sufficiently many independent sections to make such a map injective and thus
to define an embedding of the Riemann surface into a projective space. In fact, one
can show that every compact Riemann surface can be holomorphically embedded
into CP

3. Moreover, since by Chow’s theorem every complex subvariety of CP
n is

algebraic, our Riemann surface can then be represented by polynomial equations.
The relationship with 1 again goes via 2, that is, via the uniformization theorem.

That theorem, however, is of a transcendental nature and thus outside the realm of
algebraic geometry.

So, a Riemann surface becomes a (projective) algebraic variety in CP
3, the zero

set of algebraic equations. Such equations of a given degree can then be character-
ized by their coefficients. As automorphisms of CP

3 lead to equivalent algebraic
curves, one needs to divide these out. A difficulty emerges because the automor-
phism group of CP

3 is not compact. Building upon the ideas of Hilbert, Mum-
ford [83, 84] then developed geometric invariant theory to obtain the moduli space
of algebraic curves. One then obtains the compactified Mumford–Deligne moduli
space Mp as the moduli space of so-called stable curves, see [25]. As a moduli
space of algebraic varieties, it is an algebraic variety itself, in agreement with the
general principle.

4. A Riemann surface is a collection of branch points on the Riemann
sphere S2 with branching orders satisfying the Riemann–Hurwitz formula.
The moduli space is obtained from those collections by factoring out automor-
phisms of S2.

More precisely: Via some meromorphic function (whose existence again comes
from the Riemann–Roch theorem), a Riemann surface is a branched cover of S2, the
Riemann sphere, which can also be identified with CP

1. Again, we need to divide
out automorphisms, this time those of S2; they have the effect of moving the branch
points around. This approach already led Riemann to count the number of moduli
for Riemann surfaces of a given genus, that is, the dimension of the moduli space.
This is explained in [51], for example.

5. A Riemann surface is a finite algebraic extension of the field of rational
functions C(x) in one variable over C.

From the algebraic representation in 3, one deduces that the field k(") of mero-
morphic functions on " is a finite algebraic extension of the field of rational func-
tions C(x) in one variable over C. More precisely,

k(")∼C(x)[y]/P (x, y) (1.4.5)

for some irreducible polynomial P . For example, an elliptic curve, that is, a Rie-
mann surface of genus 1, can be described by a cubic polynomial

y2 − x(x − 1)(x − λ) (1.4.6)

for some λ ∈ C − {0,1}. For z ∈ ", we let Rz be those meromorphic functions
that are holomorphic at z. Rz is then a subring of k(") and has a unique maximal
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ideal given by those functions that vanish at z. This means that, conversely, we
can start with the field k(") and define the points of " as the maximal ideals of
local subrings of k("), and we may define a Riemann surface as a field of the form
C(x)[y]/P (x, y) for some irreducible polynomial P . This encodes the functorial
aspects: Let "1,"2 be compact Riemann surfaces, and let

φ : k("2)→ k("1) (1.4.7)

be a homomorphism whose restriction to C is the identity. Then there exists a unique
holomorphic map

h :"1 →"2 (1.4.8)

with

φ(f )(z)= f (h(z)) (1.4.9)

for all z ∈"1 and all f ∈ k("2).
This algebraic definition of a Riemann surface, which goes back to Dedekind

and Weber, has the advantage that C can be replaced by any other algebraically
closed field as the ground field. We may take finite fields Zp , and we can consider
an algebraic equation P(x, y) giving our Riemann surface as above, modulo p.
Doing this for all prime numbers p simultaneously yields important insights into the
algebraic properties of such equations, see [36], and this was at the heart of Faltings’
proof of the Mordell conjecture [35]. We can also take, instead of C, a field of
meromorphic functions on some variety B , in order to obtain an algebraic curve over
a function field. In more elementary terminology, we now consider a polynomial
P(x, y) whose coefficients depend on the variable w ∈ B . We thus obtain a family of
Riemann surfaces as in 2, but now from an algebraic point of view. The unification of
those two possibilities of considering varying ground fields (depending on a prime
number p or on a variable w in some algebraic variety) leads to arithmetic algebraic
geometry.

6. A Riemann surface " is (defined by) an Abelian variety with a principal
polarization, its Jacobian, that can be identified as the group of divisors of de-
gree 0 on " modulo linear equivalence or, equivalently, as the subgroup of the
Picard group of line bundles of degree 0. Since not every principally polarized
Abelian variety arises in this manner as the Jacobian of some Riemann surface,
however, the moduli space of the latter is only a subvariety of the moduli space
of principally polarized Abelian varieties. By considering periods of holomorphic
1-forms, we can associate to a Riemann surface a principally polarized Abelian va-
riety, its Jacobian. By Torelli’s theorem, each Riemann surface is determined by its
Jacobian. This means that we can identify a Riemann surface with this Abelian va-
riety, and the space of Riemann surfaces becomes a subspace of the moduli space of
principally polarized Abelian varieties. What is not so nice about this is that the so-
lution of the Schottky problem, that is, the question of characterizing those Abelian
varieties that are Jacobians of Riemann surfaces, is rather complicated [97].

Insertion: We explain the above concepts in some more detail. H 0(",
1,0)

is the space of holomorphic 1-forms on our compact Riemann surface ", that is,
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the holomorphic sections of the canonical bundle K . Thus, h0(
1) := h0(K) =
dimC H 0(",
1,0)= p by Riemann–Roch.

Let α1, . . . , αp be a basis of H 0(",
1,0), and a1, b1, . . . , ap, bp a canonical
homology basis for ". Then the period matrix of " is defined as

⎛

⎜⎜⎝

∫
a1

α1 · · · ∫
bp

α1

...
...∫

a1
αp · · · ∫

bp
αp

⎞

⎟⎟⎠ .

The column vectors of π ,

Pi :=
(∫

ai

α1, . . . ,

∫

ai

αp

)
and Pi+p :=

(∫

bi

α1, . . . ,

∫

bi

αp

)
, i = 1, . . . , p,

are called the periods of ". P1, . . . ,P2p are linearly independent over R and thus
generate a lattice

� := {n1P1 + · · · + n2pP2p, nj ∈ Z
}

in C
p .

Definition 1.8 The Jacobian variety J (") of " is the torus C
p/�.

For each z0 in ", we have the Abel map (a holomorphic embedding)

j :"→ J (")

with

j (z) :=
(∫ z

z0

α1, . . . ,

∫ z

z0

αp

)
mod�.

Here j (z) is independent of the choice of the path from z0 to z, since a different
choice changes the vector of integrals only by an element of �.

By the theorems of Abel and Jacobi, we obtain an isomorphism ϕ from the group
Pic0(") of line bundles of degree 0, that is, from the group Div0(") of divisors of
degree 0 modulo linear equivalence, into the Jacobian J (") by writing a divisor D
of degree 0 as

D =
∑

ν

(zν −wν),

where zν,wν ∈" are not necessarily distinct, and putting

ϕ(D) :=
(∑

ν

∫ zν

wν

α1, . . . ,
∑

ν

∫ zν

wν

αp

)
mod�.

7. A Riemann surface is a conformal structure on S, that is, a possibility
to measure angles. Equivalently, it is an isometry class of Riemannian metrics
modulo conformal factors. The moduli space is obtained by dividing the space
of all Riemannian metrics on S by isometries and conformal changes. More
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precisely: As already discovered by Gauss, a two-dimensional Riemannian mani-
fold defines a conformal structure, that is, a Riemann surface. Different Riemannian
metrics can lead to the same conformal structure, and so we need to divide out
such equivalences. This is the approach of Tromba and Fischer, see [101]. Thus, we
consider the space Rp of all Riemannian metrics on S. As a space of Riemannian
metrics, it carries itself a Riemannian metric. If g is a Riemannian metric on S and
h : S→ S is a diffeomorphism, h�g is isometric to g via h. Thus, we need to divide
out the action of the diffeomorphism group Dp of S. It acts isometrically on Rp

equipped with its Riemannian metric. Moreover, when we multiply a given metric
g by some positive function λ, the metric λg leads to the same conformal structure
as g. Such multiplication by a positive function, however, does not induce an isom-
etry of Rp (and this is at the heart of the anomalies in string theory that ultimately
force a particular dimension (26 in bosonic string theory)).

Insertion: Some details: Let g ∈Rp be some Riemannian metric on S. Suppress-
ing the issues of the precise regularity class of the objects encountered, the tangent
space TgRp is given by symmetric 2 × 2 tensors h = (hij ). Each such h can be
decomposed into its trace and trace-free parts:

h= ρg+ h′ ρ : S→R, (1.4.10)

h′ij = hij − 1

2
gij g

k�hkl . (1.4.11)

The decomposition (1.4.10) is orthogonal w.r.t. the natural Riemannian structure on
TgRp:

((hij ), (�ij ))g,κ :=
∫

(gijkm + κgij gkm)hij �km
√

detg dz1 dz2 (1.4.12)

with κ > 0 and

gijkm := 1

2
(gikgjm + gimgjk − gij gkm).

Since the value of κ will make no difference for us, we put κ = 1
2 so that (1.4.12)

becomes

((hij ), (�ij ))g :=
∫

S

gij gkmhik�jm
√

detg dz1 dz2. (1.4.13)

As it stands, this is only a weak Riemannian metric on the infinite-dimensional space
Rp , as (1.4.13) yields only an L2-product, but Clarke [20] showed that it becomes
a metric space with respect to the distance function induced by the Riemannian
product of (1.4.13). (The completion of this metric space is identified in [19].)

From (1.4.13), we see that the Riemannian metric (., .)g on TgRp is invariant
under the action of the diffeomorphism group, but not under conformal transforma-
tions.

In order to get rid of the ambiguity of the conformal factor, we need to find a suit-
able slice in Rp transversal to the conformal changes. By Poincaré’s theorem, any
Riemannian metric on our surface S of genus p > 1 is conformally equivalent to



1.4 Riemann Surfaces and Moduli Spaces 73

a unique hyperbolic metric, that is, S becomes a quotient H/� as above. This met-
ric has constant curvature −1. With some differential geometry, one verifies that −1
is a regular value of the curvature functional, and so, by the implicit function theo-
rem, the hyperbolic metrics yield a regular slice. Thus, we obtain the moduli space
Mp as the space Rp,−1 of metrics of curvature −1 divided by the action of Dp . In
this way, the geometric structures on Rp induce corresponding geometric structures
on Mp as described in Tromba’s book [101]. Rp is the space of symmetric, positive
definite 2×2 tensors (gij ) on S. As already explained, a tangent vector to Rp is then
a symmetric 2× 2 tensor (hij ), not necessarily positive definite. It is orthogonal to
the conformal multiplications when it is trace-free, and it is orthogonal to the action
of Dp when it is divergence-free. Such a trace- and divergence-free symmetric ten-
sor then can be identified with a holomorphic quadratic differential on the Riemann
surface.

Insertion: Some details: We recall the decomposition

h= ρg+ h′, (1.4.14)

where h′ is trace-free. As we have seen, this decomposition is orthogonal w.r.t. the
natural Riemannian metric on TgRp . In particular, since we only want to keep those
directions that are orthogonal to conformal reparametrizations, we only need to con-
sider the trace-free part h′. We next consider the infinitesimal action of the diffeo-
morphism group, with the aim of determining those h′ that are orthogonal to the
action of that group as well. For that purpose, let (ϕt )⊂Dp,ϕ0 = id , be a smooth
family of diffeomorphisms, generated by the vector field

V (z) := d

dt
ϕt (z)|t=0 . (1.4.15)

The infinitesimal change of the metric g under (ϕt ) is then given by

d

dt
(ϕ∗t g)|t=0. (1.4.16)

(This is the Lie derivative LV g of the metric in the direction of the vector field V .)
With ∇ denoting the covariant derivative for the metric g,

d

dt
((ϕ∗t g)|t=0)ij = gik(∇ ∂

∂zj
V )k + gjk(∇ ∂

∂zi
)k

= gij,kV
k + gikV

k
zj
+ gjkV

k
zi
. (1.4.17)

In the above decomposition of Rp , the directions corresponding to conformal
changes are given by the tensors ρg, whereas those representing Dp are of the form
(1.4.17). It remains to identify the Teichmüller directions, i.e., those that are orthog-
onal to the preceding two types.

Our computations simplify considerably if we use conformal coordinates so that
the metric (gij ) is of the form

gij (z)= λ2(z)δij . (1.4.18)

If a symmetric tensor h′′ is orthogonal to all multiples ρg of g, it has to be trace-
free. If it is orthogonal to all tensors that arise from the infinitesimal action of the
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diffeomorphism group, that is, of type (1.4.16), we get, using the symmetry of h′′

0=
∫

gij gklh′′ik(gj�,mV m + 2gjmV m
z�
)
√

detg dz1 dz2

=
∫

1

λ2
h′′ik
(
δik

(
∂

∂zm
λ2
)
Vm + 2λ2V i

zk

)
dz1 dz2

=
∫

2h′′ikV i
zk

dz1 dz2, since h′′ is traceless.

If this holds for all vector fields V , we conclude

∂

∂zk
h′′ik = 0 for i = 1,2. (1.4.19)

This means that h′′ik is divergence free.
Thus, h′′ is symmetric, trace-free, and divergence free. These conditions can be

interpreted in a more concise manner as follows:

Being symmetric and trace-free, h′′ is of the form
(
h′′11 h′′12

h′′12 h′′22

)
=:
(
u v

v −u

)
.

Being divergence free, this tensor then has to satisfy

uz1 =−vz2, uz2 = vz1 .

Thus, u− iv is holomorphic, or, as a tensor,

h′′ = u(dz1)2 − u(dz2)2 + 2v dz1 dz2

= Re((u− iv)(dz1 + idz2)2) (1.4.20)

is the real part of a holomorphic quadratic differential

φ dz2 = (u− iv) dz2.

Thus, we have identified the tangent directions of Rp that correspond to nontrivial
deformations of the complex structure as the (real parts of) holomorphic quadratic
differentials on the Riemann surface defined by (S, g).

Thus, the cotangent11 space of Mp at a point representing a Riemann surface
" is given by the holomorphic quadratic differentials on ". (This issue will be
taken up again in Sect. 2.4 from a different point of view that also clarifies the re-
lation between tangent and cotangent directions to the moduli space.) The complex
dimension of this space is 3p− 3 the Riemann–Roch theorem. Mp then also inher-
its a Riemannian structure from that of Rp . The induced metric is the Petersson–
Weil metric originally introduced in the context of approach 1. In a more abstract

11It is not very transparent from our preceding considerations that we have constructed the cotan-
gent and not the tangent space, but a careful accounting of the transformation behaviors can clarify
this issue.
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framework, the so-called L2-geometry of moduli spaces is investigated in [67]. Let
�dz2 = (u1 − iv1) dz

2 and # dz2 = (u2 − iv2) dz
2 be two such differentials. Let

ρ2(z) dz dz̄ be the hyperbolic metric. Then their Petersson–Weil product is

(�dz2,# dz2)g = 2
∫

(u1u2 + v1v2) · 1

ρ2(z)
dz dz̄= 2 Re

∫
�#̄

1

ρ2(z)
dz dz̄.

(1.4.21)

We have now listed seven rather different approaches for defining what a Rie-
mann surface is. It is a very remarkable and profound fact that all these approaches
give fully compatible structures on the moduli space Mp . In each of them, one
can construct a complex structure on Mp , and they all agree, and together with
the Petersson–Weil metric, one then finds a Kähler structure on Mp .

Nevertheless, some remarks are in order here:

• From an algebraic point of view, the hyperbolic metric is a transcendental ob-
ject and should be replaced by an algebraic one. There are also certain other
natural metrics on a Riemann surface, like the Bergmann metric obtained from
an L2-orthonormal basis of holomorphic 1-forms, that is, the metric induced by
embedding the Riemann surface into its Jacobian, or the Arakelov metric de-
fined from an asymptotic expansion of the Green function, a rather natural object
in string theory. One may replace the hyperbolic metric in (1.4.21) by another
metric uniquely associated to each Riemann surface and still obtain a natural Rie-
mannian metric on Mp . First steps in the direction of a systematic investigation
have been done in [54, 55]. For more recent results in this direction, see [58, 59].
Let us briefly describe some of these constructions here. The Bergmann metric is
given by

ρ2
Bdz∧ dz̄ :=

p∑

i=1

θi ∧ θ̄i (1.4.22)

where the θi are an L2-orthonormal basis of the space of holomorphic 1-forms
on ", that is,

i

2

∫

"

θi ∧ θ̄j = δij . (1.4.23)

Equivalently, the metric is induced from the flat metric on the Jacobian J (")

via the period map j :"→ J ("). This latter description also shows that it does
not depend on the choice of orthonormal basis—which, of course, is also readily
checked directly. Moreover, the expression for the Bergmann metric is indeed
positive definite, that is, it defines a metric, or equivalently, the derivative of the
period map j has maximal rank. This follows from the fact that there is no point
on " where all holomorphic 1-forms vanish simultaneously; this can be deduced
from the Riemann–Roch theorem.
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The Arakelov metric (references are [4, 18]) γ 2dzdz̄ is characterized by the
property that its curvature is proportional to the Bergmann metric,

∂2

∂z∂z̄
logγ = cpρ

2
B, (1.4.24)

for some constant cp that depends only on p and can, of course, be explicitly
computed.12 Alternatively, it is given in terms of an asymptotic expansion of the
Green function of the Bergmann metric,

logγ (z)=− lim
w→z

(2πG(z,w)− log |z−w|), (1.4.25)

with G satisfying

∂2

∂z∂z̄
G(z,w)= i

2
δw(z)+ cpρ

2
B, (1.4.26)

where δw is the Dirac functional supported at w, plus the normalization13

∫

"

G(z,w)
i

2
ρ2
Bdz∧ dz̄= 0. (1.4.27)

The Green function is regular for z �= w and becomes −∞ at z = w.
exp 2πG(z,w) vanishes to first-order at z=w. The first term in the expansion of
exp 2πG(z,w) is the universal term |z − w|, while the next one, γ (z), encodes
the geometry of the Riemann surface ".

If �B is the Laplace operator for the Bergmann metric, and if φ0, φ1, . . . is an
L2-orthonormal basis of eigenfunctions with eigenvalues 0 = λ0 < λ1 ≤ λ2 . . . ,
then the Green function is given by the expansion

G(z,w)=
∞∑

j=1

1

λj

φj (z)φj (w). (1.4.28)

In fact, one can perform this construction of the Green function and the associated
metric on the basis of any conformal metric on " in place of the Bergmann one.
Arakelov discovered, however, that the Bergmann metric is distinguished here by
the following property: When we use the Green function of a metric g to define
a metric on the canonical bundle K by putting

‖dz‖(z0) :=
(

lim
z→z0

exp 2πG(z, z0)

|z− z0|
)−1

, (1.4.29)

where the absolute value on the right-hand side is taken w.r.t. to local coordinates,
that is, in C, then the curvature of this metric on K is a multiple of g if and only

12In the sequel, cp will denote a generic such constant whose value can change between formulas.
13The characterization of the Arakelov metric in terms of its curvature likewise needs an additional
normalization to fully determine it.
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if we started with the Bergmann metric. In other words, we have the formula

1

2πi

∂2

∂z∂z̄
log‖s‖2dz∧ dz̄= cpρ

2
Bdz∧ dz̄ (1.4.30)

for any locally nonvanishing holomorphic section s of K , and this is no longer
valid for other metrics g used to construct a Green function.

More generally, for a line bundle L over " with transition functions gij , a Her-
mitian metric λ2 on L is a collection of positive, smooth, real-valued functions
λ2
i on Ui with

λ2
j = λ2

i gij gij on Ui ∩Uj . (1.4.31)

The norm of a section h of L given by the local collection hi is then defined via

‖h(z0)‖2 := |hi(z0)|2
λ2
i (z0)

for z ∈Ui. (1.4.32)

The curvature or first Chern form is given by

c1(L,λ2) := 1

2πi

∂2

∂z∂z̄
log‖h‖2dz∧ dz̄ (1.4.33)

for any meromorphic section h and local coordinates z, and this is independent
of the choices of h and z. Arakelov called a Hermitian line bundle L admissible
w.r.t. a metric ρ2dz∧ dz̄ on " if

c1(L,λ2)= degLρ2 dz∧ dz̄. (1.4.34)

Let z0 ∈ ", and let z be local coordinates mapping z0 to 0. We can put a Her-
mitian metric on the line bundle [z0] by defining the norm of the local section z

in a neighborhood of z0 as

|z|(z1)= expG(z1, z0). (1.4.35)

This metric is then admissible for the Bergmann metric. So, what is special about
the Bergmann metric here is that if we start the construction of the Arakelov
metric from the Green function of that metric then the curvature formula recovers
that metric. This only holds for the Bergmann metric and not for any other one.

• We noted in 6 that we can inject the moduli space Mp of Riemann surfaces of
genus p into the moduli space Ap of principally polarized Abelian varieties of
dimension p. The latter also carries a natural (locally Hermitian symmetric) met-
ric. Since the map j :Mp →Ap , while being injective by Torelli’s theorem, is not
of maximal rank everywhere, the pullback of that metric via j has some singular-
ities. Also, its behavior is qualitatively different from that of the Weil–Petersson
metric, as will become clear below when we investigate degenerations of Rie-
mann surfaces and their associated Jacobians.
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1.4.3 Compactifications of Moduli Spaces

Some of the preceding approaches also naturally lead to compactifications of Mp .

1. We already mentioned the Mumford–Deligne compactification Mp as an al-
gebraic variety. It consists of so-called stable curves, that is, possibly singular
curves, but with a finite automorphism group. The sphere with no, one, or two
punctures and the torus are thereby excluded. This is necessary for the Hausdorff
property.

The difficulty here can be seen from the following easy example: We con-
sider annuli, and by the uniformization theorem, each annulus is characterized
by a single modulus, a real number 0 < r < 1; that is, it is conformally equiva-
lent to an annulus

Ar := {z ∈C : r < |z|< 1}. (1.4.36)

Thus, the moduli space of annuli is (0,1). It seems obvious how to compactify it,
namely by simply adding the boundary points r = 0 and r = 1. Now r = 1 does
not correspond to a Riemann surface anymore, and so this is not a good limit.
The annulus Ar , however, is conformally equivalent to the annulus

A′r :=
1

1− r
Ar =

{
z ∈C : r

1− r
< |z|< 1

1− r

}
, (1.4.37)

which for r → 1 converges to an infinite strip, that is, the limit can be identified
with {x+ iy ∈C : 0 < y < 1}. The boundary point r = 0 seems harmless because
it simply corresponds to the punctured disk

D∗ = {z ∈C : 0 < |z|< 1}. (1.4.38)

However, the annulus Ar is also conformally equivalent to the annulus

A′′r :=
1√
r
Ar =

{
z ∈C : √r < |z|< 1√

r

}
, (1.4.39)

and if we now let r tend to 0, the limit is the punctured plane

C
∗ = {z ∈C : z �= 0}, (1.4.40)

which is not conformally equivalent to the punctured disk D∗. Thus, from the
same limit r → 0, we obtain two different limits, D∗ and C

∗, and therefore, we
lose the Hausdorff property. Mumford’s insight was that this problem essentially
arises from the fact that the putative limit C

∗ has a noncompact automorphism
group. In fact, its automorphism group contains all transformations of the form
z→ λz for any λ ∈ C

∗. Mumford’s theory then declared such limits as unsta-
ble and disallowed them. The problem of the noncompact automorphism group,
however, will re-emerge later when we consider conformally invariant variational
problems. The essential point is the following: We consider any Riemann surface
" and choose local coordinates z in the open unit disk U = {z ∈ C : |z| < 1}
around some point p0, such that p0 corresponds to 0. We then replace the co-
ordinate z by zλ := λz ∈ λU = {z ∈ C : |z| < λ}. When we let λ ∈ R tend to
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∞, we obtain z∞ ∈C, but these are not coordinates for a local neighborhood of
p0 anymore because any fixed z∞ ∈ C now corresponds to p0 itself. In a sense
to be made precise, they thus parametrize an infinitesimal neighborhood of p0.
We can compactify this infinitesimal coordinate patch C by adding the point at
∞ to obtain the sphere S2. Thus, we have created a nontrivial Riemann surface,
the sphere S2, by blowing up a neighborhood of our point p0 ∈ ". Again, if
we allowed such processes in the construction of the moduli space, we would
need to consider the union of " and S2 as a limit of the constant sequence ".
(As this so-called “bubbling off” can be repeated, we should then even allow
for infinitely many blown-up spheres.) At this point, as mentioned, this can sim-
ply be excluded by fiat, but the situation changes when these blown-up spheres
carry some additional data, for example some part of the Lagrangian action in
a variational problem.

2. We recall from 2 in Sect. 1.4.2 that if N is a complex space fibering over some
base B with the generic (=regular) fiber being a Riemann surface of genus p,
then we obtain a holomorphic map h : B0 →Mp where B0 ⊂ B are the points
with regular fibers. The fibers over B1 := B\B0 are then singular, and we hope
to extend h across B1, that is, obtain a holomorphic map h : B → M̄p . Cer-
tain difficulties arise here from the possibility that not all such singular fibers in
a holomorphic family need to be stable in the sense of Mumford. Thus, in partic-
ular, we cannot expect that the image of some point in B1 is given by the complex
structure of that singular fiber. Nevertheless, after lifting to finite covers so that
the quotient singularities of Mp disappear, one can extend h to a holomorphic
map h : B → M̄p . This depends on certain hyperbolicity properties coming from
the negative curvature of the Weil–Petersson metric on Mp that lead to general
extension properties for holomorphic maps, see [69].

3. While the preceding is a global aspect, one also has a convenient local model for
degenerations of Riemann surfaces within 2. We consider two unit disks D1 =
{z ∈ C : |z|< 1} and D2 = {w ∈ C : |w|< 1}. For t ∈ C, |t |< 1, we remove the
interior disks {|z| ≤ |t |}, {|w| ≤ |t |} and glue the rest by identifying z with w by
the equation zw = t to obtain an annular region At . For t → 0, At degenerates
into the union of the two disks D1,D2 joined at the point z=w = 0. This is the
local model for degeneration. The connection with the consideration of families
as advocated in the preceding item of course comes from considering the smooth
two-dimensional variety N := {(z,w, t) : zw− t = 0, |z|, |w|, |t |< 1} for which
(z,w) yield global coordinates. N fibers over the base B := {t : |t | < 1}, with
a single singular fiber over B0 = {0}.

This local model is easily implemented in the context of compact Rie-
mann surfaces as follows. We let "0 be either a connected Riemann surface
of genus p − 1 > 0 with two distinguished points x1, x2, called punctures, or
the disjoint union of two Riemann surfaces "1,"2 of genera p1,p2 > 0 with
p1 + p2 = p and one puncture xi ∈"i each. We choose disjoint neighborhoods
U1,U2 of the punctures and local coordinates z : U1 →D1,w : U2 → D2 with
z(x1) = 0,w(x2) = 0. By performing the above grafting process on the coordi-
nate disks D1 and D2, we obtain a Riemann surface "t of genus p for t �= 0. The
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correspondence

t 
→"t (1.4.41)

induces a map of D∗ = {t ∈ C : 0 < |t | < 1} onto a complex curve in the mod-
uli space Mp which extends to a map from D = {t ∈ C : |t | < 1} = D∗ ∪ {0}
into the compactification Mp . (Because of the genus restrictions imposed, these
degenerations all yield stable curves.)

4. Approaches 1 and 7 suggested looking at the moduli space of hyperbolic metrics.
A hyperbolic metric on a compact surface can degenerate into a noncompact but
complete hyperbolic metric of finite area with cusps. In the local model described
in the previous item, this looks as follows. On the annulus At = {|t |< z < 1}, we
have the hyperbolic metric

dz∧ dz̄

|z|2 log2 |z|
(

π
log |z|
log |t |

sin(π log |z|
log |t | )

)2

. (1.4.42)

For |t | → 0, this converges to the hyperbolic metric on the punctured disk {z :
0 < |z|< 1} given by

dz∧ dz̄

|z|2 log2 |z| . (1.4.43)

This metric is complete at 0, that is, the cusp 0 is at infinite distance from the
points in the punctured disk. Also, the area of every punctured subdisk {z : 0 <

|z|< ρ},0 < ρ < 1 is finite.
For the hyperbolic metric (1.4.42) on the annulus At , the middle curve

|z| = √|t | is the shortest of all the concentric circles, hence a closed geodesic,
denoted by c. The reflection z 
→ t

z
is then an isometry leaving c fixed. Its length

l goes to 0 as t → 0, while its distance from the boundary |z| = 1 goes to ∞.
Thus, as t goes to 0, the geodesic c degenerates into a point curve at infinite
distance from the interior. Therefore, in geometric terms, the degeneration is
described by pinching a closed geodesic on some annulus inside our Riemann
surface equipped with the hyperbolic metric. In fact, a hyperbolic metric on an
annulus that is symmetric about a closed geodesic is uniquely determined by the
length of that geodesic. That means that the hyperbolic on the annulus At is in-
duced by the metric of the Riemann surface "t as described above. Thus, even
though we have presented it here as a local model, it captures the essential global
aspects.

This consideration of varying hyperbolic metrics leads to the same compact-
ification Mp of Mp as a topological space, see [12]. The noncompact surfaces
can be compactified as Riemann surfaces by adding a point at each cusp. We thus
see that elements in the compactifying boundary of Mp correspond to surfaces of
lower topological type with additional distinguished points, so-called punctures.

Insertion: The degeneration can also be described in terms of the generators
of the discrete group � considered in 1. Since hyperbolic elements are character-
ized by |a+d|> 2 and parabolic ones by |a+d| = 2, the relevant degeneration is
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one where we have a sequence �n of surface groups with hyperbolic elements γn
converging to a parabolic element γ0. An example is the sequence of hyperbolic
transformations

γn : z 
→
(1+ 1

n
)z+ 1

n

z+ 1
(1.4.44)

converging to the parabolic transformation

γ0 : z 
→ z

z+ 1
. (1.4.45)

In the limit, the two fixed points of γn merge into the single fixed point 0 of
γ0. Also, the length of the invariant geodesic for γn approaches 0 as n→∞.
Thus, again, the degeneration is described by pinching a closed geodesic on our
Riemann surface equipped with the hyperbolic metric induced from H .

We now want to relate the geometric description of degeneration just es-
tablished to the analytic model described previously. We first describe how to
get from the analytic model to the geometric one. The behavior of the hyper-
bolic closed geodesic |z| = √|t | for the hyperbolic metric (1.4.42) on the an-
nulus At translates into the following picture for hyperbolic isometries of H .
We consider the hyperbolic isometry γλ : z 
→ λz for some λ > 1. This leaves
the imaginary axis in H invariant, and so its image on the quotient H/� by
the group � generated by γλ is a closed geodesic of length

∫ λ

1
dy
y
= logλ. Via

z 
→ logλ exp( 2πi
logλ

(log(−iz)+ logλ)), H/� is mapped onto C
∗, and the closed

geodesic is mapped onto the circle |w| = logλ.
In order to see how the geometric model can be translated into the analytic

one, one uses the collar lemma, which says that if " =H/� is a compact Rie-
mann surface with a simple14 closed geodesic c of length l, then " contains an
annular region, called a collar, about c isometric to At with the hyperbolic metric
At , c corresponding to the middle curve |z| = √|t |. The boundary curves of the
collar then are at a distance from c of at least arcsinh( 1

sinh(l/2) ) which goes to ∞
as l→ 0. Thus, we are in the local situation described by the analytic model.

In fact, a theorem of Mumford says that pinching a simple closed geodesic is
the only way a sequence of compact Riemann surfaces "n = H/�n of fixed
genus p can degenerate. Namely, if the lengths of (simple) closed geodesics
on "n are uniformly bounded below, then after selection of a subsequence, �n

converges to a subgroup �0 of PSL(2,R) for which "0 = H/�0 is a compact
Riemann surface of the same genus p.

5. Since we have equipped Mp in approach 7 with a Riemannian metric, the
Petersson–Weil metric, we can study its compactification as a metric space.
Again, as follows from the computations and estimates of Masur [80], this leads
to the same Mp viewed as a topological space, see [107]. In particular, Mp

is not a complete metric space, that is, the boundary Mp\Mp is at finite dis-
tance from the interior. Moreover, when we approach that boundary orthogonally

14That is, non-self-intersecting.
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along some curve c, the tangent directions orthogonal to c converge to bound-
ary tangent directions. For a survey of some recent refinements of these results,
see [108]. For the relation with the completion of the space Rp of Riemannian
metrics, see [19].

6. As explained in 6 of Sect. 1.4.1, by Torelli’s theorem, the correspondence be-
tween a Riemann surface and its Jacobian leads to an injective mapping from
Mp into the moduli space Ap of principally polarized Abelian varieties of di-
mension p. Ap is a quotient Hp/�p of the Siegel upper half space by a discrete
group (H1 is simply the Poincaré upper half plane, and Hp/�p is then a higher-
dimensional generalization of the modular curve H/SL(2,Z). Hp is the space of
symmetric complex (p × p) matrices with positive definite imaginary part. The
discrete group �p is Sp(2p,Z), the group of real (2p × 2p) matrices M with
integer entries that satisfy MJMt = J for J = ( 0 Id

−Id 0

)
). It admits a compactifi-

cation first studied by Satake. Baily [8] then studied the induced compactification

Mp . This is different from Mp and, in fact, highly singular. It can be obtained
from Mp by forgetting the positions of the punctures or cusps of the limiting Rie-
mann surfaces in Mp . This is useful for the study of minimal surfaces of varying
topological type, see [60, 61, 68], because the punctures would correspond to
removable singularities. We shall discuss this issue briefly below in our study of
the Dirichlet integral, our fundamental action functional, see Sect. 2.4.

Also, in string theory, one ultimately wishes to extend the partition function
over all possible genera, and one therefore needs some kind of universal mod-
uli space that includes surfaces of all possible genera. The problem with the
Mumford–Deligne compactification is that as the genus increases one gets sur-
faces with more and more punctures in the low boundary strata, in fact infinitely
many in the limit of the genus going to infinity. This is avoided in the Satake–
Baily compactification just described.

There is another issue of interest here: We have described the degeneration of
a family of Riemann surfaces by pinching a closed geodesic, that is, letting its
length shrink to 0. These geodesics can be topologically of two different kinds.
The first possibility is that it corresponds to a nontrivial homology class. When
we pinch such a geodesic to a point and compactify the resulting surface by in-
serting two points, in the limit we still have a connected surface, but of lower
genus, and therefore its space of holomorphic 1-forms has a smaller dimension.
Therefore, the limiting surface also has a Jacobian of smaller dimension, and so
we move into the boundary of Ap . The other possibility is that we pinch a curve
that is homologically trivial, i.e., a commutator in the fundamental group π1(").
If we pinch such a curve and again compactify by inserting two points, the re-
sulting surface is disconnected, but the genus p is not lowered, that is, the sum
p1 + p2 of the genera of the pieces "1 and "2 equals p. Therefore, also the di-
mension of the Jacobian is not lowered, and although we move to the boundary
of the moduli space Mp , we stay inside the moduli space Ap . The Jacobian of
our disconnected surface is simply the product of the Jacobians of the pieces "1

and "2. Of course, in order to substantiate these contemplations, we need to clar-
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ify in which sense the Jacobians of the family of degenerating surfaces converge
to the Jacobian of the compactified limiting surface.

1.5 Supermanifolds

1.5.1 The Functorial Approach

We present here the abstract mathematical setting of supermanifolds. We consider
a super vector space (over a ground field of characteristic 0, like R or C)

W =W0 ⊕W1

that is Z/2Z graded. Elements w of W0 are called even, with parity p(w) = 0,
those of W1 odd, with parity p(w)= 1. Morphisms between super vector spaces are
required to preserve the grading.

A super algebra A is a super vector space together with a product A⊗ A→ A

which is a morphism in the above sense. It is also required to be associative and to
have a unit, in the ordinary sense.

Now, the important point about super objects is that whenever an operation
changes the order of two odd elements, a minus sign is introduced. In this sense,
the super algebra A is (super)commutative if for any two a, b ∈A,

ab= (−1)p(a)p(b)ba. (1.5.1)

(Here and in the sequel, whenever the parity of an element enters a formula, that
element is implicitly assumed to be of pure type, that is, either odd or even, but not
a nontrivial sum of an odd and an even term. Generally, definitions are extended to
inhomogeneous elements by linearity.)

The basic example of a commutative super algebra is a Grassmann algebra with
generators v1, . . . , vN satisfying

vivj =−vjvi for all i, j (1.5.2)

and thus, in particular,

v2
i = 0 for all i. (1.5.3)

Hence, every element of this Grassmann algebra can be expanded as

v = a0 +
N∑

i=1

aivi + · · · + a12...Nv1v2 · · ·vN . (1.5.4)

Since the square of any generator vanishes by (1.5.4), the expansion terminates.
Similarly to (1.5.1), the rules defining Lie algebras pick up signs in the super

context: The bracket of a super Lie algebra has to satisfy

[v,w] + (−1)p(v)p(w)[w,v] = 0 (1.5.5)
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and the super Jacobi identity reads

[v, [w,u]] + (−1)p(v)(p(w)+p(u))[w, [u,v]] + (−1)p(u)(p(v)+p(w))[u, [v,w]] = 0.
(1.5.6)

We now consider a complex super vector space W . A real structure on W is given
by a C-antilinear automorphism

κ :W →W

with

κ2w = (−1)p(w)w. (1.5.7)

This should be considered as complex conjugation. We point out, however, that on
the odd part, we obtain a minus sign in (1.5.7). As an example, let us assume that
over R, the odd part W1 has two generators ϑ1 and ϑ2; we may then put

κ(ϑ1)= ϑ2, κ(ϑ2)=−ϑ1. (1.5.8)

A supersymmetric bilinear form15 (·, ·) on W is given by a symmetric form (·, ·)0
on W0 and an alternating form (·, ·)1 on W1 with

(κv, κw)i = (v,w)i for i = 0 and 1. (1.5.9)

This implies

(v, κv)i = (κv, κ2v)i = (−1)i(κv, v)i = (v, κv)i, (1.5.10)

that is

(v, κv) is real for all v ∈W. (1.5.11)

We may thus call the form (·, ·) positive if

(v, κv) > 0 for all v �= 0. (1.5.12)

We can then define (v, κv) as a “norm” on a complex super vector space. The point
is that (v, v) = 0 if v is odd. We therefore need κ which is only meaningful if W

is defined over C so that each odd coordinate has two real components, as in our
example. In that example, we could put

(ϑ1, ϑ2)= 1. (1.5.13)

Then ϑ1 and ϑ2 would both have “norm” 1.
If we have a complex super algebra A, we could then require that κ(ab) =

κ(a) κ(b). If we wish to also include non-commutative algebras, like matrix al-
gebras with their complex conjugation, it seems preferable to take as the basis ob-
ject a star-operation, a C-antilinear isomorphism from A to the opposite algebra16

satisfying

(ab)∗ = (−1)p(a)p(b)b∗a∗. (1.5.14)

15Forms always take their values in C.
16If the product in A of a and b is ab, the product in the opposite algebra is defined as
(−1)p(a)p(b)ba.
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A Hermitian form 〈·, ·〉 on a complex super vector space is C-antilinear in the first
variable, C-linear in the second one and satisfies

〈v,w〉 = (−1)p(v)p(w)〈w,v〉. (1.5.15)

We have, since 〈·, ·〉 is assumed to be even, that

〈v,w〉 = 0 if p(v) �= p(w), (1.5.16)

and also

〈v, v〉 ∈R for v even, 〈v, v〉 ∈ iR for v odd. (1.5.17)

Then a super Hilbert space H is a super vector space with a Hermitian form satisfy-
ing

〈v, v〉> 0 for v even, (1.5.18)

i−1〈v, v〉> 0 for v odd (1.5.19)

and for which the ordinary Hilbert space structure defined by

〈〈v,w〉〉 = 〈v,w〉 for v,w even,
〈〈v,w〉〉 = i−1〈v,w〉 for v,w odd,
〈〈v,w〉〉 = 0 for v,w of different parities

is complete. In the present treatise, we shall be concerned only with finite-
dimensional super Hilbert spaces,17 and the completeness is not an issue then be-
cause finite-dimensional Euclidean spaces are always complete.

1.5.2 Supermanifolds

As for ordinary manifolds, there are several approaches to the definition of su-
permanifolds, and it is instructive to understand the relations between them. The
standard model is R

m|n with even coordinates (x1, . . . , xm) and odd coordinates
(ϑ1, . . . , ϑn). Its sheaf of functions is C∞[ϑ1, . . . , ϑn], the sheaf of commutative
super algebras freely generated by odd quantities ϑ1, . . . , ϑn over the sheaf C∞ of
smooth functions on R

m. Since the square of any ϑj vanishes, they generate a nilpo-
tent ideal in this sheaf.

The functions in C∞[ϑ1, . . . , ϑn] then admit expansions in the nilpotent vari-
ables. To explain this, we first consider x = (x1, . . . , xm) ∈ U (open in R

m)
and ξ = (ξ1, . . . , ξm) where the ξ i are even nilpotent elements, i.e., of the form∑

α1,α2
aα1,α2ϑ

α1ϑα2+ higher even-order terms, that is, the expansion starts with
products of two ϑis. For a function that depends only on the even variables, we then
require

F(x1 + ξ1, . . . , xm + ξm)

=
∑

γγγ

1

γ1! · · ·γm!∂
γ1

x1 · · · ∂γm
xmF (x1, . . . , xm)(ξ1)γ1 · · · (ξm)γm (1.5.20)

17Perhaps, one should better speak of super Euclidean spaces in that case.
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where F as a function of x = (x1, . . . , xm) is of class C∞(U). Alternatively, we
can view this as the rule for extending or pulling back a function of the ordinary
coordinates x = (x1, . . . , xm) to one of the coordinates x+ ξ = (x1 + ξ1, . . . , xm+
ξm). When the function is also allowed to depend on the odd variables, we have the
expansion

F(x1 + ξ1, . . . , xm + ξm,ϑ1, . . . , ϑn)

=
∑

ααα

∑

γγγ

1

γ1! · · ·γm!∂
γ1

x1 · · · ∂γm
xmF

ααα(x1, . . . , xm)(ξ1)γ1 · · · (ξm)γmϑα1 . . . ϑαk

(1.5.21)

where the functions Fααα are of class C∞(U). In these expansions, we may also allow
for functions Fααα taking their values in a supercommutative algebra with unit in
place of R. Usually, these functions will then be even. We note that the expansions
(1.5.20) and (1.5.21) contain a number of derivatives that depend on n. Since we
want to reserve the flexibility to keep n variable, we must work with C∞- instead
of Ck-functions for some finite k.

There also exists a notion of (formal) integration, the Berezin integral, that inverts
differentiation.

If F is only a function of one odd variable ϑ , we have

F(ϑ)= a + bϑ (1.5.22)

where a, b are constants, i.e., independent of ϑ . The integral of F w.r.t. ϑ is then
defined by linearity and the basic rules

∫
dϑ = 0,

∫
ϑdϑ = 1. (1.5.23)

This makes the integral translation invariant, i.e. for an odd ε,
∫

F(ϑ + ε)dϑ =
∫

(a + bϑ + bε)dϑ = b

∫
ϑdϑ =

∫
F(ϑ)dϑ. (1.5.24)

Similarly, for a function F of n odd variables ϑ1, . . . , ϑn,

F(ϑ1, . . . , ϑn)=
∑

ααα

bαααϑ
ααα

(
with ααα = 0 or ααα = (α1, . . . , αk)

1≤ α1 < α2 . . . < αk ≤ n

)
(1.5.25)

the integral is computed via the rules
∫

dϑi = 0,
∫

ϑidϑj = δij . (1.5.26)

Thus, we have
∫

bαααϑ
αααdϑαk · · ·dϑα1 = bααα for ααα = (α1, . . . , αk). (1.5.27)

A supermanifold of dimension m|n can be defined by an atlas whose lo-
cal charts are open domains of R

m|n, that is, subsets with sheaf of functions
C∞(U0)[ϑ1, . . . , ϑn], where U0 is an open subset of R

m. In terms of functions,
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we are restricting the sheaf C∞[ϑ1, . . . , ϑn] to U0. This will of course be the gen-
eral procedure for defining sub-supermanifolds. Note that we are restricting the even
coordinates x1, . . . , xm here, but not the odd ones. So, we have coordinate charts;
coordinate transformations are then given by isomorphisms f :U → V , U,V open
in R

m|n. Such an isomorphism is given by even functions f 1, . . . , f m and odd func-
tions φ1, . . . , φn. To be an isomorphism, f must be invertible, and the functions
must be smooth, as always. And a morphism is invertible iff the underlying mor-
phism defined by the f 1, . . . , f m is invertible; the odd functions do not play a role
for invertibility.

Based on this, if F is a function on the chart U , and if f 1, . . . f m,φ1, . . . , φn

are coordinate functions on our supermanifold, we can compute the values
F(f 1, . . . , f m,φ1, . . . , φn). We can therefore equivalently define a supermanifold
as a topological space M0 with a sheaf OM of super (R)-algebras that is locally
isomorphic to R

m|n. Functions on M are then sections of the structure sheaf OM .
Morphisms between supermanifolds f : M → N are then morphisms of ringed
spaces, that is continuous maps f0 :M0 → N0 with a morphism of sheaves of su-
per algebras from f ∗0 ON to OM . The odd functions generate a nilpotent ideal J of
OM , because the square of any odd coordinate is 0. The space M0 with the sheaf
OM/J is then a smooth manifold of dimension m, called the reduced manifold Mr .
A function f on M projects to a function fr on Mr , that is, a smooth function on
M0. The sheaf morphism determines the function. In particular, the evaluation of an
odd function at a point of M0 always yields 0. This also means that any map from
an ordinary manifold, that is, a supermanifold of dimension m|0, into one of dimen-
sion 0|n vanishes identically. This can be remedied through the functor of points
approach to supermanifolds. For a supermanifold S, an S-point of a supermanifold
M is a morphism S →M . This construction is functorial in the sense that a mor-
phism ψ : T → S induces a map from M(S), the set of S-points of M , to M(T ) via
m 
→m ◦ψ . Similarly, a morphism f :M →N induces fS :M(S)→N(S), again
functorially in S. In order to understand this more abstractly, we consider the so-
called superpoints, the supermanifolds R

0|n defined as the space with structure sheaf
R[ϑ1, . . . , ϑn] (with anticommuting ϑj , as always). Expressed differently, these are
the supermanifolds ({�},�n) where {�} is an ordinary point and �n is a Grassmann
algebra of n generators. Then, see [93], these superpoints generate the category of
finite-dimensional supermanifolds, that is, any such supermanifold is completely
described by its superpoints. For supermanifolds M,N , one then defines (or, more
precisely, shows the existence of) the inner Hom object Hom(M,N) satisfying

Hom(R0|n,Hom(M,N))=Hom(R0|n ×M,N) (1.5.28)

for all n ∈N and then also

Hom(S,Hom(M,N))=Hom(S ×M,N) (1.5.29)

for all supermanifolds S. In this way, the space of morphisms M →N also becomes
a functor: For a supermanifold S, a morphism M × S → N , that is, a morphism
M → N depending on a parameter in S, is then an S-point of Hom(M,N). The
morphisms R

0|n ×M → N are then the superpoints of the supermanifold of mor-
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phisms Hom(M,N) (in contrast to Hom(M,N) which is not a supermanifold, but
rather the reduced space (see below) underlying the supermanifold Hom(M,N)).

In that way, we see that there also exist nontrivial odd functions on an ordinary
manifold, say R, even though their values vanish on all points of R. To be concrete,
consider S = R

0|n. R × S then has the sheaf C∞(R)⊗ R[ϑ1, . . . , ϑn]. Now take
another space T that is odd like S, with sheaf R[η1, . . . , ηm]. We consider a map
ψ :R× S→ T , that is ψ :R1|n →R

0|m, given by

C∞(T )=R[η1, . . . , ηm]→ C∞(R)⊗R[ϑ1, . . . , ϑn],
ηj 
→ a

j
k (t)ϑ

k

which we can also write as

ηj (t)= a
j
k (t)ϑ

k.

Of course, this vanishes at all points of R= (R× S)0, but nevertheless it is a non-
trivial morphism.

In the converse direction, let us take n= 1, i.e., consider S =R
0|1, the space with

sheaf R[ϑ] (ϑ2 = 0), and a morphism

S→M0

into some ordinary manifold M0. This is given by an algebra homomorphism

C∞(M0)→R[ϑ],
f 
→ a0(f )+ a1(f )ϑ.

The homomorphism condition implies first that

a0 : C∞(M0)→R,

f 
→ a0(f )

is an algebra homomorphism, and, as is easily derived, it is therefore given by the
evaluation at some point x ∈M0, that is a0(f )= f (x). Secondly we obtain, using
the homomorphism condition,

a0(fg)+ a1(fg)ϑ = (a0(f )+ a1(f )ϑ)(a0(g)+ a1(g)ϑ)

= f (x)g(x)+ (f (x)a1(g)+ g(x)a1(f ))ϑ,

which means that a1 is a derivation over functions, that is, the derivative in the
direction of some tangent vector vx ∈ TxM0,

a1(f )= vxf.

Thus, we could view the super point S with its sheaf R[ϑ] as an abstract (odd)
tangent vector. The maps S→M0 correspond to points in the tangent bundle TM0.
If M is a general supermanifold, the same applies, except that we get a sign from
the odd functions, that is,

a1(fg)= a1(f )g(x)+ (−1)p(f )f (x)a1(g).
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Thus, a1 is an odd homomorphism from the local ring at x to R.
In any case, we have a projection M →Mr from a supermanifold to its reduced

manifold Mr . Conversely, by Batchelor’s theorem, any smooth supermanifold is
(non-canonically) isomorphic to one of the form (Mr,∧∗V ). Thus, we can obtain
M from the smooth ordinary manifold Mr and a locally free module V over the
sheaf C∞(Mr); namely, M can be obtained as Mr with the sheaf ∧∗V graded by
the exterior degree mod 2, and the inclusion of C∞(Mr) into ∧∗V defines a mor-
phism M →Mr that retracts the embedding of Mr into M . It is important to realize
that these constructions are not canonical, since they are not invariant under auto-
morphisms of M if m ≥ 1, n ≥ 2. Namely, simply consider R

1|2 with coordinates
(x,ϑ1, ϑ2) and the automorphism

(x,ϑ1, ϑ2) 
→ (x + ϑ1ϑ2, ϑ1, ϑ2).

This example also shows us that decompositions of functions according to their
degree are not invariant under automorphisms, and thus not invariant under coor-
dinate transformations. Namely, if we have a function f that, in the coordinates
(x,ϑ1, ϑ2), only depends on x, and if we denote its expression in the new coordi-
nates (x + ϑ1ϑ2, ϑ1, ϑ2) by g, we have

f (x)= g(x + ϑ1ϑ2, ϑ1, ϑ2)

= g0(x)+ g′0(x)ϑ1ϑ2 + g1(x)ϑ
1ϑ2.

Here, we have used the rule (1.5.20) for the Taylor expansion for a function g0 of
the even coordinates, and we then need to add a counter-term g1(x) = −g′0(x) in
order to compensate for the ϑ1ϑ2 term from the Taylor expansion of g0. Note that
here we work over a trivial base S.

If we are Taylor-expanding functions as explained, then if M0 is an ordinary
manifold, that is, a supermanifold with odd dimension 0, and if we consider a map
fS :M0 × S→N , then the odd dimension of S determines the maximal degree oc-
curring in that expansion of fS . In the physics literature, one expresses this by fixing
the number N of Grassmann generators. In the present framework, this corresponds
to the odd dimension of S.

One should also note that a super vector space W =W0 ⊕W1 is not a superman-
ifold, unless the odd part W1 is trivial. If the even and odd part have dimensions m

and n, resp., then W has the underlying structure of an m+ n-dimensional ordinary
vector space, whereas the ordinary manifold Mr underlying an (m|n)-dimensional
supermanifold is only m-dimensional. Of course, one can canonically construct a su-
permanifold from a super vector space, but as such, the two structures of a super
vector space and of a supermanifold are different.

A super Lie group is a supermanifold that is functorially characterized by the
property that for all supermanifolds S, Hom(S,M) is a group such that the group
operations are smooth morphisms of supermanifolds. It can be obtained by exponen-
tiation from a super Lie algebra. More precisely, however, for that exponentiation,
we also need to be able to multiply the elements of the super Lie algebra by the odd
variables ϑj , that is, on the super Lie algebra, we also need the structure of a left
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supermodule over the algebra spanned by the ϑj .18 For a super Lie group H , we
can consider left multiplication by an element h

Lh :H →H, Lh(k)= hk for k ∈H. (1.5.30)

This induces a map (Lh)� on the vector fields on H , given by

((Lh)�X)F :=X(F ◦Lh) for functions F. (1.5.31)

When (Lh)�X = X for all h ∈ H , the vector field is called left-invariant. The left-
invariant vector fields then span a super Lie algebra (with the graded commutator of
vector fields as the bracket) that is also a super module over the odd variables.

To see the principle, we consider R
1|1 with coordinates t, ϑ . This space carries

a super Lie group structure given by

(t1, ϑ1)(t2, ϑ2)= (t1 + t2 + ϑ1ϑ2, ϑ1 + ϑ2). (1.5.32)

The translation in the t -direction is generated by the vector field

∂t

(
:= ∂

∂t

)
, (1.5.33)

the one in the ϑ -direction by

D := ∂ϑ − ϑ∂t . (1.5.34)

We note that D does not induce a morphism in our sense as it changes the parity.
We have the relation

[D,D] = 2D2 =−2∂t . (1.5.35)

(D, ∂t ) constitute a basis of the left invariant vector fields on the super Lie group,
while (Q := ∂ϑ +ϑ∂t , ∂t ) is a basis for the right invariant ones. We shall meet these
vector fields when we consider supersymmetry transformations. The important point
is that they generate diffeomorphisms of the superspace R

1|1.

Remark The treatment of supermanifolds presented here has been developed by
Leites [76], Manin [79], Bernstein, Deligne and Morgan [24], and Freed [39, 40].
Another reference is [102]. The comprehensive presentation of the subject is [11].
The superdiffeomorphism group is investigated in [94].

1.5.3 Super Riemann Surfaces

As an example, we now consider super Riemann surfaces (SRSs). While above,
we have defined supermanifolds over R, it is straightforward to develop the same
constructions over C. An SRS then has one commuting complex coordinate z and

18We only have a supermodule instead of a super vector space because that algebra is only a ring,
but not a field.
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one anticommuting one ϑ . In addition, the coordinate transformations are required
to be superconformal. To explain this, we start with the coordinate transformation
formula for a single supercomplex manifold M of complex dimension (1|1), which
has to be even, that is, of the form

z̃= f (z),

ϑ̃ = ϑh(z)
(1.5.36)

with holomorphic functions f and h where f is required to have a nonvanish-
ing derivative, that is, to be conformal. The structure sheaf is thus of the form
OM =OM,0⊕OM,1 where OM,0 is the sheaf of holomorphic functions on the under-
lying Riemann surface Mr and OM,1 is a sheaf of locally free modules of rank 0|1
over OM,0. Up to a change of parity, this then defines a line bundle L over Mr , and
conversely, given such a line bundle L over Mr , changing the parity of its sections
from even to odd then defines the structure sheaf of supercomplex manifold of di-
mension (1|1). Thus, such (1|1)-dimensional supercomplex manifolds and ordinary
Riemann surfaces with a line bundle L stand in bijective correspondence. When we
look at families of such supercomplex manifolds, however, we may also take base
spaces with odd directions, and we have the more general transformation formula

z̃= f (z)+ ϑk(z),

ϑ̃ = g(z)+ ϑh(z)
(1.5.37)

with holomorphic functions f, k, g,h and f again conformal.
In order to define a super Riemann surface, we require in addition that the struc-

ture be superconformal. This means the following: We look at the derivative opera-
tors ∂z and τ := ∂ϑ + ϑ∂z; they satisfy

1

2
[τ, τ ] = τ 2 = ∂z. (1.5.38)

We have the transformation rule

τ = (τ ϑ̃)τ̃ + (τ z̃− ϑ̃τ ϑ̃)τ̃ 2. (1.5.39)

(To see this, one computes

∂z = (fz + ϑkz)∂z̃ + (gz + ϑhz)∂ϑ̃ , (1.5.40)

∂ϑ = h∂ϑ̃ + k∂z̃, (1.5.41)

τ ϑ̃ = h+ ϑgz, (1.5.42)

τ z̃ = k+ ϑfz (1.5.43)

from which

τ = ∂ϑ + ϑ∂z = (h+ ϑgz)∂ϑ̃ + (k + ϑfz)∂z̃

= (h+ ϑgz)(∂ϑ̃ + ϑ̃∂z̃)− (g + ϑh)(h+ ϑgz)∂z̃ + (k + ϑfz)∂z̃

= (τ ϑ̃)τ̃ + (τ z̃− ϑ̃τ ϑ̃)τ̃ 2 (1.5.44)



92 1 Geometry

which is the required formula.) In the same manner as for an ordinary Riemann
surface, that is, one with transition functions z̃ = f (z), the holomorphicity of f

implies that ∂z is a multiple of ∂z̃, ∂z = ∂zf ∂z̃. We now require for an SRS that
τ transforms homogeneously, that is, τ is a multiple of τ̃ . In view of (1.5.39), for
a family, this leads to the transformation law

z̃= f (z)+ ϑg(z)h(z),

ϑ̃ = g(z)+ ϑh(z)
(1.5.45)

with

h2(z)= ∂zf (z)+ g(z)∂zg(z). (1.5.46)

Here, f (z) is a commuting holomorphic function with ∂
∂z
f �= 0, i.e., f is conformal,

and g(z) is an anticommuting one.
These transformations then leave the line element dz+ϑdϑ invariant up to con-

formal scaling. (The conformal factor is ∂
∂z
f (z)+ g(z) ∂

∂z
g(z), and one has to use

(1.5.46).)
Given a single SRS ", we can put all the g = 0 and obtain the transformation

rules

z̃= f (z),

ϑ̃ = ϑh(z)
(1.5.47)

with h2(z) = ∂zf (z). The holomorphic transformation functions f of z define an
ordinary Riemann surface "r , but the transformations of the odd coordinate ϑ ad-
ditionally require the choice of a square root h(z) of ∂

∂z
f (z). In other words, they

determine a spin structure on "r . If p is the genus of "r , we have 22p different spin
structures on "r . In particular, we see that the super Teichmüller space of super
Riemann surfaces of genus p has at least 22p components (this does not hold for the
super moduli space, because modular transformations can mix the spin structures).
By the Riemann–Roch theorem (stated in 3 of Sect. 1.4.2 and recalled below), the
number of even moduli (over C) minus the number of conformal transformations of
"r is 3p−3 while the number of odd moduli minus the number of odd superconfor-
mal transformations is 2p−2. (The even moduli here can be identified with sections
of K2, where K is the canonical bundle of the underlying Riemann surface, while
the odd ones correspond to sections of K3/2. The Riemann–Roch theorem says that
the space of sections of a line bundle L over a Riemann surface " of genus p has
dimension

h0(",L)= degL− p+ 1+ h0(",K ⊗L−1) (1.5.48)

and the degree of the canonical bundle is 2p− 2.)
On a sphere, we have no nontrivial spin structures and no super moduli, but, in

agreement with the Riemann–Roch theorem, the superconformal transformations
are of the form f (z) = az+b

cz+d
(with the normalization ad − bc = 1), g(z) = γ z+δ

cz+d
,

that is, 3 even and 2 odd parameters.
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More generally, on the supersphere, when, instead of (1.5.47), we allow for the
general type of coordinate transformations (1.5.37), we obtain the orthosymplectic
group OSp(1/2):

T =
⎛

⎝
a b α

c d β

γ δ t

⎞

⎠ ,

a, b, c, d, t even (commuting), α,β, γ, δ odd (anticommuting).

T stKT =K (T st supertransposed),

with the orthosymplectic form

K =
⎛

⎝
0 1 0
−1 0 0
0 0 1

⎞

⎠ .

The transformation

z 
→ a z+ b+ αϑ

cz+ d + βϑ
, ϑ 
→ γ z+ δ + tϑ

cz+ d + βϑ

leaves the line element dz+ ϑ dϑ invariant up to conformal scaling.
In that case, just to see some formulae,

dz 
→ dz

(cz+ d + βϑ)2
,

z12 = z1 − z2 − ϑ1ϑ2 
→ z12

(cz1 + d + βϑ1)(cz2 + d + βϑ2)
,

dz∧ dϑ 
→ dz∧ dϑ

cz+ d + βϑ
.

Obviously, this extends the operation of Sl(2,C) to the super case.
The supersphere can be covered by two coordinate patches, with transition

z̃= 1

z
, ϑ̃ = iϑ

z
.

(Cf. (1.5.45): Here, h=
√

∂
∂z
f .)

Genus 1 is next. A torus with a spin structure is described by the rigid super
conformal transformation

(z,ϑ)∼= (z+ 1, η1ϑ)∼= (z+ τ, η2ϑ),

where τ is taken from the usual period domain, and the ηi =±1 determine the spin
structure. Since the only holomorphic functions on a torus are the constants, we
obtain a nontrivial supermodulus ν only in the case of a trivial spin structure, that
is, η1 = 1= η2. In that case, the periodicities are

(z,ϑ)∼= (z+ 1, ϑ)∼= (z+ τ + ϑν,ϑ + ν).
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In agreement with Riemann–Roch, we then also have the odd superconformal trans-
formation given infinitesimally as

(z,ϑ) 
→ (z+ ϑε,ϑ + ε).

In particular, we see that there can exist nontrivial odd moduli, and the supermoduli
space is bigger than just the moduli space of ordinary Riemann surfaces with spin
structures. We observe, however, that ε 
→ −ε is a superconformal transformation,
and so the supertori corresponding to ε and−ε are equivalent. Thus, the correspond-
ing component of the supermoduli space is a Z2 super orbifold, with a singularity at
ε = 0.

When we look at functions on this super torus, we obtain the periodicity condi-
tion

f (z,ϑ)= f (z+ τ + ϑν,ϑ + ν),

that is, after Taylor expanding,

f0(z)+ f1(z)ϑ = f0(z+ τ)+ f ′0(z+ τ)ϑν + f1(z+ τ)(ϑ + ν)

which implies that f ′0 vanishes when ν �= 0, that is, f0 is constant (over a trivial base
S again). f1 is less trivial. The situation becomes richer when we look at mappings
between two such supertori, with moduli (τ, ν) and (τ̃ , ν̃), resp. We then expand to
obtain

f0(z)+ τ̃ + f1(z)ϑν̃ = f0(z+ τ)+ f ′0(z+ τ)ϑν

and

f1(z)ϑ + ν̃ = f1(z+ τ)(ϑ + ν).

The first equation expresses f ′0 in terms of f1 or conversely, while the second one
restricts f1. However, we should be careful here as f0 need not be holomorphic, and
so f ′0 stands for a (2× 2)-matrix.

Remark For a treatment of super Riemann surfaces as needed for superstring theory,
we refer to Crane and Rabin [21, 89] and Polchinski [88]. A general mathematical
perspective is developed by Leites and his coauthors in [32]. A very lucid discussion,
which we have also partly utilized here, can be found in [93].

We should note that the above definition is not the only possible for an SRS. In
fact, there are several superextensions of the conformal algebra, and each of them
could be taken as the basis for the definition of an SRS. The one used here corre-
sponds to the superconformal algebra kL(1|1) and yields the N = 1 worldsheets of
superstring theory and 2D supergravity.

1.5.4 Super Minkowski Space

Now assume that we have a vector space V with a quadratic form Q and a represen-
tation of the Clifford algebra Cl(Q) for which a symmetric equivariant morphism �
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as in (1.3.25) exists. Following the presentation in [22], we may then construct an
object that captures deeper aspects of the physical concept of supersymmetry than
just a supermanifold, namely a space that incorporates the symmetry between vec-
tors and spinors as representations of bosons and fermions, resp. For that purpose,
we consider the vector space V as the Lie algebra of its translations, and construct
the super Lie algebra

l := V ⊕ S� (1.5.49)

and the bracket [., .]. This bracket is trivial on V (that is, V is central) and is given
by

[s, t] = −2�(s, t) ∈ V (1.5.50)

on S�. Super Minkowski space M is then defined as the supermanifold underlying
the Lie group exp(l); its reduced space is thus given by the affine space V , and its
odd directions are given by S�.

In the Minkowski case, the super Lie algebra (1.5.49) leads to the super Poincaré
algebra

(V ⊕ so(V ))⊕ S�. (1.5.51)


	Geometry
	Riemannian and Lorentzian Manifolds
	Differential Geometry
	Complex Manifolds
	Riemannian and Lorentzian Metrics
	Geodesics
	Curvature
	Principles of General Relativity

	Bundles and Connections
	Vector and Principal Bundles
	Covariant Derivatives
	Reduction of the Structure Group.The Yang-Mills Functional
	The Kaluza-Klein Construction

	Tensors and Spinors
	Tensors
	Clifford Algebras and Spinors
	The Dirac Operator
	The Lorentz Case
	Left- and Right-handed Spinors

	Riemann Surfaces and Moduli Spaces
	The General Idea of Moduli Spaces
	Riemann Surfaces and Their Moduli Spaces
	Compactifications of Moduli Spaces

	Supermanifolds
	The Functorial Approach
	Supermanifolds
	Super Riemann Surfaces
	Super Minkowski Space




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


