
Agent-Based Approach to the Dynamic Vehicle Routing
Problem

Dariusz Barbucha and Piotr Jȩdrzejowicz

Dept. of Information Systems, Gdynia Maritime University, Morska 83, 81-225 Gdynia, Poland
{barbucha, pj}@am.gdynia.pl

Abstract. The term dynamic transportation problems refers to a wide range of problems where
the required information is not given a priori to the decision maker but is revealed concurrently
with the decision-making process. Among the most important problems belonging to this group
are routing problems, which involve dynamic decision making with respect to vehicle routing in
response to the flow of customer demands. The goal of such routing is to provide the required
transportation with minimal service cost subject to various constraints. The paper proposes an
approach to the dynamic vehicle routing problem based on multi-agent paradigm.

1 Introduction

One of the important group of transportation problems are vehicles routing problems
(VRP), where a set of customers is to be served by the fleet of capacited vehicles in order
to minimize the service cost and satisfying the set of given constraints. The VRP is said
to be static if all its input data do not depend explicitly on time, otherwise it is dynamic.

The goal of the paper is to present a multi-agent approach to solving the dynamic
vehicle routing problem (DVRP). Since DVRP can be viewed as a distributed problem
it is proposed to search for solutions using intelligent software agents. To support search
process a multi-agent platform simulating activities of the transportation company has
been implemented.

The paper is organized as follows. Section 2 includes a formulation of the dy-
namic vehicle routing problem and introduces measures of the degree of its dynamism.
Section 3 describes main features of the multi-agent approach proposed. Section 4
reports on the results of the computational experiment. Finally, Section 5 contains
conclusions and suggestions for future research.

2 Formulation of the Dynamic Vehicle Routing Problem

The problem considered in the paper is modelled as an undirected graph G = (V,E),
where V = {0,1, . . . ,N} is the set of nodes and E is a set of edges. Node 0 is a cen-
tral depot with NV identical vehicles of capacity W and each other node i ∈ V \ {0}
represents customer (with its request). Each customer (denoted as cust(i)) is charac-
terized by coordinates in Euclidean space (x(i),y(i)) and a non-negative demand d(i)
(i = 0 . . . ,N). Each link (i, j) between two customers denotes the shortest path from
customer i to j and is described by the cost c(i, j) of travel from i to j by shortest path
(i, j = 1 . . . ,N) and t(i, j) (i, j = 1 . . . ,N) - the travel time for each edge (i, j). It is
assumed that c(i, j) = c(j, i) and t(i, j) = t(j, i).

Y. Demazeau et al. (Eds.): 7th International Conference on PAAMS’09, AISC 55, pp. 169–178.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

170 D. Barbucha and P. Jȩdrzejowicz

Let R = {R(1),R(2), . . . ,R(NV)} be a partition of V into NV routes of vehicles that
cover all customers. Denote a length of the route R(i) by len(R(i)) and a cost (or travel
distance) by cost(R(i)), where i = 1, . . . ,NV .

The goal is to find vehicle routes which minimize the total cost of travel - cost(R) =
∑NV

i=1 cost(R(i)) and such that each route starts and ends at the depot, each customer is
serviced exactly once by a single vehicle, and the total load on any vehicle associated
with a given route does not exceed the vehicle capacity.

In the dynamic version of the problem defined above, it is also assumed that certain
number of customers’ requests are available in advance and the remaining requests arrive
in sequence while the system is already running. Let us assume that the planning horizon
starts at time 0 and ends at time T . Let t(i) ∈ [0,T], where i = 1, . . . ,N denotes the time
when the i− th customer request is submitted. Let Ns denotes the number of static (i.e.
submitted in advance) requests available in t(i) = 0, where i = 1, . . . ,Ns and Nd - the
number of dynamic requests arriving within the (0,T] interval. Of course Ns + Nd = N.

There are a few measures of degree of dynamism. In the model considered in
the paper it has been used the one given by Lund et al. [8] and Larsen [7] who de-
fined the degree of dynamism (dod) as a proportion of the number of dynamic requests
to the number of all requests (dod = Nd/N). It is easy to see that dod ∈ [0,1]. According
to the formula, the problem is more dynamic, if the above proportion is much closer to
1. If dod = 0, then the problem is static, and if dod = 1, the problem is fully dynamic.

During the recent years there have been many important advances in the field of
static VRP. Because of the fact that this problem is computationally difficult, most of
them are based on heuristics or metaheuristics [6]. Definitely much less works have
been done with respect to solving dynamic VRP (see for example [4]).

3 Multi-agent Approach for DVRP

Among the methods for solving DVRP, the approaches based on intelligent software
agents seems to be promising. In recent years only few approaches based on using in-
telligent agents for solving some transportation problems have been proposed. Some
of them, rather simple, refer direct to the solving one of the problem from VRP class.
Such approaches are presented for example in [10] where agent-based architecture is
proposed for solving classical VRP, and in [5], where the authors consider Dynamic
Pickup and Delivery Problem with Time Windows and propose an agent-based ap-
proach to solve it. Much complex multi-agent system developed to simulate planning
and scheduling in a shipping company is presented for example in [2]. It solves the dy-
namic scheduling problem using a set of heterogeneous agents (drivers, trucks, trailers,
containers) represented as holonic agents. Each holonic agent (or holon) consists of a
set of subagents and co-ordinates and controls the activities of its subagents.

A multi-agent approach for solving DVRP presented in this paper is based on a
specially designed multi-agent platform developed to simulate a transportation
company activities. The platform is based on JABAT middleware, originally developed
for solving difficult combinatorial optimization problems [1].

Agent-Based Approach to the Dynamic Vehicle Routing Problem 171

3.1 Main Features of the JABAT Middleware

JABAT is a middleware supporting design and development of the population-based ap-
plications intended to solve different computational problems. It produces solutions to
combinatorial optimization problems using a set of intelligent optimising agents, each
representing an improvement algorithm. The process of solving of a single task (i.e.
a problem instance) in JABAT consists of several steps. At first an initial population
of solutions is generated. Then, the individuals from the population are, at the subse-
quent computation stages, improved by independently acting optimization agents, thus
increasing chances for reaching a global optimum. Finally, when the stopping criterion
is met, the best solution in the population is taken as the result.

This functionality is realized mainly by two types of agents: SolutionManagers and
OptiAgents. Each SolutionManager maintains a population of solutions and is respon-
sible for finding the best solution of a single instance of the problem. OptiAgents, each
representing a single optimizing algorithm, are used in process of finding/improving the
solution of the problem. The agents of both types act in parallel and communicate with
each other exchanging solutions that are either to be improved (when solutions are sent
to OptiAgent) or stored back (when solutions are sent to SolutionManager).

Apart from OptiAgents and SolutionManagers there are also other agents working
within the system which are responsible for initialising, organising the process of mi-
grations between different platforms, writing down the results during the process of
searching the best solution, and monitoring unexpected behaviors of the system.

More detailed description of JABAT environment were described in [1].

3.2 JABAT Implementation of the DVRP Simulator

The proposed implementation is based on the assumptions that population of solu-
tions consist of a single individual, and only one optimization agent is responsible for
improving a solution.

The structure of the OptiAgent designed for solving DVRP, viewed as a part of JA-
BAT environment, is presented in Fig. 1. The specialized OptiAgent, called DVRP-
OptiAgent, which reflects a transport company and typical elements of it, is itself a set
of the following types of agents:

• ACompany (AC) - an agent which runs first and initializes all others agents.
• ARequestGenerator (ARG) - an agent which generates (or reads) new orders and

sends them to the ARequestManager agent.
• ARequestManager (ARM) - an agent which manages the list of requests received

from ARG. After receiving the new request, ARM announces it to each AVehicle
agent and chooses the best from offers returned by AVehicle agents.

• AVehicle (AV) - an agent that represents a vehicle and is described by the capacity of
the vehicle, actual route assigned to this vehicle, actual cost of the route, actual avail-
able space and the vehicle state. Periodically AV receives customer’s request from
the ARM one at a time, tries to assign it to the existing route in order to minimize
the cost, and sends back its offer (i.e. calculated cost of insertion) to the ARM. If the
offer turns out to be the best, the respective request is added to the actual route. Most

172 D. Barbucha and P. Jȩdrzejowicz

Fig. 1. Structure of the DVRP implementation based on JABAT

of its lifetime, a vehicle spends serving requests. It starts after receiving and accept-
ing the first request. After reaching the nearest customer it goes to the next customer
belonging to the route. In the model considered in the paper it is assumed that if the
vehicle reaches the last customer on the current route, it waits in this location until a
new arriving request is assigned to it or until the end of pool of requests is reached.
In the first case the vehicle breaks waiting and moves to the new assigned customer,
in the second case the waiting vehicle returns back to the depot.

Although the development of software agents representing elements of such com-
pany is not a new idea (similar approach is presented for example in [5], where three
types of agents are proposed: agent-customer, agent-company and agent-vehicle), it
seems to be very natural, taking into account a distributed nature of the problem.

The process of solving DVRP is divided into three phases:

1. Allocation of the pool of static requests to the available vehicles,
2. Allocation of the new dynamic requests to the fleet of vehicles,
3. Improvement of the current solution by intra-route and inter-routes operations.

The first phase is in fact the process of solving the static VRP for Ns requests. The
solution obtained by procedure used in the system and described below gives the initial
solution to the DVRP.

The initial solution is generated basing on polar representation of each vertex (cus-
tomer with its request) in graph G, which uses the idea originated from split phase of
the sweep algorithm of Gillett and Miller [3]. First, each vertex (customer) i ∈ V is
transformed from cartesian coordinates to polar coordinates (θi; ρi), where θi is the
angle and ρi is the ray length.

Generation of individual (solution) starts from randomly choosing an arbitrary vertex
i∗ and assigning a value θi∗ to it. Next, the remaining angles centered at 0 from the initial
ray (0; ρi∗) are computed and the vertices (customers) are ranked in increasing order of
their θi value. Resulting ranking determines the order in which requests are assigned to
the available vehicles.

Agent-Based Approach to the Dynamic Vehicle Routing Problem 173

The process of assignment vertices to vehicles starts from the first unrouted vertex
having the smallest angle, and next assigning vertices to the first vehicle as long as its
capacity is not exceeded. If the capacity of the vehicle is exhausted, the vertices are
assigned to the next vehicle. The whole process is repeated until the end of pool of
static requests is reached.

Assignment of requests to vehicles is carried out in the form of messages exchange
between ARequestManager and AVehicle agents.

After assigning all static requests to the availablevehicles, all vehicles with the requests
assigned to them start moving, and in loop the system is waiting for an event. Taking into
account the objective of the problem, the most important event is a new request event.

The second phase includes assigning new dynamic requests to available vehicles
and is realized in dynamically changing environment, where all vehicles are serving the
customers already assigned to their routes.

The main steps of this phase are:

1. ARG reads (or generates) a new dynamic request and sends it to the ARM.
2. After receiving a new request from the ARG, ARM initializes a session using the

Contract Net Protocol (CNP) [9] and starts communication between ARM and AV
agents. As Initiator it announces the request to each AV agent (moving and waiting
vehicles) sending around a call for proposal (cfp) message. AV (as Participants or
Contractors) are viewed as potential contractors.

3. Each AV agent after receiving the request (with customer data) from the ARM,
calculates the cost of inserting a new customer into the existing route. If an insertion
of a new customer into the existing route does not violate the vehicle’s capacity,
the calculated cost of insertion is sent back (as propose message) to the ARM.
Otherwise, the AV sends back the rejection (reject) message.

4. ARM after receiving proposals from all AV agents, chooses the one with the lowest
cost of insertion. Next, it sends the accept-proposalmessage to the AV which
is awarded and the reject-proposal to the others.

5. AV which receives the accept-proposalmessage, inserts the customer into the
current route and sends the inform-done message if the operation is performed
successfully and failure message, otherwise.

6. The above process is repeated for each new request.

Additionally, two kinds of improvement procedures are defined for ARM and AV
agents and performed in the third phase of the process of solving DVRP. Each AV
agent executes a set of operations that aim at improving the cost of its route (intra-
route operations which operate on one selected route). In addition, the ARM agent
also periodically performs global moves that aim at improving the global solution
(inter-routes operations which operate on at least two selected routes).

Three intra-route operations include:

• v1 2opt - The implementation of 2-opt algorithm where the sequence of customers
visited by the vehicle on route R(p) (p ∈ {1, . . . ,NV}) is changed by eliminating two
edges and reconnecting the two resulting paths in a different way to obtain a new route.

• v1 relocate - The sequence of customers visited by the vehicle on route R(p)
is changed by moving one customer cust(i) ∈ R(p), i = 1, . . . , len(R(p)), p ∈
{1, . . . ,NV} from its current position to another one.

174 D. Barbucha and P. Jȩdrzejowicz

• v1 exchange - Two selected customers from current route R(p) are swapped, i.e.
for each pair of customers cust(i),cust(j) ∈ R(p) (i �= j, i, j = 1, . . . , len(R(p)),
p ∈ {1, . . . ,NV}), cust(i) moves to position occupied by cust(j) and cust(j) moves
to the position occupied by cust(i).

All possible moves are considered in above operations and moves that shorten the cur-
rent route are accepted. The resulting route with the greatest reduction of the total cost
is accepted as a new tour of the vehicle.

The above intra-route operations could be initialized by the ARM agent and next per-
formed by AV agent or directly performed by AV agent. In the first case, ARM decides
whether and when use the operation and sends the proper message to the particular AV.
In the second case, AV autonomically decides about performing the operation.

Two inter-routes operations are proposed and implemented in the system:

• v2 relocate - One selected customer cust(i) from one route R(p) is moved to the
second route R(q) (i = 1, . . . , len(R(p)), p,q ∈ {1, . . . ,NV}),

• v2 exchange - Two selected customers from two different routes (cust(i)∈R(p) and
cust(j)∈R(q)) are selected and swapped (i = 1, . . . , len(R(p)), j = 1, . . . , len(R(q)),
p,q ∈ {1, . . . ,NV}).

Asitiseasytosee,duringtheprocessofassigningeachnewrequesttotheavailablevehicles,
each AV agent competes with others in order to get the request to servicing but during the
executionimprovementoperations,agentscooperateinordertoimprovethecurrentsolution.

To sum up, the whole algorithm based on multiple agents for solving DVRP is
presented in form of pseudocode as follows.

1. Allocate static requests

2. All vehicles with the assigned requests start moving

3. In loop system is waiting for an event

IF (request event)

CASE "new request":

allocate request to available vehicles

CASE "end of requests":

waiting vehicles return to the depot

ELSE IF (vehicle event)

CASE "vehicle v(i) reached the location p":
IF (NOT location p is the last location)

vehicle v(i) proceeds to the next location

ELSE

IF (NOT end of requests)

vehicle v(i) waits in location p

ELSE

vehicle v(i) is moving to the depot

ELSE

between events do intra-route and inter-routes operations

4. If all vehicles returned to the depot then STOP.

Agent-Based Approach to the Dynamic Vehicle Routing Problem 175

4 Computational Experiment

To validate effectiveness of the approach computational experiment has been carried
out. For static cases, solutions (global cost of serving all request) obtained by the pro-
posed approach were compared with the best known solutions using the mean relative
error (MRE) from the best known solution. Additionally, for dynamic cases, the influ-
ence of the degree of dynamism of the problem and frequency of the customer requests
arrivals on the solution have been observed.

The proposed agent-based approach was tested on classical VRP dataset transformed
into its dynamic version, in which not all requests are known in advance. The exper-
iment involved 5 benchmark instances (vrnpc1 - vrnpc5) available from OR-Library
benchmark set [11]. Each benchmark set includes information about number of cus-
tomers, capacity of vehicles, coordinates of depot and coordinates and demands of cus-
tomers. The selected problems contain 50-199 customers located randomly over the
plane and have only capacity restriction.

In the experiment arrivals of the dynamic requests have been generated using the
Poisson distribution with λ parameter denoting the mean number of requests occurring
in the unit of time (1 hour in our experiment).

The proposed simulation model was run for the number of dynamic requests (Nd)
varying from 0% (pure static problem) to 100% of all requests with step equal 20%.
Additionally, for each positive value of the degree of dynamism, it has been assumed
that dynamic requests may arrive with various frequencies. For the purpose of experi-
ment λ was set to 3, 4, 5, 6, 10, 15, 20.

Additionally, it has been assumed that the vehicle speed was set at 60 km/h.
The above assumptions produced 36 test instances (1 static and 35 dynamic) for each

dataset, giving in total 180 test instances. Moreover, each test problem was repeatedly
executed five times and mean results from these runs were recorded.

The experiment results are presented in Tables 1-2.
Table 1 shows mean relative errors averages over all runs for each tested static in-

stance of VRP from the OR-Library. Together with the problem names the header of
the table includes the number of customers in the brackets. In rows of the table the av-
erage (Avg), minimum (Min) and maximum (Max) values of errors for each instance
are shown.

Table 2 shows values of the percentage increase in cost of allocating all dynamic re-
quests for selected instances of the problem as compared to the cost of the best known
solution to the static instance. The first two columns of the table include degree of dy-
namism (in %) and mean number of requests per hour. The remaining five columns

Table 1. Mean relative error from the best known solution for selected instances of DVRP with
all static requests

vrpnc1 vrpnc2 vrpnc3 vrpnc4 vrpnc5
(50) (75) (100) (150) (199)

Avg 0,53% 3,83% 3,86% 5,07% 4,63%
Min 0,00% 2,25% 1,63% 2,82% 3,91%
Max 2,20% 7,91% 5,77% 8,09% 5,78%

176 D. Barbucha and P. Jȩdrzejowicz

Table 2. The performance of the proposed agent-based approach (measured as dynamic/best
known static cost) for selected instances of the DVRP

Degree Mean
of number of requests vrpnc1 vrpnc2 vrpnc3 vrpnc4 vrpnc5

dynamism per hour (50) (75) (100) (150) (199)
3 34,8% 12,3% 17,8% 22,4% 14,3%
4 36,4% 12,1% 17,8% 21,3% 14,7%
5 14,1% 11,2% 10,7% 12,8% 14,8%

20% 6 15,3% 10,4% 10,6% 10,1% 9,2%
10 12,7% 9,5% 9,3% 9,9% 8,8%
15 5,1% 9,4% 7,9% 3,9% 8,6%
20 2,2% 7,9% 4,5% 2,6% 7,7%
3 45,2% 37,0% 52,4% 53,7% 39,2%
4 52,9% 24,4% 30,8% 45,6% 35,8%
5 53,5% 22,3% 29,8% 39,8% 27,2%

40% 6 48,8% 20,9% 27,4% 34,2% 20,6%
10 10,9% 17,6% 23,7% 30,7% 18,7%
15 3,2% 15,9% 16,7% 18,2% 15,8%
20 2,8% 14,3% 10,6% 16,3% 8,4%
3 80,6% 61,7% 58,6% 90,5% 78,1%
4 41,7% 45,7% 54,7% 82,1% 56,2%
5 55,9% 27,8% 40,8% 80,4% 45,8%

60% 6 29,1% 34,6% 38,9% 73,2% 44,8%
10 36% 37,9% 46,8% 48,7% 38,7%
15 47,5% 33,4% 34,1% 47,7% 38,7%
20 18,5% 25,2% 23,9% 44,2% 30,6%
3 105,6% 84,7% 71,8% 111,1% 117,3%
4 83,7% 40,1% 59,3% 88,6% 103,1%
5 60% 42,7% 54,3% 68,0% 78,4%

80% 6 65,3% 44,6% 50,1% 66,9% 70,6%
10 24,4% 39,7% 46,6% 65,7% 63,6%
15 41,3% 40,1% 42,8% 53,1% 62,3%
20 13,4% 38,1% 33,5% 51,4% 43,6%
3 101,6% 98,5% 80,9% 128,7% 121,7%
4 77,4% 89,5% 80,2% 94,8% 113,2%
5 82,4% 65,6% 77,5% 82,2% 99,8%

100% 6 73,6% 68,8% 77,1% 73,2% 96,2%
10 38,5% 60,9% 72,4% 56,1% 75,3%
15 23,9% 60,7% 46,4% 53,6% 75,2%
20 22,4% 51,0% 49,8% 50,4% 56,5%

show calculated values obtained by proposed agent-based approach for each tested
instance of the problem.

Results obtained during the experiment and presented in Table 1 show that the pro-
posed agent-based approach produces quite good solutions in case of static requests
only. The average value of MRE is not greater than 5%, but it depends on the in-
stance and for most instances is smaller. Minimal value of MRE observed during the

Agent-Based Approach to the Dynamic Vehicle Routing Problem 177

experiment is equal to 0% for vrpnc1 instance or close to 2-3% for most of the in-
stances, which is only slightly worse than the results produced by other methods (see,
for example [6]).

By analyzing the results presented in Table 2 it is easy to see, that overall cost de-
pends strongly on the degree of dynamism and frequency of dynamic request arrivals
for all tested instances. In most cases the total cost may be substantially higher than for
the static case.

It should be noted that comparisons of obtained results to dynamic cases can not be
directly compared with the approaches proposed by other authors mentioned in this pa-
per. This is mainly due to differences in problem formulation and differences in datasets
used for evaluating the results. However, in case of static instances the results are fully
comparable.

5 Conclusions

The paper proposes a multi-agent approach to solving the dynamic vehicle routing prob-
lem. The approach is based on a multi-agent platform which can be used to simulate
activities of the transport company and analyze various scenarios with respect to the
dynamic routing of the fleet of vehicles.

Computational experiment proved that presented approach can offer good quality so-
lutions for the static case (as compared with state of the art approaches). It also shows
how dynamic nature of the problem can influence the total cost of realizing customer
requests. The overall evaluation of the presented approach is positive thanks to several
features typical for multiple agent systems, like autonomy of agents, ability to increase
computational efficiency through parallelization and possibility of using distributed
environment.

References

1. Barbucha, D., Czarnowski, I., Jȩdrzejowicz, P., Ratajczak, E., Wierzbowska, I.: An Imple-
mentation of the JADE-based A-Team Environment. International Transactions on Systems
Science and Applications 3(4), 319–328 (2008)

2. Burckert, H.J., Fischer, K., Vierke, G.: Holonic Transport Scheduling with TeleTruck. Jour-
nal of Applied Artificial Intelligence 14, 697–725 (2000)

3. Gillett, B.E., Miller, L.R.: A heuristic algorithm for the vehicle dispatch problem. Operations
Research 22, 240–349 (1974)

4. van Hentenryck, P.: Online Stochastic Combinatorial Optimization. MIT Press, Cambridge
(2006)

5. Kozlak, J., Creput, J.C., Hilaire, V., Koukam, A.: Multi-agent environment for dynamic trans-
port planning and scheduling. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J.
(eds.) ICCS 2004. LNCS, vol. 3038, pp. 638–645. Springer, Heidelberg (2004)

6. Laporte, G., Gendreau, M., Potvin, J., Semet, F.: Classical and modern heuristics for the ve-
hicle routing problem. International Transactions in Operational Research 7, 285–300 (2000)

7. Larsen, A.: The on-line vehicle routing problem. Ph.D. Thesis, Institute of Mathematical
Modelling, Technical University of Denmark (2001)

178 D. Barbucha and P. Jȩdrzejowicz

8. Lund, K., Madsen, O.B.G., Rygaard, J.M.: Vehicle routing problems with varying degrees of
dynamism. Technical report, Institute of Mathematical Modelling, Technical University of
Denmark (1996)

9. Smith, R.G.: The Contract Net Protocol: High Level Communication and Control in a Dis-
tributed Problem Solver. IEEE Transactions on Computers 29(12), 1104–1113 (1980)

10. Thangiah, S.R., Shmygelska, O., Mennell, W.: An agent architecture for vehicle routing
problem. In: Proc. of the ACM Symposium on Applied Computing (SAC 2001), Las Vegas,
pp. 517–521 (2001)

11. OR-Library,
http://people.brunel.ac.uk/˜mastjjb/jeb/orlib/vrpinfo.html

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/vrpinfo.html

	Agent-Based Approach to the Dynamic Vehicle Routing Problem
	Introduction
	Formulation of the Dynamic Vehicle Routing Problem
	Multi-agent Approach for DVRP
	Main Features of the JABAT Middleware
	JABAT Implementation of the DVRP Simulator

	Computational Experiment
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

