

Lecture Notes in Computer Science 5443
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Stanisław Jarecki Gene Tsudik (Eds.)

Public Key
Cryptography –
PKC 2009

12th International Conference
on Practice and Theory in Public Key Cryptography
Irvine, CA, USA, March 18-20, 2009
Proceedings

13

Volume Editors

Stanisław Jarecki
Gene Tsudik
University of California, Irvine
Computer Science Department
Irvine, CA 92697-3435, USA
E-mail: {stasio, gts}@ics.uci.edu

Library of Congress Control Number: 2009921160

CR Subject Classification (1998): E.3, F.2.1-2, C.2.0, K.4.4, K.6.5

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-00467-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-00467-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12631902 06/3180 5 4 3 2 1 0

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

DOI:

The original version of the book was revised:
The copyright line was incorrect. The Erratum
to the book is available at

10.1007/978-3-642-00468-1_29

http://dx.doi.org/10.1007/978-3-642-00468-1_29

Preface

It has been a real pleasure to have taken part in organizing the 12th Interna-
tional Conference on Practice and Theory in Public Key Cryptography (PKC
2009). PKC 2009 was held March 18-20, 2009, on the campus of the Univer-
sity of California, Irvine (UCI). As usual, it was sponsored by the International
Association for Cryptologic Research (IACR) in cooperation with:

– UCI Secure Computing and Networking Center (SCONCE)
– UCI Donald Bren School of Information and Computer Sciences (DBSICS)
– California Institute for Telecommunications and Information Technology

(CalIT2)

The PKC 2008 Program Committee (PC) consisted of 33 internationally rec-
ognized researchers with combined expertise covering the entire scope of the
conference.

Recent growth in the number of cryptography venues has resulted in stiff
competition for high-quality papers. Nonetheless, PKC’s continued success is
evident from both the number and the quality of submissions. PKC 2009 re-
ceived a total of 112 submissions. They were reviewed by the PC members and
a highly qualified team of external reviewers. Each submission was refereed by
at least three reviewers. After deliberations by the PC, 28 submissions were
accepted for presentation. Based on extensive discussions, the PKC 2009 best
paper award was given to Alexander May and Maike Ritzenhofen for their paper
“Implicit Factoring: On Polynomial Time Factoring Given Only an Implicit
Hint”. The conference program also included two invited talks, by Anna Lysyan-
skaya (Brown University) and Amit Sahai (UCLA).

A number of people selflessly contributed to the success of PKC 2009. First
and foremost, we thank the authors of all submissions. They are the backbone of
this conference and their confidence and support are highly appreciated. We are
similarly grateful to the dedicated, knowledgeable and hard-working PC mem-
bers who provided excellent reviews (on time and on a tight schedule!) and
took part in post-review discussions. Their altruistic dedication and commu-
nity service spirit are commendable. We are also indebted to the PKC Steering
Committee members for their guidance as well as to Shai Halevi and Christian
Cachin for valuable technical assistance with revewing and organizational as-
pects. A special word of thanks to Moti Yung for his encouragement and help in
the planning stage. Last, but surely not least, we greatefully acknowledge extra-
mural financial support (especially appreciated in these tough economic times)
by Microsoft Research, Google and Qualcomm.

March 2009 Stanis�law Jarecki
Gene Tsudik

Organization

General and Program Co-chairs

Stanis�law Jarecki and Gene Tsudik
Computer Science Department
University of California, Irvine

Program Committee

Xavier Boyen Voltage Security, USA
Christian Cachin IBM Zurich Research, Switzerland
Jan Camenisch IBM Zurich Research, Switzerland
Jung Hee Cheon Seoul National University, South Korea
Jean-Sebastien Coron University of Luxembourg, Luxembourg
Nelly Fazio CUNY, USA
Bao Feng i2R, Singapore
Pierre-Alain Fouque ENS, France
Juan Garay AT&T Labs – Research, USA
Rosario Gennaro IBM T.J. Watson Research Center, USA
Amir Herzberg Bar Ilan University, Israel
Marc Joye Thomson R&D, France
Seny Kamara Microsoft, USA
Eike Kiltz CWI, The Netherlands
Aggelos Kiayias University of Connecticut, USA
Javier Lopez University of Malaga, Spain
Breno de Medeiros Google, USA
David Naccache ENS, France
Jesper Buus Nielsen Aarhus University, Denmark
Kenny Paterson Royal Holloway, UK
Benny Pinkas University of Haifa, Israel
David Pointcheval ENS-CNRS-INRIA, France
Ahmed Reza-Sadeghi Bochum University, Germany
Rei Safavi-Naini University of Calgary, Canada
Nitesh Saxena NYU Polytechnic Institute, USA
Berry Schoenmakers TU Eindhoven, The Netherlands
Hovav Shacham UC San Diego, USA
Vitaly Shmatikov UT Austin, USA
Igor Shparlinski Macquarie University, Australia
Michael Steiner IBM T.J. Watson Research Center, USA
Serge Vaudenay EPFL, Switzerland
Ivan Visconti University of Salerno, Italy
Suzanne Wetzel Stevens Institute of Technology, USA

Organization

External Reviewers

Jaehyun Ahn
Adi Akavia
Martin Albrecht
Frederik Armknecht
Werner Backes
Joonsang Baek
Aurelie Bauer
Olivier Billet
Joppe Bos
Justin Brickell
David Cash
Dario Catalano
Rafik Chaabouni
Xiaofeng Chen
Carlos Cid
Christophe Clavier
Paolo D’Arco
Ivan Damg̊ard
Yevgeniy Dodis
Anna Lisa Ferrara
Matthieu Finiasz
Martin Gagne
Steven Galbraith
David Galindo
Robert Gallant
Maribel Gonzalez-Vasco
Robert Granger
Matthew Green

Javier Herranz
Jason Hinek
Dennis Hofheinz
Sebastiaan de Hoogh
Nick Howgrave-Graham
Malika Izabachène
David Jao
Jonathan Katz
Markulf Kohlweiss
Vladimir Kolesnikov
Ralf Kuesters
Mun-kyu Lee
Arjen Lenstra
Benoit Libert
Moses Liskov
Joseph K. Liu
Hans Loehr
Gilles Macario-Rat
Mark Manulis
Alexander May
Nicolas Méloni
Jorge Nakahara
Gregory Neven
Antonio Nicolosi
Juan Gonzalez Nieto
Claudio Orlandi
Khaled Ouafi
Sylvain Pasini

Jacques Patarin
Serdar Pehlivanoglu
Kun Peng
Tal Rabin
Carla Ràfols
Pankaj Rohatgi
Thomas Schneider
Mike Scott
Igor Semaev
Siamak Shahandashti
Haya Shulman
Alice Silverberg
Thomas Sirvent
William Skeith
Rainer Steinwandt
Qiang Tang
Joe-Kai Tsay
Raylin Tso
Borhan Uddin
Dominique Unruh
Frederik Vercauteren
Jos Villegas
Felipe Voloch
Jonathan Voris
Christian Wachsmann
Daniel Wichs
Hong-Sheng Zhou

Sponsors

Financial support by the following sponsors is gratefully acknowledged:

– Microsoft Research
– Google
– Qualcomm
– Secure Computing and Networking Center (SCONCE) at UCI1

– California Institute for Telecommunications and Information Technology
(CalIT2)

– Donald Bren School of Information and Computer Science (DBSICS) at UCI

1 PKC 2009 support made possible by a grant from the Experian Corporation.

X

Table of Contents

Number Theory

Implicit Factoring: On Polynomial Time Factoring Given Only an
Implicit Hint . 1

Alexander May and Maike Ritzenhofen

The Security of All Bits Using List Decoding . 15
Paz Morillo and Carla Ràfols

A New Lattice Construction for Partial Key Exposure Attack for
RSA . 34

Yoshinori Aono

Subset-Restricted Random Walks for Pollard rho Method on Fpm 54
Minkyu Kim, Jung Hee Cheon, and Jin Hong

Applications and Protocols

Signing a Linear Subspace: Signature Schemes for Network Coding 68
Dan Boneh, David Freeman, Jonathan Katz, and Brent Waters

Improving the Boneh-Franklin Traitor Tracing Scheme 88
Pascal Junod, Alexandre Karlov, and Arjen K. Lenstra

Modeling Key Compromise Impersonation Attacks on Group Key
Exchange Protocols . 105

M. Choudary Gorantla, Colin Boyd, and
Juan Manuel González Nieto

Zero-Knowledge Proofs with Witness Elimination . 124
Aggelos Kiayias and Hong-Sheng Zhou

Multi-Party Protocols

Distributed Public-Key Cryptography from Weak Secrets 139
Michel Abdalla, Xavier Boyen, Céline Chevalier, and
David Pointcheval

Asynchronous Multiparty Computation: Theory and Implementation . . . 160
Ivan Damg̊ard, Martin Geisler, Mikkel Krøigaard, and
Jesper Buus Nielsen

Multi-Party Computation with Omnipresent Adversary 180
Hossein Ghodosi and Josef Pieprzyk

Table of Contents

Identity-Based Encryption

Blind and Anonymous Identity-Based Encryption and Authorised
Private Searches on Public Key Encrypted Data . 196

Jan Camenisch, Markulf Kohlweiss, Alfredo Rial, and
Caroline Sheedy

Anonymous Hierarchical Identity-Based Encryption with Constant Size
Ciphertexts . 215

Jae Hong Seo, Tetsutaro Kobayashi, Miyako Ohkubo, and
Koutarou Suzuki

Towards Black-Box Accountable Authority IBE with Short Ciphertexts
and Private Keys . 235

Benôıt Libert and Damien Vergnaud

Removing Escrow from Identity-Based Encryption: New Security
Notions and Key Management Techniques . 256

Sherman S.M. Chow

Signatures

On the Theory and Practice of Personal Digital Signatures 277
Ivan Damg̊ard and Gert Læssøe Mikkelsen

Security of Blind Signatures under Aborts . 297
Marc Fischlin and Dominique Schröder

Security of Sanitizable Signatures Revisited . 317
Christina Brzuska, Marc Fischlin, Tobias Freudenreich,
Anja Lehmann, Marcus Page, Jakob Schelbert,
Dominique Schröder, and Florian Volk

Identification of Multiple Invalid Signatures in Pairing-Based Batched
Signatures . 337

Brian J. Matt

Encryption

CCA-Secure Proxy Re-encryption without Pairings 357
Jun Shao and Zhenfu Cao

Compact CCA-Secure Encryption for Messages of Arbitrary Length 377
Masayuki Abe, Eike Kiltz, and Tatsuaki Okamoto

Verifiable Rotation of Homomorphic Encryptions . 393
Sebastiaan de Hoogh, Berry Schoenmakers, Boris Škorić, and
José Villegas

XII

Table of Contents X I

New Cryptosystems and Optimizations

A Practical Key Recovery Attack on Basic TCHo . 411
Mathias Herrmann and Gregor Leander

An Algebraic Surface Cryptosystem . 425
Koichiro Akiyama, Yasuhiro Goto, and Hideyuki Miyake

Fast Multibase Methods and Other Several Optimizations for Elliptic
Curve Scalar Multiplication . 443

Patrick Longa and Catherine Gebotys

Group Signatures and Anonymous Credentials

Revocable Group Signature Schemes with Constant Costs for Signing
and Verifying . 463

Toru Nakanishi, Hiroki Fujii, Yuta Hira, and Nobuo Funabiki

An Accumulator Based on Bilinear Maps and Efficient Revocation for
Anonymous Credentials . 481

Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente

Controlling Access to an Oblivious Database Using Stateful Anonymous
Credentials . 501

Scott Coull, Matthew Green, and Susan Hohenberger

Author Index . 521

Erratum to: Public Key Cryptography – PKC 2009 E1

II

Stanislaw Jarecki and Gene Tsudik
.

Implicit Factoring: On Polynomial Time
Factoring Given Only an Implicit Hint∗

Alexander May and Maike Ritzenhofen

Horst Görtz Institute for IT-security
Faculty of Mathematics

Ruhr-University of Bochum, 44780 Bochum, Germany
alex.may@ruhr-uni-bochum.de,

maike.ritzenhofen@ruhr-uni-bochum.de

Abstract. We address the problem of polynomial time factoring RSA
moduli N1 = p1q1 with the help of an oracle. As opposed to other ap-
proaches that require an oracle that explicitly outputs bits of p1, we use
an oracle that gives only implicit information about p1. Namely, our or-
acle outputs a different N2 = p2q2 such that p1 and p2 share the t least
significant bits. Surprisingly, this implicit information is already suffi-
cient to efficiently factor N1, N2 provided that t is large enough. We
then generalize this approach to more than one oracle query.

Keywords: Factoring with an oracle, lattices.

1 Introduction

Factoring large integers is one of the most fundamental problems in algorith-
mic number theory and lies at the heart of RSA’s security. Consequently, since
the invention of RSA in 1977 [18] there have been enormous efforts for finding
efficient factorization algorithms. The Quadratic Sieve [16], the Elliptic Curve
Method [9] and eventually the Number Field Sieve [10] have led to a steady
progress in improving the factorization complexity. However, since 1993 there is
little progress from the complexity theoretic point of view when using classical
Turing machines as the model of computation.

Shor’s algorithm from 1994 [19] demonstrates that the factorization problem
is polynomial time solvable on quantum Turing machines. Nowadays, it seems
to be highly unclear whether these machines can ever be realized in practice.

The so-called oracle complexity of the factorization problem was first studied
at Eurocrypt 1985 by Rivest and Shamir [17], who showed that N = pq can be
factored given an oracle that provides an attacker with bits of one of the prime

∗ The research leading to these results was supported by the German Research Foun-
dation (DFG) as part of the project MA 2536/3-1 and has received funding from
the European Community’s Seventh Framework Programme (FP7/2007-2013) un-
der grant agreement number ICT-2007-216646 - European Network of Excellence in
Cryptology II (ECRYPT II).

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 1–14, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

http://dx.doi.org/10.1007/978-3-642-00468-1_29

2 A. May and M. Ritzenhofen

factors. The task is to factor in polynomial time by asking as few as possible
queries to the oracle. Rivest and Shamir showed that 3

5 log p queries suffice in
order to factor efficiently.

At Eurocrypt 1992, Maurer [12] allowed for an oracle that is able to answer
any type of questions by YES/NO answers. Using this powerful oracle, he showed
that ε log p oracle queries are sufficient for any ε > 0 in order to factor efficiently.
At Eurocrypt 1996, Coppersmith [2] in turn improved the Rivest-Shamir oracle
complexity for most significant bits to 1

2 log p queries. Coppersmith used this
result to break the Vanstone-Zuccherato ID-based cryptosytem [21] that leaks
half of the most significant bits.

In this work, we highly restrict the power of the oracle. Namely, we allow for
an oracle that on input an RSA modulus N1 = p1q1 outputs another different
RSA modulus N2 = p2q2 such that p1, p2 share their t least significant bits.
Moreover, we assume for notational simplicity that the bit-sizes of p2, q2 are
equal to the bit-sizes of p1, q1, respectively.

Thus, as opposed to an oracle that explicitly outputs bits of the prime factor
p1, we only have an oracle that implicitly gives information about the bits of p1.
Intuitively, since N2 is a hard to factor RSA modulus, it should not be possible
to extract this implicit information. We show that this intuition is false. Namely,
we show that the link of the factorization problems N1 and N2 gives rise to an
efficient factorization algorithm provided that t is large enough.

More precisely, let q1 and q2 be α-bit numbers. Then our lattice-based al-
gorithm provably factors N1, N2 with N1 �= N2 in quadratic time whenever
t > 2(α + 1). In order to give a numerical example: Let N1, N2 have 750-bit
p1, p2 and 250-bit q1, q2. Then the factorization of N1, N2 can be efficiently
found provided that p1, p2 share more than 502 least significant bits. The bound
t > 2(α+1) implies that our first result works only for imbalanced RSA moduli.
Namely, the prime factors pi have to have bit-sizes larger than twice the bit-sizes
of the qi.

Using more than one oracle query, we can further improve upon the bound
on t. In the case of k−1 queries, we obtain N2, . . . , Nk different RSA moduli such
that all pi share the least t significant bits. This gives rise to a lattice attack with
a k-dimensional lattice L having a short vector q = (q1, . . . , qk) that immediately
yields the factorization of all N1, . . . , Nk. For constant k, our algorithm runs in
time polynomial in the bit-size of the RSA moduli. As opposed to our first result,
in the general case we are not able to prove that our target vector q is a shortest
vector in the lattice L. Thus, we leave this as a heuristic assumption. This
heuristic is supported by a counting argument and by experimental results that
demonstrate that we are almost always able to efficiently find the factorization.

Moreover, when asking k− 1 queries for RSA moduli with α-bit qi that share
t least significant bits of the pi, we improve our bound to t ≥ k

k−1α. Hence
for a larger number k of queries our bound converges to t ≥ α, which means
that the pi should at least coincide on α bits, where α is the bit-size of the
qi. In the case of RSA primes of the same bit-size, this result tells us that
N1 = p1q1, . . . , Nk = p1qk with the same p1 can efficiently be factored, which is

Implicit Factoring 3

trivially true by greatest common divisor computations. On the other hand, our
result is highly non-trivial whenever the bit-sizes are not balanced.

If we do not restrict ourselves to polynomial running time, then we can easily
adapt our method to also factor balanced RSA moduli. All that we have to do
is to determine a small quantity of the bits of qi by brute force search. Using
these bits we can apply the previous method in order to determine at least half
of the bits of all qi. The complete factorization of all RSA moduli Ni is then
retrieved by the aforementioned lattice-based algorithm of Coppersmith [3].

Currently, we are not aware of an RSA key generation that uses primes sharing
least significant bits. The Steinfeld-Zheng system [20] uses moduli N = pq such
that p, q itself share least significant bits, for which our algorithm does not
apply. Naturally, one application of our result is malicious key generation of
RSA moduli, i.e. the construction of backdoored RSA moduli [5,22].

Another application is a novel kind of attack on a public key generator. Sup-
pose an attacker succeeds to manipulate those t registers of an RSA public key
generator that hold the least significant bits of one prime factor such that these
registers are stuck to some unknown value. E.g., take an attacker that simply
destroys the registers with the help of a laser beam such that he has no control
on the register’s values. If the RSA key parameters are within our bounds, the
attacker can easily collect sufficiently many RSA moduli that allow him to factor
all of them. Thus, he uses the RSA key generator as an oracle. Notice that the
RSA generator will usually not even notice such an attack since the RSA moduli
look innocent.

Moreover, we feel that our algorithm will be useful for constructive crypto-
graphic applications as well. Consider the task that our oracle has to solve, which
we call the one more RSA modulus problem, i.e one has to produce on input an
RSA modulus N = pq other moduli Ni = piqi whose factors pi share their least
significant bits.

Our construction shows that this problem is for many parameter settings
equivalent to the factorization problem. So the one more RSA modulus problem
might serve as a basis for various cryptographic primitives, whose security is
then in turn directly based on factoring (imbalanced) integers.

In addition to potential applications, we feel that our result is of strong the-
oretical interest, since we show for the first time that quite surprisingly implicit
information is sufficient in order to factor efficiently. In turn, this implies that
already a really weak form of an oracle suffices for achieving a polynomial time
factorization process. In the oracle-based line of research, reducing the number
of queries and diminishing the power of the oracles is the path that leads to a
better understanding of the complexity of the underlying factorization problem.

We organize our paper as follows. In Section 2, we give the necessary facts
about lattices. In Section 3, we introduce our rigorous construction with one ora-
cle query, i.e. with two RSA moduli. In Section 4, we generalize our construction
to an arbitrary fixed number of queries. This makes our construction heuristic.
In Section 5, we adapt our heuristic construction to the case of balanced RSA
moduli. In Section 6, we experimentally confirm the validity of our heuristics.

4 A. May and M. Ritzenhofen

2 Preliminaries

An integer lattice L is a discrete additive subgroup of Zn. An alternative equiv-
alent definition of an integer lattice can be given via a basis.

Let d, n ∈ N, d ≤ n. Let b1, . . . ,bd ∈ Zn be linearly independent vectors.
Then the set of all integer linear combinations of the bi spans an integer lattice
L, i.e.

L =

{
d∑

i=1

aibi | ai ∈ Z

}
.

We call B =

⎛⎜⎝b1
...

bd

⎞⎟⎠ a basis of the lattice, the value d denotes the dimension

or rank of the basis. The lattice is said to have full rank if d = n. The determi-
nant det(L) of a lattice is the volume of the parallelepiped spanned by the basis
vectors. The determinant det(L) is invariant under unimodular basis transfor-
mations of B. In case of a full rank lattice det(L) is equal to the absolute value
of the Gramian determinant of the basis B.

Let us denote by ||v|| the Euclidean �2-norm of a vector v. Hadamard’s in-
equality [13] relates the length of the basis vectors to the determinant.

Lemma 1 (Hadamard). Let B =

⎛⎜⎝b1
...

bn

⎞⎟⎠ ∈ Zn×n, n ∈ N, be an arbitrary

non-singular matrix. Then

det(B) ≤
n∏

i=1

||bi|| .

The successive minima λi(L) of the lattice L are defined as the minimal radius of
a ball containing i linearly independent lattice vectors of L. In a two-dimensional
lattice L, basis vectors v1,v2 with lengths ||v1|| = λ1(L) and ||v2|| = λ2(L) are
efficiently computable via Gaussian reduction.

Theorem 1. Let b1,b2 ∈ Zn be basis vectors of a two-dimensional lattice L.
Then the Gauss-reduced lattice basis vectors v1,v2 can be determined in time
O(log2(max{||v1|| , ||v2||}). Furthermore,

||v1|| = λ1(L) and ||v2|| = λ2(L).

Information on Gaussian reduction and its running time can be found in [13].
A shortest vector of a lattice satisfies the Minkowski bound, which relates the

length of a shortest vector to the determinant and dimension of the lattice.

Theorem 2 (Minkowski [14]). Let L ⊆ Zn×n be an integer lattice. Then L
contains a non-zero vector v with

||v|| = λ1(L) ≤ √
ndet(L)

1
n .

Implicit Factoring 5

Vectors with short norm can be computed by the LLL algorithm of Lenstra,
Lenstra, and Lovász [11].

Theorem 3 (LLL). Let L be a d-dimensional lattice with basis b1, . . . ,bd ∈
Zn. Then the LLL algorithm outputs a reduced basis v1, . . . ,vd with the following
property:

||v1|| ≤ 2
d−1
4 det(L)

1
d .

The running time of this algorithm is O(d4n(d+log bmax) log bmax), where bmax ∈
N denotes the largest entry in the basis matrix.

For a proof of the upper bound of a shortest LLL vector compare [11]. The
running time is the running time of the so-called L2-algorithm, an efficient LLL
version due to Nguyen and Stehlé [15].

The LLL algorithm can be used for factoring integers with partly known
factors as Coppersmith showed in [3].

Theorem 4 ([3] Theorem 5). Let N be an n-bit composite number. Then we
can find the factorization of N = pq in polynomial time if we know the low order
n
4 bits of p.

3 Implicit Factoring of Two RSA Moduli

Assume that we are given two different RSA moduli N1 = p1q1, N2 = p2q2, where
p1, p2 coincide on the t least significant bits. I.e., p1 = p+2tp̃1 and p2 = p+2tp̃2
for some common p that is unknown to us. Can we use the information that the
prime factors of N1 and N2 share their t least significant bits without knowing
these bits explicitly? I.e., can we factor N1, N2 given only implicit information
about one of the factors?

In this section, we will answer this question in the affirmative. Namely, we
will show that there is an algorithm that recovers the factorization of N1 and
N2 in quadratic time provided that t is sufficiently large.

We start with

(p + 2tp̃1)q1 = N1

(p + 2tp̃2)q2 = N2.

These two equations contain five unknowns p, p1, p2, q1 and q2. By reducing both
equations modulo 2t, we can eliminate the two unknowns p̃1, p̃2 and get

pq1 ≡ N1 mod 2t

pq2 ≡ N2 mod 2t.

Since q1, q2 are odd, we can solve both equations for p. This leaves us with
N1
q1
≡ N2

q2
mod 2t, which we write in form of the linear equation

(N−1
1 N2)q1 − q2 ≡ 0 mod 2t. (1)

6 A. May and M. Ritzenhofen

The set of solutions

L = {(x1, x2) ∈ Z2 | (N−1
1 N2)x1 − x2 ≡ 0 mod 2t}

forms an additive, discrete subgroup of Z2. Thus, L is a 2-dimensional integer
lattice. L is spanned by the row vectors of the basis matrix

BL =
(

1 N−1
1 N2

0 2t

)
.

Let us briefly check that the integer span of BL, denoted by span(BL), is indeed
equal to L. First, b1 = (1, N−1

1 N2) and b2 = (0, 2t) are solutions of (N−1
1 N2)x1−

x2 = 0 mod 2t. Thus, every integer linear combination of b1 and b2 is a solution
which implies that span(BL) ⊆ L.

Conversely, let (x1, x2) ∈ L, i.e. (N−1
1 N2)x1 − x2 = k · 2t for some k ∈ Z.

Then (x1,−k)BL = (x1, x2) ∈ span(BL) and thus L ⊆ span(BL).
Notice that by Eq. (1), we have (q1, q2) ∈ L. If we were able to find this vector

in L then we could factor N1, N2 easily. Let us first provide some intuition under
which condition the vector q = (q1, q2) is a short vector in L. We know that
the length of the shortest vector is upper bounded by the Minkowski bound√

2 det(L)
1
2 =

√
2 · 2 t

2 .
Since we assumed that q1, q2 are α-bit primes, we have q1, q2 ≤ 2α. If α is

sufficiently small, then ||q|| is smaller than the Minkowski bound and, therefore,
we can expect that q is among the shortest vectors in L. This happens if

||q|| ≤
√

2 · 2α ≤
√

2 · 2 t
2 .

So if t ≥ 2α we expect that q is a short vector in L. We can find a shortest
vector in L using Gaussian reduction on the lattice basis B in time O(log2(2t)) =
O(log2(min{N1, N2})). Hence, under the heuristic assumption that q = (q1, q2)
is a shortest vector in L we can factor N1, N2 in quadratic time. Under a slightly
more restrictive condition, we can completely remove the heuristic assumption.

Theorem 5. Let N1 = p1q1, N2 = p2q2 be two different RSA moduli with α-
bit qi. Suppose that p1, p2 share at least t > 2(α + 1) bits. Then N1, N2 can be
factored in quadratic time.

Let
BL =

(
1 N−1

1 N2
0 2t

)
be the lattice basis defined as before.

BL spans a lattice L with shortest vector v that satisfies

||v|| ≤
√

2 det(L)
1
2 = 2

t+1
2 .

Performing Gaussian reduction on BL, we get an equivalent basis B =
(

b1

b2

)
such that

||b1|| = λ1(L) and ||b2|| = λ2(L).

Implicit Factoring 7

Our goal is to show that b1 = ±q = ±(q1, q2) which is sufficient for factoring
N1 and N2.

As L is of full rank, by Hadamard’s inequality we have

||b1|| ||b2|| ≥ det(L).

This implies

||b2|| ≥ det(L)
||b1|| =

det(L)
λ1(L)

.

Substituting det(L) = 2t and using λ1(L) ≤ 2
t+1
2 leads to

||b2|| ≥ 2t

2
t+1
2

= 2
t−1
2 .

This implies for any lattice vector v = a1b1 + a2b2 with ||v|| < 2
t−1
2 that

a2 = 0, as otherwise λ2(L) ≤ ||v|| < ||b2|| which contradicts the optimality of
b2 from Theorem 1. Thus, every v with ||v|| < 2

t−1
2 is a multiple of b1. Notice

that q = (q1, q2) ∈ L fulfills ||q|| =
√

2 · 2α = 2
2α+1

2 . Consequently, we have
||q|| < ||b2|| if

2
2α+1

2 < 2
t−1
2 ⇔ 2(α + 1) < t

Therefore, we get q = ab1 for some a ∈ Z − {0}. Let b1 = (b11, b12), then
gcd(q1, q2) = gcd(ab11, ab12) ≥ a. But q1, q2 are primes and wlog q1 �= q2, since
otherwise we can factor N1, N2 by computing gcd(N1, N2). Therefore, |a| = 1
and we obtain q = ±b1, which completes the factorization.

The running time of the factorization is determined by the running time of the
Gaussian reduction, which can be performed in O(t2) = O(log2(min{N1, N2}))
steps. �

4 Implicit Factoring of k RSA Moduli

The approach from the previous section can be generalized to an arbitrary fixed
number k − 1 of oracle queries. This gives us k different RSA moduli

N1 = (p + 2tp̃1)q1 (2)
...

Nk = (p + 2tp̃k)qk

with α-bit qi.
We transform the system of equations into a system of k equations modulo 2t

pq1 −N1 ≡ 0 (mod 2t)
...

pqk −Nk ≡ 0 (mod 2t)

in k + 1 variables.

8 A. May and M. Ritzenhofen

Analogous to the two equation case, we solve each equation for p. This can be
done because all the qi are odd. Thus, we get N1

q1
= Ni

qi
(mod 2t) for i = 2, . . . , k.

Writing this as k − 1 linear equations gives us:

N−1
1 N2q1 − q2 ≡ 0 (mod 2t)

...
N−1

1 Nkq1 − qk ≡ 0 (mod 2t).

With the same arguments as in the preceding section the set

L = {(x1, . . . , xk) ∈ Zk | N−1
1 Nix1 − xi ≡ 0 (mod 2t) for all i = 2, . . . , k}

forms a lattice. This lattice L is spanned by the row vectors of the following
basis matrix

BL =

⎛⎜⎜⎜⎜⎜⎜⎝
1 N−1

1 N2 · · · N−1
1 Nk

0 2t 0 · · · 0

0 0
.

...
...

. 0
0 0 · · · 0 2t

⎞⎟⎟⎟⎟⎟⎟⎠ .

Note that q = (q1, . . . , qk) ∈ L has norm ||q|| ≤ √
k2α. We would like to

have ||q|| = λ1(L) as in Section 3. The length λ1(L) of a shortest vector in L is
bounded by

λ1(L) ≤
√

k(det(L))
1
k =

√
k(2t(k−1))

1
k .

Thus, if q is indeed a shortest vector then

||q|| =
√

k2α ≤
√

k · 2t k−1
k . (3)

This implies the condition t ≥ k
k−1α. We make the following heuristic

assumption.

Assumption 6. Let N1, . . . , Nk be as defined in Eq. (2) with t ≥ k
k−1α. Further,

let b1 be a shortest vector in L. Then b1 = ±(q1, . . . , qk).

Theorem 7. Let N1, . . . , Nk be as defined in Eq. (2) with t ≥ k
k−1α. Under

Assumption 6, we can find the factorization of all N1, . . . , Nk in time polynomial
in (k

k
2 , maxi{log Ni}).

We show the validity of Assumption 6 experimentally in Section 6.
The running time is determined by the time to compute a shortest vec-

tor in L [8,7]. This implies that for any lattice L of rank k such that k
k
2 =

poly(maxi{log Ni}), i.e. especially for lattices with fixed rank k, we can com-
pute the factorization of all Ni in time polynomial in their bit-size.

For large k, our bound converges to t ≥ α. This means that the amount t
of common least significant bits has to be at least as large as the bit-size of

Implicit Factoring 9

the qi. In turn, this implies that our result only applies to RSA moduli with
different bit-sizes of pi and qi. On the other hand, this is the best result that we
could hope for in our algorithm. Notice that we construct the values of the qi by
solving equations modulo 2t. Thus, we can fully recover the qi only if their bit-
size α is smaller than t. In the subsequent section, we will overcome this problem
by avoiding the full recovery of all qi, which in turn leads to an algorithm for
balanced RSA moduli.

Remark: All of our results still hold if 2t is replaced by an arbitrary modulus
M ≥ 2t. We used a power of two only to illustrate our results in terms of bits.

5 Implicit Factoring of Balanced RSA Moduli

We slightly adapt the method from Section 4 in order to factor balanced n-bit
integers, i. e. Ni = piqi such that pi and qi have bitsize n

2 each. The modification
mainly incorporates a small brute force search on the most significant bits.

Assume that we are given k RSA moduli as in (2). From these moduli we
derive k − 1 linear equations in k variables:

N−1
1 N2q1 − q2 ≡ 0 (mod 2t)

...
N−1

1 Nkq1 − qk ≡ 0 (mod 2t)

The bitsize of the qi is now fixed to α = n
2 which is equal to the bitsize of the

pi, i. e. now the number t of bits on which the pi coincide has to satisfy t ≤ α. In
the trivial case of t = α = n

2 we can directly factor the Ni via greatest common
divisor computations as then pi = p for i = 1, . . . , k.

Thus, we only consider t < n
2 . With a slight modification of the method

in Section 4, we compute all qi (mod 2t). Since t < n
2 , this does not give us

the qi directly, but only their t least significant bits. But if t ≥ n
4 , we can use

Theorem 4 for finding the full factorization of each Ni in polynomial time. In
order to minimize the time complexity, we assume t = n

4 throughout this section.
To apply Theorem 7 of Section 4 the bit-size of the qi has to be smaller than

k−1
k t. Thus, we have to guess roughly 1

k · t = n
4k bits for each qi. Since we

consider k moduli, we have to guess a total number of n
4 bits. Notice that this is

the same amount of bits as for guessing one half of the bits of one qj , which in
turn allows to efficiently find this qj using Theorem 4. With a total amount of
n
4 bits however, our algorithm will allow us to efficiently find all qi, i = 1, . . . , k.

Let us describe our modification more precisely. We split qi (mod 2
n
4) into

2β q̃i + xi (mod 2
n
4). The number β depends on the number of oracle calls k− 1

such that the condition β < (k−1)
k · n

4 holds. We therefore choose β to be the
largest integer smaller than (k−1)n

4k . This implies that the xi ≤ 2β are small
enough to be determined analogous to Section 4, provided that the q̃i are known.
As discussed before, in practice we can guess an amount of n

4k bits for determining
each q̃i, or we can find these bits by other means, e.g. by side-channel attacks.

10 A. May and M. Ritzenhofen

Suppose now that the q̃i are given for each i. We obtain the following set of
equations

N−1
1 N2x1 − x2 ≡ 2β(q̃2 −N−1

1 N2q̃1) (mod 2
n
4)

... (4)
N−1

1 Nkx1 − xk ≡ 2β(q̃k −N−1
1 Nk q̃1) (mod 2

n
4).

Let ci = 2β(q̃i −N−1
1 Niq̃1), i = 2, . . . , k, denote the known right-hand terms.

In contrast to Section 4, the equations (4) that we have to solve are inhomoge-
nous. Let us first consider the lattice L that consists of the homogenous solutions

L = {(x1, . . . , xk) ∈ Zk | N−1
1 Nix1 − xi ≡ 0 (mod 2

n
4), i = 2, . . . , k}.

L is spanned by the rows of the following basis matrix

BL =

⎛⎜⎜⎜⎜⎜⎜⎝
1 N−1

1 N2 · · · N−1
1 Nk

0 2
n
4 0 · · · 0

0 0
.

...
...

. 0
0 0 · · · 0 2

n
4

⎞⎟⎟⎟⎟⎟⎟⎠ .

Let li ∈ Z such that N1N
−1
i x1 + li2t = xi + ci. Then we let

q′ := (x1, l2, . . . , lk)BL = (x1, x2 + c2, . . . , xk + ck) ∈ L.

Moreover, if we define the target vector c := (0, c2, . . . , ck), then the distance
between q′ and c is

||q′ − c|| = ||(x1, . . . , xk)|| ≤
√

k2β ≤
√

k · 2 (k−1)n
4k .

This is the same bound that we achieved in Section 4 for the length of a shortest
vector in Eq. (3) when t = n

4 . So instead of solving a shortest vector problem, we
have to solve a closest vector problem in L with target vector c. Closest vectors
can be found in polynomial time for fixed lattice dimension k (see Blömer [1]).
We make the heuristic assumption that q′ is indeed a closest vector to c in L.

Assumption 8. Let N1, . . . , Nk be as defined in Eq. (4) with β < (k−1)n
4k . Fur-

ther, let b1 be a closest vector to c in L. Then b1 = ±q′
1.

Theorem 9. Let N1, . . . , Nk be as defined in Eq. (4) with β < (k−1)n
4k . Un-

der Assumption 8, we can find the factorization of all N1, . . . , Nk in time 2
n
4 ·

poly(k!, maxi{logNi}).

The running time is determined by the time for guessing each q̃i and the time
for finding a closest vector in L.

Implicit Factoring 11

6 About Our Heuristic Assumptions

In this section we have a closer look at the two heuristics from the previous
sections, Assumption 6 and Assumption 8. We first give a counting argument
that supports our heuristics and then demonstrate experimentally that our con-
structions work very well in practice.

6.1 A Counting Argument That Supports Our Assumptions

Recall that in Section 4, the lattice L consists of all solutions q = (q1, . . . , qk) of
the system of equations

N−1
1 N2q1 ≡ q2 (mod 2t) (5)

...
N−1

1 Nkq1 ≡ qk (mod 2t)

As gcd(N−1
1 Ni, 2t) = 1 for any i, the mapping fi : x
→ N−1

1 Nix (mod 2t)
is bijective. Therefore, the value of q1 uniquely determines the values of qi,
i = 2, . . . , k.

In total the system of equations has as many solutions as there are values to
choose q1 from, which is 2t. Now suppose q1 ≤ 2

(k−1)t
k . How many vectors q do

we have such that qi ≤ 2
(k−1)t

k for all i = 1, . . . , k and thus ||q|| ≤ √
k2

(k−1)t
k ?

Assume for each i = 2, ..., k that the value qi is uniformly distributed in
{0, . . . , 2t − 1} and that the distributions of qi and qj are independent if i �= j.
Then the probability that qi ≤ 2

(k−1)t
k is

Pr
(
qi ≤ 2

(k−1)t
k

)
=

2
(k−1)t

k

2t
= 2−

t
k .

Furthermore, the probability that qi ≤ 2
(k−1)t

k for all i = 2, . . . , k is

Pr
(
q2 ≤ 2

(k−1)t
k , . . . , qk ≤ 2

(k−1)t
k

)
=

(
2−

t
k

)k−1
= 2−

(k−1)t
k

Consequently, for a given value of q1 ≤ 2
(k−1)t

k the expected number of vectors
q such that qi ≤ 2

(k−1)t
k for all i = 1, . . . , k is 2

(k−1)t
k · 2− (k−1)t

k = 1. Therefore,
we expect that only one lattice vector, namely q, is short enough to satisfy the
Minkowski bound. Hence, we expect that ±q is a unique shortest vector in L if
its length is significantly below the bound

√
k2

(k−1)t
k . This counting argument

strongly supports our Assumption 6.

Remark: In order to analyze Assumption 8 we can argue in a completely analo-
gous manner. The inhomogenous character of the equations does not influence
the fact that the qi are uniquely determined by q1.

12 A. May and M. Ritzenhofen

6.2 Experiments

We verified our assumptions in practice by running experiments on a Core2
Duo 1.66GHz notebook. The attacks were implemented using Magma1 Version
2.11. Instead of taking a lattice reduction algorithm which provably returns a
basis with a shortest vector as first basis vector we have used the LLL algo-
rithm [11], more precisely its L2 version of Nguyen and Stehlé [15] which is
implemented in Magma. Although by LLL reduction the first basis vector only
approximates a shortest vector in a lattice, for our lattice bases with dimensions
up to 100 LLL-reduction was sufficient. In nearly all cases the first basis vec-
tor was equal to the vector ±q = ±(q1, . . . , qk), when we chose suitable attack
parameters.

First, we considered the cased of imbalanced RSA moduli from Theorem 7.
We chose Ni = (p + 2tp̃i)qi, i = 1, . . . , k, of bit-size n = 1000 with varying
bitsizes of qi. For fixed bitsize α of qi and fixed number k of moduli, we slightly
played with the parameter t of common bits close to the bound t ≥ k

k−1α in
order to determine the minimal t for which our heuristic is valid.

Table 1. Attack for imbalanced RSA moduli

bitsize α no. of bound number of success
of the qi moduli k k

k−1α shared bits t rate
250 3 375 377 0%
250 3 375 378 97%
350 10 389 390 0%
350 10 389 391 100%
400 100 405 409 0%
400 100 405 410 100%
440 50 449 452 16%
440 50 449 453 97%
480 100 485 491 38%
480 100 485 492 98%

The running time of all experiments was below 10 seconds.
In Table 1, we called an experiment successful if the first basis vector b1 in

our LLL reduced basis was of the form b1 = ±q = ±(q1, . . . , qk), i.e. it satisfied
Assumption 6. There were some cases, where other basis vectors were of the form
±q, but we did not consider these cases.

As one can see by the experimental results, Assumption 6 only works smoothly
when our instances were a few extra bits beyond the bound of Theorem 7. This
is not surprising since the counting argument from Section 6.1 tells us that we
loose uniqueness of the shortest vector as we approach the theoretical bound.
In practice, one could either slightly increase the number t of shared bits or the
number k of oracle calls for making the attack work.
1 http://magma.maths.usyd.edu.au/magma/

Implicit Factoring 13

Analogously, we made experiments with balanced RSA moduli to verify As-
sumption 8. Instead of computing closest vectors directly, we used the well-known
standard embedding of a d-dimensional closest vector problem into an (d + 1)-
dimensional shortest vector problem ([6], Chapter 4.1), where the shortest vector
is of the form b1 = (q′ − c, c′), c′ constant. Since c and c′ are known, this di-
rectly yields q′ and therefore the factorization of all RSA moduli. For solving
the shortest vector problem, we again used the LLL algorithm.

As before we called an experiment successful, if b1 was of the desired form,
i.e. if Assumption 8 held. In our experiments we used 1000 bit Ni with a common
share p of t = 250 bits.

Table 2. Attack for balanced 1000-bit Ni with 250 bits shared

no. of bound bits known success
moduli k � n

4k
� from qi rate

3 84 85 74%
3 84 86 99%
10 25 26 20%
10 25 27 100%
50 5 8 46%
50 5 9 100%

All of our experiments ran in less than 10 seconds. Here, we assumed that
we know the required bits of each qi, i.e. the running time does not include the
factor for a brute-force search.

Similar to the experimental results for the imbalanced RSA case, our heuristic
Assumption 8 works well in the balanced case, provided that we spend a few extra
bits to the theoretical bound in order to enforce uniqueness of the closest vector.

References

1. Blömer, J.: Closest vectors, successive minima, and dual HKZ-bases of lattices. In:
Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp.
248–259. Springer, Heidelberg (2000)

2. Coppersmith, D.: Finding a small root of a bivariate integer equation, factoring
with high bits known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 178–189. Springer, Heidelberg (1996)

3. Coppersmith, D.: Small solutions to polynomial equations and low exponent vul-
nerabilities. Journal of Cryptology 10(4), 223–260 (1997)

4. Coppersmith, D.: Finding small solutions to small degree polynomials. In: Silver-
man, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 20–31. Springer, Heidelberg
(2001)

5. Crépeau, C., Slakmon, A.: Simple backdoors for RSA key generation. In: Joye, M.
(ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 403–416. Springer, Heidelberg (2003)

6. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: A cryptographic
perspective. Kluwer International Series in Engineering and Computer Science,
vol. 671. Kluwer Academic Publishers, Boston (2002)

14 A. May and M. Ritzenhofen

7. Helfrich, B.: Algorithms to Construct Minkowski Reduced and Hermite Reduced
Lattice Basis. Theoretical Computer Science 41, 125–139 (1985)

8. Kannan, R.: Minkowski’s Convex Body Theorem and Integer Programming. Math-
ematics of Operations Research 12(3), 415–440 (1987)

9. Lenstra Jr., H.W.: Factoring Integers with Elliptic Curves. Ann. Math. 126, 649–
673 (1987)

10. Lenstra, A.K., Lenstra Jr., H.W.: The Development of the Number Field Sieve.
Springer, Heidelberg (1993)

11. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational co-
efficients. Mathematische Annalen 261, 513–534 (1982)

12. Maurer, U.M.: Factoring with an oracle. In: Rueppel, R.A. (ed.) EUROCRYPT
1992. LNCS, vol. 658, pp. 429–436. Springer, Heidelberg (1993)

13. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. Cambridge University
Press, Cambridge (2000)

14. Minkowski, H.: Geometrie der Zahlen. Teubner-Verlag (1896)
15. Nguyen, P.Q., Stehlé, D.: Floating-point LLL revisited. In: Cramer, R. (ed.) EU-

ROCRYPT 2005. LNCS, vol. 3494, pp. 215–233. Springer, Heidelberg (2005)
16. Pomerance, C.: The quadratic sieve factoring algorithm. In: Beth, T., Cot, N.,

Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 169–182. Springer,
Heidelberg (1985)

17. Rivest, R.L., Shamir, A.: Efficient factoring based on partial information. In: Pich-
ler, F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 31–34. Springer, Heidelberg
(1986)

18. Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems. Communications of the ACM 21(2), 120–126
(1978)

19. Shor, P.: Algorithms for Quantum Computation: Discrete Logarithms and Factor-
ing. In: Proceedings 35th Annual Symposium on Foundations of Computer Science,
Santa Fe, NM, pp. 124–134. IEEE Computer Science Press, Los Alamitos (1994)

20. Steinfeld, R., Zheng, Y.: An advantage of low-exponent RSA with modulus primes
sharing least significant bits. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020,
pp. 52–62. Springer, Heidelberg (2001)

21. Vanstone, S.A., Zuccherato, R.J.: Short RSA Keys and Their Generation. Journal
of Cryptology 8(2), 101–114 (1995)

22. Young, A., Yung, M.: The prevalence of kleptographic attacks on discrete-log based
cryptosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 264–
276. Springer, Heidelberg (1997)

The Security of All Bits Using List Decoding

Paz Morillo and Carla Ràfols

Dept. Matemàtica Aplicada IV
Universitat Politècnica de Catalunya

C. Jordi Girona 1-3, E-08034 Barcelona, Spain
{paz,crafols}@ma4.upc.edu

Abstract. The relation between list decoding and hard-core predicates
has provided a clean and easy methodology to prove the hardness of
certain predicates. So far this methodology has only been used to prove
that the O(log log N) least and most significant bits of any function with
multiplicative access —which include the most common number theo-
retic trapdoor permutations— are secure. In this paper we show that
the method applies to all bits of any function defined on a cyclic group
of order N with multiplicative access for cryptographically interesting N .
As a result, in this paper we reprove the security of all bits of RSA, the
discrete logarithm in a group of prime order or the Paillier encryption
scheme.

Keywords: bit security, list decoding, one-way function.

1 Introduction

One-way functions are one of the most fundamental cryptographic primitives
and it is not an overstatement to say that they are behind most of modern
cryptography. If some reasonable computational assumptions hold, a one-way
function is easy to compute but hard to invert. In some cases, this security
requirement may not be enough: in particular, the definition of one-way function
does not say anything about how much information it can leak. A predicate of
the preimage, P , is a hard-core of f if f does not give away any information
about P , that is, if there exists a polynomial time reduction from guessing P to
inverting f .

The study of hard-core predicates is of interest for various reasons, not only
because it strengthens our understanding of the real hardness of the considered
one-way function, but also because of its applications, which include the con-
struction of secure bit commitment schemes or cryptographically strong pseu-
dorandom generators. Further, the study of bit security has led to important
techniques and insights which have found other applications. For instance, the
study of the security of the least significant bit of RSA led to the two-point
based sampling technique introduced in [2], later used to prove the well known
result of the Goldreich and Levin bit — GL from now on — which states that
every one-way function has a hard-core bit. We emphasize that the importance

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 15–33, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

http://dx.doi.org/10.1007/978-3-642-00468-1_29

16 P. Morillo and C. Ràfols

of the GL result reaches far beyond the domain of bit security, and many works
in other lines of research are in some way indebted to it, for instance in learning
theory [4],[7].

Many bit security results have very technical and sophisticated proofs. Al-
though many proofs for different one-way functions have a similar structure,
they have to be adapted to each particular case. In contrast, Akavia, Gold-
wasser and Safra [1] give a very elegant and general methodology to prove bit
security results. In particular, they show how this methodology applies to prove
the security of O(log log N) least and most significant bits of any function with
multiplicative access - such as RSA and DL, for instance.

Akavia et al. raised the question whether this methodology applies to prove
the security of internal bits, a question which we answer in the affirmative in
this paper. Since the existing security proofs for the hardness of internal bits of
RSA and DL are particularly technical and cumbersome to follow in all detail —
we refer the reader to [8] for an example— , we feel that a more readable proof
should contribute much to the public discussion of the results and thus also to
their credit and diffusion.

1.1 Previous Work

The GL result, which gives a hard-core predicate for any one-way function,
can be reinterpreted as a list decoding algorithm for the Hadamard code. This
suggested the possibility of a general methodology to prove bit security results.
This methodology was formalized by Akavia et al. in 2003, where it was used to
prove (or often reprove known results) the hardness of certain predicates for one
way functions defined on a cyclic group G of order N and having the property
of multiplicative access, that is, functions f for which given f(x), f(x · y) can be
computed for any known y in almost all of the cases.

The most common number theoretic trapdoor permutations in cryptography,
such as RSAN,e(x) = xe mod N , Rabin(x) = x2 mod N , EXPp,g(x) = gx

mod p and ECLp,a,b,Q(x) = xQ — exponentiation in the group of Fp- rational
points of an elliptic curve Ep,a,b(Fp) — have this property.

A part from the formalization of the list decoding methodology, one of the
key contributions of Akavia et al. is to give a learning algorithm for functions
f : ZN → C, which is a necessary piece to provide the aforementioned results.

The security of the internal bits had already been proved for some one-way
functions with multiplicative access such as RSA and the discrete logarithm in
[8] and the Paillier encryption scheme in [3].

1.2 Organization

Sections 2, 3 and 4 are introductory: in section 2 we define the concept of hard-
core predicate and give some of the results of Akavia et al. Sections 3 and 4
are devoted to basics of Fourier analysis and list decodable codes and to the
relation between hard-core predicates and list decoding. We stress that many
of the results and definitions given in these sections are taken from the work of

The Security of All Bits Using List Decoding 17

Akavia et al. but are necessary to introduce our contributions. In section 5 we
prove one of our main results concerning the security of all bits of any one-way
function with multiplicative access for special N , while in section 6 we prove it
for all N of cryptographic interest. Next, in section 7 we prove the security of
all bits of the Paillier encryption scheme. Possible extensions of these results are
discussed in section 8. In section 9 we summarize our contribution.

2 Parts That Are as Hard as the Whole

Informally, a hard-core bit for a one-way function f : D → R is a boolean
predicate P : D → {±1} which does not leak from f . Obviously, we cannot
prevent an adversary from taking a random guess, but the point is that there
should not be any strategy to predict P which works significantly better than
the random one. Define

Definition 1. majP
def
= maxb∈{±1}Pr

(
P (x) = b : x ← D

)
and minorP

def
=

1−majP .

We write x ← D to indicate that we choose an element x in D according to the
uniform distribution.

Definition 2. A function ν(·) is negligible if for any constant c ≥ 0 there exists
n0 ∈ Z, s.t ν(n) < n−c for all integers n ≥ n0.

This definition of hard-core predicate is taken from [1].

Definition 3. For each n ∈ N, let In be a countable index set, and set I =
(In)n∈N . Let F = (fi : Di → Ri)i∈I be a family of one-way functions and
P = (Pi : Di → {±1})i∈I a family of Boolean predicates, where w.l.o.g. if i ∈ In

Di ⊂ {0, 1}n. We will say that P is a family of hard-core predicates for F if
and only if, for all n ∈ N and i ∈ In:

– Pi can be computed by means of a Monte-Carlo algorithm A1(i, x).
– Pi(x) is not computable by means of any efficient algorithm from fi(x); that

is, for any PPT algorithm A2,

Pr(A2(i, fi(x)) = Pi(x) : x ← Di) ≤ majPi + ν(n),

where ν(·) is a negligible function.

While there are predicates which are a hard-core of any one-way function, like
the GL bit [6] or all the bits of ax+b mod p [9], there are also many results con-
cerning the security of a certain bit of the binary representation of the preimage
for a specific one-way function (e.g. the least significant bit of RSA or Rabin,
see for instance [2]).

Given an element x ∈ ZN , define [x] as the representative of the class of x in
[0, N) and absN (x) = min{[x], N − [x]}. The i-th bit of an element x ∈ ZN is

18 P. Morillo and C. Ràfols

defined as Bi(x) = 1 if the i-th bit of the binary representation of [x] is 0 and
as −1 otherwise.

Akavia et al. prove the security of any basic t-segment predicate, t ∈ poly(n),
for any one-way function with multiplicative access having domain in ZN , where
n

def= �log N�.
Definition 4. A predicate PN : ZN → {±1} is said to be a basic t-segment
predicate if there are at most t values of x ∈ ZN for which PN (x + 1) �= PN (x).

In particular, their result implies that the predicate Bn−i, where i ∈ poly(log n),
is a hard-core of any one-way function with multiplicative access, since trivially
Bn−i is a basic t-segment predicate, where t = 2i+1.

Further, there is a correspondence between Bi, where i ∈ O(log n) and some
t-basic segment predicate with t ∈ poly(n). For instance, it is easy to verify that
lsbN(x) = halfN(x

2), where halfN(x) is a basic 2-segment predicate which is
equal to 1 if [x] ≤ N/2 and is −1 otherwise. This correspondence allows to prove
that the predicates Bi, where i ∈ O(log n) are also hard-core of any one-way
function with multiplicative access when N is odd (see [1] for details).

3 Preliminaries

Before sketching the list decoding methodology of [1], we begin with some basic
concepts.

3.1 Fourier Analysis in ZN

In the space of functions from ZN to C it is possible to define the inner product

〈g, h〉 def=
1
N

∑
x∈ZN

g(x)h(x).

For each α ∈ ZN , the α-character is defined as a function χα : ZN → C such that
χα(x) = wαx

N , where wN
def= e

2πj
N . It is easy to check that Bα

def= {χα : α ∈ ZN}
is an orthonormal basis of the space of functions going from ZN to C.

If Γ is a subset of ZN , it is natural to consider the projection of g in the set
of Γ characters, that is,

g|Γ =
∑
α∈Γ

ĝ(α)χα,

where ĝ(α) = 〈g, χα〉 are the Fourier coefficients. Observe that, if h(y) = g(ay)
for some a ∈ Z∗

N , then ĥ(α) = ĝ(α/a).
Because Bα is an orthonormal basis,

||g||22 =
∑

α∈ZN

|ĝ(α)|2 and ||g|Γ ||22 =
∑
α∈Γ

|ĝ(α)|2.

Finally, define

The Security of All Bits Using List Decoding 19

Definition 5. (Fourier Concentrated) A function g : ZN → C is Fourier con-
centrated if for every ε > 0 there exists a set Γ consisting of poly(n/ε) characters,
so that

||g − g|Γ ||22 =
∑
α/∈Γ

|ĝ(α)|2 ≤ ε.

In the following, this condition will be referred to as g is ε-concentrated on the
set Γ .

The heavy characters of g are the characters for which the projection of g has
a greater modulus, that is, given τ > 0 and g : ZN → C, define

Heavyτ (g) def= {χα : |ĝ(α)|2 ≥ τ}.

3.2 Codes

A binary code is a subset of {±1}∗. To encode the elements of ZN we will limit
ourselves to codewords of length N , in this case the code is a subset C ⊂ {±1}N .
Each codeword Cx can be seen as a function Cx : ZN → {±1}, expressed as
(Cx(0), Cx(1), . . . , Cx(N − 1)).

Definition 6. The normalized Hamming distance between two functions g, h :
ZN → {±1} is Δ(g, h) = Pr

(
g(x) �= h(x) : x ← ZN

)
.

The next definition is a natural extension of the concept of error correcting codes.

Definition 7. A code C = {Cx : ZN → {±1}} is list decodable if there exists a
PPT algorithm which given access to a corrupted codeword w and inputs δ, ε, 1n

returns a list L ⊇ {x : Δ(Cx, w) ≤ minorCx − ε} with probability 1− δ.

Remark 1. In this definition it says “given access to w” because in our examples
it will be computationally infeasible to read the whole word w due to its size.

3.3 List Decodable Codes

In this section we give sufficient conditions for a code to be list decodable, for a
detailed explanation we refer the reader to [1].

Definition 8. A code C is concentrated if each of its codewords Cx is Fourier
concentrated.

Definition 9. A code C is recoverable, if there exists a recovery algorithm,
namely, a polynomial time algorithm that, given a character χα (for α �= 0),
a threshold τ and 1n, where n = �log N� returns a list Lα containing

{x ∈ ZN : χα ∈ Heavyτ (Cx)}.
One of the main contributions of Akavia et al. is to prove that on input a
threshold τ and given access to any function g : G → C where G is any abelian
group with known generators of known orders, it is computationally feasible to
obtain a list of all the Fourier coefficients in Heavyτ (g). In particular, in the ZN

case — which is enough for our purposes — they prove that

20 P. Morillo and C. Ràfols

Theorem 1. There is an algorithm which, given query access to g : ZN →
{±1}, 0 < τ and 0 < δ < 1, outputs a list L, of O(1/τ) characters s.t.
Heavyτ (g) ⊂ L with probability at least 1 − δ; and the running time of the
algorithm is Õ(n · ln2(1/δ)/τ5.5), where the Õ() notation indicates that terms
with complexity polynomial in log(1/τ), log n or ln ln(1/δ) have been eliminated.

Another algorithm to the same purpose was given by Strauss and Mutukrishnan
[5], resulting in a running time with improved dependence in 1/τ .

This theorem is used in [1] to prove the following

Theorem 2. Let C = {Cx : ZN → {±1}} be a concentrated and recoverable
code, then C is list decodable.

The intuition behind the theorem is the following. Suppose that we have access
to a corrupted word w which is close enough to a codeword Cx, then:

– Because of the concentration of the code and the closeness of w and Cx,
there exists an explicit threshold τ — non-negligible in n— such that χβ is a
τ -heavy coefficient of both w and Cx, that is, there exists a β ∈ ZN , β �= 0,
such that

χβ ∈ Heavyτ (w) ∩Heavyτ (Cx).

This is proven in the Concentration and agreement lemma of [1].
– Because of theorem 1, on input this threshold τ , we can recover a list L with

all the Fourier coefficients in Heavyτ (w) with probability 1−δ. We emphasize
that if δ is non-negligible in n, both the running time of the algorithm and
the length of the list — which is 1/τ— is polynomial in n.

– For each of these coefficients χβ the recovery algorithm will output a list of
codewords and Cx will be in at least one of those lists.

4 The Relation between List Decoding and Hard-Core
Predicates

In this section we summarize the connection between list decoding and hard-core
predicates from [1].

Suppose we want to prove that P : ZN → {±1} is a hard-core of f : ZN → R.
As it is standard in cryptography, the security of P is proved by a reduction
argument. The proof consists in trying to invert f (recover x) given a challenge
f(x) and assuming we have access to an oracle predicting P (y) from f(y) with
non-negligible advantage over a random guess.

When f has multiplicative access, the connection between list decoding and
hard-core predicates comes from encoding each element x ∈ ZN as CP

x =
(CP

x (0), CP
x (1), . . . , CP

x (N − 1)), where CP
x (j) = P (jx). This is the so-called

multiplication code. An oracle predicting P (y) from f(y) without errors would
give us access to CP

x , but since the oracle gives incorrect answers we have access
to a corrupted codeword w instead. If the code is list decodable we can find a
list of codewords containing CP

x , thus inverting f .

The Security of All Bits Using List Decoding 21

Now, in general, for any function f — not necessarily with multiplicative
access— to prove that P is a hard-core predicate of f following the list decoding
methodology, it would suffice to somehow encode the elements of ZN in such a
way that,

– The code is concentrated and recoverable (that is, list decodable).
– Given the challenge f(x) and an oracle predicting P we can devise access to

a corrupted codeword w close enough to the encoding of x.

This is formalized in Theorem 2 (List Decoding Approach) of [1],

Theorem 3. Assume a collection of codes CP = {CPi}i∈I s.t. ∀i ∈ I, (1) CPi

is list decodable, and (2) CPi accessible with respect to fi. Then P is hard-core
of F .

The definition of accessible code is:

Definition 10. Let P be a collection of predicates and F a family of one-way
functions. The code C is accessible with respect to F if there exists a PPT access
algorithm A, such that for all i ∈ In, CPi is accessible with respect to fi, namely

1. Code access: ∀x, j ∈ Di, A(i, fi(x), j) returns fi(x′) such that CPi
x (j) =

Pi(x′)
2. Well spread: For uniformly distributed CPi

x ∈ CPi and j ∈ Di, the distribu-
tion of x′ satisfying fi(x′) = A(i, fi(x), j) is statistically close to the uniform
distribution on Di

3. Bias preserving: For every codeword CPi
x ∈ CPi ,

|Pr
(
CPi

x (j) = 1 : j ← Di

)− Pr
(
Pi(z) = 1 : z ← Di

)| ≤ ν(n),

where ν is a negligible function.

Lemma 3 of [1] proves that if CP is accessible with respect to F and an algorithm
B that predicts P from F with probability at least majP + ε is given, then, for
a non-negligible fraction of the codewords CP

x ∈ CP , given f(x) we have access
to a corrupted codeword wx close enough to CP

x .
Akavia et al. prove that the multiplication code CP is accessible with respect

to RSA and EXPp,g and they state that it also holds for Rabin and ECL. In
section 7 we prove that CP is accessible with respect to the Paillier one-way
function.

Once the accessibility of the code with respect to a one-way function f is
stablished, to prove that P is a hard-core of f it suffices to see that the multipli-
cation code CP

x is concentrated and recoverable. Concerning the concentration,
observe that if x ∈ Z∗

N , from the definition of multiplication code, there is a

simple relation between the Fourier coefficients of CP
x and P , ĈP

x (β) = P̂
(
β/x

)
.

As a consequence,

Lemma 1. For all ε > 0, if P is ε-concentrated in Γ then CP
x is ε-concentrated

in Γ ′ = {χβ : β = αx mod N, χα ∈ Γ}.

22 P. Morillo and C. Ràfols

5 The Security of All Bits for Special N

The purpose of this section is to prove that the predicate P (x) = Bi(x), defined
in section 2, is a hard-core predicate of any one-way function defined over ZN

for which the multiplication code is accessible, for N of special form. Because of
theorem 3 it suffices to prove that the multiplication code CBi is concentrated
and recoverable.

The organization of this section is the following: to prove that P is concen-
trated, we begin giving an explicit formula for the Fourier coefficients of the
ith bit in subsection 5.1. This formula is used in subsection 5.2 to study the
asymptotic behavior of |P̂ (α)|2.

In subsection 5.3 we prove that P is concentrated for all N of a special form.
Theorem 6 of subsection 5.4 proves one of the main results of the paper namely
that the predicate ith bit is hard-core of any one-way function defined over ZN

for which the multiplication code is accessible, for N of special form. To do this
we prove the recoverability of the code CBi in theorem 5. It turns out that these
partial results are enough to reprove the hardness of O(log n) most and least
significant bits.

5.1 The Fourier Representation of the ith Bit

Let P (x) = Bi(x) be the ith bit as defined in section 2 and N = r2i+1 ± m,

where 0 < m < 2i. Define the function g(x) =
P (x + 2i) + P (x)

2
.

Recall that wN = e
2πj
N . From the definitions given in section 3.1 and using

some properties of the Fourier coefficients, we have the following relation

ĝ(α) =
(w2iα

N + 1)
2

P̂ (α).

We consider two different situations:

– Case 1 N = r2i+1 − m. In this case g(x) = 1 if and only if x ∈ I1
def=

[(r − 1)2i+1 + 2i −m, (r − 1)2i+1 + 2i − 1], else g(x) = 0.
– Case 2 N = r2i+1 + m. In this case g(x) = 1 if and only if x ∈ I2

def=
[r2i+1, r2i+1 + m− 1], else g(x) = 0.

In either of the two cases it is easy to compute the Fourier coefficients of P

explicitly. Indeed, it suffices to find ĝ(α) since w2iα
N +1 �= 0 because m �= 0. Note

that in both Case 1 and Case 2, g(x) is only different from 0 in an interval of
length m. As a result the non-zero summands in the expression of ĝ(α) form a
geometric progression with exactly m terms and ĝ(α) can be computed explicitly.
If α �= 0, in Case 1:

ĝ(α) =
1
N

∑
y∈I1

χα(y) =
1
N

w
−α((r−1)2i+1+2i−m)
N

(w−αm
N − 1)

(w−α
N − 1)

.

The Security of All Bits Using List Decoding 23

Analogously, in Case 2, ĝ(α) =
1
N

w
−α(r2i+1)
N

(w−αm
N − 1)

(w−α
N − 1)

. Moreover, in both

cases, ĝ(0) =
m

N
.

Taking the modulus, we obtain that in both cases, for any α �= 0

|ĝ(α)|2 =
1

N2

sin2(mαπ
N)

sin2(απ
N)

.

Using the fact that |w2iα
N + 1|2 = 4 cos2(2iαπ

N), we obtain

|P̂ (α)|2 = |ĝ(α)|2 1
cos2(2iαπ

N)
=

1
N2

sin2(mαπ
N)

sin2(απ
N) cos2(2iαπ

N)
. (1)

Remark. There is an alternative trick to compute |P̂ (α)|2, it suffices to consider

the function G(x) =
P (x + 1)− P (x)

2
. In this case,

|P̂ (α)|2 = |Ĝ(α)|2 1
sin2(απ

N)
. (2)

Define Case 1 and Case 2 as above. Note that in either one of the cases the
function takes values in {±1} whenever x = k2i − 1, for k ∈ Z. Additionally, in
Case 1, G(N−1) = 1. As a consequence, in both cases the function takes exactly
2r non-zero values. This remark will be useful in subsections 5.2 and 5.3.

5.2 Asymptotic Behaviour of the Fourier Coefficients of the ith Bit

We have just seen how to compute the coefficients P̂ (α). In this section we use
basic calculus techniques to study its asymptotic behavior.

Proposition 1

|P̂ (α)|2 = Θ

(
absN (mα)2

absN (α)2absN(2iα−N/2)2

)
The proof essentially follows from the following lemma.

Lemma 2. π2(1 − π2

12)(absN (y))2 ≤ N2 sin2(yπ
N) ≤ π2(absN(y))2

Proof. We use the fact that x2 − x4

3 ≤ sin2 x ≤ x2, for any x ∈ [−π, π], then:

– Left inequality: Let j be the only integer such that |y − jN | ≤ N
2 , then

N2 sin2(yπ
N) = N2 sin2(yπ

N − jπ) ≥ N2(yπ
N − jπ)2(1 − 1

3 (yπ
N − jπ)2) ≥

≥ π2(1− π2

12)(absN (y))2
.

– Right inequality: Similarly, N2 sin2(
yπ

N
) ≤ N2(

yπ

N
− jπ)2 = π2(absN(y))2.�

24 P. Morillo and C. Ràfols

To prove proposition 1, we first define j as the unique odd integer in [−2i, 2i]
such that |2iα − j N

2 | ≤ N
2 . Since cos2(2iαπ

N) = sin2(2iαπ
N − j π

2), proposition 1

is derived from expression (1) of |P̂ (α)|2 and lemma 2 for y = α, y = mα and
y = 2iα−N/2.

Summarizing, we have proven proposition 1 and the constants implied in the
symbol Θ() can be found explicitly, indeed,

K1 · absN (mα)2

absN(α)2absN(2iα− N
2)2

≤ |P̂ (α)|2 ≤ K2 · absN (mα)2

absN(α)2absN (2iα− N
2)2

,

where K1
def= (1

π2 − 1
12) and K2

def=
1

π2(1 − π2

12)2
.

Finally, if K3
def=

1
π2(1− π2

12)
, we prove

Lemma 3. |P̂ (α)|2 ≤ K3 · min

{
m2

absN (2iα− N
2)2

,
4r2

absN(α)2

}
.

Proof. The function g is equal to 0 in all but m elements of the domain and

therefore |ĝ(α)|2 ≤ m2

N2 , since each coefficient is the sum of m terms in the unit

circle. The inequalities of lemma 2 and expression (1) imply that |P̂ (α)|2 ≤
K3 · m2

absN (2iα− N
2)2

. To prove the other bound observe that |Ĝ(α)|2 ≤ 4r2

N2

and use expression (2) and lemma 2.
�

5.3 The Concentration of the ith Bit for Certain N

In the previous section we found an expression of the asymptotic behavior of the
coefficients of P which is hard to interpret. It is clear that the heavy coefficients
of P will be around the points that annihilate the denominator, but otherwise
it is not trivial to show that there exists a set Γ of size poly(n/ε) such that
||P − P|Γ ||22 ≤ ε.

In this section we prove that if N = r2i+1 ± m and either r ∈ poly(n) or
m ∈ poly(n) then P is concentrated. The result is a consequence of the two
following lemmas.

Lemma 4. For any ε > 0, ||P − P|Γ2i
||22 ≤ ε, where

Γ2i
def
= {χα : absN(2iα−N/2) ≤ O(

m2

ε
)}.

Proof. Let Γ c
k

def= {χα : absN (2iα−N/2) > k} then, using one of the bounds of
lemma 3 ∑

χα∈Γ c
k

|P̂ (α)|2 ≤ O(m2)
∑

χα∈Γ c
k

1
absN(2iα−N/2)2

< O
(m2

k

)
.

The Security of All Bits Using List Decoding 25

Taking k ∈ O(m2

ε), ||P − P|Γ2i
||22 ≤ ε. �

Similarly, using the other bound of lemma 3.

Lemma 5. For any ε > 0, ||P − P|Γ0 ||22 ≤ ε, where

Γ0
def
= {χα : absN (α) ≤ O(

r2

ε
)}.

That is, P is concentrated in Γ
def= Γ0 ∩ Γ2i and in case either r ∈ poly(n) or

m ∈ poly(n), the cardinal of this set is poly(n/ε). Because of lemma 1, we have
proven the following theorem.

Theorem 4. The code CBi is concentrated for all N = r2i+1 ±m, 0 < m < 2i,
with either r ∈ poly(n) or m ∈ poly(n).

5.4 The Hardness of the ith Bit for Certain N

We study the recoverability of CP . The recovery algorithm is adapted from
lemma 5 of [1] which proved that if B is a t-segment predicate, CB is recov-
erable. Combined with the concentration proven in theorem 4, the recoverability
of CP will prove the main result about the hardness of the ith bit for certain N.

Theorem 5. The code CBi is recoverable for all N = r2i+1 ± m with either
r ∈ poly(n) or m ∈ poly(n) for N a prime or an RSA modulus.

Proof. We first consider the case r ∈ poly(n). In this case, because of lemma 1
and lemma 5, CP

x is τ -concentrated in Γ ′
0

def= {χβ : β = αx mod N, absN (α) ≤
O(r2

τ)}.
The inputs of the recovery algorithm are a character χβ and a threshold

parameter τ (where 1/τ ∈ poly(n)). The output is a list containing x ∈ ZN such
that χβ ∈ Heavyτ (CP

x).
Since, CP

x is τ -concentrated in Γ ′
0, χβ ∈ Heavyτ (CP

x) implies χβ ∈ Γ ′
0 and

thus β = αx mod N for absN(α) ≤ poly(n/τ). The algorithm outputs the union
of the lists Lα such that Lα contains all x so that x = β/α mod N . If α ∈ Z∗

N

there is a single solution to this equation. If gcd(N, α) = d �= 1, the solution of
α

d
x = β mod

N

d
is either empty or a list

Lα =
{
x + i · N

d
mod N

}
i=0,...,d−1.

The union of the lists Lα (over all α such that abs(α) ≤ O(r2

τ)) contains
all x such that Heavyτ(CP

x) � χβ . For the length of the lists and the time of
constructing them be poly(n/τ), it must be that d ∈ poly(n), since Lα has length
d. This condition is trivially satisfied if N is a prime. If N is an RSA modulus,
gcd(N, α) �= 1 implies factoring N . So, for an RSA modulus N = r2i+1±m with
r ∈ poly(n), either the code CBi is recoverable or P is concentrated in a known

26 P. Morillo and C. Ràfols

set Γ0 of polynomial size which contains some element which allows to factorize
N , contradicting the unfeasibility of factoring RSA modulus.

The case m ∈ poly(n) is proven in a similar way but now taking into account
CP

x is τ -concentrated in Γ ′
2i

def= {χβ : β = αx mod N, absN (2iα − N/2) ≤
O(m2

τ)}. �

Theorem 2 states that, as a consequence of theorems 4 and 5, the code CBi is
list decodable for all N = r2i+1±m with either r ∈ poly(n) or m ∈ poly(n) and
N a prime or an RSA modulus.

Finally, we conclude

Theorem 6. The predicate Bi, ith bit, is a hard-core predicate for any one-way
function defined over ZN for which the multiplication code CBi is accessible, for
all N = r2i+1 ± m prime or RSA modulus such that either r ∈ poly(n) or
m ∈ poly(n).

This theorem is a consequence of the list decodability of the code CBi and
theorem 3.

This proves the hardness of all bits for N with a special binary representation,
but it also reproves the hardness of the O(log n) most and least significant bits
for all N of cryptographic interest.

– Most significant bits If n − i ∈ O(log n), then r ∈ poly(n). Theorem 6
proves the security of the first O(log n) most significant bits for all N prime
or RSA modulus for any one-way function defined over ZN for which the
multiplication code CBi is accessible.

– Least significant bits If i ∈ O(log n) then m ∈ poly(n). Theorem 6 proves
the security of the first O(log n) most significant bits for all N prime or RSA
modulus for any one-way function defined over ZN for which the multiplica-
tion code CBi is accessible.

6 The Security of All Bits for All N

This section is devoted to prove the hardness of all bits for all cryptographically
relevant N . First of all in subsection 6.1 we study the bounds given in section 5.2
more accurately. In subsection 6.2 we proceed to prove that P is concentrated
for N prime or RSA modulus. This result, together with the recovery algorithm
given in subsection 6.3 and the accessibility of CP , implies the security of the
internal bits for all N of cryptographic interest. This is summarized in theorem 9.

6.1 A Closer Look at the Asymptotic Behavior of |P̂ (α)|2

The bounds of section 5.2 are not enough to prove the concentration in the
general case. Therefore, in this section we will study the asymptotic behavior of
|P̂ (α)|2 in more detail.

The Security of All Bits Using List Decoding 27

As it was proven in proposition 1

|P̂ (α)|2 = Θ

(
absN(mα)2

absN(α)2absN (2iα−N/2)2

)
.

We introduce some notation to express the elements α ∈ ZN as a function of
some parameters useful to describe absN(α) and absN (2iα − N/2). Recall that
N = r2i+1 ±m, where 0 < m < 2i.

Some parameters. We define some parameters depending on α ≥ 0 or α < 0.
First consider the case α ∈ [0, N−1

2]. Denote δα ≡ α2i − N−1
2 mod N , where

δα ∈ [−N−1
2 , N−1

2] and let λα be the integer in [0, 2i−1 − 1] such that

α2i = (N − 1)/2 + δα + λαN. (3)

Let α be an integer in [−N−1
2 , 0). Denote δα ≡ α2i + N+1

2 mod N , where δα ∈
[−N−1

2 , N−1
2] and let λα be the integer in [0, 2i−1 − 1] such that

α2i = −(N + 1)/2 + δα − λαN. (4)

Finally, for any α ∈ [−N−1
2 , N−1

2] we define μα ∈ [0, r] as the only integer such
that absN(2iα− (N − 1)/2) = μα2i + δ̃α with δ̃α ∈ [0, 2i − 1].

From equations 3 and 4, if α ≥ 0,

α = ((N − 1)/2 + δα + λαN)/2i, (5)

and if α < 0,

α = (−(N + 1)/2 + δα − λαN)/2i. (6)

We emphasize that equations 3, 4, 5 and 6 are integer equalities.

The parameters μα and δ̃α are determined by δα. Indeed,

Lemma 6. For all α ∈ ZN , μα2i + δ̃α = |δα|.
Proof. We will prove that absN(2iα − (N − 1)/2) = |δα|. This is obvious when
α ≥ 0, since α2i− (N−1)/2 ≡ δα mod N and δα ∈ [−N−1

2 , N−1
2]. When α < 0,

note that

α2i − (N − 1)/2 ≡ α2i + (N + 1)/2 ≡ δα mod N.

Since δα ∈ [−N−1
2 , N−1

2], absN(α2i− (N − 1)/2) = |δα| by definition of absolute
value. �

Note that lemmas 4 and 5 in section 5.3 imply that ||P − P|Γ2i∩Γ0 ||22 ≤ ε. That
is, if there exists a set Γ where P is concentrated, then Γ ⊂ Γ0∩Γ2i . The choice
of these parameters is motivated by the remark that points α ∈ Γ0 ∩ Γ2i should
be close to small odd multiples of N/2i+1, that is, observing that N/2i+1 ≈ r,
we will have that absN (α) ≈ (2λα + 1)r ± μα, with λα and μα small. Indeed,

28 P. Morillo and C. Ràfols

Lemma 7. For all α ∈ ZN , absN (α) = (2λα + 1)r ± μα + R, with |R| ≤ λα.

Proof. First of all we consider the case α ∈ [0, N−1
2]. In this case absN (α) = α.

Suppose δα ∈ [0, N−1
2] and N = r2i+1 −m (i.e., Case 1 of section 5.1). Since

δα ≥ 0, lemma 6 implies δα = δ̃α + μα2i. Substituting in equation 5, we get

absN(α) = (2λα + 1)r + μα +
−(2λα + 1)m + 2δ̃α − 1

2i+1 .

Similarly for the rest of cases, that is: (1) δα ∈ [−N−1
2 , 0) and N = r2i+1−m,

(2) δα ∈ [0, N−1
2] and N = r2i+1+m and (3) δα ∈ [−N−1

2 , 0) and N = r2i+1+m,
we obtain

absN(α) = (2λα + 1)r ± μα +
±(2λα + 1)m± 2δ̃α − 1

2i+1 .

On the other hand, in the case α < 0, absN(α) = −α. Considering all the
possible combinations for the sign of δα and Case 1 and Case 2, as above, and
substituting in equation 6, we obtain

absN(α) = (2λα + 1)r ± μα +
±(2λα + 1)m± 2δ̃α + 1

2i+1 .

If λα = 0 it is easy to see that R = 0 and the lemma is true. Indeed, λα = 0
implies ±m±2δ̃α±1 = 0 mod 2i+1 due to the fact that equations 3 and 4 were
integer equalities. Because of the range of definition of m and δ̃α, this congruence
is equivalent to the equality ±m ± 2δ̃α ± 1 = 0 and therefore R = 0. Now, to
prove the lemma proceed by induction over λα. �
Corollary 1. For all α ∈ ZN , absN(α) ≥ λα(2r − 1).

Proof. Simply note that μα ∈ [0, r] and |R| ≤ λα. Then,

absN (α) = (2λα + 1)r± μα + R ≥ 2λαr + R ≥ λα(2r− 1). �

From these lemmas we can easily prove the following:

Lemma 8. absN (α)2absN(2iα− N−1
2)2 ≥ λ2

αμ2
αr222i+2 1

4
.

Proof. As we have seen in corollary 1, absN(α) ≥ λα(2r − 1), therefore

absN(α)2absN (2iα− N−1
2)2≥λ2

α(2r − 1)2(μα2i + δ̃α)2≥λ2
α(2r − 1)2(μα2i)2 ≥

≥ λ2
α

(2r − 1)2

(2r)2
(2r)2(μα2i)2 ≥ λ2

αμ2
αr222i+2 1

4
. �

Now it is easy to characterize the asymptotic behavior of |P̂ (α)|2 in terms of λα

and μα.

Proposition 2. For all α ∈ ZN such that λα > 0 and μα > 0

|P̂ (α)|2 < O
(1
λ2

αμ2
α

)
.

The Security of All Bits Using List Decoding 29

Proof. Since absN(mα) ≤ N/2, from proposition 1 and the lemma 8, if λα > 0
and μα > 0,

|P̂ (α)|2 < O

(
absN (mα)2

absN (α)2absN(2iα−N/2)2

)
< O

(N2

λ2
αμ2

αr222i+2

)
< O

(1
λ2

αμ2
α

)
.�

Before proceeding to prove our main theorem, we note that elements in ZN have
a convenient representation in these parameters.

Lemma 9. The following map is injective

π : [−N−1
2 , N−1

2] −→ [0, 2i−1 − 1] ×[0, r] × {±1} × {±1}
α
−→ (λα, μα, sα, sδ)

where sα = 1 if α ≥ 0 and −1 otherwise and sδ = 1 if δα ≥ 0 and −1 otherwise.

Proof. Reducing equations 3 and 4 modulo 2i it is clear that λα and sδ deter-
mine δ̃α modulo 2i and therefore δ̃α. Then α can be computed from π(α) using
equations 5 or 6. �

6.2 The Concentration of the ith Bit for All N

As a result of lemma 9 of the above section, we can describe the elements of ZN

as regions in [0, 2i−1 − 1]× [0, r]× {±1}× {±1}. Now we can present our result
about the concentration of the ith bit.

Theorem 7. P is ε-concentrated in Γ
def
= {χα : λα < O(1

ε), μα < O(1
ε)}.

Proof. Let Γk
def= {χα : λα ≤ k, μα ≤ k}, we will prove that∑

χα /∈Γk

|P̂ (α)|2 < O
(1
k

)
.

Note that ZN\Γk = {χα : λα = 0, μα > k} ∪ {χα : λα > k, μα = 0} ∪ {χα :
λα > k, μα ≥ 1} ∪ {χα : λα ≥ 1, μα > k}.

To bound the sum of |P̂ (α)|2 over the two first sets, the bounds of lemma 3
of section 5.2 will suffice, while we will need proposition for the other bounds.
Indeed, when λα = 0, using one of the bounds of lemma 3,∑

λα=0,μα>k

|P̂ (α)|2 ≤ O(m2)
∑

λα=0,μα>k

1
absN (2iα− (N − 1)/2)2

<

< O(m2)
∑

λα=0,μα>k

1

(δ̃α + μα2i)2
<

< O(m2)
∑

λα=0,μα>k

1
(μα2i)2

<

< O(1)
∑

λα=0,μα>k

1
μ2

α

< O
(1
k

)
.

30 P. Morillo and C. Ràfols

On the other hand, when μα = 0, using the other bound of lemma 3,∑
λα>k,μα=0

|P̂ (α)|2 ≤ O(r2)
∑

λα>k,μα=0

1
absN(α)2

<

< O(r2)
∑

λα>k,μα=0

1
λ2

α(2r − 1)2
<

< O(1)
∑

λα>k,μα=0

1
λ2

α

< O(
1
k

).

To conclude the proof we need to show that∑
λα>k,μα≥1

|P̂ (α)|2 +
∑

λα≥1,μα>k

|P̂ (α)|2 < O(
1
k

).

From proposition 6.2,

|P̂ (α)|2 < O
(1
λ2

αμ2
α

)
.

As a consequence,

∑
λα>k,μα≥1

|P̂ (α)|2 +
∑

λα≥1,μα>k

|P̂ (α)|2 ≤
∑

λα>k,μα≥1

1
λ2

αμ2
α

+
∑

λα≥1,μα>k

1
λ2

αμ2
α

=

=
∑

μα≥1

1
μ2

α

(∑
λα>k

1
λ2

α

)
+

∑
λα≥1

1
λ2

α

(∑
μα>k

1
μ2

α

)
< O(

1
k

).

We conclude that if k ∈ O(1
ε),

∑
χα /∈Γ

|P̂ (α)|2 ≤ ε as stated in theorem 7.

�
6.3 The Hardness of the ith Bit for All N

In the previous section we proved the concentration of the predicate Bi. To
complete the proof of the main theorem concerning its hardness, in this section
we prove the recoverability of the code CBi .

Theorem 8. The code CBi is recoverable for all N prime or RSA modulus.

Proof. This recovery algorithm is almost identical to the one given in [1].
Because of theorem 7 and lemma 1, CP

x is τ -concentrated in Γ ′ def= {χβ : β =

αx mod N, χα ∈ Γ}, where Γ
def= {χα : λα < O(1

τ), μα < O(1
τ)}.

The inputs of the recovery algorithm are a character χβ and a threshold
parameter τ , where 1/τ ∈ poly(n). The output is a list containing x ∈ ZN such
that χβ ∈ Heavyτ (CP

x).
Since, CP

x is τ -concentrated in Γ ′, χβ ∈ Heavyτ (CP
x) implies χβ ∈ Γ ′ and

thus β = αx mod N for λα < poly(n/τ) and μα < poly(n/τ). The algorithm
outputs the list L

def= {x : x = β/α mod N, χα ∈ Γ}. The length of the list and
the time of constructing it is poly(n/τ). �

The Security of All Bits Using List Decoding 31

Theorem 2 states that, as a consequence of theorems 7 and 8, the code CBi is
list decodable for all N prime or RSA modulus. We conclude

Theorem 9. If N is prime or is an RSA modulus, the predicate Bi is hard-core
for any one-way function defined over ZN for which the multiplication code is
accessible.

7 All Bits of the Paillier Encryption Scheme Are Secure

Let N = p ·q be an RSA modulus, given an element g ∈ Z∗
N2 such that N divides

the order of g, the Paillier trapdoor permutation, introduced in [10] is the map:

Eg : Z∗
N × ZN −→ Z∗

N2

(r, m)
→ rN gm

Taking r to be a random element and m the plaintext, the Paillier probabilistic
encryption scheme encrypts m as Eg(r, m) and is semantically secure under the
Decisional Composite N-th residuosity assumption.

In this section we will sketch the proof of the security of any bit P of the
message. We stress that by security of P we mean that we relate the ability of
an adversary in predicting P (m) from Eg(r, m) to the ability of recovering m
from Eg(r, m), and not to the ability of inverting Eg.

The concentration and recoverability of the multiplication code CP , where
P : ZN → {±1} is the predicate ith bit of the message, follows from our results
of section 6.3. Then, the code CP is list decodable.

The one-way function Eg has domain in Z∗
N × ZN , while the predicate has

domain in ZN , so we need to slightly change the definition of accessibility to
fit this situation. We will first give the access algorithm, then we will give the
new definition of accessible code and argue that this new definition is enough to
apply the list decoding methodology.

The access algorithm A, on input (N, g, Eg(r, x), j), chooses a random element
� ∈ Z∗

N , and outputs (Eg(r, x))j · �N . Note that

(Eg(r, x))j · �N ≡ Eg(rj · �, xj) mod N2.

It is not hard to see that for this access algorithm A the code satisfies the
following properties:

1. Code access: ∀x, j ∈ ZN , A(N, g, Eg(r, x), j) returns Eg(r′, x′) such that
C

PN,g
x (j) = PN,g(x′)

2. Well spread: For uniformly distributed C
PN,g
x ∈ CPN,g and j ∈ ZN , the

distribution of (r′, x′) ∈ Z∗
N × ZN satisfying Eg(r′, x′) = A(N, g, Eg(r, x), j)

is statistically close to the uniform distribution on Z∗
N × ZN

3. Bias preserving: For every codeword C
PN,g
x ∈ CPN,g ,

|Pr
(
CPN,g

x (j) = 1 : j ← ZN

)− Pr
(
PN,g(z) = 1 : z ← ZN

)| ≤ ν(n),

where ν is a negligible function.

32 P. Morillo and C. Ràfols

Compare these properties with the ones that an accessible code must verify
(see definition 10 of section 4). Both definitions are almost identical but now the
property that the code is well spread is for (r′, x′) ∈ Z∗

N × ZN and not on the
domain of the definition of the code.

Lemmas 2 and 3 of [1] prove that if the code CP is accessible with respect
to F , an oracle B predicting P from F with probability exceeding majP + ε
implies access to a corrupted codeword w such that Δ(Cx, w) ≤ minorCx − ε.
The property that the code is well spread is used in the proofs of these lemmas.
It is immediate to see that to do the same reasoning in the Paillier case we need
to require precisely the second condition above.

Summarizing, the definition we gave above is exactly the one we need to
prove that an oracle predicting P (x) from Eg(r′, x) gives access to a corrupted
codeword w sufficiently close to x. But to prove theorem 3 which states that
list decodability of CP plus accessibility implies that P is a hard-core of F ,
accessibility was only necessary to prove access to a corrupted codeword w.
Therefore, the argument we gave in this section with the concentration and
recoverability of the multiplication code CPN,g of section 6.3 implies the security
of all bits of the message of the Paillier trapdoor permutation.

We emphasize that the security of all bits of the Paillier encryption scheme
was only known based on a non-standard computational assumption [3].

8 Other Predicates

We note that theorem 6 is enough to reprove the hardness of segment predicates.
Recall from section 2 that a t-segment predicate is a predicate which changes
value t ∈ poly(n) number of times. Define G as

G(x) =
P (x + 1)− P (x)

2
,

and note that G(x) �= 0 for exactly t values of x. Although in this case we
cannot compute Ĝ(α) explicitly as before, we still have |Ĝ(α)|2 ≤ t2/N2. The
same arguments as in lemma 5 prove that P is concentrated up to ε in Γ0

def=
{χα : absN(α) ≤ O(t2

ε)} - this corresponds to claim 4.1 of [1].
In the last section we proved the security of all bits in the binary representation

of the preimage for any one-way function defined over ZN with multiplicative
access provided that N is odd. Note that the same proof would do for any other
“almost periodic” predicate. Indeed, for any d ∈ N define Pd : ZN → {±1} as 1
if [x] ∈ [kd, (k + 1)d − 1], k even, and −1 otherwise. Write N = r2d ±m, with
0 < m < d. Then all the results proven in the last section are also valid for Pd

just writing d instead of 2i.

9 Conclusion

In our opinion the list decoding methodology formalized in [1] has not received
enough attention. Because of the elegance and generality of the method and the

The Security of All Bits Using List Decoding 33

power of the different tools it uses it should be considered the starting point of
any bit security proof. In this paper we have extended the number of predicates
to which the list decoding methodology applies. As a result we prove the security
of all bits of any of the usual cryptographic one-way functions with multiplicative
access defined on a cyclic group of order N .

Acknowledgements

The authors would like to thank Eike Kiltz for his comments and suggestions
that contributed to make the paper more readable.

References

1. Akavia, A., Goldwasser, S., Safra, S.: Proving Hard-Core Predicates Using List
Decoding. In: Proc. of the 44th Symposium on Foundations of Computer Science
(2003)

2. Alexi, W., Chor, B., Goldreich, O., Schnorr, C.P.: RSA and Rabin functions: certain
parts are as hard as the whole. SIAM J.Comp. 17(2) (1988)

3. Catalano, D., Gennaro, R., Howgrave-Graham, N.: Paillier’s Trapdoor Function
Hides up to O(n) Bits. J.Cryptology 15(4) (2002)

4. Kushilevitz, E., Mansour, Y.: Learning Decision Trees Using the Fourier Spectrum.
In: Proc. of the 23rd Annual ACM Symposium on Theory of Computing (1991)

5. Gilbert, A.C., Muthukrishnan, S., Strauss, M.: Improved time bounds for near-
optimal sparse Fourier representation via sampling. In: Proc. of SPIE Wavelets XI
(2005)

6. Goldreich, O., Levin, L.: A hard-core predicate for all one-way functions. In: Proc.
of the 21st Annual ACM Symposium on Theory of Computing (1989)

7. Goldreich, O., Rubinfeld, R., Sudan, M.: Learning Polynomials with Queries: The
Highly Noisy Case. SIAM J. Discrete Math. 13(4) (2000)

8. H̊astad, J., Näslund, M.: The security of all RSA and discrete log bits. J. ACM 51(2)
(2004)

9. Näslund, M.: All Bits ax+b mod p are Hard. In: Koblitz, N. (ed.) CRYPTO 1996.
LNCS, vol. 1109, pp. 114–128. Springer, Heidelberg (1996)

10. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

A New Lattice Construction for Partial Key
Exposure Attack for RSA

Yoshinori Aono

Dept. of Mathematical and Computing Sciences
Tokyo Institute of Technology, Tokyo, Japan

aono5@is.titech.ac.jp

Abstract. In this paper we present a new lattice construction for a lat-
tice based partial key exposure attack for the RSA cryptography. We
consider the situation that the RSA secret key d is small and a suffi-
cient amount of the LSBs (least significant bits) of d are known by the
attacker. We show that our lattice construction is theoretically more ef-
ficient than known attacks proposed in [2,7].

Keywords: RSA, cryptanalysis, partial key exposure attack, lattice ba-
sis reduction, the Coppersmith technique.

1 Introduction

In this paper we present a new lattice construction for a lattice based partial
key exposure attack for the RSA cryptography in the situation that the secret
key d is small and its LSBs (least significant bits) are exposed.

Boneh and Durfee [2] proposed the lattice based attack for the RSA cryptog-
raphy. Its basic idea is to reduce the RSA key finding problem to problems of
finding small roots of a modular equation such as f(x1, . . . , xn) ≡ 0 (mod W),
which are solved by the Coppersmith technique [6], the technique that solves
a given modular equation by converting it to an algebraic equation by using
a lattice basis reduction algorithm such as the LLL algorithm [11]. Boneh and
Durfee [2] showed that the secret key d can be computed from a public key pair
e and N in polynomial time in log N when d < N0.292.

Since Boneh and Durfee’s work, many of its variants have been proposed [4,7].
Blömer and May [4] extended the technique for a partial key exposure attack,
i.e., a problem of computing d from e, N and some partial information on d.
This approach has been further extended by Ernst et al. [7] for several partial
key exposure situations. In this paper we consider one of those situations where
the secret key d is small and a sufficient amount of d is given (besides e and
N), and we show an improvement over the algorithm by Ernst et al.[7], thereby
solving an open problem raised in their paper.

In order to state our improvement we need some notations; see the next section
for the precise definition. Let (e, N) be an RSA public key pair and let d be its
corresponding secret key. Here as usual we use �N = (the bit-length of N) as

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 34–53, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

http://dx.doi.org/10.1007/978-3-642-00468-1_29

A New Lattice Construction for Partial Key Exposure Attack for RSA 35

Fig. 1. Our recoverable range. The limit of Boneh and Durfee (1) and that of Ernst
et al. (2) are corresponding to the left/above of the line β = 0.292 and the line
Ernst et al. 2© respectively. Our new improvement area (3) is the left side of the
dashed line Ours 1© in the area left of line 1 − 4β + 2δ = 0.

a security parameter. We consider the situation that �d = (the bit length of
d) is relatively small compared with �N , and some �0 least significant bits of d
are known. Let β = �d/�N and δ = (�d − �0)/�N ; that is, they are respectively
the ratios of the bit-length of d and its unknown part. Now the asymptotic
performance of the algorithms in [2,7] can be summarized in Figure 1. (This is
a rough image, not accurate.)

The algorithm of [2] works asymptotically when the parameters take values
in the left of a vertical line labelled “β = 0.292”. That is, it obtains the secret
key for

β < 1− 1√
2

= 0.292... and any δ. (1)

The algorithm of [7] works when

δ <
5
6
− 1

3

√
1 + 6β. (2)

That is it works when β and δ take values in the left/above of a curve labelled
Ernst et al. 2©. As shown in the Figure 1, the algorithm of [7] improves the solv-
able parameter range when δ is small; it has been however left open [7] to develop
an algorithm that has a better solvable parameter range than both [2] and [7].

In this paper we propose an algorithm that can work asymptotically when the
parameters take values in the left/above of the dashed line of Figure 1. More
precisely, it works when

36 Y. Aono

1− 4β + 2δ > 0 if 2
√

2(1− 2β)(β − δ)(δ − β)− 2β2 + 3β + δ − 1 < 0 (3)

and
1− 4β + 2δ ≤ 0 if δ <

5
6
− 1

3

√
1 + 6β. (4)

Note that the range (3) is our new improvement area which is the left/above
of the dashed line Ours 1© in Figure 1, while the range (4) is already given
by [7]. Consider the situation that we do not have any information on d, i.e.,
δ = β. Substituting this to (3) and (4), we have β < 1 − √

2/2 ≈ 0.292 and
β < 7/6 − √

7/3 ≈ 0.284 respectively. This means our range covers [7]’s range
when δ ≈ β.

This paper is organized as follows. In Section 2, we introduce some nota-
tions and lemmas about the lattice based partial key exposure attack. Section 3
provides the overview of the lattice based partial key exposure attack. In Sec-
tion 4 we describe the construction and the performance of our lattice. Section 5
provides the results of our computer experiments. The analysis of Section 4 is
explained in Section 6.

2 Preliminaries

We introduce some notations and state some known facts used in the following
discussions. Then we review some key technical lemmas used in the lattice based
attack.

We use standard RSA notations throughout this paper. A given RSA instance
is defined by p, q, e, and d, where p and q are large primes, e is a public key, and
d is a secret key. Let N = p× q, and let ϕ(N) be the Euler’s function; here we
will simplify assume that ϕ(N) = (p− 1)(q − 1). The key relation is

ed ≡ 1 (mod ϕ(N)). (5)

The partial key exposure attack is to compute the secret key d from partial
information on d, and the public key (e, N). In this paper, we consider the
situation that some LSBs of d are exposed, that is, recovering d from LSBs of d
(together with e and N). We use d0 to denote the exposed part and d̃ to denote
the non-exposed part. That is, we assume that

d = d̃ ·M + d0, (6)

where M = 2k and k = lg(d0)1. We will use M for denoting this number through-
out this paper. Define β = logN d and δ = logN d̃. That is, β and δ are the rough
ratios of the bit-length of d and d̃ relative to that of N respectively.

In the algorithm, we need to solve a modular equation such as f(x, y) ≡
0 (mod W) for a polynomial f(x, y). Furthermore, we want to obtain a solution
in a certain range. In general, this task is not easy. However there are some cases

1 We use lg(x) to denote the length of the binary representation of x.

A New Lattice Construction for Partial Key Exposure Attack for RSA 37

where we may be able to use the standard numerical method for solving modular
equations. The Howgrave-Graham lemma [9] provides us with one of such cases.

In order to state the Howgrave-Graham Lemma, we introduce the following
notation.

Definition 1 XY -norm. Let X and Y be natural numbers and f(x, y) =∑
i,j ai,jx

iyj be a polynomial with integral coefficient.
We denote the length of a coefficient vector of f(Xx, Y y) by ||f(x, y)||XY ,

i.e.,

||f(x, y)||XY
def=

√∑
i,j

a2
i,jX

2iY 2j .

We call this the XY -norm of f(x, y).

Lemma 1 (Howgrave-Graham [9]). For any positive integers X, Y and W ,
let f(x, y) be a bivariate polynomial consisting of w terms with integral coeffi-
cient. We suppose that the following holds

||f(x, y)||XY <
W√
w

.

Then we have
f(x, y) ≡ 0 (mod W) ⇔ f(x, y) = 0

within the range of |x| < X and |y| < Y .

Note that f(x, y) = 0 clearly implies f(x, y) ≡ 0 (mod W). What is important
is its converse. This lemma guarantees that the solution of f(x, y) ≡ 0 (mod W)
in the target range can be found (if they exist) from the solutions of f(x, y) = 0,
which can be obtained by the standard numerical method.

In order to use the lemma, we need to obtain a polynomial with a small XY -
norm. The key idea of the lattice based attack is to formulate this task as the
shortest vector problem and use approximate solutions computed by a polyno-
mial time lattice basis reduction algorithm for the shortest vector problem.

We introduce some definitions and some lemmas about the lattice. Con-
sider linearly independent vectors b1, . . . ,bn ∈ Rñ, then the lattice with basis
b1, . . . ,bn is defined by

L(b1, . . . ,bn) =

{
n∑

i=1

aibi

∣∣∣∣∣ ai ∈ Z for i = 1, . . . , n

}
. (7)

That is, the lattice is the set of integral linear combinations of its basis vectors.
We denote by n a number of vectors, which is usually called lattice dimension,
and denote by ñ a number of component of vector in basis, which we call lattice
component size. Note that the lattice is a additive subgroup of Rñ.

The shortest vector problem, for given basis b1, . . . ,bn, is to find a vector v
such that v ∈ L(b1, . . . ,bn) \ {0} and |v| ≤ |v′| for ∀v′ ∈ L(b1, . . . ,bn) \ {0}.

38 Y. Aono

That is, this problem is to find a non-zero vector having the minimum length in
L(b1, . . . ,bn).

In order to obtain polynomials with small XY -norms, we need to compute
short vectors as approximate solutions of this problem. We will use a polynomial
time algorithm, named LLL, proposed in [11]. Some improvements have been
proposed [13,14], but as shown later, these improvements are not essential for
our application.

The approximation ratio of the LLL algorithm is exponential, it is however
enough for our propose. The following theorem guarantees the upper bounds
of the length of the computed vectors. The LLL algorithm computes a special
basis v1, . . . ,vn, named reduced basis, from given basis b1, . . . ,bn. Our interest
is short vectors in the reduced basis in the following theorem.

Theorem 1. [2, Fact 3.3] Let b1, . . . ,bn be a given linearly independent basis.
Then we can find linearly independent lattice vectors v1 and v2 such that

|v1| ≤ 2(n−1)/4| det(L)|1/n, and
|v2| ≤ 2n/2| det(L)|1/(n−1).

(8)

Here, L is the lattice with basis b1, . . . ,bn, and det(L) is the determinant of
the lattice defined by using their Gram-Schmidt orthogonal basis b∗

1, . . . ,b
∗
n as

follows

det(L) =
n∏

i=1

|b∗
i |. (9)

We will use (9) to evaluate the determinant of our lattice in the later section.
Note that the shortest vector problem is defined on vectors, while our targets

are polynomials. Thus we consider a way to map polynomials to vectors. For
example, the polynomial f(x, y) = −3x3 + 4x2y− 2xy2 + 7xy3 is mapped to the
vector (−3X3, 4X2Y,−2XY 2, 7XY 3) by some natural numbers X and Y . To
state this correspondence formally, we first need to fix some linear ordering on
pairs (i, j) of nonnegative integers. With respect to this ordering let (i(t),j(t))
denote the t-th pair. Then our correspondence between polynomials and vectors
is defined as follows.

Definition 2 Polynomials ↔ vectors. Let J be a sequence of pairs of non-
negative integers, where we assume some linear order on J , let it be fixed, and
let ñ denote |J |, the length of the sequence. We also fix some positive integers X
and Y . W.r.t. these X and Y , for any f(x, y) =

∑
1≤t≤ñ ai(t),j(t)x

i(t)yj(t), the
following vector b is the vectorisation of f(x, y) with parameter X and Y , and
it is denoted by VJ (f ; X, Y).

On the other hand, for any b of size ñ, a polynomial f(x, y) defined from b
by interpreting it as below is called the functionalisation of b and it is denoted
by FJ(b; X, Y).

f(x, y) = ai(1),j(1)x
i(1)yj(1) + ai(2),j(2)x

i(2)yj(2) + · · · + ai(|J|),j(|J|)xi(|J|)yj(|J|)

↓ ↓ ↓
b = (ai(1),j(1)X

i(1)Y j(1) , ai(2),j(2)X
i(2)Y j(2) , . . . , ai(|J|),j(|J|)X

i(|J|)Y j(|J|)).

A New Lattice Construction for Partial Key Exposure Attack for RSA 39

Remark. When J is clear from the context, we often omit J and write as
V(f ; X, Y) and F(b; X, Y). Then from the definition, the following relationships
are immediate.

||f(x, y)||XY = |V(f ; X, Y)|, and
||F(b; X, Y)||XY = |b|. (10)

That is, these are equivalent to the length of a coefficient vector of f(Xx, Y y).

3 Overview of the Partial Key Exposure Attack

We give an overview of the lattice based partial key exposure attack in the
situation that LSBs of d are exposed. The goal of the attack is to compute
the secret key d from d0, least significant bits of d, and a given public key pair.
The lattice based attack achieves this goal by using a lattice reduction algorithm
and the Howgrave-Graham lemma. It is said in [7] (and some papers) that the
attack is effective if

(i) d, and unknown part of d are short,
(ii) e and N are of similar bit length, and
(iii) p and q are of similar bit length.

In order to be precede, we consider in this paper, the following conditions.

(a) δ = logN d̃ is smaller than 0.5,
(b) lg(e) = lg(N), and
(c) lg(p) = lg(q)

In the following, we assume all parameters satisfy these conditions. More
precisely, we will use the following inequalities in the later.

e < ϕ(N) and p + q < 3
√

N . (11)

Our objective is to compute d from a public key pair (e, N) and d0. As explained
in Introduction, the key relation is the modular equation (5), from which it is
easy to derive ed = 1− xϕ(N) = 1− x(y + N) for some x, y ∈ Z. Also by using
(6), we can deduce from the above that e(d̃ ·M + d0) = 1− x(y + N) and hence
we have

x(N + y) + (ed0 − 1) ≡ 0 (mod eM). (12)

We show here that it is relatively easy to enumerate all solutions (x, y) of
(12). First note that a solution (x, y) exists if for integer y,

gcd
(

N + y

g
,
eM

g

)
= 1 where g = gcd(N + y, eM, ed0 − 1).

In fact in this case, we can compute x by x =
(

1−ed0
g

)
·
((

N+y
g

)−1
mod eM

g

)
.

But clearly what we need is some specific solution of (12). Among solutions (x, y)
of (12), we say that (x0, y0) is useful if it indeed satisfies the following equation,
from which we can recover the secret key.

d =
1− x0(N + y0)

e
(13)

40 Y. Aono

Thus, our task is not computing some solutions (x, y), but computing this
useful solution among (x, y) satisfying (12). Below we use (x0, y0) to denote this
useful solution. Let us consider a size of the useful solution (x0, y0). We have the
following upper bounds. Here, we use (11) and the fact that ϕ(N) = N + y0 if
(x0, y0) is the useful solution.

|x0| =
∣∣∣∣ ed− 1
N + y0

∣∣∣∣ <
ed

ϕ(N)
< d = Nβ , and

|y0| = |N − ϕ(N)| = p + q − 1 < 3N0.5.
(14)

Now let X = �Nβ� and Y = �3N0.5�. Then, the useful solution (x0, y0) is a
solution of (12) satisfying |x0| < X and |y0| < Y .

Conversely, we consider some heuristic condition on δ for a solution satisfying
|x| < X and |y| < Y is useful. We assume that solutions of (12) are random
numbers on {0, . . . , eM − 1}2. Since the number of solution pairs of (12) is
smaller than eM , we expect the number of solutions satisfy |x| < X and |y| < Y
is smaller than

eM · 4XY

(eM)2
=

4XY

eM
≈ 4 ·Nβ · 3N0.5

N ·Nβ−δ
≈ N δ−0.5.

Thus, if this value is smaller than 1, we may expect a solution within the range
|X | < Nβ and |y| < N0.5 is only one, which is the useful solution guaranteed
by (14). From this observation we propose a condition δ < 0.5 and the following
heuristic assumption.

Heuristic Assumption. Consider the case δ < 0.5. Then, there is only useful
solution (x0, y0) within the range of |x| < Nβ , |y| < 3N0.5 of the following
equation.

x(N + y) + (ed0 − 1) ≡ 0 (mod eM)

Furthermore we can recover the secret key d by (13)2. �

Remark. This assumption shows we can obtain the secret key by the exhaustive
search when δ < 0.5.

For our discussion, let us define the following two functions3

fmain(x, y) def= x(N + y) + (ed0 − 1)
= (ed0 − 1) + Nx + xy, and

(15)

fM(x, y) def= M(−1 + x(N + y)). (16)
2 Moreover we can compute the factoring of N by ϕ(N) = N + y0.
3 Ernst et al. [7] reduced the problem to the problem of finding small solution of an

algebraic equation

fLSB(x, y, z) = eMx − Ny + yz + ed̃ − 1 = 0.

A New Lattice Construction for Partial Key Exposure Attack for RSA 41

1. Based on fmain(x, y) (and fM(x, y)), define a certain family of polynomials
h1(x, y), . . . , hn(x, y) such that

fmain(x, y) ≡ 0 (mod eM) ⇒ hc(x, y) ≡ 0 (mod (eM)m) for c = 1, . . . , n.

(Here m and n are some algorithm parameter defined later.)
2. Set X = �Nβ� and Y = �3N0.5�. Consider vectors by bc = VJ (hc; X, Y)

for c = 1, . . . , n. Here, a sequence J is a set of appropriately ordered integer
pairs (i, j) such that a monomial xiyj appears in hc(x, y).

3. For b1, . . . ,bn, compute reduced basis by a lattice basis reduction algorithm.
We denote by v1, . . . ,vn this reduced basis.

4. Define g1(x, y) and g2(x, y) by ga(x, y) = FJ (va; X, Y) respectively. Obtain
solutions of g1(x, y) = g2(x, y) = 0 numerically. Then from these solutions,
compute d as given by (13).

Fig. 2. Outline of the lattice based attack

fmain(x, y) is the left-hand side of equation (12). The motivation of fM(x, y)
will be explained later; here we only point out that fM(x0, y0) ≡ 0 (mod eM),
where (x0, y0) is a useful solution.

Now we summarise the above explanation. Our technical goal is to obtain
the useful solution (x0, y0) satisfying (12), in other words, a pair satisfying both
fmain(x0, y0) ≡ 0 (mod eM), |x0| < Nβ and |y0| < 3N0.5. For achieving this
technical goal by solving the modular equation, we make use of the Howgrave-
Graham Lemma, and for this purpose, we modify fmain(x, y) to some family of
functions with small XY -norm. The task of defining these polynomials is formu-
lated as the shortest vector problem, and a known polynomial time algorithm
such as the LLL algorithm is used. This is the rough sketch of the lattice based
attack. The outline of our algorithm is stated as Figure 2.

Some remarks may be necessary. Note first that m and n are algorithm pa-
rameters; m is chosen appropriately and n is the number of polynomials hc(x, y)
that is also determined appropriately based on m. Secondly note that we have
for |x| < X and |y| < Y the following relation between these polynomials.

fmain(x, y) ≡ 0 (mod eM) ⇒ hc(x, y) ≡ 0 (mod (eM)m) for c = 1, . . . , n
⇒ ga(x, y) ≡ 0 (mod (eM)m) for a = 1, 2 ⇔ ga(x, y) = 0 for a = 1, 2.

(17)
The key point of (17) is the relation ga(x, y) ≡ 0 (mod (eM)m) ⇔ ga(x, y) = 0
for a = 1, 2, |x| < X and |y| < Y . This holds when ||ga(x, y)||XY = |va| is
smaller than (eM)m/

√
w from the Howgrave-Graham lemma. (Here w is the

number of terms of each ga(x, y).) Then we have the relation

fmain(x, y) ≡ 0 (mod eM) ⇒ ga(x, y) = 0 for a = 1, 2.

Hence we can obtain the useful solution from computing all solutions of g1(x, y)=
g2(x, y) = 0 by some numerical method if it exists.

By (8) and (10), we have

||g1(x, y)||XY = |v1| ≤ 2(n−1)/4 det(L)1/n, and

42 Y. Aono

||g2(x, y)||XY = |v2| ≤ 2n/2 det(L)1/(n−1).

Since the second bound is larger, we obtain the following sufficient condition
for using the Howgrave-Graham lemma:

2n/2 det(L)1/(n−1) <
(eM)m

√
w

. (18)

We modify (18) to a more simple approximate bound as follows.

det(L)1/n < (eM)m (19)

Now our goal is to construct a lattice satisfying (19), and we will show in
the next section that it is possible if β and δ satisfies the condition (3) given in
Introduction.

4 Our Construction

In this section, we explain our construction and a main result. The largest dif-
ference between former algorithm and ours is a lattice construction satisfying
(19). We will give its analysis in detail in Section 6.

Let β and δ be assumed bounds defined above, m be an algorithm parameter
introduced in the above outline, τ be a parameter used to optimise the bounds
by β and δ. We fix them throughout this section. We introduce index series
Ia(m, τ, β, δ) for constructing our lattice L(m, τ, β, δ).

Definition 3. We define our sequence I1(m, τ, β, δ), I2(m, τ, β, δ) and I3(m, τ,
β, δ) (In short, I1, I2 and I3 respectively). Here we set

I1(m, τ, β, δ) = {(i, j) ∈ Z× Z|0 ≤ i ≤ m, 0 ≤ j ≤ i},
I2(m, τ, β, δ) = {(i, j) ∈ Z× Z|0 ≤ i ≤ m, i < j ≤ i + τm} and
I3(m, τ, β, δ) = {(i, j) ∈ Z× Z|0 ≤ i ≤ m, j ≤ 2(1− β)i} \ (I1 ∪ I2).

We consider the order ≺ in I1, I2 and I3 by the lexicographic order of (i, j)4. Then
we define the index sequence I(m, τ, β, δ) by concatenating I1, I2 and I3. That
is, order of elements in I is defined as follows for (i, j) ∈ Ik and (i′, j′) ∈ Ik′ ,

(i, j) ≺ (i′, j′) ⇔
{

k < k′ or
k = k′ and (i, j) ≺ (i′, j′) in Ik.

We define our polynomials fi,j(x, y) to construct our lattice (this is hc(x, y) in
the outline).

4 Notice that a symbol ≺ means R.H.S. is exactly larger than L.H.S., not equal. A
symbol 	 means R.H.S. is equal to or larger than L.H.S.

A New Lattice Construction for Partial Key Exposure Attack for RSA 43

Definition 4

fi,j(x, y) =

⎧⎨⎩ (eM)m−jxi−j(fmain(x, y))j for (i, j) ∈ I1
(eM)m−iyj−i(fmain(x, y))i for (i, j) ∈ I2
em−iyj−i(fM(x, y))i for (i, j) ∈ I3

(20)

Then we define a sequence J(m, τ, β, δ) = {(i′, j′)|a monomial xi′yj′ is appeared
in some fi,j(x, y)} where we assume the standard lexicographic order in J(m, τ,

β, δ). We simply denote this by J .

It is clear that fi,j(x0, y0) ≡ 0 (mod (eM)m) for (i, j) ∈ I. The number of
polynomials |I| is just n in Figure 2. Note also that |J | = ñ, the number of
components of each vector bi,j is O(|I|) since we can rewrite a set J by {(i, j) ∈
Z × Z|0 ≤ i ≤ m, 0 ≤ j ≤ i + (1 − 2β)m}. Hence |I| and |J | has a same order
Θ(m2).

By using these polynomials and indecies, we define our lattice L(m, τ, β, δ) by

L(m, τ, β, δ) = L(bi1,j1 , . . . ,bin,jn).

Here (i1, j1), . . . , (in, jn) are the index sequence in I and bi�,j�
= VJ (fi�,j�

; X, Y),
a vectorisation of fi�,j�

(x, y) with parameters X = �Nβ� and Y = �3N0.5�.
The lattice dimension and lattice component size of L(m, τ, β, δ) are |I| and |J |
respectively.

For evaluating the determinant of L, we will show

|b∗
i,j | = (eM)m−jX iY j for (i, j) ∈ I1,

|b∗
i,j | = (eM)m−iX iY j for (i, j) ∈ I2, and

em−jMmX iY j ≤ |b∗
i,j | < 2em−jMmX iY j for (i, j) ∈ I3.

(21)

Here b∗
i1,j1 , . . . ,b

∗
in,jn

is a Gram-Schmidt orthogonal basis of given basis. We
give the proof of these bounds in Section 6. (Lemma 3, Lemma 4 and Lemma
5). Now we assume that these bounds hold, and we introduce an “evaluator” for
deciding suitable τ . The evaluator eval(i, j) for b∗

i,j is defined by

eval(i, j) = logN

(|b∗
i,j |/(eM)m

)
. (22)

We define the evaluator for index sequence I by

eval(I) =
∑

(i,j)∈I

eval(i, j). (23)

Then we can state the condition (19) in terms of eval.

Lemma 2. For our index sequence I satisfying

eval(I) < 0, (24)

the condition (19) holds.

44 Y. Aono

Proof. By (9) and the definition of the evaluator, we have

N eval(I) = N
∑

(i,j)∈I eval(i,j) =
∏

(i,j)∈I

(|b∗
i,j |

(eM)m

)
= det(L)/(eM)|I|·m.

Thus, (24) is equivalent to det(L) < (eM)|I|·m. Which is indeed the condition
(19). �
Thus, we use eval(I) < 0 as our (approximate) sufficient condition that the lat-
tice based attack (under our construction of the lattice L) breaks a given RSA
instance. Note that this condition is based on our heuristic assumption and it
is only an approximate condition because of the approximation of (18) by (19);
yet further approximation is used below for estimating eval. This means that
the condition for parameters β and δ we will derive below is, strictly speaking,
not accurate nevertheless, we will argue by using our approximation for avoid-
ing unnecessary complications. Justification of our approximation analysis and
together with our heuristic assumption will be given by computer experiments
shown later.

Now by using the bound (21) (see Proposition 1 in Section 6.1), we can ap-
proximately evaluate eval(i, j) as follows5.

eval(i, j) ≈
⎧⎨⎩

iβ − (β − δ + 0.5)j (i, j) ∈ I1
(δ − 1)i + 0.5j (i, j) ∈ I2
(−1 + β)i + 0.5j (i, j) ∈ I3.

From this we can approximately estimate eval(I). From some calculation (see
Section 6.2) we have

eval(I) =
(

1
6
(β + δ − 0.5) +

τ

4
(2δ + τ − 1)− 1

12
(1− 2β − τ)3

1− 2β

)
m3 + o(m3)

(25)
for 1− 2β − τ > 0, and we have

eval(I) =
(

1
6
(β + δ − 0.5) +

τ

4
(2δ + τ − 1)

)
m3 + o(m3) (26)

for 1 − 2β − τ ≤ 0. Note that conditions 1 − 2β − τ > 0 and 1 − 2β − τ ≤ 0
are corresponding to the cases I3 �= φ and I3 = φ respectively. Then following
the argument of [2,7], we analyze the bound for the ideal case by assuming that
m is sufficiently large. (We draw a figure to show the bounds for some concrete
values of m, see Figure 4 in Section 5.)

First we consider the case of 1− 2β − τ > 0. Assuming that m is sufficiently
large, the condition (24) is approximately equivalent to

1
6
(β + δ − 0.5) +

τ

4
(2δ + τ − 1)− 1

12
(1− 2β − τ)3

1− 2β
< 0, (27)

5 Here a symbol A ≈ B means A
B

→ 1 when N (the RSA bit length) goes to infinity.

A New Lattice Construction for Partial Key Exposure Attack for RSA 45

where its left-hand side is minimised when τ takes value τ0 =
√

2(1− 2β)(β − δ).
Hence, substituting this to (27), we have

1
3

√
2(1− 2β)(β − δ)(δ − β)− 1

3
β2 +

1
2
β +

1
6
δ − 1

6
< 0. (28)

This is equivalent to (3).
Next we consider the case of 1− 2β− τ ≤ 0. Again assuming m is sufficiently

large, we have the following approximate condition (24).

1
6
(β + δ − 0.5) +

τ

4
(2δ + τ − 1) < 0. (29)

By similar argument, we substitute τ1 = 1−2δ
2 to τ for minimising (29), and

derive the following condition (29).

δ <
5
6
− 1

3

√
1 + 6β. (30)

This is equivalent to the condition proposed by [7]. Therefore, we can recover the
secret key of RSA in polynomial time in log N when β and δ satisfies (3) or (4).

5 Computer Experiments

We carried out our preliminary computer experiments to check that our approach
works and estimate its efficiency. We conducted our computer experiments on the
TSUBAME supercomputer6 We implemented our experiment program by the
C++ language using Shoup’s NTL [12] of version 5.4.2. We carried out the lattice
reduction part by L2 algorithm [13,14] with parameter δ = 0.99 and η = 0.51,7

and implemented the resultant calculation algorithm by [8]. We compiled our
source code by gcc-4.1.2 (64 bit version) with -O6 option.

The procedure of our experiments is shown in Figure 3. The algorithm part is
essentially the same as the outline in Figure 2. At Step 4, the vectors obtained
by the L2 algorithm are sorted by their length; this is because those vectors are
approximate ones and we cannot guarantee that v1 and v2 are the smallest in
reduced basis v1, . . . ,vn. We check the algebraic independence of g1 and g2 by
checking R(x) �= 0 holds or not. More precisely, we regard the experiment is
succeeded if R(x) �= 0 and R(x0) = 0.

Input parameters of this experiments are �, m, β and δ, which are respectively
the bit-size of N , the parameter for constructing lattice, the ratio of lg(d) to

6 TSUBAME is a grid type supercomputer at Tokyo Inst. of Tech., whose performance
is currently (by Top500, Nov. 2008) the 29th in the World. A node of the supercom-
puter which we used contains eight Opteron Dual Core model 880 processors of
2.4GHz and 32GB RAM. Note, however, we have not been able to make a parallel
version of our algorithm; TSUBAME’s massive parallelism has been used only for
reducing the total experiment time.

7 This δ is L2 algorithm’s parameter, not relating to the RSA secret key.

46 Y. Aono

Step 1: (Make sample RSA instance) Randomly choose �/2-bit primes p and
q, and let N = pq. (In our program, we choose p and q the Euler-
Jacobi pseudoprime to bases 2, 3, 5, 7 and 11.) Randomly choose �β�-bit
random odd integer as the secret key d such that gcd(d, (p−1)(q−1)) = 1,
and let M = 2�(β−δ)�� and d0 = d mod M . Compute the public key
e ≡ d−1 (mod (p− 1)(q − 1)), and let fmain(x, y) = x(N + y)+ (ed0 − 1),
and let y0 = 1 − p − q and x0 = (1 − ed)/((p − 1)(q − 1)).

Step 2: Let τ =
√

2(1 − 2β)(β − δ), X = �Nβ and Y = �3N0.5. Then con-
struct our lattice L(m, τ, β, δ).

Step 3: Apply the L2 algorithm for L(m,τ, β, δ) with L2 parameter (δ, η) =
(0.99, 0.51).

Step 4: Sort the vectors of reduced basis v1, . . . ,vn by these length to v′
1, . . . ,v

′
n.

Compute gi(x, y) = FI(v′
i, X, Y) for i = 1, 2.

Step 5: Check g1(x0, y0) = 0 and g2(x0, y0) = 0. (If g1(x0, y0) �= 0 or g2(x0, y0) �=
0, the experiment is failure.) Compute R(x) = Res(h1, h2) and check
R(x) �= 0 and R(x0) = 0 holds or not.

Fig. 3. Our computer experiment procedure

lg(N), and the ratio of lg(d̃) to lg(N). (See Figure 2 for the parameters m and
n, and see Section 3 for the parameters β and δ.) A word “dim.” means the lattice
dimension in experiments, i.e., n = |I| in our construction. By “total time”and
“L2 time” we mean the CPU time of Step 2 through Step 4 and that of Step
3 respectively. Recall that the lattice component size is bounded by a constant
time of the lattice dimension. Here, we disregard the time for computing the
resultant of g1 and g2. Results are in Table 1 and Table 2. Table 1 shows the
qualities of our lattices, that is, whether the experiment is succeeded or not, for
these parameters. On the other hand, Table 2 shows the computational time of
our experiments for various � and m, and fixed β and δ.

Quality of Lattice
For checking our approach indeed works and estimating the quality of our lattice
construction, we carried out our preliminary computer experiments.

Note first that the bounds (3) and (4) are the ideal ones obtained by the
asymptotic analysis assuming m is sufficiently large. For each given value of
m, we can determine the range of β and δ satisfying eval(I(m, τ0, β, δ)) < 0
by numerically analyzing the original expressions (i.e., (34) ∼ (36) of Appendix
A.2). Figure 4 shows the bounds of β and δ obtained in this way for some
m values, and the theoretical limit of our construction (3) and that of [7]’s
construction (2). It can be seen that these bounds get close to our ideal bound
when m gets large. We focus on the range of 0.28 ≤ β ≤ 0.32 and 0 ≤ ratio ≤ 0.2,
mainly our new improvement area.

Our computer experiments are summarized in Figure 5, which are for the cases
m = 10 and 14. The instance size � (= lg(N)) is 1024 for both cases; since these
are still preliminary ones, we conducted only one execution for each instance.
Note that a shade area in each figure is the area that eval(I(m, τ0, β, δ)) < 0

A New Lattice Construction for Partial Key Exposure Attack for RSA 47

obtained numerically for each m. A black circle (resp., a white circle) indicates
the parameter (β, δ) (or the point (β, (β − δ)/β)) that the experiment succeeds
(resp., fails). Those results are shown in detail in Table 1. For m = 10, the word
“yes” in the column “success” in the tables means R(x) �= 0 and R(x) = 0 at the
Step 5. On the other hand, “yes” for m = 14 means g1(x0, y0) = g2(x0, y0) = 0
at the Step 5. The difference is because of the resultant calculation is too heavy
operation for our C++ implementation. We expect this problem will be solved
by the technique of Glöbner basis.8

The word “no(1)” in the column “success” means g1(x0, y0) = 0 whereas
g2(x0, y0) �= 0 at the Step 5. In this case, we may expect to get the correct
solution by generating enough number of polynomials gi by changing X and
Y randomly within the same bit length. On the other hand, the word “no(0)”
means that g1(x0, y0) �= 0 and g2(x0, y0) �= 0, or R(x0) �= 0 at Step 5, which we
regarded as a failure.

Computational Time
Next we examine the efficiency of our algorithm based on our experiments. As
seen by our analysis and experiments, the algorithm shows better performance
by using large m. On the other hand, by using larger m, the lattice dimension also
get larger. More specifically, the lattice dimension is Θ(m2) by our construction.
We examine how this indeed effects to the running time of the algorithm.

Fig. 4. Our recoverable range for many m

We carried out computer experiments with parameters (β, δ) = (0.3, 0.225)
and (β, δ) = (0.4, 0.12), whereas parameters m and � are chosen as m = 6,
8, 10 and 12, and � = 512, 1024, and 2048. Table 2 is experiments for these
parameters. Total time and L2 time in these tables are the average running time
of five executions. Notice that we checked the algebraic independence of g1(x, y)
and g2(x, y), and compute the resultant R(x) for m = 6, 8 and 10. All of them are

8 We carried out the check of algebraic independence because referee’s comment sug-
gested it. However some of these checks are not completed at the deadline.

48 Y. Aono

success. However we did not check the algebraic independence for m = 12, only
checked g1(x0, y0) = g2(x0, y0) = 0. At this meaning, experiments for m = 12
are success.

These results show the total time and L2 time are close, which shows a lattice
reduction algorithm is the main part of the lattice based attack. From these
tables, we obtain our L2 time is approximately

Time ≈ 0.35
(

�

512

)2

·
(m

2

)8
· log2 � · log2 m sec for β =0.3 and δ=0.225, and

Time ≈ 0.6
(

�

512

)2

·
(m

2

)8
· log2 � · log2 m sec for β = 0.4 and δ = 0.12.

6 Analysis

This section provides the precise analysis for some results in Section 4. Our
objective is to derive our theoretical recoverable limit of our construction (28)
and (30).

In order to obtain these inequalities, we first prove the approximated estimation

eval(i, j) ≈
⎧⎨⎩βi − (β − δ + 0.5)j (i, j) ∈ I1

(δ − 1)i + 0.5j (i, j) ∈ I2
(−1 + β)i + 0.5j (i, j) ∈ I3

(31)

in Section 6.1. Next in Section 6.2 we explain the way to derive our theoretical
limit. We fix algorithm parameters and RSA instances throughout this section,
and denote f∗

i,j(x, y) the functionalisation of b∗
i,j . (We recall that {b∗

i,j}(i,j)∈I is
the Gram-Schmidt orthogonal basis of our basis
{bi,j}(i,j)∈I

def= {V(fi,j ; X, Y)}(i,j)∈I .)

m = 10 m = 14

Fig. 5. Summary of our experiments for � = 1024

A New Lattice Construction for Partial Key Exposure Attack for RSA 49

6.1 Approximating the Evaluator

We first compute the exact value of |b∗
i,j | for (i, j) ∈ I1 and I2 in Lemma 3

and Lemma 4 respectively. Next we consider the bound for |b∗
i,j | for (i, j) ∈

I3 in Lemma 5. Then we estimate the approximated value of eval(i, j) def=
logN (|b∗

i,j |/(eM)m) in Proposition 1.
The following lemmas are immediately derived by considering the diagonal

part of the matrix representation of L. Hence we omit the proofs of them.

Lemma 3. For any (i, j) ∈ I1, we have

|b∗
i,j | = (eM)m−jX iY j . (32)

Lemma 4. For any (i, j) ∈ I2, we have

|b∗
i,j | = (eM)m−iX iY j . (33)

On the other hand, the proof of the following lemma is a bit involved. See the
full version of this paper for the proofs of Lemma 3 to Lemma 5.

Lemma 5. For any (i, j) ∈ I3, we have

em−iMmX iY j ≤ |b∗
i,j | < 2em−iMmX iY j .

By using these lemmas, we obtain the approximated bounds for evaluators for
each (i, j).

Proposition 1

eval(i, j) ≈
⎧⎨⎩

βi− (β − δ + 0.5)j (i, j) ∈ I1
(δ − 1)i + 0.5j (i, j) ∈ I2
(−1 + β)i + 0.5j (i, j) ∈ I3

Table 1. Quality of our lattice for m = 10 and m = 14

Experiment
parameters

Results

β δ dim. L2 time Success
0.285 0.260 88 3 h 42 m yes
0.285 0.262 88 3 h 46 m no(1)
0.285 0.264 88 3 h 53 m no(0)
0.290 0.246 87 3 h 15 m yes
0.290 0.248 87 3 h 24 m no(1)
0.290 0.250 87 3 h 1 m no(0)
0.295 0.246 92 4 h 2 m yes
0.295 0.248 87 2 h 53 m no(0)
0.300 0.250 91 3 h 25 m yes
0.300 0.252 85 2 h 16 m no(0)

Experiment
parameters Results

β δ dim. L2 time Success
0.285 0.264 162 2 d 20 h yes
0.285 0.266 162 2 d 18 h no(1)
0.285 0.268 162 2 d 9 h no(0)
0.290 0.260 165 2 d 22 h yes
0.290 0.262 165 2 d 16 h no(1)
0.290 0.264 165 2 d 16 h no(0)
0.295 0.254 164 2 d 19 h yes
0.295 0.256 164 2 d 17 h no(0)
0.300 0.250 163 3 d 7 h yes
0.300 0.252 163 3 d 14 h no(1)
0.300 0.254 163 3 d 11 h no(0)

m = 10
m = 14

50 Y. Aono

Proof. As we explained at the overview, we assumed that

X ≈ Nβ, Y ≈ N0.5, and e ≈ N,

from which by using (6) we derive M = d−d0

d̃
≈ Nβ

Nδ = Nβ−δ.

Substituting these for each bound of b∗
i,j , we have by using eval(i, j) def= logN(|b∗

i,j|
(eM)m

)
,

eval(i, j) = logN (eM)−jX iY j ≈ βi− (β − δ + 0.5)j for (i, j) ∈ I1,
eval(i, j) = logN (eM)−iX iY j ≈ (δ − 1)i + 0.5j for (i, j) ∈ I2, and
eval(i, j) ≈ logN e−jX iY j ≈ (−1 + β)i + 0.5j for (i, j) ∈ I3. �

6.2 Some Calculations on eval(I)

This section shows how to get our conditions (28) and (30) in detail.
First we state the expressions for eval(I1), eval(I2), and eval(I3) derived from

(23) and Proposition 1.

eval(I1) =
m∑

i=0

i∑
j=0

eval(i, j) =
m∑

i=0

i∑
j=0

(iβ − (β − δ + 0.5)j) , (34)

eval(I2) =
m∑

i=0

i+
τm�∑
j=i+1

eval(i, j) =
m∑

i=0

i+
τm�∑
j=i+1

((δ − 1)i + 0.5j) , and (35)

eval(I3) =
m∑

i=
Bm�

2(1−β)i�∑
j=i+�τm

eval(i, j) =
m∑

i=
Bm�

2(1−β)i�∑
j=i+�τm

((−1 + β) + 0.5j) . (36)

Here we use B to denote τ
1−2β . Figure 6 shows an area of I1, I2 and I3. By

definition, these are sets of integral points in each Ik. The cross point of the line
j = 2(1 − β) and j = i + τm, i.e., (τ

1−2β m, 2(1−β)τ
1−2β m), exists below the vertex

point (m, 2(1−β)m) when 1−2β− τ > 0. Thus, we separate our discussion into
the case of 1− 2β − τ > 0 and that of 1− 2β − τ ≤ 0.

First we consider the case of 1 − 2β − τ > 0. This case corresponds I3 �= φ
and the following holds.

eval(I1) =
m∑

i=0

i∑
j=0

eval(i, j) =
1
6
(β + δ − 0.5)m3 + o(m3),

eval(I2) =
m∑

i=0

i+
τm�∑
j=i+1

eval(i, j) =
τ

4
(2δ + τ − 1)m3 + o(m3),

eval(I3) =
m∑

i=
Bm�

2(1−β)i�∑
j=i+�τm

eval(i, j) = − 1
12

(1− 2β − τ)3

1− 2β
m3 + o(m3).

A New Lattice Construction for Partial Key Exposure Attack for RSA 51

Table 2. Total time for �=512, 1024 and 2048

Experiment
parameters Results

β δ m deg. L2time Total time
0.3 0.225 6 36 1 m 6 s 1 m 8 s

8 58 10 m 31 s 10 m 42 s
10 91 1 h 25 m 1 h 26 m
12 124 6 h 13 m 6 h 15 m
14 171 25 h 28 m 25 h 35 m

0.4 0.12 6 35 2 m 4 s 2 m 7 s
8 54 16 m 32 s 16 m 46 s

10 77 1 h 10 m 1 h 11 m
12 117 10 h 11 m 10 h 14 m
14 150 29 h 56 m 30 h 3 m

Experiment
parameters Results

β δ m deg. L2time Total time
0.3 0.225 6 36 4 m 34 s 4 m 42 s

8 58 40 m 5 s 40 m 44 s
10 91 5 h 33 m 5 h 36 m
12 124 21 h 25 m 21 h 33 m
14 171 127 h 0 m 127 h 10 m

0.4 0.12 6 35 8 m 41 s 8 m 52 s
8 54 64 m 22 s 65 m 10 s

10 77 4 h 56 m 4 h 59 m
12 117 43 h 35 m 43 h 45 m
14 150 159 h 40 m 160 h 4 m

� = 512 � = 1024

Experiment
parameters Results

β δ m deg. L2time Total time
0.3 0.225 6 36 21 m 34 s 22 m 3 s

8 58 2 h 46 m 2 h 48 m
10 91 24 h 8 m 24 h 17 m

0.4 0.12 6 35 42 m 34 s 43 m 13 s
8 54 4 h 37 m 4 h 40 m

10 77 21 h 19 m 21 h 29 m

Our implementation code is not completely
optimized. These are for comparing the ra-
tio of the L2 times to the total times. The
times in these tables are the average run-
ning time of five executions. The resultant
check was carried out for m = 6, 8 and 10.

� = 2048

From these we derive the equation (25) for eval(I) def= eval(I1) + eval(I2) +
eval(I3).

We next consider the case of 1− 2β− τ ≤ 0. This is a case of I3 = φ, thus by
eval(I) = eval(I1) + eval(I2) we obtain (26).

0 i

j

m

C

I1

I2

I3

j = i

j = i + τm

j = 2(1 − β)i

Fig. 6. I1, I2 and I3

52 Y. Aono

7 Conclusion

We gave the new lattice construction for the lattice based attack for the RSA
cryptography in the situation that d is small and LSBs of d is exposed. By this
construction, the theoretical recoverable range has been improved as shown in
Figure 1, which solves the open problem raised in [7]. Also as shown by our
preliminary experimental results, the total efficiency of the lattice based attack
has been improved significantly compared with [7]. Some more improvement,
however, is necessary for using this technique with large m. One possibility is to
make use of parallelization for processing the lattice basis reduction algorithm.
From a theoretical view point, it would be interesting if we can understand the
limitation of this approach.

Acknowledgement

I am grateful to Osamu Watanabe for his advice, careful reading, and correct
some expressions. The author was supported by the Global CompView Project.
This research was supported in part by JSPS Global COE program “Computa-
tionism as a Foundation for the Sciences”.

References

1. Aono, Y.: Degree reduction of the lattice based attack for RSA. In: COMP2007-5,
vol.107, no. 24(20070419), pp. 33–40 (2007) (in Japanese)

2. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292.
IEEE Transactions on Information Theory 46(4), 1339–1349 (2000)

3. Boneh, D., Durfee, G., Frankel, Y.: An attack on RSA given a small fraction of the
private key bits. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514,
pp. 25–34. Springer, Heidelberg (1998)

4. Blömer, J., May, A.: New partial exposure attacks on RSA. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg (2003)

5. Coppersmith, D.: Finding a small root of a univariate modular equation. In: Mau-
rer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 178–189. Springer, Hei-
delberg (1996)

6. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. Journal of Cryptology 10(4), 233–260 (1997)

7. Ernst, M., Jochemsz, E., May, A., Weger, B.: Partial key exposure attacks on
RSA up to full size exponents. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 371–386. Springer, Heidelberg (2005)

8. Healy, A.D.: Resultants, Resolvents and the Computation of Galois Groups,
http://www.alexhealy.net/papers/math250a.pdf

9. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp.
131–142. Springer, Heidelberg (1997)

10. Jochemz, E., May, A.: A Strategy for Finding Roots of Multivariate Polynomials
with New Applications in Attacking RSA Variants. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006)

http://www.alexhealy.net/papers/math250a.pdf

A New Lattice Construction for Partial Key Exposure Attack for RSA 53

11. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261(4), 515–534 (1982)

12. Shoup, V.: NTL: A Library for doing Number Theory,
http://www.shoup.net/ntl/index.html

13. Nguyen, P., Stehlé, D.: Floating-Point LLL revisited. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 215–233. Springer, Heidelberg (2005)

14. Nguyen, P., Stehlé, D.: Floating-Point LLL (Full version),
ftp://ftp.di.ens.fr/pub/users/pnguyen/FullL2.pdf

15. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptsystems. Communications of the ACM 21(2), 120–128 (1978)

16. Schnorr, C.P.: A more efficient algorithm for lattice basis reduction. Journal of
algorithms 9(1), 47–62 (1988)

17. Wiener, M.J.: Cryptanalysis of short RSA secret exponents. IEEE Transactions on
Information Theory 36(3), 553–558 (1990)

http://www.shoup.net/ntl/index.html
ftp://ftp.di.ens.fr/pub/users/pnguyen/FullL2.pdf

Subset-Restricted Random Walks
for Pollard rho Method on Fpm

�

Minkyu Kim, Jung Hee Cheon, and Jin Hong

ISaC and Department of Mathematical Sciences
Seoul National University, Seoul 151-747, Korea

{minkyu97,jhcheon,jinhong}@snu.ac.kr

Abstract. In this paper, we propose a variant of the Pollard rho method.
We use an iterating function whose image size is much smaller than its do-
main and hence reaches a collision faster than the original iterating func-
tion. We also explicitly show how this general method can be applied to
multiplicative subgroups of finite fields with large extension degree.

The construction for finite fields uses a distinctive feature of the nor-
mal basis representation, namely, that the p-th power of an element is
just the cyclic shift of its normal basis representation, when the un-
derlying field is of characteristic p. This makes our method appropriate
for hardware implementations. On multiplicative subgroups of Fpm , our
method shows time complexity advantage over the original Pollard rho
method by a factor of approximately 3p−3

4p−3

√
m.

Through the MOV reduction, our method can be applied to pairing-
based cryptosystems over binary or ternary fields. Hence our algorithm
suggests that the order of subgroups, on which the pairing-based cryp-
tosystems rely, needs to be increased by a factor of approximately m.

Keywords: discrete logarithm problem, pairing, Pollard rho method,
normal basis.

1 Introduction

Let G be a finite cyclic group of order q generated by g. Given h ∈ G, the discrete
logarithm problem (DLP) over G is to find the smallest non-negative integer
x satisfying gx = h. The integer x, denoted by logg h, is called the discrete
logarithm of h to the base g. Given g and x, exponentiation gx(= h) can be
efficiently computed through the Square-and-Multiply method, but recovering
x from h = gx is considered to be difficult in many cases. Many cryptographic
algorithms have been proposed under the assumption that the DLP is hard to
solve under a specific presentation of the cyclic group.

The cyclic groups most widely used with cryptosystems are the multiplicative
subgroups of finite fields and the subgroups of elliptic curves defined over finite
fields. In practical use of finite fields, prime fields have drawn more attention,
than other fields, because prime fields are easier to implement on general purpose

� A part of this paper was made public through [1].

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 54–67, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

http://dx.doi.org/10.1007/978-3-642-00468-1_29

Subset-Restricted Random Walks for Pollard rho Method on Fpm 55

hardware and since the index calculus attack [2] is faster on binary fields than on
prime fields [6]. In contrast, with pairing-based cryptography, binary and ternary
fields are widely used as the base field over which Tate or Weil pairings are
defined, due to the size of their embedding degrees [3,4,11]. Note that the base
problems on which pairing-based cryptosystems are built can be transformed
into the DLP on binary or ternary fields through the MOV reduction [13,10].
This increases the significance of the study of DLP on extension fields.

In this paper, we propose an algorithm to solve the DLP in large order exten-
sion fields. The normal basis representation is used, and this makes our algorithm
suitable in hardware implementations. Our algorithm exploits the distinctive
feature of the normal basis representation, namely, that the p-th power of an
element is just the cyclic shift of its normal basis representation, where p is the
characteristic of the underlying field. This feature was used in [8,12,27] to speed
up the Pollard rho method on elliptic or hyperelliptic curves with efficient au-
tomorphisms. Our main contribution is in giving a precise complexity analysis
for the case when such feature is used to solve the DLP over finite fields of large
extension degree.

The Pollard rho method on a cyclic group G traces a random walk over G
by iteratively applying a function to G. The discrete logarithm of the target
can be computed when a collision is reached in the random walk. When the
iterating function is assumed to be random, a collision is expected to occur after
about

√|G| applications of the iterating function, due to the birthday paradox.
Thus the complexity of Pollard rho method is determined by the size of the
base group G on which random walk is performed and the running time of the
iterating function. Reducing either one of these two factors will result in speedup
of the Pollard rho method.

The recent work [7] proposes an improvement of the Pollard rho method on
prime fields by reducing the average time taken for computing each application
of the iteration function. In contrast, our method restricts the random walk to
a subset S of G so that a collision occurs after about

√|S| applications of the
iterating function, which is smaller than

√|G|. The main difficulty in doing this
was finding a fast iterating function with an image set S that was much smaller
than G. We make an explicit construction for subgroups of F×

pm , with the small
prime and large extension degree case as our main target. Our construction yields
speedup over the normal Pollard rho by a factor of 3p−3

4p−3
√

m.
We also show how our method can be applied to a pairing-based cryptosystem,

in which a bilinear map e : G1×G2 → GT is used. When a Tate or Weil pairing
is in use, G1 is a subgroup of points on an elliptic curve E(Fp�) and GT is a
cyclic subgroup of F×

pk� , where k is the embedding degree. The MOV attack [13]
transforms the DLP on G1 or G2 into a DLP on GT . When our algorithm is
applied to GT , which is a subgroup of F×

pk� , the complexity of the DLP on GT is

reduced by a factor of 3p−3
4p−3

√
k�. There are many cryptosystems [4,11] that sug-

gest the use of bilinear maps over binary or ternary fields, for computational and
communication efficiency reasons. To be more explicit, k� is set to 1132 and 726

56 M. Kim, J.H. Cheon, and J. Hong

in the binary and ternary curves suggested in [4,11]. On these parameters, our
method would give Pollard rho speedup by factors of 20.2 or 18.0, respectively.

We remark that, while we have achieved complexity lower than the straight-
forward application of Pollard rho, this does not conflict with the complexity
lower bound known [18] for generic algorithms solving DLPs, as our method
utilizes the encoding information for the group. When our construction is force-
fully placed within the generic algorithm framework, the gain we achieve can be
explained from the fact that some group operations are much easier than others,
which is a property that is ignored in the generic algorithm framework. In fact,
the result on generic algorithm complexity implies that, to achieve results better
than normal Pollard rho, we should either exploit the group encoding or invent
a method that mostly uses the fastest of the group operations.

Organization. In Section 2, we introduce the Pollard rho method and its vari-
ants. In Section 3, we present a variant of Pollard rho, called the random walk
restriction. In Section 4 and 5, we apply this method to finite fields of large ex-
tension degree and pairing-friendly elliptic curves over binary or ternary fields,
respectively. Section 6 concludes this paper.

2 Pollard rho Algorithm

Throughout this paper G = 〈g〉 will be a finite cyclic group of prime order q,
and h = gx will be the target we wish to find the discrete logarithm of. In this
section, we briefly review some variants of the Pollard rho method.

Let us start by explaining the parts that are common to all the variants.
Suppose we know (a, b), (c, d) ∈ Zq ×Zq, such that gahb = gchd and b �= d. Such
a pair implies the linear equation a + b · x ≡ c + d · x (mod q) and we can easily
solve for x from this equation. All variants of the Pollard rho method suggest
how to efficiently obtain such a double expression for a single element of G. The
general strategy for obtaining the double expression is explained next.

We say that a function f : G → G is exponent traceable, or allows exponent
tracing, with respect to g and h, if it is possible to express the function in the
form

f(gahb) = gfg(a,b)hfh(a,b),

for some easily computable functions fg, fh : Zq × Zq → Zq. Let us fix an
exponent traceable function f and take a random (a0, b0) ∈ Zq×Zq. We generate
a sequence (gi)i≥0 through iterative applications of f , i.e., we set

g0 = ga0hb0 and gi+1 = f(gi) for i ≥ 0.

Since G is finite, there must be integers μ ≥ 0 and λ > 0 satisfying gλ+μ =
gλ. The smallest of such integers are called the pre-period and period of the
sequence (gi)i≥0, respectively. The exponent traceable property of f implies
that we have access to the exponents (ai, bi) for each gi = gaihbi . Thus, an
appropriate collision of the generated sequence, i.e., the event of gi = gj with

Subset-Restricted Random Walks for Pollard rho Method on Fpm 57

bi �= bj , allows us to compute the discrete logarithm of h, through the method
described previously.

Below, we shall describe two exponent traceable iterating functions and some
methods for detecting collisions. Any combination of the two components will
produce a version of the Pollard rho algorithm.

2.1 Iterating Functions

Because the value λ + μ, called rho length, is expected to be
√

πq/2 when the
function f is chosen uniformly at random from the set of all functions on G,
an iterating function is considered to be of good design if its rho length is close
to

√
πq/2.

There are two main types of iterating functions. One is the original Pollard’s
iterating function and the other is called r-adding walks. They are defined as
follows. Let G = T0 ∪ T1 ∪ T2 be a partition of G consisting of roughly equal
sized subsets. The Pollard’s iterating function fP [15] is

fP (y) =

⎧⎪⎨⎪⎩
gy, if y ∈ T1,
y2, if y ∈ T2,
hy, if y ∈ T3.

Let r be a small positive integer and let T0∪· · ·∪Tr−1 be a partition of G into
roughly the same sized subsets. For each s = 0, . . . , r−1, set the multipliers Ms =
gmshns with randomly selected integers ms, ns. With the indexing function s :
G → {0, 1, ..., r− 1}, that specifies to which Ts(y) a given element y ∈ G belongs
to, the r-adding walk fT is defined to be

fT (y) = y ·Ms(y).

The work [17] shows that the expected rho length for random walk sequences
generated by an r-adding walk using any r ≥ 8 is roughly of the order O(

√
q)

on any cyclic group. Number of tests [25] over elliptic curves have shown that
the rho length of Pollard’s original iterating function is larger than

√
πq/2, but

that of 20-adding walks is very close to
√

πq/2.

2.2 Collision Detection

The most naive approach to finding collisions is to store all generated points
gi until a collision occurs. The main issues with collision detection is to do
this with minimal number of iterating function applications after the actual
collision and with a small amount of memory. Recall that μ and λ denote the
pre-period and period, respectively. Among the many collision detection methods
proposed [9,5,16,23,14], we briefly explain those suggested by Floyd, Brent, and
Quisquater-Delescaille.

Floyd. The central idea is to wait for a collision of type gi = g2i to happen. Three
applications of the iterating function are needed at each iteration to update the
two current states gi and g2i to gi+1 and g2(i+1), respectively. This will reach a col-
lision within λ+μ iterations, or equivalently, 3(λ+μ) applications of the iterating
function. So, with a good iterating function, 3

√
πq/2 applications are expected.

58 M. Kim, J.H. Cheon, and J. Hong

Brent. We explain a method by Teske [24], which is an optimized version of
the works [19,5]. Eight most recent gk, for which the index k are powers of 3,
are kept in storage. After each application of the iterating function, the current
gi is compared with the eight stored entries, and gi replaces the oldest of the
eight entries if a new power of 3 has been reached. This will terminate with a
collision between current gi and some gk from storage in {1.25 ·max(λ/2, μ) +
λ} iterations. When the iterating function is random, this is expected to be
1.229

√
πq/2 iterating function applications.

Distinguished points. [16] This was originally an idea for use with time-
memory tradeoff techniques. Distinguished points are those elements of G that
satisfy a certain condition, which is easy to check. For example, with a fixed
encoding for G, we may set them to be those elements with a certain number of
starting bits equal to zero.

After each application of the iterating function, the current gi is added to a
table, if and only if it is a distinguished point. The algorithm terminates when a
collision is found among the stored distinguished points. The distinguished point
should be defined so that this table is of manageable size.

Let θ be the fraction of elements in G which satisfy the distinguishing prop-
erty. The algorithm is expected to terminate with a collision after

√
πq/2 + 1/θ

applications of the iterating function. This method has the advantage that it
can lead to n-times speedup with n-processor parallelization [26].

3 Random Walk Restriction

In this section, we describe a general approach, previously applied to subgroups
of elliptic curves [8,12,27], that results in faster DLP solving than straightforward
applications of the Pollard rho variants. Recall that the complexity of Pollard rho
variants is

√
π|G|/2 evaluations of iterating function when the cost of collision

detection is ignored. This shows that two factors influence the complexity of
Pollard rho variants. One is the complexity of iterating function evaluation and
the other is the size of space on which the random walk is traversed. There are
corresponding two approaches to the speedup of Pollard rho. One is the reduction
of complexity for the evaluation of the iterating function and the other is the
restriction of the random walks to a subset of G. The former was studied in [7]
and the latter is the approach taken by this paper. After explaining the general
method, which we shall call random walk restriction, its application to more
concrete settings shall be explored in the next section.

3.1 Solving DLP with an Iterating Function of Small Image Size

Fix any function ϕ : G → G which allows exponent tracing, but which may not be
useful for solving DLP, i.e., the collisions generated are of the form gahb = gchd

with b = d. Let f : G → G be any exponent traceable iterating function suitable
for solving DLP on G and consider the function fϕ := ϕ ◦ f . It is clear that
fϕ maps Ḡ to Ḡ, where Ḡ = Im(ϕ) is a notation we shall use throughout this

Subset-Restricted Random Walks for Pollard rho Method on Fpm 59

section. Since f is always chosen to be exponent traceable, fϕ also satisfies
the same condition. Notice that during the random walking of the Pollard rho
method variants, we do not need G to be closed under the group operation.
Thus, we will have no problem using fϕ as an iterating function on Ḡ, which is
a smaller set and which should bring earlier collision.

It remains to see if fϕ will show properties close to a random function. We
have the following proposition to support this when ϕ is uniform in its number
of pre-images.

Proposition 1. Let ϕ : G → G be a function such that |ϕ−1(y)| = |G|/|Ḡ| for
all y ∈ Ḡ = Im(ϕ). If f is selected uniformly at random from GG, the set of all
functions on G, then fϕ = ϕ ◦ f is a random function on Ḡ.

Proof. Consider the function ϕ̃ : GG → ḠḠ mapping f
→ (fϕ = ϕ◦f). It suffices
to show that ϕ̃ is uniform in its number of pre-images, so that each function on
Ḡ is equally likely to be chosen, when each function f on G is equally likely to
be chosen.

Let y = (yj)j∈Ḡ ∈ ḠḠ be any function on Ḡ. We are viewing y as the function
on Ḡ sending j
→ yj . Suppose that x = (xi)i∈G ∈ GG satisfies ϕ̃(x) = y. Then
we must have ϕ(xj) = yj for each j ∈ Ḡ ⊂ G, but the equation ϕ̃(x) = y places
no restriction on xi for i ∈ G \ Ḡ. In fact, we have ϕ̃(x) = y if and only if
ϕ(xj) = yj for each j ∈ Ḡ. Since for each j ∈ Ḡ, xj may be any one of the
|G|/|Ḡ|-many elements of G, we have

|ϕ̃−1(y)| =
(|G|
|Ḡ|

)|Ḡ|
· |G||G\Ḡ|,

which is evidently uniform over all y ∈ ḠḠ. !
Even though this proposition allows us to intuitively believe that fϕ on Ḡ is as
good a random function on Ḡ as f is on G, as soon as we fix an iterating function
f , the induced function fϕ on Ḡ is an explicit function, so the above proposition
is no logical guarantee that fϕ will provide a good random walk. But this was
the situation with the original f to begin with.

For a function f , let us denote its expected time for evaluation by |f |. The
discussion so far allows us to state the main result of this section.

Theorem 1. Let ϕ : G → G be an exponent traceable function. Then, given
an exponent traceable iterating function f suitable for solving DLP on G and
a collision detection method, by working with fϕ = ϕ ◦ f over Ḡ = Im(ϕ), the
expected time to solve the discrete logarithm problem over G can be reduced by a

factor of
√

|Ḡ|
|G| · |fϕ|

|f | , compared to that of the original method over G.

Notice that our result is mostly independent of which variant of Pollard rho
algorithm we use. Use of the distinguished point method for collision detection
is an exception, if one is to be very exact, but even this case can be dealt with
by appropriately increasing its probability of appearance. As the expected rho
length has decreased, this should not cause trouble with distinguished point
storage requirements.

60 M. Kim, J.H. Cheon, and J. Hong

Remark 1. What can we expect of the random walk provided by fϕ, when ϕ is
not uniform in its number of pre-images? This situation implies that during the
walk provided by fϕ, some elements of Ḡ are more likely to occur than others. So
we should arrive at a collision even earlier than expected of a random function.
Such unevenness works to the DLP solver’s advantage.

Example 1. Let ω ∈ Zq be of order t. Suppose ϕ is defined in such a way that it
satisfies

ϕ(y) = ϕ(yωi

), i = 0, 1, . . . , t− 1,

in addition to being exponent traceable. Then the image of such a ϕ would be
at most 1

t -th of the total space. One possible candidate for such a function is
to define ϕ(y) as the minimum of y, . . . , yωt−1

under an appropriate ordering.
In general, such a ϕ would have high evaluation complexity, i.e., t exponenti-
ations and comparisons, but in a field of prime characteristic, ϕ can have low
complexity. In Section 4, we follow this lines of reasoning.

It should be clear by now that we do not have to define fϕ as a composition
of two functions. The essential idea is to design an iterating function, i.e., an
exponent traceable function on G, with an image space that is much smaller
than expected of random functions. In practice, it would be harder to design
such a mapping directly than by composition.

4 Application to Finite Extension Fields

In this section, we explain how the general theory is applied to a concrete case by
suggesting an image-restricting function on large extension fields of small finite
fields.

Let p be a prime and consider Fpm , the finite field of pm elements. In this
section, we apply results of the previous section to cyclic subgroups of F×

pm . We
fix a normal basis {α, αp, . . . , αpm−1} for Fpm and write elements of Fpm using
the coordinates in the normal basis, i.e., write β = b0α + · · · + bm−1α

pm−1
as

β = (b0, ..., bm−1). As before, our objective is to solve for logg h in a cyclic group
G = 〈g〉 ⊂ F×

pm of prime order q.
There is a natural way to give Fp an ordering, and once a basis for Fpm is fixed,

we can give Fpm the dictionary order using the ordering on Fp. In particular,
we have given an ordering to elements of G ⊂ F×

pm . We next define the map
ϕ : G → G by

ϕ(y) = min{ ypi | i = 0, . . . , m− 1}. (1)

When Fpm is encoded using the normal basis, the function ϕ outputs the smallest
of all cyclic shifts of its input. Notice that in any realization of ϕ that uses the
normal basis, the number i producing the minimum will be known, in which case
ϕ is naturally exponent traceable. The exponent are simply multiplied by pi.

To see the effects of the method given in Section 3.1, we need to compare the
image size |Ḡ| with |G|. In the process we shall see that ϕ is almost uniform in

Subset-Restricted Random Walks for Pollard rho Method on Fpm 61

its number of pre-images, but this information is not absolutely necessary for
our purpose.

Proposition 2. Let t be the smallest positive integer such that q|pt − 1. Then
|ϕ−1(y)| = t for every y ∈ Im(ϕ) \ {id}.

Proof. Let y ∈ G\{id}. It suffices to show that the number of distinct cyclic shifts
of y is t. Suppose ypj

= ypi

for some 0 ≤ j < i < m. Writing this as ypi−pj

= 1
and recalling |〈y〉| = q, we know q|pj(pi−j − 1). But, as gcd(q, pj) = 1, we must
have q|pi−j − 1. Thus, the choice of t implies that h, hp, · · · , hpt−1

are all the
distinct elements of G, and that this sequence is repeated for further powers. !

The proof of the above proposition has also shown that t is a divisor of m. If t
is a proper divisor of m, then we are looking at the situation G ⊂ Fpt ⊂ Fpm .
So, in any cryptographic application of G ⊂ F×

pm , we would have t = m, for,
if otherwise, we would just be wasting resources. We state implications of this
thought as a remark.

Remark 2. In any cryptographic application of G ⊂ F×
pm , the function ϕ of

equation (1) is almost pre-image uniform in that the number of pre-images is
|ϕ−1(y)| = m for every y ∈ Im(ϕ) \ {id}. Hence the size |Im(ϕ)| is very close to
|G|/m.

So far, from discussions of Section 3.1, we know that, by working with fϕ over
Ḡ, the DLP over G can be solved with

√
1/m factor reduction in the number

of iterating function applications. To see how this translates into real advantage
over the original direct approach on G, it remains to compare the speed of f to
that of fϕ.

To evaluate the function ϕ given by (1), we need to find the smallest among
m integers given as elements of (Fp)m = Fp × · · · × Fp. This can be done with
m− 1 comparisons in (Fp)m. To compare |ϕ| with |f |, we want to count this in
terms of operations in Fp.

Lemma 1. The number of operations in Fp required to compare two integers in
(Fp)m is expected to be p

p−1 (1− 1
pm).

Proof. Let x = (x1, . . . , xm) and y = (y1, . . . , ym) be two integers from (Fp)m.
If we had x1 = y1, x2 = y2, . . . , xi−1 = yi−1, but xi �= yi, then i comparisons in
Fp would be required to find the smaller of x and y. Thus our expected number
of comparisons is

m−1∑
i=1

i ·
(1

p

)i−1(
1− 1

p

)
+ m ·

(1
p

)m−1
,

where the last term is written separately because it looks slightly different. Eval-
uation of the sum results in our claim. !

62 M. Kim, J.H. Cheon, and J. Hong

This lemma shows that if p is large, the first comparison is likely to show us
which of the two is smaller, and for even p = 2, two comparisons in F2 are
enough. Thus we have the following lemma concerning the speed of ϕ.

Lemma 2. On the cyclic group G ⊂ F×
pm , we can expect to evaluate the function

ϕ given by equation (1) using (m− 1) p
p−1 (1− 1

pm) operations in Fp.

In general, evaluation of f is equal to one group operation in G. To compare
|ϕ| and |f |, we need to know the complexity of multiplication in Fpm in normal
basis representation.

To multiply two elements from a finite field under normal basis, classically,
the matrix T = (ti,j), defined by

αpi · αpj

=
∑

0≤k<m

ti−k,k−jα
pk

is considered. For x = (x0, ..., xm−1), y = (y0, ..., ym−1) ∈ Fpm , product xy is
computed as

z = xy = (z0, ..., zm−1), zi = (xi, ..., xi−1) T (yi, ..., yi−1)t,

where indexes are computed modulo m. Let d be the number of non-zero entries
in T . Then multiplication in Fpm can be done with at most 2md operations in
Fp using T . Furthermore, we always have d ≥ 2m−1 and better ways are known.

Let us say that a multiplication of two polynomials in Fp[x] of degree less
than m can be done with at most M(m) operations in Fp. Classical polynomial
multiplication yields M(m) ≤ 2m2, but it is known [21,22] that we may take
M(m) ∈ O(m log m log log m).

At the moment, the fastest method for a multiplication under normal basis
is one using Gauss periods [20]. The method for multiplication in Fpm requires
M(km)+ (2k + 1)m− 2 operations in Fp, for a positive number k corresponding
to the type of Gauss period used. Thus, even if we disregard the more expensive
M(km) ∈ O(km log(km) log log(km)) part, whose multiplicative constant we are
unaware of, we see that multiplication in Fpm requires at least 3m operations
in Fp.

Putting together Lemma 2 and the above information, we can say that the
time taken for ϕ evaluation is expected to be less than roughly p

3(p−1) multipli-
cations in Fpm . Since a usual iterating function involves one multiplication in
Fpm , recalling fϕ = ϕ◦f , we can state that |fϕ| < 4p−3

3p−3 |f |. The following is now
a corollary to Theorem 1.

Theorem 2. For a cyclic subgroup G of F×
pm , by using ϕ as given by equa-

tion (1) and by working with fϕ over Im(ϕ) ⊂ G, we can speed up variants of
the Pollard’s rho algorithm by a factor greater than 3p−3

4p−3

√
m.

For example, on the cyclic subgroups of F×
21024 , assuming that the normal Pollard

rho is faster than the index calculus method, we have m = 1024 and obtain
complexity reduction of the DLP by a factor of at least 24.26.

Subset-Restricted Random Walks for Pollard rho Method on Fpm 63

We end the explanation of our algorithm with a word of caution. When dealing
with characteristic p fields, since ϕ(h) = ϕ(hp), any iterating function which
utilizes p-th power cannot be used. In particular, with cyclic subgroups of the
binary field, the original iterating function fP , as suggested by the Pollard,
cannot be used. This shows that one should pay attention to any glitches that
could occur from interaction between ϕ and the iterating function.

Comparison with tag tracing. The recent work [7] suggests an improvement
of the r-adding walk called the tag tracing method for prime fields. It is also
possible to apply the idea of [7] to finite extension fields in the normal basis
representation, and we have explained this in the appendix.

Let us compare our random walk restriction and the tag tracing method on
Fpm . With random walk restriction, the expected rho length is reduced by a√

m-factor from that of the original r-adding walks while each step takes a little
bit more time, i.e., |f |+ |ϕ|, which is less than 4p−3

3p−3 |f |. On the other hand, in the
tag tracing method, the rho length is preserved, but each step is replaced by a tag
tracing step consisting of a tag computation, a table lookup, and an occasional
computation of f . That is, random walk restriction reduces the number of steps
taken by Pollard rho, while tag tracing decreases the effort taken by each step.

For the explicit example F21024 , our random walk restriction achieves time
reduction by a factor of 4p−3

3p−3
1√
m

= 5
96 . Hence unless tag computation and table

lookup combined requires less than 5
96 |f | time, random walk restriction will be

advantageous over tag tracing. On hardware implementations, where finite field
multiplication can be relatively fast, table lookups may become the bottleneck
and the goal of 5

96 |f | per iteration will be hard to achieve with tag tracing. In
addition, tag tracing requires a large storage space, which is not needed with
random walk restrictions.

5 Application to Pairing Based Cryptosystem

The security of pairing based cryptosystem using a bilinear map e : G1×G2 → GT

depends on the DLP on G1. For Weil or Tate pairings, G1 is the order q subgroup
of points in an elliptic curve E(Fp�) and GT is a cyclic subgroup of F×

pk� . The
positive integer k, called the embedding degree of G1, is usually chosen so that it
is difficult to solve DLP over F×

pk� through the index calculus method. Since the
MOV attack [13] reduces the DLP on G1 to the DLP on a subgroup of GT , it is
anticipated that the best way to solve the DLP over G1 is to use the Pollard rho
method on G1 or on the corresponding order q subgroup of GT . We shall discuss
the effect of our approach when it is applied to the subgroup of GT .

Let us look at a specific example. The short signature scheme [4] uses supersin-
gular curves E+(F3�) : y2 = x3 + 2x + 1 and E−(F3�) : y2 = x3 + 2x− 1. These
curves have the embedding degree 6 and we have GT = F×

36� . Thus our method
obtains a reduction of DLP complexity by a factor of 2

3

√
6� compared to what was

originally expected from the given cyclic group. Hence, one should take care to use
a larger cyclic subgroup of the elliptic curve than was previously used.

64 M. Kim, J.H. Cheon, and J. Hong

Table 1. Security parameters for short signature

Curve �
DLog security DLog security

(�log2 q�) under our approach
E− 79 126 118
E+ 97 151 142
E+ 121 155 146
E+ 149 220 211
E+ 163 256 247
E− 163 259 250
E+ 167 262 253

The table 1 was presented in [4], where DLog security refers to the bit size of
largest prime divisor of |E(F3�)|. We have added a column giving corresponding
values when the random walk restriction approach is considered, under the as-
sumption that the complexity of elliptic curve addition is roughly the same as
the complexity of finite field multiplication.

It is also noted in the paper [4] that due to the work [6], the DLP over F×
36�

is easier than on prime fields of equivalent size, so that a large F×
36� should be

taken. When this advice is followed, our method can work on the larger F×
36� to

obtain a better reduction of DLP complexity.
Another example is the ID-based encryption [3]. Originally, these systems

were built on elliptic curves over a large prime field Fp of embedding degree 2,
on which our methods would yield no advantage. But for efficiency reasons Gal-
braith [11] suggested the use of elliptic curves over characteristic 2 or 3 fields
with Tate pairing of embedding degrees 4 and 6, respectively. These curves are
y2 + y = x3 + x and y2 + y = x3 + x + 1 in characteristic 2 and y2 = x3 + 2x± 1
in characteristic 3. In each of these cases, our attack can be applied to reduce
the complexity by a factor of 3

5

√
4� and 2

3

√
6�, respectively. In practice, if one

chooses � = 283 or 397 with the curve y2 + y = x3 + x + 1, we can speed up the
Pollard rho algorithm by a factor of 20.2 or 23.9, respectively.

6 Conclusion

In this paper, we proposed a variant of the Pollard rho method, called random
walk restriction, and showed that this idea can be applied to cyclic subgroups
of finite fields of large extension degree. The main idea is to restrict the random
walk of the Pollard rho to a smaller set which results in an earlier collision. As a
result, our algorithm achieves speedup over the Pollard rho method by a factor
of approximately 3p−3

4p−3
√

m in subgroups of F×
pm and can be applied to pairing

based cryptosystems.

Acknowledgments. Minkyu Kim and Jung Hee Cheon were supported by the
Korea Science and Engineering Foundation (KOSEF) grant. (No. R01-2008-000-
11287-0)

Subset-Restricted Random Walks for Pollard rho Method on Fpm 65

References

1. Memoirs of the 3rd Cryptology Paper Contest, arranged by a Korean government
organization (written in Korean) (2007)

2. Adleman, L.: A Subexponential Algorithm for the Discrete Logarithm Problem
with Applications to Cryptography. In: Proc. of the IEEE 20th Annual Symposium
on Foundations of Computer Science (FOCS), pp. 55–60 (1979)

3. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

4. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. J.
Cryptology 17, 297–319 (2004)

5. Brent, R.: An improved Monte Carlo Factorization Algorithm. BIT 20, 176–184
(1980)

6. Coppersmith, D.: Fast Evaluation of Logarithms in Fields of Characteristic Two.
IEEE Trans. Inform. Theory 30(4), 587–594 (1984)

7. Cheon, J., Hong, J., Kim, M.: Speeding up Pollard Rho Method on Prime Fields.
In: Asiacrypt 2008. LNCS, vol. 5350, pp. 471–488. Springer, Heidelberg (2008)

8. Duursma, I., Gaudry, P., Morain, F.: Speeding up the Discrete Log Computation
on Curves with Automorphisms. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.)
ASIACRYPT 1999. LNCS, vol. 1716, pp. 103–121. Springer, Heidelberg (1999)

9. Knuth, D.: The Art of Computer Programming. Seminumerical Algorithms, vol. II.
Addison-Wesley, Reading (1969)

10. Frey, G., Rück, H.-G.: A remark concerning m-divisibility and the discrete log-
arithm problem in the divisor class group of curves. Math. Comp. 62, 865–874
(1994)

11. Galbraith, S.: Supersingular Curves in Cryptography. In: Boyd, C. (ed.) ASI-
ACRYPT 2001. LNCS, vol. 2248, pp. 495–513. Springer, Heidelberg (2001)

12. Gallant, R., Lambert, R., Vanstone, S.: Improving the Parallelized Pollard Lambda
Search on Binary Anomalous Curves. Math. Comp. 69, 1699–1705 (2000)

13. Menezes, A., Okamoto, T., Vanstone, P.: Reducing elliptic curve logarithms to
logarithms in a finite field. IEEE Trans. Inform. Theory 39(5), 1636–1649 (1993)

14. Nivasch, G.: Cycle Detection using a Stack. Information Processing Letters 90,
135–140 (2004)

15. Pollard, J.: A Monte Carlo Method for Index Computation (mod p). Math.
Comp. 32(143), 918–924 (1978)

16. Quisquater, J., Delescaille, J.: How easy is Collision Search? Application to DES.
In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434,
pp. 429–434. Springer, Heidelberg (1990)

17. Sattler, J., Schnorr, C.: Generating Random Walks in Groups. Ann.-Univ.-Sci.-
Budapest.-Sect.-Comput. 6, 65–79 (1985)

18. Shoup, V.: Lower Bounds for Discrete Logarithms and Related Problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

19. Schnorr, C., Lenstra Jr., H.: A Monte Carlo Factoring Algorithm with Linear
Storage. Math. Comp. 43(167), 289–311 (1984)

20. Gao, S., von zur Gathen, J., Panario, D., Shoup, V.: Algorithms for Exponentiation
in Finite Fields. Journal of Symbolic Computation 29(6), 879–889 (2000)

21. Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Computing 7,
281–292 (1971)

66 M. Kim, J.H. Cheon, and J. Hong

22. Schönhage, A.: Schnelle Multiplikation von Polynomen über Körpern der Charak-
teristik 2. Acta Informatica 7, 395–398 (1977)

23. Sedgewick, R., Szymanski, T., Yao, A.: The Complexity of Finding Cycles in Pe-
riodic Functions. SIAM Journal on Computing 11(2), 376–390 (1982)

24. Teske, E.: Speeding up Pollard’s rho Method for Computing Discrete Logarithms.
In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 541–554. Springer, Heidel-
berg (1998)

25. Teske, E.: On Random Walks for Pollard’s rho Method. Math. Comp. 70, 809–825
(2001)

26. van Oorschot, P., Wiener, M.: Parallel Collision Search with Cryptanalytic Appli-
cations. J. Cryptology 12, 1–28 (1999)

27. Wiener, M., Zuccherato, R.: Fast Attacks on Elliptic Curve Cryptosystems. In:
Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 190–200. Springer,
Heidelberg (1999)

Appendix: Tag Tracing Method with Normal Basis

In this appendix, we explain how tag tracing [7] can be applied to binary field
with normal basis representation. Of course, this can then be easily adapted to
any Fpm .

The tag tracing method is an improvement of the Pollard rho variant that uses
r-adding walks. The main idea is to reduce the complexity of each iterating step.
In the original r-adding walks, the iterative steps compute gi+1 = giMs from gi,
where s = s(gi) is the index of gi computed by a function s : G → {0, 1, . . . , r−1}.
This involves computing a full product at each step. But, if we have another
function s : G×G → {0, 1, . . . , r− 1}∪{fail} which computes the index of giMs

without fully computing the product, we can reduce the execution time for each
step as follows.

LetM = {Ms = gmshns}. Fix a positive integer � and prepare a pre-computed
table of M = (M ∪ {1}). Given the i-th element gi ∈ G of the walk, com-
pute the index si = s(gi). Without a full product of gi and Msi , compute
si+1 = s(gi, Msi). Now, since MsiMsi+1 ∈ M, we can evaluate next index
si+2 = s(gi, MsiMsi+1). Continue this process until we arrive at � iterations or
need to store current gj . It is easy to see that the execution time for each step
is expected to be

|s|+ (
1
�

+ Pfail)|f |,
where Pfail is the probability of s evaluation to fail.

To apply the above procedure to F2m with the normal basis representation,
define s : G → {0, ..., r − 1} by

s(z) = (z0, z1, . . . , z�log r−1),

for z = (z0, z1, . . . , zm−1) ∈ F2m . Given x,y ∈ F2m , since we can write their

product as xy = (xTyt, . . . ,xpm−1
T
(
ypm−1)t

), we can compute s(xy) with only

Subset-Restricted Random Walks for Pollard rho Method on Fpm 67

�log r� · m bit operations using pre-computed Tyt, T (yp)t, ..., T (yp�log r�−1
)t.

This does not involve a full product of x and y. Moreover, Pfail = 0.
Hence, the complexity of each steps of tag tracing is expected to

�log r� ·m +
1
l
·Mul,

where Mul denote the expected number of bit operations for multiplication in
F2m using normal basis.

Signing a Linear Subspace:
Signature Schemes for Network Coding

Dan Boneh1,�, David Freeman2,��, Jonathan Katz3,� � �, and Brent Waters4,†

1 Stanford University,
dabo@cs.stanford.edu

2 CWI and Universiteit Leiden,
freeman@cwi.nl

3 University of Maryland,
jkatz@cs.umd.edu

4 University of Texas at Austin,
bwaters@cs.utexas.edu

Abstract. Network coding offers increased throughput and improved
robustness to random faults in completely decentralized networks. In con-
trast to traditional routing schemes, however, network coding requires
intermediate nodes to modify data packets en route; for this reason, stan-
dard signature schemes are inapplicable and it is a challenge to provide
resilience to tampering by malicious nodes.

We propose two signature schemes that can be used in conjunction
with network coding to prevent malicious modification of data. Our
schemes can be viewed as signing linear subspaces in the sense that a sig-
nature σ on a subspace V authenticates exactly those vectors in V . Our
first scheme is (suitably) homomorphic and has constant public-key size
and per-packet overhead. Our second scheme does not rely on random
oracles and is based on weaker assumptions.

We also prove a lower bound on the length of signatures for linear
subspaces showing that our schemes are essentially optimal in this regard.

1 Introduction

Network coding [1,23] refers to a general class of routing mechanisms where, in
contrast to traditional “store-and-forward” routing, intermediate nodes modify

� Supported by DARPA IAMANET, NSF, and the Packard Foundation.
�� Research conducted at Stanford University. Supported by an NSF Mathematical

Sciences Postdoctoral Research Fellowship.
� � � Supported by NSF CNS-0447075, NSF CNS-0627306, the U.S. DoD/ARO MURI

program, and the US Army Research Laboratory and the UK Ministry of Defence
under agreement number W911NF-06-3-0001.

† Supported by NSF CNS-0749931, CNS-0524252, CNS-0716199, the U.S. Army Re-
search Office under the CyberTA Grant No. W911NF-06-1-0316, and the U.S. De-
partment of Homeland Security under Grant Award Number 2006-CS-001-000001.
Portions of this research were conducted while the author was at SRI International.

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 68–87, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

http://dx.doi.org/10.1007/978-3-642-00468-1_29

Signing a Linear Subspace: Signature Schemes for Network Coding 69

data packets in transit. Network coding has been shown to offer a number of
advantages with respect to traditional routing, the most well-known of which is
the possibility of increased throughput in certain network topologies. It has also
been suggested as a means of improving robustness against random network
failures since, as with erasure codes [6], the destination can recover the origi-
nal data (with high probability) once it has received sufficiently many correct
packets, even if a large fraction of packets are lost.

Because of these advantages, network coding has been proposed for applica-
tions in wireless and/or ad-hoc networks, where communication is at a premium
and centralized control may be unavailable; it has also been suggested as an
efficient means for content distribution in peer-to-peer networks [22], and for im-
proving the performance of large-scale data dissemination over the Internet [11].

A major concern in systems that use network coding is protecting against
malicious modification of packets (i.e., “pollution attacks”) by Byzantine nodes;
see [13,21] for two recent surveys and Section 2.2 for a discussion of previ-
ous work. The problem is particularly acute because errors introduced into
even a single packet can propagate and pollute multiple packets making their
way to the destination. This propagation is a consequence of the processing
that honest nodes, downstream of any corrupted packets, apply to all incoming
packets.

We propose two signature schemes that can be used to provide cryptographic
protection against pollution attacks even when the adversary can corrupt an
arbitrary number of nodes, eavesdrop on all network traffic, and insert or mod-
ify an arbitrary number of packets. Of course, the destination cannot possibly
recover the file unless it receives a minimum number of uncorrupted packets;
once this is the case, however, our schemes ensure that the destination can fil-
ter out any corrupted packets and recover the correct file. As our signatures
are publicly verifiable, intermediate nodes could discard corrupted packets as
well (though whether this is actually done will depend on the computational
resources of the intermediate nodes). Our first scheme is particularly efficient,
with both public-key size and per-packet overhead being constant. A detailed
discussion of our schemes, and their advantages relative to prior work, is given in
Section 2.3.

Our schemes can be viewed as signing linear subspaces in the sense that a
signature σ on the subspace V authenticates exactly those vectors in V . We
prove a lower bound on the signature length for any scheme for signing linear
subspaces (under some mild restrictions), showing that our constructions are
essentially optimal in this regard.

Outline of the paper. We provide a quick overview of network coding in
Section 2.1. In Section 2.2 we discuss prior work addressing adversarial behavior
in the context of network coding, and we describe the advantages of our schemes
in Section 2.3. In Section 3 we introduce appropriate definitions of security for
our setting and give relevant mathematical background. Sections 4 and 5 describe
our constructions, and in Section 6 we prove our lower bound.

70 D. Boneh et al.

2 Background

2.1 Linear Network Coding

In a linear network coding scheme [23] (the only type with which we will be
concerned), a file to be transmitted is viewed as an ordered sequence of n-
dimensional vectors v̄1, . . . , v̄m ∈ Fn

p , where p is prime. We will sometimes refer
to individual vectors as blocks or packeets. Before transmission, the source node
creates the m augmented vectors v1, . . . ,vm given by:

vi = (—v̄i—,

m︷ ︸︸ ︷
0, . . . , 0, 1︸ ︷︷ ︸

i

, 0, . . . , 0) ∈ Fn+m
p ;

that is, each original vector v̄i is appended with the vector of length m contain-
ing a single ‘1’ in the ith position. These augmented vectors are then sent by
the source as packets in the network. Since this step introduces Θ(m2) commu-
nication overhead per file, one typically chooses m " n.

Each node in the network processes packets as follows. Upon receiving packets
(i.e., vectors) w1, . . . ,w ∈ Fn+m

p on its � incoming communication edges, node i

computes the packet (vector) w =
∑

j=1 αi,jwj , where αi,j ∈ Fp. The resulting
vector w is then transmitted on the node’s outgoing edges. That is, each node
transmits a linear combination of the packets it receives. Thus, in a fault-free
execution of the scheme, all packets transmitted on any link in the network are
linear combinations of the original (augmented) file vectors v1, . . . ,vm.

The weights αi,j used by the ith node in the network can be established by a
central authority. More usefully (and more interestingly), however, these values
can also be chosen randomly and independently by each node in a completely
decentralized fashion. (In this case the scheme is sometimes referred to as “ran-
dom network coding”.) Although carefully designed codes can potentially have
better performance, it has been shown that random network coding does almost
as well with high probability [8,14,16].

There may be multiple destination nodes (i.e., receivers) who wish to obtain
the original file from the source. When any such node receives m linearly in-
dependent vectors w1, . . . ,wm, it can recover the original file as follows: For a
received vector wi, let wL

i denote the left-most n positions of the vector, and let
wR

i denote the right-most m positions. The receiver first computes an m × m
matrix G such that

G =

⎛⎜⎝—wR
1 —
...

—wR
m—

⎞⎟⎠
−1

. (1)

(The matrix on the right-hand side is invertible as long as all the received vectors
are correct.) The original file v̄1, . . . , v̄m is then given by

Signing a Linear Subspace: Signature Schemes for Network Coding 71⎛⎜⎝ —v̄1—
...

—v̄m—

⎞⎟⎠ = G ·

⎛⎜⎝ —wL
1 —
...

—wL
m—

⎞⎟⎠ .

We stress that the receiver need not be aware of the weights {αi,j} used by
any intermediate node in the network in order to recover the file. On the other
hand, if the weights used by the intermediate nodes are all known to the receiver
(and the receiver is aware of the network topology) then the matrix G can be
computed in advance and, in fact, the scheme can be run on the original file
vectors v̄1, . . . , v̄m rather than on the augmented vectors v1, . . . ,vm. In our
work, however, we will assume that augmented vectors are used.

2.2 Dealing with Adversarial Behavior

Network coding can offer resilience to random packet loss since the receiver
can reconstruct the original file from any set of m correctly formed, linearly
independent vectors. (Notice the similarity with linear erasure codes introduced
in other contexts, e.g., [6].) However, the in-network processing done by the nodes
makes the basic network coding scheme extremely susceptible to malicious errors
introduced by even a single intermediate node in the network. For starters, this
is because the basic network coding scheme offers no means of isolating the fault:
if one of the vectors wi received at the destination is incorrect, then that error
will be “spread” across (potentially) every block v̄1, . . . , v̄m of the reconstructed
file (cf. Equation 1). Furthermore, a single error introduced by one malicious
node will be propagated by every node further downstream. Thus, even a faulty
transmission on a single edge (say, due to a single corrupted node) will eventually
cause almost all vectors being forwarded in the network to be incorrect, and will
thus prevent reconstruction of even a portion of the file.

It is worth mentioning two trivial approaches that do not solve the problem.
The source cannot simply sign the packets it releases into the network using
a standard signature scheme, since the packets received at the destination will
almost surely be different from those issued by the sender. Signing the entire file
does not work either: although this would ensure that the receiver never accepts
an incorrect file, there is no efficient way for the receiver to recover the correct
file. (Since the receiver cannot distinguish correct packets from corrupt packets
a priori, it is forced to apply the reconstruction procedure from Section 2.1 to
all subsets of received vectors of size m.)

We now survey other techniques for combatting data pollution when network
coding is used (see [21] for further discussion).

Information-theoretic approaches. Information-theoretic methods for en-
abling recovery from malicious faults work by introducing redundancy into the
original packets transmitted by the sender [15,17,18]. Such techniques have the
advantage of not relying on any computational assumptions, but are limited
to offering security only against a relatively limited class of adversaries: these
constructions all (inherently) assume limitations on the number of nodes the

72 D. Boneh et al.

adversary can corrupt, the number of packets that can be modified, and/or the
number of links on which the adversary can eavesdrop. Moreover, the communi-
cation overhead introduced by these schemes is significant.

Cryptographic approaches. Existing cryptographic schemes (i.e., those that
protect only against a computationally bounded adversary) all work by provid-
ing a way for honest nodes to verify authenticity of individual packets. (Once
again we stress that this cannot be achieved in our setting using standard signa-
tures, since packets are modified in transit.) Cryptographic schemes can poten-
tially offer resilience against an adversary who eavesdrops on the entire network
and controls arbitrarily many malicious nodes, as long as the destination node
receives m correctly formed and linearly independent vectors. Existing schemes
also allow the receiver to recover gracefully when fewer than m legitimate vectors
are received; for example, if the destination receives k correctly formed vectors
spanning the subspace defined by the first k file blocks, then the receiver can at
least recover a portion of the original file. Cryptographic schemes have the addi-
tional advantage that intermediate nodes in the network can verify correctness
of individual packets, and hence reject ill-formed ones.

Although one could imagine using a symmetric-key approach, all existing work
focuses on the public-key setting where the sender’s public key is known to all
other nodes in the network. A public-key scheme makes the most sense when
the sender is multi-casting files to many receivers (as is typically the situation
when network coding is used), and furthermore enables all intermediate nodes
in the network to potentially verify authenticity of received packets.

Krohn et al. [22] (see also [11,12]) suggest homomorphic hashing for preventing
pollution attacks. In their scheme, the sender computes a hash hi = H(v̄i) of each
block of the file; given x = (h1, . . . , hm), anyone can check whether a packet w is
a correctly formed linear combination of the augmented vectors {vi}. Krohn et
al. assume a reliable channel for distributing the hash values for a given file, but
it is not hard to show (see Section 5) that signing x using a standard signature
scheme also results in a secure solution. The drawback of this approach is that
both the authentication information x and the public keys are large: x has size
Θ(km) and the public key has size Θ(kn), where k is a cryptographic security
parameter. (Thus, either the public key or x has size at least the square root
of the file size.) Sending all of x with each packet introduces a large overhead;
on the other hand, if x is partitioned among multiple packets then intermediate
nodes cannot verify authenticity of the packets they receive.

Zhao et al. [25] propose a scheme where the sender computes some authen-
tication information x derived from a vector orthogonal to the space V =
span({v1, . . . ,vm}); this authentication information x is then signed by the
sender (using a standard signature scheme). Unfortunately, this scheme also has
relatively poor performance: both x and the public keys have size Θ(k(n + m)).
Furthermore, the scheme can only be used for distributing a single file, after
which the public key must be refreshed. (Zhao et al. suggest some approaches
for handling multiple files, but do not prove security of any of these suggestions.)
An additional drawback of both this scheme and the one of Krohn et al. is that

Signing a Linear Subspace: Signature Schemes for Network Coding 73

they both require the sender to know the entire file before the authentication
information can be computed.

Charles et al. [7] present a homomorphic signature scheme [19] based on the
aggregate signature scheme of Boneh et al. [4]. This scheme has the property that
valid signatures σ1, . . . , σk on vectors w1, . . . ,wk, respectively, can be combined,
without knowledge of the signer’s secret key, to produce a valid signature σ on
any linear combination

∑
i αiwi. The scheme can only be used to sign a single

file, after which the public key must be refreshed; this restriction clearly limits
the scheme’s applicability. Public keys in this scheme have size Θ(k(m + n)),
meaning that it will be impractical to redistribute public keys over the network
even if network coding is used for key distribution. Charles et al. also do not
formally prove security of their scheme.

2.3 Our Contributions

We start with clean definitions of the problem at hand and formally define
what it means for a signature scheme to be secure in our context. Roughly
speaking, we consider signature schemes that can be viewed as authenticating
linear subspaces in the sense that a signature on the subspace V authenticates all
vectors in V . Our security definition requires that no adversary given a signature
on a vector subspace V can forge a valid signature for any vector not in V .
The application to network coding is clear: to distribute a file, simply sign the
subspace V = span{v1, . . . ,vm}. (Actually, both our security definition and our
constructions directly take into account the distribution of multiple files using a
single public key — in contrast to [7,25] — and so the formal definition and the
application to network coding is a bit more involved.)

We show two constructions meeting our definition. Our first scheme, called
NCS1, is a homomorphic signature scheme and has the advantage that signatures
can be associated with individual vectors rather than an entire subspace. (The
signature on a linear subspace V can then be taken as the collection of signatures
on a set of basis vectors for V .) Both the public key and per-vector signatures
in this scheme have constant size, making the scheme ideally suited for network
coding. This scheme also supports the transmission of streaming data, in the
sense that the sender need not be aware of the entire file before computing
the signature on the first packet. Security of this scheme is proved based on
the computational Diffie-Hellman assumption in bilinear groups, in the random
oracle model.

Our second construction, called NCS2, provides an instantiation of the scheme
of Krohn et al. [22] that is secure according to our definition. The primary
advantage of this scheme is that it can be proven secure based on a potentially
weaker assumption (namely, the discrete logarithm assumption) without random
oracles. We also show how our scheme can be viewed as a more efficient version
of the scheme of Zhao et al. [25].

Finally, we prove a lower bound on the length of secure signatures for linear
subspaces, under some mild assumptions on the signature scheme. Specifically,
we show (roughly speaking) that the signature on any subspace V must have

74 D. Boneh et al.

length proportional to dim(V). This shows that our two constructions are essen-
tially optimal in this regard. (Note that although our first scheme offers constant
size per-vector signatures, the signature on a subspace V consists of dim(V) per-
vector signatures and thus matches the lower bound.)

3 Definitions and Preliminaries

3.1 Signing a Linear Subspace

We abstract our problem, and seek to design a signature scheme that signs a
subspace V ⊂ FN

p so that only vectors y ∈ V are accepted as valid. We start by
defining the interface provided by such a system and then define security.

As discussed previously, we want our scheme to be useful for the distribution of
multiple files using the same public key. As such, every file will be associated with
an identifier id that is chosen by the sender at the time the first packet associated
with the file is transmitted.1 We then require that every packet forwarded in the
system is labeled with the appropriate identifier. (Adversarial nodes, of course,
can change the identifier any way they like.) The identifier provides a mechanism
for honest nodes, and the receiver in particular, to distinguish packets associated
with different files.

Definition 1. A network coding signature scheme is a triple of probabilistic,
polynomial-time algorithms (Setup, Sign, Verify) with the following functionality:

– Setup(1k, N). On input a security parameter 1k and an integer N , this algo-
rithm outputs a prime p, a public key PK, and a secret key SK.

– Sign(SK, id, V). On input a secret key SK, a file identifier id ∈ {0, 1}k, and
an m-dimensional subspace V ⊂ FN

p (with 0 < m < N) described as a set of
basis vectors v1, . . . ,vm, this algorithm outputs a signature σ.

– Verify(PK, id,y, σ). On input a public key PK, an identifier id ∈ {0, 1}k, a
vector y ∈ FN

p , and a signature σ, this algorithm outputs either 0 (reject) or
1 (accept).

We require that for each (p, PK, SK) output by Setup(1k, N), the following
holds: for all m-dimensional subspaces V ⊂ FN

p with 0 < m < N , and for all
id ∈ {0, 1}k, if σ ← Sign(SK, id, V) then Verify(PK, id,y, σ) = 1 for all y ∈ V .

The signature σ output by Sign can be viewed a signature on the vector space V .
“Homomorphic signatures” (cf. [19]) are a special case that is more precisely
modeled by a definition in which the Sign algorithm produces signatures σ1, . . . ,
σm on the basis vectors v1, . . . ,vm, and the collection of these signatures con-
stitutes a signature on V . This is encapsulated in the following definition.
1 One can think of this identifier as being equivalent to a filename, though for our

first scheme we require that identifiers be unpredictable (they need not be random).
Unpredictability is easily achieved by concatenating an arbitrary filename with a
random string.

Signing a Linear Subspace: Signature Schemes for Network Coding 75

Definition 2. A homomorphic network coding signature scheme is a tuple of
probabilistic, polynomial-time algorithms (Setup, Sign,Combine,Verify) with the
following functionality:

– Setup(1k, N). On input a security parameter 1k and an integer N , this algo-
rithm outputs a prime p, a public key PK, and a secret key SK.

– Sign(SK, id,v). On input a secret key SK, a file identifier id ∈ {0, 1}k, and
a vector v ∈ FN

p , this algorithm outputs a signature σ.

– Combine(PK, id, {(βi, σi)}
i=1). On input a public key PK, a file identifier

id, and a set of tuples {(βi, σi)}
i=1 with βi ∈ Fp, this algorithm outputs a

signature σ.
(The intuition is that if each σi is a valid signature on the vector vi, then σ

is a signature on
∑

i=1 βivi.)

– Verify(PK, id,y, σ). On input a public key PK, an identifier id ∈ {0, 1}k, a
vector y ∈ FN

p , and a signature σ, this algorithm outputs either 0 (reject)
or 1 (accept).

We require that for each (p, PK, SK) output by Setup(1k, N), the following hold:

– For all id and all y ∈ FN
p , if σ ← Sign(SK, id,y) then Verify(PK, id,y, σ) = 1.

– For all id ∈ {0, 1}k and all sets of triples {(βi, σi,vi)}
i=1, if it holds that

Verify(PK, id,vi, σi) = 1 for all i, then

Verify
(
PK, id,

∑
i βivi, Combine

(
PK, id, {(βi, σi)}

i=1

))
= 1.

The following lemma, a proof of which is trivial, shows that homomorphic net-
work coding signatures are indeed a special case of network coding signatures.

Lemma 3. Let S2 = (Setup2, Sign2,Combine2,Verify2) be a homomorphic net-
work coding signature scheme. Then S1 = (Setup1, Sign1,Verify1) defined as fol-
lows is a network coding signature scheme.

– Setup1(1k, N) runs Setup2(1k, N) and outputs the result.

– Sign1(SK, id, V) runs Sign2(SK, id,v1), . . . , Sign2(SK, id,vm), where v1,
. . ., vm is any basis of V . It then outputs σ = ((v1, σ1), . . . , (vm, σm)).

– Verify1(PK, id,y, σ) parses σ as ((v1, σ1), . . . , (vm, σm)), and computes coef-
ficients {βi} such that y =

∑
i βivi (if no solution exists, then it outputs 0).

Finally, it outputs Verify2

(
PK, id, y, Combine2

(
PK, id, {(βi, σi)}m

i=1

))
.

We say a basis {vi}m
i=1 of a subspaceV ⊆ FN

p is properly augmented (cf. Section 2.1)
if the last m coordinates of each vi form a unit vector with a 1 in the ith position.
Abusingnotation,we sayV is properly augmented if it is describedusing a properly
augmented basis. Let n = N −m. If v1, . . . ,vm is a properly augmented basis of
V , then for any y ∈ FN

p with y = (y1, . . . , yn, yn+1, . . . yn+m) we have

y ∈ V ⇐⇒ y =
m∑

i=1

yn+ivi. (2)

76 D. Boneh et al.

This observation allows us to simplify the construction of Lemma 3 when we
only use (Setup1, Sign1,Verify1) to sign properly augmented vector spaces. (This
suffices for our application to network coding.) Namely, Sign1(SK, id, V) simply
outputs σ = (σ1, . . . , σm) (where the σi are computed as in Lemma 3), and
Verify1(PK, id,y, σ) outputs

Verify2

(
PK, id, y, Combine2

(
PK, id, {(yN−m+i, σi)}m

i=1
))

.

Security. We define security of a network coding signature scheme, and say that
a homomorphic network coding signature scheme S2 is secure if the network
coding signature scheme S1 constructed from S2 as in Lemma 3 is secure.

Definition 4. A network coding signature scheme S = (Setup, Sign,Verify) is
secure if the advantage of any probabilistic, polynomial-time adversary A in the
following security game is negligible in the security parameter k:

Setup: The adversary A sends a positive integer N to the challenger. The chal-
lenger runs Setup(1k, N) to obtain (p, PK, SK), and gives p and PK to A.

Queries: Proceeding adaptively, A specifies a sequence of vector subspaces
Vi ⊂ FN

p . For each i, the challenger chooses idi uniformly from {0, 1}k, and gives
idi and σi ← Sign(SK, idi, Vi) to A.

Output:A outputs id∗ ∈ {0, 1}k, a non-zero vector y∗ ∈ FN
p , and a signature σ∗.

The adversary wins if Verify(PK, id∗,y∗, σ∗) = 1, and either (1) id∗ �= idi for
all i (a type 1 forgery), or (2) id∗ = idi for some i but y∗ �∈ Vi (a type 2 forgery).
The advantage NC-Adv[A,S] of A is defined to be the probability that A wins
the security game.

We require the adversary to output a non-zero vector y∗ since the zero vector
lies in every linear subspace. (Furthermore, by adding a dimension it is possible
to rule out type-1 forgeries on the zero vector if desired.) Note also that it is not
counted as a forgery if A obtains a signature σ on a vector space V and outputs
a valid signature σ′ on a vector space V ′ ⊂ V . Indeed, in the context of network
coding this would not be problematic.

3.2 Bilinear Groups and Complexity Assumptions

We briefly review the framework of groups with bilinear maps.

Definition 5. A bilinear group tuple is a tuple (G1, G2, GT , p, e, ϕ) with the
following properties:

1. G1, G2, GT are cyclic groups of prime order p, in which random sampling
and group operations are efficiently computable.

2. e : G1 ×G2 → GT is an efficiently computable map satisfying the following:
(a) Bilinearity: for any g ∈ G1, h ∈ G2, and a, b ∈ Z, e(ga, hb) = e(g, h)ab.

Signing a Linear Subspace: Signature Schemes for Network Coding 77

(b) Non-degeneracy: if g generates G1 and h generates G2, then e(g, h) gen-
erates GT .

3. ϕ : G2 → G1 is an efficiently computable isomorphism.2

For cryptographic applications, we require that the discrete logarithm problem —
i.e., computing x given g and gx — be infeasible in the groups G1, G2, GT . Given
an algorithm A that takes as input two elements g, h in a group G and outputs
an integer x in {0, . . . , |G| − 1}, we define DL-Adv[A, G] to be the probability
that h = gx, taken over inputs (g, h) and the random coins of A.

Currently the only known bilinear group tuples in which the discrete logarithm
problems are believed to be infeasible are those for which G1, G2 are (subgroups
of) groups of rational points on elliptic curves or abelian varieties over finite
fields; GT is (a subgroup of) a multiplicative group of a finite field; and e is
(a variant of) the Weil pairing or Tate pairing [9]. Elliptic curves and abelian
varieties with the desired properties are called “pairing-friendly.” Bilinear group
tuples as described in Definition 5 exist on all pairing-friendly elliptic curves and
abelian varieties with embedding degree k > 1.

The proof of security of our first signature scheme (Section 4) relies on the as-
sumption that the co-computational Diffie Hellman (co-CDH) problem in (G1, G2)
— i.e., computing gx ∈ G1 given g ∈ G1 \{1} and h, hx ∈ G2 \{1}— is infeasible.
Given A that takes as input g ∈ G1, h ∈ G2, and z = hx ∈ G2, and outputs an
element ω ∈ G1, we define co-CDH-Adv[A, (G1, G2)] to be the probability that
ω = gx, taken over inputs (g, h, z) and the random coins ofA. Note that if in addi-
tion to ϕ : G2 → G1 there is an efficiently computable isomorphism ψ : G1 → G2
then the co-CDH problem in (G1, G2) is equivalent to the standard computational
Diffie-Hellman problem in either G1 or G2.

4 A Homomorphic Network Coding Signature Scheme

In this section we construct a homomorphic network coding signature scheme
with constant-size public key and constant-size per-vector signatures. Our sig-
natures are similar to the aggregate signatures of Boneh et al. [4].

Signature Scheme NCS0

Setup(1k, N). Given a security parameter 1k and a positive integer N , do:
1. Generate a bilinear group tuple G = (G1, G2, GT , p, e, ϕ) such that p > 2k.

Choose a generator h ← G2 \ {1}.
2. Choose α ← F∗

p, and set u := hα.

3. Let H : {0, 1}∗×{0, 1}∗ → G1 be a hash function, viewed as a random oracle.

4. Output p, the public key PK := (G, H, h, u) and the private key SK := α.

2 Existence of ϕ is not needed if we use a different cryptographic assumption to prove
security of our first scheme. We omit further discussion.

78 D. Boneh et al.

Sign(SK, id,v). Given a secret key SK = α, an identifier id ∈ {0, 1}k, and a
vector v = (v1, . . . , vN) ∈ FN

p , this algorithm outputs the signature

σ :=

(
N∏

i=1

H(id, i)vi

)α

.

Combine(PK, id, {(βi, σi)}
i=1). Given a public key PK, an identifier id, and

{(βi, σi)}
i=1 with βi ∈ Fp, this algorithm outputs σ :=

∏
i=1 σβi

i .

Verify(PK, id,y, σ). Given a public key PK = (G, H, h, u), an identifier id, a
signature σ, and a vector y ∈ FN

p , define

γ1(PK, σ) def= e (σ, h) and γ2(PK, id,y) def= e

(
N∏

i=1

H(id, i)yi , u

)
.

If γ1(PK, σ) = γ2(PK, id,y) this algorithm outputs 1; otherwise it outputs 0.

Due to lack of space, we omit the (straightforward) proof of correctness.
A signature is just a single element of G1. Groups G1 whose elements can be

represented using log2 p bits can be obtained by using pairing-friendly elliptic
curves of prime or near-prime order; see [10] for further details.

A variant of the above scheme is more efficient when only properly augmented
vectors will be signed (as is the case for applications to network coding), and
the dimension m of the resulting vector space is known at the time any vector is
signed or verified. In this setting, the signer can choose random g1, . . . , gN ∈ G1
at the time of key generation and publish these as part of the public key. To sign
a vector v = (v1, . . . , vN) ∈ FN

p using the identifier id, the signer sets n := N−m
and computes

σ :=

⎛⎝ m∏
i=1

H(id, i)vn+i

n∏
j=1

g
vj

j

⎞⎠α

.

(Verification is changed in the obvious way.) In this variant, signing the aug-
mented vector v is dominated by computing a single hash into G1 (taking time
similar to a full exponentiation) plus n additional exponentiations in G1. The
public key in this variant can be compressed to size linear in the security param-
eter k by generating g1, . . . , gN as the output of an independent hash function H ′

(also modeled as a random oracle).
We now prove the security of signature scheme NCS0. More precisely, we

consider the variant scheme (call it NCS1) suggested above, and prove security of
the network coding signature scheme NCS′

1 constructed from NCS1 as described
in the optimization following Lemma 3. Our security proof assumes that only
properly augmented vector spaces are signed. (We stress that NCS0 itself is also
secure, even without this assumption.)

Theorem 6. Let NCS′
1 be the network coding signature scheme constructed from

NCS1 via the (optimized) method of Lemma 3. Then NCS′
1 is secure in the

random oracle model assuming that the co-CDH problem in (G1, G2) is infeasible.

Signing a Linear Subspace: Signature Schemes for Network Coding 79

In particular, let A be a polynomial-time adversary as in Definition 4. Then
there exists a polynomial-time algorithm B that computes co-CDH in (G1, G2),
and such that

co-CDH-Adv[B, (G1, G2)] ≥ NC-Adv[A, NCS′
1]−

1
p
− qs(qs + qh)

2k
,

where qs and qh are the number of signature and hash queries made by A.

Proof. Let A be an adversary as in Definition 4, though recall we make the as-
sumption that A only requests signatures on properly augmented vector spaces.
We construct B that takes as input parameters G = (G1, G2, GT , p, e, ϕ) and
inputs g ∈ G1 and h, z ∈ G2, with z = hx, and outputs an element ω ∈ G1.
Algorithm B simulates the hash function H and the Setup and Sign algorithms
of NCS′

1, and works as follows.

Setup. A chooses an integer N , and B does the following:
1. Choose random s1, t1, . . . , sN , tN ∈ Fp, and set gi := gsiϕ(h)ti for all i.

2. Output the public key PK := (G, H, g1, . . . , gN , h, z).

Hash query. When A requests the value of H(id, i), algorithm B does:
1. If (id, i) has already been queried, return H(id, i).

2. If (id, i) has not been queried, choose ςi, τi ← Fp and set H(id, i) := gςiϕ(h)τi .

Sign. When A requests a signature on a vector space V ⊂ FN
p , described by

properly augmented basis vectors v1, . . . ,vm ∈ FN
p (where vi = (vi1, . . . , viN)),

algorithm B does the following:
1. Choose a random id← {0, 1}k. If H(id, i) has already been queried for some

i ∈ {1, . . . , N} then abort. (The simulation has failed.)

2. Set n := N −m and compute ςi := −∑n
j=1 sjvij for i = 1, . . . , m.

3. Choose τi ← Fp and set H(id, i) := gςiϕ(h)τi for i = 1, . . . , m. Set t :=
(t1, . . . , tn, τ1, . . . , τm).

4. Compute σi := ϕ(z)vi·t for i = 1, . . . , m.

5. Output id and σ := (σ1, . . . , σm).

Output. If B does not abort, then eventually A outputs a signature σ =
(σ1, . . . , σm), an identifier id, and a non-zero vector y.
1. If id is not one of the identifiers used to answer a previous signature query,

then compute H(id, i) as above for i = 1, . . . , m. Thus, in any case, H(id, i) =
gςiϕ(h)τi for ςi, τi known to B.

2. Set s := (s1, . . . , sn, ς1, . . . , ςm) and t := (t1, . . . , tn, τ1, . . . , τm). If s · y = 0
then abort.

3. Set n := N −m and output ω :=
(∏m

i=1 σ
yn+i

i

ϕ(z)t·y

)1/(s·y)

.

80 D. Boneh et al.

We first observe that the responses to all hash queries are independent and
uniformly random in G1. We also observe that the g1, . . . , gN are random group
elements, and thus the public key PK output by B is distributed identically to
the public key produced by the real Setup algorithm.

Next we show that the signatures σ output by B are identical to the signatures
that would be produced by the real Sign algorithm given the public key PK and
the hash answers computed by B. Since the secret key corresponding to PK is
x, it suffices to show that for each vector v “signed” by B, we have⎛⎝ m∏

i=1

H(id, i)vn+i

n∏
j=1

g
vj

j

⎞⎠x

= ϕ(z)v·t, (3)

where the left-hand side is the “real” signature and the right-hand side is the
signature computed by B. The left-hand side is equal to⎛⎝ m∏

i=1

(gςiϕ(h)τi)vn+i

n∏
j=1

(
gsj ϕ(h)tj

)vj

⎞⎠x

=
(
gs·vϕ(h)t·v

)x
. (4)

Now observe that we constructed s so that s ∈ V ⊥ (i.e., s ·v = 0 for all v ∈ V),
so the expression (4) is equal to ϕ(h)x(t·v). Equation (3) now follows from the
fact that ϕ(z) = ϕ(h)x.

We next analyze the probability that B aborts while interacting with A. There
are two scenarios in which this can happen: if B responds to two different signa-
ture queries by choosing the same identifier id, or if B responds to a signature
query by choosing an identifier id such that A has already requested the value
of H(id, i) for some i. The probability of the first event is at most q2

s/2k, while
the probability of the second event is at most qsqh/2k.

Suppose B does not abort and A outputs a signature σ, an identifier id, and
a non-zero vector y. Let σ = (σ1, . . . , σm). If Verify(PK, id,y, σ) = 1 then

e

(
m∏

i=1

σ
yn+i

i , h

)
= e

⎛⎝ m∏
i=1

H(id, i)yn+i

n∏
j=1

g
yj

j , z

⎞⎠ .

By the same reasoning as above the right-hand side is equal to

e
(
gs·yϕ(h)t·y, z

)
= e

(
gx(s·y)ϕ(z)t·y, h

)
,

where s and t are determined from id as in steps (1) and (2) of B’s output
procedure. The non-degeneracy of e then implies that

m∏
i=1

σ
yn+i

i = gx(s·y)ϕ(z)t·y.

It follows that if s · y �= 0 then the element ω output by B is equal to gx.
To complete the proof, we show that s ·y = 0 with probability 1/p. In prepa-

ration, we first prove the following lemma:

Signing a Linear Subspace: Signature Schemes for Network Coding 81

Lemma 7. Assume B does not abort. Then the variables s1, . . . , sN are each
independently uniform in Fp even conditioned on the view of A.

Proof. In proving the lemma we can ignore any queries H(id, i) where id is not
an identifier used to respond to a signing query, since (a) the variables s1, . . . , sN

are not involved in these queries, and (b) the variables that are involved in these
queries are not involved in any other interaction between A and B.

We show that for any given view of A and any choice of values for s1, . . . , sN ,
there is a unique choice of values for all of the other variables in the system
that is consistent with the adversary’s view. The adversary’s view consists of
the public key PK and the signatures on subspaces Vk for k = 1, . . . , qs. Let
mk = dim Vk. Hence, the adversary’s view is derived from 2N +

∑
2mk random

variables:

– The public key is derived from sj , tj for j = 1, . . . , N .
– The kth signature is derived from the sj , tj and ςi, τi for i = 1, . . . , mk. (Here

we use the fact that B did not abort, and so no two signing queries use the
same value of id.)

Moreover, the adversary has N +
∑

3mk linear relations on these variables:

– N relations derived from the public key,
– mk relations derived from the values of H(id, i) for the kth query,
– mk relations derived from the signature (σ1, . . . , σmk

) for the kth query,
– mk relations derived from the fact that s ∈ V ⊥ for the kth query.

We set the following notation:

sL = (s1, . . . , sN)
sR
k = (ς1, . . . , ςmk

) for the kth signature query
tL = (t1, . . . , tN)
tR
k = (τ1, . . . , τmk

) for the kth signature query.

Let V̄k be the mk ×N matrix whose ith row consists of the first N −mk entries
(i.e., the unaugmented part) of the basis vector vi for the kth query, followed
by mk zeroes. Let ϕ(h) = gα. The view of A imposes the following constraints:

sL + αtL = c1 (public key) (5)
sR
k + αtR

k = c2,k (values of H(id, i)) (6)
V̄ktL + tR

k = c3,k (signatures) (7)
V̄ksL + sR

k = 0 (s ∈ V ⊥) (8)

for some vectors c1 ∈ FN
p , c2,k ∈ Fmk

p , c3,k ∈ Fmk
p that are determined (in

an information-theoretic sense) from the view of A. We wish to show that the
system has a unique solution for any value of sL.

Observe that equation (8) is linearly dependent on equations (5), (6), and (7).
Specifically, for each k we have (8) = V̄k(5) + (6) − α(7). Since the system has

82 D. Boneh et al.

at least one solution by construction, any choice of variables satisfying equa-
tions (5)–(7) must also satisfy (8).

Suppose sL is fixed; then equation (5) determines a unique value for tL.
For each k, equation (7) and this value of tL determine a unique value for
tR
k , from which equation (6) determines a unique value of sR

k . Thus for any
value of sL there is a unique solution to equations (5)–(8). We conclude that
sL = (s1, . . . , sN) is uniform in FN

p even conditioned on the view of A. !
To complete the proof of Theorem 6, we now show that s · y = 0 with probabil-
ity 1/p. If A outputs a type 1 forgery, then id was not used in response to any
previous signing query. In this case the {ςi} are independently uniform in Fp

even conditioned on the view of A. By Lemma 7 the {si} are also independently
uniform in Fp conditioned on A’s view. Since s = (s1, . . . , sn, ς1, . . . , ςm) and
y is non-zero, it follows that s · y is uniformly distributed in Fp, and thus the
probability that s · y = 0 is 1/p.

Now suppose that A outputs a type 2 forgery, so id was used in response
to the signing query for some vector subspace V , and y �∈ V . (Note that id
was used to answer only one signing query, otherwise B aborts.) By Lemma 7
the variables {si} are independently uniform in Fp even conditioned on the
adversary’s view. This implies that, conditioned on the adversary’s view, the
vector s = (s1, . . . , sn, ς1, . . . , ςm) is uniformly random in V ⊥. So for any y �∈
V we see that s · y is uniform in Fp, and we conclude that s · y = 0 with
probability 1/p. This completes the proof. !

5 Network Coding Signatures without Random Oracles

Krohn et al. [22] propose authenticating network coding data using a homo-
morphic hash function (see below). As in Definition 2, their scheme produces a
signature σi on each basis vector of the subspace to be authenticated. Their sys-
tem is not secure according to our definition, however, as there is no mechanism
to ensure that basis vectors from different files cannot be combined. Our solu-
tion is to authenticate all the hash values (along with the file identifier) using a
standard signature scheme, which we denote by S0 = (Gen0, Sign0,Verify0). This
modification produces a secure network coding signature scheme (as in Defini-
tion 1) but eliminates the homomorphic property. The scheme can thus be used
to sign entire subspaces, but not individual vectors.

Signature Scheme NCS2

Setup(1k, N). Given a security parameter 1k and a positive integer N do:
1. Choose a group G of prime order p > 2k.
2. Run Gen0(1k) and let the public/private keys be PK0, SK0.
3. Choose generators g1, . . . , gN ← G \ {1}.
4. Output the prime p, the public key PK := (G, g1, . . . , gN , PK0), and the

private key SK := SK0.

Signing a Linear Subspace: Signature Schemes for Network Coding 83

Sign(SK, id, V). Given a secret key SK, a file identifier id, and an m-dimensional
subspace V ⊂ FN

p described by a properly augmented basis v1, . . . ,vm, do:
1. Set n := N −m. Compute σi :=

∏n
j=1 g

−vij

j for i = 1, . . . , m.

2. Compute τ ← Sign0(SK, (id, σ1, . . . , σm)).

3. Output σ := (σ1, . . . , σm, τ).

Verify(PK, id,y, σ). Given a public key PK = (G, g1, . . . , gN , PK0), an identifier
id, a signature σ = (σ1, . . . , σm, τ), and a vector y ∈ FN

p , do:
1. Run Verify0(PK0, (id, σ1, . . . , σm), τ). If the answer is 0, output 0.

2. If
(∏n

j=1 g
yj

j

)(∏m
i=1 σ

yn+i

i

)
= 1 then output 1; otherwise output 0.

We omit the (straightforward) proof of correctness.
If elements of G are represented using log2 p bits and the signature scheme S0

produces signatures of size log2 p, then the size of the signature σ is (m+1) log2 p
bits. If one is willing to use the random oracle model, we can achieve a constant-
size public key by letting the values g1, . . . , gN be computed as the output of a
hash function H (viewed as a random oracle).

Theorem 8. Assume S0 is a secure signature scheme. Then NCS2 is secure
assuming hardness of the discrete logarithm problem in G.

In particular, let A be a polynomial-time adversary as in Definition 4. Then
there exists a polynomial-time adversary B1 that forges signatures for S0 and a
polynomial-time algorithm B2 that computes discrete logarithms, such that

Sig-Adv[B1,S0] + 2 ·DL-Adv[B2, G] ≥ NC-Adv[A, NCS2]− q2
s

2k
,

where qs denotes the number of signature queries made by A, and Sig-Adv[B1,S0]
is the probability that B1 wins the security game for the standard signature scheme
S0 (see [20, §12.2]).
Proof. Suppose algorithm A produces a signature σ = (σ1, . . . , σm, τ), an iden-
tifier id, and a vector y such that Verify(PK, id, σ,y) = 1. If id is not one of the
identifiers returned on a signature query (type 1 forgery), then A has forged a
signature relative to S0. In case of a type 2 forgery, say id was used in response
to a unique signature query on the vector space V , and that y �∈ V . Define H via
H(v) =

∏n
j=1 g

vj

j . Since y �∈ V we have y′ :=
∑m

i=1 yn+ivi �= y. The fact that
the signature verifies implies that H(y) = H(y′), and thus we have produced a
collision for H(·). By standard arguments [5,2], an algorithm A that produces
such a collision with probability ε can be used to compute discrete logarithms
in G with probability at least ε/2. !
Relation with [25]. Signature Scheme NCS2 can also be viewed as a secure
instantiation of the signature scheme proposed by Zhao et al. [25]. Their scheme
computes a signature on V by choosing a random vector u ∈ V ⊥ and outputting
(h1, . . . , hN) = (gu1 , . . . , guN) along with a signature on this tuple. Verification

84 D. Boneh et al.

of y involves checking whether
∏N

j=1 h
yj

j = gu·y = 1. Correctness follows from
the fact that u ∈ V ⊥, and security follows from the fact that computing y �∈ V
such that u · y = 0 permits computation of discrete logarithms in G (see [25,
Theorem 1] or [3, Lemma 3.2]).

To view the scheme NCS2 from this perspective, fix a generator g of G and
write the first n = N − m elements of the public key as gu1 , . . . , gun . Letting
un+i =

∑n
j=1−ujvij , we have σi = gun+i . Furthermore, if {vi}m

i=1 is a properly
augmented basis of V then the vector u = (u1, . . . , uN) is in V ⊥. The verification
step then computes gu·y just as in the scheme of Zhao et al.

The signatures produced by scheme NCS2 have length Θ(m) and are thus
much shorter than the signatures produced by the scheme of Zhao et al., which
have length Θ(N).

6 A Lower Bound on Signature Size

We now prove a lower bound on the length of signatures for linear subspaces.
Our lower bound applies to network coding signature schemes (Definition 1) that
have the following two properties:

Additivity: For any PK, id, σ, and vectors u,v ∈ FN
p , if Verify(PK, id,u, σ) =

Verify(PK, id,v, σ) = 1 then Verify(PK, id,u+v, σ) = 1. Both our constructions
are additive.

Fixed size: For a given m > 0 and a given SK, the size of the signature output
by Sign(SK, id, V) is the same for all identifiers id and m-dimensional spaces
V ⊂ FN

p . Again, this holds for both of the systems in this paper. We make this
assumption primarily to simplify the presentation; a version of our bound holds
even if this property is not satisfied.

For a secret key SK and integers N, m let �SK,N,m be the length in bits of
signatures Sign(SK, id, V) where V is an m-dimensional subspace of FN

p .
For signatures that have these two properties, we show that the signature size

must be at least (roughly) m log2 p bits. In particular, we construct an attack
algorithm that forges signatures whenever �SK,N,m is shorter than this bound.
Hence, if the scheme is to be secure then for almost all secret keys the signature
size must be greater than our bound.

The intuition behind our lower bound is that if signatures are short, then by
the pigeonhole principle there is a large set V of linear subspaces that all have
the same signature σ. If signatures are sufficiently short, then the direct sum
of the spaces in V spans all of FN

p . Since the signature scheme is additive this
implies that Verify(PK, id, σ,y) = 1 for any y ∈ FN

p ; we will call a signature σ
with this property (for a fixed identifier id) trivial. We conclude that there are
many subspaces V with trivial signatures; the system can then be easily attacked
by choosing a random subspace V , obtaining a signature on V , and producing
a vector y �∈ V .

Signing a Linear Subspace: Signature Schemes for Network Coding 85

Theorem 9. Let m, N be integers with 0 < m < N , and let (Setup, Sign,Verify)
be a network coding signature scheme satisfying the two properties above. Then
there is a polynomial-time adversary A making a single signature query and such
that the following holds: when the secret key SK used in the security game of
Definition 4 satisfies

�SK,N,m ≤ m log2 p− 4m/p− 1, (9)

then A wins with probability at least 1/2.

Proof. Fix a public/private key pair PK, SK. When the adversary queries a vec-
tor space V to the challenger, the challenger produces an identifier id uniformly
at random from the space I of identifiers; in particular, id is independent of V .
We may thus fix the randomness of the challenger in advance and let id1 be
the identifier produced on the first query. Although the Sign algorithm may be
probabilistic, once we have fixed the randomness each m-dimensional subspace
V ⊂ FpN is mapped to a unique signature σ := Sign(SK, id1, V).

We now proceed with a combinatorial argument. Let n = N −m. The num-
ber of m-dimensional subspaces V ⊂ Fn+m

p is the p-binomial coefficient [24,
Proposition 1.3.18](

n + m

m

)
p

=
(pn+m − 1)(pn+m−1 − 1) · · · (pn+1 − 1)

(pm − 1)(pm−1 − 1) · · · (p− 1)
> pmn.

Let U be the set of vector spaces V such that the signature on V is nontrivial,
and let β be the fraction of vector spaces V with nontrivial signatures; then the
cardinality of U is at least pmnβ. Let α be the number of distinct nontrivial
signatures produced by signing all vector spaces V ∈ U with identifier id1. Then
by the pigeonhole principle, there is a set of vector spaces V ⊆ U of cardinality
at least pmnβ/α such that the signatures Sign(SK, id1, V) are identical for all
V ∈ V . Call this signature σ.

Let W ⊆ Fn+m
p be the direct sum of all the spaces in V . Since the signature

system is additive, we know that Verify(PK, id1,w, σ) = 1 for all w ∈ W . If
W = Fn+m

p then σ is trivial, contradicting the assumption that V ⊆ U . Thus
W is a subspace of Fn+m

p of dimension at most n + m− 1. Then the number of
m-dimensional subspaces V contained in W is at most

(
n+m−1

m

)
p

< pm(n−1)(1+
2/p)m, and we have

pmn

(
β

α

)
≤ #V < pm(n−1)

(
1 +

2
p

)m

. (10)

Now suppose that for the key pair PK, SK the quantity �SK,N,m satisfies (9).
Then the number α of distinct nontrivial signatures satisfies

α ≤ pm · 2−4m/p

(
1
2

)
< pm

(
1 +

2
p

)−m (
1
2

)
. (11)

86 D. Boneh et al.

where the second inequality follows from 22x > 1 + x for x > 0. Combining
inequalities (10) and (11), we see that the fraction β of subspaces with nontrivial
signatures satisfies

β <
α

pm
·
(

1 +
2
p

)m

<
1
2
. (12)

Now adversary A works as follows: it chooses at random a vector space V ⊂
Fn+m

p and obtains id1 and σ := Sign(SK, id1, V) from the signing oracle. The
adversary then computes a vector y �∈ V and outputs (id1, σ,y) as the forgery.
By (12) the probability that σ is trivial is at least 1/2, and if this is the case
then Verify(PK, id1,y, σ) = 1. Hence, A has advantage (as in Definition 4) at
least 1/2 while making a single signature query. !

7 Conclusion and Extensions

We studied the problem of signing a subspace V ⊂ FN
p in a manner that au-

thenticates all vectors in V . The question is motivated by the need to provide
integrity when using network coding. We defined the problem and described two
secure schemes. Our first scheme is homomorphic and has constant-size public
keys and per-vector signatures; its security is based on the co-CDH assumption in
the random oracle model. Our second scheme offers security based on the weaker
discrete logarithm assumption without random oracles. In both schemes, a single
public key can be used to sign many linear spaces (i.e., files). We also proved a
lower bound on the length of signatures for linear subspaces, and observe that
both our systems meet the lower bound.

In network coding applications, one may wish to vary the dimension of the
ambient space FN

p . Our definitions assume that the dimension of the ambient
space is fixed. However, our systems can easily be adapted to sign subspaces Vi

contained in varying ambient spaces FNi
p with a single public key by incorpo-

rating the dimension Ni into the hash function (for scheme NCS1) or the outer
signature with respect to S0 (for scheme NCS2).

Note: The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either
expressed or implied, of the US Army Research Laboratory, the US Govern-
ment, the UK Ministry of Defense, or the UK Government. The US and UK
Governments are authorized to reproduce and distribute reprints for Govern-
ment purposes, notwithstanding any copyright notation herein.

References

1. Ahlswede, R., Cai, N., Li, S., Yeung, R.: Network information flow. IEEE Trans-
actions on Information Theory 46(4), 1204–1216 (2000)

2. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography: The case of
hashing and signing. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp.
216–233. Springer, Heidelberg (1994)

3. Boneh, D., Franklin, M.: An efficient public key traitor tracing scheme. In: Wiener,
M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338–353. Springer, Heidelberg (1999)

Signing a Linear Subspace: Signature Schemes for Network Coding 87

4. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

5. Brands, S.: An efficient off-line electronic cash system based on the representation
problem, CWI Technical Report CS-R9323 (1993)

6. Byers, J.W., Luby, M., Mitzenmacher, M., Rege, A.: A digital fountain approach
to reliable distribution of bulk data. In: ACM SIGCOMM (1998)

7. Charles, D., Jain, K., Lauter, K.: Signatures for network coding. In: 40th Annual
Conference on Information Sciences and Systems, CISS 2006 (2006)

8. Chou, P.A., Wu, Y., Jain, K.: Practical network coding. In: 41st Allerton Confer-
ence on Communication, Control, and Computing (2003)

9. Duquesne, S., Frey, G.: Background on pairings. In: Handbook of Elliptic and Hy-
perelliptic Curve Cryptography. Chapman & Hall/CRC Press, Boca Raton (2006)

10. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
Cryptology ePrint Archive, Report 2006/372 (2006), http://eprint.iacr.org/

11. Gkantsidis, C., Rodriguez, P.: Network coding for large scale content distribution.
In: IEEE INFOCOM (2005)

12. Gkantsidis, C., Rodriguez, P.: Cooperative security for network coding file distri-
bution. In: IEEE INFOCOM (2006)

13. Han, K., Ho, T., Koetter, R., Médard, M., Zhao, F.: On network coding for security.
In: IEEE MILCOM (2007)

14. Ho, T., Koetter, R., Médard, M., Karger, D., Effros, M.: The benefits of coding over
routing in a randomized setting. In: Proc. International Symposium on Information
Theory (ISIT) (2003)

15. Ho, T., Leong, B., Koetter, R., Médard, M., Effros, M., Karger, D.: Byzantine
modification detection in multicast networks using randomized network coding.
In: Proc. Intl. Symposium on Information Theory (ISIT), pp. 144–152 (2004)

16. Ho, T., Médard, M., Koetter, R., Karger, D.R., Effros, M., Shi, J., Leong, B.: A
random linear network coding approach to multicast. IEEE Trans. Inform. The-
ory 52(10), 4413–4430 (2006)

17. Jaggi, S.: Design and Analysis of Network Codes. PhD thesis, California Institute
of Technology (2006)

18. Jaggi, S., Langberg, M., Katti, S., Ho, T., Katabi, D., Médard, M., Effros, M.:
Resilient network coding in the presence of Byzantine adversaries. IEEE Trans. on
Information Theory 54(6), 2596–2603 (2008)

19. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Hei-
delberg (2002)

20. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman &
Hall/CRC Press, Boca Raton (2007)

21. Kim, M., Médard, M., Barros, J.: Counteracting Byzantine adversaries with net-
work coding: An overhead analysis (2008), http://arxiv.org/abs/0806.4451

22. Krohn, M., Freedman, M., Mazieres, D.: On the-fly verification of rateless erasure
codes for efficient content distribution. In: Proc. of IEEE Symposium on Security
and Privacy, pp. 226–240 (2004)

23. Li, S.-Y.R., Yeung, R.W., Cai, N.: Linear network coding. IEEE Trans. Info. The-
ory 49(2), 371–381 (2003)

24. Stanley, R.: Enumerative Combinatorics, vol. 1. Cambridge University Press, Cam-
bridge (1997)

25. Zhao, F., Kalker, T., Médard, M., Han, K.: Signatures for content distribution with
network coding. In: Proc. Intl. Symp. Info. Theory (ISIT) (2007)

http://eprint.iacr.org/
http://arxiv.org/abs/0806.4451

Improving the Boneh-Franklin Traitor Tracing
Scheme

Pascal Junod1,2, Alexandre Karlov1,3, and Arjen K. Lenstra3,4

1 Nagravision SA, Cheseaux-sur-Lausanne, Switzerland
2 University of Applied Sciences Western Switzerland, Yverdon-les-Bains, Switzerland

3 EPFL IC LACAL, Station 14, Lausanne, Switzerland
4 Alcatel-Lucent Bell Laboratories, USA

Abstract. Traitor tracing schemes are cryptographically secure broad-
cast methods that allow identification of conspirators: if a pirate key is
generated by k traitors out of a static set of � legitimate users, then
all traitors can be identified given the pirate key. In this paper we ad-
dress three practicality and security issues of the Boneh-Franklin traitor-
tracing scheme. In the first place, without changing the original scheme,
we modify its tracing procedure in the non-black-box model such that
it allows identification of k traitors in time Õ(k2), as opposed to the
original tracing complexity Õ(�). This new tracing procedure works in-
dependently of the nature of the Reed-Solomon code used to watermark
private keys. As a consequence, in applications with billions of users it
takes just a few minutes on a common desktop computer to identify
large collusions. Secondly, we exhibit the lack of practical value of list-
decoding algorithms to identify more than k traitors. Finally, we show
that 2k traitors can derive the keys of all legitimate users and we propose
a fix to this security issue.

Keywords: Boneh-Franklin traitor tracing, Reed-Solomon codes, Ber-
lekamp-Massey algorithm, Guruswami-Sudan algorithm.

1 Introduction
Consider the following scenario: a center broadcasts data to � receivers where
only authorized users (typically, those who have paid a fee) should have access to
the data. A way to realize this, widely deployed in commercial Pay-TV systems,
is to encrypt the data using a symmetric key and to securely transmit to each
authorized receiver this key which will be stored in a tamper-proof piece of
hardware, like a smart card.

Unfortunately, tamper-resistant hardware is very difficult and costly to design,
since it is vulnerable to a wide variety of attacks (see [1,27] as two good starting
points). As a result, a malicious user (hereafter called a traitor) can attempt to
retrieve the decryption key from his receiver and, if successful, distribute it (sell
or give away) to unauthorized users (the pirates). Depending on the nature of
the encryption schemes in use, we can even imagine situations where a dishonest

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 88–104, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

http://dx.doi.org/10.1007/978-3-642-00468-1_29

Improving the Boneh-Franklin Traitor Tracing Scheme 89

user will try to mix several legitimate keys in order to build a new one and
embed it in a pirate receiver.

The problem of identifying which receivers were compromised or which secret
keys have leaked is called traitor tracing. Usually, two modes of traitor tracing
are considered: in the black-box model, the tracing algorithm sends crafty ci-
phertexts to the pirate receiver and aims at determining which keys it uses while
observing its behavior; in the non-black-box model, we assume that the keys can
be extracted from the pirate receiver and are known to the tracing algorithm.
The black-box model is widely considered by the cryptographic community as
being a standard security model for evaluating traitor-tracing schemes security.
However, based on our practical experience, we know that it is reasonable to as-
sume that a tracing authority has at least the same technological and financial
resources to reverse-engineer a pirate receiver as a traitor had, to perform the
same operation on a legitimate receiver.

1.1 Related Work

Fiat and Naor introduced the concept of broadcast encryption in [17]. In their
model1, there exists a set of � authorized users and the broadcasting center can
dynamically specify a privileged subset of authorized users that can decrypt
selected ciphertexts (like high-value content, for instance). Later, Chor, Fiat,
and Naor [12] introduced the concept of traitor-tracing to overcome decryption
key piracy in broadcast encryption schemes. Their scheme (which was improved
by Naor and Pinkas in [33, 13]) is k-collusion resistant (or k-resilient) in the
sense that at least one traitor can be identified with high probability given a
pirate key generated by up to k traitors. Naor, Naor and Lotspiech presented
more efficient broadcast encryption schemes [32] with tracing capabilities; it was
however demonstrated by Kiayias and Pehlivanoglu [21] that the iterative nature
of the tracing procedure allows a pirate to significantly leverage the compromise
of a few keys. Although broadcast encryption and traitor-tracing are orthogonal
problems in nature, and thus frequently studied separately, they are in practice
indivisible: some trace-and-revoke schemes have been proposed accordingly [15,
16], culminating in [9]. The latter scheme, though resistant to any collusion size,
is geared towards small-scale systems and impractical for the systems of tens of
millions of users that we are dealing with and that inspired this paper; this is
mainly due to the O(

√
�) complexity of [9] in terms of key storage and bandwidth

requirements. Additionally, the tracing costs are O(�2), which also severely limits
its applicability.

Kurosawaand Desmedt [24] proposed a public-key traitor tracing scheme, which
was later broken by Stinson and Wei [40]. Boneh and Shaw [8] discussed collusion-
resistant schemes for fingerprinting digital data based on error-correcting codes.
Boneh and Franklin [5] proposed a new public-key traitor-tracing scheme also
1 Note that in this paper, we will only consider stateless receivers, i.e., receivers for

which it is not possible to guarantee synchronism with the broadcast center and
which are resettable. Broadcast encryption schemes for stateful receivers have been
proposed in [44,41].

90 P. Junod, A. Karlov, and A.K. Lenstra

based on error-correcting codes, more precisely on Reed-Solomon codes. Actually,
the traitor-tracing problemcanbe interpreted as an application ofwatermarking to
secret keys that are distributed among users. The Boneh-Franklin non-black-box
traitor tracing scheme is k-collusion resistant and deterministic in the sense that all
of the traitors are identified with probability 1 if at most k of them
collude to derive new pirate keys. The fastest claimed running time of the non-
black-box tracing algorithm is O(� log � log log �) while the best known black-box
tracing method has an exponential complexity O(

(

k

)
k2). Kurosawa and Yoshida

[25] have generalized the Kurosawa-Desmedt and Boneh-Franklin schemes. The
technique used by Boneh and Franklin to watermark private keys has since been
re-used by Kiayias and Yung [23] to design an asymmetric2 public-key traitor trac-
ing scheme; other examples of Reed-Solomon codes use include schemes designed
by Dodis et al. [15, 16]. Recently, Boneh et al. [7] have presented a fully-collusion
resistant traitor tracing scheme which has private keys of constant size and cipher-
texts of size O(

√
�). Finally, the low efficiency of tracing procedures in traitor trac-

ing schemes has been addressed by Silverberg et al. in [37,38]. The authors present
several schemes based on algebraic codes which enable traitors to be traced in time
polynomial in k2 log �. Recently, Billet and Phan [2] and Boneh and Naor [6] have
independently proposed traitor-tracing schemes with constant size ciphertexts and
having a black-box tracing complexity of O(t2� log �) and O(t4 log �), respectively.

1.2 Our Contributions

While we agree that improving the exponential complexity of black-box tracing
as cited above would be a very worthwhile cause to pursue, we choose to focus in
this paper, in the light of the negative results obtained by Kiayias and Yung [22],
on some security and efficiency issues that we encountered in practical applica-
tions of the Boneh-Franklin traitor-tracing scheme [5] in the non-black-box model.
Although Boneh-Franklin traitor-tracing is one of the most elegant and efficient
public-key traitor tracing schemes, it suffers from certain issues that limit its
practical applicability in large-scale systems. We point out what the problems
are and how they can be addressed. As usual, � denotes the number of legitimate
users and k the collusion threshold.

Complexity of Non-Black-Box Tracing. One of the issues is the complex-
ity of the non-black-box traitor tracing procedure which depends on �. This
is a major drawback when applied to systems of many millions of users, since
tracing would require large computational power, or could even be infeasible
in practice. We dissect the way Reed-Solomon codes are used to watermark pri-
vate keys, and we show that, contrary to what is suggested in [5], it is possible to
trace in time3 Õ(k2), i.e., with a complexity independent of �, using the

2 Asymmetric traitor tracing is a variant introduced by Pfitzmann [35] where the broad-
casting center is not necessarily trusted, thus the tracing procedure must produce un-
deniable evidence of the implication of the traitor subscribers.

3 Here, the Õ(n) notation hides the terms which are poly-logarithmic in n.

Improving the Boneh-Franklin Traitor Tracing Scheme 91

Berlekamp-Massey algorithm instead of the Berlekamp-Welch algorithm. Al-
though both algorithms require the same complexity to fully recover a noisy
Reed-Solomon codeword, the complexity of the Berlekamp-Massey algorithm can
be reduced if used for tracing only. The resulting new tracing procedure does
not require any modification of the original Boneh-Franklin scheme. In practice,
it takes us just a few minutes on a common desktop PC to trace large coalitions
in systems having hundreds of millions of users. Our result improves the results
obtained by Silverberg et al. [37, 38]. Our finding also applies to schemes using
the same watermarking technique, such as the ones described in [23,15,16]. An-
other immediate benefit we identify is the possibility to use Reed-Solomon codes
optimized specifically to allow faster decryption. In practice, for large systems
and coalitions of medium size, we speed up the decryption by almost an order
of magnitude.

Above-Threshold Tracing. Secondly, we raise an issue concerning the above-
threshold security of the Boneh-Franklin scheme and its variants. We show that
the list-decoding techniques, such as the Guruswami-Sudan algorithm, as ad-
vocated by Boneh-Franklin to trace more than k traitors, detect only a few
additional traitors, and this at a high cost.

Beyond-Threshold Tracing. Finally, we show that if an adversary is able
to recover 2k secret keys, then she is able to compute any other secret key,
including the uncompromised ones. Thus, in this case the security of the system
completely collapses. This somewhat embarrassing property is primarily due to
the fact that the linear tracing code is public. We show how this issue can be
addressed at the cost of keeping more than a single secret value in the receivers.

This paper is organized as follows. In §2 we review the Boneh-Franklin scheme
[5]. Then, in §3, we speed up both its codeword generation and tracing proce-
dures. In §4 we discuss the above-threshold tracing based on the Guruswami-
Sudan list-decoding algorithm, while in §5 we study the security of the
Boneh-Franklin scheme when the number of recovered secret keys is at least
twice the allowed threshold.

2 Boneh-Franklin Scheme

This section describes the Boneh-Franklin traitor tracing scheme [5] by first defin-
ing its encryptionanddecryptionprocedures, thenby explaining the codewordgen-
eration mechanism and finally by describing the underlying non-black-box tracing
mechanism. We adopt the notation used in [5] denoting by � the number of users
in the system and by k the maximal coalition size. Hence, the described scheme is
supposed to be secure against any collusion of at most k users.

2.1 Encryption/Decryption

Let Gq denote a group of prime order q in which the Decision Diffie-Hellman
problem [4] is hard. Typically, Gq is a subgroup of order q of Z∗

p, where p is

92 P. Junod, A. Karlov, and A.K. Lenstra

prime and q|p− 1; alternatively, Gq can be a group of points of an elliptic curve
over a finite field.

The key generation process proceeds as follows. Let g be a generator of Gq.
For 1 ≤ j ≤ 2k, let rj ∈R Z/qZ and compute hj = grj . The public key is defined
as 〈y, h1, . . . , h2k〉 ∈ G2k+1

q where y =
∏2k

j=1 h
αj

j ∈ Gq for random αj ∈R Z/qZ.
Here, we say that the vector α = 〈α1, . . . , α2k〉 is a representation of y with
respect to the base 〈h1, . . . , h2k〉. Note that if ρ(1), . . . , ρ(n) are n representations
of the same element of Gq with respect to the same base, then so is any convex
combination

∑n
i=1 ηiρ

(i) of the representations, where ηi ∈ Z/qZ are scalars such
that

∑n
i=1 ηi = 1.

Let Γ = {γ(1), . . . , γ()} be a linear space tracing code, i.e., a collection of
� codewords γ(i), for 1 ≤ i ≤ �, where each γ(i) = 〈γ(1)

j , . . . , γ
(2k)
j 〉 is a 2k-

dimensional vector over Z/qZ. The set Γ is fixed in advance and not secret, and
can thus be considered as being a public parameter of the Boneh-Franklin traitor
tracing scheme. We detail in §2.2 the codeword generation process from [5].
In §3.2 we propose a slightly different way to define Γ that has interesting prac-
tical consequences.

A private key is an element θi ∈ Z/qZ such that θi · γ(i) is a representation
of y with respect to the base 〈h1, . . . , h2k〉. Thus, the i-th private key θi can be
derived from the i-th codeword γ(i) as

θi =

∑2k
j=1 rjαj∑2k
j=1 rjγ

(i)
j

, (1)

where, obviously, the calculation takes place in Z/qZ. To encrypt a message
m ∈ Gq, one picks a random a ∈R Z/qZ and calculates the ciphertext as 〈m ·
ya, ha

1 , . . . , h
a
2k〉. Given a ciphertext 〈s, p1, . . . , p2k〉, and the i-th secret key θi,

the message m can be recovered as:

m =
s(∏2k

j=1 p
γ
(i)
j

j

)θi
. (2)

The correctness follows in a straightforward way from the fact that θi · γ(i) is
a representation of y with respect to the base 〈h1, . . . , h2k〉. It follows that it
is possible to decrypt a ciphertext given any representation 〈δ1, . . . , δ2k〉 of y

with respect to the base 〈h1, . . . , h2k〉, since
∏2k

j=1(h
a
j)δj = ya; in other words,

to decrypt it suffices to have a representation of y with respect to the base
〈h1, . . . , h2k〉. Interestingly, Boneh and Franklin show in [5, Lemma 1] that if it
is infeasible to compute discrete logarithms in Gq, then convex combinations of
n < 2k given representations ρ(1), . . . , ρ(n) of y are the only representations of
y that can efficiently be constructed.

2.2 Codewords Generation

We describe the codewords γ(i) generation process from [5] which is based on
the use of Reed-Solomon codes [36]. Given the (�− 2k)× � matrix

Improving the Boneh-Franklin Traitor Tracing Scheme 93

A =

⎛⎜⎜⎜⎜⎜⎝
1 1 1 . . . 1
1 2 3 . . . �
12 22 32 . . . �2

...
...

...
...

1−2k−1 2−2k−1 3−2k−1 . . . �−2k−1

⎞⎟⎟⎟⎟⎟⎠ mod q (3)

over Z/qZ, let b1, . . . , b2k be a basis of the nullspace of A. Boneh and Franklin
define Γ as the rows of the �× 2k matrix

B =

⎛⎝ | | | |
b1 b2 b3 . . . b2k

| | | |

⎞⎠ , (4)

also over Z/qZ. Thus, Γ contains � codewords each of length 2k. By observing
that any vector in the span of the rows of A corresponds to a polynomial of
degree at most � − 2k − 1 evaluated at the points 1, . . . , �, one can construct a
basis of the nullspace of A using Lagrange interpolation. Using this construction
the i-th codeword becomes 〈ui, iui, i

2ui, . . . , i
2k−1ui〉 where u−1

i =
∏

j �=i(i − j)
and all computations are in Z/qZ. Naive computation of the � codewords requires
Ω(�2) operations in Z/qZ. This can easily be turned into O(�) operations using
the following recursive formula:

u−1
1 =

−1∏
j=1

(−j) and u−1
i+1 =

ui(i− 1)
i− �

for 1 ≤ i ≤ �− 1. (5)

2.3 Tracing Procedure

We briefly recall the non-black-box tracing procedure [5]. Let d ∈ (Z/qZ)2k be
a vector formed by taking a linear combination of at most k vectors in Γ . In
practice d will be a convex combination, but we do not need that here. Since
the vectors in Γ form the rows of the matrix B, we know there exists a vector
w ∈ (Z/qZ) (having Hamming weight at most k) such that wB = d. The
tracing procedure then works as follows. First, we determine a vector4 v ∈
(Z/qZ) such that vB = d. Since (v − w)B = 0, we know that v − w lies
in the linear span of the rows of A (recall that the rows of A span the vector
space orthogonal to the one spanned by the columns of B). In other words,
there exists a unique polynomial f of degree at most � − 2k − 1 over Z/qZ

such that v − w = 〈f(1), . . . , f(�)〉. Taking into account that w has Hamming
weight of at most k, we know that 〈f(1), . . . , f(�)〉 equals v in all but at most
k components. Hence, it is possible to use Berlekamp-Welch algorithm [42] to
find f from v, after which f gives us v − w, from which we recover w. The
Berlekamp-Welch algorithm, published in a patent [42] granted in 1986, runs in
O(�2). Asymptotically faster variants exist (see [3]), the fastest known being the
one described by Pan [34] which runs in O(� log � log log �).
4 Note that several such vectors exist.

94 P. Junod, A. Karlov, and A.K. Lenstra

As mentioned in §1.1, the best known black-box tracing procedure for the
Boneh-Franklin scheme is not efficient since it has a O(

(

k

)
k2) complexity. We

refer the reader to [5] for its description since it is out of the scope of this paper.
Furthermore, we note that the black-box tracing procedure is vulnerable to the
attacks described by Kiayias and Yung [22] which demonstrate that the Boneh-
Franklin scheme is essentially incapable of black-box tracing super-logarithmic
self-protecting traitor collusions unless the ciphertext size is linear in the number
of users. Those two facts considerably limit the application of black-box tracing
with the Boneh-Franklin scheme.

3 Revisiting the Tracing Mechanism

We recall several notions from coding theory. A linear code C over the vector
space (Z/qZ) is a subspace of (Z/qZ). For our purposes we may assume that
C has dimension 2k with 0 ≤ 2k ≤ �. It follows that C contains q2k codewords.
The minimal distance d of C is the minimum Hamming weight of its non-zero
codewords. A code C is called maximum-distance separable (MDS) if its minimal
distance reaches the Singleton bound, i.e., if d = �− 2k + 1. A 2k × � matrix G
over Z/qZ is called a generator matrix or encoding matrix for C if its rows form
a linearly independent basis for C. Thus, C = {x ∈ (Z/qZ) : x = zG where z ∈
(Z/qZ)2k} and C is the code associated to G. The dual code C⊥ of a linear code C
is the linear code C⊥ =

{
x ∈ (Z/qZ) : xcT = 0 for all c ∈ C}. A reduced parity-

check matrix for the code C is an (� − 2k) × � matrix H over Z/qZ such that
C =

{
x ∈ (Z/qZ) : xHT = 0

}
. Receiving a noisy version x̃ of a codeword x,

the vector s = x̃HT is called the syndrome. Writing x̃ = x+e, where e is called
the error pattern, we see that the syndrome s = (x+e)HT = 0+eHT = eHT

depends only on the error pattern, and not on the codeword itself. Finally, the
following lemma makes clear the link between a reduced parity-check matrix of
a linear code and its dual code.

Lemma 1. H is a parity-check matrix for the linear code C if and only if C
spans the subspace orthogonal to the row space of H.

Therefore, a reduced parity-check matrix for C is an encoding matrix for the
dual code C⊥ and conversely.

3.1 Generalized Reed-Solomon Codes

Given vectors π = (πi)
i=1, c = (ci)

i=1 ∈ (Z/qZ), a Generalized Reed-Solomon
code GRS,2k(π, c) is defined as follows:

GRS,2k(π, c) =
{
(cif(πi))

i=1 : f(x) ∈ (Z/qZ)[x] and deg(f) < 2k
}

. (6)

Thus, a codeword in GRS,2k(π, c) is a vector consisting of a polynomial of
degree less than 2k over Z/qZ evaluated at the � points π1, . . . , π scaled by
c1, . . . , c. It is well-known that GRS codes are MDS codes, i.e., d = �− 2k + 1.
When c = (1, 1, . . . , 1), we speak of Reed-Solomon codes. The following theorem
states that the dual of a GRS code is a GRS code (see [20, page 66] for a proof).

Improving the Boneh-Franklin Traitor Tracing Scheme 95

Theorem 1. The dual of a GRS,2k(π, c) code is

GRS,2k(π, c)⊥ = GRS,−2k(π, d) (7)

where d = (d1, . . . , d) with d−1
i = ci

∏
j �=i(πi − πj).

The above allows us to rephrase the Boneh-Franklin codeword generation mecha-
nism described in §2.2 as follows: the matrix A defined in (3) is the generator ma-
trix of a GRS,−2k(π, c) code over Z/qZ with π = (1, . . . , �) and c = (1, 1, . . . , 1)
(this fact was already recognized by [23], for instance), while the matrix B de-
fined in (4) is a (transposed) reduced parity-check matrix for the same code.
Conversely, in the light of Lemma 1 and Theorem 1, the matrix BT can be seen
as a generator matrix of the dual GRS,2k(π, d) of GRS,−2k(π, c), where d is as
in Theorem 1. Thus, Γ consists of vectors forming a basis of the 2k-dimensional
vector space which contains the syndromes of GRS,−2k(π, c).

3.2 More Efficient Codewords

The above more general framework allows us to define the code Γ in such a
way that both the codeword generation and decryption become faster without
affecting the security of the Boneh-Franklin scheme.

Using Theorem 1, we observe that in order to compute the codewords we can
avoid Lagrange interpolation and recursive formula (5): let B be the generator
matrix of a GRS,2k(π, d) code with π = (1, 2, . . . , �) and d = (1, 1, . . . , 1),
then the i-th codeword can simply be defined as γ(i) = 〈1, i, i2, . . . , i2k−1〉, for
i = 1, 2, . . . , �. This in turn allows us to rewrite the decryption operation (2) as

m =
s(∏2k

j=1 pij−1

j

)θi
=

s((((
pi
2kp2k−1

)i
. . .

)i

p2

)i

p1

)θi
. (8)

Compared to (2), this replaces 2k of the 2k+1 log2 q-bit modular exponentiation
exponents by log2 �-bit ones. With � ≈ 220 and assuming 80-bit security with 160-
bit q, this results in a speedup by a factor of 7, which is much more effective than
using multi-exponentiations (cf. [30, page 617]) as suggested in [5]. In practice,
the efficiency of our decryption is comparable to [29]. Furthermore, provided
each receiver knows its identity number i, it can directly compute codeword γ(i)

without requiring knowledge of the Lagrange coefficients attached to the receiver
with identity i− 1.

We note that the semantic security of the Boneh-Franklin scheme is not im-
pacted by the nature of the code, while its tracing capabilities only depend on
the minimal distance of the code. In our case, we use Generalized Reed-Solomon
codes with the same minimal distance as the one used by Boneh and Franklin.

3.3 An Efficient Tracing Procedure

In this section, we present in two steps a new and efficient non-black-box trac-
ing procedure for the Boneh-Franklin scheme. We stress that this new tracing

96 P. Junod, A. Karlov, and A.K. Lenstra

procedure can be used for any type of Reed-Solomon and generalized Reed-
Solomon codes, being the original code described in [5], the faster code discussed
in §3.2 or the variant we will discuss in §5. First, we reduce the complexity from
O(� log � log log �) to O(�), using a technique based on the Berlekamp-Massey
algorithm [28] and Chien search [11]. Then, we improve it to expected com-
plexity Õ(k2) by replacing Chien search by the Cantor-Zassenhaus factorization
algorithm [10].

As outlined in §2.3, the Boneh-Franklin tracing procedure based on Berle-
kamp-Welch algorithm consists in finding a noisy codeword which results in the
syndrome discovered in the pirate receiver, and in decoding this codeword. More
precisely, let x and x̃ denote a codeword belonging to GRS,−2k(π, c) with
c = (1, 1, . . . , 1) and its noisy version, respectively. We can interpret both x
and x̃ as polynomials f(x) and f̃(x) in (Z/qZ)[x]. If no error is introduced in
the codeword, then dif(πi) = f̃i for 1 ≤ i ≤ �, where f̃(x) =

∑
i=1 f̃ix

i−1. Let
g(x) ∈ (Z/qZ)[x] be a polynomial (hereafter called an error-locator polynomial)
of degree at most k with g(πi) = 0 for those πi’s for which dif(πi) �= f̃i. This
leads to the following system of � linear equations in � unknowns: dif(πi)g(π) =
g(π)f̃i. Solving the system, one obtains the polynomial g(x), from which the
error locations can be derived. Along with g(x), one also gets dif(x)g(x) and
thus f(x). Straightforward implementation using Gaussian reduction would lead
to O(�3) complexity. Faster approaches would be to use the Berlekamp-Welch
algorithm in O(�2) or others of complexity Õ(�) (see [42, 3, 34]).

The key observation to derive a faster tracing algorithm is to note that com-
puting a (noisy) codeword from the syndrome retrieved from a pirate receiver
and then decoding this codeword, as done above, is not necessary: actually, the
pirate syndrome itself suffices to trace the legitimate syndromes used to derive it.
Indeed, as pointed out by Massey [28], the Berlekamp-Massey algorithm allows
reconstruction of the error-locator polynomial from the syndrome only. This key
property permits us to stop the decoding process earlier for the purpose of trac-
ing and thus reduce the complexity, since we are interested in the error-locator
polynomial only and we do not need the amplitudes of the errors.

We now clarify the link between the error-locator polynomial and the syn-
drome, following [43, page 214]. Let f̃(x) = f(x) + e(x), where f̃(x), f(x) and
e(x) are the received codeword, the original codeword, and the error polynomial,
respectively. Let s(x) = s0 + s1x+ · · ·+ s2k−1x

2k−1 denote the syndrome vector
interpreted as a polynomial. Let g(x) denote an error-locator polynomial whose
zeroes are the inverses of the error locations σj = πi with 1 ≤ j ≤ k and with
i ∈ I for a cardinality k subset I of {1, 2, . . . , �}:

g(x) =
k∏

j=1

(1− σjx) = g0 + g1x + · · ·+ gkxk. (9)

Let t1, t2, . . . , tk be the indices of the non-zero coefficients of e(x). Because
g(σ−1

m) = 0 for all error locations σm with 1 ≤ m ≤ k, it follows that

etmσj
mg(σ−1

m) = 0,

and thus

Improving the Boneh-Franklin Traitor Tracing Scheme 97

etm(gkσ−k+j
m + gk−1σ

−k+j+1
m + · · ·+ g1σ

j−1
m + g0σ

j
m) = 0 (10)

for any j. Summing (10) over m = 1, 2, . . .k gives an expression from which
Newton’s identities can be constructed:∑k

m=1 etm(gkσ−k+j
m + gk−1σ

−k+j+1
m + · · ·+ g1σ

j−1
m + g0σ

j
m)

= gk

∑k
m=1 etmσj−k

m + gk−1
∑k

m=1 etmσj−k+1
m + · · ·+ g0

∑k
m=1 etmσj

m

= gksj−k + gk−1sj−k+1 + · · ·+ g1sj−1 + g0sj = 0.

The last equality comes from the fact that the following system of equations can
be written using the parity-check matrix:

s0 = et1 + et2 + · · ·+ etk

s1 = et1σ1 + et2σ2 + · · ·+ etk
σk

s2 = et1σ
2
1 + et2σ

2
2 + · · ·+ etk

σ2
k

. . .

s2k−1 = et1σ
2k−1
1 + et2σ

2k−1
2 + · · ·+ etk

σ2k−1
k .

From (9) it follows that g0 = 1, which leads to the order k linear recurrence
relation

gksj−k + · · ·+ g1sj−1 = −sj. (11)

Given 2k consecutive terms of an order k linear recurrence, the Berlekamp-
Massey algorithm computes the coefficients of the recurrence in time O(k2).
Because the si for i = 0, 1, . . . , 2k − 1 are known, the gi can thus be computed
directly in time O(k2).

After the error-locator polynomial g(x) has been computed, the remaining
task consists in finding its roots, which are the inverses of identities of the
traitors. Traditionally, Reed-Solomon decoders rely on the Chien search algo-
rithm [11] which searches over the possible roots. In our case, this results in
a complexity of O(�). The roots can, however, be located faster by factoriz-
ing g(1/x) using the Cantor-Zassenhaus algorithm [10] within expected time
O(k2 log k log log k(log q + log k)) = Õ(k2). This algorithm works recursively on
the squarefree polynomial g(x) whose irreducible factors5 are all of degree 1. It
is based on the fact6 that g(x) = gcd(g(x), r(x)) · gcd(g(x), r(x)(p

d−1)/2 + 1) ·
gcd(g(x), r(x)(p

d+1)/2 − 1) for any polynomial r(x) ∈ (Z/qZ)[x].
Then, the obtained roots directly reveal the identities of the traitors. The

overall complexity of our tracing procedures is Õ(k2) which is independent of �.
The latter is not the case for the schemes based on algebraic codes described by
Silverberg et al. in [37, 38].

Our method makes it possible to trace large coalitions in Boneh-Franklin
systems with a virtually unlimited number of users, and this without requiring
5 g(x) in fact fulfills these conditions if g(x) has at most k roots.
6 The interested reader will find more details about the Cantor-Zassenhaus algorithm

in [14, page 128].

98 P. Junod, A. Karlov, and A.K. Lenstra

any modification of the encryption scheme. Our implementation, based on the
GMP [31] and LiDIA [26] software libraries and working over the group of points
of an elliptic curve over a finite field of cardinality approximately 2160, allows
tracing of a coalition of k = 1024 traitors in a system of � = 200′000′000 users in
less than two minutes on a common desktop PC. These parameter values cannot
realistically be handled using the Berlekamp-Welch algorithm as described in [5].

4 Above-Threshold Tracing

In [5] Boneh and Franklin emphasize an interesting property of their scheme,
namely the possibility to trace a collusion of more than k traitors using list-
decoding techniques like the Guruswami-Sudan algorithm [18, 19]. This would
correspond to finding more than k errors in a codeword. In such cases, the
Berlekamp-Welch algorithm fails to find the polynomial f(x). The Berlekamp-
Massey approach fails as well, since it outputs a polynomial of degree k that does
not have k roots over Z/qZ. The algorithm of Guruswami and Sudan allows,
under certain circumstances, to find a candidate for the polynomial f(x). In this
section we investigate under which circumstances tracing is possible and how it
will influence system parameters. We finally show that the Guruswami-Sudan
algorithm can detect only a few additional traitors, and this at high cost.

4.1 Guruswami-Sudan Algorithm for Reed-Solomon Codes

This algorithm attempts to find the message polynomial f(x) given a received
codeword when more than k errors occurred. It can be thought of as a gener-
alization of the Berlekamp-Welch algorithm. Let � and k be as above. Given
� pairs (πi, ci) ∈ (Z/qZ)2 for 1 ≤ i ≤ �, message length � − 2k, and an error
parameter k′ ≤ � − 1 −√

�(�− 2k − 1), the Guruswami-Sudan algorithm finds
all univariate polynomials f of degree at most � − 2k − 1 such that f(πi) = ci

for at least �− k′ values of i. Thus, the algorithm allows correction of at most k′

errors. It consists of two steps. In the first step a parameter r is selected and a
system of O(�r2) linear equations is solved to find a non-zero bivariate polyno-
mial Q(x, y) of a certain weighted degree7 such that Q(πi, ci) = 0 for 1 ≤ i ≤ �.
The parameter r, which is the multiplicity of the singularity of Q(x, y), is chosen
in such a way that as many errors as possible can be handled while keeping the
system of equations tractable. In the second step, factors (y − f(x)) of Q(x, y)
are determined such that deg(f(x)) ≤ �− 2k − 1. For a complete description of
the method see [18, 19]. Below we are interested in its practical feasibility (in
particular of the first step) in the context of the traitor tracing problem.

4.2 List Decoding and Traitor Tracing

In this section we have a closer look at the various parameters of of the Guruswa-
mi-Sudan algorithm. We will see that this leads to the unavoidable conclusion
that it is of little practical significance for our type of applications.
7 degx(Q(x, y))m + degy(Q(x, y))n is called the (m,n)-weighted degree of Q(x, y).

Improving the Boneh-Franklin Traitor Tracing Scheme 99

Since the traditional algorithms (such as Berlekamp-Welch) can trace up to
k traitors, the only case of interest is k′ > k. Let δ = k′ − k be the number of
additional traitors we wish to be able to trace, and let φ = �− 2k − 1. Because
at most � − 1 − √

�φ traitors can be traced, only k’s need to be considered for
which

k + δ ≤ �− 1−
√

�φ (12)

for a δ ≥ 1.
With ω = r(�−k−δ)−1, in the first step of the Guruswami-Sudan algorithm

a system needs to be solved over Z/qZ involving �r(r + 1)/2 constraints and(
ω + 1− φ

2

⌊
ω

φ

⌋)(⌊
ω

φ

⌋
+ 1

)
unknowns [18, 19]. It follows that(

ω + 1− φ

2

⌊
ω

φ

⌋)(⌊
ω

φ

⌋
+ 1

)
≥ �r(r + 1)

2
. (13)

Furthermore, since in practice q will have at least 160 bits, it is reasonable to
limit the number of constraints to 10000 if we want to be able to store the matrix
in 2GB of memory. This leads to

�(r + 1)r
2

< 10000. (14)

Note that this immediately limits the practical applicability of the Guruswa-
mi-Sudan algorithm to tracing in systems of at most a few thousand users. This is
in sharp contrast with our syndrome-only tracing which allows millions of users.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 1 2 3 4 5 6 7 8 9

� = 1024
� = 512
� = 256
� = 128
� = 64
� = 32

Additional tracing capability δ

M
in

im
al

C
oa

lit
io

n
k

Fig. 1. Minimal coalition with respect to a given above-threshold tracing capacity

100 P. Junod, A. Karlov, and A.K. Lenstra

Define the minimal coalition size as the smallest k such that (12), (13), and
(14) are satisfied. For any � and δ, this k follows from a simple search, as illus-
trated in Fig. 1 for several (small) numbers of users. For example, in a system
with � = 512 users the minimal initial coalition size is 69 in order to be able
to trace a single additional key if 70 pirates collude. In many applications, this
results in an overkill, because the ciphertext and private key, which are depen-
dent on the coalition size, become too large. As illustration, let us consider the
following case: for � = 1024 and k = 500, we get k + δ = 855, which may seem
fairly good. However, the required bandwidth to transmit the ciphertext is equal
to 1001 group elements. This is only 2.24% less than a trivial scheme involving
an individual encryption based on El-Gamal which additionally would bring nat-
ural revocation capabilities. Besides that, a system of size � = 1024 is not far
from the limit capacity of the original Berlekamp-Welch algorithm. Hence this
method is not applicable for systems with large number of users, constrained
bandwidth and key-space storage capability.

5 Beyond-Threshold Security

In practical scenarios, there are three distinct cases for the number of compro-
mised keys in a coalition, namely: at most k, between k+1 and 2k−1, and 2k keys
or more. The first case corresponds to the situation for which the Boneh-Franklin
scheme has been designed and security guarantees have been derived, while the
second case corresponds to the above-threshold tracing scenario described in §4.
In this section we discuss the third case.

Suppose that an adversary has managed to get 2k private elements θis , for
1 ≤ s ≤ 2k and assume, as before, that the vectors in Γ are public. Because
Eq. (1) over Z/qZ can be rewritten as

θ−1
is

=

∑2k
j=1 rjγ

(is)
j∑2k

j=1 rjαj

=
2k∑

j=1

ωjγ
(is)
j (15)

with ωj = rj/
∑2k

j=1 rjαj , knowledge of the 2k private keys θis leads to a system
of 2k linear equations in the 2k unknowns ωj , for 1 ≤ j ≤ 2k. After determining
the ωj ’s using for instance Gaussian reduction, the adversary can compute any
other private key θi in the system:

θi =

⎛⎝ 2k∑
j=1

ωjγ
(i)
j

⎞⎠−1

.

Not only will the adversary be able to create any number of untraceable combi-
nations of keys, but he will also be able to distribute newly derived keys so that
innocent users (whose keys were a priori never compromised) may be accused of
treachery. We note that this observation applies not only to the Boneh-Franklin
scheme, but to many tracing schemes that are based on a publicly-known linear
code such as the generalizations described by Kurosawa and Yoshida [25].

Improving the Boneh-Franklin Traitor Tracing Scheme 101

An obvious way to repair this annoying property of the Boneh-Franklin scheme
would require keeping the tracing code matrix secret, while making sure that
the vectors γ(i) = 〈γ(i)

1 , . . . , γ
(i)
2k 〉 are statistically decorrelated. In that case ac-

quiring 2k representations should give an adversary no information about other
representations. This idea was already used by Kiayias and Yung in [23] for
the different goal of obtaining an asymmetric traitor-tracing scheme. A way to
achieve this would be to choose the i-th codeword γ(i) as γ(i) = 〈1, ζi, . . . , ζ

2k−1
i 〉

where ζi ∈R Z/qZ with 1 ≤ i ≤ � is drawn independently and uniformly8 at ran-
dom for each γ(i). Here, a GRS,2k(π, d) code is used, with π = (ζ1, ζ2, . . . , ζ)
and d = (1, 1, . . . , 1). The ith receiver has to protect the entire representation
〈θiγ

(i)
1 , . . . , θiγ

(i)
2k 〉, and thus, to store at least θi and ζi in tamper-proof memory.

Furthermore, the fast codeword generation method from §3.2 can no longer be
used.

By applying the above codeword distribution method, an adversary who ac-
quires 2k or more keys will be unable to derive any information about the tracing
codewords that are used in the representations. She will only be capable of cre-
ating combinations of the representations. If there are fewer than k + 1 keys
in a combination, we are back to a standard tracing scenario. Otherwise, com-
binations of k + 1 or more keys will be detected, but not traceable, since our
tracing algorithm will be unable to factorize the error-locator polynomial nor
the original approaches will reveal the traitors.

6 Conclusion

In this paper, we have presented new insights as well as several improvements
to the Boneh-Franklin traitor tracing scheme [5]. First of all, we revisited the
private key watermarking scheme based on Reed-Solomon codes; based on this,
we describe a new non-black-box tracing algorithm whose complexity only de-
pends on the square of the maximal coalition size k and is independent of the
total number � of users. Our new tracing algorithm does not require any change
in the encryption scheme and can be used with any generalized Reed-Solomon
codes.

This allows us to implement the scheme in a system with a virtually unlimited
number of users; in other words, the maximal coalition size is only constrained
by the channel bandwidth and the computational capacity of the receivers. This
new tracing algorithm can also be applied with any other scheme relying on
(generalized) Reed-Solomon codes to watermark the distributed private keys.

Additionally, we discussed the application of the Guruswami-Sudan list-de-
coding algorithm, whose use was proposed in [5], and showed that, in practice,
it brings only a marginal improvement in tracing capabilities, and this at high
cost.

As a final step, we studied the above-threshold security of the Boneh-Fran-
klin scheme, i.e., the malicious capabilities of an adversary having access to many
8 Note that for practical values of �, a collision between two codewords has a negligible

probability to occur.

102 P. Junod, A. Karlov, and A.K. Lenstra

more than k keys. We showed that, given a coalition size of k, an adversary who
has recovered 2k private keys or more can derive any other private key, provided
the code Γ is publicly known, as advocated in [5]. To the best of our knowledge,
this ‘feature’ has not been reported in the literature. To deal with this problem,
we suggest to keep the tracing code matrix secret and to distribute statistically
independent codewords to the receivers.

Even though the Boneh-Franklin scheme can encrypt only small messages
(basically, one group element), and even though using it in a hybrid fashion by
encrypting a symmetric session key is prone to a trivial untraceable strategy9, we
believe based on our results that, in order to fight illegitimate clones of tamper-
proof modules, the Boneh-Franklin scheme is now really worth to be considered
in scenarios where trivial untraceable strategies are unavoidable10 by design. Of
course, this statement is based on the assumption that it is possible to revoke a
traced clone by some other mechanism.

Acknowledgments

We would like to thank Olivier Billet, Olivier Brique, Nicolas Fischer, Jim Fuller,
Michael Hill, Corinne Le Buhan Jordan, André Nicoulin, Karl Osen, Martijn
Stam as well as the anonymous reviewers of PKC’09 for interesting discussions
and comments about this paper.

References

1. Anderson, R.: Security engineering – a guide to building dependable distributed
systems. Wiley, Chichester (2001)

2. Billet, O., Phan, D.: Efficient traitor tracing from collusion secure codes. In: Safavi-
Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 171–182. Springer, Heidelberg
(2008)

3. Bini, D., Pan, V.: Polynomial and matrix computations: fundamental algorithms.
Progress in Theoretical Computer Science Series, vol. 1. Birkhauser Verlag, Basel
(1994)

4. Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)

5. Boneh, D., Franklin, M.: An efficient public key traitor tracing scheme. In: Wiener,
M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338–353. Springer, Heidelberg (1999)

6. Boneh, D., Naor, M.: Traitor tracing with constant size ciphertext (manuscript
2008), http://crypto.stanford.edu/~dabo/papers/const-tt.pdf

7. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short
ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 573–592. Springer, Heidelberg (2006)

8. Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. IEEE Trans-
actions on Information Theory 44(5), 1897–1905 (1998)

9 This strategy is simply to share the session key.
10 Like in Pay-TV systems using the DVB-CSA [39] standard encryption, for instance.

http://crypto.stanford.edu/~dabo/papers/const-tt.pdf

Improving the Boneh-Franklin Traitor Tracing Scheme 103

9. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace and revoke sys-
tem. In: Juels, A., Wright, R., De Capitani de Vimercati, S. (eds.) Proceedings of
the 13th ACM Conference on Computer and Communication Security, CCS 2006,
Alexandria, USA, October 30 - November 3, pp. 211–220. ACM Press, New York
(2006)

10. Cantor, D., Zassenhaus, H.: A new algorithm for factoring polynomials over finite
fields. Mathematics of Computation 36(154), 587–592 (1981)

11. Chien, R.: Cyclic decoding procedures for Bose-Chaudhuri-Hocquenghem codes.
IEEE Transactions on Information Theory 10(4), 357–363 (1964)

12. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)

13. Chor, B., Fiat, A., Naor, M., Pinkas, B.: Tracing traitors. IEEE Transactions on
Information Theory 46(3), 893–910 (2000)

14. Cohen, H.: A course in computational algebraic number theory. Springer, Heidel-
berg (2000)

15. Dodis, Y., Fazio, N., Kiayias, A., Yung, M.: Scalable public-key tracing and re-
voking. In: Rajsbaum, S. (ed.) PODC 2003, Proceedings of the Twenty-Second
ACM Symposium on Principles of Distributed Computing, July 13-16, 2003, pp.
190–199. ACM Press, Boston (2003)

16. Dodis, Y., Fazio, N., Kiayias, A., Yung, M.: Scalable public-key tracing and revok-
ing. Distributed Computing 17(4), 323–347 (2005)

17. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

18. Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-
geometric codes. In: 39th Annual Symposium on Foundations of Computer Science
(FOCS 1998), California, USA, November 8-11, 1998, pp. 28–39. IEEE Computer
Society, Los Alamitos (1998)

19. Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-
geometry codes. IEEE Transactions on Information Theory 45(6), 1757–1767
(1999)

20. Hall, J.: Notes on coding theory – Generalized Reed-Solomon codes (2003),
http://www.mth.msu.edu/~jhall/classes/codenotes/GRS.pdf

21. Kiayias, A., Pehlivanoglu, S.: Pirate evolution: how to make most of your traitor
keys. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 448–465. Springer,
Heidelberg (2007)

22. Kiayias, A., Yung, M.: Self protecting pirates and black-box traitor tracing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 63–79. Springer, Heidelberg
(2001)

23. Kiayias, A., Yung, M.: Breaking and repairing asymmetric public-key traitor trac-
ing. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 32–50. Springer,
Heidelberg (2003)

24. Kurosawa, K., Desmedt, Y.: Optimum traitor tracing and asymmetric schemes with
arbiter. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 145–157.
Springer, Heidelberg (1998)

25. Kurosawa, K., Yoshida, T.: Linear code implies public-key traitor tracing. In: Nac-
cache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 172–187. Springer,
Heidelberg (2002)

26. LiDIA A C++ Library for Computational Number Theory. Software,
http://www.cdc.informatik.tu-darmstadt.de/TI/LiDIA/

27. Mangard, S., Oswald, E., Popp, T.: Power analysis – revealing the secrets of smart
cards. Springer, Heidelberg (2007)

http://www.mth.msu.edu/~jhall/classes/codenotes/GRS.pdf
http://www.cdc.informatik.tu-darmstadt.de/TI/LiDIA/

104 P. Junod, A. Karlov, and A.K. Lenstra

28. Massey, J.: Shift-register synthesis and BCH decoding. IEEE Transactions on In-
formation Theory 15(1), 122–127 (1969)

29. McGregor, J., Yin, Y., Lee, R.: A traitor tracing scheme based on RSA for fast
decryption. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS,
vol. 3531, pp. 56–74. Springer, Heidelberg (2005)

30. Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of applied cryptography.
The CRC Press series on discrete mathematics and its applications. CRC Press,
Boca Raton (1997)

31. GNU Multiple Precision Arithmetic Library, http://gmplib.org.
32. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless

receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001)

33. Naor, M., Pinkas, B.: Threshold traitor tracing. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 502–517. Springer, Heidelberg (1998)

34. Pan, V.: Faster solution of the key equation for decoding BCH error-correcting
codes. In: Leighton, F., Shor, P. (eds.) Proceedings, 29th Annual ACM Symposium
on the Theory of Computing (STOC), pp. 168–175. ACM Press, New York (1997)

35. Pfitzmann, B.: Trials of traced traitors. In: Anderson, R. (ed.) IH 1996. LNCS,
vol. 1174, pp. 49–64. Springer, Heidelberg (1996)

36. Reed, I., Solomon, G.: Polynomial codes over certain finite fields. Journal of the
Society for Industrial and Applied Mathematics (SIAM) 8(2), 300–304 (1960)

37. Silverberg, A., Staddon, J., Walker, J.: Efficient traitor tracing algorithms using
list decoding. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 175–192.
Springer, Heidelberg (2001)

38. Silverberg, A., Staddon, J., Walker, J.: Applications of list decoding to traitor
tracing. IEEE Transactions on Information Theory 49(5), 1312–1318 (2003)

39. Digital Video Broadcasting (DVB) Conditional Access Standards,
http://www.dvb.org/technology/standards/index.xml#conditional

40. Stinson, D., Wei, R.: Key preassigned traceability schemes for broadcast encryp-
tion. In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 144–156.
Springer, Heidelberg (1999)

41. Wallner, D., Harder, E., Agee, R.: Key management for multicast: issues and ar-
chitectures. RFC 2627 (1999), http://www.ietf.org

42. Welch, L., Berlekamp, E.: Error correction for algebraic block codes. US Patent
4’633’470 (1986)

43. Wicker, S.: Error control systems for digital communications and storage. Prentice-
Hall, Englewood Cliffs (1995)

44. Wong, C., Gouda, M., Lam, S.: Secure group communications using key graphs.
In: Proceedings of the ACM SIGCOMM 1998 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication, Vancouver,
British Columbia, Canada, August 31 - September 4, 1998, pp. 68–79. ACM Press,
New York (1998)

http://gmplib.org
http://www.dvb.org/technology/standards/index.xml#conditional
http://www.ietf.org

Modeling Key Compromise Impersonation
Attacks on Group Key Exchange Protocols

M. Choudary Gorantla, Colin Boyd, and Juan Manuel González Nieto

Information Security Institute, Faculty of IT, Queensland University of Technology
GPO Box 2434, Brisbane, QLD 4001, Australia

mc.gorantla@isi.qut.edu.au, {c.boyd,j.gonzaleznieto}@qut.edu.au

Abstract. A key exchange protocol allows a set of parties to agree
upon a secret session key over a public network. Two-party key exchange
(2PKE) protocols have been rigorously analyzed under various models
considering different adversarial actions. However, the analysis of group
key exchange (GKE) protocols has not been as extensive as that of 2PKE
protocols. Particularly, the security attribute of key compromise imper-
sonation (KCI) resilience has so far been ignored for the case of GKE
protocols. We first model the security of GKE protocols addressing KCI
attacks by both outsider and insider adversaries. We then show that a
few existing protocols are not secure even against outsider KCI attacks.
The attacks on these protocols demonstrate the necessity of considering
KCI resilience. Finally, we give a new proof of security for an existing
GKE protocol under the revised model assuming random oracles.

Keywords: Group Key Exchange, Key Compromise Impersonation, In-
sider Attacks.

1 Introduction
A group key exchange (GKE) protocol allows a group of parties to agree upon a
secret common session key over a public network. Although there had been GKE
protocols earlier, Bresson et al. [1,2,3] were the first to analyze the security of
GKE protocols under formal security models. These models define authenticated
key exchange (AKE) security and mutual authentication as the desired notions
of security against an outsider adversary i.e. assuming that the adversary is not
part of the group. The notion of AKE-security demands that an outsider adver-
sary should not learn the session key while the notion of mutual authentication
requires that parties who complete the protocol execution should output iden-
tical session keys and that each party should be ensured of the identity of the
other participating parties.

Katz and Shin [4] define insider security for GKE protocols by separating the
requirements of mutual authentication in the presence of insiders into agreement
and security against insider impersonation attacks. Their definition has been
revisited by Bohli et al. [5] and Bresson and Manulis [6] under different corruption
models. Bohli et al. also define the notion of contributiveness which requires that

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 105–123, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

http://dx.doi.org/10.1007/978-3-642-00468-1_29

106 M.C. Gorantla, C. Boyd, and J.M. González Nieto

a proper subset of insiders should not predetermine the resulting session key.
Bresson and Manulis strengthen this notion by considering strong corruptions
where the ephemeral session state of an instance may also be revealed in addition
to the long-term private key of the party.

All the models above (for both outsider and insider security) assume that a
party will be fully under the control of the adversary once the party’s long-term
private key is compromised. These models however consider forward secrecy to
limit the damage done by compromise of long-term private key after session com-
pletion. Another equally important security attribute related to compromise of
the long-term private key of parties is key compromise impersonation (KCI) re-
silience. Informally, an adversary is said to impersonate a party B to another
party A if B is honest and the protocol instance at A accepts the session with B
as one of the session peers but there exists no such partnered instance at B [4].
In a successful KCI attack, an adversary with the knowledge of the long-term
private key of a party A can impersonate B to A. Resilience to KCI attacks is of-
ten seen as a desired security attribute for two-party key exchange (2PKE) [7,8].
However, it has so far been ignored for the case of group key exchange.

We argue that KCI resilience for GKE protocols is at least as important as it
is for 2PKE protocols. For this purpose we illustrate two scenarios with different
setup assumptions, where a KCI attack is a threat. We first extend the peer-to-
peer file sharing system scenario given for the two-party case by Ng [9, Section
4.2.2], to the group case. In these systems each user stores some data and allows
access only to users with whom it wants to share the data. This can be achieved
by executing a GKE protocol with the peers who have read access to the data
and sending them the data encrypted using the established session key. Let A be
the party who has some sensitive data. The goal of an adversary A is to access
the data at A which is to be shared only with the users who have read access.
Although the compromise of A’s long-term private key helps A to impersonate
A, A may not be able to access the data locally stored at A. However, if the GKE
protocol used is vulnerable to KCI attacks, A can impersonate a party who has
read access and decrypt the data using the session key. Note that in this scenario,
the GKE protocol needs to have forward secrecy. Otherwise, compromising A’s
private key will enable the adversary to obtain the session key. On the other
hand, having forward secrecy alone is not sufficient as A will be able to spoof
the presence of an honest party if the protocol is not KCI resilient as discussed
above.

The second one is a server-client scenario for the application given by Bresson
et al. [10]. They propose a GKE protocol which allows a cluster of mobile devices
(acting as clients) to agree upon a session key with a wireless gateway (acting
as a server). The authors suggest that the established session key can be used
along with a suitable protocol to secure IEEE 802.11 wireless networks. If the
long-term private key of the gateway is compromised, an adversary can easily
impersonate the gateway and allow any mobile device to access the wireless
network. However, impersonating the gateway may be recognized by observing
the logs, erasing which may require additional administrative rights depending

Modeling KCI Attacks on GKE Protocols 107

on how the gateway is configured. On the other hand, if the GKE protocol is
vulnerable to KCI attacks, the adversary can impersonate a legitimate mobile
device and gain access to the wireless network without being detected. We indeed
present a KCI attack on the protocol of Bresson et al. [10].

Outsider KCI Resilience. We call a party corrupted if the long-term pri-
vate key of the party is compromised, while a protocol instance is called corrupted
if the ephemeral session state of that instance is revealed. In an outsider KCI
attack scenario for GKE protocol, an adversary A is allowed to compromise the
long-term private keys of up to all parties except one. But, it is allowed nei-
ther to corrupt the protocol instances at any of parties nor to participate in
the protocol on behalf of the corrupted parties. A is an outsider to the specific
protocol execution in consideration as no session specific information is revealed.
A is considered successful in mounting a KCI attack if it can impersonate any
uncorrupted party to an uncorrupted instance at any of the corrupted parties.
We consider the goal of A as an outsider is to break the confidentiality of the
session key established. Hence, we modify the existing definition of AKE-security
accordingly.

Insider KCI Resilience. A party is called an insider if the adversary cor-
rupts the party and actively participates in the protocol on behalf of that party.
In an insider KCI attack scenario, the goal of an adversary A is to impersonate
an uncorrupted party B to an uncorrupted instance of a party A. Note that A
is allowed to compromise the long-term private key of A, while all the parties
except A and B can be insiders. We revise the existing definition of mutual
authentication accordingly. It is easy to see that the revised definition implies
mutual authentication with KCI resilience in the presence of no insiders.

Boyd and González Nieto (BG) proposed a one-round GKE protocol and
proved the protocol secure under the AKE-security notion. Choo et al. [11] later
presented unknown key share attacks on the BG protocol and suggested an
improvement. We show that the improved protocol is not outsider KCI resilient.
We also show that the tripartite key agreement protocol TAK-3 of Al-Riyami
and Paterson [12] and the GKE protocol of Bresson et al. [10] are not secure
against outsider KCI attacks.

One way to modify the BG protocol to make it secure against KCI attacks
is by applying the compiler of Katz and Shin (KS) [4]. A KS-compiled protocol
is shown to guarantee mutual authentication in the presence of insiders. If one
applies the KS-compiler to the improved BG protocol it is easy to show that the
resulting protocol will be both outsider and insider KCI resilient in the random
oracle model. However the resulting two-round protocol will not provide forward
secrecy as the BG protocol itself does not have this property. Hence, we show
that the two-round protocol of Bohli et al. [5], which already has forward secrecy,
satisfies our new definitions. For the sake of completeness, we also show that this
protocol is secure under the notion of contributiveness proposed by Bresson and
Manulis [6]. The contributions of this paper are:

1. Modeling KCI attacks on GKE protocols by presenting new outsider and
insider security notions

108 M.C. Gorantla, C. Boyd, and J.M. González Nieto

2. KCI attacks on the protocols of Boyd and González Nieto [13], Al-Riyami
and Paterson [12] and Bresson et al. [10]

3. A new proof of security for the protocol of Bohli et al. [5] in the random
oracle model

Organization. In Section 2 we present new notions of AKE-security and mu-
tual authentication considering KCI attacks by outsiders and insiders respec-
tively. Section 3 presents outsider KCI attacks on the improved Boyd and
González Nieto’s protocol, Al-Riyami and Paterson’s protocol and Bresson et
al.’s protocol. In Section 4, we show that the protocol of Bohli et al. [5] is insider
secure i.e. that it satisfies the new notions AKE-security and mutual authenti-
cation in addition to existing notion of contributiveness. We conclude our paper
in Section 5 with a comparison among existing GKE protocols.

2 Model

Let U = {U1, . . . , Un} be a set of n parties. The protocol may be run among any
subset of these parties. Each party is assumed to have a pair of long-term public
and private keys, (PKU , SKU) generated during an initialization phase prior to
the protocol run. A GKE protocol π executed among n users is modeled as a
collection of n programs running at the n different parties in U . Each instance of
π within a party is defined as a session and each party may have multiple such
sessions running concurrently.

Let πi
U be the i-th run of the protocol π at party U ∈ U . Each protocol instance

at a party is identified by a unique session ID. We assume that the session ID
is derived during the run of the protocol. The session ID of an instance πi

U is
denoted by sidi

U . We assume that each party knows who the other participants
are for each protocol instance. The partner ID pidi

U of an instance πi
U , is a set

of identities of the parties with whom πi
U wishes to establish a common group

key. Note that pidi
U includes the identity of U itself.

An instance πi
U enters an accepted state when it computes a session key ski

U .
Note that an instance may terminate without ever entering into an accepted
state. The information of whether an instance has terminated with acceptance
or without acceptance is assumed to be public. Two instances πi

U and πj
U ′ at

two different parties U and U ′ respectively are considered partnered iff (1) both
the instances have accepted, (2) sidi

U= sidj
U ′ and (3) pidi

U= pidj
U ′ .

The communication network is assumed to be fully controlled by an adversary
A, which schedules and mediates the sessions among all the parties. A is allowed
to insert, delete or modify the protocol messages. If the adversary honestly for-
wards the protocol messages among all the participants, then all the instances
are partnered and output identical session keys. Such a protocol is called a cor-
rect GKE protocol. In addition to controlling the message transmission, A is
allowed to ask the following queries.

– Execute(sid,pid) prompts a complete execution of the protocol among the
parties in pid using the unique session ID sid. A is given all the protocol
messages, modeling passive attacks.

Modeling KCI Attacks on GKE Protocols 109

– Send(πi
U ,m) sends a message m to the instance πi

U . If the message is (sid,pid),
the instance πi

U is initiated with session ID sid and partner ID pid. The
response of πi

U to any Send query is returned to A.
– RevealKey(πi

U) If πi
U has accepted, A is given the session key ski

U established
at πi

U .
– Corrupt(U) The long-term secret key SKU of U is returned to A. Note that

this query returns neither the session key (if computed) nor the internal
state.

– RevealState(πi
U) The internal state of U is returned to A. We assume that

the internal state is erased once πi
U has accepted. Hence, a RevealState query

to an accepted instance returns nothing.
– Test(πi

U) A random bit b is secretly chosen. If b = 1, A is given ski
U es-

tablished at πi
U . Otherwise, a random value chosen from the session key

probability distribution is given. Note that a Test query is allowed only on
an accepted instance.

2.1 AKE Security

We present a revised notion of AKE-security by taking KCI attacks into account.
As this is a notion of outsider security, we assume that all the participants are
honest i.e. all the parties execute the protocol honestly.

The notion of freshness is central to the definition of AKE-security. We define
the notion of freshness by considering KCI attack scenarios based on a corre-
sponding notion for two-party key exchange given by Krawczyk [8]. Informally,
a session is considered fresh if the session key is not trivially compromised.

Freshness. An instance πi
U is fresh if the following conditions hold:

1. the instance πi
U or any of its partners has not been asked a RevealKey after

their acceptance
2. the instance πi

U or any of its partners has not been asked a RevealState before
their acceptance

3. If πj
U ′ is a partner of πi

U and A asked Corrupt(U ′), then any message that A
sends to πi

U on behalf of πj
U ′ must come from πj

U ′ intended to πi
U .

The last condition requires that the adversary be an outsider, i.e. it must be
passive for any partner that it corrupts.

Definition 1 (AKE-Security with KCI resilience). An adversary Aake against
the AKE-security notion is allowed to make Execute, Send, RevealState, Re-
vealKey and Corrupt queries in Stage 1. Aake makes a Test query to an instance
πi

U at the end of Stage 1 and is given a challenge key Kb as described above. It
can continue asking queries in Stage 2. Finally, Aake outputs a bit b′ and wins
the AKE security game if (1) b′ = b and (2) the instance πi

U that was asked
Test query remained fresh till the end of Aake’s execution. Let SuccAake

be the
success probability of Aake in winning the AKE security game. The advantage
of Aake in winning this game is AdvAake

= |2 · Pr[SuccAake
] − 1|. A protocol is

called AKE-secure if AdvAake
is negligible in the security parameter k for any

polynomial time Aake.

110 M.C. Gorantla, C. Boyd, and J.M. González Nieto

The definition of freshness takes care of the KCI attacks as it does allow Aake

to corrupt the owner of the test protocol instance. Note that if the adversary is
active with respect to a partner to the test instance πi

U , then that party cannot
have been corrupted, otherwise πi

U is not fresh. The definition also takes forward
secrecy into account as it allows Aake to obtain the long-term private keys of all
the parties. In this case, Aake must be passive with respect to all partners of πi

U .

2.2 Mutual Authentication

Katz and Shin [4] first presented a definition of insider security that models im-
personation attacks and ensures agreement on the session key in the presence of
insiders. Bohli et al. [5] revisited this notion in weak corruption model, where
session state is not revealed. They also presented insider attacks on the protocols
of Katz and Yung [14] and Kim et al. [15] that violate integrity of the proto-
cols. Later, Bresson and Manulis [6] unified the insider security notions of Katz
and Shin into their definition of mutual authentication. They also considered
session state reveal queries separately from the corrupt queries. We strengthen
the definition of Bresson and Manulis by considering KCI attacks by insiders.

Definition 2 (Mutual Authentication with KCI resilience). An adversary Ama

against the mutual authentication of a correct GKE protocol π is allowed to
ask Execute, Send, RevealState, RevealKey and Corrupt queries. Ama violates the
mutual authentication property of the GKE protocol if at some point during the
protocol run, there exists an uncorrupted instance πi

U (although the party U may
be corrupted) that has accepted with a key ski

U and another party U ′ ∈ pidi
U

that is uncorrupted at the time πi
U accepts such that

1. there is no instance πj
U ′ with (pidj

U ′ , sidj
U ′) = (pidi

U , sidi
U) or

2. there is an instance πj
U ′ with (pidj

U ′ , sidj
U ′) = (pidi

U , sidi
U) that has accepted

with skj
U ′ �= ski

U .

Let SuccAma be the success probability of Ama in winning the mutual authenti-
cation game. A protocol is said to provide mutual authentication in the presence
of insiders if SuccAma is negligible in the security parameter k for any polynomial
time Ama.

The difference between the above definition and that of Bresson and Manulis
is that we allow Ama to obtain the long-term private key of Ui, but Ama is
not allowed to execute the protocol on Ui’s behalf. Ama is considered successful
in an insider KCI attack against Ui if it violates above definition of mutual
authentication.

It is easy to see that if a protocol does not satisfy earlier definitions [4,5,6], it
also does not satisfy Definition 2. Many existing protocols [5,6] which are proven
secure under the definitions in the corresponding papers also seem to satisfy our
definition. Note that this is not the general case as the adversary in our definition
clearly has additional power.

Modeling KCI Attacks on GKE Protocols 111

2.3 Contributiveness

To ensure complete covering of insider security notions we present below the
notion of contributiveness by Bresson and Manulis [6]. A GKE protocol secure
under this notion resists the key control attacks by Pieprzyk and Wang [16]
where a proper subset of insiders tries to predetermine the resulting session key.

Definition 3 (Contributiveness). An adversary Acon against the contributive-
ness of correct GKE protocol π is allowed ask Execute, Send, RevealKey, Re-
vealState and Corrupt queries. It operates in two stages prepare and attack as
follows:

prepare. Acon queries the instances of π and outputs some state information ζ
along with a key k̃.

At the end of prepare stage, a set Π is built such that Π consists of uncorrupted
instances which have been asked either Execute or Send queries.

attack. On input (ζ, Π), Acon interacts with the instances of π as in the prepare
stage.

At the end of this stage Acon outputs (U, i) and wins the game if an instance πi
U

at an uncorrupted party U has terminated accepting k̃ with πi
U /∈ Π .

Let SuccAcon be the success probability of Acon in winning the above game. A
protocol is said to provide contributiveness in the presence of insiders, if SuccAcon

is negligible in the security parameter k for any polynomial time Acon.

3 KCI Attacks on Existing Protocols

We present KCI attacks on the protocols of Boyd and González Nieto [13], Al-
Riyami and Paterson [12] and Bresson et al. [10]. We speculate that there are
many GKE protocols in the literature which are not secure against KCI attacks.
By selecting these three protocols, we are able to demonstrate the importance
of considering resilience to KCI attacks for GKE protocols under different setup
assumptions. Note that the Boyd and González Nieto protocol is a contributory
GKE protocol where each party is assumed to have equal resources. The Al-
Riyami and Paterson protocol is a GKE protocol with the group size three,
while the protocol of Bresson et al. assumes a server with high computational
resources and many computationally restricted clients.

3.1 Boyd and González Nieto’s Protocol [13]

Boyd and González Nieto [13] (BG) proposed a one-round GKE protocol and
proved it AKE-secure in the Bellare-Rogaway model [17] adapted to the group
setting. Later, Choo et al. [11] presented an unknown key share attack on the BG
protocol in a multi-user setting. They also presented an improved BG protocol
that resists unknown key share attacks but do not give any formal security proof.
We now briefly describe the protocol.

112 M.C. Gorantla, C. Boyd, and J.M. González Nieto

Round 1
U1 → ∗ : U = {U1, U2, . . . , Un}, σsks1

(U , {N1, U1}pke2
, . . . , {N1, U1}pken

)
U1 → ∗ : {N1, U1}pkei

for 1 < i ≤ n
Ui → ∗ : Ui, Ni for 1 < i ≤ n

Key Computation

sid = U‖σsks1
(U , {N1, U1}pke2

, . . . , N1, U1}pken
)‖{N1, U1}pkei

‖Ui‖Ni

The session key is SKU
i = H(N1‖sid)

Fig. 1. Improved Boyd-González Nieto Protocol [11]

Let U = {U1, U2, . . . , Un} be the set of participants. All the users agree upon a
distinguished user for each execution of the protocol. Without loss of generality
let U1 be the distinguished user. The protocol uses a public key encryption
scheme PE = (Ke,E ,D), where Ke, E and D are the key generation, encryption
and decryption algorithms. It also uses a signature scheme Σ = (Ks,S,V), where
Ks, S and V are the key generation, signature and verification algorithms. Each
user is issued with a key pair for each of the schemes. Let (ske, pke) and (sks, pks)
be the private-public key pairs for the encryption and signature schemes.

In the protocol, the distinguished user U1 chooses a nonce N1
R← {0, 1}k and

encrypts it along with its identity for each of the other parties. U1 signs all
these ciphertexts together with the set of identities of all the users U . The set U ,
the signature computed and the ciphertexts are then broadcast. All the parties
Ui ∈ U , Ui �= U1 broadcast their nonces Ni

R← {0, 1}k along with their identities.
A user computes the session ID as the concatenation of all the outgoing and
incoming protocol messages. A key derivation function H is used to compute
the session key with the nonce N1 and the session ID as input. As there is
no restriction on who should send a protocol message first, the protocol can
be completed in one round. The protocol message transmission and session key
computation are presented in Figure 1. The users Ui, i �= 1, verify the signature
of U1 and decrypt k1 before computing the session key.

We show that the improved BG protocol in Figure 1 is not secure against
KCI attacks. An attack can be mounted by corrupting any user except the dis-
tinguished user U1. Let us assume that U2 is corrupted. An adversary A can
impersonate U1 just by replaying a message from a previous successful execu-
tion of the protocol. The nonce selected by U1 in the replayed message can be
decrypted using the private key of U2. Thus A can easily win the AKE-security
game by selecting the test session at U2.

A straightforward improvement to the protocol in Figure 1 could be by asking
all users Ui �= U1 to encrypt their nonces with the public keys of other users
and broadcast the messages. Although this thwarts the above KCI attack on
the protocol, the improved protocol cannot be proven secure under the AKE-
security notion. To see why, note that in the above attack scenario we have
considered the simple case where the long-term private key of only one user
other than U1 is compromised. If we assume that more than one user (other
than U1) is corrupted, then the adversary can impersonate U1 in the same way

Modeling KCI Attacks on GKE Protocols 113

as described above and successfully mount a KCI attack. We leave open the task
of constructing a one-round GKE protocol that resists KCI attacks.

3.2 Al-Riyami and Paterson’s Protocol [12]

Al-Riyami and Paterson [12] proposed a series of tripartite key agreement (TAK)
protocols based on Joux’s protocol [18]. While the authors do not provide a
definition of KCI resilience for a TAK protocol, they claim that the protocol
TAK-3 is secure against KCI attacks. However we below present a KCI attack
on TAK-3.

The system parameters are (q, G1, GT , P, e, H), where q is a prime number,
G1 and GT are groups of order q, P is a generator of G1, e : G1×G1 → GT is an
admissible bilinear map and H is a hash function that maps to the key space.
Let (x, xP), (y, yP) and (z, zP) be the private-public key pairs of three users
A, B and C respectively, where x, y, z ∈ Z∗

q . The parties are issued certificates
for their public key, which bind an identity to the corresponding public key. Let
CertA, CertB and CertC be the certificates issued for the public keys of A, B
and C respectively.

As the part of the protocol the users A, B and C select the ephemeral se-
cret keys a, b, c

R← Z∗
q respectively. The protocol message transmission and key

computation is shown in Figure 2.

Round 1

A → B, C : aP‖CertA

B → A,C : bP‖CertB

C → A, B : cP‖CertC

Key Computation:

A : KA = e(yP, cP)x · e(bP, zP)x · e(yP, zP)a · e(bP, cP)a

B : KB = e(aP, zP)y · e(xP, cP)y · e(xP, zP)b · e(aP, cP)b

C : KC = e(aP, yP)z · e(xP, bP)z · e(xP, yP)c · e(aP, bP)c

The session key is KABC = KA = KB = KC = e(P, P)(xy)c+(xz)b+(yz)a+abc

Fig. 2. TAK-3 protocol of Al-Riyami and Paterson with forward secrecy [12]

We now show that the protocol in Figure 2 is not KCI resilient as per our AKE-
security definition. Let us assume that the adversaryA has compromised the long-
term private keys x and y of the parties A and B respectively. A can impersonate
an honest user C by sending a message c′P‖CertC for a known c′ ∈ Z∗

q . It can
compute the same key that A and B computes with its knowledge of x, y and c′

as K ′ = e(yP, c′P)x · e(bP, zP)x · e(aP, zP)y · e(aP, bP)c′ . It can now easily win
the AKE-security game by selecting a test session at either A or B.

The key derivation of TAK-3 protocol is similar to the MTI/A0 protocol [19].
Al-Riyami and Paterson also proposed another tripartite variant TAK-4 whose
key derivation is based on the MQV [7]. The two-party protocols MTI/A0 and the
MQV are secure against KCI attacks. It is interesting to see that TAK-3 protocol
is vulnerable to KCI attacks while TAK-4 protocol appears to resist them.

114 M.C. Gorantla, C. Boyd, and J.M. González Nieto

3.3 Bresson et al.’s Protocol [10]

In the protocol of Bresson et al. [10], a group of n parties computes a common
session key with a mobile gateway S acting as a server. The system parameters
are (q, G, g,H,H0,H1, k0, k1), where q is a prime number chosen based on a secu-
rity parameter k, G is a finite cyclic group of order q, g is an arbitrary generator
of G. The hash functions H,H0 and H1 map to bit strings of length k, k0 and k1
respectively. The server is assumed to have a private-public key pair (x, y = gx)
where x

R← Z∗
q . It also assumed to know the group of parties Gc with whom

it communicates. Each party Ui is issued a private-public key pair (SKi, PKi)
for a signature scheme SIGN = (SIGN.KGen, SIGN.Sig, SIGN.Ver). The protocol
execution is described in Figure 3.

Round 1:

1. Each Ui selects xi
R← Z∗

q , computes yi = gx
i , αi = yxi and σ1 =

SIGN.Sig(SKi, yi)
2. Each Ui sends (yi, σi) to the server S

Round 2:

1. The base station first verifies all the incoming signatures.
2. It then computes αi = yx

i , initializes a counter c ∈ {0, 1}k1 and the shared
secret key K = H0(c‖α1‖ . . . ‖αn)

3. It also computes for each party Ui, Ki = K ⊕H1(c‖αi)
4. S sends (c, Ki) to the user Ui for all i ∈ [1, n]

Key Computation:

1. Each user computes K = Ki ⊕H1(c‖αi)
2. The session key is computed by the server and the parties as sk = H(K‖Gc‖S)

Fig. 3. Bresson et al.’s GKE protocol [10]

We now show that the protocol in Figure 3 is not secure against KCI attacks
as per Definition 1. If an adversary A obtains the long-term private key x of
the server S, it can impersonate any honest user in Gc to S as follows: A simply
replays a message (yi, σi) of party Ui from an earlier successful execution of the
protocol. The server sends back (c, Ki). A can compute the shared secret K as
K = Ki⊕H1(c‖αi) where αi is computed as yx

i with its knowledge of the private
key x. Thus it can win the AKE-security game by choosing a test session at S.

4 An Insider Secure GKE Protocol

Bohli et al. [5] showed that the protocol of Kim et al. [15] was insecure in the
presence of insiders and then modified the protocol as shown in Figure 4. The
improved protocol was shown to satisfy their definitions of outsider and insider
security. We briefly review the protocol here.

Let {U1, . . . , Un} be the set of parties who wish to establish a common group
key. It is assumed that the parties are ordered in a logical ring with Ui−1 and

Modeling KCI Attacks on GKE Protocols 115

Ui+1 being the left and right neighbors of Ui for 1 ≤ i ≤ n, U0 = Un and
Un+1 = U1. During the initialization phase, a cyclic group G of prime order q,
an arbitrary generator g of G and the description of a hash function H that
maps to {0, 1}k are chosen. Each party is assumed to have a long-term private
and public key pair for a public key signature scheme. Figure 4 outlines the
execution of the protocol after initialization.

At a high level, the protocol in Figure 4 embeds the protocol of Boyd and
González [13] in the first round of Burmester and Desmedt [20] (BD) protocol
with the Katz and Yung [14] signature-based compiler applied. However, there
are non-trivial and crucial changes done to the resulting protocol to enable it to
achieve forward secrecy and contributiveness. As in the Boyd and González [13]
(BG) protocol the parties choose their shares ki’s in the first round and all except
one party send their shares in plain with the message broadcast in Round 1.
Unlike the BG protocol, the nth user (or the distinguished user) sends only a
commitment to its share instead of encrypting it with the long-term public keys
of other users. The parties compute pair-wise CDH components using the yi’s
sent in the first round similar to the BD protocol. These ephemeral values are
used to encrypt the share of the distinguished user in the second round, which
can be decrypted by the other users using the pair-wise CDH components they
have computed. This enables the protocol to achieve forward secrecy unlike the
BG protocol. The session key is finally computed in a way similar to the BG
protocol using the shares from all the users, which guarantees contributiveness
unlike the BD protocol [16]. The signature based authentication ensures security
against impersonation attacks.

We now show that the protocol in Figure 4 is KCI resilient as per our new
definitions and also contributory as per the definition of Bresson and Manulis [6].

Theorem 1. The protocol in Figure 4 is AKE-secure as per Definition 1 as-
suming that the CDH assumption holds in G, the signature scheme is UF-CMA
secure and that H is a random oracle. The advantage of Aake is upper bounded
by

2
(

n2AdvCMAΣ +
(3qs + qr)2

2k
+

q2
s

2k
+ nqsqrSuccCDH +

qsqr

2k

)
where n is the number of participants, AdvCMAΣ is the advantage of a polynomial
adversary against the UF-CMA security of the signature scheme, SuccCDH is the
probability of solving CDH in G and k is the security parameter. qs and qr are
the upper bounds on the number of Send and random oracle queries respectively
that Aake can ask.

Proof. We give the proof in a sequence of games. Let Si be the event that Aake

wins the AKE-security game in Game i and τi be the advantage of Aake in Game
i i.e. τi = |2 · Pr[Si]− 1|.

We use the following game hopping technique suggested by Dent [21] for
indistinguishability games and recently used by Boyd et al. [22]. Consider an
event E that may occur during Aake’s execution such that E is detectable by

116 M.C. Gorantla, C. Boyd, and J.M. González Nieto

Round 1:
Computation

1. Each Ui chooses ki
R← {0, 1}k, xi

R←Zq and computes yi = gxi . Un

additionally computes H(kn)
2. Each Ui except Un sets MI

i = ki‖yi, while Un sets MI
n = H(kn)‖yn

3. Each Ui computes a signature σI
i on MI

i ‖pidi.
Broadcast Each Ui broadcasts MI

i ‖σI
i .

Check Each Ui checks all signatures σI
j of incoming messages MI

j ‖σI
j for j �= i

Round 2:

Computation
1. Each Ui computes tL

i = H(yxi
i−1), tR

i = H(yxi
i+1), Ti = tL

i ⊕ tR
i and sidi =

H(pid‖k1‖ . . . ‖kn−1‖H(kn)). Un additionally computes maskn = kn⊕tR
n .

2. Each Ui except Un sets MII
i = Ti‖sidi while Un sets MII

n =
maskn‖Tn‖sidn

3. Each Ui computes a signature σII
i on MII

i .
Broadcast Each Ui broadcasts MII

i ‖σII
i .

Check
1. Each Ui verifies the incoming the signatures σII

j on the corresponding

message MII
j for each j ∈ [1, n] and j �= i also checks that T1⊕· · ·⊕Tn

?=

0 and sidi
?= sidj

2. Each Ui for i < n, extracts kn = maskn ⊕T1 ⊕ · · ·⊕Ti−1 ⊕ tL
i and checks

the commitment H(kn) sent in Round 1 for the kn extracted.
Key Computation

Each Ui computes the session key ski = H(pidi‖k1‖ . . . ‖kn)

Fig. 4. GKE protocol of Bohli et al. [5]

the simulator, E is independent of Si, Game i and Game i+1 are identical unless
E occurs, and Pr[Si+1|E] = 1

2 . Then we have:

Pr[Si+1] = Pr[Si+1|E] Pr[E] + Pr[Si+1|¬E] Pr[¬E] (1)

=
1
2

Pr[E] + Pr[Si|¬E] Pr[¬E] (2)

=
1
2
(1 − Pr[¬E]) + Pr[Si] Pr[¬E] (3)

=
1
2

+ Pr[¬E]
(

Pr[Si]− 1
2

)
(4)

Hence τi+1 = 2|Pr[Si+1]− 1
2
| = 2|Pr[¬E]

(
Pr[Si]− 1

2

)
| (5)

= Pr[¬E]τi (6)

Game 0. This is the original AKE-security game as per the Definition 1. By
definition we have

AdvAake
= |2 · Pr[S0]− 1| = τ0 (7)

Game 1. This is the same as the previous game except that the simulation fails
if an event Forge occurs. Hence

Modeling KCI Attacks on GKE Protocols 117

|Pr[S1]− Pr[S0]| ≤ Pr[Forge] (8)

τ0 = |2 · Pr[S0]− 1| ≤ |2 · Pr[S0]− 2 · Pr[S1]|+ |2 · Pr[S1]− 1| (9)
≤ 2 Pr[Forge] + τ1 (10)

The event Forge occurs when Aake issues a Send query with a message of the
form (Mi, σi) such that Ui is not corrupted and the message has previously
not been an output of an instance at Ui. Note that in a KCI attack, Aake

corrupts up to n − 1 parties but it has to remain passive on behalf of the
corrupted users. Hence Forge represents successful forgery of honest users’
signatures.

If this event occurs we can use Aake to forge a signature for a given public
key in a chosen message attack as follows: The given public key is assigned to
one of the n parties. All other parties are initialized as normal according to
the protocol. All queries to the parties can be easily answered by following the
protocol specification since all secret keys are known, except for the private
key corresponding to the public key of the forgery attack game. In the latter
case the signing oracle that is available as part of the chosen message attack
can be used to simulate the answers.

The probability of Aake not corrupting this party is ≥ 1
n . The probability

of Aake outputting a valid forgery on behalf of this user is also ≥ 1
n . Hence

AdvCMAΣ ≥ 1
n2 · Pr[Forge]. Rewriting the equation we have

Pr[Forge] ≤ n2 · AdvCMAΣ (11)

Game 2. This game is the same as the previous game except that the simulation
fails if an event Collision occurs.

|Pr[S2]− Pr[S1]| ≤ Pr[Collision] (12)

τ1 = |2 · Pr[S1]− 1| ≤ |2 · Pr[S1]− 2 · Pr[S2]|+ |2 · Pr[S2]− 1| (13)
≤ 2 Pr[Collision] + τ2 (14)

The event Collision occurs when the random oracle H produces a collision for
any of its inputs. Each Send query requires at most 3 queries to the random
oracle. Hence the total number of random oracle queries are bounded by
(3qs + qr). The probability of Collision is

Pr[Collision] ≤ (3qs + qr)2

2k
(15)

Game 3. This game is the same as the previous game except that the simulation
fails if an event Repeat occurs. Hence

|Pr[S3]− Pr[S2]| ≤ Pr[Repeat] (16)

118 M.C. Gorantla, C. Boyd, and J.M. González Nieto

τ2 = |2 · Pr[S2]− 1| ≤ |2 · Pr[S2]− 2 · Pr[S3]|+ |2 · Pr[S3]− 1| (17)
≤ 2 Pr[Repeat] + τ3 (18)

The event Repeat occurs when an instance at a party Ui chooses a nonce
ki that was chosen by another instance at Ui. As there are a maximum qs

instances that may have chosen a nonce ki, we have

Pr[Repeat] ≤ q2
s

2k
(19)

Game 4. This game is the same as the previous game except that at the be-
ginning of the game a value s̄ is chosen at random in {1, . . . , qs}, where qs

is an upper bound to the maximum number of protocol sessions activated
by the adversary. s̄ represents a guess as to the protocol session in which
the adversary is going to be tested. If the adversary does not choose the
s̄th session to ask the Test query, then the guess it wrong and the game is
aborted.

The probability of aborting due to an incorrect choice of s̄ is 1 − 1/qs .
This event could be detected in the previous game if it also chose s̄ in the
same way. Therefore from Equation 6 we have

τ4 =
1
qs

τ3 =⇒ τ3 = qsτ4 (20)

Game 5. This game differs from the previous game in how the Send queries are
answered in the test session. Note that in this test session, the adversary is
an outsider and moreover is passive with respect to all the parties. An active
adversary producing valid signatures on behalf of uncorrupted parties would
have caused Game 1 to halt.

In round 1 of the test session in Game 5, all messages yi are chosen at
random from G. In round 2, all tRi (= tLi+1) are assigned random values from
{0, 1}k. All other computations are performed as in Game 4.

Since H(·) is modeled as a random oracle, the only way that any adversary
can distinguish between Game 4 and 5 is if for at least one value of i it queries
y

xi+1
i (= yxi

i+1) to the random oracle, where xi and xi+1 are discrete logs of
yi and yi+1 respectively. Let Ask be such an event.

|Pr[S5]− Pr[S4]| ≤ Pr[Ask] (21)

τ4 = |2 · Pr[S4]− 1| ≤ |2 · Pr[S4]− 2 · Pr[S5]|+ |2 · Pr[S5]− 1| (22)
≤ 2 Pr[Ask] + τ5 (23)

If Ask occurs, we can use Aake to solve the CDH problem in G. Given a
CDH instance (g, A = ga, B = gb), this can be plugged into a simulation
of Game 5 as follows. Firstly, choose at random a party in the test session
Ui. Then for the test session assign yi = A and yi+1 = B. If the event Ask
occurs, the probability that a randomly chosen entry Z, from the random

Modeling KCI Attacks on GKE Protocols 119

oracle table is a pair-wise CDH is at least 1
qr

. Further, the probability of
Z being the correct solution to the given instance (g, ga, gb) is at least 1

n .
Hence, SuccCDH ≥ 1

nqr
Pr[Ask]. Rewriting the equation we have

Pr[Ask] ≤ nqrSuccCDH (24)

Game 6. This game is the same as the previous game except that in the test
session the game halts if Aake asks a H-query with the corresponding input
(pidi‖k1‖ . . . ‖kn).

Because the protocol messages in round 2 of the test session carry no
information about kn, the best any adversary can do is to guess kn with a
probability 1

2k . Hence, the probability that Aake asks the right H-query for
the test session is at most qr

2k .

|Pr[S6]− Pr[S5]| ≤ qr

2k
(25)

τ5 = |2 · Pr[S5]− 1| ≤ |2 · Pr[S6]− 2 · Pr[S6]|+ |2 · Pr[S6]− 1| (26)

≤ 2
qr

2k
+ τ6 (27)

If the adversary does not query the random oracle H on the correct input,
then the adversary has no advantage in distinguishing the real session key
from a random one and so

τ6 = 0.

By combining equations 7 to 25, we have the claimed advantage of Aake,
which is negligible in k.

Theorem 2. The protocol in Figure 4 satisfies mutual authentication as per
Definition 2 assuming that the signature scheme is UF-CMA secure and that H
is a random oracle. The advantage of Ama is upper bounded by

n2 · AdvCMAΣ +
(3qs + qr)2

2k
+

q2
s

2k

where n is the number of participants, AdvCMAΣ is the advantage of a polynomial
adversary against the UF-CMA security of the signature scheme and k is the
security parameter. qs and qr are the upper bounds on the number of Send and
random oracle queries respectively that Ama can ask.

Proof. We give the proof in a sequence of games. Let Si be the event that Ama

violates the mutual authentication definition in Game i.

Game 0. This is the original mutual authentication game as per the Defini-
tion 2. By definition we have

AdvAma = Pr[S0] (28)

120 M.C. Gorantla, C. Boyd, and J.M. González Nieto

Game 1. This game is the same as the previous game except that the simulation
fails if an event Forge occurs, where Forge is the same event described in
Game 1 of Theorem 1.

|Pr[S1]− Pr[S0] ≤ Pr[Forge] ≤ n2 · AdvCMAΣ (29)

Game 2. This game is the same as the previous game except that the simulation
fails if an event Collision occurs, where Collision is the same event described
in Game 2 of Theorem 1.

|Pr[S2]− Pr[S1]| ≤ Pr[Collision] ≤ (3qs + qr)2

2k
(30)

Game 3. This game is the same as the previous game except that the game now
aborts if an event Repeat occurs, where Repeat is the same event described
in Game 3 of Theorem 1.

|Pr[S3]− Pr[S2]| ≤ Pr[Repeat] ≤ q2
s

2k
(31)

If Game 3 does not abort, all the honest partnered parties compute the same
key. Hence, Pr[S3] = 0. By combining the Equations 28 to 31, we have the
claimed advantage of Ama, which is negligible in k.

Theorem 3. The protocol in Figure 4 satisfies contributiveness as per Defini-
tion 3 assuming that H is a random oracle. The advantage of Acon is upper
bounded by

q2
s + 2 · qr

2k

where n is the number of participants and k is the security parameter. qs and qr

are the upper bounds on the number of Send and random oracle queries respec-
tively that Aake can ask.

Proof. We give the proof in a sequence of games. Let Si be the event that Acon

violates the definition of contributiveness in Game i.

Game 0. This is the original game of contributiveness and as per the Defini-
tion 3. By definition we have

AdvAcon = Pr[S0] (32)

Game 1. This game is the same as the previous game except that the simulation
fails if an event Repeat occurs, where Repeat is the same event described in
Game 3 of Theorem 1.

|Pr[S1]− Pr[S0]| ≤ Pr[Repeat] ≤ q2
s

2k
(33)

Modeling KCI Attacks on GKE Protocols 121

Game 2. This game is the same as the previous game except that the simulation
fails if Acon can find a collision for the input kn.

|Pr[S2]− Pr[S1]| ≤ qr

2k
(34)

Game 3. This game is the same as the previous game except that the simulation
fails if Acon finds a collision for the keying material input (pidi‖k1‖ . . . ‖kn).

|Pr[S3]− Pr[S1]| ≤ qr

2k
(35)

If Game 3 does not abort, the output of the random oracle is uniformly dis-
tributed. Hence, Pr[S3] = 0. By combining the equations 32 to 35, we have the
claimed advantage of Acon, which is negligible in k.

5 Conclusion
Table 1 gives a comparison of the security of some of the existing GKE protocols.
The terms “AKE” refers to AKE-security, “AKE-FS” refers to AKE-security
with forward secrecy and “AKE-KCIR” refers to AKE-security with KCI re-
silience. Similarly “MA” refers to mutual authentication and “MA-KCIR” refers
to mutual authentication with KCI resilience. The entry “Yes∗” says that the
corresponding protocol appears to be secure under the notion but there is no
formal proof. The last column in the table says whether the protocol is proven
in the random oracle model or in the standard model.

It can be observed from the table that only the two-round protocol of Bohli
et al. is proven to satisfy all the desired notions of security in the random oracle
model. The two-round protocol obtained after applying the KC-compiler to the

Table 1. Security comparison among existing GKE protocols

AKE AKE-FS AKE-KCIR MA MA-KCIR Contributiveness Model
Boyd and
González
Nieto [13]
(BG)

Yes No No No No honest ROM

Katz and
Yung [14]

Yes Yes Yes∗ honest honest No Std.

Bresson et
al. [10]

Yes Yes No honest honest unknown ROM

BG Proto-
col + KS-
compiler [4]

Yes No Yes∗ Yes∗ Yes∗ Yes∗ ROM

Bohli et al. [5] Yes Yes Yes Yes Yes Yes ROM
Bresson and
Manulis [6]

Yes Yes Yes∗ Yes Yes∗ Yes Std.

Furukawa et
al. [23]

Yes Yes Yes∗ Yes Yes∗ unknown Std.

122 M.C. Gorantla, C. Boyd, and J.M. González Nieto

improved Boyd and González Nieto protocol appears to satisfy all the desired
notions except forward secrecy. Another two-round protocol that appears to
resist KCI attacks is that of Furukawa et al. Their protocol is proven in the
universal composability framework without assuming random oracles. It is not
known whether the protocol of Furukawa et al. satisfies contributiveness in the
presence of insiders. The protocol of Bresson and Manulis appears to resist KCI
attacks and their protocol is also proven secure in standard model. However, it
has three rounds of communication.

Our work models KCI attacks on GKE protocols in the presence of both
outsiders and insiders. We have shown that there exist protocols which are not
secure against KCI attacks. We have then shown that an existing protocol sat-
isfies the new definitions. We hope that our work helps future protocols to be
analyzed for KCI resilience.

We have not considered GKE protocols with special properties like robust-
ness [24] and deniability [25]. Modeling KCI attacks on these types of proto-
cols is an interesting open task. An open question is whether we can construct
one-round AKE-secure GKE protocols that can have KCI resilience or forward
secrecy. Constructing GKE protocols which do not use signature based authen-
ticators seems to be another interesting problem.

Acknowledgement

This work has been supported by the Australian Research Council Discovery
Project grant DP0773348.

References

1. Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.J.: Provably authenti-
cated group Diffie-Hellman key exchange. In: CCS 2001: Proceedings of the 8th
ACM conference on Computer and Communications Security, pp. 255–264. ACM,
New York (2001)

2. Bresson, E., Chevassut, O., Pointcheval, D.: Provably Authenticated Group Diffie-
Hellman Key Exchange - The Dynamic Case. In: Boyd, C. (ed.) ASIACRYPT
2001. LNCS, vol. 2248, pp. 290–309. Springer, Heidelberg (2001)

3. Bresson, E., Chevassut, O., Pointcheval, D.: Dynamic Group Diffie-Hellman Key
Exchange under Standard Assumptions. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 321–336. Springer, Heidelberg (2002)

4. Katz, J., Shin, J.S.: Modeling insider attacks on group key-exchange protocols.
In: Proceedings of the 12th ACM Conference on Computer and Communications
Security–CCS 2005, pp. 180–189. ACM, New York (2005)

5. Bohli, J.M., Gonzalez Vasco, M.I., Steinwandt, R.: Secure group key establishment
revisited. Int. J. Inf. Sec. 6(4), 243–254 (2007)

6. Bresson, E., Manulis, M.: Securing Group Key Exchange against Strong Corrup-
tions. In: Proceedings of ACM Symposium on Information, Computer and Com-
munications Security (ASIACCS 2008), pp. 249–260. ACM Press, New York (2008)

7. Law, L., Menezes, A., Qu, M., Solinas, J.A., Vanstone, S.A.: An Efficient Protocol
for Authenticated Key Agreement. Des. Codes Cryptography 28(2), 119–134 (2003)

Modeling KCI Attacks on GKE Protocols 123

8. Krawczyk, H.: HMQV: A High-Performance Secure Diffie-Hellman Protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg
(2005)

9. Ng, E.M.: Security Models and Proofs for Key Establishment Protocols. Master’s
thesis, University of Waterloo (2005)

10. Bresson, E., Chevassut, O., Essiari, A., Pointcheval, D.: Mutual Authentication
and Group Key Agreement for Low-Power Mobile Devices. In: Proc. of MWCN
2003, pp. 59–62. World Scientific Publishing, Singapore (2003)

11. Choo, K.K.R., Boyd, C., Hitchcock, Y.: Errors in computational complexity proofs
for protocols. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 624–643.
Springer, Heidelberg (2005)

12. Al-Riyami, S.S., Paterson, K.G.: Tripartite Authenticated Key Agreement Proto-
cols from Pairings. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS,
vol. 2898, pp. 332–359. Springer, Heidelberg (2003)

13. Boyd, C., González Nieto, J.M.: Round-Optimal Contributory Conference Key
Agreement. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 161–174.
Springer, Heidelberg (2002)

14. Katz, J., Yung, M.: Scalable Protocols for Authenticated Group Key Exchange. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidelberg
(2003)

15. Kim, H.J., Lee, S.M., Lee, D.H.: Constant-Round Authenticated Group Key
Exchange for Dynamic Groups. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS,
vol. 3329, pp. 245–259. Springer, Heidelberg (2004)

16. Pieprzyk, J., Wang, H.: Key Control in Multi-party Key Agreement Protocols.
In: Workshop on Coding, Cryptography and Combinatorics (CCC 2003), vol. 23.
Progress in Computer Science and Applied Logic (PCS), pp. 277–288 (2003)

17. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

18. Joux, A.: A One Round Protocol for Tripartite Diffie-Hellman. In: Bosma, W. (ed.)
ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)

19. Matsumoto, T., Takashima, Y., Imai, H.: On seeking smart public-keydistribution
systems. Trans. IECE of Japan E69, 99–106 (1986)

20. Burmester, M., Desmedt, Y.: A Secure and Efficient Conference Key Distribution
System (Extended Abstract). In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS,
vol. 950, pp. 275–286. Springer, Heidelberg (1995)

21. Dent, A.W.: A note on game-hopping proofs. Cryptology ePrint Archive, Report
2006/260 (2006), http://eprint.iacr.org/

22. Boyd, C., Cliff, Y., González Nieto, J.M., Paterson, K.G.: Efficient One-Round
Key Exchange in the Standard Model. In: Mu, Y., Susilo, W., Seberry, J. (eds.)
ACISP 2008. LNCS, vol. 5107, pp. 69–83. Springer, Heidelberg (2008)

23. Furukawa, J., Armknecht, F., Kurosawa, K.: A Universally Composable Group Key
Exchange Protocol with Minimum Communication Effort. In: Ostrovsky, R., De
Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 392–408. Springer,
Heidelberg (2008)

24. Desmedt, Y., Pieprzyk, J., Steinfeld, R., Wang, H.: A Non-malleable Group Key
Exchange Protocol Robust Against Active Insiders. In: Katsikas, S.K., López, J.,
Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 459–475.
Springer, Heidelberg (2006)

25. Bohli, J.M., Steinwandt, R.: Deniable Group Key Agreement. In: Nguyên, P.Q. (ed.)
VIETCRYPT 2006. LNCS, vol. 4341, pp. 298–311. Springer, Heidelberg (2006)

http://eprint.iacr.org/

Zero-Knowledge Proofs with Witness
Elimination

Aggelos Kiayias� and Hong-Sheng Zhou�

Computer Science and Engineering
University of Connecticut

Storrs, CT, USA
{aggelos,hszhou}@cse.uconn.edu

Abstract. Zero-knowledge proofs with witness elimination are proto-
cols that enable a prover to demonstrate knowledge of a witness to the
verifier that accepts the interaction provided that the witness is valid for
a given statement and additionally the witness does not belong to a set
of eliminated witnesses. This set is determined by a public relation Q
(that parameterizes the primitive) and the private input of the verifier.
Zero-knowledge proofs with witness elimination thus call for a relax-
ation of the zero-knowledge property and are relevant in settings where
a statement has a multitude of witnesses that may attest to its validity.
A number of interesting issues arise in the design of such protocols that
include whether a protocol transcript enables the verifier to test for wit-
ness after termination (something akin to an “offline dictionary attack”)
and whether the prover should be capable of understanding whether her
witness is eliminated. The primitive is motivated by the setting of identi-
fication schemes where a user wishes to authenticate herself to an access
point while preserving her anonymity and the access point needs to cer-
tify that the user is eligible while at the same time making sure she does
not match the identity of a suspect user that is tracked by the authorities.
We call such primitives anonymous identification schemes with suspect
tracking.

In this work we formalize zero-knowledge proofs with witness elimi-
nation in the universal composability setting and we provide a general
construction based on smooth projective hashing that is suitable for de-
signing efficient schemes. As an illustration of our general construction
we then present an explicit efficient scheme for proving knowledge of a
Boneh-Boyen signature with witness elimination. Our scheme requires
the design of a smooth projective hash function for the language of
linear ElGamal ciphertexts. Along the way we demonstrate how zero-
knowledge proofs with witness elimination naturally relate to the prim-
itives of password-based key exchange and private equality testing.

1 Introduction
Zero-knowledge proofs were introduced in [23] and constitute a most useful
cryptographic primitive. Given the wide applicability of the primitive several

� Research partly supported by NSF CAREER Award CNS-0447808.

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 124–138, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

http://dx.doi.org/10.1007/978-3-642-00468-1_29

Zero-Knowledge Proofs with Witness Elimination 125

generalizations of its basic formulation have been considered, typically by ex-
tending the basic set of security properties that are captured by a protocol
implementation. These include parallel and concurrent composition of zero-
knowledge [22,18], non-malleable zero-knowledge [17], resettable zero-knowledge
protocols [9], monotone closure of zero-knowledge proofs [16], non-interactive
zero-knowledge [2] and more recently isolated zero-knowledge proofs [15].

The security of the prover in a zero-knowledge proof is intended to be cap-
tured by demonstrating the existence of a simulator that is capable of generating
transcripts indistinguishable from regular honest prover verifier interactions. A
relaxation of the zero-knowledge property is the notion of witness indistinguisha-
bility [19] that requires instead that a malicious verifier cannot distinguish which
one amongst two different possible witnesses the prover is using. Note that wit-
ness indistinguishability is useful as a notion only in cases where a number of
distinct witnesses are associated with the same statement (while in cases when
only a single witness exists the property is vacuous).

In this work we consider a different relaxation of the zero-knowledge property
that we call witness elimination. A zero-knowledge proof with witness elimina-
tion with respect to a relation Q, enables the verifier to make sure that the
witness employed by the prover does not satisfy (w, w′) ∈ Q where w′ is of the
choice of the verifier. Our typical example for the relation Q would be the equal-
ity relation: in this case, the verifier given a string w′ of her choice can make
sure that w �= w′. Note that in case w′ is public and the relation R for which
the proof is executed is in NP, witness elimination can be resolved generically by
having the prover engage in a proof that ((x, w) ∈ R) ∧ (w �= w′). Nevertheless
witness elimination is interesting as a property in the case that the verifier does
not wish to disclose to the prover which witness w′ is she checking against.

It follows from the above discussion that zero-knowledge proofs with witness
elimination as a primitive introduces a private input for the verifier for which,
ideally, no information should be disclosed to the prover about it. A number
of interesting questions arise when one seeks to construct protocols that solve
the witness elimination problem for zero-knowledge proofs, in particular: (i)
how many candidate witnesses should the verifier be able to test given a single
protocol execution? (ii) should the verifier be able to test whether the prover
possesses a valid witness? (this is relevant in the case where the witness has been
eliminated) (iii) should the prover be allowed to extract the information that the
verifier is eliminating her witness based on the protocol interaction? (note that
the prover may realize this from a signal that is external to the protocol but this
may or may not be provided depending on the application scenario – see below).

Our motivation for studying this primitive is its application to the identifica-
tion protocol setting. Indeed, a notable application of zero-knowledge proofs is
the efficient design of identification schemes that was exemplified in the work of
Fiat and Shamir [20] and Schnorr [30]. Given such protocols, the ability to per-
form efficient conjunctions and disjunctions of zero-knowledge proof protocols
[16,12] lead to the design of anonymous identification schemes [6]. Indeed, dis-
junction of identification protocols leads to a natural one-to-many relationship

126 A. Kiayias and H.-S. Zhou

between a valid statement and the witnesses that attest to its validity something
that in turn lends itself to the design of anonymous identification schemes. In
particular, a prover may show that he belongs to a group of users provided that
such group is identified by a directory of public-keys.

Witness elimination in this domain translates naturally to the following prob-
lem: the verifier wishes to make sure that the prover’s identity does not match
a suspect that is currently being tracked by authorities. Given that anonymity
must still be preserved the verifier should have some way to make sure that the
witness used by the prover is not equal to a suspect witness while not learning
any further information about the witness of the prover. At the same time the
protocol should not leak any information about the suspect identity which may
be protected for the course of the investigation and potentially should never be
revealed if sufficient evidence is not gathered. This is related to but at the same
time different from user revocation in identification schemes where typically the
identity of revoked users can be made public in the form of a CRL.

Our contributions are summarized as follows:

– We formalize the primitive of zero-knowledge with witness elimination in
the Universal Composability setting [7,8]. In our security formalization we
capture the following properties related to the three questions raised above:
(i) A verifier can only test a single witness for each live protocol execution
with the prover; this also ensures the prover that transcripts of her protocol
executions at the present time cannot be tracked if she becomes a suspect
in the future. This protects the privacy of individuals prior to the time
when authorities receive a court order that enables their tracking. As a
cryptographic property it also relates to protection against offline dictionary
attacks in password based authenticated key exchange [25,21,10] as well as
to the notion of backwards unlinkability of identification schemes [31,1,27] in
the context of user revocation. (ii) In our protocols we may allow the verifier
to have the power to test whether the witness of the prover is valid even
in case that such witness is eliminated – this is natural as we view zero-
knowledge proofs with witness elimination as an extension of the standard
zero-knowledge proof functionality. (iii) We do not allow any information
about the input of the verifier to be leaked to the prover from a protocol
execution, i.e., the prover will be oblivious to what witnesses are eliminated
by the verifier (independently of whether she is revoked or not). This protects
the identity of the suspect in case no case is ever made against her by the
authorities.

– We provide a general construction of zero-knowledge proofs with witness
elimination that is suitable for building efficient implementations and is
based on the notion of smooth projective hash functions, [13,21,24].

– We present an explicit practical construction of a zero-knowledge proof
with witness elimination for the language of all non-adaptive Boneh-Boyen
signatures [3]. This result immediately implies an anonymous identifica-
tion scheme with suspect tracking. As part of our construction we also de-
sign a smooth projective hash function family for the language of Linear

Zero-Knowledge Proofs with Witness Elimination 127

ElGamal ciphertexts that is suitable in the bilinear group setting when the
DDH assumption may not necessary hold.

Comparison with previous primitives. We note first that the problem of zero-
knowledge with witness elimination can be viewed within the general context of
secure two party computation (as it is also the case for regular zero-knowledge
proofs). This means that one can apply generic techniques to obtain a solution
for the functionality (e.g., using the protocol compiler of [11]). Still such generic
techniques do not yield efficient protocols or much insight about the primitive
something that further motivates the present investigation. Second, depending
on the relation Q, zero-knowledge proofs with witness elimination may provide
an inequality test for the private inputs of the prover and the verifier. It follows
that this makes the resulting primitive similar to private equality tests [28] and
password-based key exchange [25,21,10]. Note though that in the latter prim-
itive it is also required to incorporate a private coin flipping component (that
will produce the shared key) something that is not necessary in the witness
elimination setting. On the other hand, the property that protocol transcripts
of a password-based key exchange should not facilitate offline dictionary attacks
corresponds to the property that the verifier should not be able to extract any
new information from old witness elimination transcripts.

Looking at the primitive from the identification point of view, one can draw
parallels to the primitive of traceable signatures [26] and verifier-local revocation
group signatures [31,1,5]. The difference of these previous schemes compared to
anonymous identification with suspect tracking is that in our case prior identifi-
cation transcripts need to conceal the identity of the users even after the suspect
witness is made known to the access points. This relates to the the property of
backwards unlinkability that was introduced in [31,1,27]. We note that in these
papers backwards unlinkability is only partially achieved as time is divided into
epochs and within an epoch all user transcripts would be traceable. In contrast
in our setting of anonymous identification with suspect tracking we explicitly
require only live checking of suspects, i.e., an access point can check exactly
one suspicion per protocol invocation and past protocol transcripts reveal no
tracking information.

2 Preliminaries

Notation. We write s
r← S to denote randomly selecting s from a finite set S,

and s
d← S to denote selecting s from a finite set S according to distribution

D(S).

Smooth Projective Hashing for Hard Partitioned Subset Membership
Problems. Smooth projective hashing was introduced by Cramer and Shoup
for constructing encryption schemes [13]. Later it was used to obtain efficient
password-based authenticated key-exchange protocols [21] and further to achieve
stronger security in the UC framework [10]. It is also used to build efficient
oblivious transfer protocols [24]. Loosely speaking, a projective hashing family

128 A. Kiayias and H.-S. Zhou

is a family of hash functions that can be computed in two ways: either use the
(secret) hashing key to compute the function on every point in its domain, or use
the (public) projected key to compute the function only on a specified subset of
the domain. Further we say such a family is “smooth” if the value of the function
on any point outside the specified subset is independent of the projected key.
Here we use a variant adopted by Gennaro and Lindell [21].

In our setting, a hash family is defined as a tuple H = (paragen, sampler,
G, H, K, α, S, J) that satisfies the following:

– The parameter generation algorithm paragen(·) takes as input a security pa-
rameter and returns the parameter Λ ← paragen(1λ), where Λ=(X, L, W, R),
and X, L, W are finite non-empty sets such that L ⊂ X . R ⊆ X × W is a
binary relation, where for all x ∈ X there exists w ∈ W such that (x, w) ∈ R
iff x ∈ L.

– Further we assume that the set X can be written as a Cartesian product
C×I and it is partitioned into disjoint subsets X(i) as follows: each element
x ∈ X is in the form (c, i), where i ∈ I will be called the index and c ∈ C

will be called the content. We define X(i) def= C×{i}, i.e., the subset of pairs
in X of the form (c, i) with i is fixed. Accordingly, we define L(i) the subset
of pairs in the language L of the form (c, i).

– Given Λ as a parameter, the random variable sampler(Λ, i) is a triple (x, x′, w)
such that x ∈ L(i), x′ ∈ X(i)\L(i), (x, w) ∈ R. We will also use the notation
(x, w) d← L(i) and x′ d← X(i) \ L(i) respectively to denote the operation of
the sampler(·) procedure.

– G is a finite non-empty set, H = {Hk}k∈K is a collection of functions indexed
by K where Hk : X → G; S be a finite non-empty set, α : K × C → S and
J = {Js}s∈S is a collection of functions where Js : X ×W → G.

Definition 1. The hash family H = (paragen, sampler, G, H, K, α, S, J) is a
hard smooth projective hash family if the following properties hold:

Projection: For any ((c, i), w) ∈ R

Pr[Λ ← paragen(1λ); k r← K; s ← α(k, c) : Hk(c, i) = Js(c, i, w)] ≥ 1 −
negl(λ)

Smoothness: For any (c, i) ∈ X \L, the following two distributions are statis-
tically indistinguishable:
{Λ ← paragen(1λ); k r← K; s ← α(k, c); g ← Hk(x) : (Λ, c, i, s, g)}
{Λ ← paragen(1λ); k r← K; s ← α(k, c); g r← G : (Λ, c, i, s, g)}

Hard partitioned subset membership: For every i ∈ I, the following two
distributions are computationally indistinguishable:
{Λ ← paragen(1λ); ((c, i), w) d← L(i) : (Λ, c, i)}
{Λ ← paragen(1λ); (c, i) d← X(i) \ L(i) : (Λ, c, i)}

Gennaro and Lindell show that the properties above have the following
implication:

Zero-Knowledge Proofs with Witness Elimination 129

Lemma 1 (Corollary 3.6 in [21]). Given a hard smooth projective hash fam-
ily H = (paragen, sampler, G, H, K, α, S, J), for any i ∈ I, the following two
distributions are computationally indistinguishable:

{Λ←paragen(1λ);((c, i), w) d←L(i); k r←K;s←α(k, c);g←Hk(c, i) : (Λ, c, i, s, g)}

{Λ ← paragen(1λ); ((c, i), w) d← L(i); k r← K; s ← α(k, c); g r← G : (Λ, c, i, s, g)}

Hard Smooth Projective Hashing in the context of Public-Key En-
cryption. In our protocol design, we consider hard smooth projective hashing
in the context of encryption schemes. Given a CPA-secure public key encryption
scheme E = (gen, enc, dec), we define paragen and sampler algorithms for a hash
family H as follows:

– The parameter generation algorithm paragen() operates as follows: first run
a key pair (pk , sk) ← gen(1λ); a ciphertext for a plaintext m ∈ M can be
computed by c = enc(pk ; m; r) where r

r← U , and M is the plaintext space
and U the random coins space; Let Cpk be the space of all ciphertexts based

on public key pk ; define X
def= Cpk ×M , and L

def= {(c, m) ∈ X | ∃r s.t. c =
enc(pk ; m; r)}. Note that the witness space W = U .

Furthermore, define the partitioning of X to be by index m ∈ M , i.e.,
X(m)def= Cpk ×{m}, and L(m)def= {(c, m) ∈ X(m) | ∃r s.t. c = enc(pk ; m; r)}.

– The sample procedure sampler() operates as follows: sample ((c, m), r) ∈
L(m) by computing c ← enc(pk ; m; r) where r

r← U is the witness; sample
(c, m) ∈ X(m)\L(m) by computing c ← enc(pk ; m̃; r) where r

r← U , m̃ ∈ M ,
and m̃ �= m.

If we further can define (H, K, G, α, S, J) where Hk : Cpk × M → G,
Js : Cpk × M × U → G, and α : K × Cpk → S, to satisfy the properties
of projection and smoothness, then we have a hard smooth projective hashing
H = (paragen, sampler, G, H, K, α, S, J). In [21], several concrete hard smooth
projective hashing in the context of ElGamal encryption, Cramer-Shoup encryp-
tions, and others are constructed. In section 3.3, we give a concrete construction
in the context of Linear ElGamal encryption.

3 Zero-Knowledge with Witness Elimination

3.1 Functionality FZKWE

Here we introduce our new ZK functionality, zero-knowledge with witness elimi-
nation, FR,Q

ZKWE, in figure 1, where R is the ZK relation and Q is the elimination
relation. The functionality interacts with an ideal adversary S and two parties,
the prover P and the verifier T ; the identities of both parties are encoded in
session identifier sid . Intuitively FR,Q

ZKWE can be viewed as an augmented ZK
functionality with a “¬Q-test” based on the private input of the verifier. Com-
pared to the standard FZK functionality, here the functionality will receive from

130 A. Kiayias and H.-S. Zhou

Functionality FR,Q
ZKWE

FR,Q
ZKWE is parameterized with the ZK relation R and the elimination relation Q.

– Upon receiving (Prove, sid , 〈x, w〉) from party P where sid = (P, T, sid ′),
record 〈P, x, w〉, send (LeakProve, sid , 〈x,φ〉, P) to the adversary, where φ =
1 if (x,w) ∈ R, and φ = 0 otherwise. Ignore future (Prove, . . .) inputs.

– Upon receiving (Verify, sid , w′) from party T where sid = (P, T, sid ′),
record 〈T, w′〉, send (LeakVerify, sid , T) to the adversary. Ignore future
(Verify, . . .) inputs.

– Upon receiving (InflVerify, sid) from the adversary, if (x,w) ∈ R and
(w, w′) �∈ Q, then send (VerifyReturn, sid , 1) to party T . Else if (x, w) �∈ R
or (w, w′) ∈ Q, then send (VerifyReturn, sid , 0) to party T .

Fig. 1. Ideal functionality of zero-knowledge for the relation R with witness elimination
based on the relation Q

prover P an input (x, w), and will receive from verifier T a secret input w′. Once
both inputs are given, T is supposed to eventually receive a bit ϕ, where ϕ = 1
if and only if both (x, w) ∈ R and (w, w′) �∈ Q hold. The functionality blocks the
secret inputs w and w′ as well as the outcome of the test (w, w′) ∈ Q from the
ideal world adversary S; it leaks though a bit φ to S where φ = 1 if and only if
(x, w) ∈ R (cf. the standard ZK functionality, [7,11]).

Some comments are in place:

– While one may use arbitrary relations Q for witness elimination, here we
will be focusing on relations Q that capture some sort of equality test, either
of the whole witness or a substring of the witness. This is consistent with
our motivation in applying witness elimination to solve the suspect tracking
problem in identification schemes. Nevertheless, more general elimination
relations may be defined and could be potentially useful in other settings.

– Under the assumption that there is a way for any w to sample w′ such that
the event (w, w′) ∈ Q happens with negligible probability, one can simulate
the FZK ideal functionality using an ideal FZKWE functionality box. To see
this observe that the verifier can play the role of T and select T ’s input w′

at random. The assumption on Q needed for the simulation can be seen to
be easily satisfied by the substring equality relations Q we consider here.

– Our formalization of FZKWE ensures that as long as no party is corrupted
the protocol transcript by itself should not leak any information about the
relation of w, w′. This as an essential property as witness elimination should
not be applied to protocols transcripts that are not “live.” Moreover, even
if the party T is corrupted the protocol transcript should enable a cor-
rupted T to test the predicate Q(w, ·) for no more than a single candidate
witness. This property is similar to the property of resistance against off-
line dictionary attacks in password-based key exchange schemes where an

Zero-Knowledge Proofs with Witness Elimination 131

eavesdropper should not be able to use a protocol transcript to scan for the
correct password.

– In our formalization of FZKWE the adversary S learns whether the prover
uses a valid witness or not. Intuitively this suggests that we allow the pro-
tocols that realize FZKWE to have a method for a (dishonest) party T to
extract this fact from a protocol interaction with an honest prover. This is
consistent with the fact that we will only consider elimination relations Q
for which the FR,Q

ZKWE functionality simulates the FR
ZK ideal functionality and

thus this does not affect the intended security properties of the protocol (the
prover P is aware that the verifier T can easily learn whether she possesses
a valid witness or not, cf. the second bullet above).

3.2 Generic Construction Based on Smooth Projective Hashing

In this section we present a construction for FR,Q
ZKWE that applies to the setting

when the elimination relation Q is either the equality relation or it contains
all elements of the form 〈(w1, w2), (w′

1, w
′
2)〉 such that w2 = w′

2 (i.e., Q is a
“substring equality” relation). Based on this, in the remaining of the section
we assume that the NP relation R contains pairs of the form (x, (w1, w2)) and
the elimination relation Q tests the “w2-part” of the witness (while it should be
noted that the “w1-part” could be empty).

Our construction is based on a CPA-secure encryption schemeE=(gen,enc,dec),
a zero-knowledge proof of membership (ZKPM) scheme P = (setup,P,V, S), and
a hard smooth projective hashing H = (paragen, sampler, G, H, K, α, S, J) in the
context of a CPA-secure encryption scheme E ′ = (gen′, enc′, dec′). Recall that
both P and T are supposed to keep their inputs private. P ’s input is the wit-
ness to the ZK relation that she is supposed to demonstrate knowledge of while
T ’s input determines the elimination relation. In accordance to the above our
construction includes: (1) an encryption of the prover’s input under E and the
verifier’s input under E ′, (2) an inequality test subprotocol using the smooth pro-
jective hash H, and (3) a ZKPM for consistency proof that the above (1) and
(2) components are consistent and at the same time the input of the prover sat-
isfies the ZK-relation R. As mentioned, to implement the (one-sided) inequality
test, we use the hard smooth projective hashing in the context of the public-
key encryption scheme E ′. If the party P ’s input witness is indeed matched by
the verifier T , i.e., w2 = w′

2, then the projection property of the hashing will
guarantee that κ = κ′ holds (where κ, κ′ are the respective hash values with κ
being transmitted by the prover to the verifier), and otherwise if w2 �= w′

2 then
κ �= κ′. A corrupted P cannot learn T ’s input given the underlying public-key
encryption E ′ is CPA-secure. A corrupted T on the other hand cannot learn P ’s
witness in the case that w2 �= w′

2 given the smoothness property of the hashing
as well as the CPA property of E . Of course T will learn (part of) P ’s witness
in the case w2 = w′

2; nevertheless, any polynomial-time bounded eavesdrop-
per will not be able to extract any information about the exchanged witnesses
(cf. lemma 1). In figure 2 we present the protocol in details.

Regarding the security of the construction we have the following:

132 A. Kiayias and H.-S. Zhou

Theorem 1. Given that E is a CPA-secure encryption scheme, H is a family of
hard smooth projective hash functions in the context of a CPA-secure encryption
scheme E ′, and P is a zero-knowledge proof of membership, then the construction
in figure 2 realizes functionality FR,Q

ZKWE against non-adaptive adversaries in the
FCRS-hybrid world.

In order to prove the theorem, we describe first an ideal world simulator S
as below; then we show for this simulator that for any PPT environment Z,

EXEC
FCRS
π,Ad,Z ≈ EXEC

FR,Q
ZKWE

πd,S,Z (the proof can be found in the full version).

Protocol π for zero-knowledge with
witness elimination for relations R and Q

Common reference string: crs = (pk ′, pk , ρ), where pk ′ and pk are public keys
of encryption schemes E ′ and E respectively, and ρ is a reference string of ZKPM
scheme P .

Protocol steps:
Upon receiving (Verify, sid , w′

2) from the environment, where sid =
(P, T, sid ′), party T selects r′ r← U ′ and computes c′ ← enc′(pk ′; w′

2; r′), and
sends (move1, c′) to party P .
Upon receiving (Prove, sid , 〈x,w1, w2〉) from the environment, party P first
checks if (x, (w1, w2)) ∈? R and waits for a move1 message from party T ; after
receiving move1 message,
– if (x, (w1, w2)) �∈ R then party P sends party T a message

(move2, “no valid proof”);
– else if (x, (w1, w2)) ∈ R then party P sends party T a message (move2, s, κ),

where κ ← Hk(c′, w2), s ← α(k, c′), k
r← K; then party P computes

c ← enc(pk ; w1, w2; r) where r
r← U ; now parties P and T play the roles of

prover and verifier respectively to run a ZKPM subprotocol

P(w1, w2, k)
(x,c′,c,κ)∈LR′

←−−−−−−−−−−→ V()

i.e, party P proves to party T that based on crs , the statement (x, c′, c, κ) ∈
LR′ where LR′ = {(x, c′, c, κ)|∃(w1, w2, k, r) s.t. (x, (w1, w2)) ∈ R ∧ κ =
Hk(c′, w2)∧ c = enc(pk ; w1, w2; r)}.

Upon receiving (move2, “no valid proof”) from party P , party T returns
(VerifyReturn, sid , 0) to the environment. Else if receiving (move2, s, κ), party
T computes κ′ ← Js(c′, w′

2; r′); and if κ �= κ′ and also party T accepts the proof
in the subprotocol above, then party T returns (VerifyReturn, sid , 1) to the
environment; otherwise returns (VerifyReturn, sid , 0) to the environment.

Fig. 2. Generic construction of zero-knowledge with witness elimination based on a
CPA-secure encryption scheme E = (gen, enc, dec), and a zero-knowledge proof of
membership scheme P = (setup,P,V,S), as well as a hard smooth projective hash-
ing H = (paragen, sampler, G, H, K, α, S, J) in the context of a CPA-secure encryption
scheme E ′ = (gen′, enc′, dec′)

Zero-Knowledge Proofs with Witness Elimination 133

The construction of simulator. The simulator S first runs the key generation
algorithms of both the encryption schemes E ′, E and the proof system P to obtain
key pairs, i.e., (pk ′, sk ′) ← gen′(1λ), (pk , sk) ← gen(1λ), and (ρ, τ) ← setup(1λ);
then S sets crs ← (pk ′, pk , ρ) and the corresponding trapdoor td ← (sk ′, sk , τ).
Then S initializes Ad by giving it crs as the common reference string. Now the
simulator S interacts with the environment Z, the functionality FR,Q

ZKWE and its
subroutine Ad.

The simulator S simulates the protocol transcripts by following the protocol
π on behalf of the honest parties. Since the secret inputs of the honest parties
are not known, the simulator uses randomly selected w̃′

2 and w̃ as the witnesses
to compute c′ and κ, c, and further, the simulator runs S with V to simulate
the ZKPM subprotocol transcripts. We give details below. Note that we only
consider non-adaptive corruptions.

After receiving (LeakProve, sid , 〈x, 1〉, P) from the functionality (party P
is honest), and the move1 message from party T including c′, the simulator S
uses a randomly selected w̃ = (w̃1, w̃2) (since the real witness w = (w1, w2) is
blocked by the functionality) to compute κ and c, and runs S with V (instead
of P with V) to simulate the ZKPM subprotocol proof transcripts. If on the
other hand it receives (LeakProve, sid , 〈x, 0〉, P) from the functionality and
the move1 message from T , S responds T with a move2 message “no valid proof”.

After receiving (LeakVerify, sid , T) from the functionality (party T is hon-
est), the simulator S uses a randomly selected w̃′

2 (since the real witness w′
2 is

blocked by the functionality) to compute c′, and sends c′ as the move1 message
to party P . Later when it receives the move2 message from party P , S sends
(InflVerify, sid) to the functionality.

We next consider the case that party T is corrupted. When S receives
(LeakProve, sid , 〈x, 1〉, P) from the functionality and a move1message including
c′ from the corrupted party T , the simulator uses sk ′ to decrypt c′ into w′

2, and then
sends the input (Verify, sid , w′

2) in the name of T to the functionality; after re-
ceiving (LeakVerify, sid , T) from the functionality, S sends (InflVerify, sid)
to the functionality; if the functionality returns (VerifyReturn, sid , 1) which
means w′

2 �= w2 where w2 is from the actual witness of the prover, the simulator
randomly selects w̌ = (w̌1, w̌2) to finish the simulation of the P protocol; if the
functionality returns (VerifyReturn, sid , 0) which means w′

2 = w2 where w2 is
from the real witness, the simulator randomly selects w̌1, and uses w̌ = (w̌1, w2) to
finish the simulation. On the other hand, if it receives (LeakProve, sid , 〈x, 0〉, P)
from the functionality and a move1message,S simulates the P by responding with
“no valid proof” as the move2 message.

We now consider the case that party P is corrupted. If S receives the mes-
sage (move2, s, κ) from the corrupted party P , and after executing the ZKPM
subprotocol the party V returns 1 which means party T accepts the subproto-
col proof that (x, c′, c, κ) ∈ LR′ , the simulator uses sk to decrypt c into w and
sends input (Prove, sid , 〈x, w〉) in the name of P to the functionality; else if
V returns 0 which means party T rejects the subprotocol proof, then the simu-
lator sends input (Prove, sid , 〈x,⊥〉) where (x,⊥) �∈ R. Further, if S receives

134 A. Kiayias and H.-S. Zhou

(move2, “no valid proof”) from the corrupted P , the simulator also sends input
(Prove, sid , 〈x,⊥〉) to functionality. After it receives (LeakProve, sid , 〈x, φ〉)
from the functionality, S sends (InflVerify, sid) to the functionality, and the
functionality returns (VerifyReturn, sid , ϕ) to the dummy T according to its
program. This completes the description of the simulator S.

3.3 Illustrative Efficient Construction

In this subsection, we instantiate the generic construction to obtain an explicit
practical protocol for a zero-knowledge proof with witness elimination. The zero-
knowledge proof we develop is for proving possession of a non-adaptive Boneh-
Boyen digital signature [3]. We first introduce a building block, a hard smooth
projective hashing in the context of linear ElGamal encryption [4], and then give
the protocol.

Our construction yields immediately an anonymous identification scheme with
suspect tracking. This can be seen as follows: each user in the system will hold
a BB signature on a random message while the public-key of the BB signature
will be publicly available. To authenticate itself to a verifier, a prover will engage
in a proof of knowledge of a signature. Note that based on the non-adaptive
unforgeability of BB signatures it is impossible for any coalition of users to
obtain an additional signature. Observe now that if the system manager wishes
to track a suspect it may disclose the message-signature pair that was assigned
to the particular user. This will enable any verifier to employ witness elimination
and thus check that any prover that engages in the interaction does not possess
the suspect message-signature pair.

Bilinear Groups. Let G = 〈g〉 be a cyclic group of prime order p such that
ĕ : G×G → Gt is a bilinear map, i.e., for all u, v ∈ G and a, b ∈ Zp, it holds that
ĕ(ua, vb) = ĕ(u, v)ab and ĕ is non-trivial, i.e., ĕ(g, g) �= 1. Note that |Gt| = p.

Linear Encryption. Boneh et al. [4] proposed a variant of ElGamal encryp-
tion, called, Linear Encryption that is suitable for groups over which the DDH
assumption fails.
Key Generation: (pk , sk) ← gen(1λ), where pk = (u, v, w) and sk = (y, z), and
u, v, w ∈ G and y, z ∈ Zp such that uy = vz = w.

Encryption: c ← enc(pk ; m; r), where m ∈ G, r = (η, θ) with η, θ
r← Zp, and

c = (uη, vθ, wη+θm).
Decryption: m ← dec(pk , sk ; c), where c = (U, V, W), sk = (y, z), and m =

W
Uy·V z .

The Linear encryption is CPA-secure under the Decision Linear Diffie-Hellman
assumption [4].

Definition 2 (Decision Linear Diffie-Hellman Assumption). We say that
the Decision Linear Diffie-Hellman assumption holds in G if for all PPT distin-
guisher A we have∣∣∣∣Pr[u, v, w

r← G; β, γ
r← Zp : A(u, v, w, uβ , vγ , wβ+γ) = 1]

− Pr[u, v, w, χ
r← G; β, γ

r← Zp : A(u, v, w, uβ , vγ , χ) = 1]

∣∣∣∣ ≤ negl(λ)

Zero-Knowledge Proofs with Witness Elimination 135

crs = (q,g,h,G, hash; n, g; p, g, u, v, w, X, G, Gt, ĕ)

P T
input = (m, σ) s.t. input = σ′

ĕ(gmX, σ) = ĕ(g, g)

η′, θ′ r← Zp;
U ′ ← uη′

; V ′ ← vθ′
; W ′ ← wη′+θ′

σ′;
U′,V ′,W ′

←−−−−−−−−
β, γ, δ, ζβ , ζγ , ζδ

r← Zp;
s1 ← uβwδ; s2 ← vγwδ;

κ ← (U ′)β(V ′)γ(W ′
σ

)δ;
s1,s2,κ−−−−−−−−→

κ′ ← (s1)η′
(s2)θ′

;
κ =? κ′;

ζm
r← ±[0, 2	0+	d+	p]; χ, ζχ

r← Z∗
n ;

E ← gmχn mod n2;
B1 ← gζm(ζχ)n mod n2;
η, θ, ζη, ζθ, ζmη, ζmθ, ζδη, ζδθ

r← Zp;
U ← uη; V ← vθ; W ← wη+θσ;
B2 ← uζη ; B3 ← vζθ ;
B4 ← (U ′)ζβ (V ′)ζγ (W ′W−1)ζδwζδη+ζδθ ;
B5 ← ĕ(g, W)ζm ĕ(g, w)−ζmη−ζmθ ĕ(X, w)−ζη−ζθ ;
ω ← hash(B1, B2, B3, B4, B5);

μ
r← Zq; C ← gωhμ;

E,U,V,W,C−−−−−−−−→
d

r← {0, 1}	d ;
d←−−−−−−−−

ξχ ← ζχ · χd mod n; ξη ← ζη + d · η;
ξθ ← ζθ + d · θ; ξδ ← ζδ + d · δ;
ξβ ← ζβ + d · β; ξγ ← ζγ + d · γ;
ξδη ← ζδη + d · δη;
ξδθ ← ζδθ + d · δθ;
ξm ← ζm + d · m (in Z);
ξmη ← ζmη + d · mη;
ξmθ ← ζmθ + d · mθ;
ξ ← (ξχ, ξη, ξθ, ξδ, ξβ , ξγ , ξδη, ξδθ, ξm, ξmη, ξmθ);

B ← (B1, B2, B3, B4, B5);
ξ,B ,μ−−−−−−−−→

ω ← hash(B1, B2, B3, B4, B5);gωhμ =? C;
ξm ∈? ±[0, 2	0+	d+	p+1];E ∈? Z∗

n2 ;
gξm(ξχ)n =? B1E

d mod n2;
uξη =? B2U

d; vξθ =? B3V
d;

(U ′)ξβ (V ′)ξγ (W ′W−1)ξδwξδη+ξδθ =? B4κ
d;

ĕ(g, W)ξm ĕ(g, w)−ξmη−ξmθ ĕ(X, w)−ξη−ξθ

=? B5ĕ(g, g)dĕ(X, W)−d;

Fig. 3. Concrete construction of zero-knowledge with witness elimination

Hard smooth projective hashing in the context of linear ElGamal
encryption. We now define a smooth projective hash function LEH for this
encryption scheme. Here Cpk

def= (G)3 and M
def= G, so X = (G)4; and W = (Zp)2

136 A. Kiayias and H.-S. Zhou

and G = G; the key space is defined by K = (Zp)3, i.e., a key is a triple k =
(β, γ, δ), where β, γ, δ

r← Zp; the key projection function α on input the key k =
(β, γ, δ) and ciphertext c = (U, V, W) is defined by s = (s1, s2) = (uβwδ , vγwδ);
function Hk : (G)4 → G is defined as Hk((U, V, W), m) = UβV γ(W/m)δ ; func-
tion Js : (G)4 × (Zp)2 → G is defined as Js((U, V, W), m, (η, θ)) = (s1)η(s2)θ.

Lemma 2. LEH is a hard smooth projective hash function.

The zero-knowledge with witness elimination protocol. In our proto-
col, party P keeps a witness including two parts m and σ such that the rela-
tion ĕ(gmX, σ) = ĕ(g, g) which can be viewed as a non-adaptive BB message-
signature pair with public parameter (p, g, X, G, Gt, ĕ) and signing secret x,
where X = gx. The relation Q for which the witness elimination is performed is
an equality test on the signature part of the message-signature pair. Note that
in the non-adaptive BB-signature there is a correspondence between messages
and signatures and thus Q amounts to simply an equality relation.

The inequality test subprotocol is based on a hard smooth projective hashing
in the context of linear ElGamal encryption introduced in the previous subsec-
tion. Then we use two encryption schemes to encrypt P ’s witness, i.e., a Paillier
[29] encryption to encrypt m into E, and a linear ElGamal encryption to en-
crypt σ into 〈U, V, W 〉. We construct a three-move Sigma-protocol to prove: (1)
m and σ is a valid non-adaptive BB message-signature pair; (2) the inequality
subprotocol is consistent with the statement in (1); and (3) E and 〈U, V, W 〉 are
cipertexts for m based on Paillier encryption and for σ based on linear ElGamal
encryption respectively. Further to defend against a dishonest verifier, we use a
technique of [14] to wrap up the above Sigma-protocol by using a commitment
scheme. The protocol is presented in full details in figure 3.

Acknowledgement

We thank Juan Garay for helpful discussions, and the current title was suggested
by him. We also thank the anonymous reviewers for valuable comments.

References

1. Ateniese, G., Song, D.X., Tsudik, G.: Quasi-efficient revocation in group signatures.
In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 183–197. Springer, Heidelberg
(2003)

2. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applica-
tions (extended abstract). In: STOC, pp. 103–112. ACM Press, New York (1988)

3. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

4. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

Zero-Knowledge Proofs with Witness Elimination 137

5. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: Atluri,
V., Pfitzmann, B., McDaniel, P.D. (eds.) ACM Conference on Computer and Com-
munications Security, pp. 168–177. ACM Press, New York (2004)

6. Camenisch, J.: Group signature schemes and payment systems based on the discrete
logarithm problem. ETH Series in Information Security an Cryptography, 2, PhD
thesis (1998), http://www.zurich.ibm.com/~jca/papers/diss.ps

7. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145. IEEE Computer Society, Los Alamitos (2001)

8. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: Cryptology ePrint Archive, Report 2000/067 (December 2005),
http://eprint.iacr.org/2000/067/

9. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: STOC, pp. 235–244 (2000),
http://eprint.iacr.org/1999/022

10. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.D.: Universally com-
posable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005),
http://eprint.iacr.org/2005/196

11. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC, pp. 494–503. ACM Press,
New York (2002),
http://eprint.iacr.org/2002/140

12. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

13. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002),
http://www.shoup.net/papers/uhp.pdf

14. Damg̊ard, I.: Efficient concurrent zero-knowledge in the auxiliary string model. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer,
Heidelberg (2000)

15. Damg̊ard, I., Nielsen, J.B., Wichs, D.: Isolated proofs of knowledge and isolated
zero knowledge. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
509–526. Springer, Heidelberg (2008)

16. De Santis, A., Di Crescenzo, G., Persiano, G., Yung, M.: On monotone formula
closure of szk. In: FOCS, pp. 454–465. IEEE Computer Society Press, Los Alamitos
(1994)

17. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Com-
put. 30(2), 391–437 (2000); preliminary version appears at STOC 1991

18. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. J. ACM 51(6), 851–
898 (2004); preliminary version appears at STOC 1998

19. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
STOC, pp. 416–426. ACM Press, New York (1990)

20. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

21. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key ex-
change. ACM Trans. Inf. Syst. Secur. 9(2), 181–234 (2006); preliminary version
appears at Eurocrypt 2003

http://www.zurich.ibm.com/~jca/papers/diss.ps
http://eprint.iacr.org/2000/067/
http://eprint.iacr.org/1999/022
http://eprint.iacr.org/2005/196
http://eprint.iacr.org/2002/140
http://www.shoup.net/papers/uhp.pdf

138 A. Kiayias and H.-S. Zhou

22. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems.
ICALP 1990 25(1), 169–192 (1990); preliminary version appears at ICALP 1990

23. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

24. Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivious
transfer. In: Cryptology ePrint Archive: Report 2007/118, 2007 (2005); prelimi-
nary version appears at Eurocrypt 2005

25. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001)

26. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Ca-
menisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer,
Heidelberg (2004)

27. Nakanishi, T., Funabiki, N.: Verifier-local revocation group signature schemes with
backward unlinkability from bilinear maps. In: Roy, B. (ed.) ASIACRYPT 2005.
LNCS, vol. 3788, pp. 533–548. Springer, Heidelberg (2005)

28. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5),
1254–1281 (2006); preliminary version appears at STOC 1999

29. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

30. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptology 4(3),
161–174 (1991)

31. Song, D.X.: Practical forward secure group signature schemes. In: ACM Conference
on Computer and Communications Security, pp. 225–234 (2001)

Distributed Public-Key Cryptography
from Weak Secrets

Michel Abdalla1, Xavier Boyen2, Céline Chevalier1, and David Pointcheval1

1 Ecole Normale Supérieure, CNRS-INRIA, Paris, France
2 Stanford University, Stanford, California

Abstract. We introduce the notion of distributed password-based
public-key cryptography, where a virtual high-entropy private key is im-
plicitly defined as a concatenation of low-entropy passwords held in sep-
arate locations. The users can jointly perform private-key operations by
exchanging messages over an arbitrary channel, based on their respec-
tive passwords, without ever sharing their passwords or reconstituting
the key.

Focusing on the case of ElGamal encryption as an example, we start
by formally defining ideal functionalities for distributed public-key gen-
eration and virtual private-key computation in the UC model. We then
construct efficient protocols that securely realize them in either the RO
model (for efficiency) or the CRS model (for elegance).

We conclude by showing that our distributed protocols generalize to
a broad class of “discrete-log”-based public-key cryptosystems, which no-
tably includes identity-based encryption. This opens the door to a pow-
erful extension of IBE with a virtual PKG made of a group of people,
each one memorizing a small portion of the master key.

1 Introduction

Traditional wisdom says that it is impossible to do public-key cryptography
from short passwords. This is because any low-entropy private key will quickly
succumb to an off-line dictionary attack, made possible by the very publication
of the public key, which can thus be used as a non-interactive test function.
Since off-line attacks are very effective against weak secrets, it is imperative that
the private keys in public-key systems be highly random and complex, but that
makes them hopelessly impossible to be remembered by humans.

But, what if, instead of being held as an indivisible entity, the private key were
chopped into many little pieces, each one of them independently memorized by
a different person in a group of friends or colleagues? The components of the key
would be safe in the respective memories of the individual group members, at
least as long as it is not used. The only complication is the need to reassemble
the full private key from the various components, so that private-key operations
can be performed. Naturally, the secret holders should not actually reassemble
the key, but instead perform a distributed computation of whichever private-key
operation they need, without ever having to meet or even reconstitute the key.

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 139–159, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

http://dx.doi.org/10.1007/978-3-642-00468-1_29

140 M. Abdalla et al.

Unusual Requirements. Even if one can perform private-key computations
without reassembling the key, there are other, more subtle vulnerabilities.

For starters, we cannot simply assume that the (virtual) private key is simply
made of some number of random components (one per user) generated inde-
pendently and uniformly at random. On the contrary, we must assume that the
various components are arbitrary and possibly correlated, and some of them po-
tentially very weak and easily guessable. This is because of our requirement of
human-memorability: for the components to be truly memorable, it is imperative
that their respective owners choose them in whichever way they please.

A consequence of the above is that it also opens the possibility of password
reuse by the various users: although this is a bad security practice that should be
discouraged, it is also one that is very common and that we should acknowledge
and handle the best way we can, rather than pretend that it will not happen.

Additionally, since the various secret holders do not necessarily trust each
other, it is necessary that they be able to choose their individual secrets in
complete privacy. In fact, any solution to our question must deal with user
corruptions and collusions, and remain as secure as the “sum total” of the key
components of the remaining honest users.

Finally, we must have a notion of “group leader”, which is the person who
will actually “own” the distributed virtual private key. By “own”, we mean that
only the group leader will be able to use that key, i.e., obtain the results of any
private computation based on it, with the help of the other group members. We
stress that neither the leader nor anyone else should actually learn the key itself.

An important difference between our requirements and essentially all existing
distributed protocols that deal with weak secrets (such as Group Password-based
Key Agreement), is that here the secrets are chosen arbitrarily and privately by
each user. We neither assume that all the secrets are the same (as in Group
PAKE), or that they are all independent (as in Threshold Cryptography). The
whole system should thus: (1) not fall apart if some of the passwords become ex-
posed, as long as the combined entropy of the uncompromised passwords remains
high; (2) preserve the privacy of all uncompromised passwords at all stages of
the process (during the initial computation of the public key and any subsequent
utilization of the virtual private key).

The notion of group leader is something necessary for our application. Most
password-basedprotocols seek to achieve a symmetric outcome. Here, by contrast,
the impetus to create a public/private key pair must originate in a particular user,
who will become the leader, and who seeks the help of other, semi-trusted indi-
viduals to help him or her remember the key. (The leader can return the favor
later or share the result of any private computation, outside of the core protocol.)
Remark also that whereas it is easy for the leader to share the result of a private
computation with the other members, it would be almost impossible to restrict
such result to the leader if the computation gave the result to all.

General Approach. The aim of this paper is thus primarily to show how to do
asymmetric cryptography from a distributed set of human-memorable secrets.
Since public-key cryptography from single passwords is irremediably insecure,

Distributed Public-Key Cryptography from Weak Secrets 141

the best we can hope for is to base it on moderately-sized distributed collections
of them: Given a regular system (such as signature, encryption, or IBE), we
devise a pair of protocols that take independent user passwords as inputs, and,
in a distributed manner: 1) generate a publishable public key that corresponds
to the set of passwords; 2) do private computations on the virtual private key.

To create a key pair, a group of players led by a designated “group leader”
engages in the distributed key generation protocol. The protocol runs over unau-
thenticated channels, and if all goes well, results in an explicit public key for
anyone to see and use. The private key is not explicitly computed and remains
implicitly defined by the set of passwords. To use the private key, the same group
of players engages in another protocol, using the same passwords as in the key
generation protocol. The protocol again runs over unauthenticated channels. If
all goes well, the leader, and only the leader, obtains the results of the com-
putation. Again, the private key is not explicitly computed, and the passwords
remain private to their respective owners.

Unlike regular public-key cryptosystems, the private key is never stored or used
all at once; it remains virtual and delocalized, and the private-key operation is
done using an interactive protocol. But unlike threshold cryptography, where
the shares are uniformly randomized and typically as long as the shared secret
itself, here the passwords are arbitrary and user-selected. Unlike password-based
encryption, off-line attacks are thwarted by virtue of the high joint entropy
from many distinct user passwords, which must be guessed all at once. On-line
attacks against single passwords cannot be prevented, but are very slow as they
require an on-line commitment for each guess. Unlike password-authenticated key
exchange protocols, here the user passwords are not the same or even related to
each other: the passwords are truly personal.

Our Results. First, we formalize this class of protocols and their security
requirements; for convenience we do so in the UC model [12], which lends it-
self nicely to the analysis of password-based protocols. Second, we propose a
reasonably efficient construction for the ElGamal cryptosystem as a working ex-
ample [18], which we prove secure both in the RO and CRS models. Third, we
conclude by showing that our construction generalizes easily to a broad class
of “discrete-log”-type public-key schemes, and, quite notably, the whole set of
schemes derived from the BF and BB identity-based cryptosystems [9,7].

Even though for simplicity we focus on public-key systems with a special form
(those that operate by raising elements of an algebraic group to the power of
the private key and/or ephemeral exponents), this structure is general enough to
capture many examples of exponentiation-based cryptosystems, and even IBE
systems that require a pairing, as we just mentioned.

Remarkably, and of independent interest, this gives us an interesting twist on
the notion of IBE, where the “central” key generation authority is replaced by
a distributed set of users, each one of them holding a small piece of the master
secret in the form of a self-selected easily memorable short password.

142 M. Abdalla et al.

Related Work. Although there is no prior work on distributed cryptography
from weak secrets proper, this notion is of course related to a fairly large body
of literature that includes Password-Authenticated Key Exchange (PAKE) and
Multi-Party Computation (MPC).

Multi-Party Computation. The first and most famous MPC protocol is due
to Yao [30]. Depending on the setup, such protocols allow two participants with
secret inputs to compute a public function of their joint inputs, without leak-
ing anything other than the output of the function [24,23,6,15]. MPC protocols
typically assume all communications between the players to be authentic: that
is, an external mechanism precludes modifications or fake message insertions.
The flip side is that such protocols tend to become insecure when the number of
dishonest players reaches a certain threshold that allows them to take over the
computation and from there recover the other players’ inputs [28,2,25].

Several works have dealt with the case of MPC over unauthenticated channels
[13,19,1], by prefacing the multi-party computation proper with some flavor of
authentication based on non-malleable commitments or signatures [17]. The work
of Barak et al. [1] in particular gives general conditions of what can and cannot
be achieved in unauthenticated multi-party computations: they show that an
adversary is always able to partition the set of players into disjoint “islands”
that end up performing independent computations, but nothing else besides
dropping messages and/or relaying them faithfully. They show how to transform
any (realization of an) UC functionality into a multi-party version of the same
that merely lets the adversary split the players into disjoint islands. They also
show how to build password-based group key agreement (GPAKE) from this
notion, first by creating a random session key for the group by running an MPC
protocol without authentication, and then by verifying that all players have
the same key using a “string equality” functionality. (By comparison, here, we
force the users to commit to their passwords first, and then perform the actual
computation based on those commitments.)

Although it is clear that, like so many other things in cryptography, our work
can be viewed as a special case of unauthenticated MPC, our contribution lies
not in this obvious conceptual step, but in the specification of suitable func-
tionalities for the non-trivial problem of password-based threshold cryptography
(and their efficient implementation). In particular, much grief arises from our
requirement that each user has its own password (which may even be reused in
other contexts), instead of a single common password for the whole group as in
the applications considered in [1] and elsewhere.

On-line Passwords. The first insight that weak passwords could be used on-
line (in a key exchange protocol) with relative impunity was made in [5]. It
captured the idea that the success of an adversary in breaking the protocol
should be proportional to the number of times this adversary interacts with the
server, and only negligibly in its off-line computing capabilities.

In the password-only scenario (without public-key infrastructure), the first
protocols with a proof of security appeared contemporaneously in [11] and [3],

Distributed Public-Key Cryptography from Weak Secrets 143

both in the random-oracle model. A (somewhat inefficient) protocol without any
setup assumption was first proposed in [22]. A fairly efficient one in the common
random string model was first given in [26] and generalized in [21].

To cope with concurrent sessions, the work of [14] was the first to propose
an ideal functionality for PAKE in the UC model, as well as a protocol that
securely realizes it. Unlike previous models, one of the major advantages of the
UC one is that it makes no assumption on the distribution of the passwords; it
also considers, for instance, some realistic scenarios such as participants running
the protocol with different but possibly related passwords.

2 Security Model

The UC Framework. Throughout this paper, we assume basic familiarity
with the universal composability (UC) framework [12].

Split Functionalities. Without any strong authentication mechanisms, the
adversaryA can always partition the players into disjoint subgroups and execute
independent sessions of the protocol with each one, playing the role of the other
players. Such an attack is unavoidable since players cannot distinguish the case
in which they interact with each other from the case where they interact with A.
The authors of [1] addressed this issue by proposing a new model based on split
functionalities which guarantees that this attack is the only one available to A.

The split functionality is a generic construction based upon an ideal function-
ality: Its description can be found in the full version. In the initialization stage,
the adversary A adaptively chooses disjoint subsets of the honest parties (with
a unique session identifier that is fixed for the duration of the protocol). During
the computation, each subset H activates a separate instance of the functional-
ity F . All these functionality instances are independent: The executions of the
protocol for each subset H can only be related in the way A chooses the inputs of
the players it controls. The parties Pi ∈ H provide their own inputs and receive
their own outputs, whereas A plays the role of all the parties Pj /∈ H .

In the sequel, as we describe our two general functionalities FpwDistPublicKeyGen

and FpwDistPrivateComp, one has to keep in mind that an attacker controlling the
communication channels can always choose to view them as the split functional-
ities sFpwDistPublicKeyGen and sFpwDistPrivateComp implicitly consisting of multiple
instances of FpwDistPublicKeyGen and FpwDistPrivateComp for non-overlapping subsets
of the original players. Furthermore, one cannot prevent A from keeping some
flows, which will never arrive. This is modelled in our functionalities (Figures 1
and 2) by a bit b, which specifies whether the flow is really sent or not.

The Ideal Functionalities. In the sequel we denote by n the number of users
involved in a given execution of the protocol. One of the users plays a particular
role and is denoted as the group leader, the others are simply denoted as players.
Groups can be formed arbitrarily. Each group is defined by its leader (who “owns”
the group by being the one to receive the result of any private computation)

144 M. Abdalla et al.

and an arbitrary number of other players in a specific order (who “assist” and
“authorize” the leader in his or her use of the group’s virtual key).

We stress that the composition and ordering of a group is what defines it
and cannot be changed: this ensures that any third-party who uses the group’s
public key knows exactly how the corresponding private key will be accessed.
If another player wants to be the leader, he or she will have to form a new
group. (Even though such new group may contain the same set of members with
possibly unchanged passwords, the two groups will be distinct and have different
incompatible key pairs because of the different ordering).

As in [14], the functionality is not in charge of providing the passwords to the
participants. The passwords are chosen by the environment which then hands
them to the parties as inputs. This guarantees security even in the case where a
honest user executes the protocol with an incorrect password: This models, for
instance, the case where a user mistypes its password. It also implies that the
security is preserved for all password distributions (not necessarily the uniform
one) and in all situations where related passwords are used in different protocols.

Since the functionalities are intended to capture distributed password proto-
cols for (the key generation and private-key operation of) an arbitrary public-key
primitive, we will represent all the primitive’s algorithms as black box parame-
ters in our definitions. In general, we shall require: a function SecretKeyGen to
combine a vector of passwords into a single secret key; a function PublicKeyGen to
compute from a password vector a matching public key; a predicate PublicKeyVer
to verify such public key against any password vector: this is important for the
correctness of the ideal functionalities, but it also simplifies the use of the joint-
state UC Theorem since it abstracts away the passwords that then do not need
to be considered as part of the joint data; a function PrivateComp to perform the
operation of interest using the private key: this could be the decryption function
Dec of a public-key encryption scheme, the signing function Sign in a signature
scheme, or the identity-based key extraction function Extract in an IBE system.

Both functionalities start with an initialization step, which basically waits for
all the users to notify their interest in computing a public key or performing
a private computation, as the case may be. Such notification is provided via
newSession queries (containing the session identifier sid of the instance of the
protocol, the user’s identity Pi, the identity of the group Pid, the user’s password
pwi, and when computing the private function, a public key pk and input in)
sent by the players or by the simulator S in case of corruptions during the first
flow (corresponding to the split functionality). Once all the users (sharing the
same sid and Pid) have sent their notification message, the functionality informs
the adversary that it is ready to proceed.

In principle, after the initialization stage is over, the eligible users are ready
to receive the result. However the functionality waits for S to send a compute
message before proceeding. This allows S to decide the exact moment when
the key should be sent to the users and, in particular, it allows S to choose
the exact moment when corruptions should occur (for instance S may decide to
corrupt some party Pi before the key is sent but after Pi decided to participate

Distributed Public-Key Cryptography from Weak Secrets 145

FpwDistPublicKeyGen is parametrized by a security parameter k and an efficiently com-
putable function PublicKeyGen : (pw1, pw2, . . . , pwn) �→ pk that derives a public key
pk from a set of passwords. Denote by role either player or leader. The functionality
interacts with an adversary S and a set of parties P1,. . . ,Pn via the following queries:
Initialization. Upon receiving a query (newSession, sid, P id, Pi, pwi, role) from
user Pi for the first time, where Pid is a set of at least two distinct identities con-
taining Pi, ignore it if role = leader and if there is already a record of the form
(sid, P id, ∗, ∗, leader). Record (sid, P id, Pi, pwi, role) and send (sid, P id, Pi, role)
to S . Ignore any subsequent query (newSession, sid, P id′, ∗, ∗, ∗) where Pid′ �= Pid.
If there are already |Pid|−1 recorded tuples (sid, P id, Pj , pwj) for Pj ∈ Pid\{Pi}, and
exactly one of them such that role = leader, then while recording the |Pid|-th tuple,
also record (sid, P id, ready) and send this to S . Otherwise, record (sid, P id, error) and
send (sid, P id, error) to S .
Key Computation. Upon receiving a message (compute, sid, P id) from the ad-
versary S where there is a recorded tuple (sid, P id, ready), then compute pk =
PublicKeyGen(pw1, . . . , pwn) and record (sid, P id, pk).
Leader Key Delivery. Upon receiving a message (leaderDeliver, sid, P id, b) from
the adversary S for the first time, where there is a recorded tuple (sid, P id, pk) and
a record (sid, P id, Pi, pwi, leader), send (sid, P id,pk) to Pi and to S if b = 1, or
(sid, P id, error) otherwise. Record (sid, P id, sent) and send this to S .
Player Key Delivery. Upon receiving (playerDeliver, sid, P id,b, Pi) from the adver-
sary S where there are recorded tuples (sid, P id, pk), (sid, P id, Pi, pwi, player) and
(sid, P id, sent), send (sid, P id, pk) to Pi if b = 1, or (sid, P id, error) otherwise.
User Corruption. If S corrupts Pi ∈ Pid where there is a recorded tuple
(sid, P id, Pi, pwi), then reveal pwi to S . If there also is a recorded tuple (sid, P id,pk)
and if (sid, P id,pk) has not yet been sent to Pi, send (sid, P id,pk) to S .

Fig. 1. The Distributed Key Generation Functionality FpwDistPublicKeyGen

to a given session of the protocol; see [27]). Also, although in the key generation
functionality all users are normally eligible to receive the public key, in the private
computation functionality it is important that only the group leader receives the
output (though he may choose to reveal it afterwards to others, outside of the
protocol, depending on the application).

The Distributed Key Generation Functionality (Figure 1). The aim of
this functionality is to provide a public key to the users, computed according to
their passwords with respect to the previously mentioned function PublicKeyGen
given in parameter, and it ensures that the group leader never receives an incor-
rect key in the end, whatever does the adversary. The protocol starts with an
initialization phase as already described, followed by a key computation phase
triggered by an explicit key computation query (so that S can control its timing.)

After the key is computed, the adversary can choose whether the group leader
indeed receives this key. If delivery is denied, then nobody gets the key, and it is as
if it was never computed. If delivery is allowed, then the group leader and S both
receive the public key. This behavior captures the fact that the generated public
key is intended to be available to all, starting with the opponent. (More to the

146 M. Abdalla et al.

point, this requirement will also weed out some bogus protocols that could only
be secure if the public key remained unavailable to S.) Once they have received
the public key, the other players may be allowed to receive it too, according to
a schedule chosen by S, and modeled by means of key delivery queries from S.
Once S asks to deliver the key to a player, the key is sent immediately.

Note that given the public key, if the adversary knows sufficiently many pass-
words that the combined entropy of the remaining passwords is low enough, he
will be able to recover these remaining passwords by brute force attack. This is
unavoidable and explains the absence of any testPwd query in this functionality.
(This has nothing to do with the fact that our system is distributed: off-line at-
tacks are always possible in principle in public-key systems, and become feasible
as soon as a sufficient portion of the private key becomes known.)

The Distributed Private Computation Functionality (Figure 2). The
aim here is to perform a private computation for the sole benefit of the group
leader. The leader is responsible for the correctness of the computation; in ad-
dition, it is the only user to receive the end result.

This functionality will thus compute a function of some supplied input in , de-
pending on a set of passwords that must define a secret key corresponding to a
given public key. More precisely, the functionality will be able to check the com-
patibility of the passwords with the public key thanks to the verification function
PublicKeyVer, and if it is correct it will then compute the secret key sk with the
help of the function SecretKeyGen, and from there evaluate PrivateComp(sk, in)
and give the result to the leader. Note that SecretKeyGen and PublicKeyVer are
naturally related to the function PublicKeyGen called by the former functionality.
In all generality, unless SecretKeyGen and PublicKeyGen are both assumed to be
deterministic, we need the predicate PublicKeyVer in order to verify that a public
key is “correct” without necessarily being “equal” (to some canonical public key).
Also note that the function SecretKeyGen is not assumed to be injective, lest it
unduly restrict the number of users and the total size of their passwords.

Phases and Queries. During the initialization phase, each user is given as
input a password pwi as outlined earlier, but also an input in , and a public
key pk. We stress that the security is guaranteed even if the users do not share
the same values for in and pk, because then the functionality fails directly at
the end of the initialization phase. At the end of this step, the adversary is also
given knowledge of the common in and pk (as these are supposedly public).

After this initialization step is over, but before the actual computation, the
adversary S is given the opportunity to make one or more simultaneous password
guesses, by issuing a single Password Test query, to model a “man-in-the-middle”
impersonation attack against a subset of users. The query must indicate the sub-
set of user(s) targeted in the attack, and what password(s) S wishes to test for
those user(s). If all passwords are compatible with pk, the affected users are
marked as compromised, otherwise they are all marked as interrupted. Unaffected
users remain marked as fresh. Observe that it is in the opponent’s best interest

Distributed Public-Key Cryptography from Weak Secrets 147

FpwDistPrivateComp is parametrized by a security parameter k and three functions.
PublicKeyVer is a boolean function PublicKeyVer : (pw1, pw2, . . . , pwn, pk) �→ b,
where b = 1 if the passwords and the public key are compatible, b = 0 otherwise.
SecretKeyGen is a function SecretKeyGen : (pw1, pw2, . . . , pwn) �→ sk, where sk is the
secret key obtained from the passwords. Finally, PrivateComp is a private-key func-
tion PrivateComp : (sk, c) �→ m, where sk is the secret key, c is the function input
(e.g., a ciphertext) and m the private result of the computation (e.g., the decrypted
message). Denote by role either player or leader. The functionality interacts with an
adversary S and a set of parties P1,. . . ,Pn via the following queries:
Initialization. Upon receiving a query (newSession, sid, P id, Pi, pk, c, pwi, role) from
user Pi for the first time, where Pid is a set of at least two distinct identi-
ties containing Pi, ignore it if role = leader and if there is already a record
of the form (sid, P id, ∗, ∗, ∗, ∗, leader). Record (sid, P id, Pi, pk, c, pwi, role), mark
it fresh, and send (sid, P id, Pi, pk, c, role) to S . Ignore any subsequent query
(newSession, sid, P id′, ∗, ∗, ∗, ∗, ∗) where Pid′ �= Pid.
If there are already |Pid|−1 recorded tuples (sid, P id, Pi, pk, c, pwi, role), and exactly
one of them such that role = leader, then after recording the |Pid|-th tuple, verify
that the values of c and pk are the same for all the users. If the tuples do not
fulfill all of these conditions, report (sid, P id, error) to S and stop. Otherwise, record
(sid, P id, pk, c, ready) and send it to S . The group leader is Pj .
Password Test. Upon receiving a first query (testPwd, sid, P id, {Pi1 , . . . , Pil},
{pwi1

, . . . , pwil
}) from S , if there exist l records (sid, P id, Pik , pk, c, ∗, ∗), necessarily

still marked fresh, and a record (sid, P id, pk, c, ready), then denote by pwjl+1
, . . . , pwjn

the passwords of the other users of the group. If PublicKeyVer(pw1, . . . , pwn, pk) = 1,
edit the records of Pi1 , . . . , Pil to be marked compromised and reply to S with
“correct guess”. Otherwise, mark the records of the users Pi1 , . . . , Pil as inter-
rupted and reply to S with “wrong guess”. Ignore all subsequent queries of the
form (testPwd, sid, P id, ∗, ∗).
Private Computation. Upon receiving a message (compute, sid, P id) from S
where there is a recorded tuple (sid, P id, pk, c, ready), then, if all records are
fresh or compromised and PublicKeyVer(pw1, . . . , pwn, pk) = 1, then compute sk =
SecretKeyGen(pw1, . . . , pwn) and m = PrivateComp(sk, c), and store (sid, P id, m);
Next, for all Pi ∈ Pid mark the record (sid, P id, Pi, pk, c, pwi, role) as complete.
In any other case, store (sid, P id, error). When the computation result is set, report
the outcome (either error or complete) to S .
Leader Computation Delivery. Upon receiving (leaderDeliver, sid, P id, b) from S ,
where there is a recorded tuple (sid, P id, m) such that m ∈ {well-formed messages}∪
{error}, and there exists a record (sid, P id, Pi, pk, c, pwi, leader), send (sid, P id, m)
to Pi if b is equal to 1, or send (sid, P id, error) if b is equal to 0. If the group leader
Pi is corrupted or compromised, then send (sid, P id, m) to S as well (note that S gets
m automatically if Pj is corrupted).
User Corruption. If S corrupts Pi ∈ Pid where there is a recorded tuple
(sid, P id, Pi, pk, c, pwi, role), then reveal pwi to S . If role = leader, if there also
is a recorded tuple (sid, P id, m), and if (sid, P id, m) has not yet been sent to Pi,
then also send (sid, P id, m) to S .

Fig. 2. The Distributed Private Computation Functionality FpwDistPrivateComp

148 M. Abdalla et al.

to target only a single user in the Password Test query to optimize compromising
probability.

Once the functionality receives a message of the form (compute, sid, P id) from
S, it proceeds to the computation phase. This is done as follows. If (1) all records
are fresh or compromised, and (2) the passwords are compatible with the common
public key pk, then the functionality computes the private key sk and then the
output out . In all other cases, no message is computed.

In any case, after the key generation, the functionality informs the adversary
of the result, meaning that S is told whether a message was actually computed
or not. In particular, this means that the adversary also learns whether the users’
passwords are compatible with pk or not. At first glance this may seem like a
critical information to provide to the adversary. We argue, however, that this is
not the case in our setting. Firstly, learning the status of the protocol (that is,
whether it succeeded) without having any knowledge of the passwords that went
into it is completely pointless, and the only knowledge that the adversary may
have about those passwords are the ones it used in the testPwd impersonation
query. Hence, as one should expect, from the status of the protocol the only useful
thing that the adversary can learn is whether the password guesses it made were
all good or not (as a single yes/no answer), but nothing else. Secondly, even if the
adversary could somehow derive more utility from the protocol status, modeling
that status as secret is not sensible because in most real-world scenarios it will
be easy to infer from the users’ behavior.

At the end, and similarly to the first functionality, the final result can either
be released to the group leader, or withheld from it. However, this time, since the
final result is a private output, there is no provision to distribute it to the other
players. Also, S only gets the message if the leader either has been previously
corrupted or if it is in the compromised state (either the leader has fallen under
S’s control, or S has successfully taken its place in the protocol).

Discussion. We emphasize that in this model only the leader and no other
player receives the final result. Although this has the advantage of making the
construction simpler, it is also the most useful and the only sensible choice. For
starters, this makes our protocol much more resilient to password breaks in on-
line impersonation attacks. To see why, suppose that the final output were indeed
sent to all users. Then cracking the password of a single user would be all it took
to break the system: adding more users would actually decrease the overall on-
line security, because with a larger group comes a greater chance that some
user will choose a weak password. By contrast, in the actual model, breaking
the password of an ordinary user has no dire consequence: the protocol security
will simply continue to rest on the passwords that remain. Since compromising
ordinary users brings no other direct reward than to expose their passwords,
it is just as if broken passwords were removed from the key in future protocol
executions, or never contributed to it in the first place.

Of course, cracking the password of the leader will compromise the group and
grant access to private computations (with the help of the other players, still),
but that is only natural since the leader “owns” the group. There is an important

Distributed Public-Key Cryptography from Weak Secrets 149

distinction between exposure of an ordinary player’s password and the leader’s
password: the leader represents the group with respect to third parties, i.e., when
third parties use the group’s public key their intention is to communicate with
the leader. By contrast, ordinary players are not meant to be trusted and their
inclusion to the group is a choice by the leader to help him or her increase the
security of the private key — or leave it unchanged if that player turns out to
be compromised — but never decrease it.

Revocation. In case of compromise of the leader password, it is possible for
the leader to “revoke” the group by instructing the other players to stop par-
ticipating in that group (e.g., by using the group’s resources one last time to
sign a revocation certificate using the group’s private key). This will prevent
any further use of the group’s resources, unless of course the adversary manages
to crack all of the players’ passwords jointly. Such revocation mechanism falls
outside of the protocol, so we do not model it in the functionalities.

User Corruptions. Our definition of the FpwDistPrivateComp functionality deals
with user corruptions in a way that is quite different to that of other password-
based group protocols. E.g., in the group key exchange functionality of [27], if the
adversary has obtained the passwords of some participants (via password guesses
or user corruptions), it may freely set the resulting session key to any value. Here,
our functionalities are much more demanding in two important ways: first, S is
much constrained in the way it can make and test online password guesses;
second, S can never alter the computation in any way once it has started.

Password Tests. The first difference is that the testPwd query can only be
asked once, early in the protocol, and it does not actually test the password of
the users, but rather the compatibility between (1) the guessed passwords of any
specified subset of users, (2) the real passwords of the rest of the group (known
by the functionality thanks to the newSession queries), and (3) the public key
(which at this stage is already guaranteed to be the same in all the users’ views).
This unusual shape for the testPwd query provides a very high level of security,
because (A) at most a single set of password guesses can be tested against any
player in any protocol instance, and (B) if S chooses to test a set of more than
one password at once, then to cause a positive response all the guesses must be
correct simultaneously (and since this becomes exponentially unlikely, the astute
adversary should be content to test sets of one password at a time). After the
private computation, all the records, initially fresh, compromised, or interrupted,
become either complete or error. No more testPwd query is accepted at this stage,
because once the users have completed their task it is too late for S to imperson-
ate them (though corruption queries can still be made to read their state). Note
that one testPwd query is allowed for each instance of FpwDistPrivateComp, several
of which may be invoked by the split functionality sFpwDistPrivateComp.

Robustness. The second difference with the model in [27] is that we do not
grant the adversary the right to alter the computation result when corrupting

150 M. Abdalla et al.

some users or learning some passwords. This in particular means that either
the group leader receives something coherent, or he receives an error; he can-
not receive something wrong, which makes the protocol robust. Robustness is
actually automatic if we make the assumption that the computation function
PrivateComp is deterministic; for simplicity, this is the setting of the generic pro-
tocol described in detail in this paper. At the end, however, we shall mention
some applications that require randomness in the computation. Without going
into details, we can keep the protocol robust by having all the parties commit to
their random coins in the first round, in the same way as they will also commit
to their passwords (see below): this allows us to treat such coins as any regular
private input in the model, and hence forbid the adversary from modifying them
once the computation has started.

We remark that, although the adversary cannot spoof the computation, the
environment does become aware of the completion of the protocol, and hence
could distinguish between the ideal and the real worlds if the adversary won
more often in one than the other. Such environmental awareness of the final
state is of course to be expected in reality, and so it is natural that our model
should capture it. (Our implementation will thus have to ensure that the success
conditions are the same in both worlds.)

Implicit Corruptions. Because we have a set of initially unauthenticated
players communicating over adversarially controlled channels, it is always pos-
sible for the adversary to partition the actual players into isolated islands [1],
and act on behalf of the complement of players with respect to each island. We
call this an implicit corruption, meaning that the adversary usurps the identity
of a regular player (or players) from the very start, before the key generation
is even initiated. The adversary then sends the newSession query on behalf of
such implicitly corrupted players, who never really became corrupted but al-
ways were the adversary. As mentioned previously, this situation is modeled
in the ideal world by the respective split functionalities sFpwDistPublicKeyGen and
sFpwDistPrivateComp spawning one or more instances of the normal functionalities
FpwDistPublicKeyGen and FpwDistPrivateComp over disjoint sets of (actual) players.

3 Protocol Description

The following protocol deals with a particular case of unauthenticated dis-
tributed private computation [1], as captured by our functionalities. Informally,
assuming s to be a secret key, the aim of the protocol is to compute a value cs

given an element c of the group. This computation can be used to perform dis-
tributed BLS signatures [10], ElGamal decryptions [18], linear decryptions [8],
and BF or BB1 identity-based key extraction [9,7].

Here we focus on ElGamal decryptions, relying on the DDH assumption. We
emphasize that the protocol as given relies exclusively on DDH, not requiring
any additional assumption; and that it can be easily modified to rely on the
Decision Linear assumption for compatibility with bilinear groups [8].

Distributed Public-Key Cryptography from Weak Secrets 151

Building Blocks. Let G be a group of prime order p, and g a generator of this
group. We furthermore assume to be given an element h in G as a CRS. We use
the following building blocks:

Password Selection. Each user Pi owns a privately selected password pwi, to
act as the i-th share of the secret key sk (see below). For convenience, we write
pwi = pwi,1 . . . pwi, ∈ {0, . . . , 2L− 1}, i.e., we further divide each password pwi

into � blocks pwi,j ∈ {0, . . . , 2L − 1} of L bits each, where p < 2L. The seg-
mentation into blocks is a technicality to get efficient extractable commitments
for long passwords: in the concrete scheme, for example, we shall use single-bit
blocks in order to achieve the most efficient extraction (i.e, L = 1 and � = 160
for a 160-bit prime p). Notice that although we allow full-size passwords of up to
L� bits (the size of p), users are of course permitted to choose shorter passwords.

Password Combination. The private key sk is defined as the (virtual) com-
bination of all the passwords pwi. It does not matter how precisely such com-
bination is done, as long as it is reproducible and preserves the joint entropy
of the set of passwords (up to log2 p bits, since that is the length of sk). For
example, if there are n users, all with short passwords pw∗

i ∈ {0, . . . , Δ−1} with
Δn < p, defining pwi = Δipw∗

i and taking sk =
∑

i pwi will ensure that there
are no “aliasing effects”, or mutual cancellation of two or more passwords.

In general, it is preferable that each user independently transforms his or
her true password pw∗

i into an effective password pwi by applying a suitable
extractor pwi = H(i, pw∗

i , Zi) where Zi is any relevant public information such as
a description of the group and its purpose. We can then safely take sk =

∑
i pwi

and be assured that the entropy of sk will closely match the joint entropy of
the vector (pw∗

1, . . . , pw
∗
n) taken together. Such password pre-processing using

hashing is very standard but falls outside of the functionalities proper.

Public and Private Keys. We use the (effective) passwords pwi to define a key
pair (sk, pk = gsk) for a password-based ElGamal key encapsulation mechanism
(KEM). Based on the above, we define sk = SecretKeyGen(pw1, . . . , pwn) def=∑n

i=1 pwi and pk = PublicKeyGen(pw1, . . . , pwn) def= g
∑

pwi . The public-key
verification function is then PublicKeyVer(pw1, . . . , pwn, pk) def=

(
pk ?= g

∑
pwi

)
.

The ElGamal KEM public-key operation is the encapsulation Enc : (pk, r)
→
(c = gr, m = pkr), which outputs a random session key m and a ciphertext c.
The private-key operation is the decapsulation Dec : (sk, c)
→ m = csk, which
here is deterministic. Observe that whereas Dec instantiates PrivateComp in the
functionalities, Enc is intended for public third-party usage and never appears
in the private protocols.

Entropy Preservation. In order for the low password entropies to com-
bine nicely in the secret key sk =

∑
i pwi, the effective pwi must be properly

“decoupled” to avoid mutual cancellations, as just discussed.

152 M. Abdalla et al.

We note that, even with the kind of shuffling previously considered, it is quite
possible that the actual entropy of sk will be smaller than its maximum value of
log2 p bits, e.g., if there are not enough non-corrupted users or if their passwords
are too small. Nevertheless, there is no known effective attack against discrete
logarithm and related problems that can take advantage of any reduced entropy
of sk, barring an exhaustive search over the space of possible values. Specifically,
regardless of how the passwords are actually combined, one could easily prove
that no generic attack [29] can solve the discrete logarithm or the DDH problem
in less than

√
2h operations, where h is the min-entropy of the private key sk

conditionally on all known passwords.

Computational Assumption. Our concrete protocols rely on the Decisional
Diffie-Hellman (DDH) assumption, stated here for completeness: Let G = 〈g〉 be
a multiplicative abelian cyclic group of prime order p. For random x, y, z ∈ Z∗

p, it
is computationally intractable to distinguish (g, gx, gy, gxy) from (g, gx, gy, gz).

Extractable Homomorphic Commitments. The first step of our distributed
decryption protocol is for each user to commit to his password (the details are
given in the following section). The commitment needs to be extractable, homo-
morphic, and compatible with the shape of the public key. Generally speaking,
one needs a commitment Commit(pw, r) that is additively homomorphic on pw
and with certain properties on r. In order to simplify the following description
of the protocols, we chose to use ElGamal’s scheme [18], which is additive on
the random value r, and given by: Commitv(pw, r) = (vpwhr, gr). The semantic
security relies on the above DDH assumption. Extractability is possible granted
the decryption key x, such that h = gx in the common reference string.

Simulation-Sound Non-Interactive Zero-Knowledge Proofs. Infor-
mally speaking, a zero-knowledge proof system is said to be simulation-sound
if it has the property that an adversary cannot give a convincing proof for a
false statement, even if it has oracle access to the zero-knowledge simulator.
We also require non-malleability, which is to say that a proof of some theo-
rem cannot be turned into a proof of another theorem. De Santis et al. proved
in [16] the existence of such a scheme, with the additional property of being non-
interactive, if we assume the existence of one-way trapdoor permutations. Note
that their scheme allows for multiple simulations with a unique common random
string (CRS), which is crucial for the multi-session case. If we instantiate all the
SSNIZK proofs with those, then our protocols are UC-secure in the CRS model.

However, for sake of efficiency, we can instead instantiate them using Schnorr-
like proofs of equality of discrete logarithms [20], which rely on the random-oracle
model [4], but are significantly more practical. These SSNIZK are well-known
(see details in the full version and their proofs in [20]), but along these lines, we
use the notation SSNIZK(L(w)) for a proof that w lies in the language L. More
precisely, CDH(g, G, h, H) will state that (g, G, h, H) lies in the CDH language:
there exists a common exponent x such that G = gx and H = hx.

Distributed Public-Key Cryptography from Weak Secrets 153

(1a) ri,j
R← Z∗

q Ci,j = Commitg(pwi,j , ri,j) = (gpwi,j hri,j , gri,j)
Π0

i,j = SSNIZK(CDH(g,C
(2)
i,j , h, C

(1)
i,j) ∨ CDH(g, C

(2)
i,j , h, C

(1)
i,j /g))

Ci = {Ci,j}j , {Π0
i,j}j

Ci−−→
(1b) H = H(C1, . . . , Cn) si

R← Z∗
q

C′
i = CommitHg (pwi, si) = (gpwihsi , gsi , H)

Π1
i = SSNIZKH(CDH(g,C′

i
(2)

/
∏

j C
(2)
i,j , h, C′

i
(1)

/
∏

j C
(1)
i,j))

C′
i,Π1

i−−−−→
(1c) γ

(1)
0 =

∏
i C′

i
(1) = g

∑
i pwih

∑
i si γ

(2)
0 = h

given, for j = 1, . . . , i − 1 (γ(1)
j , γ

(2)
j , Π2

j)

check Π2
j

?= SSNIZK(CDH(γ(1)
j−1, γ

(1),γ(2)
j−1

j , γ
(2)
j)

αi
R← Z∗

q γ
(1)
i = (γ(1)

i−1)
αi γ

(2)
i = (γ(2)

i−1)
αi

Π2
i = SSNIZK(CDH(γ(1)

i−1, γ
(1)
i , γ

(2)
i−1, γ

(2)
i))

γ
(1)
i ,γ

(2)
i ,Π2

i−−−−−−−−→
(1d) given γ

(1)
n = gα

∑
i pwihα

∑
i si γ

(2)
n = hα

check Π2
n

?= SSNIZK(CDH(γ(1)
n−1, γ

(1)
n , γ

(2)
n−1, γ

(2)
n)

hi = (γ(2)
n)si Π3

i = SSNIZK(CDH(g, C′
i
(2)

, γ
(2)
n , hi))

hi,Π3
i−−−−→

(1e) given, for j = 1, . . . , n (hj , Π
3
j)

check Π3
j

?= SSNIZK(CDH(g,C′
j
(2)

, γ
(2)
n , hj))

ζn+1 = γ
(1)
n /

∏
j hj = gα

∑
j pwj

given, for j = n, . . . , i + 1 (ζj , Π
4
j)

check Π4
j

?= SSNIZK(CDH(γ(1)
j−1, γ

(1)
j , ζj , ζj+1))

ζi = (ζi+1)1/αi Π4
i = SSNIZK(CDH(γ(1)

i−1, γ
(1)
i , ζi, ζi+1))

ζi,Π4
i−−−−→

(1f) given, for j = i − 1, . . . , 1 (ζj , Π
4
j)

check Π4
j

?= SSNIZK(CDH(γ(1)
j−1, γ

(1)
j , ζj , ζj+1))

pk = ζ1

Fig. 3. Individual steps of the distributed key generation protocol

Intuition. We first describe the distributed decryption algorithm. All the users
are provided with a password pwi, a public key pk, and a ciphertext c. One of
them is the leader of the group, denoted by P1, and the others are P2, . . . , Pn.
For this given ciphertext c ∈ G, the leader wants to obtain m = csk. But before
computing this value, everybody wants to be sure that all the users are honest, or
at least that the combination of the passwords is compatible with the public key.

The protocol starts by verifying that they will be able to decrypt the cipher-
text, and thus that they indeed know a representation of the decryption key into
shares. Each user sends a commitment Ci of his password. As we see in the proof
(see full version), this commitment needs to be extractable so that the simulator
is able to recover the passwords used by the adversary: this is a requirement
of the UC model, as in [14]. Indeed, the simulator needs to be able to simulate
everything without knowing any passwords, he thus recovers the passwords by
extracting them from the commitments Ci made by the adversary in this first
round, enabling him to adjust his own values before the subsequent commit-
ments, so that all the passwords are compatible with the public key (if they
should be in the situation at hand). If we think in terms of ElGamal encryption,

154 M. Abdalla et al.

the extraction is proportional in the square root of the size of the alphabet, which
would be practical for 20-bit passwords but not 160-bit ones (and even if pass-
words are usually small, we do not want to restrict the size of the passwords).
This is the reason why we segmented all the passwords into small blocks: to
commit to them block by block. In our concrete description, blocks are of size 1,
which will help to make the proof of validity: ElGamal encryption of one bit.

Once this first step is done, the users commit again to their passwords. The
new commitments C′

i will be the ones used in the rest of the protocol. They
need not be segmented (since we will not extract anything from them), but we
ask the users to prove that they are compatible with the former ones. Note that
they use the three values H = H(C1, . . . , Cn) (where H is a collision-resistant
hash function), pk, and c, as “labels” of these commitments (see below), to avoid
malleability and replay from the previous sessions, granted the SSNIZK proofs
that include and thus check these labels.

Next, the users make yet another commitment Ai to their passwords, but this
time they do an ElGamal encryption of pwi in base c instead of in base g (in
the above C′

i commitment). That is, each user computes Ai = (cpwihti , gti). The
commitment C′

i will be used to check the possibility of the decryption (that it
is consistent with pk = gsk), whereas Ai will be used to actually compute the
decryption csk, hence the two different bases g and c in C′

i and Ai, respectively.
All the users send these last two commitments to everybody, along with a

SSNIZK proof that the same password was used each time. These proofs are
“labeled” by H , pk, and c, and the verification by the other users will succeed
only if their “labels” are identical. This enables all the players to check that ev-
erybody shares the same public key pk and the same ciphertext c. It thus avoids
situations in which a group leader with an incorrect key obtains a correct de-
cryption message, contrary to the ideal functionality. The protocol will thus fail
if H , pk, or c is not the same to everyone, which is the result required by the
ideal functionality. Note that the protocol will also fail if the adversary drops
or modifies a flow received by a user, even if everything was correct (compati-
ble passwords, same public key, same ciphertext). This situation is modeled in
the functionality by the bit b of the key/decryption delivery queries, for when
everything goes well but the group leader does not obtain the result.

After these rounds of commitments, a verification step allows for the group
leader, but also all the players, to check whether the public key and the passwords
are compatible. Note that at this point, everything has become publicly verifiable
so that the group leader will not be able to cheat and make the other players
believe that everything is correct when it is not. Verification starts from the
commitments C′

i = (C′
i
(1)

, C′
i
(2)), and involves two “blinding rings” to raise the

two values
∏

i C′
i
(1) and

∏
i C′

i
(2) to some distributed random exponent α =∑

i αi. The ratio of the blinded values is taken to cancel the h
∑

i si , leaving gαsk.
A final “unblinding ring” is applied to remove the exponent α and expose gsk.
This ends with a decision by the group leader on whether to abort the protocol
(when the passwords are incompatible with the public key) or go on to the
computation step. We stress that every user is able to check the validity of

Distributed Public-Key Cryptography from Weak Secrets 155

the group leader’s decision: A dishonest execution cannot continue without an
honest user becoming aware of it (and aborting it). Note however that an honest
execution can also be stopped by a user if the adversary modifies a flow destined
to it, as reflected by the bit b in the ideal functionality.

If the group leader decides to go on, the players assist in the computation
of csk, again with the help of two blinding and one unblinding rings, starting
from the commitments Ai. Note that if at some point a user fails to send its value
to everyone (for instance due to a denial of service attack) or if the adversary
modifies a flow (in a man-in-the-middle attack), the protocol will fail. In the
ideal world this means that the simulator makes a decryption delivery with a bit
b set to zero. Because of the SSNIZK proofs, in these decryption rounds exactly
the same sequence of passwords as in the first rounds has to be used by the
players. This necessarily implies compatibility with the public key, but may be
a stronger condition.

As a side note, observe that all the blinding rings in the verification and the
computation steps could be made concurrent instead of sequential, in order to
simplify the protocol. Notice however that the final unblinding ring of csk in
the computation step should only be carried out after the public key and the
committed passwords are known to be compatible, and the passwords to be the
same in both sequences of commitments, i.e. after the verification step succeeded.

We show in the full version that we can efficiently simulate these computa-
tions without the knowledge of the pwi’s, so that they do not reveal anything
more about the pwi’s than pk already does. More precisely, we show that such
computations are indistinguishable to A under the DDH assumption.

The key generation protocol (computation of pk = gsk) is a special case of
the decryption protocol outlined above (computation of gsk, test that gsk =
pk, computation of m = csk), only simpler. Indeed, we only need one set of
commitments for the last rounds of blinding/unblinding, as we omit all the prior
verifications (since there is nothing to verify when the key is first set up).

We refer to the full version for the precise details of the protocols (see Figures 3
and 4), in particular the exact definition of the languages for the SSNIZK proofs,
and the proofs of the following security theorems. Our protocol is proven secure
against static adversaries only, that are allowed to corrupt players prior to the
beginning of the protocol execution.

Theorem 1. Let F̂pwDistPublicKeyGen be the concurrent multi-session extension of
FpwDistPublicKeyGen. The distributed key generation protocol in Figure 3 securely
realizes F̂pwDistPublicKeyGen for ElGamal key generation, in the CRS model, in
the presence of static adversaries, provided that DDH is infeasible in G, H is
collision-resistant, and SSNIZK proofs for the CDH language exist.

Theorem 2. Let F̂pwDistPrivateComp be the concurrent multi-session extension of
FpwDistPrivateComp. The distributed decryption protocol in Figure 4 securely realizes
F̂pwDistPrivateComp for ElGamal decryption, in the CRS model, in the presence of
static adversaries, provided that DDH is infeasible in G, H is collision-resistant,
and SSNIZK proofs for the CDH language exist.

156 M. Abdalla et al.

(2a) = (1a)
{Ci,j ,Π0

i,j}j−−−−−−−−→
(2b) = (1b) except

C′
i = CommitH,pk,c

g (pwi, si) = (gpwihsi , gsi , H, pk, c)
Ai = Commitc(pwi, ti) = (cpwihti , gti)
Π1

i = SSNIZKH,pk,c(CDH(g,C′
i
(2)

/
∏

j C
(2)
i,j , h, C′

i
(1)

/
∏

j C
(1)
i,j))

Π̄1
i = SSNIZK(C′

i

g,c≈ Ai)
C′

i,Ai,Π1
i ,Π̄1

i−−−−−−−−−→
(2c) = (1c)

γ
(1)
i ,γ

(2)
i ,Π2

i−−−−−−−−→
(2d) = (1d)

hi,Π3
i−−−−→

(2e) = (1e)
ζi,Π4

i−−−−→
(2f) = (1f) pk ?= ζ1

(3a) δ
(1)
0 =

∏
i A

(1)
i = c

∑
i pwih

∑
i ti δ

(2)
0 = h

given, for j = 1, . . . , i − 1 (δ(1)
j , δ

(2)
j , Π5

j)

check Π5
j

?= SSNIZK(CDH(δ(1)
j−1, δ

(1)
j , δ

(2)
j−1, δ

(2)
j)

βi
R← Z∗

q δ
(1)
i = (δ(1)

i−1)
βi δ

(2)
i = (δ(2)

i−1)
βi

Π5
i = SSNIZK(CDH(δ(1)

i−1, δ
(1)
i , δ

(2)
i−1, δ

(2)
i))

δ
(1)
i

,δ
(2)
i

,Π5
i−−−−−−−−→

(3b) given δ
(1)
n = cβ

∑
i pwihβ

∑
i ti β

(2)
n = hβ

h′
i = (δ(2)

n)ti Π6
i = SSNIZK(CDH(g,Ai

(2), δ
(2)
n , h′

i))
h′

i,Π6
i−−−−→

(3c) given, for j = 1, . . . , n (h′
j , Π

6
j)

check Π6
j

?= SSNIZK(CDH(g,Aj
(2), δ

(2)
n , h′

j))
ζ′

n+1 = δ
(1)
n /

∏
j h′

j = cβ
∑

j pwj

If i �= 1, given, for j = n, . . . , i + 1 (ζ′
j , Π

7
j)

check Π7
j

?= SSNIZK(CDH(δ(1)
j−1, δ

(1)
j , ζ′

j , ζ
′
j+1))

ζ′
i = (ζ′

i+1)1/βi Π7
i = SSNIZK(CDH(δ(1)

i−1, δ
(1)
i , ζ′

i, ζ
′
i+1))

ζ′
i,Π7

i−−−−→
(3d) P1 gets ζ′

1 = (ζ′
2)1/β1 = c

∑
pwi = csk

Fig. 4. Individual steps of the distributed decryption protocol

4 Discussion and Conclusion

In this work, we have brought together ideas from secret sharing, threshold
cryptography, password-based protocols, and multi-party computation, to devise
a practical approach to (distributed) password-based public-key cryptography.
For a given cryptosystem, the objective was to define, from a set of user-selected
weak passwords held in different locations, a virtual private key that is as strong
and resistant to attacks as any regular key, and that can be used in a distributed
manner without ever requiring its actual reconstitution.

We proposed general definitions of such functionalities in the UC model, care-
fully justifying all our design choices along the way. In particular, we saw that
it is mandatory to require the presence of a “group leader” who directs the pri-
vate computation process and solely obtains its end result. We then constructed
explicit protocols for the simple but instructive case of ElGamal encryption.

Distributed Public-Key Cryptography from Weak Secrets 157

Specifically, relying on the DDH assumption, we constructed and proved the se-
curity of two ElGamal key generation and decryption protocols, whose private
key is virtual and implied by a distributed collection of arbitrary passwords.

To conclude, we now argue that the approach outlined in this paper is in fact
quite general and has broad applications. It can of course be viewed as a restric-
tion of the Unauthenticated MPC framework of [1]; but this would be missing
the point, since as often in the UC model, much (or most) of the work has been
done once the functionality definitions have been laid down. The functionalities
that we have carefully crafted here should apply essentially without change to
most kinds of public-key primitives.

The protocols also generalize easily beyond ElGamal decryption. The same
method that let us compute csk from a distributed sk = 〈pw1, . . . , pwn〉, can also
compute pairs of vectors (cski , cr

j) for a random ephemeral r contributed by all
the players — or, precisely, for r =

∑
i ri where each ri is initially committed to

by each player, in a similar way as they initially commit to their passwords. By
the hiding and binding properties of the commitments this guarantees that r is
uniform and unpredictable if at least one player draws ri at random.

Remarkably, this is enough to let us do “password-based distributed IBE”,
where the private-key generator is decentralized over a set of users, each of them
holding only a short private password of their own choosing. PrivateComp is
now a key extraction function that maps user identities id to user decryption
keys did. To get: “Password-based” Boneh-Franklin (BF) IBE [9], we need
to compute did = H(id)sk where H(id) is a public hash of a user’s identity. This
is analogous to csk, and thus our protocol works virtually unchanged. To get:
“Password-based” Boneh-Boyen (BB1) IBE [7], here did is randomized and
of the form (gsk0 (gid

1 g2)r, gr
3). This fits the general form of what we can compute

by adding ephemerals to our protocol as just discussed.
Note that in some bilinear groups the DDH problem is easy: in those

groups, we must replace DDH-based commitments with ones based on a weaker
assumption, such as D-Linear [8]; such changes are straightforward.

Acknowledgments

This work was supported in part by the French ANR-07-SESU-008-01 PAMPA
Project. The second author thanks ECRYPT and the hospitality of ENS.

References

1. Barak, B., Canetti, R., Lindell, Y., Pass, R., Rabin, T.: Secure computation without
authentication. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 361–377.
Springer, Heidelberg (2005)

2. Beaver, D., Goldwasser, S.: Multiparty computation with faulty majority. In: 30th
FOCS, pp. 468–473. IEEE Computer Society Press, Los Alamitos (1989)

3. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

158 M. Abdalla et al.

4. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: ACM CCS 1993, pp. 62–73. ACM Press, New York (1993)

5. Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocols se-
cure against dictionary attacks. In: 1992 IEEE Symposium on Security and Privacy,
pp. 72–84. IEEE Computer Society Press, Los Alamitos (1992)

6. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryp-
tographic fault-tolerant distributed computations. In: 20th ACM STOC, pp. 1–10.
ACM Press, New York (1988)

7. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

8. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

9. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

10. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001)

11. Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000)

12. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, Los Alami-
tos (2001)

13. Canetti, R., Halevi, S., Herzberg, A.: Maintaining authenticated communication
in the presence of break-ins. Journal of Cryptology 13(1), 61–105 (2000)

14. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.D.: Universally com-
posable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005)

15. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols.
In: 20th ACM STOC, pp. 11–19. ACM Press, New York (1988)

16. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 566–598. Springer, Heidelberg (2001)

17. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Journal on
Computing 30(2), 391–437 (2000)

18. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

19. Fitzi, M., Gottesman, D., Hirt, M., Holenstein, T., Smith, A.: Detectable byzantine
agreement secure against faulty majorities. In: 21st ACM PODC, pp. 118–126.
ACM Press, New York (2002)

20. Fouque, P.-A., Pointcheval, D.: Threshold cryptosystems secure against chosen-
ciphertext attacks. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp.
351–368. Springer, Heidelberg (2001)

21. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key ex-
change. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543.
Springer, Heidelberg (2003)

Distributed Public-Key Cryptography from Weak Secrets 159

22. Goldreich, O., Lindell, Y.: Session-key generation using human passwords only. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 408–432. Springer, Heidelberg
(2001)

23. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a
completeness theorem for protocols with honest majority. In: 19th ACM STOC,
pp. 218–229. ACM Press, New York (1987)

24. Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP-statements in zero-
knowledge, and a methodology of cryptographic protocol design. In: Odlyzko, A.M.
(ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185. Springer, Heidelberg (1987)

25. Holtby, D., Kapron, B.M., King, V.: Lower bound for scalable Byzantine agreement.
In: 25th ACM PODC, pp. 285–291. ACM Press, New York (2006)

26. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001)

27. Katz, J., Shin, J.S.: Modeling insider attacks on group key-exchange protocols. In:
ACM CCS 2005, pp. 180–189. ACM Press, New York (2005)

28. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority. In: 21st ACM STOC, pp. 73–85. ACM Press, New York (1989)

29. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

30. Yao, A.C.: Protocols for secure computations. In: 23rd FOCS, pp. 160–164. IEEE
Computer Society Press, Los Alamitos (1982)

Asynchronous Multiparty Computation:
Theory and Implementation

Ivan Damg̊ard, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen�

Dept. of Computer Science, University of Aarhus, Denmark
{ivan,mg,mk,buus}@cs.au.dk

Abstract. We propose an asynchronous protocol for general multiparty
computation. The protocol has perfect security and communication com-
plexity O(n2|C|k), where n is the number of parties, |C| is the size of
the arithmetic circuit being computed, and k is the size of elements
in the underlying field. The protocol guarantees termination if the ad-
versary allows a preprocessing phase to terminate, in which no infor-
mation is released. The communication complexity of this protocol is
the same as that of a passively secure solution up to a constant fac-
tor. It is secure against an adaptive and active adversary corrupting less
than n/3 players. We also present a software framework for implementa-
tion of asynchronous protocols called VIFF (Virtual Ideal Functionality
Framework), which allows automatic parallelization of primitive opera-
tions such as secure multiplications, without having to resort to compli-
cated multithreading. Benchmarking of a VIFF implementation of our
protocol confirms that it is applicable to practical non-trivial secure com-
putations.

1 Introduction
A general multiparty computation protocol is an extremely powerful tool that
allows n parties to compute any agreed function f(x1, . . . , xn), where each input
xi is privately held by the i’th player Pi, and where only the intended result
becomes known to the players. The function is often represented by an arithmetic
circuit C over some suitable finite field F. It is required that privacy of the inputs
and correctness of the result is ensured even in the presence of an adversary who
may corrupt some number t of the players.

From the basic feasibility results of the late 80-ties [4,7], it follows that any
efficiently computable function may be computed securely in the model where
players have secure point-to-point channels, if and only if t < n/3. In case
the adversary is passive, i.e., corrupted players follow the protocol, the bound is
t < n/2. Under computational assumptions, t < n/2 corruptions can be tolerated
even if the adversary is active, i.e., corrupt players behave arbitrarily [10].

The solution from [4] with passive security can lead to quite practical solu-
tions, when combined with later techniques for optimizing the efficiency of partic-
ular primitives, such as integer comparison – even to the point where large-scale
practical applications can be handled [5].

� Supported by Ministry of Science, Technology and Innovation.

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 160–179, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

http://dx.doi.org/10.1007/978-3-642-00468-1_29

Asynchronous Multiparty Computation: Theory and Implementation 161

On the other hand, this type of solution is not satisfactory in all cases. It
is of course desirable to provide security against active cheating. However, this
usually incurs a large cost in terms of efficiency. Techniques have been proposed
to reduce this cost [11], but they – like most previous protocols – are designed
for synchronous communication. Common ways to communicate, such as the
Internet, are arguably better modeled as asynchronous networks, where there is
no guarantee that a message is delivered before a certain time. Note that the way
we model the network can have dramatic consequences for the practical efficiency
of a protocol. If we run a synchronous protocol on top of any real network, we
are forced to make every round last enough time so that we can be sure that all
messages from honest players have been delivered. Otherwise, we may conclude
that an honest player is corrupt because he did not send the message he was
supposed to, and take action accordingly. Now, of course, the protocol is no
longer secure. It follows that, for instance, on a network that usually delivers
messages fast, but occasionally takes much longer time, a synchronous protocol
may be much slower in practice than an asynchronous one, where every player
may continue as soon as he has enough information to do so.

In the project reported on in this paper, our goal was therefore to develop
and implement a practical general MPC protocol, with active security on an
asynchronous network. Compared to the usual model for asynchronous MPC,
we make two modifications, both of which we believe are well motivated:

– We allow our protocol to have one synchronization point. More precisely, the
assumption is that we can set a certain time-out, and all messages sent by
honest players before the deadline will also be delivered before the deadline.

– We do not guarantee that the protocol always terminates and gives output to
all honest players. Instead we require the following: The preprocessing phase
of the protocol, up to the synchronization point, never releases any new
information to the adversary. The adversary may cause the preprocessing
to fail, but if it terminates successfully, the entire protocol is guaranteed to
terminate with output to all honest parties.

A discussion of this model: Without the first assumption, i.e., if the protocol is
fully asynchronous, one cannot guarantee that all honest players will be able to
contribute input since the protocol cannot distinguish between t corrupt players
that have not sent anything, and t honest players whose messages have been
delayed. We believe that in most practical applications, this is not acceptable,
and this is why we introduce the synchronization point, it is a minimal assump-
tion allowing all honest players to provide input. We stress that the protocol is
asynchronous both before and after the synchronization point. In other words,
a protocol in this model is free to harvest the efficiency gain that follows from
players being able to proceed as soon as possible. The only constraint we put is
that honest players must reach the deadline on time, so we can have agreement
on whether the preprocessing succeeded.

On the second point, although we do give the adversary extra power to stop
the protocol, this is arguably of no use in practice: If the corrupted players can

162 I. Damg̊ard et al.

only stop the protocol at a point where they have learned nothing new, they
have very little incentive to do so.

In this model, assuming secure point-to-point channels and that Byzantine
agreement is available, we present a protocol that is perfectly secure against
an adaptive and active adversary corrupting less than n/3 of the players. The
communication and computational complexities (total communication and work
done) are O(n2|C|k) where |C| is the size of the arithmetic circuit being com-
puted and k is the bit length of elements in the field used. It is noteworthy that a
straightforward implementation with only passive security would have the same
asymptotic complexity, all other things being equal.

As for any protocol in the point-to-point model, the exact security properties of
an actual implementation of our protocol depend on how the point-to-point chan-
nels and – in our case – the Byzantine agreement are implemented. The choice
of implementation does not, however, affect the complexities since the Byzantine
agreement is only used once. In a typical implementation where one goes for ef-
ficiency – such as the one we present below – one would use standard encryption
tools to implement the channels and do the Byzantine agreement based on public-
key signatures. This gives a protocol with computational security against a static
adversary (also, such an implementation is not known to be insecure against an
adaptive adversary).

In recent concurrent work, Hirt et al. [12] construct an asynchronous protocol
of similar asymptotic complexity as ours. This protocol is fully asynchronous,
so it does not guarantee that all honest parties can provide inputs, and it is
computationally secure against a static adversary. In another recent work Beer-
liová-Trub́ıniová et al. [3] present a protocol with a single synchronization point
like we have. This protocol guarantees termination, has a better security thresh-
old (n/2), but is only computationally secure against a static adversary, and has
larger asymptotic complexity than our protocol.

Regarding efficiency in practice, we stress that although our implementation is
only computationally secure, it is an advantage, also from a practical point of view,
that the basic protocol is information theoretic, because the tools used (secret
sharing etc.) are much more efficient than computationally secure alternatives,
such as homomorphic public-key encryption. Such techniques are used in both [3]
and [12], making them much less efficient in practice than our construction.

Thus, our result is incomparable to previous work, and we believe it provides
a new tradeoff between security properties that is attractive in practice. We later
give more exact numeric evidence of the efficiency.

Our protocol is based on Beaver’s well known circuit randomization tech-
niques, where one creates in a preprocessing phase shared random values a, b, c
with ab = c. We show two techniques for generating these triples efficiently. One
is a variant of the protocol from [2], the other is based on pseudorandom secret
sharing [8], it is much faster for a small number of players, but only gives compu-
tational security. Both protocols are actually synchronous, but we handle this via
a new technique that may be of independent interest, namely a general method
by which – if one accepts that the protocol may abort – a synchronous protocol

Asynchronous Multiparty Computation: Theory and Implementation 163

can be executed in an asynchronous fashion, using a single synchronization point
to decide if the protocol succeeded.

A crucial observation we make is that if the protocol is based on Shamir
secret sharing with threshold less than n/3, then the computation phase can
be done asynchronously and still guarantee termination, if the preprocessing
succeeded.

A final contribution of our paper is a software framework called VIFF, short
for Virtual Ideal Functionality Framework. It provides a platform on which gen-
eral MPC protocols can be implemented, and we use it later in the paper to
benchmark our protocol. Protocols implemented in VIFF can be compositions
of basic primitives like addition and multiplication of secret-shared values, or
one can implement new primitives. VIFF is basically asynchronous and oper-
ates on the principle that players proceed whenever possible (but can handle
synchronization points when asked to do so). This allows us to provide all pro-
tocol implementations with automatic parallel scheduling of the operations, i.e.,
the programmer does not have to explicitly use multithreading, for instance, or
specify any explicit timing of operations.

When players distributed across a large network execute a large protocol, it
is very important to be able to run as much as possible in parallel in order to
lower the cost per operation of the network delays. Round-trip times across the
Internet are typically in the order of 100–200 milliseconds, but when execut-
ing many multiplications in parallel we are able to obtain an average time of
just 2 milliseconds per secure multiplication of 32-bit numbers, using a stan-
dard implementation based on Shamir secret-sharing, for 3 players and passive
security.

Furthermore, the ability to program asynchronously is very important towards
having simpler code: If the protocol to be implemented is synchronous, one has
to implement waiting to make sure that all messages from the current round have
arrived, and the actual waiting time has to be chosen correctly with respect to the
network we use. This means that the software now depends on the underlying
network which is clearly undesirable, as it creates an extra source of errors,
insecurity, or both.

2 Preliminaries

For an element x ∈ F we let [x]d denote a set of Shamir shares [14] of x computed
using threshold/degree d. We use the shorthand [x] for sharings [x]t where t is
the number of corrupted players, so that t < n/3. We use the notation [x] + a[y]
where a is a public constant to denote the set of shares obtained by locally
adding the share of x to the share of y times a. Since Shamir sharing is linear,
we have [x] + a[y] = [x + ay].

When in the following, we say that x is publicly reconstructed from [x]t, where
at most t < n/3 players are actively corrupted, this simply means that each
player sends his share to all other players. This allows all honest players to
reconstruct x using standard decoding techniques since t < n/3. We may also
privately open x to player Pi by sending shares only to him.

164 I. Damg̊ard et al.

3 Overview and Security Model

The goal of the protocol is to securely compute (y1, . . . , yn) = f(x1, . . . , xn). For
notational convenience we assume that all inputs and outputs are single field
elements. In addition each yi can assume the value yi = ⊥, which indicates to
Pi that the computation failed.

3.1 Overview of the Protocol

Our protocol consists of two phases, the preprocess and input phase and the
computation phase.

Preprocessing and input phase. In the preprocessing phase, we can make
use of any protocol that can generate a given number of multiplication triples,
i.e., random secret-shared values [a], [b], [c] where ab = c. In addition, for each
player Pi, it should construct a secret sharing [ri] where ri is random and reveal
ri privately to Pi. The protocol ends by outputting “success” or “failure” to all
players, depending on whether the required values were successfully constructed
or not. The purpose of [ri] is to allow Pi to contribute his input xi securely by
broadcasting ri + xi.

Instead of attempting to build such a protocol directly for the asynchronous
model, it is much easier to design a protocol for the synchronous model with
broadcast, we give two examples of this in Section 4. We then show below a
special way to run any such protocol in an asynchronous way, i.e., we can avoid
the use of timeouts after each communication round and we avoid having to
implement broadcast. The price we pay for this is that the adversary can force
the preprocessing to fail.

The basic idea is that in each round all parties just wait for messages from
all other parties and progress to the next round immediately if and when they
all arrived. Some extra technicalities are needed to make sure there is agreement
at the end on whether the preprocessing succeeded, and to make sure that no
information on the inputs is revealed prematurely.

To emulate a synchronous protocol with R rounds, each Pj proceeds as follows:

1. Wait for an input begin preprocess. Let r = 1 and for each Pi compute the
message mj,i,1 to be sent to Pi in the first round of the synchronous protocol.
Also compute the message mj,1 to be broadcast in the first round.

2. Send (mj,i,1, mj,1) to Pi.
3. While r ≤ R:

(a) Wait until a message (mi,j,r , mi,r) arrived from all Pi.
(b) From the incoming messages ((m1,j,r, m1,r), . . . , (mn,j,r, mn,r)) compute

the messages (mj,1,r+1, . . . , mj,n,r+1) that the preprocessing protocol
wants to send in the next round, and the message mj,r+1 to be broadcast.

(c) r : = r + 1.
4. Let gj ∈ {preprocess success, preprocess failure} denote the output of the pre-

processing protocol and let Mj consist of the broadcast messages mi,r for
i = 1, . . . , n and r = 1, . . . , R. Send (check, gj, Mj) to all parties.

Asynchronous Multiparty Computation: Theory and Implementation 165

5. Wait until all n− 1 other parties Pi send (check, gi, Mi). If all Pi sent gi =
preprocess success and Mi = Mj, then send sj = xj + rj to all parties.

6. Wait to receive si from all other parties, let Sj = (s1, . . . , sn) and send Sj

to all parties.
7. If all n− 1 other parties Pi sent some Si before the timeout and all Si = Sj ,

then let qi = success. Otherwise, let qi = failure.
8. Run a Byzantine agreement (BA) on the qi to agree on a common value

q ∈ {failure, success}. Being a BA this protocol ensures that if qi = success
for all honest parties, then q = success, and if qi = failure for all honest
parties, then q = failure.

We assume that the preprocessing phase is started enough in advance of the
time-out to guarantee that it will terminate successfully on time when there is
no cheating. However, as mentioned in the introduction, the adversary can stop
the preprocessing, in particular if a corrupted party does not send a message the
preprocessing dead-locks.

Note that if just one honest party outputs qi = success, then the preprocessing
protocol terminated successfully before the timeout and all the values si were
consistently distributed. In particular, if q = success, then qi = success for at least
one honest Pi, and therefore the preprocessing and inputting were successful.

As for security, if after each communication round in Step 3 the parties com-
pared the messages mi,r and terminated if there was disagreement, then it is
clear that a secure synchronous protocol1 run asynchronously this way is again
secure. The only loss is that the adversary can now deprive some parties of their
input. The reason why it is secure to postpone the check of consistency of the
broadcasted message until Step 5 is that the inputs xi do not enter the compu-
tation until Step 6 and that there are no other secrets to be leaked, like secret
keys. Sending inconsistent broadcast messages before Step 6 will therefore yield
no information leakage. After Step 5 it is known that the preprocessing was
an emulation of a consistent synchronous execution, at which point it becomes
secure to use the result ri to mask xi.

This way to emulate a synchronous protocol in an asynchronous environment
is generic and does not just apply to our protocols here.

Computation phase. If q = failure, then all parties output yi = ⊥. If q =
success, then the parties compute [xi] = si − [ri] for all Pi and run the asyn-
chronous protocol described below which compute sharings [yi] of the outputs
from the sharings [xi], making use of the multiplication triples from the prepro-
cessing. Finally the shares of [yi] are sent privately to Pi which computes yi.

We may assume that for each multiplication we have to do, a triple [a], [b], [c]
as described above is constructed in the preprocessing. To handle any arithmetic
circuit describing the desired function, we then only need to describe how to deal
with linear combinations and multiplications of shared values.

Linear Combinations: Shamir sharing is linear, and any linear function of
shared values can therefore be computed locally by applying the same linear
function to the shares.

1 The synchronous security should be against a rushing adversary.

166 I. Damg̊ard et al.

Multiplication: Consider a multiplication gate in the circuit and let [a], [b], [c]
be the triple constructed for this gate. Assume we have computed sharings
of the two input values [x] and [y], so we now wish to compute [xy]. Note
that

xy = ((x − a) + a)((y − b) + b)
= de + db + ae + ab,

where d = x − a and e = y − b. We may now publicly reconstruct d and e,
since they are just random values in F. The product can then be computed
locally as

[xy] = de + d[b] + [a]e + [c] .

The overall cost of this multiplication is the cost of two public reconstructions
and a constant number of local arithmetic operations.

A crucial observation is that this protocol (assuming the triples are given) can be
executed in a completely asynchronous fashion, and is guaranteed to terminate:
At each multiplication gate, each player simply waits until he has received enough
shares of d and e and then reconstructs them. More precisely, we need that at
least n − t shares of each value have arrived, and that at least n − t of them
are consistent with some polynomial. Since there are n− t honest players, n− t
consistent shares will eventually arrive. Moreover, if n− t shares are found to be
consistent, since t < n/3, these must include at least t + 1 shares from honest
players, and so the correct value is always reconstructed. One can test if the
conditions are satisfied using standard error correction techniques.

3.2 Security Model

The security of our protocol can be phrased in the UC framework [6]. For the
protocol we assume the standard asynchronous communication model of the
UC model, except that we let the timeout of Pi be called by the adversary
by inputting timeout to that party, and that we assume secure point-to-point
channels where the adversary can decide when a message sent is delivered. Our
protocols are secure and terminate no matter when the timeouts are called. They
provide outputs, �= ⊥, if all parties behave honestly in the preprocessing and the
timeouts are called after the preprocessing succeeded at all honest parties. We
formalize that by implementing an ideal functionality.

For a function f : Fn → Fn, let Ff
fsfe be the following ideal functionality for

fair secure function evaluation.

1. On input begin preprocess from Pi, output (Pi, begin preprocess) to the
adversary.

2. On input xi from Pi, output (Pi, gave input) to the adversary.
3. If the adversary inputs early timeout, then output yi = ⊥ to all Pi, and

terminate.

Asynchronous Multiparty Computation: Theory and Implementation 167

4. If all Pi have input both begin preprocess and xi and the adversary then
inputs late timeout, then compute (y1, . . . , yn) = f(x1, . . . , xn) and output
yi to all Pi, and terminate.

Note that the adversary can always make the evaluation fail, but must do so
in a fair way: Either no party learns anything, or all parties learn a correct
output. Our protocol securely implements this ideal functionality when t < n/3
parties are corrupted. If the BA is modeled as an ideal functionality, then our
implementation is perfectly secure. We will not give the full simulation proofs
below, as they follow more or less straightforwardly using known techniques.

On a high level, however, the simulation proceeds as follows: First the simu-
lator simulates the first 4 steps while emulating the algorithms of honest players
as specified in the protocol. This is possible as the secret inputs of honest players
are not used in these steps. We write P̄i for the simulator’s “copy” of honest Pi.

If some honest P̄j computed gj = preprocess failure, then the simulator inputs
early timeout to Ff

fsfe, which will make it output yi = ⊥ to all players. Clearly
the same happens in the real execution since Pj sends gj = preprocess failure to
all honest parties.

If all honest P̄j compute gj = preprocess success, then the preprocessing was
secure. This ensures that the sharings [ri] are consistent, and since the simulator
knows the shares of all P̄j , it can compute all ri. From the si broadcast by the
corrupted parties in the simulation it computes xi = si − ri and inputs these to
Ff

fsfe on behalf of the corrupted parties. It broadcasts random si’s on behalf of
honest players.

Then the simulator finishes the execution of the preprocess and input phase.
If during this the adversary cheats or calls the timeouts at a time which makes
the BA terminate with q = failure, then the simulator inputs early timeout to
Ff

fsfe, which will make it output yi = ⊥ to all Pi. Clearly the same happens in
the real execution.

If q = success in the simulation, then the simulator inputs late timeout to
Ff

fsfe, and learns the output for corrupted parties. It can now simulate the com-
putation phase using standard techniques until all parties have computed their
outputs2. Namely, since the computation phase is a sequence of public recon-
structions, the simulator for each reconstruction selects the value to be opened,
either a random value or a result yi, as appropriate. It then computes shares
to send on behalf of the honest players such that they are consistent with the
opened value and the shares held by corrupted players.

4 Protocol for Preprocessing

In this section, we describe the techniques used in the preprocessing phase. One
version of the preprocessing is obtained by simplifying in a straightforward way
2 In this process, the simulator may need to control the time at which results are

delivered to honest parties, depending on when the adversary chooses to deliver the
messages in the simulated execution.

168 I. Damg̊ard et al.

the protocols from Hirt and Beerliová-Trub́ıniová in [2], where hyperinvertible
matrices are used to generate multiplication triples. Another version is based on
pseudorandom secret-sharing [8].

4.1 Preprocessing Based on Hyperinvertible Matrices

In this subsection we will show how the preprocessing and input phase works.
This amounts to showing how to generate the multiplication triples.

The key element in the way we generate triples is that while in [2], a player
elimination step is run whenever a fault occurs, we accept the possibility that our
protocol will not terminate. Therefore we can simplify and speed up the protocols
considerably by cutting away the player elimination and simply aborting if a
fault is detected. For completeness and readability, we will describe the most
important protocols here, but refer to [2] for security proofs and some of the tools.

In order for us to be able to generate multiplication triples, we first need
to be able to generate double sharings of random element – that is, two Shamir
sharings of the same random element, possibly with different thresholds. In other
words we wish to generate for a random r ∈ F sharings [r]d and [r]d′ , where d
and d′ are the degrees or thresholds. A more compact notation for the double
sharing is [r]d,d′ .

We will need some facts from [2] on reconstructing shared values, namely how
to reconstruct a value robustly to one player using O(nk) bits of communication
and how to reconstruct up to T = n − 2t values publicly using O(n2k) bits,
where k is the size of a field element.

The following is based on the concept of hyperinvertible matrices. “Hyperin-
vertible” is defined as in [2], where a straightforward way to construct such a
matrix is also presented:

Definition 1. An m× n matrix M is hyperinvertible if for any selection R ⊆
{1, . . . , m} of rows and C ⊆ {1, . . . , n} of columns such that |R| = |C| > 0, the
square matrix MR

C consisting of the intersections between rows in R and columns
in C is invertible.

The protocol for generating T = n− 2t double sharings now works as follows (it
assumes the existence of an publicly known n× n hyperinvertible matrix M):

1. Each player Pi Shamir shares a random value si to the others using both
d and d′ as degrees. Every Pi now knows shares of [s1]d,d′ , . . . , [sn]d,d′, but
shares from corrupted players may be incorrect.

2. The players locally compute

([r1]d,d′, . . . , [rn]d,d′) = M([s1]d,d′ , . . . , [sn]d,d′) .

Note that there are actually two vectors here, and the matrix is applied to
both, creating two new vectors.

3. All sharings [si]d,d′ are verified for i = T + 1, . . . , n. They are verified by
having each Pj send his share of [si]d,d′ to Pi. Each Pi that is given shares
must then check whether they are consistent and that both parts of the

Asynchronous Multiparty Computation: Theory and Implementation 169

double sharing represent the same value. If not, Pi sets an unhappy flag to
indicate the fault.

4. The double sharings [r1]d,d′, . . . , [rT]d,d′ are the output.

The double sharing protocol is guaranteed to either output T = n−2t correct
and random double sharings that are unknown to the adversary or make at
least one honest player unhappy. This is proved in [2], along with the fact that
the communication complexity is O(n2k) bits. In our case, if an honest player
becomes unhappy at any point, all other players are informed and the honest
players will abort, as described in the Section 3. That is, we skip the player
elimination used in [2].

If we only wanted to generate a set of T single Shamir sharings, it is easy
to see that we can use the protocol above but considering only sharings using
degree d for each step. The complexity of this is half that of creating double
sharings. This is used for generating the sharings [ri] of a random ri for each
player Pi, that we promised in the Section 3.

Generating Multiplication Triples. Given sharings

[a1]t, . . . , [aT]t, [b1]t, . . . , [bT]t

and
[r1]t,2t, . . . , [rT]t,2t

of random and independent numbers ai, bi, ri ∈ F, we can generate T multipli-
cation triples as follows:

1. The players compute [ai]t[bi]t − [ri]2t = [aibi − ri]2t for i = 1, . . . , T .3 They
then attempt to publicly reconstruct all of the aibi−ri. If the reconstruction
of any of the values fails, an honest player becomes unhappy and we abort.

2. The players locally compute [aibi]t = aibi− ri +[ri]t. All honest players now
own shares of the [aibi]t, the [ai]t and the [bi]t for i = 1, . . . , T .

This protocol is clearly secure, assuming that the sharings we start from have
been securely constructed. The simulator would choose random values si to play
the role of aibi − ri, it would then expand the set of shares known by corrupt
players of [aibi − ri] to a complete set consistent with si and use these shares as
those sent by honest players. Please see [2] for more details.

The communication complexity is O(n2k) bits for the reconstructions and
therefore a total of O(n2k) bits including the generation of the double sharings.
That is, we can reconstruct T = n − 2t = Θ(n) shares with a communication
complexity of O(n2k), where k is the bit length of the field elements.

4.2 Preprocessing Based on Pseudorandom Secret-Sharing

We show here how to do the preprocessing based on pseudorandom secret-
sharing. The techniques used are described in detail in [9], but we present here
an overview for completeness.
3 The notation [ai]t[bi]t means that each player locally multiplies its shares [ai]t and

[bi]t. This gives a 2t sharing of aibi.

170 I. Damg̊ard et al.

Pseudorandom Secret-Sharing. Let A be a set of players of size n− t. We
can create a random, shared secret by defining for each set A a random value
rA and give it to all players in A. The secret is then given by

s =
∑
A

rA .

Now every maximal unqualified set {1, . . . , n} \ A misses exactly one value,
namely rA.

Keeping the above in mind, pseudorandom secret-sharing (PRSS) is then
based on the observation that we can create many random shared secrets by
distributing once and for all one set of rA values.

The trick is to use a pseudorandom function ψrA with rA as its key. If the
parties agree on some publicly known value a, they can generate the random
values they need as ψrA(a). So the secret is now

s =
∑
A

ψrA(a) .

What we actually want, however, is a Shamir sharing. This can be fixed as
follows. Define a degree at most t polynomial fA by fA(0) = 1 and fA(i) =
0 ∀i ∈ {1, . . . , n} \A. Now each player Pi computes its share

si =
∑

A⊂{1,...,n}:
|A|=n−t,i∈A

ψrA(a)fA(i) .

This is in fact a Shamir sharing of s, since it defines the polynomial

f(x) =
∑

A⊂{1,...,n}:
|A|=n−t

ψrA(a)fA(x) .

It is easy to see that this polynomial has degree at most t and that

f(0) =
∑

A⊂{1,...,n}:
|A|=n−t

ψrA(a) = s ,

which means that it shares the right secret. It is also clear that si = f(i), which
means that our sharing is a correct Shamir sharing.

Pseudorandom Zero-Sharing. We will need one more tool to be able to
generate multiplication triples, namely what is defined in [9] as pseudorandom
zero-sharing (PRZS).

Like PRSS, it creates a Shamir sharing using only local computations, but
in this case it is a sharing of 0. We will need a sharing of degree 2t in the
following, but the approach works just as well with other thresholds. First, for
a set A ⊆ {1, . . . , n} of size n− t we define the set

GA = {g ∈ Zp[x] | deg(g) ≤ 2t ∧ g(0) = 0 ∧ (j �∈ A ⇒ g(j) = 0)} .

Asynchronous Multiparty Computation: Theory and Implementation 171

This is a subspace of the vector space of polynomials of degree at most 2t.
Because every polynomial in the set has t + 1 zeros, the subspace must have
dimension 2t + 1 − (t + 1) = t. The construction from [9] needs a basis for this
subspace, but no explicit construction was given there. We suggest to use the
following:

(g1
A, . . . , gi

A, . . . , gt
A) = (xfA, . . . , xifA, . . . , xtfA),

where the fA is defined as above. It is a basis because it has t elements of GA

which are all of different degrees and therefore linearly independent. Exactly as
for PRSS, we assume that we have values rA known (only) by players in A. Now
we define the share at player j as

sj =
∑

A⊂{1,...,n}:
|A|=n−t,j∈A

t∑
i=1

ψrA(a, i)gi
A(j) .

Note here that the inner sum is a pseudorandom choice of a polynomial from
GA, evaluated in the point j. Now we want to show that this leads to a Shamir
sharing of 0, so we define the corresponding polynomial as

g0(x) =
∑

A⊂{1,...,n}:
|A|=n−t

t∑
i=1

ψrA(a, i)gi
A(x).

The degree of g0 is clearly at most 2t, and it is also easy to see that it is consistent
with the shares above and that g0(0) = 0.

Making triples using PRSS and PRZS. In order to make multiplication
triples, we already know that it is enough if we can build random sharings
[a]t, [b]t, and a double sharing [r]t,2t.

Using PRSS, it is easy to construct the random degree t sharings. A double
sharing can be constructed as follows: Create using PRSS a random sharing [r]t
and use PRZS to create a sharing of zero [0]2t. Now

[r]2t = [r]t + [0]2t

is clearly a sharing of r of degree 2t. We can therefore use pseudorandom secret
sharing and pseudorandom zero sharing to locally compute all the values needed
to make multiplication triples. The only interaction needed is one public opening
for each triple as described in Section 4.1.

This is faster than using hyperinvertible matrices for a small number of play-
ers, but does not scale well: Since n − t = Θ(n), the local computation is ex-
ponential in n, as clearly seen from the benchmark results in Section 6. The
break-even point between PRSS and hyperinvertible matrices depends both on
local computing power and on the cost of communication.

Security of the PRSS approach. We claim that the overall protocol is secure
against a computationally bounded and static adversary, when based on PRSS.

172 I. Damg̊ard et al.

To argue this, consider some adversary who corrupts t players, and let A be the
set of n− t honest players. Now let πrandom be the protocol that runs as described
above, but where the function ψrA is replaced with a truly random function.4

When we execute PRSS or PRZS in πrandom , all secrets and sets of shares
held by the honest players are uniformly random, with the only restriction that
they are consistent with the shares held by corrupt players. We can therefore use
the proof outlined in Section 3.2 to show that πrandom implements Ff

fsfe (with
perfect security).

For the rest of the argument, we refer to the protocol using the pseudorandom
function as πpseudo. We claim that real-world executions of πrandom and πpseudo

are computationally indistinguishable. Assume for contradiction that there exists
some computationally bounded environment Z that can distinguish between the
two with a non-negligible advantage.

From Z we can now build a new machine M, which gets oracle access to
some function f and outputs its guess of whether the function is pseudorandom
or truly random.
M simply runs the protocol with f inserted in the place of ψrA (i.e., it runs

either πrandom or πpseudo) for Z. If Z outputs “πrandom”, M outputs “truly ran-
dom”, otherwise it outputs “pseudorandom”. Clearly, M can distinguish between
a pseudorandom function and a truly random function with a non-negligible ad-
vantage, breaking the security of our PRF.

Combining this with the fact that πrandom securely realizes F , we see that the
same holds for πpseudo (with computational security): The simulator that works
for πrandom also works for πpseudo.

5 VIFF

The Virtual Ideal Functionality Framework, VIFF, is a new software library with
building blocks for developing cryptographic protocols. The goal of the library is
to provide an efficient and high-level basis on which practical applications using
MPC can be built. It is also our hope that the framework offered by VIFF will
help facilitate rapid prototyping of new protocols by researchers and so lead to
more protocols with practical applications. The source code and documentation
is therefore freely available from the VIFF homepage: http://viff.dk/.

VIFF aims to be usable by parties connected by real world networks. Such
networks are all asynchronous by nature, which means that no upper bound can
be given on the message delivery time. A well-known example is the Internet
where the communication from A to B must go through many hops, each of
which introduces an unpredictable delay. Targeting networks with this kind of
worst-case behavior from the beginning means that VIFF works well in all envi-
ronments, including local area networks which typically behave in a much more
synchronous manner.
4 This can be formalized by assuming an ideal functionality that gives oracle access to

the function for the honest players as soon as the adversary has corrupted a set of
players initially.

http://viff.dk/

Asynchronous Multiparty Computation: Theory and Implementation 173

To be efficient in the asynchronous setting, the VIFF runtime system tries
to avoid waiting unless it is explicitly asked to do so. In a synchronous setting
all parties wait for each other at the end of each round, but VIFF has no no-
tion of “rounds”. What determines the order of execution is solely the inherent
dependencies in a given program. If two parts of a program have no mutual de-
pendencies, then their relative ordering in the execution is unpredictable. This
assumes that the calculations remain secure when executed out-of-order. Proto-
cols written for asynchronous networks naturally enjoy this property since the
adversary can delay packets arbitrarily, which makes the reordering done by
VIFF a special case.

As an example, consider the simple program in Figure 1 for three players,
n = 3. It starts by defining the field Z1031 where the toy-calculation will take
place and a list with the IDs of all players. The user is then prompted for
input (an integer). All three players then take part in a Shamir sharing of their
respective inputs, this results in three Share objects being defined. A fourth Share
object is generated using pseudorandom secret sharing [8].

(Standard program setup not shown.)

Zp = GF(1031)
all = [1, 2, 3]

input = int(raw input(”Your input: ”))
a, b, c = rt.shamir share(all, Zp, input)
d = rt.prss share random(Zp)

x = a ∗ b
y = c ∗ d
z = x + y

Fig. 1. Program, rt is a Runtime object

z

+

x

∗

a b

y

∗

c d

shamir share prss share random

Fig. 2. Expression tree

Here all variables represent secret-shared values – VIFF supports Shamir se-
cret sharing for when n ≥ 3 and additive secret shares for when n = 2. The
execution of the above calculation is best understood as the evaluation of a tree,
please see Figure 2. Arrows denote dependencies between the expressions that
result in the calculation of the variable z.

The two variables x and y are mutually independent, and so one cannot reliably
say which will be calculated first. But more importantly: We may calculate x and
y in parallel. It is in fact very important for efficiency reasons that we calculate
x and y in parallel. The execution time of a multiparty computation is limited
by the speed of the CPUs engaged in the local computations and by the delays
in the network. Network latencies can reach several hundred milliseconds, and
will typically dominate the running time.

When we say parallel we mean that when the calculation of x is blocked and
waits on network communication from other parties, then it is important that

174 I. Damg̊ard et al.

the calculation of y gets a chance to begin its network communication. This puts
maximum load on both the CPU and the network.

5.1 Implementing VIFF

VIFF is written in Python, a modern object-oriented procedural language. Pro-
grams using VIFF are normal Python programs, and yet we have described
how operations may be executed in a random order. This is possible by using a
technique where we only work with deferred results and never with the results
themselves. A deferred result is something that will eventually materialize, but
we do not know when and the only available operation is to add callbacks to the
result. Callbacks are simply function pointers, and each deferred result keeps a
list of such pointers. The callbacks will be executed when the result is ready, typ-
ically when some share has arrived over the network. This programming style is
well-known from graphical user interfaces where the programmer also attaches
callbacks to certain events in the user interface. In VIFF this is implemented
using the Twisted network library, specifically using the Deferred class provided
by Twisted. An example of how Twisted works is this program which retrieves
a page from the Internet and prints out the contents:

def print contents(contents):
print ”The Deferred has called us with:”
print contents

deferred = getPage(’http://example.net/’)
deferred.addCallback(print contents)

The getPage function returns a Deferred which will eventually hold the HTML
of the fetched page. When it does, it will call its callbacks in sequence. If we
had retrieved several pages, and attached different callbacks to each, then the
execution of those callbacks would depend on which page arrives first.

VIFF uses the Deferred class extensively. In Figure 2 the variables are Share ob-
jects, a sub-class of Deferred. Using suitable operator overloading we are able to
allow the programmer to do arithmetic with Share objects and so treat them like
normal numbers. Key to the implementation of VIFF is a function gather shares
which takes a list of Share objects as input and returns a new Share. This Share
will call its callbacks when all Share objects in the list have called their callbacks.
We use this to make Share objects that wait on other Share objects. Figure 4 in
Appendix A shows the implementation of the standard passively secure BGW
multiplication protocol [4] in VIFF, and uses gather shares to make the product
wait on the two operands to the multiplication.

The big advantage of this system is that it automatically runs the operations
in parallel: The calculations implicitly create the tree shown in Figure 2, and
this tree is destroyed as fast as possible when operands become ready. There is
no predefined execution order in the tree – it is deconstructed from the leaves
inwards at the same speed as the needed operands arrive.

Asynchronous Multiparty Computation: Theory and Implementation 175

Please note that this simple system for parallel scheduling automatically ex-
tends to all levels in the program, i.e., from primitives like addition and multipli-
cation up to compound protocols like comparisons or even entire auctions. This
is a very important consequence since it allows us to build a larger protocol π
by combining smalller protocols and still be sure that several instances of π can
be executed in parallel. It is the uniform interface enforced by always working
on deferred values which enables this kind of modularity. At runtime, a new
protocol π will simply correspond to a subtree in Figure 2 and its leaf nodes will
be executed in parallel with all other leaf nodes in the tree.

Executing things in this way changes the semantics of a program using VIFF
from that of a normal Python program. Each statement is no longer executed
when it is encountered, it is merely scheduled for execution and then executed
later when the operands are available. The semantics of a program using VIFF
is thus more like that of a declarative programming language where you declare
your intentions but where the compiler takes care of scheduling the calculations
in the optimal order.

6 Benchmark Results

In order to measure the efficiency of our implementation, we have run a number
of tests using the techniques described above on a set of computers on a fast
local area network. The computers had Intel Celeron CPUs with a clock speed
of 2.40 GHz, 1 GiB of RAM and were running Red Hat Enterprise Linux 5.2,
Python 2.4.3, and VIFF 0.7.

We ran benchmarks with n = 4, 7, . . . , 25 corresponding to thresholds t =
1, 2, . . . , 8, respectively. In each test we secret-shared 2,000 random 32-bit num-
bers and multiplied the 1,000 pairs in parallel. The results in Table 1 is the
average online time spent per multiplication (columns 2, 3, and 5) and the av-
erage offline time spent per multiplication triple (columns 4 and 6).

Table 1 also includes a column giving the ratio between the online time for
the multiplication protocol described here using multiplication triples, and the
time for the standard BGW multiplication protocol which is only secure against
passive adversaries [4]. The passively secure multiplication protocol consists of

Table 1. Benchmark results

(n, t) Passive Active PRSS Active Hyper Ratio

(4, 1) 2ms 4ms 5ms 4ms 20 ms 2.6
(7, 2) 3ms 6ms 22ms 6ms 42 ms 2.2

(10, 3) 4ms 8ms 130 ms 8ms 82 ms 2.0
(13, 4) 6ms 10ms 893 ms 10 ms 136 ms 1.7
(16, 5) 8ms — — 12 ms 208 ms 1.6
(19, 6) 10 ms — — 14 ms 287 ms 1.5
(22, 7) 12 ms — — 17 ms 377 ms 1.3
(25, 8) 15 ms — — 19 ms 501 ms 1.3

176 I. Damg̊ard et al.

a local multiplication followed by a resharing in which everybody communicates
with everybody else. The actively secure multiplication, as described above, con-
sists of local multiplications and two openings, which also involves quadratic
communication.

The average online time per multiplication appears to grow linearly in the
number of players, both in the case of passive and active adversaries. The total
amount of network traffic is quadratic in the number of players (in both proto-
cols), but the work done by each player grows only linearly. Our results therefore
suggest that the players are CPU bound instead of being slowed down by the
network. In the test setup all 25 machines were located on a fast LAN with ping
times of about 0.1 ms, so this is to be expected. We hope to setup a better
test environment with a controllable network delay in order to do more realistic
testing in the future.

One would expect that the average preprocessing time per multiplication
triple (produced via hyperinvertible matrices) would also grow linearly. Instead
it seems to grow quadratically (see Figure 3). The curve f(n) = an2 + bn + c
with a = 0.8, b = −1, c = 10 is the best fit. We do not have a good explanation
for this at the moment, but hope to find out based on a more controllable test
environment.

Players (n)

T
im

e
(m

s)

0 4 7 10 13 16 19 22 25

100
200
300
400
500
600
700
800
900 PRSS

Hyper

Fig. 3. Average preprocessing time per multiplication triple as a function of the number
of players

As expected, the PRSS based preprocessing is faster for a small number of
players but does not scale well, and we had to abandon it for n > 13. The amount
of work per player depends on the number of subsets of size n− t and with

(
n

n−t

)
subsets this gives an exponential growth.

7 Conclusion

We have presented an efficient protocol for general multiparty computation se-
cure against active and adaptive adversaries. The protocol provides a new trade-
off between guaranteeing termination and efficiency which we believe is relevant

Asynchronous Multiparty Computation: Theory and Implementation 177

in practice. To demonstrate this we have implemented the protocol in a frame-
work for secure multiparty computation called VIFF. This allowed us to show
that achieving active security costs only about a factor of two in online time,
if one is willing to accept that the preprocessing step might fail without reveal-
ing any private data. We believe this to be well-suited for practical applications
where the parties typically have a much stronger incentive to participate in the
computation than to halt it.

Even though the cost of preprocessing is larger than the online cost, it is
certainly not prohibitive: For instance, for 4 players, 1000 multiplications can be
prepared in 5 seconds.

Currently VIFF supports the fast arithmetic using standard Shamir shares for
the case with three or more players, and has support for much slower arithmetic
with additive shares in the two player case. Using the additively homomorphic
Paillier public key cryptosystem [13], our benchmarks show an average time per
multiplication of 300 ms for 32-bit numbers.5 This is with a straightforward
implementation of the cryptosystem in Python and we expect to gain some
performance by reimplementing it as a C extension instead.

In the two player case we have t = n− 1, also known as self trust since every
player only need to trust himself to be honest. We would like to develop protocols
for t = n− 1, but for n > 2. Such a high threshold will again require public key
cryptography, so we expect this to be expensive, but nevertheless interesting
since there might be some situations where the parties are willing to wait longer
in return for this level of security.

VIFF can be freely downloaded from http://viff.dk/ and it is hoped that
others can verify our measurements and expand them it with other protocols.

References

1. Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing,
May 2-4, 1988, Chicago, Illinois, USA. ACM (1988)

2. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear communica-
tion complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230.
Springer, Heidelberg (2008)

3. Beerliová-Trub́ıniová, Z., Hirt, M., Nielsen, J.B.: Almost-asynchronous multi-party
computation with faulty minority (manuscript, 2008)

4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC [1], pp. 1–10

5. Bogetoft, P., Christensen, D.L., Damgard, I., Geisler, M., Jakobsen, T., Krøigaard,
M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft,
T.: Multiparty computation goes live. Cryptology ePrint Archive, Report 2008/068
(2008), http://eprint.iacr.org/

6. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145. IEEE, Los Alamitos (2001)

5 The implementation actually allows multiplication of much larger numbers, up to
about 500 bits with a marginal performance penalty.

http://viff.dk/
http://eprint.iacr.org/

178 I. Damg̊ard et al.

7. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols.
In: STOC [1], pp. 11–19 (1988)

8. Cramer, R., Damg̊ard, I.B., Ishai, Y.: Share conversion, pseudorandom secret-
sharing and applications to secure computation. In: Kilian, J. (ed.) TCC 2005.
LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005)

9. Cramer, R., Damg̊ard, I.B., Ishai, Y.: Share conversion, pseudorandom secret-
sharing and applications to secure computation. In: Kilian, J. (ed.) TCC 2005.
LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005)

10. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game – a com-
pleteness theorem for protocols with honest majority. In: STOC, pp. 218–229.
ACM, New York (1987)

11. Hirt, M., Maurer, U.M.: Robustness for free in unconditional multi-party compu-
tation. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 101–118. Springer,
Heidelberg (2001)

12. Hirt, M., Nielsen, J.B., Przydatek, B.: Asynchronous multi-party computation with
quadratic communication. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS,
vol. 5126, pp. 473–485. Springer, Heidelberg (2008)

13. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

14. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

A Multiplication in VIFF

As an example of real VIFF code, we have included the implementation of the
standard BGW multiplication protocol [4] which is secure against passive adver-
saries, see Figure 4.

The code handles both local multiplication and multiplication involving net-
work traffic. First, if either share a or share b is a not a Share object, i.e., one of
them is a constant integer or a FieldElement, then we do a quick local multipli-
cation. Assume that share a is the constant and share b is the Share (lines 5–10).
We cannot simply multiply share a and share b since share b is a Deferred and
might not have a value yet. The solution is to clone share b and add a callback
to it. This callback is simply a lambda expression (an anonymous function) that
takes care of the correct multiplication when share b eventually gets a value
(line 9). The opposite case is handled in the same way (lines 11–15). If it is es-
tablished that both share a and share b are Share objects we create a new Share
which waits on both of them (line 19). We then add several callbacks: First we
multiply, then we reshare, and finally we recombine. These three operations will
be executed in sequence when both share a and share b have received their values
due to incoming network traffic. The last two callbacks involve network traffic,
and must be added using a more expensive mechanism to ensure agreement on
the labels put on the data as it is sent over the network.

Asynchronous Multiparty Computation: Theory and Implementation 179

def mul(self, share a, share b):
2 assert isinstance(share a, Share) or isinstance(share b, Share), \

”Either share a or share b must be a Share.”
4

if not isinstance(share a, Share):
6 # Then share b must be a Share => local multiplication. We

clone first to avoid changing share b.
8 result = share b.clone()

result.addCallback(lambda b: share a ∗ b)
10 return result

if not isinstance(share b, Share):
12 # Likewise when share b is a constant.

result = share a.clone()
14 result.addCallback(lambda a: a ∗ share b)

return result
16

At this point both share a and share b must be Share objects. We
18 # wait on them, multiply, reshare, and recombine.

result = gather shares([share a, share b])
20 result.addCallback(lambda (a, b): a ∗ b)

self.schedule callback(result, self. shamir share)
22 self.schedule callback(result, self. recombine, threshold=2∗self.threshold)

return result

Fig. 4. The standard multiplication protocol for passive adversaries

In all three cases the mul method returns result to the caller (lines 10, 15,
or 23). Note that result probably does not have a value at this point, but result
is a Share that we have prepared in such a way that it will receive the correct
value at some point in the future. All VIFF methods follow this pattern.

Multi-Party Computation with Omnipresent
Adversary

Hossein Ghodosi1 and Josef Pieprzyk2

1 School of Mathematics, Physics and Information Technology
James Cook University, Townsville, Qld 4811, Australia

2 Department of Computing
Center for Advanced Computing – Algorithms and Cryptography

Macquarie University, Sydney, NSW 2109 Australia

Abstract. Secure multi-party computation (MPC) protocols enable a
set of n mutually distrusting participants P1, . . . , Pn, each with their own
private input xi, to compute a function Y = F (x1, . . . , xn), such that at
the end of the protocol, all participants learn the correct value of Y ,
while secrecy of the private inputs is maintained. Classical results in the
unconditionally secure MPC indicate that in the presence of an active
adversary, every function can be computed if and only if the number of
corrupted participants, ta, is smaller than n/3. Relaxing the requirement
of perfect secrecy and utilizing broadcast channels, one can improve this
bound to ta < n/2.

All existing MPC protocols assume that uncorrupted participants are
truly honest, i.e., they are not even curious in learning other partici-
pant secret inputs. Based on this assumption, some MPC protocols are
designed in such a way that after elimination of all misbehaving partici-
pants, the remaining ones learn all information in the system. This is not
consistent with maintaining privacy of the participant inputs. Further-
more, an improvement of the classical results given by Fitzi, Hirt, and
Maurer indicates that in addition to ta actively corrupted participants,
the adversary may simultaneously corrupt some participants passively.
This is in contrast to the assumption that participants who are not cor-
rupted by an active adversary are truly honest.

This paper examines the privacy of MPC protocols, and introduces
the notion of an omnipresent adversary, which cannot be eliminated from
the protocol. The omnipresent adversary can be either a passive, an ac-
tive or a mixed one. We assume that up to a minority of participants who
are not corrupted by an active adversary can be corrupted passively, with
the restriction that at any time, the number of corrupted participants
does not exceed a predetermined threshold. We will also show that the
existence of a t-resilient protocol for a group of n participants, implies
the existence of a t’-private protocol for a group of n′ participants. That
is, the elimination of misbehaving participants from a t-resilient protocol
leads to the decomposition of the protocol.

Our adversary model stipulates that a MPC protocol never operates
with a set of truly honest participants (which is a more realistic scenario).
Therefore, privacy of all participants who properly follow the protocol
will be maintained. We present a novel disqualification protocol to avoid
a loss of privacy of participants who properly follow the protocol.

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 180–195, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

http://dx.doi.org/10.1007/978-3-642-00468-1_29

Multi-Party Computation with Omnipresent Adversary 181

Keywords: Multi-Party Computation, Omnipresent Adversary, Proac-
tive Secret Sharing, t-resilient Protocols, t-private Protocols.

1 Introduction

Multi-party computation (MPC) protocols provide a general model for secure
computation of arbitrary function whose arguments (inputs) are held by a group
of participants. The concept of MPC was introduced by Yao [18] for two-party
computations and then generalized by Goldreich, Micali, and Wigderson [12]
for an arbitrary number of participants. A secure MPC protocol enables a set
of n mutually distrusting participants P1, . . . , Pn, each with their own private
input xi, to compute a function Y = F (x1, . . . , xn), such that at the end of the
protocol, all participants learn the correct value of Y , while the confidentiality
of the private inputs xi is maintained. The design of secure MPC protocols has
been the subject of investigations by many researchers, and many solutions have
been published in the literature. From the security point of view, these proto-
cols can be classified into two broad categories: (i) computationally secure MPC
protocols, and (ii) unconditionally secure MPC protocols. For computationally
(conditionally) secure MPC protocols, we assume that the adversary is poly-
nomially bounded. More precisely, breaking the security of the protocol implies
that the adversary is able to solve efficiently (in polynomial time) a problem that
is believed to be intractable. Unconditionally secure MPC protocols are intrinsi-
cally secure, that is, no matter how much time and computing power is available
to the adversary, they cannot break the system better than by guessing pri-
vate inputs. In both computationally and unconditionally secure MPC protocols,
the security model includes the adversary, who may corrupt some participants.
Two types of adversaries, namely passive and active have been studied in the
literature.

Passive Adversary. Participants who are corrupted by a passive adversary
properly follow the protocol but try to learn private information of others. That
is, a passive adversary has access to the information of corrupted participants,
but will not control their behaviour. In other words, a passive adversary threatens
the privacy of uncorrupted participants. Note however, that the correctness of the
protocol is preserved. Corrupted participants are also called honest-but-curious.

A commonly used parameter to measure the level of security obtained in a
multi-party protocol with n participants, is the maximum number of participants
that can be corrupted by a passive adversary while the privacy of uncorrupted
participants still holds. This parameter is determined by a threshold t (t < n).
Protocols that can tolerate up to t corrupted participants, are called t-private.

Definition 1. A multi-party protocol is t-private if after completion of the pro-
tocol, any subset of up to t participants cannot learn more information (about
honest participant private inputs) than what they could derive from their private
inputs and the output of the protocol.

182 H. Ghodosi and J. Pieprzyk

Active Adversary. A more serious threat for the security of MPC protocols
are corrupted participants who not only try to learn additional information but
may also wish to disrupt the protocol. This type of participants are called mali-
cious and they are said to be corrupted by an active adversary, who has access
to all information of the corrupted participants, and controls their behaviour.
Participants who are corrupted by an active adversary may behave arbitrarily,
and may deviate from the protocol at any time.

The main challenge in designing secure MPC protocols in the presence of an
active adversary, is to equip the protocol with mechanisms that can detect mis-
behaving participants and eliminate them from the protocol without influencing
the correctness of the protocol. Such protocols are called robust. A measure
for expressing the level of robustness is determined by a threshold parameter t
(t < n), that is the maximum number of participants that can be corrupted,
without an impact on the correctness of the protocol. A protocol that can tol-
erate up to t malicious participants is called t-resilient and is defined as follows.

Definition 2. A multi-party protocol is t-resilient if no set of up to t malicious
participants can influence the correctness of the output produced by the protocol.

1.1 Preliminaries

Let P = {P1, . . . , Pn} be a set of n participants who wish to compute a function
Y = F (x1, . . . , xn), where Pi holds private input xi. Without loss of generality,
we will assume that all input variables are elements of a finite field E, and the
function F can be computed by a circuit over E using the field operations +, ×,
the inverse operations and constants from E.

The model of computation is a complete synchronous network of n partici-
pants. The broadcast and pairwise communication channels between participants
are secure, that is, they cannot be read or tampered with by other participants.

MPC Protocols with a Passive Adversary

A generic MPC protocol consists of the following three phases [4].

1. Initialization. Each participant Pi (i = 1, . . . , n) utilizes Shamir’s secret
sharing scheme [17], and distributes his private input xi amongst all partici-
pants in a t-private manner. More precisely, Pi chooses a random polynomial
fi(x) = xi + a1x + . . . ,+atx

t, and gives sj,i = fi(j) to participant Pj for
j = 1, . . . , n.

2. Computation. Let si,k and si, be Pi’s shares, associated with polynomials
fk(x) and f(x) for the secrets xk and x, respectively. The computation of
every linear function is straightforward. In order to compute xk + x, each
cooperating participant, Pi, computes sk+

i = si,k +si,, which is the share of
Pi determined by polynomial h(x) = fk(x)+f(x). Since h(x) is a polynomial
of degree (at most) t, a set of at least t+ 1 participants who properly follow
the protocol can reconstruct the polynomial, and thus retrieve the constant
term of the polynomial h(x), which is xk + x. Similarly, c × xk, where c

Multi-Party Computation with Omnipresent Adversary 183

is a known scalar, can be computed by t + 1 participants (each participant
Pi calculates c × si,k as its share of c × xk). That is, for n > t, there is a
non-interactive protocol for computing every linear function F (x1, . . . , xn).

Computation of non-linear functions, however, is not so straightforward.
Assume that we want to compute xk ×x. Although Pi can compute sk×

i =
si,k × si,, where sk×

i is Pi’s share of xk × x, there are two problems. The
first problem is that sk×

i is the share of Pi determined by the polynomial
h(x) = fk(x) × f(x) whose degree is (at most) 2t. The second problem is
that h(x) is not a random polynomial.

Assuming that n > 2t, the computation can be carried out if the partic-
ipants collectively redistribute the constant term of the h(x) polynomial, in
a t-private manner, amongst themselves. This process, also called degree re-
duction, is necessary, otherwise further multiplications will raise the degree,
and once the degree of polynomial is equal to or larger than the number of
participants in the system, participants will not have a sufficient number of
points to perform the necessary interpolation.

Computation of an additive inverse is straightforward. To compute the
additive inverse of xi, every participant Pj computes the additive inverse of
his share, sj,i. Computing a multiplicative inverse, however, implies cooper-
ation of all shareholders. Catalano, Gennaro, and Halevi [6] have shown how
to compute multiplicative inverses.

3. Reconstruction of the function value. The function F (x1, . . . , xn) can
be represented as a polynomial containing sum of products and the partici-
pants can collectively evaluate first products (product gates) and then sums
(sum gates) getting finally the shares of the function value Y . In order to
reconstruct Y , a set of a sufficiently large set of participants can pool their
shares and recover the value Y .

Thus, in the presence of a passive adversary, a set of n participants can compute
every n-variate function, in a t-private manner, as long as n > 2t.

MPC Protocols with an Active Adversary

The main challenge in designing MPC protocols in the presence of an active
adversary is how to deal with malicious participants. In general, robust MPC
protocols first identify misbehaving participants and then disqualify them. Two
different disqualification techniques are being used:

1. Ignoring the information associated with malicious participants – This strat-
egy is used in MPC protocols that can be completed without utilizing the
information coming fom malicious participants.

2. Reconstructing the information associated with malicious participants – This
strategy is used in MPC protocols that cannot be completed without using
the information owned by corrupted participants. So, after detection of mis-
behaving participant Pi, other participants reconstruct the private informa-
tion of Pi, and re-share it amongst themselves.

184 H. Ghodosi and J. Pieprzyk

1.2 Background

In 1987, Goldreich, Micali, and Wigderson [12] gave a solution to the general
MPC problem assuming that one-way functions with trapdoor exist (i.e. their
protocol is computationally secure). They have shown that in the presence of
passive adversaries, every function can be computed by n participants, in such
a way that no subset of less than n participants can learn any additional infor-
mation apart from the function value. They have also shown that if Byzantine
faults are allowed (i.e. an active adversary may corrupt some participants and
control their behaviour), every function can be computed by n collaborating
participants, as long as the majority of participants is honest.

In 1988, Ben-Or, Goldwasser, and Wigderson [4] and Chaum, Crépeau, and
Damg̊ard [7], independently studied unconditionally secure MPC protocols. They
have shown that:

(a) In the presence of a passive adversary, no set of size t < n/2 of participants
learns any additional information, other than the function value.

(b) If Byzantine faults are allowed, no set of size t < n/3 can learn any additional
information or disrupt the protocol.

Relaxing the requirement of perfect security and assuming that broadcast
channels exists, Rabin and Ben-Or [16] have shown that in the presence of Byzan-
tine faults, MPC protocols exist if the majority of participants is honest. The
privacy achieved is unconditional (with error probability ε > 0, which can be
exponentially small), and does not rely on any assumption about computational
intractability. Beaver [2] utilized the verifiable secret sharing (VSS) scheme of
[16] and achieved similar results.

The MPC protocols from [4,7] are determined for n ≥ 3t + 1 participants,
where up to t of them can be corrupted. The disqualification method used in
these protocols simply ignores the misbehaving participants, since at any time,
there exists at least 2t+ 1 honest participants who properly follow the protocol.

In contast, the protocols from [16,2] are defined for n ≥ 2t + 1 participants.
After each multiplication, the polynomial associated with the multiplied shares
is of degree at most 2t. If a malicious participant Pi does not cooperate properly,
the remaining participants must reconstruct all information in the hands of Pi,
otherwise they cannot interpolate the associated 2t-degree polynomial. Recon-
struction of information in the hands of a participant is possible since the share
of each participant is re-shared via the second level of sharing. This procedure,
however, reveals one share associated with the secret input of every participant1.
In these protocols, after detection and elimination of any malicious participant
the degree of threshold parameter is decreased by one. So after elimination of
t malicious participants, the threshold parameter drops to zero (i.e., all private
information is disclosed to the remaining participants). One may argue that this
is not a security problem, since the remaining participants are assumed to be
honest.
1 Similar problem in shared generation of digital signatures has been considered in [1].

Multi-Party Computation with Omnipresent Adversary 185

Fitzi, Hirt, and Maurer [10] improved the classical results in unconditionally
secure MPC by considering a mixed adversary. They have shown that in addition
to ta < n/3 actively corrupted participants, privacy can be guaranteed against
additionally tp ≤ n/6 passively corrupted participants. They have also intro-
duced the concept of (ta, tp)-secure MPC protocols. In a (ta, tp)-secure MPC
protocol, correctness of the protocol is guaranteed if up to ta participants are
corrupted actively, and privacy of the participants is ensured if (in addition to
ta actively corrupted participants) up to tp participants are corrupted passively.

1.3 Motivation

All existing MPC protocols with active adversaries assume that uncorrupted
participants are truly honest, i.e., they are not even curious in learning private
inputs of others. Based on this assumption, some MPC protocols (e.g. [16] [2],
[3], [11], [14], etc.) are designed in such a way that after elimination of all mis-
behaving participants, the remaining ones learn all private information.

Furthermore, an improvement of the classical results provided by Fitzi, Hirt,
and Maurer indicates that in addition to ta actively corrupted participants, the
adversary may simultaneously corrupt some participants passively. This is in
contrast to the assumption that participants who are not corrupted by an active
adversary are truly honest.

The paper examines the privacy of MPC protocols and argues that the as-
sumption about participants that are not corrupted are truly honest is unrealis-
tic. We will introduce the notion of the omnipresent adversary. An omnipresent
adversary cannot be eliminated from the protocol and can be either passive,
active, or mixed. More precisely, we assume that that up to a minority of partic-
ipants who are not corrupted by an active adversary can be corrupted passively,
with the restriction that at any time, the number of corrupt participants does
not exceed a predetermined threshold. We will also show that the existence of
a t-resilient protocol for a group of n participants, implies the existence of a
t’-private protocol for a group of n′ participants. That is, elimination of misbe-
having participants from a t-resilient protocol leads to the decomposition of the
protocol, and converts it to the t’-private protocol.

Our adversary model stipulates that a MPC protocol never operates with a set
of truly honest participants (which is a more realistic scenario). Therefore, the
privacy of all participants who properly follow the protocol will be maintained.
In order to achieve these goals in the existing MPC protocols, we present a
novel disqualification protocol that avoids exposing the privacy of participants
who properly follow the protocol.

Our results are as follows:

Theorem 1. Given a set of n = 2t + 1 participants in the computationally
secure setting, then there exists a t-resilient and t-private MPC protocol provided
that, at every stage of the protocol, the total number of actively and passively
corrupted participants is not larger than t. That is, only one participant may not
be corrupted by adversary throughout the execution of the protocol.

186 H. Ghodosi and J. Pieprzyk

Theorem 2. Given a set of n = 3t+1 participants in the unconditionally secure
setting with perfect secrecy, then there exists a t-resilient and t-private MPC
protocol. That is, up to 2t participants may be corrupted by the adversary provided
that, at every stage of the protocol, the total number of corrupted participants is
not larger than t.

Theorem 3. Given a set of n = 2t + 1 participants in unconditionally secure
setting with a negligible failure probability, then there exists a t-resilient and
t/2-private MPC protocol. In other words, only t/2 + 1 participants may not
be corrupted, provided that, at every stage of the protocol, the total number of
corrupted participants does not exceed the threshold parameter.

The rest of this paper is organized as follows. In Section 2, we will give an
overview of MPC protocols in the presence of an omnipresent adversary. In Sec-
tion 3, we will present our approach to disqualification of malicious participants
in MPC protocols with an honest majority. In Section 4, we will study the trans-
formation of t-resilient protocols into t’-private protocols. In Sections 5 and 6
we will show how to modify the existing protocols, in order to simultaneously
achieve correctness and privacy. Section 7 gives concluding remarks.

2 An Overview of MPC with Omnipresent Adversary

Designing MPC protocols under an assumption that participants are truly honest
is unrealistic. If we could assume that a single trusted party existed, then the
designing of MPC protocols would be easy. In this case, all participants first
handed their inputs to the trusted party who would compute the function and
announce the result to each participant. This scenario, which is known as an
ideal process, has been studied in order to evaluate the security of real-life MPC
protocols (see, e.g., [5]). Real-life MPC protocols allow n mutually distrusting
participants to evaluate a function for their private inputs assuming that some
participants are corrupted. Note that as passively corrupted participants follow
the protocol, they cannot be eliminated from it. On the other side, malicious
participants deviate from the protocol so they can be identified and eliminated
from the protocol.

An omnipresent adversary can be seen as an entity which attempts to break
either privacy or correctness of MPC protocols by trying to corrupt (passively or
actively) some participants. In the case of passive corruption, the adversary has
access to all the information held by the corrupted participant while the partici-
pant follows the protocol honestly. In the case of active corruption, the adversary
has full control over the behavior of the participant who may deviate from the pro-
tocol in an arbitrary way. Observe that if a corrupted participant does not follow
the protocol, she can be identified and removed from it.

A good example of an omnipresent adversary is a powerful enemy (such as
rogue states, terrorist organizations, intelligence agencies, etc.) who is using its
large resources to break MPC protocols by trying to corrupt the participants.
Clearly, the adversary is not going to be involved in the protocol directly but it

Multi-Party Computation with Omnipresent Adversary 187

will use the corrupted participants to achieve its goals. From the omnipresent
adversary point of view, it would like to achieve its goals with minimum expenses.
The expenses are proportional to the number of participants that need to be
corrupted. It may also be assumed that a passive corruption may be easier and
cheaper than an active corruption.

Our adversarial model is more general and powerful. In particular, it is dy-
namic so the composition of corrupted participants may change throughout the
protocol execution. The number of participants that can be corrupted is larger
than the threshold parameter, with the restriction that at any time, the num-
ber of corrupted participants does not exceed the threshold parameter. That
is, if some actively corrupted participants are detected and eliminated, the ad-
versary is allowed to corrupt some other participants. Strictly speaking, in the
computationally secure MPC protocols (e.g. [12]), a t-resilient protocol works
if n ≥ 2t + 1. That is, up to t participants can be corrupted actively, and the
remaining t + 1 participants are assumed to be honest. In our model, up to t
participants can be corrupted actively, and up to t participants can be corrupted
passively (only one participant may not be corrupted). In the unconditionally
secure protocols with perfect secrecy (e.g. [4]), a t-resilient protocol works if
n ≥ 3t + 1, where up to 2t + 1 participants are honest. In our model, up to t
participants can be corrupted actively, and up to t participants can be corrupted
passively (i.e., there are at least t+1 honest participants). Similarly, in majority-
honest MPC protocols with small probability of error (e.g., [16,2]), a t-resilient
protocol works if n ≥ 2t + 1, where up to t + 1 participants are honest. In our
model, up to t participants can be corrupted actively, and up to t/2 participants
can be corrupted passively, (i.e. there are at least t/2 + 1 honest participants).

2.1 Proactive Secret Sharing Scheme

One can see that the number of corrupted participants in the protocol life-time
can be greater than the threshold parameter t. If our protocols are implemented
using a static secret sharing, then the adversary who learns more than t shares
will be able to recover the private information. To prevent this, we employ the
well-known proactive secret sharing technique [13]. A proactive secret sharing
ensures the privacy of a secret by periodically renewing the shares of partici-
pants, without changing the secret, in such a way that information gained by an
adversary in one time period is useless for the adversary in another time period.
In other words, in an ordinary t-private secret sharing, its privacy is assured if,
throughout the entire life-time of the secret, the adversary is not able to compro-
mise more than t shares. In contrast, for a t-private proactive secret sharing, its
privacy is guaranteed if at any time period (between two consecutive renewals),
the adversary does not compromise more than t shares.

The proactive secret sharing of [13] consists of n participants, where each
participant is connected to a common broadcast channel C, where messages
sent on C instantly reach each party connected to it. The time is divided into
time-periods (e.g. a day, a week, etc.). At the beginning of each time-period
the participants update their shares using an interactive share renewal protocol.

188 H. Ghodosi and J. Pieprzyk

The adversary can corrupt participants at any moment. If a participant Pj is
corrupted during an update phase Ti+1, it will be considered as corrupted during
both time-periods Ti and Ti+1. If the adversary leaves a corrupted participant Pj

before the update phase Ti+1, then the adversary will not have any control over
the communications of Pj , and thus has no information about the updated shares
of Pj (i.e. Pj is no longer corrupted). The underlying secret sharing scheme is
the Shamir [17] threshold scheme. The number of participants is n = 2t + 1,
where during each time-period, the adversary can corrupt up to t participants.
Assume that a secret xi is shared amongst the set of n participants, in a t-private
manner. In the update phase, each participant Pj distributes sj,iΠ

n
i=1,i�=j

j
j−i

amongst all participants in a t-private manner. Each participant P adds all new
shares received during the update phase, and takes it as his share of the secret
xi, and deletes the old share s,i plus all partial shares. This process is correct,
because xi = Σn

j=1sj,iΠ
n
i=1,i�=j

j
j−i . The verifiable secret sharing (VSS) used in

[13] is computationally secure and based on the Feldman VSS [9]. However,
unconditional security is achievable by utilizing the Pedersen VSS from [15].

There are some differences between the proactivization used in [13], and in
the MPC protocols with omnipresent adversary. They are as follows.

(a) The purpose of the update phase in [13] is to correct the shares of the
participants that have been corrupted by an active adversary or alternatively
by errors caused by other problems such as system crashes, for instance. Note
that for the randomization and degree-reduction, we do not correct the shares
of corrupted participants. Instead, we identify the corrupted participants and
eliminate them from the protocol.

(b) The update phase of [13] is performed at the beginning of each time-period,
while in our MPC protocols, it is done at the randomization and degree
reduction stage.

(c) Similarly to [13], we allow the adversary to leave some corrupted participants
alone until the execution of the randomization and degree reduction proto-
cols. After proactivization, actively corrupted participants are eliminated
from the protocol, while passively corrupted participants who have not been
controlled by the adversary will have new shares that are not known to the
adversary, and therefore they are not considered as corrupted participants
any more. Now, the adversary may wish to corrupt some new participants
(from the set of all remaining participants). That is, in our MPC protocols,
the set of corrupted participants is dynamic.

It is worth mentioning that the proactivization process will not add too much
overhead to our MPC protocols. This is due to the fact that in MPC protocols,
the degree reduction procedure is, indeed, a proactivization of the participant
shares. The only information that needs to be re-shared is the share of each
participant from the other participant secret information. We observe that this
is also done in MPC protocols with an honest majority, since after the threshold
parameter is decreased, all information is re-shared using the new threshold. The
overhead applies only to MPC protocols with fixed threshold parameter.

Multi-Party Computation with Omnipresent Adversary 189

3 Disqualification in MPC with Honest Majority

Let P = {P1, . . . , Pn} be a set of n participants who wish to compute a function
Y = F (x1, . . . , xn), where participants Pi hold their private inputs xi, assuming
that n = 2t + 1, and the initial threshold parameter is t. Disqualification of a
malicious participant Pi requires the reconstruction of the information in the
hand of Pi, otherwise the protocol cannot be completed. The elimination of ma-
licious participants, however, has to reduce the threshold parameter, otherwise
the current number of participants cannot interpolate the polynomial associ-
ated with their shared information. In the existing MPC protocols, elimination
of each malicious participant decreases the threshold parameter by one. After
elimination of t malicious participants, the threshold parameter becomes zero,
i.e., the remaining participants learn all private information.

In this section we will present a new disqualification technique that preserves
the privacy of all participants who properly follow the protocol. Let D denote
the number of eliminated participants from the system (initially, D = 0). After
detecting a malicious participant, say Pi (1 ≤ i ≤ n), increase the value of D by
one and perform the following steps.

1. If D is an odd integer, private information of Pi is reconstructed by the other
participants. If this occurs in the initialization phase, no further action is re-
quired. If this occurs in the computation phase, relevant computations (i.e.
multiplication of relevant shares, randomization, and degree reduction proce-
dure) associated with Pi will be performed publicly. This process reveals the
private input xi (which is not an issue, since it is a random value), and one
share associatedwith the private input of eachparticipantswhoproperly follow
the protocol. After the threshold parameter is reduced by one and all values are
re-shared (see the next item), the knowledge of these shares is redundant.

2. If D is an even integer, only the secret input xi is reconstructed, and the
threshold parameter is decreased by 1. If this occurs in the initialization
phase, the remaining participants repeat the initialization phase using a
threshold parameter t′ = t− 1. If this occurs in the computation phase, the
remaining participants re-share their partial results using a new threshold
parameter t′ = t − 1, and continue the protocol using this new threshold
parameter t′. Implicitly, this is a proactivization of a (t, n)-threshold scheme
to a (t− 1, n− 2)-threshold scheme.

As the result of applying our disqualification technique, after occurrence of
t faults, the number of remaining participants in the system is t + 1, and the
threshold parameter is t′ = t− t/2 = t/2. Therefore, no subset of up to t/2 par-
ticipants learn any additional information about the secret input of participants
who have properly followed the protocol.

4 Decomposition of t-resilient Protocols

According to the definition of t-resilient protocols, after elimination of all ma-
licious participants, the remaining participants must be able to complete the

190 H. Ghodosi and J. Pieprzyk

protocol. In other words, in the absence of all eliminated participants (even if
they voluntarily withdrew from the protocol), the remaining participants must
be able to complete the protocol.

Theorem 4. Let a t-resilient MPC protocol π realizes task T for a group of n
participants, then there exists a t’-private MPC protocol π′ that realizes task T
for a group of n′ participants, where n′ ≥ n− t and t/2 ≤ t′ ≤ t.

Proof. If no participant misbehaves, the t-resilient MPC protocol π realizes task
T in a secure manner (they obtain the correct result, where privacy of all inputs
is maintained in a t-private manner). That is, a t-resilient MPC protocol is
necessarily a t-private MPC protocol. Note that the inverse statement is not
true. Having a t-private MPC protocol that realizes a task T , does not imply
that we can design a t-resilient MPC protocol for the task. If all (or some)
of the malicious participants are eliminated from the protocol, the remaining
participants must be able to complete the protocol. Completion of the protocol
means that remaining participants continue to perform the protocol π. If all
malicious participants are eliminated, the number of remaining participants will
be at most n′ = n − t (since at most t participants are eliminated). That is,
protocol π continues with n′ participants, where no fault occurs. In this case, π
is not necessarily a t-private protocol, since the threshold parameter may have
been reduced to t′, where t/2 ≤ t′ ≤ t. This completes the proof, assuming that
protocol π′ is a version of protocol π in which the verification procedures are
omitted.

Indeed, a common practice in designing a t-resilient protocol is to equip a t’-
private protocol with mechanisms that can manage malicious participants. That
is, a t-resilient protocol can be decomposed into two phases, namely, detection
and elimination of malicious participants and then the execution of a t’-private
protocol π′ for a group of n′ participants.

For example, consider computationally secure MPC protocols given by Gol-
dreich et al. in [12]. They proved that there exists a t-resilient MPC protocol for
a group of at least 2t+1 participants, and there exists a t-private MPC protocol
for a group of at least n′ = t + 1 participants. In other words, their t-resilient
protocol can be decomposed into two sub-protocols, namely, detection of mali-
cious participants and running their t-private protocol for the participants that
honestly follow the protocol.

In an unconditionally secure setting, the protocols studied in [4] and [7] in-
dicate that their t-resilient MPC protocol works for a group of at least 3t + 1
participants, and their t-private protocol works for a group of at least 2t+1 par-
ticipants. That is, their t-resilient protocols can be decomposed in similar way,
first detection and elimination of malicious participants and next the execution
of a t-private protocol.

In MPC protocols with honest majority (alternatively, with faulty minority),
their t-resilient MPC protocol works with a group of at least 2t+1 participants.
Although they have not discussed the case of passive adversary, classical results

Multi-Party Computation with Omnipresent Adversary 191

indicate that a t-private requires at least 2t + 1 cooperating participants. How-
ever, in their t-resilient MPC protocol with at least 2t + 1 participants, after
elimination of t misbehaving participants, the remaining number of participants
is t + 1. That is, decomposition of their t-resilient protocol gives a t/2-private
protocol.

5 Perfectly Secure MPC with Omnipresent Adversary

Let P = {P1, . . . , Pn} be a set of n participants who wish to compute a function
Y = F (x1, . . . , xn), where each participant Pi holds her private input xi. To
construct a perfectly secure MPC with an omnipresent adversary, we employ the
MPC protocol from [4]. In the case of passively corrupted participants, if n ≥ 2t+
1, their t-private MPC protocol provides perfect privacy. In the case of actively
corrupted (malicious) participants, if n ≥ 3t + 1, their t-resilient MPC protocol
provides perfect privacy, assuming that up to t participants can be malicious and
other participants honestly follow the protocol. In their t-resilient protocol with
3t + 1 participants, after elimination of all misbehaving participants, there will
be 2t+1 remaining participants in the system, which is large enough to construct
a t-private protocol. That is, decomposition of their t-resilient protocol should
lead to a t-private protocol. Since the threshold parameter is fixed, the number
of corrupt participants at any time must not exceed the threshold parameter t.
That is, we modify their disqualification procedure as follows (the rest of the
protocol remains unchanged):

1. After the detection and elimination of a malicious participant Pi (for detail
procedure, see [4]), the remaining participants perform proactivization of
their shares from the other participant secret inputs.

2. After proactivization, the adversary is allowed to corrupt a new partici-
pant, either passively or actively, subject to the condition that the number
of actively corrupted participants in the life-time of the protocol does not
exceed t.

3. The remaining participants continue the protocol as in [4]. After elimination
of at most t malicious participants, the system consists of at least 2t + 1
participants, where up to t participants are corrupted passively. Classical
results indicate that an unconditionally secure t-private MPC protocol exists
for this set of participants. That is, a t-resilient protocol is converted to a
t-private protocol.

Remark 1. In computationally secure MPC, the t-resilient protocol from [12]
starts with 2t + 1 participants. Performing their protocol in the presence of
an omnipresent adversary, and utilizing the above elimination technique, after
elimination of t malicious participants, the system consists of t+ 1 participants,
where t of them are corrupted passively. Results of [12] indicate that a compu-
tationally secure t-private MPC protocol exists for this set of participants. That
is, a t-resilient protocol is converted to a t-private protocol.

192 H. Ghodosi and J. Pieprzyk

5.1 Security Discussion

This modified protocol is as secure as the original MPC protocol from [4]. This
is because the adversary cannot learn any additional information (due to proac-
tivization, information obtained in one time period is useless for another time
period, and at each time period the scheme is t-private). Also, correctness of
the result will not be affected, because up to t additional passively corrupted
participants honestly follow the protocol.

Moreover, if ta and tp denote the number of actively and passively corrupted
participants at any time period, the following conditions always hold:

(a) 3ta + tp < n.
Considering the fact that ta ≤ t and after elimination of any misbehaving
participant, one participant will be corrupted passively, if k (0 ≤ k ≤ t)
participants are eliminated, 3ta + tp ≤ 3(t− k) + k = 3t− 2k ≤ n − k.

(b) 2ta + 2tp < n.
Similarly, 2ta + 2tp ≤ 2(t− k) + 2(k) = 2t < n− k.

That is, at every stage, our protocol satisfies the results of [10].

Theorem 5. Given an MPC protocol defined in [4]. A set of n participants can
compute every function perfectly (ta, tp)-securely if and only if 3ta + tp < n and
2ta + 2tp < n. The computation is polynomial in n and linear in the size of the
circuit. This holds whether a broadcast channel is available or not.

6 Honest Majority MPC with Omnipresent Adversary

In MPC protocols with honest majority, a set of P = {P1, . . . , Pn} participants
wish to compute a function Y = F (x1, . . . , xn), where each participant Pi holds
her private input xi. Although existing MPC with honest majority do not con-
sider the case of a passive adversary, the condition n ≥ 2t+ 1 is the tight bound
for designing a t-private MPC protocol, even if a broadcast channel is avail-
able. In the case of an active adversary, assuming that a public channel exists,
a t-resilient MPC is achievable if n ≥ 2t + 1. The secrecy of these protocols is
unconditional, with error probability ε, which can be exponentially small.

To construct an MPC with honest majority in the presence of an omnipresent
adversary, we employ the protocol from [16]. However, we utilize our disquali-
fication technique (see Section 3), that ensures the privacy of participants who
properly follow the protocol. So, our construction for MPC with honest majority
works as follows:

1. After the detection and elimination of every two misbehaving participants,
the threshold parameter is reduced by one (see our disqualification in Section
3). The process of re-sharing all information with a new threshold parameter
t′ = t − 1, implicitly, is a proactivization of the shares associated with the
function value and the participant inputs.

Multi-Party Computation with Omnipresent Adversary 193

2. After reducing the threshold, the adversary is allowed to corrupt a new
participant, either in passive or active mode, provided that the number
of actively corrupted participants in the life-time of the protocol does not
exceed t.

3. The remaining participants continue the protocol as in [16], using the new
threshold t′. After elimination of at most t misbehaving participants, the
system consists of at least t + 1 participants, where up to t/2 participants
are corrupted passively. Classical results indicate that an unconditionally
secure t/2-private MPC protocol exists for this set of participants. That is,
a t-resilient protocol is converted to a t/2-private protocol.

We observe that the “honest majority” (alternatively “faulty minority”) title
is more suitable for our protocol (see above), since at every stage of the protocol,
only the minority/majority of participants in the system are corrupt/honest.
While in [16,2], after elimination of corrupt players, all remaining participants
are honest.

6.1 Security Discussion

The modified protocol is as secure as the original MPC protocol from [16]. This
is true because the adversary cannot learn any additional information since at
each time period the scheme is t’-private. Also, correctness of the result will
not be affected, because up to t/2 additional passively corrupted participants
honestly follow the protocol.

Moreover, if ta and tp denote the number of actively and passively corrupted
participants at any time period, the condition 2ta + 2tp < n, is satisfied. This is
because 2ta + 2tp ≤ 2(t − k) + 2k/2 ≤ 2t − k < n − k. So, at every stage, our
protocol satisfies the results of [10].

Theorem 6. Given the MPC protocol defined in [16]. Then allowing an neg-
ligible failure probability and given a broadcast channel, a set of n participants
can compute every function (ta, tp)-securely if and only if 2ta + 2tp < n. The
computation is polynomial in n and linear in the size of the circuit.

7 Conclusions

We have investigated the privacy of MPC protocols in the presence of om-
nipresent adversary. The omnipresent adversary can be either passive, active,
or mixed. We have shown that up to a minority of participants who are not cor-
rupted actively, can be corrupted passively, with the restriction that at any time,
the number of corrupt participants does not exceed a predetermined threshold.

Our adversary model stipulates that MPC protocols never run with a set
of truly honest participants (which is a more realistic assumption). Therefore,
privacy of all participants who properly follow the protocol will be maintained.

Remark 2. In this paper we have used the protocols from [4] and [16] (that are
perfectly secure with a negligible failure probability) and showed how the om-
nipresent adversary works for these protocols. For the perfect security case, the

194 H. Ghodosi and J. Pieprzyk

Table 1. Comparison of existing t-resilient MPC protocols and MPC protocols with
an omnipresent adversary

Security Model Adversary Number of Actively Passively Uncorrupted
model participants corrupted corrupted participants

Computational Active n = 2t + 1 t 0 t + 1
Omnipresent n = 2t + 1 t t 1

Unconditional without Active n = 3t + 1 t 0 2t + 1
broadcast channel Omnipresent n = 3t + 1 t t t + 1
Unconditional with Active n = 2t + 1 t 0 t + 1
broadcast channel Omnipresent n = 2t + 1 t t/2 t/2 + 1

maximum number of corrupted participants at any time is t, and for MPC pro-
tocols with a negligible failure probability, the maximum number of corrupted
participants at any time is t′ (t/2 ≤ t′ ≤ t), see Table 1. Applying the protocol
from [10] improves these bounds, but will not increase the total number of par-
ticipants that can be corrupted in the protocol life-time. This is because, in the
presence of a passive adversary, n > 2t (or n ≥ 2t+1) is a tight bound regardless
of a type of the protocol.

Acknowledgments

We are grateful to the anonymous referees for their constructive comments.
The second co-author was supported by Australian Research Council grant
DP0663452.

References

1. Almansa, J., Damg̊ard, I., Nielsen, J.: Simplified Threshold RSA with Adaptive and
Proactive Security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 593–611. Springer, Heidelberg (2006)

2. Beaver, D.: Multiparty protocols tolerating half faulty processors. In: Brassard, G.
(ed.) CRYPTO 1989. LNCS, vol. 435, pp. 560–572. Springer, Heidelberg (1990)

3. Beaver, D.: Secure Multiparty Protocols and Zero-Knowledge Proof Systems Tol-
erating a Faulty Minority. Journal of Cryptology 4, 75–122 (1991)

4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorem for Non-
Cryptographic Fault-Tolerant Distributed Computation. In: Proceedings of the
20th ACM Annual Symposium on the Theory of Computing (STOC 1988), pp.
1–10 (1988)

5. Canetti, R.: Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology 13, 143–202 (2000)

6. Catalano, D., Gennaro, R., Halevi, S.: Computing Inverses over a Shared Secret
Modulus. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 190–206.
Springer, Heidelberg (2000)

7. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty Unconditionally Secure Pro-
tocols. In: Proceedings of the 20th ACM Annual Symposium on the Theory of
Computing (STOC 1988), pp. 11–19 (1988)

Multi-Party Computation with Omnipresent Adversary 195

8. Dolev, D., Dwork, C., Waarta, O., Yung, M.: Perfectly Secure Message Transmis-
sion. Journal of the ACM 40, 17–47 (1993)

9. Feldman, P.: A Practical Scheme for Non-interactive Verifiable Secret Sharing. In:
28th IEEE Symposium on Foundations of Computer Science, pp. 427–437 (October
1987)

10. Fitzi, M., Hirt, M., Maurer, U.: Trading correctness for privacy in unconditional
multi-party computation. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462,
pp. 121–136. Springer, Heidelberg (1998)

11. Gennaro, R., Rabin, M., Rabin, T.: Simplified VSS and Fast-track Multiparty Com-
putations with Applications to Threshold Cryptography. In: 17th Annual ACM
Symposium on Principles of Distributed Computing, pp. 101–111 (1998)

12. Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game. In: Pro-
ceedings of the 19th ACM Annual Symposium on the Theory of Computing (STOC
1987), May 25–27, pp. 218–229 (1987)

13. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or:
How to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995.
LNCS, vol. 963, pp. 339–352. Springer, Heidelberg (1995)

14. Hirt, M., Maurer, U., Przydatek, B.: Efficient Secure Multi-party Computation.
In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 143–161. Springer,
Heidelberg (2000)

15. Pedersen, T.: Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

16. Rabin, T., Ben-Or, M.: Verifiable Secret Sharing and Multiparty Protocols with
Honest Majority. In: Proceedings of the 21th ACM Annual Symposium on the
Theory of Computing (STOC 1989), pp. 73–85 (1989)

17. Shamir, A.: How to Share a Secret. Communications of the ACM 22, 612–613
(1979)

18. Yao, A.: Protocols for Secure Computations. In: The 23rd IEEE Symposium on
the Foundations of Computer Science, pp. 160–164 (1982)

Blind and Anonymous Identity-Based Encryption and
Authorised Private Searches on Public Key Encrypted

Data

Jan Camenisch1, Markulf Kohlweiss2, Alfredo Rial2, and Caroline Sheedy3

1 Zurich Research Lab
IBM Research

jca@zurich.ibm.com
2 ESAT-COSIC / IBBT

Katholieke Universiteit Leuven
{markulf.kohlweiss,alfredo.rialduran}@esat.kuleuven.be

3 School of Computing
Dublin City University

csheedy@computing.dcu.ie

Abstract. Searchable encryption schemes provide an important mechanism to
cryptographically protect data while keeping it available to be searched and ac-
cessed. In a common approach for their construction, the encrypting entity
chooses one or several keywords that describe the content of each encrypted
record of data. To perform a search, a user obtains a trapdoor for a keyword of
her interest and uses this trapdoor to find all the data described by this keyword.

We present a searchable encryption scheme that allows users to privately
search by keywords on encrypted data in a public key setting and decrypt the
search results. To this end, we define and implement two primitives: public key
encryption with oblivious keyword search (PEOKS) and committed blind anony-
mous identity-based encryption (IBE). PEOKS is an extension of public key en-
cryption with keyword search (PEKS) in which users can obtain trapdoors from
the secret key holder without revealing the keywords. Furthermore, we define
committed blind trapdoor extraction, which facilitates the definition of authori-
sation policies to describe which trapdoor a particular user can request. We con-
struct a PEOKS scheme by using our other primitive, which we believe to be the
first blind and anonymous IBE scheme.

We apply our PEOKS scheme to build a public key encrypted database that
permits authorised private searches, i.e., neither the keywords nor the search re-
sults are revealed.

Keywords: Blind identity-based encryption, searchable encryption, public key
encryption with keyword search.

1 Introduction
Vast quantities of sensitive personal data are retained for the purpose of network foren-
sics and cyber investigations [1]. The advantages of the availability of such data for the
investigation of serious crimes and the protection of national security are considerable.

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 196–214, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

http://dx.doi.org/10.1007/978-3-642-00468-1_29

Blind and Anonymous IBE and Authorised Private Searches 197

However, these advantages must be counterpoised by the dangers that such data could
fall into the wrong hands.

The encryption of retained data is a desirable counter measure against data theft. But
how, then, can the investigator, such as the police or a secret service, search the data
without having to decrypt the whole database? What if the investigator should only be
given access to data that fulfills certain criteria? This seems to be a hard problem, as
the criteria themselves may be sensitive and thus requiring protective measures, such as
encryption. Moreover, a secret service is often reluctant to reveal the type of queries it
wants to run on the encrypted database.

We consider a scenario in which an investigator searches for data described by multi-
ple keywords without revealing the keywords or the search results to the database server.
This scenario is akin to the private searching of streaming data presented in [2]. While
in [2] the data is searched as it is generated (and can thereafter be discarded), in our
scenario data is first stored in encrypted form and can be searched at a later stage. To
provide a high level of security we make use of asymmetric cryptography. The database
server only possesses the public encryption key (and cannot decrypt the retained data
itself). In this way, data that is already encrypted remains secure even against a strong
adversary that breaks into the database server. The decryption key is stored by a security
server, which will only be involved when executing search queries.

As the details of queries made are to be obscured even from the security server, it
is necessary to impose some restrictions on the investigator. Thus we introduce some
checks and balances to avoid abuse by overzealous or malicious investigators. One ob-
vious restriction is in the number of queries that the investigator can make. An un-
reasonable number of requests may be an indication of abuse. Another restriction that
we consider is to involve a judge in granting search warrants to the investigator. The
keyword is still hidden, but the security server is guaranteed that a judge (or another
authority figure) has approved the search for a specific keyword.

In [3] the authors build an encrypted and searchable audit log. They propose two
schemes, one based on symmetric encryption and one based on asymmetric encryption.
They conclude that asymmetric encryption provides better security, as it reduces the
trust in the encrypting entity. Our work can be seen as an extension of their asymmet-
ric scheme with the possibility to obliviously search the encrypted database. For the
symmetric case, in which the audit log server knows all the information needed for de-
crypting the database, the problem of performing oblivious searches is covered by [4,5].
The problem of oblivious searching on public key encrypted data is more difficult.

Outline of our solution. In [3], the asymmetric searchable encryption scheme is based
on identity-based encryption (IBE) [6]. The keywords themselves are used to encrypt
the database, i.e., they are the identity strings of the IBE scheme. The anonymity prop-
erty of Boneh-Franklin IBE scheme [6] ensures that a ciphertext does not leak the iden-
tity string used to generate the encryption. The security server holds the master secret
key that is used to derive the secret keys corresponding to the keywords that are needed
for searching. A similar technique for searchable encryption was formalized as public
key encryption with keyword search (PEKS) by [7]. In PEKS, the derived keys are re-
ferred to as search trapdoors, which can be given to third parties to grant them search
rights.

198 J. Camenisch et al.

When trying to build an oblivious search mechanism for such a database we have to
address two difficulties: hiding the keywords from the security server and hiding the
search results from the database. For the former, we present two new cryptographic
primitives. The first one is committed blind anonymous IBE. In this context, anony-
mous means that the ciphertext does not leak the key (identity) under which it was
encrypted [8,9] and blind means that a user can request the decryption key for a given
identity without the key generation entity learning the identity [10]. The work of [10]
describes how to construct blind key derivation protocols for [11] and [12,13], but these
schemes are not anonymous. Moreover, it is much harder to derive a blind key deriva-
tion protocol for the Boneh-Franklin IBE scheme [6] used in [3], and we are interested
in IBE schemes that do not require random oracles for their security proofs. (As shown
by [14,15,16], a scheme may be insecure even if proven secure in the random oracle
model.) As a corollary to our results, we obtain the first instantiation of [3] secure with-
out random oracles.

We design a committed blind anonymous IBE scheme based on the anonymous IBE
scheme due to [9]. As the scheme in [9] is only selective ID secure [11], we extend it
with adaptive ID security [17] and prove the modified scheme secure. For the modified
scheme we design a blind key extraction protocol. This leads to the first blind anony-
mous IBE scheme we are aware of. We extend the definition of blind IBE to allow
for the derivation of a secret key for a committed identity. This allows the key gener-
ation entity to enforce authorisation policies on the identities for which a secret key is
requested, as described in [18].

The second primitive we present is public key encryption with oblivious keyword
search (PEOKS), which we implement using our committed blind anonymous IBE
scheme. First, we extend the definition of PEKS to incorporate the encryption of a se-
cret message when computing a searchable encryption. This secret message can contain
a symmetric key, which allows PEKS to be used directly in settings such as [3]. Then
we define blind key extraction with committed keywords, which facilitates the use of
a policy that states for which keywords a trapdoor can be extracted while still keeping
them hidden from the trapdoor generation entity.

In order to hide the search results from the database one could in theory download the
whole database and then use PEOKS to do the search. This is inefficient. We describe a
data structure that allows to use private information retrieval (PIR) [19] to improve the
communication efficiency of the search.

Our contribution. We define and construct the first blind anonymous IBE scheme. We
generalize PEKS to be usable in settings such as [3], and we extend it to incorporate the
facility to perform obliviouskeywordssearches (PEOKS).Both ourblindanonymousIBE
schemeand ourPEOKSschemesupport committedblind key extractionandthusallowfor
complex policies. Finally, we describe the first public key encrypted database that allows
for oblivious searches, i.e., both the keywords and the search results remain hidden.

Outline of the paper. In Sect. 2 we introduce basic concepts and security assumptions
and in Sect. 3 we define committed blind anonymous IBE and PEOKS. We construct
a committed blind anonymous IBE scheme and we show how to apply it to build a
PEOKS scheme in Sect. 4. In Sect. 5, we describe the use of PEOKS to construct a

Blind and Anonymous IBE and Authorised Private Searches 199

privacy-preserving searchable encrypted database. Finally, Sect. 6 draws a conclusion
and discusses future work.

2 Technical Preliminaries

A function ν is negligible if, for every integer c, there exists an integer K such that for
all k > K , |ν(k)| < 1/kc. A problem is said to be hard (or intractable) if there exists
no probabilistic polynomial time (p.p.t.) algorithm on the size of the input to solve it. ε
denotes the empty string.

Bilinear Maps. Let G1, G2 and GT be groups of prime order p. A map e : G1 ×G2 →
GT must satisfy the following properties:

(a) Bilinearity. A map e : G1 × G2 → GT is bilinear if e(ax, by) = e(a, b)xy;
(b) Non-degeneracy. For all generators g ∈ G1 and h ∈ G2, e(g, h) generates GT ;
(c) Efficiency. There exists an efficient algorithm BMGen(1k) that outputs (p,G1, G2,

GT , e, g, h) to generate the bilinear map and an efficient algorithm to compute
e(a, b) for any a ∈ G1, b ∈ G2.

The security of our scheme is based on the following number-theoretic assumptions:

Definition 1 (Decision BDH). Given g, ga, gb, gc ∈ G1, h, ha, hb ∈ G2, and Z ∈ GT

for random exponents a, b, c ∈ Zp, decide whetherZ = e(g, h)abc or a random element
from GT . The Decision BDH assumption holds if all p.p.t algorithms have negligible
advantage in solving the above problem.

Definition 2 (Decision Linear). Given g, ga, gb, gac, gbd, Z ∈ G1, h, ha, hb ∈ G2 for
random exponents a, b, c, d ∈ Zp, decide whether Z = gc+d or a random element
in G1. The Decision Linear assumption holds if all p.p.t algorithms have negligible
advantage in solving the above problem.

Commitment Schemes. A commitment scheme is a two phase scheme that allows a
user to commit to a hidden value, while preserving the ability of the user to reveal the
committed value at a later stage. The properties of a commitment scheme are hiding:
the value committed to must remain undiscovered until the reveal stage, and binding:
the only value which may be revealed is the one that was chosen in the commit stage.

We use the perfectly hiding commitment scheme proposed by Pedersen [20]: Given a
group G of prime order p with generators g and h, generate a commitment C to x ∈ Zp

by choosing at random openx ← Zp and computing C = gxhopenx . The commitment
is opened by revealing x and openx.

Proofs of Knowledge. We use several existing results to prove statements about discrete
logarithms; (1) proof of knowledge of a discrete logarithm modulo a prime [21], (2)
proof of knowledge of the equality of some element in different representations [22], (3)
proof that a commitment opens to the product of two other committed values [23,24,25],
and (4) proof of the disjunction or conjunction of any two of the previous [26]. These
results are often given in the form of Σ-protocols but they can be turned into zero-
knowledge protocols using efficient zero-knowledge compilers [27,28].

200 J. Camenisch et al.

When referring to the proofs above, we follow the notation introduced by Camenisch
and Stadler [29] for various proofs of knowledge of discrete logarithms and proofs of
the validity of statements about discrete logarithms.

PK{(α, β, δ) : y = gαhβ ∧ ỹ = g̃αh̃δ}
denotes a “zero-knowledge Proof of Knowledge of integers α, β, and δ such that y =
gαhβ and ỹ = g̃αh̃δ holds”, where y, g, h, ỹ, g̃, and h̃ are elements of some groups G =
〈g〉 = 〈h〉 and G̃ = 〈g̃〉 = 〈h̃〉 that have the same order. (Note that some elements in
the representation of y and ỹ are equal.) The convention is that letters in the parenthesis,
in this example α, β, and δ, denote quantities whose knowledge is being proven, while
all other values are known to the verifier. There exists a knowledge extractor which can
extract these quantities from a successful prover.

3 Definitions of Committed Blind Anonymous IBE and PEOKS

3.1 Anonymous Identity-Based Encryption

We recall the definition of identity-based encryption [6]. An IBE scheme Π consists of
the algorithms (IBESetup, IBEExtract, IBEEnc, IBEDec):

IBESetup(1k) outputs parameters params and master secret key msk .
IBEExtract(params,msk , id) outputs the secret key sk id for identity id .
IBEEnc(params, id ,m) outputs ct encrypting m under id .
IBEDec(params, sk id , ct) outputs message m encrypted in ct .

An IBE scheme is anonymous [30], if it is not possible to associate the identity id
used to encrypt a message m with the resulting ciphertext ct (in the context of public
key encryption this is also known as key privacy [31]).

Abdalla et al. [30] define anonymity through a security game in which the adver-
sary receives a ciphertext encrypted with an identity that is randomly picked from two
identities of his choosing. The adversary has to guess the identity used to encrypt the
ciphertext. As in [8], we combine this game with the standard chosen plaintext security
game for IBE in which the adversary needs to guess which message out of two possible
messages was encrypted.1

Definition 3 (Secure Anonymous IBE [30]). Let k be a security parameter. An anony-
mous IBE scheme Π is secure if every p.p.t. adversary A has an advantage negligible
in k in the following game:

Setup. The game runs IBESetup(1k) to generate (params,msk).
Phase 1. A may query an oracle OIBEExtract(params,msk , id) polynomially many
times with input id . The oracle then runs IBEExtract(params,msk , id) and returns
the associated sk id .

Challenge. A presents the simulator two target identities id0, id1, which have not

1 We define an adaptive identity security game as this is required by our IBE to PEOKS
transformation.

Blind and Anonymous IBE and Authorised Private Searches 201

been queried in Phase 1, and two challenge messages m0, m1. The simulator se-
lects two random bits b1 and b2, and returns to A the challenge ciphertext ct =
IBEEnc(params, idb1 ,mb2).
Phase 2. A may again query oracle OIBEExtract(params,msk , id) polynomially many
times on id provided id is not id0 or id1.

Guess.A outputs b′1, b′2. We define the advantage ofA as |Pr[b′1 = b1∧b′2 = b2]−1/4|.

3.2 Committed Blind Anonymous IBE

In standard IBE schemes, a key generation centre KGC executes the key extraction al-
gorithm IBEExtract that returns the secret key sk id corresponding to input identity id .
Green and Hohenberger [10] propose extracting the secret key in a blinded manner. The
blinding action obscures the identity from the KGC . We extend this concept by propos-
ing a committed blind anonymous IBE scheme, where the KGC is given a commitment
to the requested identity. A user can reveal partial information about the identity or
prove statements about it using efficient zero-knowledge proofs about commitments
[32,25].2

A committed blind anonymous IBE scheme consists of the algorithms Π of an IBE
scheme, a secure commitment scheme Commit, and the protocol IBEBlindExtract:

IBEBlindExtract(U(params, id , open id),KGC(params,msk ,C)) generates the se-
cret decryption key sk id for U’s identity id in an interactive key issuing protocol
between U and the KGC . If C = Commit(id , open id), U’s output is a decryption
key sk id and the output of the KGC is empty. Otherwise both parties output ⊥.

Green and Hohenberger [10] construct a security argument for blind-IBE by defin-
ing two properties for the IBEBlindExtract protocol: leak freeness and selective-failure
blindness. Leak freeness requires that IBEBlindExtract is a secure two-party computa-
tion that does not leak any more information than IBEExtract.3 Selective-failure blind-
ness requires that a potentially malicious authority does not learn anything about the
user’s identity during the IBEBlindExtract protocol. Additionally, it cannot cause the
IBEBlindExtract protocol to selectively fail depending on the user’s choice of identity.
We provide adapted versions of these properties for committed blind anonymous IBE.

Definition 4 (Leak Freeness [10]). An IBEBlindExtract protocol of an IBE scheme is
leak free if, for all efficient adversariesA, there exists an efficient simulator S such that
for every value k, no efficient distinguisherD can determine whether it is playing Game
Real or Game Ideal with non-negligible advantage, where

Game Real: Run IBESetup(1k). As many times asD wants, he picks a commitmentC
and A’s input state. A runs IBEBlindExtract(A(params, state),KGC(params,
msk ,C)) with the KGC. A returns the resulting view to D.

2 Technically this can be seen as restricting the blind key derivation queries to a certain language,
membership of which is proven in zero-knowledge.

3 It also implies that the user is required ‘to know’ the id for which she needs a key to be
extracted. We also require that she knows the opening to the commitment.

202 J. Camenisch et al.

Game Ideal: Run IBESetup(1k). As many times asD wants, he picks a commitmentC
and initial input state. S obtains (params, state) and may choose values id and
open id to query an oracleOIBEExtract that knowsmsk and is parameterized with C .
If C = Commit(id , open id), the oracle returns key sk id ← IBEExtract(params,
msk , id), otherwise ⊥. S returns a simulated view to D.

Definition 5 (Selective-Failure Blindness [33]). An IBEBlindExtract protocol is said
to be selective-failure blind if every adversary A has a negligible advantage in the
following game: A outputs params and a pair of identities id0, id1. A random bit b ∈
{0, 1} is chosen, andA is given two fresh commitmentsCb, C1−b and black-box access
to two oracles: U(params, id b, openidb

) and U(params, id1−b, openid1−b
). The U

algorithms produce sk b, sk1−b respectively. If sk b �=⊥ and sk1−b �=⊥, A receives
(sk0, sk1); if only sk1−b =⊥, (ε,⊥); if only sk b =⊥, (⊥, ε); and if sk b = sk1−b =⊥,
A receives (⊥,⊥). Finally, A outputs his guess b′. The advantage of A in this game is
|Pr[b′ = b] − 1/2|.
Following [10], we define a secure committed blind anonymous IBE as follows.

Definition 6 (Secure Committed Blind Anonymous IBE). A committed blind anony-
mous IBE scheme (Π, IBEBlindExtract,Commit) is secure if and only if: (1) The un-
derlying Π is a secure anonymous IBE scheme, (2) Commit is a secure commitment
scheme, and (3) IBEBlindExtract is leak free and selective-failure blind.

3.3 Public Key Encryption with Oblivious Keyword Search

We recall and extend the definition of PEKS [7]. A PEKS scheme Υ = (KeyGen,
PEKS,Trapdoor,Test) consists of the algorithms:

KeyGen(1k) outputs a public key Apub and secret key Apriv .
PEKS(Apub,W,m) outputs a searchable encryption SW of m under keyword W .
Trapdoor(Apub, Apriv,W) outputs a trapdoor TW that allows to search for the key-

word W .
Test(Apub, SW , TW ′) outputs the message m encoded in SW , if W = W ′; otherwise

it outputs ⊥.

This definition of PEKS extends the standard definition [7] by encoding a secret m into
the PEKS element SW generated by the PEKS algorithm. Test outputs this secret when
a match occurs.

A secure PEKS scheme must be chosen plaintext attack (CPA) secure and consistent
[30]. CPA security requires that an attacker cannot distinguish two PEKS elements gener-
ated for keywords and messages of his choice, even if given oracle access toTrapdoor for
otherkeywords.Consistencyrequires that if thesearchableencryptionandthetrapdoorare
computed using differentkeywords, then algorithmTestshould output⊥uponsuch input.

In PEKS, the party holding the secret key Apriv runs the Trapdoor algorithm to ob-
tain the trapdoor TW for a keyword W . Public key encryption with oblivious keyword
search (PEOKS) is an extension of PEKS in which a user U performing a search can
obtain in a committed and blinded manner the trapdoor TW from the trapdoor genera-
tion entity T GE . The T GE only learns a commitment to the search term.

Blind and Anonymous IBE and Authorised Private Searches 203

A PEOKS scheme consists of the algorithms Υ of a PEKS scheme, a secure commit-
ment scheme Commit used to commit to keywords, and the following BlindTrapdoor
protocol:

BlindTrapdoor(U(Apub,W, openW), T GE(Apub, Apriv,C)) generates a trapdoorTW

for a keyword W in an interactive protocol between U and T GE . If C=Commit(W,
openW), U’s output is the trapdoor TW and the output of T GE is empty. Otherwise
both parties output ⊥.

Leak freeness and selective-failure blindness can be defined for BlindTrapdoor follow-
ing the definition for IBEBlindExtract.4 We define the security of PEOKS similarly to
that of a committed blind anonymous IBE scheme, assuming a secure underlying PEKS
scheme.

Definition 7 (Secure PEOKS). A PEOKS scheme (Υ , BlindTrapdoor, Commit) is se-
cure if and only if: (1) The underlying Υ is a secure PEKS scheme, (2) Commit is a
secure commitment scheme, and (3) BlindTrapdoor is leak free and selective-failure
blind.

4 Construction of a Committed Blind Anonymous IBE Scheme
and a Transformation to PEOKS

4.1 The Underlying Anonymous IBE Scheme

We present an anonymous IBE scheme that is adaptive identity secure in the stan-
dard model, based on the anonymous IBE scheme proposed by Boyen-Waters [9].
The Boyen-Waters scheme is selective identity secure. We use a transformation due
to Naccache [12], a variant of that of Waters [17], to achieve the required adaptive
identity security. The use of such a transformation was proposed by Boyen-Waters
[9]. We provide what we believe to be the first proof of security for this variant. Our
scheme supports asymmetric bilinear maps, allowing the use of a wider range of po-
tentially more efficient implementations using different pairing types [34]. Let identity
id ∈ {0, 1}×n and let id1‖ . . . ‖idn = id be the separation of id into � bit integers id i.
Let H1(id) = g0

∏n
i=1 gidi

i and H2(id) = h0
∏n

i=1 hidi

i . Our anonymous IBE scheme
Π = (IBESetup, IBEExtract, IBEEnc, IBEDec) consists of the following algorithms :

IBESetup(1k). Run BMGen(1k) to obtain a bilinear map setup (p,G1, G2, GT , e, g,
h). Choose values α, z0, z1, . . . , zn, t1, t2, t3, t4 ← Z∗

p and keep msk = (α, t1, t2,
t3, t4) as the master key. Compute the system parameters as

params =
(
Ω = e(g, h)t1t2α, g, h, g0 = gz0 , . . . , gn = gzn , v1 = gt1 , . . . ,

v4 = gt4 , h0 = hz0 , . . . , hn = hzn

)
.

4 The inputs are mapped 1-to-1. KeyGen is used instead of IBESetup and Trapdoor instead of
IBEExtract.

204 J. Camenisch et al.

IBEExtract(params,msk , id). Choose two random values r̃1, r̃2 ← Z∗
p and compute

the key

sk id =
(
hr̃1t1t2+r̃2t3t4 , h−αt2H2(id)−r̃1t2 , h−αt1H2(id)−r̃1t1 , H2(id)−r̃2t4 ,

H2(id)−r̃2t3
)

.

IBEEnc(params, id ,msg). To encrypt a message msg ∈ GT , choose s, s1, s2 ← Zp,
and generate the ciphertext

ct =
(
Ωs · msg , H1(id)s, vs−s1

1 , vs1
2 , vs−s2

3 , vs2
4

)
.

IBEDec(params, sk id , ct). Parse sk id as (d0, d1, d2, d3, d4) and ct as (c′, c0, c1, c2,
c3, c4) and return

msg = c′ · e(c0, d0) · e(c1, d1) · e(c2, d2) · e(c3, d3) · e(c4, d4).

Theorem 1. The scheme Π is an adaptive identity secure anonymous IBE scheme un-
der the DBDH and DLIN assumptions. Please see the full version for the proof.

4.2 Blind Extraction Protocol

We introduce an interactive blind key extraction protocol IBEBlindExtract, which ex-
tends algorithm IBEExtract.

Intuition behind our construction. Generating a randomly distributed secret key by
means of the IBEBlindExtract protocol requires the values r̃1, r̃2 to be jointly chosen
by the user and the key issuer in a manner which prevents either party from learning
anything about the other’s randomness. This prevents a user that learns the issuer’s ran-
domness from potentially decrypting messages of other users and an issuer that learns
a user’s randomness from potentially breaking the blindness of the key issued.

The key issuer, KGC , chooses random values r̂1, r̂2 ← Z∗
p , and the user U picks

random values r′1, r
′
2 ← Z∗

p . The key generation protocol may be implemented using
standard secure two-party computation techniques [35], as a protocol in which the user
inputs r′1, r

′
2 and the KGC inputs α, t1, t2, t3, t4, r̂1, r̂2. The user’s output in the protocol

is a secret key

sk id = (hr̃1t1t2+r̃2t3t4 , h−αt2H2(id)−r̃1t2 , h−αt1H2(id)−r̃1t1 , H2(id)−r̃2t4 ,

H2(id)−r̃2t3) ,

with r̃1 = r̂1r
′
1 and r̃2 = r̂2r

′
2. The KGC learns nothing further, and outputs nothing.

By decomposing this protocol into sub-protocols, whose results only require simple
arithmetic operations (addition and multiplication), we obtain an efficient protocol.

Construction. Our committed blind anonymous IBE scheme consists of the algorithms
Π of the underlying IBE scheme, the Pedersen commitment scheme Commit, and the
following IBEBlindExtract protocol:

IBEBlindExtract(U(params, id , open id) ↔ KGC(params,msk ,C)).

Blind and Anonymous IBE and Authorised Private Searches 205

1. KGC chooses at random r̂1, r̂2 ← Z∗
p , and the user U chooses at random u0, u1, u2

← Zp and u3, r
′
1, r

′
2 ← Z∗

p . Implicitly, r̃1 = r̂1r
′
1 and r̃2 = r̂2r

′
2. U computes

Cu3 = Commit(u3, openu3
), and KGC computes Cr̂1 = Commit(r̂1, open r̂1

)
and Cr̂2 = Commit(r̂2, open r̂2

). KGC and U make use of a two-party protocol
for simple arithmetics modulo p (parameterized by Cu3 , Cr̂1 , and Cr̂2). U in-
puts u0, u1, u2, u3, openu3

, r′1, r
′
2 and KGC inputs α, t1, t2, t3, t4, r̂1, open r̂1

, r̂2,
open r̂2

, openx0
, openx1

, openx2
. If Cu3 = Commit(u3, openu3

), Cr̂1 = Commit
(r̂1, open r̂1

), and Cr̂2 = Commit(r̂2, open r̂2
) the output of KGC is

x0 = (r̂1r
′
1t1t2 + r̂2r

′
2t3t4) + u0 (mod p) ,

x1 = −(u3/r
′
1 · αt2) + u1 (mod p) ,

x2 = −(u3/r
′
1 · αt1) + u2 (mod p).

Provided that KGC does not abort at that moment, U obtains Cx0 = Commit(x0,
openx0

), Cx1 = Commit(x1, openx1
) and Cx2 = Commit(x2, openx2

) as output.
Otherwise, both parties output ⊥. In Sect. 4.3 we show how to efficiently realise
such a protocol.

2. U computes ID′ = H2(id)u3 , where u3 is a blinding value, and sends ID′ to KGC.
U proves that the identity in ID′ corresponds to Cid and that ID′ is well-formed
using Cu3 . KGC returns ⊥ if the proof fails. Details about this proof of knowledge
can be found in Appendix A.

3. KGC computes

sk id
′ =(hx0 , hx1ID ′−r̂1t2 , hx2ID ′−r̂1t1 , ID ′−r̂2t4 , ID ′−r̂2t3).

4. KGC sends the blinded key sk id
′ = (d′0, d

′
1, d

′
2, d

′
3, d

′
4) to U , and engages in a proof

of knowledge that it is correctly constructed. The proof assures U that KGC’s cho-
sen values r̂1, r̂2, openr̂1 , openr̂2 , t1, t2, t3, t4, x0, x1, x2, openx0 , openx1, openx2

correspond to sk id
′ and to the commitments Cr̂1 ,Cr̂2 ,Cx0 ,Cx1 and Cx2 (see Ap-

pendix A). If the proof fails, U returns ⊥. Otherwise, she computes

sk id = (d0, d1, d2, d3, d4) = (d′0h
−u0 , (d′1h

−u1)r′
1/u3

, (d′2h
−u2)r′

1/u3
, d′3

r′
2/u3 ,

d′4
r′
2/u3) .

Theorem 2. The IBEBlindExtract protocol provides a leak-free and selective-failure
blind committed blind extraction protocol for the adaptive identity secure anonymous
IBE scheme.

Proof. Leak freeness: Note that the simulator S can rewind an instance of the adversary
A that he runs internally. He simulates the communication between the distinguisher D
and A by passing D’s input to A and A’s output to D.

In the two party protocol S can provide random input. Using rewinding techniques,
S extracts A’s input r′1, r′2, and u0, u1, u2, u3 to the two party computation protocol. In
the next step of the blind issuing protocol A must send ID ′ = H2(id)u3 together with
a proof of knowledge of a correct representation of ID ′ and Cid . S uses its rewinding
access to A in order to also extract id , and open id .

206 J. Camenisch et al.

Next S submits id , open id to OIBEExtract to obtain a valid secret key sk id = (d0, d1,

d2, d3, d4). S returns (d0·hu0 , d
u3/r′

1
1 hu1 , d

u3/r′
1

2 hu2 , d
u3/r′

2
3 , d

u3/r′
2

4) to A. These values
are distributed in the same way as in IBEBlindExtract.

Selective-failure blindness:A provides params, and two identities id0, id1. The game
chooses a random bit b. A is given commitments Cb = Commit(idb, openb) and
C1−b = Commit(id1−b, open1−b). A has blackbox access to two oracles U(params,
id1−b, open1−b) and U(params, id b, openb).

Note that once an oracle U is activated, A can run a two-party protocol with the
oracle, the result of which are three randomly distributed values in Zp (x0, x1, x2). In
the next step, the oracle provides a randomly distributed value in G2 (ID ′), to A. Then
the oracle performs a zero-knowledge proof with A.

Suppose that A runs one or both of the oracles up to this point. Up to now the distri-
butions of the two oracles are computationally indistinguishable. (Otherwise we could
break the security of the two party computation, the hiding property of the commitment
scheme or the witness indistinguishability of the zero-knowledge proof. The latter is
implied by the zero-knowledge property of the proof system.)

A must provide values (d′0, d
′
1, d

′
2, d

′
3, d

′
4) and a proof that these values were cor-

rectly computed. We can assume that A chooses these values using an arbitrary com-
plex strategy. We show that any adversary A can predict the output ski of U without
further interaction with the oracles:

1. A does the proof of Step 4 internally with itself. If the proof fails, it records sk0 = ⊥.
Otherwise, the adversary temporarily records sk0=IBEExtract(params,msk , id0).

2. In turn, A generates different (d′0, d′1, d′2, d′3, d′4) and executes a second proof of
knowledge (again internally), now for the second oracle. It performs the same
checks and recordings for sk1 and id1.

3. Finally the adversary predicts (sk0, sk1), if both sk0 �=⊥ and sk1 �=⊥; (ε,⊥), if
only sk1 =⊥; (⊥, ε), if only sk0 =⊥; and (⊥,⊥), if sk0 = sk1 =⊥.

These predictions result in the same distributions as that returned by the oracle, as the
same checks are performed. Moreover, note that for the case that keys are returned by
the game they are in both cases equally distributed random keys because of the random
values r′1 and r′2 contributed by the oracles.

4.3 Two-Party Protocol for Modulo Arithmetics

The protocol uses a public key additive homomorphic encryption scheme with encryption
and decryption functionsHEnc and HDec, such that the following hold: HEnc(x)⊗ y =
HEnc(xy) and HEnc(x)⊕HEnc(y) = HEnc(x+ y). In addition, the encryption should
be verifiable [36], meaning it should allow for efficient proofs of knowledge about the
encrypted content. The key pair is generated by the KGC and is made available to U .

We describe an efficient committed two-party computation protocol for computing
algebraic terms with addition and multiplication modulo a prime p that generalises ideas
presented in [37]. The round complexity of the protocol is 3 if non-interactive proofs of
knowledge are used and 12 if interactive proofs of knowledge are used.5

5 The round complexity can be reduced by interleaving the proofs and piggybacking some of
the messages.

Blind and Anonymous IBE and Authorised Private Searches 207

Let x1, . . . , xN , openx1
, . . . , openxN

∈ Zp and y1, . . . , yM , openy1
, . . . , openyM∈ Zp be the secret input variables and openings of U and KGC respectively and let

Cx1 , . . . ,CxN and Cy1 , . . . ,CyM be public commitments to the xi and yi. We provide
a protocol for computing the multivariate polynomial

∑L
=1 a

∏N
n=1 xu�n

n

∏M
m=1 yv�m

m

where u11, . . . , uLN , v11, . . . , vLM ∈ {0, 1} and a ∈ Zp are publicly known values.
The parties can do parts of the computation locally: U sets X = a

∏N
n=1 xu�n

n

mod p and KGC sets Y =
∏M

m=1 yv�m
m mod p. To prove that the computation was

done correctly U computes commitment CX�
= Commit(X, openX�

) and KGC com-
putes CY�

= Commit(Y, openY�
).

The parties can complete the computation using homomorphic encryption as de-
scribed in the following protocol (The message space of the homomorphic encryption
needs to be at least 2k�p2). The

⊕
operator denotes the homomorphic addition of mul-

tiple ciphertexts.

U � � KGC
{e	}L

	=1� {e	 = HEnc(Y)}L
	=1

ex =
(⊕L

	=1(e	 ⊗ X)
)

PK1� �
⊕(HEnc(r) ⊗ p) ex �

PK2� �
x = Dec(ex)
openx ← Zp

Cx� Cx = gxhopenx

PK3� �

The KGC encrypts each Y and sends it to the user. The proof PK1 assures U that
CY�

was computed correctly using the values in commitments Cyi and that the e are
encryptions of the values committed to in the CY�

.
Next, U computes the encrypted result. The term r ·p, 0 < r < (2k−1)�p is added to

avoid possible modulo overflows from revealing any statistically significant information
about U’s input. U proves to KGC in PK2 that CX�

was computed correctly using
the values in commitments Cxi and that ex was computed correctly using the values
committed to in the CY�

.
As a last step, KGC decrypts ex, does a single modulo p reduction to obtain the result

of the computation, and commits to the result in commitment Cx. InPK3 KGC proves to
the user that Cx contains the same value modulo p as encrypted in ex. For details on how
to do the proofs PK1, . . . ,PK3 we refer to [29,38]. An efficient implementation of such
a protocol is presented in [37] using the Paillier homomorphic encryption scheme [39].

4.4 Transformation to PEOKS

We construct a suitable PEKS scheme for our application scenario using the anonymous
IBE scheme presented in Sect. 4.1. We follow a generic transformation by Abdalla et
al. [30] from IBE to PEKS. The transformation takes as input the algorithms Π of a
secure IBE scheme and returns a PEKS scheme Υ = (KeyGen,PEKS,Trapdoor,Test).
Note that our scheme differs from preexisting schemes as Test returns a secret message
in case of a match:

208 J. Camenisch et al.

KeyGen(1k) runs algorithm IBESetup(1k) and returns the key pair (Apub, Apriv), the
(params,msk) of the IBE scheme.

PEKS(Apub,W,msg) takes as input public key Apub, keyword W and message msg . It
outputs a searchable encryption SW of message msg under keyword W as follows:
1. Generate a random value C2 ∈ {0, 1}k.
2. Compute C1 = IBEEnc(Apub,W,msg‖C2).
3. Output the tuple SW = (C1, C2).

Trapdoor(Apub, Apriv,W) outputs a trapdoor TW = IBEExtract(Apub, Apriv,W)
that enables a search for the keyword W .

Test(Apub, SW , TW ′) parses SW as (C1, C2) and computes M = IBEDec(Apub, TW ′ ,
C1). If M = msg‖C2, it outputs the message msg encoded in SW ; if there is no
match, it outputs ⊥.

In order to achieve the oblivious property in our PEOKS scheme, we extend algo-
rithm Trapdoor to a BlindTrapdoor protocol. Our PEOKS scheme is thus composed
of the algorithms Υ of the PEKS scheme, a secure commitment scheme Commit, and a
BlindTrapdoor protocol where

BlindTrapdoor(U(Apub,W, openW), T GE(Apub, Apriv,C)) generates a trapdoorTW

for a keyword W by running protocol IBEBlindExtract(U(Apub,W, openW),KGC
(Apub, Apriv,C)).

5 Authorised Private Searches on Public Key Encrypted Data

We describe a public key encrypted database that enables oblivious searches. Our con-
struction is similar to the audit log presented in [3]. Each data record is encrypted using
a fresh random symmetric key and associated with several searchable encryptions. Each
searchable encryption is generated using input of a keyword that describes the content
of the record, and a secret message that contains the symmetric key. Once an investiga-
tor obtains a trapdoor that matches a searchable encryption (i.e., both were computed on
input the same keyword), she is returned the symmetric key that allows her to decrypt
the record.

In constructing authorised private searches, we ensure that neither the keywords of
interest for the investigator nor the search results are revealed. For the first property,
we employ the PEOKS scheme. The investigator runs protocol BlindTrapdoor with
the trapdoor generation entity (T GE) in order to retrieve a trapdoor for a committed
keyword in a blind manner. The committed blind extraction allows the T GE to con-
struct policies detailing the data that a particular investigator can obtain. To enforce
these restrictions, the T GE requires the investigator to prove in zero-knowledge that
the keyword used to compute the commitment belongs to a certain language. We also
consider a party (such as a judge) in charge of deciding which keywords can be utilized
by the investigator, and describe how the investigator obtains a search warrant from the
judge and shows it to the T GE . The judge and the T GE are only involved in providing
search warrants and trapdoors respectively, and can remain off-line when not required
to perform these tasks.

Blind and Anonymous IBE and Authorised Private Searches 209

To obscure the search results, we describe a data structure that allows the use of
a PIR scheme and that integrates concepts from [40] to improve the efficiency of the
searches6. Since the PIR queries are made over encrypted data, we also ensure that
the investigator does not obtain any information about data described by keywords for
which she was not authorised to retrieve a trapdoor. It should also be noted that, due to
the public key setting, the database only stores the public key of the PEOKS scheme.
Thus, in the event that it gets corrupted, records encrypted prior to corruption remain
secure (forward secrecy).

Details on data storage. We describe a data structure in which only one searchable
encryption per keyword is computed, while still allowing each data record to be de-
scribed by several keywords. Once the investigator finds the searchable encryption that
matches her trapdoor, she receives the information needed to decrypt all the data records
described by the corresponding keyword. This mechanism of data storage allows for an
efficient search (not all the searchable encryptions need to be tested) and is privacy en-
hancing in so far as it hides the number of keywords that describe a record from the
investigator.

We use encrypted linked lists and store the encrypted nodes at random positions in
the PIR database to hide which node belongs to which linked list, as introduced in [40].
We construct one linked list per keyword. Each node in the linked list contains the
information required to retrieve and decrypt one record associated with the keyword. A
node contains a PIR query index PR for the data record and the key KR used to encrypt
the record. It also stores a PIR query index to the next node on the list, and the key
used to encrypt it. To encrypt the nodes and the records of data, we employ a symmetric
encryption algorithm Enc.

When the data holder adds a keyword W for which no searchable encryption has
previously been computed, he chooses a symmetric key KN1 and runs algorithm PEKS
(Apub,W,KN1 ||PN1) to compute the searchable encryption. PN1 is the PIR query in-
dex to the first node of the list and KN1 is the symmetric key used to encrypt this node.
He then builds the node N1 = (PR,KR, PN2 ,KN2), computes Enc(KN1 , N1), and
stores the node in the position given by PN1 . Finally, he deletes PN1 and KN1 from his
memory but keeps values PN2 and KN2 . PN2 and KN2 are the PIR query index and the
key for the next node in the list. In position PN2 a flag is stored to indicate the end of
the list.

When the data holder chooses this keyword to describe another record R′, it builds
the second node N2 = (PR′ ,KR′ , PN3 ,KN3), runs Enc(KN2 , N2), and stores the en-
crypted node in the position given by PN2 . It deletes PN2 and KN2 from his memory
but keeps PN3 and KN3 to facilitate adding another node to the list. He also stores the
flag in PN3 . This iterative procedure is applied as many times as required.

If a data record is described by several keywords, one node per keyword is generated
and stored in its corresponding linked list. All these nodes contain the same PIR query
index to the data record and the same key used to encrypt the record.

6 The amount of PIR queries may give some indication about the number of records retrieved.
This information can be hidden through dummy transactions up to an upper limit on the num-
ber of matching records.

210 J. Camenisch et al.

Authorizing and performing private searches. An investigator that wants to search on
the encrypted database follows the procedure:

1. The investigator requests authorisation from the judge to perform a search on a
given database for a particular keyword W . Assuming the investigator holds the
relevant credentials, the judge grants a warrant. In practice, this means that the
investigator runs a protocol GetCredential with the judge, which returns to the in-
vestigator a credential cred with attribute W from the judge.

2. The investigator requests a trapdoor from the T GE . This is a three step process:
(a) The investigator has a commitment C = Commit(W, openW) to the keyword
W for which she wants to receive a trapdoor, and sends C to the T GE .
(b) The investigator and the T GE run an interactive protocol, ShowCredential. This
verifies the validity of the credential presented by the investigator and the claim that
the keyword used to compute the commitment is the same as the keyword contained
in the credential’s attributes.
(c) The investigator and the T GE execute the BlindTrapdoor protocol, with inves-
tigator input Apub,W, openW and T GE input Apub, Apriv,C . The protocol returns
no output to the T GE , and a trapdoor TW to the investigator.

3. The investigator downloads the list of PEKS elements for all the keywords.
4. If an investigator performs a successful Test for a PEKS element (using the correct

trapdoor), the algorithm returns the key and PIR query index pair that correspond to
the first node of the list. The investigator uses the PIR scheme to retrieve the node
and the first record. As above, each node returns sufficient information to link to
the next node, until all data related to the keyword have been returned.

Remark. GetCredential and ShowCredential can be implemented using conventional
signatures: during GetCredential the judge signs C = Commit(W, openW) to create
the credential cred (a signature on C); in the ShowCredential protocol the investigator
sends cred together with C and the T GE verifies the signature. More sophisticated cre-
dential protocols [41,42,43,44,45] allow the implementation of more complex policies,
such as, e.g., the time restricted searches described below.

Time restricted searches. In PEKS, the notion of temporary keyword search [30] im-
plies that searchable encryptions and trapdoors are related to a specific time period in
such a way that, even if the keyword used to compute them is the same, they do not
match if the time period is different. The simplest way to build PEKS with tempo-
rary keyword search is to concatenate keywords W and time periods t when computing
searchable encryptions and trapdoors. When applying this solution to our database, mul-
tiple linked lists are generated for the same keyword concatenated, each corresponding
to a different time frame.

This function is useful to provide searches in which the investigator is allowed to
obtain all records described by a specific keyword that were stored within a restricted
period of time. In this case, the credential issued by the judge is extended to contain two
additional attributes t1 and t2 corresponding to a start time-stamp and end time-stamp
which limit the period of an investigation. When showing the credential to the T GE ,
the investigator computes a commitment to W ||t and also proves that t1 ≤ t ≤ t2. This
can for instance be done using the techniques described in [32].

Blind and Anonymous IBE and Authorised Private Searches 211

6 Conclusion and Future Work

We have defined and implemented a searchable encryption scheme, PEOKS, that allows
for oblivious searches on public key encrypted data. For this purpose, we have extended
the PEKS primitive by adding blind trapdoor extraction with committed keywords. In
order to implement PEOKS, we have defined committed blind anonymous IBE and we
have provided a construction of such a scheme. Finally, we applied PEOKS to build a
public key encrypted database that permits authorised private searches.

As future work we leave the design of a blind key extraction protocol secure under
concurrent execution. Furthermore, more efficient anonymous identity-based encryp-
tion schemes with more light weight key derivation protocols would translate directly
into highly efficient PEOKS. Unfortunately, the scheme in [8] does not seem fit for our
purposes as it uses stateful randomness in the secret key generation phase.

We observe that in a practical application it is likely that an investigator would want
to search for data described by a predicate formed by conjunctions and disjunctions
of keywords. Future work would focus on using attribute-hiding predicate encryption
[46] to build a scheme that permits oblivious searches on encrypted data by specifying
predicates of keywords.

Acknowledgements

The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no
216483. It has also been funded by a Science Foundation of Ireland Basic Research
Grant, project number 04/BR/CS0692.

References

1. Directive 2006/24/ec of the european parliament and of the council. Official Journal of the
European Union (April 2006)

2. Ostrovsky, R., Skeith III, W.E.: Private searching on streaming data. J. Cryptology 20(4),
397–430 (2007)

3. Waters, B.R., Balfanz, D., Durfee, G., Smetters, D.K.: Building an encrypted and searchable
audit log. In: NDSS, The Internet Society (2004)

4. Chor, B., Gilboa, N., Naor, M.: Private information retrieval by keywords (1998)
5. Ogata, W., Kurosawa, K.: Oblivious keyword search. J. Complexity 20(2-3), 356–371 (2004)
6. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In: Kilian, J.

(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)
7. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with key-

word search. In: Proceedings of Eurocrypt, vol. 4 (2004)
8. Gentry, C.: Practical identity-based encryption without random oracles. In: Vaudenay, S. (ed.)

EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006)
9. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without random

oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307. Springer, Hei-
delberg (2006)

212 J. Camenisch et al.

10. Green, M., Hohenberger, S.: Blind identity-based encryption and simulatable oblivious trans-
fer. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 265–282. Springer,
Heidelberg (2007)

11. Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryption without random
oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp.
223–238. Springer, Heidelberg (2004)

12. Naccache, D.: Secure and practical identity-based encryption. Information Security,
IET 1(2), 59–64 (2007)

13. Chatterjee, S., Sarkar, P.: Trading time for space: Towards an efficient ibe scheme with
short(er) public parameters in the standard model. In: Won, D.H., Kim, S. (eds.) ICISC 2005.
LNCS, vol. 3935, pp. 424–440. Springer, Heidelberg (2006)

14. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J.
ACM 51(4), 557–594 (2004)

15. Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. J. ACM 50(6), 852–
921 (2003)

16. Goldwasser, S., Kalai, Y.T.: On the (in)security of the fiat-shamir paradigm. In: FOCS, p.
102. IEEE Computer Society, Los Alamitos (2003)

17. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)

18. Coull, S., Green, M., Hohenberger, S.: Controlling access to an oblivious database us-
ing stateful anonymous credentials. Cryptology ePrint Archive, Report 2008/474 (2008),
http://eprint.iacr.org/

19. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: FOCS,
pp. 41–50 (1995)

20. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In:
Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg
(1992)

21. Schnorr, C.P.: Efficient signature generation for smart cards. Journal of Cryptology 4(3),
239–252 (1991)

22. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO
1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

23. Camenisch, J., Michels, M.: Proving in zero-knowledge that a number n is the product of two
safe primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 107–122. Springer,
Heidelberg (1999)

24. Camenisch, J.L.: Group Signature Schemes and Payment Systems Based on the Discrete
Logarithm Problem. PhD thesis, ETH Zürich (1998)

25. Brands, S.: Rapid demonstration of linear relations connected by boolean operators. In:
Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 318–333. Springer, Heidelberg
(1997)

26. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified de-
sign of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839,
pp. 174–187. Springer, Heidelberg (1994)

27. Damgård, I.: Concurrent zero-knowledge is easy in practice. Available online at Theory of
Cryptography Library (June 1999)

28. Damgård, I.: On σ-protocols (2002), http://www.daimi.au.dk/˜ivan/Sigma.ps
29. Camenisch, J., Stadler, M.: Proof systems for general statements about discrete logarithms.

Technical Report TR 260, Institute for Theoretical Computer Science, ETH Zürich (March
1997)

http://eprint.iacr.org/
http://www.daimi.au.dk/~ivan/Sigma.ps

Blind and Anonymous IBE and Authorised Private Searches 213

30. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-Lee, J.,
Neven, G., Paillier, P., Shi, H.: Searchable Encryption Revisited: Consistency Properties,
Relation to Anonymous IBE, and Extensions. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 205–222. Springer, Heidelberg (2005)

31. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key encryption.
In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582. Springer, Heidelberg
(2001)

32. Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)

33. Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In: Naor, M.
(ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Heidelberg (2007)

34. Galbraith, S., Paterson, K., Smart, N.: Pairings for cryptographers. Cryptology ePrint
Archive, Report 2006/165 (2006), http://eprint.iacr.org/

35. Yao, A.C.: Protocols for secure computations. In: Proc. 23rd IEEE Symposium on Founda-
tions of Computer Science (FOCS), pp. 160–164 (1982)

36. Camenisch, J., Damgård, I.: Verifiable encryption, group encryption, and their applications
to group signatures and signature sharing schemes. In: Okamoto, T. (ed.) ASIACRYPT 2000.
LNCS, vol. 1976, pp. 331–345. Springer, Heidelberg (2000)

37. Camenisch, J., Koprowski, M., Warinschi, B.: Efficient blind signatures without random or-
acles. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 134–148. Springer,
Heidelberg (2005)

38. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete loga-
rithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Hei-
delberg (2003)

39. Paillier, P.: Public-key cryptosystems based on composite residuosity classes. In: Stern, J.
(ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–239. Springer, Heidelberg (1999)

40. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption:
improved definitions and efficient constructions. In: Juels, A., Wright, R.N., di Vimercati,
S.D.C. (eds.) ACM Conference on Computer and Communications Security, pp. 79–88.
ACM, New York (2006)

41. Brands, S.: Rethinking Public Key Infrastructure and Digital Certificates— Building in Pri-
vacy. PhD thesis, Eindhoven Inst. of Tech. The Netherlands (1999)

42. Camenisch, J., Lysyanskaya, A.: Efficient non-transferable anonymous multi-show creden-
tial system with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

43. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S.,
Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidel-
berg (2003)

44. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bi-
linear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer,
Heidelberg (2004)

45. Bangerter, E., Camenisch, J., Lysyanskaya, A.: A Cryptographic Framework for the Con-
trolled Release Of Certified Data. In: 12th International Workshop on Security Protocols
2004, Cambridge, England, April 26, 2004, pp. 20–42. Springer, Heidelberg (2004)

46. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial
equations, and inner products. Cryptology ePrint Archive, Report 2007/404 (2007),
http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/

214 J. Camenisch et al.

A Proofs of Knowledge of Correct Key Derivation

Proof for Step 2. The KGC has commitment Cu3 to u3, and Cid to the user’s choice
of id . In Step 2 of our IBEBlindExtract protocol the user does the following proof of
knowledge to convince the KGC that her message ID′ is well formed:

PK{(id1, . . . , idn, u3, id1 · u3, . . . , idn · u3, openid, openu3 ,

openid · u3) : Cid = (
n∏

i=1

(h2l(i−1)

0)idi)hopenid

1 ∧ (1)

n∧
i=1

0 ≤ idi < 2l ∧ Cu3 = hu3
0 h

openu3
1 ∧ (2)

1 = Cu3
id (

n∏
i=1

((1/h0)2
l(i−1)

)idi·u3)(1/h1)openid·u3∧ (3)

ID′ = hu3
0

n∏
i=1

hidi·u3
i } . (4)

The user proves that id is correctly encoded in ID ′. This is done in two steps: (1) and
(2) prove that id is correctly split up into its n components id i; (3) and (4) prove that
ID′ contains a blinded version of H2(id). This requires to prove multiplicative relations
between u3 and the idi in (3).

Proof for Step 4. The user has commitments Cr̂1 ,Cr̂2 and Cx0 , Cx1 , and Cx2 . In Step
4 of our IBEBlindExtract protocol the KGC does the following proof of knowledge to
convince the user that the blinded key (d′0, d′1, d′2, d′3, d′4) it returns is well formed:

PK{(r̂1, r̂2, openr̂1 , openr̂2, t1, t2, t3, t4, x0, x1, x2, openx0,

openx1 , openx2 ,−r̂1t1,−r̂1t2,−r̂2t3,−r̂2t4) :

Cr̂1 = hr̂1
0 h

openr̂1
1 ∧ Cr̂2 = hr̂2

0 h
openr̂2
1 ∧ v1 = gt1 ∧ v2 = gt2 ∧ v3 = gt3∧

v4 = gt4 ∧ Cx0 = hx0
0 h

openx0
1 ∧ Cx1 = hx1

0 h
openx1
1 ∧ Cx2 = hx2

0 h
openx2
1 ∧

1 = (1/v1)r̂1(1/g)−r̂1t1 ∧ 1 = (1/v2)r̂1(1/g)−r̂1t2 ∧ 1 = (1/v3)r̂2(1/g)−r̂2t3∧
1 = (1/v4)r̂2(1/g)−r̂2t4 ∧ d′0 = hx0 ∧ d′1 = hx1ID ′−r̂1t2 ∧ d′2 = hx2ID ′−r̂1t1∧
d′3 = ID ′−r̂2t4 ∧ d′4 = ID ′−r̂2t3} .

By means of this proof the KGC demonstrates to the user that it uses the correct values
for x0, x1, x2, t1, t2, t3, t4, r̂1, r̂2 when it computes (d′0, d

′
1, d

′
2, d

′
3, d

′
4). The proof in-

volves proving the multiplicative relations −r̂1t1,−r̂1t2,−r̂2t3,−r̂2t4 between t1, t2,
t3, t4, r̂1, r̂2.

Anonymous Hierarchical Identity-Based
Encryption with Constant Size Ciphertexts

Jae Hong Seo1,�, Tetsutaro Kobayashi2, Miyako Ohkubo2,
and Koutarou Suzuki2

1 Department of Mathematical Sciences and ISaC-RIM, Seoul National University,
Seoul, Korea

jhsbhs@gmail.com
2 NTT Information Sharing Platform Labs, Tokyo, Japan

{kobayashi.tetsutaro,ookubo.miyako,suzuki.koutarou}@lab.ntt.co.jp

Abstract. We propose an anonymous Hierarchical Identity-Based En-
cryption (anonymous HIBE) scheme that has constant size ciphertexts.
This means the size of the ciphertext does not depend on the depth of the
hierarchy. Moreover, our scheme achieves the lowest computational cost
because during the decryption phase the computational cost of decryp-
tion is constant. The security can be proven under reasonable assump-
tions without using random oracles because it is based on the composite
order bilinear group. Our scheme achieves selective-ID security notion.

1 Introduction
Identity-Based Encryption (IBE) is a topic of focus as a useful technique. Studies
are proceeding in various directions, and numerous applications using IBE have
been presented. A searchable encryption scheme has been discussed. At first,
schemes allowed keywords that were not encrypted. However, in such schemes,
an anonymous request for a keyword cannot be satisfied by using simple IBE
schemes. To provide this function, anonymous IBE was proposed. The anony-
mous IBE scheme provides a very useful function, i.e., anonymity of ID. An
anonymous IBE ciphertext does not leak any information about the receiver’s
identity. Such a useful property can be applied to keyword searchable encryption
while maintaining anonymity of the keyword [1,5,11].

AnonymousHierarchical Identity-BasedEncryption (anonymousHIBE),which
handles IDs hierarchicallymaintaining the anonymity of an ID andkeys, canbedel-
egated even if a blinding ID is used. Anonymous HIBE allows some protocols using
anonymous HIBE to be extended; for example, by applying keyword-searchable
encryption, keywords can be treated hierarchically while maintaining anonymous
keyword information.

� This work was done while the first author was visiting NTT Information Sharing
Platform Labs. He was supported by the Science Research Center(SRC) program of
the Korea Science and Engineering Foundation (KOSEF) with a grant funded by the
Korean govement (Ministry of Science and Technology (MOST), Grant R11-2007-
035-01002-0).

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 215–234, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

http://dx.doi.org/10.1007/978-3-642-00468-1_29

216 J.H. Seo et al.

1.1 Related Works: ID-Based Encryption Algorithms

After Horwitz and Lynn defined the notion of Hierarchical ID-Based Encryp-
tion (HIBE)[18], many efficient and provably secure HIBE schemes were pro-
posed. Gentry and Silverberg proposed an efficient and secure HIBE scheme,
that achieves full-ID CPA (chosen plaintext attack) security; however, it was
proven with a random oracle (GS-HIBE)[17]. Canetti, Halevi and Katz[13] sug-
gested a weaker security notion, called selective-ID, and they also proposed a
selective-ID secure HIBE without using random oracles; however, their scheme
is an inefficient one. An efficient and selective-ID secure HIBE scheme in the
standard model was proposed by Boneh and Boyen (BB-HIBE) [2]. However the
ciphertext of the BB-HIBE scheme is depends on the depth of the hierarchy.
To improve the efficiency, HIBE with constant size ciphertexts was presented by
Boneh, Boyen and Goh (BBG-HIBE)[3]. In their scheme, a private key can be
delegated while maintaining a constant ciphertext size. BBG-HIBE was proven
without using random oracles, and it achieves selective-ID security. Full-ID se-
cure schemes that do not use random oracles were presented by Waters[23], Chat-
terjee and Sarkar [15]. All of the above mentioned HIBE schemes were proposed
assuming that IDs are known to everyone, so they cannot provide anonymity of
ID. We call such HIBE schemes non-anonymous HIBE schemes.

On the other hand, the concepts of anonymous IBE and anonymous HIBE
were shown by Abdalla et al. [1], and formal definitions of them were also given
in that paper. However, a concrete construction of anonymous HIBE was not
proposed. A concrete constructions of anonymous IBE in the standard model
was proposed by Gentry[16] and a concrete construction of anonymous HIBE
was proposed by Boyen and Waters (BW-HIBE)[12]. Both of these schemes
were proposed in the standard model and are selective-ID CPA secure, which
can be proven without using random oracles. Shi and Waters proposed a dele-
gatable hidden-vecor encryption (dHVE) whose definition is a generalization of
anonymous HIBE, i.e., anonymous HIBE is a special case of the dHVE scheme
(SW-dHVE) [22]. The scheme takes a composit order bilinear group, which was
introduced by Boneh, Goh, and Nissim [7], to obtain property of anonoymity.
However, in the BW-HIBE and SW-dHVE schemes, the ciphertext size depends
on the hierarchy depth. The ciphertext size has a great impact on practicality,
so while their results are very interesting, efficiency remains an open problem.

1.2 Our Results

Motivation: The size of ciphertext affects the efficiency and feasibility of vari-
ous applications using HIBE schemes, and if the ciphertext size depends on the
depth the hierarchy depth, the efficiency and feasibility of applications also de-
pend on the hierarchy depth. The HIBE scheme with constant size ciphertexts
can extend the feasibility and convenience of applications. Additionally, some
applications need anonymity of ID. For example, Keyword-search encryption is
one of such applications. In keyword-search encryption scheme, each keyword
needs a ciphertext, therefore totally the size of ciphertexts for many keywords

Anonymous Hierarchical Identity-Based Encryption 217

is significant impact on the efficiency of keyword search. In such a case the
size of ciphertext is serious problem. However, none of the previous results for
anonymous HIBE could provide constant size ciphertexts.

Contribution: We present an anonymous HIBE scheme with constant size ci-
phertexts. Our scheme achieves selective-ID CPA security without using random
oracles, and is based on a new assumption, the �-composite Diffie-Hellman as-
sumption The details are shown in section 2.3. The technical highlight of our
paper is the technique for achieving constant size ciphertexts even though the
number of layers is increased in HIBE, keeping anonymity of IDs, and security
proofs using game-based proof techniques. The difficulties in devising an efficient
anonymous HIBE scheme are constructing a length of ciphertext that is inde-
pendent of hierarchy depth and maintaining the anonymity of key delegation
hierarchical ID. Our idea is effected by BBG-HIBE [3], which provides constant
size ciphertexts. However, [3] does not satisfy the requirement of an anonymous
ID. To attain ID anonymity, we need a randomizing method, keeping the prop-
erty of key deligation. Therefore the proposed scheme takes a composite order
bilinear group, and is using a technique improved upon that of in [11]. The HVE
scheme in [11] is not anonymous HIBE; it is a scheme for keyword searchable
encryption. However, the technique for providing keyword anonymity offers us
a key idea for solving key delegation for anonymous HIBE.

There were two anonymous HIBE schemes, BW-HIBE and SW-dHVE1 be-
fore our HIBE scheme. Comparing our construction with these previous two
anonymous HIBE schemes, we see that the ciphertexts in both those schemes
are O(L) group elements, and private keys are O(L2) group elements, where L
is the maximum hierarchy depth. In constract, our scheme uses only four group
elements for a ciphertext, and the private key uses O(L) group elements.

2 Background

2.1 Security Models

We briefly explain the informal security notions of anonymous HIBE. The formal
security definitions may be found in the literature [6,1]. We use a weaker notion
of security introduced by [13,14] in which the adversary commits ahead of time
to the public params that it will attack; i.e., we use the selective security notion.

Semantic security(IND-sID(indistinguishability against selective identity)): The
adversary outputs target identity ID∗ before public parameters are gener-
ated. It can make a private key derivation query for ID such that the ID is
not a prefix of or equal to target identity ID∗. It publishes target message
Msg∗. No poly-time adversary can distinguish between a ciphertext of target
message Msg∗ with target identity ID∗ and a ciphertext of random message
with target identity ID∗.

1 The dHVE and anonymous HIBE schemes were proposed as anonymous HIBE
schemes [22]. Anonymous HIBE has a flaw, but since we can consider dHVE as
an anonymous HIBE scheme, we compare dHVE with our scheme.

218 J.H. Seo et al.

Anonymity(ANON-sID(anonymity against selective identity)): The adversary
outputs target identity ID∗ before public parameters are generated. It can
make private key derivation query for ID such that the ID is not a prefix of or
equal to target identity ID∗. It publishes target message Msg∗. No poly-time
adversary can distinguish between a ciphertext of target message Msg∗ with
target identity ID∗ and a ciphertext of target message Msg∗ with random
identity.

2.2 Bilinear Groups of Composite Order

We will use a bilinear group of composite order pq. Bilinear groups of composite
order were introduced by Boneh, Goh, Nissim [7].

Let G be a group generation algorithm that takes security parameter 1λ as
input and outputs tuple (p, q,G,GT , e) where p and q are distinct primes, G and
GT are cyclic groups of order n = pq, and e: G × G → GT is a non-degenerate
bilinear map; i.e., e satisfies the following properties:

bilinear: For ∀g1, h1 ∈ G and ∀a, b ∈ Z, e(ga
1 , h

b
1) = e(g1, h1)ab.

non-degenerate: For generator g1 of G, e(g1, g1) generates GT .

We assume that group multiplication in G, GT and bilinear map e are all polyno-
mial time computable in λ. Furthermore, we assume that descriptions of G and GT

contain generators as well as identity elements 1G, 1GT of G and GT , respectively.
If there is no confusion, we use 1 for identity irrespective of the group.

We will use the notation Gp and Gq to denote the subgroups of G of order
p and q, respectively, and we will use the notation GT,p and GT,q to denote
subgroups of GT of order p and q, respectively. Then G = Gp × Gq and GT =
GT,p × GT,q. If g1 is a generator of G, then gq

1 and gp
1 are generators of Gp and

Gq, respectively. We use the notation gp and gq to denote generators of Gp and
Gq, respectively.

Note that e(hp, hq) = 1 for all random elements hp ∈ Gp and hq ∈ Gq

because e(hp, hq) = e(ga
p , g

b
q) for some integers a, b, and e(ga

p , g
b
q) = e(gqa

1 , gpb
1) =

e(g1, g1)pqab = 1 for some generator g1 in G.

2.3 Complexity Assumptions

�-weak Bilinear Diffie-Hellman Inversion∗ assumption. The �-Bilinear
Diffie-Hellman Inversion (�-BDHI) assumption has been used for constructing
cryptographic schemes [21,2,3,4]. Boneh, Boyen and Goh introduced a slightly
weaker assumption, �-weak BDHI∗, denoted by �-wBDHI∗ to design HIBE with
constant size ciphertexts in [4]. Our scheme use Decision �-wBDHI∗ in bilinear
groups of composite order to prove semantic security. We say that group gener-
ator G satisfies the (ε, t)-Decision �-wBDHI∗ assumption if no t-time algorithm
has advantage at least ε in solving the Decision �-wBDHI∗ problem in groups
generated by G.

(prime : {p, q}, group : {G,GT}, bilinearmap : {e}) R← G(λ),

Anonymous Hierarchical Identity-Based Encryption 219

n ← pq, gp, h
R← Gp, gq

R← Gq, a
R← Zn

Z ← ((n,G,GT , e), gq, gp, h, g
a
p , g

a2

p , · · · , ga�

p),

T ← e(gp, h)a�+1
, d

R← {0, 1}.
Let T ′ = T if d is 1; otherwise set T ′ to be a uniformly and independently chosen
element from GT,p. We call (Z, T ′) the challenge pair of the Decision �-wBDHI∗.
Give the challenge pair to adversary A. Then A outputs d′, and succeeds if d = d′.
The advantage of A in solving Devision �-wBDHI∗ problem in groups generated
by G is |Pr[A(Z, T) = 1]−Pr[A(Z, R) = 1]|, where the probability is over random
coins in G, a random choice of R ∈ GT,p and the random coins of A.

�-composite Diffie-Hellman assumption. The anonymity of our construc-
tion is based on a new complexity assumption that we call the �-composite Diffie-
Hellman assumption (�-cDH) in bilinear groups with composite order n = pq.
We say that group generator G satisfies the (ε, t)-�-cDH assumption if no t-time
algorithm has advantage at least ε in solving the �-cDH problem in groups gen-
erated by G.

(prime : {p, q}, group : {G,GT}, bilinearmap : {e}) R← G(λ),

n ← pq, gp
R← Gp, gq, R1, R2, R3

R← Gq a, b
R← Zn

Z ← ((n,G,GT , e), gq, gp, g
a
p , g

a2

p , · · · , ga�

p , ga�+1

p · R1, g
a�+1b
p · R2),

T ← gb
p · R3, d

R← {0, 1}.
Let T ′ = T if d is 1; otherwise set T ′ to be a uniformly and independently
chosen element from G. We call (Z, T ′) the challenge pair of the �-cDH. Give
the challenge pair to adversary A. Then A outputs d′, and succeeds if d = d′.
The advantage of A in solving the �-cDH problem in groups generated by G is
|Pr[A(Z, T) = 1]−Pr[A(Z, R) = 1]|, where the probability is over random coins
in G, a random choice of R ∈ G and the random coins of A.

Our assumption holds in a generic model if the factorization of n is hard.
According to the Master Theorem [20], in a generic model, if there is an algo-
rithm A issuing at most qs instructions and having advantage Adv in the above
experiment, then A can be used to find a non-trivial factor of n with probability
at least Adv − O(q2

s(� + 2)/(n1/2)). Therefore, if the factorization of n is hard,
any polynomial time algorithm A has a negligible advantage in n.

Bilinear Subset Decision assumption. This assumption is implied by the
�-cDH assumption and was introduced by Boneh, Sahai, and Waters [10]. We
say that group generator G satisfies the (ε, t)-Bilinear Subset Decision (BSD)
assumption if no t-time algorithm has advantage at least ε in solving the BSD
problem in groups generated by G.

(prime : {p, q}, group : {G,GT}, bilinearmap : {e}) R← G(λ),

220 J.H. Seo et al.

n ← pq, gp
R← Gp, gq

R← Gq,

Z ← ((n,G,GT , e), gq, gp),

T
R← GT,p, d

R← {0, 1}.
Let T ′ = T if d is 1; otherwise set T ′ to be a uniformly and independently
chosen element from GT . We call (Z, T ′) the challenge pair of the BSD problem.
Give the challenge pair to adversary A. Then A outputs d′, and succeeds if
d = d′. The advantage of A in solving BSD problem in groups generated by G
is |Pr[A(Z, T) = 1] − Pr[A(Z, R) = 1]|, where the probability is over random
coins in G, a random choice of R ∈ GT and the random coins of A.

3 Anonymous HIBE with Constant Size Ciphertexts

In this section, we propose an anonymous hierarchical ID-based encryption with
constant size ciphertexts secure under the Decision �-wBDH∗ assumption and �-
cDH assumption. Our construction is based on BBG-HIBE. To attain anonymity,
we construct HIBE over a bilinear group with composite order as HVE in [11]
which can be considered as an anonymous IBE scheme. All non-random elements
of our HIBE scheme are embedded in Gp or GT,p. A private key consists of
only elements in Gp. Public parameters and ciphertexts are blinded by random
elements in Gq or GT,q. Since a pairing result between elements in Gp and
elements in Gq is 1, blinding factors of ciphertexts are removed by calculating a
pairing with a private key in the decryption procedure.

In delegation procedure of the BBG-HIBE scheme, the private key is re-
randomized by using public parameters. However, we cannot use public param-
eters for private key re-randomization in our construction since a private key
must be composed of only elements in Gp. If we use public parameters which
have blinding factors in Gq to re-randomize the private key, then the resulting
private key will also be blinded by elements in Gq. This private key can not
decrypt any ciphertext because the blinding factors of ciphertexts cannot be re-
moved by pairing with the private key in the decryption procedure. Therefore
we add a re-randomization subkey, which is composed of elements in Gp, to the
private key, and the re-randomization procedure uses not only public parameters
but also the re-randomization subkey.

3.1 Construction

Here, we present our HIBE construction.

Setup(λ, L): The setup algorithm generates public system parameters, denoted
by params , and the corresponding master secret key, denoted by MK by using a
security parameter and the maximum hierarchy depth L. First, the setup algo-
rithm generates (p, q,G,GT , e), as explained in the section 2.2. Next, it selects
random elements

g, f, v, h1, · · · , hL, w ∈ Gp, Rg, Rf , Rv, R1, · · · , RL, gq ∈ Gq.

Anonymous Hierarchical Identity-Based Encryption 221

It then, computes G = gRg, F = fRf , V = vRv, H1 = h1R1, · · · , HL = hLRL

and E = e(g, w), and it publishes the description of a group G and params as:

params ← [gq , gp ,G,F ,V ,H1 , · · · ,HL,E]

and retains MK as the secret values:

MK ← [p, q, g, f , v , h1 , · · · , hL, w]

The group description contains n but not p, q.

KeyGenerate(MK , ID): To generate a private key corresponding to ID =
[I1, I2, · · · , Ik] ∈ (Zn)k, the KeyGenerate algorithm first takes MK and ID as
input. Next, it picks random integers r1, r2, s1, s2, t1, t2 ∈ Zn satisfying equa-
tions s1 · t2 − s2 · t1 �≡ 0 mod p and �≡ 0 mod q. The algorithm randomly
chooses integers and checks whether or not the equation holds. If it does not,
the algorithm chooses other random integers and repeats this procedure until
the equation does hold. Since the equation holds without probability p+q−1

n , this
iteration will finish immediately. The private key PvkID consisting of two sub-
keys PvkID

d ∈ (Gp)L−k+3 and PvkID
r ∈ (Gp)2(L−k+3) is output. PvkID

d is used for
decryption and delegation, and PvkID

r is used for re-randomization.

PvkID
d ← [w(v

k∏
i=1

hIi
i)r1f r2 , gr1 , gr2 , hr1

k+1, · · · hr1
L].

PvkID
r ← [[(v

k∏
i=1

hIi
i)s1fs2 , gs1 , gs2 , hs1

k+1, · · ·hs1
L], [(v

k∏
i=1

hIi
i)t1f t2 , gt1 , gt2 , ht1

k+1, · · ·ht1
L]].

Derive(PvkID|k−1 , ID|k): The private key for ID|k ∈ (Zn)k, where 2 ≤ k ≤ L, is
derived from a given private key for the parent,

PvkID|k−1 = [PvkID|k−1

d ,PvkID|k−1
r]

= [[a0, a1, a2, bk, · · · , bL], [[α0, α1, α2, βk, · · · , βL], [α′
0, α

′
1, α

′
2, β

′
k, · · · , β′

L]]].

To generate PvkID|k , pick random integers γ1, γ2, γ3, δ1, δ2, δ3 ∈ Zn satisfying
equations gγ2·δ3−γ3·δ2

p �≡ 1 and gγ2·δ3−γ3·δ2
q �≡ 1 holds. To select four integers

satisfying the equations, uniformly and independently choose four integers from
Zn and check the equation. If the equation does not hold, then choose four other
integers and repeat the procedure. Since four randomly chosen integers γ2, γ3,
δ2 and δ3 satisfy the above equations without negligible probability p+q−1

n , this
iteration will finish immediately. Therefore we consider four randomly chosen
integers satisfying above equations as a random element in GL2 (Zn). Lastly the
Derive algorithm outputs PvkID|k

d and PvkID|k
r as follows.

Step 1 (delegation procedure):

[ζ0, ζ1, ζ2, ηk+1, · · · , ηL] ← [a0 · bIkk , a1, a2, bk+1, · · · , bL]

222 J.H. Seo et al.

[θ0, θ1, θ2, φk+1, · · · , φL] ← [α0 · βIk
k , α1, α2, βk+1, · · · , βL],

[θ′0, θ
′
1, θ

′
2, φ

′
k+1, · · · , φ′

L] ← [α′
0 · β′Ik

k , α′
1, α

′
2, β

′
k+1, · · · , β′

L].

Step 2 (re-randomization procedure):

PvkID|k
d ← [ζ0θ

γ1
0 θ′δ10 , ζ1θ

γ1
1 θ′δ11 , ζ2θ

γ1
2 θ′δ12 , ηk+1φ

γ1
k+1φ

′δ1
k+1, · · · , ηLφ

γ1
L φ′δ1

L]

PvkID|k
r ← [[θγ2

0 θ′δ20 , θγ2
1 θ′δ21 , θγ2

2 θ′δ22 , φγ2
k+1φ

′δ2
k+1, · · · , φγ2

L φ′δ2
L],

[θγ3
0 θ′δ30 , θγ3

1 θ′δ31 , θγ3
2 θ′δ32 , φγ3

k+1φ
′δ3
k+1, · · · , φγ3

L φ′δ3
L]].

We note that private keys generated by the Derive algorithm have the same
structure and distribution as those generated by the KeyGenerate algorithm.
Two random integers r1 and r2 of PvkID|k−1

d are re-randomized as follows:(
r1
r2

)
+

(
s1 t1
s2 t2

)
·
(
γ1
δ1

)
Since we choose γ1 and δ1 uniformly and independently from ∈ Zn, the above
value is also distributed uniformly in (Zn)2. Therefore, PvkID|k

d has the same
distribution as that of the private key generated by the KeyGenerate algorithm.

Random integers of PvkID|k−1
r are re-randomized as follows:

A ·B where A =
(

s1 t1
s2 t2

)
, B =

(
γ2 γ3
δ2 δ3

)
Since A ∈ GL2 (Zn) and B are uniformly chosen from GL2 (Zn), A · B is also
uniformly distributed in GL2 (Zn). Therefore, the private key generated by the
Derive algorithm has the same distribution as that of the private key generated
by the KeyGenerate algorithm.

Encrypt(params , ID,Msg): First, pick a random integer s ∈ Zn and random
elements Z1, Z2, Z3 ∈ Gq to encrypt message Msg ∈ GT for a given identity
ID = [I1, · · · , Ik] ∈ (Zn)k. A random element of Gq can be chosen by raising
gq to random exponents from Zn. Next, the Encrypt algorithm outputs the
ciphertext

CT ← [Msg ·Es, Gs · Z1, F s · Z2, (V
k∏

i=1

HIi)s · Z3] ∈ GT × G3.

Decrypt(PvkID,CT): Consider ID = [I1, · · · , Ik]. To decrypt ciphertext CT =
[C1, C2, C3, C4], using the first three elements of subkey PvkID

d = [a0, a1, a2, bk+1,
· · · , bL] of the private key PvkID, output

Msg ← C1 · e(a1, C4) · e(a2, C3)
e(a0, C2)

.

We can easily check the correctness of the Decrypt algorithm for valid cipher-
text as follows.

Anonymous Hierarchical Identity-Based Encryption 223

C1
e(a1, C4)e(a2, C3)

e(a0, C2)
= Msg · e(g, w)s e(g

r1 , (V
∏k

i=1 HIi)sZ3)e(gr2 , F sZ2)

e(w(v
∏k

i=1 hIi
i)r1f r2 , GsZ1)

= Msg · e(g, w)s e(g
r1 , (V

∏k
i=1 HIi)s)e(gr2 , fs)

e(w(v
∏k

i=1 hIi
i)r1f r2 , gs)

= Msg

The second equality holds because e(hp, hq) = 1 for all hp ∈ Gp and hq ∈ Gq.

3.2 Proof of Security

In this section, we explain the security of our construction. Our construction
is similar to that of BBG-HIBE except for the blinding factors and the re-
randomization subkey of the private key. Since the re-randomization subkey
does not contain an element of the master key, w, adding the re-randomization
subkey does not effect the semantic security. Therefore, we can demonstrate the
semantic security of our construction in a similar manner to that for BBG-HIBE.

To prove anonymity, we use hybrid steps similar to that of [11]. The security
of HVE is based on the composite 3-party Diffie-Hellman assumption, however
we use the L-cDH which is a stronger assumption than c3DH, where L is the
maximum hierarchy depth. The reason we introduce and use the L-cDH assump-
tion is like that the semantic securities of our scheme and BBG-HIBE scheme are
based on the Decision L-BDHI∗ assumption which is a stronger assumption than
the Decision BDH assumption and depends on the maximum hierarchy depth
L. The private key of BBG-HIBE has delegation key elements whose number
depends on the maximum hierarchy depth. Therefore it may be that an adver-
sary attacking the BBG-HIBE scheme or our scheme can get more information
from the private key extraction queries than from other HIBE schemes in which
the private key does not contain delegation key elements and is secure under the
Decision BDH assumption, for example, GS-HIBE and BB-HIBE. The Decision
L-BDHI assumption and the L-cDH assumption guarantee that any computa-
tionally bounded adversary can get no information about the message and the
identity, respectively, from the chosen private keys and the challenge ciphertext
with reasonable constraints.

Theorem 1. If group generator algorithm G satisfies the (t, ε1)-Decision
L-wBDHI∗ assumption and (t, ε2)-L-cDHassumption, then our HIBE scheme with
maximum hierarchy depth L is (qs, t̂1, ε̂1)-IND-sID-CPA secure and (qs, t̂2, ε̂2)-
ANON-sID-CPA secure with t̂1, t̂2 = Θ(t), ε̂1 = Θ(ε1 + ε2), and ε̂2 = Θ(ε1 +
ε2/(1 − p+q−1

n)qs).

We prove Theorem 1 using hybrid experiments under the Decision L-wBDHI∗

assumption and L-cDH assumption.

Game1 : CT1 = [C1, C2, C3, C4]
Game2 : CT2 = [C1 · Rp, C2, C3, C4]
Game3 : CT3 = [C1 · R = R1, C2, C3, C4]

224 J.H. Seo et al.

Game4 : CT4 = [R1, R2, C3, C4]
Game5 : CT5 = [R1, R2, R3, R4]

where Rp is a randomly chosen element from GT,p; R,R1 are uniformly dis-
tributed in GT ; and R2, R3, R4 are uniformly distributed in G.

We show that under the Decision L-wBDHI∗ assumption and L-cDH assump-
tion, there are no algorithms that distinguish between Game1 and Game2, or be-
tween Game2 and Game3, or between Game3 and Game4, or between Game4 and
Game5. Challenge ciphertext CT5 is composed of four random group elements,
so it does not leak any information about the message or the identity. Therefore
indistinguishability between games prove Theorem 1. First, we prove the indistin-
guishability between games, and next we complete the proof of Theorem 1.

Indistinguishability between Game1 and Game2.

Lemma 1. If group generator algorithm G satisfies the (t, ε)-Decision L-wBDHI∗

assumption, there is no adversary with running time t that distinguishes between
Game1 and Game2 with advantage ε.

Proof. We assume that there exists adversary A that distinguishes between
Game1 and Game2 with advantage ε. We show that there is a simulator B using
A to solve the Decision L-wBDH∗ problem with advantage ε. The proof is simi-
lar to the proof of the semantic security of BBG-HIBE except for the treatment
of the re-randomization key in our proof.

The challenger makes a challenge pair (Z, T ′) of the Decision L-wBDHI∗ as-
sumption. which is defined in Section 2.3 and gives the challenge pair to simulator
B. Let Ai = gai

p where gai

p is defined in Z for 1 ≤ i ≤ L + 1.

Initialization. Adversary A chooses challenge identity ID = [I1, I2, · · · , Im], and
sends it to simulator B. Then, B sets Im+1 = · · · = IL = 0. Hence, a simulator
can always consider the length of the challenge identity as L.

Setup. B chooses random integers and random elements

γ, x, y, z, x1, · · · , xL ∈ Zn, Rg, Rf , Rv, Rh,1, · · · , Rh,l ∈ Gq.

A random element of Gp(Gq) can be chosen by raising gp(gq, respectively)
to random exponents from Zn. B sets G = gpRg, F = gz

pRf , V = (gy
p ·∏L

i=1(AL−i+1)Ii)Rv, Hi = gxi
p /AL−i+1Rh,i for 1 ≤ i ≤ L, and E = e(A1, AL ·gγ

p).
Then, B publishes system parameters as

params ← [gq ,G,F ,V ,H1 , · · · ,HL,E]

where params generated by B has the same distribution as that of an actual
scheme. The master key w corresponding to the system parameters is (AL ·gγ

p)a =
AL+1 · Aγ

1 . Since B does not have AL+1, B does not know the master key.

Query Phase1. A queries the private key for ID∗ = [I∗1, I
∗
2, · · · , I∗u], where u ≤

L is distinct from ID and all its prefixes. This private query is carried on an
adaptively chosen identity by A. Let k be the smallest integer such that Ik �= I∗k.

Anonymous Hierarchical Identity-Based Encryption 225

Then, first B generates the private key corresponding to [I∗1, I
∗
2, · · · , I∗k] and runs

the Derive algorithm to make ID∗. B first chooses random integers r1, r2 ∈ Zn.
We posit r̂1 = r1 + ak

I∗k−Ik
. Next, it generates PvkID∗

= [PvkID∗
d ,PvkID∗

r]. We

observe the first component of PvkID∗
d .

w(v
k∏

i=1

hIi∗
i)r̂1f r2 = w · (v

k∏
i=1

hIi∗
i)r1f r2 · (v

k∏
i=1

hIi∗
i)

ak

I∗k−Ik

Since v is gy
p · ∏L

i=1(AL−i+1)Ii and hi is gxi
p /AL−i+1 and f is gz

p which can be
obtained by removing the blinding factor from V , Hi and F , respectively, and
r1, r2 are chosen by simulator, B can compute the second term in the above
expression. We focus on the product of the first and third terms in the above

expression, w · (v∏k
i=1 hIi

i)
ak

I∗k−Ik . Then

w · (v
k∏

i=1

hIi∗
i)

ak

I∗k−Ik = AL+1A
γ
1 · (gy

p

L∏
i=1

(AL−i+1)Ii
k∏

i=1

(gxi
p /AL−i+1)Ii

∗
)

ak

I∗k−Ik

= AL+1A
γ
1 · (gy

pA
Ik−I∗k
L−k+1

L∏
i=k+1

(AL−i+1)Ii
k∏

i=1

g
xiI∗i
p)

ak

I∗k−Ik

= AL+1A
γ
1 · (Ay

kA
Ik−I∗k
L+1

L∏
i=k+1

(AL+k−i+1)Ii
k∏

i=1

A
xiI∗i
k)

1
I∗k−Ik

= Aγ
1 · (Ay

k

L∏
i=k+1

(AL+k−i+1)Ii
k∏

i=1

A
xiI∗i
k)

1
I∗k−Ik

Since B knows all the terms in the above expression, it can compute the first
component of PvkID∗

d . Since the remaining elements in PvkID∗
d do not involve

AL+1, B can compute all of them. PvkID∗
d is distributed as if r̂1 = r1 + ak

Ik−I∗k
and

r2 are the randomness of PvkID∗
d . Since r̂1 and r2 are uniformly and indepen-

dently distributed in Zn, PvkID∗
d has the same distribution as that of the actual

key distribution.
To generate PvkID∗

r , B choose s1, s2, t1, t2 ∈ Zn. Since no elements in PvkID∗
r

associate with master key w, B can compute PvkID∗
r using s1, s2, t1, t2 as its

randomness. Since the random integers used in PvkID∗
r have to satisfy equation

s1 · t2 − s2 · t1 �≡ 0 mod p and �≡ 0 mod q, the simulator has to check equation
gs1·t2−s2·t1

p �≡ 1 and gs1·t2−s2·t1
q �≡ 1. If the random integers used in PvkID∗

r do not
satisfy the equation, then the simulator chooses other random integers s1, s2, t1
and t2 and repeats the same procedure until the equation does hold. Since the
equation holds without probability p+q−1

n , this iteration will finish immediately.
Therefore PvkID∗

has the same distribution as that of the actual key distribution.

226 J.H. Seo et al.

Challenge. A sends a message Msg ∈ G to B. Then, B picks random elements
Z1, Z2 and Z3 from Gq and outputs a challenge ciphertext

CT = [Msg · T ′ · e(A1, h
γ), h · Z1, hz · Z2, hy+ΣL

i=1Iixi · Z3],

where h and T ′ are given from challenge pair (Z, T ′) We consider h as gc
p for

some unknown c ∈ Zn.
If T ′ = T , then CT is equal to

[Msg·e(gp, g
c
p)

aL+1
e(ga

p , g
cγ
p), gc

pZ1, (gz
p)cZ2,(

L∏
i=1

(gxi
p /AL−i+1)Iigy

p

L∏
i=1

AIi
L−i+1)

cZ3]

= [Msg · e(A1, ALg
γ
p)c, GcZ ′

1, F cZ ′
2, (V

L∏
i=1

HIi
i)c Z ′

3]

= [Msg · e(A1, ALg
γ
p)c, GcZ ′

1, F cZ ′
2, (V

m∏
i=1

HIi
i)cZ ′

3].

Therefore, CT is a ciphertext of Game1. Otherwise, T is a uniformly and indepen-
dently chosen element from GT . In that case, the first component of ciphertext
is random from the adversarial point of view. Therefore, CT is a ciphertext of
Game2.

Query Phase2. A adaptively queries B with the same constraints as in Query
Phase 1. B sends corresponding private keys as before.

Guess. B outputs the same bit as A; i.e., if A outputs 1 (Game1), then B also
outputs 1 (T ′ = T). Since B played Game1 with T ′ = T and played Game2
with T ′ as a random element from Gp, B’s advantage in the L-wBDHI∗ game is
exactly ε, the same as A’s. ��
Indistinguishability between Game2 and Game3.

Lemma 2. If group generator algorithm G satisfies the (t, ε)-BSD assumption,
there is no adversary with running time t that distinguishes between Game2 and
Game3 with advantage ε.

Proof. We assume that there exists adversary A distinguishing between Game2
and Game3 with ε advantage. We show that there is a simulator B using A to
solve the BSD problem with advantage ε.

The challenger makes a challenge pair (Z, T ′) of the BSD problem, which is
defined in Section 2.3 and give the challenge pair to simulator B.

Initialization. A sends a challenge identity ID to B.
Setup. B generates system parameters as an actual setup algorithm. B can
choose all random elements from Gp and Gp by using gp and gq.

Query Phase1. A queries B and B responds to queries as the actual key gen-
eration center.

Anonymous Hierarchical Identity-Based Encryption 227

Challenge. A sends message Msg, to B. B outputs a normal ciphertext with
the exception that the its first component is multiplied by T ′.

Query Phase2. A adaptively queries B with the same constraints as in Query
Phase 1. B sends corresponding private keys as before.

Guess. B outputs the same bit as A; i.e., if A outputs 1 (Game2), then B also
outputs 1 (T ′ = T). Since B played Game2 with T ′ is a random element from
Gp and played Game3 with T ′ as a random element from G, B’s advantage in
the BSD game is exactly ε, the same as A’s. ��

Indistinguishability between Game3 and Game4

Lemma 3. If group generator algorithm G satisfies the (t, ε)-L-cDH assump-
tion, there is no adversary with running time t that makes at most qs key ex-
traction queries and distinguishes between Game3 and Game4 with advantage
ε/(1 − p+q−1

n)qs .

Proof. We assume that there exists an adversaryA distinguishing between Game3
and Game4 with advantage ε′. We show that there is a simulatorB using A to solve
the L-cDH problem with advantage ε′ · (1 − p+q−1

n)qs .
The challenger makes a challenge pair (Z, T ′) of L-cDH which is defined in

Section 2.3 and gives the challenge pair to simulator B. Let Ai = gai

p , B =
AL+1R

′
1 and C = Ab

L+1R
′
2 where gai

p , R′
1 and R′

2 are defined in Z for 0 ≤ i ≤
L + 1.

Initialization. A chooses a challenge ID = [I1, I2, · · · , Im] and sends it to sim-
ulator B.

Setup. B chooses random integers and random elements

x, y, z, x1, · · · , xL ∈ Zn, w ∈ Gp, Rg, Rf , Rv, Rh,1, · · · , Rh,l ∈ Gq.

B puts G = BxRg, F = gz
pRf , Hi = Axi

i Rh,i for 1 ≤ i ≤ L, V = (gy
p/

∏m
j=1 H

Ij

j)
Rv, and E = e(Bx, w). Then, B publishes system parameters as

params ← [gq ,G,F ,V ,H1 , · · · ,HL,E]

Query Phase1. A queries the private key for ID∗ = [I∗1, I
∗
2, · · · , I∗u] where u ≤ L

distinct from ID and all its prefixes. This private query of an adaptively chosen
identity is carried out by A. Let k be the smallest integer such that Ik �= I∗k.
Then, first B generates the private key corresponding to [I∗1, I

∗
2, · · · , I∗k] and runs

Derive algorithm to make ID∗. B first choose random integers r1, r2 ∈ Zn. We
posit r̂1 = z

ak r1 + z
ak+1 r2, r̂2 = − y

ak r1 − (xk(I∗k−Ik)
a + y

ak+1)r2. Next, the algorithm
generates PvkID∗

= [PvkID∗
d ,PvkID∗

r]. We observe the first component of PvkID∗
d ,

w(v
∏k

i=1 hIi∗
i)r̂1f r̂2 . Since we know that v, hi, f are the same as elements by

removing blinding factors from V , Hi, F , respectively, we can rewrite the above
component as follows:

228 J.H. Seo et al.

w(v
k∏

i=1

hIi∗
i)r̂1f r̂2 = w((gy

p/

m∏
j=1

A
xjIj

j)
k∏

i=1

A
xiI∗i
i)r̂1gzr̂2

p

We focus on the exponent of gp in ((gy
p/

∏m
j=1 A

xjIj

j)
∏k

i=1 A
xiI∗i
i)r̂1gzr̂2

p . It is

(y −
m∑

j=1

ajxjIj +
k∑

i=1

aixiI
∗
i)r̂1 + zr̂2

= (y −
m∑

j=k+1

ajxjIj + akxk(I∗k − Ik))r̂1 + zr̂2

= (y−
m∑

j=k+1

ajxjIj+akxk(I∗k−Ik))(
z

ak
r1+

z

ak+1 r2)+z(− y

ak
r1−(

xk(I∗k − Ik)
a

+
y

ak+1)r2)

= (−
m∑

j=k+1

aj−kxjIjz + xk(I∗k − Ik)z)r1 −
m∑

i=k+1

ai−k−1xiIizr2

Since the exponent involves a1, · · · , am−k, xj , z, r1, r2, ID and ID∗, B can
compute the first component of PvkID∗

d . The remaining elements in PvkID∗
d are

gr̂1 , gr̂2 and hr̂1
i for k+1 ≤ i ≤ L. Note that g and hi are Ax

L+1 and Axi

i , respec-
tively, which are elements with blinding factors removed from G and Hi, respec-

tively. Since the second component gr̂1 is equal to Axr̂1
L+1 = A

x(z

ak r1+ z

ak+1 r2)
L+1 =

Axzr1
L−k+1A

xzr2
L−k, B can compute the second component of PvkID∗

d . Similarly, B can
compute all the remaining elements of PvkID∗

d . Since r̂1 and r̂2 are uniformly
and independently distributed in Zn, PvkID∗

d has the same distribution as an
actual key distribution.

Next, B generates PvkID∗
r . Every component in PvkID∗

r is the same as in
PvkID∗

d except for w of the first and (L − k + 4)th components and for us-
ing different randomness. Since the procedure for generating PvkID∗

d will work
without w, B can generate PvkID∗

r in a similar manner to generating PvkID∗
d .

The details of this are highly similar to those of PvkID∗
r , so they are omit-

ted. We let s1, s2, t1, t2 ∈ Zn be random integers used for generating PvkID∗
r

and let ŝ1 = z
ak s1 + z

ak+1 s2, ŝ2 = − y
ak s1 − (xk(I∗k−Ik)

a + y
ak+1)s2, t̂1 =

z
ak t1 + z

ak+1 t2, t̂2 = − y
ak t1 − (xk(I∗k−Ik)

a + y
ak+1)t2. Then PvkID∗

r is distributed
as if ŝ1, ŝ2, t̂1, and t̂2 are the randomness of PvkID∗

r . Since ŝ1, ŝ2, t̂1, and t̂2 are
uniformly and independently distributed in Zn, four integers satisfy equations
ŝ1 · t̂2− ŝ2 · t̂1 �≡ 0 mod p and �≡ 0 mod q with probability 1− p+q−1

n . Therefore,
the private key PvkID∗

generated by the simulator has the same structure and
distribution as that of actual private key with probability 1 − p+q−1

n .

Challenge. A sends message Msg to B. B discards Msg and selects random
elements R ∈ G and Z1, Z2, Z3 ∈ Gq. B sends ciphertext CT=[R,CxZ1, T ′zZ2,
T ′yZ3].

Anonymous Hierarchical Identity-Based Encryption 229

If T ′ = T , then CT is equal to

[R, (Ab
L+1R

′
2)

xZ1, (gb
pR

′
3)

zZ2, (gb
pR

′
3)

yZ3] = [R,GbZ ′
1, F

bZ ′
2, (

m∏
i=1

HIi
i V)bZ ′

3].

Therefore CT is a ciphertext of Game3. Otherwise, T can be written by gr
pR

′′
3

as an element from G where r is a random integer chosen from Zn and R′′
3 is a

random element chosen from Gq. Then, CT is equal to

[R, (Ab
L+1R

′
2)

xZ1, (gr
pR

′′
3)zZ2, (gr

pR
′′
3)yZ3] = [R,GbZ ′

1, F
rZ ′

2, (V
m∏

i=1

HIi
i)rZ ′

3].

From an adversarial viewpoint, b and r first appear in ciphertext CT and both
are integers uniformly and independently chosen from Zn. The third and fourth
components in CT share the same random r. However, the second component
uses random b independent from r. Therefore the second component of CT is
a random element from the adversarial viewpoint, and CT is a ciphertext of
Game4.

Query Phase2. A adaptively queries B with the same constraints in Query
Phase 1. B sends corresponding private keys as before.

Guess. B outputs the same bit as A, i.e., if A outputs 1 (Game3), then B
also outputs 1 (T ′ = T). If A queried qs times in total in Query Phase1 and
Query Phase2 , then B responded with corresponding private keys having the
same distribution as that of actual keys with probability (1− p+q−1

n)qs . Therefore
B’s advantage in the L-cDH game is ε′ · (1 − p+q−1

n)qs . ��

Indistinguishability between Game4 and Game5

Lemma 4. If group generator algorithm G satisfies the (t, ε)-L-cDH assump-
tion, there is no adversary with running time t that makes at most qs key ex-
traction queries and distinguishes between Game4 and Game5 with advantage
ε/(1 − p+q−1

n)qs .

Proof. We assume that there exists adversary A distinguishing between Game4
and Game5 with non-negligible advantage ε′. We show that there is a simulator
B using A to solve the L-cDH problem with advantage ε′ · (1 − p+q−1

n)qs .
The challenger makes a challenge pair (Z, T ′) of L-cDH which is defined in

Section 2.3 and give the challenge pair to simulator B. Let Ai = gai

p , B = AL+1R
′
1

and C = Ab
L+1R

′
2 where gai

p , R′
1 and R′

2 are defined in Z for 0 ≤ i ≤ L + 1.

Initialization. A chooses a challenge ID = [I1, I2, · · · , Im] and sends it to sim-
ulator B.

Setup. B chooses random integers and random elements

x, y, z, x1, · · · , xL ∈ Zn, w ∈ Gp, Rg, Rf , Rv, Rh,1, · · · , Rh,l ∈ Gq.

230 J.H. Seo et al.

B puts G = gx
pRg, F = BzRf , V = (gy

p/
∏m

j=1 H
Ij

j)Rv, Hi = Axi

L+1−iRh,i for
1 ≤ i ≤ L, and E = e(gx

p , w). Then, B publishes system parameters as

params ← [gq ,G,F ,V ,H1 , · · · ,HL,E].

Query Phase1. A queries the private key for ID∗ = [I∗1, I∗2, · · · , I∗u] where u < L
is distinct from ID and all its prefixes. This private query is carried out on
an identity adaptively chosen by A. Let k be the smallest integer such that
Ik �= I∗k. Then, first B generates the private key corresponding to [I∗1, I∗2, · · · , I∗k]
and runs the Derive algorithm to make ID∗. B first chooses random integers
r1, r2 ∈ Zn. We posit r̂1 = akzr1 + r2, r̂2 = −xk(I∗k − Ik)r1. Next, the algo-
rithm generates PvkID∗

= [PvkID∗
d ,PvkID∗

r]. We observe the first component in
PvkID∗

d , w(v
∏k

i=1 hIi∗
i)r̂1f r̂2 . Since we know that v, hi, f are same as elements

by removing blinding factor from V , Hi, F , respectively, we can rewrite above
component as follows:

w(v
k∏

i=1

hIi∗
i)r̂1f r̂2 = w((gy

p/

m∏
j=1

A
xjIj

L+1−j)
k∏

i=1

A
xiI∗i
L+1−i)

r̂1Azr̂2
L+1

We focus on the exponent of gp in ((gy
p/

∏m
j=1 A

xjIj

L+1−j)
∏k

i=1 A
xiI∗i
L+1−i)

r̂1Azr̂2
L+1.

It is

(y −
m∑

j=1

aL+1−jxjIj +
k∑

i=1

aL+1−ixiI
∗
i)r̂1 + aL+1zr̂2

= (y −
m∑

j=k+1

aL+1−jxjIj + aL+1−kxk(I∗k − Ik))r̂1 + aL+1zr̂2

= (y−
m∑

j=k+1

aL+1−jxjIj+aL+1−kxk(I∗k−Ik))(akzr1+r2)+aL+1z(−xk(I∗k−Ik)r1)

= (yakz−
m∑

j=k+1

aL+k+1−jxjIjz)r1+(y−
m∑

j=k+1

aL+1−jxjIj+aL+1−kxk(I∗k−Ik))r2

Since the exponent involves a1, · · · , aL, xj , z, r1, r2 and identities, B can compute
the first component of PvkID∗

d . The remaining elements in PvkID∗
d are gr̂1 , gr̂2

and hr̂1
i for k + 1 ≤ i ≤ L. Note that g and hi are gx

p and Axi

L+1−i, respectively,
which are elements with blinding factors removed from G and Hi, respectively.
Since the second component gr̂1 is equal to gxr̂1

p = Axzr1
k gxr2

p , B can compute
the second component of PvkID∗

d . Similarly, B can compute all the remaining
elements of PvkID∗

d . Since r̂1 and r̂2 are uniformly and independently distributed
in Zn, PvkID∗

d has the same distribution as an actual key distribution.
Next, B generates PvkID∗

r . Every component in PvkID∗
r is the same as in

PvkID∗
d except for w of the first and (L − k + 4)th components and for using

different randomness. Since generating procedure of PvkID∗
d will work without

Anonymous Hierarchical Identity-Based Encryption 231

w, B can generate PvkID∗
r is a similar manner to generating PvkID∗

d . The de-
tails of this are highly similar to those of PvkID∗

r , so they are omitted. We let
s1, s2, t1, t2 ∈ Zn be random integers used for generating PvkID∗

r and let

ŝ1 = akzs1 +s2, ŝ2 = −xk(I∗k− Ik)s1, t̂1 = akzt1 + t2, and t̂2 = −xk(I∗k− Ik)t1.

Then PvkID∗
r is distributed as if ŝ1, ŝ2, t̂1, and t̂2 is the randomness of PvkID∗

r .
Since ŝ1, ŝ2, t̂1, and t̂2 are uniformly and independently distributed in Zn, four
integers satisfy equations ŝ1 ·t̂2−ŝ2 ·t̂1 �≡ 0 mod p and �≡ 0 mod q with probabil-
ity 1− p+q−1

n . Therefore, the private key PvkID∗
generated by the simulator has

the same structure and distribution as that of actual private key with probability
1 − p+q−1

n .

Challenge. A sends message Msg to B. B discards Msg and selects random
elements R,R′ ∈ G, Z1, Z2 ∈ Gq. B sends ciphertext CT = [R,R′, CzZ1, T

′yZ2].
If T ′ = T , then

CT = [R,R′, (Ab
L+1R

′
2)

zZ1, (gb
pR

′
3)

yZ2] = [R,R′, F bZ ′
1, (V

m∏
i=1

HIi
i)bZ ′

2].

Therefore, CT is a ciphertext of Game4. Otherwise, T can be written by gr
pR

′′
3

as an element from G, where r is a random integer chosen from Zn, and R′′
3 is a

random element chosen from Gq. Then,

CT = [R,R′, (Ab
L+1R

′
2)

zZ1, (gr
pR

′′
3)yZ2] = [R,R′, F bZ ′

1, (V
m∏

i=1

HIi
i)rZ ′

2].

From an adversarial viewpoint, b and r first appear in ciphertext CT and both are
integers uniformly and independently chosen from Zn. Therefore, the third and
fourth components of CT are independent random elements from the adversarial
viewpoint, and CT is a ciphertext of Game5.

Query Phase2. A adaptively queries B with the same constraints as in Query
Phase 1. B sends corresponding private keys as before.

Guess. B outputs the same bit as A, i.e., if A outputs 1 (Game4), then B
also outputs 1 (T ′ = T). If A queried qs times in total in Query Phase1 and
Query Phase2 , then B responded with corresponding private keys having the
same distribution as that of actual keys with probability (1− p+q−1

n)qs . Therefore
B’s advantage in the L-cDH game is ε′ · (1 − p+q−1

n)qs . ��
Proof of Theorem 1. If group generator algorithm G satisfies the (t, ε1)-
Decision L-wBDHI∗ assumption and the (t, ε2)-L-cDH assumption, then Lemma
1 and 2 show that there is no adversary with running time Θ(t) that makes
at most qs key extraction queries and distinguishes Game1 and Game3 with
advantage ε1 + ε2. CT3 does not leak any information about the message since
there is no element involve in the message in CT3. Therefore, if group generator
algorithm G satisfies the (t, ε1)-Decision L-wBDHI∗ assumption and the (t, ε2)-L-
cDH assumption, our proposed HIBE scheme is (qs, t̂1, ε̂1)-IND-sID-CPA secure
with t̂1 = Θ(t), ε̂1 = ε1 + ε2.

232 J.H. Seo et al.

If group generator algorithm G satisfies the (t, ε2)-L-cDH assumption, then
Lemma 3 and 4 show that there is no adversary with running time Θ(t) that
makes at most qs key extraction queries and distinguishes Game3 and Game5
with advantage 2ε2/(1 − p+q−1

n)qs .
CT5 does not leak any information about the identity since all components

of CT5 are random group elements. Therefore, if group generator algorithm G
satisfies the (t, ε1)-Decision L-wBDHI∗ assumption and the (t, ε2)-L-cDH as-
sumption, then our proposed HIBE scheme is (qs, t̂2, ε̂2)-ANON-sID-CPA secure
with t̂2 = Θ(t) and ε̂2 = ε1+ε2+2ε2/(1− p+q−1

n)qs . This completes the proof. ��

4 Comparison

The parameters of previous HIBE schemes, anonymous HIBE schemes and our
proposed scheme are compared in table 1.

Table 1. HIBE schemes

of group # of group # of group # of pairing
anonymity elements elements elements in security

in public in private key in ciphertext decryption
parameter

GS-HIBE [17] Non 2 k k + 1 k w RO, f-ID

BB-HIBE [2] Non L + 3 k + 1 k + 2 k + 1 w/o RO, s-ID

BBG-HIBE [3] Non L + 3 L − k + 2 3 2 w/o RO, s-ID

BW-HIBE [12] Ano L2+5L+7 3L2 + (14 − k)L 2L + 6 2(L + 2) w/o RO, s-ID
−3k + 15

SW-dHVE [22] Ano 2L + 6 (L − k)(k + 5) L + 4 k w/o RO, s-ID
+k + 3 composit

This paper Ano L + 4 3(L − k + 3) 4 3 w/o RO, s-ID
composit

L : the maximum depth of hierarchy, k : a depth of a corresponding identity,
Non: non-anonymous ID, Ano: anonymous ID

w/ RO : with random oracle, w/o RO : without random oracle
f-ID : full-ID, s-ID : selective-ID

Our scheme is the first reported constant size ciphertext anonymous HIBE
scheme. Moreover, the computational cost is achieved the cheapest computa-
tional cost because during the decryption phase the computational cost is con-
stant. The security proof can be shown without random oracles and our scheme
achieves selective-ID CPA security.

5 Conclusion

We proposed an efficient anonymous Hierarchical Identity-Based Encryption
scheme. The ciphertext of our scheme is only four group elements without de-
pending on the depth of the hierarchy. Moreover, the computational cost of
decryption is also efficient, just three bilinear pairings without depending on the
hierarchy depth. The number of group elements in the public parameter as well

Anonymous Hierarchical Identity-Based Encryption 233

as the private key of our anonymous HIBE are also the smallest among existing
anonymous HIBE schemes.

The security of our scheme for a hierarchy depth L is selective-ID secure
against a CPA adversary that was shown under the Decision L-wBDHI∗ assump-
tion and the new L-composite Diffie-Hellman assumption without using random
oracles. CCA2 security can be achieved by using techniques that are method of
transforming from CPA-secure HIBE to CCA-secure HIBE, for example [14,8,9].

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: Consis-
tency properties, relation to anonymous IBE, and extensions. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005)

2. Boneh, D., Boyen, X.: Efficient selective-ID identity based encryption without ran-
dom oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

3. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertexts. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005)

4. Boneh, D., Boyen, X., Goh, E.: Hierarchical identity based encryption with
constant size ciphertexts. Cryptology ePrint Archive: Report 2005/015 (2005),
http://eprint.iacr.org/2005/015

5. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public-key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

6. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

7. Boneh, D., Goh, E., Nissim, K.: Evaluating 2-dnf formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

8. Boneh, D., Katz, J.: Improved efficiency for CCA-secure cryptosystems built using
identity based encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376,
pp. 87–103. Springer, Heidelberg (2005)

9. Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-
based techniques. In: ACM Conference on Computer and Communications
Security-CCS 2005. ACM Press, New York (2005)

10. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short
ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 573–592. Springer, Heidelberg (2006)

11. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007)

12. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without
random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307.
Springer, Heidelberg (2006)

13. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656. Springer, Heidelberg
(2003)

http://eprint.iacr.org/2005/015

234 J.H. Seo et al.

14. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

15. Chatterjee, S., Sarkar, P.: HIBE withe short public parameters without random
oracle. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 145–
160. Springer, Heidelberg (2006)

16. Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Hei-
delberg (2006)

17. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

18. Horwitz, J., Lynn, B.: Towards hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg
(2002)

19. Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Disjunctions,
Polynomial Equations, and Inner Products. In: Smart, N.P. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

20. Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Disjunctions,
Polynomial Equations, and Inner Products. Cryptology ePrint Archive: Report
2007/404 (2007), http://eprint.iacr.org/2007/404

21. Mitsunari, S., Sakai, R., Kasahara, M.: A new traitor tracing. IEICE Transactions
Fundamentals E85-A(2), 481–484 (2002)

22. Shi, E., Waters, B.: Delegating capabilities in predicate encryption systems. In:
Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 560–578. Springer,
Heidelberg (2008)

23. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

http://eprint.iacr.org/2007/404

Towards Black-Box Accountable Authority IBE
with Short Ciphertexts and Private Keys

Benôıt Libert1 and Damien Vergnaud2,�

1 Université Catholique de Louvain, Microelectronics Laboratory
Place du Levant, 3 – 1348 Louvain-la-Neuve – Belgium

2 Ecole Normale Supérieure – C.N.R.S. – I.N.R.I.A.
45, Rue d’Ulm – 75230 Paris CEDEX 05 – France

Abstract. At Crypto’07, Goyal introduced the concept of Accountable
Authority Identity-Based Encryption as a convenient tool to reduce the
amount of trust in authorities in Identity-Based Encryption. In this
model, if the Private Key Generator (PKG) maliciously re-distributes
users’ decryption keys, it runs the risk of being caught and prosecuted.
Goyal proposed two constructions: the first one is efficient but can only
trace well-formed decryption keys to their source; the second one allows
tracing obfuscated decryption boxes in a model (called weak black-box
model) where cheating authorities have no decryption oracle. The lat-
ter scheme is unfortunately far less efficient in terms of decryption cost
and ciphertext size. In this work, we propose a new construction that
combines the efficiency of Goyal’s first proposal with a very simple weak
black-box tracing mechanism. Our scheme is described in the selective-ID
model but readily extends to meet all security properties in the adaptive-
ID sense, which is not known to be true for prior black-box schemes.

Keywords: Identity-based encryption, traceability, efficiency.

1 Introduction
Identity-based cryptography, first proposed by Shamir [36], alleviates the need
for digital certificates used in traditional public-key infrastructures. In such sys-
tems, users’ public keys are public identifiers (e.g. email addresses) and the
matching private keys are derived by a trusted party called Private Key Genera-
tor (PKG). The first practical construction for Identity-Based Encryption (IBE)
was put forth by Boneh and Franklin [7] – despite the bandwidth-demanding
proposal by Cocks [15] – and, since then, a large body of work has been devoted
to the design of schemes with additional properties or relying on different algo-
rithmic assumptions [4,5,6,8,11,19,20,32,38].

� The first author acknowledges the Belgian National Fund for Scientific Research
(F.R.S.-F.N.R.S.) for their financial support and the BCRYPT Interuniversity At-
traction Pole. The second author is supported by the European Commission through
the IST Program under Contract ICT-2007-216646 ECRYPT II and by the French
Agence Nationale de la Recherche through the PACE project.

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 235–255, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

http://dx.doi.org/10.1007/978-3-642-00468-1_29

236 B. Libert and D. Vergnaud

In spite of its appealing advantages, identity-based encryption has not un-
dergone rapid adoption as a standard. The main reason is arguably the fact
that it requires unconditional trust in the PKG: the latter can indeed decrypt
any ciphertext or, even worse, re-distribute users’ private keys. The key escrow
problem can be mitigated as suggested in [7] by sharing the master secret among
multiple PKGs, but this inevitably entails extra communication and infrastruc-
ture. Related paradigms [2,18] strived to remove the key escrow problem but only
did so at the expense of losing the benefit of human-memorizable public keys:
these models get rid of escrow authorities but both involve traditional (though
not explicitly certified) public keys that are usually less convenient to work with
than easy-to-remember public identifiers.

In 2007, Goyal [21] explored a new approach to deter rogue actions from au-
thorities. With the Accountable Authority Identity-Based Encryption (A-IBE)
primitive, if the PKG discloses a decryption key associated with some identity
over the Internet, it runs the risk of being caught and sued by the user. A-IBE
schemes achieve this goal by means of an interactive private key generation pro-
tocol between the user and the PKG. For each identity, there are exponentially-
many families of possible decryption keys. The key generation protocol provides
the user with a single decryption key while concealing to the PKG the family
that this key belongs to. From this private key, the user is computationally un-
able to find one from a different family. Hence, for a given identity, a pair of
private keys from distinct families serves as evidence of a fraudulent PKG. The
latter remains able to passively eavesdrop communications but is discouraged to
reveal users’ private keys. Also, users cannot falsely accuse an honest PKG since
they are unable to compute a new key from a different family using a given key.

Prior Works. Two constructions were given in [21]. The first one (that we call
Goyal -1 hereafter) builds on Gentry’s IBE [19] and, while efficient, only allows
tracing well-formed decryption keys. This white-box model seems unlikely to
suffice in practice since malicious parties can rather release an imperfect and/or
obfuscated program that only decrypts with small but noticeable probability.
The second scheme of [21] (let us call it Goyal -2), constructed on the Sahai-
Waters fuzzy IBE [32], can be extended so as to provide weak black-box trace-
ability: even an imperfect pirate decryption box can be traced (based on its
input/output behavior) back to its source although traceability is only guar-
anteed against dishonest PKGs that have no decryption oracle in the attack
game. However, Goyal -2 is somewhat inefficient as decryption requires a number
of pairing calculations that is linear in the security parameter. For the usually
required security level, ciphertexts contain more than 160 group elements and
decryption calculates a product of about 160 pairings.

Subsequently, Au et al. [3] described another A-IBE scheme providing retriev-
ability (i.e., a property that prevents the PKG from revealing more than one key
for a given identity without exposing its master key) but remained in the white-
box model. More recently, Goyal et al. [22] modified the Goyal -2 system using
attribute-based encryption techniques [23,32] to achieve full black-box traceabil-
ity: unlike Goyal -2, the scheme of [22] preserves security against dishonest PKGs

Towards Black-Box Accountable Authority IBE 237

that have access to a decryption oracle in the model. While definitely desirable,
this property is currently only achievable at the expense of the same significant
penalty as in Goyal -2 [21] in decryption cost and ciphertext size.

Our Contributions. We present a very efficient and conceptually simple
scheme with weak black-box traceability. We prove its security (in the standard
model) under the same assumption as Goyal -2. Decryption keys and ciphertexts
consist of a constant number of group elements and their length is thus linear
in the security parameter λ (instead of quadratic as in Goyal -2). Encryption and
decryption take O(λ3)-time (w.r.t. O(λ4) in Goyal -2) with only two pairing com-
putations as for the latter (against more than 160 in Goyal -2).

While presented in the selective-ID security model (where adversaries must
choose the identity that will be their prey at the outset of the game) for simplic-
ity, our scheme is easily adaptable to the adaptive-ID model of [7]. In contrast,
one of the security properties (i.e., the infeasibility for users to frame innocent
PKGs) was only established in the selective-ID setting for known schemes in the
black-box model (i.e., Goyal -2 and its fully black-box extension [22]). Among
such schemes, ours thus appears to be the first one that can be tweaked so as to
achieve adaptive-ID security against dishonest users.

Our scheme performs almost as well as Goyal -1 (the main overhead being a
long master public key à la Waters [38] to obtain the adaptive-ID security).
In comparison with the latter, that was only analyzed in a white-box model of
traceability, our system provides several other advantages:

- Its security relies on a weaker assumption. So far, the only fully practical
A-IBE scheme was resting on assumptions whose strength grows with the
number of adversarial queries, which can be as large as 230 as commonly
assumed in the literature. Such assumptions are subject to a limited attack
[14] that requires a careful adjustment of group sizes (by as much as 50%
additional bits) to guarantee a secure use of schemes.

- It remains secure when many users want to run the key generation protocol
in a concurrent fashion. Goyal -1 has a key generation protocol involving zero-
knowledge proofs. As its security reductions require to rewind adversaries at
each key generation query, security is only guaranteed when the PKG inter-
acts with users sequentially. In inherently concurrent environments like the
Internet, key generation protocols should remain secure when executed by
many users willing to register at the same time. By minimizing the num-
ber of rewinds in reductions, we ensure that our scheme remains secure in a
concurrent setting. In these regards, the key generation protocol of Goyal -2
makes use of oblivious transfers (OT) in sub-protocols. It thus supports con-
currency whenever the underlying OT protocol does. As already mentioned
however, our scheme features a much better efficiency than Goyal -2.

- In a white-box model of traceability, it can be made secure against dishonest
PKGs equipped with a decryption oracle1. In the following, we nevertheless
focus on the (arguably more interesting) weak black-box traceability aspect.

1 We believe that the Goyal -1 system can also be modified so as to obtain this property.

238 B. Libert and D. Vergnaud

Organization. In the rest of the paper, section 2 recalls the A-IBE security
model defined in [21]. We first analyze the white-box version of our scheme in
section 3 and then describe a weak black-box tracing mechanism in section 4.

2 Background and Definitions

Syntactic definition and security model. We recall the definition of A-
IBE schemes and their security properties as defined in [21].

Definition 1. An Accountable Authority Identity-Based Encryption scheme
(A-IBE) is a tuple (Setup,Keygen,Encrypt,Decrypt,Trace) of efficient al-
gorithms or protocols such that:

– Setup takes as input a security parameter and outputs a master public key
mpk and a matching master secret key msk.

– Keygen(PKG,U) is an interactive protocol between the public parameter gen-
erator PKG and the user U:

· the common input to PKG and U are: the master public key mpk and an
identity ID for which the decryption key has to be generated;

· the private input to PKG is the master secret key msk.
Both parties may use a sequence of private coin tosses as additional inputs.
The protocol ends with U receiving a decryption key dID as his private output.

– Encrypt takes as input the master public key mpk, an identity ID and a
message m and outputs a ciphertext.

– Decrypt takes as input the master public key mpk, a decryption key dID and
a ciphertext C and outputs a message.

– Trace given the master public key mpk, a decryption key dID, this algorithm
outputs a key family number nF or the special symbol ⊥ if dID is ill-formed.

Correctness requires that, for any outputs (mpk,msk) of Setup, any plaintext m

and any identity ID, whenever dID ← Keygen(PKG(msk),U)(mpk, ID), we have

Trace
(
mpk, dID

) �=⊥,
Decrypt

(
mpk, dID,Encrypt(mpk, ID,m)

)
= m.

The above definition is for the white-box setting. In a black-box model, Trace
takes as input an identity ID, the corresponding user’s well-formed private key
dID and a decryption box D that successfully opens a non-negligible fraction ε of
ciphertexts encrypted under ID. The output of Trace is either “PKG” or “User”
depending on which party is found guilty for having crafted D.

Goyal formalized three security properties for A-IBE schemes. The first one
is the standard notion of privacy [7] for IBE systems. As for the other ones, the
FindKey game captures the intractability for the PKG to create a decryption
key of the same family as the one obtained by the user during the key generation
protocol. Finally, the ComputeNewKey game models the infeasibility for users
to generate a key d

(2)
ID outside the family of the legally obtained one d

(1)
ID .

Towards Black-Box Accountable Authority IBE 239

Definition 2. An A-IBE scheme is deemed secure if all probabilistic polynomial
time (PPT) adversaries have negligible advantage in the following games.

1. The IND-ID-CCA game. For any PPT algorithm A, the model considers
the following game, where λ ∈ N is a security parameter:

GameIND-ID-CCA
A (λ)

(mpk,msk) ← Setup(λ)
(m0,m1, ID

�, s) ← ADec,KG(find,mpk)∣∣∣∣∣∣∣∣
Dec : (C, ID)

��� Decrypt
(
mpk,msk, ID, C

)
;

KG : ID ��� Keygen(PKG(msk),A)(mpk, ID)
// ID �= ID�

d� $← {0, 1}
C� ← Encrypt(mpk, ID�,md�)
d ← ADec,KG(guess, s, C�)∣∣∣∣∣∣∣∣

Dec : (C, ID) ��� Decrypt
(
mpk,msk, ID, C

)
;

// (C, ID) �= (C�, ID�)
KG : ID ��� Keygen(PKG(msk),A)(mpk, ID)

// ID �= ID�

return 1 if d = d� and 0 otherwise.

A’s advantage is measured by AdvCCA
A (λ) = |Pr[GameCCA

A = 1] − 1/2|.

The weaker definition of chosen-plaintext security (IND-ID-CPA) is formalized
in the same way in [7] but A is not granted access to a decryption oracle.

2. The FindKey game. Let A be a PPT algorithm. We consider the following
game, where λ ∈ N is a security parameter:

GameFindKey
A (λ)

(mpk, ID, s1) ← A(setup, λ)
(d(1)

ID , s2) ← Keygen(A(s1),·)(mpk, ID)
d
(2)
ID ← A(findkey, s1, s2)

return 1 if Trace(mpk, d
(1)
ID) = Trace(mpk, d

(2)
ID)

0 otherwise.

A’s advantage is now defined as AdvFindKey
A (λ) = Pr[GameFindKey

A = 1].

Here, the adversary A acts as a cheating PKG and the challenger emulates the
honest user. Both parties engage in a key generation protocol where the chal-
lenger obtains a private key for an identity ID chosen by A. The latter aims at
producing a private key corresponding to ID and belonging to the same family
as the key obtained by the challenger in the key generation protocol. Such a
successful dishonest PKG could disclose user keys without being caught.

240 B. Libert and D. Vergnaud

Note that, at the beginning of the experiment, A generates mpk without re-
vealing the master key msk and the challenger runs a sanity check on mpk.

As noted in [21], it makes sense to provide A with a decryption oracle that
undoes ciphertexts using d

(1)
ID (and could possibly leak information on the lat-

ter’s family) between steps 2 and 3 of the game. We call this enhanced notion
FindKey-CCA (as opposed to the weaker one which we call FindKey-CPA).

Finally, in the black-box model, instead of outputting a new key d
(2)
ID , the

dishonest PKG comes up with a decryption box D that correctly decrypts ci-
phertexts intended for ID with non-negligible probability ε and wins if the tracing
algorithm returns “User” when run on d

(1)
ID and with oracle access to D.

3. The ComputeNewKey game. For a PPT algorithm A, the model finally
considers the following game:

GameComputeNewKey
A (λ)

(mpk,msk) ← Setup(λ)
(d(1)

ID� , d
(2)
ID� , ID�) ← AKG(mpk)∣∣KG : ID ��� Keygen(PKG(msk),A)(mpk, ID)

return 1 if Trace(mpk, d
(1)
ID�) �=⊥ and

Trace(mpk, d
(2)
ID�) /∈ {⊥,Trace(mpk, d

(1)
ID�)}

0 otherwise.

A’s advantage is AdvComputeNewKey
A (λ) = Pr[GameComputeNewKey

A = 1].

The ComputeNewKey game involves an adversary interacting with a PKG in
executions of the key generation protocol and obtaining private keys associated
with distinct identities of her choosing. The adversary is declared successful if,
for some identity that may have been queried for key generation, she is able to
find two private keys from distinct families. Such a pair would allow her to trick
a judge into wrongly believing in a misbehavior of the PKG.

In the black-box scenario, the output of the dishonest user consist of a key d
(1)
ID�

and a pirate decryption box D that yields the correct answer with probability ε
when provided with a ciphertext encrypted for ID�. In this case, the adversary
wins if the output of TraceD(mpk, d

(1)
ID�) is “PKG”.

In [12], Canetti, Halevi and Katz suggested relaxed notions of IND-ID-CCA
and IND-ID-CPA security where the adversary has to choose the target identity
ID� ahead of time (even before seeing the master public key mpk). This re-
laxed model, called “selective-ID” model (or IND-sID-CCA and IND-sID-CPA
for short), can be naturally extended to the ComputeNewKey notion.

Bilinear Maps and Complexity Assumptions. We use prime order groups
(G,GT) endowed with an efficiently computable map e : G×G → GT such that:

1. e(ga, hb) = e(g, h)ab for any (g, h) ∈ G × G and a, b ∈ Z;
2. e(g, h) �= 1GT whenever g, h �= 1G.

Towards Black-Box Accountable Authority IBE 241

In such bilinear groups, we assume the hardness of the (now classical) Decision
Bilinear Diffie-Hellman problem that has been widely used in the recent years.

Definition 3. Let (G,GT) be bilinear groups of prime order p and g ∈ G. The
Decision Bilinear Diffie-Hellman Problem (DBDH) is to distinguish the
distributions of tuples (ga, gb, gc, e(g, g)abc) and (ga, gb, gc, e(g, g)z) for random
values a, b, c, z

$← Z∗
p. The advantage of a distinguisher B is measured by

AdvDBDH
G,GT

(λ) =
∣∣Pr[a, b, c $← Z∗

p : B(ga, gb, gc, e(g, g)abc) = 1]

− Pr[a, b, c, z $← Z∗
p : B(ga, gb, gc, e(g, g)z) = 1]

∣∣.
For convenience, we use an equivalent formulation – called modified DBDH – of
the problem which is to distinguish e(g, g)ab/c from random given (ga, gb, gc).

3 The Basic Scheme

The scheme mixes ideas from the “commutative-blinding” [4] and “exponent-
inversion” [33] frameworks. Private keys have the same shape as in commutative-
blinding-based schemes [4,5,11,38]. At the same time, their first element is a
product of two terms, the first one of which is inspired from Gentry’s IBE [19].

According to a technique applied in [21], private keys contain a family num-
ber t that cannot be tampered with while remaining hidden from the PKG. This
family number t is determined by combining two random values t0 and t1 re-
spectively chosen by the user and the PKG in the key generation protocol. The
latter begins with the user sending a commitment R to t0. Upon receiving R, the
PKG turns it into a commitment to t0 + t1 and uses the modified commitment
to generate a “blinded” private key d′ID. The user obtains his final key dID by
“unblinding” d′ID thanks to the randomness that was used to compute R.

A difference with Goyal -1 is that the key family number is perfectly hidden
to the PKG and the FindKey-CPA security is unconditional. In the key gener-
ation protocol, the user’s first message is a perfectly hiding commitment that
comes along with a witness-indistinguishable (WI) proof of knowledge of its
opening. In Goyal -1, users rather send a deterministic (and thus non-statistically
hiding) commitment and knowledge of the underlying value must be proven in
zero-knowledge because a proof of knowledge of a discrete logarithm must be
simulated (by rewinding the adversary) in the proof of FindKey-CPA security.
In the present scheme, the latter does not rely on a specific assumption and we
do not need to simulate knowing the solution of a particular problem instance.
Therefore, we can dispense with perfectly ZK proofs and settle for a more effi-
cient 3-move WI proof (such as Okamoto’s variant [30] of Schnorr [35]) whereas
4 rounds are needed2 using zero-knowledge proofs of knowledge.
2 A similar modification can be brought to the key generation protocol of Goyal -1 to

statistically hide the key family number to the PKG and avoid the need for 4-round
ZK proofs.

242 B. Libert and D. Vergnaud

3.1 Description

Setup: given λ ∈ N, the PKG selects bilinear groups (G,GT) of prime order
p > 2λ with a random generator g

$← G. It chooses h, Y, Z
$← G and x

$← Z∗
p

at random. It defines its master key as msk := x and the master public key
is chosen as mpk := (X = gx, Y, Z, h).
.

Keygen(PKG,U) : to obtain a private key for his identity ID, a user U interacts
with the PKG in the following key generation protocol.
1. The user U draws t0, θ

$← Z∗
p, provides the PKG with a commitment

R = ht0 ·Xθ and also gives an interactive witness indistinguishable proof
of knowledge of the pair (t0, θ), which he retains for later use.

2. The PKG outputs ⊥ if the proof of knowledge fails to verify. Otherwise,
it picks r′, t1

$← Z∗
p and returns

d′ID = (d′1, d
′
2, d

′
3) =

(
(Y · R · ht1)1/x · (gID · Z)r′

, Xr′
, t1

)
. (1)

3. U picks r′′ $← Z∗
p and computes dID = (d′1/g

θ ·(gID ·Z)r′′
, d′2 ·Xr′′

, d′3+t0)
which should equal

dID = (d1, d2, d3) =
(
(Y · ht0+t1)1/x · (gID · Z)r, Xr, t0 + t1

)
(2)

where r = r′ + r′′. Then, U checks whether dID satisfies the relation

e(d1, X) = e(Y, g) · e(h, g)d3 · e(gID · Z, d2). (3)

If so, he sets his private key as dID and the latter belongs to the family of
decryption keys identified by nF = d3 = t0 + t1. He outputs ⊥ otherwise.

Encrypt: to encrypt m ∈ GT given mpk and ID, choose s
$← Z∗

p and compute

C =
(
C1, C2, C3, C4

)
=
(
Xs, (gID · Z)s, e(g, h)s, m · e(g, Y)s

)
.

Decrypt: given C =
(
C1, C2, C3, C4

)
and dID = (d1, d2, d3), compute

m = C4 ·
(e(C1, d1)
e(C2, d2) · Cd3

3

)−1
(4)

Trace: given a purported private key dID = (d1, d2, d3) and an identity ID, check
the validity of dID w.r.t. ID using relation (3). If valid, dID is declared as a
member of the family identified by nF = d3.

The correctness of the scheme follows from the fact that well-formed private keys
always satisfy relation (3). By raising both members of (3) to the power s ∈ Z∗

p,
we see that the quotient of pairings in (4) actually equals e(g, Y)s.

The scheme features about the same efficiency as classical IBE schemes derived
from the commutative-blinding framework [4]. Encryption demands no pairing
calculation since e(g, h) and e(g, Y) can both be cached as part of the system

Towards Black-Box Accountable Authority IBE 243

parameters. Decryption requires to compute a quotient of two pairings which is
significantly faster than two independent pairing evaluations when optimized in
the same way as modular multi-exponentiations.

In comparison with the most efficient standard model scheme based on the
same assumption (which is currently the first scheme of [4]), the only overhead
is a slightly longer ciphertext and an extra exponentiation in GT at both ends.

3.2 Security

Selective-ID Security. We first prove the IND-sID-CPA security under the
modified DBDH assumption (mDBDH).

Theorem 1. The scheme is IND-sID-CPA under the mDBDH assumption.

Proof. We show how a simulator B can interact with a selective-ID adversary
A to solve a mDBDH instance (Ta = ga, Tb = gb, Tc = gc, T

?= e(g, g)ab/c). At
the outset of the game, A announces the target identity ID�. To prepare mpk, B
chooses α, γ, t∗ $← Z∗

p and sets X = Tc = gc, h = Tb = gb, Y = Xγ · h−t∗ , and
Z = g−ID� ·Xα. The adversary’s view is simulated as follows.

Queries: at any time, A may trigger an execution of the key generation protocol
for an identity ID �= ID� of her choosing. She then supplies an element
R = ht0 ·Xθ along with a WI proof of knowledge of (t0, θ). The simulator B
verifies the proof but does not need to rewind the adversary as it can answer
the query without knowing (t0, θ). To do so, it picks t1

$← Z∗
p at random and

defines W = Y · R · ht1 , d′3 = t1. Elements d′1 and d′2 are generated as

(d′1, d
′
2) =

(
(gID · Z)r′ · W− α

ID−ID� , Xr′ · W− 1
ID−ID�

)
(5)

using a random r′ $← Z∗
p. If we set r̃′ = r′ − w

c(ID−ID�) , where w = logg(W),
we observe that (d′1, d′2) has the correct distribution since

W 1/c · (gID · Z)r̃′
= W 1/c · (gID−ID� · Xα)r̃′

= W 1/c · (gID−ID� · Xα)r′ · (gID−ID�

)−
w

c(ID−ID�) · X− wα
c(ID−ID�)

= (gID · Z)r′ ·W− α
ID−ID�

and X r̃′
= Xr′ · (gc)−

w
c(ID−ID�) = Xr′ ·W− 1

ID−ID� . Finally, the “partial private
key” (d′1, d

′
2, d

′
3) is returned to A. Note that the above calculation can be

carried out without knowing w = logg(W) or the representation (t0, θ) of R
w.r.t. to (h,X) and B does not need to rewind A.

Challenge: when the first stage is over, A outputs m0,m1 ∈ GT . At this point,
B picks r� $← Z∗

p and defines a private key (d1, d2, d3) = (gγ · Xαr�

, Xr�

, t∗)
for the identity ID∗. It flips a fair coin d� $← {0, 1} and encrypts md� as

C�
1 = Ta = ga C�

2 = Tα
a C�

3 = T C�
4 = md� · e(C�

1 , d1)
e(C�

2 , d2) · C�
3

d3
.

244 B. Libert and D. Vergnaud

We see that (d1, d2, d3) is a valid key for ID�. Since gID
� · Z = Xα = Tα

c

and h = gb, C� = (C�
1 , C

�
2 , C

�
3 , C

�
4) is a valid encryption of md� (with the

exponent s = a/c) if T = e(g, g)ab/c. If T is random, we have T = e(g, h)s′

for some random s′ ∈ Z∗
p and thus C�

4 = md� · e(Y, g)s · e(g, h)(s−s′)t∗ , which
means that md� is perfectly hidden since t� is independent of A’s view.

As usual, B outputs 1 (meaning that T = e(g, g)ab/c) if A successfully guesses
d′ = d� and 0 otherwise. ��
In the above proof, the simulator does not rewind the adversary at any time.
The scheme thus remains IND-sID-CPA in concurrent environments, where a
batch of users may want to simultaneously run the key generation protocol.

Also, the simulator knows a valid private key for each identity. This allows
using Cramer-Shoup-like techniques [16,17] as in [19,26] to secure the scheme
against chosen-ciphertext attacks. The advantage of this approach, as we show
in appendix A, is to provide FindKey-CCA security in a white-box setting.

Unlike the Goyal -1 scheme, the basic system provides unconditional FindKey-
CPA security: after an execution of the key generation protocol, even an all
powerful PKG does not have any information on the component d3 that is even-
tually part of the private key obtained by the new user.

Theorem 2. In the information theoretic sense, no adversary has an advantage
in the FindKey-CPA game.

Proof. The proof directly follows from the perfect hiding property of Pedersen’s
commitment [31] and the perfect witness indistinguishability of the protocol [30]
for proving knowledge of a discrete logarithm representation. Since the commit-
ment R = ht0 ·Xθ and the proof of knowledge of (t0, θ) perfectly hide t0 to the
PKG, all elements of Z∗

p are equally likely values of d3 = t0 + t1 as for the last
part of the user’s eventual private key. ��
Appendix A describes a hybrid variant of the scheme that provides white-box
FindKey-CCA security using authenticated symmetric encryption in the fashion
of [27,37,24] so as to reject all invalid ciphertexts with high probability.

Theorem 3. In the selective-ID ComputeNewKey game, any PPT adversary
has negligible advantage assuming that the Diffie-Hellman assumption holds.

Proof. For simplicity, we prove the result using an equivalent formulation of the
Diffie-Hellman problem which is to find h1/x given (g, h,X = gx).

At the outset of the game, A declares the identity ID� for which she aims at
finding two private keys d

(1)
ID� , d

(2)
ID� comprising distinct values of d3 = t. Then,

the simulator B prepares the PKG’s public key as follows. Elements h and X
are taken from the modified Diffie-Hellman instance (g, h,X). As in the proof of
theorem 1, B defines Z = g−ID� · Xα for a randomly chosen α

$← Z∗
p. To define

Y , it chooses random values γ, t′1
$← Z∗

p and sets Y = Xγ · h−t′1 .

Queries: in this game, A is allowed to query executions of the key generation
protocol w.r.t. any identity, including ID�. The only requirement is that
queried identities be distinct.

Towards Black-Box Accountable Authority IBE 245

- For an identity ID �= ID�, B can proceed exactly as suggested by relation
(5) in the proof of theorem 1 and does not need to rewind A.

- When ID = ID�, B conducts the following steps. When A supplies a
group element R = ht0 · Xθ along with a WI proof of knowledge of
(t0, θ), B uses the knowledge extractor of the proof of knowledge that
allows extracting a representation (t0, θ) of R by rewinding A. Next, B
computes t1 = t′1 − t0 picks r

$← Z∗
p and returns

(d′1, d
′
2, d

′
3) =

(
gγ+θ · (gID� · Z)r, Xr, t1

)
. (6)

To see that the above tuple has the appropriate shape, we note that

(Y ·R · ht1)1/x = (Y · ht0+t1 · Xθ)1/x = (Y · ht′1 · Xθ)1/x = gγ+θ.

Output: upon its termination, A is expected to come up with distinct valid
private keys d

(1)
ID� = (d(1)

1 , d
(1)
2 , d

(1)
3) and d

(2)
ID� = (d(2)

1 , d
(2)
2 , d

(2)
3), such that

t = d
(1)
3 �= d

(2)
3 = t′, for the identity ID�. Given that we must have

d
(1)
1 = (Y · ht)1/x ·Xαr d

(1)
2 = Xr

d
(2)
1 = (Y · ht′)1/x · Xαr′

d
(2)
2 = Xr′

for some values r, r′ ∈ Zp, B can extract h1/x =
(

d
(1)
1 /d

(1)
2

α

d
(2)
1 /d

(2)
2

α

) 1
t−t′

. ��

We note that, in the above proof, the simulator does not have to rewind all
executions of the key generation protocol but only one, when the adversary asks
for a private key corresponding to the target identity ID� (recall that all queries
involve distinct identities). Given that the number of rewinds is constant, the
proof still goes through when the simulator is presented with many concurrent
key generation queries. If other executions of the protocol (that necessarily in-
volve identities ID �= ID�) are nested within the one being rewinded when dealing
with ID�, the simulator simply runs them as an honest verifier would in the proof
of knowledge and calculates the PKG’s output as per relation (5) in the proof
of theorem 1. Thus, the initial rewind does not trigger any other one and the
simulation still takes polynomial time in a concurrent setting.

Adaptive-ID Security. The scheme can obviously be made IND-ID-CPA if
Waters’ “hash function” F (ID) = u′∏n

j=1 u
ij

i – where ID = i1 . . . in ∈ {0, 1}n and
(u′, u1, . . . , un) ∈ Gn+1 is part of mpk – supersedes the Boneh-Boyen identity
hashing F (ID) = gID · Z. The function F is chosen so as to equal F (ID) =
gJ1(ID) · XJ2(ID) for integer-valued functions J1, J2 that are computable by the
simulator. The security proof relies on the fact that J1 is small in absolute value
and cancels with non-negligible probability proportional to 1/q(n + 1), where q
is the number of key generation queries.

When extending the proof of theorem 3 to the adaptive setting, an adversary
with advantage ε allows solving CDH with probability O(ε/q2(n+1)). The reason
is that the simulator has to guess beforehand which key generation query will

246 B. Libert and D. Vergnaud

involve the target identity ID�. If ID� is expected to appear in the jth query,
when the latter is made, B rewinds A to extract (t0, θ) and uses the special
value t′1 to answer the query as per (6). With probability 1/q, B is fortunate
when choosing j

$← {1, . . . , q} at the beginning and, again, J1(ID�) happens to
cancel with probability O(1/q(n + 1)) for the target identity.

4 Weak Black-Box Traceability

Theorem 3 showed the infeasibility for users to compute another key from a
different family given their private key. In these regards, a decryption key im-
plements a “1-copyrighted function” – in the terminology of [25,29] – for the
matching identity. Using this property and the perfect white-box FindKey-CPA
security, we describe a black-box tracing mechanism that protects the user from
a dishonest PKG as long as the latter is withheld access to a decryption oracle.

The tracing strategy is the one used by Kiayias and Yung [25] in 2-user traitor
tracing schemes, where the tracer determines which one out of two subscribers
produced a pirate decoder. In our setting, one rather has to decide whether an
ε-useful decryption device stems from the PKG or the user himself.

TraceD(mpk, dID, ε): given a well-formed private key dID = (d1, d2, d3) belonging
to a user of identity ID and oracle access to a decoder D that decrypts
ciphertexts encrypted for ID with probability ε, conduct the following steps.
a. Initialize a counter ctr ← 0 and repeat the next steps L = 16λ/ε times:

1. Choose distinct exponents s, s′ $← Z∗
p at random, compute C1 = Xs,

C2 = (gID · Z)s and C3 = e(g, h)s′
.

2. Calculate C4 = m · e(C1, d1)/
(
e(C2, d2) ·Cd3

3

)
for a randomly chosen

message m ∈ GT .
3. Feed the decryption device D with (C1, C2, C3, C4). If D outputs

m′ ∈ GT such that m′ = m, increment ctr.

b. If ctr < 4λ, incriminate the PKG. Otherwise, incriminate the user.

The soundness of this algorithm is proved using a similar technique to [1]. To
ensure the independence of iterations, we assume (as in [1]) that pirate devices
are stateless, or resettable, and do not retain information from prior queries:
each query is answered as if it were the first one.

Theorem 4. Under the mDBDH assumption, dishonest users have negligible
chance to produce a decryption device D that makes the tracing algorithm in-
criminate the PKG in the selective-ID ComputeNewKey game.

Proof. The tracing algorithm points to the PKG if it ends up with a too small
value of ctr. The latter can be seen as the sum of L = 16λ/ε independent
random variables Xi ∈ {0, 1} having the same expected value p1. We have μ =
E[ctr] = Lp1. The Chernoff bound tells us that, for any real number ω such that
0 ≤ ω ≤ 1, Pr[ctr < (1 − ω)μ] < exp(−μω2/2). Under the mDBDH assumption,

Towards Black-Box Accountable Authority IBE 247

we certainly have AdvmDBDH(λ) ≤ ε/2 (since ε/2 is presumably non-negligible).
Lemma 1 shows that p1 ≥ ε − AdvmDBDH(λ), which implies

μ = Lp1 ≥ L(ε − AdvmDBDH(λ)) ≥ Lε

2
= 8λ. (7)

With ω = 1/2, the Chernoff bound guarantees that

Pr[ctr < 4λ] = Pr[ctr < μ/2] < exp(−μ/8) = exp(−λ). ��
Lemma 1. In the selective-ID ComputeNewKey game, if D correctly opens well-
formed ciphertexts with probability ε, the probability that an iteration of the trac-
ing algorithm increases ctr is at least p1 ≥ ε − AdvmDBDH(λ).

Proof. We consider two games called Game0 and Game1 where the adversary A
is faced with a ComputeNewKey challenger B and produces a decryption device
D which is provided with ciphertexts during a tracing stage. In Game0, D is
given a properly formed encryption of some plaintext m whereas it is given a
ciphertext C where C3 has been changed in Game1. In either case, we call pi

(with i ∈ {0, 1}) the probability that D returns the plaintext m chosen by B.
In the beginning of Game0, A chooses a target identity ID� and the challenger

B defines the system parameters as X = gc, h = gb, Y = Xγ · h−t�

and Z =
g−ID� · Xα for random α, γ, t�

$← Z∗
p. Then, A starts making key generation

queries that are treated using the same technique as in the proof of theorem 3.
Again, B only has to rewind the WI proof when the query pertains to ID�.

At the end of the game, A outputs a decryption box D that correctly decrypts
a fraction ε of ciphertexts. Then, B constructs a ciphertext C as

C1 = ga, C2 = (ga)α, C3 = T, C4 = m · e(C1, d1)
e(C2, d2) · Ct�

3

where T ∈ GT . In Game0, B sets T = e(g, g)ab/c so that we have C3 = e(g, h)a/c

and C is a valid ciphertext (for the encryption exponent s = a/c) that D correctly
decrypts with probability ε. In this case, D thus outputs m′ = m ∈ GT with
probability p0 = ε. In Game1, T is chosen as a random element of GT and
C = (C1, C2, C3, C4) has the distribution of a ciphertext produced by the tracing
stage and D must output a plaintext m′ = m with probability p1. It is clear that
|p0 − p1| ≤ AdvmDBDH(λ) and we thus have p1 ≥ ε − AdvmDBDH(λ). ��
The proofs of theorem 4 and lemma 1 readily extend to the adaptive-ID setting
using the same arguments as in the last paragraph of section 3. The system thus
turns out to be the first scheme that is amenable for weak black-box traceabil-
ity against dishonest users in the adaptive-ID sense. Due to their reliance on
attribute-based encryption techniques (for which only selective-ID adversaries
were dealt with so far), earlier black-box or weakly black-box A-IBE proposals
[21,22] are only known to provide selective-ID security against dishonest users.

As for the security against dishonest PKGs, we observed that, in the FindKey-
CPA game, the last part d

(1)
3 = t of the user’s private key is perfectly hidden

248 B. Libert and D. Vergnaud

to the malicious PKG after the key generation protocol. Then, a pirate decoder
D made by the PKG has negligible chance of decrypting ciphertexts where C3
is random in the same way as the user would. When the user comes across D

and takes it to the court, the latter runs the tracing algorithm using D and the
user’s well-formed key d

(1)
ID = (d(1)

1 , d
(1)
2 , d

(1)
3) for which d

(1)
3 is independent of D.

Lemma 2. In the FindKey-CPA game, one iteration of the tracing algorithm
increases ctr with probability at most 1/p.

Proof. In an iteration of the tracing stage, D is given C = (C1, C2, C3, C4) such
that C1 = Xs, C2 = (gID ·Z)s, C3 = e(g, h)s′

and C4 = m ·e(g, Y)s ·e(g, h)(s−s′)t

for distinct s, s′ $← Z∗
p. Since D has no information on d

(1)
3 = t, for any plaintext

m ∈ GT , there is a value d
(1)
3 that explains C4 and it comes that D returns the

one chosen by the tracer with probability 1/p. ��
Theorem 5. In the black-box FindKey-CPA game, a dishonest PKG has negli-
gible advantage.

Proof. The dishonest PKG is not detected if it outputs a decryption box for
which the tracing ends with a sufficiently large ctr. From lemma 2, it easily
comes that Pr[ctr ≥ 4λ] ≤ Pr[ctr ≥ 1] ≤ L/p = 16λ/(εp) ≤ 16λ/(2λε). ��
To secure the scheme against chosen-ciphertext attacks and preserve the weak
black-box property, we can use the Canetti-Halevi-Katz [13] technique or its
optimizations [9,10] that do not affect the tracing algorithm.

5 Conclusion

We described the first A-IBE system allowing for weak black-box traceability
while retaining short ciphertexts and private keys. We also suggested a white-box
variant that dwells secure against dishonest PKGs equipped with a decryption
oracle. In the black-box setting, it remains an open problem to achieve the latter
property without significantly degrading the efficiency.

Acknowledgements

We thank Duong Hieu Phan and the anonymous referees for their comments.

References

1. Abdalla, M., Dent, A., Malone-Lee, J., Neven, G., Phan, D.-H., Smart, N.: Identity-
Based Traitor Tracing. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS,
vol. 4450, pp. 361–376. Springer, Heidelberg (2007)

2. Al-Riyami, S., Paterson, K.: Certificateless Public Key Cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003)

Towards Black-Box Accountable Authority IBE 249

3. Au, M.-H., Huang, Q., Liu, J.-K., Susilo, W., Wong, D.-S., Yang, G.: Traceable and
Retrievable Identity-Based Encryption. In: Bellovin, S.M., Gennaro, R., Keromytis,
A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 94–110. Springer, Heidel-
berg (2008)

4. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

5. Boneh, D., Boyen, X.: Secure Identity-Based Encryption Without Random Oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004)

6. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity-Based encryption with Con-
stant Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005)

7. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing.
SIAM 32(3), 586–615 (2003); earlier version in Kilian, J. (ed.) CRYPTO 2001.
LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

8. Boneh, D., Gentry, C., Hamburg, M.: Space-Efficient Identity-Based Encryption
Without Pairings. In: FOCS 2007, pp. 647–657 (2007)

9. Boneh, D., Katz, J.: Improved Efficiency for CCA-Secure Cryptosystems Built
Using Identity-Based Encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS,
vol. 3376, pp. 87–103. Springer, Heidelberg (2005)

10. Boyen, X., Mei, Q., Waters, B.: Direct Chosen Ciphertext Security from Identity-
Based Techniques. In: ACM CCS 2005, pp. 320–329 (2005)

11. Boyen, X., Waters, B.: Anonymous Hierarchical Identity-Based Encryption (With-
out Random Oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
290–307. Springer, Heidelberg (2006)

12. Canetti, R., Halevi, S., Katz, J.: A Forward-Secure Public-Key Encryption Scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 254–271. Springer,
Heidelberg (2003)

13. Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based
Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

14. Cheon, J.H.: Security Analysis of the Strong Diffie-Hellman Problem. In: Vaude-
nay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg
(2006)

15. Cocks, C.: An Identity-Based Encryption Scheme Based on Quadratic Residues.
In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

16. Cramer, R., Shoup, V.: A Practical Public-Key Cryptosystem Provably Secure
Against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

17. Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen
Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

18. Gentry, C.: Certificate-Based Encryption and the Certificate Revocation Problem.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 272–293. Springer,
Heidelberg (2003)

19. Gentry, C.: Practical Identity-Based Encryption Without Random Oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006)

250 B. Libert and D. Vergnaud

20. Gentry, C., Silverberg, A.: Hierarchical ID-Based Cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

21. Goyal, V.: Reducing Trust in the PKG in Identity-Based Cryptosystems. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 430–447. Springer, Heidel-
berg (2007)

22. Goyal, V., Lu, S., Sahai, A., Waters, B.: Black-Box Accountable Authority Identity
Based Encryption. In: ACM-CCS 2008 (2008)

23. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM CCS 2006, pp. 89–98 (2006)

24. Hofheinz, D., Kiltz, E.: Secure Hybrid Encryption from Weakened Key Encapsula-
tion. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

25. Kiayias, A., Yung, M.: Traitor Tracing with Constant Transmission Rate. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 450–465. Springer, Hei-
delberg (2002)

26. Kiltz, E., Vahlis, Y.: CCA2 Secure IBE: Standard Model Efficiency through Au-
thenticated Symmetric Encryption. In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS,
vol. 4964, pp. 221–238. Springer, Heidelberg (2008)

27. Kurosawa, K., Desmedt, Y.: A New Paradigm of Hybrid Encryption Scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 445–456. Springer, Hei-
delberg (2004)

28. Libert, B., Vergnaud, D.: Towards Black-Box Accountable Authority IBE
with Short Ciphertexts and Private Keys. Computing Research Repository,
http://arxiv.org/abs/0807.1775

29. Naccache, D., Shamir, A., Stern, J.-P.: How to Copyright a Function. In: Imai, H.,
Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 188–196. Springer, Heidelberg
(1999)

30. Okamoto, T.: Provably Secure and Practical Identification Schemes and Cor-
responding Signature Schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS,
vol. 740, pp. 31–53. Springer, Heidelberg (1993)

31. Pedersen, T.: Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

32. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

33. Sakai, R., Kasahara, M.: ID-based Cryptosystems with Pairing on Elliptic Curve.
In: SCIS 2003 (2003), http://eprint.iacr.org/2003/054

34. Sarkar, P., Chatterjee, S.: Construction of a Hybrid HIBE Protocol Secure Against
Adaptive Attacks. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS,
vol. 4784, pp. 51–67. Springer, Heidelberg (2007)

35. Schnorr, C.P.: Efficient Identification and Signatures for Smart Cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

36. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

37. Shoup, V., Gennaro, R.: A Note on An Encryption Scheme of Kurosawa and
Desmedt. Cryptology ePrint Archive: Report 2004/194 (2004)

38. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

http://arxiv.org/abs/0807.1775
http://eprint.iacr.org/2003/054

Towards Black-Box Accountable Authority IBE 251

A A Variant with White-Box FindKey-CCA Security

To achieve IND-sID-CCA2 security, we can hybridize the scheme using an au-
thenticated symmetric encryption scheme (as defined in appendix B) as pre-
viously considered in [34,26] in the context of identity-based encryption. The
obtained variant is reminiscent of a version of Gentry’s IBE described in [26].

Setup: is the same as in section 3 except that the PKG now chooses two ele-
ments YA, YB

$← G instead of a single one Y . An authenticated symmetric
encryption scheme (E,D) of keylength � ∈ N, a secure key derivation func-
tion KDF : GT → {0, 1}� and a target collision-resistant hash function
H : {0, 1}∗ → Z∗

p are also needed. The master key is set as msk := x and the
global public key is mpk := (X = gx, h, YA, YB, Z,H,KDF, (E,D)).
.

Keygen(PKG,U): to obtain a private key for his identity ID, a user U interacts
with the PKG as follows.
1. U sends R = ht0 · Xθ to the PKG and proves his knowledge of the

underlying pair (t0, θ)
$← (Z∗

p)
2 in a witness indistinguishable fashion.

2. The PKG outputs ⊥ if the proof is incorrect. Otherwise, it picks random
values r′A, tA,1, r

′
B, tB

$← Z∗
p and returns

d′ID,A = (d′A,1, d
′
A,2, d

′
A,3) =

(
(Y · R · htA,1)1/x · (gID · Z)r′

A , Xr′
A , tA,1

)
d′ID,B = (d′B,1, d

′
B,2, d

′
B,3) =

(
(YB · htB)1/x · (gID · Z)r′

B , Xr′
B , tB

)
3. U computes dID,A = (d′A,1/g

θ · (gID · Z)r′′
A , d′A,2 · Xr′′

A , d′A,3 + t0) as well
as dID,B = (d′B,1 · (gID · Z)r′′

B , d′B,2 · Xr′′
B , dB,3), for randomly chosen

r′′A, r′′B
$← Z∗

p so that

dID,A = (dA,1, dA,2, dA,3) =
(
(YA · htA)1/x · (gID · Z)rA , XrA , tA

)
(8)

dID,B = (dB,1, dB,2, dB,3) =
(
(YB · htB)1/x · (gID · Z)rB , XrB , tB

)
(9)

where tA = t0 + tA,1, rA = r′A +r′′A and rB = r′B +r′′B. He checks whether
dID,A and dID,B respectively satisfy

e(dA,1, X) = e(YA, g) · e(h, g)dA,3 · e(gID · Z, dA,2) (10)
e(dB,1, X) = e(YB, g) · e(h, g)dB,3 · e(gID · Z, dB,2). (11)

If so, he sets his private key as (dID,A, dID,B) and the latter belongs to
the family of decryption key identified by nF = dA,3 = tA.

Encrypt: to encrypt m given mpk and ID, choose s
$← Z∗

p and compute

C =
(
C1, C2, C3, C4

)
=
(
Xs, (gID · Z)s, e(g, h)s, EK(m)

)
where K = KDF (e(g, YA)s · e(g, YB)κs) and κ = H(C1, C2, C3).

252 B. Libert and D. Vergnaud

Decrypt: given C =
(
C1, C2, C3, C4

)
and dID = (dID,A, dID,B), compute the

plaintext m = DK(C4) (which may just be ⊥ if C4 is not a valid authenti-
cated encryption) using the key

K = KDF
(e(C1, dA,1 · dκ

B,1)

e(C2, dA,2 · dκ
B,2) · CdA,3+κdB,3

3

)
(12)

with κ = H(C1, C2, C3).

Trace: given an alleged private key (dID,A, dID,B), with dID,A = (dA,1, dA,2, dA,3),
for an identity ID, check the validity of dID w.r.t. ID using relations (10)-(11).
If valid, the key is declared as a member of the family nF = d3,A = tA.

To prove the IND-sID-CCA security, we can apply the technique of [26], which
in turn borrows ideas from [27,37,24].

In the chosen-ciphertext scenario, the white-box FindKey security is no longer
unconditional but relies on the ciphertext integrity of the symmetric encryption
scheme.

Theorem 6. The scheme is IND-sID-CCA secure in the standard model if the
modified DBDH assumption holds, if the symmetric scheme is a secure authenti-
cated encryption scheme, if H is target collision-resistant and if the key deriva-
tion function is secure. More precisely, we have

AdvCCA
A (λ, �) ≤ qd + 2q2

d

p
+AdvTCR(λ)+AdvmDBDH(λ)+3qd ·AdvCT-INT(�)

+ (2qd + 1) · AdvKDF(λ, �) + AdvIND-SYM(�)

where qd denotes the number of decryption queries allowed to the adversary A
and the advantage functions against (E,D) are defined in appendix B.

Proof. Given in the full version of the paper [28]. ��
Theorem 7. The scheme is FindKey-CCA secure assuming the security of the
key derivation function and the (weak) ciphertext integrity of the symmetric en-
cryption scheme. The advantage of an adversary A making at most qd decryption
queries is bounded by

AdvFindKey-CCA
A (λ, �) ≤ 2 · qd · AdvCT-INT(�)

+ 2 · qd · AdvKDF(λ, �) +
2q2

d + qd + 1
p

.

Proof. Given in appendix C. ��

B Authenticated Symmetric Encryption

A symmetric encryption scheme is specified by a pair (E,D), where E is the
encryption algorithm and D is the decryption procedure, and a key space K(�)

Towards Black-Box Accountable Authority IBE 253

where � ∈ N is a security parameter. The security of authenticated symmet-
ric encryption is defined by means of two games that capture the ciphertext
indistinguishability and ciphertext (one-time) integrity properties.

Definition 4. An symmetric encryption scheme is secure in the sense of au-
thenticated encryption if any PPT adversary has negligible advantage in the fol-
lowing games.

1. The IND-SYM game. For any PPT algorithm A, the model considers the
following game, where � ∈ N is a security parameter:

GameIND-SYM
A (�)

K
$← K(�)

(m0,m1, s) ← A(find, �)
d� $← {0, 1}
c� ← EK(md�)
d ← A(guess, s, c�)
return 1 if d = d� and 0 otherwise.

A’s advantage is AdvIND-SYM
A (�) = |Pr[GameIND-SYM

A = 1] − 1/2|.
2. The CT-INT game. Let A be a PPT algorithm. We consider the following

game, where � ∈ N is a security parameter:

GameCT-INT
A (�)

K
$← K(�)

(m, s) ← A(find, �)
c ← EK(m)
c′ ← A(create, �, c)
return 1 if c′ �= c and DK(c′) �=⊥

0 otherwise.

A’s advantage is now defined as AdvCT-INT
A (�) = Pr[GameCT-INT

A = 1].

The notion of weak ciphertext integrity is defined in the same way but the
adversary is not allowed to see an encryption c under the challenge key K.

C Proof of Theorem 7

The proof proceeds again with a sequence of games, in all of which Si denotes
the event that the adversary A wins.
Game0: is the FindKey-CCA experiment. The dishonest PKG A generates the
master public key, chooses an identity ID that she wishes to be challenged
upon. She interacts with the challenger in a key generation protocol, upon
completion of which the challenger B obtains a decryption key consisting of

254 B. Libert and D. Vergnaud

two triples d
(1)
ID,A = (dA,1

(1), dA,2
(1), dA,3

(1)), d
(1)
ID,B = (dB,1

(1), dB,2
(1), dB,3

(1))
that should pass the key sanity check (otherwise, B aborts). At this stage, A
knows t

(1)
B = d

(1)
B,3 but has no information on d

(1)
A,3 = t

(1)
A or on the values

rA = logX(d(1)
A,2) and rB = logX(d(1)

B,2) (by the construction of the key gener-
ation protocol). In the next phase, A starts making a number of decryption
queries that the challenger handles using (d(1)

ID,A, d
(1)
ID,B). Namely, when queried

on a ciphertext C = (C1, C2, C3, C4), B calculates

ψ =
e
(
C1, d

(1)
A,1 · d(1)

B,1

κ)
e
(
C2, d

(1)
A,2 · d(1)

B,2

κ) · Cd
(1)
A,3+κdB,3

(1)

3

,

where κ = H(C1, C2, C3), K = KDF (ψ) and m = DK(C4) which is returned to
A (and may be ⊥ if C is declared invalid).

At the end of the game, A outputs a key (d(2)
ID,A, d

(2)
ID,B) and wins if d(2)

ID,A parses

into (dA,1
(2), dA,2

(2), dA,3
(2)) such that dA,3

(1) = t
(1)
A = t

(2)
A = dA,3

(2).
We note that decryption queries on well-formed ciphertexts do not reveal any

information to A (since all well-formed keys yield the same result). We will show
that, provided all ill-formed ciphertexts are rejected by B, A still has negligible
information on t

(1)
A in the end of the game. For convenience, we distinguish two

types of invalid ciphertexts: type I ciphertexts (C1, C2, C3, C4) are such that
logX(C1) �= logF (ID)(C2) (and can be told apart from valid ones by checking if
e(C1, F (ID)) �= e(X,C2)), where F (ID) = gID ·Z, whereas type II ciphertexts are
those for which logX(C1) = logF (ID)(C2) �= loge(g,h)(C3).
Game1: is as Game0 but B rejects all type I invalid ciphertexts (that are pub-
licly recognizable). Such a malformed ciphertext comprises elements C1 = Xs1 ,
C2 = F (ID)s1−s′

1 and C3 = e(g, h)s1−s′′
1 where s′1 > 0 and s′′1 ≥ 0. Hence, the

symmetric key K that B calculates is derived from

ψ = e(g, Y s1
A · Y κs1

B) · e(F (ID), X)s′
1(rA+κrB) · e(g, h)s′′

1 (t(1)A +κt
(1)
B) (13)

where κ = H(C1, C2, C3). Upon termination of the key generation protocol, A
has no information on rA, rB (as B re-randomizes its key). Even if κ was the
same in all decryption queries (which may happen if these queries all involve
identical (C1, C2, C3)), the second term of the product (13) remains almost uni-
formly random to A at each new query. Indeed, for each failed one, A learns
at most one value that is not rA + κrB . After i attempts, p − i candidates
are left and the distance between the uniform distribution on GT and that of
e(F (ID), X)s′

1(rA+κrB) becomes at most i/p ≤ qd/p. Then, the only way for A
to cause the new rejection rule to apply is to forge a symmetric authenticated
encryption for an essentially random key K. A standard argument shows that,
throughout all queries, the probability of B not rejecting a type I ciphertext
is smaller than qd · (AdvCT-INT(�) + AdvKDF(λ, �) + qd/p). It easily comes that
|Pr[S1] − Pr[S0]| ≤ qd · (AdvCT-INT(λ) + AdvKDF(λ, �) + qd/p).

We now consider type II invalid queries. While A knows t
(1)
B , she has initially

no information on t
(1)
A and the last term of the product (13) is unpredictable

Towards Black-Box Accountable Authority IBE 255

to her at the first type II query. Each such rejected query allows A to rule
out at most one candidate as for the value t

(1)
A . After i ≤ qd unsuccessful type

II queries, she is left with at least p − i candidates at the next type II query,
where the distance between the uniform distribution on GT and that of ψ (cal-
culated as per (13)) becomes smaller than i/p ≤ qd/p. Again, one can show that,
throughout all queries, the probability of B not rejecting a type II ciphertext is
at most qd · (AdvCT-INT(�)+AdvKDF(λ, �)+ qd/p). Let us call type-2 the latter
event. If all invalid ciphertexts are rejected, A’s probability of success is given
by Pr[S1|¬type-2] ≤ 1/(p− qd) ≤ (qd + 1)/p. Since

Pr[S1] = Pr[S1 ∧ type-2] + Pr[S1 ∧ ¬type-2]
≤ Pr[type-2] + Pr[S1|¬type-2]Pr[¬type-2]
≤ Pr[type-2] + Pr[S1|¬type-2]
≤ qd · (AdvCT-INT(�) + AdvKDF(λ, �) +

qd

p

)
+

qd + 1
p

and |Pr[S0] − Pr[S1]| ≤ qd · (AdvCT-INT(λ) + AdvKDF(λ, �) + qd/p), the claimed
upper bound follows. ��

Removing Escrow from
Identity-Based Encryption

New Security Notions and Key Management Techniques

Sherman S.M. Chow�

Department of Computer Science
Courant Institute of Mathematical Sciences

New York University, NY 10012, USA
schow@cs.nyu.edu

Abstract. Key escrow is inherent in identity-based encryption (IBE). A
curious key generation center (KGC) can simply generate the user’s pri-
vate key to decrypt a ciphertext. However, can a KGC still decrypt if it
does not know the intended recipient of the ciphertext? We answer by for-
malizing KGC anonymous ciphertext indistinguishability (ACI −KGC).

We find that all existing pairing-based IBE schemes without random
oracles, whether receipt-anonymous or not, do not achieve KGC one-
wayness, a weaker notion of ACI − KGC. In view of this, we first show
how to equip an IBE scheme by Gentry with ACI − KGC. Second, we
propose a new system architecture with an anonymous private key gen-
eration protocol such that the KGC can issue a private key to an au-
thenticated user without knowing the list of users identities. This also
better matches the practice that authentication should be done with the
local registration authorities instead of the KGC. Our proposal can be
viewed as mitigating the key escrow problem in a different dimension
than distributed KGCs approach.

1 Introduction
The feature that differentiates identity-based encryption (IBE) scheme from
other public key encryption schemes lies in the way a public and private key
pair is set up – every arbitrary string is a valid public key. There is a trusted
authority, called the key generation center (KGC), responsible for the genera-
tion of private keys after user authentications. Private key generation applies
the KGC’s master secret key to the users’ identities. The major benefit of this
approach is to largely reduce the need for processing and storage of public key
certificates under traditional public key infrastructure (PKI).

Nevertheless, the advantages come with a major drawback which is known as
the escrow problem. The KGC could decrypt any message addressed to a user

� The author would like to thank Yevgeniy Dodis for the inspiration of this research
and many fruitful discussions, Kenneth Paterson for his invaluable assistance and
suggestions, and Melissa Chase for her helpful comments.

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 256–276, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

http://dx.doi.org/10.1007/978-3-642-00468-1_29

Removing Escrow from Identity-Based Encryption 257

by generating that user’s private key. To escape from the eye of the KGC, two
users may execute an interactive key agreement protocol (e.g. [24]) to establish
a session key known only to themselves, or the recipient can setup another key
pair and employ certificateless encryption [2,23,25,26], which is a two-factor en-
cryption method involving both IBE and public key encryption. However, one
of the main benefits of IBE is lost – it is no longer true that a ciphertext can be
prepared without any action by the recipient.

Can anonymity help confidentiality? Current study of IBE only consid-
ers anonymity against malicious users’ attack, except a recent and independent
work [34] which considers the application of KGC-anonymous IBE in password-
authenticated key exchange but without any application in the context of IBE
itself. We try to use anonymity against a malicious KGC to fight against the
escrow problem. If the KGC does not know the intended recipient of the ci-
phertext, is it still possible for it to decrypt on behalf of the user? We answer
this question by introducing the notions of KGC one-wayness (OW −KGC) and
KGC anonymous ciphertext indistinguishability (ACI − KGC).

We find that (to the best of our knowledge) no existing pairing-based IBE
schemes without random oracles can achieve the weakest notion of confidentiality
OW −KGC, no matter whether it is user-anonymous. In view of this, we show
to equip Gentry’s IBE scheme [28] with ACI − KGC in the standard model.

How can KGC not know the users’ identities? Our notion of ACI − KGC
minimizes the damage of master secret key exposure, providing protection against
adversaries who hold the master secret key but not the list of user identities. How-
ever, it is natural for the KGC to have this list. By generating all possible user
private keys, the KGC can decrypt all ciphertexts. In view of this, we propose a
new system architecture to prevent the KGC from knowing it.

We acknowledge that the KGC can always try to derive all possible user
private keys according to a certain “dictionary”. It seems that there is not much
we can do to protect ourselves against a strong adversary like the KGC in this
situation. Nevertheless our notion is useful when there is some min-entropy from
the identities (e.g. biometric identity [43]). On the other hand, nothing can be
gained if one always stores the identity with the ciphertext.1

New Key Management Techniques. We separate the tasks of authentication
and key issuing, hence our system architecture employs two parties, namely, an
identity-certifying authority (or ICA in short) and a KGC. This setting is dif-
ferent from a typical ID-based cryptosystem, but actually better matches the
practice that authentication should be done with the local registration authori-
ties, especially when the KGC is not globally available to authenticate users.

The master secret is still solely owned by the KGC. In particular, it is not
spilt across two authorities, in contrast with the distributed KGCs approach.
The ICA is responsible for issuing some kind of certificates, but it does not
need to store any of them, and only the KGC is required to verify the certificate.
1 Don’t write your address on a tag with your key to guide the thief who picked it up.

258 S.S.M. Chow

After obtaining the private key, users do not require any further interaction with
these authorities for decryption. Last but not least, the certificate is not used
anywhere else in the system, i.e. the encryption itself is still purely ID-based.

Under this model, we show that one can put anonymous ciphertext indistin-
guishability in practice. We give a design of the anonymous private key issuing
protocol, and present a concrete protocol construction for Gentry-IBE.

1.1 Review of Identity-Based Encryption

The concept of IBE was formulated by Shamir in 1984 [47]. Satisfactory propos-
als for IBE did not exist until nearly two decades afterward, when Boneh and
Franklin [12] and Sakai et al. [45] presented two IBE solutions based on pairing
and full-domain hash to elliptic curve points (referred to as FDH-IBE).

Reduction Improvement. Since Boneh-Franklin’s work (BF-IBE), there has
been a flurry of variants. For improving the security reduction in the random
oracle model, Attrapadung et al. [3] worked out an FDH-IBE having two public
keys for an identity, an idea which was used to improve the security reduction of
FDH signature. Galindo [27] gave a variant of BF-IBE using another transforma-
tion technique (different from the one in [12]) to get adaptive chosen-ciphertext
security (CCA2). Modifying BF-IBE, Libert and Quisquater [39] gave an IBE
without redundancy [42]. All these schemes share a similar ACI − KGC analysis.

Multi-Recipient and Hierarchical ID-Based Encryption (HIBE). In
HIBE, the workload of private key generation of a single root KGC is delegated
to many lower-level KGCs. Gentry and Silverberg proposed the first full-blown
(compared with [33]) HIBE (GS-HIBE) [29]. For encrypting to multiple recipi-
ents more efficiently than in the straightforward approach, multi-recipient IBE
was proposed by Baek et al. (BSS-MIBE) [4]. An extension of [4] with shorter
ciphertext was proposed in [39]. These schemes bear similarities to GS-HIBE.

Exponent-Inversion IBE. Sakai and Kasahara [44] proposed another IBE
(SK-IBE) with a private key derivation algorithm based on exponent-inversion,
which is different from FDH-IBE. The CCA2-security of SK-IBE is proven in
another work [22], albeit in the random oracle model.

The first exponent-inversion IBE in the standard model was proposed by Boneh
and Boyen [8] (hereinafter referred to as BB-EIIBE), which offers selective-ID se-
curity. Using the chameleon hashing technique due to Waters [49], an extension of
[8] with adaptive-ID security was proposed in [36]. Since only the way of hashing
the identity is changed, they share the same ACI − KGC analysis.

Standard Model (Commutative-Blinding). Boneh and Boyen proposed
selective-ID IBE and HIBE schemes in [8] (hereinafter referred to as BB-(H)IBE).
Shortly afterward, they gave an adaptive-ID version [9]. Waters simplified [9] in
[49], and gave a fuzzy version with Sahai in [43]. Extending from [49], Kiltz
and Galindo [37] gave a CCA2 ID-based key encapsulation without using any
transformation, and Kiltz and Vahlis [38] gave an efficient CCA2 ID-based

Removing Escrow from Identity-Based Encryption 259

key encapsulation scheme using authenticated symmetric encryption. Extend-
ing from [43], Boldyreva et al. [7] gave an IBE with efficient revocation.

Regarding HIBE, [9] and [49] suggested HIBE extensions similar to the ap-
proach in [8]. An HIBE with constant-size ciphertext was proposed in [10], which
was later made adaptive-ID secure in [20]. Generalizations of the selective-ID
model for HIBE, with two HIBE constructions, were proposed in [17]. HIBE
with short public parameters was proposed in [18]. A multi-recipient IBE and a
parallel key-insulated IBE in standard model were proposed in [19] and [50].

Despite their apparent versatility (e.g. different ways of generating public
keys from identities), all these schemes use a similar implicit key encapsulation
method. As a result, they share a similar ACI − KGC analysis. Finally, [21,41]
studied the tradeoff between key size and security reduction for [49].

Standard Model (with User Anonymity). Boyen and Waters [15] pro-
posed an anonymous IBE scheme (BW-IBE) and the first anonymous HIBE
(AHIBE). It has been suggested in [15] that AHIBE can obtain adaptive secu-
rity by the hashing technique of Waters [49]. Similar to the extension of [8] in
[36], it does not affect the ACI − KGC analysis. Recently, [10] has been made
anonymous in [46]. Although these schemes are anonymous, they can be shown
to be not OW −KGC-secure in a similar way to BB-(H)IBE.

Gentry’s scheme also provides anonymity in the standard model [28]. It has
been extended by Kiltz and Vahlis using authenticated symmetric encryption for
better efficiency (KV-IBE) [38], and by Libert and Vergnaud for more efficient
weak black-box accountable IBE (LV-IBE) [40]. We will show that Gentry-IBE
can be made ACI − KGC secure, but interestingly, its extensions [38,40] are
not. Actually, LV-IBE mixes commutative-blinding and exponent-inversion – its
OW −KGC can be broken similar to breaking BB-EIIBE or BB-(H)IBE.

Generalizations of IBE. Recently, there have been many generalizations of
IBE, such as hidden-vector encryption [14], predicate encryption [35] and spatial
encryption [13]. However, it can be shown that they are not OW −KGC-secure.

1.2 Attempts in Reducing Trust in the KGC

Accountable IBE. In accountable IBE [30] (AIBE), the trust in the KGC
is reduced in another dimension, such that the KGC is discouraged from leak-
ing or selling any user secret key. Consider an IBE scheme with an exponential
number of user secret keys for any given identity, such that deriving any other
secret key from any one of them (without the knowledge of the master secret
key) is intractable; if the key issuing protocol ensures that the user can obtain a
user private key without letting the KGC know which one it is, we can conclude
that the KGC must be the one who leaks the user private key if a user can
show the existence of two private keys for the same identity. Goyal [30] showed
that Gentry-IBE satisfies the aforementioned properties, and proposed the corre-
sponding key issuing protocol, which also works with our modified Gentry-IBE.
Another AIBE scheme that is based on Waters IBE [49] and Sahai-Waters fuzzy

260 S.S.M. Chow

IBE [43] was also proposed in [30]. Goyal et al. [31] later proposed a black-box
accountable IBE (BBAIBE). However, these schemes are not OW −KGC-secure.

KGC-Anonymous ID-based KEM. Independent of our work, anonymity
against an honest but curious KGC attack was considered by Izabachène and
Pointcheval [34]. Their notion of key anonymity with respective to authority
(KwrtA), given in the context of identity-based KEM (IB-KEM), requires the
adversary to guess between the two possibilities of recipient identity, with the
master secret key and the challenge ciphertext, but without the ephemeral ses-
sion key. In the context of IBE, the ciphertext always contain a component which
encrypts the message by this session key. Taking it away means that the chal-
lenge is “incomplete” since partial knowledge of it can be seen in the ciphertext
produced by IBE. Hence, the real-world impact on IBE given by their security
notion may be unclear. Nevertheless, they showed that an IB-KEM with this
KwrtA-anonymity and ID-based non-malleability (another new notion in [34])
is a useful tool for constructing password-authenticated key exchange protocols.
Relationships between our notion and theirs will be given in §5.4.

Distributed KGCs. A standard method to avoid the inherent key escrow is
to split the master secret key to multiple KGCs. The user private key generation
is then done in a threshold manner, where each KGC uses a share of the master
secret key to generate a private key component for a user. In our approach,
the master secret key is not distributed. It is always possible to have this key
distribution on top of our idea if an extra layer of protection is desirable.

2 Definitions

2.1 Notations and Complexity Assumptions

We use x ∈R S to denote the operation of picking an element x at random and
uniformly from a finite set S. For a probabilistic algorithm A, x

$← A assigns
the output of A to the variable x. If x is a string, |x| denotes its length. If λ ∈ N,
1λ denotes a string of λ ones. A function ε : N → R is negligible (negl(k)) if for
every constant c ≥ 0 there exists kc such that ε(k) < k−c for all k > kc.

Definition 1 (Bilinear Map). Let G and GT be two (multiplicative) cyclic
groups of prime order p. A bilinear map e(·, ·) : G × G → GT satisfies:

1. Bilinearity: For all u, v ∈ G, a, b ∈ Z, e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) �= 1 where g is a generator of G.

Definition 2. (Decisional) Bilinear Diffie-Hellman Problem (DBDHP): Given
g, ga, gb, gc ∈ G, and t̂ ∈ GT , output ‘yes’ if t̂ = e(g, g)abc and ‘no’ otherwise.

We introduce two problems whose names are inspired by the decisional linear
problem [11]. An oracle for solving the first one makes solving DBDHP easily.

Removing Escrow from Identity-Based Encryption 261

Definition 3. Decisional Bilinear Problem (DBP): Given two G elements g
and ga, two GT elements e(g, g)b and t̂, output ‘yes’ if t̂ = e(g, g)ab and ‘no’
otherwise. We name (g, ga, e(g, g)b, e(g, g)ab) as a decisional bilinear tuple.

Definition 4. Modified Decisional Bilinear Problem (MDBP):Given g, ga,gb−1∈
G, and e(g, g)b, t̂ ∈ GT , output ‘yes’ if t̂ = e(g, g)ab and ‘no’ otherwise.

Lemma 1. DBDH assumption implies Decisional Bilinear assumption.

Proof. Given (g, ga, gb, gc, t̂), computes e(g, g)b′ = e(gb, gc) where b′ = bc, feeds
(g, ga, e(g, g)b′ , t̂) to the DBP oracle and outputs its answer. ��
Definition 5. (Decisional) q-Bilinear Diffie-Hellman Exponent Problem
(q-BDHEP): Given (q + 2) G elements (g′, g, gα, · · · , gαq

), and one GT element
t̂, output ‘yes’ if t̂ = e(gαq+1

, g′) and ‘no’ otherwise.

A stronger version of q-BDHEP is assumed difficult for the security of Gentry-
IBE. We remark that the hard problem considered in [28] is augmented with
g′α

q+2

and q equals to the number of users compromised by the adversary.

Lemma 2. Decisional 2-Bilinear Diffie-Hellman Exponent assumption implies
Modified Decisional Bilinear assumption.

Proof. Given (g′, g, gα, gα2
, t̂), set θ1 = gα, θ2 = g′, θ3 = g, θ̂ = e(gα, gα2

) and
feed (θ1, θ2, θ3, θ̂, t̂) to the MDBP oracle. The input is valid since θ3 = (θ1)α−1

and θ̂ = e(θ1, θ1)α. Let θ2 = θγ
1 where γ ∈ Zp, the MDBP oracle outputs ‘yes’ if

and only if t̂ = e(θ1, θ1)γα, since e(θ1, θ1)γα = e(gα, gα)γα = e(gα3
, g′). ��

2.2 Identity Based Encryption

Under the standard definition, an IBE scheme consists of four algorithms:

1. via (mpk,msk) $← Setup(1λ) the randomized key generation algorithm out-
puts the system parameters mpk and the master secret key msk;

2. via usk[ID] $← KeyDer(msk, ID) the KGC outputs2 a secret key for user ID;

3. via C
$← Enc(mpk, ID,m) anyone can encrypt a message m to user ID in C;

4. via m ← Dec(mpk, usk[ID],C) user ID uses secret key usk to get m from C.

Consistency requires that for all λ ∈ N, all identities ID, all messages m ∈ MsgSp

(defined by mpk) and all C $← Enc(mpk, ID,m), Pr[Dec(KeyDer(msk, ID),C) =
m] = 1, where the probability is taken over the coins of all the above
algorithms.

In our definition, we separate the master key generation from the Setup.

Definition 6. An IBE scheme consists of the following five PPT algorithms:
2 This algorithm is deterministic for most schemes stemmed from FDH-IBE.

262 S.S.M. Chow

1. via param
$← Setup(1λ) the setup algorithm outputs the system parameters

param for security parameter λ ∈ N, with message space MsgSp(λ) included.

2. via (mpk,msk) $← MKeyGen(param) the key generation algorithm outputs
the master public/secret key (mpk,msk) conforming to param;

3. KeyDer, Enc and Dec are defined as in the standard definition.

We can view Setup as a trusted initializer for choosing the system parameters
(for examples, the choice of elliptic cure) which are implicitly included in the
input of KeyDer, Enc and Dec. The KGC generates a master public/private key
pair only via MKeyGen. We assume it is efficient to check if a message m is in
MsgSp(λ) or if mpk comes from a group that matches with what is specified in
param. We denote the latter check by (an abused notation) mpk ∈ param.

3 Anonymity and Indistinguishability against the KGC

3.1 Anonymity against User Attack

User-anonymity is defined by the game below [1]. The adversarial goal is to
distinguish the intended recipient of a ciphertext between two chosen identities3.

Experiment Expano−cpa
IBE,A (λ)

IDset ← ∅; (param) $← Setup(1λ); (mpk,msk) $← MKeyGen(param);

(ID0, ID1,m
∗, st) $← AKeyDerO(·)(‘find’, param,mpk);

If m∗ /∈ MsgSp(λ) then return 0;

b
$← {0, 1}; C $← Enc(mpk, IDb,m

∗); b′ $← AKeyDerO(·)(‘guess’,C, st);
If b �= b′ or ({ID0, ID1} ∩ IDset �= ∅) then return 0 else return 1;

where the private key derivation oracle KeyDerO(ID) is defined as:

IDset ← IDset ∪ {ID};usk[ID] ← KeyDer(msk, ID); return usk[ID]

and st denotes the state information maintained by the adversary A.

3.2 Anonymous Ciphertext Indistinguishability

We use the term “anonymous ciphertext” to refer a ciphertext that the KGC
holds without the knowledge of who is the intended recipient. We do not model
the case where the KGC maliciously generates the system parameters (e.g. the
choice of elliptic curve), but we provide a new “embedded-identity encryption”
oracle, which lets the adversary adaptively get many ciphertexts designated to
the same person, without knowing the real identity. The absence of such an oracle
gives the adversary no way to see more than one ciphertext for the unknown
recipient. For the ease of discussion, we suppose an identity is of n-bit length.
3 IBE’s ciphertext does not mean to reveal the recipient’s identity. We omit anonymity

revocation oracle which is present in some cryptographic schemes (e.g. [11]).

Removing Escrow from Identity-Based Encryption 263

Definition 7. An IBE scheme is (t, qE , ε) ACI − KGC secure if all t-time ad-
versaries making at most qE embedded-identity encryption oracle queries have
advantage at most ε in winning the game below (i.e. the experiment returns 1).

Experiment Expaci−kgc
IBE,A (λ)

(param) $← Setup(1λ); ID∗ $← {0, 1}n;

(mpk, st) $← A(‘gen’, param); If mpk /∈ param then return 0;

(m∗
0,m

∗
1, st)

$← AEncO(mpk,ID∗)(·)(‘find’,mpk, st);
If {m∗

0,m
∗
1} � MsgSp(λ) or |m∗

0| �= |m∗
1| then return 0;

b
$← {0, 1}; C $← Enc(mpk, ID∗,m∗

b); b
′ $← AEncO(mpk,ID∗)(·)(‘guess’,C, st);

If b �= b′ then return 0 else return 1;

where the embedded-identity oracle EncO(mpk,ID∗)(m) returns Enc(mpk, ID∗,m)
and the advantage of A is defined as |Pr[Expaci−kgc

IBE,A (λ) = 1] − 1
2 |.

One may define semantic security of the hidden identity in a similar way; but
we omitted it to keep our focus on whether the KGC can decrypt the ciphertext.

Embedded-Identity Decryption. The above game just considers chosen-
plaintext attack (CPA). One may consider giving the adversary adaptive access
to a decryption oracle, or even an “embedded-identity decryption oracle”. We
consider this stronger notion from both the theory and practice perspectives.

Our security notion is actually quite strong in the sense that the adversary
is not required to reveal the master secret key to the challenger. We start our
discussion with a weakened definition such that the adversary is instead required
to do so. While it is possible that the decryption oracle could help the adver-
sary to deduce information about the challenge ciphertext, this happens when
a maliciously formed ciphertext is presented to the decryption oracle. If we are
able to put some validity tag in the ciphertext such that the challenger, with
the master secret key, can do a sanity check before the actual decryption; only
“invalid” will be returned for any malformed ciphertext or those not encrypted
for the challenge identity, i.e. CCA2-security against user also helps in here.

If the challenger does not know the master secret, it may sound impossible
to simulate the decryption oracle. Nevertheless, our definition assumes trusted
parameter generation, which possibly allows us to solve the problem with ap-
proaches similar to simulating the strong decryption oracle in certificateless en-
cryption [2,23,25,26], such as a knowledge-extractor with the help of the random
oracle, or a non-interactive zero-knowledge proof system setup according to the
trusted parameters. Due to the lack of space, we do not delve into details.

In practice, while it makes sense to trick a user into encrypting some pre-
defined messages (as modeled by the embedded-identity encryption oracle); it
may not make much sense to consider the case that the KGC gained accesses to
an embedded-identity decryption oracle – which possibly means the KGC has
identified this user already. Due to these complications, we keep our focus on
the CPA notion. Nevertheless, this does not preclude the possibility of achieving
ACI − KGC-security and CCA2-security against user attack simultaneously.

264 S.S.M. Chow

3.3 Comparison of User Anonymity and KGC One-Wayness

A KGC is a powerful adversary. We consider KGC one-wayness (OW −KGC),
a notion strictly weaker than ACI − KGC, to better reflect the security of IBE
against KGC attacks. We also present two separation results.

Definition 8. An IBE is OW −KGC secure if Pr[Expow−kgc
IBE,A (λ)=1] < negl(λ).

Experiment Expow−kgc
IBE,A (λ)

(param) $← Setup(1λ), ID∗ $← {0, 1}n;

(mpk, st) $← A(‘gen’, param); If mpk /∈ param then return 0;

m∗ $← MsgSp(λ); C $← Enc(mpk, ID∗,m∗); m′ $← A(‘guess’,C, st);
If m∗ �= m′ then return 0 else return 1;

Theorem 1. User anonymity does not imply OW −KGC.

Proof. Given any user-anonymous IBE scheme with encryption algorithmEnc, de-
fine a new IBE with encryption algorithm Enc′(mpk, ID,m) = (Enc(mpk, ID,m),
Enc(mpk, “0”, ID)), where “0” is a dummy identity and the corresponding user se-
cret key is never released by the KGC. If the IBE scheme is semantically secure,
the ciphertext produced by Enc′ is still user-anonymous. But it is not OW −KGC
since the KGC can just generate the user secret key for “0”, decrypt the second
component of the ciphertext and then decrypt the first component.

Theorem 2. ACI − KGC does not imply user anonymity.

Proof. Given any ACI − KGC with encryption algorithm Enc, define a new IBE
with encryption algorithm which appends the first bit of identity to the cipher-
text. Any adversary can just choose two identities which differ at the first bit to
break the user-anonymity. On the other hand, the notion of ACI − KGC depends
on the number of random bits in the identity; essentially only one bit of security
is lost and ACI − KGC is still preserved.

In next section, we will see they are also orthogonal to each other in practice.

4 Analysis

Table 1 gives a concise and unified review of existing IBE schemes in the context
of ACI − KGC analysis. Seven (H)IBE schemes representing a large class of IBE
schemes in the literature are selected. Note that we made many simplifications
and omitted many elegant components of the IBE schemes being analyzed. We
do not intend to give a complete review of the constructions of all these schemes
(it seems we are reducing these IBE schemes to ID-based key encapsulations or
even just public key encryption schemes), but we want to keep our focus on how
a KGC can decrypt the message using the master secret key. Thus, we only show
the essential components in the master public key mpk, the master secret key
msk, the ciphertext, and the variable that can be computed (without using any

Removing Escrow from Identity-Based Encryption 265

Table 1. Concise Review of IBE Schemes for ACI − KGC Analysis. Elements in
G, Zp, GT : capital letters, small letters, small letters with hat respectively. Generators
of G and GT : P and ĝ = e(P, P) resp. Ephemeral randomness employed in encryption:
r, r′. QID = H0(ID), where H0(·) : {0, 1}n → G. Hierarchical identity: (ID1, ID2, · · ·).

Schemes mpk msk Ciphertext K
FDH-IBE [12,45] P s s P r e(QID

r, P s)
GS-HIBE [29] P s s P r, Qr

ID2
, · · · e(QID1

r, P s)
BSS-MIBE [4] P s, Q s P r e(Q,P s)r

BB-EIIBE [8] ĝ, V = P s s V r ĝr

BB-(H)IBE [8] e(P, S) S P r e(P, S)r

BW-IBE [15] v̂ = ĝs1s2s3 , V1 = P s1 , V2 = P s2 s1, s2, s3 V r−r′
1 , V r′

2 v̂r

KV-IBE [38] ĝ, v̂1 = ĝs1 , v̂2 = ĝs2 s1, s2 ĝr, t (v̂t
1v̂2)r

secret key) from the ciphertext (t in KV-IBE), which are sufficient for the KGC
to do the decryption. We use K to denote the random session key created by the
implicit KEM, which is a crucial piece of data to decrypt the ciphertext.

4.1 Schemes That Are Not OW − KGC-Secure

The session key K in BSS-MIBE can be computed by e(Q,P r)s. For BB-EIIBE,
K can be computed by e(P, V r)1/s. For BB-(H)IBE, e(P r, S) = K. For BW-IBE,
it can be computed by e((V r′

2)1/s2(V r−r′
1)1/s1 , P)s1s2s3 = e(P r′

P r−r′
, P s1s2s3)

= v̂r. For KV-IBE, (ĝr)s1t+s2 = K. Hence, they are not OW −KGC-secure.
BBAIBE [31] is not exactly covered by the above analysis, however, it can be
easily shown that it is not OW −KGC-secure. Note that all of the above com-
putations use the master secret key as-is, instead of exploiting the knowledge of
any discrete logarithm between some group elements in the system parameters.

4.2 Schemes That Are ACI − KGC-Secure

We consider FDH-IBE [12,45] – when K = e(QID
r, P s) is used to encrypt the

message m ∈ GT by mK, this gives a CPA-secure IBE scheme. To prove its
ACI − KGC-security, we assume the parameters for the hash functions are setup
by an honest party, which means the random oracles are not controlled by the
adversary in the security proof.

Theorem 3. If DBP is hard, FDH-IBE is ACI − KGC secure.

Due to the lack of space, we give an informal argument to get some intuition
on why is it so. Given any pair of messages (m∗

0,m
∗
1) and an encryption of one

of them, there is always a pair of identities (ID0, ID1) such that the decryption
of the ciphertext using session key e(QID0

r, P s) gives m∗
0 and decryption using

e(QID1
r, P s) gives m∗

1. If the challenge identity is chosen from a uniform distri-
bution with high entropy, any adversary simply has no clue to distinguish, and
hence the scheme is ACI − KGC-secure. Note that the above argument remains
valid even if the adversary can compute r from P r.

266 S.S.M. Chow

For the CCA2-secure BF-IBE [12], we can prove it is ACI − KGC secure by
considering the computational bilinear problem (CBP), the computational vari-
ant of DBP (i.e., to compute e(g, g)ab instead of distinguishing it from random).
The simulation is similar to that in Theorem 3, but e(g, g)ab will be “trapped”
by the random oracle if the adversary has non-negligible in winning the game.

Lemma 3. If CBP is hard, BF-IBE is ACI − KGC secure.

Thus, we can still enjoy the usual CCA2-security against the user (outsider ad-
versary) with the extra ACI − KGC protection. A similar argument applies to
Gentry-Silverberg HIBE and Yao et al.’s HIBE [51]. Extra elements in the chal-
lenge ciphertext only contain more information about r and the identities at the
lower level, which cannot help the adversary to determine the first-level identity
or distinguish the ciphertext. They can also be easily simulated by manipulating
the random oracle. This gives an interesting result that even when the ciphertext
is not “strictly” user-anonymous, it is still possible to get ACI − KGC-security.

5 “Escrow-Free” IBE in the Standard Model

BF-IBE is ACI − KGC-secure but its CCA2-security is only proven in the ran-
dom oracle model. Below we review Gentry-IBE [28], an IBE with CCA2-security
proven in the standard model, under the original four-algorithm IBE framework.

Setup: The KGC selects g, h1, h2, h3 randomly from G, randomly chooses an
exponent α ∈R Zp, sets g1 = gα ∈ G, and chooses a hash function H : {0, 1}n →
Zp from a family of universal one-way hash functions. The public parameters
and the master secret key are given by mpk = (g, g1, h1, h2, h3, H), msk = α.

KeyDer: To generate a private key for identity ID ∈ Zp, the KGC picks τID,i ∈R Zp

and computes hID,i =
(
hig

−τID,i
) 1

α−ID for i∈{1, 2, 3}, outputs {τID,i, hID,i}i∈{1,2,3}.
The KGC must always use the same random value τID,i for ID. This can be
accomplished by using a pseudorandom function (PRF) or an internal log [28].

Enc: To encrypt m ∈ GT for identity ID ∈ Zp, the sender picks r ∈R Zp, computes

C=(u, v, w, y)=
(

(g1g
−ID)r

, e(g, g)r, m/e(g, h1)r, e(g, h2)re(g, h3)r·H(u,v,w)
)
.

Dec: To decrypt the ciphertext C with a private key {τID,i, hID,i}i∈{1,2,3}, first
check C’s validity by testing if y = e(u, hID,2hID,3

β)vτID,2+τID,3β where β = H(u, v,
w). In case of inequality, ⊥ is outputted. Otherwise, return m=w·e(u, hID,1)vτID,1 .

5.1 Modification

To get ACI − KGC, instead of letting the KGC to select g, h1, h2, h3 randomly
from G, we require that the discrete logarithm of one with respect to another
be unknown to the KGC, or OW −KGC can be easily broken. This requirement
was not stated in [28]. In practice, this can be achieved by using a common

Removing Escrow from Identity-Based Encryption 267

public seed to generate these parameters with a cryptographic hash function.
Specifically, we separate the master key generation from the Setup as follows.

Setup: The trusted initializer chooses the group G according to the security
parameter, and selects g, h1, h2, h3 randomly from G. It also chooses a hash
function H : {0, 1}n → Zp from a family of universal one-way hash functions.
The public parameter param is given by (g, h1, h2, h3, H).

MKeyGen: The KGC chooses an exponent α ∈R Zp. It sets g1 = gα ∈ G. The
master public/private key pair is given by (mpk = g1, msk = α).

Note that the above change does not affect the original security guarantees of
Gentry-IBE against users attack, i.e. CCA2-security and user anonymity.

5.2 Security

With Lemma 2, the below theorem shows that the above IBE is ACI − KGC
secure without extra number-theoretic assumptions other than what has been
assumed in the original proof for indistinguishability against users’ attack [28].

Theorem 4. If MDBP is hard, the above IBE is ACI − KGC secure.

Proof. Let A be an adversary that breaks ACI − KGC of the IBE system de-
scribed above. We construct an algorithm, S, that solves a MDBP instance
(g, gr, gs−1

, e(g, g)s, t̂) as follows.
S randomly chooses two exponents γ2, γ3 ∈R Zp and a hash function H :

{0, 1}n → Zp from a family of universal one-way hash functions. The system
parameter param is set as (g, h1, h2, h3, H) where h1 = gr, h2 = gγ2 and h3 =
gγ3 . A then returns g1 = gα ∈ G as the master public key, α ∈ Zp is not given to
S and S never uses α in the simulation. S also picks a random element c ∈R Zp.

To simulate the embedded-identity encryption oracle with message mi as input
(for i ∈ {1, · · · , qE}), S selects a random element di ∈R Zp and returns

(ui, vi, wi, yi) =
(
(gs−1

)cdi , e(g, g)di ,mi/e(g, h1)di , e(g, g)di(γ2+γ3·H(ui,vi,wi))
)
.

Let ŝ = e(g, g)s. When A outputs two equal length messages (m∗
0,m

∗
1), S ran-

domly generates a bit b, the challenge ciphertext is given by C = (u, v, w, y) =(
gc, ŝ,m∗

b/t̂, ŝ
γ2+γ3·β

)
, where β = H(u, v, w). From the structure of the cipher-

text, the intended recipient’s identity ID∗ is implicitly defined by c = s(α− ID∗).
Since s−1c = s−1s(α − ID∗) = α − ID∗, the ciphertexts returned by the

embedded-identity encryption oracle are valid ciphertexts encrypted for ID∗.
After A receives C, it outputs b′ with probability ε at the end of the guess

stage. If b = b′, S outputs 0 (meaning t̂ = e(g, g)rs); otherwise, it outputs 1.
If t̂ = e(g, g)rs, (u, v, w, y) is a valid, appropriately-distributed challenge to A.

If t̂ �= e(g, g)rs, since t̂ is uniformly random and independent from A’s view (other
than the challenge ciphertext), (u, v, w, y) imparts no information regarding the
bit b, so we have the success probability equal to

268 S.S.M. Chow

Pr [t̂ = e(g, g)rs] · Pr [A succeeds] + Pr [t̂ �= e(g, g)rs] · Pr [b �= b′]

= (
1
2
)(

1
2

+ ε) + (
1
2
)(

1
2
) =

1
2

+
ε

2
��

Using a similar argument, SK-IBE [44] can be proven ACI − KGC-secure.

5.3 ACI − KGC-Security without User-Anonymity

Now we modify the scheme presented in §5.1 to give a contrived construction
in the standard model. The modification just introduces the term gID to the
ciphertext. An immediate consequence is that the modified scheme no longer
provides user-anonymity, To revise the ACI − KGC proof, the extra term in the
challenge ciphertext (and this term appears in all ciphertexts returned by the
embedded-identity encryption oracle as well) can be simulated by gα/(gs−1

)c.

5.4 Comparisons with Accountability, Anonymity with Respect to
the KGC, and ID-Based Non-malleability

The above scheme can be made to be accountable [30], but other accountable
IBE schemes [31,40] are not ACI − KGC-secure, which shows that accountability
is orthogonal to ACI − KGC-security. For KwrtA-anonymous IBE, [34] showed
that BF-IBE [12] is KwrtA but not ID-based non-malleable, a variant of SK-IBE
[44] is both KwrtA and ID-based non-malleable, while BB-IBE [8], AHIBE [15]
and Gentry-IBE [28] are not KwrtA but are ID-based non-malleable. Together
with our analysis in §4, it is clear that the notions of KGC-anonymity, ID-based
non-malleability and ACI − KGC-security are independent of each other.

6 Anonymous Private Key Issuing

In anonymous key issuing (AKI), we need to achieve two somewhat contradictory
requirements simultaneously. On one hand, the identity of a user should not be
leaked, but a user must be authenticated to obtain the corresponding private
key. We propose a new system architecture to realize such an AKI protocol, by
employing non-colluding identity-certifying authority (ICA) and KGC.

From a high level, the ICA is responsible for issuing each user a certificate on
the purported identity after authentication. This certificate is generated using
the master certifying key skcert. The certificate alone would not enable the user
to decrypt. The user should contact the KGC who issues a private key based on
the certificate presented, but the KGC never gets to know the identity involved in
the certificate. The user private key is still generated with the help of the master
secret key, that is owned by the KGC and kept secret from the ICA. Figure 1
depicts the certification and the key issuing process. Since the ICA keeps the
identities list of the system’s users, we make the trust assumption that the ICA
does not collude with the KGC (or the KGC can get the identities list easily).

Removing Escrow from Identity-Based Encryption 269

Identity Certifying Authority

1. Identity

Identities list

2. / 3. Certificate

4. User private keyUser

Certifying key

Key Generation Center

Master secret key

Fig. 1. Our System Architecture

As in PKI, we also assume that the ICA would not impersonate any user. Our
solution requires a user to contact two parties before getting a key. Nevertheless,
it may be cost-prohibitive to have a globally available KGC to authenticate users
and issue keys to users via secure channels in a typical ID-based cryptosystem.

6.1 General Framework

An anonymous key issuing protocol for an IBE scheme consists of four polynomial-
time algorithms in additional to the Setup andMKeyGen algorithms from the IBE.
For brevity, the public parameter param output by Setup is omitted below.

1. via (pkcert, skcert)
$← IKeyGen() the ICA probabilistically outputs the pub-

lic/private key pair for certification pkcert, skcert;

2. via (cert, aux) $← SigCert(skcert, ID) the ICA probabilistically outputs a cer-
tificate for identity ID and some auxiliary information aux;

3. ObtainKey(mpk, ID, cert, aux) ↔ IssueKey(sk, cert) are two interactive algo-
rithms which execute a user secret key issuing protocol between a user and
the KGC. The user takes as input the master public key mpk, an identity ID,
and the corresponding certificate cert with auxiliary information aux, and
gets a user secret key usk[ID] as output. The KGC gets the master secret
key msk and the certificate cert as input and gets nothing as output.

Here we give a general design framework of such a protocol. We do not claim
that any design based on the primitives mentioned here must be secure, but
we will analyze the security of our proposed protocol, which is based on the
standard argument in anonymous credential literature [5,16].

The first step of our AKI protocol is to get a certificate on an identity from
the ICA, which just utilizes a signature scheme. However, the user needs to show
this signature to the KGC without leaking the identity (being signed). So the
ICA signs on a hiding commitment of the identity instead. This also requires the
ability to prove that the contents of a commitment have been signed.

270 S.S.M. Chow

For the KGC side, considering that a user secret key in IBE is essentially a
signature on an identity given by the master secret key, obtaining a user secret
key without leaking the identity to the KGC boils down to obtaining something
similar to a blind signature from the KGC (not to be confused with the signature
by the ICA). The blinding step can make a commitment to the identity, the key
issuing protocol becomes one for obtaining a signature on a committed value.
A crucial difference between our protocol and a blind signature or anonymous
credential is manifest at the final stage of our protocol. We require that the
user can transform the response from the KGC to a normal signature which
directly signs on the value being committed, such that it can be used as the
private decryption key of the IBE scheme. In particular, if the final signature just
includes a non-interactive proof for proving that the contents of a commitment
has been signed, it does not seem to work with any of the existing IBE schemes.

6.2 Security Requirements

One can view (cert, aux) as a signature and SigCert as the signing algorithm
of a signature scheme. For security we require existential unforgeability against
adaptive chosen message attack. We omit this standard definition. Our frame-
work assumes SigCert is used to sign on the (perfectly binding and strongly
computationally hiding) commitment of an identity, which is included in cert.

Regarding ObtainKey and IssueKey, we require that malicious users can only
get the user private key for the identity “embedded” in the ICA’s certificate from
the interaction with the KGC, but nothing else. For security protection of the
users, we require that the KGC cannot learn anything from the certificate about
the real identity of the user. Below is a formalization of the above intuition,
which is adopted from some of the security properties of the P-signature [5], a
suite of protocols for obtaining signature in a privacy-preserving way.

Definition 9. An AKI protocol satisfies issuer privacy if there exists a simulator
SimIssue such that for all PPT adversaries (A1,A2),

|Pr [param $← Setup(1λ); (mpk,msk) $← MKeyGen(param);

(ID, aux, st) $← A1(param,mpk,msk); com ← Commit(param, ID, aux);

b
$← A2(st) ↔ IssueKey(param,msk, com) : b = 1]

−Pr [param $← Setup(1λ); (mpk,msk) $← MKeyGen(param);

(ID, aux, st) $← A1(param,mpk,msk); com ← Commit(param, ID, aux);

b
$← A2(st) ↔ SimIssue(param,KeyDer(msk, ID), com) : b = 1]| < negl(λ).

Intuitively, this captures the requirement that the protocol itself reveals no in-
formation to the adversary (in particular, msk) other than a user secret key.

In our definition, both SimIssue and IssueKey get an honestly generated com-
mitment, for adversarially chosen identity ID and opening aux. Since we assume
the commitment is perfectly binding, this automatically guarantees that the

Removing Escrow from Identity-Based Encryption 271

identity associated with the commitment is well defined, and only a user secret
key corresponding to that particular identity is obtained by the adversary.

For a cleaner definition, SigCert is not involved. Whether SimIssue and IssueKey
receives a signature on a commitment of ID or ID itself is just about how their
interfaces take ID as the input. We allow SimIssue to rewind the adversary and
it can extract the hidden ID from the commitment.

The above definition assumes the adversary knows msk even its purpose is for
the protection of the secrecy of msk. This is adopted from the security definition
of secure two-party computation protocols, which models the situation that even
the adversary is given some partial information of msk (e.g. through our IBE
scheme), it is still unable to distinguish whether it is interacting with a simulator
or the real key issuing protocol. Together with the security of the underlying
IBE scheme (e.g. CCA2 with access to a user secret key oracle), our definition
guarantees that the AKI protocol can be used with the IBE scheme.

Definition 10. An AKI protocol satisfies user privacy if there exists a simulator
SimObtain such that for all PPT adversaries (A1,A2),

|Pr [param $← Setup(1λ), (mpk, ID, aux, st) $← A1(param);
com ← Commit(param, ID, aux);

b
$← A2(st) ↔ ObtainKey(param,mpk, ID, com, aux) : b = 1]

−Pr [param $← Setup(1λ), (mpk, ID, aux, st) $← A1(param);
com ← Commit(param, ID, aux);

b
$← A2(st) ↔ SimObtain(param,mpk, com) : b = 1]| < negl(λ).

This models that the protocol reveals no information about the identity ID to the
malicious KGC which interacts with the user. Both privacy notions are defined
based on a single interaction, but a simple hybrid argument can be used to show
that these definitions imply privacy over many sequential instances.

6.3 AKI Protocol for Modified Gentry-IBE

Our protocol extends the interactive protocol for obtaining a signature on a
committed value of the first P-signature scheme in [5]4. We change the signature
structure of their scheme so that it fits with the user secret key produced in the
modified Gentry-IBE. There are three components sharing the same structure
in the key. For brevity, we just show how to build the first component.

Setup: This algorithm executes Setup of modified Gentry-IBE, setups the per-
fectly binding, strongly computationally hiding commitment and the signature.

IKeyGen: The ICA generates a key pair (pkcert, skcert) for the signature scheme.
4 While the signature of the second construction in [5] shares similarity with the user

secret key of BB-IBE [8], its second component r cannot be recovered.

272 S.S.M. Chow

SigCert: For ID ∈ {0, 1}n, the ICA creates the certificate cert = (sig, com, aux)
by randomly picking5 aux from the decommitment-string space; and generating
a signature sig on com = Commit(ID, aux) by running the signing algorithm.

ObtainKey(mpk, ID, cert, aux) ↔ IssueKey(msk, cert):

1. The user and the KGC engage in a secure two-party computational protocol6,
where the user’s private input is (ρ, ID, aux) where ρ ∈R Zp, and the KGC’s
private input is α. The KGC then gets a private output which is either
x = (α − ID)ρ if com = Commit(ID, aux), or x =⊥ otherwise.

2. If x �=⊥, the KGC randomly picks7 τID,1 ∈ Zp. Then it computes usk′
cert =

(usk′
1 = (h1g

−τID,1)1/x, usk′
2 = τID,1).

3. The user outputs (usk1, usk2) = ((usk′
1)

ρ = (h1g
−τID,1)1/(α−ID), usk′

2).

Analysis. Signer privacy and user privacy follow exactly as in the protocol in
[5]. SimIssue invokes the simulator for the two-party computational (2PC) proto-
col to extract the adversary’s input (ρ, ID, aux), check if com = Commit(ID, aux)
and sends (uskρ

1 , usk2) to the user. SimObtain also invokes the same simulator
to extract the secret key. Then the simulator is given the target output of the
computation x, and proceeds to interact with the adversary such that if the
adversary completes the protocol, its output is x. In both cases, if the adver-
sary can determine that it is talking with a simulator, it must be the case that
the adversary’s input to the protocol was incorrect which breaks the security
of 2PC.

6.4 Related Work

“Anonymous” private key issuing in ID-based cryptosystems was firstly con-
sidered by Sui et al. [48], in a system where the duties of authentication and
key issuing are separated to local registration authorities (LRAs) and the KGC.
Instead of having an LRA to issue a signature, a user supplies a password to
the LRA. However, their anonymity guarantee just considers outsider adver-
saries, and actually an LRA is required to send a list of identities and pass-
words to the KGC, while our protocol does not require any communication
between them.

The “blind” extraction protocols for IBE with leak freeness and selective-
failure blindness were proposed in a rigorous manner by Green and Hohenberger
[32]. Our notion of issuer privacy is very similar to leak freeness as both are
defined in a secure 2PC fashion. A minor difference is that their definition is not
coupled with any specific way (e.g. commitment) to hide the identity. Neverthe-
less, their concrete protocols utilize commitment scheme as well. The motivating

5 We require that the ICA always use the same aux for a given ID. We can just take
aux as the output of a PRF with input ID, for a seed only known to the ICA.

6 An efficient protocol for securely computing g′1/(sk+m) based on any homomorphic
encryption in the standard model [16, §4.3.3] can be used.

7 If a certificate signing the same commitment is presented later, same τID,1 is used.

Removing Escrow from Identity-Based Encryption 273

application in [32] is oblivious transfer, hence the notion of selective-failure blind-
ness considers maliciously generated parameter. Our user privacy is weaker, but
it should be fine for our purpose, especially when the KGC is not motivated to
induce a selective failure and the user can verify the validity of the key obtained.

As noted in [32], it is non-trivial to come up with an efficient AKI protocol for
BF-IBE, another IBE that we showed is ACI − KGC-secure. However, if one is
willing to weaken the security guarantee from 2PC to something like one-more
unforgeability of blind signature [6], we conjecture that an efficient AKI protocol
for BF-IBE can be constructed similar to the blind signature scheme in [6].

6.5 Applications in Privacy-Preserving Searches on Encrypted Data

Anonymous IBE has attracted attention for the privacy benefits, and as a lever-
age to construct public key encryption with keyword search [1] as follows. Iden-
tity strings are used to represent the keywords. The private key for a particular
identity is the trapdoor for testing whether a ciphertext is tagged with a par-
ticular keyword. The role of the KGC is now known as the trapdoor generator.
To create an encrypted tag, one encrypts a random message using the keyword
as the identity in IBE, and appends the message with the tag. To locate the
ciphertexts tagged with a keyword, one tries to use a trapdoor to decrypt the
tag, and see if the result matches the accompanying message.

Back to our notion, ACI − KGC implies that the compromise of the private
key does not leak the keyword from an encrypted tag. Our AKI protocol also
finds application in privacy-preserving delegated forensic search with authoriza-
tion, which the government issues a warrant on a keyword to a law enforcing
agent (e.g. the police). This warrant is then presented to the encrypted-data
owner to indicate that the agent is authorized to ask for a trapdoor for the cer-
tified keyword, without revealing what is of forensic interests or (the extreme
way of) asking the data owner to surrender the private key. While the idea
of privacy-preserving delegated keyword search has been considered, only blind
protocols for non-user-anonymous IBE schemes like BB-IBE and Waters-IBE
are proposed [32], and without addressing a realistic concern that the hidden
keyword should be certified by some authority. We remark that the govern-
ment can be responsible for the system parameter generation to ensure keyword
privacy.

7 Conclusions

We propose a new notion of anonymous ciphertext indistinguishability against
KGC attacks (ACI − KGC), which is orthogonal to existing notions like user
anonymity. We modified Gentry’s IBE to get an ACI − KGC-secure IBE in the
standard model. We propose a new system architecture with an anonymous
key issuing (AKI) protocol to protect the confidentiality of the users identi-
ties. We hope that future IBE proposals will consider ACI − KGC as one of
the key properties, and IBE with ACI − KGC or AKI protocol will find more
applications.

274 S.S.M. Chow

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable Encryption Revisited: Consis-
tency Properties, Relation to Anonymous IBE, and Extensions. J. Crypt. 21(3),
350–391

2. Al-Riyami, S.S., Paterson, K.G.: Certificateless Public Key Cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003)

3. Attrapadung, N., Furukawa, J., Gomi, T., Hanaoka, G., Imai, H., Zhang, R.: Ef-
ficient Identity-Based Encryption with Tight Security Reduction. In: Pointcheval,
D., Mu, Y., Chen, K. (eds.) CANS 2006. LNCS, vol. 4301, pp. 19–36. Springer,
Heidelberg (2006)

4. Baek, J., Safavi-Naini, R., Susilo, W.: Efficient Multi-receiver Identity-Based En-
cryption and Its Application to Broadcast Encryption. In: Vaudenay, S. (ed.) PKC
2005. LNCS, vol. 3386, pp. 380–397. Springer, Heidelberg (2005)

5. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and Nonin-
teractive Anonymous Credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 356–374. Springer, Heidelberg (2008)

6. Boldyreva, A.: Threshold Signatures, Multisignatures and Blind Signatures based
on the Gap-Diffie-Hellman-Group Signature. In: Desmedt, Y.G. (ed.) PKC 2003.
LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)

7. Boldyreva, A., Goyal, V., Kumar, V.: Identity-Based Encryption with Efficient
Revocation. In: CCS 2008, pp. 417–426 (2008)

8. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

9. Boneh, D., Boyen, X.: Secure Identity Based Encryption Without Random Oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004)

10. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity Based Encryption with
Constant Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

11. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

12. Boneh, D., Franklin, M.K.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

13. Boneh, D., Hamburg, M.: Generalized Identity Based and Broadcast Encryption
Schemes. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 455–470.
springer, Heidelberg (2008)

14. Boneh, D., Waters, B.: Conjunctive, Subset, and Range Queries on Encrypted
Data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007)

15. Boyen, X., Waters, B.: Anonymous Hierarchical Identity-Based Encryption (With-
out Random Oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
290–307. Springer, Heidelberg (2006)

16. Chase, M.: Efficient Non-Interactive Zero-Knowledge Proofs for Privacy Applica-
tions. PhD thesis, Brown University (2008)

Removing Escrow from Identity-Based Encryption 275

17. Chatterjee, S., Sarkar, P.: Generalization of the Selective-ID Security Model for
HIBE Protocols. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC
2006. LNCS, vol. 3958, pp. 241–256. Springer, Heidelberg (2006)

18. Chatterjee, S., Sarkar, P.: HIBE With Short Public Parameters Without Random
Oracle. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 145–
160. Springer, Heidelberg (2006)

19. Chatterjee, S., Sarkar, P.: Multi-receiver Identity-Based Key Encapsulation with
Shortened Ciphertext. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS,
vol. 4329, pp. 394–408. Springer, Heidelberg (2006)

20. Chatterjee, S., Sarkar, P.: New Constructions of Constant Size Ciphertext HIBE
Without Random Oracle. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS,
vol. 4296, pp. 310–327. Springer, Heidelberg (2006)

21. Chatterjee, S., Sarkar, P.: Trading Time for Space: Towards an Efficient IBE
Scheme with Short(er) Public Parameters in the Standard Model. In: Park, C.-
s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 424–440. Springer, Heidelberg
(2005)

22. Chen, L., Cheng, Z.: Security Proof of Sakai-Kasahara’s Identity-Based Encryption
Scheme. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796,
pp. 442–459. Springer, Heidelberg (2005)

23. Chow, S.S.M.: Certificateless Encryption. In: Joye, M., Neven, G. (eds.) Identity-
Based Cryptography. IOS Press, Amsterdam (2008)

24. Chow, S.S.M., Choo, K.-K.R.: Strongly-Secure Identity-Based Key Agreement and
Anonymous Extension. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R.
(eds.) ISC 2007. LNCS, vol. 4779, pp. 203–220. Springer, Heidelberg (2007)

25. Chow, S.S.M., Roth, V., Rieffel, E.: General Certificateless Encryption and Timed-
Release Encryption. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008.
LNCS, vol. 5229, pp. 126–143. Springer, Heidelberg (2008)

26. Dent, A.W., Libert, B., Paterson, K.G.: Certificateless Encryption Schemes
Strongly Secure in the Standard Model. In: Cramer, R. (ed.) PKC 2008. LNCS,
vol. 4939, pp. 344–359. Springer, Heidelberg (2008)

27. Galindo, D.: Boneh-Franklin Identity Based Encryption Revisited. In: Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 791–802. Springer, Heidelberg (2005)

28. Gentry, C.: Practical Identity-Based Encryption Without Random Oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006)

29. Gentry, C., Silverberg, A.: Hierarchical ID-Based Cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

30. Goyal, V.: Reducing Trust in the PKG in Identity Based Cryptosystems. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 430–447. Springer, Heidel-
berg (2007)

31. Goyal, V., Lu, S., Sahai, A., Waters, B.: Black-Box Accountable Authority Identity-
Based Encryption. In: CCS 2008, pp. 427–436 (2008)

32. Green, M., Hohenberger, S.: Blind Identity-Based Encryption and Simulatable
Oblivious Transfer. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 265–282. Springer, Heidelberg (2007)

33. Horwitz, J., Lynn, B.: Toward Hierarchical Identity-Based Encryption. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Hei-
delberg (2002)

276 S.S.M. Chow

34. Izabachène, M., Pointcheval, D.: New Anonymity Notions for Identity-Based En-
cryption. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS,
vol. 5229, pp. 375–391. Springer, Heidelberg (2008)

35. Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Disjunctions,
Polynomial Equations, and Inner Products. J. Crypt. (to appear)

36. Kiltz, E.: From Selective-ID to Full Security: The Case of the Inversion-Based
Boneh-Boyen IBE Scheme. Cryptology ePrint Archive, 07/033

37. Kiltz, E., Galindo, D.: Chosen-Ciphertext Secure Threshold Identity-Based Key
Encapsulation Without Random Oracles. In: De Prisco, R., Yung, M. (eds.) SCN
2006. LNCS, vol. 4116, pp. 173–185. Springer, Heidelberg (2006)

38. Kiltz, E., Vahlis, Y.: CCA2 Secure IBE: Standard Model Efficiency through Au-
thenticated Symmetric Encryption. In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS,
vol. 4964, pp. 221–238. Springer, Heidelberg (2008)

39. Libert, B., Quisquater, J.-J.: Identity Based Encryption Without Redundancy. In:
Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
285–300. Springer, Heidelberg (2005)

40. Libert, B., Vergnaud, D.: Towards Black-Box Accountable Authority IBE with
Short Ciphertexts and Private Keys. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009.
LNCS, vol. 5443, pp. 235–255. Springer, Heidelberg (2009)

41. Naccache, D.: Secure and practical Identity-based Encryption. Inf. Sec. 1(2), 59–64
42. Phan, D.H., Pointcheval, D.: Chosen-Ciphertext Security without Redundancy. In:

Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 1–18. Springer, Heidel-
berg (2003)

43. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Biham, E. (ed.) EU-
ROCRYPT 2003. LNCS, vol. 2656, pp. 457–473. Springer, Heidelberg (2003)

44. Sakai, R., Kasahara, M.: ID based Cryptosystems with Pairing on Elliptic Curve.
Cryptology ePrint Archive, 03/054

45. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on Pairing over Elliptic
Curve (in Japanese). In: SCIS 2001 (2001)

46. Seo, J.H., Kobayashi, T., Ohkubo, M., Suzuki, K.: Anonymous Hierarchical
Identity-Based Encryption with Constant Size Ciphertexts. In: Jarecki, S., Tsudik,
G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 215–234. Springer, Heidelberg (2009)

47. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

48. Sui, A.F., Chow, S.S.M., Hui, L.C.K., Yiu, S.-M., Chow, K.P., Tsang, W.W.,
Chong, C.F., Pun, K.K.H., Chan, H.W.: Separable and Anonymous Identity-Based
Key Issuing. In: ICPADS 2005, pp. 275–279 (2005)

49. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In: Bi-
ham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 114–127. Springer, Hei-
delberg (2003)

50. Weng, J., Liu, S., Chen, K., Ma, C.: Identity-based Parallel Key-Insulated Encryp-
tion without Random Oracles. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006.
LNCS, vol. 4329, pp. 409–423. Springer, Heidelberg (2006)

51. Yao, D., Fazio, N., Dodis, Y., Lysyanskaya, A.: ID-based Encryption for Complex
Hierarchies with Applications to Forward Security and Broadcast Encryption. In:
CCS 2004, pp. 354–363 (2004)

On the Theory and Practice of Personal Digital
Signatures

Ivan Damg̊ard and Gert Læssøe Mikkelsen�

Depertment of Computer Science, Aarhus University

Abstract. We take a step towards a more realistic modeling of personal
digital signatures, where a human user, his mobile equipment, his PC and
a server are all considered as independent players in the protocol, and
where only the human user is assumed incorruptible. We then propose a
protocol for issuing digital signatures on behalf of the user. This protocol
is proactively UC-secure assuming at most one player is corrupted in
every operational phase. In more practical terms, this means that one
can securely sign using terminals (PC’s) that are not necessarily trusted,
as long as the mobile unit and the PC are not both corrupted at the
same time. In other words, our solution cannot be broken by phising or
key-logging via the PC. The protocol allows for mobile units with very
small computing power by securely outsourcing computation to the PC
and also allows usage of any PC that can communicate properly. Finally,
we report on the results of a prototype implementation of our solution.

1 Introduction

When cryptographic protocols make use of digital signatures, this is usually
described in the cryptographic theory literature by saying something of the fol-
lowing form: “Player Pi signs the message m using his secret key ski, and sends
m and the signature σi = Sski(m) to player Pj”.

While this may be a convenient abstraction in some cases, it hides some details
that are often very important in practice: in real life a “player” is usually not
really a single entity but consists in fact of a human user as well as one or more
computing devices he uses in order to store the key and issue the signature.
Each of the devices could be corrupted by an adversary without the user being
dishonest. In such a case, the theoretic model above would have to consider the
entire “player” to be corrupt and would conclude that we can now no longer
protect the secret key. However, in real life, it is of obvious interest to protect
the user, even if some of his equipment is corrupt.

A well known example of this is the so called man-in-the-middle (or man-in-
the-browser) attack which in the context of signatures takes the form of showing
the user a message on screen that he would approve, while at the same time
trying to have the secret key applied to a different message. If the user’s secret
key resides on his PC, protected say, by encryption under a password, a man-
in-middle attack is always possible if the PC is corrupt.

� Supported by the Danish Strategic research Council.

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 277–296, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

http://dx.doi.org/10.1007/978-3-642-00468-1_29

278 I. Damg̊ard and G.L. Mikkelsen

In this paper, we first propose a model that we believe reflects in a more
realistic way the issues arising when a private person wants to issue digital
signatures using current technology. The main players are: a human user U , a
mobile unit M , a terminal T , and a server S. In practice, M could be a PDA, a
cell-phone or special-purpose device, T could be a PC (but not necessarily the
user’s own machine), and S could be some server where the user has an account.
S could be the user’s own machine, or it could be run by a company handling
many users – the only assumption we make is that S is on-line whenever a
signature is to be issued. In this model, only the user is assumed incorruptible.

We assume that T can interact with U in a standard way via keyboard and
screen. M has a screen where it can show a message to be signed and may receive
an OK or a reject from the user.

In practice, we would like our solutions to be mobile, i.e., any machine can
in principle be used as T , so we therefore consider only protocols where no user
specific key material is stored permanently on T . Another practical issue is that
a mobile handheld unit can easily be lost or stolen, and it should be possible to
securely replace it without having to generate keys (and issue certificates) again.
This requires our solution to be secure against an adversary who first steals M
and later breaks into T or S.

This issue makes it natural for us to aim for proactive security in the UC
model. In proactive security, first introduced in [17], one divides time into opera-
tional phases, interleaved with (short) refreshment phases. In operational phases,
the system provides normal service, while refreshment phases are typically used
to update key material using fresh randomness. The adversary is assumed to
only corrupt a certain number of players in every operational phase, but the set
of corrupted players can be different in different phases, meaning that all players
may have been corrupt at some point, and the system must still be secure. Our
(adaptive) adversary may in each operational phase actively corrupt at most one
of M,T, S. The adversary mentioned above who first steals M and later breaks
into T or S can be modeled in the proactive framework as an adversary who
corrupts M in one operational phase and T or S in the next. Note also that
T models any machine(s) that the user U uses as terminal. So if U in real life
first uses an untrusted terminal in some Internet cafe and then returns to an
uncorrupted PC, this means in our model that T is first corrupted and then
becomes honest again.

We stress that our protocols are secure, even if corruption does not take the
form of loss of a device: whenever our system is operational, it is secure if the
adversary has corrupted at most one of M,T and S, even if the user is not aware
of the corruption. In particular this means we are secure against phising or key-
logging since this corresponds to corruption of T . On the the other hand if we
know that M or S have been corrupted, we can make the system operational
again, by replacing e.g., a lost M by a new uncorrupted device and restoring the
key from a backup.

We model this by introducing a new player, a database, D. This player is only
active in the refreshment phase and is used to restore data held by S that could

On the Theory and Practice of Personal Digital Signatures 279

have been erased or corrupted by an active attack. We allow the adversary to
corrupt D passively. In practice, we think of D as run by the same party who runs
S, and as such the introduction of D models the assumption that the server’s
organization is able to ensure a backup that is reliable, but not necessarily secret.

The functionality we aim to implement is basically the standard UC func-
tionality for secure signatures, except that the adversary is allowed to stop a
signature from being generated 1, and a message is only signed if the user ap-
proves it. We then propose a protocol that is secure in this model. The protocol
has the following properties:

– To execute the protocol, a user first needs to form the message m to be signed
while interacting with T (one may think of using machine T to buy something
on the net, where m is a payment order). To sign, he first authenticates
himself towards S (typically by entering his log-in data on T), and second
he is shown on M ’s screen the message m and must in response tell M “OK”
or “reject”.

– To execute the proactive refreshment phase, a user just has to update his
log-in data for S, and if M is a new mobile unit (a replacement for a stolen
one), he must enter a special code on M (this can be done without many
key strokes, e.g., using the camera in a mobile phone to scan a 2-d bar code)

– The protocol can produce as output standard hash-and-sign RSA signatures,
compatible with existing PKI’s.

– The protocol allows M to use only very little computing power. We can
securely outsource most of the computation to T , so that for each signature,
M only has to evaluate one pseudo random function and do one addition of
large numbers. This is useful if M is a cheap special-purpose device, or if
one wants to run a high-level language implementation on M - this allows
to cover many types of mobile phones using pure Java, for instance, but it
will typically be much slower than device specific code.

– If desired, the protocol can keep the message to be signed secret from S
with no loss of efficiency. Note that this can be desirable for privacy related
reasons, but could also be undesirable if one wants S to keep a log of what
was signed.

On the technical side, we start by borrowing a standard technique from thresh-
old signatures where we share the secret RSA exponent additively between M
and S. We then augment this with a new technique allowing the outsourcing
to T mentioned above. We also propose an extension of the proactive security
model by introducing two kinds of refreshment protocols: one that is done rou-
tinely with no other user intervention than a change of password, and one that
is invoked in case an attack has been detected, e.g., M has been lost or stolen or
a virus attack was detected in S. In such cases we may have lost the information
stored on M or S, which means that the secret key is effectively lost as well.
We therefore need to design a way to use back-up information stored off-line
1 It is easy to see that we cannot avoid this in a scenario where only M and S can

store key material on-line and either of them may be corrupted.

280 I. Damg̊ard and G.L. Mikkelsen

to securely reestablish the secret key. Finally, keeping the signed message secret
from S can be done using standard blinding techniques [8].

In the final part of the paper, we report on results from a prototype implemen-
tation of our protocol. In the prototype M was a mobile phone, running a Java
application while communicating with T (a PC) via Bluetooth. T then commu-
nicates with S via the Internet and SSL. The results show that our outsourcing
technique can give a significant speedup, and provide a far better experience for
the user.

1.1 Related Work

We are not aware of any previous work that attempts to model our scenario
in the UC framework. However, the idea of using a personal (mobile) device to
improve security in practice has been studied in several previous papers. In [18],
Parno et al. use a mobile phone to set up secure SSL/TLS connections and in
[15], Mannan and Oorschot use a personal device to improve security of password
authentication. Both solutions basically aim to do user authentication with im-
proved security, in particular to protect against key-logging and phising. In [20],
Weigold et al. use a trusted mobile USB device with a display and two buttons
to improve security of online services such as Internet banking. All communica-
tion between the used PC and the server is routed through this trusted device,
where the user has to accept sensitive transactions. [15,20] also contains a good
overview of other existing anti-phising techniques and their properties. Finally,
there are many examples of using secure devices for transaction authentication,
see [2,13], for instance.

The main difference to our results is that the previous works need to assume
that the personal device M is uncorrupted (malware-free), while our solution
is secure even if M is corrupt, as long as S, T are honest, due to the sharing
of the key between M and S. Also, previous works typically does not consider
proactive techniques.

As for existing cryptographic techniques, previous literature considers several
types of solutions that protect a secret signature key, even if one or more entities
are corrupt. A first such technique is known as Threshold Signature Schemes,
where the secret key is shared among a set of entities called signature servers.
One can then have protocols that guarantee security if a majority of servers
remain honest. A large body of literature exists on threshold signatures see, e.g.,
[1,9,12,19]. In these protocols the signature servers play symmetric roles, i.e.,
they all execute essentially the same program and each server is assumed to be
equally hard to break into (hence the honest majority assumption). Protocols
for threshold signatures usually assume that the honest servers already agree on
the message to be signed and take it from there without considering how such
an agreement would be reached in practice.

Therefore, standard threshold signatures are not immediately applicable in
our case where a private citizen wants to use digital signatures: he may store
key material in different devices with completely different security properties,
for instance, on a mobile unit such as a PDA or a cellphone, or on a server.

On the Theory and Practice of Personal Digital Signatures 281

Also, the idea that all players should agree on the message to be signed, does
not really make sense here: we clearly want that only the user decides, and only
messages approved by the user get signed. It is not even clear that we want all
players to know the messages signed. If a server handling many users is involved,
it may be undesirable for privacy reasons that the server knows what is signed.

A second related class of solutions is known as Key Insulated and Intrusion
Resilient signatures [11,14]. In a nutshell, this model and ours are incomparable,
but we believe that our approach is the more realistic of the two.

In more detail, while we try to improve security against key exposures by
requiring participation of several entities, KI/IR signatures insist that one entity
that they call “the user” can sign on its own. Those schemes then instead try to
limit the effect of key exposures, by making the users private key valid only for
a certain period. When a period expires, the secret key must be updated using a
message from a second entity, called the key base. Security properties generally
hold assuming that user and key base are not simultaneously compromised, so
the two trust models are comparable in that only one entity at a time is assumed
corrupt. The properties obtained are different, however: If the assumption on
our adversary holds, no signature can be generated other than those the user
approves, while compromising the user in KI/IR signatures allows generating
false signatures in the current period. On the other hand, KI/IR signatures may
retain forward security even if both units are compromised in the same period.

The known KI/IR signatures schemes are specially engineered to get the de-
sired security properties. Therefore, certification authorities and receivers of sig-
natures must be aware of the scheme and its special properties to use it. Our
scheme outputs completely standard hash-and-sign RSA signatures and so it can
co-exist under the same PKI with any other solutions for storing the secret key.
This is a very important feature for such a scheme to be useful in a real-life
application. A final comment is that existing work on KI/IR signatures assumes
that the “user” holds and uses a secret key, and hence ignore the problems stem-
ming from the fact that in real life the secret key must of course be held and
operated by some device that is separate from the human user.

2 Security Model

Traditional formal models of digital signatures, e.g., the one described by Canetti
in the description of the UC framework [6], are models of the computer used
during signature generation and its security. Intuitively, the security we aim for
is different, namely: Only messages accepted by the human user should be signed.

Modeling human behavior in the UC framework is not an obvious task. Mod-
eling the human ability to decide whether a message should be accepted or re-
jected would result in an extremely rough approximation, and make our model
unclear. Instead we let the environment Z decide by sending acceptable messages
to the model of the human user U , and a protocol is deemed secure if it only
outputs signatures on messages that were given to U by Z. Since human users
cannot calculate digital signatures and therefore rely on corruptable computing

282 I. Damg̊ard and G.L. Mikkelsen

equipment, in our case the terminal T , the output of our ideal functionality is
output through T .

The ideal functionality for our mobile signatures FM-SIG (Fig. 1) is an exten-
sion of the functionality FSIG by Canetti [6, Section 7.2.1]. The signer, player
S in FSIG has been split into: U , S, M and T in our protocol, while the veri-
fier V is the same in both protocols. FM-SIG differs from from FSIG in that: 1)
The message m to be signed has to be sent to U and 2) The adversary is able
to stop the generation of a signature (in the model, he can do so by stopping
delivery of output from FM-SIG). The main idea behind FM-SIG is to not specify
a particular signature algorithm, but to keep track of messages that have been
submitted for signing and accept only these messages as signed. This is the rea-
son for the signature verification part of FM-SIG, which at first may seem a bit
counter-intuitive.

Ideal functionality FM-SIG

Key Generation: Upon receiving a value (KeyGen, sid) from U , verify that sid =
(uid, sid′) for some valid uid and sid′. If not then ignore the request. Else, hand
(KeyGen, sid) to the adversary S . Upon receiving (Algorithms, sid, s, v) from S ,
where s is a description of a PPT ITM, and v is a description of a deterministic
polytime ITM, output the message (VerificationAlgorithm, sid, v) to U .

Signature Generation: Upon receiving a value (Sign, sid, m) from U , let
σ ← s(m), and verify that v(m,σ) = 1. If so, send a public delayed output
(Signature, sid, m, σ) message to T , and record the entry (m, σ) when the signa-
ture has been outputted. If v(m, σ) �= 1 output ⊥ to T .

Signature Verification: Upon receiving a value (Verify, sid, m, σ, v′) from V ,
do: If v′ = v, v(m, σ) = 1, and no entry (m, σ′) for any σ′ is recorded, then output
an error message to U and halt. Else, output (Verified, sid, m, v′(m, σ)) to V .

Fig. 1. Ideal functionality for “secure mobile digital signatures”, based on FSIG in [6]

3 Protocol Securely Realizing FM-SIG

The main player in our protocol is the human user U . The main idea behind the
protocol is to protect the user from a corrupt terminal or a corrupt mobile unit
by letting him accept the message to be signed on both the terminal and on the
mobile device; and to ensure that the signature cannot be generated unless both
units received an accept from U . This can be implemented by secret sharing the
private exponent d of the user’s private key, with a simple additive secret sharing.

Secret sharing: The following additive sharing scheme is used to secret share
the user’s secret RSA key sk = 〈d,N〉: The private exponent d is shared to a
uniform randomly chosen d1 and a value d2 s.t.:

d ≡ d1 + d2 mod ϕ(N) (1)

On the Theory and Practice of Personal Digital Signatures 283

Hence, for any m, we have:

md mod N = md1md2 mod N (2)

Note that (2) still holds if the addition in (1) is done over the integers.
By giving d1 to the mobile device M and d2 to the server S, a simple protocol

realizing FM-SIG can be implemented. In this protocol the message, if accepted
by the user on the terminal T is sent to M and to S. Then M shows the message
on its screen and will sign the message with its exponent share if the user accepts
the message. S will sign the message with the other exponent share if the correct
password is typed into T and sent to S. Finally, T can assemble the complete
signature by multiplying the two “half signatures”.

This protocol, however, requires M to do a full scale exponentiation. This
is problematic because we want to include cases where M is a special purpose,
cheap and small device, or where the software running on M is high-level code
only, for portability (such as pure Java on a mobile phone). The Chinese Re-
mainder Theorem (CRT) method2 often used to speed up RSA exponentiation
cannot be used here, since this would reveal the factorization of N to the mobile
device. Alternatively, we could make M ’s exponent share be a number (much)
smaller than d. This would speed up M ’s computation, but would reveal signifi-
cant information to S about d. We do not know if this is secure, but we strongly
suspect it is not. We therefore propose to exploit the fact that T is likely to have
much more computing power than M . Doing this requires some changes in the
protocol, as explained in the following section.

3.1 Protocol πM-SIG, for Computationally Limited M

πM-SIG assumes keys are set up beforehand, this is done by using an ideal func-
tionality FKeyGen (Fig. 2) for generation and distribution of keys and password.
Because the signatures generated follow existing standards, verification is nor-
mal RSA signature verification without any communication involved. This means
that the main part of πM-SIG is generation of signatures.

Key Generation. FKeyGen Will generate a password pwd for the user, generate
keys, and share the user’s private key. After pwd and keys have been generated
they are distribute to the respective players.

Signature Generation. When U receives a value (Sign, sid,m), m is for-
warded to T together with the password pwd, then T starts a signing protocol
where U is asked from M if mM should be signed. U will accept message mM

from M iff mM = m. Before the formal definition of πM-SIG we need to define
some components of the protocol.

Definition 1. H(m) denotes the hashing and padding applied to the message m
before the exponentiation is done in the used RSA signature scheme.

2 For a description of the CRT speedup method see [3, 5.2].

284 I. Damg̊ard and G.L. Mikkelsen

Ideal functionality FKeyGen

Upon receiving a value (KeyGen, sid, κ) from player U , if sid = (uid, sid′) for some
valid uid; then generate a password pwd, and a pair of RSA keys (sk = 〈d, p, q〉, pk =
〈e, N〉) with security parameter κ, and compute:

dM ∈R [1, ϕ(N) − 1]

dS ← d − dM mod ϕ(N)

k ∈R {0, 1}κ

Send 〈dM , k, N〉 to M , 〈dS, k, pwd, e, N〉 to S, pwd to U and 〈e, N〉 to the adversary
and halt.

Fig. 2. Functionality FKeyGen. Generating keys and a password for the user

Hashing and padding is needed to make RSA signature schemes secure against
chosen plaintext attacks, and is therefore already used in most standards. Our
protocol is secure no matter how H works, as long as combining H and RSA
results in a secure signature scheme. Hashing can also give some amount of
privacy because the server only needs to see H(m) and not m itself. If desired,
blinding can be applied to ensure the users privacy unconditionally, see section
6. If logging is desired on the server, the server can do the hashing and padding
and m itself can be sent around in the protocol.

Definition 2. Fk(·) denotes a secure pseudo-random function with κ̃ + κ-bit
output and key k, with κ̃ being the length of the RSA keys. More precisely, a
polynomial time bounded adversary who gets oracle access to either Fk() or a
random function cannot distinguish the two alternatives with an advantage that
is non-negligible (in the length of k).

An overview of the protocol can be found in Fig. 3. In case of errors during
execution of the signing protocol, players communicating with the terminal T will
send ⊥ to T and T will then stop the protocol and return ⊥ to the environment
Z. The protocol is executed the following way: First the message m is sent to
the user U from Z, and U sends m to T together with pwd. T will now send m
to the mobile device M . M sends mM (mM ← m) to U and U returns (accept)
if mM = m, else U rejects and ⊥ is returned to M and forwarded to T . If U
accepts, M calculates δM and sends δM to T .

δM ← Fk(H(m)) + dM (3)

The value δM is a blinding of the key share dM known to M . Because k is
unknown to T , T can do the exponentiation without gaining knowledge of dM

(the blinding is later removed by S).
When T receives δM , T calculates σM and H(m) and send these values and

pwd to S.
σM ← H(m)δm mod N (4)

On the Theory and Practice of Personal Digital Signatures 285

When S receives σM , H(m) and pwd it checks if pwd is correct, if not ⊥ is
sent back to T . Else σS (6) and σ (7) are calculated and S checks if σ is a valid
signature of H(m), if this is the case σ is sent back to T , if not ⊥ is sent back. Note
that sending σM to S lets S calculate and verify σ, and thus indirectly check
that m has been accepted by U through both T and M . The protocol might
be secure without this check, however, our proof requires it. Furthermore when
we later extend the protocol to be proactive, this check make some recoveries
simpler and thereby more user friendly.

δS ← dS − Fk(H(m)) (5)
σS ← H(m)δS mod N (6)
σ ← σM × σS mod N (7)

= H(m)dM+Fk(H(m))+dS−Fk(H(m)) mod N (8)
= H(m)d mod N (9)

Communication: The model we use assumes communication to be secret from
the adversary unless he has corrupted one of the communicating parties. The
real-life justification for this differs between the different communication chan-
nels used. For key generation the ideal functionality FKeyGen is used. Formally,
communication with ideal functionalities is done over perfect secure channels
and the functionality specifies what to leak to the adversary. FKeyGen leaks the
public key and the fact that keys have been generated. FKeyGen is thought of

T {}

U {pwd}

M {dM , k} S {dS , k, pwd}

V {pk}

1) m

2) 〈m, pwd〉

3) m

4) mM

5) Accept/⊥

6) δM/⊥

7) 〈H(m), σM , pwd〉

8) σ/⊥

9) 〈m, σ〉

1′) 〈m′, σ′〉 2′) 1/0

Fig. 3. Overview of the signing phase in πM-SIG. For simplicity sid is left out of all mes-
sages in this overview. Values sent to the players during key generation are presented
after the name of the player.

286 I. Damg̊ard and G.L. Mikkelsen

either: as a trusted third player, in which case secure encrypted communication
is a reasonable assumption; or alternatively as a protocol doing secure shared
key generation e.g., [4], in which case communication to the protocol is done
locally.

During signature generation different communication channels are used, these
channels are modeled by an ideal functionality “Secure message transmission”
FSMT delivering the message n and leaking the length of n to the adversary. For
a concrete formal definition of FSMT see [6, section 6.3]. Communication that
involves U models what the user sees and types on the terminal or mobile device
and is therefore assumed secure against adversaries located physically away.

Communication between T and S is done over a cryptographically secured
channel (but it only has to be secure if T and S are honest). This can be done
using SSL/TLS if an appropriate public-key infrastructure is in place, but a
password-based key exchange such as SRP or a password-based cipher suite
for TLS [5] is a more natural and secure solution (as this avoids problems like
selection of the right certificate to use for obtaining S’s public key).

For communication between M and T , there are two possible justifications
for assuming it to be secure: 1) Communication happens over a secure connec-
tion, this could be via USB cable or a connection where security is based on
cryptography; the latter case can be feasible even if M is computationally weak,
namely if RSA with a small public exponent is used, or in case we use a secure
Bluetooth protocol with pairing. 2) We could also base ourselves on the fact that
the communication only has to be secure if M,T are honest and S is corrupt.
Since S is typically located physically away from T and M , one may decide that
unencrypted communication is good enough if done such that it can only be
picked up in physical proximity.

4 Protocol πM-SIG UC-realizes FM-SIG

In this section we will prove that under appropriate assumptions πM-SIG UC-
realizes FM-SIG. The security of πM-SIG is obviously based on the security of the
underlying RSA signature scheme, hence we need:

Assumption 1. With proper choice of hashing and padding function H(·), the
underlying RSA signature scheme: Sig(m) = H(·)d mod N is secure against
adaptive chosen plaintext attacks.

Our protocol clearly needs that U can securely authenticate himself towards S.
For concreteness, we have specified that this happens using a password pwd,
but in fact any authentication method could be used, as long as it is secure
against an adversary that does not corrupt S or T . We have chosen to leave
out the details of the authentication and its security by simply assuming that
the adversary cannot with significant probability get the password except by
corrupting a player who has seen it. Actually, since the adversary has to do
online attacks if trying to guess pwd, and the server implementation can take
this into account, this assumption may be justifiable. Other ways and discussions
about modeling password security in the UC framework can be found in [7].

On the Theory and Practice of Personal Digital Signatures 287

Assumption 2. If the adversary does not corrupt S or T , he can produce the
correct password with only negligible probability.

Theorem 1 (πM-SIG UC-realizes FM-SIG). Under assumptions 1 and 2 and
if Fk is secure, πM-SIG UC-realizes FM-SIG with respect to adaptive and active
adversaries, corrupting at most one of the players: T , M or S.

Proof. For any real world adversary A interacting with πM-SIG, and corrupting
at most one of the players: T , M or S, we need to show that there exists a
simulator S interacting with FM-SIG, such that no PPT environment Z can
distinguish A interacting with πM-SIG from S interacting with FM-SIG. The
proof of this is done in two steps: First we present an S capable of simulating
πM-SIG for all A, except if Z is able to produce a forged signature (i.e., a signed
message not accepted by the user). Next we present a reduction, which, given a
Z capable of forging signatures, can use Z to forge “normal” RSA signatures,
and thereby breaking assumption 1. Consequently, simulation only fails with
negligible probability.

Simulating πM-SIG. The simulator S needs to simulate the adversary’s view
of πM-SIG, when the players forwards all input to FM-SIG instead of running
πM-SIG. S has to simulate the leakage (i.e., the length of the sent data) of
communication. If a player is corrupted, S in addition has to simulate the view
of this player. S will do this by generating keys following the algorithm of
FKeyGen and sending the expected keyshares to corrupt players. Since it knows
all secret keys, it can now simulate πM-SIG by simply running the protocol. It
is evident that verification of signatures is the only way for Z to distinguish
simulation from the real protocol. Invalid signatures will be rejected both in
the real and the ideal world, genuine valid signatures will be accepted in both
worlds. However, forged signatures will only be accepted in the real world since
FM-SIG enforces unforgeability. Thus S simulates πM-SIG perfectly except if the
environment Z is able to produce a forged signature.

Reduction. To prove that πM-SIG provides unforgeability, we construct a re-
duction that - if πM-SIG is insecure - can beak the underlying RSA signatures
scheme, and thereby violate assumption 1. The idea is that if there exist a PPT
environment Z that with nonnegligble probability can forge signatures, based
on information gained by controlling a corrupted player; we would be able to
use Z to forge an RSA signature in polynomial time. The reduction RedRSA is
formally described in Fig. 4. A forge of an RSA signature is modeled by giving
RedRSA access to an RSA oracle ORSA. ORSA will return a public RSA key to
RedRSA when prompted, and sign messages when RedRSA sends them. We say
that RedRSA has forged an RSA signature successfully, if RedRSA can output a
signature on a message that has not been signed by ORSA.

We need to prove that communicating with RedRSA is indistinguishable from
πM-SIG, so Z will behave the same way in both cases. It is evident that simulating
communication (i.e., leak the length of data sent) can be done.

288 I. Damg̊ard and G.L. Mikkelsen

If A corrupts M , Z learns the random variables k and dM . k has the same
distribution in both cases, while dM is uniform random in [1, ϕ(N)−1] in πM-SIG
and dM in RedRSA is uniform random in [1, N]. The two distributions are, how-
ever, statistically close. In both cases Z also learns all messages m signed so far,
and since neither M or T has been corrupted, U has accepted them all. So all
input is indistinguishable when corrupting M .

The reduction RedRSA

RedRSA takes the following inputs: an environment Z; the security parameter κ, the
length of RSA keys κ̃ and an RSA oracle ORSA.

Key Generation: Upon receiving (KeyGen, sid) from U , verify that sid = (uid, sid′)
for some valid uid and sid′. If not then ignore the request. Else, ask ORSA for the
public RSA key pk = 〈e,N〉 and output pk as (VerificationAlgorithm, sid, v(pk))
public delayed to U , v(pk) being the verification algorithm, with public key pk.

Signature Generation (all honest): Upon receiving (Sign, sid, m) from U . Send
(Sign, sid, m) to ORSA, wait for a signature σ of m from ORSA, store 〈m,σ〉 and
output (Signature, sid, m, σ) to T .

Signature Verification: Upon receiving (Verify, sid, m, σ, v′) from V , do: If v′ = v,
v(m, σ) = 1, and no entry m is recorded, then output (RSA-Broken, m, σ) and halt.
Else, output (Verified, sid, m, v′(m,σ)) to V .

Corruption of M : Pick dM ∈R [1, N], k∈R{0, 1}κ̃+κ and send dM , k and all stored
messages m as simulated input to M . From now on when Z sends m to U , send m
to M . If M thereafter sends m′ �= m to U , return ⊥ to M , if M on the other hand
sends m to U , return (Accept) to M . If M sends δM ≡ dM + Fk(H(m)) mod ϕ(N)
to T after having received m, output (Signature, sid, m, σ) to T , else output ⊥ to T .

Corruption of T : Pick pwd as FKeyGen would, and from all stored pairs 〈m, σ〉
calculate the simulated input (m, pwd, δM , σ) of T :

δM ∈R{0, 1}κ̃+κ (10)

When Z sends m to U , send 〈m,pwd〉 to T . If T now sends m′ �= m to M , return
⊥. If m′ = m return a new random δM (10) to T . If T now sends 〈H(m), σM , pwd〉,
with σM = mδM mod N to S return the signature σ of m. If T at any point sends a
correct triple 〈H(m′), σ′

M , pwd〉 of a previous signed message m′, return the signature
σ′ for m′. If T sends anything else to S return ⊥ to T .

Corruption of S: Pick dS ∈R [1, N], k∈R{0, 1}κ̃+κ and pwd as FKeyGen would. From
all stored pairs 〈m, σ〉 calculate the simulated input (dS, k, H(m), pwd, σM) of S:

σM ← σ ×
(
H(m)(dS−Fk(H(m)))

)−1
mod N (11)

When Z sends m to U , send 〈H(m), σM , pwd〉 to S, if σ is returned output
(Signature, sid, m, σ) to T , else output ⊥ to T .

Fig. 4. Reduction from forgery by interacting with πM-SIG to forgery of normal RSA
signatures

On the Theory and Practice of Personal Digital Signatures 289

Both U in πM-SIG and RedRSA acting as U will accept only a genuine message
m; furthermore both in RedRSA and in πM-SIG sending δM ≡ dM + Fk(H(m))
mod ϕ(N), but nothing else, to T will result in a signature. This proves that
controlling the output of M does not give Z the ability to distinguish between
πM-SIG and RedRSA.

If A corrupts T , Z learns pwd, k, all signed messages m and there signatures
σ, the distribution of these are equal in the two cases. In addition Z learns
δM . In RedRSA δM is uniformly chosen in {0, 1}κ̃+κ, whereas in πM-SIG, δM =
dM +Fk(H(m)). By definition (2) Fk is indistinguishable from a uniform chosen
κ̃+κ bit value, and since dM is κ̃ bits long, the two distributions are statistically
close.

When T sends a message m to M , M will in both cases return a indistinguish-
able δM if m did originate from U , while ⊥ is returned to everything else. T send-
ing S a correct triple 〈H(m), σM , pwd〉 will in both cases result in S returning
a signature σ on m, the same is the case with a correct triple 〈H(m′), σ′

M , pwd〉
from an earlier signed message m′. On the contrary in RedRSA T would get ⊥
back, if a correct triple 〈H(m̄), σ̄M , ¯pwd〉 of a not yet signed message m̄ is send
to S, whereas S in πM-SIG would produce a signature σ̄ of m̄. Since we assume
that Fk is secure (definition 2), the probability of A producing a correct δM and
thereby a correct σM is, however, negligible. All other data send from T to S will
in both cases result in ⊥ in return. So corrupting T will not let Z distinguish.

If A corrupts S, Z learns pwd, the hash values H(m) and the signatures σ
of all signed messages, the distributions of these are equal in both cases. Z also
learns σM of the signed messages which has been constructed different in the
two cases; however, if H(m)(dS−Fk(H(m))) has an inverse3 mod N then:

σ ≡ σM × σS mod N (12)

⇒ σM ≡ σ × σ−1
S ≡ σ ×

(
H(m)(dS−Fk(H(m)))

)−1
mod N (13)

So Z cannot distinguish RedRSA from πM-SIG by the input to S. If S sends a
correct signature σ this signature is the output of both RedRSA and πM-SIG and
anything else results in ⊥ in both cases.

This proves that under the assumptions 1, 2 and that Fk is secure no PPT
environment can forge signatures, and thereby we have proven Theorem 1.

5 Proactive Security

As pointed out in the introduction, proactive secure protocols contain alternating
operational and refreshment phases, where the latter are used to refresh the
stored key material.

One way to do refreshment is to update the user password and then reshare
d by adding a random value to one share and subtract the same value from

3 If not, we can construct a nontrivial factor of N, and thereby forge RSA signatures
of arbitrary messages.

290 I. Damg̊ard and G.L. Mikkelsen

the other share. This solution is the Refreshment protocol described below, and
this does in fact give us proactive security. This may seem strange since the
adversary can do an active attack on M , for instance, and delete M ’s share of
the key. Then we can never issue signatures again, but formally speaking, this
is not a problem because our ideal functionality allows the adversary to stop
signatures from being generated. However, in the real world, we would want to
be able to get the system operational again, particularly in case M (e.g., the
users mobile phone) is lost or stolen. This can be thought of as a corruption of
M , where in addition it becomes known to the honest players that M has been
corrupted. If such an event happens, we can exploit the knowledge that M was
corrupted, to replace it by a new uncorrupted device and reestablish the key
sharing from a back-up. This is done in the alternative Refreshment* protocol
below.

5.1 Proactive Definition of Security

Technical details on how to model proactive security in the UC framework can
be found in [1] and [6]. We give a short summary here: As usual the adversary
may corrupt players (adaptively), but when a player is corrupted, the adversary
is not given the complete history of that player (contrary to the standard case),
only the history dating back to the start of the current operational phase. The
adversary may decide to leave a corrupted player when a refreshment begins, and
this player now again follows the protocol, starting from some default state. The
adversary may then corrupt a new player in the next operational phase, as long as
the number of corrupted players stays below the specified threshold. Corruption
during a refreshment phase is not allowed or, better said, it counts as if the
involved player is also corrupt in both the previous and following operational
phases.

It is standard to let the environment decide when a refreshment phase begins
by sending refreshment as input to all honest players. Motivated by the above
discussion, we extend the model by allowing the environment to send either re-
freshment, signaling the start of a routine refreshment, or refreshment*, signaling
the start of a refreshment where a device has to be set up from scratch, but is
assumed honest. We assume that the environment only sends refreshment* if
this makes sense, that is when the adversary has left a player, and we therefore
can assume the players to be honest during the refreshment* phase. This models
the case where the mobile device was lost and a new, not yet corrupted one is
to be set up, or when a virus attack on the server has been detected, but after
clean-up and reboot, we believe the server is honest again.

5.2 Protocol πP-M-SIG, a Proactive Version of πM-SIG

The ideal functionality we want to implement is FM-SIG, as in previous sections.
The protocol πP-M-SIG is a proactive version of πM-SIG. To be able to do re-
freshment* we introduce a new player D in the protocol. D is a database with
the property that the entry for user U only is writable during key generation,

On the Theory and Practice of Personal Digital Signatures 291

therefore we only allow passive corruption of D. During key generation a backup
share of d is given to the human user, and during the refreshment* phase the
user has to send this share to the mobile device. The length of this share is
evidently beyond the capacity of information users can enter on a keyboard.
Nevertheless this can be solved by e.g., storing the share as a 2D barcode on
paper, and send it to M via a camera, if M is a camera equipped cellphone.
Another solution is to store the share on a USB-pen or similar. A third solution
is to give a short key to the user and generate the share pseudo-randomly from
the key. It is important to understand that the back-up share is erased from M
as soon as the refreshment is over, and the method is therefore secure under the
assumption that a fresh mobile device will stay honest in the short time it takes
the refreshment to complete.

Formal Description of πP-M-SIG. Signature generation and verification is
handled in the same way as in πM-SIG.

Key Generation. Like in πM-SIG key generation is handled by an ideal func-
tionality, FP-KeyGen is defined as FKeyGen (Fig. 2) with the following extensions:
First to simplify4 our security proof we blind the sharing of d with dΔ ∈R [−2κN,
2κN] s.t. dS ← dS + dΔ and dM ← dM − dΔ, blinding happens during the re-
freshment phase, so the small expansion of the shares is not an issue. Second a
backup sharing 〈d̂M , d̂S〉 of d is computed. d̂M is sent to U in addition to the
values sent by FKeyGen, and d̂S is sent to, and stored by D. This backup sharing
is required for refreshment*.

Communication. Communication is done with the same assumptions as in
πM-SIG, with an extra secure line from S to M , which is used once during each
refreshment* phase. This line should either be thought of as provided by the
mobile phone network, if M is a cellphone, or a physical link between S and M ,
if M is some special purpose device.

Refresh k, resharing of d

1. S does the following calculations (ES
k denotes a semantically secure symmetric

encryption scheme, with message authentication and key k), and sends r̃ef to M
through T :

knew ∈R{0, 1}κ, dΔ ∈R [−2κN, 2κN], r̃ef ← ES
k (knew, dΔ) (14)

k ← knew, dS ← dS + dΔ (15)

2. M decodes r̃ef with k and let k ← knew and dM ← dM − dΔ.
3. Erasure: M and S erases dΔ and the old values of dM , dS and k.

Fig. 5. Refreshing dM , dS and k in the refreshment phase of πP-M-SIG

4 Blinding from start avoids treating the first operational phase as a special case.

292 I. Damg̊ard and G.L. Mikkelsen

Refreshment and Refreshment*. The Refreshment protocol first does re-
fresh of k and resharing of d, see Fig. 5, and then pwd is updated using the
protocol in in Fig. 7. To check if we are indeed in a valid state, a “test-signature”
can be issued afterwards.

The Refreshment* protocol first creates a new value of k and shares of d from
the backup, see Fig. 6. It then does the refreshment of pwd as in Fig. 7 using
a blank password as the old value of pwd because the adversary might have
changed the password if he had control of S earlier.

A couple of remarks on the protocol for updating passwords: we append a
1-bit to the input of Fk since then no input used in refreshment can be equal to
inputs used in signature generation, so a corrupt T does not get Fk-values that
can be misused later. Using the string s to hide pwdnew is not strictly necessary
in our model - since we assume a secure channel from T to S when both are
honest, T could just send pwdnew . In practice, however, if the channel is set up
using password-based key exchange as discussed earlier, it is not secure if the
old password has been compromised, say, by an earlier attack on T . Using the
extra hiding under s solves this problem.

Restore k and shares of d from backup

1. D sends d̂S to S. S chooses k∈R{0, 1}κ and dΔ ∈R [−2κN, 2κN], sets dS ←
d̂S + dΔ and sends 〈k, dΔ〉 to M .

2. M sets k to the received value and sends (send-backup) to U .
3. U returns d̂M to M and M sets dM ← d̂M − dΔ.
4. The protocol for refreshment of pwd (Fig. 7) is run, with old password pwd being

blank.
5. Erasure: M and S erases d̂M , d̂S, dΔ and the old values of dM , dS and k.

Fig. 6. Refreshment* phase of πP-M-SIG

Refreshment of pwd

1. U starts by sending a request (refresh, pwd, pwdnew) to T .
2. T computes a challenge c ← H(pwd, pwdnew, r), and r∈R{0, 1}κ, s∈R{0, 1}	 (�

is the length of pwdnew) and sends (ch-pwd, c), s to M .
3. M sends (ch-pwd?) to U , and U returns either ⊥ or (OK) to M .
4. If ⊥ was returned to M , ⊥ is forwarded to T , while in case of (OK), M calculates

a response ρ ← Fk(c|1), where (c|1) means c concatenated with a 1-bit, and
α = ES

k (s). It sends ρ,α to T .
5. T sends (ch-pwd, pwd, pwdnew ⊕ s, α, r, ρ) to S.
6. S decrypts alpha and calculates pwdnew = (pwdnew ⊕ s) ⊕ s. If S accepts pwd,

and if ρ = Fk(H(pwd, pwdnew, r)), then S will set pwd ← pwdnew.

Fig. 7. Refreshment of the password pwd in πP-M-SIG

On the Theory and Practice of Personal Digital Signatures 293

5.3 Security of πP-M-SIG

In this section we prove in theorem 2, the security of πP-M-SIG, however, we also
comment on, and emphasize some of the security properties of πP-M-SIG, since
not all are covered directly by the UC framework and theorem 2. The proof
of Theorem 2 is analogous to the one for theorem 1 and can be found in the
full version of this paper [10]. The only substantial change is that the reduction
showing that the protocol does not allow forgery of signatures, now needs to
simulate refreshment phases without knowing the secret key, which turns out
to be straightforward. Theorem 2 relies on our earlier assumptions, but also
requires a standard assumption of the security of cryptographic hash functions:

Assumption 3. For any PPT Turing machine A: If A is given H and y =
H(x), A can only with negligible probability return a x′ s.t. y = H(x′).

Theorem 2 (πP-M-SIG UC-realizes FM-SIG). Under assumptions 1, 2 and
3 and if Fk and ES are secure, πP-M-SIG UC-realizes FM-SIG with respect to
adaptive adversaries in the proactive model, where the adversary may corrupt
at most one of: M , T or S and D. Active corruption is allowed for all players
except D, which can be passively corrupted.

In the model we use here, U stores his backup share of d. It could be argued that
this is not realistic and we should extend the model with a separate player DU

modeling whatever back-up storage U is using. This is indeed possible, and our
protocol would still be secure in this extended model against an adversary who
may do corruptions as usual and in addition may corrupt DU passively, provided
he never corrupts other players in a way that would give him both back-up shares
(e.g., corrupting both D and DU would be forbidden). We have omitted this for
simplicity. Note that since we assume U is never corrupted, we could in principle
implement the back-up needed for refreshment* by giving U the complete key
d. However, this solution is clearly dubious since it stores the entire secret key in
a single location. Indeed, it is clearly insecure if we extend the model with DU ,
which is why we prefer πP-M-SIG. Another advantage of πP-M-SIG is that higher
security during refreshment* can be implemented by using two backup sharings.
One sharing when S has been corrupt, but is honest again, and an other sharing
when M has been corrupt, but is recovered. This improves security in a case
where several adversaries work independently of each other, but each adversary
corrupts at most one player. Such a case cannot covered by the standard model,
where a single monolithic adversary is always assumed.

Comments on the usage of Passwords. It should be emphasized that the
refreshment protocol of pwd in Fig. 7 can run without the rest of refreshment.
The reason for doing this is if the user suspects a corrupted terminal has been
used. To ensure that none other than the current used terminal T can change
the password during refreshment*, where a blank “old” password is used, a list
of onetime passwords can be generated during key generation and sent to U and
stored by D.

294 I. Damg̊ard and G.L. Mikkelsen

6 Blinding Messages

A well-known technique by Chaum [8] can be used to blind the messages to
be signed so that S learns no information whatsoever on what is signed. The
idea is that M , when it handles a message m, will choose a random r ∈ Z∗

N

and compute b = H(m)re mod N , where e is the public RSA exponent. Note
that this can be feasible even for a computationally weak M if a small public
exponent is used. In the rest of the signature issuing, H(m) is replaced by b, and
the PRF-value needed for outsourcing is computed from b. The blinding factor
r is sent to T . Since the signature issuing process is otherwise unchanged, it
will eventually allow T to compute bd mod N = H(m)dr mod N , so by dividing
out r, T can recover the signature. On the other hand, S has only seen b which
reveals nothing about m since r was uniformly chosen.

7 Implementing a Prototype

We have formulated a cryptographic approach to improve the security and mo-
bility of the usage of digital signatures. If these improvements are to reach the
actual users in the real world, the cryptographic protocols has to be implemented
in a way that makes it attractive for real users to use them. Therefore we are
working together with experts in the field of “Human Computer Interaction”
on a prototype that implements the described protocols. This is still work in
progress, but the signature issuing phase of the protocol has been implemented.
The implementation is done in Java using the Bouncy Castle library [16] for
cryptographic tasks. We used a Sony Ericsson T850i cellphone to play the role
of M while T was a standard PC, speaking to M via Bluetooth, and to S via
SSL. We have verified that the signatures produced conform to the standard of
the nation-wide PKI OCES5 already in use in Denmark.

We observed that outsourcing the exponentiation from M to T gives a very sig-
nificant speedup. With 1024 bit keys, exponentiation on the phone takes around
6 seconds. In a real use case, this makes the system seem heavy and slow and
gives the impression that improved security degrades the user friendliness. Run-
ning the outsourcing protocol reduces the signature time to a fraction of a second
and makes it seem as if the signing happens instantly. Of course, improved speed
of exponentiation is possible by using native code instead of Java. But apart from
the fact that portability would suffer if we do this, it is not clear that it would
be enough: we would probably need to move to 2000 bit RSA in a real system
which might cost up to a factor of 8 in performance.

8 Conclusion, Future Work and Acknowledgement

We have proposed a model for personal digital signatures that we believe reflects
reality better than previous proposals. We have proposed a protocol for signature
5 Danish for “Public Certificates for Electronic Services”.

On the Theory and Practice of Personal Digital Signatures 295

generation that remains secure even if the computing equipment used is partially
corrupt. Finally we have implemented the essential parts of the protocol and
verified that it is practical. The protocol still assumes key generation as a trusted
service, and in ongoing work we investigate methods for generating keys using
a secure distributed computation, that takes into account the computational
weakness of the mobile device.

We thank the anonymous PKC referees and Michael Steiner for comments
that helped us improve the paper substantially.

References

1. Almansa, J.F., Damg̊ard, I.B., Nielsen, J.B.: Simplified Threshold RSA with Adap-
tive and Proactive Security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 593–611. Springer, Heidelberg (2006)

2. Asokan, N., Baum-Waidner, B., Pedersen, T.P., Pfitzmann, B., Schunter, M.,
Steiner, M., Waidner, M.: In: Lacoste, G., Pfitzmann, B., Steiner, M., Waidner,
M. (eds.) SEMPER 2000. LNCS, vol. 1854, pp. 45–64. Springer, Heidelberg (2000)
ISBN 3-540-67825-5

3. Boneh, D.: Twenty years of attacks on the RSA cryptosystem. Notices of the Amer-
ican Mathematical Society (AMS) 46(2) (1999)

4. Boneh, D., Franklin, M.K.: Efficient generation of shared RSA keys. J. ACM 48(4),
702–722 (2001)

5. Buhler, P., Eirich, T., Waidner, M., Steiner, M.: Secure password-based cipher suite
for tls. In: NDSS. The Internet Society (2000)

6. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067, 2000 (2005 version)

7. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally Compos-
able Password-Based Key Exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005)

8. Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO, pp. 199–203
(1982)

9. Damg̊ard, I., Koprowski, M.: Practical threshold RSA signatures without a trusted
dealer. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 152–165.
Springer, Heidelberg (2001)

10. Damg̊ard, I., Mikkelsen, G.: On the theory and practice of personal digital signa-
tures. In: Eprint Archive (2008)

11. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-Insulated Public Key Cryptosystems.
In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer,
Heidelberg (2002)

12. Gennaro, R., Rabin, T., Jarecki, S., Krawczyk, H.: Robust and efficient sharing of
RSA functions. J. Cryptology 13(2), 273–300 (2000)

13. Herzberg, A.: Payments and banking with mobile personal devices. CACM 46(5),
53–58 (2003)

14. Itkis, G., Reyzin, L.: Sibir: Signer-base intrusion-resilient signatures. In: Yung, M.
(ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 499–514. Springer, Heidelberg (2002)

15. Mannan, M.S., van Oorschot, P.C.: Using a personal device to strengthen password
authentication from an untrusted computer. In: Dietrich, S., Dhamija, R. (eds.) FC
2007 and USEC 2007. LNCS, vol. 4886, pp. 88–103. Springer, Heidelberg (2007)

296 I. Damg̊ard and G.L. Mikkelsen

16. Legion of the Bouncy Castle. Bouncy castle crypto APIs,
http://www.bouncycastle.org

17. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks (extended ab-
stract). In: PODC, pp. 51–59 (1991)

18. Parno, B., Kuo, C., Perrig, A.: Phoolproof phishing prevention. In: Di Crescenzo,
G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 1–19. Springer, Heidelberg
(2006)

19. Rabin, T.: A simplified approach to threshold and proactive RSA. In: Krawczyk,
H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 89–104. Springer, Heidelberg (1998)

20. Weigold, T., Kramp, T., Hermann, R., Höring, F., Buhler, P., Baentsch, M.: The
zurich trusted information channel – an efficient defence against man-in-the-middle
and malicious software attacks. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.)
Trust 2008. LNCS, vol. 4968, pp. 75–91. Springer, Heidelberg (2008)

http://www.bouncycastle.org

Security of Blind Signatures under Aborts

Marc Fischlin and Dominique Schröder

Darmstadt University of Technology, Germany
marc.fischlin@gmail.com, schroeder@me.com,

www.minicrypt.de

Abstract. We explore the security of blind signatures under aborts
where the user or the signer may stop the interactive signature issue
protocol prematurely. Several works on blind signatures discuss security
only in regard of completed executions and usually do not impose strong
security requirements in case of aborts. One of the exceptions is the
paper of Camenisch, Neven and shelat (Eurocrypt 2007) where the no-
tion of selective-failure blindness has been introduced. Roughly speaking,
selective-failure blindness says that blindness should also hold in case the
signer is able to learn that some executions have aborted.

Here we augment the work of Camenisch et al. by showing how to
turn every secure blind signature scheme into a selective-failure blind
signature scheme. Our transformation only requires an additional com-
putation of a commitment and therefore adds only a negligible overhead.
We also study the case of multiple executions and notions of selective-
failure blindness in this setting. We then discuss the case of user aborts
and unforgeability under such aborts. We show that every three-move
blind signature scheme remains unforgeable under such user aborts. To-
gether with our transformation for selective-failure blindness we thus
obtain an easy solution to ensure security under aborts of either party
and which is applicable for example to the schemes of Pointcheval and
Stern (Journal of Cryptology, 2000).

We finally revisit the construction of Camenisch et al. for simulatable
adaptive oblivious transfer protocols, starting from selective-failure blind
signatures where each message only has one valid signature (uniqueness).
While our transformation to achieve selective-failure blindness does not
preserve uniqueness, it can still be combined with a modified version
of their protocol. Hence, we can derive such oblivious transfer proto-
cols based on unique blind signature schemes only (in the random ora-
cle model), without necessarily requiring selective-failure blindness from
scratch.

1 Introduction

Blind signatures, proposed by Chaum [5], allow a signer to interactively sign
messages for users such that the messages are hidden from the signer. Since their
introduction many blind signatures schemes have been proposed [1,3,5,6,9,16,17,
18,21,22], and they typically share two basic security properties: blindness says
that a malicious signer cannot decide upon the order in which two messages have

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 297–316, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

http://dx.doi.org/10.1007/978-3-642-00468-1_29

298 M. Fischlin and D. Schröder

been signed in two executions with an honest user, and unforgeability demands
that no adversarial user can create more signatures than interactions with the
honest signer took place.

The security requirements for blind signatures have been formalized by Juels
et al. [16] and by Pointcheval and Stern [22]. Although these widely used defi-
nitions give basic security guarantees, blindness only holds in a restricted sense
when it comes to aborted executions. That is, prior work does not guarantee
blindness in case the signer is able to learn which of two executions aborted
(even if one execution aborts only after the protocol has concluded)”. However,
in e-cash scenarios an honest user, unable to eventually derive a valid coin, will
most likely complain to the malicious bank afterwards.

Recently, Camenisch et al. [7] consider a stronger kind of aborts where a
cheating signer may be able to make the user algorithm fail depending on the
message being signed,1 and where the malicious signer is informed afterwards
which execution has failed (if any). Considering for example a voting protocol
based on blind signatures [7,10], a malicious administrator can potentially deduce
information about votes (possibly also for non-aborted executions) by causing
some voters to abort and consulting the subsequent complaints.

As for user aborts and unforgeability, albeit the definitions [16] and [22] are
identical in spirit, the “one-more” notion in [22] leaves two possible interpreta-
tions: either the adversarial user is deemed to generate one more signature than
executions with the signer have been initiated (i.e., even counting executions in
which the user aborts), or the malicious user needs to output one more signa-
ture than executions have been completed (i.e., allowing user aborts). In fact,
this ambiguity re-appears in many works about blind signatures, some explicitly
counting initiated executions [3,9,15], some emphatically referring to completed
executions [6, 16, 18,21] and some remaining vague, too [1,7, 14].

For both cases, user and signer aborts, the stronger notions are desirable of
course. For a blind signature scheme used to sign coins in an e-cash system, for
instance, a malicious signer may otherwise abort executions deliberately and, by
this, may be able to revoke unlinkability of coins. Vice versa, if unforgeability
says that no adversarial user is able to create more signatures than interactions
with the signer have been initiated, and no requirement about aborted sessions
is imposed, then an adversarial user could potentially derive more signatures
from such aborted executions. The signing bank could generally charge users
for executions, which have stopped early. Yet, if the connection in the signing
process breaks down accidently, the honest user is most likely unable to derive
the coin and would hence be reluctant to pay for the transaction The bank
may then gracefully waive the fee for such aborted executions, but still needs to
handle forgery attempts.

Related Work. As mentioned before, Camenisch et al. [7] have already consid-
ered the limitations of the standard blindness notion. They have introduced
an extension called selective-failure blindness in which the a malicious signer
1 Ultimately, since the malicious signer causes the abort, this can be seen as a more

general case of signer aborts.

Security of Blind Signatures under Aborts 299

should not be able to force an honest user to abort the signature issue protocol
because of a certain property of the user’s message, which would disclose some
information about the message to the signer. They present a construction of a
simulatable oblivious transfer protocols from so-called unique selective-failure
blind signature schemes (in the random oracle model) for which the signature
is uniquely determined by the message. Since the main result of the work [7] is
the construction of oblivious transfer protocols, the authors note that Chaum’s
scheme [5] and Boldyreva’s protocol [3] are examples of such selective-failure
blind schemes, but do not fully explore the relationship to (regular) blindness.

Hazay et al. [15] present a concurrently-secure blind signature scheme and,
as part of this, they also introduce a notion called a-posteriori blindness. This
notion considers blindness of multiple executions between the signer and the user
(as opposed to two sessions as in the basic case), and addresses the question how
to deal with executions in which the user cannot derive a signature. However, the
definition of a-posteriori blindness is neither known to be implied by ordinary
blindness, nor implies it ordinary blindness (as sketched in [15]). Thus, selective-
failure blindness does not follow from this notion.

Aborts of players have also been studied under the notion of fairness in two-
party and multi-party computations, especially for the exchange of signatures,
e.g. [2, 11, 13]. Fairness should guarantee that one party obtains the output of
the joint computation if and only if the other party receives it. Note, however,
that in case of blind signatures the protocol only provides a one-sided output to
the user (namely, the signature). In addition, solutions providing fairness usually
require extra assumptions like a trusted third party in case of disputes, or they
add a significant overhead to the underlying protocol.

Our Results. We pick up the idea of selective-failure blindness to deal with
signer aborts and expand the work of Camenisch et al. [7] towards its rela-
tionship to blindness and further constructions of such schemes. We first show
that selective-failure blindness is indeed a strictly stronger notion than regular
blindness. We also extend the notion of selective-failure blindness to multiple
executions, particularly addressing aborts of a subset of executions. We give two
possible definitions for the multi-execution case and prove them to be equiva-
lent. We then show that blindness in the basic case of two executions suffices
to guarantee security in the case of many sessions and discuss the relation to
a-posteriori blindness [15].

Next we present a general transformation which turns every secure blind sig-
nature scheme into a selective-failure blind scheme. Our transformation only
requires an additional commitment of the message, which the user computes
before the actual protocol starts and which the user then uses in the original
protocol instead of the message itself.2 Since the commitment is non-interactive,
our transformation inherits important characteristics of the underlying protocol
like the number of moves and concurrent security.
2 This idea has been conjectured by Hazay et al. [15] to also work for a-posteriori

blindness. We are not aware of any formal claim or proof in the literature that using
a commitment indeed provides security against aborts.

300 M. Fischlin and D. Schröder

It should be noted, though, that the transformation destroys uniqueness (i.e.,
that each message has only one valid signature per key pair), as as required by [7]
to derive oblivious transfer from such blind signatures. However, we show that
our transformation is still applicable if we modify the oblivious transfer protocol
of [7] slightly. Hence, we can now easily obtain an adaptive oblivious transfer
from any unique blind signature scheme such that the protocol is simulatable
in presence of failures. Put differently, we show that selective-failure blindness
is not necessary to obtain such oblivious transfer protocols, but uniqueness is
sufficient. We note that like the original protocol in [7] this result is in the random
oracle model.

We finally study the case of user aborts and show that every three-move blind
signature scheme is unforgeable under user aborts. While this is clear for two-
move schemes like Chaum’s protocol [5] our result shows that this remains true
for other schemes like the ones by Pointcheval and Stern [22]. We show that,
in general, this does not hold for schemes with four or more moves, assuming
the existence of a secure two-move blind signature scheme. It remains open if
there is a non-trivial and efficient transformation to take care of user aborts for
schemes with more than three moves.3

In summary, our transformation to achieve selective-failure blindness, together
with the result about user aborts, shows that any scheme with two or three moves
can be efficiently turned into one, which is secure under aborts (of either party).

2 Blind Signatures

To define blind signatures formally we introduce the following notation for in-
teractive executions between algorithms X and Y. By (a, b) ← 〈X (x),Y(y)〉 we
denote the joint execution of X and Y, where x is the private input of X and y
defines the private input of Y. The private output of X equals a and the private
output of Y is b. We write Y〈X (x),·〉∞(y) if Y can invoke an unbounded number of
executions of the interactive protocol with X in arbitrarily interleaved order. Ac-
cordingly, X 〈·,Y(y0)〉1,〈·,Y(y1)〉1(x) can invoke arbitrarily ordered executions with
Y(y0) and Y(y1), but interact with each algorithm only once.

Definition 1 (Blind Signature Scheme). A blind signature scheme consists
of a tuple of efficient algorithms BS = (KGBS, 〈S,U〉 ,VfBS) where

Key Generation. KGBS(1n) for parameter n generates a key pair (skBS, pkBS).

Signature Issuing. The joint execution of algorithm S(skBS) and algorithm
U(pkBS,m) for message m ∈ {0, 1}n generates an output σ of the user (and
some possibly empty output λ for the signer), (λ, σ) ← 〈S(skBS),U(pkBS,m)〉.

Verification. VfBS(pkBS,m, σ) outputs a bit.

3 By trivial transformations we refer for instance to a solution which ignores the
underlying scheme and simply runs, say, Chaum’s protocol.

Security of Blind Signatures under Aborts 301

It is assumed that the scheme is complete, i.e., for any n ∈ N, any (skBS, pkBS) ←
KGBS(1n), any message m ∈ {0, 1}n and any σ output by U in the joint execution
of S(skBS) and U(pkBS,m) we have VfBS(pkBS,m, σ) = 1.

Security of blind signature schemes is defined by unforgeability and blindness
[16, 22]. An adversary U∗ against unforgeability tries to generate k + 1 valid
message-signatures pairs after at most k completed interactions with the honest
signer, where the number of executions is adaptively determined by U∗ during
the attack. To identify completed sessions we assume that the honest signer
returns a special symbol ok when having sent the final protocol message in order
to indicate a completed execution (from its point of view). We remark that this
output is “atomically” connected to the final transmission to the user.

The blindness condition says that it should be infeasible for a malicious signer
S∗ to decide which of two messages m0 and m1 has been signed first in two
executions with an honest user U . If one of these executions has returned ⊥ then
the signer is not informed about the other signature either.

Definition 2 (Secure Blind Signature Scheme). A blind signature scheme
BS = (KGBS, 〈S,U〉 ,VfBS) is called secure if the following holds:

Unforgeability. For any efficient algorithm U∗ the probability that experiment
UnforgeBSU∗(n) evaluates to 1 is negligible (as a function of n) where
Experiment UnforgeBSU∗(n)

(skBS, pkBS) ← KGBS(1n)
((m1, σ1), . . . , (mk+1, σk+1)) ← U∗〈S(skBS),·〉∞(pkBS)
Return 1 iff

mi �= mj for 1 ≤ i < j ≤ k + 1, and
VfBS(pkBS,mi, σi) = 1 for all i = 1, 2, . . . , k + 1, and
S has returned ok in at most k interactions.

Blindness. For any efficient algorithm S∗ (working in modes find, issue and
guess) the probability that the following experiment BlindBSS∗(n) evaluates to
1 is negligibly close to 1/2, where
Experiment BlindBSS∗(n)

(pkBS,m0,m1, stfind) ← B∗(find, 1n)
b ← {0, 1}
stissue ← B∗〈·,U(pkBS,mb)〉1,〈·,U(pkBS,m1−b)〉1(issue, stfind)

and let σb, σ1−b denote the (possibly undefined) local outputs
of U(pkBS,mb) resp. U(pkBS,m1−b).

set (σ0, σ1) = (⊥,⊥) if σ0 = ⊥ or σ1 = ⊥
b∗ ← B∗(guess, σ0, σ1, stissue)
return 1 iff b = b∗.

3 Selective-Failure Blindness

In this section we review the definition of selective-failure blindness and show
that selective-failure blindness is a strictly stronger requirement than the basic

302 M. Fischlin and D. Schröder

blindness property. Second, we discuss how to extend selective-failure blindness
to multiple executions.

3.1 Definition

Camenisch et al. [7] put forward the notion of selective-failure blindness, which
says that a malicious signer S∗ cannot force the user algorithm U to abort based
on the specific message. This is formalized by informing S∗ which instance has
aborted (i.e., if the left, the right, or both user instances have failed):

Definition 3. A blind signature scheme BS = (KGBS, 〈S,U〉 ,VfBS) is called
selective-failure blind if it is unforgeable (as in Definition 2) and the following
holds:

Selective-Failure Blindness. For any efficient algorithm S∗ (which works in
modes find, issue and guess) the probability that experiment SFBlindBSS∗(n)
evaluates to 1 is negligibly close to 1/2 where

Experiment SFBlindBSS∗(n)
(pkBS,m0,m1, βfind) ← S∗(find, 1n)
b ← {0, 1}
βissue ← S∗〈·,U(pkBS,mb)〉1,〈·,U(pkBS,m1−b)〉1(issue, βfind)

and let σb, σ1−b denote the (possibly undefined) local outputs
of U(pkBS,mb) resp. U(pkBS,m1−b).

define answer as: left if only the first execution has failed,
right if only the second execution has failed,
both if both executions have failed,
and (σb, σ1−b) otherwise.

b∗ ← S∗(guess, answer, βissue)
Return 1 iff b = b∗.

3.2 Relation to Regular Blindness

We first prove formally the fact that selective-failure blindness implies regu-
lar blindness. Then we separate the notion by turning a secure blind signature
scheme into a one which is still secure but provably not selective-failure blind.

Proposition 1. Every selective-failure blind signature scheme BSSF is also a
secure blind signature scheme.

The claim follows easily and the formal proof is given in the full version.

Proposition 2. If there exists a secure blind signature scheme BS, then there
exists a secure blind signature scheme BSSF which is not selective-failure blind.

Proof. We modify BS slightly into a scheme BSSF which is identical to BS, except
that we modify the key generation algorithm and add a break condition into the
user algorithm. More precisely, let BS = (KGBS, 〈S,U〉 ,VfBS) be a secure blind
signature scheme. We define the new blind signature scheme BSSF as

Security of Blind Signatures under Aborts 303

KeyGen. KGSF first sets mmax = 1n as the maximum of the lexicographical
order over n-bit strings. It then executes the key generation algorithm of
the underlying blind signature scheme (skBS, pkBS) ← KGBS(1n) and returns
(skSF, pkSF) = (skBS, (pkBS,mmax)).

Signing Protocol. The interactive signing protocol remains unchanged except
for one modification. The user algorithm checks after the last move of the
protocol (and after computing the signature σ) that m ≤ mmax and, if so,
returns the signature σ, and ⊥ otherwise.

Verification. The verification algorithm returns the result of VfBS.

The modified scheme is clearly complete, as the case m > mmax for an hon-
est signer never occurs and because the initial protocol is complete. Obviously,
if the blind signature scheme BS is unforgeable, then BSSF is also unforge-
able. This is easy to see as the malicious user may simply ignore the break
condition.

Concerning blindness, first note that the malicious signer S∗ is allowed to
choose the public key and thus to pick some other value m∗

max. As a malicious
signer S∗ is not informed which of the executions has failed (if any), setting
some other value m∗

max than the predetermined maximum and possibly causing
an abort does not lend any additional power to S∗. To see this, note that the
user algorithm does not abort prematurely if m > mmax. Hence, from the (mali-
cious) signer’s point of view, the interaction is indistinguishable from an honest
execution. It therefore follows that BSSF still satisfies blindness.

We finally show that the modified scheme does not fulfill selective-failure
blindness. Consider an malicious signer S∗ in experiment SFBlindBSS∗(n). In the
first step the adversary S∗ computes a key pair (skBS, pkBS) ← KGBS(1n), it
sets m∗

max = 10n−1 and picks two messages m0 = 0n,m1 = 1n such that
m0 ≤ m∗

max < m1. It outputs a public key pkSF = (pkBS,m
∗
max) together with

the message m0,m1 as defined in the first step of the experiment. Next, S∗

has black-box access to two honest user instances (as described in experiment
SFBlindBSS∗(n)) where the first algorithm takes as input (pkSF,mb) and the second
user algorithm receives (pkSF,m1−b). In both executions S∗ acts like the hon-
est signer with key skSF = skBS. Then S∗ is eventually informed which of the
executions has failed, i.e., receives left or right (as S∗ has access to honest user
instances, the case where both executions fail cannot occur by the complete-
ness condition). The adversary S∗ returns b∗ = 1 if the left instance has failed,
otherwise it returns b∗ = 0.

It follows straightforwardly that the adversary S∗ succeeds in predicting b
with probability 1. ��

3.3 Selective-Failure Blindness for Multiple Executions

The presumably natural way to extend selective-failure blindness to an arbitrary
number of executions with user instances would be as follows. The malicious
signer chooses q messages as well as a public key pkBS and interacts with q user

304 M. Fischlin and D. Schröder

instances. We denote by π be a random permutation over {1, 2, . . . , q}. The i-th
user instance is initiated with the message mπ(i) and the public key pkBS. If at
least one of the user instances aborts, then the adversary is given a binary vector
v of length q indicating which of the user algorithms aborted. In the case that
each execution allows the user to create a valid signature, then the adversary is
given all message-signature pairs in non-permuted order.

In the final step the adversary tries to link a message-signature pair to an
execution. There are two possible venues to formalize this. The first one, which
we believe reflects much better the idea that the adversary should not be able to
determine the order of signed messages, is to ask the adversary two output two
indices i0, i1 such that π(i0) < π(i1). The second version would be to ask the
adversary to predict the connection much more explicitly, demanding to output
indices (i, j) such that π(i) = j. Note that for the case of two executions both
notions are equivalent.

Here we give the “order-based” definition and show in in the full version that
the two definitions are equivalent, assuming the following strengthening: During
the signature issuing and in the final processing phase we give the malicious
signer access to an oracle Reveal which for input i returns π(i) and the user’s
signature σi if the execution has already finished successfully. This corresponds
to the case that some coins in e-cash systems may have been spent meanwhile.
Note that the reveal oracle takes as input a state strev where each signature is
stored. The adversary’s final choice i0, i1 must not have been disclosed, of course.

Definition 4. A blind signature scheme BS = (KGBS, 〈S,U〉 ,VfBS) is called
multi-execution selective-failure blind if it is unforgeable (as in Definition 2)
and the following holds:

Multi-Execution SF-Blindness. For any efficient algorithm S∗ (working in
modes find, issue, and reveal) the probability that experiment MSFBlindBSS∗(n)
returns 1 is negligibly close to 1

2 , where

Experiment MSFBlindBSS∗(n)
(pkBS,M, βfind) ← S∗(find, 1n) where M = (m1, . . . ,mq) with mi ∈ {0, 1}n

Select a random permutation π over {1, 2, . . . , q}
βissue ← S∗〈·,U(pkBS,mπ(1))〉1,...,〈·,U(pkBS,mπ(q))〉1,Reveal(·,π,strev)(issue, βfind)

and let σπ(1), . . . , σπ(q) denote the (possibly undefined) local outputs
of U(pkBS,mπ(1)), . . . ,U(pkBS,mπ(q)), immediately stored in strev

once an execution finishes (strev is initially set to (⊥, . . . ,⊥));
Reveal(·, π, strev) is an oracle, which on input i returns (π(i), strevi).

Return to S∗ all signatures v = (σ1, . . . , σq) iff all executions
have yielded valid signatures; otherwise return a vector v ∈ {0, 1}q

where the i-th entry is 1 if the i-th signature is valid, and 0 otherwise.
(i0, i1) ← S∗,Reveal(·,π,strev)(reveal, v, βissue)

Return 1 iff π(i0) < π(i1) and S∗ has never queried Reveal about i0, i1.

The definition of multi-execution selective-failure blindness for the case q = 2
covers the standard definition of blindness. An adversary A breaking blindness

Security of Blind Signatures under Aborts 305

can be used to build an adversary S∗ breaking multi-execution selective-failure
blindness as follows. The malicious signer S∗ executes A in a black-box way and
follows the blindness experiment until S∗ receives either the signatures σ0, σ1
or the vector v. In case these two valid signatures are given to S∗, it forwards
both pairs to A and otherwise it outputs ⊥. Finally, S∗ outputs the decision bit
b′ returned by A. The definition of selective-failure blindness is (semantically)
identical to the definition of multi-execution selective failure blindness for the
case q = 2.

Proposition 3. A blind signature scheme which is selective-failure blind, is also
multi-execution selective-failure blind.

The proof appears in the full version. The idea is that one is able to guess the two
challenge values i0, i1 chosen by S∗ with sufficiently high probability in advance
and one can thus reduce it to the two-execution case.

3.4 Relation to A-Posteriori Blindness

In the following we discuss the relation between selective-failure blindness and a-
posteriori blindness [15]. Roughly speaking, a-posteriori blindness advocates that
blindness only needs to hold for non-aborted sessions. Hazay et al. formalize this
basic idea in an experiment where the adversary first outputs a public key pk
together with a message distribution M. The malicious signer then concurrently
interacts with � honest user instances, where each user instance gets as input
the public key pk and a message sampled according to M. Afterwards, when
the signer has finished all � interactions, it receives �′ message-signature pairs
in a randomly permuted order, where 1 ≤ �′ ≤ � denotes the number of non-
aborted executions. The adversary wins the game if it associates one non-aborted
execution to a messages-signature pair. A detailed discussion about a-posteriori
blindness in the concurrent setting is given in [15].

From a syntactically point of view there are numerous differences between the
definition of selective-failure blindness and a-posteriori blindness. Firstly, the ad-
versary in our security definition picks the messages, whereas in the experiment
of a-posteriori blindness it only chooses a message distribution. Secondly, in
contrast to a-posteriori blindness, the malicious signer in our case receives the
information which of the user instances have aborted. In an e-cash scenario, this
corresponds to the case where a user (who may have completed all rounds of the
protocol) could not derive a valid coin and informs the signing bank about this
problem. Thirdly, we propose two different notions of multi-execution selective-
failure blindness. The first definition (Definition 4) is an ordering-based definition
where the adversary has to distinguish the order of two different executions. The
second definition (see the full version) is a prediction-based definition where the
malicious signer has to link an execution to a message-signature pair.

Finally, the attacker in our definitions has access to a reveal oracle that dis-
closes the message used during a specific execution. Such an oracle is also not
considered in the definition of a-posteriori blindness. In the real world, this or-
acle represents side information the signer obtains, e.g., customer A opens up

306 M. Fischlin and D. Schröder

a bank account before customer B. Then customer B cannot withdraw coins
before having opened up an account and every meanwhile spent coin has to
be from customer A. Note that these side information provide the malicious
signer also with information about the non-aborted executions. From a techni-
cal point of view, the reveal oracle allows us to prove the equivalence between
selective-failure blindness for two executions and for multiple executions, as well
as the equivalence of the two types of multi-execution selective-failure blindness
definitions.

A natural question is whether the definition of a-posteriori blindness and the
definition of multi-execution selective-failure blindness are equivalent for the spe-
cial case of two executions. To answer this question we briefly recall the counter
example of Hazay el al. which shows that a-posterioriblindness does not imply reg-
ular blindness. This example consists of a scheme that satisfies a-posteriori blind-
ness but that easily violates blindness. In this scheme, the honest user algorithms
validates the first received message from the signer. In the case that this message
is improper, then it sends the message m to the signer and aborts afterwards.
Since a-posteriori blindness only guarantees blindness for non-aborted sessions,
this scheme remains a-posteriori blind. However, it follows easily that this scheme
is not blind. Hence, a-posteriori blindness cannot be equivalent to selective-failure
blindness, because selective-failure blindness does imply regular blindness.

4 From Blindness to Selective-Failure Blindness

In this section we show how to turn every secure blind signature scheme BS into
a selective-failure blind signature scheme BSSF. The high-level idea is to modify
BS slightly into BSSF by executing BS with a non-interactive commitment com
of the message m (instead of the message itself).

Definition 5 (Commitment Scheme). A (non-interactive) commitment
scheme consists of a tuple of efficient algorithms C = (KGcom,Com,Vfcom) where

Key Generation. Algorithm KGcom(1n) on input the security parameter out-
puts a key pkcom.

Commitment Phase. Algorithm Com takes as input pkcom as well as m ∈
{0, 1}n and outputs (decom, com) ← Com(pkcom,m).

Verification. Vfcom(pkcom,m, decom, com) outputs a bit.

It is assumed that the commitment scheme is complete, i.e., for any n ∈ N,
any pkcom ← KGcom(1n), for any message m ∈ {0, 1}n and any (decom, com) ←
Com(pkcom,m) we have Vfcom(pkcom,m, decom, com) = 1.

Security of commitment schemes is defined by secrecy and unambiguity. Secrecy
guarantees that the receiver cannot learn the message from the commitment and
unambiguity says that the sender cannot change the message anymore once the
commitment phase is over. Here we use a slightly different way to define secrecy
compared to the literature, but it is easy to see by a hybrid argument that our
definition is equivalent:

Security of Blind Signatures under Aborts 307

Definition 6 (Secure Commitment). A (non-interactive) commitment
scheme C = (KGcom,Com,Vfcom) is called secure if the following holds:

Secrecy. For any efficient algorithm R∗
real (working in modes find and guess) the

probability that experiment SecrecyCR∗
real

(n) evaluates to 1 is negligibly close to
1/2.

Experiment SecrecyCR∗
real

(n)
(m0,m1, pkcom, βfind) ← R∗

real(find, 1n)
b ← {0, 1}
comb ← Com(pkcom,mb) and com1−b ← Com(pkcom,m1−b)
b∗ ← R∗

real(guess, βfind, com0, com1)
Return 1 iff b = b∗.

Unambiguity. For any efficient algorithm S∗real the probability that experiment
UnambiguityCS∗

real
(n) evaluates to 1 is negligible.

Experiment UnambiguityCS∗
real

(n)
pkcom ← KGcom(1n)
(m,m′, decom, decom′) ← S∗(pkcom)
Return 1 iff

Vfcom(pkcom,m, decom,Com) = 1 and
Vfcom(pkcom,m′, decom′,Com) = 1 as well as m �= m′.

Note that such commitment schemes exist under standard assumptions like pseu-
dorandom generators [19] or hash functions [8]. In order to use a commitment
in a blind signature scheme —which we defined to take messages of n bits— we
need that the commitment scheme is length-invariant, meaning that for n-bit
messages the commitment itself is also n bits. This can always be achieved by
using a collision-resistant hash function (with n bits output) on top.

Signer S(skSF) User U((pkBS, pkcom), m)

(decom, com) ← Com(pkcom, m)

S(skBS) U(pkBS, com)
msg1←−−−−−−−−−−−−−−

...

msgn−−−−−−−−−−−−−−→ compute σ = σ(com)

Output m, σ′ = (σ, decom, com)

Fig. 1. Issue protocol of the blind signature scheme BSSF

308 M. Fischlin and D. Schröder

Construction 1 (Selective-Failure Blind Signature Scheme BSSF). Let
BS = (KGBS, 〈S,U〉 ,VfBS) be a blind signature scheme and let C be a length-
invariant commitment scheme. Define the blind signature scheme BSSF through
the following three procedures:

Key Generation. The generation algorithm KGSF(1n) executes the key genera-
tion algorithm of the blind signature scheme BS, (skBS, pkBS) ← KGBS(1n). It
also runs the key generation algorithm for the commitment scheme, pkcom ←
KGcom(1n). It returns the private key skSF = skBS and the public key pkSF =
(pkBS, pkcom).

Signature Issue Protocol. The interactive signature issue protocol for mes-
sage m ∈ {0, 1}n is described in Figure 1.

Signature Verification. The verification algorithm VfSF(pkSF,m, σ′) for σ′ =
(σ, decom, com) returns 1 iff VfBS(pkBS, σ, com) = 1 and Vfcom(pkcom,m,
decom, com) = 1.

Theorem 1. If BS is a secure blind signature scheme and C is a secure, length-
invariant commitment scheme, then the scheme BSSF in Construction 1 is a
selective-failure blind signature scheme.

We note that, if the starting blind signature scheme provides statistical blindness,
and the commitment scheme is also statistically-hiding, then the derived protocol
achieves selective-failure blindness in a statistical sense. This can be seen from
the proof of the theorem, which is split into two claims, covering unforgeability
and selective-failure blindness:

Claim 1: BSSF is unforgeable.

In the proof we distinguish between two cases. The first case occurs if the adver-
sary U∗ succeeds in outputting k + 1 valid pairs mi, σ

′
i = (σi, decomi, comi) such

that the commitments comi are pairwise different. But then we can break the un-
forgeability of the underlying blind signature scheme BS. In the second case U∗

succeeds and at least two commitments comi, comj (with i �= j) are identical. But
then we can break the unambiguity of the commitment scheme C.

Proof. Assume to the contrary that the resulting selective-failure blind signature
scheme BSSF is not unforgeable. Then there exists an adversary U∗ breaking
unforgeability with noticeable probability, i.e., on input pkSF the algorithm U∗

returns k + 1 valid signatures σ′
i = (σi, decomi, comi) for messages mi after at

most k interactions with the honest signer S. Note that here we do not deal
with user aborts and count any initiated interaction; the case of counting only
completed interactions is taken care of in the next section.

We first take a look at the success probability of U∗, we have

ψ(n) := Prob
[
ForgeBSSF

U∗ (n) = 1
]

where ψ(n) is noticeable. This probability can be separated according to the two
exclusive events that U∗ succeeds and all commitments comi are different, with

Security of Blind Signatures under Aborts 309

the corresponding probability denoted by ψ0(n), and into the case where ASF

succeeds and at least two commitments are identical (with probability ψ1(n))
According to our assumption that ψ(n) is noticeable, ψ0(n) or ψ1(n) (or both)
must be noticeable.

We next construct out of U∗ algorithms AUNF and AUNA against unforgeability
of BS and unambiguity of the commitment scheme C.

Attacking Unforgeability. The adversary AUNF takes as input the public key
pkBS of the blind signature scheme BS and works as follows. It executes the key
generation algorithm of the commitment scheme pkcom ← KGcom(1n) and runs a
black-box simulation of U∗ on input pkSF = (pkBS, pkcom). The signer instances
in the attack of U∗ are simulated with the help of the external signer instances
accessible by AUNF, i.e., adversary AUNF relays the communication between U∗

and its signer instance oracle S(skBS) (as described in experiment ForgeBSU∗).
When U∗ finishes its attack, it outputs k + 1 message-signatures pairs mi, σ

′
i

after at most k interactions. Now AUNF parses each σ′
i as (σi, decomi, comi) and

returns the k + 1 pairs comi, σi and stops.
Assume that ψ0(n), the probability that U∗ succeeds and all comi’s are dis-

tinct, is noticeable. Then, since the simulation is perfect from the viewpoint of
U∗, adversary AUNF succeeds in outputting k+1 valid pairs comi, σi for distinct
“messages” comi with noticeable probability, too, contradicting the unforgeabil-
ity property of the underlying blind signature scheme. Note also that the numbers
of initiated and completed executions are identical in both cases.

Attacking Unambiguity. In order to break the unambiguity of C, the adversary
AUNA takes as input the public key pkcom of the commitment scheme C and works
as follows. It executes the key generation algorithm of the blind signature scheme
(skBS, pkBS) ← KGBS(1n) as well as a the honest signer algorithms S(skBS) and
runs a black-box simulation of U∗ on input pkSF = (pkBS, pkcom). Note that
running the program of the honest signer on input skBS simulates each execution
with a signer instance. Algorithm U∗ eventually returns k+1 message-signature
pairs (mi, σ

′
i) after at most k interactions with S. The adversary AUNA then

checks if there are valid signatures with comi = comj for some i �= j and, if so,
outputs two tuples (mi, decomi, comi), (mj , decomj , comj) such that mi �= mj

and comi = comj . If not, it outputs a failure message.
For the analysis note that the simulation again perfectly mimics the original at-

tack of U∗. Hence, if ψ1(n) is noticeable, then such comi = comj with valid decom-
mitments for mi �= mj appear with noticeable probability, and the commitment
adversary AUNA therefore finds an ambiguous commitment with this probability,
too. But this clearly violates the security of the commitment scheme C. ��

Claim 2: BSSF is selective-failure blind.

The high-level idea of the proof is as follows. We again distinguish between two
cases. In the first case the adversary ASF succeeds with noticeable probability
and both message-signature pairs are valid. But then we show how to break the
blindness property of the underlying blind signature scheme BS. We next argue

310 M. Fischlin and D. Schröder

that in the case where ASF succeeds with noticeable probability and forces at
least one of the user algorithms to fail, then we are able to break the secrecy
of the commitment scheme (because then the only information available to the
signer are the commitments of the messages).

Proof. Assume towards contradiction that the resulting blind signature scheme
BSSF is not selective-failure blind, and that there exists a successful adversary
ASF against selective-failure blindness. Let

δ(n) := Prob
[
SFBlindBSASF

(n) = 1
]

= 1
2 + ε(n)

where ε(n) = δ(n)− 1
2 is noticeable. We divide the success case according to the

two exclusive events that ASF succeeds and that both message-signature pairs
are valid (event valid) and into the case where ASF succeeds and at least one of
the signatures is not valid (event ¬valid). Then,

Prob
[
SFBlindBSASF

(n) = 1
]
− 1

2

= Prob[valid] ·
(
Prob

[
SFBlindBSASF

(n) = 1
∣∣∣ valid]− 1

2

)
+ Prob[¬valid] ·

(
Prob

[
SFBlindBSASF

(n) = 1
∣∣∣¬valid]− 1

2

)
.

According to our assumption that δ(n) is noticeable, either the first term, de-
noted δ0(n), or the second term δ1(n) has to be noticeable (or both are no-
ticeable). We next turn ASF into algorithms Ablind and Acom against regular
blindness and secrecy of the commitment scheme, respectively.

Attacking Blindness. The adversary Ablind works as follows. It runs a black-
box simulation of ASF, which initially outputs two messages (m0,m1) together
with a public key pkSF. The adversary Ablind extracts pkBS and pkcom from
pkSF and calculates the commitments (and decommitments) (decom0, com0) ←
Com(pkcom,m0) and (decom1, com1) ← Com(pkcom,m1). It outputs com0, com1
and pkBS. It is given access to user instances U(pkBS, comb) and U(pkBS, com1−b)
for a unknown bit b and relays the communication between these instances
and ASF. If, at the end, at least one of the (external) user algorithms fails,
then Ablind outputs a random bit and stops. Otherwise, it augments σ0, σ1 to
σ′

0 = (σ0, decom0, com0) and σ′
1 = (σ1, decom1, com1) and returns the two signa-

tures σ′
0, σ

′
1 (obtained by the external user algorithms) to ASF. The final output

of Ablind consists of the bit b∗ returned by ASF.
Note that Ablind simulates the experiment SFBlindBSASF

(n) by executing the
blindness experiment for the underlying blind signature scheme BS and by
computing the commitments internally. Hence, the case where both message-
signature pairs are valid is the one where experiment SFBlindBSASF

(n) is identical
to experiment BlindBSAblind

(n). If one of the signatures is invalid, then Ablind re-
turns a random bit. Therefore, the success probability of Ablind in experiment
BlindBSAblind

(n) can be calculated as:

Security of Blind Signatures under Aborts 311

Prob
[
BlindBSAblind

(n) = 1
]

= Prob[b = b∗ ∧ ¬valid] + Prob[b = b∗ ∧ valid]
= Prob[b = b∗ | valid] · Prob[valid] + Prob[b = b∗ | ¬valid] · Prob[¬valid] .
= Prob[valid] · Prob[b = b∗ | valid] + 1

2 · (1 − Prob[valid])

= Prob[valid] · Prob
[
SFBlindBSASF

(n) = 1
∣∣∣ valid]+ 1

2 · (1 − Prob[valid])

= 1
2 + Prob[valid] ·

(
Prob

[
SFBlindBSASF

(n) = 1
∣∣∣ valid]− 1

2

)
= 1

2 + δ0(n).

According to our assumption that δ0(n) is noticeable it follows that Ablind breaks
the blindness of the underlying blind signature scheme BS with noticeable prob-
ability. This, however, contradicts our assumption that BS is a secure blind
signature scheme.

Attacking Secrecy of the Commitment. In order to break the secrecy of the
commitment scheme C, the adversary Acom executes a black-box simulation of
ASF, which initially outputs two messages (m0,m1) as well as a public key pkSF.
The adversary Acom extracts the keys pkcom and pkBS from pkSF and outputs
(m0,m1, pkcom) for the secrecy experiment of the commitment scheme. It then
receives two commitments com0, com1, one for message mb and the other one
for message m1−b (without knowing which commitment corresponds to which
message).

The adversary now runs (in the role of the honest user U(pkBS, com0) and
U(pkBS, com1)) the selective-failure blindness experiment with ASF. At the end
of the issue protocol each user instance returns either a signature for the com-
mitment or ⊥. In the case that both user algorithms return a valid signature,
then Acom outputs a random bit b∗ and stops. Otherwise, if both user algorithms
have failed, then Acom sends the value both to ASF. In the case that the first user
algorithm has failed, then Acom returns left to ASF and else (if the second user
algorithm has failed), it forwards right to ASF. The final output of Acom consists
of the bit b∗ returned by ASF.

The adversary Acom simulates the experiment of selective-failure blindness
perfectly, up to the point where it obtains the (possibly undefined) signatures.
Given that at least one of them is invalid, the simulation corresponds to the
case SFBlindBSASF

(n) (given ¬valid) for the same choice b as in the commitment
experiment. Else, Acom outputs a random bit. A simple calculation similar to
the previous case now shows that

Prob
[
SecrecyCR∗

real
(n) = 1

]
= 1

2 + δ1(n).

If δ1(n) is noticeable, it follows that Acom breaks the secrecy of the commitment
scheme with noticeable probability, contradicting the security of C. ��

312 M. Fischlin and D. Schröder

5 Unforgeability and User Aborts

In this section we consider executions in which an adversarial controlled user
may abort sessions and the unforgeability requirement with respect to initiated
or completed executions with the signer. For sake of distinction we call the re-
quirement where the adversary has to find k + 1 valid message-signature pairs
after k initiated executions weak unforgeability, and the originally given defini-
tion charging only completed executions unforgeability under user aborts.

We show in the following that every three-move blind signature scheme, which
is weakly unforgeable is also unforgeable under user aborts. Note that in three-
move schemes, for a meaningful protocol, the first message is always sent by the
signer. As such we may think of two-move schemes as having an additional first
move in which the signer simply sends an empty message (although the claim
for two-move schemes follows straightforwardly anyway).

We remark that we leave the scheduling of transmissions fully up to the ad-
versary controlling the users, i.e., the adversary decides when to send messages
to the signer and when the signer’s messages are delivered to the user. Only the
signer’s output ok is given immediately after the signer’s final message has been
delivered.

Theorem 2. Every secure blind signature scheme with at most three moves is
unforgeable under user aborts.

The proof idea is that we can delay the delivery of the user’s message in an
execution till we can be sure that the adversary completes this execution. If
the execution is not completed, then we can simply disregard the original user
message, finish the protocol ourselves as an honest user and create another valid
signature in addition to the forgeries of the adversary. The full proof appears
in the full version.

We note that the result above is optimal in the sense that for four or more
moves no such claim can be made (if there are secure schemes with two moves):

Proposition 4. Every secure blind signature scheme BS with two moves can be
converted into a secure blind signature scheme BSUuA with four moves, which is
weakly unforgeable but not unforgeable under user aborts.

The claim follows by adding two dummy messages at the end, one from the user
to signer and one from the signer to the user, such that a malicious user can
abort before these dummy messages are exchanged and is still able to derive a
signature. The proof appears in the full version.

The previous proposition does not rule out that there is a transformation
turning schemes with four or more moves into unforgeable ones under user
aborts. An apparent approach is to ignore the original protocol and two run
a scheme, which already has this property (like Chaum’s two-move blind sig-
nature scheme in the random oracle model). Yet, it is preferable of course to
have a lightweight transformation adhering to the basics of the underlying pro-
tocol (like the avoidance of random oracles or general but expensive multi-party
protocols).

Security of Blind Signatures under Aborts 313

6 Selective Failures and Adaptive Oblivious Transfer

Camenisch et al. [7] also show how to construct an adaptive oblivious trans-
fer protocol out of any unique selective-failure blind signature scheme (in the
random oracle model). Roughly speaking, uniqueness means that each message
has only one signature per public key. More formally, a blind signature scheme
is unique [12, 7] if for every (possibly maliciously chosen) public key pkBS and
every message m ∈ {0, 1}∗, there exists at most one signature s ∈ {0, 1}∗ such
that VfBS(pkBS,m, s) = 1.

In this section we focus on the question whether our transformation turn-
ing every blind signature into one with selective-failure blindness is applica-
ble. We have already mentioned in the introduction that the initial commit-
ment destroys uniqueness of the blind signature scheme because each message
may have several valid signatures per key pair. Here we show that is nonethe-
less possible to build an adaptive k-out-of-N oblivious transfer protocol out of
any unique blind signature scheme by applying our transformation. The fol-
lowing construction is a modification of the protocol in [7] and, because of the
problems with uniqueness, we have to prove the security of this construction
from scratch, digging also into the proof of selective-failure blindness for our
transformation.

6.1 Simulatable Adaptive Oblivious Transfer

Oblivious Transfer (OT), proposed by Rabin [23], is an interactive protocol
between a sender S and a receiver R. The sender in this protocol gets as in-
put N messages m1, . . . ,mN and the receiver R wishes to retrieve the message
mc. OT protocols must satisfy the following two security properties: firstly, the
sender S does not find out the receiver’s choice c ∈ {1, . . . , N} and, secondly,
the receiver only obtains mc and does not gain any information about the other
messages mi for i �= c. For adaptive k-out-of-N oblivious transfer, OTN

k×1, the
receiver requests k of these N messages in rounds where the i-th choice is based
on the previously obtained messages. We refer the reader to [7, 20] for more
information.

As in [7] we consider the real-world/ideal-world paradigm for both sender
and receiver security (simulatable oblivious transfer). This paradigm compares
the execution of an OT protocol in the real-world with an ideal implementation
(see for example [4]). In the real-world experiment, both parties jointly execute
the interactive protocol, whereas in the ideal-world the functionality is realized
through a trusted third party. In our case this means that the sender first hands
over the messages to the trusted party, and then the receiver can adaptively ob-
tain messages. To capture failures we let the ideal-world sender in each retrieval
also send a bit b, indicating whether the transfer should succeed or abort. We
note that this bit is independent of the choice of the receiver, reflecting the fact
that the abort should not depend on the receiver’s input. Due to the limited
space, we review the formal security definition in the full version.

314 M. Fischlin and D. Schröder

Sender SI(m1, . . . , mN) : Initialization Receiver RI :

(pkSF, skSF) ← KGSF(1n)
pkSF−−−−−−−−−−−−−−→ parse pkSF as (pkBS, pkcom)

for i = 1, . . . , N
(decomi, comi) ← Com(pkcom, i)

check that comi �= comj
com1, . . . , comN←−−−−−−−−−−−−−− s.t. comi �= comj for all i �= j

for all i �= j

for i = 1, . . . , N
si ← 〈S(skBS),U(pkBS, comi)〉
Ci ← H(i, si) ⊕ mi

C1, . . . , CN−−−−−−−−−−−−−−→
set S0 ← skBS set R0 ← (pkSF, (comi, Ci)i)
output S0 output R0

Sender ST(Si−1) : Transfer Receiver RT(Ri−1, Ri) :

parse Si−1 as skBS parse Ri−1 as (pkSF, (comi, Ci)i)

execute S(skBS)
Unique-BS←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ execute scj ← U(pkBS, comcj)

if VfBS(pkBS, comci , sci) = 0
then mci ← ⊥
else mci ← Cci ⊕ H(i, sci)

output Si = Si−1 output Ri = (Ri−1, m
′
ci

)

Fig. 2. A k-out-of-N oblivious transfer protocol using a random oracle H and any
unique blind signature scheme BS

6.2 Construction

Our construction, depicted in Figure 2, is a modification of the OTN
k×1 protocol of

Camenisch et al. and consists of a black-box construction using any unique (not
necessarily selective-failure) blind signature scheme. The sender in the first step
of the protocol generates a key-pair for the blind signature scheme and sends it to
the receiver. The receiver, in return, hands N distinct commitments (for values
1, 2, . . . , N , represented as n-bit-strings each) over to the sender. These commit-
ments serve as “messages” for the signature generation. Note that distinctiveness
of the commitments holds with high probability by the binding property.

After the sender has verified that all commitments are distinct, it encrypts
each message in its database by xor-ing the message mi with H(i, si), where
i is the index of the i-th commitment comi and si is the unique signature of
message comi under pkBS. The sender can easily compute this signature locally
by running the signature issue protocol with the help of the signing key and an
honest user instance for “message” comi.

After having finished the initialization phase, both parties engage in a transfer
phase that consists of a run of the unique blind signature scheme. In the case

Security of Blind Signatures under Aborts 315

that the receiver wishes to obtain the i-th message mi, then it has to choose
the commitment comi (as the message to be signed) during the signature issue
protocol.

From a high-level point of view unforgeability guarantees that the receiver
cannot receive more messages than interactions took place (sender’s security)
and blindness guarantees that the sender cannot tell which message has been
signed (receiver’s security).

Theorem 3. If the unique blind signature scheme BS is unforgeable then the
OTN

k×1 scheme depicted in Figure 2 is sender-secure in the random oracle model.

The proof of this (and the following) theorem appears in the full version.

Theorem 4. If BS is a secure blind signature scheme and C is a secure, length-
invariant commitment scheme, then the OTN

k×1 scheme depicted in Figure 2 is
receiver-secure in the random oracle model.

Acknowledgments

We thank Heike Busch, Jonathan Katz, and the anonymous reviewers for valu-
able comments. Both authors are supported by the Emmy Noether Program Fi
940/2-1 of the German Research Foundation (DFG).

References

1. Abe, M.: A Secure Three-Move Blind Signature Scheme for Polynomially Many
Signatures. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 136–
151. Springer, Heidelberg (2001)

2. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer,
Heidelberg (1998)

3. Boldyreva, A.: Efficient Threshold Signatures, Multisignatures and Blind Signa-
tures Based on the Gap-Diffie-Hellman-Group Signature Scheme. In: Desmedt,
Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)

4. Canetti, R.: Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology 13, 143–202 (2000)

5. Chaum, D.: Blind Signatures for Untraceable Payments. In: Chaum, D. (ed.) Ad-
vances in Cryptology — Crypto 1982, pp. 199–203. Plemum, New York (1983)

6. Camenisch, J.L., Koprowski, M., Warinschi, B.: Efficient blind signatures without
random oracles. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp.
134–148. Springer, Heidelberg (2005)

7. Camenisch, J.L., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer,
Heidelberg (2007)

8. Damgȧrd, I., Pedersen, T., Pfitzmann, B.: On the Existence of Statistically Hiding
Bit Commitment Schemes and Fail-Stop Signatures. Journal of Cryptology 10(3),
163–194 (1997)

316 M. Fischlin and D. Schröder

9. Fischlin, M.: Round-optimal composable blind signatures in the common reference
string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77.
Springer, Heidelberg (2006)

10. Fujioka, A., Okamoto, T., Ohta, K.: A Practical Secret Voting Scheme for Large
Scale Elections. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718,
pp. 244–251. Springer, Heidelberg (1993)

11. Garay, J.A., MacKenzie, P.D., Prabhakaran, M., Yang, K.: Resource fairness and
composability of cryptographic protocols. In: Halevi, S., Rabin, T. (eds.) TCC
2006. LNCS, vol. 3876, pp. 404–428. Springer, Heidelberg (2006)

12. Goldwasser, S., Ostrovsky, R.: Invariant signatures and non-interactive zero-
knowledge proofs are equivalent. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS,
vol. 740, pp. 228–245. Springer, Heidelberg (1993)

13. Goldreich, O.: The Foundations of Cryptography, vol. 2. Cambridge University
Press, Cambridge (2004)

14. Horvitz, O., Katz, J.: Universally-composable two-party computation in two
rounds. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 111–129.
Springer, Heidelberg (2007)

15. Hazay, C., Katz, J., Koo, C.-Y., Lindell, Y.: Concurrently-secure blind signatures
without random oracles or setup assumptions. In: Vadhan, S.P. (ed.) TCC 2007.
LNCS, vol. 4392, pp. 323–341. Springer, Heidelberg (2007)

16. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg
(1997)

17. Kiayias, A., Zhou, H.-S.: Two-Round Concurrent Blind Signatures with-
out Random Oracles. Number 2005/435 in Cryptology eprint archive (2005),
eprint.iacr.org

18. Kiayias, A., Zhou, H.-S.: Equivocal blind signatures and adaptive UC-security. In:
Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 340–355. Springer, Heidelberg
(2008)

19. Naor, M.: Bit Commitment Using Pseudo-Randomness. Journal of Cryptol-
ogy 4(2), 151–158 (1991)

20. Naor, M., Pinkas, B.: Computationally Secure Oblivious Transfer. Journal of Cryp-
tology 18(1), 1–35 (2005)

21. Okamoto, T.: Efficient Blind and Partially Blind Signatures Without Random Or-
acles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99.
Springer, Heidelberg (2006)

22. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind
Signatures. Journal of Cryptology 13(3), 361–396 (2000)

23. Rabin, M.: How to Exchange Secrets by Oblivious Transfer. Technical Report TR-
81, Aiken Computation Laboratory (1981)

eprint.iacr.org

Security of Sanitizable Signatures Revisited

Christina Brzuska, Marc Fischlin, Tobias Freudenreich, Anja Lehmann,
Marcus Page, Jakob Schelbert, Dominique Schröder, and Florian Volk

Darmstadt University of Technology, Germany
www.fischlin.de

Abstract. Sanitizable signature schemes, as defined by Ateniese et al.
(ESORICS 2005), allow a signer to partly delegate signing rights to an-
other party, called the sanitizer. That is, the sanitizer is able to modify
a predetermined part of the original message such that the integrity
and authenticity of the unchanged part is still verifiable. Ateniese et
al. identify five security requirements for such schemes (unforgeability,
immutability, privacy, transparency and accountability) but do not pro-
vide formal specifications for these properties. They also present a scheme
that is supposed to satisfy these requirements.

Here we revisit the security requirements for sanitizable signatures
and, for the first time, present a comprehensive formal treatment. Be-
sides a full characterization of the requirements we also investigate the
relationship of the properties, showing for example that unforgeability
follows from accountability. We then provide a full security proof for a
modification of the original scheme according to our model.

1 Introduction
Sanitizable signature schemes, introduced by Ateniese et al. [1] and, in a slightly
different vein, by Steinfeld et al. [2] and Miyazaki et al. [3], allow a signer to
delegate signature rights in a controlled way. Namely, the signer can determine
parts of the message which a designated party, the sanitizer, can later modify but
such that the authenticity and integrity of the remaining parts is still guaranteed.
In particular, even the sanitizer should not be able to change inadmissible parts of
the message and produce a valid signature for such illegitimate transformations.

A straightforward application of sanitizable signatures are medical data which
should be published in an anonymized but authentic form. Suppose for example
that for infectious disease surveillance a hospital is obliged to report excerpts
of their patients medical data like dates of birth, genders etc. to an authority.
Yet other parts of these data can and should be anonymized, e.g., pseudonyms
replacing the patients names or deleting psychiatric information.

Ideally, the administrative department of the hospital assembles the requested
information from their records, holding the medical data signed by different
health professionals, and sanitizes them without further interaction with their
personnel. At the same time the authenticity and integrity of the dedicated data
should be preserved. Then, clearly, sanitizable signatures in which the hospital

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 317–336, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

http://dx.doi.org/10.1007/978-3-642-00468-1_29

318 C. Brzuska et al.

acts as a sanitizer provide a solution. Ateniese et al. [1] provide further applica-
tions of sanitizable signature schemes, including multicast, data base outsourcing
and secure routing.

Security Requirements. As discussed in [1] meaningful sanitizable signatures
come with the usual unforgeability requirement of regular signature schemes:

Unforgeability. It should be infeasible for an outsider (i.e., neither the signer
nor the sanitizer) to forge signatures in the name of the signer or the sanitizer.

But the introduction of the sanitizing party and its relationship to the signer
entail further desirable security properties. These are:

Immutability. The sanitizer should not be able to produce valid signatures for
messages where it has changed other than the designated parts (this can be
thought of as an insider attack).

Privacy. Sanitized messages and their signatures should not reveal the original
data (i.e., the parts which have been sanitized).

Transparency. It should be infeasible to decide whether a message has been
sanitized or not. This may be desirable in applications where one should not
be able to discriminate against messages produced by the sanitizer.

Accountability. A party (the signer or the sanitizer) should not be held re-
sponsible for messages originating from the other party.

While unforgeability can be formalized straightforwardly from the basic case for
regular signatures, as it is done in [1], Ateniese et al. remain rather vague when
it comes to the other security requirements. Instead, they introduce technical
conditions for the sanitizable signature scheme, aiming to achieve the require-
ments above. Besides unforgeability these are indistinguishability —roughly say-
ing that signatures generated by the signer are computationally independent of
the messages— and the property of identical distributions, saying that the sig-
natures produced by the signer and the sanitizer have identical distributions.
This approach is arguable in several ways.

First, without having a formal definition of the security requirements above it
is hard to tell if a signature scheme with the technical conditions really achieves
the desired goals; as always in cryptography, without a robust security model
underneath it is impossible to make precise statements about the hardness of
attacks. Secondly, having a more abstract view on the desirable security require-
ments (instead of the scheme’s conditions) facilitates the understanding of their
relationships among each other and with other cryptographic primitives. Finally,
trying to achieve the security requirements via technical properties seems to be
exceedingly restrictive and may exclude otherwise viable solutions.

Our Results. In this paper we revisit the aforementioned security requirements
and formalize them according to common game-based approaches. As part of
this, we simplify the unforgeability experiment from [1]. We also make several
refinements for accountability. First, we augment the model by new algorithms

Security of Sanitizable Signatures Revisited 319

Proof and Judge where Proof allows to provide evidence to Judge that a mes-
sage has been sanitized. Then we distinguish between sanitizer- and signer-
accountability, saying that a malicious sanitizer resp. signer cannot falsely accuse
the other party. The original approach in [1] only seems to discuss our notion of
sanitizer-accountability.

Concerning the relationship of the now-defined security requirements we ob-
tain some useful and also some unexpected results: First, we prove that trans-
parency implies privacy, i.e., any transparent sanitizable signature scheme is also
private and for such schemes there is no need to look at the privacy property
separately. Secondly, we show that the two accountability types together imply
unforgeability, which is in contrast to the position of Ateniese et al. [1] who argue
that unforgeability implies accountability. Having a clean model tells us that it
is the other way around, and that accountability needs to be considered.

As for the other security properties, immutability, transparency, sanitizer- and
signer-accountability we show that each property is independent of the other
ones. That is, for each property we present a sanitizable scheme which satisfies
all the other requirements except for the one in question. Technically we assume
that there are schemes having all properties and then modify the scheme to an-
nihilate the one property. Finally, we show that unforgeability does not follow
from sanitizer- or signer-accountability alone (but only if both versions of ac-
countability hold simultaneously). This gives us a complete characterization of
the relationship of the notions.

We also revisit the sanitizable signature scheme presented in [1] in light of our
formal definitions. We show that a modification of their scheme indeed meets our
requirements for immutability, transparency, sanitizer-accountability and signer-
accountability. This already implies, via our relationship results, that the scheme
is also unforgeable and private and thus a secure sanitizable scheme.

Related Work. As mentioned before, Miyazaki et al. [3] also use the notion of
sanitizable signature schemes, but refer to a slightly different approach. Accord-
ing to their notion only deletions of message parts are considered (instead of
modifications) and, secondly, the sanitizer is usually not bound to change des-
ignated parts of the message but can decide which portions should be deleted.
The basic security properties of such sanitizable signature schemes are unforge-
ability and privacy (following the terminology above). Independently, several
similar proposals like content extraction signatures [2] and redactable signatures
[4] have been made.

The two approaches for sanitizable signatures and their solutions resemble
each other, making the distinction somewhat obscure. This is especially true
since further properties have been added to the models in subsequent works, like
the requirement that the sanitizer’s identity remains hidden [5] in the sanitizable
signature model of [3], resembling the above notion of transparency. Nonetheless,
one can divide the literature about sanitizable signatures roughly into the works
following the approach by Ateniese et al., e.g., [6,7], and the works based on the
approach by Miyazaki et al., including [8,9,10,5,11].

320 C. Brzuska et al.

We adhere to the notion of sanitizable signature of Ateniese et al. [1], cover-
ing message modifications and security requirements like accountability. Some
improvements concerning the scheme’s efficiency have been made [6] and some
extensions concerning multiple, a-posteriori determined censors have been sug-
gested [7]. None of these proposals goes beyond the original approach to model
the security properties formally, though. We note that some of the previous
works in the vein of Miyazaki et al. [3] come with security models, especially
for privacy and unforgeability [2,5,12]. Yet, they often provide limited security
guarantees, like privacy requirements holding for a single message-signature pair
only. In contrast our models allow more sophisticated attacks where for instance
privacy should still hold for multiple message-signature pairs and even if the
attacker can ask for further signatures.

Independently of our work, Yuen et al. [13] also revisit the security of saniti-
zable signatures, but focus on new constructions.

2 Preliminaries

In this section we define sanitizable signatures. Like a regular signature scheme a
sanitizable signature scheme allows to sign messages under the secret signer key
sksig, generated together with the public verification key pksig. The signing pro-
cess itself includes a public key pksan of a designated sanitizer and a description
adm of division into blocks and admissible blocks which the sanitizer is allowed
to change with the help of its secret key sksan. Any such modification takes
the original message and signature and some modification information mod and
produces a signature σ′ for the modified message m′.

In the sequel we assume for simplicity that the description adm of admissible
blocks defines the block length t ∈ N and contains a set of block numbers from N

which can be changed, and that all messages are aligned to block length (say, by
standard padding techniques). The modification information mod is then a list
of pairs (j,m′[j]) consisting of a block number j and the new content m′[j] for
this block. We say that mod matches adm if all the block numbers in mod are
admissible according to adm and the length of the blocks in mod equals the value
in adm. The case of a more general transformation, where the modifications are
modeled as arbitrary algorithms, is straightforward and discussed in Appendix A.

In addition, to settle disputes about the origin of a message-signature pair,
an algorithm Proof enables the signer to produce a proof π that a signature has
been created by the sanitizer. The proof π is generated from a set of previously
signed messages. A Judge algorithm then uses the proof π to decide if a valid
message-signature pair (m,σ) has been created by the signer or the sanitizer
(the lack of such a proof is interpreted as a signer origin). We note that Judge
is usually only called for valid pairs (m,σ); for invalid pairs settling the dispute
is beyond the scheme’s scope.

Definition 1 (Sanitizable Signature Scheme). A sanitizable signature
scheme SanSig consists of seven efficient algorithms (KGensig,KGensan, Sign,
Sanit,Verify,Proof, Judge) such that:

Security of Sanitizable Signatures Revisited 321

Key Generation. There are two key generation algorithms, one for the signer
and one for the sanitizer. Both create a pair of keys, a private key and the
corresponding public key:

(pksig, sksig) ← KGensig(1n), (pksan, sksan) ← KGensan(1n)

Signing. The Sign algorithm takes as input a message m ∈ {0, 1}∗, the se-
cret key sksig of the signer, the public key pksan of the sanitizer as well as
a description adm ∈ N × 2N of the block length t and admissibly modifi-
able message blocks from {0, 1}t. It outputs a signature (or ⊥, indicating an
error):

σ ← Sign(m, sksig, pksan,adm).

We assume that adm is recoverable from any signature σ �=⊥.
Sanitizing. Algorithm Sanit takes a message m ∈ {0, 1}∗, a signature σ, the

public key pksig of the signer and the secret key sksan of the sanitizer. It
modifies the message m according to the modification instruction mod ⊆
N × {0, 1}t (where t is the block length described in adm) and determines a
new signature σ′ for the modified message m′. Then Sanit outputs m′ and σ′

(or possibly ⊥ in case of an error).

(m′, σ′) ← Sanit(m,mod, σ, pksig, sksan)

Verification. The Verify algorithm outputs a bit d ∈ {true, false} verifying
the correctness of a signature σ for a message m with respect to the public
keys pksig and pksan.

d ← Verify(m,σ, pksig, pksan)

Proof. The Proof algorithm takes as input the secret signing key sksig, a mes-
sage m and a signature σ as well a set of (polynomially many) additional
message-signature pairs (mi, σi)i=1,2,...,q and the public key pksan. It outputs
a string π ∈ {0, 1}∗:

π ← Proof(sksig,m, σ, (m1, σ1), . . . , (mq, σq), pksan)

Judge. Algorithm Judge takes as input a message m and a valid signature σ, the
public keys of the parties and a proof π. It outputs a decision d ∈ {Sig, San}
indicating whether the message-signature pair has been created by the signer
or the sanitizer:

d ← Judge(m,σ, pksig, pksan, π)

For a sanitizable signature scheme the usual correctness properties should hold,
saying that genuinely signed or sanitized messages are accepted and that a gen-
uinely created proof by the signer leads the judge to decide in favor of the signer.

Signing Correctness. For any security parameter n ∈ N, any key pair
(sksig, pksig) ← KGensig(1n), any key pair (sksan, pksan) ← KGensan(1n), any
message m ∈ {0, 1}∗, any adm ∈ N × 2N and any σ ← Sign(m, sksig, pksan,
adm) we have

Verify(m,σ, pksig, pksan) = true.

322 C. Brzuska et al.

Sanitizing Correctness. For any security parameter n ∈ N, any key pair
(sksig, pksig) ← KGensig(1n), any key pair (sksan, pksan) ← KGensan(1n), any
message m ∈ {0, 1}∗, any σ with Verify(m,σ, pksig, pksan) = true, any
mod ⊆ N × {0, 1}t matching adm from σ, and any pair (m′, σ′) ← Sanit(m,
mod, σ, pksig, sksan) we require

Verify(m′, σ′, pksig, pksan) = true.

Proof Correctness. For any security parameter n ∈ N, any key pair
(sksig, pksig) ← KGensig(1n), any key pair (sksan, pksan) ← KGensan(1n), any
message m ∈ {0, 1}∗, any signature σ, any mod matching adm from σ,
any (m′, σ′) ← Sanit(m,mod, σ, pksig, sksan) with Verify(m′, σ′, pksig, pksan) =
true, and any (polynomially many) m1, . . . ,mq and adm1, . . . ,admq with
σi ← Sign(mi, sksig, pksan,admi) and (m,σ) = (mi, σi) for some i, any π ←
Proof(sksig,m

′, σ′,m1, σ1, . . . ,mq, σq, pksan) we require:

Judge(m′, σ′, pksig, pksan, π) = San.

3 Security Requirements

According to Ateniese et al. [1] there are several security requirements that a
secure sanitizable signature needs to satisfy. Informally, these are:

Unforgeability. No outsider should be able to forge the signer’s or the cen-
sor’s signature. This is analogously to the standard security requirement for
signatures.

Immutability. The censor is allowed to modify predefined, admissible parts of
a message, but he should not be able to modify other parts of the message.
For example, a sanitizer who is in charge of blackening names in medical
documents should not be able to modify the actual medical data.

Privacy. Nobody should be able to restore sanitized parts of a message. For
example, if we have pseudonyms in medical documents then, of course, the
original names should not be recoverable.

Transparency. The idea of sanitizable signatures is that, within well-defined
limits, the sanitizer inherits the signing authority. Sometimes knowledge of
this fact makes the sanitized data less valuable, e.g., an original business
plan coming from the CEO is a more desirable target for a spy than the
sanitized plan from the administration office. Transparency now says that
no one except for the signer and the sanitizer should be able to distinguish
signatures from the signer and the sanitizer.

Accountability. If the signer and the censor have an argument about the
origin of a valid message-signature pair (m,σ), then accountability demands
that this dispute can be settled correctly by the Judge. As an example con-
sider a public servant acting as a sanitizer, but publishing unauthorized
information in the name of the government.

Security of Sanitizable Signatures Revisited 323

We next define these notions formally. We note that we call a sanitizable
scheme secure if it is simultaneously immutable, unforgeable, private, transpar-
ent, sanitizer-accountable and signer-accountable according to the definitions
below.

We note that our definitions usually consider three parties, the signer, the
sanitizer and the adversary (for some properties the adversary takes over the
role of one of the other two parties). In practice, though, one usually has many
parties, e.g., a sanitizer assigned to many signers. Our definitions are robust in
this regard as we leave much power to the adversary and its queries, say, asking
the honest signer to sign a message for a chosen public sanitizer key and thus
for different sanitizers. By this, our models can be easily mapped to the case
of multiple parties by standard guessing strategies (i.e., trying to predict the
“target” signer-sanitizer pair and simulating the other honest parties). As an
example we show that our notion of immutability also provides security against
the “additional sanitizing attack” of [9], a typical non-malleability attack for
three parties.

3.1 Unforgeability

The unforgeability notion for sanitizable signatures follows the classical notion
for regular signature schemes. It says that nobody should be able to compute a
tupel (m∗, σ∗) such that Verify(m∗, σ∗, pksig, pksan) = true without having the
secret keys sksig, sksan. This must hold even if one can see additional signatures
for other messages. We also give the adversary access to a Proof box (as proofs
could potentially leak information about the secret signing key). Yet, except for
this secret key the adversary fully determines the other input data, including the
message-signature pairs and the public keys. This allows to capture for example
scenarios where several sanitizers are assigned to the same signer.

Definition 2 (Unforgeability). A sanitizable signature scheme SanSig is un-
forgeable if for any efficient algorithm A the probability that the following
experiment returns 1 is negligible (as a function of n):

Experiment UnforgeabilitySanSigA (n)
(pksig, sksig) ← KGensig(1n)
(pksan, sksan) ← KGensan(1n)
(m∗, σ∗) ← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan),Proof(sksig,...)(pksig, pksan)

letting (mi,admi, pksan,i) and σi for i = 1, 2, . . . , q
denote the queries and answers to and from oracle Sign,
and (mj ,modj , σj , pksig,j

) and (m′
j , σ

′
j) for j = q + 1, . . . , r

denote the queries and answers to and from oracle Sanit.
return 1 if

Verify(m∗, σ∗, pksig, pksan) = true and
for all i = 1, 2, . . . , q we have (pksan,m

∗) �= (pksan,i,mi) and
for all j = q + 1, . . . , r we have (pksig,m∗) �= (pksig,j

,m′
j).

324 C. Brzuska et al.

3.2 Immutability

The censor can use the Sanit algorithm to change message blocks which the
signer declared as modifiable. If a malicious censor tries to modify other blocks
this should not yield a correct signature. In the attack model below the malicious
sanitizer A interacts with the signer to receive signatures σi for messages mi,
descriptions admi and keys pksan,i of its choice, before eventually outputting
a valid pair (pk∗san,m

∗, σ∗) such that message m∗ is not a “legitimate” trans-
formation of one of the mi’s under the same key pk∗san = pksan,i. The latter is
formalized by demanding that each mi and m∗ differ in at least one inadmissible
block (or that pk∗san �= pksan,i).

Definition 3 (Immutability). A sanitizable signature scheme SanSig is im-
mutable if for any efficient algorithm A the probability that the following
experiment returns 1 is negligible (as a function of n):

Experiment ImmutabilitySanSigA (n)
(pksig, sksig) ← KGensig(1n)
(pk∗san,m∗, σ∗) ← ASign(·,sksig,·),Proof(sksig,...,pksig,·)(pksig)

letting (mi,admi, pksan,i) and σi for i = 1, 2, . . . , q
denote the queries and answers to and from oracle Sign.

return 1 if
Verify(m∗, σ∗, pksig, pk

∗
san) = true and

for all i = 1, 2, . . . , q we have
pk∗san �= pksan,i, or
m∗[ji] �= mi[ji] for some ji /∈ admi

//where shorter messages are padded with blocks of the special symbol ⊥ /∈ {0, 1}∗

Thwarting Additional Sanitizing Attacks. Testifying to the fact that our defi-
nition is quite robust in the multi-party setting we discuss that our notion of
immutability implies the “additional sanitizing attack” of Miyazaki et al. [9].
Suppose we have three parties in a department, the signer and two sanitiz-
ers. Both sanitizers are authorized in principle to modify messages, but for a
specific message m only the first sanitizer is permitted to do so (say that this
message contains information affecting the second sanitizer). Assume now that a
requesting party asks for the non-sensitive parts of message m, and that the first
sanitizer with public key pksan is honest and changes the message m to derive
a new signature σ′ for m′. But now the second sanitizer with public key pk∗san
intercepts this reply, maliciously deletes the information about him in message
m′ and produces a signature σ∗ for this bowdlerized message m∗. Only this pair
m∗, σ∗ is sent to the requesting party, looking like an authorized reply to the
requesting party.

Our notion of immutability is strong enough to capture “additional sanitizing
attacks” (assuming unique public keys of parties). Namely, in our definition we
declare the adversary successful if it manages to find a new public key pk∗san
different from the sanitizer’s public key pksan such that the final output verifies
correctly under this new key pk∗san. An adversary can now mount the additional

Security of Sanitizable Signatures Revisited 325

sanitizing attack by generating the keys of the honest sanitizer internally (in a
sense, giving even more control to the adversary), calling the signer to create the
document for the key pksan of the honest sanitizer and then outputting the fur-
ther censored message m∗ with σ∗ under a public key pk∗san. Hence, immutability
guarantees that such a case cannot succeed and, in particular, that the scheme
is secure against “additional sanitizing attacks”.

3.3 Privacy

Privacy roughly means that it should be infeasible to recover information about
the sanitized parts of the message. As information leakage through the modi-
fied message itself can never be prevented, we only refer to information which
is available through the sanitized signature. There are two possible flavors in
formalizing privacy for sanitizable signatures. One approach follows semantic se-
curity of encryption schemes and is called semantic privacy. It says that for any
adversary A seeing sanitized signatures there is a simulator S which is denied
the signatures, but which is still as successful in predicting some information
about the original message as A. This notion is discussed comprehensively in
the full version of the paper.

The other approach is based on the indistinguishability notion for encryption.
In this case, an adversary can choose pairs (m0,mod0), (m1,mod1) of messages
and modifications together with a description adm and has access to a “left-or-
right” box. This oracle either returns a sanitized signature for the left tuple (b =
0) or for the right tuple (b = 1). The task of the attacker is to predict the random
bit b significantly better than by guessing. Here we need the additional constraint
that for each call to the left-or-right box the resulting modified messages are
identical for both tuples and the modifications both match adm, else the task
would be trivial. We write (m0,mod0,adm) ≡ (m1,mod1,adm) for this.

Below we formalize the more handy indistinguishability notion and discuss
in the full paper that the simulation-based approach is equivalent (as in case of
encryption). In our definition of privacy we grant the adversary also access to
a signature and a sanitizer oracle, enabling the adversary to create signatures
which can be sanitized afterwards. We note that the adversary does not get to
choose the signature σj,b for inputs to the left-or-right box. Instead, this signa-
ture is first computed from scratch. This corresponds to the “hospital setting”
mentioned in the introduction, where the medical data and, in particular, their
signatures are kept confidentially and only the sanitized document is released.
One may define a stronger version where the adversary gets to choose σj,0, σj,1,
but it seems much harder to realize this requirement efficiently.

As in case of unforgeability and immutability we also grant the adversary
access to Proof. Hence, since we let the adversary also determine the input to this
box the adversary may input the data received from the Sign box here, but cannot
use any of the initially computed and secret signatures in the calls to the left-
or-right box (unless the adversary accidently guesses one). The reason is again
that proofs usually leak information about the signatures but the signatures in
the left-or-right box should remain secret (as in the hospital example).

326 C. Brzuska et al.

Definition 4 (Privacy). A sanitizable signature scheme SanSig is private if for
any efficient algorithm A the probability that the following experiment returns 1
is negligibly close to 1

2 :

Experiment PrivacySanSigA (n)
(pksig, sksig) ← KGensig(1n)
(pksan, sksan) ← KGensan(1n)
b ← {0, 1}
a ← ASign(·,sksig,·,·),Sanit(·,·,sksan,·),Proof(sksig,···),LoRSanit(·,·,·,sksig,sksan,b)(pksig, pksan)

where oracle LoRSanit(·, ·, ·, sksig, sksan, b)
on input (mj,0,modj,0,(mj,1,modj,1) and admj

first computes σj,b ← Sign(mj,b, sksig, pksan,admj) and then
returns (m′

j , σ
′
j) ← Sanit(mj,b,modj,b, σj,b, pksig, sksan),

and where (mj,0,modj,0,admj) ≡ (mj,1,modj,1,admj),
i.e., are mapped to the same modified message.

return 1 if a = b.

3.4 Transparency

For transparency the original work of Ateniese et al. [1] distinguishes between
two notions, called weak and strong transparency. In the case of weak trans-
parency an adversary, given a signed message m with a valid signature σ, should
not be able to correctly guess whether m has been sanitized or was simply
signed. In the case of strong transparency, the adversary should not even be
able to tell which parts of the message are potentially mutable. Since the latter
seems an overly strong requirement —observe that this implies that the infor-
mation adm must be hidden and must not be recoverable from σ, for example—
we call weak transparency simply transparency here and formalize only this
notion.

We define transparency by the following adversarial game. We consider an
adversary A with access to Sign, Sanit and Proof oracles with which the adversary
can create signatures for (sanitized) messages and learn proofs. In addition, A
gets access to a Sanit/Sign box which contains a secret random bit b ∈ {0, 1} and
which, on input a message m, a modification information mod and a description
adm

– for b = 0 runs the signer to create σ ← Sign(m, sksig, pksig,adm), then runs
the sanitizer and returns the sanitized message m′ with the new signature
σ′, and

– for b = 1 acts as in the case b = 0 but also signs m′ from scratch with the
signing algorithm to create a signature σ′ and returns the pair (m′, σ′).

Adversary A eventually produces an output a, the guess for b. A sanitizable
signature is now said to be transparent if for all efficient algorithms A the prob-
ability for a right guess a = b in the above game is negligibly close to 1

2 .

Security of Sanitizable Signatures Revisited 327

Definition 5 (Transparency). A sanitizable signature scheme SanSig is
transparent if for any efficient algorithm A the probability that the following
experiment returns 1 is negligibly close to 1

2 :

Experiment TransparencySanSigA (n)
(pksig, sksig) ← KGensig(1n)
(pksan, sksan) ← KGensan(1n)
b ← {0, 1}
a ← ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan),Proof(sksig,...),Sanit/Sign(·,·,·,sksig,sksan,pksig,pksan,b)

with input (pksig, pksan)
where oracle Sanit/Sign for input mk,modk,admk

computes σk ← Sign(mk, sksig, pksan,admk)
then (m′

k, σ
′
k) ← Sanit(mk,modk, σk, pksig, sksan),

then, if b = 1, replaces σ′
k by σ′

k ← Sign(m′
k, sksig, pksan,admk),

and finally returns (m′
k, σ

′
k).

return 1 if a = b

We note that, analogously to the case of privacy, we have σk be created by the
signer locally in the Sanit/Sign box. A stronger requirement would enable the
adversary to determine this signature as part of the input. Yet, this notion again
does not reflect the “hospital scenario” nor does it seem to be easy to realize
efficiently. Similarly, the adversary cannot use these signatures in the Proof box.

Also note that, with the definition above, schemes with deterministic signature
or sanitizing algorithms cannot be transparent, because an adversary could then
easily compare answers from the Sanit/Sign box with outputs of the signature
sanitizing oracle. Yet, since some applications may need transparency even if a
message has been signed or sanitized before, we provide the stronger requirement.
The weaker guarantee would then also demand from the adversary’s queries to
the signing and sanitizing boxes that for all k we have m′

k �= mi for all i and
m′

k �= m′
j for all j.

3.5 Accountability

Accountability says that the origin of a (sanitized) signature should be undeniable.
There are two types of accountability:

Sanitizer-Accountability. If a message has not been signed by the signer,
then even a malicious sanitizer should not be able to make the judge accuse
the signer.

Signer Accountability. If a message and its signature have not been san-
itized, then even a malicious signer should not be able to make the judge
accuse the sanitizer.

Both notions are formalized below through two similar, yet slightly different
adversarial games.

In the sanitizer-accountability game let ASanit be an efficient adversary playing
the role of the malicious sanitizer. Adversary ASanit has access to a Sign oracle and

328 C. Brzuska et al.

a Proof oracle. Its task is to output a valid message-signature pair m∗, σ∗ together
with a key pk∗san (with (pk∗san,m

∗) being different from messages previously signed
by the Sign oracle) such that the proof produced by the signer via Proof still
leads Judge to decided “Sig”, i.e., that the signature has been created by the
signer.

Definition 6 (Sanitizer-Accountability). A sanitizable signature scheme
SanSig is sanitizer-accountable if for any efficient algorithm ASanit the proba-
bility that the following experiment returns 1 is negligible (as a function of n):

Experiment San-AccountabilitySanSigASanit
(n)

(pksig, sksig) ← KGensig(1n)
(pk∗san,m∗, σ∗) ← ASign(·,sksig,·,·),Proof(sksig,...)

Sanit (pksig)
letting (mi,admi, pksan,i) and σi for i = 1, 2, . . . , q
denote the queries and answers to and from oracle Sign

π ← Proof(sksig,m∗, σ∗, (m1, σ1), . . . , (mq, σq), pksan)
return 1 if

(pk∗san,m
∗) �= (pksan,i,mi) for all i = 1, 2, . . . , q, and

Verify(m∗, σ∗, pksig, pk
∗
san) = true, and

Judge(m∗, σ∗, pksig, pk
∗
san, π) = Sig

In the signer-accountability game a malicious signer ASign gets a public sanitiz-
ing key pksan as input. It is allowed to query a sanitizing oracle about tuples
(mi,modi, σi, pksig,i

) receiving answers (m′
i, σ

′
i). Adversary ASign finally outputs

a tuple (pk∗sig, π∗,m∗, σ∗) and is considered to succeed if Judge accuses the sani-
tizer for the new key-message pair pk∗sig,m

∗ with a valid signature σ∗. Note that
our model allows the proof π to contain information about the original message.

Definition 7 (Signer-Accountability). A sanitizable signature scheme
SanSig is signer-accountable if for any efficient algorithm ASign the probability
that the following experiment returns 1 is negligible (as a function of n):

Experiment Sig-AccountabilitySanSigASign
(n)

(pksan, sksan) ← KGensan(1n)
(pk∗sig, π

∗,m∗, σ∗) ← ASanit(·,·,·,·,sksan)
Sign (pksan)

letting (m′
i, σ

′
i) for i = 1, 2, . . . , q

denote the answers from oracle Sanit.
return 1 if

(pk∗sig,m
∗) �= (pksig,i

,m′
i) for all i = 1, 2, . . . , q, and

Verify(m∗, σ∗, pk∗sig, pksan) = true and
Judge(m∗, σ∗, pk∗sig, pksan, π∗) = San

4 Relationships of the Security Requirements

In this section we show that except for the privacy and the unforgeability require-
ment all other notions are independent (in the sense that none of them follows

Security of Sanitizable Signatures Revisited 329

Transparency

Accountability

Immutability

Sanitizer Signer

Unforgeability

Privacy

Fig. 1. Summary of the relations among the security properties of sanitizable signa-
tures. Arrows represent implications, frames represent the independence from other
requirements.

from the other properties, even if they all hold at the same time). We first show
that privacy follows from transparency alone, and unforgeability holds if the two
versions of accountability hold simultaneously. We then show the independence
of the other requirements.

We stress again that our results are in contrast to the claim by Ateniese et
al. [1] that, for example, accountability follows from the unforgeability require-
ment. Our results show that unforgeability follows from accountability whereas
the other direction is not true. It is not clear if Ateniese et al. [1] consider signer-
accountability at all, or merely refer to sanitizer-accountability. However, as we
have argued both versions of accountability are desirable to avoid framing attacks
from either side, and in either case we also show that sanitizer-accountability
alone does not imply unforgeability.

Implications. We show that privacy follows from transparency. The idea is that
for a transparent scheme one cannot distinguish between signatures created by
the signer and ones produced by the sanitizer. Hence, we can essentially replace
the left-or-right sanitizing oracle in the privacy experiment by the procedure
which creates the signatures for the sanitized message with the help of the signer
algorithm. But since the privacy experiment requires the sanitized messages
to be identical, the answer is always a fresh signature for the same message,
independent of the left-or-right question, and privacy follows.

As mentioned above, unforgeability is implied by the two versions of account-
ability. The idea behind the result is that, given a successful forgery, the judge
cannot really decide if this forgery has been produced by the signer or the san-
itizer. Else the judge was biased towards outputting Sig or San for indecisive
cases too often, contradicting either the sanitizer- or signer-accountability.

Seperations. We further show that all the other security requirements are inde-
pendent, i.e., no property follows from a combination of the other properties.
Our results all assume that there exist secure sanitizable signature scheme obey-
ing all properties (which, according to the next section, exist under common
cryptographic assumptions) and then show that there is a scheme inheriting all
properties except for the one in question.

The proofs of the stated implications and separations appear in the full ver-
sion. We note that this gives a full characterization of the security requirements.

330 C. Brzuska et al.

5 Sanitizable Signatures Based on Chameleon Hashes

In this section we show that our security requirements can be met. Our con-
struction is a modification of the scheme by Ateniese et al. [1] and also uses
chameleon hashes. The idea is as follows: Instead of signing the full message
in clear we first replace modifiable message blocks m[i] by (randomized) hash
values h[i] = CHash(pksan,m[i]; r[i]) of the blocks. Then we sign this sequence of
message blocks and hash values with a regular signature scheme.

The hash values have the special “chameleon” property that, if one has the
sanitizer’s trapdoor information sksan and r[i], one can easily find collisions, i.e.,
for given m′[i] one is able to determine r′[i] with h[i] = CHash(pksan,m

′[i]; r′[i]),
leaving the hash value invariant. This allows the sanitizer to modify message
blocks for which the signer includes the r[i]’s in the signature (and only those),
and such that the actual signature on the hash values does not need to be
modified. We note that implementing the idea is more complicated due to the
accountability problem, requiring something related to (but not exactly like)
key-exposure freeness [14] from the chameleon hash. The latter also necessitates
the usage of tags entering the hash computations.

5.1 Construction

A chameleon hash scheme CH = (CHKGen,CHash,CHAdapt) (with tags) con-
sists of three efficient algorithms such that algorithm CHKGen on input 1n re-
turns a key pair (sk, pk), algorithm CHash on input pk, a tag Tag ∈ {0, 1}n, a
message m and randomness r (which is efficiently samplable from some range
Rpk) returns a hash value h = CHash(pk,Tag,m; r) and algorithm CHAdapt
on input sk,Tag,m, r and Tag

′,m′ returns r′ such that CHash(pk,Tag,m; r) =
CHash(pk,Tag′,m′; r′). It also holds that for any pk,Tag,m,Tag′,m′ the distri-
bution of CHAdapt(sk,Tag,m, r,Tag′,m′) (over the choice of r) is the same as
the distribution of r itself, also implying that a hash value CHash(pk,Tag,m; r)
(over the choice of r) is distributed independently of Tag,m.

Key-exposure freeness [14] now says that it is infeasible to find collisions,
even if one gets to see collisions for other values. To be more precise, the
security requirement demands that, after having learned collisions for some
tags, one cannot create a collision for a new tag. This is a strong and
useful notion and, yet, it would not be sufficient to provide security in our
setting. Suppose we attach tags to the documents such that the signer mod-
ifies messages by finding collisions for the hash value for the corresponding
tags. Then a malicious signer could still try to escape accountability by find-
ing further collisions for the same tag. We therefore introduce the notion of
collision-resistance under random-tagging attacks, i.e., where collisions for differ-
ent tags are created but where one of the two tags is chosen at random (and
the other one is provided by the adversary). In the full version we show that
such chameleon hashes exist under the RSA assumption in the random oracle
model:

Security of Sanitizable Signatures Revisited 331

Definition 8 (Collision-Resistance under Random-Tagging Attacks).
A chameleon hash scheme CH = (CHKGen,CHash,CHAdapt) is collision-
resistant under random-tagging attacks if for any efficient adversary A the
following experiment returns 1 with negligible probability only:

Experiment RndTagCHA (n)
(pk, sk) ← CHKGen(1n)
(Tag,m, r,Tag′,m′, r′) ← AOAdapt(sk,·,·,·,·)(pk)

where oracle OAdapt for the i-th query (Tagi,mi, ri,m
′
i)

with Tagi ∈ {0, 1}n samples Tag
′
i ← {0, 1}n and

computes r′i ← CHAdapt(sk,Tag,m, r,Tag′,m′).
Return (Tag′

i, r
′
i).

return 1 if
(Tag,m) �= (Tag′,m′) and
CHash(pk,Tag,m; r) = CHash(pk,Tag′,m′; r′) and
{(Tag,m), (Tag′,m′)} �= {(Tagi,mi), (Tag′

i,m
′
i)} for i = 1, 2, . . . and

{(Tag,m), (Tag′,m′)} �= {(Tag′
i,m

′
i), (Tag

′
j ,m

′
j)} for i, j = 1, 2,

The condition {(Tag,m), (Tag′,m′)} �= {(Tagi,mi), (Tag′
i,m

′
i)} rules out triv-

ial duplication attacks in which the adversary simply copies the data from
the interaction with the oracle. The other condition {(Tag,m), (Tag′,m′)} �=
{(Tag′

i,m
′
i), (Tag

′
j ,m

′
j)} prevents trivial “transitivity” attacks where the ad-

versary calls the oracle about the same (Tagi,mi, ri) twice, but with differ-
ent m′

i,m
′
j. Then the oracle’s answers collide, as they yield the same value

CHash(pk,Tagi,mi; ri) individually.
In our construction we also need that the tags generated by the signer and

the ones by the sanitizer look identical (from the outside) but are generated
differently (and that this is provable to a judge). Otherwise a malicious signer
would be able to claim that a sanitized message has been the original. We resolve
this by letting the tags of the sanitizer be truly random, whereas the tags of
the signer need to be created pseudorandomly (with a pseudorandom generator
PRG mapping n-bit inputs to 2n-bit outputs). In addition, the seed for the
pseudorandomly generated labels should be recoverable for the signer from the
signature and the secret key, such that we use a pseudorandom function PRF
(mapping n-bit inputs to n-bit outputs for n-bit keys) to derive the seed for PRG
from a nonce Nonce, included in the signature.

Finally, we also need a regular signature scheme S = (SKGen, SSign, SVf) being
existentially unforgeable under adaptive chosen-message attacks. Below we let
(a1, a2, . . .) be some encoding of bit strings a1, a2, . . . into {0, 1}∗ such that (in
contrast to concatenation a1||a2|| . . .) all individual components are recoverable:

Construction 1 (Sanitizable Signature Scheme). Define the following san-
itizable signature scheme SanSig = (KGensig,KGensan, Sign, Sanit,Verify,Proof,
Judge):

Key Generation. Algorithm KGensig on input 1n generates a key pair (pk, sk)
← SKGen(1n) of the underlying signature scheme, picks a key κ ← {0, 1}n

332 C. Brzuska et al.

for the pseudorandom function and returns (pksig, sksig) = (pk, (sk, κ)). Al-
gorithm KGensan for input 1n returns a pair (pksan, sksan) ← CHKGen(1n)
of the chameleon hash scheme.

Signing. Algorithm Sign on input m ∈ {0, 1}t�, sksig, pksan,adm picks Nonce

← {0, 1}n at random, computes x = PRF(κ,Nonce) and Tag = PRG(x),
and picks r[j] for each j in adm at random. It computes

h[j] =

{
CHash(pksan,Tag, (j,m[j], pksig); r[j]) if j is in adm

m[j] else

for each block m[j] ∈ {0, 1}t and σ0 ← SSign(sksig, (h, pksan,adm)) for h =
(h[1], h[2], . . . , h[�]). It returns σ = (σ0,Tag,Nonce,adm, r[j1], . . . , r[jk])
where each ji is in adm.

Sanitizing. Algorithm Sanit on input a message m, information mod, a signa-
ture σ = (σ0,Tag,Nonce,adm, r[j1], . . . , r[jk]), pksig and sksan first checks
that each modification in mod is admissible according to adm and that
σ0 is a valid signature for (h, pksan,adm). If not, it stops with output ⊥.
Else, for each j in adm it lets m′[j] be the modified block of m[j] (possibly
m′[j] = m[j]), picks new values Nonce

′ ← {0, 1}n and Tag
′ ← {0, 1}2n

and replaces each r[j] in the signature by

r′[j] ← CHAdapt(sksan,Tag, (j,m[j], pksig), r[j],Tag
′, (j,m′[j], pksig)).

It outputs m′ and σ′ = (σ0,Tag
′,Nonce

′,adm, r′[j1], . . . , r′[jk]).
Verification. Algorithm Verify on input a message m ∈ {0, 1}t� and a signa-

ture σ = (σ0,Tag,Nonce,adm, r[i1], . . . , r[ik]), pksig and pksan computes

h[j] =

{
CHash(pksan,Tag, (j,m[j], pksig); r[j]) if j is in adm

m[j] else

and then outputs SVf(pksan, (h, pksan,adm), σ0) for h = (h[1], . . . , h[�]).
Proof. Algorithm Proof on input sksig, m,σ and a sequence (mi, σi) as well as

pksan searches the sequence to find a tuple (Tagi, (j,mi[j], pksig), r[j]) such
that

CHash(pksan,Tagi, (j,mi[j], pksig), ri[j])

= CHash(pksan,Tag, (j,m[j], pksig), r[j])

for some distinct pair (Tag, (j,m[j], pksig)) in m,σ and where Tagi =
PRG(xi) for xi = PRF(κ,Noncei) for the value Noncei in σi. If it finds
such data it returns this colliding tuple together with xi, i.e.,

π = (Tagi, (j,mi[j], pksig), ri[j], xi),

else it outputs ⊥.

Security of Sanitizable Signatures Revisited 333

Judge. The judge on input m,σ, pksig, pksan and π = (Tagπ, (j,mπ [j], pksig,π),
rπ [j], xπ) checks that pksig = pksig,π, that π describes a non-trivial collision
under CHash(pksan, ·, ·, ·) for the pair (Tag, j,m[j], pksig), r[j]) in σ, i.e.,

CHash(pksan,Tagπ, (j,mπ[j], pksig,π); rπ [j])

= CHash(pksan,Tag, (j,m[j], pksig); r[j]),

that the block j is admissible, and that Tagπ = PRG(xπ) for the given value
xπ in the proof. If so, it outputs San, else it returns Sig.

Completeness of signatures generated by the signer follows easily from the com-
pleteness of the underlying signature scheme, completeness of signatures gener-
ated by the sanitizer follows from the fact that algorithm CHAdapt always returns
a collision, and completeness for proofs holds as one always finds convincing data
then.

5.2 Security

It remains to prove security:

Theorem 2. The sanitizable signature scheme in Construction 1 is secure, i.e.,
it is immutable, transparent, sanitizer- and signer-accountable (and thus pri-
vate and unforgeable), assuming that the chameleon hash function is collision-
resistant under random-tagging attacks, that PRG and PRF are pseudorandom
and that the signature scheme is existentially unforgeable under adaptive chosen-
message attacks.

Proof. We stepwise go through the properties. Most times we merely outline the
security proof because a formalization is straightforward.

Immutability. Assume that the scheme is not immutable according to our defi-
nition and that there exists a successful adversary A against this property. We
show that this contradicts the unforgeability of the underlying signature scheme.
There are two cases: Assume that A succeeds by outputting (pk∗san,m

∗, σ∗) such
that (pk∗san,adm

∗, h∗) is different from all other data (pksan,i,admi, hi) appear-
ing in the attack. Then the valid signature σ∗

0 included in σ∗ is for a mes-
sage (h∗, pk∗san,adm

∗) which has not been signed with the underlying signature
scheme before. This, however, contradicts the unforgeability of this signature
scheme (observing that we can simulate Proof perfectly without knowledge of
the secret key of the signature scheme).

Next assume (pk∗san,adm∗, h∗) is identical to some (pksan,i,admi, hi). Then,
since pk∗san = pksan,i the messages m∗ and mi must differ in at least one inadmis-
sible block ji according to admi. But since adm

∗ = admi this must also be an
inadmissible block according to adm

∗ in m∗. Therefore h∗[ji] = m∗[ji] must be
different from hi[ji] = mi[ji], contradicting the fact h∗ = hi. Hence, the second
case cannot occur and the scheme is immutable.

334 C. Brzuska et al.

Transparency. Transparency holds because with overwhelming probability all
values Nonce picked by the signer are distinct and thus all x-values are com-
putationally indistinguishable from independent and randomly chosen values.
In this case all the generator’s outputs, too, are indistinguishable from random
2n-bit strings (as chosen by the sanitizer). Given this the claim now follows from
the distributional property of CHAdapt, that the sanitizing process goes through
all admissible block and updates them, and the fact that the distribution of the
input (h, pksan,adm) to the signing step is independent of the message. Hence,
the distribution of the reply is computationally indistinguishable in the two cases
for the Sanit/Sign box, independently of further queries to the signature, sani-
tizing or proof oracles (using the fact that the guessing the Nonce values in the
signatures computed internally in the Sanit/Sign box is infeasible).

Sanitizer-Accountability. Assume that the scheme was not sanitizer-accountable
and there was a successful adversary A, i.e., such that Proof algorithm cannot
find a non-trivial collision in the chameleon hashes for (pk∗san,m

∗, σ∗) and the
(pksan,i,mi, σi) queries. First note that if (h∗, pk∗san,adm∗) �= (hi, pksan,i,admi)
for all i, the valid signature σ∗

0 in σ∗ for this tuple would constitute a successful
forgery against the signature scheme (using again the fact that Proof can be
easily simulated without the secret signing key).

Hence, there must be some i with (h∗, pk∗san,adm
∗) = (hi, pksan,i,admi). In

particular, since a success requires (pk∗san,m
∗) �= (pksan,i,mi) we must have

m∗[j] �= mi[j] for some block j. Furthermore, because adm
∗ = admi and

inadmissible message blocks are output in clear and cannot be distinct, it
holds that

h∗[j] = CHash(pk∗san,Tag
∗, (j,m∗[j], pksig); r

∗[j])
= CHash(pk∗san,Tagi, (j,mi[j], pksig); ri[j]) = hi[j]

for some r∗[j] in σ∗ and ri[j] in σi. This, however, implies that Proof finds such
a non-trivial collision with overwhelming probability. Given this, it is clear that
Proof can also output xi from the genuine signature data.

Signer-Accountability. We finally show signer-accountability, this time using the
security under random-tagging attacks of of the chameleon hash function. As-
sume that there is a successful attacker making the Judge accuse the sanitizer
for a message which has not been sanitized by the legal sanitizer.

First note that for the adversary’s successful output pk∗sig,m∗, σ∗ (with tag
Tag

∗) and π∗ = (Tagπ, (j,mπ [j], pksigπ), rπ [j], xπ) with overwhelming proba-
bility Tagπ �= Tag

′
i for all i. This is so because with overwhelming probability

no Tag
′
i lies in the range of PRG and there cannot be a valid preimage xπ for

Tagπ = Tag
′
i. In particular, it follows that {Tag∗,Tagπ} �= {Tag′

i,Tag
′
j} for

all i, j.
Assume that {Tag∗,Tagπ} �= {Tagi,Tag

′
i} for all i = 1, 2, . . . , q. Then, be-

cause we also have {Tag∗,Tagπ} �= {Tag′
i,Tag

′
j} this would straightforwardly

contradict the security of the chameleon hash (noting that we can easily simulate

Security of Sanitizable Signatures Revisited 335

the sanitizer algorithm with the help of the OAdapt oracle). Hence, assume that
{Tag∗,Tagπ} = {Tagi,Tag

′
i} for some i and, since the random tags picked by

the honest sanitizer are unique with overwhelming probability, we can assume
that i is unique.

Because Tagπ �= Tag
′
i we must have Tag

∗ = Tag
′
i and Tagπ = Tagi. Since

(pk∗sig,m
∗) �= (pksig,i,m

′
i) for a success there must be some j with (Tag∗, (j,m∗

[j], pk∗sig)) �= (Tag′
i, (j,m

′
i[j], pksig,i)). However, assuming that all sanitizer tags

are unique and observing that with overwhelming probability Tag
′
i �= Tagi

and that for the same tag the prepended block numbers are distinct, it fol-
lows that the adversary has generated a new collision (Tag∗, (j,m∗[j], pk∗sig)),
(Tag′

i, (j,mπ[j], pk∗sig)) which has not been queried previously. This would again
contradict the security of the chameleon hash function and signer-accountability
follows. ��

Acknowledgments

We thank the anonymous reviewers and the crypto group at Bristol for valuable
comments. Marc Fischlin, Anja Lehmann and Dominique Schröder are supported
by the Emmy Noether ProgrammeFi 940/2-1 of the German Research Foundation
(DFG).

References

1. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In:
de Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005.
LNCS, vol. 3679, pp. 159–177. Springer, Heidelberg (2005)

2. Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K.-c.
(ed.) ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002)

3. Miyazaki, K., Susaki, S., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura, H.:
Digital documents sanitizing problem. In: Technical Report ISEC2003-20, IEICE
(2003)

4. Johnson, R., Molnar, D., Song, D.X., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Hei-
delberg (2002)

5. Miyazaki, K., Hanaoka, G., Imai, H.: Invisibly sanitizable digital signature scheme.
IEICE Transactions 91-A(1), 392–402 (2008)

6. Klonowski, M., Lauks, A.: Extended sanitizable signatures. In: Rhee, M.S., Lee, B.
(eds.) ICISC 2006. LNCS, vol. 4296, pp. 343–355. Springer, Heidelberg (2006)

7. Canard, S., Laguillaumie, F., Milhau, M.: Trapdoor sanitizable signatures and their
application to content protection. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D.,
Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 258–276. Springer, Heidelberg
(2008)

8. Izu, T., Kanaya, N., Takenaka, M., Yoshioka, T.: Piats: A partially sanitizable
signature scheme. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005.
LNCS, vol. 3783, pp. 72–83. Springer, Heidelberg (2005)

336 C. Brzuska et al.

9. Miyazaki, K., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura, H., Tezuka, S.,
Imai, H.: Digitally signed document sanitizing scheme with disclosure condition
control. IEICE Transactions 88-A(1), 239–246 (2005)

10. Izu, T., Kunihiro, N., Ohta, K., Takenaka, M., Yoshioka, T.: A sanitizable signature
scheme with aggregation. In: Dawson, E., Wong, D.S. (eds.) ISPEC 2007. LNCS,
vol. 4464, pp. 51–64. Springer, Heidelberg (2007)

11. Haber, S., Hatano, Y., Honda, Y., Horne, W., Miyazaki, K., Sander, T., Tezoku, S.,
Yao, D.: Efficient signature schemes supporting redaction, pseudonymization, and
data deidentification. In: ASIACCS, pp. 353–362. ACM Press, New York (2008)

12. Suzuki, M., Isshiki, T., Tanaka, K.: Sanitizable signature with secret informa-
tion. In: Proceedings of the Symposium on Cryptography and Information Security
(2006)

13. Yuen, T.H., Susilo, W., Liu, J.K., Mu, Y.: Sanitizable signatures revisited. In:
Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.) CANS 2008. LNCS, vol. 5339, pp.
80–97. Springer, Heidelberg (2008)

14. Ateniese, G., de Medeiros, B.: On the key exposure problem in chameleon hashes.
In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 165–179.
Springer, Heidelberg (2005)

A General Message Modifications

In this section we outline how to adapt our security notions for more general mes-
sage modifications. To this end we assume that adm and mod are (descriptions
of) efficient algorithms such that adm(mod) ∈ {0, 1} indicates if the modifica-
tion is admissible and matches adm, i.e., adm(mod) = 1. The function mod

maps any message m to the modified message m′ = mod(m).
The notion of unforgeability remains unchanged. For immutability we de-

mand as before that the adversary’s output (pk∗san,m∗, σ∗) describes a valid
message-signature pair under keys pksig, pk

∗
san. With the general message mod-

ification we now require for all queries to the signing oracle for i = 1, 2, . . . , q
that pk∗san �= pksan,i or m∗ /∈ {mod(mi) | mod with adm(mod) = 1}. Note that,
under this general definition, it may not be efficiently verifiable if the adversary
has succeeded.

The notion of privacy under general modifications demands that for each pair
(mj,0,modj,0,admj), (mj,1,modj,1,admj) submitted to the left-or-right oracle
the modifications are admissible and yield the same message, i.e., we simply
adapt the notation (mj,0,modj,0,admj) ≡ (mj,1,modj,1,admj) accordingly.
Transparency and the accountability notions remain unchanged.

We note that both security implications (transparency implies privacy and
accountability implies unforgeability) are also valid under this more general no-
tion. The separations remain true as block-based descriptions of mod and adm

constitute a special case.

Identification of Multiple Invalid Signatures in
Pairing-Based Batched Signatures

Brian J. Matt�

Johns Hopkins University
Applied Physics Laboratory

Laurel, MD, 21102, USA
brian.matt@jhuapl.edu

Abstract. This paper describes new methods in pairing-based signa-
ture schemes for identifying the invalid digital signatures in a batch, af-
ter batch verification has failed. These methods efficiently identify non-
trivial numbers of invalid signatures in batches of (potentially large)
numbers of signatures.

Our methods use “divide-and-conquer” search to identify the invalid
signatures within a batch, but prune the search tree to substantially
reduce the number of pairing computations required. The methods pre-
sented in this paper require computing on average O(w) products of
pairings to identify w invalid signatures within a batch of size N , com-
pared with the O(w(log2(N/w) + 1)) [for w < N/2] that traditional
divide-and-conquer methods require. Our methods avoid the problem of
exponential growth in expected computational cost that affect earlier pro-
posals which, on average, require computing O(w) products of pairings.

We compare the expected performance of our batch verification meth-
ods with previously published divide-and-conquer and exponential cost
methods for Cha-Cheon identity-based signatures [6]. However, our
methods also apply to a number of short signature schemes and as well
as to other identity-based signature schemes.

Keywords: Pairing-based signatures, Identity-based signatures, Batch
verification, Short signatures, Wireless networks.

1 Introduction

Public-key digital signatures have frequently been used in proposals for secur-
ing wireless network protocols. Proposals include methods for performing the
following: combating SPAM [11]; securing routing protocols [19,30]; providing
secure accounting and charging for use of the wireless network, or securely giv-
ing incentives to nodes for desirable (to the network) behavior [22,4]; protecting

� Prepared in part through collaborative participation in the Communications and
Networks Consortium sponsored by the U. S. Army Research Laboratory under the
Collaborative Technology Alliance Program, Cooperative Agreement DAAD-19-01-
2-0011. The U. S. Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation thereon.

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 337–356, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

http://dx.doi.org/10.1007/978-3-642-00468-1_29

338 B.J. Matt

location and safety messages in vehicular networks [23,21]; and securely trans-
porting ordinary messages in delay (or disruption) tolerant networks [7,26]. Even
in wireless networks that have significant performance constraints such as sen-
sor networks, it has been argued on efficiency grounds that signature schemes
should be used for message authentication rather than symmetric cryptographic
techniques [10,27].

When protocol designers need to select a bandwidth efficient signature scheme,
they will be drawn to schemes based on bilinear pairings, such as the short sig-
nature schemes [2,5] or the bandwidth efficient identity-based signature schemes
[6,5]. However, the computational cost of such schemes, especially the cost of
their verification algorithms, can negatively impact the performance of wireless
networks (e.g., increased delay, CPU utilization, energy consumption). There-
fore, whenever circumstances allow, designers will employ batch verification
methods for such pairing-based signature schemes [29,5,14]. Adversaries can at-
tempt to negate the advantages of batch verification by corrupting messages
or signatures within a batch. To counter such attacks, efficient methods are
needed to identify the valid signatures within a batch that has failed initial batch
verification.

To discover the valid signatures in an invalid batch, rather than verifying
each signature individually, “divide-and-conquer” (DQ) techniques have been
proposed [20,14]. These methods can be significantly faster than verifying in-
dividually whenever the ratio of the number of invalid signatures to the batch
size is low. These methods require only O(w(log2(N/w)+1)) batch verifications
and, for pairing-based signatures, product of pairings computations [13]. Recent
methods for identification of invalid pairing-based signatures require O(w) batch
verifications [14]. When the ratio w/N is very low these methods can provide
significant performance improvements over DQ methods; however, the cost of
performing the batch verifications used in these methods grows exponentially,
limiting their use to very small batches, and to batches with only very few invalid
signatures.

Our contribution. In this paper, we present two new methods for finding in-
valid signatures in pairing-based schemes. These methods are based on divide-
and-conquer searching, but differ from previous methods in how the (sub-)
batches are verified. The average number of product of pairings computations
required in our methods is O(w), which is a substantial improvement over pre-
vious divide-and-conquer methods when the ratio w/N is low, and is the same
complexity as the exponential cost methods. The expected number of multipli-
cations in Fqd required of the new methods is O(w

√
N), and O(wN), compared

to estimates of the cost of the two exponential cost methods, O(Nw−1/(w− 1)!)
and O(ww−1N

w−1
2 /(w − 1)!) [14]. We have specified these methods and com-

pared their performance for Cha-Cheon signatures [6]; however, these methods
can be applied to several other pairing-based signature schemes, specifically the
batched identity-based and batched short signature schemes discussed in [8].

Identification of Multiple Invalid Signatures 339

2 Notation

In this paper we assume that pairing-based schemes use bilinear pairings on an
elliptic curve E, defined over Fq, where q is a large prime. G1 and G2 are distinct
subgroups of prime order r on this curve, where G1 is a subset of the points on
E with coordinates in Fq, and G2 is a subset of the points on E with coordinates
in Fqd , for a small integer d (the embedding degree). The pairing e is a map from
G1 × G2 into GT where GT is a multiplicative group of order r in the field Fqd .

We use the following notation for the components of the costs of (batch) signa-
ture verification and invalid signature identification methods for Cha-Cheon sig-
natures. CstDblPair is the cost of a double product of pairings computation [13].
CstMultG1(t1) is the cost of multiplying an element of G1 by a scalar s of size |s|
and t1 = �log2(|s|)�; likewise CstDlbMultG1(t1, t2) is the cost of a pair of multipli-
cations of elements of G1 by scalars of size t1 and t2 simultaneously. CstAddG1 is
the cost of adding two elements of G1, and CstSubG1 is the cost of subtracting an
element of G1 from another element. CstInvGT is the cost of computing an inverse
of an element in GT ; CstMultGT is the cost of multiplying two elements of GT ;
and CstExptGT(t1) is the cost of raising an element of GT to the power s.

3 Background

Batch cryptography was introduced by Fiat [9], and the first batch signature
scheme was that of Naccache et al. [18] for a variant of DSA signatures. Bellare
et al. [1] presented three generic methods for batching modular exponentiations:
the random subset test, the small exponents test (SET), and the bucket test,
which are related to techniques in [18,28].

The inputs to the small exponents test are a security parameter l, a generator g
of the group G of prime order q, and (x1, y1), (x2, y2), . . . , (xN , yN) with xi ∈ Zq

and yi ∈ G. The verifier 1) checks that gxi = yi for all i, 1 ≤ i ≤ N ; 2) chooses

n random integers r1, . . . , rN in the range [0, 2l − 1]; 3) computes x =
N∑

i=1
xiri

and y =
N∏

i=1
yi

ri ; and 4) tests whether gx = y and accepts the batch if true, else

rejects. If the test rejects a batch, then there is at least one invalid pair (xi, yi);
the probability that the test accepts a batch containing invalid signatures is at
most 2−l [1], if the order of G is a prime [3]. One of the r’s can be set to one
without loss of security [14]. The small exponents test has appeared in pairing-
based signature schemes [2,5] including, in [14], as the batch verifier for the
Cha-Cheon signature scheme [6].1

Cha-Cheon Identity-Based Signature scheme. H(m,U) is a cryptographic hash
that maps a bit string m and a point U ∈ G1 to an integer between 1 and r.
1 For Cha-Cheon signatures with the cost parameters in Section 5, SET always verifies

a valid batch more efficiently than the random subset test, and the bucket test verifies
a valid batch more efficiently than SET when the batch size exceeds 512.

340 B.J. Matt

1. Setup: The system manager selects an order r point T ∈ G2 and randomly
selects an integer s in the range [1, r − 1]. The manager computes S = sT .
The public system parameters are T and S. The system manager’s secret
key is s.

2. Extract: Each user is given a key pair. The user’s public key, Q, is a point
in G1 that is derived from the user’s identity using a public algorithm. The
user’s private key is C = sQ.

3. Sign: To sign a message m, the signer randomly generates an integer t in
the range [1, r − 1] and outputs a signature (U, V) where U = tQ and V =
(t + H(m,U))C.

4. Verify: To verify a signature (U, V) of message m, the verifier derives the
signer’s public key Q from the alleged signer’s identity and computes h =
H(m,U). If e(U + hQ, S) = e(V, T) then the signature is accepted. Oth-
erwise, the signature is rejected. This test can be rewritten as 1 = e(U +
hQ, S) · e(V,−T) which can be computed more efficiently [13].

In [14] the following batch verifier was presented. The verifier obtains N messages
mi, for i = 1 to N , and the signatures (Ui, Vi) and signer’s identity for each
message. The verifier derives each public key Qi from the signer’s identity and
checks that Ui and Vi are elements of G1. The verifier sets r1 = 1 and generates
random values ri from [0, 2l − 1], for i = 2 to N . The batch is valid if

1 = α0 = e

(
N∑

i=1

Bi, S

)
· e
(

N∑
i=1

Di,−T

)

where Bi = ri (Ui + H(mi, Ui) ·Qi), Di = riVi, and 1 is the identity in Fqd .

3.1 Identifying Invalid Signatures

The problem of identifying invalid signatures within a batch has only recently
been investigated. Work in this area generally falls into three categories: divide-
and-conquer methods [20,14], identification code based methods [20], and
expo-nent testing methods [15,16,25,14].

Divide-and-Conquer Methods. Pastuszak et al. [20] first investigated meth-
ods for identifying invalid signatures within a batch. They explored “divide-and-
conquer” methods for generic batch verifiers, i.e., methods that work with any
of the three batch verifiers studied by Ballare et al. In these methods the set
of signatures in an invalid batch is repeatedly divided into d ≥ 2 smaller sub-
batches to verify. The most efficient of their techniques, the Fast DC Verifier
method, exploits knowledge of the results of the first d−1 sub-batch verifications
to determine whether the verification of the dth sub-batch is necessary, i.e., if
a (sub-)batch batch is invalid and the first d − 1 sub-batches of batch are all
valid, then the d’th sub-batch must be invalid, and the batch verifier for that
sub-batch is not computed. Performance measurements of one of the methods
of [20] for the Boneh, Lynn and Shacham (BLS) [2] signature scheme have been
reported [8]. The authors observed that the divide-and-conquer method they

Identification of Multiple Invalid Signatures 341

studied outperformed verifying each signature individually when w/N < .15 in
batches of 1024 BLS signatures using 160-bit MNT curves.

In [14] a more efficient divide-and-conquer method called Binary Quick Search
(BQS) was presented; BQS is applicable to small exponents test based verifiers.
In this method a batch verifier that compares two quantities, X and Y , is re-
placed with an equivalent test A = XY −1, and the batch is accepted if A = 1.2

The BQS algorithm is always3 more efficient than any d = 2nary DC Verifier;
When it is necessary to verify the dth child sub-batch, in BQS the sub-batch can
be verified by simply computing a single inverse operation and a single multi-
term multiplication (or d − 1 ordinary multiplications) rather than the much
more expensive batch verification required by the Fast DC verifier. The upper
bound of the number of batch verifications required by BQS is half that of the
Fast DC Verifier for d = 2 [14].

Identification Code Based Methods. Pastuszak et al. [20] investigated using
a Hamming identification code and a two-layer Hamming identification code for
identifying invalid signatures in generic batch verification. The Hamming code
verifier can identify a single error in a batch of size 2n − 1 using n + 2 batch
verifications, and the two-layer verifier can identify 2 invalid signatures in a batch
of 2n − 2 signatures using 3n + 3 batch verifications.

Exponent Testing Methods. The first exponent testing method, developed
by Lee et al. [15], was capable of finding a single invalid signature within a batch
of “DSA-type” signatures. Signatures of this type have verification equations
of the form “gm = s mod p” where m is the message, s is the signature, the
generator g has order q, and p and q are primes where q | (p− 1). To identity an
invalid signature, compute X =

∏N
i=1 si/g

∑N
i=1 mi and Y =

∏N
i=1 si

i/g
∑N

i=1 i·mi

and test whether Y = Xz for z ∈ [1, N]. The Exponentiation method of Law
and Matt [14], for the special case of identifying a single invalid signature, is
similar to the above method.

Lee et al. [16] applied their approach for DSA-type signatures to identifying a
single invalid signature in batches of RSA signatures. They addressed the prob-
lem of identifying multiple invalid RSA signatures by using their RSA method
in a divide-and-conquer method that is somewhat similar to the Single Prun-
ing Search we present in Section 4. However, Stanek showed in [25] that their
approach for RSA signatures is not secure.

In [14] two exponent testing methods for pairing-based batch signatures, the
Exponentiation method and the Exponentiation with Sectors method, were pre-
sented. Both methods require computing a number of batch verifications that are
proportional to the number of invalid signatures w in the batch. The Exponenti-
ation method requires w+1 verifications (including the initial batch verification)
2 For the initial batch verification, if it is more efficient to do so compute X and

Y , compare them, and compute A = XY −1 if the comparison fails; otherwise A is
computed directly, e.g., in Cha-Cheon where A = α0.

3 Except when w = 1 and the invalid signature is located in the rightmost position in
the batch then Fast DC verifier and BQS have equal costs.

342 B.J. Matt

and the same number of product of pairings computations. Exponentiation with
Sectors requires at most 2w+1 product of pairings computations. Both methods
use exhaustive search during batch verification, resulting in exponential cost.

Exponentiation Method. For the Cha-Cheon signature scheme, compute α0 and
test whether α0 is equal to the identity. If so, the batch is valid. Otherwise
compute αj , w ≥ j ≥ 1,

αj = e

(
N∑

i=1

ijBi, S

)
e

(
N∑

i=1

ijDi,−T

)
, (1)

and perform a test on the values αj , αj−1, . . . α0. For j = 1, test whether
α1 = αz1

0 has a solution for 1 ≤ z1 ≤ N using Shanks’ giant-step baby-
step algorithm [24]. If successful, w = 1 and z1 is the position of the invalid
signature. In general the method tests whether

αj =
j∏

t=1

(αj−t)
(−1)t−1 pt (2)

has a solution where pt is the tth elementary symmetric polynomial in 1 ≤ z1 ≤
. . . ≤ zj ≤ N . The authors show that the tests can be performed in O(

√
N)

for j = 1 and O(N j−1/(j − 1)!) for j ≥ 2 multiplications in Fqd . If a test fails
increment j, compute αj , and test. When j = w the test will succeed, and the
values of z1, . . . , zw are the positions of the invalid signatures.

Exponentiation with Sectors Method. The Exponentiation with Sectors Method
uses two stages. In the first stage, the batch is divided into approximately

√
N sec-

tors of approximately equal size and the Exponentiation method is used, where
each Bi, and Di within a sector is multiplied by the same constant, to identify the
v invalid sectors. In the second stage, the Exponentiation method is used to find
the invalid signatures within a batch consisting of the signatures from the v invalid
sectors. This method requires w + v + 1 product of pairings computations, includ-
ing the initial verification, where v ≤ min(w,

√
N). During the first stage the tests

can be performed in O(N
1
4) for j = 1 and O(

√
N

j−1
/(j − 1)!) for j ≥ 2 multipli-

cations in Fqd . During the second stage the number of multiplications required for

w ≤ j ≥ v is O(
√

v
√
N) for j = 1, and O(v

√
N

j−1
/(j − 1)!) for each j ≥ 2.

4 An Alternate Approach to Divide-and-Conquer
Methods

Divide-and-conquer methods can be viewed as operating on (for simplicity) a
binary tree T with w ≥ 1 invalid signatures whose root node, rootT , is the batch,
and each pair of child nodes represents the two nearly equal size sub-batches of
their parent. Previously published methods such as Binary DC Verifier and BQS
identify the invalid signatures within the initial batch by descending through the

Identification of Multiple Invalid Signatures 343

tree, performing verifications on the sub-batches of the nodes they encounter.
When one of the methods reaches a node whose sub-batch is valid, the methods
do not visit its descendants, if any. The methods identify the invalid signatures
by identifying those nodes that are either the ancestors of the leaf nodes of T that
represent invalid signatures, or the leaf nodes themselves. The difference between
the published methods are 1) the degree of the tree and 2) how efficiently the
nodes of the tree are verified.

The methods we propose view T as consisting of a parent sub-tree PT with
root node rootPT = rootT , and the leaves of PT are the roots of the w maximal
sub-trees STi, i = 1, .., w, of T which represent sub-batches that have a single
invalid signature. If the w = 1, then T = ST1 and PT is the node rootT . The new
methods identify invalid signatures by descending through PT and identifying
its leaves, and concurrently identifying the single invalid signature in each of the
sub-batches these leaves represent.

For signature schemes such as the Cha-Cheon, node of T is the root of some
STi if there exists a value z, lb ≤ z ≤ ub, that is a solution to α1,node = αz

0,node.
The values lb and ub are the lower and upper bounds of the sub-batch represented
by node within B, and αj,node = e

(∑ub
i=lb i

jBi, S
)
·e
(∑ub

i=lb i
jDi,−T

)
. Shanks’

giant-step baby-step algorithm can determine if such a solution exists in time
(multiplications in Fqd) proportional to the square root of the size of the sub-
batch. If no solution is found, then node is in PT but is not a leaf; hence its
children must be tested. We refer to this approach as single pruning.

When the children of an interior node p in PT , l and its sibling r, are leaves
of PT , there exist values zl in the range of indexes of the signatures in the left
sub-batch and zr in the range of signatures in the right sub-batch, such that
α1,p = αzl

0,l · αzr
0,r. The values zl and zr can be determined using an algorithm,

PairSolver(Left,Right), with cost proportional to the size of the (sub-)batch
represented by p. If the algorithm fails, then at least one of the child nodes is
not a leaf of PT and they are tested individually using Shanks’ algorithm. We
refer to this approach as paired single pruning.

4.1 Single Pruning Search (SPS) Method

The recursive algorithm below describes the Single Pruning Search (SPS) method
on a batch B which is a list of N = 2h, h ≥ 1, randomly ordered message
/ signature pairs ((m1, s1), . . . , (mN , sN)) where the signature components for
Cha-Cheon are verified elements of G1. On the initial call to SPS(X,α0,P , α1,P),
X = B, α0,P = 1, α1,P = 1. SPS uses the following algorithms:

1. Get0(X) – checks whether α0 has been computed for X and if so returns it;
otherwise it computes α0 by the most efficient method available,
and it may compute α−1

0 [17].
2. Get1(X) – checks whether α1 has been computed for X and if so returns it;

otherwise it computes α1 by the most efficient method available,
and it may compute α−1

1 [17].

344 B.J. Matt

3. Shanks(X) – if X has a single invalid signature, the algorithm returns the
position of the invalid signature; otherwise the algorithm re-
turns 0 [17].

4. Left(X) – returns a sub-batch with the first len/2 pairs in X , or ∅ if X = ∅.
5. Right(X) – returns a sub-batch with the later len/2 pairs in X , or ∅ if

X = ∅.
6. Len(X) – returns the number of pairs in X , or 0 if X = ∅.

Algorithm. SPS(X,α0,P , α1,P) (Single Pruning Search)

Input: X a list of message / signature pairs, α0,P and α1,P in GT .
Output: A list of the invalid pairs in the batch.
Return: A boolean.

if (Len(X) = 1) then
output X

return (true)
else

α0,N ← Get0(X)
if (α0,N = 1) then

return (true)
elseif (X = B) then

invα0,[B] ← α−1
0,N

endif
α1,N ← Get1(X)
if (α0,N �= α0,P) then

z ← Shanks(X)
if (z �= 0) then

output (mz, sz)
return (true)

elseif (X = B) then
invα1,[B] ← α−1

1,N

endif
endif
if (SPS(Left(X), α0,N , α1,N)) then

SPS(Right(X), α0,N , α1,N)
endif
return (α0,N �= α0,P)

endif

Get0(X) computes products of pairings only for the root node and left children
nodes that are tested by SPS. Get1(X) only computes products of pairings for
the root and for each left child X tested by SPS when the α0 of X is not equal
to α0 of the parent of X .

4.2 Paired Single Pruning Search Method

The recursive algorithm below describes the Paired Single Pruning Search (PSPS)
method on a batchB, which is a list ofN = 2h, h ≥ 1, randomly ordered message /

Identification of Multiple Invalid Signatures 345

signature pairs ((m1, s1), . . . , (mN , sN)) where the signature components for Cha-
Cheon are verified elements of G1. On the initial call to PSPS(X,α0,P , α1,P),
X = B, α0,P = 1, α1,P = 1. PSPS also uses the following algorithms:

1. PairSolver(Left,Right) – returns the positions of two invalid signatures,
one in Left and one in Right, or returns
(0, 0) [17].

2. Parent(X) – returns the parent of X , or ∅ if X is the initial batch B.

Algorithm. PSPS(X,α0,P , α1,P) (Paired Single Pruning Search)

Input: X a list of message / signature pairs, α0,P and α1,P in GT .
Output: A list of the invalid pairs in the batch.
Return: A boolean.

if (Len(X) = 1) then
output X

return (true)
else

α0,N ← Get0(X)
if α0,N = 1 then

return (true)
elseif (X = B) then

invα0,[B] ← α−1
0,N

endif
if (α0,N = α0,P) then

α1,N ← Get1(X)
else

if (X �= B and X = Left(Parent(X))) then
(zl, zr) ← PairSolver(X,Right(Parent(X)))
if zl �= 0 then

output (mzl , szl), (mzr , szr)
return (false)

end
end
α1,N ← Get1(X)
z ← Shanks(X)
if z �= 0 then

output (mz, sz)
return (true)

elseif (X = B) then
invα1,[B] ← α−1

1,N

endif
endif
if (PSPS(Left(X), α0,N , α1,N)) then

PSPS(Right(X), α0,N , α1,N)
endif
return (α0,N �= α0,P)

endif

346 B.J. Matt

5 Performance

For Cha-Cheon signatures, the divide-and-conquer methods and the exponen-
tiation methods batch verify by first checking that the signature components
are in G1, then computing α0 for B, and testing whether α0 = 1. With the
exception of BQS and the DC Verifiers, they compute their α0s, as shown
in Get0(B) in Appendix A. The cost (not including the membership tests) is
N · CstDlbMultG1(t1, t2)+N · CstMultG1(t1)+ 2(N −1)CstAddG1 +CstDblPair
with t1 = �log2(r)/2� and t2 = �log2(r)�.4

5.1 Cost of the New Methods When w ≥ 1

Single Pruning Search Performance. If w = 1, the cost of SPS increases
by the cost of computing α−1

0 (CstInvGT) and α1 for B (2(N − 1)CstAddG1
+CstDblPair), plus the expected cost of a successful Shanks(B) call, which is
approximately 4

3

√
N CstMultGT.5 If w ≥ 2, the average cost of SPS is the sum of

the costs of computing α0, α−1
0 , α1, a failed Shanks(B) call (2

√
N CstMultGT),

α−1
1 , plus the sum of the costs generated as SPS investigates the descendents of

rootT . The following recurrence relation generates these costs:

R(S)(w,M) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, w = 0, 1,

w > M or

w = 2 and M = 2;

⎡⎢⎢⎣ 2
(

M/2
2

)
(R(S)(2, M/2) + C(S)(2, 0, M/2))+(

M/2
1

)2
(C(S)(1, 1, M/2))

⎤⎥⎥⎦
(M

2) , w = 2 and M > 2;

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
(

M/2
w

)
(R(S)(w, M/2) + C(S)(w, 0, M/2))+

2
(

M/2
w−1

)(
M/2

1

)
(R(S)(w − 1, M/2) + C(S)(w − 1, 1, M/2))+

w−2∑
i=2

(
M/2
w−i

)(
M/2

i

)
(R(S)(w − i, M/2) + R(S)(i, M/2) + C(S)(w − i, i, M/2))

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(M

w) , w ≥ 3,

4 BQS and the DC Verifiers can compute α0 with the same cost [17].
5 Shanks(X) tests whether the equation α1,n = αz

0,n has a solution z in the range of
l up to u, the bounds of the (sub-)batch X within the original batch. The algorithm
alternately computes a value from the series α1 · (α−1

0)i and the series (αs
0)j · αl

0,
s = �√|X|�, stopping when a match is found (single invalid signature) or when both
series have been computed. Similarly, PairSolver(Left, Right) alternately computes
a value from one of two series, and terminates when a newly computed value from
one series is equal to one of the values already computed for the other series, or when
both series have been computed.

Identification of Multiple Invalid Signatures 347

where for Cha-Cheon:

Costs

Argument CstDblPair CstInvGT CstMultGT

C(S)(2, 0,M/2) 1

C(S)(1, 1,M/2) 2 2 8
3

√
M/2

C(S)(w, 0,M/2) 1

C(S)(w − 1, 1,M/2) 2 2 10
3

√
M/2

C(S)(w − i, i,M/2) 2 2 4
√

M/2

For C(S)(2, 0,M/2) and C(S)(w, 0,M/2), Get0(X) is called for the left child node
and no inverse is computed, with cost CstDblPair. For C(S)(1, 1,M/2), both
Get0(X) and Get1(X) are called for the left child, combined cost is 2CstDblPair+
2CstInvGT; for the right child, cost is zero, and two successful calls are made to
Shanks(X) with combined cost of 8

3

√
M/2CstMultGT. C(S)(w − 1, 1,M/2) is

similar to C(S)(1, 1,M/2) except that one of the calls to Shanks(X) fails to find
a solution. Both calls to Shanks(X) fail for C(S)(w − i, i,M/2).

Paired Single Pruning Search Performance. If w ≤ 1, PSPS has the same
average cost as SPS. If w ≥ 2, the average cost of PSPS is the sum of the costs
of computing α0, α−1

0 , α1, α−1
1 , the cost of the failed Shanks test on the batch

B, and the sum of the costs generated as PSPS investigates the descendants of
rootT . The following recurrence relation generates these costs:

R(P)(w,M) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, w = 0, 1,

w > M or

w = 2 and M = 2;

⎡⎢⎢⎣ 2
(

M/2
2

)
(R(P)(2, M/2) + C(P)(2, 0, M/2))+(

M/2
1

)2
(C(P)(1, 1, M/2))

⎤⎥⎥⎦
(M

2) , w = 2 and M > 2;

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
(

M/2
w

)
(R(P)(w, M/2) + C(P)(w, 0, M/2))+

2
(

M/2
w−1

)(
M/2

1

)
(R(P)(w − 1, M/2) + C(P)(w − 1, 1, M/2))+

w−2∑
i=2

(
M/2
w−i

)(
M/2

i

)
(R(P)(w − i, M/2) + R(P)(i, M/2) + C(P)(w − i, i, M/2))

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(M

w) , w ≥ 3,

348 B.J. Matt

where for Cha-Cheon:

Costs

Argument CstDblPair CstInvGT CstMultGT

C(P)(2, 0,M/2) 1

C(P)(1, 1,M/2) 1 1 M/2

C(P)(w, 0,M/2) 1

C(P)(w − 1, 1,M/2) 2 2 M + 10
3

√
M/2

C(P)(w − i, i,M/2) 2 2 M + 4
√

M/2

For C(P)(2, 0,M/2) and C(P)(w, 0,M/2), Get0(X) is called for the left child node
and no inverse is computed. ForC(P)(1, 1,M/2),Get0(X) is called for the left child,
the cost is CstDblPair+ CstInvGT, and a successful call is made to PairSolver
(Left,Right) with expected cost of M/2CstMultGT. For the argument C(P)(w −
1, 1,M/2), both Get0(X) and Get1(X) are called for both the left and right child,
one failed call is made to PairSolver(Left,Right) with cost M CstMultGT, and
one successful and one failed call are made to Shanks(X). C(P)(w − i, i,M/2) is
similar to C(P)(w − 1, 1,M/2) except that both calls to Shanks(X) fail.

5.2 Number of Product of Pairings Computations of SPS and PSPS

Let T be a perfect binary tree, and PT(2) be the sub-tree of PT , where each node
represents 2 or more invalid signatures. For each node in PT(2), SPS computes an
α0 for its left child, unless the child is a leaf node of T . For each node in the PT(2)
with both child nodes in PT , SPS also computes α1 for its left child, unless the
child is a leaf node of T . This computation occurs w−1 times. SPS also computes
a pair of αs for the root. Therefore, including the initial batch verification, SPS
requires |PT(2) | + (w + 1) product of pairings computations, if none of the leaf
nodes of PT are leaves of T . SPS requires two fewer α computations whenever
a pair of leaves of PT are leaves of T .

For a perfect binary tree, the number of ways j pairs leaves of PT can be leaves
of T is

(
N/2

j

)
, and the number of ways the remaining w − 2j invalid signatures

can be in the remaining N/2− j distinct 3 node subtrees at the lowest level of T
is
(
N/2−j
w−2j

)
2w−2j. Therefore, the expected number of occurrences of two sibling

leaf nodes of T both representing invalid signatures is

1(
N
w

)
w/2�∑
j=1

(
N/2
j

)(
N/2 − j

w − 2j

)
2w−2j.

Since
(
N−2
w−2

)
=
∑
w/2�

j=1

(
N/2

j

)(
N/2−j
w−2j

)
2w−2j the expression simplifies to w(w−1)

2(N−1) ,
and the expected number of αs computed by Single Pruning Search when the
batch size is a power of 2 is

|PT(2) | + (w + 1) − w(w − 1)
N − 1

.

Identification of Multiple Invalid Signatures 349

In Appendix B we show that |PT(2) | < 2w − 1; therefore the expected number
of product of pairings computations required by SPS is less than 3w. Since the
number of product of pairings computations in the cost functions of PSPS are
all less than or equal to the corresponding functions of SPS , the average number
of product of pairings computations used by PSPS is also O(w).

5.3 Number of Multiplications in Fq

Figure 1 and Figure 2 compare methods analyzed in Section 5.1 and in [17] for
finding invalid signatures in a batch once the initial batch verification has failed

214

215

216

217

218

219

220

20 21 22 23 24 25 26 27 28

Invalid Signatures

M
ul

ti
pl

ic
at

io
ns

in
F

q Key

BQS

Expon.

Exp. w. Sect.

SPS

PSPS

N individual

(a) Batch Size 16

214

215

216

217

218

219

220

20 21 22 23 24 25 26 27 28

Invalid Signatures

(b) Batch Size 64

Fig. 1. (a,b) Number of multiplies in Fq, where r and q are 160-bit values and d = 6

214

215

216

217

218

219

220

221

222

223

224

20 21 22 23 24 25 26 27 28 29 210 211

Invalid Signatures

M
ul

ti
pl

ic
at

io
ns

in
F

q

(c) Batch Size 256

214

215

216

217

218

219

220

221

222

223

224

20 21 22 23 24 25 26 27 28 29 210 211

Invalid Signatures

(d) Batch Size 1024

Fig. 1. (c,d) Number of multiplies in Fq, where r and q are 160-bit values and d = 6

350 B.J. Matt

216

217

218

219

220

221

222

20 21 22 23 24 25 26 27 28

Invalid Signatures

M
ul

ti
pl

ic
at

io
ns

in
F

q Key

BQS

Expon.

Exp. w. Sect.

SPS

PSPS

N individual

(a) Batch Size 16

216

217

218

219

220

221

222

20 21 22 23 24 25 26 27 28

Invalid Signatures

(b) Batch Size 64

Fig. 2. (a,b) Number of multiplies in Fq, where r and q are 256-bit values and d = 12

216

217

218

219

220

221

222

223

224

225

226

20 21 22 23 24 25 26 27 28 29

Invalid Signatures

M
ul

ti
pl

ic
at

io
ns

in
F

q

(c) Batch Size 256

216

217

218

219

220

221

222

223

224

225

226

20 21 22 23 24 25 26 27 28 29 210 211

Invalid Signatures

(d) Batch Size 1024

Fig. 2. (c,d) Number of multiplies in Fq, where r and q are 256-bit values and d = 12

for Cases A and C of [12]. In Case A, the group order r is a 160-bit value, the
elliptic curve E is defined over Fq, where q is a 160-bit value, and the embedding
degree d = 6. In Case C, the group order r is a 256-bit value, q is a 256-bit value,
and the embedding degree d = 12. All costs are given in terms of the number of
multiplications (m) in Fq using the following estimates from Granger, Page and
Smart [12], and Granger and Smart [13].

– For Case A, 1 double product of pairings = 16, 355m, 1 multiplication in
Fq6 = 15m, 1 inverse in Fq6 = 44m (assuming 1 inverse in Fq = 10m),
1 elliptic curve addition = 11m, and an elliptic point multiplication by a
160-bit value is 1614m and by an 80-bit value is 827m.

Identification of Multiple Invalid Signatures 351

– For Case C, 1 double product of pairings = 62, 797m, 1 multiplication in
Fq12 = 45m, 1 inverse in Fq12 = 104m, 1 elliptic curve addition = 11m, and
an elliptic point multiplication by a 256-bit value is 2535m and by an 128-bit
value is 1299m.

6 Conclusion

We have presented two new methods, Single Pruning Search and Paired Single
Pruning Search, for identifying invalid signatures in pairing-based batch signa-
ture schemes using the small exponents test, and have analyzed their average case
performance. These new methods require O(w) product of pairings computations
and O(w

√
N) and O(wN) number of multiplications in Fqd . The methods are

described for Cha-Cheon signatures, but are applicable to other batch verified
signature schemes such as the batch verifiers presented in [8].

These new methods, like BQS and earlier divide-and-conquer methods, can
be used when there is uncertainty in the number of invalid signatures in a batch.
As shown in the figures in Section 5.3, the new methods significantly outperform
the Binary Quick Search method when w � N , and perform as well as or better
than the exponentiation methods except when N and w are small. Unlike the
exponentiation methods, with the new methods a batch verifier is not forced to
switch methods when tests for small w fail.

In [14] the authors suggested that the exponentiation methods can be used
with BQS to provide improved performance after tests for small values of w
fail. While this is certainly true, the result can be expensive. For example, with
N = 64, a batch verifier that assumes that the number of invalid signature in
the batch is small would start with the Exponentiation Method, but if the tests
for w = 1 and w = 2 both fail, the verifier would switch to Exponentiation with
Sectors Method to test if w = 3. If the test for w = 3 fails, then the verifier
would switch to BQS. If w = 4, the cost of this sequence for Case A (ignoring
the common cost of signature component validation and α0 computation) is at
least ≈ 3.70×105 multiplications in Fq, compared to ≈ 2.73×105 multiplications
if only BQS was used, and ≈ 1.16 × 105 multiplications with the Paired Single
Pruning Search Method.

Ideally, we would have a single efficient method for finding the invalid signa-
tures in a batch that always has the lowest expected cost no matter how many
signatures are invalid. Such a method would be especially useful when an adver-
sary is occasionally able to inject bursts of several invalid signatures into some
batches. Short of that ideal, but a practical alternative, would be a small set of
methods, each of which for some range of batch sizes of interest always provides
the lowest expected cost. Currently the Paired Single Pruning Search, provides
the lowest expected cost when the batch size is in the range 128 to 512. For
batches larger than 512, we would expect batch verifiers to utilize the bucket
test for Cha-Cheon and related signature schemes rather than the small expo-
nents test. Finding such a minimal cost method for batches smaller than 128
is as an open problem. Another open problem is to find more efficient methods

352 B.J. Matt

than the generic DC verifiers of [20] for identifying the invalid signatures in a
batch when an initial bucket test verifier fails.

References

1. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponen-
tiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 236–250. Springer, Heidelberg (1998)

2. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001)

3. Boyd, C., Pavlovski, C.: Attacking and repairing batch verification schemes. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 58–71. Springer, Hei-
delberg (2000)

4. Buchegger, S., Boudec, J.-Y.L.: Performance analysis of the CONFIDANT pro-
tocol (Cooperation of Nodes: Fairness In Dynamic Ad-hoc NeTworks). In:
ACM/SIGMOBILE Third International Symposium on Mobile Ad Hoc Network-
ing and Computing (MobiHOC). ACM, New York (2002)

5. Camenisch, J., Hohenberger, S., Pedersen, M.: Batch verification of short sig-
natures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 246–263.
Springer, Heidelberg (2007); see also Cryptology ePrint Archive, Report 2007/172,
2007, http://eprint.iacr.org/2007/172

6. Cha, J., Cheon, J.: An identity-based signature from gap diffie-hellman groups. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer, Heidelberg
(2002)

7. Fall, K.: A delay-tolerant network architecture for challenged internets. In:
SIGCOMM 2003: Proceedings of the 2003 conference on Applications, tech-
nologies, architectures, and protocols for computer communications, pp. 27–34
(2003)

8. Ferrara, A.L., Green, M., Hohenberger, S., Pedersen, M.O.: On the practicality
of short signature batch verification. Cryptology ePrint Archive, Report 2008/015
(2008), http://eprint.iacr.org/2008/015

9. Fiat, A.: Batch RSA. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp.
175–185. Springer, Heidelberg (1990)

10. Gaubatz, G., Kaps, J.-P., Sunar, B.: Public key cryptography in sensor networks—
revisited. In: Castelluccia, C., Hartenstein, H., Paar, C., Westhoff, D. (eds.) ESAS
2004. LNCS, vol. 3313, pp. 2–18. Springer, Heidelberg (2005)

11. Gavidia, D., van Steen, M., Gamage, C., Jesi, G.P.: Canning spam in wireless gossip
networks. In: Conference on Wireless On demand Network Systems and Services
(WONS), pp. 208–220 (2007)

12. Granger, R., Page, D.L., Smart, N.P.: High security pairing-based cryptography
revisited. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076,
pp. 480–494. Springer, Heidelberg (2006)

13. Granger, R., Smart, N.P.: On computing products of pairings. Cryptology ePrint
Archive, Report 2006/172 (2006), http://eprint.iacr.org/2006/172

14. Law, L., Matt, B.J.: Finding invalid signatures in pairing based batches. In: Gal-
braith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887, pp. 35–53.
Springer, Heidelberg (2007)

http://eprint.iacr.org/2007/172
http://eprint.iacr.org/2008/015
http://eprint.iacr.org/2006/172

Identification of Multiple Invalid Signatures 353

15. Lee, S.-W., Cho, S., Choi, J., Cho, Y.: Batch verification with DSA-type digital
signatures for ubiquitous computing. In: Hao, Y., Liu, J., Wang, Y.-P., Cheung,
Y.-m., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.) CIS 2005. LNCS, vol. 3802, pp.
125–130. Springer, Heidelberg (2005)

16. Lee, S., Cho, S., Choi, J., Cho, Y.: Efficient identification of bad signatures in
RSA-type batch signature. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences E89-A(1), 74–80 (2006)

17. Matt, B.J.: Identification of multiple invalid signatures in pairing-based batched
signatures. Cryptology ePrint Archive (2009), http://eprint.iacr.org/2009

18. Naccache, D., M’Räıhi, D., Vaudenay, S., Raphaeli, D.: Can D.S.A. Be improved?
In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 77–85. Springer,
Heidelberg (1995)

19. Papadimitratos, P., Haas, Z.: Secure routing for mobile ad hoc networks. In: Pro-
ceedings of SCS Communication Networks and Distributed Systems Modeling and
Simulation Conference (CNDS 2002) (January 2002)

20. Pastuszak, J., Micha�lek, D., Pieprzyk, J., Seberry, J.: Identification of bad signa-
tures in batches. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp.
28–45. Springer, Heidelberg (2000)

21. Raya, M., Hubaux, J.-P.: Securing vehicular ad hoc networks. Journal of Computer
Security, Special Issue on Security of Ad Hoc and Sensor Networks 15(1), 39–68
(2007)

22. Salem, N.B., Buttyan, L., Hubaux, J.-P., Jakobsson, M.: A charging and
rewarding scheme for packet forwarding in multi-hop cellular networks, In:
ACM/SIGMOBILE 4th International Symposium on Mobile Ad Hoc Networking
and Computing (MobiHOC). ACM Press, New York (2003)

23. Sampigethaya, K., Mingyan, L., Leping, H., Poovendran, R.: Amoeba: Robust
location privacy scheme for vanet. IEEE JSAC Special Issue on Vehicular Net-
works 25(8), 1569–1589 (2007)

24. Shanks, D.: Class number, a theory of factorization and genera. In: Symposium on
Pure Mathematics, vol. 20, pp. 415–440. AMS (1971)

25. Stanek, M.: Attacking LCCC batch verification of RSA signatures. Cryptology
ePrint Archive, Report 2006/111 (2006), http://eprint.iacr.org/2006/111

26. Symington, S., Farrell, S., Weiss, H., Lovell, P.: Bundle security protocol specifica-
tion. draft-irtf-dtnrg-bundle-security-04 (work in progress) (September 2007)

27. Wagner, D.: The conventional wisdom about sensor network security.. is wrong.
In: IEEE Security and Privacy 2005, and invited panelist, Security in Ad-hoc and
Sensor Networks 2005 (2005)

28. Yen, S., Laih, C.: Improved digital signature suitable for batch verification. IEEE
Transactions on Computers 44(7), 957–959 (1995)

29. Yoon, H., Cheon, J.H., Kim, Y.: Batch verifications with ID-based signatures. In:
Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 223–248. Springer,
Heidelberg (2005)

30. Zapata, M.G., Asokan, N.: Securing ad hoc routing protocols. In: WiSE 2002:
Proceedings of the 1st ACM workshop on Wireless security, pp. 1–10 (2002)

http://eprint.iacr.org/2009
http://eprint.iacr.org/2006/111

354 B.J. Matt

A Auxiliary Algorithms for SPS and PSPS

The algorithms in Section 4 for the SPS and PSPS methods call Get0(X) to
obtain α0 (and α−1

0) for X , and Get1(X) to obtain α1 (and α−1
1) for X . In this

section we describe these algorithms for Cha-Cheon signatures. Get0(X) and
Get1(X) use the following algorithms:

1. Lowerindex(X) – returns the index within the batch B of the message /
signature pair in the lowest position in X .

2. Upperindex(X) – returns the index in B of the pair in the highest position
in X .

Algorithm. Get0(X) (Obtain α0 (and α−1
0) for Cha-Cheon)

Input: X a list of message / signature pairs.
Output: None.
Return: The value α0,[X] for X .

P ← Parent(X); L ← Left(P); R ← Right(P)
if (α0,[X]) then

return (α0,[X])
elseif (X = R) then

α0,[R] ← α0,[P] · invα0,[L]
invα0,[R] ← invα0,[P] · α0,[L]
return (α0,[R])

elseif (X = L) then
l ← Lowerindex(X); u ← Upperindex(X)
α0,[L] ← e (V Bl − V Bu+1, S) · e (V Dl − V Du+1,−T)

if (α0,[L] �= α0,[P]) then
invα0,[L] ← α−1

0,[L]
else

invα0,[L] ← invα0,[P]
endif
return (α0,[L])

else
V Blen(X) ← Blen(X)
V Dlen(X) ← Dlen(X)
for i = Len(X) − 1 downto 1 do

V Bi ← V Bi+1 + Bi

V Di ← V Di+1 + Di

endfor
α0,[B] ← e (V B1, S) · e (V D1,−T)
return (α0,[B])

endif

When X is a left child, the cost is at most 2·CstSubG1 +CstDblPair+CstInvGT. If
X is a right child, the cost is at most 2CstMultGT. Since CstDblPair � CstSubG1
and CstDblPair � CstMultGT, we estimate the cost of Get0 for pair of siblings
as CstDblPair+CstInvGT in Section 5.

Identification of Multiple Invalid Signatures 355

Algorithm. Get1(X) (Obtain α1 (and α−1
1) for Cha-Cheon)

Input: X a list of message / signature pairs.
Output: None.
Return: The value α1,[X] for X .

P ← Parent(X); L ← Left(P); R ← Right(P)
if (α1,[X]) then

return (α1,[X])
elseif (α0,[X] = α0,[P]) then

α1,[X] ← α1,[P]
invα1,[X] ← invα1,[P]
return (α1,[X])

elseif (X = R) then
α1,[R] ← α1,[P] · invα1,[L]
invα1,[R] ← invα1,[P] · α1,[L]
return (α1,[R])

elseif (X = L) then
l ← Lowerindex(X); u ← Upperindex(X)
WBl,u ← UBu − (u · V Bu+1 + WB1,l−1)
WDl,u ← UDu − (u · V Du+1 + WD1,l−1)
if (l �= 1) then

WB1,u ← WB1,l−1 + WBl,u

WD1,u ← WD1,l−1 + WDl,u

endif
α1,[L] ← e (WBl,u, S) · e (WDl,u,−T)
if (α1,[L] �= α1,[P]) then

invα1,[L] ← α−1
1,[L]

else
invα1,[L] ← invα1,[P]

endif
return (α1,[L])

else
WB1,0 ← ∞
WD1,0 ← ∞
UB1 ← V B1
UD1 ← V D1
for i = 2 upto len(X) do

UBi ← UBi−1 + V Bi

UDi ← UDi−1 + V Di

endfor
α1,[B] ← e

(
UBlen(X), S

) · e (UDlen(X),−T
)

return (α1,[B])
endif

To compute α1s and its inverse for a left child node costs no more than 4 ·
CstAddG1 +2 · CstSubG1 +2 · CstMultG1(t1)+CstInvGT +CstDblPair with t1 =
�log2(Len(X))�<�log2(N)�. If X is a right child, the cost is at most 2CstMultGT.

356 B.J. Matt

We estimate the cost of Get1 for pair of siblings as CstDblPair+CstInvGT in
Section 5.

B | PT(2) | < 2w − 1

We show that |PT(2) | < 2w−1 whenever N = 2i for i = 1, 2, Let S(2)(i, w) =
|PT(2) | for N = 2i and 0 ≤ w ≤ N . Note that S(2)(i, w) = 0 when w = 0, 1, and
S(2)(1, 2) = 1. Assume that S(2)(i, w) < 2w − 1.

For w = 2

S(2)(i + 1, 2) =
2∑

j=0

(2i

2−j

)(2i

j

)(2i+1

2

) (S(2)(i, 2 − j) + S(2)(i, j) + 1)

<
2
(2i

2

)(2i

0

)(2i+1

2

) (4) +

(2i

1

)(2i

1

)(2i+1

2

) (1)

< 2 +
2i − 2

2i+1 − 1
< 3.

For w ≥ 3

S(2)(i + 1, w) =
w∑

j=0

(2i

w−j

)(2i

j

)(2i+1

w

) (S(2)(i, w − j) + S(2)(i, j) + 1)

<
2
(2i

w

)(2i

0

)(2i+1

w

) ((2w) +
2
(2i

w−1

)(2i

1

)(2i+1

w

) (2w − 2) +
w−2∑
j=2

(2i

w−j

)(2i

j

)(2i+1

w

) (2w − 1)

< 2w − 1 − 2
(2i

w−1

)
w
(2i+1

w

) ((2i + 1)(w − 1)
)

< 2w − 1.

CCA-Secure Proxy Re-encryption without
Pairings�

Jun Shao1,2 and Zhenfu Cao1,��

1 Department of Computer Science and Engineering
Shanghai Jiao Tong University

2 College of Information Sciences and Technology
Pennsylvania State University

chn.junshao@gmail.com, zfcao@cs.sjtu.edu.cn

Abstract. In a proxy re-encryption scheme, a semi-trusted proxy can
transform a ciphertext under Alice’s public key into another ciphertext
that Bob can decrypt. However, the proxy cannot access the plaintext.
Due to its transformation property, proxy re-encryption can be used in
many applications, such as encrypted email forwarding. In this paper, by
using signature of knowledge and Fijisaki-Okamoto conversion, we pro-
pose a proxy re-encryption scheme without pairings, in which the proxy
can only transform the ciphertext in one direction. The proposal is secure
against chosen ciphertext attack (CCA) and collusion attack in the ran-
dom oracle model based on Decisional Diffie-Hellman (DDH) assumption
over Z∗

N2 and integer factorization assumption, respectively. To the best
of our knowledge, it is the first unidirectional PRE scheme with CCA
security and collusion-resistance.

Keywords: Unidirectional PRE, DDH, random oracle, CCA security,
collusion-resistance.

1 Introduction
In 1998, Blaze, Bleumer, and Strauss [6] proposed the concept of proxy re-
encryption (PRE), where a semi-trusted proxy can transform a ciphertext for
Alice into another ciphertext that Bob can decrypt.1 However, the proxy cannot

� Supported by Research Fund for the Doctoral Program of Higher Education No.
20060248008, National Natural Science Foundation of China No. 60673079, Spe-
cial Foundation of Huawei No. YZCB2006001, and National 973 Program No.
2007CB311201.

�� Corresponding author.
1 In almost all related papers, the concept of PRE is introduced as “PRE allows a semi-

trusted proxy to convert a ciphertext under Alice’s public key to another ciphertext
under Bob’s public key”. However, all existing unidirectional PRE schemes (includ-
ing ours) do not exactly follow the definition. In particular, in these unidirectional
PRE schemes, there are two kinds of ciphertexts, one is the original ciphertext, and
the other is the transformed ciphertext. The transformed ciphertext is not exactly
as the ciphertext under Bob’s public key, but Bob can decrypt the transformed ci-
phertext only by his secret key. To the best of our knowledge, only the bidirectional
schemes in [6,9] satisfy the definition.

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 357–376, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

http://dx.doi.org/10.1007/978-3-642-00468-1_29

358 J. Shao and Z. Cao

get the plaintext. According to the direction of transformation, PRE schemes
can be classified into two types, one is bidirectional, i.e., the proxy can transform
from Alice to Bob and vice versa; the other is unidirectional, i.e., the proxy can
only convert in one direction. Blaze et al. [6] also gave another method to classify
PRE schemes: multi-use, i.e., the ciphertext can be transformed from Alice to
Bob to Charlie and so on; and single-use, i.e., the ciphertext can be transformed
only once.

Due to its transformation property, PRE can be used in many applications,
including simplification of key distribution [6], key escrow [21], distributed file
systems [2,3], security in publish/subscribe systems [23], multicast [10], secure
certified email mailing lists [24,22], the DRM of Apple’s iTunes [36], interoper-
able architecture of DRM [34], access control [35], and privacy for public trans-
portation [19]. Recently, Hohenberger et al. got a result of securely obfuscating
re-encryption [20], which is the first positive result for obfuscating an encryption
functionality and against a series of impossibility results [18,16,4].

Since the introduction of PRE by Blaze, Bleumer, and Strauss [6], there have
been many papers [6,21,2,3,17,9,11,25] that have proposed different PRE schemes
with different security properties. Some of them are related to chosen ciphertext
attack (CCA) security. Ivan and Dodis [21] proposed a CCA security model
for PRE and a generic construction of single-use PRE in the security model.
Nevertheless, their security model allows the delegatee (Bob) to make use of the
proxy as an oracle. As a result, the schemes only secure in their security model are
not enough for some applications. For example, in encrypted email forwarding,
an adversary (Bob) might hope to gain access to the original encrypted email by
re-forming it, sending it to the proxy, and then hoping that the proxy responds
with, “Can you forward the following to me again? [Encrypted attachment.]”

To fix the problem, Green and Ateniese [17], Canetti and Hohenberger [9]
proposed new CCA security models for ID-based PRE and PRE, respectively.
In these two new security models, it requires that the proxy checks the validity of
the ciphertext before transformation, which is called public verifiability. Follow-
ing this intuition, the first CCA secure, single-use, unidirectional ID-based PRE
scheme in the random oracle model and the first CCA secure, multi-use, bidi-
rectional PRE scheme in the standard model are proposed in [17,9], respectively.
However, the scheme in [17] suffers from the attack in Remark 2. Furthermore,
the generic construction of PRE in [21] cannot be proved secure in the CCA
security model in [9]. (See Appendix A for details. Hereafter, we refer CCA se-
curity to the definition in [9] or Section 2 of this paper.) Chu and Tzeng [11]
proposed a multi-use, unidirectional ID-based PRE scheme, and claimed that it
was CCA secure in the standard model. However, we showed that it was not
true [31], since its transformed ciphertext (Cv1, R, d′1, d2, d

′
2) can be modified

to another well-formed transformed ciphertext (Cv1, R, d′1F2(vk)r , d2, d
′
2g

r) by
anyone, where r is a random number from Z∗

p. Recently, Libert and Vergnaud
[25] proposed a new unidirectional PRE scheme, which is replayable chosen ci-
phertext attack (RCCA) secure but not CCA-secure. It is fair to say that there

CCA-Secure Proxy Re-encryption without Pairings 359

is no CCA-secure unidirectional PRE scheme.2 Furthermore, according to the
results in [5,29], the timing of a pairing computation is more than twice of that of
a modular exponentiation computation. Hence, the CCA-secure unidirectional
PRE schemes without pairings are desired.

Another important security notion on unidirectional PRE is collusion-
resistance, which disallows Bob and the proxy to collude to reveal Alice’s (long
term) secret key, but allows the recovery of Alice’s “weak” secret key only. In
this case, Alice can delegate decryption rights, while keeping signing rights for
the same public key. Till now, there are only a few PRE schemes [2,3,25] holding
this security.3

Though many PRE schemes have been proposed, we find that no unidirec-
tional PRE scheme without pairings but satisfying CCA security and collusion-
resistance simultaneously, even in the random oracle model. In this paper, we
attempt to propose such a unidirectional PRE scheme.

1.1 Our Contribution

We present a proxy re-encryption scheme without pairings, named scheme U,
which is unidirectional and single-use, and proven CCA-secure and collusion
resistant in the random oracle model based on Decisional Diffie-Hellman (DDH)
assumption over Z∗

N2 and integer factorization assumption, respectively. Here,
N is a safe-prime modulus.

The difficulty in constructing a CCA secure PRE scheme is to add the public
verifiability to original ciphertexts. This public verifiability can prevent malicious
Bob from gaining some advantage by using the proxy as an oracle. In pairing
setting, such as [9], we can use the gap Diffie-Hellman problem (decisional Diffie-
Hellman problem is easy, but computational Diffie-Hellman problem is hard) to
achieve this. In particular, the gap Diffie-Hellman problem allows us to check
whether logg A = logh B. In this paper, we use signature of knowledge [8,1] to
provide logg A = logh B, hence obtaining public verifiability for original cipher-
texts. In fact, using the signature of knowledge to provide public verifiability
is due to Shoup and Gennaro [33]. Furthermore, we use Fujisaki-Okamoto con-
version [14,15] to provide the validity check of both original ciphertexts and
re-encrypted ciphertexts for the decryptor (Alice or Bob).

Following the construction of the public key encryption scheme with double
trapdoors in [7], scheme U holds collusion-resistance. In particular, the factors
of N are the long term secret key, and an exponent is the “weak” secret key,

2 When we prepared the camera-ready version, we found another paper [13] dealing
the similar problems, and getting the similar results with us. In [13], the authors use
Schnorr signature [28] to make the original ciphertext be publicly verifiable, while we
use signature of knowledge [8,1]. In our submission version, we have a CCA-secure
bidirectional PRE scheme, however, the bidirectional one in [13] beats ours in every
aspects. Hence, in the current version, we removed our bidirectional one, which can
be found in [30]. Furthermore, the unidirectional scheme in [13] suffers from the
attack in Remark 2.

3 The unidirectional PRE scheme in [13] suffers from the collusion attack.

360 J. Shao and Z. Cao

and revealing the exponent does not hurt the secrecy of the factors of N . To the
best of our knowledge, scheme U is the first unidirectional PRE scheme holding
CCA security and collusion-resistance simultaneously.

Finally, we extend scheme U to scheme UT , where the delegator can revoke
the proxy’s transformation ability. In particular, the proxy can only transform
the ciphertext during a restricted time interval.

1.2 Organization

The remaining paper is organized as follows. In Section 2, we review the defi-
nitions related to our proposals. In what follows, we present scheme U and its
security analysis, and scheme UT and its security analysis, in Section 3 and
Section 4, respectively. In Section 5 we compare scheme U with previous unidi-
rectional PRE schemes. Finally, we conclude the paper in Section 6.

2 Preliminaries

In this section, we briefly review the definitions related to our proposals, some
similar content can be found in [8,1,17,9].

2.1 Public Key Encryption

Definition 1 (Public Key Encryption (PKE)). A public key encryption
scheme PKE is a triple of PPT algorithms (KeyGen, Enc, Dec):

– KeyGen(1k) → (pk, sk). On input the security parameter 1k, the key genera-
tion algorithm KeyGen outputs a public key pk and a secret key sk.

– Enc(pk,m) → C. On input a public key pk and a message m in the message
space, the encryption algorithm Enc outputs a ciphertext C.

– Dec(sk, C) → m. On input a secret key sk and a ciphertext C, the decryption
algorithm Dec outputs a message m in the message space or ⊥.

Correctness. The correctness property is that for any message m in the mes-
sage space and any key pair (pk, sk) ← KeyGen(1k). Then the following condition
must hold: Dec(sk, Enc(pk,m)) = m.

2.2 Unidirectional Proxy Re-encryption

Definition 2 (Unidirectional PRE). A unidirectional proxy re-encryption
scheme UniPRE is a tuple of PPT algorithms (KeyGen, ReKeyGen, Enc, ReEnc,
Dec):

– KeyGen, Enc, Dec: Identical to those in public key encryption.
– ReKeyGen(sk1, pk2) → rk1→2. On input a secret key sk1 and a public key

pk2, the re-encryption key generation algorithm ReKeyGen outputs a unidi-
rectional re-encryption key rk1→2.

– ReEnc(rk1→2, C1) → C2. On input a re-encryption key rk1→2 and a cipher-
text C1, the re-encryption algorithm ReEnc outputs a re-encrypted ciphertext
C2 or ⊥.

CCA-Secure Proxy Re-encryption without Pairings 361

Correctness. A correct proxy re-encryption scheme should satisfy two
requirements:

Dec(sk, Enc(pk,m)) = m,

and
Dec(sk′, ReEnc(ReKeyGen(sk, pk′), C)) = m,

where (pk, sk), (pk′, sk′) ← KeyGen(1k), and C is the ciphertext of message m
for pk from algorithm Enc or algorithm ReEnc.

Chosen Ciphertext Security for Unidirectional Proxy Re-Encryption.
This security note is a modification of replayable chosen ciphertext security in
[25], where the corrupted public keys are not decided before start of the Uni-
PRE-CCA game, and the adversary is allowed adaptive corruption of users4, and
proxies between corrupted and uncorrupted users. But unlike [25], we require
that one well-formed ciphertext cannot be modified (but can be transformed) to
be another well-formed ciphertext. In [25], anyone can modify the transformed
ciphertext, such that (C1, C

′
2, C

′′
2 , C

′′′
2 , C3, C4, σ) → (C1, C

′
2
t
, C′′

2
t−1

, C′′′
2

t
, C3, C4,

σ), where t is a random number from Zp.
Note that this security model is only for single-use scheme.

Phase 1: The adversary A issues queries q1, · · · , qn1 where query qi is one of:

– Public key generation oracle Opk: On input an index i,5 the Challenger takes
a security parameter k, and responds by running algorithm KeyGen(1k) to
generate a key pair (pki, ski), gives pki to A and records (pki, ski) in table
TK .

– Secret key generation oracle Osk: On input pk by A, where pk is from Opk,
the Challenger searches pk in table TK and returns sk.

– Re-encryption key generation oracle Ork: On input (pk, pk′) by A, where pk,
pk′ are from Opk, the Challenger returns the re-encryption key rkpk→pk′ =
ReKeyGen(sk, pk′), where sk is the secret key corresponding to pk.

– Re-encryption oracle Ore: On input (pk, pk′, C) by A, where pk, pk′ are
from Opk, the re-encrypted ciphertext C′ = ReEnc(ReKeyGen(sk, pk′), C) is
returned by the Challenger, where sk is the secret key corresponding to pk.

– Decryption oracle Odec: On input (pk, C), where pk is from Opk, the Chal-
lenger returns Dec(sk, C), where sk is the secret key corresponding to pk.

These queries may be asked adaptively, that is, each query qi may depend on
the replies to q1, · · · , qi−1.

Challenge: Once the adversary A decides that Phase 1 is over, it outputs two
equal length plaintexts m0, m1 from the message space, and a public key pk∗ on
which it wishes to be challenged. There are three constraints on the public key
pk∗, (i) it is from Opk; (ii) it did not appear in any query to Osk in Phase 1; (iii) if

4 The security model in [13] does not allow such adaptive corruption.
5 This index is just used to distinguish different public keys.

362 J. Shao and Z. Cao

(pk∗,�) did appear in any query to Ork, then � did not appear in any query to
Osk. The Challenger picks a random bit b ∈ {0, 1} and sets C∗ = Enc(pk∗,mb).
It sends C∗ as the challenge to A.

Phase 2: The adversary A issues more queries qn1+1, · · · , qn where query qi is
one of:

– Opk: The Challenger responds as in Phase 1.
– Osk: On input pk by A, if the following requirements are all satisfied, the

Challenger responds as in Phase 1; otherwise, the Challenger terminates the
game.
• pk is from Opk;
• pk �= pk∗;
• (pk∗, pk) is not a query to Ork before;
• (pk′, pk, C′) is not a query to Ore before, where (pk′, C′) is a derivative6

of (pk∗, C∗).
– Ork: On input (pk, pk′) by A, if the following requirements are all satisfied,

the Challenger responds as in Phase 1; otherwise, the Challenger terminates
the game.
• pk, pk′ are from Opk;
• if pk = pk∗, then pk′ is not a query to Osk.

– Ore: On input (pk, pk′, C) by A, if the following requirements are all satisfied,
the Challenger responds as in Phase 1; otherwise, the Challenger terminates
the game.
• pk, pk′ are from Opk;
• if (pk, C) is a derivative of (pk∗, C∗), then pk′ is not a query to Osk.

– Odec: On input (pk, C), if the following requirements are all satisfied, the
Challenger responds as in Phase 1; otherwise, the Challenger terminates the
game.
• pk is from Opk;
• (pk, C) is not a derivative of (pk∗, C∗).

These queries may be also asked adaptively.

Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1} and wins the game
if b = b′.

We refer to such an adversary A as a Uni-PRE-CCA adversary. We define
adversary A’s advantage in attacking UniPRE as the following function of the
6 Derivatives of (pk∗, C∗) are defined as follows [9]:
1. (pk∗, C∗) is a derivative of itself.
2. If (pk,C) is a derivative of (pk∗, C∗) and (pk′, C′) is a derivative of (pk, C), then

(pk′, C′) is a derivative of (pk∗, C∗).
3. If A has queried Ore on input (pk, pk′, C) and obtained (pk′, C′), then (pk′, C′) is

a derivative of (pk,C).
4. If A has queried Ork on input (pk, pk′), and C′ = ReEnc(Ore(pk, pk′), C), then

(pk′, C′) is a derivative of (pk, C).

CCA-Secure Proxy Re-encryption without Pairings 363

security parameter k: AdvUniPRE,A(k) = |Pr[b = b′]−1/2|. Using the Uni-PRE-
CCA game we can define chosen ciphertext security for unidirectional proxy
re-encryption schemes.

Definition 3 (Uni-PRE-CCA security). We say that a unidirectional proxy
re-encryption scheme UniPRE is semantically secure against an adaptive chosen
ciphertext attack if for any polynomial time Uni-PRE-CCA adversary A the
function AdvUniPRE,A(k) is negligible. As shorthand, we say that UniPRE is
Uni-PRE-CCA secure.

Remark 1. In [25], the authors considered this model as a static corruption
model, since it does not capture some scenarios, such as the adversary gen-
erate public keys on behalf of corrupted parties. However, we think this model
is an adaptive corruption model. Since Adaptive Security usually refers to the
ability of the adversary to choose which parties to corrupt depending on the
information gathered so far, but the Challenger still generates all parties’ key
pairs. Allowing adversaries to generate malicious parties’ public keys on their
own is usually called “chosen-key model” [26].7

Besides CCA security, there is another security notion, collusion resistance, for
unidirectional PRE schemes.

Definition 4 (Uni-PRE-CR security). 8 We say that a unidirectional proxy
re-encryption scheme UniPRE is collusion resistant if for any polynomial bounded
adversary A, the following probability is negligible:

Pr[(sk1, pk1) ← KeyGen(1k), {(ski, pki) ← KeyGen(1k)},
{rki→1 ← ReKeyGen(ski, pk1)},
{rk1→i ← ReKeyGen(sk1, pki)},

i = 2, · · · ,
α → A(pk1, {pki, ski}, {rk1→i}, {rki→1}) :

α = sk1].

Due to its similarity with that of unidirectional PRE schemes, we put the defini-
tions of unidirectional PRE schemes with temporary delegation in the Appendix.

2.3 Signature of Knowledge

In our proposal, we apply the following non-interactive zero-knowledge proof of
knowledge, named signature of knowledge of equality of two discrete logarithms
[8,1,32].

Definition 5. Let y1, y2, g, h ∈ G, G be a cyclic group of quadratic residues
modulo N2 (N is a safe-prime modulus), and H(·) : {0, 1}∗ → {0, 1}k (k is the
security parameter). A pair (c, s), verifying c = H(y1||y2||g||h||gsyc

1||hsyc
2||m) is

a signature of knowledge of the discrete logarithm of both y1 = gx w.r.t. base g
and y2 = hx w.r.t. base h, on a message m ∈ {0, 1}∗.
7 We thank an anonymous reviewer of Indocrypt 2008 to point out this.
8 This security notion is from [2,3], called Master Secret Security.

364 J. Shao and Z. Cao

The party in possession of the secret x is able to compute the signature,
provided that x = logg y1 = logh y2, by choosing a random t ∈ {0, · · · , 2|N2|+k −
1} (|n| is the bit-length of n). And then computing c and s as:

c = H(y1||y2||g||h||gt||ht||m) and s = t − cx.

We denote SoK.Gen(y1, y2, g, h,m) as the generation of the proof.

2.4 Complexity Assumption

The security of our proposal is based on the Decisional Diffie-Hellman
assumption (DDH) over Z∗

N2 .

DDH Problem. The DDH problem is as follows: Given 〈g, ga, gb〉 for some
a, b ∈ ord(G) and T ∈ G, decide whether T = gab, where G is a cyclic group
of quadratic residues modulo N2 (N is a safe-prime modulus), g is a random
number of G. An algorithm A has advantage ε in solving DDH problem if
|Pr[A(g, ga, gb, gab) = 0] − Pr[A(g, ga, gb, T) = 0]| ≥ ε, where the probability
is over the random choices of a, b in ord(G), the random choices of g, T in G,
and the random bits of A.

Definition 6 (DDH Assumption). We say that the ε-DDH assumption holds
if no PPT algorithm has advantage at least ε in solving the DDH problem.

Note that the DDH problem over Z∗
N2 is easy if the factors of N is known [7].

2.5 The Public Key Encryption with Double Trapdoors

The basic public key encryption of our proposal is the public key encryption
with double trapdoors in [7], named BCP03.

The following description is from [7]. Let N = pq be a safe prime modulus,
such that p = 2p′ + 1, q = 2q′ + 1, and p, p′, q, q′ are primes. Assume G is the
cyclic group of quadratic residues modulo N2, then we have the order of G is
Np′q′.

– KeyGen(1k) → (pk, sk). Choose a random element α ∈ Z∗
N2 , a random value

a ∈ [1, Np′q′], and set g = α2 mod N2 and h = ga mod N2. The public
key is (N, g, h), and the secret key is a.

– Enc(pk,m) → C. On input a public key pk and a message m ∈ ZN , the
ciphertext (A,B) is computed as

A = gr mod N2, B = hr(1 + mN) mod N2,

where r is a random number from ZN2 .
– Dec(sk, C) → m. There are two methods to decrypt.

• Knowing a, one can compute m by

m =
B/(Aa) − 1 mod N2

N
.

CCA-Secure Proxy Re-encryption without Pairings 365

• Knowing p′, q′, one can compute m by

m =
D − 1 mod N2

N
· π mod N,

where D =
(

B
gw1

)2p′q′

, w1 = ar mod N, ar mod pqp′q′ = w1 + w2N , π
is the inverse of 2p′q′ mod N .

Note the values of a mod N and r mod N can be computed when
given h = ga mod N2, A = gr mod N2, and p′, q′, by the method in [27]
(Theorem 1 in [27]).

3 New Unidirectional Proxy Re-encryption Scheme
without Pairings

The proposed unidirectional scheme U is based on the CPA secure and collu-
sion resistant unidirectional PRE scheme in [2,3] (the first attempt scheme in
[2,3]), and with the signature of knowledge [8,1] and Fujisaki-Okamoto conver-
sion [14,15]. The basic public key encryption is scheme BCP03.

The intuition in scheme U is as follows. Firstly, since there are two trapdoors
(a and the factorization of the modulus) in scheme BCP03, we can use the
key sharing technique in [17] to share a. In particular, let a = r1 + r2, and
sent the proxy r1 and the ciphertext of r2 under the delegatee’s public key.
Knowing a cannot hurt the secrecy of the factorization of the modulus, hence,
collusion-resistance obtained. Secondly, scheme BCP03 is CPA-secure, hence,
we use Fijisaki-Okamoto conversion to make scheme BCP03 be CCA-secure.
Thirdly, we use the signature of knowledge to make the original ciphertext be
publicly verifiable.

3.1 Scheme U with Single-Use

Scheme U contains three cryptographic hash functions for all users: H1(·) :
{0, 1}∗ → {0, 1}k1, H2(·) : {0, 1}∗ → {0, 1}n, and H3(·) : {0, 1}∗ → {0, 1}k2,
where k1 and k2 are the security parameter, n is the bit-length of messages to
be encrypted. The details are as follows.

KeyGen: Choose a safe-prime modulus N = pq, three random numbers α ∈ Z∗
N2 ,

a, b ∈ [1, pp′qq′], a hash function H(·), where p = 2p′ + 1, q = 2q′ + 1,
p, p′, q, q′ are primes, and H(·) : {0, 1}∗ → ZN2 . Furthermore, set g0 =
α2 mod N2, g1 = g0

a mod N2, and g2 = g0
b mod N2. The public key is

pk = (H(·), N, g0, g1, g2), the “weak” secret key is wsk = (a, b), and the long
term secret key is sk = (p, q, p′, q′).

ReKeyGen: On input a public key pkY = (HY (·), NY , gY 0, gY 1, gY 2), a “weak”
secret key wskX = aX , and a long term secret key skX = (pX , qX , p′X , q′X),
it outputs the unidirectional re-encryption key rkX→Y = (rk(1)

X→Y , rk
(2)
X→Y),

where rk
(1)
X→Y = (Ȧ, Ḃ, Ċ), and computed as follows:

366 J. Shao and Z. Cao

– Choose two random numbers σ̇ ∈ ZN , β̇ ∈ {0, 1}k1.
– Compute rk

(2)
X→Y = aX − β̇ mod (pXqXp′Xq′X).

– Compute rX→Y = HY (σ̇||β̇), Ȧ = (gY 0)rX→Y mod (NY)2, Ċ = H1(σ̇)⊕
β̇,

Ḃ = (gY 2)rX→Y · (1 + σ̇NY) mod (NY)2. (1)
Enc: On input a public key pk = (H(·), N, g0, g1, g2) and a message m ∈ {0, 1}n,

the encryptor does the following performances:
– Choose a random number σ ∈ ZN .
– Compute r = H(σ||m), A = (g0)r mod N2, C = H2(σ) ⊕ m, D =

(g2)r mod N2,
B = (g1)r · (1 + σN) mod N2. (2)

– Run (c, s) ← SoK.Gen(A,D, g0, g2, (B,C)), where the underlying hash
function is H3.

– Output the ciphertext K = (A,B,C,D, c, s).
ReEnc: On input a re-encryption key rkX→Y = (rk(1)

X→Y , rk
(2)
X→Y) and a cipher-

text K = (A,B,C,D, c, s) under key pkX = (HX(·), NX , gX0, gX1, gX2),
check whether c = H3(A||D||gX0||gX2||(gX0)sAc||(gX2)sDc||(B||C)). If not
hold, output ⊥ and terminate; otherwise, re-encrypt the ciphertext to be
under key pkY as:
– Compute A′ = Ark

(2)
X→Y = (gX0)r(aX−β̇) mod (NX)2.

– Output the new ciphertext (A,A′, B, C, rk
(1)
X→Y) = (A,A′, B, C, Ȧ, Ḃ, Ċ).

Dec: On input a secret key and any ciphertext K, parse K = (A,B,C,D, c, s),
or K = (A,A′, B, C, Ȧ, Ḃ, Ċ).
Case K = (A,B,C,D, c, s): Check whether c = H3(A||D||g0||g2||(g0)sAc||

(g2)sDc||(B||C)), if not, output ⊥ and terminate; otherwise,
– if the input secret key is the “weak” secret key a, compute σ =

B/(Aa)−1 mod N2

N .
– if the secret key is the long term secret key (p, q, p′, q′), compute

σ = (B/g
w1
0)2p′q′−1 mod N2

N · π(modN), where w1 is computed as that
in scheme BCP03, and π is the inverse of 2p′q′ mod N .

Compute m = C ⊕ H2(σ), if B = (g1)H(σ||m) · (1 + σN) mod N2 holds,
output m; otherwise, output ⊥ and terminate.

Case K = (A,A′, B, C, Ȧ, Ḃ, Ċ): In this case, the decryptor should know
the delegator’s (Alice’s) public key (H ′(·), N ′, g′0, g

′
1, g

′
2).

– If the input secret key is the “weak” secret key b, compute σ̇ =
Ḃ/(Ȧb)−1 mod N2

N .
– If the input secret key is the long term secret key (p, q, p′, q′), com-

putes σ̇ = (Ḃ/g
w1
0)2p′q′−1 mod N2

N · π(modN), where w1 is computed
as that in scheme BCP03, and π is the inverse of 2p′q′ mod N .

Compute β̇ = Ċ⊕H1(σ̇), if Ḃ = (g1)H(σ̇||β̇)·(1+σ̇N) mod N2 holds, then

compute σ = B/(A′·Aβ̇)−1 mod N ′2

N ′ , m = C ⊕ H2(σ); otherwise, output ⊥
and terminate. If B = (g′1)

H′(σ||m) ·(1+σN ′) mod N ′2 holds, then output
m; otherwise, output ⊥ and terminate.

Note that (H(·), N, g0, g1, g2) is the public key of the decryptor.

CCA-Secure Proxy Re-encryption without Pairings 367

Fig. 1. An example of delegation relationship

Remark 2. The values of Ḃ and B are computed differently, in particular, in
equation (1), the base is g1, while in equation (2), the base is g2. This difference
aims to resist the following attack: Assume that there is the delegation rela-
tionship as in Fig. 1. Alice delegates her decryption rights to Bob via the proxy
PAB, and Bob delegates his decryption rights to Charlie via the proxy PBC . Alice
and Bob are uncorrupted, the rest parties are corrupted, and the target (chal-
lenged) user is Alice. This corruption situation is allowed in the security model in
Section 2 (Note that the attacked scheme should be single-use). If the bases in
equations (1) and (2) are both g1, then the adversary can decrypt any cipher-
text for Alice as follows. The proxy PBC and Charlie colludes to get Bob’s weak
secret key aB, and then they collude with the proxy PAB to get Alice’s weak
secret key aA. As a result, the adversary can use aA to decrypt any ciphertext
for Alice. However, in scheme U, the proxy PBC and Charlie cannot get Bob’s
weak secret key bB (which is for decrypting partial re-encryption key), hence,
they cannot collude with the proxy PAB to get Alice’s weak secret key aA (which
is for decrypting ciphertexts).

Note that the above attack is also allowed in the security model in [17,13],
since they only disallow the adversary to corrupt the proxy between the target
user and the uncorrupted user. The unidirectional schemes in [17,13] suffer from
the above attack. To resist the above attack, we can use the same method in
scheme U, in particular, every user has two public/secret key pairs, one is for
decrypting ciphertexts of messages, and the other is for decrypting the partial
re-encryption key.

Correctness. The correctness property is easily obtained by the correctness of
scheme BCP03 [7] and Fujisaki-Okamoto conversion [14,15].

Due to the limited space, we omit the proofs of the following two theorems
here, and give them in the full version.

Theorem 1 (Uni-PRE-CCA security). In the random oracle model, scheme
U is CCA-secure under the assumptions that DDH problem over Z∗

N2 is hard,
and the signature of knowledge is secure.

Theorem 2 (Uni-PRE-CR security). In the random oracle, if N is hard to
factor, then scheme U is collusion resistant.

368 J. Shao and Z. Cao

4 Scheme UT with Temporary Delegation

This section describes scheme UT , a variant of scheme U, supporting temporary
delegation. Like the temporary unidirectional PRE schemes in [2,3,25], the proxy
is only allowed to transform ciphertexts from the delegator to the delegatee
during a limited time period. The point of modifying scheme U to scheme UT is
to make different g1’s for every time period.

Scheme UT also contains three cryptographic hash functions for all users:
H1(·) : {0, 1}∗ → {0, 1}k1, H2(·) : {0, 1}∗ → {0, 1}n, and H3(·) : {0, 1}∗ →
{0, 1}k2, where k1 and k2 are the security parameter, n is the bit-length of
messages to be encrypted. The details are as follows.

KeyGen: Choose a safe-prime modulus N = pq, T +2 random numbers α ∈ Z∗
N2 ,

a1, · · · , aT , b ∈ [1, pp′qq′], a hash function H(·), where p = 2p′+1, q = 2q′+1,
p, p′, q, q′ are primes, T is the number of time intervals, and H(·) : {0, 1}∗ →
ZN2 . Furthermore, set g0 = α2 mod N2, g(i)

1 = g0
ai mod N2 (i = 1, · · · , T),

and g2 = g0
b mod N2. The public key is pk = (H(·), N, g0, g

(i)
1 (i = 1, · · · ,

T), g2), the “weak” secret key is (ai (i = 1, · · · , T), b), and the long-term
secret key is sk = (p, q, p′, q′).

ReKeyGen: On input a public key pkY = (HY (·), NY , gY 0, g
(1)
Y 1, · · · , g(TY)

Y 1 , gY 2),
a “weak” secret key aX,j for time period j ∈ {1, · · · , TX}, and a secret
key skX = (pX , qX , p′X , q′X), it outputs the unidirectional re-encryption key
rkX→Y,j = (rk(1)

X→Y,j , rk
(2)
X→Y,j) for the j-th time period, which is generated

as follows.
– Choose two random numbers σ̇j ∈ ZN , β̇j ∈ {0, 1}k1.
– Compute rk

(2)
X→Y,j = aX,j − β̇j mod (pXqXp′Xq′X).

– Compute

rX→Y,j=HY (σ̇j ||β̇j), Ȧj=(gY 0)rX→Y,j mod(NY)2,
Ḃj = (gY 2)rX→Y,j · (1 + σ̇jNY) mod (NY)2, Ċj = H1(σ̇j) ⊕ β̇j

– Set rk
(1)
X→Y,j = (Ȧj , Ḃj , Ċj).

Enc: On input a public key pk = (H(·), N, g0, g
(1)
1 , · · · , g(T)

1 , g2), a time period
j ∈ {1, · · · , T } and a message m ∈ {0, 1}n, the encryptor does the following
performances:
– Choose a random number σj ∈ ZN .
– Compute

rj = H(σj ||m),

Aj = (g0)r mod N2, Bj = (g(j)
1)r · (1 + σjN) mod N2,

Cj = H2(σj) ⊕ m, Dj = (g2)r mod N2.

– Run (cj , sj) ← SoK.Gen(Aj , Dj, g0, g2, (Bj , Cj)), where the underlying
hash function is H3.

– Output the ciphertext Kj = (Aj , Bj , Cj , Dj , cj , sj) for the j-th time
period.

CCA-Secure Proxy Re-encryption without Pairings 369

ReEnc: On input a re-encryption key rkX→Y,j = (rk(1)
X→Y,j , rk

(2)
X→Y,j) and a ci-

phertext Kj = (Aj , Bj , Cj , Dj , cj , sj) under key pkX =(HX(·), NX , gX0, g
(1)
X1,

· · · , g(TX)
X1 , gX2), where j ∈ {1, · · · , TX}, the proxy checks whether cj =

H3(Aj ||Dj ||gX0||gX2||(gX0)sj (Aj)cj ||(gX2)sj (Dj)cj ||(Bj ||Cj)). If not hold,
output ⊥ and terminate; otherwise, re-encrypt the ciphertext to be under
key pkY as:

– Compute A′
j = (Aj)rk

(2)
X→Y,j = (gX0)r(aX,j−β̇j) mod (NX)2.

– Output the new ciphertext

(Aj , A
′
j , Bj , Cj , rk

(1)
X→Y,j) = (Aj , A

′
j , Bj, Cj , Ȧj , Ḃj , Ċj).

Dec: On input a secret key and any ciphertext Kj for the j-th time period,
where j ∈ {1, · · · , T }, the decryptor parses Kj = (Aj , Bj , Cj , Dj , cj , sj), or
Kj = (Aj , A

′
j , Bj , Cj , Ȧj , Ḃj , Ċj).

Case Kj = (Aj , Bj , Cj , Dj , cj , sj): Check whether cj = H3(Aj ||Dj ||g0||g2||
(g0)sj (Aj)cj ||(g2)sjDj

cj ||(Bj ||Cj)), if not, output ⊥ and terminate;
otherwise,
– if the input secret key is the “weak” secret key aj , compute σj =

Bj/((Aj)aj)−1 mod N2

N .
– if the secret key is the long term secret key (p, q, p′, q′), compute

σj = (Bj/(g0)w1)2p′q′−1 mod N2

N · π(modN), where w1 is computed as
that in scheme BCP03, and π is the inverse of 2p′q′ mod N .

Compute m = Cj ⊕ H2(σj), if Bj = (g1)H(σj ||m) · (1 + σjN) mod N2

holds, output m; otherwise, output ⊥ and terminate.
Case Kj = (Aj , A

′
j , Bj , Cj , Ȧj , Ḃj , Ċj): In this case, the decryptor should

know the delegator’s (Alice’s) public key (H ′(·), N ′, g′0, g
(i)
1

′
, · · · , g(T ′)

1

′
,

g′2).
– If the input secret key is the “weak” secret key b, compute σ̇j =

Ḃj/((Ȧj)b)−1 mod N2

N .
– If the input secret key is the long term secret key (p, q, p′, q′), com-

putes σ̇j = (Ḃj/g
w1
0)2p′q′−1 mod N2

N · π(modN), where w1 is computed
as that in scheme BCP03, and π is the inverse of 2p′q′ mod N .

Compute β̇j = Ċj ⊕ H1(σ̇j), if Ḃj = (g1)H(σ̇j ||β̇j) · (1 + σ̇jN) mod N2

holds, then compute σj = Bj/(A′
j ·(Aj)

βj)−1 mod N ′2

N ′ , m = Cj ⊕ H2(σj);

otherwise, output ⊥ and terminate. If Bj = (g(j)
1

′
)H′(σj ||m) · (1 + σjN

′)
mod N ′2 holds, then output m; otherwise, output ⊥ and terminate.

Note that (H(·), N, g0, g
(i)
1 , · · · , g(T)

1), g2) is the public key of the decryptor.

Correctness. The correctness property is easily obtained by the same method
for scheme U.

Due to the limited space, we omit the proofs of the following two theorems here,
and give them in the full version.

370 J. Shao and Z. Cao

Theorem 3 (Uni-PRETD-CCA security). In the random oracle model,
scheme UT is CCA-secure under the assumptions that DDH problem over Z∗

N2

is hard, and the signature of knowledge is secure.

Theorem 4 (Uni-PRETD-CR security). In the random oracle, if N is hard
to factor, then scheme UT is collusion resistant.

5 Comparison

In this section, we compare scheme U with the previous CCA-secure unidirec-
tional PRE schemes. Since as mentioned above, the unidirectional PRE schemes
in [21,17,11,13] are not CCA-secure, we only compare scheme U with the scheme
in [25] (named LV08).

In Table 1, we denote tp, teb, teN , ts, and tv as the computational cost of
a bilinear pairings, an exponentiation over a bilinear group, an exponentiation
over Z∗

N2 (N is a safe-prime modulus), a one-time signature and verification,
respectively. Ge and GT are the bilinear groups used in scheme LV08. NX and
NY are the safe-prime modulus corresponding to the delegator and the delegatee,
respectively. svk and σ are the one-time signature’s public key and signature.
Note that we only consider the case of using weak secret key to decrypt in Dec
algorithm of scheme U.

From Table 1, we can see that scheme LV08 is a little bit more efficient than
scheme U. In order to guarantee that N is hard to factor, N should be 1024-bit
at least, which makes scheme U need more time for an exponentiation and more
storage for a ciphertext. However, we emphasize that scheme U is CCA-secure
and based on the well-studied DDH assumption, while scheme LV08 is RCCA-
secure and based on the less-studied 3-quotient decision Bilinear Diffie-Hellman
(3-QDBDH) assumption.

Table 1. Comparison between scheme U and scheme LV08

Schemes LV08 U

Comput.
Cost

ReKeyGen 2teb 2teN

Enc 3.5teb + 1ts 5teN

ReEnc 2tp + 4teb + 1tv 4teN

Dec
Original 3tp + 2teb + 1tv 5teN

Transformed 5tp + 2teb + 1tv 4teN

Ciphertext
Size

Original 1|svk| + 2|Ge| + 1|GT | + 1|σ| 2k + 3|NX
2| + |m|

Transformed 1|svk| + 4|Ge| + 1|GT | + 1|σ| k1 + 3|NX
2| + 2|NY

2| + |m|

Security
Security Level collusion resistant, RCCA collusion resistant, CCA

Standard model Yes No

Underlying Assumptions 3-QDBDH DDH

CCA-Secure Proxy Re-encryption without Pairings 371

6 Conclusions

In this paper, by using signature of knowledge and Fijisaki-Okamoto conversion,
we proposed the first CCA-secure and collusion resistant unidirectional PRE
scheme without pairings, which solves a problem proposed in [9,25].

There are still many open problems to be solved, such as designing more
efficient CCA-secure, collusion resistant unidirectional PRE schemes without
pairings, and CCA-secure multi-use unidirectional PRE schemes [9,25].

Acknowledgements

We thank PKC 2009 chair Stanislaw Jarecki and the anonymous reviewers of
PKC 2009 for insightful comments and helpful suggestions.

References

1. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure
coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

2. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. In: Internet Society
(ISOC): NDSS 2005, pp. 29–43 (2005)

3. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Transactions on
Information and System Security (TISSEC) 9(1), 1–30 (2006)

4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

5. Lynn, H.Y., Scott, B., Barreto, M., Kim, P.S.L.M.: Efficient algorithms for pairing-
based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp.
354–369. Springer, Heidelberg (2002)

6. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998)

7. Bresson, E., Catalano, D., Pointcheval, D.: A simple public-key cryptosystem with
a double trapdoor decryption mechanism and its applications. In: Laih, C.-S. (ed.)
ASIACRYPT 2003. LNCS, vol. 2894, pp. 37–54. Springer, Heidelberg (2003)

8. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.
In: Sommer, G., Daniilidis, K., Pauli, J. (eds.) CAIP 1997. LNCS, vol. 1296, pp.
410–424. Springer, Heidelberg (1997)

9. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
ACM CCS, 2007. Full version: Cryptology ePrint Archieve: Report 2007/171 (2007)

10. Chiu, Y.-P., Lei, C.-L., Huang, C.-Y.: Secure multicast using proxy encryption. In:
Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005. LNCS, vol. 3783, pp.
280–290. Springer, Heidelberg (2005)

11. Chu, C., Tzeng, W.: Identity-based proxy re-encryption without random oracles.
In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS,
vol. 4779, pp. 189–202. Springer, Heidelberg (2007)

372 J. Shao and Z. Cao

12. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

13. Deng, R.H., Weng, J., Liu, S., Chen, K.: Chosen-ciphertext secure proxy re-
encryption schemes without pairings. In: CANS 2008. LNCS, vol. 5339, pp. 1–17.
springer, Heidelberg (2008), http://eprint.iacr.org/2008/509

14. Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption
at minimum cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp.
53–68. Springer, Heidelberg (1999)

15. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999)

16. Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary
input. In: FOCS 2005, pp. 553–562 (2005)

17. Green, M., Ateniese, G.: Identity-based proxy re-encryption. In: Katz, J., Yung,
M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 288–306. Springer, Heidelberg (2007);
full version: Cryptology ePrint Archieve: Report 2006/473

18. Hada, S.: Zero-knowledge and code obfuscation. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 443–457. Springer, Heidelberg (2000)

19. Heydt-Benjamin, T.S., Chae, H., Defend, B., Fu, K.: Privacy for public trans-
portation. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 1–19.
Springer, Heidelberg (2006)

20. Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Securely ob-
fuscating re-encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp.
233–252. Springer, Heidelberg (2007)

21. Ivan, A., Dodis, Y.: Proxy cryptography revisited. In: Internet Society (ISOC):
NDSS 2003 (2003)

22. Khurana, H., Hahm, H.-S.: Certified mailing lists. In: ASIACCS 2006, pp. 46–58
(2006)

23. Khurana, H., Koleva, R.: Scalable security and accounting services for content-
based publish subscribe systems. International Journal of E-Business Research 2(3)
(2006)

24. Khurana, H., Slagell, A., Bonilla, R.: Sels: A secure e-mail list service. In: ACM
SAC 2005, pp. 306–313 (2005)

25. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379. Springer,
Heidelberg (2008)

26. Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential Aggregate Signa-
tures from Trapdoor Permutations. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004)

27. Paillier, P.: Public-key cryptosystems based on discrete logarithms residues. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Hei-
delberg (1999)

28. Schnorr, C.P.: Efficient identifications and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–251. Springer, Heidelberg (1990)

29. Scott, M.: Computing the tate pairing. In: Menezes, A. (ed.) CT-RSA 2005. LNCS,
vol. 3376, pp. 293–304. Springer, Heidelberg (2005)

30. Shao, J.: Proxy re-cryptography, revisited, PhD Thesis, Shanghai Jiao Tong Uni-
versity (December, 2007)

31. Shao, J., Xing, D., Cao, Z.: Analysis of cca secure unidirctional id-based pre scheme.
Technical Report of TDT (2008)

http://eprint.iacr.org/2008/509

CCA-Secure Proxy Re-encryption without Pairings 373

32. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000)

33. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen cipher-
text attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16.
Springer, Heidelberg (1998)

34. G. Taban, A.A. Cárdenas, and V.D. Gligor. Towards a secure and interoperable
drm architecture. In: ACM DRM 2006, pp. 69–78 (2006)

35. Talmy, A., Dobzinski, O.: Abuse freedom in access control schemes. In: AINA 2006,
pp. 77–86 (2006)

36. Smith, T.: Dvd jon: buy drm-less tracks from apple itunes (2005),
http://www.theregister.co.uk/2005/03/18/itunes_pymusique

A Analysis on Ivan-Dodis Construction

A.1 Ivan-Dodis Construction

The Ivan-Dodis construction is based on any CCA-secure PKE. The details are
as follows.

UniPRE.KGen: On input the security parameter 1k, it outputs two key pairs
(pk1, sk1) and (pk2, sk2).

UniPRE.RKGen: On input the delegator’s key pairs (pk1, sk1) and (pk2, sk2), the
delegator sends sk1 as the re-encryption key to the proxy via a secure chan-
nel, and sends sk2 to the delegatee as the partial key via another secure
channel.

UniPRE.Enc: On input public keys (pk1, pk2) and a message m, it outputs
PKE.Enc(pk1, PKE.Enc(pk2,m)).

UniPRE.ReEnc: On input a re-encryption key sk1 and a ciphertext C, it outputs
a re-encrypted ciphertext C′ = PKE.Dec(sk1, C).

UniPRE.Dec: On input secret keys (sk1, sk2), a partial key sk′
2 from its delegator

and a ciphertext C, UniPRE.Dec does:
– If C is an original ciphertext, then it outputs PKE.Dec(sk2, PKE.Dec(sk1,

C)).
– If C is a re-encrypted ciphertext, then it outputs PKE.Dec(sk′

2, C).

Note that the partial key sk2 can be encrypted by the delegatee’s public key,
and forwarded to Bob by the proxy. In this case, the delegatee does not require
to store extra secrets for every delegation [2,3].

A.2 Chosen Ciphertext Attacks on the Ivan-Dodis Construction

In this subsection, we will show that the adversary always wins the Uni-PRE-
CCA game with the Ivan-Dodis construction’s Challenger.

Phase 1: The adversary does not need to make any query in this phase.

http://www.theregister.co.uk/2005/03/18/itunes_pymusique

374 J. Shao and Z. Cao

Challenge: The adversary outputs two equal length plaintexts m0, m1 from
the message space, and an uncorrupted public key pk∗ = (pk∗

1 , pk
∗
2).

The Challenger will follow the Uni-PRE-CCA game’s specification, i.e., pick
a random bit b ∈ {0, 1} and sets C∗ = UniPRE.Enc(pk∗,mb). It sends C∗ as
the challenge ciphertext to A.

Phase 2: The adversary performs as follows.
1. The adversary queries Ore with (pk∗, pk, C∗), such that pk is uncor-

rupted. Then as the Uni-PRE-CCA game’s specification, the adversary
can get the re-encrypted ciphertext C′ such that C′ = PKE.Dec(sk∗

1 , C
∗),

sk∗
1 is the key corresponding to pk∗

1 .
2. The adversary computes Ĉ = PKE.Enc(pk∗

1 , C
′). Note that Ĉ �= C∗ since

PKE is CCA-secure, such as the underlying PKE scheme is the Cramer-
Shoup scheme [12].

3. The adversary queries Ode with (pk∗, Ĉ) and gets a message m. Note
that (pk∗, Ĉ) is not a derivative of (pk∗, C∗), hence this query is valid.

Guess: If m = m0, the adversary A outputs b′ = 0; otherwise, output b′ = 1.

Since Ĉ and C∗ are corresponding to the same message, we always have b = b′.
As a result, the Ivan-Dodis construction is not CCA-secure for the security model
in Section 2.

B Definitions of Unidirectional PRE Schemes with
Temporary Delegation

Definition 7 (Unidirectional PRE with Temporary Delegation). A uni-
directional proxy re-encryption scheme UniPRE with temporary delegation is a
tuple of PPT algorithms (KeyGen, ReKeyGen, Enc, ReEnc, Dec):

– KeyGen(1k) → (pk, sk, T). On input the security parameter 1k, the key gen-
eration algorithm KeyGen outputs a public/secret key pair (pk, sk), and the
number of time intervals T .

– Enc(pk,m, j) → Cj . On input a public key pk, a message m in the message
space, and the time period j ∈ {1, · · · , T }, the encryption algorithm Enc
outputs a ciphertext Cj for the j-th time period.

– ReKeyGen(sk1, pk2, j) → rk1→2,j . On input a secret key sk1, a public key
pk2, and the time period j ∈ {1, · · · , T1}, where T1 is the number of time
intervals corresponding to the delegator. The re-encryption key generation
algorithm ReKeyGen outputs a unidirectional re-encryption key rk1→2,j for
the j-th time period.

– ReEnc(rk1→2,j, C
(j)
1) → C

(j)
2 . On input a re-encryption key rk1→2, and a

ciphertext C
(j)
1 for the j-th time period, where j ∈ {1, · · · , T1}, T1 is the

number of time intervals corresponding to the delegator. The re-encryption
algorithm ReEnc outputs a re-encrypted ciphertext C

(j)
2 for the j-th time

period or ⊥.

CCA-Secure Proxy Re-encryption without Pairings 375

– Dec(sk, Cj) → m. On input a secret key sk and a ciphertext Cj for the
j-th time period, where j ∈ {1, · · · , T }, T is the number of time intervals
corresponding to the decryptor. The decryption algorithm Dec outputs a
message m in the message space or ⊥.

Correctness. A correct proxy re-encryption scheme should satisfy two require-
ments: Dec(sk, Enc(pk,m, j)) = m, and Dec(sk′, ReEnc(ReKeyGen(sk, pk′, j),
Cj)) = m, where (pk, sk, T), (pk′, sk′, T ′) ← KeyGen(1k), Cj is the ciphertext
of message m for pk and the j-th time period from algorithm Enc or algorithm
ReEnc, and j ∈ {1, · · · , T }.

Chosen Ciphertext Security for Unidirectional Proxy Re-Encryption
with Temporary Delegation. Following the method in [25], we extend Uni-
PRE-CCA game to Uni-PRETD-CCA game, which is described as follows.

Phase 1: The adversary A issues queries q1, · · · , qn1 where query qi is one of:

– Opk, Osk: Identical to those Uni-PRE-CCA game.
– Re-encryption key generation oracle Ork: On input (pk, pk′, j) by A, where

pk, pk′ are from Opk, and the time period j ∈ {1, · · · , T }, the Challenger
returns the re-encryption key rkpk→pk′ ,j = ReKeyGen(sk, pk′, j), where sk is
the secret key corresponding to pk.

– Re-encryption oracle Ore: On input (pk, pk′, C, j) by A, where pk, pk′ are
from Opk, and the time period j ∈ {1, · · · , T }, the re-encrypted ciphertext
C′ = ReEnc(ReKeyGen(sk, pk′, j), C) is returned by the Challenger, where sk
is the secret key corresponding to pk.

– Decryption oracle Odec: On input (pk, C, j), where pk is from Opk, and the
time period j ∈ {1, · · · , T }, the Challenger returns Dec(sk, C), where sk is
the secret key corresponding to pk.

These queries may be asked adaptively, that is, each query qi may depend on
the replies to q1, · · · , qi−1.

Challenge: Once the adversary A decides that Phase 1 is over, it outputs two
equal length plaintexts m0, m1 from the message space, a public key pk∗, and the
time period j∗ on which it wishes to be challenged. There are some constraints
on the public key pk∗ and j∗: (i) pk∗ is from Opk; (ii) pk∗ did not appear in any
query to Osk in Phase 1; (iii) if (pk∗,�, j∗) did appear in any query to Ork,
then � did not appear in any query to Osk. The Challenger picks a random bit
b ∈ {0, 1} and sets C∗ = Enc(pk∗,mb, j). It sends C∗ as the challenge to A.

Phase 2: The adversary A issues more queries qn1+1, · · · , qn where query qi is
one of:

– Opk: The Challenger responds as in Phase 1.
– Osk: On input pk by A, if the following requirements are all satisfied, the

Challenger responds as in Phase 1; otherwise, the Challenger terminates the
game.
• pk is from Opk;

376 J. Shao and Z. Cao

• pk �= pk∗;
• (pk∗, pk, j∗) is not a query to Ork before;
• (pk′, pk, C′, j∗) is not a query to Ore before, where (pk′, C′, j∗) is a
derivative9 of (pk∗, C∗, j∗).

– Ork: On input (pk, pk′, j) by A, if the following requirements are all satisfied,
the Challenger responds as in Phase 1; otherwise, the Challenger terminates
the game.
• pk, pk′ are from Opk;
• if pk = pk∗ and j = j∗, then pk′ is not a query to Osk.

– Ore: On input (pk, pk′, C, j) by A, if the following requirements are all sat-
isfied, the Challenger responds as in Phase 1; otherwise, the Challenger ter-
minates the game.
• pk, pk′ are from Opk;
• if (pk, C, j) is a derivative of (pk∗, C∗, j∗), then pk′ is not a query to Osk.

– Odec: On input (pk, C, j), if the following requirements are all satisfied, the
Challenger responds as in Phase 1; otherwise, the Challenger terminates the
game.
• pk is from Opk;
• (pk, C, j) is not a derivative of (pk∗, C∗, j∗).

These queries may be also asked adaptively.

Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1} and wins the game
if b = b′.

We refer to such an adversary A as a Uni-PRETD-CCA adversary. We define
adversary A’s advantage in attacking UniPRE as the following function of the
security parameter k: AdvUniPRE,A(k) = |Pr[b = b′]−1/2|. Using the Uni-PRE-
CCA game we can define chosen ciphertext security for unidirectional proxy
re-encryption schemes.

Definition 8 (Uni-PRETD-CCA security). We say that a unidirectional
proxy re-encryption scheme UniPRE with temporary delegation is semantically
secure against an adaptive chosen ciphertext attack if for any polynomial time
Uni-PRETD-CCA adversary A the function AdvUniPRE,A(k) is negligible. As
shorthand, we say that UniPRE is Uni-PRETD-CCA secure.

Definition 9 (Uni-PRETD-CR security). We say that a unidirectional
proxy re-encryption scheme UniPRE with temporary delegation is collusion re-
sistant if for any polynomial bounded adversary A, the following probability is
negligible:

Pr[(sk1, pk1, T1) ← KeyGen(1k), {(ski, pki, Ti) ← KeyGen(1k)},
{rki→1,j ← ReKeyGen(ski, pk1, j)} (j = 1, · · · , Ti),
{rk1→i,j ← ReKeyGen(sk1, pki, j)} (j = 1, · · · , T1),

i = 2, · · · ,
α → A(pk1, {pki, ski}, {rk1→i,j}, {rki→1,j}) :

α = sk1].

9 Derivatives of (pk∗, C∗, j∗) are defined similarly with that in Section 2.2, and just
add j∗ into every input/output.

Compact CCA-Secure Encryption
for Messages of Arbitrary Length

Masayuki Abe1, Eike Kiltz2, and Tatsuaki Okamoto1

1 Information Sharing Platform Laboratories
NTT Corporation, Japan

{abe.masayuki,okamoto.tatsuaki}@lab.ntt.co.jp
2 CWI Amsterdam, The Netherlands

kiltz@cwi.nl

Abstract. This paper proposes a chosen-ciphertext secure variant of
the ElGamal public-key encryption scheme which generates very com-
pact ciphertexts for messages of arbitrary length. The ciphertext overhead
(i.e., the difference between ciphertext and plaintext) is one group ele-
ment only. Such a property is particularly useful when encrypting short
messages such as a PIN or a credit card number in bandwidth-critical
environments. On top of the compact overhead, the computational cost
for encryption and decryption are almost the same as plain ElGamal
encryption. The security is proven based on the strong Diffie-Hellman
assumption in the random oracle model.

1 Introduction

One of the most fundamental and best studied public-key encryption schemes is
the ElGamal encryption scheme [13] that works over a group G of prime-order
q with a generator g. The public-key is h = gx for a random secret index x ∈ Zq

and a ciphertext for plaintext m consists of the tuple (u, c), where u = gr and
c = m⊕H(hr). Here H : G → {0, 1}|m| is some public hash function. Due to its
simplicity the scheme is very efficient:

– its constituting encryption and decryption algorithms are roughly as efficient
as computing one discrete exponentiation;

– its ciphertext overhead (i.e., the size of the ciphertext minus the size of the
plaintext message [23]) consists of only one group element — independently
of the length of the plaintext message.

However, the major drawback of the ElGamal scheme is its relatively poor secu-
rity. The scheme can be proved semantically secure only against passive attacks
and obviously insecure against stronger active attacks, i.e., chosen-ciphertext at-
tacks which is nowadays considered to be the standard security notion. In this
work we are interested in the question if it is at all possible to “upgrade” the
security properties of the ElGamal encryption scheme to chosen-ciphertext se-
curity while at the same time retaining its high computational efficiency and
compact ciphertexts.

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 377–392, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

http://dx.doi.org/10.1007/978-3-642-00468-1_29

378 M. Abe, E. Kiltz, and T. Okamoto

1.1 Our Contribution

We propose the most efficient IND-CCA secure ElGamal type encryption scheme
whose ciphertext overhead consists of only one group element irrelevant to the
length of the plaintext. Such a compact ciphertext overhead with IND-CCA
security has been possible only when the message is sufficiently long. (See next
section for details and Table 1 for summary.) On the other hand, important
messages can be very short; A PIN number typically consists of 4 digits. And
such a short information would be often used in applications that have sharp
limitations in bandwidth or storage where saving even small amount of bits is
critical. All known schemes however can’t encrypt short messages securely or
require extra overhead to provide chosen cipehrtext security.

In our scheme, the computational efficiency and the size of public/private
keys is the same as hashed ElGamal’s. It can be instantiated with any passively
secure symmetric cipher, such as the one-time pad. Our scheme can be used as
a plug-in alternative to ElGamal encryption that brings higher level of security.
They share the same key generation algorithm, hash functions, and symmetric
cipher. Furthermore, ciphertexts have the same algebraic structure.

IND-CCA-security of our scheme is proven in the random oracle model as-
suming the hardness of the strong Diffie-Hellman problem [1, 21].1 The security
reduction is almost tight, i.e., the respective advantages are related within a
factor of log2 λ, where λ is the security parameter. Even though the reduction
is not exactly tight, it only loses log2 λ ≈ 6 bits of security for a security level of
λ = 80 bits. Adapting the twinning technique from [9] we furthermore propose
a variant of our scheme that can be proved secure under the Computational
Diffie-Hellman (CDH) assumption.

1.2 Related Work

We now revisit the known frameworks to immunize the ElGamal scheme secure
against chosen-ciphertext attacks, specifically focusing on the above properties of
efficiency and ciphertext overhead, and point out their respective shortcomings.
Here we mostly restrict ourselves to schemes that are secure in the random oracle
model [4]. For quick overview, see Table 1. For an overview concerning schemes
based on trapdoor permutations (such as OAEP) we refer to [3].

Schemes adding extra integrity. The first method achieves chosen-
ciphertext security by adding an ephemeral integrity check to the ciphertext,
essentially consisting of the tag of a message authentication code (MAC). Exam-
ples of such schemes are given in [4, 22] but the best known instance is probably
DHIES [1] by Abdalla, Bellare and Rogaway. DHIES is as efficient as ElGamal in
terms of computational efficiency. The scheme, however, has one group element

1 The strong DH problem is computing gab, given random (g, ga, gb) and a restricted
DDH oracle DDHg,a(gb̂, gĉ) which outputs 1 iff ab̂ = ĉ. Note that this is a weaker
assumption than the related gap DH problem which grants access to a full DDH
oracle.

Compact CCA-Secure Encryption for Messages of Arbitrary Length 379

plus a MAC tag of the ciphertext overhead, which is thus longer than that of
ElGamal’s. Its security can also be proved based on the strong Diffie-Hellman as-
sumption in the random oracle model.2 We remark that other schemes obtained
using generic transformations (for example the Fujisaki-Okamoto transform [14]
or the transformations from [10, 11]) also suffer from a similar overhead.

The KEM/DEM framework. The second method is to construct a hybrid
encryption scheme by combining key encapsulation (KEM) with CCA secure
data encapsulation (DEM) [12]. The latter is typically constructed by adding
a MAC to a one-time (passively) secure symmetric cipher (just like DHIES)
but one can instead use a length-preserving strong pseudorandom permutation
(PRP, e.g., [16]) to avoid such an overhead [16]. For (hashed) ElGamal this was
done by Kurosawa and Matsuo [20] to obtain a variant of DHIES [1] whose
ciphertexts are as compact as the ones from ElGamal.

However, there are two drawbacks with this approach. First, the strong PRPs
obtained from modes of operation are generally considered to be complicated and
not very efficient in practice: for example, they are all “two-pass schemes” mean-
ing that plaintext/ciphertext need to be passed twice at encryption/decryption.
Second, more importantly, a strong PRP can only securely encrypt messages
whose length is at least one block length of the underlying symmetric cipher,
i.e., typically at least 128 bits. (Smaller messages can of course be padded
to one block thereby adding overhead.) In fact, this drawback is an inherent
artifact of the security properties of DEMs that are CCA-secure and length-
preserving (DEMs for which ciphertext-size equals plaintext-size): any length-
preserving CCA-secure DEM encrypting messages of m bits can be trivially
broken in time complexity 2m.3 Consequently, length-preserving CCA secure
DEMs encrypting short messages (e.g, m = 10 bits) cannot exist and there-
fore the KEM/DEM framework is not suitable for the purpose of obtaining
chosen-ciphertext secure encryption with compact ciphertexts for short
messages.

Tag-KEM/DEM framework. Another generic method, known as the Tag-
KEM/DEM framework [2], accepts the most simple form of a DEM such as a
one-time pad. On the other hand, the framework is slightly more demanding
on the KEM part. In particular, tag-KEMs whose ciphertexts consist only of a
single group element are not known to exist so far.

2 We remark that there also exists a standard model proof for DHIES based on the
“Hashed Oracle Diffie-Hellman” assumption which is an interactive assumption in-
volving a hash function that is close to the strong DH assumption in the random
oracle model.

3 The attack is as follows. Given an a challenge ciphertext e∗ ∈ {0, 1}m of an unknown
message m∗ ∈ {0, 1}m an attacker queries the decryption oracle for all ciphertexts
e ∈ {0, 1}m \ {e∗}. Since the cipher is length-preserving and hence a permutation on
{0, 1}m the challenge message must be the one not output by the decryption oracle.
In general, a CCA-secure DEM that adds r bits of redundancy can be broken in
with 2m+r decryption queries.

380 M. Abe, E. Kiltz, and T. Okamoto

Table 1. Efficiency comparison among some ElGamal-type CCA schemes instantiated
in a group of order 2λ bits, where λ is the security parameter. An element in the group
is assumed to be representable with 2λ bits, one MAC tag with λ bits. “Computation”
counts the number of single exponentiations and costs for other building blocks. Here
we adopt the convention that 1 multi-base exponentiation is counted as 1.5 standard
exponentiations. “mac” (or “hash”) counts the cost for MAC-ing (or Hash-ing, resp.)
a (potentially long) message. “sprp” counts the extra cost needed for the strong PRP
compared to the simple one-time secure symmetric encryption. All other computations
are ignored. The assumptions are as follows. CDH: Computational DH; SDH: Strong-
DH; GDH: Gap-DH; DDH: Decisional-DH. All but KD are in the random oracle model.
See also footnote 2 for DHIES and KM.

Scheme Ciphertext Message Computation Assumption
Overhead Size Enc. Dec.

ElGamal [13] 2λ any 2 1 DDH (CPA only)
KD [19] 5λ any 3.5+mac 2.5+mac DDH
DHIES [1] 3λ any 2+mac 1+mac SDH
Twin DHIES [9] 3λ any 3+mac 1.5+mac CDH
KM [20] 2λ |m| > λ 2+sprp 1+sprp SDH
Twin KM [9] 2λ |m| > λ 3+sprp 1.5+sprp CDH
Boyen [6] 2λ |m| > 2λ 3+2·hash 2+2·hash GDH
Basic scheme (§3.2) 2λ any 2.5+hash 1+hash SDH
Twin scheme (§3.4) 2λ any 3.5+hash 2+hash CDH

Others. In independent work another Diffie-Hellman type scheme was proposed
by Boyen [6]. His construction primarily focuses on a tight security reduction.
However, compared to ElGamal it requires twice as much computation for en-
cryption and decryption. More importantly, it inherits the limitation from the
KEM/DEM framework and can only securely encrypt messages longer than one
group element (or 2λ bits): for small messages Boyen’s security proof is no longer
valid and does not seem to be fixable with the same ideas.

Summary. Compared to hashed ElGamal, all known Diffie-Hellman type encryp-
tion schemes suffer from either non-optimal ciphertext expansion; or decreased
computational efficiency; or a restriction in the message length; or a combination
of these. Surprisingly, until today no chosen-ciphertext secure encryption scheme
is known that encrypts small messages with only one group element of ciphertext
overhead. The most efficient scheme encrypting small (and there even arbitrary)
messages is DHIES whose ciphertext overhead sums to one group element plus
λ bits for the MAC. (Here λ is the security parameter, e.g., λ = 80, 128 bits.)

1.3 Technical Overview

Our scheme follows the Tag-KEM/DEM framework [2], which combines sym-
metric and asymmetric encryption. Our scheme is designed in a redundancy-free
manner so that decryption always outputs a message (and never rejects). If
any part of a given ciphertext is modified, the corresponding plaintext message

Compact CCA-Secure Encryption for Messages of Arbitrary Length 381

becomes completely unrelated to the original plaintext. Such a property is ob-
tained by using a hash of the symmetric part of the ciphertext (the “tag”) to
compute the asymmetric part of the ciphertext. Thus, modifying any part of
a given ciphertext affects (directly or indirectly) the corresponding session-key
and results that the symmetric part is decrypted differently.

Dealing with very short messages brings an unexpected technical difficulty in
proving security; since the input to the hash function is short, its output dis-
tribution is very limited even when the hash function is modeled as a random
oracle. More concretely, the adversary can exhaustively search for a short in-
put that is consistent with a preliminary obtained output. We therefore cannot
directly use the “oracle patching technique” (i.e., programmability) when the
message is short. On the other hand, the security proof for long inputs can be
done using a combination of techniques from [1, 2, 5].

The above difficulty is overcome by constructing two different reductions that
deal with short and long messages separately and randomly use one of them
hoping that the adversary chooses challenge messages of length that fits to the
selected reduction algorithm. More details with intuition are shown in the proof
outline given right after Theorem 1 in Section 3.3, and full proof details are in
Section 4.

2 Definitions

Notation. Throughout the paper we denote by λ ∈ N the security parameter,
i.e., we use choose our primitives such that an adversary requires “complexity”
≈ 2λ to break them. Typical choices are λ = 80, 128, . . . bits.

Public Key Encryption. We recall the usual definitions for chosen ciphertext
security. Let PKE be a public-key encryption scheme. Consider the usual chosen
ciphertext attack game, played between a challenger and a adversary A:

1. Given the security parameter λ, the challenger generates a public key/secret
key pair, and gives the public key to A;

2. A makes a number of decryption queries to the challenger; each such query
is a ciphertext c; the challenger decrypts c, and sends the result to A;

3. A makes one challenge query, which is a pair of messages (m0,m1); the chal-
lenger chooses β ∈ {0, 1} at random, encrypts mβ , and sends the resulting
ciphertext c∗ to A;

4. A makes more decryption queries, just as in step 2, but with the restriction
that c �= c∗;

5. A outputs β̂ ∈ {0, 1}.
The advantage Advcca

A,PKE(λ) is defined to be |Pr[β̂ = β]−1/2|. The scheme PKE
is said to be secure against chosen ciphertext attack if for all efficient adversaries
A, the advantage Advcca

A,PKE(·) is negligible.

382 M. Abe, E. Kiltz, and T. Okamoto

If we wish to analyze a scheme PKE in the random oracle model, then hash
functions are replaced by random oracle queries as appropriate, and both chal-
lenger and adversary are given access to the random oracle in the above attack
game.

Length-preserving symmetric encryption. A symmetric encryption scheme
SE = (E,D) consists of two deterministic algorithms that are used to encrypt
and decrypt a message m ∈ {0, 1}∗ with a symmetric key K from key-space
{0, 1}λe. SE is length-preserving if for all keys K and message lengths � ≥ 1,
EK(·) is a permutation on {0, 1}�. We require SE to be secure against one-time
attacks, where an adversary C has to distinguish EK(m) from a randomly chosen
bit-string of length |m|, where K is randomly chosen and message m is chosen
by the adversary. Let Advot

C,SE be the advantage function of an adversary C in
the above distinguishing game. We say SE is secure against one-time attacks if
Advot

C,SE is negligible for all efficient adversaries C.

3 Compact CCA-Secure Encryption

3.1 Building Blocks

Prime-order groups. Let q ≈ 22λ be a prime, G be a (multiplicative) group
of order q. In this section all arithmetics are done in G unless otherwise noted.
The Diffie-Hellman problem is given random (g, ga, gb) ∈ G3, compute gab ∈ G.
The strong Diffie-Hellman problem [1] is the same as the DH problem, but given
access to a an oracle DDHg,a(·, ·) that on input gb̂, gĉ outputs 1 iff ab̂ = ĉ mod q.
We remark that in pairing groups (also known gap groups [21]) the DDH oracle
can be efficiently instantiated and hence the strong-DH problem is equivalent
to the DH problem (and the gap-DH problem [21]). The advantage Advsdh

B,G is
defined to be the probability that an adversary B solves the above strong-DH
problem. The strong-DH assumption holds in G if for all efficient adversaries B,
the advantage Advsdh

B,G is negligible.

Symmetric Encryption. Let SE = (E,D) be a length-preserving symmetric
encryption scheme that takes keys K ∈ {0, 1}λe of length λe = 2λ and en-
crypts arbitrary messages m ∈ {0, 1}∗. We require that SE treats short and long
messages in a different way as follows.

Long Messages. For all messages m ∈ {0, 1}� of length � > λe (larger than
|K|), SE is secure against one-time attacks. A practical construction first
expands K to a bit-string K ′ ∈ {0, 1}� using a pseudo-random generator
(key-derivation function), and then uses K ′ as an xor-based one-time pad to
mask m, i.e., e = m⊕ K ′.

Short Messages. For all messages m ∈ {0, 1}� of length � ≤ λe (shorter than
|K|), SE acts as a perfectly secure one-time pad by using the first � bits of
K as an xor-based one-time pad to mask m.

We remark that it is further possible to relax the condition for encryption of
short messages to a computational one.

Compact CCA-Secure Encryption for Messages of Arbitrary Length 383

3.2 The Basic Scheme

Let G be group of prime order q ≈ 22λ and SE = (E,D) be a length-preserving
symmetric ciphertext using keys of length λe ≥ 2λ. Let G : {0, 1}∗ → Zq and
H : G → {0, 1}λe be hash functions that will be modeled as random oracles.

Key-Generation. The public key consists of a random group element g ∈ G

and h = gx ∈ G, where the secret key x ∈ Zq is a random index.
Encryption. To encrypt a plaintext m ∈ {0, 1}� of arbitrary length � ≥ 1, a

random r ∈ Zq is picked and the symmetric key is computed as

K = H(gr) ∈ {0, 1}λe .

Next, the ciphertext is computed as

e = EK(m), u =
(
gG(e) · h

)r

.

The ciphertext (u, e) ∈ G × {0, 1}�.
Decryption. Using the secret-key x ∈ Zq, decrypting a ciphertext (u, e) ∈

G × {0, 1}� is done by first computing the symmetric key

K = H
(
u

1
G(e)+x

)
∈ {0, 1}λe

and then computing the plaintext as m = DK(e). Note that decryption never
rejects.

We note that if u = 1 ∈ G, encryption fails. This happens with negligible
probability 1/q. For simplicity this negligible encryption error will be ignored for
the remainder of the paper. An error-free variant can be obtained by adjusting
x and G.

To verify correctness note that u = (gG(e)h)r = gr·(G(e)+x) which implies
u1/(G(e)+x) = gr.

3.3 Security

Theorem 1. Assume the strong-DH assumption holds in G, G and H are mod-
eled as random oracles, and SE is a symmetric cipher with the properties specified
in Subsection 3.1. Then the above PKE scheme is IND-CCA secure.

In particular, suppose A is an IND-CCA adversary that runs in time τ and
makes at most qh hash queries to H, qg hash queries to G, and qd decryption
queries. Then there exists a strong DH adversary B that runs in time at most
τ + O(qhqd · T) and makes at most O(qhqd) oracle calls and an adversary C
against SE that runs in time at most τ + O(qhqd · T), where we denote by T the
unit time to perform one exponentiation in the group G; moreover,

Advcca
A (λ) ≤ 2λe · Advsdh

B (λ) + 2Advot
C,SE(λ) +

qh + 2qg

2λe
+

qh

q
,

where λe ≥ 2λ is the length of the symmetric keys used in SE.

384 M. Abe, E. Kiltz, and T. Okamoto

Proof Outline. At a high level the reduction works as follows. Given a strong DH
problem instance (z, za, zb) the strong DH adversary defines the public-key in
such a way that g = za and h = z · g−w∗

, for random w∗. This implicitly defines
the private-key as x = 1

a −w∗. This setup of the public-key is inspired by “IBE
techniques” [5] and allows the strong DH adversary to simulate decryption of
all ciphertext except the challenge itself. (We remark that it was also success-
fully applied in the proofs of other encryption scheme, see, e.g., [7, 18, 17, 9].)
Furthermore, a technique from [1] is used to “patch” random-oracle and de-
cryption oracle and make them consistent by using the DDH oracle provided
by the strong-DH experiment. Here the crucial property is to be able to check
efficiently if for a given ciphertext u ∈ G, an R ∈ G, and an index w �= w∗ it
holds that R = u

1
w+x or not. The latter can be done by querying the DDH ora-

cle on DDHz,a(u · Rw∗−w, R). The challenge ciphertext is set to (u∗, e∗), where
u∗ = zb and e∗ is a random bitstring that equals the length of one of the
challenge messages, m0 or m1. Furthermore, G(e∗) is defined as w∗ such that
u∗1/(x+G(e∗)) = zab. Hence an IND-CCA adversary has no chance in guessing
the challenge bit without querying H for zab.

One difficulty in the proof is that w∗ = G(e∗) is implicitly set at the beginning
of the reduction. If the IND-CCA adversary decides to get challenged on long
messages, it is unlikely that the random ciphertext e∗ of the same length is
asked to G before the challenge query is made. So the strong DH adversary
never returns w∗ to any query to G made before the challenge query. However, if
the IND-CCA adversary decided to get challenged on very short messages, it may
decide to query all possible e∗ of that length to G before making the challenge
query. So the strong DH adversary has to return w∗ to one of these queries to be
successful in this case. Accordingly, the DH adversary has to behave contrarily
in the two cases, but which case happens only depends on the adversary.

To handle the above situation, we actually construct two independent strong
DH adversaries where at least one of the adversaries will be successful. The first
strong DH adversary is successful if the length of the challenge message is smaller
than the key-length λe. If this is the case the reduction hopes to guess the length
of the challenge message correctly in order to be able to define the symmetric
part of the challenge ciphertext at the beginning of the experiment. Overall,
given the challenge message is sufficiently small, this first strong DH adversary
wins if it correctly guessed the length of the challenge ciphertext which happens
with probability 1/λe. The second strong DH adversary is successful if the length
of the challenge message is larger than the key-length λe. In that case it hopes
that the symmetric part of the challenge ciphertext remains hidden from the
IND-CCA adversary’s view until the actual challenge query is done. This makes
it possible to patch G(e∗) after the challenge query was done. Overall, given
the challenge message is sufficiently large, this second strong DH adversary wins
as long as the IND-CCA adversary did not guess the symmetric part of the
challenge ciphertext which happens with probability qg/2λe . Combining the two
strong DH adversaries explains the loss in the security reduction. A formal proof
is given in Section 4.

Compact CCA-Secure Encryption for Messages of Arbitrary Length 385

3.4 The Twin Scheme: Security from Standard Diffie-Hellman

Using the “twinning technique” from [9] one can obtain a scheme which can be
proven secure under the standard (i.e., not strong) Diffie-Hellman assumption by
replacing H(gr) by H(gr, ĝr), where ĝ = gx̂ is another element from the public
key. The twinned scheme is defined follows.

Key-Generation. The public key consists of a random group elements g, h =
gx, and ĝ = gx̂, where the secret key x, x̂ ∈ Z2

q are random indices.
Encryption. To encrypt a plaintext m ∈ {0, 1}� of arbitrary length � ≥ 1, a

random r ∈ Zq is picked and the symmetric key is computed as

K = H(gr, ĝr) ∈ {0, 1}λe .

Next, the ciphertext (u, e) ∈ G × {0, 1}� is computed as

e = EK(m), u =
(
gG(e) · h

)r

.

Decryption. Using the secret-key x, x̂ ∈ Zq, decrypting a ciphertext (u, e) ∈
G × {0, 1}� is done by first computing the symmetric key

K = H
(
u

1
G(e)+x , u

x̂
G(e)+x

)
∈ {0, 1}λe

and then computing the plaintext as m = DK(e).

Theorem 2. Assume the DH assumption holds in G, G and H are modeled as
random oracles, and SE is a symmetric cipher with the properties specified in
Subsection 3.1. Then the above PKE scheme is IND-CCA secure.

Proof sketch. The Strong Twin Diffie-Hellman (STDH) assumption [9] is as fol-
lows. Given z, za, zâ, zb, computing the tuple (zab, zâb) is computationally infea-
sible, even with access to a Twin DDH oracle TDDHz,a,â(zc, zd, zd̂) that outputs
1 iff ac = d and âc = d̂. Since it was shown in [9] that the standard CDH as-
sumption implies the STDH assumption, it is sufficient to prove security of the
above scheme assuming the STDH assumption. We now sketch this reduction,
focusing mostly on the differences to the proof of Theorem 1.

Given a STDH problem instance (z, za, zâ, zb) the STDH adversary defines the
public-key in such a way that g = za, ĝ = zâ, and h = z · g−w∗

, for random w∗.
This implicitly defines the private-keys as x = 1

a −w∗ and x̂ = â
a . The challenge

ciphertext is set to (u∗, e∗), where u∗ = zb and e∗ is a random bitstring that
equals the length of one of the challenge messages, m0 or m1. Furthermore, G(e∗)
is defined as w∗ such that u∗1/(x+G(e∗)) = zab and u∗x̂/(x+G(e∗)) = zâb. Hence
an IND-CCA adversary has no chance in guessing the challenge bit without
querying H for the tuple (zab, zâb), which is exactly the challenge for the STDH
adversary.

The decryption queries are simulated by patching the random oracles using
the Twin DDH oracle TDDHz,a,â(·, ·, ·). Here the crucial property is again to be

386 M. Abe, E. Kiltz, and T. Okamoto

able to check efficiently if for a given ciphertext u ∈ G, a tuple (R1, R2) ∈ G2, and
an index w �= w∗ it holds that (R1, R2) = (u

1
w+x , u

x̂
w+x) or not. Define R̂ = u ·

Rw∗−w
1 . Using the equation for x, x̂, the latter condition can be proved equivalent

to (R1, R2) = (R̂a, R̂â) which can be checked by calling TDDHz,a,â(R̂, R1, R2).
The remaining proof is similar to the one of Theorem 1. We remark that the
concrete security bound of Theorem 2 is essentially the same as the one of
Theorem 1 plus some small additive statistical parameter stemming from the
twinning technique.

3.5 Efficiency

We note that in both schemes the value u = (gG(e) · h)r from encryption can be
computed using one multi-exponentiation which is about as efficient as one stan-
dard exponentiation. For our basic scheme the parameters for key-generation,
encryption and decryption, as well as for the size of the public/secret keys are
exactly the same as for ElGamal. Furthermore, as in ElGamal, our scheme’s
ciphertext overhead only consists of one group element, independent of the mes-
sage. We remark that implemented on certain elliptic curves this accounts to
log q ≈ 2λ bits overhead for conjectured λ bits of security (which is optimal due
to the generic attacks on the discrete logarithm problem in G). For an efficiency
comparison with related schemes we refer to Table 1 in Section 1.

4 Proof of Theorem 1

We proceed in games, starting with Game 0 which is the original IND-CCA
experiment run with an adversary A. Each Game i, i ≥ 0, is entirely de-
fined through the algorithms Setupi, Challengei, Decrypti, HashHi, and
HashGi, describing the adversary’s view. If a game does not mention one of the
above implementing algorithms then it is assumed to be unchanged compared
to the last game. In Game i, i ≥ 0, we define Xi as the event that β = β̂. We
make the general convention that all terms with a superscript asterisks (∗) are
(or at least will be in a future game) connected to the challenge ciphertext; for
example, K∗ is the symmetric key used for generating the challenge ciphertext.

Game 0. This game implements the IND-CCA experiment. We make the follow-
ing conventions how the appearing random-variables are computed throughout
the experiment.
�Setup0. Given a generator z ∈ G, the experiment picks random a ∈ Z∗

q ,
w∗ ∈ Zq, B ∈ G and defines

A = za, R∗ = Ba . (1)

Next, it defines the public key as

g := A, h := z ·A−w∗
.

Compact CCA-Secure Encryption for Messages of Arbitrary Length 387

(Note that this implicitly defines the secret key as x = 1/a− w∗.) We will now
equivalently rewrite the rest of the IND-CCA experiment using these definitions
of public/secret key.
�Challenge0. The challenge ciphertext (u∗, e∗) for message mβ of length �∗ is
generated as

K∗ = H(R∗), e∗ = EK∗(mβ), u∗ = B · R∗G(e∗)−w∗
, (2)

where R∗ and B are taken from (1).
�Decrypt0. Decryption of a ciphertext (u, e) ∈ G × {0, 1}� is done as follows.

R = u
a

1+a·(G(e)−w∗) , K = H(R), m = DK(e) . (3)

�HashH0/HashG0. Hash queries to H and G are answered with random values
from the respective domains.

One can easily verify that Game 0 is an equivalent rewrite of the original
IND-CCA experiment. Hence,

|Pr[X0] − 1/2| = Advcca
A (λ) . (4)

Game 1. �HashG1=HashG0, but abort if G(e) = G(e∗) for any value e �= e∗.
Since there are at most qg hash queries to G, each of them taking an indepen-

dent random value in Zq, we have that the experiment aborts with probability
at most qg/q. Since Game 0 and 1 are equivalent until the new abort happens,

|Pr[X1] − Pr[X0]| ≤ qg/q .

Game 2. �HashH2=HashH1, but abort if H(R∗) is asked before Challenge2
is executed.

Since R∗ is perfectly hidden from A’s view until Challenge2 is executed, we
have

|Pr[X2] − Pr[X1]| ≤ qh/q .

Game 3. We now use an alternative (but equivalent) simulation of random ora-
cle H and the decryption oracle. To make the simulation consistent we introduce
the following two tables which are initially empty.

– ListH [R] = K means H(R) = K, for R ∈ G.
– ListD[u, e] = K means that K ∈ {0, 1}λe is the symmetric key that was used

to decrypt ciphertext (u, e), for u ∈ G and e ∈ {0, 1}�.

�Decrypt3. Decryption of a ciphertext (u, e) ∈ G × {0, 1}� is done as follows.
As in (3) of Decrypt2, first the “algebraic key” R = u

a
1+a(G(e)−w∗) is com-

puted. Next, the symmetric key K is computed according to the following case
distinction.

Case D1: If ListH [R] is defined, then use K = ListH [R].

388 M. Abe, E. Kiltz, and T. Okamoto

Case D2: If there exists an entry (û, ê) in ListD such that R = û
a

1+a(G(ê)−w∗) ,
then use K = ListD[û, ê].

Case D3: In the second phase, if R = u∗ a
1+a(G(e∗)−w∗) , then use K = H(R′),

where R′ = (u/u∗)1/(G(e)−G(e∗)). (Note that R′ = R∗ and, since G(e) �=
G(e∗), R′ is well-defined.)

Case D4: Otherwise, pick a random key K ∈ {0, 1}λe.

In all cases define ListD[u, e] := K and return m = DK(e).
�HashH3. A hash query H(R) is answered as follows.

Case H1: If ListH [R] is defined then return this value.
Case H2: If there exists an entry ListD[u, e] such that R = u

a
1+a(G(e)−w∗) then

use K = ListD[u, e].
Case H3: Otherwise, pick a random K.

In all cases define ListH [R] := K and return H(R) = K.
�Challenge3=Challenge2, but now Challenge3 explicitly defines ListH

[R∗] := K∗ for uniform K∗ ∈ {0, 1}λe (and not implicitly through a call to
H(R∗) as in (2)).

It is easy to verify that this does not change the behavior of the oracles.

Pr[X3] = Pr[X2] . (5)

The next lemma shows that using a DDH oracle, Decrypt3 and HashH3 can
be simulated without explicit knowledge of a = logz A.

Lemma 1. Algorithms Decrypt3 and HashH3 can be efficiently simulated de-
pending on the values z and A = za, plus making maximal O(qHqD) calls to an
oracle DDHz,a(·, ·).

Proof. We start with Decrypt3. The problem is that the simulation cannot
compute the value R without knowing a. However, it can perform the checks
using A = za and the DDH oracle. In case D1, to check if ListH [R] is de-
fined the simulator checks if there exists an entry R̂ in ListH satisfying R̂ =
(u/R̂G(e)−w∗

)a. The latter one is equivalent to DDHz,a(u/R̂G(e)−w∗
, R̂) = 1. In

case D2, check if DDHz,a(ûG(e)−w∗
/uG(ê)−w∗

, u/û) = 1 for some entry (û, ê) from
ListD. The case D3 is similar. Furthermore, simulation of HashH3 can be done
in a similar way.

Note that, using the DDH oracle, Game 3 can be simulated only knowing the
values z,B,A = za. The value R∗ = Ba is only needed for the execution of
Challenge3, i.e., to generate the element u∗ of the challenge ciphertext (2)
and to define ListH [R∗] := k∗. Now we would like to “define” G(e∗) := w∗ to
be able to use u∗ := B (independent of R∗) for the generation of the challenge
ciphertext. However, this seems difficult since e∗ depends on the input m0 and
m1 of the adversary. In particular, m0 could be small in which case e∗ (which is
of the same length as m0) can be guessed by A.

Compact CCA-Secure Encryption for Messages of Arbitrary Length 389

Game 4. From this game on we slightly change the way the experiment is exe-
cuted. The experiment initially flips a random coin c ∈ {0, 1} representing a guess
if the adversary wants to get challenged on short or long messages. Depending
on c, the experiment is executed using the algorithms Decrypt4=Decrypt3,
HashH4=HashH3, HashG4=HashG3, Setup

c
4=Setup3, and Challenge

c
4,

where Challenge
0
4 and Challenge

1
4 are defined as follows.

�Challenge
0
4=Challenge3, with the difference that it aborts (and returns a

random bit β̂) if |m0| > λe. (Here m0 is one of the challenge messages.)
�Challenge

1
4=Challenge3, with the difference that it aborts if |m0| ≤ λe.

Since bit c is independent from the adversaries view, we have

Pr[X3] − 1
2

= 2(Pr[X4] − 1
2
) . (6)

In Game i (i ≥ 4), we define Pr[Xshort
i] = Pr[Xi | |m0| ≤ λe] and Pr[X large

i] =
Pr[Xi | |m0| > λe] such that

Pr[X4] = Pr[Xshort
4] · Pr[|m0| ≤ λe] + Pr[X large

4] · Pr[|m0| > λe]

≤ max{Pr[Xshort
4],Pr[X large

4]} .

In the following games we will bound Pr[Xshort
4] and Pr[X large

4] separately.

Game 5. �Setup
0
5=Setup

0
4, but additionally a random bit-string �∗guess ∈

{1, . . . , λe} is selected.
�Challenge

0
5=Challenge

0
4, but it aborts if �∗ �= �∗guess, where �∗ is the length

of the challenge message m0 submitted by A.
Since �∗guess is picked uniformly from {1, . . . , λe}, independent of the adver-

sary’s view, we have

Pr[Xshort
4] − 1

2
= λe · (Pr[Xshort

5] − 1
2
) . (7)

Game 6. �Setup
0
6=Setup

0
5, but additionally a bit-string e∗ ∈ {0, 1}�∗guess is

selected, uniformly at random.
�HashG

0
6. Since e∗ is now determined at the beginning, HashG

0
6 can now

program G such that G(e∗) = w∗.
�Challenge

0
6=Challenge

0
5. If �∗ = �∗guess (i.e., if Challenge

0
5 did not abort)

it uses the tuple (u∗ := B, e∗) as challenge ciphertext. (Since G(e∗) = w∗, this is
a correctly distributed ciphertext for mβ .) Furthermore, the experiment defines
ListH [R∗] := K∗, where K∗ = K∗

1 ||K∗
2 with K∗

1 = e∗ ⊕mβ and K∗
2 is a random

bit-string of length λe − �∗.
Consider the distribution of K∗ and e∗ used in Challenge

0
5 and Challenge

0
6.

By the properties of SE and since �∗ = �∗guess ≤ λe, in Challenge
0
5 a random

key K∗ is used and e∗ is computed as e∗ = K∗
0 ⊕ mβ , where K∗

1 is the �∗ bit
prefix of K∗. In Challenge

0
6 a random symmetric ciphertext e∗ is used together

with a random key K∗ that encrypts mβ to e∗. Therefore, K∗ and e∗ have the
same joint distribution in both games and

Pr[Xshort
5] = Pr[Xshort

6] . (8)

390 M. Abe, E. Kiltz, and T. Okamoto

Game 7. �Challenge
0
7=Challenge

0
6, but ListH [R∗] is left undefined.

Clearly, the view of adversary A in Games 6 and 7 is the same until it queries
H(R∗) in the second phase. We claim that there exists an adversary B against
strong DH with

|Pr[Xshort
7] − Pr[Xshort

6]| ≤ Advsdh
B (λ) . (9)

Adversary B runs the experiment from this game. By Lemma 1, HashH7=
HashH3 and Decrypt7=Decrypt3 can be simulated using the values z, A,
and B. If H(R∗) is queried, B will notice using the DDH oracle and outputs
R∗ = zab.

Now it is clear that in case c = 0 the experiment is independent of the
challenge key K∗ and hence also of the challenge bit β.

Pr[Xshort
7] = 1/2 . (10)

Game 8. �Challenge
1
8. For generating the challenge ciphertext (u∗, e∗) for

message mβ of length �∗ the experiments picks a random K∗ ∈ {0, 1}λe, defines
ListH [R∗] = K∗, and computes

e∗ = EK∗(mβ), u∗ = B.

The experiment aborts if G(e∗) was already defined. Define this event as F large
8 .

Otherwise, it defines G(e∗) := w∗ such that by (2) (u∗, e∗) is a correct ciphertext
for mβ . Then,

|Pr[X large
8] − Pr[X large

7]| ≤ Pr[F large
8] . (11)

Game 9. �Challenge
1
9=Challenge

1
8, but after the challenge ciphertext is

defined, the value ListH [R∗] remains undefined.
Clearly, we have Pr[F large

9] = Pr[F large
8], where F large

9 is the event that G(e∗)
was queried before the challenge ciphertext is defined. Furthermore, similar to
Game 7, there exists an adversary B against the strong DH problem with

|Pr[X large
9] − Pr[X large

8]| ≤ Advsdh
B (λ) . (12)

Game 10. �Challenge
1
10=Challenge

1
9, but a random e∗ ∈ {0, 1}�∗ is used

for the challenge ciphertext (independent of mβ). Since a distinguisher between a
random symmetric ciphertext e∗ and e∗ = EK∗(mβ) (for known mβ) immediately
implies an one-time adversary C against SE, we have

|Pr[X large
10] − Pr[X large

9]| ≤ Advot
C,SE(λ) . (13)

Furthermore, since Game 10 is now independent of β, we have

Pr[X large
10] = 1/2 . (14)

Compact CCA-Secure Encryption for Messages of Arbitrary Length 391

Finally, e∗ is a uniform element from {0, 1}�∗ with �∗ ≥ λe. Since adversary A
makes maximal qg hash queries to G, we have

Pr[F large
9] = Pr[F large

10] ≤ qg/2λe . (15)

Summing up the probabilities we obtain

Advcca
A (λ) ≤ qh

2λe
+

qg

q
+2 max{λe · Advsdh

B (λ) , Advsdh
B (λ)+Advot

C,SE(λ)+
qg

2λe
}

≤ qh + 2qg

2λe
+

qg

q
+ 2λe · Advsdh

B (λ) + 2Advot
C,SE(λ) .

Furthermore, the running times of A (and C) is bounded by the running time of B
plus the time of performing additional O(qHqD) group operations (by Lemma 1).

References

[1] Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and
an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
143–158. Springer, Heidelberg (2001)

[2] Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: A new frame-
work for hybrid encryption and a new analysis of Kurosawa-Desmedt KEM. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 128–146. Springer,
Heidelberg (2005); also available at IACR e-print 2005/027 and 2004/194

[3] Abe, M., Kiltz, E., Okamoto, T.: Chosen Ciphertext Security with Optimal
Ciphertext Overhead. In: Advances in Cryptology – Asiacrypt 2008. LNCS,
vol. 5350, pp. 355–371. Springer, Heidelberg (2008); also available at IACR e-
print 2008/374

[4] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: First ACM Conference on Computer and Communication
Security, pp. 62–73. Association for Computing Machinery (1993)

[5] Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption. In:
Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp.
223–238. Springer, Heidelberg (2004)

[6] Boyen, X.: Miniature CCA2 PK encryption: Tight security without redun-
dancy. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 485–501.
Springer, Heidelberg (2007)

[7] Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-
based techniques. In: ACM CCS 2005, pp. 320–329. ACM Press, New York (2005)

[8] Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
In: Proceedings of the 30th annual ACM Symposium on Theory of Computing,
pp. 209–218 (1998)

[9] Cash, D.M., Kiltz, E., Shoup, V.: The Twin Diffie-Hellman Problem and Appli-
cations. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145.
Springer, Heidelberg (2008)

[10] Coron, J., Handschuh, H., Joye, M., Paillier, P., Pointcheval, D., Tymen, C.: GEM:
A generic chosen-ciphertext secure encryption method. In: Preneel, B. (ed.) CT-
RSA 2002. LNCS, vol. 2271, pp. 263–276. Springer, Heidelberg (2002)

392 M. Abe, E. Kiltz, and T. Okamoto

[11] Coron, J., Handschuh, H., Joye, M., Paillier, P., Pointcheval, D., Tymen, C.: Op-
timal chosen-ciphertext secure encryption of arbitrary-length messages. In: Nac-
cache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 17–33. Springer,
Heidelberg (2002)

[12] Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33(1), 167–226 (2003)

[13] El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS,
vol. 196, pp. 10–18. Springer, Heidelberg (1985)

[14] Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp.
537–554. Springer, Heidelberg (1999)

[15] Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and
System Sciences 28, 270–299 (1984)

[16] Halevi, S., Rogaway, P.: A tweakable enciphering mode. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003)

[17] Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsu-
lation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571.
Springer, Heidelberg (2007)

[18] Kiltz, E.: Chosen-ciphertext secure key-encapsulation based on Gap Hashed Diffie-
Hellman. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp.
282–297. Springer, Heidelberg (2007), http://eprint.iacr.org/2007/036

[19] Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (2004)

[20] Kurosawa, K., Matsuo, T.: How to remove MAC from DHIES. In: Wang, H.,
Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 236–247.
Springer, Heidelberg (2004)

[21] Okamoto, T., Pointcheval, D.: The gap-problems: a new class of problems for
the security of cryptographic schemes. In: Kim, K.-c. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 104–118. Springer, Heidelberg (2001)

[22] Okamoto, T., Pointcheval, D.: REACT: Rapid enhanced-security asymmetric
cryptosystem transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020,
p. 159. Springer, Heidelberg (2001)

[23] Phan, D.H., Pointcheval, D.: Chosen-ciphertext security without redundancy. In:
Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 1–18. Springer, Heidel-
berg (2003)

http://eprint.iacr.org/2007/036

Verifiable Rotation of Homomorphic Encryptions

Sebastiaan de Hoogh, Berry Schoenmakers, Boris Škorić, and José Villegas

Dept. of Mathematics and Computer Science, TU Eindhoven
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

s.j.a.d.hoogh@tue.nl, berry@win.tue.nl, b.skoric@tue.nl,

j.a.villegas@tue.nl

Abstract. Similar to verifiable shuffling (mixing), we consider the prob-
lem of verifiable rotating a given list of homomorphic encryptions. The
offset by which the list is rotated (cyclic shift) should remain hidden.
Basically, we will present zero-knowledge proofs of knowledge of a rota-
tion offset and re-encryption exponents, which define how the input list
is transformed into the output list. We also briefly address various appli-
cations of verifiable rotation, ranging from ‘fragile mixing’ as introduced
by Reiter and Wang at CCS’04 to applications in protocols for secure
multiparty computation and voting.

We present two new, efficient protocols. Our first protocol is quite
elegant and involves the use of the Discrete Fourier Transform (as well as
the Fast Fourier Transform algorithm), and works under some reasonable
conditions. We believe that this is the first time that Fourier Transforms
are used to construct an efficient zero-knowledge proof of knowledge.

Our second protocol is more general (requiring no further conditions)
and only slightly less efficient than the DFT-based protocol. Unlike the
previously best protocol by Reiter and Wang, however, which relies on
extensive use of verifiable shuffling as a building block (invoking it four
times as a sub-protocol), our construction is direct and its performance
is comparable to the performance of a single run of the best protocol for
verifiable shuffling.

1 Introduction

The well-known problem of verifiable shuffling (or, mixing) is to transform a
given list of homomorphic encryptions into a list of randomly permuted, random
re-encryptions of these encryptions, such that (i) it can be verified that the
multiset of plaintexts for the input list and output list are identical, and (ii) the
permutation used remains hidden. The original idea of mixing was introduced
by Chaum, along with applications in anonymous email and voting [3], and the
explicit goal of verifiability was introduced by Sako and Kilian, as part of a
paper on voting [24]. Many improved protocols for verifiable shufflers/mixers
have been published since, as well as many applications. A basic property is
that a cascade of verifiable shufflers is again a verifiable shuffler, which enables
mutually distrusting parties to take turns in permuting a given list such that no
party knows the permutation for the final output list (unless all parties collude).

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 393–410, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

http://dx.doi.org/10.1007/978-3-642-00468-1_29

394 S. de Hoogh et al.

In this paper we consider the related problem of verifiable rotating a given
list of homomorphic encryptions. Rather than requiring the use of a random
permutation, as in shuffling, we require that a random rotation πr(k) = k − r
(mod n), where the offset r, 0 ≤ r < n, is chosen uniformly at random. Clearly,
a cascade of verifiable rotators is also a verifiable rotator, for which no party
knows by which offset the final output list has been rotated (unless all parties
collude).

Verifiable rotation has actually been introduced by Reiter and Wang in the
context of mixing [21]. They define ‘fragile mixing’ as a form of mixing that
deters leaking of information: namely, when a single correspondence between an
element on the input list and an element of the output list is revealed, then
the correspondence between all elements of the input list and output lists is
revealed. A fragile mix is therefore restricted to the use of rotations (called “loop
permutations” in [21]). The protocol by Reiter and Wang, however, uses four
invocations of a verifiable shuffle protocol (and some further work) to perform a
verifiable rotation. We will reduce this to the work of about one verifiable shuffle,
by following a completely different, more direct approach to the problem.

Apart from fragile mixing, however, there are many more applications of veri-
fiable rotations. An important application arises in the context of secure integer
comparisons, as noted first in [20]. A common step in many integer comparison
protocols [2,1,10,8,20], requires parties to find out whether a special value occurs
in a given list of encryptions. For example, whether there is a 0 among other-
wise random values. The position of the special value should remain hidden. To
this end, the list will be randomly permuted before decrypting the encryptions.
However, rather than using a fully random permutation, as commonly proposed,
a random rotation suffices to hide the position of the special value.

Similarly, it is easily seen that for protocols such as Mix & Match [16], which
involve mixing of truth tables of Boolean gates, it suffices to apply a random
rotation to the rows of a truth table, rather than a fully random permutation.
The reason is that in the matching stage exactly one row will match, and a
random rotation fully hides the corresponding row of the original truth table.
The same observation applies to other forms of ‘garbled circuit evaluation’, which
can be seen as variations on Yao’s original method [27]. Likewise, in protocols
for secure linear programming [17] the position of the pivot in each iteration of
the simplex algorithm must be hidden to avoid leakage of information. Again,
we note that the use of a rotation instead of a general permutation suffices.

Finally, we note that further applications exist in the context of electronic
voting, where randomly rotated lists of encryptions are used in the construc-
tion of encrypted ballot forms (see, e.g., Prêt-à-Voter voting systems by Ryan
et al. [23,22] and references therein): voters get a receipt in which one out of
n positions is marked; due to a random rotation, the marked position does not
reveal the identity of the candidate chosen. Recently, [26] presented a secure pro-
tocol for determining the winner of an election in a preferential electoral system.
The goal at some intermediate point is to hide the position of a distinguished
value in every row of a matrix of encrypted values. They achieve that by first

Verifiable Rotation of Homomorphic Encryptions 395

rotating the row vectors in the clear, and later the rotation offsets are concealed
by using verifiable mixes of each of the column vectors. The use of verifiable
rotation would provide an alternative to the use of shuffling steps.

The goal of this paper is thus to design efficient protocols for verifiable rota-
tions. Given a list X0, X1, . . . , Xn−1 of (homomorphic) encryptions, a rotation
is performed by picking an offset r, 0 ≤ r < n, at random, and creating a
list of encryptions Y0, Y1, . . . , Yn−1, where each Yk is a random re-encryption of
Xk−r.1 As the rotation offset r remains hidden if the underlying cryptosystem
is semantically secure, a zero-knowledge proof is used to prove the correctness
of a rotation. By using a non-interactive zero-knowledge proof, one obtains a
verifiable rotation.

1.1 Our Contributions

We develop two new, efficient protocols for proving the correctness of a rotated
list of homomorphic encryptions. These protocols allow for a direct construction
of a cascade of verifiable rotators, which can be used to efficiently implement
fragile mixing, among other applications, as highlighted above. Whereas the
verifiable rotation protocol of [21] required the work of at least four verifiable
shuffles, the work of our protocols is approximately equal to that of a single
shuffle only—in some cases even slightly better than the currently best proto-
col for verifiable shuffling, due to Groth [12]. Note that a priori it is not clear
whether verifiable shuffling is harder than verifiable rotation, or the other way
around.

Our first protocol is a Σ-protocol and makes essential use of the Discrete
Fourier Transform (DFT). To the best of our knowledge this is the first time that
the DFT is actually used in the construction of an efficient zero-knowledge proof.
The Σ-protocol turns out to be competitive with the best protocols for shuffling
known to date. However, our DFT-based protocol relies on some constraints on
the parameters, which should be met in order for the DFT to be applicable. For
instance, in case we use ElGamal encryptions for a group of prime order q, we
assume that n | q−1, where n denotes the length of the list of rotated encryptions.
This ensures the existence of an n-th root of unity modulo q. Furthermore, to
take full advantage of the Fast Fourier Transform (FFT) algorithm, we assume
that n is an integral power of two.2

Our second protocol is more general and does not put any constraints on
the parameters. Although it is not a (3-move) Σ-protocol, it is a 6-move honest-
verifier zero-knowledge protocol for which we are able to prove knowledge sound-
ness as well (more precisely, witness extended emulation). This general protocol
is computationally only slightly more expensive than the DFT-based Σ-protocol.
1 Throughout the paper, indices are reduced modulo n. E.g., Xk−r is short for

Xk−r (mod n).
2 These constraints can be relaxed, for instance, by using the DFT for a quadratic

extension of Fq, which exists provided n | q2 − 1. Similarly, for the FFT it suffices if
all prime factors of n are small, rather than requiring that n is a power of two. We
do not consider these relaxations in this paper.

396 S. de Hoogh et al.

Both protocols can be made non-interactive using the Fiat-Shamir heuris-
tic, yielding efficient (publicly) verifiable non-interactive zero-knowledge proofs,
secure in the random oracle model.

2 Preliminaries

We present our protocols assuming homomorphic ElGamal as the underlying
cryptosystem. However, our results can be readily extended to other homomor-
phic cryptosystems, such as the Paillier cryptosystem.

2.1 Discrete Log Setting

Let G = 〈g〉 denote a finite cyclic (multiplicative) group of prime order q for
which the Decision Diffie-Hellman (DDH) problem is assumed to be infeasible.

Homomorphic ElGamal Cryptosystem. For public key h ∈ G, a message m ∈ Zq

is encrypted as a pair (a, b) = (gr, gmhr) for r ∈R Zq. Given the private key
α = logg h, decryption of (a, b) is performed by calculating b/aα = gm and then
solving for m ∈ Zq. As usual, it is assumed that m belongs to a sufficiently small
subset of Zq to make recovery of m feasible.

This encryption scheme is additively homomorphic: given (a1, b1) = (gr1 ,
gm1hr1) and (a2, b2) = (gr2 , gm2hr2), an encryption of m1 + m2 is obtained by
pairwise multiplication (a1, b1)(a2, b2) = (a1a2, b1b2) = (gr1+r2 , gm1+m2hr1+r2).
Homomorphic ElGamal is semantically secure under the DDH assumption.

As a shorthand notation for an encryption (gr, gmhr), we write E(m, r). More-
over, E(m) will denote an ElGamal encryption of m ∈ Zq, where the randomiza-
tion is suppressed from the notation.

Pedersen Commitment. Given h̃ ∈ G, a Pedersen commitment to m ∈ Zq is the
value b = gmh̃r where r ∈ Zq. This commitment is opened by revealing m and
r. The scheme is unconditionally hiding and computationally binding assuming
that logg h̃ cannot be computed. We use C(m, r) to denote a Pedersen commit-
ment to m using randomness r, and abbreviate this to C(m) when suppressing
the randomization from the notation.

Efficiency. As performance measure for our protocols we will count the number
of exponentiations. Note that because of “Shamir’s trick” [9], which is a special
case of Straus’ algorithm [25], the complexity of single, double and even triple
exponentiations (gr1

1 , gr1
1 gr2

2 and gr1
1 gr2

2 gr3
3) are comparable.

2.2 Zero-Knowledge Proofs of Knowledge

A rotator must convince a verifier that the output list is indeed a rotation of
the input list, without giving away any information on the offset used between
these lists. For this purpose we use standard notions for zero-knowledge and
knowledge soundness.

Verifiable Rotation of Homomorphic Encryptions 397

A proof, or argument, of knowledge for a relation R = {(x,w)} is a protocol
between a prover and a verifier. Both parties get a value x as common input
while the prover gets a witness w as private input such that (x,w) ∈ R. At the
end of the protocol, the verifier decides whether it accepts or rejects the proof.

A proof must be complete and sound. Completeness means that given a pair
(x,w) ∈ R, the proof is accepting if both prover and verifier follow the protocol.
Soundness captures the fact that a cheating prover cannot succeed convincing
a verifier if the prover does not know a witness w for x. This is shown by
the definition of a knowledge extractor which uses the prover to compute a
witness, see, e.g., [11]. A proof is zero-knowledge if there exists a simulator
that given x and access to a malicious verifier, produces a view of the protocol
that is indistinguishable from the view when the verifier interacts with a real
prover. In honest-verifier zero-knowledge (HVZK) proofs the verifier is assumed
to be honest but curious. Additionally, an HVZK proof is called special HVZK
(SHVZK) when the simulator can produce views for a given challenge of the
verifier.

Examples of special honest-verifier zero-knowledge proofs of knowledge are
the well-known Σ-protocols [6,4]. These are 3-move protocols where the prover
acts first. They satisfy the so-called special-soundness property.

Our first protocol is a Σ-protocol. For our second protocol, we will actually
show the existence of a knowledge extractor along the lines of Groth [12,15].
Concretely, we show that our protocols have a witness-extended emulator. This
notion, introduced by Lindell [18] implies knowledge soundness as defined by
Damg̊ard and Fujisaki [7], as shown in [14].

Informally, the witness-extended emulation property says that given an adver-
sarial prover that produces an acceptable proof with some probability ε, there
exists an expected polynomial time algorithm E, called witness-extended em-
ulator, that produces indistinguishable transcripts which are accepting with
(essentially) the same probability ε. If the transcript is accepting then a wit-
ness is provided as well. The emulator has rewindable black-box access to the
prover.

It can easily be shown that a Σ-protocol has the witness-extended emulation
property [13]. This fact will be used in our security proofs.

3 DFT-Based Solution

Let X = (X0, X1, . . . , Xn−1) be a list of homomorphic ElGamal encryptions. A
random rotation is performed by picking a random offset r, 0 ≤ r < n, and com-
puting a list of encryptions Y = (Y0, Y1, . . . , Yn−1), where Yk = Xk−r(gsk , hsk),
sk ∈R Zq, for k = 0, . . . , n−1. The challenge is to provide an efficient proof that
the output list Y is correctly formed, for a given input list X .

The key mathematical tool for our first protocol is the Discrete Fourier Trans-
form (DFT). Using the DFT one can express conveniently that two lists of en-
cryptions are rotated version of each other, which allows for an efficient
Σ-protocol to make a rotation verifiable.

398 S. de Hoogh et al.

3.1 Discrete Fourier Transform

Discrete Fourier Transform over Finite Fields. For simplicity, we present the
DFT over the field Zq for prime q. Suppose n | q − 1 and let α ∈ Zq denote
an n-th root of unity modulo q, that is, α is an element of order n in Zq. So,
αn = 1 mod q.

The DFT for a sequence xk ∈ Zq w.r.t. α is a sequence x′
k ∈ Zq defined as

x′
k =

n−1∑
j=0

xjα
kj .

Borrowing terminology from Fourier analysis, a Fourier Transform converts a
sequence in the time domain into a sequence in the frequency (transformed) do-
main. The DFT can be seen as a linear transformation given by a Vandermonde
matrix Akj = (αkj). The inverse DFT (IDFT), which takes a sequence in the
frequency domain and converts it back to the time domain, is given by

xk = n−1
n−1∑
i=0

x′
iα

−ik.

Rotating Lists of Encryptions. Consider two sequences x0, x1, . . . , xn−1 and
y0, y1, . . . , yn−1 such that yk = xk−r . The key property is now, with 0 ≤ k < n:

y′k =
n−1∑
j=0

yjα
kj =

n−1∑
j=0

xj−rα
kj =

n−1∑
j=0

xjα
k(j+r) = αrkx′

k = βkx′
k,

where β = αr. Hence, if we first apply DFT to a sequence x0, x1, . . . , xn−1
yielding x′

0, x
′
1, . . . , x

′
n−1, then compute y′0, y′1, . . . , y′n−1 by setting

y′k = βkx′
k = αrkx′

k,

for 0 ≤ k < n, and finally apply IDFT to obtain sequence y0, y1, . . . , yn−1, it
follows by construction that yk = xk−r and thus, the two sequences are a rotation
of each other.

We use this approach to perform efficient rotations of list of encryptions by
means of a cascade of verifiable rotators. Since the coefficients αkj can be com-
puted publicly, one can apply DFT and IDFT to an encrypted sequence using
just the homomorphic properties. These transformations are performed once, at
the beginning and at the end of the cascade, respectively. The rotators will pass
on transformed sequences between each other.

Concretely, each verifiable rotator will perform the following transformation
to a given list of encryptions E(x′

0), . . . ,E(x′
n−1):

E(y′k) = E(x′
k)βk

(gsk , hsk), for k = 0, 1, . . . , n− 1, (1)

with sk ∈R Zq and β = αr, r ∈R {0, 1, . . . , n − 1}. The purpose of the random
re-encryptions (gsk , hsk) is to hide the rotation offset r being used.

Verifiable Rotation of Homomorphic Encryptions 399

The transformation at the beginning of the cascade of rotators can be done
publicly, using the homomorphic property:

E(x′
k) =

n−1∏
j=0

E(xj)αkj

.

Similarly, the transformation at the end of the cascade, if desired, can be done
publicly. Below, we will introduce the use of the Fast Fourier Transform (FFT)
algorithm to perform these transformation using n logn exponentiations only.
This way the cost of the transformation at the beginning (and possibly at the
end) of the cascade is amortized over the length of the cascade. When the length
of the cascade is Ω(log n), the work will be O(n) per rotator.

3.2 DFT-Based Protocol

Σ-protocol. To make a rotation verifiable, we provide a proof that the list of
encryptions are transformed according to Eq. (1). To this end, a rotator needs
to prove that it knows a value β ∈ Zq with βn = 1 (mod q) and values s0, s1, . . . ,
sn−1 ∈ Zq such that Eq. (1) holds. We show how this can be done very efficiently
using standard techniques.

Let (ak, bk) = X ′
k and (dk, ek) = Y ′

k be ElGamal encryptions. The rotator has
to prove that it knows β ∈ Zq such that βn = 1, and values s0, . . . , sn−1 ∈ Zq

such that

dk = aβk

k gsk , ek = bβk

k hsk .

To prove that the exponents are of the form βk, the prover produces auxil-
iary homomorphic Pedersen commitments C(β),C(β2), . . . ,C(βn−1), and proves
that this sequence is indeed a sequence of powers of some β. As a stepping-
stone, we use the efficient Σ-protocol for showing that z = xy for commitments
C(x),C(y),C(z) (see [5]). Starting with a commitment to β, we prove iteratively
the knowledge of its powers as follows. Let c0 = C(1), then successively con-
struct the commitments c1 = C(β) = cβ

0 h̃
t0 , c2 = cβ

1 h̃
t1 = C(β2), c3 = cβ

2 h̃
t2 =

C(β3), . . . , cn−1 = cβ
n−2h̃

tn−2 = C(βn−1) and apply a Σ protocol to show that
one and the same exponent β is used for all these commitments when expressed
this way.

To prove that βn = 1 holds, we let the rotator compute cn = cβ
n−1h̃

tn−1 =
C(βn) as well and prove that this is a commitment to 1. This can be done by
applying a proof of knowledge of the discrete log of cn/g with respect to the
base h̃, as cn/g = h̃t∗n−1 , for some value t∗n−1 (see below).

Finally, now given (ak, bk) = X ′
k, ck = C(βk), and (dk, ek) = Y ′

k, the rotator
has to prove that it knows values sk, t

∗
k, β

k such that

ck = gβk

h̃t∗k , dk = aβk

k gsk , ek = bβk

k hsk .

where t∗k =
∑k

j=0 βk−jtj .
The Σ-protocol which combines all these steps is shown in Fig. 1.

400 S. de Hoogh et al.

Prover Common input: Verifier
(knows β, sk s.t. β ∈ 〈α〉, (ak, bk) = X ′

k

dk = aβk

k gsk , ek = bβk

k hsk) (dk, ek) = Y ′
k

m̃, b ∈R Zq

C̃ = h̃m̃

mk, tk, uk, vk, m̃k ∈R Zq

ck+1 = cβ
k h̃tk

Ck+1 = cb
kh̃mk

C̃k = guk h̃m̃k

Dk = a
uk
k gvk

Ek = b
uk
k hvk

−̃
C, {ck+1, Ck+1, Dk, Ek, C̃k}n−1

k=0−−−−−−−−−−−−−−−−−−−−−−−−−→
t∗−1 = 0 ←−−−−−−−−−−−−λ−−−−−−−−−−−−− λ ∈R Zq

t∗k =
∑k

j=0 βk−jtj

σ = b + λβ,
η = m̃ + λt∗n−1

ψk = mk + λtk

μk = uk + λβk

νk = vk + λsk

ρk = m̃k + λt∗k−1

−−−−
σ, η, {ψk, μk, νk, ρk}n−1

k=0−−−−−−−−−−−−−−−−−−−−−−→ h̃η ?= C̃(cn/g)λ

cσ
k h̃ψk

?= Ck+1c
λ
k+1

gμk h̃ρk
?= C̃kcλ

k

aμk
k gνk

?= Dkdλ
k

b
μk
k hνk

?= Ekeλ
k

Fig. 1. Proof of a rotation in the transformed domain of ElGamal encryptions, where
c0 = g and k runs from 0 to n − 1

Efficiency. From Fig. 1 we can see that the generation of the proof requires 5n
double exponentiations, while the verification requires 4n triple exponentiations.

An issue in the efficiency of a cascade of rotators is the computation of the
DFT and possibly the IDFT under the encryptions. Although the DFT and the
IDFT can be applied just using homomorphic properties, these steps may be a
computational bottleneck as they involve the computation of n n-way exponen-
tiations (which naively costs n2 single exponentiations). However, e.g., assuming
that n is an integral power of 2, one can apply the Fast Fourier Transform algo-
rithm to reduce the computational complexity to O(n logn) exponentiations.

To illustrate the application of the FFT algorithm, assuming that n = 2�,
then the DFT computation under encryptions can be split in the following
way:

Verifiable Rotation of Homomorphic Encryptions 401

E(x′
k) =

n−1∏
j=0

E(xj)αkj

=
n/2−1∏

j=0

E(x2j)αk2j

E(x2j+1)αk(2j+1)

=
n/2−1∏

j=0

E(x2j)α2kj

⎛⎝n/2−1∏
j=0

E(x2j+1)α2kj

⎞⎠αk

.

Noting that α2 is a n/2-th root of unity modulo q, we have reduced the prob-
lem of computing the DFT of a sequence of length n to solving two DFTs of
sequences of half length. We note that these two DFTs can be computed in
parallel because they are independent of each other. If tn is the number of ex-
ponentiations required to compute one element of the DFT of length n, then
we get that tn = tn/2 + 1. Finally, the total number of exponentiations is ntn.
In particular when n is a power of two, n logn exponentiations are required in
total.

When using a cascade of rotators, the rotators will keep the sequence in the
frequency domain. If so desired, the DFT and its inverse need to be applied
only before and after the entire cascade. With this observation, we only need to
transform at the first and final rotator in a cascade of rotators, and it helps as
one can average the total work for transforms over the length of the cascade. In
the special case of a cascade of n rotators, the work per rotator will be linear.

In some applications it may be reasonable to assume that the input and output
lists are in transformed form. Another observation is that if the final output list
of a cascade is going to be decrypted anyway, one may leave out the inverse
DFT, and decrypt the transformed sequence. Then one can perform the inverse
DFT on the plaintexts (depending on the homomorphic cryptosystem this may
give an advantage, for ElGamal one would still need exponentiations).

Extensions. Using n-th roots of unity in extension fields of Zq with the condition
that n | q−1 can be weakened. Given a fixed n, we can adjust the extension field
that we work with. This will come at the expense of increased communication
and computation.

4 General Solution

The DFT-based protocol presented above puts some constraints on the parame-
ters involved. In this section we present a different approach that does not such
constraints.

We use a two-stage approach, similar to the approach for verifiable shuffles in
[19,12,15]. We first present an auxiliary protocol to prove that a list of known
committed values has been rotated. In the proofs of security we also use the
Schwartz-Zippel lemma.

Lemma 1 (Schwartz-Zippel). Let p be a multivariate polynomial of degree
d over Zq. Then the probability that p(x1, x2, . . . , xm) = 0 for randomly chosen
x1, x2, . . . , xm over Zq is at most d/q.

402 S. de Hoogh et al.

We will use it for the case that d = 1 to test that two sequences have the same
values. That is, given (x0, x1, . . . , xn−1) and (y0, y1, . . . , yn−1), then if

n−1∑
j=0

βjxj =
n−1∑
j=0

βjyj,

for β0, β1, . . . , βn−1 ∈R Zq, it follows that (x0, x1, . . . , xn−1) �= (y0, y1, . . . , yn−1)
with probability at most 1/q.

4.1 Rotation of Known Committed Values

Let α0, α1, . . . , αn−1 be some publicly known values. The prover produces some
commitments c0, c1, . . . , cn−1, for which it will prove knowledge of an offset r
and randomizers s0, s1, . . . , sn−1 satisfying:

ck = gαk−r h̃sk , for k = 0, 1, . . . , n− 1. (2)

Building Blocks. We will use a Σ-protocol dl-or(G, γ0, γ1, . . . , γn−1) to prove
that, given randomly selected challenges β0, β1, . . . , βn−1, G =

∏n−1
j=0 c

βj

j is a
commitment to one of γ0, γ1, . . . , γn−1 as defined in the protocol of Fig. 2.

Intuitively, the initial commitments c0, c1, . . . , cn−1 commit to a rotation of
α0, α1, . . . , αn−1 if the prover knows the inner product of a random vector with
one of the possible rotated versions of the vector with the α-values.

Theorem 1. The protocol pub-rotof Fig. 2 is a special honest-verifier zero-
knowledge proof of knowledge with witness-extended emulation that a prover
knows an integer r, 0 ≤ r < n and randomizers s0, s1, . . . , sn−1 such that Eq. (2)
holds.

Proof. To show completeness, let commitments c0, c1, . . . , cn−1 be defined as
in Eq. (2). For challenge β0, β1, . . . , βn−1 the values γ0, γ1, . . . , γn−1 and the
commitment G are then computed. Observe that G is a commitment to the
value

∑n−1
j=0 αj−rβj due to the homomorphic properties, which is equal to γr. As

G is a commitment to γr, the proof dl-or will be accepted by the verifier.
To show SHVZK, we construct a simulator as follows. Given challenges

β0, β1, . . . , βn−1 and λ, it follows that the values γ0, γ1, . . . , γn−1 and G can
be computed as specified by the protocol. From the SHVZK property of the Σ-
protocol dl-or(G, γ0, γ1, . . . , γn−1), there exists a simulator which produces an
indistinguishable view when it is given challenge λ and all public information,
namely G, γ0, γ1, . . . , γn−1.

We show knowledge soundness through witness-extended emulation. Witness
extended emulation can be shown using standard techniques as done in [12,14,15].
The idea is to describe an emulator that runs in expected polynomial time pro-
ducing a view indistinguishable from that of the protocol and at the same time
gives a witness with the same probability as an adversarial prover produces an

Verifiable Rotation of Homomorphic Encryptions 403

Prover Common input: Verifier
(knows r, sk s.t. α0, α1, . . . , αn−1,

ck = gαk−r h̃sk) c0, c1, . . . , cn−1

β0, β1, . . . , βn−1 ∈R Zq

←−
β0, β1, . . . , βn−1−−−−−−−−−−−−−

dl-or(G, γ0, γ1, . . . , γn−1)

u, {λj , tj}j �=r ∈R Zq

{fj = gλjγj h̃tj G−λj}j �=r

fr = h̃u

−−−−
f0, f1, . . . , fn−1−−−−−−−−−−−−−−−→

←−−−−−−−−−−λ−−−−−−−−−−− λ ∈R Zq

λr = λ −∑j �=r λj

tr = u + λr

∑n−1
j=0 sjβj −−−−−−

{λk, tk}n−1
k=0−−−−−−−−−−−−−−→ λ

?=
∑n−1

j=0 λj

h̃tk
?= ak(G/gγk)λk

Fig. 2. Protocol pub-rot for proving a rotation of known committed values, where
γk =

∑n−1
j=0 αj−kβj , for k = 0, 1, . . . , n − 1, and G =

∏n−1
j=0 c

βj

j

accepting conversation. This is achieved by first letting the prover run on random
selected challenges, and if it is accepting, the witness is extracted using rewinding
techniques until a sufficient number of transcripts have been obtained. As we use
the Σ-protocol dl-or as building block, we will make use of its witness-extended
emulator, denoted as Edl-or.

The description of the emulator E is as follows. E picks random challenges
β

(1)
= β

(1)
0 , β

(1)
1 , . . . , β

(1)
n−1 and plays the witness-extended emulator for dl-or,

Edl-or, on G(1) and γ(1) as defined in the protocol. This invocation will give a
transcript of dl-or along with a witness if the transcript is accepting. If the
transcript is not accepting, E outputs no witness along with (β

(1)
, view(1)) as

the view of the protocol.
Otherwise, we have a valid transcript and a witness of dl-or. Namely, an

integer r(1) and a randomizer t(1) such that G(1) = C(γ(1)
r(1) , t

(1)).

The prover is rewound and fresh challenges β
(i)
0 , β

(i)
1 , . . . , β

(i)
n−1 are chosen, for

i = 2, 3, . . . , n until n valid transcripts and n witnesses for dl-or are obtained,
by subsequently invoking Edl-or. From all these n witnesses, E is able to compute
the witness. After this is done, the output of E is the witness plus β

(1)
attached

to the first view obtained from Edl-or.
We first show how E manages to get a witness. Then, we show that this

extractor runs in expected polynomial time and argue that E gives an accepting
view plus a witness with essentially the same probability that the prover is able
to produce accepting conversations.

404 S. de Hoogh et al.

From all of witnesses obtained, we get the following equalities, with 1 ≤ i ≤ n.

G(i) = C(γ(i)
r(i) , t

(i)). (3)

Also, as specified by the protocol, we have

G(i) =
n−1∏
j=0

c
β
(i)
j

j . (4)

By construction, the vectors β
(i)

with i = 1, 2 . . . , n are linearly independent
with overwhelming probability (for n polynomial in the size of q). The linear

independence of the vectors β
(i)

implies the existence of elements dk,i such that∑n
k=1 β

(i)
dk,i is the (k+1)-st standard unit vector of Zn

q , for k = 0, 1, . . . , n− 1.
This implies that

ck =
n∏

k=1

(n−1∏
j=0

c
β
(i)
j

j

)dk,i .

By Eq. (4), it in turn implies that

ck =
n∏

k=1

(G(i))dk,i =
n∏

k=1

C(γ(i)
r(i) , t

(i))dk,i =
n∏

k=1

C(dk,iγ
(i)
r(i) , dk,it

(i)) =

= C(
n∑

k=1

dk,iγ
(i)
r(i) ,

n−1∑
k=0

dk,it
(i))

Therefore, we find an opening of the commitment ck. Let α̃k =
∑n

k=1 dk,iγ
(i)
r(i)

and sk =
∑n

k=1 dk,it
(i).

We now prove that α̃k are a rotated version of the elements αk. From Eqs. (3)
and (4), and using the binding property of the commitment scheme, it follows
that

n−1∑
j=0

β
(i)
j α̃j = γ

(i)
r(i) =

n−1∑
j=0

β
(i)
j αj−r(i) ,

for all i = 1, 2, . . . , n.
As the β

(i)
j are randomly chosen, we conclude, using the Schwartz-Zippel

lemma, that with overwhelming probability α̃j = αj−r(i) holds. This shows that
indeed the committed values in ck are a rotated list of the αk. Note that this
allows us to conclude that r(i) = r(j) for all i �= j.

In summary, we have found an integer r and randomizers s0, s1, . . . , sn−1 such
that ck = C(αk−r , sk) which is actually the witness for pub-rot.

We now argue that E runs in expected polynomial time. Let ε̃ denote the
probability that querying Edl-or on independently random selected β’s results
in an accepting transcript. Then getting an accepting transcript and therefore
a witness will take expected time (1/ε̃)T , where T is the expected running time

Verifiable Rotation of Homomorphic Encryptions 405

of Edl-or. Therefore, the total expected running time of the repeated calls to
Edl-or made by E is T + ε̃(n − 1)T/ε̃ = nT .

Let ε denote the probability that a real prover gives an accepting proof of
pub-rot. To check that the difference between ε and ε̃ is negligible, we observe
that ε can be seen as a weighted sum of probabilities

∑
β(1/qn)ε

dl-or(β), where
ε
dl-or(β) is the success probability of the prover in dl-or when it got challenges

β. On the other hand, the probability that we get an accepting answer in the first
query to Edl-or in E happens with probability

∑
β(1/qn)ε̃

dl-or(β) where ε̃
dl-or(β)

denotes the probability that Edl-or gives an accepting conversation on relation
induced by challenges β. We can conclude that |ε − ε̃| is negligible, using the
fact that |ε

dl-or(β) − ε̃
dl-or(β)| is negligible which is true by definition of witness

extended emulator for dl-or. ��

Efficiency. After the verifier submitted the challenges β, the commitment G
is computed using an n-way exponentiation, which roughly costs n/2 double
exponentiations. Then the prover has to give the dl-or proof based on G and
the γ’s. The latter requires n double exponentiations for the prover and the
verifier separately. Therefore, we have 1.5n double exponentiations to produce
the proof, and 1.5n to verify it.

4.2 General Rotation

Given two lists of encryptions, X0, X1, . . . , Xn−1 and Y0, Y1, . . . , Yn−1, the prover
shows that it knows an integer r, 0 ≤ r ≤ n−1, and randomizers s0, s1, . . . , sn−1
satisfying:

Yk = Xk−r(gsk , hsk) for k = 0, 1, . . . , n − 1. (5)

For this task, we propose the protocol presented in Fig. 3.

Building Blocks. In this protocol, besides of the proof for rotation of known
contents, we use an additional proof of knowledge. The proof eq-exp(h, Y,A)
allows the prover to show the knowledge of α, r, t such that h = C(α, r) and
A = Y αE(0, t), where Y is an encryption. This proof is actually a basic Σ-
protocol.

Before going into the security analysis, we note that the protocol requires
6 rounds of interaction. This is because some rounds in the involved building
blocks can be run in parallel. Namely, we can combine the first set of messages
from eq-exp with the first answer from the prover in the protocol description
of Fig. 3. Also the first round of pub-rot can be directly connected with the
challenge coming from eq-exp. In the security analysis, however, we will use the
modular description of the protocol.

Theorem 2. The protocol gen-rot is a special honest-verifier zero-knowledge
proof of knowledge with witness extended emulation that a prover knows an in-
teger r, 0 ≤ r < n and randomizers s0, s1, . . . , sn−1 such that Eq. (5) holds.

406 S. de Hoogh et al.

Prover Verifier
Common input:

(knows r, sk s.t. Xk = (ak, bk),
Yk = (ak−r, bk−r)(gsk , hsk)) Yk = (dk, ek)

α0, α1, . . . , αn−1 ∈R Zq

←−
α0, α1, . . . , αn−1−−−−−−−−−−−−−

uk, tk ∈R Zq

hk = gαk−r h̃uk

Ak = (dαk−r

k , e
αk−r

k)(gtk , htk)
v =

∑n−1
k=0 (αk−rsk + tk)

−−
{hk, Ak}n−1

k=0 , v
−−−−−−−−−−−−−→

{eq-exp(hk, Yk, Ak)}n−1
k=0

ok, pk, mk ∈R Zq

fk = gok h̃pk

Fk = (dok
k , eok

k)(gmk , hmk) −−−−−−−
{fk, Fk}n−1

k=0−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−λ−−−−−−−−−−−− λ ∈R Zq

τk = ok + λαk−r

ρk = pk + λuk

μk = mk + λtk

−−−−−
{τk, ρk, μk}n−1

k=0−−−−−−−−−−−−−−−−→ gτk h̃ρk
?= fkhλ

k

(dτk
k , eτk

k)(gμk , hμk)
?= FkAλ

k

pub-rot(α0, . . . , αn−1, h0, . . . , hn−1) ∏n−1
j=0 AjX

−αj

j

?= (gv, hv).

Fig. 3. Protocol gen-rot for proving a rotation of ElGamal encryptions, where k runs
from 0 to n − 1

Proof. To prove that the protocol for general rotation is SHVZK, we will con-
struct a simulator, given X0, X1, . . . , Xn−1, Y0, Y1, . . . , Yn−1, and the random
challenges α0, α1, . . . , αn−1 (along with all the challenges for pub-rot and the
one for eq-exp).

The simulator runs as follows. First, it computes Ak = Xαk

k E(0, vk) for random
vk. The assignment for Ak is somewhat arbitrary and there are various ways to
do it, as long as it guarantees that the proof is accepting.

Now, the simulator creates commitments h0, h1, . . . , hn−1 all of them to 0 (or
any value). Despite this choice, the simulators for both pub-rot and eq-exp will
still produce transcripts that are indistinguishable from real ones. Combining the
obtained transcripts with the computed array of commitments hk, encryptions

Verifiable Rotation of Homomorphic Encryptions 407

Ak, and the value v, the resulting view is indistinguishable to a real transcript
of gen-rot.

For witness-extended emulation we construct the emulator E as follows. Given
challenges α(1) = (α(1)

0 , α
(1)
1 , . . . , α

(1)
n−1), E runs the prover until it gets responses

h
(1)

, k
(1)

, v(1), after this, the witness-extended emulators Eeq-exp and Epub-rot

are run. With some probability ε̃, they will produce an accepting transcript. If
this is not the case, E outputs no witness along with the transcripts obtained
from the witness-emulators and the prover. Else, E will rewind the prover and
choose fresh random challenges α(i), until n accepting conversations are obtained
in total. For each of them, let α

(i)
0 , α

(i)
1 , . . . , α

(i)
n−1 denote the challenges selected

by E. For each of these cases, respective witness-extended emulators for pub-

rot and eq-exp’s are run in order to extract their witnesses.
This is the information necessary to compute the witness for gen-rot. We

show now, how E is able to compute an integer r and randomizers s0, s1, . . . , sn−1
such that Eq. (5) holds.

We have for a particular iteration of i = 1, 2, . . . , n, and for every j with
0 ≤ j ≤ n− 1 that

A
(i)
j = Y

b
(i)
j

j E(0, t(i)j), and
h

(i)
j = C(b(i)j , u

(i)
j).

(6)

for some values b, t and u.
We have also witnesses for pub-rot. That is, there exist integers r(i) and

randomizers w
(i)
j such that

h
(i)
j = C(α(i)

j−r(i) , w
(i)
j). (7)

From (6) and (7), due to the binding property of the commitment scheme, it
follows that b

(i)
j = α

(i)
j−r(i) and u

(i)
j = w

(i)
j . One of the consequences is that

A
(i)
j = Y

α
(i)

j−r(i)

j E(0, t(i)j). (8)

As all these equations are based on accepting conversations then the verifications
of the proof passes, and therefore,

∏n−1
j=0 A

(i)
k∏n−1

j=0 X
α

(i)
j

j

=

∏n−1
j=0 Y

α
(i)

j−r(i)

j E(0, t(i)j)∏n−1
j=0 X

α
(i)
j

j

= E(0, v(i)). (9)

This implies that,

n−1∏
j=0

(
Yj−r(i)

Xj

)α
(i)
j

= E(0, v(i) −
n−1∑
j=0

t
(i)
j)

408 S. de Hoogh et al.

From this last equality, we can conclude using the Schwartz-Zippel lemma that
the Xk and Yk encrypt the same elements up to a rotation of these elements,
implying also that r(i) = r(j) for all i �= j. We denote that rotation offset as r.3

Let Zj = Yj−r

Xj
and ñk = v(i) −∑n−1

j=0 t
(i)
j . The aim now is to extract the

randomness used in Zj which is by homomorphic properties the randomness
used to re-blind the rotated list Yj .

As the challenges throughout the extraction process are selected indepen-
dently at random, it implies that the vectors α(i) are linearly independent. This
enables the existence of elements dk,i such that

∑n−1
j=0 dk,iα

(i) is the (k + 1)-st
standard unit vector in Zn

q , for k = 0, 1, . . . , n− 1. Therefore,

Zk =
n∏

k=1

⎛⎝n−1∏
j=0

Z
α

(i)
j

j

⎞⎠dk,i

= E(0,
n∑

k=1

dk,iñk),

that enables us to extract sk =
∑n

k=1 dk,iñk.
The way of arguing that E runs in expected polynomial time is similar to the

protocol for known contents. ��

Efficiency. First, we calculate the computational cost to prove one invocation
of eq-exp. This requires 3 double exponentiations and 3 triple exponentiations
to produce, and 3 triple exponentiations to verify the proof.

Now, the number of exponentiations required to compute gen-rot. The
prover must compute the commitments hk, costing n double exponentiations.
The encryptions Ak need 2n more double exponentiations. Then, 3n for eq-

exp and 1.5n for pub-rot, totalling 7.5n double exponentiations for the prover
to give a proof.

The verifier needs to check the eq-exp and pub-rot which requires 3n triple
exponentiations and 1.5n double exponentiations, respectively. The verification
at the end of the proof requires 2 more n-way exponentiation. Then, the total
cost for the verifier is 5.5n double exponentiations.

5 Comparison and Concluding Remarks

To the best of our knowledge, the protocol by Reiter and Wang [21] is the only
one that presents protocols for proving a rotation. Their construction works in
general given that appropriate homomorphic cryptosystem has been set up. In
fact, they show a protocol to prove that a permutation has been applied making
use of 4 invocations to the proof of shuffle.

Table 1 presents a comparison of the computational complexities for various
protocols for rotation. In all cases, we assume that the protocols are based on
homomorphic ElGamal and Pedersen commitments. For simplicity, we count
3 If this is not the case, this must be because the plaintexts in Xk are all the same for

all k. This is not a problem though, we just take r = 0 and the rest of the procedure
will still be applicable.

Verifiable Rotation of Homomorphic Encryptions 409

Table 1. Performance figures for proving a rotation

Protocol Prove Verify Rounds
Loop permutations [21] 16n 10n 30
Proposed: DFT-based 5n 4n 3
Proposed: General 7.5n 5.5n 6

the number of double exponentiations. Additionally, for the protocol in [21] we
assume that they use the proof of shuffle by Groth [12] which is one of the most
efficient.

Acknowledgements. We thank anonymous reviewers for their valuable com-
ments. The fourth author is supported by the research program Sentinels
(http://www.sentinels.nl). Sentinels is being financed by Technology Foun-
dation STW, the Dutch Organization for Scientific Research (NWO), and the
Dutch Ministry of Economic Affairs.

References

1. Atallah, M.J., Blanton, M., Frikken, K.B., Li, J.: Efficient correlated action selec-
tion. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 296–310.
Springer, Heidelberg (2006)

2. Blake, I., Kolesnikov, V.: Strong conditional oblivious transfer and computing on
intervals. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 515–529.
Springer, Heidelberg (2004)

3. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM 24(2), 84–88 (1981)

4. Cramer, R.: Modular Design of Secure yet Practical Cryptographic Protocols. PhD
thesis, Universiteit van Amsterdam, Netherlands (1997)

5. Cramer, R., Damg̊ard, I.: Zero-knowledge for finite field arithmetic. Or: Can zero-
knowledge be for free? In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462,
pp. 424–441. Springer, Heidelberg (1998)

6. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

7. Damg̊ard, I., Fujisaki, E.: Efficient concurrent zero-knowledge in the auxiliary
string model. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 125–142.
Springer, Heidelberg (2002)

8. Damg̊ard, I., Geisler, M., Krøigaard, M.: Efficient and secure comparison for on-
line auctions. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS,
vol. 4586, pp. 416–430. Springer, Heidelberg (2007)

9. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory IT-31, 469–472 (1985)

10. Garay, J., Schoenmakers, B., Villegas, J.: Practical and secure solutions for integer
comparison. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp.
330–342. Springer, Heidelberg (2007)

410 S. de Hoogh et al.

11. Goldreich, O.: Foundations of Cryptography. Cambridge University Press, Cam-
bridge (2001)

12. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. In: Desmedt,
Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 145–160. Springer, Heidelberg (2002);
http://eprint.iacr.org/2005/246

13. Groth, J.: Evaluating security of voting schemes in the universal composability
framework. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 46–60. Springer, Heidelberg (2004)

14. Groth, J.: Honest Verifier Zero-Knowledge Arguments Applied. PhD thesis, Uni-
versity of Aarhus (2004)

15. Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of a shuffle.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 379–396. Springer,
Heidelberg (2008)

16. Jakobsson, M., Juels, A.: Mix and match: Secure function evaluation via cipher-
texts. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 162–177.
Springer, Heidelberg (2000)

17. Li, J., Atallah, M.: Secure and private collaborative linear programming. Collabo-
rative Computing: Networking, Applications and Worksharing, 2006. Collaborate-
Com 2006, pp. 1–8 (2006)

18. Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation.
Journal of Cryptology 16(3), 143–184 (2001)

19. Neff, C.: A verifiable secret shuffle and its application to e-voting. In: 8th ACM
conference on Computer and Communications Security – CCS 2001, pp. 116–125.
ACM Press, New York (2001)

20. Reistad, T., Toft, T.: Secret sharing comparison by transformation and rota-
tion. In: Pre-Proceedings of the International Conference on Information Theoretic
Security–ICITS 2007. LNCS. Springer, Heidelberg (2007) (to appear)

21. Reiter, M.K., Wang, X.: Fragile mixing. In: CCS 2004: Proceedings of the 11th
ACM conference on Computer and communications security, pp. 227–235. ACM
Press, New York (2004)

22. Ryan, P.: Prêt-à-Voter with Paillier encryption, Technical Report CS-TR No 965,
School of Computing Science, Newcastle University (2006),
http://www.cs.ncl.ac.uk/publications/trs/papers/965.pdf

23. Ryan, P., Schneider, F.: Prêt-à-Voter with re-encryption mixes. In: Gollmann, D.,
Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp. 313–326.
Springer, Heidelberg (2006)

24. Sako, K., Killian, J.: Receipt-free mix-type voting scheme. In: Guillou, L.C.,
Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403.
Springer, Heidelberg (1995)

25. Straus, E.: Addition chains of vectors (problem 5125). American Mathematical
Monthly 71, 806–808 (1964)

26. Wen, R., Buckland, R.: Mix and test counting for the alternative vote electoral
system (2008); presented at WISSec 2008

27. Yao, A.: How to generate and exchange secrets. In: 27th IEEE Symposium on
Foundations of Computer Science, pp. 162–168 (1986)

http://eprint.iacr.org/2005/246
http://www.cs.ncl.ac.uk/publications/trs/papers/965.pdf

A Practical Key Recovery Attack on Basic
TCHo�

Mathias Herrmann1 and Gregor Leander2

1 Horst Görtz Institute for IT-Security
Faculty of Mathematics
Ruhr-University Bochum

Germany
mathias.herrmann@rub.de

2 Department of Mathematics
Technical University of Denmark

Denmark
g.leander@mat.dtu.dk

Abstract. TCHo is a public key encryption scheme based on a stream
cipher component, which is particular suitable for low cost devices like
RFIDs. In its basic version, TCHo offers no IND-CCA2 security, but the
authors suggest to use a generic hybrid construction to achieve this se-
curity level. The implementation of this method however, significantly
increases the hardware complexity of TCHo and thus annihilates the ad-
vantage of being suitable for low cost devices. In this paper we show,
that TCHo cannot be used without this construction. We present a cho-
sen ciphertext attack on basic TCHo that recovers the secret key after
approximately d3/2 decryptions, where d is the number of bits of the
secret key polynomial. The entropy of the secret key is log2

(
d
w

)
, where w

is the weight of the secret key polynomial, and w is usually small com-
pared to d. In particular, we can break all of the parameters proposed
for TCHo within hours on a standard PC.

Keywords: TCHo, chosen ciphertext attack, stream cipher.

1 Introduction

Since the invention of public key cryptography many different crypto systems
have been presented. The most popular systems are either based on the hard-
ness of factoring large integers or related problems (e.g. RSA) or computing
discrete logarithms in various groups (e.g. DSA, ECDSA). While these schemes
are an excellent and preferred choice in almost all applications, there is still a
strong need for alternative systems based on other (supposedly) hard problems.

� The work described in this paper has been supported by the European Commission
through the ICT programme under contract ICT-2007-216676 ECRYPT II. More-
over, this research was partly supported by the German Research Foundation (DFG)
as part of the project MA 2536/3-1.

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 411–424, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

http://dx.doi.org/10.1007/978-3-642-00468-1_29

412 M. Herrmann and G. Leander

This is mainly due to the following two reasons. The first reason is that most
of the standard schemes are not suitable for very constraint environments like
RFID tags and sensor networks. This problem becomes even more pressing when
looking at the next century’s IT landscape, where a massive deployment of tiny
computer devices is anticipated and thus the need for extremely low cost public
key cryptography will increase significantly. The second — and quite unrelated
— reason is that most popular public key crypto systems like RSA, DSA and
ECDSA will be broken if quantum computers with sufficiently many qubits can
be built (see [9]). Thus, it is important to search for public key crypto systems
that have the potential to resist future quantum computers.

Those two reasons outlined above inspired Finiasz and Vaudenay to develop the
crypto system TCHo [7]. The original version of TCHo has been revised by Au-
masson, Finiasz, Meier and Vaudenay (see [3]). This revision was done mainly to
improve the efficiency of the original scheme and we refer to TCHo as defined in [3].

TCHo is a public key encryption scheme based on a stream cipher component.
TCHo uses mainly hardware friendly operations and is therefore suitable for low
cost devices. Its security is based on the problem of finding a low weight multiple
of a given polynomial in F2[x] (LWPM for short). The public key of TCHo is a
high degree polynomial P ∈ F2[x] and the secret key K is a sparse, or low weight,
multiple of P . The LWPM problem is of importance in syndrome decoding [5],
stream cipher analysis and efficient finite field arithmetics [4]. In [2] El Aimani
and von zur Gathen provide an algorithm to solve this problem based on lattice
basis reduction and furthermore give an overview of other possible approaches
to tackle LWPM. Yet, the suggested parameters of TCHo cannot be broken by
any of those attacks.

In this paper we present a chosen ciphertext attack on TCHo that recovers
the secret key after roughly d3/2 decryptions, where d is the degree of the secret
polynomial. In particular all proposed parameters of TCHo given in [3] can be
broken within hours on a standard PC. Our attack recovers consecutively all bits
of the secret key by decrypting pairs of ciphertexts with a carefully chosen differ-
ence. The choice of the difference as well as the choice of the ciphertext depend
on all key bits recovered so far. This property of our attack is of independent
interest, as it is one of the rare occasions where an attack on a public key crypto
system is actually inherently adaptive with respect to the information gained so
far. To clarify, we do not solve the problem of finding low weight multiples of
a given polynomial efficiently, but rather provide an efficient method to extract
this low weight polynomial given a decryption oracle.

It should be noted that the designers do not claim that TCHo is IND-CCA2
secure. On the contrary, as shown in [3] TCHo is clearly not IND-CCA2 secure
since it is, just like RSA, trivially malleable. Given an encryption y for a message
m and a second message m′, it is easy to construct an encryption for m ⊕ m′.
However, as opposed to the trivial IND-CCA2 attack on TCHo that recovers the
message our CCA1 attack recovers the secret key.

In [3] the authors propose to use the revised Fujisaki-Okamoto [8] construction
from [1] to transform TCHo into a IND-CCA secure scheme. Clearly, this scheme

A Practical Key Recovery Attack on Basic TCHo 413

is not affected by our attack. However, this transformation comes with an addi-
tional overhead in the ciphertext length as well as a non negligable overhead due
to the fact that a practical implementation of the Fujisaki-Okamoto construction
requires to implement at least one secure hash function. Following [6], the best
known SHA-1 (resp. SHA-256) implementation requires approximately 8.000 GE
(resp. 11.000 GE) which, based on the estimation in [3], would almost double the
hardware implementation cost for TCHo . Moreover, this transformation is only
efficient in the case where instead of using a truly random number generator
for the encryption of TCHo a pseudo random number generator is used, which
further increases the hardware complexity. Our result implies that TCHo cannot
be used without the Fujisaki-Okamoto transformation. This in turn implies that
the efficiency gain for low cost hardware devices compared to well established
public key crypto systems like ECC vanishes.

One the positive side, our results can also be interpreted as an indication that
breaking TCHo is equivalent to solving the low weight multiple problem.

Finally, our attack is based on a new technique that can be seen as an adaptive
differential attack on public key systems. We believe that this technique can be
useful for the cryptanalysis of other schemes as well.

The paper is organized as follows: In Section 2 we recall the encryption and de-
cryption procedures for TCHo . In Section 3 we present our adaptive differential
attack whose running time is discussed in detail in Section 4.

2 The TCHo Cipher

The encryption of a message using TCHo can be seen as transmitting a message
over a noisy channel. Given the trapdoor, i.e. the secret key, allows to reduce
the noise to a level where decoding of the encrypted message is possible.

The secret key of TCHo is a polynomial K ∈ F2[x] of degree d. We denote its
coefficients by k0 up to kd, i.e.

K = k0 ⊕ k1x ⊕ k2x
2 ⊕ · · · ⊕ kdx

d.

For the key K it holds that k0 = kd = 1. Given the polynomial K we associate
the following matrix M with � columns and � − d rows to it

M =

⎛⎜⎜⎜⎝
k0 k1 . . . kd 0 0 . . . 0
0 k0 k1 . . . kd 0 . . . 0

.
0 0 . . . 0 k0 k1 . . . kd

⎞⎟⎟⎟⎠ (1)

The weight of the secret polynomial, i.e. the number of non-zero coefficients is
denoted by wK . For TCHo this weight is small. The public key consists of a poly-
nomialP ∈ F2[x] whose degree is in a given interval [dP

min, d
P
max] and is chosen such

that K is a multiple of P . The length k of the plaintext can be chosen arbitrar-
ily, however following the proposed parameters in Table 1 we exemplarily choose
the case where the plaintexts are 128 bit vectors. The length of the ciphertext is
denoted by �. Furthermore TCHo uses a random source with bias γ.

414 M. Herrmann and G. Leander

Table 1. Set of parameters proposed for TCHo (see [3])

k dP
min − dP

max d wK γ �

I65 128 5800 − 7000 25820 45 0.981 50000
II65 128 8500 − 12470 24730 67 0.987 68000
III 128 3010 − 4433 44677 25 1 − 3

64 90000
IV 128 7150 − 8000 24500 51 0.98 56000
V 128 6000 − 8795 17600 81 1 − 3

128 150000
VI 128 9000 − 13200 31500 65 1 − 1

64 100000

For simplicity of the description we assume that � − d is divisible by 128.
Denote N = �−d

128 . The attack has an identical complexity in the general case as
can be seen from the experimental results in Section 4.3.

2.1 Encryption

TCHo encrypts a plaintext m ∈ F
128
2 by repeating the message m contiguously

and afterwards truncating it to � bits. This results in a vector in F
�
2. To this

vector a random string r ∈ F
�
2 is added. This random string is not balanced,

but (highly) unbalanced in the sense that it contains far more zeros than ones.
The bias is denoted by γ. In addition, the first � bits, denoted by p ∈ F

�
2, of the

output of an (randomly initialized) LFSR with characteristic polynomial P is
added. Thus the encryption of the message m is

c = R(m) ⊕ r ⊕ p

where R(m) ∈ F
�
2 denotes the repeated and truncated version of m. The encryp-

tion process is shown in Figure 1.

REPEAT �m�
LFSR(P)

��
�RAND(γ)

Enc(m)�

Fig. 1. Encryption with TCHo

2.2 Decryption

Given a ciphertext c ∈ F
�
2 decryption works as follows.

1. The ciphertext c is multiplied by M , the matrix associated with the secret
polynomial K given by (1). Let t := Mc where t ∈ F

�−d
2 . In doing so, the

contribution from the LFSR with characteristic polynomial P vanishes as a
result of K being divisible by P . Thus t corresponds to an encoding of the
original message m xored with a random bit string of bias approximately
γwK (see [3] for details). Now, as wK is small, this bias is still large enough
to recover the message in the next step with high probability.

A Practical Key Recovery Attack on Basic TCHo 415

2. A majority logic decoding is performed on t. More precisely for each 0 ≤ j <
128 the sum

sj =
N−1∑
i=0

t128i+j

is computed over the integers. Remember that N = �−d
128 and note that this

is exactly the position where for simplicity of the description we require N
to be an integer. When this sum is greater or equal to N/2 the result of the
decoding is 1, otherwise it is 0. The result of this majority logic decoding is
a vector e ∈ F

128
2 where

ej :=
{

1 if sj ≥N/2
0 if sj <N/2 j ∈ {0, . . . , 127}

3. Finally the vector e is multiplied by an invertible 128× 128 bit matrix T to
recover the message m := Te. Note that this matrix T depends on K and is
therefore unknown to the attacker.

2.3 Security Considerations

Given the public key P the problem to recover the secret key K is referred to
as the Low Weight Polynomial Multiple Problem, i.e. given a polynomial P find
a polynomial K that is divisible by P , has a bounded degree and low weight.
This problem is supposed to be hard. In [7] several algorithms were presented to
solve this problem. Additionally, an algorithm based on lattices was presented
in [2]. None of these approaches is capable to break TCHo .

As mentioned above TCHo is clearly not IND-CCA2 secure. This is due to
the fact that it is trivially malleable: Given a ciphertext c for a message m
then c ⊕ R(m′) is an encryption of m ⊕ m′. Moreover, if given a ciphertext,
changing only one bit is likely to be a valid ciphertext for the same message. In
[3] the authors propose to use a generic hybrid construction to obtain a hybrid
scheme that offers CCA2 security. However, this can only be applied efficiently
in the case where the random source is actually a pseudo random source. Using
a pseudo random source will increase the hardware complexity and is therefore a
suboptimal solution. Furthermore, a secure hash function has to be implemented.

Below, we present a chosen ciphertext attack that recovers the secret key
nearly in linear time. This attack shows that TCHo is not even CCA1 secure.
Moreover, given a decryption oracle one can efficiently recover the secret key.
From a practical perspective, such an attack is by far more important than an
attack based on the malleability of the scheme.

3 The Attack

Our attack strategy is to decrypt pairs of ciphertexts with a carefully chosen
difference. These differences are chosen such that the intermediate states in the
decryption process, after multiplication with the secret matrix M , differ in one

416 M. Herrmann and G. Leander

bit if and only if a certain key bit is set. With a high probability this difference
will cause a difference in the output of the decryption oracle. Thus, after a few
iterations of this approach we are able to decide with overwhelming probability
if a certain key bit is set or not.

The reason why a difference after multiplication with the matrix M yields
a difference after the majority logic decoding with good probability lies in the
fact that randomly chosen vector is likely to be balanced. In this case the one
bit difference between the two states will cause two different results after the
majority logic decoding and therefore two different results after the last step in
the decoding procedure, i.e. after multiplication with the invertible matrix T .

To illustrate our attack, we first demonstrate how to recover k0 using the
approach outlined above. Note that k0 = 1 in any case, and thus there is no
need to recover it, still this will clarify our attack strategy.

The following technical lemma will be used to estimate the success probability
of our attack.

Lemma 1. For N ≥ 1 we have

1√
2

1√
π(N + 1)

<

(
N

�N/2
)

2N
< 2

1√
πN

.

Proof. For even N the bounds obtained by Stirling’s approximation state

1√
2

1√
πN

<

(
N

N/2

)
2N

< 2
1√
πN

.

Looking at Pascals triangle, we get for odd N that
(

N
(N+1)/2

)
= 1

2

(
N+1

(N+1)/2

)
,

thus
1√
2

1√
π(N + 1)

<

(
N

(N+1)/2

)
2N

=

(
N+1

(N+1)/2

)
2N+1 < 2

1√
π(N + 1)

.

Combining both cases we have

1√
2

1√
π(N + 1)

<

(
N

�N/2
)

2N
< 2

1√
πN

��

3.1 Recovering k0

Recovering k0 is very simple. First, one simply decrypts a randomly chosen
bitstring. In a second step the first bit of the randomly chosen bitstring is flipped
and is decrypted again. If the two decrypted messages differ then k0 has to be
equal to 1. This idea is explained in detail below.

Algorithm 1 (Recover k0)

1. Choose a random vector c ∈ F
�
2 and let it be decrypted by the oracle. Let its

decryption be m.

A Practical Key Recovery Attack on Basic TCHo 417

2. Compute the vector c′ = c⊕δ where δ = (1, 0, . . . , 0), i.e. flip the first bit of the
ciphertext. Let c′ be decrypted by the oracle and denote its decryption be m′.

3. If m �= m′ we deduce that k0 = 1.
4. Repeat these steps with a new random vector.
5. If after α repetitions no difference occurred, we deduce that k0 = 0.

The difference of the intermediate states, t = Mc and t′ = Mc′, after the first
step in the decryption process (see Section 2.2) is

Δ = M(c⊕ c′) = M(1, 0, . . . , 0)t = (k0, 0, . . . , 0)t.

Therefore t and t′ differ if and only if k0 is 1. Note that the attacker has no
access to these values. However, if by coincidence this one bit difference causes
a difference in the result of the majority logic decision during decryption, a
difference will occur in the decrypted messages visible to the attacker. Let us
denote by s0 the value corresponding to the sum in the majority logic decoding
step for t and s′0 be the corresponding value for t′, i.e.

s0 =
N−1∑
i=0

t128i, s′0 =
N−1∑
i=0

t′128i

If s0 is �N/2 − 1� (resp. �N/2�) and the value of s′0 is �N/2� (resp. �N/2 − 1�)
the values of e and e′ after the majority logic decoding will differ in their first
coordinates as

e0 :=
{

1 if s0 ≥N/2
0 if s0 <N/2

and

e′0 :=
{

1 if s′0 ≥N/2
0 if s′0 <N/2 .

Therefore, in this case we can conclude that k0 = 1 and moreover get

m⊕ m′ = T (e ⊕ e′) = T (1, 0, . . . , 0)t,

where T is the key dependent matrix used in the last step of the decryption
procedure. The key point for the running time of the attack is that this happens
with a non negligible probability. The fact that c was chosen randomly and M
has maximal rank implies that t is a random vector in F

�−d
2 . Remember that s0

equals N/2 if and only if exactly half of the bits t128j , j ∈ {0, . . . , N − 1} are
one and the other half is zero.

Thus, applying Lemma 1, we get

P(s0 = �N/2�) =

(
N

�N/2
)

2N
>

√
1

2π(N + 1)
.

418 M. Herrmann and G. Leander

Therefore, the probability to get a difference in m and m′ is given by

P(m �= m′ | k0 = 1) = P(s0 = �N/2� and s′0 = �N/2 − 1�)
+P(s0 = �N/2 − 1� and s′0 = �N/2�)

=

(
N

�N/2
)

2N
P(t0 = 0) +

(
N

�N/2−1
)

2N
P(t0 = 1)

>

√
1

8π(N + 1)
.

Next we consider the error probability, i.e. the probability that, after running
Algorithm 1 we deduce k0 = 0 while it holds that k0 = 1. This is given by the
probability that, under the condition k0 = 1, in none of the α tries a difference
occurred. This probability can be upper bounded by

P(error) ≤
(

1 −
√

1
8π(N + 1)

)α

which is exponentially small in α. Note furthermore that following Algorithm 1
we will never erroneously deduce k0 = 1 while it holds that k0 = 0.

Example 1. For the parameter set (IV) in Table 1 we get for α = 100 tries an
error probability less than 0.006 and for α = 200 an error probability less than
2−14.

3.2 Recovering All Key Bits

The method to recover other key bits than k0 generalizes the idea outlined above.
Our goal is to construct two ciphertexts with a certain difference, such that with
a high probability the majority decision flips one bit of the decrypted message
if the keybit we are looking for is set. Below, we consider only the case where
the attacker wants to recover kn where n < �− d. This is the most challenging –
and for all but the first proposed parameters the only– case that occurs. In the
case where n ≥ � − d one can easily adopt the ideas described below to recover
kn with two decryptions only.

Choosing the difference. Let us assume that we already successfully recovered
the bits k0 up to kn−1 and want to recover kn next. Denote the vector after
multiplying the difference δ ∈ F

�
2 with the secret matrix M by Δ.

Δ =

⎛⎜⎜⎜⎝
k0 k1 . . . kd 0 0 . . . 0
0 k0 k1 . . . kd 0 . . . 0

.
0 0 . . . 0 k0 k1 . . . kd

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

δ0
δ1
...
δ�

⎞⎟⎟⎟⎠
We wish to have the difference Δ = (1 ⊕ kn, 0, . . . , 0, 1, 0, . . . , 0)t where the 1 is
in the (n + 1)-th position.

A Practical Key Recovery Attack on Basic TCHo 419

For the attack we have to distinguish two cases. First consider the case where
n is not divisible by 128. In this case, for two ciphertexts c and c′ with the
difference δ the values s0 and s′0 will differ if kn is not set. In the case where n
is divisible by 128 the bit in the (n + 1)-th position will contribute to the same
sum s0. In order to avoid a cancelation of these contributions special care has
to be taken in the choice of the ciphertexts.

Given the knowledge about the key we already have we can compute a vector
δ′ ∈ F

n
2 such that

M ′δ′ = (0, . . . , 1)t (2)

where M ′ is the following n× n sub block of M :

M ′ =

⎛⎜⎜⎜⎝
k0 k1 . . . kn−1
0 k0 . . . kn−2

0
. . .

0 . . . 0 k0

⎞⎟⎟⎟⎠
Note that, as k0 = 1 the matrix M ′ is bijective and thus the existence of δ′

fulfilling (2) is guaranteed.
Now we can construct δ ∈ F

�
2 the following way: The first entry, δ0, is com-

puted as shown below, then the vector δ′ is appended and finally δ is filled up
with zeros, i.e.

δ0 =
∑n−2

i=0 δ′iki+1 ⊕ 1
δi = δ′i−1 for 1 ≤ i ≤ n
δi = 0 for n + 1 ≤ i < �.

(3)

One verifies

Δ = Mδ =

(
k0(

n−2∑
i=0

δ′iki+1 ⊕ 1) ⊕
n−1∑
i=0

δ′iki+1, 0 . . . , 0, 1, 0 . . . , 0

)t

=
(
k0 ⊕ δ′n−1kn, 0 . . . , 0, 1, 0 . . . , 0

)t
= (1 ⊕ kn, 0 . . . , 0, 1, 0, . . . , 0)t,

where the last equality follows as (2) implies δ′n−1 = 1.

Choosing the ciphertext. Unlike in the case where we wanted to recover k0
we will not use arbitrary random ciphertexts in this case, but restrict ourselves
to certain types of vectors. As mentioned above, this will ensure that we can
handle the case where we want to recover bits kn where n is divisible by 128.
Moreover, given the knowledge about the key we already have, carefully choos-
ing the ciphertext will improve the probability of obtaining pairs such that a
difference after multiplying with the secret matrix M will cause a difference at
the output of the decryption oracle.

We choose the ciphertext c such that we obtain a vector t = Mc with the
properties that 1.) it starts with repeated blocks of 256 bits, where the first bit

420 M. Herrmann and G. Leander

is one and the remaining 255 bits are zero, these repeated blocks are truncated
to give an n bit string, 2.) has a zero in the (n+1)-th position, 3.) the remaining
bits are randomly distributed. Since we know the key bits k0 to kn−1, we are able
to compute the first part ĉ ∈ F

n
2 of the ciphertext the same way we computed

δ′. More precisely, using the matrix M ′ defined above, we are going to compute
ĉ such that

M ′ĉ = b

where b consist of repeated blocks of 256 bits of the form (1, 0(255)), i.e.

b = (1, 0(255), 1, 0(255), . . .) ∈ F
n
2 .

To get the zero entry at the (n+1)-th position of t, we will set d+1 consecutive
bits of c equal to zero and finally the remaining bits of c are chosen uniformly
at random. The ciphertext then has the structure

c = (ĉ, 0(d+1), r) ∈ F�
2 (4)

where r ∈ F
�−n−(d+1)
2 is randomly chosen.

The one at the first position together with the zero at the (n+1)-th position of
t will ensure that we can handle the case n divisible by 128. The repeated blocks
of a one followed by 255 zeros at the beginning of t will increase the probability
to get a difference in the decryptions provided that kn is zero. This is explained
in detail in Section 4.

Algorithm 2 (Recover kn)

1. Choose a random vector r ∈ F
�−n−d−1
2 and compute c as described by (4).

Let c be decrypted by the oracle. Let its decryption be m.
2. Compute the vector c′ = c⊕ δ where δ was computed following (3) and let it

be decrypted by the oracle. Let its decryption be m′.
3. If m ⊕ m′ = T (1, 0, . . . , 0)t we deduce that:

(a) kn = 0 in the case where n �= 0 mod 128
(b) kn = 1 in the case where n = 0 mod 128

4. Repeat the steps with a new random vector.
5. If after α repetitions no difference equal to T (1, 0, . . . , 0)t occurred, we deduce

that
(a) kn = 1 in the case where n �= 0 mod 128
(b) kn = 0 in the case where n = 0 mod 128

Note that, after performing the algorithm to recover k0 the value T (1, 0, . . . , 0)t

is known to the attacker.

4 Analysis of the Attack

We now analyze the success probability and running time of Algorithm 2. We
distinguish two cases depending on n mod 128.

A Practical Key Recovery Attack on Basic TCHo 421

4.1 n �= 0 mod 128

In this case the vectors t = Mc and t′ = Mc′ differ by

Δ = t⊕ t = M(c⊕ c′) = Mδ,

where

Δ = (1 ⊕ kn, 0, . . . , 0, 1, 0, . . . , 0)t

i.e. the vectors differ in their first coordinate if and only if kn = 0 and in their
(n + 1)-th coordinate. Assume that kn = 0. Due to (4) it holds that t0 = 1 and
t′0 = 0 and thus the sums used for the majority logic decoding step are related
by s0 = s′0 + 1. Analogously we have sn + 1 = s′n

Now, lets assume that the vector t is such that the sum used for the majority
logic decoding step is s0 = �N/2� (and thus s′0 = �N/2 − 1�). If this happens
and additionally sn and s′n are either both less than �N/2� or both greater or
equal to �N/2� then the corresponding vectors after the majority logic decoding
differ in their first coordinate exactly. Thus Algorithm 2 will successfully deduce
kn = 0. Note that, due to the relation sn +1 = s′n the condition that either both
values sn and s′n are smaller or both greater or equal to �N/2� is equivalent to
s′n �= �N/2�.

Remember that t = Mc is of the form

t = (b, 0, r)

where b ∈ F
n
2 is a vector consisting of repeated blocks of 256 bits, where the first

bit is one and the remaining 255 bits are zero, and r ∈ F
�−d−1−n
2 is a randomly

chosen vector. Considering the bits t128j that contribute to s0, we see that the
first n/128! bits are balanced. Thus, s0 = �N/2� if and only if half of the bits
of r contributing to s0 equal zero and the other half equals one. Therefore, the
probability that s0 = �N/2� equals

P(s0 = �N/2�) =

(
N ′

�N ′/2
)

2N ′ ,

where N ′ = � �−d−1−n
128 �. As n is not divisible by 128 the first n/128! bits

contributing to s′n are all zero. Thus

P(s′n = �N/2�) =

(
N ′

�N/2
)

2N ′ .

It follows that the success probability

p := P(m⊕ m′ = T (1, 0, . . . , 0)t | kn = 0)

422 M. Herrmann and G. Leander

can be upper bounded by

p = P(s0 = �N/2�)P(s′n �= �N/2�)

=

(
N ′

�N ′/2
)

2N ′

⎛⎝1 −
(

N ′

�N/2
)

2N ′

⎞⎠
≥
(

N ′

�N ′/2
)

2N ′

(
1 −

(
N

�N/2
)

2N

)

>

√
1

2π(N ′ + 1)

(
1 − 2

√
1

πN

)
.

Next, let us consider the probability that, after running Algorithm 2 we deduce
kn = 1 while it holds that kn = 0. This is given by the probability that, under the
condition that kn = 0, in none of the α tries a difference equal to T (1, 0, . . . , 0)
occurred. It can be upper bounded by

P(error) ≤ (1 − p)α

which is exponentially small in α. Note that in the case where kn = 0 the
expected running time is 1/p. As the weight of K is small, this is the running
time for most of the cases.

4.2 n = 0 mod 128

Like before the vectors t = Mc and t′ = Mc′ differ by

Δ = t⊕ t = M(c⊕ c′) = Mδ,

i.e. the vectors differ in their first coordinate if and only if kn = 0 and in their
(n + 1)-th coordinate. Due to (4) we have t0 = 1 and t′0 = kn and tn = 0 and
t′n = 1. Now, as n is divisible by 128, the first and the (n+1)-th coordinate both
contribute to the value of s0 (resp. s′0). Hence, we get s′0 = s0 + kn.

Now if kn = 1 and s0 = �N/2 − 1� (and thus s′0 = �N/2�) the corresponding
vectors e and e′ after the majority logic decoding differ in their first coordinate
exactly. Thus Algorithm 2 will successfully deduce kn = 1.

Again the special choice of c ensures that the first n/128! bits of t′128j are
balanced. Therefore the probability of s′0 being �N/2� can be upper bounded by

P(m ⊕ m′ = T (1, 0, . . . , 0)t | kn = 1) = P(s′0 = �N/2�)

=

(
N ′

�N ′/2
)

2N ′

>

√
1

2π(N ′ + 1)

where again N ′ = � �−d−1−n
128 �. Finally, let us consider the probability that, af-

ter running Algorithm 2 we deduce kn = 0 while it holds that kn = 1. This
is givenby the probability that, under the condition that kn = 1, in none

A Practical Key Recovery Attack on Basic TCHo 423

of the α tries a difference equal to T (1, 0, . . . , 0)t occurred. It can be upper
bounded by

P(error) ≤
(

1 −
√

1
2π(N ′ + 1)

)α

which is exponentially small in α.

4.3 Experimental Results

We implemented the described attack against TCHo in C/C++ using Shoup’s
NTL library. We were able to derive the secret key for each proposed parameter
set of [3] on a Core2 Duo 2.2 GHz laptop in less than 20 hours. The individual
timings are given in Table 2.

Table 2. Time to recover the secret key

k d wK � time in h

I65 128 25820 45 50000 2
II65 128 24730 67 68000 4.5
III 128 44677 25 90000 7
IV 128 24500 51 56000 3
V 128 17600 81 150000 20

VI 128 31500 65 100000 13

One implementation detail that is worth mentioning, is the computation of
δ′ (resp. ĉ). A straightforward approach might be to compute the inverse of
the matrix M ′ of known bits. This has however an utterly bad performance, so
that it is not even possible to consider matrices of dimension 5000, which is a
rather small example compared to the size of secret polynomial. The best idea to
compute δ′ and ĉ is to solve the corresponding system of equations. We started by
using the method provided by NTL, but its performance was still unsatisfactory.
Because of the extreme sparsity of the matrix M ′ and the additionally a priori
given triangular form, it is obvious that solving such a system of equations over
F2 should not require much computation resources. Therefore we implemented
a simple backwards substitution using an array to store the known one-bits and
a obtained very efficient method to compute the required values δ′ and ĉ.

The value of α can be chosen rather large to get the probability of an error
close to zero, since the expected number of encryptions to find a zero-bit does
not depend on α and the number of one-bits is very small compared to the size
of the key.

Also notice that it is possible to run an arbitrary number of instances in
parallel to find the correct differences at the end of the decryption process.

There are several possibilities for further improvements of the actual attack.
One could guess blocks of zeros, make use of the ability to detect missing one-
keybits or reuse good ciphertext pairs. These improvements would allow to speed
up the attack by some (small) factors.

424 M. Herrmann and G. Leander

Acknowledgement

We like to thank the authors of [3] for providing us with their sample implemen-
tation of TCHo as well as for helpful comments about the cipher.

References

1. Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: A New Frame-
work for Hybrid Encryption and A New Analysis of Kurosawa-Desmedt KEM. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 128–146. Springer, Hei-
delberg (2005)

2. El Aimani, L., von zur Gathen, J.: Finding low weight polynomial multiples using
lattices. Cryptology ePrint Archive, Report 2007/423 (2007),
http://eprint.iacr.org/

3. Aumasson, J.-P., Finiasz, M., Meier, W., Vaudenay, S.: TCHo : A hardware-oriented
trapdoor cipher. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007.
LNCS, vol. 4586, pp. 184–199. Springer, Heidelberg (2007)

4. Brent, R.P., Zimmermann, P.: Algorithms for finding almost irreducible and almost
primitive trinomials. In: Primes and Misdemeanours: Lectures in Honour of the
Sixtieth Birthday of Hugh Cowie Williams. The Fields Institute, Toronto, p. 212
(2003)

5. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words in a
linear code: Application to McEliece’s cryptosystem and to narrow-sense BCH codes
of length 511. IEEE Transactions on Information Theory 44(1), 367–378 (1998)

6. Feldhofer, M., Rechberger, C.: A case against currently used hash functions in RFID
protocols. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops.
LNCS, vol. 4277, pp. 372–381. Springer, Heidelberg (2006)

7. Finiasz, M., Vaudenay, S.: When stream cipher analysis meets public-key cryptog-
raphy. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 266–284.
Springer, Heidelberg (2007)

8. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999)

9. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing. In: IEEE Symposium on Foundations of Computer Science, pp. 124–134 (1994)

http://eprint.iacr.org/

An Algebraic Surface Cryptosystem

Koichiro Akiyama1, Yasuhiro Goto2, and Hideyuki Miyake1

1 Computer & Network Systems Laboratory, Corporate Research & Development
Center, Toshiba Corp., 1 Komukai-Toshiba-cho, Saiwai-ku, Kawasaki, Kanagawa

212-8582, Japan
koichiro.akiyama@toshiba.co.jp, hideyuki.miyake@toshiba.co.jp

2 Department of Mathematics, Hokkaido University of Education at Hakodate,
1-2 Hachiman-cho, Hakodate, Hokkaido 040-8567, Japan

ygoto@hak.hokkyodai.ac.jp

Abstract. We construct a public-key cryptosystem based on an NP-
complete problem in algebraic geometry. It is a problem of finding sec-
tions on fibered algebraic surfaces; in other words, we use a solution to
a system of multivariate equations of high degrees. Our cryptosystem is
a revised version of the algebraic surface cryptosystem (ASC) we con-
structed earlier (cf. [AG04, AG06]). We revise its encryption algorithm
to avoid known attacks. Further, we show that the key size of our cryp-
tosystem is one of the shortest among those of post-quantum public-key
cryptosystems known at present.

Keywords: Public-key Cryptosystem, Algebraic Surface, Section.

1 Introduction

In 1994, Shor showed that the factorization problem and the discrete logarithm
problem can be solved efficiently by a quantum computer [Shr]. This implies
that the RSA cryptosystem and Elliptic Curve cryptosystems will no longer be
secure, once a quantum computer is built. We are thus in search for a public-
key cryptosystem that does not rely on these problems and possibly can be
implemented even on our present machines.

In this paper, we propose a new public-key cryptosystem whose security is
based on an NP-complete problem in algebraic geometry. It is a problem of
finding sections on algebraic surfaces fibered on an affine line. We shall call it a
section finding problem (SFP) on algebraic surfaces. The SFP can be viewed as a
problem of solving multivariate equation systems (of high degrees) over a finite
field Fp with an arbitrary prime p. As this problem is known to be NP-complete,
our cryptosystem is expected to have resistance against quantum computers. In
what follows, we call our cryptosystem an algebraic surface cryptosystem (ASC).

The first version of the ASC was announced in [AG04]. It was then attacked
by Uchiyama-Tokunaga [UT] and Voloch [Vol] in two different methods. The
former attack uses a reduction-by-polynomial method that works in some special
cases, while the latter employs a trace map of algebraic extensions of function
fields that works in any case. (Eventually, Iwami [Iw08] found an unconditional
reduction method generalizing the result of Uchiyama-Tokunaga.) The weakness

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 425–442, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

http://dx.doi.org/10.1007/978-3-642-00468-1_29

426 K. Akiyama, Y. Goto, and H. Miyake

of the original ASC lay in the use of a one-variable polynomial in the encryption
algorithm. We have therefore changed it to a three-variable polynomial and
revised the entire cryptosystem to avoid the attacks we mentioned above.

The new ASC was announced in [AG07] and soon, Voloch [Vol] came up with
an idea of attacking this new system. Fortunately, however, it did not really break
our system as we explain in Sect. 5.5 later. In the present paper, we reproduce
the cryptosystem described in [AG07], and fill in various details and update the
toy example.

One of the advantages of our new ASC is the small key size. To the best of
our knowledge, it can offer one of the shortest keys of the known post-quantum
public-key cryptosystems. For instance, a multivariate public-key cryptosystem
is a candidate for a post-quantum cryptosystem. Its private key size is in the
same order as ASC, but the public key size tends to be very large. The following
table describes a rough comparison of the key sizes for several post-quantum
cryptosystems, where n is a security parameter.

Table 1. Key size of several post-quantum public-key cryptosystems

Cryptosystem Lattice-based Multivariate Knapsack ASC
Public key O(n log n) O(n3) O(n2) O(n)
Private key O(n log n) O(n) O(n) O(n)

Both multivariate public-key cryptosystems and our ASC are associated with
a system of multivariate algebraic equations f1 = · · · = fm = 0 over a finite
field Fp. Typically, the public key of a multivariate public-key cryptosystem is
constructed directly from polynomials f1, · · · , fm. The public key of the ASC,
on the other hand, is a single equation X(x, y) = 0 over a polynomial ring
Fp[t] whose solution (ux(t), uy(t)) is a pair of polynomials over Fp related with
f1, · · · , fm (precisely, the coefficients of ux(t) and uy(t) are solutions to some
equation system f1 = · · · = fm = 0). In this way, we can elude the direct use of
f1, · · · , fm and save the public-key size drastically.

This paper is organized as follows. Section 2 collects some important facts
about algebraic surfaces and recalls our original cryptosystem (ASC04). Section
3 describes the attacks on the ASC04 by Uchiyama-Tokunaga and Iwami, and
also by Voloch. We discuss how to avoid their attacks. Section 4 presents our
new algebraic surface cryptosystem which has resistance against various types
of attacks. That resistance is discussed in Sect. 5. Lastly, the key size of the
ASC is evaluated in Sect. 6. In Appendix, we give a toy example to illustrate
our algorithm concretely.

2 Preliminaries

2.1 Algebraic Surfaces and the Section Finding Problem

Let k := Fp be a finite prime field of p elements. An algebraic surface over k is the
set of solutions of algebraic equations over k that has two dimensional freedom

An Algebraic Surface Cryptosystem 427

over k. In order to construct our cryptosystem, we use an affine algebraic surface,
X , in affine 3-space A3

k defined by a single equation

f(x, y, t) = 0 (1)

over k. It does not matter whether X is smooth or singular, but f(x, y, t) should
be irreducible.

There are many curves and points on X . For example, if we take another
surface Y , then the intersection X ∩ Y is often a curve on X . These curves are
easy to find, but finding all curves on X is a difficult problem; in fact, there is
no effective algorithm to do so in general.

There is a special kind of curves on X which are generally very difficult to
find explicitly. They are parameterized curves on X written in such a form as

(x, y, t) = (ux(t), uy(t), t) ,

where ux(t) and uy(t) are polynomials in t over k. If we define a map σ : X −→
A1 by σ(x, y, t) = t, then this parameterized curve induces an inverse map
τ : A1 −→ X such that σ ◦ τ = idA1 . The map σ is called a fibration of X on A1

and τ is called a section of σ. A section may be explained also as follows: rewriting
f(x, y, t) as a polynomial over k[t], we can view X as a curve over the field k(t)
(or over the ring k[t]). Then a section is a k(t)-rational point on this curve.
Finding such rational points is a Hilbert’s 10th problem over a function field
and is a hard mathematical problem. In our case, there is an exponential-time
algorithm to solve this problem (cf. [Szp]), but no polynomial-time algorithm
exists to find sections in general.

Definition 1. (Section Finding Problem) If X(x, y, t) = 0 is a surface over k,
then the problem of finding a parameterized curve (x, y, t) = (ux(t), uy(t), t) on
X is called a section finding problem on X .

A general (but computationally inefficient) method of solving this problem,
known at present, is as follows: express the defining equation for X as

X(x, y, t) =
∑

(i,j,k)∈ΓX

ηi,j,kx
iyjtk = 0 ,

where Γf denotes the set of indices (i, j, k) that appear in a polynomial f(x, y, t).
Choose rx and ry that satisfy deg ux(t) < rx and deg uy(t) < ry and write

ux(t) = α0 + α1t + · · · + αrx−1t
rx−1 ,

uy(t) = β0 + β1t + · · · + βry−1t
ry−1 .

The substitution of these into X(x, y, t) gives

X(ux(t), uy(t), t) =
∑

(i,j,k)∈ΓX

ηi,j,kux(t)iuy(t)jtk =:
∑

i

cit
i ,

428 K. Akiyama, Y. Goto, and H. Miyake

where ci are polynomials in αi and βj . If we write r = max{i degux(t) +
j deg uy(t) + k | (i, j, k) ∈ ΓX}, then we find a system of equations⎧⎨⎩ c0(α0, · · · , αrx−1, β0, · · · , βry−1) = 0 ,

· · ·
cr(α0, · · · , αrx−1, β0, · · · , βry−1) = 0 .

A solution to this system is a section of X . In this sense, our section finding
problem can be reduced to solving a multivariate equation system of large degrees
and such a problem is known to be NP-complete (cf. [GJ]).

2.2 Original Version (ASC04)

We briefly explain the first version of our cryptosystem (ASC04) that was
announced in 2004. See [AG04] for the details.

Keys. Following are important system parameters:

1. Size of the ground field: p
2. Maximum degree of sections: d
3. Number of blocks in a plaintext: l (assume d < l)

[Public keys and secret keys]

1. The secret key is a pair of two sections

D1 : (x, y, t) = (ux(t), uy(t), t), D2 : (x, y, t) = (vx(t), vy(t), t)

with
d = max{deg ux(t), deg uy(t), deg vx(t), deg vy(t)} . (2)

2. The public key is a surface X that contains Di as sections

X(x, y, t) =
∑

(i,j)∈ΛX

cij(t)xiyj = 0 ,

where ΛX := {(i, j) ∈ N2|cij(t) �= 0} # (0, 0), (1, 0).

Key Generation. First we choose polynomials D1 = (ux(t), uy(t), t) and D2 =
(vx(t), vy(t), t), and then construct a surface X(x, y, t) that contains D1 and D2
as sections. This can be done, for instance, by letting the polynomials satisfy
(ux(t) − vx(t))|(uy(t) − vy(t)).

Encryption Algorithm. Divide a plaintext m into l blocks as m = m0|| · · ·
||ml−1 and embed m into a polynomial in t by

m(t) = ml−1t
l−1 + · · · + m1t + m0 (0 ≤ mi < p, i = 0, · · · , l − 1) .

1. Choose an irreducible polynomial f(t) of degree l.

An Algebraic Surface Cryptosystem 429

2. Choose a random polynomial

r(x, y, t) =
∑

(i,j)∈Λr
rij(t)xiyj (3)

and write
X(x, y, t)r(x, y, t) =

∑
(i,j)∈ΛXr

aij(t)xiyj (4)

where ΛXr := {(i, j) ∈ N2|aij(t) �= 0}.
3. Randomly choose

s(x, y, t) =
∑

(i,j)∈ΛXr

sij(t)xiyj (5)

with deg sij(t) = deg aij(t) − l. This makes fs and Xr have the same form
as polynomials in x and y over k[t].

4. Set the cipher polynomial F (x, y, t) to be

F (x, y, t) = m(t) + f(t)s(x, y, t) + X(x, y, t)r(x, y, t) . (6)

Decryption Algorithm. First we substitute sections Di into F (x, y, t) and let

h1(t) =F (ux(t), uy(t), t) = m(t) + f(t)s(ux(t), uy(t), t) ,

h2(t) =F (vx(t), vy(t), t) = m(t) + f(t)s(vx(t), vy(t), t) .

1. Compute h1(t) − h2(t) to find f(t){s(ux(t), uy(t), t) − s(vx(t), vy(t), t)}.
2. Factor h1(t) − h2(t) and obtain f(t) as an irreducible polynomial of

degree l.
3. Find m(t) as the remainder in division of h1(t) by f(t) and recover the

plaintext m from m(t).

3 Attacks on ASC04

There have been announced two attacks on the ASC04. We sketch the ideas of
these attacks and analyze how to avoid them.

3.1 Reduction Attack by Uchiyama and Tokunaga

Uchiyama and Tokunaga announced an attack on the ASC04 in 2007 (cf. [UT]).
Their algorithm is as follows.

1. Given a cipher text F (x, y, t) as in (6), compute the remainder

R(x, y, t) =
∑

(i,j)∈ΛR

gij(t)xiyj (7)

in division of F (x, y, t) by a public key X(x, y, t).
2. Let G be the set of all irreducible factors of gij(t) of degree ≥ l.

430 K. Akiyama, Y. Goto, and H. Miyake

3. For each fi(t) ∈ G, find the remainder mi(t) in division by g00(t). Then one
of the mi(t)’s coincides with the plaintext m(t).

To make this algorithm work, it is necessary that G contains f(t) and that
g00 has the form g00(t) = m(t)+f(t)s(t) for some s(t). In [UT], it is proven that
this condition is satisfied if the leading term LT (X) of X(x, y, t) in a monomial
order is of the form LT (X) = cxαyβ with c ∈ Fp.

The algorithm of Uchiyama and Tokunaga can be generalized if there exists a
monomial order for x, y and t with which the remainder of F (x, y, t) in division
by X(x, y, t) coincides with some part of

m(t) + f(t)s(x, y, t) = m(t) + f(t)
∑

(i,j)∈Λ

sij(t)xiyj . (8)

3.2 A Refinement by Iwami

The Uchiyama and Tokunaga attack had an assumption that the leading term
LT (X) of X(x, y, t) in a monomial order is of the form LT (X) = cxαyβ with
c ∈ Fp. In [Iw08], Iwami found a way to get rid of this assumption. The main idea
is to consider X(x, y, t) as a polynomial in two variables x and y over the field
Fp(t) rather than as a polynomial in three variables over Fp. Then by dividing
through by the coefficient of the leading term, one can always have the situation
LT (X) = xαyβ. Now apply the reduction algorithm to X(x, y, t) over Fp(t) and
clear the denominators of the coefficients. The same method of Uchiyama and
Tokunaga on the numerators of the coefficients reveals the polynomial f(t).

3.3 Conditions to Avoid the Reduction Attack

One way to avoid the reduction attack is to modify the ASC04 so that no mono-
mial order will be effective to extract sufficient information of m(t) and f(t)
when F (x, y, t) is divided by X(x, y, t).

Let > be a monomial order on k[x1, · · · , xn] and write xα for xα1
1 · · ·xαn

n . For
a non-zero polynomial f =

∑
α aαx

α ∈ k[x1, · · · , xn], let multideg (f) denote
the multidegree of f and LT (f) the leading term of f . It is known that every
polynomial f ∈ k[x1, · · · , xn] can be expressed as

f = aX + r

for some a, r ∈ k[x1, · · · , xn] satisfying r = 0 or r is a linear combination of
monomials that are not divisible by LT (X). Furthermore, if aX �= 0, then
multideg (f) ≥ multideg (aX). As r is not divisible by LT (X) when r �= 0,
we can avoid the reduction attack if LT (X) divide some monomials in m(t) and
f(t) in every monomial order. Since there are an infinite number of monomial
orders, almost all monomials in X(x, y, t) can be a leading term. Therefore we
are led to change m(t) and f(t) to polynomials m(x, y, t) and f(x, y, t) in 3
variables and pose the following condition:

(Condition). m(x, y, t) and f(x, y, t) contain some monomials that are divisible
by all monomials in X(x, y, t).

An Algebraic Surface Cryptosystem 431

3.4 An Attack by Voloch

Another attack was suggested by Voloch [Vol]. His idea is to consider an extension
of Fp(t) and use the trace map T . Let F (x, y, t) be a ciphertext.

1. Substitute some polynomial c(t) into y so that X(x, c(t), t) becomes irre-
ducible.

2. Let α be a solution to X(x, c(t), t) = 0 over Fp(t) and find β ∈ Fp(t)(α) such
that TFp(t)(α)/Fp(t)(β) = 0.

3. Compute T (βF (α, c(t), t)) and have

T (βF (α, c(t), t)) = T (βm(t) + βf(t)s(α, c(t), t)) = f(t)T (βs(α, c(t), t)) .

4. Factor T (βF (α, c(t), t)) and obtain f(t).
5. Find β1 ∈ Fp(t)(α) such that TFp(t)(α)/Fp(t)(β1) ∈ F×

p and compute:

T (β1F (α, c(t), t)) = m(t)T (β1) + f(t)T (β1s(α, c(t), t)) .

6. Divide T (β1F (α, c(t), t)) by f(t) to find m(t)T (β1) and then m(t).

3.5 Ideas to Avoid Voloch’s Attack

There may be two ways to avoid Voloch’s attack: make the trace computation
extremely time-consuming or change the form of m(t) and f(t). Both ideas can
be realized simultaneously by letting m(t) and f(t) multi-variable.

For instance, replace m(t) by m(x, t) and f(t) by f(y, t). Choose x = c(t).
Let y = α be a solution to X(c(t), y, t) = 0. Compute T (β0F (c(t), α, t)) with an
element β0 satisfying T (β0) = 0. We can find T (β0f(α, t)s(c(t), α, t)). But, this
does not yield f(α, t). Neither in the attempt by y = c(t) can we obtain enough
information for f(y, t) or m(x, t). Therefore the Voloch attack does not work in
this case.

(On the other hand, if we replace m(t) by m(x, t) and keep f(t) as is, then
f(t) can be obtained in the same way as in Sect. 3.4 and m(x, t) can be found
by taking various y = c(t). Hence the case (m(x, t), f(t)) is insecure.)

Considering all cases, we conclude in particular the following:

(Safe case). The case where m(t) and f(t) are replaced by three-variable poly-
nomials m(x, y, t) and f(x, y, t), respectively, is safe.

4 New Algorithm (Algebraic Surface Cryptosystem)

This section presents an improved algebraic surface public-key cryptosystem
(ASC) which has resistance against the attacks described in Sect. 3. The dis-
cussions in Sect. 3.5 and 3.3 suggest that m(t) and f(t) should be 3-variable
polynomials m(x, y, t) and f(x, y, t).

Although this idea is effective to avoid the attacks, a problem arises now in
decryption steps 1 and 2 of ASC04 as m(ux(t), uy(t), t) �= m(vx(t), vy(t), t) and

432 K. Akiyama, Y. Goto, and H. Miyake

f(ux(t), uy(t), t) �= f(vx(t), vy(t), t). Our solution to overcome this drawback is to
employ an algebraic surface X with one section and use two cipher polynomials
instead.

We assume that algebraic surfaces are defined over a prime field Fp. (p is a
prime small enough to calculate, such as primes within the word size.)

4.1 Keys

1. Secret key
D : (x, y, t) = (ux(t), uy(t), t) : a section of X

2. Public key
(a) X(x, y, t) = 0 : a defining equation of a surface X with fibration.
(b) m(x, y, t) =

∑
(i,j)∈Λm

mij(t)xiyj : a plaintext polynomial where Λm and
degmij(t) are fixed.

(c) f(x, y, t) =
∑

(i,j)∈Λf
fij(t)xiyj : a divisor polynomial where Λf and

deg fij(t) are fixed.
Here ΛA denotes the set of exponents of nonzero xiyj terms in A(x, y, t). We
choose m(x, y, t) and f(x, y, t) so that they satisfy

Λm ⊂ ΛfΛX (9)

where ΛAΛB = {(ia + ib, ja + jb)|(ia, ja) ∈ ΛA, (ib, jb) ∈ ΛB}.
The decryption process requires that these keys satisfy the following
condition:

⎧⎨⎩
degx X(x, y, t) < degx m(x, y, t) < degx f(x, y, t)
degy X(x, y, t) < degy m(x, y, t) < degy f(x, y, t)
degt X(x, y, t) < degt m(x, y, t) < degt f(x, y, t)

and
(degx m(x, y, t), degy m(x, y, t), degt m(x, y, t)) ∈ Γm ,
(degx f(x, y, t), degy f(x, y, t), degt f(x, y, t)) ∈ Γf ,

(10)

where Γm = {(i, j, k) ∈ N3|cijk �= 0} denotes the set of exponents of nonzero
xiyjtk terms in m(x, y, t), so that m(x, y, t) =

∑
(i,j,k)∈Γm

cijkx
iyjtk.

Condition (10) implies the following inequality:

deg(m(ux(t), uy(t), t)) < deg(f(ux(t), uy(t), t)) . (11)

Also, we see that m(x, y, t) and f(x, y, t) have at least one term divisible by any
terms of X(x, y, t).

First we define a set of polynomials D (i.e. secret key) and then construct
X containing D as a section. (Details are explained in Sect. 4.3.) For security
reasons, we assume that the general fiber of X is not a rational curve. This can
be realized, for instance, by letting degx X(x, y, t) > 2 and degy X(x, y, t) > 2.

An Algebraic Surface Cryptosystem 433

4.2 Encryption/Decryption

Encryption. Let m be a plaintext, and divide m into small blocks as m =
m00|| · · · ||mij || · · · ||mIJ where

∀(i, j) ∈ Λm, |mij | ≤ (|p| − 1)(degmij(t) + 1) .

Further, write �ij := degmij(t) and divide mij into �ij + 1 blocks each of which
is of (|p| − 1) bits:

mij = mij0||mij1|| · · · ||mij�ij .

1. Embed m into a plaintext polynomial as

m(x, y, t) =
∑

(i,j)∈Λm

mij(t)xiyj

where mij(t) is given as

mij(t) =
deg mij(t)∑

k=0

mijkt
k .

2. Choose a random divisor polynomial f(x, y, t) in accordance with the con-
dition of f(x, y, t).

3. Choose random polynomials r0(x, y, t) and r1(x, y, t) that have the same
form as f(x, y, t); i.e. they have Λr = Λf and deg rij(t) = deg fij(t) for
(i, j) ∈ Λf as polynomials in x and y over k[t].

4. Choose random polynomials s0(x, y, t) and s1(x, y, t) that have the same
form as X(x, y, t); i.e. they have Λs = ΛX and deg sij(t) = deg cij(t) for
(i, j) ∈ ΛX as polynomials in x and y over k[t].

5. Construct the cipher polynomial F (x, y, t) by

F0(x, y, t) = m(x, y, t) + f(x, y, t)s0(x, y, t) + X(x, y, t)r0(x, y, t) ,
F1(x, y, t) = m(x, y, t) + f(x, y, t)s1(x, y, t) + X(x, y, t)r1(x, y, t) .

(12)

Decryption. Note that the section D satisfies X(ux(t), uy(t), t) = 0 as they are
on the surface X .

1. Substitute D into Fi(x, y, t):

h0(t) = F0(ux(t), uy(t), t)
= m(ux(t), uy(t), t) + f(ux(t), uy(t), t)s0(ux(t), uy(t), t) ,

h1(t) = F1(ux(t), uy(t), t)
= m(ux(t), uy(t), t) + f(ux(t), uy(t), t)s1(ux(t), uy(t), t) .

2. Compute h0(t) − h1(t):

h0(t) − h1(t) = f(ux(t), uy(t), t){s0(ux(t), uy(t), t) − s1(ux(t), uy(t), t)} .
(13)

3. Factor h0(t) − h1(t).

434 K. Akiyama, Y. Goto, and H. Miyake

4. Find a factor of h0(t) − h1(t) whose degree matches deg f(ux(t), uy(t), t).
(This degree can be calculated from the initial setting of f(x, y, t) and D =
(ux(t), uy(t), t).)

5. Compute h0(t) ≡ m(ux(t), uy(t), t) (mod f(ux(t), uy(t), t)) (cf. (11))
6. Extract the coefficient mij(t) from m(x, y, t) by solving linear equations.

Let m(x, y, t) =
∑

(i,j,k)∈Γm
mijkx

iyjtk, where mijk’s are variables. Con-
struct linear equations by comparing the coefficients of t in

m(ux(t), uy(t), t) =
∑

(i,j,k)∈Γm

mijkux(t)iuy(t)jtk .

The left-hand side is given in Step 5.
7. Extract m from mij(t) and authenticate the MAC of m. We can make certain

of the plaintext m, if MAC is authenticated. Otherwise, return to Step 4.

In Step 4, we may not always extract f(ux(t), uy(t), t) exactly, since the factor
of degree equal to deg f(ux(t), uy(t), t) is not always unique. If this happens, then
we repeat Steps 4 to 7 until MAC is authenticated.

We note that degm(ux(t), uy(t), t) and deg f(ux(t), uy(t), t) are fixed. If the
difference deg(f(ux(t), uy(t), t))−deg(m(ux(t), uy(t), t)) in (11) is set large, then
we have a good chance to find f(ux(t), uy(t), t) immediately.

Remark 1. In the decryption process, some factorizations of polynomials in t
can be rather time-consuming and Step 4 involves a knapsack problem. But, as
we noted above, it is not an arbitrary knapsack problem, and so we can keep the
entire algorithm practical. (The exact complexity of the decryption algorithm is
under evaluation now and will be discussed elsewhere.)

4.3 Key Generation

Generation of Algebraic Surfaces. Let X(x, y, t) = 0 be a surface given by

X(x, y, t) =
∑

(i,j)∈ΛX

cij(t)xiyj .

1. Randomly choose a set of polynomials (ux(t), uy(t)) as a section.
2. Randomly choose polynomials cij(t) with (i, j) �= (0, 0) and calculate c00(t)

by
c00(t) = −

∑
(i,j)∈ΛX\{(0,0)}

cij(t)ux(t)iuy(t)j .

The Form of m(x, y, t) and f(x, y, t). We describe a method of determining
deg fij(t) and degmij(t). The form of f(x, y, t) which satisfies (10) can be defined
easily from the information of X(x, y, t). Λm can be determined as a subset
of ΛXΛf in (10). To find a plaintext efficiently, linear equations established
in decryption step 6 should have a unique solution. In Step 6, we construct
equations as follows

An Algebraic Surface Cryptosystem 435

A

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

m000
m001
m002
...
mijk

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝
c0
c1
c2
...
cK

⎞⎟⎟⎟⎟⎟⎠ , (14)

where c0, · · · , cK are coefficients of

m(ux(t), uy(t), t) =
K∑

τ=0

cτ t
τ .

The equations (14) have a unique solution, if and only if rank (A) = n, where n
denotes the number of variable mijk’s. Hence we must return to the determining
process of the form of f(x, y, t), if rank (A) < n.

5 Security Analysis

In this section, we will discuss about the resistance of our system against various
types of attacks.

5.1 Reduction to a Multivariate Equation System

When we solve F0(x, y, t) − F1(x, y, t) = f(x, y, t)s(x, y, t) + X(x, y, t)r(x, y, t),
an obvious way is to let

f(x, y, t) =
∑

(i,j,k)∈Γf
aijkx

iyjti ,

s(x, y, t) =
∑

(i,j,k)∈ΓX
bijkx

iyjtk ,

r(x, y, t) =
∑

(i,j,k)∈Γf
cijkx

iyjtk ,

and consider a multivariate equation system in aijk, bijk and cijk. If there ex-
ists a solution to this system, then we can obtain exact f(x, y, t). Then we may
have m(x, y, t) by using ideal (f,X). But, as #Γf and #ΓX increase, finding a
solution to this system becomes considerably difficult, even if cijk’s are elimi-
nated by substituting rational points of X(x, y, t). For instance, if #Γf > 50 and
#ΓX > 50, then the system contains more than 100 variables. Hence it becomes
computationally intractable when we choose a sufficiently large #Γf and #ΓX .

5.2 Reduction by the Defining Equation

One can try to divide F0(x, y, t) − F1(x, y, t) by X(x, y, t) to find a common
divisor f(x, y, t) in the possible remainders. But f(x, y, t) does not appear in
these remainders since m(x, y, t) and f(x, y, t) have at least one term divisible
by any terms of X(x, y, t); this is due to (10).

436 K. Akiyama, Y. Goto, and H. Miyake

5.3 Reduction by Substituting Various Curves

Among the affine curves in A3, there are many rational curves parameterized in
such a way as

(x, y, t) = (ux(ω), uy(ω), ut(ω)) .

If one can find such curves on X , then he can use them for the sections of X
and decode the ciphertext in the same way as we decipher it using sections. We
show, however, that finding such curves on X is as difficult as finding sections
on X . We explain this according to deg ut(ω).

(i) Case deg ut(ω) ≥ 2
This is part of the divisor finding problem on X . As we assume the difficulty

of it, such parameterized curves cannot be found easily.
(ii) Case deg ut(ω) = 1
This is equivalent to finding sections on X , and hence it is difficult to find

such curves on X .
(iii) Case deg ut(ω) = 0
This means that t is set to be some constant value and we try to find a

parameterized curve in ω. As we assume that the general fibers of X are non-
rational (cf. Sect. 4.1), only singular fibers may contain rational curves. Hence
we look for a singular fiber containing a rational curve.

One can find singular fibers by solving a system of equations ∂X/∂x =
∂X/∂y = 0 consisting of partial derivatives of X(x, y, t) = 0 with respect to
x and y. But, as we raise the degree of X , this becomes considerably difficult.
Also, no efficient algorithm is known for determining whether or not a singu-
lar fiber contains a rational curve. Even if it contains a rational curve, finding
a parameterization by ω is a divisor finding problem and is known to be diffi-
cult. Therefore the attack by substituting rational curves does not seem to be
effective.

5.4 Reduction to a Function Field Fp(t) by the Trace Map

As we explained in Sect. 3.5, Voloch’s attack by the trace map (at least in the
original form) does not work on ASC.

5.5 Voloch’s New Attack

Previously, our ASC was announced in SCIS 2008 (cf. [AG07]) and soon after,
Voloch communicated to us with a new attack that uses rational points on
surfaces over finite fields; see [Vol]. The attacking procedure is described as
follows:

1. Let F (x, y, t) = F1(x, y, t) − F2(x, y, t); i.e.

F (x, y, t)=f(x, y, t)(s1(x, y, t)−s2(x, y, t))+X(x, y, t)(r1(x, y, t)−r2(x, y, t)).

2. Let g(x, y, t) = f(x, y, t)(s1(x, y, t) − s2(x, y, t)) and write

g(x, y, t) =
∑

(i,j)∈Γg

gijkx
iyjtk .

An Algebraic Surface Cryptosystem 437

3. Find a large number of rational points (x�, y�, t�) on X(x, y, t) = 0 and
substitute them into F (x, y, t) to obtain a system of linear equations in
gijk ∈ Fp:

g(x�, y�, t�) = F (x�, y�, t�) (� = 1, · · · , n) . (15)

4. Solve this system for gijk and factor g(x, y, t) to find f(x, y, t).
5. Finally, substitute rational points of X(x, y, t) = 0 into

F1(x, y, t) = m(x, y, t) + f(x, y, t)s1(x, y, t) + X(x, y, t)r1(x, y, t)

to construct a system of linear equations in the coefficients of m(x, y, t) and
s1(x, y, t). A solution to this system gives m(x, y, t).

Effectiveness of Voloch’s Rational Point Attack. The above new attack
requires many rational points on X(x, y, t) = 0, which can be obtained by raising
the field of definition for X(x, y, t) = 0. However, we claim that no matter how
many rational points we use, the polynomials f(x, y, t) and m(x, y, t) cannot be
determined uniquely. In fact, if g0(x, y, t) is a solution to (15), then for any
polynomial r(x, y, t), g0(x, y, t) + X(x, y, t)r(x, y, t) also serves as a solution.
Hence by raising the number of monomials in r(x, y, t) (which is the same as in
f(x, y, t)), we have too many candidates for g(x, y, t) in the decryption process.
More precisely, if γ denotes the number of monomials in r(x, y, t), then there are
pγ candidates for g(x, y, t). Therefore, for instance, by choosing γ that satisfies
(16), we may avoid Voloch’s rational point attack:

pγ > 2100 (16)

It is not difficult to create the situation with (16).

6 Key Size Estimation

Finally, we discuss the public and secret key sizes to keep the ASC sufficiently
secure. ASC has four parameters d (maximal degree of the polynomials defining
a section), w = degxy X(x, y, t), k (number of terms in X(x, y, t) respect to x
and y) and p (size of finite fields). Now we assume p = 2 to compare with the
case of HFE.

In the case of w ≤ 4, surfaces X are very likely to be elliptic or rational
surfaces whose sections are known well. So w must be greater than or equal to
5 to avoid this case. Also, d must be greater than or equal to 50 to avoid the
attack by Faugère et al. in [FJ03].

These observations suggest that the secret key size must be larger than 100
bits. A public key X(x, y, t) contains coefficients a1(t), · · · , ak(t). The degrees of
c00(t) can be set equal to dw by the key generation algorithm, if the coefficient of
xdegx Xydegy X is constant. So the public-key size can be set less than or equal to
(k − 1)dw in size. The lower bound of k is 3, since the key generation algorithm
requires a constant term. So the public-key size is presented in the linear from of
d. Hence a lower bound for the public-key size is 500 bits, which is much smaller
than HFE.

438 K. Akiyama, Y. Goto, and H. Miyake

7 Conclusion

This paper has proposed a new type of public-key cryptosystem whose security
is based on a section finding problem on algebraic surfaces. The section finding
problem has no known efficient algorithm to solve other than finding roots of
a multivariable equation system that is NP-complete in general. We show that
our system requires only O(n) bit key size that is much smaller than other post-
quantum cryptosystems.

Acknowledgments

We thank Felipe Voloch for communicating us with his attacks on our cryp-
tosystems at earlier stages. We also thank Shinji Miura, Shigenori Uchiyama and
Hiroo Tokunaga for useful comments and discussions. We are grateful to Jintai
Ding and Tatsuaki Okamoto for their constant encouragement. Many thanks are
due to the referees for helpful comments and suggestions.

References

[AG04] Akiyama, K., Goto, Y.: An Algebraic Surface Public-key Cryptosystem.
IEICE Tech. Report, vol. 104(421), pp. 13–20 (2004)

[AG06] Akiyama, K., Goto, Y.: A Public-key Cryptosystem using Algebraic Sur-
faces. In: Proc. of PQCrypto 2006, pp. 119–138 (2006)

[AG07] Akiyama, K., Goto, Y.: An improvement of the algebraic surface public-key
cryptosystem. In: Proc. of SCIS 2008, CD-ROM 1F1-2 (2008)

[FJ03] Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of hidden field equation
(HFE) cryptosystems using gröbner bases. In: Boneh, D. (ed.) CRYPTO
2003. LNCS, vol. 2729, pp. 44–60. Springer, Heidelberg (2003)

[Iw08] Iwami, M.: A Reduction Attack on Algebraic Surface Public-Key Cryp-
tosystems. In: Kapur, D. (ed.) ASCM 2007. LNCS, vol. 5081, pp. 323–332.
Springer, Heidelberg (2008)

[Kob98] Koblitz, N.: Algebraic Aspects of Cryptography. Springer, Heidelberg (1998)
[Shr] Shor, P.W.: Algorithms for Quantum Computation: Discrete Logarithms

and Factoring. In: Proceedings of the 35th Annual IEEE Symposium on
Foundations of Computer Science, pp. 124–134 (1994)

[UT] Uchiyama, S., Tokunaga, H.: On the Security of the Algebraic Surface
Public-key Cryptosystems (in Japanese). In: Proc. of SCIS 2007, CD-ROM
2C1-2 (2007)

[Vol] Voloch, F.: Breaking the Akiyama-Goto algebraic surface cryptosystem.
Arithmetic, Geometry, Cryptography and Coding Theory, CIRM meeting
(2007)

[GJ] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman, New York (1979)

[Szp] Szpiro, L.: Seminaire sur les pinceaux de courbes de genre au moins deux.
Asterisque 86(3), 44–78 (1981)

An Algebraic Surface Cryptosystem 439

A Toy Example

We give an example of the algebraic surface cryptosystem described in this paper.
This example is intended mainly to demonstrate our algorithm explicitly. The
security of the system is not fully guaranteed; in practice, we should use more
complicated polynomials.

Set k = F17 (i.e. p = 17).

A.1 Key Generation

Choose ux(t) = 14 t3 + 12 t2 + 5 t+ 1 and uy(t) = 11 t3 + 3 t2 + 5 t+ 4. Let D be
a parameterized curve

D : (ux(t), uy(t), t) = (14 t3 + 12 t2 + 5 t + 1, 11 t3 + 3 t2 + 5 t + 4, t) . (17)

An algebraic surface X having D as a section is constructed as follows:

X(x, y, t) = (t+10)x3y2+(16 t2+7 t+4)xy2+3 t16+8 t15+13 t14+8 t13+3 t12+
12 t11+4 t10+8 t9+7 t8+4 t7+13 t6+2 t5+5 t4+4 t3+14 t2+9 t+14.

We fix the form of a plain-text polynomial m(x, y, t) and a divisor polynomial
f(x, y, t) as follows, where Fm = {(0, 0) = 17, (4, 4) = 17} for instance means
that the index set of m(x, y, t) is Λm = {(0, 0), (4, 4)} and degm00(t) = 17 and
degm44(t) = 17:

FX = {(0, 0) = 16, (1, 2) = 2, (3, 2) = 1},
Ff = {(0, 0) = 13, (1, 2) = 11, (5, 5) = 18},
Fm = {(0, 0) = 17, (4, 4) = 17}.

The polynomials X(x, y, t), f(x, y, t) and m(x, y, t) thus constructed satisfy (10)
and (16).

A.2 Encryption

For example, a plain text m = 0xb3f25a22d683a10b362bc3e17a6b832794f5 can
be embedded into a polynomial m(x, y, t) as

m(x, y, t) = (5 t17 +15 t16 + 4 t15 + 9 t14 + 7 t13 + 2 t12 + 3 t11 + 8 t10 + 11 t9 +
6 t8 +10 t7 +7 t6 + t5 +14 t4 +3 t3 +12 t2 +11 t+2)x4y4 +6 t17 +
3 t16 + 11 t15 + t13 + 10 t12 + 3 t11 + 8 t10 + 6 t9 + 13 t8 + 2 t7 +
2 t6 + 10 t5 + 5 t4 + 2 t3 + 15 t2 + 3 t + 11.

Then choose randomly an irreducible polynomial f(x, y, t) as

f(x, y, t) = (t18 + 8 t17 + 8 t16 +6 t15 +3 t14 +11 t13 +12 t12 +9 t11 +14 t10 +
8 t9+11 t8+10 t7+7 t6+8 t5+16 t4+10 t3+12 t2+7 t+16)x5y5+
(7 t11 + 2 t10 + 16 t9 + 16 t8 + 2 t7 + 4 t6 + 4 t5 + 9 t4 + 9 t3 + t2 +
7 t+ 14)xy2 + 8 t13 + 12 t12 + 15 t11 + 5 t9 + 12 t8 + 13 t7 + 6 t6 +
6 t5 + 2 t4 + 13 t3 + 14 t2 + 14 t + 11.

440 K. Akiyama, Y. Goto, and H. Miyake

Also, we may choose si(x, y, t) and ri(x, y, t) as

s1(x, y, t) = (4 t+2)x3y2+(16 t2+9 t+4)xy2+8 t16+4 t15+11 t14+7 t13+t12+
11 t10+8 t9+13 t8+12 t7+14 t6+16 t5+8 t4+13 t3+16 t2+14 t+4,

s2(x, y, t) = (7 t + 11)x3y2 + (11 t2 + 3 t + 3)xy2 + t16 + 3 t15 + 13 t14 + t13 +
3 t12 + 16 t11 + 9 t10 + 4 t9 + 12 t7 + t6 + 7 t5 + t4 + 4 t3 + 2 t + 1,

r1(x, y, t) = (10 t18 +3 t17 +7 t16 + t15 +10 t14 +10 t13 +5 t12 +7 t11 +15 t10 +
10 t9 + 8 t8 + 2 t7 + 16 t6 + 4 t4 + t3 + 3 t2 + 16 t+ 2)x5y5 + (t11 +
10 t10 + 14 t9 + 10 t8 + 2 t7 + 4 t6 + 13 t5 + 6 t4 + 10 t3 + 10 t2 +
4 t+15)xy2 +5 t13 +16 t12 + t11 +8 t10 +8 t9 +3 t8 +3 t7 +5 t6 +
3 t5 + 3 t4 + 9 t3 + 7 t2 + t + 15,

r2(x, y, t) = (12 t18 + 2 t17 + 7 t16 + 6 t15 + 8 t14 + 9 t13 + 16 t12 + 4 t11 + 8 t8 +
8 t7 + 10 t6 + 13 t5 + 12 t4 + 11 t3 + 8 t2 + 4 t + 16)x5y5 + (t11 +
8 t10 + 2 t9 + t8 + 4 t7 + 2 t6 + 8 t5 + 4 t4 + 13 t3 + 15 t2 + 2 t +
8)xy2 + 16 t13 + 6 t12 + t11 + 11 t10 + 16 t9 + 4 t8 + 2 t7 + 14 t6 +
3 t5 + 7 t4 + 13 t3 + 13 t2 + 8 t + 16,

where ri(x, y, t) satisfies the condition of a divisor polynomial, si(x, y, t) is in
the same form as X(x, y, t). Expanding Fi(x, y, t), we obtain the following
polynomial:

F0(x, y, t) = (14 t19 + t18 +9 t16 +10 t15 +7 t14 +5 t13 +15 t12 +6 t11 +16 t10 +
15 t9+8 t8+16 t7+2 t6+16 t5+11 t4+13 t3+13 t2+2 t+1)x8y7+
(6 t20+3 t18+5 t17+6 t16+2 t15+7 t13+16 t12+5 t11+t10+11 t9+
4 t8+11 t7+8 t6+6 t5+9 t4+14 t3+13 t2+12 t+4)x6y7+(4 t34+
4 t33+10 t32+13 t31+2 t30+11 t29+3 t28+15 t27+7 t25+13 t24+
4 t23 + 6 t21 + 4 t20 + t18 + 15 t17 + 6 t16 + 16 t15 + 15 t14 + 7 t13 +
14 t11+12 t10+8 t9+9 t8+6 t7+6 t6+10 t5+14 t4+2 t3+4 t2+t+
7)x5y5+(5 t17+15 t16+4 t15+9 t14+7 t13+14 t12+11 t11+3 t10+
2 t9 + 12 t8 + 3 t7 + 16 t6 + 11 t5 + 2 t4 + 16 t3 + 10 t2 + 10)x4y4 +
(3 t14+11 t13+7 t12+14 t11+6 t10+5 t9+7 t8+4 t6+2 t5+10 t4+
9 t3+2 t2+12 t+2)x3y2+(9 t13+7 t12+5 t11+9 t10+7 t9+9 t8+
12 t7+8 t6+2 t5+13 t4+8 t3+4 t2+3 t+14)x2y4+(8 t27+14 t26+
8 t25+16 t24+16 t23+13 t22+6 t21+13 t20+10 t19+4 t18+10 t17+
10 t16 + 13 t15 + 11 t14 + 14 t13 + 14 t12 + 15 t11 + 4 t10 + 11 t9 +
13 t8+5 t7+4 t6+10 t5+13 t4+3 t3+2 t2+16 t+13)xy2+11 t29+
12 t28+10 t27+t26+14 t25+16 t24+12 t23+14 t22+14 t21+11 t20+
7 t19+15 t18+6 t17+16 t16+15 t15+10 t14+4 t13+7 t12+16 t11+
11 t10 +8 t9+2 t8+16 t7+ t6 +12 t5+3 t4+13 t3+12 t2+5 t+10,

F1(x, y, t) = (2 t19 + 2 t18 + t17 + 2 t16 + 2 t15 + 12 t14 + 5 t13 + 2 t12 + 16 t11 +
6 t10 + 3 t9 + 7 t8 + 11 t7 + 8 t6 + 2 t5 + 3 t4 + 6 t3 + 10 t2 + 7 t +
13)x8y7 + (16 t20 + 3 t19 + 12 t17 + t16 + 15 t15 + 15 t14 + 6 t13 +
3 t12+3 t11+9 t10+11 t9+14 t8+7 t7+t5+4 t4+t3+5 t2+10 t+
10)x6y7+(3 t34+11 t33+8 t31+11 t30+11 t29+4 t28+5 t27+t26+

An Algebraic Surface Cryptosystem 441

4 t25 +3 t24 + 9 t23 +5 t22 + 7 t21 +16 t20 + 4 t19 + 10 t18 + 7 t17 +
9 t16 +15 t15 +13 t14 +8 t13 +9 t12 +10 t11 +10 t10 +3 t9 +14 t7 +
15 t6+4 t5+11 t4+2 t3+7 t2+t+2)x5y5+(5 t17+15 t16+4 t15+
9 t14 + 7 t13 + t12 +10 t11 +3 t10 +14 t9 +6 t8 +5 t6 +5 t5 + 8 t4 +
16 t3+3 t2+10 t+15)x4y4+(4 t14+15 t13+9 t12+16 t11+8 t10+
14 t9+10 t8+15 t7+13 t6+15 t5+9 t4+10 t3+16 t2+4 t+9)x3y2+
(8 t13 + 8 t12 + 6 t11 + 3 t10 + 10 t9 + 9 t8 + 16 t7 + 13 t6 + 15 t5 +
4 t4+7 t3+6 t2+8 t+6)x2y4+(10 t27+4 t26+9 t25+7 t24+3 t23+
13 t22 + 16 t21 + 14 t20 + t19 + t17 + 6 t16 + 11 t15 + 9 t14 + 2 t13 +
16 t12+9 t11+16 t10+13 t9+2 t7+2 t6+14 t5+6 t4+15 t3+6 t2+
14 t+2)xy2+5 t29+12 t28+6 t27+14 t26+5 t25+10 t24+12 t23+
t22+8 t21+2 t20+15 t19+3 t18+5 t17+14 t15+7 t14+5 t13+2 t12+
9 t11 + 7 t10 + 11 t9 + 3 t8 + 10 t7 + 7 t6 + 14 t4 + t3 + 8 t2 + 6 t+ 8.

A.3 Decryption

Substituting the section defined in (17) into Fi(x, y, t) (i = 0, 1), we obtain

h0(t) = F0(ux(t), uy(t), t)
= 13 t64+8 t63+8 t62+13 t61+7 t60+16 t58+10 t57+13 t56+6 t55+3 t54+

15 t53 +3 t52 + t51 +4 t50 +2 t49 +5 t48 +12 t47 +3 t46 +8 t44 +14 t43+
9 t42 + 13 t41 + 14 t40 + 10 t39 + 8 t38 + 11 t37 + 12 t36 + 9 t35 + 7 t33 +
14 t32 +12 t31+8 t30 +4 t28 +9 t27 +15 t26 + t25 +4 t24 +8 t23 +5 t22 +
14 t21+3 t20+7 t19+6 t18+7 t17+16 t16+9 t15+6 t13+3 t12+8 t11+
11 t10 +11 t9 +14 t8+11 t7 +15 t6 +14 t5+2 t4 +10 t3 +10 t2 + t+10,

h1(t) = F1(ux(t), uy(t), t)
= 14 t64+6 t63+6 t62+8 t61+7 t60+t59+4 t58+t57+7 t56+11 t55+10 t54+

2 t53+13 t52+16 t51+14 t50+15 t49+3 t48+3 t46+t45+11 t44+10 t43+
13 t42 + 8 t41 + 6 t40 + 9 t39 + 4 t38 + 13 t37 + 16 t36 + 13 t35 + 12 t34 +
t33+t32+6 t31+15 t30+15 t29+16 t28+14 t27+2 t26+13 t25+16 t24+
16 t23+3 t22+13 t21+4 t20+5 t19+15 t18+5 t17+4 t16+t15+10 t14+
15 t13+t11+8 t10+6 t9+13 t8+15 t6+10 t5+4 t4+8 t3+11 t2+12 t+2.

Factor h1(t) − h2(t). We have

h1(t) − h2(t) = 16 (t3 +3 t2 +13 t+3)(t4+11 t3 +15 t2+14 t+13)(t9+8 t8 +
11 t7+3 t5 +4 t4+6 t3 +14 t2+12 t+13)(t17+2 t16+14 t15 +
5 t14 +5 t13 +8 t12 +9 t11 +11 t10 +3 t9 +13 t8 +10 t7 +8 t6 +
15 t5 + 7 t4 + 12 t3 + 10 t2 + 3 t + 2)(t5 + 13 t4 + 4 t3 + 2 t2 +
4 t+13)(t16 + 4 t15 +11 t14 + t13 + 4 t12 +13 t11 + t10 + 2 t9 +
t8 + 2 t7 + t6 + 2 t4 + 15 t3 + 5 t2 + 11 t+ 6)(t6 + 4 t5 + 3 t4 +
10 t3 + 14 t2 + 2 t + 5)(t4 + 4 t3 + 5 t2 + 16 t + 10).

Then we find 4 candidates for f(ux(t), uy(t), t) as it should have degree 48. Fur-
thermore, by comparison of the degrees ofm(ux(t), uy(t), t) and h1(t) (mod f(t)),
we can single out the correct f(ux(t), uy(t), t) as

442 K. Akiyama, Y. Goto, and H. Miyake

f(ux(t), uy(t), t) = (t3 +3 t2 +13 t+3)(t4+11 t3+15 t2+14 t+13)(t5+13 t4+
4 t3 + 2 t2 + 4 t + 13)(t6 + 4 t5 + 3 t4 + 10 t3 + 14 t2 + 2 t +
5)(t9 +8 t8+11 t7+3 t5 +4 t4+6 t3 +14 t2+12 t+13)(t17+
2 t16 + 14 t15 + 5 t14 + 5 t13 + 8 t12 + 9 t11 + 11 t10 + 3 t9 +
13 t8 +10 t7 +8 t6 +15 t5 +7 t4 +12 t3 +10 t2 +3 t+2)(t4 +
4 t3 + 5 t2 + 16 t + 10)

and we obtain

m(ux(t), uy(t), t) = 5 t41 +10 t40 +9 t38 +9 t36 +5 t35 +12 t34 +14 t33 +9 t31 +
6 t30 + t29 + t27 + 7 t26 + 10 t25 + 3 t24 + 10 t23 + 13 t22 +
4 t21 +10 t20 +11 t19 +6 t18 + 4 t17 +5 t16 + 7 t15 +14 t14 +
t13 +7 t12+11 t11+5 t10+2 t9+8 t8+14 t7+13 t6+12 t5+
16 t4 + 13 t3 + 9 t2 + 13 t + 13.

Now recall that m(ux(t), uy(t), t) has the form

m(ux(t), uy(t), t) = (m4,4,17t
17 + m4,4,16t

16 + · · · + m4,4,1t +
m4,4,0)ux(t)4uy(t)4 + m0,0,17t

17 + m0,0,16t
16 + · · · +

m0,0,1t + m0,0,0.
(18)

By comparing two expressions of m(ux(t), uy(t), t) above, we create a system of
linear equations with variables mi,j,t as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m4,4,17 = 5
m4,4,0 + m0,0,0 = 13
16m4,4,17 + m4,4,16 = 10
m0,0,1 + m4,4,1 + 8m4,4,0 = 13

...
m4,4,15 + 13m4,4,2 + 14m4,4,12 + 2m4,4,8 + 12m4,4,6 +
16m4,4,3+10m4,4,13+13m4,4,5+5m4,4,0+3m4,4,1+m4,4,17+
m4,4,14 + 8m4,4,16 + m0,0,17 = 4.

Solving this, we recover the plaintext polynomial

m(x, y, t) = (5 t17 + 15 t16 + 4 t15 +9 t14 + 7 t13 + 2 t12 + 3 t11 + 8 t10 +11 t9 +
6 t8 +10 t7 +7 t6 + t5 +14 t4 +3 t3 +12 t2 +11 t+2)x4y4 +6 t17 +
3 t16 + 11 t15 + t13 + 10 t12 + 3 t11 + 8 t10 + 6 t9 + 13 t8 + 2 t7 +
2 t6 + 10 t5 + 5 t4 + 2 t3 + 15 t2 + 3 t + 11.

Fast Multibase Methods and Other Several
Optimizations for Elliptic Curve Scalar

Multiplication

Patrick Longa, and Catherine Gebotys

Department of Electrical and Computer Engineering,
University of Waterloo, Canada

{plonga,cgebotys}@uwaterloo.ca

Abstract. Recently, the new Multibase Non-Adjacent Form (mbNAF)
method was introduced and shown to speed up the execution of the
scalar multiplication with an efficient use of multiple bases to represent
the scalar. In this work, we first optimize the previous method using
fractional windows, and then introduce further improvements to achieve
additional cost reductions. Moreover, we present new improvements in
the point operation formulae. Specifically, we reduce further the cost
of composite operations such as quintupling and septupling of a point,
which are relevant for the speed up of multibase methods in general. Re-
markably, our tests show that, in the case of standard elliptic curves, the
refined mbNAF method can be as efficient as Window-w NAF using an
optimal fractional window size. Thus, this is the first published method
that does not require precomputations to achieve comparable efficiency
to the standard window-based NAF method using precomputations. On
other highly efficient curves as Jacobi quartics and Edwards curves, our
tests show that the refined mbNAF currently attains the highest per-
formance for both scenarios using precomputations and those without
precomputations.

Keywords: Elliptic curve cryptosystem, scalar multiplication, multibase
non-adjacent form, double base number system, fractional window.

1 Introduction

Scalar multiplication, denoted by kP (where k is a scalar and P a point on the
elliptic curve), is the most time consuming operation in Elliptic Curve Cryp-
tosystems (ECC). Although several algorithms to compute kP using efficient
representations of k have been proposed and extensively studied in past years,
it is still a challenge to improve the performance of this operation for further
deployment in embedded systems.

In that effort, a strategy that has gained lots of attention in recent years is the
use of representations based on double- and multi-base chains. The use of the
so-called Double Base Number System (DBNS) for cryptographic applications
was first proposed by Dimitrov et al. in [7]. In the setting of ECC, double-base

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 443–462, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

http://dx.doi.org/10.1007/978-3-642-00468-1_29

444 P. Longa and C. Gebotys

chains were first applied to the computation of scalar multiplication by Dimitrov
et al. [8], and later extended to multibase chains by [17] and [9].

Although it was empirically shown that double-base chains reduce the cost of
the scalar multiplication, the main drawbacks of the initial approaches using this
strategy were their memory penalty and difficulty to analyze performance theo-
retically [8,11,1]. To solve these problems, an improved multibase representation
was introduced by Longa in [17]. One of the key features of this representa-
tion is the use of the non-adjacency property (as found in NAF), which makes
the conversion process (from binary to multibase) simple, efficient and with no
memory impact. This new representation is called Multibase NAF (mbNAF).
Its window-based version using an extended set of precomputations appears as a
natural extension and is referred to as Window-w Multibase NAF (wmbNAF)1.

Nevertheless, although Multibase NAF is simple and offers high performance,
it is still possible to find shorter and more efficient multibase chains. In that
direction, this work proposes new algorithms that are able to find highly efficient
multibase chains and thus reduce scalar multiplication costs even further.

In addition, we also propose other several optimizations that aim at improving
the efficiency of multibase methods (and standard methods in some cases). The
contributions of this paper can be summarized as follows2:

– New reductions in the cost of composite (point) operations. We present im-
proved formulas for quintupling and septupling in Jacobian coordinates.

– Improved (w)mbNAF-based algorithms (hereinafter referred to as Refined
mbNAF methods) that ”smartly” trade doublings for triplings/quintuplings
and find shorter chains, reducing further the cost of the scalar multiplication.

– Window-based methods, namely wmbNAF and its refined version, are opti-
mized by using fractional windows.

– The theoretical analysis demonstrating mathematically the performance of
the Multibase NAF methods (and variants) is presented.

– Finally, we carry out a more comprehensive comparison taking into account
most efficient curve shapes and point formulas found in the literature, and
recent and most efficient methods to compute the evaluation and precompu-
tation stages in the scalar multiplication.

Note that we focus here on methods that are efficient if the point P used
to compute kP is not known in advance. In such a context, we analyze the
performance of the proposed methods and compare to that of traditional binary
methods such as NAF and wNAF, and another approaches using double-base
chains (methods using a ”Greedy” algorithm will be generically referred to as
DB [8,11,1]). Our analysis includes the standard form of an elliptic curve over
prime fields, and other very efficient curve forms such as Jacobi quartics [5] and
Edwards curves [12]. It will turn out that the Refined mbNAF is currently the

1 In some way, Multibase NAF can be seen as a generalization of the ternary/binary
algorithm by Ciet et al. [6]. The original intention of the author [17], however, was
to insert the concept of double-base chains proposed by [8] into the NAF algorithm.

2 This paper presents formally and expands the results of the technical report [19].

Fast Multibase Methods and Other Several Optimizations 445

most cost efficient method for both scenarios with and without precomputations
and for all the studied curve forms.

Our work is organized as follows. In Section 2, we detail some background
about ECC over prime fields, summarizing the state-of-the-art point formulae for
Jacobian coord., Jacobi quartics and Edwards curves. Improvements to these op-
erations are discussed in this section. In the following section, we briefly describe
the original (w)mbNAF methods and discuss their theoretical performance. In
Section 4, we optimize the performance of multibase algorithms by using frac-
tional windows and present a detailed theoretical analysis. We then describe new
improvements to Multibase NAF in Section 5 and propose the Refined mbNAF
method, highlighting its advantages and high performance for computing scalar
multiplication. In Section 6, the performance of various methods for scalar mul-
tiplication is evaluated through extensive tests. Finally, in Section 7 we present
some conclusions summarizing the contributions of this work.

2 Elliptic Curve Cryptography

A brief introduction to ECC is presented in this section. The reader is referred to
[14] for extended details. An elliptic curve E over a prime field IFp (denoted by
E(IFp)) can be defined by the simplified Weierstrass equation E: y2 = x3 + ax+ b
(referred to as the standard EC form in the remainder), where a, b∈ IFp. The
points on the curve E and the point at infinity, denoted by O, form an additive
group on top of which the cryptosystem works. Two basic operations exist to
perform point computations: doubling (2P) and addition (P +Q) of points.

The representation of points on the curve E using (x, y), known as affine
coordinates, introduces expensive field inversions (I) in the computation of point
operations. Hence, most efficient implementations use representations of the form
(X :Y :Z), known as projective coordinates. For example, an efficient case of the
latter is given by Jacobian coordinates, where each projective point (Xi :Yi :Zi)
corresponds to the affine point (Xi/Z2

i ,Yi/Z3
i). The reader is referred to [18] for

complete details about most efficient formulae in this system.
Recently, other curve forms with faster group laws have appeared in the liter-

ature. We focus here on two of them: Jacobi quartics and Edwards curves, whose
explicit formulas are highly efficient. We briefly described them in the following.

Jacobi quartic curve. It is defined by the projective curve Y 2=X4+ 2aX2Z2 +
Z4, where a∈ IFp and a2 �=1. A given projective point (Xi :Yi :Zi) corresponds
to the affine point (Xi/Zi,Yi/Z2

i). The most efficient formulae in these curves
have been developed by Hisil et al. [15,16] using an extended coordinate system
of the form (Xi :Yi :Zi :X2

i :Z2
i).

Edwards curve. The projective curve in this setting is given by (X2 +Y 2)Z2 =
Z4 + dX2Y 2. However, the most efficient explicit formulas in this case correspond
to a new coordinate system known as inverted Edwards coord. [4], for which the
curve equation takes the form (X2 +Y 2)Z2 =X2Y 2 + dZ4 and each projective
point (Xi :Yi :Zi) corresponds to the affine point (Zi/Xi,Zi/Yi).

446 P. Longa and C. Gebotys

Note that the basic doubling and addition operations are sufficient to imple-
ment traditional methods relying on (signed) binary representations as NAF.
However, new double- and multi-base methods require specialized operations
such as tripling and/or quintupling of a point for their efficient realization.

In this work, we present optimized formulas for quintupling and septupling
using Jacobian coord. (refer to Appendix A for complete details). Furthermore,
certain computations such as those at the beginning of the evaluation stage can
benefit from having specialized formulas with mixed coordinates that accept the
input in affine and output the result in some projective system. Because of page
constrains, formulas using mixed coordinates on standard and Edwards curves
have not been included (the interested reader is referred to [19]). For mixed Ja-
cobi quartic-affine coord., formulas can be easily derived from doubling, tripling,
quintupling and septupling formulas due to [15,16] by setting Z1 =1.

In Table 1, we summarize the costs of the state-of-the-art point formulae, in-
cluding the ones described above, for our three curves of interest: standard ellip-
tic curves using Jacobian coordinates (Jacobian, parameter a = −3 in equation
E), Jacobi quartics using the extended coordinate system (JQuartic) and Ed-
wards curves using inverted Edwards coord. (InvEdw). For the remainder, dou-
bling (2P), tripling (3P), quintupling (5P), septupling (7P), addition (P +Q)
and doubling-addition (2P +Q) are denoted by D, T, Q, S, A and DA, respec-
tively. Operations using mixed coordinates are denoted by mD, mT, mQ, mS,
mA and mDA, corresponding to each of the aforementioned point operations.
For addition, the case in which both inputs are in affine is denoted by mmA.
Costs are expressed in terms of field multiplications (M) and squarings (S), dis-
regarding field addition/subtractions (A) and multiplication/divisions by small
constants for simplification purposes. We also assume that 1S = 0.8M .

In some cases, it is possible to reduce the cost of certain operations if some
values are precalculated in advance. That is the case of addition and doubling-
addition (DA) with stored values in Jacobian coordinates (see Table 1). If, for
instance, values Z2

i and Z3
i are precalculated for each precomputed point in win-

dowed methods the costs of these point operations can be reduced by 1M +1S.
We use the efficient operations discussed in this section for our comparisons

and cost analyses of scalar multiplication methods in Section 6.

Table 1. Cost of elliptic curve point operations

Curve D/mD T/mT Q/mQ S/mS A mA/mmA DA/mDA

Jacobian
3M+5S/ 7M+7S/ 10M+12S (1)/ 14M+15S (1)/ 10M+4S (2) 7M+4S/ 13M+8S (2)

1M+5S 5M+7S (1) 8M+12S (1) 12M+15S (1) 11M+5S 4M+2S 14M+9S/

11M+7S

InvEdw 3M+4S/ 9M+4S/ - - 9M+1S
8M+1S/

-
3M+3S 7M+3S (1) 7M

JQuartic 2M+5S/ 8M+4S/ 14M+4S/ 16M+8S/ 7M+3S (2) 6M+3S/ -
6S (1) 5M+5S (1) 11M+5S (1) 13M+9S (1) 7M+4S 4M+3S

(1) Introduced in this work (see Appendix A and [19]); (2) cost of operation with stored values.

Fast Multibase Methods and Other Several Optimizations 447

3 Multibase Non-adjacent Form Methods

Following, we briefly describe the original Multibase NAF methods introduced
in Longa [17]. Our main contribution in this section is to provide the theoretical
analysis of the average density of these methods when using bases {2,3} and
{2,3,5} that was deferred in [17].

3.1 Multibase NAF (mbNAF) and Window-w Multibase NAF
(wmbNAF)

Determining and finding the ”optimal” multibase chain in the setting of ECC
seems to be a hard problem, mainly due to the fact that an ”optimal” multi-
base chain is not necessarily the shortest, but the one that requires the ”right”
balance in the number of additions and all the other point operations. Although
finding such an ”optimal” multibase chain remains an open problem, Longa [17]
proposed a representation that allows a better control of the appearance of point
operations in the scalar expansion, and consequently, gets closer to the optimal.
Such a generic multibase representation, known as mbNAF, has the form:

k =
m∑

i=1

si

J∏
j=1

a
ci(j)
j (1)

where a1 �= . . . �= aJ are prime integers from a set of bases A={a1,. . . ,aJ} (a1:
main base),
m is the length of the expansion,
si are signed digits from a given set D\{0}, i.e., |si| ≥ 1 and si ∈ D\{0},
ci(j) are decreasing exponents, s.t. c1(j) ≥ c2(j) ≥ . . . ≥ cm(j) ≥ 0 for
each j from 2 to J , and
ci(1) are decreasing exponents for the main base a1(i.e., j=1), s.t. ci(1)
≥ ci+1(1) + 2 ≥ 2 for 1 ≥ i ≥ m− 1.

The last two conditions above guarantee that an expansion of the form (1)
is efficiently executed by a scalar multiplication using Horner’s method as follows:

kP =
J∏

j=1
a

dm(j)
j

(
J∏

j=1
a

dm−1(j)
j

(
. . .

(
J∏

j=1
a

d1(j)
j (s1P) + s2P

)
+ . . . + sm−1P

)
+ smP

)
where dm(1) ≥ 0, and di(1) ≥ 2 for 1 ≥ i ≥ m − 1. The latter is equivalent
to the last condition in (1) and incorporates the non-adjacency property in the
multibase representation. Basically, it fixes the minimal number of consecutive
operations with the main base (i.e., a1) between any two additions to 2. Note
that an operation with the main base refers to a doubling if a1 = 2 (this will be
the case for most scenarios where doubling is the most efficient point operation).

If we relax the previous condition and allow larger window sizes (i.e., allowing
3, 4, or more, consecutive operations with the main base between any two addi-
tions) we can reduce further the average number of nonzero terms in the scalar

448 P. Longa and C. Gebotys

representation at the expense of a larger digit set D and, consequently, a larger
precomputed table. The previous technique is known as wmbNAF.

The mbNAF and wmbNAF representations require the following digit set [17]

D =
{

0,±1,±2, . . . ,±
⌊
aw
1 − 1

2

⌋}
\
{
±1a1,±2a1, . . . ,±

⌊
aw−1
1 − 1

2

⌋
a1

}
(2)

where w ≥ 2 ∈ ZZ+ (w = 2 for mbNAF). Without considering {O,P}, the
digit set (2) involves precomputing diP , where di ∈ D+\{0, 1} (note that only
positive values diP need to be stored in the table as the inverse of points can be
computed on the fly). Thus, the precomputed table consists of (aw

1 −aw−1
1 −2)/2

points. Note that if w = 2 (mbNAF case), the requirement of precomputations
is minimal. For instance, in the case a1 = 2 we need to store nil points besides
{O,P}.

It is important to remark that, obviously, (1) does not involve unique rep-
resentations. In [17], Longa provided algorithms (see Alg. 3.1) that efficiently
find a multibase chain of the form (1) and, given a window width and set of
bases, is unique for each integer. Note that Algorithm 3.1 integrates mbNAF
and wmbNAF.

Algorithm 3.1. Computing the mbNAF (wmbNAF) of a positive integer
INPUT: scalar k, bases A = {a1, . . . , aJ}, where aj ∈ ZZ+ are primes for 1 ≥ j ≥ J,

window w = 2 for mbNAF, and window w > 2 for wmbNAF, where w ∈ ZZ+

OUTPUT: the (a1, a2, . . . , aJ)NAFw(k) = (. . . , k
(aj)
2 , k

(aj)
1)

1. i = 1
2. While k > 0 do

2.1. If k mod a1 = 0 or k mod a2 = 0 or . . . or k mod aJ = 0, then ki = 0
2.2. Else:

2.2.1. ki = k mods aw
1

2.2.2. k = k − ki

2.3. If k mod a1 = 0, then k = k/a1, ki = k
(a1)
i

2.4. Elseif k mod a2 = 0, then k = k/a2, ki = k
(a2)
i...

2.(J+2). Elseif k mod aJ = 0, then k = k/aJ , ki = k
(aJ)
i

2.(J+3). i = i + 1
3. Return (. . . , k

(aj)
2 , k

(aj)
1)

k
(aj)
i in Algorithm 3.1 represents the digits in the multibase NAF representa-

tion, where ki ∈ D (see (2)) and the superscript (aj) represents the base aj ∈ A
associated to the digit in position i. The function mods represents the following{

If k mod aw
1 ≥ aw

1 /2, then ki = (k mod aw
1) − aw

1
Else, ki = k mod aw

1

Let us illustrate the method using Alg. 3.1 with the following example.

Fast Multibase Methods and Other Several Optimizations 449

Example 1. The mbNAF representation of 9750 according to Algorithm 3.1 is
(2,3)NAF2(9750) = 1(2) 0(2) 0(2) 0(2) 1(2) 0(3) 0(2) -1(2) 0(2) 0(2) 1(2) 0(3) 0(2), which
would allow to compute 9750P as 2 × 3 (23 (22 × 3(24P + P) − P) + P).
The latter involves 1mD+9D+2T+3mA. For instance, using Table 1 (JQuartic,
1S =0.8M), 9750P would cost 107.2M . Compare this to the cost using NAF,
i.e., 1mD+12D+5mA = 119.6M .

Zero and Nonzero Density of Multibase NAF Methods. One of the
attractive properties of Multibase NAF methods is that the average number
of operations can be precisely determined by using Markov chains. The follow-
ing theorems are presented on this regard (please, refer to Appendix B for the
proofs).

Theorem 1. The average densities of additions, doublings and triplings for the
(w)mbNAF using bases A = {2,3} are approximately

δx = 2w

3(2w−2−s)+2w(w+1) , δ02 = 2w(w+1)
3(2w−2−s)+2w(w+1) and δ03 = 3(2w−2−s)

3(2w−2−s)+2w(w+1) ,

respectively, where s =
⌊
(2w−2 + 1)/3

⌋
and w ≥ 2 ∈ ZZ+ (w = 2 for mbNAF).

Theorem 2. The average densities of additions, doublings, triplings and quin-
tuplings for the (w)mbNAF using bases A = {2,3,5} are approximately

δx = 2w+3

17·2w−1−5r−24s−5t+2w+3(w+1) , δ02 = 2w+3(w+1)
17·2w−1−5r−24s−5t+2w+3(w+1) ,

δ03 = 24(2w−2−s)
17·2w−1−5r−24s−5t+2w+3(w+1) and δ05 = 5(2w−1−r−t)

17·2w−1−5r−24s−5t+2w+3(w+1) ,

respect., where r =
⌊
(2w−2 + 2)/5

⌋
, s=

⌊
(2w−2 + 1)/3

⌋
and t =

⌊
(2w−2 + 7)/15

⌋
.

Let us determine the average number of operations when using the Multibase
NAF method. First, it is known that the expected number of doublings, triplings
and additions is given by #D = δ02 ·digits, #T = δ03 ·digits and #A = δx·digits,
where digits represents the total number of digits in the expansion (note that
a nonzero digit involves one doubling and one addition). Also, we can assume
that 2#D · 3#T ≈ 2n−1, where n represents the average bitlength of the scalar
k. Thus, #D · log 2+T · log 3 ≈ (n− 1) log 2, and replacing #D and #T, we can
estimate digits with the following

digits ≈ (n − 1) log 2
δ02 · log 2 + δ03 · log 3

(3)

which allow us to determine #D, #T and #A using the expressions above. A
similar procedure easily follows for the case of bases {2,3,5}.

For instance, in the case of mbNAF, bases A = {2,3}, w = 2 and n = 160
bits, the average densities for doublings, triplings and additions derived from
Theorem 1 are 4/5, 1/5 and 4/15. Using (3), we determine that digits = 142.35.
Then, the average cost of a scalar multiplication using Table 1 (JQuartic,1S =
0.8M) is approx. 113.88D+28.47T+37.96mA = 1321M . Similarly, if we use bases

450 P. Longa and C. Gebotys

A = {2,3,5}, the average cost can be estimated as approximately 97.06D+24.27T+
10.11Q+32.35mA = 1299.82M . Compare the previous costs to that offered by
NAF: 159D+53mA = 1399.2M (in this case, δNAF = 1/3). Hence, theoretically,
it is determined that (2,3)NAF and (2,3,5)NAF surpasses NAF (case with no
precomputations) by about 5.6% and 7.1%, respectively.

Despite these results, it is still possible to find more efficient multibase chains
at the expense of some increment in the complexity of the basic Multibase NAF.
The improved multibase algorithms will be discussed in Section 5. Following,
we optimize the basic multibase methods using a recoding based on fractional
windows.

4 The Fractional Window-w Multibase Non-adjacent
Form (Frac-wmbNAF)

In this section, we apply the concept of ”fractional” windows [24] to the multibase
NAF method to allow a flexible number of points in the precomputed table. The
new representation is called Fractional wmbNAF (denoted by Frac-wmbNAF).

For the remainder, we will assume that the main base a1 is 2 as this value is
expected to achieve the lowest costs with most efficient ECC curve forms. First,
let us establish our ideal table with unrestricted number of points diP , where di

∈ D+\{0, 1} = {3, 5, . . . ,m}, and m ≥ 3 ∈ ZZ+ is an odd integer. If we define
m in terms of the standard windows w, it would be expressed as

m = 2w−2 + s, (4)

where 2w−2 < m < 2w−1 and s ≥ 1 ∈ ZZ+ is odd.
We can now define the rules of our recoding scheme for bases A = {a1, a2, . . . ,

aJ} in the following:

1. If (k mod 2 = 0 or k mod a2 = 0 . . . or k mod aJ = 0), then ki = 0
2. Elseif 0 < r ≤ m, then ki = r
3. Elseif m < r < (3m − 4s), then ki = r − 2w−1

4. Elseif (3m− 4s) ≤ r < 2w, then ki = r − 2w

5. k = k − ki

where r = k mod 2w. Basically, the proposed recoding first detects if k is di-
visible by one of the bases. Else, it establishes a window w and checks if k can
be approximated to the closest extreme of the window using any of the digits
di available. It can be verified that the latter will be accomplished if steps 2
or 4 are satisfied. Otherwise, the established window is too large and, hence,
it is ”reduced” to the immediately preceding window size to which k can be
approximated (condition in step 3).

An algorithm to convert any integer to Frac-wmbNAF representation can
be easily derived by replacing steps 1-5 above by steps 2.1 and 2.2 in Algo-
rithm 3.1. In this case, we will denote the Frac-wmbNAF of an integer k by
(2, a2, . . . , aJ)NAFw,t(k) = (. . . , k(aj)

2 , k
(aj)
1), where t represents the number of

precomputed points, i.e., m = 2t + 1.
Let us illustrate the new recoding with the following example.

Fast Multibase Methods and Other Several Optimizations 451

Example 2. If k = 9750 and m = 5, then di ∈ D+\{0, 1} = {3, 5}, and w =
4 and s = 1 by means of (4). Then, the Frac-wmbNAF of 2950 is given by
(2,3)NAF4,2(9750) = 1(2)0(2)0(2)0(2)-3(2)0(2)0(2)0(2)-5(2)0(2)0(2)1(2)0(3)0(2), and
the conversion process can be visualized as 9750

2 → 4875
3 → 1625 − 1 → 1624

8 →
203 + 5 → 208

16 → 13 + 3 → 16
16 → 1.

Observe that, when 1625 is obtained, it requires an addition with 7 to reach
1632 (which is the closest number ≡ (0 mod 24), as required by a standard
window w = 4). However, 7 is not part of our precomputed table, so the window
size is reduced accordingly to w = 3 and the value 1625 is approximated to the
closest value in the new window (i.e., 1624) using an addition with −1.

We now present the following theorem regarding the average density of this
method for the case A = {2, 3}.
Theorem 3. The average densities of nonzero terms, doublings and triplings of
the Frac-wmbNAF using bases A = {2, 3}, window size w and t available points
(represented by (2,3)NAFw,t) are approximately

2w

8(t+1)−3(u+v)+2w−2(4w−1) ,
8(t+1)+2w(w−1)

8(t+1)−3(u+v)+2w−2(4w−1) ,
3(2w−2−(u+v))

8(t+1)−3(u+v)+2w−2(4w−1)

respectively, where u = (t + 2)/3! and v = (2w−2 − t)/3!.
The reader is referred to Appendix C for a proof. With Theorem 3, it is pos-
sible to theoretically estimate the expected number of doublings, triplings and
additions using this method. For instance, following the procedure detailed in
Section 3.1, we can determine the cost of a scalar multiplication (without in-
cluding precomputation) for n = 160 bits using t = 2 points (w = 4) as
132.7D+16.6T+29.5mA = 1229.9M (JQuartic). Compare to the cost achieved
by Frac-wNAF, namely 159D+35.3mA = 1250.5M (δFrac−wNAF = 1/4.5 when
using m = 5; see [25]). Further cost reductions are observed for the case of
A = {2, 3, 5}.

5 The Refined Multibase Non-adjacent Form (Refined
mbNAF)

In this section we present a new methodology to derive algorithms able to find
more efficient multibase chains. Similarly to the original Multibase NAF meth-
ods, we base our approach on the key observation that point operations such
as doublings and triplings have different costs and that any multibase algorithm
with application to scalar multiplication should not only try to reduce the length
of the expansion but also (and more importantly) find the right balance between
the number of all the point operations involved.

Following the previous criteria, we modify the original Multibase NAF using
the next conditional statements (again, we restrict our analysis to the most
efficient case a1 = 2. Also, q, r are odd integers and {2, a2, . . . , aJ} � | q, r):
1. CONDITION1: before every nonzero term, approximate the current partial

value k to the closest value in the established window with k−ki = 2w ·aw2
2 ·

452 P. Longa and C. Gebotys

. . . ·awJ

J ·q, where ki ∈ D\{0} = {±1,±3,±5, . . . ,±m}, as usually performed,
if and only if there does not exist some value k− di = 2w′

1 · aw′
2

2 · . . . · aw′
J

J · r
in the established window, with wj , w

′
j ≥ 0 for each base from the set A =

{a1, a2, . . . , aJ} and di ∈ D\{0} �= ki , such that the zero digit sequence to
follow is ”greater” than that guaranteed by the window w (i.e., for practical
purposes, 2w′

1 · . . . · aw′
J

J > 2w · . . . · awJ

J + e), in which case (CONDITION1
= true) the approximation k − di is applied instead of k − ki.

2. CONDITION2: before each zero term different than 0(2), we test if there is
a nonzero digit di ∈ D\{0} which would allow an approximation k − di =
2w′ · aw′

2
2 · . . . · aw′

J

J · r such that 2w′ · . . . · aw′
J

J > aw2
2 · . . . · awJ

J + e′, where
k = aw2

2 · . . . · awJ

J · q is a partial scalar value and wj , w
′
j ≥ 0 for each base

from the set A. If the latter happens (CONDITION2 = true), the approxi-
mation k − di replaces the testing and dividing by extra bases.

Algorithm 5.1. Computing the Refined mbNAF of a positive integer
INPUT: scalar k, bases {2, 3} or {2, 3, 5}, digit set D\{0}={±1,±3, . . . ,±(m=2t+1)}

w ≥ 2 ∈ ZZ+; m = 2w−2 + s and 2w−2 < m < 2w−1, where m ≥ 3 and s ≥ 1
are odd integers (m = 1, s = 0 for case without precomputations)

OUTPUT: the Refined (2, 3)NAFw,t(k) or (2, 3, 5)NAFw,t(k) = (. . . , k
(aj)
2 , k

(aj)
1)

1. i = 1, exception = 0
2. While k > 0 do

2.1. If exception = 0 and (k mod 2 = 0 or . . . or k mod aJ = 0), then ki = 0
2.2. Else:

2.2.1. r = k mod 2w

2.2.2. If 0 < r ≤ m, then ki = r

2.2.3. Elseif m < r < (3m − 4s), then ki = r − 2w−1

2.2.4. Elseif (3m − 4s) ≤ r < 2w , then ki = r − 2w

2.2.5. If CONDITION1 = true, then ki = di

2.2.6. k = k − ki, exception = 0
2.3. If k mod 2 = 0, then k = k/2, ki = k

(2)
i

2.4. Elseif ki = 0
2.4.1. If CONDITION2 = true, then exception = 1
2.4.2. Elseif k mod 3 = 0, then k = k/3, ki = k

(3)
i

...
2.4.J . Elseif k mod aJ = 0, then k = k/aJ , ki = k

(aJ)
i

2.5. i = i + 1
3. Return (. . . , k

(aj)
2 , k

(aj)
1)

CONDITION1 aims at fulfilling our first criteria, namely, reducing the length of
the expansion. In this case, parameter e guarantees that the new approximation
will yield a much shorter chain such that is justifiable to use more expensive point
operations instead of the usual sequence of doublings after each nonzero term.
Similarly, CONDITION2 is responsible for fixing a good balance between the

Fast Multibase Methods and Other Several Optimizations 453

different point operations. In particular, it will ”smartly” insert more doublings,
as these are the most efficient operations in most common ECC settings. In this
case, e′ is a security parameter that guarantees that the algorithm in fact trades
expensive point operations by a large enough sequence of doublings such that is
justifiable to introduce an extra nonzero term. Both parameters, e and e′, vary
according to the relative cost among point operations and even with the value of
the scalar. Despite this complexity, we have been able to determine parameter
values that are efficient for most cases by performing extensive tests with random
numbers.

We have inserted the modifications above to the Frac-wmbNAF algorithm
(see Section 4), since this representation generalizes the (w)mbNAF methods,
and derived Algorithm 5.1 for bases {2,3} and {2,3,5}.

Notice the addition of CONDITION1 and 2 in steps 2.2.5. and 2.4.1. As can
be seen from the descriptions above, these techniques are quite general and give a
high degree of freedom to adjust the algorithm to different settings with different
constrains in the complexity level. In this work, we have focused on selecting
parameters that achieve high performance without increasing excessively the
complexity of the Multibase NAF algorithms.

The recommended conditional statements for Alg. 5.1 are detailed in
Tables 2 and 3 for bases {2,3} and {2,3,5}, respectively. We remark that these
are only recommended parameters, and that CONDITION1 and 2 can be mod-
ified to suit the complexity constrains of a specific implementation, leading to
different performance levels.

It is clear from Tables 2 and 3 that the original conditions of the Multibase
NAF regarding non-adjacency (see (1)) have been relaxed. In particular, accord-
ing to CONDITION1, it can be the case that fewer consecutive doublings are
inserted for a particular window size.

Let us illustrate the proposed method with the following example.

Example 3. Using Algorithm 5.1 and Table 2, we find that the Refined mbNAF
chain for computing 9750P using bases {2,3}, w = 4,m = 5, is 9750 = 5 ×
23 × 35 + 5 × 2 × 3, which has been derived using the sequence 9750

2 → 4875
3 →

1625 − 5 → 1620
2 → 810

2 → 405
3 → 135

3 → 45
3 → 15

3 → 5.

Notice that the partial value 1625 is conveniently approximated to 1620, by
means of CONDITION1, instead of 1624 (see Example 2), allowing the efficient
insertion of several triplings to reduce the length of the expansion. If we compare
the performance of the refined method when computing 9750P against the basic
Multibase NAF approach using the same fractional window size (see Example
2), we can observe that the cost reduces significantly from 12D+1T+3mA =
108.4M to only 3D+5T+1mA = 82.4M (JQuartic, 1S = 0.8M).

As can be observed, the gain in performance with this method is obtained
by increasing the complexity in the conversion step. This may or may not be a
limiting factor depending on the characteristics of a particular implementation
and the chosen platform. In cases where the conversion to multibase becomes
non-negligible, the method would still remain practical for settings where the
same scalar k is reused several times.

454 P. Longa and C. Gebotys

Table 2. Recommended parameters for CONDITION1 and 2, bases A = {2, 3}, di ∈
D\{0, ki}

Window w CONDITION1 CONDITION2

2
If (D mod 9 = 0 and K mod 8 �= 0) If (D mod 16 = 0 and k mod 9 �= 0)

m = 1
or (D mod 27 = 0 and K mod 16 �= 0) or (D mod 32 = 0 and k mod 27 �= 0)

or (D mod 81 = 0 and K mod 32 �= 0) or (D mod 64 = 0 and k mod 81 �= 0)

3 If (D mod 27 = 0 and K mod 16 �= 0)

m = 3 or (D mod 81 = 0 and K mod 32 �= 0)

4 If (D mod 216 = 0 and K mod 32 �= 0)
If (D mod 2w+1 = 0 and k mod 9 �= 0)

m = 5, 7 or (D mod 324 = 0 and K mod 64 �= 0)
or (D mod 2w+2 = 0 and k mod 27 �= 0)

5 If (D mod 144 = 0 and K mod 64 �= 0)
or (D mod 2w+3 = 0 and k mod 81 �= 0)

m = 9, . . . , 15 or (D mod 432 = 0 and K mod 128 �= 0)

6 If (D mod 288 = 0 and K mod 128 �= 0)

m = 17, . . . , 31 or (D mod 864 = 0 and K mod 256 �= 0)

(*) D = k − di ; K = k − ki

Table 3. Recommended parameters for CONDITION1 and 2, bases A = {2, 3, 5}, di ∈
D\{0, ki}

Window w CONDITION1 CONDITION2

If (K mod 5 �= 0 and (

2
(D mod 9 = 0 and K mod 8 �= 0)

m = 1
or (D mod 27 = 0 and K mod 16 �= 0)

or (D mod 81 = 0 and K mod 32 �= 0)))

or (D mod 15 = 0 and K mod 8 �= 0) If k mod 3 �= 0

If (K mod 5 �= 0 and (If (D mod 2w+2 = 0 and k mod 25 �= 0)

3 (D mod 27 = 0 and K mod 16 �= 0) or (D mod 2w+3 = 0 and k mod 125 �= 0)

m = 3 or (D mod 81 = 0 and K mod 32 �= 0))) or (D mod 2w+4 = 0 and k mod 625 �= 0)

or (D mod 45 = 0 and K mod 32 �= 0) else

4
If (K mod 5 �= 0 and (If K mod 25 �= 0 and (

m = 5, 7
(D mod 108 = 0 and K mod 32 �= 0) or or (D mod 2w+2 = 0 and k mod 9 �= 0)

(D mod 324 = 0 and K mod 64 �= 0))) or (D mod 2w+3 = 0 and k mod 27 �= 0)

5
If (K mod 5 �= 0 and (or (D mod 2w+4 = 0 and k mod 81 �= 0))

m = 9, . . . , 15
(D mod 144 = 0 and K mod 64 �= 0) or

(D mod 432 = 0 and K mod 128 �= 0)))

6
If (K mod 5 �= 0 and (

m = 17, . . . , 31
(D mod 288 = 0 and K mod 128 �= 0) or

(D mod 864 = 0 and K mod 256 �= 0)))

(*) D = k − di ; K = k − ki

To evaluate the performance of this refined methodology for scalar multipli-
cation, we implemented the method and carried out several tests. The results
are summarized in the following section.

6 Performance Comparison

We have carried out several tests to demonstrate the high performance of the
Multibase NAF methods discussed in this work when applied on standard,

Fast Multibase Methods and Other Several Optimizations 455

Jacobi quartic and Edwards curves. We implemented the traditional Frac-wNAF
and the (Refined) Frac-wmbNAF (Algorithm 5.1) and ran the algorithms with
different window sizes for 1000 160-bit scalars chosen randomly. In the case of
Multibase NAF, we evaluated the methods when using the following sets of bases
A : {2, 3} and {2, 3, 5}.

To estimate costs for each method, we first counted the required number of
point operations per scalar, averaged the results and then calculated the cost
using Table 1. Also, for windows w > 2 we included in the overall cost the cost
of calculating the precomputed points. For computing these points, we consider
two cases: points are left in projective coordinates (referred to as case 1), and
points are converted to affine using one inversion (referred to as case 2). As
expected, case 2 is advantageous using Jacobian coordinates, where mDA is
significantly more efficient than the general DA version (see Table 1). Ultimately,
the particular I/M ratio of an implementation will decide which case is more
effective on a standard curve. In the case of JQuartic and InvEdw, we only
consider case 1 as this scheme should be largely preferred because of the minimal
difference of costs between general and mixed additions. Specifically, for Jacobian
coordinates, we use the efficient scheme proposed in [22], and for JQuartic and
InvEdw we apply the recently proposed scheme by the authors [20].

The costs using the various methods are summarized in Table 4. Costs with
the label Optimized correspond to methods that have been slightly optimized
by saving some initial computations. This technique is similar to that proposed in
[13, Section 4.2.2] plus some additional savings gained with the use of composite
operations (i.e., tripling, quintupling).

The ”basic” operation count (without the aforementioned optimization) is de-
tailed per method. In the case of windowed methods, the count is given separately
for 7 and 6 precomputations (the latter case always corresponds to Jacobian co-
ordinates only). Also, note that for Jacobian coord. we use doubling-addition
(DA) operations instead of traditional additions. Hence, in this case, the total
number of doublings is obtained by subtracting the number of doublings listed
by that of additions. Finally, for case 2 (Jacobian), the total number of mDA op-
erations is obtained by adding numbers listed in mDA and DA, as precomputed
points are in affine and all the additions involve mixed coordinates.

As can be seen, in scenarios without precomputations, the basic Multibase
NAF using bases {2,3} and {2,3,5} achieve better performance than the original
DB method based on the ”Greedy” algorithm [8]. That is in addition to the
attractive features of Multibase NAF such as simplicity and memory efficiency.
More recently, Doche et al. [10] introduced a new method that also finds double-
base chains without using the ”Greedy” algorithm, although using a somewhat
more complex search-based approach in comparison with the basic Multibase
NAF. This method’s cost is comparable to (2,3)NAF, but slightly higher than
that achieved by (2,3,5)NAF. More importantly, the proposed Refined Multibase
NAF method presents even lower costs in all the cases, bases {2,3} and {2,3,5}.
The improvement is especially significant in the case without precomputations,

456 P. Longa and C. Gebotys

T
a
b
le

4
.
C

om
pa

ri
so

n
of

sc
al

ar
m

ul
ti
pl

ic
at

io
n

m
et

ho
ds

(n
=

16
0

bi
ts

;
1S

=
0.

8M
)

O
pe

ra
ti

on
co

un
t

JQ
ua

rt
ic

In
vE

dw
Ja

co
bi

an
M

et
ho

d
#

pt
s

D
T

Q
m

A
A

P
re

co
m

p
T
ot

al
P

re
co

m
p

T
ot

al
P

re
co

m
p

T
ot

al
(m

D
A

)
(D

A
)

R
efi

ne
d

(2
,3

,5
)N

A
F

(t
hi

s
w

or
k)

0
10

9.
9

21
.6

6.
2

31
.0

-
0

1
2
6
7
.5
M

-
-

0
1
4
5
9
.6
M

R
efi

ne
d

(2
,3

)N
A

F
(t

hi
s

w
or

k)
0

12
0.

6
23

.9
-

35
.6

-
0

12
88

�4
M

0
1
3
5
0
.5
M

0
14

84
�8

M

(2
,3

,5
)N

A
F
,L

on
ga

[1
7]

0
96

.9
24

.3
10

.0
32

.0
-

0
12

92
�6

M
-

-
0

14
85

�9
M

(2
,3

)N
A

F
,L

on
ga

[1
7]

0
11

3.
6

28
.4

-
37

.8
-

0
13

14
�9

M
0

13
81

�0
M

0
15

13
�3

M

T
re

e-
ba

se
d

D
B

,D
oc

he
et

al
.[

10
]

0
91

.1
42

.9
-

32
.8

-
0

13
02

�6
M

0
13

76
�8

M
0

14
93

�1
M

D
B

(G
re

ed
y)

,D
im

it
ro

v
et

al
.[

8]
0

94
.2

40
.9

-
36

.3
-

0
13

28
�2

M
0

14
02

�5
M

0
15

23
�2

M

N
A

F
0

15
8.

7
-

-
52

.9
-

0
13

96
�6

M
0

14
49

�5
M

0
16

18
�7

M

O
p
ti
m
iz
e
d

7
-

59
�6

M
1
2
1
4
.1
M

-
-

55
�4

M
1
4
2
5
.8
M

6
(J

ac
)

-
-

-
-

-
1I

+
72

�4
M

1
I+

1
3
9
3
.5
M

R
efi

ne
d

(2
,3

,5
)N

A
F

(t
hi

s
w

or
k)

7
13

2.
4

10
.0

3.
8

2.
9

18
.2

59
�6

M
12

26
�5

M
-

-
55

�4
M

14
35

�2
M

6
(J

ac
)

12
9.

8
10

.9
4.

3
5.

0
16

.3
-

-
-

-
1I

+
72

�4
M

1I
+

14
06

�5
M

O
p
ti
m
iz
e
d

7
-

59
�6

M
12

16
�0

M
61

�2
M

1
2
6
5
.6
M

55
�4

M
14

34
�1

M
6

(J
ac

)
-

-
-

-
-

1I
+

72
�4

M
1I

+
13

96
�4

M

R
efi

ne
d

(2
,3

)N
A

F
(t

hi
s

w
or

k)
7

14
3.

9
8.

3
-

3.
0

20
.0

59
�6

M
12

29
�2

M
61

�2
M

12
77

�1
M

55
�4

M
14

45
�1

M
6

(J
ac

)
14

2.
2

9.
4

-
5.

1
18

.3
-

-
-

-
1I

+
72

�4
M

1I
+

14
10

�9
M

(2
,3

,5
)N

A
F
,L

on
ga

[1
7]

7
12

9.
5

10
.5

5.
1

2.
7

18
.8

59
�6

M
12

40
�9

M
-

-
55

�4
M

14
50

�4
M

6
(J

ac
)

12
4.

0
12

.6
6.

0
5.

5
16

.0
-

-
-

-
1I

+
72

�4
M

1I
+

14
22

�4
M

(2
,3

)N
A

F
,L

on
ga

[1
7]

7
14

0.
2

11
.0

-
2.

9
20

.4
59

�6
M

12
40

�5
M

61
�2

M
12

90
�5

M
55

�4
M

14
56

�0
M

6
(J

ac
)

13
6.

1
13

.6
-

5.
8

17
.8

-
-

-
-

1I
+

72
�4

M
1I

+
14

23
�3

M

O
p
ti
m
iz
e
d

(t
hi

s
w

or
k)

7
-

59
�6

M
12

33
�1

M
61

�2
M

12
76

�2
M

55
�4

M
14

63
�1

M
6

(J
ac

)
-

-
-

-
-

1I
+

72
�4

M
1I

+
14

19
�5

M

Fr
ac

-w
N

A
F

7
15

7.
3

-
-

3.
3

22
.8

59
�6

M
12

45
�9

M
61

�2
M

12
89

�5
M

55
�4

M
14

76
�4

M
6

(J
ac

)
15

7.
4

-
-

7.
0

20
.3

-
-

-
-

1I
+

72
�4

M
1I

+
14

36
�4

M

D
B

(G
re

ed
y)

,B
er

ns
te

in
et

al
.[

1]
7

N
/A

N
/A

13
11

�0
M

N
/A

12
90

�3
M

N
/A

15
04

�3
M

N
A

F
-b

as
ed

,B
er

ns
te

in
et

al
.[

2]
7

N
/A

N
/A

13
08

�5
M

N
/A

12
87

�8
M

N
/A

15
11

�9
M

8
N

/A
-

-
-

-
-

1I
+

14
34

�1
M

Fast Multibase Methods and Other Several Optimizations 457

which makes our method especially interesting for applications on constrained
devices. With Jacobi quartics, the advantage of the Refined mbNAF using bases
{2,3,5} is as large as 9.3% over the traditional NAF. In Jacobian coord., that
advantage rises to 9.8%.

Interestingly enough, in the case of windowed methods, we observe that
the refined multibase algorithms surpass the performance of traditional binary
methods for all the curve shapes analyzed, contradicting conclusions by [1] and
[10]. Most remarkably, if we consider the ”basic” operation count, the Refined
(2,3,5)NAF with no precomputations is comparable and/or surpasses the per-
formance of the fastest NAF method using an optimal window with 7 and 6
precomputed points for Jacobi quartics and Jacobian coordinates, respectively.
For the latter, the multibase method is superior always that 1I > 23M . Even
if we consider the optimized version of the NAF method, the multibase method
achieves higher performance always that 1I > 40M .

For the record, we also include results by [2] and [1]. These works use highly
optimized radix-2 and double-base (DB) scalar multiplications. We can see that
both the basic Multibase NAF using precomputations and the refined version
offer lower computing costs for the cases when precomputations include one or
nil field inversions. Moreover, our optimized implementations of wNAF and Frac-
wNAF are also superior in performance to these works. The latter is due to a
combination of improved precomputation schemes, more efficient point formulas
and the inclusion of the technique to save initial computations.

In particular, the Refined mbNAF using 6 and 7 precomputed points achieves
the highest performance using bases {2,3,5} in the case of standard curves and
Jacobi quartics. In the case of Edwards curves using inverted Edwards coordi-
nates the lowest cost is achieved by the same method using bases {2,3} and 7
points. (The lowest costs per curve are highlighted in bold.) Also, note that for
Jacobian the highest speed up is achieved with a table of the form {3,5,. . . ,13} (6
points; 160 bits), which corresponds to a fractional window and, thus, highlights
the importance of this recoding for Jacobian coordinates.

7 Conclusion

We have introduced a refined multibase method and other several optimiza-
tions, including improved point operation formulas, that have been efficiently
applied to speed up (multibase) methods for scalar multiplication. In particular,
we have applied the concept of ”fractional” windows to the multibase scenario,
generalizing Multibase NAF methods to any number of precomputations. Also,
we have presented a more comprehensive analysis of scalar multiplications meth-
ods and tested their performance in comparison with Multibase NAF methods
using different elliptic curve shapes. The conclusion is that currently the pro-
posed Refined mbNAF achieves the lowest costs found in the literature among
methods without precomputations, independently of the curve selected. Using
bases {2,3,5} and {2,3} we can perform a scalar multiplication with costs of only
1459M (field multiplications) and 1350M in Jacobian and inverted Edwards

458 P. Longa and C. Gebotys

coordinates (respect.). With Jacobi quartics, that cost can be as low as 1267M
using bases {2,3,5}. Similar results are attained by the same method when us-
ing precomputations. In this case, we present the lowest costs reported in the
literature: 1425M or 1I + 1393M in Jacobian, 1265M in inverted Edwards and
1214M in extended Jacobi quartic coordinates.

Finally, we have included the theoretical analysis of Multibase NAF and its
different variants, detailing the average zero and nonzero density characterizing
these representations. This analysis has been confirmed with our extensive tests.

Acknowledgments. We would like to thank the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) and the Ontario Centres of Ex-
cellence (OCE) for partially supporting this work. We would also like to thank
the reviewers for their useful comments.

References

1. Bernstein, D., Birkner, P., Lange, T., Peters, C.: Optimizing Double-Base Elliptic-
Curve Single-Scalar Multiplication. In: Srinathan, K., Rangan, C.P., Yung, M.
(eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 167–182. Springer, Heidelberg
(2007)

2. Bernstein, D., Lange, T.: Analysis and Optimization of Elliptic-Curve Single-Scalar
Multiplication. Cryptology ePrint Archive, Report 2007/455 (2007)

3. Bernstein, D., Lange, T.: Faster Addition and Doubling on Elliptic Curves. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer,
Heidelberg (2007)

4. Bernstein, D., Lange, T.: Inverted Edwards Coordinates. In: Boztaş, S., Lu, H.-
F(F.) (eds.) AAECC 2007. LNCS, vol. 4851, pp. 20–27. Springer, Heidelberg (2007)

5. Billet, O., Joye, M.: The Jacobi Model of an Elliptic Curve and Side-Channel
Analysis. In: Fossorier, M.P.C., Høholdt, T., Poli, A. (eds.) AAECC 2003. LNCS,
vol. 2643, pp. 34–42. Springer, Heidelberg (2003)

6. Ciet, M., Joye, M., Lauter, K., Montgomery, P.L.: Trading Inversions for Multipli-
cations in Elliptic Curve Cryptography. Designs, Codes and Cryptography 39(2),
189–206 (2006)

7. Dimitrov, V., Jullien, G., Miller, W.: Theory and Applications for a Double-Base
Number System. ARITH 1997, p. 44 (1997)

8. Dimitrov, V., Imbert, L., Mishra, P.K.: Efficient and Secure Elliptic Curve Point
Multiplication using Double-Base Chains. In: Roy, B. (ed.) ASIACRYPT 2005.
LNCS, vol. 3788, pp. 59–78. Springer, Heidelberg (2005)

9. Dimitrov, V., Mishra, P.K.: Efficient Quintuple Formulas for Elliptic Curves and
Efficient Scalar Multiplication using Multibase Number Representation. In: Garay,
J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp.
390–406. Springer, Heidelberg (2007)

10. Doche, C., Habsieger, L.: A Tree-Base Approach for Computing Double-Base
Chains. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107,
pp. 433–446. Springer, Heidelberg (2008)

11. Doche, C., Imbert, L.: Extended Double-Base Number System with Applications to
Elliptic Curve Cryptography. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006.
LNCS, vol. 4329, pp. 335–348. Springer, Heidelberg (2006)

Fast Multibase Methods and Other Several Optimizations 459

12. Edwards, H.: A Normal Form for Elliptic Curves. Bulletin of the American Math-
ematical Society 44, 393–422 (2007)

13. Elmegaard-Fessel, L.: Efficient Scalar Multiplication and Security against Power
Analysis in Cryptosystems based on the NIST Elliptic Curves over Prime Fields.
Master Thesis, University of Copenhagen (2006)

14. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, Heidelberg (2004)

15. Hisil, H., Wong, K., Carter, G., Dawson, E.: Faster Group Operations on Elliptic
Curves. Cryptology ePrint Archive, Report 2007/441 (2007)

16. Hisil, H., Wong, K., Carter, G., Dawson, E.: An Intersection Form for Jacobi-
Quartic Curves. Personal communication (2008)

17. Longa, P.: Accelerating the Scalar Multiplication on Elliptic Curve Cryptosystems
over Prime Fields. Master Thesis, University of Ottawa (2007),
http://patricklonga.bravehost.com/publications.html

18. Longa, P.: ECC Point Arithmetic Formulae (EPAF),
http://patricklonga.bravehost.com/jacobian.html

19. Longa, P., Gebotys, C.: Setting Speed Records with the (Fractional) Multibase
Non-Adjacent Form Method for Efficient Elliptic Curve Scalar Multiplication.
CACR Technical Report, CACR 2008-06, University of Waterloo (2008)

20. Longa, P., Gebotys, C.: Novel Precomputation Schemes for Elliptic Curve Cryp-
tosystems. Cryptology ePrint Archive, Report 2008/526 (2008)

21. Longa, P., Miri, A.: Fast and Flexible Elliptic Curve Point Arithmetic over Prime
Fields. IEEE Trans. Comp. 57(3), 289–302 (2008)

22. Longa, P., Miri, A.: New Composite Operations and Precomputation Scheme for
Elliptic Curve Cryptosystems over Prime Fields. In: Cramer, R. (ed.) PKC 2008.
LNCS, vol. 4939, pp. 229–247. Springer, Heidelberg (2008)

23. Meloni, N.: New Point Addition Formulae for ECC Applications. In: Carlet, C.,
Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 189–201. Springer, Heidelberg
(2007)

24. Möller, B.: Improved Techniques for Fast Exponentiation. In: Lee, P.J., Lim, C.H.
(eds.) ICISC 2002. LNCS, vol. 2587, pp. 298–312. Springer, Heidelberg (2003)

25. Möller, B.: Fractional windows revisited:Improved signed-digit representations
for efficient exponentiation. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS,
vol. 3506, pp. 137–153. Springer, Heidelberg (2005)

A Derivation of Composite Operations of Form dP

Consider the following formula due to [23] to add two points P = (X1, Y1, Z)
and Q = (X2, Y2, Z) with the same coordinate Z in Jacobian coordinates:

X3 = (Y2 − Y1)2 − (X2 − X1)3 − 2X1(X2 − X1)2, Z3 = Z(X2 − X1)
Y3 = (Y2 − Y1)(X1(X2 − X1)2 − X3) − Y1(X2 − X1)3 .

(5)

To derive composite operations of the form dP , where d > 2 is a small prime,
we follow the next scheme using (5) to perform additions:

dP = (2P + (. . . (2P + (2P + P)) . . .)) . (6)

According to (6), we first compute 2P with the following [21]:

http://patricklonga.bravehost.com/publications.html
http://patricklonga.bravehost.com/jacobian.html

460 P. Longa and C. Gebotys

X2 = [3(X1 + Z2
1)(X1 − Z2

1)]2 − 8X1Y
2
1 , Z2 = 2Y1Z1 = (Y1 + Z1)2 − Y 2

1 − Z2
1 ,

Y2 = [3(X1 + Z2
1)(X1 − Z2

1)](4X1Y
2
1 − X2) − 8Y 4

1 .

And then, we perform the addition 3P = 2P +P = (X2, Y2, Z2)+(X(1)
1 , Y

(1)
1 ,

Z
(1)
1) = (X3, Y3, Z3) using formula (5), where (X(1)

1 , Y
(1)
1 , Z

(1)
1) = (X1(4Y 2

1),
Y1(8Y 3

1), Z1(2Y1)) ≡ (X1, Y1, Z1), as follows:

X3 = (Y (1)
1 − Y2)2 − (X(1)

1 − X2)3 − 2X2(X
(1)
1 − X2)2,

Y3 = (Y (1)
1 −Y2)[X2(X

(1)
1 −X2)2 −X3]−Y2(X

(1)
1 −X2)3, Z3 = Z2(X

(1)
1 −X2) .

After scaling and replacement of some multiplications by squarings, compu-
tation of 3P takes the form:

X3 = ω2 − 4θ3 − 8X2θ
2, Y3 = ω[4X2θ

2 − X3] − 8Y2θ
3, Z3 = 2Z(1)

1 θ, (7)

where α = 3(X1 + Z2
1)(X1 − Z2

1), θ = 4X1Y
2
1 − X2, ω = 16Y 4

1 − 2Y2, X2 =
α2 − 8X1Y

2
1 , 2Y2 = (α + θ)2 − α2 − θ2 − 16Y 4

1 , Z
(1)
1 = (Y1 + Z1)2 − Y 2

1 − Z2
1 .

Following the same approach for the next addition in (6), it is easy to derive the
formula for the quintupling of a point 5P = (X5, Y5, Z5) in Jacobian coordinates
(special case a = −3). The new formula is given by:

X5 = γ2 − 4φ3 − 8X(1)
2 φ2, Y5 = γ[4X(1)

2 φ2 − X5] − 8Y (1)
2 φ3,

Z5 = 2Z2[(θ + φ)2 − θ2 − φ2],
(8)

where α = 3(X1 + Z2
1)(X1 − Z2

1), θ = X
(1)
1 − X2, ω = 2Y (1)

1 − 2Y2, X2 =
α2 − 2X(1)

1 , 2Y2 = (α + θ)2 − α2 − θ2 − 2Y (1)
1 , Z2 = (Y1 +Z1)2 − Y 2

1 −Z2
1 , γ =

ω2+φ2−(ω+φ)2−4Y (1)
2 , X

(1)
1 = 4X1Y

2
1 , 2Y (1)

1 = 16Y 4
1 , X

(1)
2 = 4X2θ

2, Y
(1)
2 =

8Y2θ
3, φ = ω2 − 4θ3 − 3X(1)

2 .
This quintupling formula costs 10M + 12S. In the general case (random a),

the cost is fixed at 9M + 15S with the following change of parameters: α =
3X2

1 + aZ4
1 , X

(1)
1 = 2[(X1 + Y 2

1)2 − X2
1 − Y 4

1].
Again, following the same procedure for the next addition in (6), it is straight-

forward to derive the formula for the septupling 7P = (X7, Y7, Z7) in Jacobian
coord. (case a = −3). The new septupling formula is given by:

X7 = ϕ2 − 4σ3 − 8X(2)
2 σ2, Y7 = ϕ[4X(2)

2 σ2 −X7]− 8Y (2)
2 σ3, Z7 = 2Z(2)

2 σ, (9)

where ϕ = γ2+σ2−(γ+σ)2−4Y (2)
2 , σ = γ2−4φ3−3X(2)

2 , γ = ω2+φ2−(ω+φ)2−
4Y (1)

2 , X
(2)
2 = 4X(1)

2 φ2, Y
(2)
2 = 8Y (1)

2 φ3, Z
(2)
2 = 2Z2[(θ + φ)2 − θ2 − φ2], φ =

ω2 − 4θ3 − 3X(1)
2 , ω = 2Y (1)

1 − 2Y2, θ = X
(1)
1 − X2, α = 3(X1 + Z2

1)(X1 −
Z2

1), X
(1)
2 = 4X2θ

2, Y
(1)
2 = 8Y2θ

3, X2 = α2 − 2X(1)
1 , X

(1)
1 = 4X1Y

2
1 , 2Y (1)

1 =
16Y 4

1 , 2Y2 = (α + θ)2 − α2 − θ2 − 2Y (1)
1 , Z2 = (Y1 + Z1)2 − Y 2

1 − Z2
1 . This

septupling formula costs 14M + 15S. In the general case (parameter a ran-
dom), the cost is fixed at 13M + 18S with the following change of parameters:
α = 3X2

1 + aZ4
1 , X

(1)
1 = 2[(X1 + Y 2

1)2 − X2
1 − Y 4

1].

Fast Multibase Methods and Other Several Optimizations 461

B Proof of the Average Zero and Nonzero Densities of
(w)mbNAF Using Bases {2,3} and {2,3,5}

The method can be modeled as a Markov chain with three states (case A={2, 3}) :
”0(2)”, ”0(3)” and ” 0(2) . . . 0(2)︸ ︷︷ ︸

w−1

k
(2)
i ”, with the following probability matrix:

⎛⎜⎜⎜⎜⎝
”0(2)” : 1/2 2w−2−
(2w−2+1)/3�

2w

2w−2+
(2w−2+1)/3�
2w

”0(3)” : 0 1/3 2/3

” 0(2) . . . 0(2)︸ ︷︷ ︸
w−1

k
(2)
i ” : 1/2 2w−2−
(2w−2+1)/3�

2w

2w−2+
(2w−2+1)/3�
2w

⎞⎟⎟⎟⎟⎠
This Markov chain is irreducible and aperiodic, and hence, it has stationary

distribution, which is given by:⎛⎝0(2) . . . 0(2)︸ ︷︷ ︸
w−1

k
(2)
i , 0(2), 0(3) : 2w

2w+1+3(2w−2−s)
2w

2w+1+3(2w−2−s)
3(2w−2−s)

2w+1+3(2w−2−s))

⎞⎠
Thus, nonzero digits ki appear 2w out of w·2w+2w+3(2w−2 − (2w−2 + 1)/3!),

which proves our assertion about the nonzero density. Doublings and triplings
(i.e., number of zero and nonzero digits with base 2 and 3, respect.) appear 2w ·
w+2w and 3(2w−2 − (2w−2 + 1)/3!) out of w·2w+2w+3(2w−2 − (2w−2 + 1)/3!),
respectively. This proves our assertion about the average density of doublings
and triplings.

In the case of A = {2, 3, 5}, there are four states: ”0(2)”, ”0(3)”, ”0(5)” and
” 0(2) . . . 0(2)︸ ︷︷ ︸

w−1

k
(2)
i ”. The probability matrix in this case is as follows (see Theorem

2 for notation):⎛⎜⎜⎜⎜⎜⎜⎜⎝

”0(2)” : 1/2 2w−2−s
2w

2w−2−r+s−t
2w+2

3·2w−2+r+3s+t
2w+2

”0(3)” : 0 1/3 1/6 1/2

”0(5)” : 0 0 1/5 4/5

” 0(2) . . . 0(2)︸ ︷︷ ︸
w−1

k
(2)
i ” : 1/2 2w−2−s

2w
2w−2−r+s−t

2w+2
3·2w−2+r+3s+t

2w+2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
This Markov chain is irreducible and aperiodic with stationary distribution:⎛⎝” 0(2) . . . 0(2)︸ ︷︷ ︸

w−1

k
(2)
i ”, ”0(2)”, ”0(3)”, ”0(5)” : 2w+3

ω
2w+3

ω
24(2w−2−s)

ω
5(2w−1−r−t)

ω

⎞⎠
where ω = 49·2w−1−5r−24s−5t. Therefore, nonzero digits ki appear 2w+3 out of
2w+3·w+2w+3+24(2w−2 − s)+5(2w−1 − r − t), which proves our assertion about
the nonzero density. Doublings, triplings and quintuplings appear 2w+3 · w +
2w+3, 24(2w−2 − s) and 5(2w−1 − r − t) out of 2w+3 ·w+2w+3 +24(2w−2 − s)+
5(2w−1 − r − t), respectively. This proves our assertion about the average density
of the aforementioned operations.

462 P. Longa and C. Gebotys

C Proof of the Average Zero and Nonzero Densities of
Fractional wmbNAF Using Bases {2,3}

Let us consider the following states to model this fractional windows method
using Markov chains: ”0(2)”, ”0(3)”, ” 0(2) . . . 0(2)︸ ︷︷ ︸

w−2

k
(2)
i ”, and ” 0(2) . . . 0(2)︸ ︷︷ ︸

w−1

k
(2)
i ”.

Then, the probability matrix is as follows (see Theorem 3 for notation):⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

”0(2)” : 1/2 t−
(t+1)/3�
4t

(2w−2−t)(t+
(t+1)/3�)
2wt

t+
(t+1)/3�
2w

”0(3)” : 0 1/3 2w−2−t
3·2w−3

t
3·2w−3

” 0(2) . . . 0(2)︸ ︷︷ ︸
w−2

k
(2)
i ” : 0 α β 1 − α− β

” 0(2) . . . 0(2)︸ ︷︷ ︸
w−1

k
(2)
i ” : 1/2 t−
(t+1)/3�

4t
(2w−2−t)(t+
(t+1)/3�)

2wt
t+
(t+1)/3�

2w

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where α = (2w−2−t)−
(2w−2−t+1)/3�

2(2w−2−t) and β = (2w−2−t)+
(2w−2−t+1)/3�
2w−1 . This Markov

chain is irreducible and aperiodic with the following stationary distribution:⎛⎝0(2) . . . 0(2)︸ ︷︷ ︸
w−1

k
(2)
i , 0(2) . . . 0(2)︸ ︷︷ ︸

w−2

k
(2)
i , 0(2), 0(3) : 16t

μ
12((u+v)−2w−2)

μ
16(t−2w−2)

μ
16t
μ

⎞⎠
where μ = 16t−12(u+v)+7 ·2w. Therefore, the nonzero digits ki appear 2w out
of 8t − 3(u + v) + 2w−2(4w − 1), which proves our assertion about the nonzero
density. Doublings and triplings appear 8t + 2w(w − 1) and 3(2w−2 − (u + v))
out of 8t−3(u + v)+2w−2(4w − 1), respectively. This proves our assertion about
the average density of doublings and triplings.

Revocable Group Signature Schemes
with Constant Costs for Signing and Verifying

Toru Nakanishi, Hiroki Fujii, Yuta Hira, and Nobuo Funabiki

Department of Communication Network Engineering, Okayama University,
3-1-1 Tsushima-Naka, Okayama 700-8530, Japan
{nakanisi,funabiki}@cne.okayama-u.ac.jp

Abstract. Lots of revocable group signature schemes have been pro-
posed so far. In one type of revocable schemes, signing and/or verifying
algorithms have O(N) or O(R) complexity, where N is the group size and
R is the number of revoked members. On the other hand, in Camenisch-
Lysyanskaya scheme and the followers, signing and verifying algorithms
have O(1) complexity. However, before signing, updates of the secret key
are required. The complexity is O(R) in the worst case. In this paper,
we propose a revocable scheme with signing and verifying of O(1) com-
plexity, where no updates of secret key are required. The compensation
is the long public key of O(N). In addition, we extend it to the scheme
with O(

√
N)-size public key, where signing and verifying have constant

extra costs.

1 Introduction

Group signatures [15] allow a signer to sign a message anonymously as a group
member, while only a designated trusted party can identify the signer from the
signature. The group is managed by a group manager (GM) who permits a user
to join the group. For simplicity, this paper assumes that GM is also the trusted
party to identify the signer (This assumption can be easily relaxed). The ap-
plications of group signatures include anonymous credentials, direct anonymous
attestations, and ID management reported in [13,11,20].

Toward making the group signatures practicable, Boneh et al. have proposed a
short group signature scheme based on pairings [7], where signatures are shorter
than existing RSA-based group signature schemes. With the advance of the
implementations of pairings (e.g., [3,19]), we can obtain the implementations of
the signing/verifying of the group signatures with practical computation times
and data sizes, if the revocation is neglected. The revocation means that the
membership of a group member can be easily revoked to exclude the member
from the group.

Lots of revocable group signature schemes have been proposed so far (e.g,
[10,14,24,7,8,12]). However, one type of schemes [10,24,8] has a disadvantage:
Singing and/or verifying have the computational complexity (exponentiations
or pairings) of O(N) or O(R), where N is the group size and R is the number of

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 463–480, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

http://dx.doi.org/10.1007/978-3-642-00468-1_29

464 T. Nakanishi et al.

revoked members. Thus, these schemes are not suitable for large and dynamic
groups.

Camenisch and Lysyanskaya proposed an elegant revocable scheme [14] using
dynamic accumulators. In this scheme, the complexity of signing/verifying is
O(1) w.r.t. N and R. However, the disadvantage of this scheme is that, whenever
making a signature, the signer has to modify his secret key. The modification
requires some data of joining and removed members since the last time he signed.
This implies that a signer requires a computation of O(N). This is relaxed into
O(R) in [12,7]. However, since R becomes large in large and dynamic groups, we
should explore another approach for signing/verifying with O(1) costs.

Another RSA-based approach without the key update is proposed in [23]. In
the approach, the large group is partitioned to sub-groups, and the scheme of
[24] is utilized for each smaller sub-groups. The scheme of [24] achieves O(1)
exponentiations on signing/verifying for middle-scale sub-groups with less than
about 1000 members. The computational cost on partitioning in [23] is also
O(1). Thus, this approach achieves signing/verifying with O(1) costs. However,
this approach has a weakness for larger groups; The signer has to obtain public
data reflecting the current membership situation for each member, but the size
of the data is O(N). Namely, the signer has to fetch the data with O(N) size
whenever signing. Another problem is that it is based on RSA, and thus the long
RSA modulus leads to long signatures and revocation data. Therefore, for larger
groups, the communication cost becomes vast.

Our contributions. In this paper, we propose a pairing-based revocable scheme
satisfying

1. signing/verifying requires only O(1) computational costs,
2. any update of member’s secret key is not required, and
3. data related to revocation, which is fetched by the signer, has O(R) size.

Therefore, signing/verifying is sufficiently fast even for larger or dynamic groups,
while the communication does not cause large delay.

On the other hand, the compensation is the long public key with O(N) size.
In general applications (e.g., authentications for Web services), the public key is
distributed once in joining, together with the software of the applications. Thus,
the compensation is not so serious. However, for millions of members, the long
time of downloading may disgust users. To solve this, in this paper, we also pro-
pose an extended scheme with O(

√
N)-size public key, where signing/verifying

has constant extra costs.
The reduction to the O(

√
N) size means the sufficient practicality of our

schemes for large groups. In case of the 112-bit security level and N = 1, 000, 000,
the public key size of the extended scheme is less than 100 KBytes. This size
shows the sufficient practicality of the storage, not only in usual PCs but also in
smart phones. Furthermore, since clients have only to download the public key
once, the communication cost does not matter.

We can consider a trivial revocation method, where a non-revoked member
fetches a new secret key whenever revocation happens or a time interval proceeds.

Revocable Group Signature Schemes with Constant Costs 465

To fetch it anonymously, the signer has to fetch the keys of whole non-revoked
members. This means fetching O(N)-size data. In our scheme, the fetched data
is reduced to O(R) size.

The signer’s fetching O(R)-size date is a concern for the realization of group
signatures. However, except the VLR (Verifier-Local Revocation) method [8],
every revocation mechanism such as [10,14,7,12,24] needs such a communica-
tion cost. Note that the VLR mechanism requires O(R) computational cost in
the verification. Thus, we consider that our revocation method is currently bet-
ter than the other methods in the natural situation that the signer can use a
broadband channel. The reduction in the fetched data is an open problem.

Related works. One of trends in researches on group signatures is to exclude
the random oracle model. From the viewpoint of both efficiency and security,
Groth’s scheme [18] is currently the best choice. Although this scheme achieves
the constant length of signatures, it still is greatly less efficient than efficient
schemes [7,16] in the random oracle model. Since our aim is the realization
of group signatures in practical applications, we adopt the efficient underlying
scheme [16] to add our novel revocation mechanism. This means that our scheme
is secure in the random oracle model. A construction without the random oracle
is one of our future works.

2 Model and Security Definitions

We show a model of revocable group signature scheme. This model and the
following security requirements are derived from [8,5]. Mainly, for the simplicity,
we construct our model on the basis of the model of [8]. The differences from
[8] are the revocation mechanism, Join algorithm (and non-frameability), and
Open algorithm. In [8], Verify algorithm is given revocation list RLt, but in
our model, Sign algorithm is given RLt. We consider that the non-frameability
(i.e., preventing GM from forging a member’s signature) is important, and thus,
add Join algorithm and the definition of the non-frameability, based on [5]. Also,
the Open algorithm is added for the purpose of identifying an illegal member.

Revocable group signature scheme consists of the following algorithms:

Setup: This probabilistic initial setup algorithm, on input 1�, outputs public
parameters param.

KeyGen: This probabilistic key generation algorithm for GM , on input N that
is the maximum number of members and param, outputs the group public
key gpk and GM ’s secret key msk.

Join: This is an interactive protocol between a probabilistic algorithm Join-U
for the i-th user and a probabilistic algorithm Join-GM for GM , where the
user joins the group controlled by GM w.r.t. gpk. Join-U, on input gpk,
outputs usk[i] that is the user’s secret key. On the other hand, Join-GM,
on inputs gpk,msk, outputs reg[i], which means the registration log of the
i-th user.

466 T. Nakanishi et al.

usk denotes the list of all users’ secret keys, reg denotes the list of all users’
registration log, and i denotes user’s ID. We index the secret key and regis-
tration log of user i by usk[i] and reg[i], respectively.

Revoke: This probabilistic algorithm, on inputs gpk, t and RU that is a set of
revoked members’ IDs, outputs revocation list RLt.

t denotes a time counter, and RLt denotes the revocation list of data on
revoked users at time t.

Sign: This probabilistic algorithm, on inputs gpk, usk[i], t, RLt, and signed
message M , outputs the signature σ.

Verify: This is a deterministic algorithm for verification. The input is gpk, t, a
signature σ, and the message M . Then the output is ’valid’ or ’invalid’.

Open: This deterministic algorithm, on inputs gpk, msk, reg, t, σ and M ,
outputs i, which indicates the signer of σ.

The security requirements, Traceability, Anonymity, and Non-frameability, are
defined as follows.

2.1 Traceability

The following traceability requirement captures the unforgeability and the revo-
cability of group signatures. Consider the following traceability game between an
adversary A and a challenger, where A tries to forge a signature that cannot be
traced to one of members corrupted by A or to forge a signature that is traced
to a revoked member corrupted by A.

Setup: The challenger runs Setup and KeyGen, and obtains gpk and msk.
He provides A with gpk, and run A. He sets t = 0 and CU and RU with
empty, where CU denotes the set of IDs of users corrupted by A, and RU
denotes the set of IDs of revoked users.

Queries: A can query the challenger about the following.
H-Join: A can request the i-th user’s join. Then, the challenger executes

the join protocol, where the challenger plays the both role of the joining
user and GM .

C-Join: A can request the i-th user’s join. Then, A as the joining user
executes the join protocol with the challenger as GM . The challenger
adds i to CU .

Revocation: A requests the revocation of a member i. The challenger in-
creases t by 1, add i to RU , and responds RLt for t and RU .

Signing: A requests a signature on a message M for a member i. The chal-
lenger responds the corresponding signature using the current RLt, if
i /∈ CU .

Corruption: A requests the secret key of a member i. The challenger re-
sponds usk[i] if i /∈ CU . The challenger adds i to CU .

Open: A requests to open a signature σ on the message M . The challenger
responds the corresponding signer’s ID i.

Revocable Group Signature Schemes with Constant Costs 467

Output: Finally, A outputs a message M∗ and a signature σ∗ on the current
RLt.

Then, A wins if

1. Verify(gpk, t, σ∗,M∗) = valid,
2. for i∗ = Open(gpk,msk, reg, t, σ∗,M∗), i∗ /∈ CU \ RU , and
3. A did not obtain σ∗ by making a signing query at M∗.

Traceability requires that for all PPT A, the probability that A wins the
traceability game is negligible.

2.2 Anonymity

The following anonymity requirement captures the anonymity and unlinkability
of signatures. Consider the following anonymity game.

Setup: The challenger runs KeyGen, and obtains gpk and msk. He provides
A with gpk, and run A. He sets t = 0 and RU and CU with empty.

Queries: A can query the challenger. The available queries are the same ones
as in the traceability game.

Challenge: A outputs a message M and two members i0 and i1. If i0 /∈ CU
and i1 /∈ CU , the challenger chooses φ ∈R {0, 1}, and responds the signature
on M of member iφ using the current RLt.

Restricted queries: Similarly, A can make the queries. However, A cannot
query opening of the signature responded in the challenge.

Output: Finally, A outputs a bit φ′ indicating its guess of φ.

If φ′ = φ, A wins. We define the advantage of A as |Pr[φ′ = φ] − 1/2|.
Anonymity requires that for all PPT A, the advantage of A on the anonymity

game is negligible.

2.3 Non-frameability

This property requires that a signature of an honest member cannot be computed
by other members and even GM .

Consider the following non-frameability game.

Setup: The challenger uses Setup to obtain param, and sets t = 0 and RU
and HU with empty, where HU denotes the set of IDs of honest users who
are not corrupted by A. Then, run A on param, who initially outputs gpk.

Queries: After the key output in the run, A issues the following queries to the
challenger.
Join: A can request the i-th honest user’s join. Then, A as GM executes

the join protocol with the challenger as the i-the user. The challenger
adds i to HU .

468 T. Nakanishi et al.

Revocation: A can request the revocation of member i. The challenger in-
creases t by 1, add i to RU , and responds RLt for t and RU .

Sign: A can request a signature on message M for user’s ID i using the cur-
rent RLt. The challenger replies Sign(gpk,usk[i], t,RLt,M), if i ∈ HU .

Corruption: A can request to corrupt a member by sending the member’s
ID i. The challenger returns usk[i], if i ∈ HU . The challenger deletes i
from HU .

Output: Finally, A outputs a message M∗ and a signature σ∗.

Then, A wins if

1. Verify(gpk, t, σ∗,M∗) = valid,
2. for i∗ = Open(gpk,msk, reg, t, σ∗,M∗), i∗ ∈ HU , and
3. A did not obtain σ∗ by making a signing query at M∗.

Non-Frameability requires that for all PPT A, the probability that A wins
the non-frameability game is negligible.

3 Preliminaries

3.1 Bilinear Groups

Our scheme utilizes bilinear groups and bilinear maps as follows:

1. G, H and T are multiplicative cyclic groups of prime order p,
2. g and h are randomly chosen generators of G and H, respectively.
3. e is an efficiently computable bilinear map: G×H → T , i.e., (1) for all u, u′ ∈

G and v, v′ ∈ H, e(uu′, v) = e(u, v)e(u′, v) and e(u, vv′) = e(u, v)e(u, v′),
and thus for all u ∈ G, v ∈ H and a, b ∈ Z, e(ua, vb) = e(u, v)ab, and (2)
e(g, h) �= 1.

We can set G = H, but we allow G �= H for the generality. Thus, our scheme
can be implemented on both supersingular curves and ordinary curves. The
bilinear map can be efficiently implemented with the Tate pairing (or the ηT

pairing [3] on supersingular curves or the Ate pairing [19] on ordinary curves).

3.2 Assumptions

Our schemes are based on the q-SDH assumption [7,8] on G. Furthermore, our
schemes adopt the tracing mechanism of [16], where, in addition to the bilinear
groups, another group F with the same order p and the DDH assumption is
required.

Definition 1 (q-SDH assumption). For all PPT algorithm A , the probability

Pr[A(u, ua, . . . , u(aq)) = (b, u(1/a+b)) ∧ b ∈ Zp]

is negligible, where u ∈R G and a ∈R Zp.

Revocable Group Signature Schemes with Constant Costs 469

Definition 2 (DDH assumption). For all PPT algorithm A, the probability

|Pr[A(u, ua, ub, uab) = 1] − Pr[A(u, ua, ub, uc) = 1]|

is negligible, where u ∈R F and a, b, c ∈R Zp.

Based on the q-SDH assumption, the DL (Discrete Logarithm) assumption also
holds.

Definition 3 (DL assumption). For all PPT algorithm A, the probability

Pr[A(u, ua) = a]

is negligible, where u ∈R G and a ∈R Zp.

3.3 BB Signatures

Our group signature schemes utilize Boneh-Boyen (BB) signature scheme [6]. As
shown in [7], the knowledge of this signature (and the message) can be proved
by a zero-knowledge proof for a representation, which is shown in Sec. 3.5.

BB-Setup: Select bilinear groups G,H, T with a prime order p and a bilinear
map e. Select g ∈R G and h ∈R H.

BB-KeyGen: Select X ∈R Zp and compute Y = hX . The secret key is X and
the public key is (p,G,H, T , e, g, h, Y).

BB-Sign: Given message m ∈ Zp, compute A = g1/(X+m). The signature is A.

BB-Verify: Given message m and the signature A, check e(A, Y hm) = e(g, h).

BB signatures are existentially unforgeable against weak chosen message attack
under the q-SDH assumption [6]. In this attack, the adversary must choose mes-
sages queried for the oracle, before the public key is given.

3.4 BBS+ Signatures

This signature scheme is an extension from BB signature scheme, and is infor-
mally introduced in [7], and the concrete construction is shown in [16,1]. We
call this signature BBS+ signature, as well as [1]. This scheme allows us to sign
a set of messages. Also, the knowledge of the signature and messages can be
proved [16,1], as well as BB signatures.

BBS+-Setup: Select bilinear groups G,H, T with a prime order p and a bilin-
ear map e. Select g, g1, . . ., gL+1 ∈R G and h ∈R H.

BBS+-KeyGen: Select X ∈R Zp and compute Y = hX . The secret key is X
and the public key is (p,G,H, T , e, g, g1, . . . , gL+1, h, Y).

470 T. Nakanishi et al.

BBS+-Sign: Given messages m1, . . . ,mL ∈ Zp, select y, z ∈R Zp and compute

A = (gm1
1 · · · gmL

L gy
L+1g)

1/(X+z).

The signature is (A, y, z).
BBS+-Verify: Given messages m1, . . . ,mL and the signature (A, y, z), check

e(A, Y hz) = e(gm1
1 · · · gmL

L gy
L+1g, h).

BBS+ signatures are existentially unforgeable against adaptively chosen message
attack under the q-SDH assumption [2].

3.5 Proving Relations on Representations

As well as [7,8,16], we adopt signatures converted by Fiat-Shamir heuristic (using
a hash function) from zero-knowledge proofs of knowledge (PK), where a signer
can convince a verifier of knowledge with relations on representations. We call
the signatures SPKs. The SPKs we adopt are the generalization of the Schnorr
signature. We introduce the following notation.

SPK{(x1, . . . , xt) : R(x1, . . . , xt)}(M),

which means a signature of message M by a signer who knows secret values
x1, . . . , xt satisfying a relation R(x1, . . . , xt). In this paper, the following SPKs
on G, T ,F are utilized.

SPK of representation: An SPK proving the knowledge of a representation
of C ∈ G to the bases g1, g2, . . . , gt ∈ G on message M is denoted as

SPK{(x1, . . . , xt) : C = gx1
1 · · · gxt

t }(M).

This can be also constructed on groups T ,F .
SPK of representations with equal parts: AnSPK proving the knowledge

of representations ofC,C′ ∈ G to the bases g1, . . . , gt ∈ G onmessageM , where
the representations include equal values as parts, is denoted as

SPK{(x1, . . . , xu) : C = g
xj1
i1

· · · gxjv

iv
∧ C′ = g

xj′1
i′1

· · · g
xj′

v′
i′
v′

}(M),

where indices i1, . . . iv, i
′
1, . . . i

′
v′ ∈ {1, . . . , t} refer to the bases g1, . . . , gt, and

indices j1, . . . jv, j
′
1, . . . , j

′
v′ ∈ {1, . . . , u} refer to the secrets x1, . . . , xu. This

SPK can be extended for different groups G, T and F with the same order
p, such as

SPK{(x1, . . . , xu) : C = g
xj1
i1

· · · gxjv

iv
∧C′ = h

xj′1
i′1

· · ·h
xj′

v′
i′
v′

}(M),

where C, g1, . . . , gt ∈ G and C′, h1, . . . , ht ∈ T .

In the random oracle model, the SPK can be simulated without the knowledge
using a simulator in the zero-knowledge-ness of the underlying PK. Moreover,
the SPK has an extractor of the proved secret knowledge given two accept-
ing protocol views whose commitments are the same and whose challenges are
different.

Revocable Group Signature Schemes with Constant Costs 471

4 Proposed Scheme

4.1 Idea

The mechanism of conventional (non-revocable) group signature schemes is in-
formally as follows. When a member joins, the member sends f(x) to GM , where
f is a one-way function and x is a secret. GM returns a membership certificate
S = Sign(x) to the member, where Sign is a signing function of GM . Then,
the group signature consists of E = Enc(f(x)), where Enc is an encryption
function using the manager’s public key, and the following SPK on the signed
message M .

SPK{(x, S) : S = Sign(x) ∧ E = Enc(f(x))}(M).

When opening the group signature, the manager decrypts E to check the sender
of f(x) in joining.

We borrow this mechanism from the Furukawa-Imai scheme [16], which is
the one improved on the efficiency from [7] and currently is the most efficient
pairing-based scheme. To this component, we add a novel revocation mechanism
for realizing the constant computational complexity in signing/verifying.

The membership certificate in our scheme is modified to S = Sign(x, UID),
where UID is the ID of the member. On the other hand, a revocation list RLt

consists of

(Sign(t, RID0, RID1), . . . , Sign(t, RIDr, RIDr+1)).

RIDi (1 ≤ i ≤ r) is the UID of a revoked member. Then, we can assume that
RIDi is sorted such that RIDi < RIDi+1 for all 1 ≤ i ≤ r. In addition, RID0
and RIDr+1 are special IDs, where RID0 < UID and RIDr+1 > UID for any
UID.

The group signature for RLt is the following SPK.

SPK{(x, UID, S,RIDi, RIDi+1, S̃) :
S = Sign(x, UID) ∧ E = Enc(f(x))
∧S̃ = Sign(t, RIDi, RIDi+1)
∧RIDi < UID ∧ UID < RIDi+1}(M).

Clearly any non-revoked member can prove this SPK. On the other hand,
if the member with UID is revoked, UID = RIDı̃ holds for some ı̃. Then,
RIDi < UID holds for all i < ı̃, and UID < RIDi for all i > ı̃. Thus, the
revoked member cannot find i such that RIDi < UID < RIDi+1, which means
that the member cannot prove this SPK, since the correctness of UID, RIDi

and RIDi+1 are also ensured by the certificates S and S̃ at the current time t.
The costs of the SPKs for inequations have O(1) complexity, as the con-

struction idea of the SPK is shown later. Thus, the computational costs for
signing/verifying are O(1) w.r.t. R and N . The size of a signature is also O(1).
The size of RLt is O(R). The overhead is the revocation complexity of GM ,
that is, each revocation requires O(R) computation, and the long public key
with O(N) size due to the following SPK for inequations.

472 T. Nakanishi et al.

Remark 1. Our novel idea is to use the above integer inequations on UID and
RID’s. Instead, we easily get a simple solution of proving that his UID is not
equal to all RID’s, but it requires O(R) complexity. Camenisch and Lysyanskaya
proposed an elegant idea of the dynamic accumulator [14], but it needs the
incremental update of signer’s secret key. On the other hand, in our solution,
the signer has only to prove the inequations for some i, and thus has O(1)
complexity. And, note that it does not need any update of the secret key. As far
as we know, such a solution is unknown, and thus our construction idea has a
sufficient novelty together with the practicality on efficiency.

Remark 2. Note that this group signature does not reveal any information on i,
RIDi and RIDi+1 to the verifier. This is because the SPK proves only the fact
that there are secrets i, RIDi and RIDi+1 satisfying the inequations RIDi <
UID < RIDi+1, without revealing i, RIDi and RIDi+1.

Proving Integer Inequations. In the above construction idea, we need an efficient
SPK proving an integer inequation on secrets, as RIDi < UID. In the strong
RSA setting, Boudot’s SPK [9] can be used. However, this methodology cannot
be easily adopted to the pairing-based setting. On the other hand, Teranishi
and Sako utilize an SPK [25] proving that a secret is in an integer interval, and
the SPK is effective even in the pairing-based setting. We adopt this SPK and
extend it to the SPK proving the integer inequation.

At first, we consider the SPK proving that a secret w is in the interval
[1, N]. This SPK needs a special setup, where the trusted party (GM in our
setting) issues certificates. The certificate is a BB signature on every element
from the interval [1, N], as Sign(1), . . . , Sign(N). These certificates are given to
each prover, as a part of the public key. Then, the SPK proving w ∈ [1, N] is
computed as

SPK{(w, S′) : S′ = Sign(w)}(M).

Since issued certificates are for only 1, . . . , N , it ensures w ∈ [1, N].
Next, using this SPK, we consider the SPK proving y > x, in the situation

that x, y ∈ [1, N] is ensured (Note that it is ensured in the above group signature,
due to S = Sign(x, UID)∧ S̃ = Sign(t, RIDi, RIDi+1)). The SPK is obtained
as

SPK{(x, y, S′) : S′ = Sign(y − x mod p)}(M).

Then, this ensures z ∈ [1, N], where z = y − x (mod p). On the other hand,
from x, y ∈ [1, N], we obtain z ∈ [1, N] when y > x, and z ∈ [p − N, p − 1] or
z = 0 when y ≤ x. Since we can assume N < p/2, z ∈ [1, N] means y > x.

The computational cost of this SPK is constant w.r.t. N , although the dis-
tributions of N certificates is an overhead.

Remark 3. As another approach of the SPK proving the interval relation, a
bit-by-bit approach is also known, which is described and used in [1]. However,
in this approach, the size of the proof is linear in the size of the secret to be
proved. In case of adopting it in our group signatures, the size is �log2 N�, and

Revocable Group Signature Schemes with Constant Costs 473

the proof size is about 4 �log2 N� multiplied by the size of the group element. If
we use the same parameters as Sect. 7 and N = 1, 000, 000, the SPK amounts
to more than 2,000 Bytes. Since we use interval proofs two times in our group
signatures, the group signature is about more than 4,000 Bytes. Even in case of
N = 1, 000, it is more than 2,000 Bytes. On the other hand, our group signature
proposed in this section is about 650 Bytes, and our extended group signature
proposed in Sect. 6 is about 1,200 Bytes.

In the bit-by-bit approach, the public key size is constant and better. However,
signatures frequently occur in authentications or signings, and thus, in lots of
applications, the signature size influences the efficiency of communication and
storage more than the size of the public key that is not changed. This is why we
adopt Teranishi-Sako’s SPK proving interval relations in this paper.

4.2 Proposed Algorithms

Assume that the total number of group members, N , is fixed in advance, and
we can assume that N < p/2.

Setup: The input of this algorithm is security parameter 1�, and the output is
param.

1. Select bilinear groups G,H, T with the same prime order p of length �, and
the bilinear map e. In addition, select a group F with the DDH assumption
and the same prime order p. Select hash function H : {0, 1}∗ → Zp.

2. Select g, g1, g2, g3, g̃, g̃1, ĝ, ĝ1, ĝ2, ĝ3, ĝ4 ∈R G, h, h̃, ĥ ∈R H, and f ∈R F .
3. Output param = (p,G,H, T ,F , e,H, g, g1, g2, g3, g̃, g̃1, ĝ, ĝ1, ĝ2, ĝ3, ĝ4, h, h̃,

ĥ, f).

KeyGen: The inputs of this algorithm are N and param = (p,G,H, T ,F , e,H ,
g, g1, g2, g3, g̃, g̃1, ĝ, ĝ1, ĝ2, ĝ3, ĝ4, h, h̃, ĥ, f), and the output consists of gpk and
msk.

1. Select X, X̃, X̂ ∈R Zp and compute Y = hX , Ỹ = h̃X̃ , and Ŷ = ĥX̂ .
2. Select X1, X2 ∈R Zp and compute Y1 = fX1 and Y2 = fX2 .
3. For all j ∈ 1, . . . , N , generate BB signatures for j, namely compute Fj =

g̃1/(X̃+j).
4. Output gpk = (p,G,H, T ,F , e,H, g, g1, g2, g3, g̃, g̃1, ĝ, ĝ1, ĝ2, ĝ3, ĝ4, h, h̃, ĥ, f ,

Y, Ỹ , Ŷ , Y1, Y2, F1, . . . FN) and msk = (X, X̃, X̂,X1, X2).

Join: This is an interactive protocol between Join-U (the i-th joining user) and
Join-GM (GM). The common input is gpk, and the input of Join-GM is msk.
The output of Join-U is usk[i]. The output is Join-GM is reg[i]. Assume that
i = 1 and i = N are assigned to fictitious users out of the group (Assume that
the users of i = 1, N are always revoked).

1. [Join-U] Select xi, y
′
i ∈ Zp, compute A′

i = gxi
1 g

y′
i

3 and Di = fxi, and send
A′

i, Di to Join-GM. In addition, prove the validity of A′
i and Di using an

SPK for representations.

474 T. Nakanishi et al.

2. [Join-GM] Select y′′i , zi ∈R Zp, compute

Ai = (A′
ig

i
2g

y′′
i

3 g)1/(X+zi),

and return (i, Ai, y
′′
i , zi) to Join-U. Output reg[i] = Di.

3. [Join-U] Compute yi = y′i + y′′i mod p, verify e(Ai, Y hzi) = e(gxi
1 gi

2g
yi

3 g, h),
and output usk[i] = (Ai, xi, yi, zi) s.t. AX+zi

i = gxi
1 gi

2g
yi

3 g. The BBS+ signa-
tures (Ai, yi, zi) on secret xi and UID i is correspondent to the membership
certificate.

Revoke: The input of this algorithm consists of gpk, t and RU . The output is
RLt.

1. Sort elements of RU , according to ascending order. Let ı̂1, . . . , ı̂r be the
sorted ones, where r = |RU |. In addition, set ı̂0 = 1 and ı̂r+1 = N .

2. For every ı̂j (0 ≤ j ≤ r), generate a BBS+ signature on t, ı̂j, ı̂j+1, namely
select ŷj , ẑj ∈R Zp, and compute Bı̂j = (ĝt

1ĝ
ı̂j

2 ĝ
ı̂j+1
3 ĝ

ŷj

4 ĝ)1/(X̂+ẑj).
3. Output

RLt = ((̂ı0, ı̂1, Bı̂0 , ŷ0, ẑ0), . . . , (̂ır, ı̂r+1, Bı̂r , ŷr, ẑr)).

Sign: The input of this algorithm consists of gpk, usk[i] = (Ai, xi, yi, zi), t,
RLt = ((̂ı0, ı̂1, Bı̂0 , ŷ0, ẑ0), . . . , (̂ır, ı̂r+1, Bı̂r , ŷr, ẑr)) and M ∈ {0, 1}∗. The out-
put is σ.

1. Select a random α ∈R Zp, and compute a commitment C = Aig
α
3 . Set

ζ = yi + αzi.
2. Find ı̂j s.t. ı̂j < i < ı̂j+1. Select a random α̂ ∈R Zp, and compute a commit-

ment Ĉ = Bı̂j ĝ
α̂
4 . Set ζ̂ = ŷj + α̂ẑj .

3. Set δ1 = i− ı̂j and δ2 = ı̂j+1 − i. Find Fδ1 and Fδ2 , select β1, β2 ∈R Zp, and
compute commitments CFδ1

= Fδ1 g̃
β1
1 and CFδ2

= Fδ2 g̃
β2
1 . Set θ1 = β1δ1,

and θ2 = β2δ2.
4. Select a random γ ∈R Zp, and compute ciphertext T1 = fxi+γ , T2 = Y γ

1 ,
and T3 = Y γ

2 .
5. Compute an SPK V on message M proving knowledge of xi, i, ζ, α, zi, ı̂j ,

ı̂j+1, ζ̂, α̂, ẑj , θ1, β1, θ2, β2, γ s.t.

e(C, Y)e(g, h)−1 = e(g1, h)xie(g2, h)ie(g3, h)ζe(g3, Y)αe(C, h)−zi ,

e(Ĉ, Ŷ)e(ĝ, ĥ)−1e(ĝ1, ĥ)−t

= e(ĝ2, ĥ)ı̂je(ĝ3, ĥ)ı̂j+1e(ĝ4, ĥ)ζ̂e(ĝ4, Ŷ)α̂e(Ĉ, ĥ)−ẑj ,

e(CFδ1
, Ỹ)e(g̃, h̃)−1 = e(g̃1, h̃)θ1e(g̃1, Ỹ)β1e(CFδ1

, h̃)−(i−ı̂j),

e(CFδ2
, Ỹ)e(g̃, h̃)−1 = e(g̃1, h̃)θ2e(g̃1, Ỹ)β2e(CFδ2

, h̃)−(ı̂j+1−i),

T1 = fxi+γ , T2 = Y γ
1 , T3 = Y γ

2 .

As indicated in Lemma 1, the above relations in V ensure the validity of
signatures (Ai, yi, zi), (Bı̂j , ŷj, ẑj), Fδ1 , Fδ2 and the validity of T1, T2 and T3,
respectively.

6. Output σ = (C, Ĉ, CFδ1
, CFδ2

, T1, T2, T3, V).

Revocable Group Signature Schemes with Constant Costs 475

Verify: The inputs are gpk, t, a target signature σ = (C, Ĉ, CFδ1
, CFδ2

, T1, T2,
T3, V), and the message M . Check the SPK V . Output ’valid’ (resp., ’invalid’)
if it is correct (resp., incorrect).

Open : The inputs are gpk, the secret key msk = (X, X̃, X̂,X1, X2), reg with
reg[i] = Di, t, a target signature σ = (C, Ĉ, CFδ1

, CFδ2
, T1, T2, T3, V) and the

message M .

1. Verify σ. If it is invalid, abort.
2. Using X1, compute T1/T

1/X1
2 to obtain fxi . Search reg for i with Di = fxi .

3. Output i.

5 Security

Here, we show a lemma and theorems on the security of our scheme.

Lemma 1. The SPK V proves the knowledge of xi, i, zi, yi, ı̂j , ı̂j+1, ẑj , ŷj, η1,
η2, γ,Ai, Bı̂j , F

′
δ1
, F ′

δ2
s.t.

Ai = (gxi
1 gi

2g
yi

3 g)1/(X+zi), Bı̂j = (ĝt
1ĝ

ı̂j

2 ĝ
ı̂j+1
3 ĝ

ŷj

4 ĝ)1/(X̂+ẑj),

F ′
δ1 = (g̃η1

1 g̃)1/(X̃+(i−ı̂j)), F ′
δ2 = (g̃η2

1 g̃)1/(X̃+(ı̂j+1−i)),

T1 = fxi+γ , T2 = Y γ
1 , T3 = Y γ

2 .

This proof will be in the full paper. Note that F ′
δ1

and F ′
δ2

are variants of BB
signatures, and are not the same as Fδ1 and Fδ2 , due to the parts g̃η1

1 , g̃η2
1 .

However, in the traceability game, the difference can be treated well. Note that,
as well as [21], the adopted SPKs of F ′

δ1
and F ′

δ2
are more efficient than those

of Fδ1 and Fδ2 described in [7].

Theorem 1. The proposed scheme satisfies the traceability under the q-SDH
assumption, in the random oracle model.

This proof will be in the full paper. In the proof, if an adversary wins the trace-
ability game for our scheme, using this adversary, we can forge BBS+ signatures
(Ai, yi, zi) or (Bı̂j , ŷj , ẑj), or a BB signature Fk. Thus, we can construct adver-
saries for the BBS+ signatures or BB+ signatures, which are secure under the
q-SDH assumption.

Theorem 2. The proposed scheme satisfies the anonymity under the DDH as-
sumption, in the random oracle model.

This proof is similar to [17], which is the full-paper version of [16]. As well as [16],
our group signature consists of a double encryption of an ID fxi , (T1, T2, T3), and
the non-interactive zero-knowledge proof including statistically hiding commit-
ments, which mean an IND-CCA2 secure encryption. Thus, easily we can reduce
the anonymity game of our scheme to the IND-CCA2 game for the IND-CCA2
secure encryption under the DDH assumption.

476 T. Nakanishi et al.

Theorem 3. The proposed scheme satisfies the non-frameability under the DL
assumption, in the random oracle model.

This proof is also similar to [17]. In this proof, the DL adversary is constructed
using the adversary in the non-frameability game. In the game, instead of com-
puting (f, fxi), the input of the DL adversary is used as (f, fxi). In an honest
user’s joining, fxi in the input (xi is unknown) is used. The SPKs for xi in
joining and signing can be simulated by the zero-knowledge simulator. From
the output of the adversary in the non-frameability game (which outputs the
signature for the honest user with xi with a non-negligible probability), we can
extract xi, which means breaking the DL assumption.

6 Extension

The weak point of the proposed scheme is O(N) size of gpk. This section shows
an extended scheme with O(

√
N)-size public key.

6.1 Idea

The extension is obtained by improving the SPK proving integer inequation. A
positive integer w ∈ [1, N] can be expressed as w2

1 +w2, where w1 is the greatest
square less than w, and w2 is a non-negative integer less than 2

√
N [9]. Then,

note that 1 ≤ w1 <
√
N and 0 ≤ w2 < 2

√
N . The extended integer inequation

proof is as follows. Define N1 = √N! and N2 = 2√N!.
In the setup, the trusted party issues two types of certificates based on

BB signatures. In one type, Sign(1), . . . , Sign(N1) are issued. In the other,
Sign′(0), . . . , Sign′(N2) are issued.

Then, the SPK proving y > x is computed as

SPK{(x, y, w1, w2, S1, S2) : y − x = w2
1 + w2 (mod p)

∧S1 = Sign(w1) ∧ S2 = Sign′(w2)}(M).

The relation y − x = w2
1 + w2 (mod p) can be efficiently proved by an SPK, as

[9]. Due to the BB signatures, w1 ∈ [1, N1] and w2 ∈ [0, N2] are ensured. Then,
w2

1 + w2 ∈ [1, N2
1 + N2]. By assuming N2

1 + N2 < p/2, we obtain w2
1 + w ∈

[1, p/2 − 1]. Namely, for z = y − x (mod p), we have z ∈ [1, p/2 − 1]. Since
x, y ∈ [1, N] is ensured, as well as the basic scheme, this means y − x > 0 and
thus y > x in Z.

On the other hand, the number of the issued certificates is O(
√
N), which

means O(
√
N)-size public key.

6.2 Extended Algorithms

Define N1 = √N! and N2 = 2√N!. We assume that N2
1 +N2 < p/2. Revoke,

Verify, and Open are similar to the basic scheme in Sec. 4. The others are
modified as follows.

Revocable Group Signature Schemes with Constant Costs 477

Setup: In addition to Setup of the basic scheme, select ġ, ġ1 ∈ G, ḣ ∈ H, which
are added to param.

KeyGen: In addition to Step 1 and 2 of KeyGen of the basic scheme, select
Ẋ ∈R Zp, and compute Ẏ = ḣẊ . Step 3 is modified as follows.

3. For all j ∈ 1, . . . , N1, generate BB signatures for j, namely compute Fj =
g̃1/(X̃+j). Additionally, for all j ∈ 0, . . . , N2, generate BB signatures for j,
namely compute Ḟj = ġ1/(Ẋ+j).

Add Ẋ to msk, and add Ẏ , F1, . . . , FN1 , Ḟ0, . . . , ḞN2 to gpk.

Sign: Step 1, 2, 4 are the same as the basic scheme. Step 3, 5 are modified as
follows.

3. Set δ1 = i − ı̂j and δ2 = ı̂j+1 − i. Find δ1,1 and δ1,2 s.t. δ1 = δ1,1
2 + δ1,2,

1 ≤ δ1,1 ≤ N1 and 0 ≤ δ1,2 ≤ N2. Find δ2,1 and δ2,2 s.t. δ2 = δ2,1
2 + δ2,2,

1 ≤ δ2,1 ≤ N1 and 0 ≤ δ2,2 ≤ N2. Find Fδ1,1 , Ḟδ1,2 , Fδ2,1 , and Ḟδ2,2 , select
β1,1, β1,2, β2,1, β2,2 ∈R Zp, and compute commitments CFδ1,1

= Fδ1,1 g̃
β1,1
1 ,

CḞδ1,2
= Ḟδ1,2 ġ

β1,2
1 , CFδ2,1

= Fδ2,1 g̃
β2,1
1 , CḞδ2,2

= Ḟδ2,2 ġ
β2,2
1 . Set θ1,1 =

β1,1δ1,1, θ1,2 = β1,2δ1,2, θ2,1 = β2,1δ2,1, and θ2,2 = β2,2δ2,2.
Furthermore, select ξ1, ξ

′
1, ξ2, ξ

′
2 ∈R Zp, and compute commitments Cδ1,1 =

g̃δ1,1 g̃1
ξ1 , Cδ1,1

2 = g̃δ1,1
2
g̃1

ξ′
1 , Cδ2,1 = g̃δ2,1 g̃1

ξ2 , Cδ2,1
2 = g̃δ2,1

2
g̃1

ξ′
2 . Set ξ′′1 =

ξ′1 − ξ1δ1,1 and ξ′′2 = ξ′2 − ξ2δ2,1.
5. Compute an SPK V on message M proving knowledge of xi, i, ζ, α, zi, ı̂j ,

ı̂j+1, ζ̂, α̂, ẑj , δ1,1, δ1,2, δ2,1, δ2,2, θ1,1, θ1,2, θ2,1, θ2,2, β1,1, β1,2, β2,1, β2,2, ξ1, ξ
′
1,

ξ′′1 , ξ2, ξ
′
2, ξ

′′
2 , γ s.t.

e(C, Y)e(g, h)−1 = e(g1, h)xie(g2, h)ie(g3, h)ζe(g3, Y)αe(C, h)−zi ,

e(Ĉ, Ŷ)e(ĝ, ĥ)−1e(ĝ1, ĥ)−t

= e(ĝ2, ĥ)ı̂je(ĝ3, ĥ)ı̂j+1e(ĝ4, ĥ)ζ̂e(ĝ4, Ŷ)α̂e(Ĉ, ĥ)−ẑj ,

e(CFδ1,1
, Ỹ)e(g̃, h̃)−1 = e(g̃1, h̃)θ1,1e(g̃1, Ỹ)β1,1e(CFδ1,1

, h̃)−δ1,1 ,

e(CḞδ1,2
, Ẏ)e(ġ, ḣ)−1 = e(ġ1, ḣ)θ1,2e(ġ1, Ẏ)β1,2e(CḞδ1,2

, ḣ)−δ1,2 ,

e(CFδ2,1
, Ỹ)e(g̃, h̃)−1 = e(g̃1, h̃)θ2,1e(g̃1, Ỹ)β2,1e(CFδ2,1

, h̃)−δ2,1 ,

e(CḞδ2,2
, Ẏ)e(ġ, ḣ)−1 = e(ġ1, ḣ)θ2,2e(ġ1, Ẏ)β2,2e(CḞδ2,2

, ḣ)−δ2,2 ,

Cδ1,1 = g̃δ1,1 g̃1
ξ1 , Cδ1,1

2 = C
δ1,1
δ1,1

g̃1
ξ′′
1 , Cδ1,1

2 = g̃−δ1,2+(i−ı̂j)g̃1
ξ′
1 ,

Cδ2,1 = g̃δ2,1 g̃1
ξ2 , Cδ2,1

2 = C
δ2,1
δ2,1

g̃1
ξ′′
2 , Cδ2,1

2 = g̃−δ2,2+(ı̂j+1−i)g̃1
ξ′
2 ,

T1 = fxi+γ , T2 = Y γ
1 , T3 = Y γ

2 .

Security. The proof sketch of the traceability will also be in the full paper, which
is similar to the proof of the basic scheme. The anonymity and non-frameability
can be proved as well as the basic scheme.

478 T. Nakanishi et al.

7 Efficiency

Computational efficiency. At first, we discuss the efficiency of the basic scheme
in Sec. 4. As well as [22], all pairings in the Sign algorithm can be pre-computed,
and pairings except 4 pairing in the Verify algorithm can be also pre-computed.
Then, the Sign algorithm requires 4 exponentiations on G, 6 exponentiations on
F , and 4 multi-exponentiations on T . The Verify algorithm requires 3 expo-
nentiations on F , 4 multi-exponentiations on H, 4 multi-exponentiations on T ,
and 4 pairings. The computational time of each exponentiation or each pairing
does not depend on N and R, and thus constant computational costs for both
Sign and Verify are achieved.

The next is the efficiency of the extended scheme in Sec. 6. By adopting the
same pre-computations, the Sign algorithm requires 16 multi-exponentiations on
G, 6 exponentiations on F , and 6 multi-exponentiations on T . The Verify algo-
rithm requires 6 multi-exponentiations on G, 3 exponentiations on F , 6 multi-
exponentiations on H, 6 multi-exponentiations on T , and 6 pairings. Thus, we
achieve O(1) computational costs in signing/verifying in both schemes, although
the extended one has some overheads for obtaining O(

√
N)-size public key.

Data size. Here, we discuss the data size. To confirm the practicality, we use
the following concrete parameters. To obtain the 112-bit security level, we can
represent G- and F -elements with 224 bits for the ECC DL security. We assume
the BN curves [4] with efficient pairing computations and the embedding degree
12. Then, we can represent T -elements with 2688 bits, which satisfies the DL
security corresponding the 112-bit security level.

Note that both schemes have signatures with constant sizes. In the above
concrete setting, the signature of the basic scheme is about 650 Bytes. This is
because the signature σ has 4 G-elements, 3 F -elements, and 16 Zp-elements.
On the other hand, the signature of the extended scheme is about 1,200 Bytes,
since the signature has 10 G-elements, 3 F -elements, and 30 Zp-elements.

Next, we discuss the public key size. In the basic scheme, the length of gpk is
O(N), due to the dominant F1, . . . , FN . On the other hand, in the extended one,
it is reduced to O(

√
N), due to the dominant F1, . . . , FN1 , Ḟ0, . . . , ḞN2 . To con-

firm the practicality of the extended one, we also use the above concrete parame-
ters. Then, in case of N = 1, 000, 000, the public parameters F1, . . . , FN1 , Ḟ0, . . .,
ḞN2 only need about 84 KBytes in total. This concrete size shows the sufficient
practicality of the storage, not only in usual PCs but also in smart phones.
Furthermore, since clients have only to download the public key once, the com-
munication cost does not matter.

As the final remark, in both schemes, the length of RLt is O(R).

8 Conclusion

In this paper, we have proposed revocable group signature schemes, where both
signing and verifying require only constant computational costs w.r.t. the group

Revocable Group Signature Schemes with Constant Costs 479

size and the number of revoked members. In the schemes, any secret key update
is not required, and the data related to revocation has O(R) size.

One of our future works is to integrate this scheme into anonymous client
authentications in WEB services, and to evaluate it in practical environments.
Other future works are to decrease the size of the revocation list and to exclude
the random oracle.

Acknowledgments

This work was supported by the Strategic Information and Communications
R&D Promotion Programme (SCOPE) from the Ministry of Internal Affairs and
Communications of Japan. We would like to thank the anonymous reviewers and
Yasuyuki Nogami for helpful comments.

References

1. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k-TAA. In: De Prisco, R.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg
(2006)

2. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k-TAA. Cryptology ePrint
Archive: Report 2008/136 (2008); this is the extended version of [1]

3. Barreto, P.S.L.M., Galbraith, S.D., O’hEigeartaigh, C., Scott, M.: Efficient pairing
computation on supersingular abelian varieties. Designs, Codes and Cryptogra-
phy 42(3), 239–271 (2007)

4. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006)

5. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dy-
namic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153.
Springer, Heidelberg (2005)

6. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

7. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

8. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: Proc.
11th ACM Conference on Computer and Communications Security (ACM-CCS
2004), pp. 168–177 (2004)

9. Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Preneel,
B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg
(2000)

10. Bresson, E., Stern, J.: Group signature scheme with efficient revocation. In: Kim,
K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 190–206. Springer, Heidelberg (2001)

11. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proc.
11th ACM Conference on Computer and Communications Security (ACM-CCS
2004), pp. 132–145 (2004)

480 T. Nakanishi et al.

12. Camenisch, J., Groth, J.: Group signatures: Better efficiency and new theoretical
aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 120–133.
Springer, Heidelberg (2005)

13. Camenisch, J., Herreweghen, E.V.: Design and implementation of the idemix
anonymous credential system. In: Proc. 9th ACM Conference on Computer and
Communications Security (ACM-CCS 2002), pp. 21–30 (2002)

14. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

15. Chaum, D., van Heijst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 241–246. Springer, Heidelberg (1991)

16. Furukawa, J., Imai, H.: An efficient group signature scheme from bilinear maps. In:
Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 455–467.
Springer, Heidelberg (2005)

17. Furukawa, J., Imai, H.: An efficient group signature scheme from bilinear maps.
IEICE Trans. Fundamentals E89-A(5), 1328–1338 (2006)

18. Groth, J.: Fully anonymous group signatures without random oracles. In: Kuro-
sawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Hei-
delberg (2007)

19. Hess, F., Smart, N., Vercauteren, F.: The eta pairing revisited. IEEE Trans. Infor-
mation Theory 52(10), 4595–4602 (2006)

20. Isshiki, T., Mori, K., Sako, K., Teranishi, I., Yonezawa, S.: Using group signatures
for identity management and its implementation. In: Proc. 2nd ACM Workshop
on Digital Identity Management, pp. 73–78 (2006)

21. Nakanishi, T., Funabiki, N.: A short verifier-local revocation group signature
scheme with backward unlinkability. In: Yoshiura, H., Sakurai, K., Rannenberg,
K., Murayama, Y., Kawamura, S.-i. (eds.) IWSEC 2006. LNCS, vol. 4266, pp.
17–32. Springer, Heidelberg (2006)

22. Nakanishi, T., Funabiki, N.: Short verifier-local revocation group signature scheme
with backward unlinkability. IEICE Trans. Fundamentals E90-A(9), 1793–1802
(2007)

23. Nakanishi, T., Kubooka, F., Hamada, N., Funabiki, N.: Group signature schemes
with membership revocation for large groups. In: Boyd, C., González Nieto, J.M.
(eds.) ACISP 2005. LNCS, vol. 3574, pp. 443–454. Springer, Heidelberg (2005)

24. Nakanishi, T., Sugiyama, Y.: A group signature scheme with efficient membership
revocation for reasonable groups. In: Wang, H., Pieprzyk, J., Varadharajan, V.
(eds.) ACISP 2004. LNCS, vol. 3108, pp. 336–347. Springer, Heidelberg (2004)

25. Teranishi, I., Sako, K.: k-times anonymous authentication with a constant proving
cost. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS,
vol. 3958, pp. 525–542. Springer, Heidelberg (2006)

An Accumulator Based on Bilinear Maps and
Efficient Revocation for Anonymous Credentials

Jan Camenisch1, Markulf Kohlweiss2, and Claudio Soriente3

1 IBM Research Zurich
jca@zurich.ibm.com

2 Katholieke Universiteit Leuven / IBBT
markulf.kohlweiss@esat.kuleuven.be

3 University of California, Irvine
csorient@ics.uci.edu

Abstract. The success of electronic authentication systems, be it e-
ID card systems or Internet authentication systems such as CardSpace,
highly depends on the provided level of user-privacy. Thereby, an im-
portant requirement is an efficient means for revocation of the authenti-
cation credentials. In this paper we consider the problem of revocation
for certificate-based privacy-protecting authentication systems. To date,
the most efficient solutions for revocation for such systems are based on
cryptographic accumulators. Here, an accumulate of all currently valid
certificates is published regularly and each user holds a witness enabling
her to prove the validity of her (anonymous) credential while retaining
anonymity. Unfortunately, the users’ witnesses must be updated at least
each time a credential is revoked. For the know solutions, these updates
are computationally very expensive for users and/or certificate issuers
which is very problematic as revocation is a frequent event as practice
shows.

In this paper, we propose a new dynamic accumulator scheme based
on bilinear maps and show how to apply it to the problem of revocation
of anonymous credentials. In the resulting scheme, proving a credential’s
validity and updating witnesses both come at (virtually) no cost for cre-
dential owners and verifiers. In particular, updating a witness requires
the issuer to do only one multiplication per addition or revocation of a
credential and can also be delegated to untrusted entities from which
a user could just retrieve the updated witness. We believe that thereby
we provide the first authentication system offering privacy protection
suitable for implementation with electronic tokens such as eID cards or
drivers’ licenses.

Keywords: dynamic accumulators, anonymous credentials, revocation.

1 Introduction

The desire for strong electronic authentication is growing not only for the Inter-
net but also in the physical world where authentication tokens such as electronic
identity cards, driving licenses, and e-tickets are being widely deployed and are

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 481–500, 2009.
c Springer-Verlag Berlin Heidelberg 2009

1007/978-
The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

http://dx.doi.org/10.1007/978-3-642-00468-1_29

482 J. Camenisch, M. Kohlweiss, and C. Soriente

set to become a pervasive means of authentication. It has been realized that
thereby the protection of the citizens’ privacy is of paramount importance and
hence that the principle of data minimization needs to be applied: any individual
should only disclose the minimal amount of personal information necessary for
the transaction at hand. While privacy is of course not a major concern for the
primary use of these tokens, e.g., for e-Government, it becomes vital for their
so-called secondary use. For instance, when accessing a teenage chat room with
an e-ID card, users should only have to reveal that they are indeed between, say,
10 and 16 years old but should not reveal any other information stored on the
card such as birth date, name or address.

In the literature, there exist a fair number of privacy-preserving technologies
that allow one to meet these requirements. These technologies include anony-
mous credential systems [1,2,3], pseudonym systems [4,5,6,7], anonymous e-cash
[8,9,10], or direct anonymous attestation [11]. Almost all of these schemes ex-
hibit a common architecture with certificate issuers, users (certificate recipients)
and certificate verifiers: Users obtain a signature from an issuing authority on a
number of attributes and, at later time, can convince verifiers that they indeed
possess a signature on those attributes [12]. Individual transactions are anony-
mous and unlikable by default and users can select which portions of a certificate
to reveal, which portions to keep hidden, and what relations between certified
items to expose.

A crucial requirement for all authorization and authentication systems is that
certificates issued can be later revoked, in case of unexpected events or mali-
cious use of the certificate. For traditional certificates, this is typically achieved
either by publishing a certificate revocation list or by enforcing a short certificate
lifetime via expiration date. For anonymous certificates, the former approach vi-
olates privacy while the latter is typically rather inefficient as it would require
the users to frequently engage in the usually quite involved issuing protocol.

In principle, the approach of certificate revocation list can be made to work also
for anonymous credentials by having the user to prove in zero-knowledge that her
certificate is not contained on the (black) list. Such a proof, however, would not be
efficient as the computational and communication cost of the user and the verifier
become preventive as they grow at least logarithmic with number of entries in the
list. The literature provides two kinds solutions that overcome this.

The first kind is called verifier local revocation [13,14,11,15]. In the best so-
lution here, the cost for the user is independent of the number of entries in the
revocation list, but the computational cost of the verifier is linear in this num-
ber (at least a modular exponentiation or, worse, a pairing operation per entry).
Thus, these solutions are not at all suited for large scale deployments.

The second kind [16,17] employs cryptographic accumulators [18]. Such ac-
cumulators allow one to hash a large set of inputs in a single short value, the
accumulator, and then provide evidence by an accumulator witness that a given
value is indeed contained in the accumulator. Thus, the serial numbers of all
currently valid credentials are accumulated and the resulting value is published.
Users can then show to verifiers that their credential is still valid, by using their

An Accumulator Based on Bilinear Maps and Efficient Revocation 483

witness to prove (in zero-knowledge) that their credential’s serial number is con-
tained in the published accumulator. Such proofs can be realized with practical
efficiency [16,17] and incur only cost to the user and the verifier that are inde-
pendent of the number of revoked or currently valid credentials. The drawback
of these solutions, however, is that the users need to update their accumulator
witnesses and an update requires at least one modular exponentiation for each
newly revoked credential. Assuming a driving license application and based on
the, e.g., 0.07% rate of driver’s license revocation in West Virginia USA [19],
the number of credentials revoked will quickly become a couple of thousands per
day. Thus, these solutions incur a computational (and communication) cost far
greater that what an electronic token such as a smart card can possibly handle.

Our contribution. In this paper we are therefore considering revocation solutions
that incur (virtually) no cost to the verifier and the users, and only limited costs
to the issuer (or the revocation authority). More precisely, for each revocation
epoch (e.g., every day), verifiers and users need to retrieve the issuer’s current
public key (i.e., the new accumulator value) while users further need to retrieve
their witnesses (a single group element). Upon revocation of a credential, the
revocation authority only needs to perform one multiplication per remaining
user to update (and provide) the users’ witnesses, a cost which can easily be
handled by today’s standards. We note that this update operation requires no
secret keys and does not need to be performed by the issuer, i.e., it could be
performed by other untrusted entities.

As building block for this solution, we introduce a novel dynamic accumulator
based on bilinear maps and show how to employ it for revocation at the example
of the Bangerter, Camenisch and Lysyanskaya private certificate framework [12],
which is essentially a generalization of e-cash, anonymous credentials, and group
signatures. Thus we provide for the first time a practical solution for anonymous
authentication with e-ID cards.

Related Work. Camenisch and Lysyanskaya [17] introduce a dynamic accumu-
lator and show its applicability to revocation in Anonymous Credential Systems
as well as Identity Escrow and Group Signatures. Update of the proposed accu-
mulator, as well as user witnesses, require a number of exponentiations that is
linear in the number of users added to or revoked from the system. In [20], the
authors extend the above accumulator, introducing witnesses and proofs that a
value was not accumulated.

Nguyen [21] constructs a dynamic accumulator from bilinear pairings. Its ap-
plication to an anonymous credential system require users to store large system
parameters, in order to prove validity of their credential. Moreover, updating a
witness takes one exponentiation per event and therefore is not efficient enough
for what we are after (in the paper the authors write multiplication and use addi-
tion as base operation for the algebraic group as is done sometimes in connection
with bi-linear maps and elliptic curve groups).

In [22], the authors propose a dynamic accumulator for batch update. Users
who missed many witness updates, can request update information to the issuer

484 J. Camenisch, M. Kohlweiss, and C. Soriente

and update their witness with one multiplication. In our scheme, we can provide
the same feature, relaxing the requirement that the issuer takes part to the
witness update. We note, however, that the authors do not show how to achieve
an efficient proof of knowledge of an element contained in the accumulator as is
needed for the use of the accumulator for revocation of credentials.

Outline. The rest of the paper is organized as follow. In Section 2 we dis-
cuss assumptions and recall existing building blocks. In Section 3 we introduce
our novel dynamic accumulator. In Section 4 we show how to extend the
Bangerter et al. private certificate framework with an efficient revocation
mechanism. Conclusion and further discussion are given in Section 5.

2 Preliminaries

In this section we list assumptions and cryptographic tools used as building
blocks of the introduced accumulator as well as our anonymous credential revo-
cation system.

A function ν is negligible if, for every integer c, there exists an integer K such
that for all k > K, |ν(k)| < 1/kc. A problem is said to be hard (or intractable)
if there exists no probabilistic polynomial time (p.p.t.) algorithm on the size of
the input to solve it.

Bilinear Pairings. Let G and GT be groups of prime order q. A map e : G×G →
GT must satisfy the following properties:

(a) Bilinearity: a map e : G× G → GT is bilinear if e(ax, by)t = e(a, b)xy;
(b) Non-degeneracy: for all generators g, h ∈ G, e(g, h) generates GT ;
(c) Efficiency: There exists an efficient algorithm BMGen(1k) that outputs (q,G,

GT , e, g) to generate the bilinear map and an efficient algorithm to compute
e(a, b) for any a, b ∈ G.

The security of our scheme is based on the following number-theoretic assump-
tions. Our accumulator construction is based on the Diffie-Hellman Exponent as-
sumption. The unforgeability of credentials is based on the Strong Diffie-Hellman
assumption. For credential revocation we need to prove possession of an accu-
mulator witness for a credential. This proof is based on our new Hidden Strong
Diffie-Hellman Exponent (SDHE) assumption.

Definition 1 (n-DHE). Diffie-Hellman Exponent (DHE) assumption: The
n-DHE problem in a group G of prime order q is defined as follows: Let gi =
gγi

, γ ←R Zq. On input {g, g1, g2, . . . , gn, gn+2, . . . , g2n} ∈ G2n, output gn+1.
The n-DHE assumption states that this problem is hard to solve.

Boneh, Boyen, and Goh [23] introduced the Bilinear Diffie-Hellman Exponent
(BDHE) assumption that is defined over a bilinear map. Here the adversary has
to compute e(g, h)γn+1 ∈ GT .

An Accumulator Based on Bilinear Maps and Efficient Revocation 485

Lemma 1. The n-DHE assumption for a group G with a bilinear pairing e :
G × G → GT is implied by the n-BDHE assumption for the same groups.

Boneh and Boyen introduced the Strong Diffie-Hellman assumption in [24].

Definition 2 (n-SDH [24]). On input g, gx, gx2
, . . . , gxn ← G, it is computa-

tionally infeasible to output (g1/(x+c), c).

Boyen and Waters [25] introduced the Hidden Strong Diffie-Hellman assumption
under which BB signatures [24] are secure for any message space. We require a
variant of the Hidden Strong Diffie-Hellman assumption that we call the Hidden
Strong Diffie-Hellman Exponent (n-HSDHE) assumption. The two assumptions
are hitherto incomparable.

Definition 3 (n-HSDHE). Given g, gx, u ∈ G, {g1/(x+γi), gγi

, uγi}i=1...n, and
{gγi}i=n+2...2n, it is infeasible to compute a new tuple (g1/(x+c), gc, uc).

2.1 Known Discrete-Logarithm-Based, Zero-Knowledge Proofs

In the common parameters model, we use several previously known results for
proving statements about discrete logarithms, such as (1) proof of knowledge
of a discrete logarithm modulo a prime [26], (2) proof of knowledge of equality
of some elements in different representation [27], (3) proof that a commitment
opens to the product of two other committed values [28,29,30], and also (4) proof
of the disjunction or conjunction of any two of the previous [31].

When referring to the above proofs, we will follow the notation introduced by
Camenisch and Stadler [32] for various proofs of knowledge of discrete logarithms
and proofs of the validity of statements about discrete logarithms. For instance,

PK{(α, β, δ) : y = gαhβ ∧ ỹ = g̃αh̃δ}
denotes a “zero-knowledge Proof of Knowledge of integers α, β, and δ such that
y = gαhβ and ỹ = g̃αh̃δ holds,” where y, g, h, ỹ, g̃, and h̃ are elements of some
groups G = 〈g〉 = 〈h〉 and G̃ = 〈g̃〉 = 〈h̃〉 that have the same order. (Note that
the some elements in the representation of y and ỹ are equal.) The convention is
that values (α, β, δ) denote quantities of which knowledge is being proven (and
are kept secret), while all other values are known to the verifier. For prime-order
groups which include all groups we consider in this paper, it is well known that
there exists a knowledge extractor which can extract these quantities from a
successful prover.

2.2 Signature Scheme with Efficient Protocols

For our credential system we use a signature scheme that is loosely based on weak
Boneh and Boyen signatures [24,16]. It is described in [33] and has been proven
secure under the n-SDH assumption [34,35]. It assumes a non-degenerate bilinear
map e : G × G → GT of prime order q with generators h, h0, h1, . . . , h�, h�+1.
The signer’s secret key is x ∈ Zq while the public key is y = hx .

486 J. Camenisch, M. Kohlweiss, and C. Soriente

A signature on a message m ∈ Z∗
q is computed by picking c, s ← Z∗

q and
computing σ = (h0h

m
1 hs

2)
1

x+c . The signature is (σ, c, s). It is verified by check-
ing whether e(σ, yhc) = e(h0h

m
1 hs

2, h). Multiple messages m1, . . . ,m� ∈ Z∗
q can

be signed as σ = (h0h
m1
1 · · ·hm�

� hs
�+1)

1
x+c and verification is done by checking

whether e(σ, yhc) = e(h0h
m
1 · · ·hm�

� hs
�+1, h).

Proving Knowledge of a Signature. Now assume that we are given a signature
(σ, c, s) on messages m1 . . . ,m� ∈ Zq and want to prove that we indeed possess
such a signature. To this end, we need to augment the public key with a value
h̃ ∈ G such that logh h̃ are not known.

Knowledge of a signature is proven as follows:

1. Choose random values r ← Zq and open ← Zq and compute a commitment
B = hrh̃open and a blinded signature A = σh̃r.

2. Compute the following proof

PK{(c, s, r, open ,mult , tmp,m1, . . . ,m�) :

B = hrh̃open ∧ 1 = Bch−mult h̃−tmp ∧
e(h0, h)
e(A, y)

= e(A, h)c ·e(h̃, y)−r ·e(h̃, h)−mult ·
�∏

i=1

e(hi, h)−mi ·e(h�+1, h)−s} .

Why this proof works is explained in [36].

3 A Pairing Based Dynamic Accumulator with Efficient
Updates

We define and build a dynamic accumulator with efficient updates and assess
its security. With efficient updates we mean that witnesses can be updated by
any party without knowledge of any secret key and require only multiplications
(no exponentiations) linear in the number of changes to the accumulator. Our
construction is based on the broadcast encryption scheme by Boneh, Gentry and
Waters [37].

3.1 Definition of Dynamic Accumulators

A secure accumulator consists of the five algorithms AccGen, AccAdd, AccUpdate,
AccWitUpdate, and AccVerify.

These algorithms are used by the accumulator authority (short authority),
an untrusted update entity, a user and a verifier. The authority creates an ac-
cumulator key pair (skA, pkA), the accumulator acc∅ and a public state state∅
using the AccGen algorithm; it can add a new value i to the accumulator accV

using the AccAdd algorithm to obtain a new accumulator accV∪{i} and state
stateU∪{i}, together with a witness witi . The accumulator for a given set of
values V , can be computed using the AccUpdate algorithm.

An Accumulator Based on Bilinear Maps and Efficient Revocation 487

Throughout these operations, accV and wit i are of constant size (independent
of the number of accumulated values). The authority does some bookkeeping
about the values contained in the accumulator and the status of the accumu-
lator when a witness wit i was created. These sets are denoted as V and Vw

respectively. The bookkeeping information is made public and is only needed for
updating witnesses, it is not needed for verifying that a value is contained in an
accumulator.

Each time an accumulator changes, the old witnesses become invalid. It is
however possible to update all witnesses for values i ∈ V contained in the accu-
mulator from the bookkeeping information Vw. This updating is the most perfor-
mance intensive operation in existing accumulator systems. We show how it can
be efficiently offloaded to an untrusted update entity that runs AccWitUpdate
and is only given the accumulator state stateU and the bookkeeping information
V and Vw. The accumulator state stateU also contains book keeping informa-
tion U , the set of elements ever added to the accumulator (but not necessarily
contained in the current accumulator). This is a superset of V and Vw.1

After users obtained an updated witness wit ′i for a value i for the current
accumulator, they can prove to any verifier that i is in the accumulator, using
the AccVerify algorithm.

AccGen(1k, n) creates an accumulator key pair (skA, pkA), an empty accumulator
acc∅ (for accumulating up to n values) and an initial state state∅.

AccAdd(skA, i , accV , stateU) allows the authority to add i to the accumulator.
It outputs a new accumulator accV∪{i} and state stateU∪{i}, together with
a witness wit i for i .

AccUpdate(pkA,V , stateU) outputs an accumulator accV for values V ⊂ U .
AccWitUpdate(pkA,wit i ,Vw, accV ,V , stateU) outputs a witness wit ′i for accV

if wit i was a witness for accVw and i ∈ V .
AccVerify(pkA, i ,wit i , accV) verifies that v ∈ V using an up-to-date witness wit i

and the accumulator accV . In that case the algorithm accepts, otherwise it
rejects.

Note that the purpose of an accumulator is to have accumulator and witnesses
of size independent of the number of accumulated elements.

Correctness. Correctly accumulated values have verifying witnesses.

Security. For all probabilistic polynomial time adversaries A,

Pr[(skA, pkA, accO, stateO) ← AccGen(1k);

(i ,wit i) ← A(pkA, accO, stateO)OAccAdd(.),OAccUpdate(.) :
AccVerify(pkA, i ,wit i , accO) = accept ∧ i /∈ VO] = neg(k) ,

1 Allowing accumulators to change their state over time can allow for better perfor-
mance tradeoffs. While our accumulator construction does not use this possibility in
order to keep things simple, we outline such an optimization in [36].

488 J. Camenisch, M. Kohlweiss, and C. Soriente

where the oracles OAccAdd(.) and OAccUpdate(.) keep track of shared variables accO,
stateO and a set VO that is initialized to ∅. The oracle OAccAdd(i) computes and
outputs (accO, stateO,wit i) ← AccAdd(skA, i , accO, stateO) and adds i to VO
while OAccUpdate(V) computes and outputs accO ← AccUpdate(pkA,V , stateO)
and sets VO to V .

3.2 Construction

We now construct the algorithms AccGen, AccAdd, AccUpdate, AccWitUpdate,
and AccVerify.

AccGen(1k, n). Run BMGen(1k) to obtain the setup paramsBM = (q,G,GT , e, g)
of a bilinear map e : G × G → GT .

Pick a random value γ ∈ Zq. Generate a key pair sk and pk for a secure
signature scheme, for instance the BB signature scheme that is secure under
the SDH assumption. Let pkA = (paramsBM , pk , z = e(g, g)γn+1

), skA =
(paramsBM , γ, sk), acc∅ = 1 and state∅ = (∅, g1 = gγ1

, . . . , gn = gγn

, gn+2 =
gγn+2

, . . . , g2n = gγ2n

).2

AccAdd(skA, i , accV , stateU). Compute w =
∏j �=i

j∈V gn+1−j+i and a signature σi

on gi‖i under signing key sk . The algorithm outputs wit i = (w, σi , gi), an
updated accumulator value accV∪{i} = accV · gn+1−i , and stateU∪{i} =
(U ∪ {i}, g1, . . . , gn, gn+2, . . . , g2n).

AccUpdate(pkA,V , stateU). Check whether V ⊂ U and outputs ⊥ otherwise.
The algorithm outputs accV =

∏
v∈V gn+1−v for values i ∈ V .

AccWitUpdate(pkA,wit i ,Vw, accV ,V , stateU). Parse wit i as (w, σi , gi). If i ∈ V
and V ∪ Vw ⊂ U , compute

w′ = w ·

∏
j∈V \Vw

gn+1−j+i∏
j∈Vw\V

gn+1−j+i
.

Output the updated witness wit ′i = (w′, σi , gi). Otherwise output ⊥.
AccVerify(pkA, i ,wit i , accV). Parse wit i = (w, σi , gi). Output accept, if σi is

a valid signature on gi‖i under verification key pk and e(gi ,accV)
e(g,w) = z.

Otherwise output reject.

In the construction above, we accumulate the group elements g1, . . . , gn instead
of, e.g., the integers 1, . . . , n. Depending on the application, one would want to
accumulate the latter, or more generally an arbitrary set of size n. In this case,
the issuer of the accumulator would need to publish a mapping from this set to
the gi values that get actually accumulated. In order to avoid large public param-
eters during verification the issuer of the accumulator uses a signature scheme
2 We define stateU = (U, g1, . . . , gn, gn+2, . . . , g2n) where U is book keeping informa-

tion that keeps track of all elements that were ever added to the accumulator (but
might have been subsequently removed). The rest of the state is static. See [36] for
a modification that reduces the size of stateU .

An Accumulator Based on Bilinear Maps and Efficient Revocation 489

to sign the gi together with the value to which they map. Thus, the verifier can
check whether a given gi is a (potentially) valid input to the accumulator (cf.
discussion in Section 3.3).

We also note that the algorithm to update the witness does not require any
secret information. Thus, the witnesses could be kept up-to-date for the users
either by the users themselves, the issuer, or by some third party. In the latter
two cases, the users can just retrieve the current valid witness whenever needed.
In applications, one would typically define epochs such that the accumulator
value and witnesses are only updated at the beginning of each epoch and remain
valid throughout the epoch. Finally note that maintaining the witnesses for all
users is well within reach of current technologies — indeed, all witnesses can be
kept in main memory and the update performed rather quickly.

Correctness. Let accV be an accumulator for skA = (paramsBM , γ, sk), pkA =
(paramsBM , pk , z = e(g, g)γn+1

), and stateU = (U, g1 = gγ1
, . . . , gn =gγn

, gn+2 =
gγn+2

, . . . , g2n = gγ2n

). Then a correct accumulator always has a value accV =∏
j∈V gn+1−j . Moreover, for each i ∈ V with up-to-date witness wit i = (w =∏j �=i
j∈V gn+1−j+i , σi , gi) the following equation holds:

e(gi , accV)
e(g, w)

=
e(g, g)

∑
j∈V γn+1−j+i

e(g, g)
∑ j �=i

j∈V γn+1−j+i
= e(g, g)γn+1

= z .

Security. Suppose there exists an adversary A that breaks the security of our ac-
cumulator. We show how to construct an algorithm B that either forges the signa-
ture scheme used to sign accumulated elements or breaks the n-DHE
assumption.

Algorithm B has access to a signing oracle Oσ and obtains as input the
corresponding signature verification key pk , the parameters of a bilinear map
paramsBM = (q,G,GT , e, g), and an instance of the n-DHE assumption (g1, . . . ,
gn, gn+2, . . . , g2n) ∈ G2n−1. B provides A with pkA = (paramsBM , pk , z =
e(g1, gn)), acc∅ = 1 and state∅ = (∅, g1, . . . , gn, gn+2, . . . , g2n). The oracle queries
of the adversary are answered as defined in the game except that Oσ is called
for creating the signatures.

Given an adversary that can compute (i ,wit i) such that the verification suc-
ceeds even though i /∈ VO. We parse wit i as (w, σ̂i , ĝi). If ĝi does not corre-
spond to gi the adversary attacked the signature and σ̂i is a signature forgery.
Otherwise we learn from the verification equation that

e(gi , accO) = e(g, w)z

and
e(g,

∏
j∈V

gn+1−j+i) = e(g, wgn+1) .

This means that

gn+1 =

∏
j∈V gn+1−j+i

w
.

490 J. Camenisch, M. Kohlweiss, and C. Soriente

For i ∈ {1, . . . , n} \ V , all gn+1−j+i are contained in state∅ and it is possible to
compute this value. This breaks the n-DHE assumption.

3.3 Efficient Proof That a Hidden Value Was Accumulated

It is often only required for a user to prove that she possesses a value that is
indeed contained in the current accumulator, or in other words, to prove mem-
bership of the current accumulator without revealing which value she possesses
(or which index i is assigned to her). In this section, we give an efficient protocol
that achieves this for our accumulator construction.

For the accumulator to be secure, the verifier needs to check that the value the
user claims to own, is one of g1, . . . , gn. In the previous construction, g1, . . . , gn

are authenticated either by making them public as a whole or by having each
one signed (in which case the user would provide the gi and the signature to the
verifier). However, using a public list would require the prover to either reveal
gi (which would violate privacy) or to prove that the gi which she claims pos-
session of, is a valid one. The latter, however, would require an involving proof
that would make the use of the accumulator inefficient. We therefore resort to
sign gi values and then require the prover to prove that she knows a signature
by the accumulator issuer on “her” gi without revealing neither the signature
nor the gi value. As such a proof needs to be efficient, this requires a special sig-
nature scheme. Since user never reveal the accumulated valued they are proving
possession of, it is possible to avoid signing gi ||i as it is done in Section 3.2. This
allows for a more efficient signature scheme and proof system.

Prerequisites. We instantiate the signature scheme used for signing the gi with
a variant of the weakly secure Boneh-Boyen scheme [24]. Instead of a gi value we
sign γi . The authentic gi is a by-product of the signing process. For simplicity
we reduce the security of the accumulator proof directly to the n-HSDHE as-
sumption.3 The n-HSDHE assumption is the weakest assumption under which
we can prove our scheme. The n-HSDHE assumption is implied by the iHSDH
assumption of [38].

The signer (the accumulator issuer) picks a fresh u ← G, secret key sk ← Zq

and public key pk = gsk . A signature consists of the two elements σi = g1/(sk+γi)

and ui = uγi

and is verified by checking that e(pk · gi, σi) = e(g, g).
Let pkA = (paramsBM , pk , z = e(g, g)γn+1

), skA = (paramsBM , γ, sk) and
stateU = (∅, g1 = gγ1

, . . . , gn = gγn

, gn+2 = gγn+2
, . . . , g2n = gγ2n

) be as gen-
erated by the accumulator operations in the previous section. We also pick an
additional h̃ ← G for commitments. The discrete logarithm of h and u with
respect to g must be unknown to the prover.

Proof of Knowledge. For arbitrary V ⊂ {1, . . . , n} and i ∈ V , on input accV =∏
i∈V gn+1−i and the corresponding witness wit i = (w, σi , ui , gi), where w =∏j �=i
j∈V gn+1−j+i , for value i , the prover performs the following randomization:

3 We do not prove the signature scheme itself secure, but we refer to [38] for a similar
scheme.

An Accumulator Based on Bilinear Maps and Efficient Revocation 491

Pick at random r, r′, r′′, r′′′, open ∈ Zq and computing G = gi h̃
r, W = wh̃r′

,
D = grh̃open , S = σi h̃

r′′
, and U = ui h̃

r′′′
respectively. Then the prover, proves

PK{(r, r′, r′′, r′′′, open ,mult , tmp) : D = grh̃open ∧ 1 = Dr′′
g−mult h̃−tmp∧

e(pk · G,S)
e(g, g)

= e(pk · G, h̃)r′′
e(h̃, h̃)−multe(h̃,S)r∧

e(G, accV)
e(g,W)z

= e(h̃, accV)re(1/g, h̃)r′ ∧ e(G, u)
e(g,U)

= e(h̃, u)re(1/g, h̃)r′′′} .

Theorem 1. Under the n-DHE and the n-HSDHE assumptions the protocol
above is a proof of knowledge of a randomization value r that allows to de-
randomize G to a value gi , where i is accumulated in accV , i.e., i ∈ V . The
proof of this theorem can be found in Section A.1.

4 Efficient Revocation of Private Certificates

In this section we will show how to employ our accumulator to achieve efficient
revocation for schemes where users get some form of certificate and then later
can use these certificates in an anonymity protecting way. Such schemes include
group signatures, anonymous credential systems, pseudonym systems, anony-
mous e-cash, and many others. Most of these schemes work as follows. In a first
phase an issuer provides the user with a signature on a number of messages.
Then, in a second phase the user convinces the verifier that 1) she owns a signa-
tures by the issuer on a number of messages and 2) that these messages satisfy
some further properties that are typically dependent on the particular purpose of
the scheme. Based on this observation, Bangerter et al. [12] give a cryptographic
framework for the controlled release of certified information. They also show how
different applications (such as the ones mentioned above) can be realized. Thus,
they basically generalize the concepts of anonymous credentials, anonymous e-
cash, and group signatures into a single framework. We therefore just show how
their framework can be extended with revocation to provide this features for
all these applications. From this it will become clear how to extend particular
schemes (e.g., the anonymous credentials and group signatures [16,33]) with our
revocation mechanisms.

More precisely, Bangerter et al. employ special signature protocols, called CL
signatures [39], for issuing private certificates to users. A private certificate (1)
consists of attributes and a signature over the attributes much alike a traditional
certificate, only that a more powerful signature scheme is used, i.e.,

cert = (σ,m1, . . . ,ml) with σ = Sign(m1, . . . ,ml; skI) . (1)

Let (skI , pkI) ← IssuerKeygen(1k) be the certificate issuer’s keypair. The frame-
work supports two types of protocols: 1) an interactive certificate issuing protocol
ObtainCert that allows to obtain a signature on committed values without reveal-
ing these values and 2) efficient zero-knowledge proofs of knowledge of signature
possession.

492 J. Camenisch, M. Kohlweiss, and C. Soriente

Let (m1, . . . ,m�) denote a list of data items and H ⊂ L = {1, . . . , �} a sub-
set of data items. Using the first protocol, a user can obtain a certificate on
(m1, . . . ,m�) such that the issuer does not learn any information on the data
items in H , while it learns the other data items, i.e., L \ H .

The private certificates of a user remain private to the user, that is, they are
never released (as a whole) to any other party: when using (showing) certificates
for asserting attribute information, the user proves that she knows (has) certifi-
cates with certain properties. The user may release certain attributes, while only
proving the knowledge of the rest of the certificate:

PK{(σ,m1, . . . ,m�′) : 1 = VerifySign(σ,m1, . . .m�′ ,m�′+1, . . . ,m�; pkI) ∧ . . . } .

In the above proof only the attribute values of m�′+1 to m� are revealed.

Certificate revocation. We now extend the above framework with certificate re-
vocation as follows. Let V be the set of valid certificates for an epoch with epoch
information epochV . A certificate is assigned a unique identifier i (which will be
embedded into it as one of the attributes) and a witness wit i. We require that
the user can prove to a verifier that she possesses a non-revoked certificate only
if i ∈ V . This is achieved by having the user prove that the identifier embedded
into her credential is a valid one for the current epoch. Thus, before engaging
in a proof, the user needs to update her witness and both parties (the user and
the verifier) need to obtain the most up-to-date epoch information epochV for
V . The user can either update the witness herself, or just retrieve the currently
valid witness from a witness update entity. Indeed, a witness update computa-
tion does not require knowledge of any secret and can be performed by untrusted
entities (e.g., by a third party or a high availability server cluster at the issuer).
In particular, those entities are only responsible for computing user witnesses
according to the current epoch information. Misbehavior by such entities would
lead in a denial of service (the verification algorithm would reject, but would not
break the security of the system). Also note that a witness update requires a
number of multiplications that is linear in the number of elements added to or
removed from the accumulator, hence providing such an update service to users
is feasible (one could even hold all users’ witnesses in main memory).

More formally, a certificate revocation system for the certification frame-
work consists of updated IssuerKeygen and ObtainCert protocols, new algorithms
UpdateEpoch and UpdateWitness for managing revocation, and a zero-knowledge
proof system for a new predicate VerifyEpoch that allows to prove possession of
a witness wit i:

IssuerKeygen(1k, n) creates the issuer key pair (skI , pkI), the epoch information
epoch∅, and state∅ for issuing up to n certificates.

ObtainCert(U(pkI , H, {mj}j∈H), I(skI , H, {mj}j∈L\H , epochV , stateU)) allows a
user to obtain a private certificate cert i from the issuer. The issuer com-
putes and publishes the user’s witness wit i, and updated epoch information
epochV ∪{i} and stateU∪{i}.

An Accumulator Based on Bilinear Maps and Efficient Revocation 493

UpdateEpoch(V, stateU) outputs epoch information epochV , if V ⊂ U . Otherwise
it outputs ⊥.

UpdateWitness(wit i, epochV , stateU) outputs an updated witness wit ′i if V ⊂ U .
Otherwise it outputs ⊥.

A user who knows a certificate cert i and a corresponding up-to-date witness
wit i can prove, to a verifier, possession of the certificate and its validity for the
current epoch using the new predicate VerifyEpoch as follows. The user’s secret
input is cert i. The common input of the protocol is the issuer’s public key pkI ,
the epoch information epochV , and a specification of the proof statement (this
includes the information revealed about the certificate). In the example below
the user chooses to keep the first �′ messages secret while he reveals the rest of
the messages.

PK{(σ,m1, . . . ,m�′ , i,wit i) : 1 =VerifySign(σ,m1, . . .m�′ ,m�′+1, . . . ,m�, i; pkI)∧
1 =VerifyEpoch(i,wit i; epochV , pkI)} .

Using the Bangerter et al. framework [12], it is not hard to extend this proof or
combine it with other proof protocols given therein.

4.1 Adapted Signature Scheme for Accumulated Values

As described above, a user would have to prove that the value i encoded into her
credential is also contained in the current accumulator. However, the accumulator
construction as given in the previous section does not allow one to accumulate i
directly but only gi = g̃γi

. Now, instead of introducing a mapping of i to gi (and
including this in our proofs which would make them inefficient), we are going to
make the mapping implicit by including gi into the credential. Thus, the gi values
will be used both in the private certificate and the accumulator to represent the
certificate id i. This requires that we extend the signature scheme in Section 2.2
to allow verification without knowing the secret exponent γi:

1. The signer creates g, h, h0, h1, . . . , h�, h�+1 ← G and creates keys x ∈ Zq and
y = hx .

2. Next, the signer publishes a list (g1 = gγ , . . . , gn = gγn

) that he allows in
signatures.

3. The signer picks random c, s ← Z∗
q and then computes the signature as

(σ = (h0h
m1
1 · · ·hm�

� gih
s
�+1)

1
x+c , c).

4. A signature (σ, c, s) on messages m1, . . . ,m�, ĝi is verified by checking that
ĝi is in the list of gi values and that e(σ, yhc) = e(h0(

∏�
j=1 h

mj

j)ĝih
s
�+1, h)

holds.

We note that the check that ĝi is in the list of gi values as prescribed in the last
step will later on be replaced by a signature/authenticator on gi as done for the
accumulator in Section 3.3.

It is straightforward to reduce the security of this modified signature scheme
to the original one with � + 1 messages as the signer knows the “messages” γi

encoded by the gi. We omit the details here.

494 J. Camenisch, M. Kohlweiss, and C. Soriente

4.2 Construction

IssuerKeygen(1k, n). Run BMGen(1k) to generate the parameters paramsBM =
(q,G,GT , e, g) of a (symmetric) bilinear map e : G×G → GT . Pick additional
bases h, h0, . . . , h�+1, h̃, u ← G and x , sk , γ ← Zq and compute y = hx

and pk = gsk .4 Compute g1, ..., gn, gn+2, ..., g2n, where gi = gγi

, and z =
e(g, g)γn+1

.
Output (skI , pkI) = ((paramsBM , x , sk , γ), (paramsBM , y, h, h0, . . . , h�+1,

h̃, u, pk , z)), epoch∅ = (acc∅ = 1, ∅), and state∅ = (∅, g1, ..., gn, gn+2, ..., g2n).
ObtainCert(U(pkI , H,{mj}j∈H), I(skI , H, {mj}j∈L\H , epochV , stateU). The user

runs the following protocol to obtain a certificate cert i from the issuer:

1. The user chooses a random s′ ∈ Z∗
q , computes X =

∏
j∈H h

mj

j hs′
�+1, and

sends X to the issuer.
2. The user (as prover) engages the issuer (as verifier) in the following proof

PK{{mj}j∈H , s′) : X =
∏
j∈H

h
mj

j hs′
�+1} ,

which will convince the issuer that X is correctly formed.
3. The issuer parses epochV as (accV , V) and stateU as (U, g1, . . . , gn, gn+2,

. . . , g2n). He then computes epochV ∪{i} = (accV · gn+1−i, V ∪ {i}) and
stateU∪{i} = (U ∪ {i}, g1, . . . , gn, gn+2, . . . , g2n) 5 .

4. The issuer chooses random c, s′′ ∈ Z∗
q and then computes the signature

σ = ((
∏

j∈L\H h
mj

j)Xgih
s′′
�+1)

1/(x+c).

5. The issuer computes w =
∏j �=i

j∈V gn+1−j+i, σi = g1/(sk+γi), and ui = uγi

and sets wit i = (σi, ui, gi, w, V∪{i}).
6. The issuer sends (σ, c, s′′, {mj}j∈L\H , gi, i) to the user and outputs wit i,

epochV ∪{i}, and stateU∪{i}.
7. The user verifies the certificate gotten and outputs cert i = (σ, c,m1, . . . ,

m�, gi, s = s′ + s′′, i).

UpdateEpoch(V, stateU) checks whether V ⊂ U and outputs ⊥ otherwise. The
algorithm creates epochV for proving possessions of cert i, i ∈ V . Let accV =∏

i∈V gn+1−i, output epochV = (accV , V).
UpdateWitness(wit i, epochV , stateU) aborts with ⊥, if V �⊂ U . Otherwise it parses

wit i as (σi, ui, gi, w, Vw). Let w′ = w

∏
j∈V\Vw

gn+1−j+i∏
j∈Vw\V

gn+1−j+i
. The algorithm outputs

wit ′i = (σi, ui, gi, w
′, V).

4 Note that the discrete logarithms of g, h, h̃ and u with respect to each other are
mutually unknown.

5 Both epochV ∪{i} and stateU∪{i} could be signed by the issuer to prevent proliferation
of fake accumulators.

An Accumulator Based on Bilinear Maps and Efficient Revocation 495

Proof protocol. We now show a protocol that allows a user to prove possession
of an unrevoked (and updated) credential credi = (σ, c,m1, . . . ,m�, gi, s, i) using
wit i = (σi, gi, ui, w, Vw). The common input of the protocol is the issuer’s public
key pkI , the epoch information epochV , and a specification of the proof statement
(this includes the information revealed about the certificate). In the example
below the user chooses to keep the first �′ messages secret while he reveals the
rest of the messages.

The user (as prover) picks ρ, ρ′, r, r′, r′′, r′′′ ← Zq, and picks opening open ,
open ′ ← Zq to commit to ρ and r respectively. He computes commitments
C = hρh̃open , D = grh̃open′

and blinded values A = σh̃ρ, G = gih̃
r, W = wh̃r′

,
S = σih̃

r′′
, and U = uih̃

r′′′
. The user sends C , D,A,G,W ,S and U to the verifier

and engages the verifier in the following proof:

PK{(c, ρ, open,mult , tmp,m1, . . . ,m�′ , s, r, open
′,mult ′, tmp′, r′, r′′, r′′′) :

C = hρh̃open ∧ 1 = C ch−mult h̃−tmp ∧ (1)

e(h0 ·∏�
j=�′+1 h

mj

j · G, h)
e(A, y)

= e(A, h)c · e(h̃, h)r (2)

· e(h̃, y)−ρ · e(h̃, h)−mult ·
�′∏

j=1

e(hj , h)−mj · e(h�+1, h)−s∧

e(G, accV)
e(g,W)z

= e(h̃, accV)re(1/g, h̃)r′∧ (3)

D = grh̃open′ ∧ 1 = Dcg−mult′ h̃−tmp′ ∧ (4)
e(pk · G,S)

e(g, g)
= e(pk · G, h̃)r′′

e(h̃, h̃)−mult′e(h̃,S)r∧ (5)

e(G, u)
e(g,U)

= e(h̃, u)re(1/g, h̃)r′′′} . (6)

This proof merges the proof of knowledge of Section 3.3 with a proof of knowledge
of an adapted signature as the ones described in Section 4.1. The latter is similar
to the proof of knowledge of a signature in Section 2.2. Special care needs to be
taken to bind the gi in the accumulator to the gi value in the adapted signature.

Theorem 2. Under the n-HSDHE and the n-DHE assumptions, the protocol
above is a proof of knowledge of an adapted signature on (m1, . . . ,m�, gi) such
that i ∈ V . The proof can be found in Section A.1.

5 Conclusion and Discussion

In this paper we have introduced a novel dynamic accumulator based on bilinear
maps and have shown how it can be used to achieve efficient revocation in
privacy-preserving systems such as group signatures or anonymous credential
systems.

496 J. Camenisch, M. Kohlweiss, and C. Soriente

Previous proposals require expensive computations for updating witnesses and
are not suitable for electronic token based systems with a large number of users,
as the ones that will soon appear with the introduction of e-ID’s, e-tickets and
alike. Our accumulator overcomes the aforementioned drawback introducing effi-
cient witness updates. In the envisioned system, at the beginning of each epoch,
the users retrieve their currently valid witness from an updating authority (as
the number of revocation per epoch is likely to be very large, the users will typi-
cally not be able to handle them). As updating a witness in our scheme requires
only a number of multiplication linear in the number of changes to the accumu-
lator (in particular, linear in |(V \Vw)∪ (Vw\V)|) a single authority (which not
necessarily needs to be the issuer) can keep the witness values for all users easily
up-to-date (and in main memory). This is a key feature that enables the adop-
tion of dynamic accumulators for revocation in privacy-preserving systems with
large number of users as, e.g., in the case of electronic driving license systems.
Although not necessary, there could even be several witness update entities, re-
sponsible for upgrading witnesses for groups of users. For example, in a national
e-ID’s systems, witness updates could be performed by per-county or per-city
witness update entity. The latter requires only public parameters and are only
responsible for correct computation of the witness updates for the users in their
group. Malicious behavior by one of the witness update entities, does not break
system security (recall that they only require public parameters) but can only
lead to denial of service. That is, if a witness is not correctly computed (not re-
flecting the latest changes in the accumulator) it would prevent a user to prove
validity of her credential. In this case, users can report to the issuing authority
to obtain a valid witness update and signal the misbehaving of the witness
update entity.

Acknowledgements

During this work, we enjoyed many discussion with Thomas Gross and Tom
Heydt-Benjamin on various kinds of revocation of anonymous credentials. Thank
you! The research leading to these results has received funding from the Eu-
ropean Community’s Seventh Framework Programme (FP7/2007-2013) under
grant agreement no 216483.

References

1. Camenisch, J., Van Herreweghen, E.: Design and implementation of the idemix
anonymous credential system. Technical Report Research Report RZ 3419, IBM
Research Division (May 2002)

2. Camenisch, J., Lysyanskaya, A.: Efficient non-transferable anonymous multi-show
credential system with optional anonymity revocation. Technical Report Research
Report RZ 3295, IBM Research Division (November 2000)

3. Persiano, G., Visconti, I.: An efficient and usable multi-show non-transferable
anonymous credential system. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp.
196–211. Springer, Heidelberg (2004)

An Accumulator Based on Bilinear Maps and Efficient Revocation 497

4. Chaum, D.: Security without identification: Transaction systems to make big
brother obsolete. Commun. ACM 28(10), 1030–1044 (1985)

5. Chaum, D., Evertse, J.H.: A secure and privacy-protecting protocol for transmit-
ting personal information between organizations. In: Odlyzko, A.M. (ed.) CRYPTO
1986. LNCS, vol. 263, pp. 118–167. Springer, Heidelberg (1987)

6. Chen, L.: Access with pseudonyms. In: Dawson, E.P., Golić, J.D. (eds.) Cryp-
tography: Policy and Algorithms 1995. LNCS, vol. 1029, pp. 232–243. Springer,
Heidelberg (1996)

7. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys,
H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer,
Heidelberg (2000)

8. Okamoto, T.: An efficient divisible electronic cash scheme. In: Coppersmith, D.
(ed.) CRYPTO 1995. LNCS, vol. 963, pp. 438–451. Springer, Heidelberg (1995)

9. Chan, A.H., Frankel, Y., Tsiounis, Y.: Easy come - easy go divisible cash. In:
Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 561–575. Springer,
Heidelberg (1998)

10. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: [40], pp.
302–321

11. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: [41], pp.
132–145

12. Bangerter, E., Camenisch, J., Lysyanskaya, A.: A cryptographic framework for
the controlled release of certified data. In: Christianson, B., Crispo, B., Malcolm,
J.A., Roe, M. (eds.) Security Protocols 2004. LNCS, vol. 3957, pp. 20–42. Springer,
Heidelberg (2006)

13. Ateniese, G., Song, D.X., Tsudik, G.: Quasi-efficient revocation in group signatures.
In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 183–197. Springer, Heidelberg
(2003)

14. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: [41],
pp. 168–177

15. Nakanishi, T., Funabiki, N.: Verifier-local revocation group signature schemes with
backward unlinkability from bilinear maps. IEICE Transactions 90-A(1), 65–74
(2007)

16. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: [42], pp. 41–55
17. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient

revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

18. Benaloh, J.C., de Mare, M.: One-way accumulators: A decentralized alternative to
digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
274–285. Springer, Heidelberg (1994)

19. West Virginia Department of Transportation, Division of Motor Vehicles : Wvdmv
fy 2005 annual report (2005), http://www.wvdot.com/6 motorists/dmv/

downloads/DMVAnnualReport2005.pdf

20. Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs.
In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 253–269. Springer,
Heidelberg (2007)

21. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)

22. Wang, P., Wang, H., Pieprzyk, J.: A new dynamic accumulator for batch updates.
In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 98–112.
Springer, Heidelberg (2007)

http://www.wvdot.com/6_motorists/dmv/downloads/DMV-AnnualReport2005.pdf
http://www.wvdot.com/6_motorists/dmv/downloads/DMV-AnnualReport2005.pdf

498 J. Camenisch, M. Kohlweiss, and C. Soriente

23. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: [40], pp. 440–456

24. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

25. Boyen, X., Waters, B.: Full-Domain Subgroup Hiding and Constant-Size Group
Signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp.
1–15. Springer, Heidelberg (2007)

26. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptology 4(3),
161–174 (1991)

27. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

28. Camenisch, J.L., Michels, M.: Proving in zero-knowledge that a number is the
product of two safe primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 107–122. Springer, Heidelberg (1999)

29. Camenisch, J.L.: Group Signature Schemes and Payment Systems Based on the
Discrete Logarithm Problem. PhD thesis, ETH Zürich, Diss. ETH No. 12520, Har-
tung Gorre Verlag, Konstanz (1998)

30. Brands, S.: Rapid demonstration of linear relations connected by boolean oper-
ators. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 318–333.
Springer, Heidelberg (1997)

31. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

32. Camenisch, J., Stadler, M.: Proof systems for general statements about discrete
logarithms. Technical Report TR 260, Institute for Theoretical Computer Science,
ETH Zürich (March 1997)

33. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: [42], pp. 56–72

34. Okamoto, T.: Efficient blind and partially blind signatures without random oracles.
In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer,
Heidelberg (2006)

35. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic -taa. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg (2006)

36. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credentials. Cryptology ePrint Archive, Re-
port 2008/634 (2008)

37. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

38. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and nonin-
teractive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 356–374. Springer, Heidelberg (2008)

39. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003)

40. Cramer, R. (ed.): EUROCRYPT 2005. LNCS, vol. 3494. Springer, Heidelberg
(2005)

An Accumulator Based on Bilinear Maps and Efficient Revocation 499

41. Atluri, V., Pfitzmann, B., McDaniel, P.D. (eds.): Proceedings of the 11th ACM
Conference on Computer and Communications Security, CCS 2004, Washingtion,
DC, USA, October 25-29, 2004. ACM, New York (2004)

42. Franklin, M. (ed.): CRYPTO 2004. LNCS, vol. 3152. Springer, Heidelberg (2004)

A Proofs

A.1 Proof of Theorem 1

It is standard to show that from a convincing prover of the protocol

PK{(r, r′, r′′, r′′′, open,mult , tmp) :

D = grh̃open ∧ 1 = Dr′′
g−mult h̃−tmp ∧ (7)

e(pk · G,S)
e(g, g)

= e(pk · G, h̃)r′′
e(h̃, h̃)−multe(h̃,S)r ∧ (8)

e(G, accV)
e(g,W)z

= e(h̃, accV)re(1/g, h̃)r′ ∧ (9)

e(G, u)
e(g,U)

= e(h̃, u)re(1/g, h̃)r′′′} . (10)

one can with overwhelming probability extract values r, r′, r′′, r′′′, and mult such
that the Equations (9), (8), (10) hold. From Equation (9) we learn through simple
transformation that e(Gh̃−r ,accV)

e(g,Wh̃−r′)
= z. We distinguish three cases: In the first case

Gh̃−r corresponds to a gi in stateU and i ∈ V . In this case the extraction was
successful.

In the second case Gh̃−r corresponds to a gi in stateU but i /∈ V . In this case
we can use a successful prover to break the n-DHE assumption. The reduction ob-
tains as input the parameters of a bilinear map paramsBM = (q,G,GT , e, g), and
an instance of the n-DHE assumption (g1, g2, . . . , gn, gn+2, . . . , g2n) ∈ G2n−1.
It provides the prover with pkA = (paramsBM , pk , z = e(g1, gn)), accV and
stateU = (U, g1, . . . , gn, gn+2, . . . , g2n). The reduction computes the additional
setup for the proof using a fresh sk . Given a successful prover it can extract r,
r′, r′′, r′′′, and mult such that

e(Gh̃−r, accV) = e(g,Wh̃−r′
)z

and
e(g,

∏
j∈V

gn+1−j+i) = e(g,Wh̃−r′
gn+1) .

This means that

gn+1 =

∏
j∈V gn+1−j+i

Wh̃−r′ .

For i ∈ {1, . . . , n} \V , all gn+1−j+i are contained in stateU and it is possible to
compute this value. This breaks the n-DHE assumption (Consult also the proof
in Section 3.2).

500 J. Camenisch, M. Kohlweiss, and C. Soriente

In the third case Gh̃−r does not correspond to a gi in stateU . We will show
that we can use such a prover to break the dedicated signature scheme (more
concretely the n-HSDHE assumption) using the remaining Equations (8) and (6).
The reduction works as follows. On input a HSDHE instance (g, gx, u, {g1/(x+γi),

gγi

, uγi}i=1...n, {gγi}i=n+2...2n), the reduction uses the gγi

to build stateU and
the remaining values to construct the additional setup for the proof by setting
pk = gx (and implicitly sk = x).

After extracting r, r′, r′′, r′′′, open , mult and tmp note that (based on Equa-
tion (7)) mult = rr′′ and tmp = openr′′ (or one can compute logg h which
would in turn allow us to break n-HSDHE). After obtaining a Gh̃−r that does
not correspond to a value in {gγi}i=1...n it is easy to see from Equation (8)
that e(pkGh̃−r,Sh̃−r′′

) = 1. Let c = logg Gh̃−r. then Sh̃−r′′
= g1/(x+c). Sim-

ilarly from Equation (10) we learn that e(Gh̃−r ,u)
e(g,U h̃−r′′′)

= 1. If Gh̃−r = gc, then

U h̃−r′′′
= uc. This contradicts the n-HSDHE assumption.

As the malicious prover has no way to distinguish between the first or the
second reduction (as well as the real setup), we can randomly pick one of the
two reductions to break either the n-DHE or the n-HSDHE assumption (we only
loose a factor of 1/2 in the tightness of the reduction). �

A.2 Proof of Theorem 2

We extract the value from the above proof. From Equation (1) we know that if
mult �= ρc or mult ′ �= rr′′, we can compute the discrete logarithm logg h. This
contradicts the DL assumption.

From Equations (3,4,5,6) and the security of the accumulator proof protocol
in Section 3.3 we know that Gh̃−r equals a gi, i ∈ V , such that Wh̃−r′

is a
verifying accumulator witness for this value. Otherwise we break the n-DHE or
the n-HSDHE assumption. (The reductions would be set up in the same way as
in Appendix A.1.)

Now we consider Equation (2) of the proof. It asserts the prover’s knowledge
of values m1, . . . ,m

′
� such that

e(h0 · G · (
�′∏

j=q

h
mj

j) · (
�∏

j=�′+1

h
mj

j), g)e(h̃, y)ρ · e(h̃, g)ρc · e(h�+1, g)s =

e(A, y)e(A, g)c · e(h̃, g)r .

Here we have made use of the relation mult = ρc. By simplifying this equation
further we obtain

e(h0 ·
�′∏

j=q

h
mj

j ·
�∏

j=�′+1

h
mj

j · h�+1
s · G/h̃r, g) = e(A/h̃ρ, ygc) .

This shows that (A/h̃ρ, c, s) is a valid adapted signature for (m1, . . . ,m�, g̃
γi

). �

Controlling Access to an Oblivious Database
Using Stateful Anonymous Credentials

Scott Coull, Matthew Green, and Susan Hohenberger

The Johns Hopkins University
Information Security Institute

3400 N. Charles Street; Baltimore, MD 21218, USA
{coulls,mgreen,susan}@cs.jhu.edu

Abstract. In this work, we consider the task of allowing a content
provider to enforce complex access control policies on oblivious protocols
conducted with anonymous users. As our primary application, we show
how to construct privacy-preserving databases by combining oblivious
transfer with an augmented anonymous credential system. This permits
a database operator to restrict which items each user may access, without
learning anything about users’ identities or item choices. This strong pri-
vacy guarantee holds even when users are assigned different access control
policies and are allowed to adaptively make many queries. To do so, we
show how to augment existing anonymous credential systems so that, in
addition to certifying a user’s attributes, they also store state about the
user’s database access history. Our construction supports a wide range
of access control policies, including efficient and private realizations of
the Brewer-Nash (Chinese Wall) and Bell-LaPadula (Multilevel Secu-
rity) policies, which are used for financial and defense applications. In
addition, our system is based on standard assumptions in the standard
model and, after an initial setup phase, each transaction requires only
constant time.

1 Introduction

There is an increasing need to provide privacy to users accessing sensitive in-
formation, such as medical or financial data. The mere fact that a rare dis-
ease specialist accesses a certain patient’s medical record exposes information
about the private contents of the record. At the same time, newly developed
regulations governing such sensitive data (e.g., Sarbanes-Oxley, HIPAA) require
content providers to enact strict accounting procedures. These may seem like
conflicting goals since the specialist may wish to hide which patient’s record she
is requesting while the database operator may wish to ensure that the doctor’s
collective accesses do not violate regulations. The situation becomes even more
precarious when a patient uses such a database to look up information about a
potentially sensitive medical condition. In such cases, the patient’s identity, as
well as her access patterns, must remain hidden from the database administrator.
The increasing trend toward outsourcing and distributing sensitive databases,

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 501–520, 2009.
c Springer-Verlag Berlin Heidelberg 2009

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

http://dx.doi.org/10.1007/978-3-642-00468-1_29

502 S. Coull, M. Green, and S. Hohenberger

such as the outsourced medical database provided by Google Health [27], makes
these concerns all the more compelling.

Previous works have proposed to construct privacy-friendly databases using
Private Information Retrieval [20] or Oblivious Transfer [30,15]. In a k-out-of-
N Oblivious Transfer protocol, a content provider with messages M1, . . . ,MN

and a user with indices σ1, . . . , σk ∈ [1, N] interact in such a way that at the
end the user obtains Mσ1 , . . . ,Mσk

without learning anything about the other
messages and the provider does not learn anything about σ1, . . . , σk. This tool
leads to privacy-friendly databases when the user gets her choice of any files with
no restrictions. Unfortunately, that scenario rules out many practical database
applications. Worse, the previous work in this area provides no insight as to how
access control might ever be incorporated into such a database, since traditional
access control mechanisms assume knowledge of the items being requested.

Thus, to realize a practical “oblivious database” for our users, we must couple
it with enforceable access controls. We make three design choices that act as
guiding principles for our system. Our first is to maintain all anonymity and
privacy guarantees provided by the oblivious transfer protocol. We reject any
solutions that use pseudonyms or allow for some form of transaction linking, since
it is too difficult to infer what compromise to privacy might result. Secondly, we
wish to enforce a strong notion of access control where the database operator may
limit each access based on the user’s identity, item requested, and even a history
of the user’s previous requests. Finally, we require our solution to be efficient,
and thus each transaction should take constant time regardless of a user’s access
history, or the complexity of the access policy which she must follow.

Contributions. To achieve the goals above, we show how to efficiently cou-
ple an adaptive, oblivious transfer protocol with an anonymous credential
scheme [18,11], to provide non-trivial, real-world access controls for oblivious
databases. Specifically, we present an extension to existing anonymous creden-
tial systems to support history-dependent access controls by embedding the
user’s current state into the credential, and dynamically updating that state
according to well-defined policies governing the user’s actions. These stateful
anonymous credentials are built on top of well-known signatures with efficient
protocols [29,11,12,4]. Our constructions are secure in the standard model under
basic assumptions, such as Strong RSA. Additionally, we introduce a technique
for efficiently proving that a committed value lies in a hidden range that is
unknown to the verifier, which may be of independent interest.

Our constructions can be used to achieve non-trivial access control policies,
including the Brewer-Nash (Chinese Wall) [7] and Bell-LaPadula (Multilevel Se-
curity) [2] model, which are used in a number of settings, including financial
institutions and classified government systems. We discuss simulation-based se-
curity definitions for our stateful anonymous credentials, as well as an anonymous
and oblivious database system with access controls.

Related Work. Several previous works sought to limit user actions while main-
taining privacy, either directly within an existing protocol or through the use

Controlling Access to an Oblivious Database 503

of anonymous credentials. Aiello, Ishai, and Reingold [1] proposed priced obliv-
ious transfer, in which each user is given a declining balance that can be spent
on each transfer. However, here user anonymity is not protected, and the pro-
tocol is also vulnerable to selective-failure attacks in which a malicious server
induces faults to deduce the user’s selections [30,15]. The more general concept
of conditional oblivious transfer was proposed by Di Crescenzo, Ostrovsky, and
Rajagopolan [23] and subsequently strengthened by Blake and Kolesnikov [3].
In conditional oblivious transfer, the sender and receiver maintain private in-
puts (x and y, respectively) to some publicly known predicate q(·, ·) (e.g., the
greater than equal to relation on integers). The items in the oblivious transfer
scheme are encrypted such that the receiver can complete the oblivious transfer
and recover her data if and only if q(x, y) = 1. In addition, techniques from
e-cash and anonymous credentials have been used to place simple limitations on
an anonymous user’s actions, such as preventing a user from logging in more
than once in a given time period [8], authenticating anonymously at most k
times [34], or preventing a user from exchanging too much money with a single
merchant [9]. Rather than providing a specific type of limitation or restricting
the limitation to a particular protocol, our proposed system instead provides a
general method by which arbitrary access control policies can be added to a wide
variety of anonymous and oblivious protocols.

2 Stateful Credentials: Model and Definitions

The goal of typical anonymous credential systems is to provide users with a way
of proving certain attributes about themselves (e.g., age, or height) without re-
vealing their identity. Users conduct this proof by obtaining a credential from an
organization, and subsequently “showing” the credential without revealing their
identity. In addition to the properties of typical credentials, a stateful anony-
mous credential system adds the additional notion of credential state, which is
embedded as an attribute within the credential. The user may update the state
in her credential according to some well-defined policy dictated by the credential
provider. In practice, this may limit the user to a finite number of states, or a
particular sequential ordering of states. To maintain the user’s anonymity, it is
important that the update protocol not leak information about the credential’s
current state beyond what the user chooses to reveal.

At a high level, the stateful anonymous credential system, which is defined by
the tuple of algorithms (Setup,ObtainCred,UpdateCred,ProveCred), operates as
follows. First, the user and credential provider negotiate the use of a specified
policy using the ObtainCred protocol. The negotiated policy determines the way
in which the user will be allowed to update her credential. After the protocol
completes, the user receives an anonymous credential that embeds her initial
state in the policy, in addition to other attributes. Next, the user can prove (in
zero-knowledge) that the credential she holds embeds a given state, or attribute,
just as she would in other anonymous credential systems by using the ProveCred
protocol. This allows the user anonymous access to services, while the entity

504 S. Coull, M. Green, and S. Hohenberger

checking the credential is assured of the user’s attributes, as well as her state in
the specified policy. These proof can be done in such a way that the verifying
entity learns nothing about the user’s state or attributes. Finally, when the user
wishes to update her credential to reflect a change in her state, she interacts with
the credential provider using the UpdateCred protocol, to prove (again, in zero-
knowledge) her current state and the existence of a transition in the policy from
her current state to her intended next state. As with the ProveCred protocol, the
provider learns nothing about the user other than the fact that her state change
is allowed by the policy previously negotiated within the ObtainCred protocol.

Policy Model. To represent the policies for our stateful credential system, we
use directed graphs, which can be thought of as a state machine that describes
the user’s behavior over time. We describe the policy graph Πpid as the set of
tags of the form (pid, S → T), where pid is the identity of the policy and S → T
represents a directed edge from state S to state T . Thus, the user’s credential
embeds the identity of the policy pid and the user’s current state in the policy
graph. When the user updates her credential, she chooses a tag and then proves
that the policy id she is following is the same as what is provided in the tag and
that the tag encodes an edge from her current state to her desired next state.

These policy graphs can be created in such a way that the users may reach a
terminal state, and therefore would be unable to continue updating (and conse-
quently using) their credential. In this case, it may be possible for an adversary to
perform traffic analysis to infer the policy that the user is following. To prevent
this, we consider the use of null transitions in the graph. The null transitions
occur as self-loops on the terminal states of the policy graph, and allow the user
to update her credential as often as she wishes to prevent such traffic analysis
attacks. However, the updates performed on these credentials only allow the user
access to a predefined null resource. The specifics of this null resource are de-
pendent on the anonymous protocol that the credential system is coupled with,
and we describe an implementation for them in oblivious databases in Section 5.

While these policy graphs are rather simplistic, they can represent compli-
cated policies. For instance, a policy graph can encode the user’s history with
respect to accessing certain resources up to the largest cycle in the graph. More-
over, we can extend the policy graph tags to include auxiliary information about
the actions that the user is allowed to perform at each state. By doing so, we
allow the graph to dynamically control the user’s access to various resources
according to her behavior and history, as well as her other attributes. In Sec-
tion 5, we examine how to extend these policy graphs to provide non-trivial,
real-world access control policies for oblivious databases, as well as a variety of
other anonymous and oblivious application.

2.1 Protocol Descriptions and Definitions for Stateful Credentials

A stateful anonymous credential scheme consists of the four protocols: Setup,
ObtainCred, UpdateCred, and ProveCred. We will now describe their input/output
behavior and intended functionality. For the remainder of the paper, let 1κ be
the security parameter.

Controlling Access to an Oblivious Database 505

Setup(U(1k),P(1k, Π1, . . . , Πn)): The provider P generates parameters params
and a keypair (pkP , skP) for the credential scheme. For each graph Π to be
enforced, P also generates a cryptographic representation ΠC and publishes
this value via an authenticated channel. Each user U generates a keypair and
requests that it be certified by a trusted CA.

ObtainCred(U(pkP , skU , ΠC),P(pkU , skP , ΠC , S)): U identifies herself to P and
then receives her credential Cred which binds her to a policy graph Π and
starting state S.

UpdateCred(U(pkP , skU ,Cred, T),P(skP , D)): U and P interact such that Cred
is updated from its current state to state T , but only if this transition is
permitted by the policy Π . Simultaneously, P should not learn U ’s iden-
tity, attributes, or current state. To prevent replay attacks, P maintains a
database D, which it updates as a result of the protocol.

ProveCred(U(pkP , skU ,Cred),P(pkP , E)): U proves possession of a credential
Cred in a particular state. To prevent re-use of credentials, P maintains a
database E, which it updates as a result of the protocol.

Security Definitions. Security definitions for anonymous credentials have tra-
ditionally been game-based. Unfortunately, the existing definitions may be in-
sufficient for the applications considered in this work, as these definitions do
not necessarily capture correctness. This can lead to problems when we inte-
grate our credential system with oblivious transfer protocols (see e.g., [30,15]).
To capture the security requirements needed for our applications, we instead
use a simulation-based definition, in which security of our protocols is analyzed
with respect to an “ideal world” instantiation. We do not require security un-
der concurrent executions, but rather restrict our analysis to atomic, sequential
execution of each protocol. We do so because our constructions, which employ
standard zero-knowledge techniques, require rewinding in their proof of security
and thus are not concurrently secure. An advantage of the simulation paradigm
is that our definitions will inherently capture correctness (i.e., if parties hon-
estly follow the protocols then they will each receive their expected outputs).
Informally, the security of our system is captured by the following two definitions:

Provider Security: A malicious user (or set of colluding users) must not be able to
falsely prove possession of a credential without first obtaining that credential, or
arriving at it via an admissable sequence of credential updates. For our purposes,
we require that the malicious user(s) cannot provide a proof of being in a state
if that state is not present in her credential.

User Security: A malicious provider controlling some collection of corrupted
users cannot learn any information about a user’s identity or her state in the
policy graph beyond what is available through auxiliary information from the
environment.

Due to space considerations, we defer the formal security definitions for state-
ful anonymous credentials to full version of this paper [21]. In Section 5.1 and
Appendix A, we provide definitions for oblivious databases with access control.

506 S. Coull, M. Green, and S. Hohenberger

3 Technical Preliminaries

In this section, we recall some basic building blocks, and then introduce a new
primitive, hidden range proofs, which may be of independent interest.

Pedersen and Fujisaki-Okamoto Commitments. In the Pedersen commit-
ment scheme [32], the public parameters are a group G of prime order q, and
generators (g0, . . . , gm). In order to commit to the values (v1, . . . , vm) ∈ Zm

q , the
user picks a random r ∈ Zq and sets C = Commit(v1, . . . , vm; r) = gr

0
∏m

i=1 gvi

i .
Fujisaki and Okamoto [26] provided a composite order variant.

Signatures with Efficient Protocols. Camenisch and Lysyanskaya (CL) [11]
designed a signature scheme with two efficient protocols: (1) a protocol for a user
to obtain a signature on the value(s) in a Pedersen (or Fujisaki-Okamoto) com-
mitment [32,26] without the signer learning anything about the message(s), and
(2) a proof of knowledge of a signature. Our constructions may be implemented
with the Strong RSA signature scheme [11] (and with minor modifications, using
bilinear signatures based on the LRSW assumption [12]). Both schemes consist
of the algorithms (CLKeyGen,CLSign,CLVerify), which we describe below:

CLKeyGen(1κ). On input a security parameter, outputs a keypair (pk , sk).
CLSign(sk ,M1, . . . ,Mn). On input one or more messages and a secret signing

key, outputs the signature σ.
CLVerify(pk , σ,M1, . . . ,Mn). On input a signature, message(s) and public veri-

fication key, outputs 1 if the signature verifies, 0 otherwise.

We could also use other bilinear signatures with efficient protocols (e.g., [4]),
though we do not make use of these in our construction.

Zero-Knowledge Protocols. We use several standard results for proving state-
ments about discrete logarithms, such as (1) a proof of knowledge of a discrete
logarithm modulo a prime [33] or a composite [26,24], (2) a proof of knowledge of
equality of representation modulo two (possibly different) prime [19] or compos-
ite [14] moduli, (3) a proof that a commitment opens to the product of two other
committed values [13,16,6], and (4) a proof of the disjunction or conjunction of
any two of the previous [22]. These composite-based protocols are secure under
Strong RSA and the prime-based ones under the discrete logarithm assumption.

Note that there are several building blocks that are not used in our basic scheme,
but which can be used to provide extended functionality or improved perfor-
mance. These building blocks include:

Bilinear Groups. Let BMsetup be an algorithm that, on input 1κ, outputs the
parameters for a bilinear mapping as γ = (p,G,GT , e, g ∈ G), where g generates
G, the groups G,GT each have prime order p, and e : G × G → GT .

Hidden-Range Proofs. Standard techniques [17,13,13,5] allow us to efficiently
prove that a committed value lies in a public integer interval (i.e., where the

Controlling Access to an Oblivious Database 507

interval is known to both the prover and verifier). In our protocols, it is useful
to hide this interval from the verifier, and instead have the prover show that a
committed value lies between the openings of two other commitments.

Fortunately, this can be done efficiently as follows. Suppose we wish to show
that a ≤ j ≤ b, for positive numbers a, j, b without revealing them. This is
equivalent to showing that 0 ≤ (j − a) and 0 ≤ (b − j). We only need to get
these two sums reliably into commitments, and can then employ the standard
techniques since the range (≥ 0) is now public. Using a group G = 〈g〉, where
n is a special RSA modulus, g is a quadratic residue modulo n and h ∈ G. The
prover commits to these values as A = gahra , J = gjhrj , and B = gbhrb , for
random values ra, rj , rb ∈ {0, 1}� where � is a security parameter. The verifier
next computes a commitment to (j − a) as J/A and to (b − j) as B/J . The
prover and verifier then proceed with the standard public interval proofs with
respect to these commitments, which for technical reasons require groups where
Strong RSA holds.

4 Stateful Anonymous Credentials

In this section, we describe how to realize stateful credentials. The state records
information about the user’s attributes as well as her prior access history. We
will consider two separate modes for “showing” a credential. In the first mode,
the user exposes her portions of her state during the ProveCred protocol. This
is useful for, say, a DRM application where the user’s goal is to prove that
her software is in a “licensed” state without revealing her name. In mode two,
the user uses her credential to gain access to resources without revealing her
state through the use of zero knowledge proofs. Specifically, we show how to tie
this credential system to protocols, such as adaptive oblivious transfer, where
the user wants to hide both her identity and the item she is requesting while
simultaneously proving that she has the credentials to obtain the item.

4.1 Basic Construction

Our construction begins with the anonymous credentials of Camenisch and
Lysyanskaya [29,11,12], where the state is embedded as a field in the signature.
The core innovation here is a protocol for performing state updates, and a tech-
nique for “translating” a history-dependent update policy into a cryptographic
representation that can be used as an input to this protocol.

The setup, credential granting, and credential update protocols are presented in
Figure 1. We will now briefly describe the intuition behind them.

Setup. First, the credential provider P generates its keypair and identifies one
or more access policies it wishes to enforce. Each policy — encoded as a graph —
may be applied to one or more users. The provider next “translates” the graph
into a cryptographic representation which consists of the graph description,
and a separate CL signature for each tag in the graph. Recall from Section 2 that

508 S. Coull, M. Green, and S. Hohenberger

Setup(U(1k),P(1k, Π1, . . . , Πn)): The provider P generates parameters for the
CL signature, as well as for the Pedersen commitment scheme.

Party P runs CLKeyGen twice, to create the CL signature keypairs (spkP , sskP)
and (gpkP , gskP). It retains (pkP , skP) = ((spkP , gpkP), (sskP , gskP)) as its key-
pair. The provider’s public key pkP must be certified by a trusted CA.

Each party U selects u
$← Zq and computes the keypair (pkU , skU) = (gu, u). The

user’s public key pkU must be certified by a trusted CA.

Next, for each policy graph Π , P generates a cryptographic representation ΠC.

1. P parses Π to obtain a unique policy identifier pid.
2. For each tag t = (pid, S, T) in Π , P computes a signature σS→T ←

CLSign(gskP , (pid, S, T)).
3. P sets ΠC ← 〈Π,∀t : σS→T 〉 and publishes this value via an authenticated

channel.

ObtainCred(U(pkP , skU , ΠC),P(pkU , skP , ΠC, S)): On input a graph Π and initial
state S, U first obtains ΠC. U and P then conduct the following protocol:

1. U picks random usage and update nonces Ns, Nu ∈ Zq and computes
A ← Commit(skU , Ns, Nu).

2. U conducts an interactive proof to convince P that A correlates to pkU .
3. U and P run the CL signing protocol on committed values so that U obtains

the state signature σstate ← CLSign(sskP , (skU , Ns, Nu, pid, S)) with pid, S
contributed by P .

4. U stores the credential Cred = (ΠC, S, σstate, Ns, Nu).

UpdateCred(U(pkP , skU ,Cred, T),P(skP , D)): Given a credential Cred currently
in state S, U and P interact to update the credential to state T :

1. U parses Cred = (ΠC, S, σstate, Ns, Nu) and identifies a signature σS→T in ΠC
that corresponds to a transition from state S to T (if none exists, U aborts).

2. U selects N ′
s, N

′
u

$← Zq and computes A ← Commit(skU , N ′
s, N

′
u, pid, T).

3. U sends (Nu, A) to P . P looks in the database D for a pair (Nu, A′ �= A). If
no such pair is found, then P adds (Nu, A) to D. Otherwise P aborts.

4. U proves to P knowledge of values (skU , pid, S, T, N ′
s, N

′
u, Ns, σstate, σS→T)

such that:
(a) A = Commit(skU , N ′

s, N
′
u, pid, T).

(b) CLVerify(spkP , σstate, (skU , Ns, Nu, pid, S)) = 1.
(c) CLVerify(gpkP , σS→T , (pid, S, T)) = 1

5. If these proofs do not verify, P aborts. Otherwise U and P run the CL signing
protocol on committed values to provide U with σ′

state ← CLSign(sskP , A).
6. U stores the updated credential Cred′ = (ΠC, T, σ′

state, N
′
s, N

′
u).

Fig. 1. Basic algorithms for obtaining and updating a stateful anonymous credential

Controlling Access to an Oblivious Database 509

the tags embed the graph id, start, and end states. The cryptographic policy
representations are distributed to users via an authenticated broadcast channel
(e.g., by signing and publishing them on a website). The user U generates a
keypair that is certified by the CA.

Obtaining a Credential. When a user U wishes to obtain a credential, she first
negotiates with the provider to select an update policy to which the credential
will be bound, as well the credential’s initial state within the policy graph.
The user next engages in a protocol to blindly extract a CL signature under
the provider’s secret key, which binds the user’s public key, her initial state,
the policy id, and two random nonces chosen by the user. The update nonce
Nu is revealed when the user updates the credential and the usage nonce Ns is
revealed when the user show’s her credential. This signature, as well as the nonce
and state information, form the credential. While the protocol for obtaining a
credential, as currently described, reveals the user’s identity through the use of
her public key, we can readily apply the techniques found in [10,11] to provide
a randomized pseudonym rather than the public key.

Updating the Credential’s State. When the user wishes to update a cre-
dential, she first identifies a valid tag within the credential’s associated policy.
She then generates a new pair of nonces and a commitment embedding these
values, as well as the new state from her chosen tag. Next, the user sends the
update nonce from her current credential, along with the commitment, to the
provider. The provider records this nonce and the commitment into a database
— however, if the nonce is already in the database but associated with a differ-
ent commitment, the provider aborts the protocol, which prevents the user from
re-using an old version of a credential. By recording the nonce and commitment
together, we allow the user to restart the protocol if it has failed as long as
she uses the same commitment. If the nonce and commitment are not in the
database, the user and provider then interact to conduct a zero-knowledge proof
that: (1) the remainder of the information in the commitment is identical to the
current credential, (2) the user has knowledge of the secret key corresponding
to her current credential, and (3) the policy graph contains a signature on a tag
from the current state to the new state. If these conditions are met, the user
obtains a new credential embedding the new state.

Showing (or Privately Proving Possession of) a Credential. The ap-
proach to using a single-show credential, shown in Figure 2, follows [11,12].
When a user wishes to prove possession of a credential to P , she first reveals
the credential usage nonce and the current state of the credential. P must check
that the usage nonce has not been used before. The user then proves knowledge
of: (1) a CL signature embedding this state value and nonce formed under P ’s
public key, and (2) a secret key that is consistent with the CL signature. Alter-
natively, if the user does not want to reveal her state explicitly, the user may
generate a commitment to her state and prove (in zero knowledge) that it is the
same as that which is found in her credential.

510 S. Coull, M. Green, and S. Hohenberger

Single-show vs. multi-show. This is an example of a single-show credential. It can
be shown only once, or the verifier will recognize the repeated usage nonce. To
restore its anonymity, the user may return to P and execute the update protocol
to replace the usage nonce, assuming it is allowed by the user’s policy. This
update policy gives users a way to use a single credential multiple times. One
can also adapt this scheme to support k-times anonymous use of the credential by
using the Dodis-Yampolskiy [25] pseudorandom function to generate the nonces
from a common seed, as shown in [8].

A Note on Efficiency. The efficiency of our protocols is of utmost importance
in ensuring their practical use in oblivious databases. During the Setup protocol,
the provider must “translate” each of the graphs into a cryptographic repre-
sentation by signing each tag associated with the graphs. This means that the
complexity of the Setup protocol is linear in the size of the policy graphs used
in controlling access to the database. While this may seem onerous at first, it
is important to emphasize that this process may be conducted offline, and only
as a one time cost to the provider. Once the setup procedure is completed, the
complexity of the remaining protocols is constant and independent of the size
of the policy in use since they deal with only a single tag at a time. Thus, our
scheme is practical even for extremely complex policies containing thousands of
distinct states and transition rules.

ProveCred(U(pkP , skU ,Cred),P(pkP , E)): User U proves knowledge of the Cred
as follows:

1. U parses Cred as (ΠC, S, σstate, Ns, Nu), and sends its usage nonce Ns to P
(who aborts if Ns ∈ E).

2. Otherwise, U continues with either:
– (mode one) Sending her current credential state S to P in the clear.
– (mode two) Sending a commitment to S.

3. U then conducts an interactive proof to convince P that it possesses a CL
signature σstate embedding Ns, S, and that it has knowledge of the secret key
skU .

4. P adds Ns to E.

Fig. 2. Basic algorithm for proving knowledge of a single-show anonymous credential

Theorem 1. When instantiated with the RSA (resp., bilinear) variant of CL
signatures, the anonymous credential scheme above achieves user, and provider
security under the strong RSA (resp., LRSW) assumption.

The proof of Theorem 1 is in the full version of this work [21].

5 Oblivious Database Access Control

In this section, we show how stateful anonymous credentials can be used to
control access to oblivious databases. Recall that an oblivious database permits

Controlling Access to an Oblivious Database 511

users to request data items without revealing their item choices or their identities
to the database operator (e.g., where the item choices are sensitive).

Although we possess efficient building blocks such as k-out-of-N Oblivious
Transfer (OT), little progress has been made towards the deployment of practi-
cal oblivious databases. In part, this is due to a fundamental tension with the
requirements of a database operator to provide some form of access control. In
this section, we show that it is possible to embed flexible, history-dependent ac-
cess controls into an oblivious database without compromising the user’s privacy.
Specifically, we show how to combine our stateful anonymous credential system
with an adaptive Oblivious Transfer protocol to construct a multi-user oblivious
database that supports complex access control policies. We show how to effi-
ciently couple stateful credentials with the recent standard-model adaptive OT
scheme due to Camenisch, Neven and shelat [15]. Our stateful credentials can
also be efficiently coupled with the adaptive OT of Green and Hohenberger [28].

I

II

III

IVV

1,3,4
5

1

2

2

1,3,4

3

Fig. 3. Sample access policy for a small oblivious database. The labels on each tran-
sition correspond to the database item indices that can be requested when a user
traverses the edge, with null transitions represented by unlabeled edges.

Linking Policies to Database Items. To support oblivious database access,
we extend our policy graphs to incorporate tags of the form (pid, S → T, i),
where pid is the policy, S → T is the edge, and i is the message index in the
database that is allowed by that tag. Each edge in the graph may be associated
with one or more tags, which correspond to the items that can be obtained from
the database when traversing that edge. As described in Section 2, we place null
transitions on each terminal state that allow the user to update her credential
and access a predefined null message. The set of all tags, both legitimate and
null, are signed by the database and published.

Figure 3 shows an example policy for a small database. The interested reader
can view a fuller discussion of the non-trivial access control policies, including
Bell-Lapadula and Brewer-Nash that are allowed by our credential system in the
full version of this work [21].

5.1 Protocol Descriptions and Security Definitions for Oblivious
Databases

Our oblivious database protocols combine the scheme of Section 4.1 with a
multi-receiver OT protocol. Each transaction is conducted between one of a

512 S. Coull, M. Green, and S. Hohenberger

collection of users and a single database server D. We describe the protocol
specifications.

Setup(U(1k),D(1k, Π1, . . . , Πn,M1, . . . ,MN)): The database server D gener-
ates parameters params for the scheme. As in the basic credential scheme,
it generates a cryptographic representation ΠC for each policy graph, and
publishes those values via an authenticated channel. In addition, D initial-
izes its database of messages according to the OT protocol in use. Each user
U generates a keypair and requests that it be certified by a trusted CA.

OTObtainCred(U(pkD, skU , ΠC),D(pkU , skD, ΠC , S)): U registers with the sys-
tem and receives a credential Cred which binds her to a policy graph Πid

and starting state S.
OTAccessAndUpdate(U(pkD, skU ,Cred, t),D(skD, E)): U requests an item at in-

dex i in the database from state S by selecting a tag t = (pid, S → T, i) from
the policy graph. The user then updates her credential Cred, in such a way
that D does not learn her identity, her attributes, or her current state. Si-
multaneously, U obtains a message from the database at index i. At the end
of a successful protocol, U updates the state information in Cred, and D
updates a local datastore E.

Security. We informally describe the security properties of an oblivious database
system, with a formal definition given in Appendix A.

Database Security: No (possibly colluding) subset of corrupted users can obtain
any collection of items that is not specifically permitted by the users’ policies.

User Security: A malicious database controlling some collection of corrupted
users cannot learn any information about a user’s identity or her state in the
policy graph, beyond what is available through auxiliary information from the
environment.

5.2 The Construction

In our model, many users share access to a single database server. To construct
our protocols, we extend the basic credential scheme of Section 4.1 by linking
it to the adaptive OT protocol of Camenisch et al. [15]. The database opera-
tor commits to a collection of N messages, along with a special null message
at index N + 1. It them distributes these commitments (e.g., via a website).
Each user then registers with the database using the OTObtainCred protocol,
and agrees to be bound by a policy that will control her ability to access the
database.

To obtain items from the database, the user runs the OTAccessAndUpdate
protocol, which proves (in zero knowledge) that its request is consistent with its
policy. Provided the user does not violate her policy, the user is assured that the
database operator learns nothing about its identity, or the nature of its request.
Figures 4 and 5 describe the protocols in detail.

Controlling Access to an Oblivious Database 513

Setup(U(1k),D(1k, Π1, . . . , Πn, M1, . . . , MN)): When the database operator D is
initialized with a database of messages M1, . . . , MN , it conducts the following
steps:

1. D selects parameters for the OT scheme as γ = (q, G, GT , e, g) ←
BMsetup(1κ), h

$← G, x
$← Zq, and H ← e(g, h). D generates two CL sign-

ing keypairs (spkD, sskD) and (gpkD, gskD), and U generates her keypair
(pkU , skU) as in the credential Setup protocol of Figure 1.

2. For i = 1 to (N + 1), D computes a ciphertext Ci = (Ai, Bi) as:
(a) If i ≤ N , then Ai = g

1
x+i and Bi = e(h,Ai) · Mi.

(b) If i = (N + 1), compute Ai as above and set Bi = e(h, Ai).
3. For every graph Π to be enforced, D generates a cryptographic representation

ΠC as follows:
(a) D parses Π to obtain a unique policy identifier pid.
(b) For each tag t = (pid, S, T, i) with i ∈ [1, N + 1], D computes the

signature σS→T,i ← CLSign(gskP , (pid, S, T, i)). Finally, D sets ΠC ←
〈Π,∀t : σS→T,i〉.

4. D sets pkD = (spkD, gpkD, γ, H, y = gx, C1, . . . , Cn) and skD =
(sskD, gskD, h). D then publishes each ΠC and the OT parameters pkD via
an authenticated channel.

OTObtainCred(U(pkD, skU , ΠC),D(pkU , skD, ΠC, S)): When user U wishes to join
the system, it negotiates with D to agree on a policy Π and initial state S, then:

1. U picks a random show nonce Ns ∈ Zq and computes
A ← Commit(skU , Ns).

2. U conducts an interactive proof to convince D that A correlates to pkU , and D
conducts an interactive proof of knowledge to convince U that e(g, h) = H .a

3. U and P run the CL signing protocol on committed values so that U ob-
tains the state signature σstate ← CLSign(sskP , (skU , Ns, pid, S)) with pid, S
contributed by P .

4. U stores the credential Cred = (ΠC, S, σstate, Ns).

a This proof can be conducted efficiently in four rounds as in [15].

Fig. 4. Setup and user registration algorithms for an access controlled oblivious
database based on the Camenisch, Neven and shelat oblivious transfer protocol [15].
The database operator and users first run the Setup portion of the protocol. Each user
subsequently registers with the database using OTObtainCred.

Theorem 2. The scheme described above satisfies database and user secu-
rity (as defined in Definition 1) under the q-PDDH, q-SDH, and Strong RSA
assumptions.

A full proof of Theorem 2 appears in the full version of this work [21]. We sketch
the broad outlines of the proof in Appendix B.

514 S. Coull, M. Green, and S. Hohenberger

OTAccessAndUpdate(U(pkD, skU ,Cred, t),D(pkD, E)): When U wishes to obtain
the message indexed by i ∈ [1, N + 1], it first identifies a tag t in Π such that
t = (pid, S → T, i).

1. U parses Cred = (ΠC, S, σstate, Ns), and parses ΠC to find σS→T,i.

2. U selects N ′
s

$← Zq and computes A ← Commit(skU , N ′
s, pid, T).

3. U then sends (Ns, A) to D. D checks the database E for (Ns, A
′ �= A), and if

it finds such an entry it aborts. Otherwise it adds (Ns, A) to E.
4. U parses Ci = (Ai, Bi). It selects a random v ← Zq and sets V ← (Ai)v. It

sends V to D and proves knowledge of (i, v, skU , σS→T,i, σstate, pid, S, T, N ′
s)

such that the following conditions hold:
(a) e(V, y) = e(g, g)ve(V, g)−i.
(b) A = Commit(skU , N ′

s, pid, T).
(c) CLVerify(spkP , σstate, (skU , Ns, pid, S)) = 1.
(d) CLVerify(P , σS→T,i, (pid, S, T, i)) = 1.

5. If these proofs verify, U and D run the CL signing protocol on committed
values such that U obtains σ′

state ← CLSign(sskD, A). U stores the updated
credential Cred′ = (ΠC, T, σ′

state, N
′
s).

6. Finally, D returns U = e(V, h) and interactively proves that U is correctly
formed (see [15]). U computes the message Mi = Bi/U1/v .

Fig. 5. Database access protocol for an access-controlled oblivious database based on
the Camenisch, Neven and shelat adaptive oblivious transfer protocol [15]

5.3 Extensions to Compact Access Policies in Practice

Extension #1: Equivalence Classes. Thus far, the protocol requires that a
tag in the policy graph must be defined on every item index in the database.
Yet, there are cases where many items may have the same access rules applied,
and therefore we can reduce the number tags used by referring to the entire
group with a single tag. A simple solution is to replace specific item indices
with general equivalence classes in the graph tags. The OT database can be re-
organized to support this concept by renumbering the item indices (previously
[1, N]) using values of the form (c||i) ∈ Zq, where c is the identity of the item
class, and || represents concatenation. During the OTAccessAndUpdate protocol,
U can obtain any item (c||i) by performing a zero-knowledge proof on the first
half of the selection index, showing that the selected tag contains the class c.

Extension #2: Encoding Contiguous Ranges. An alternative approach re-
quires the database operator to arrange the identities of objects in the same
class so that they fall in contiguous ranges. In this case, we will label the graph
edges with ranges of items rather than single values. The credentials will also
replace the value i with an upper and lower bound for the range that the
holder of the credential is permitted to access. We make a slight change to
the OTAccessAndUpdate protocol so that rather than proving equality between
the requested object and the object present in the tag, the user now proves
that the requested object lies in the range described in the user selected tag, as

Controlling Access to an Oblivious Database 515

described by the hidden range proof technique in Section 3. Notice that while
this approach requires that the database be reorganized such that classes of items
remain in contiguous index ranges, it can be used to represent more advanced
data structures, such as hierarchical classes.

6 Conclusion

In this paper, we presented a flexible and efficient system that allows content
providers to control access to their data, while simultaneously maintaining the
privacy provided by the oblivious and anonymous protocols. Specifically, we de-
scribed techniques for augmenting traditional anonymous credentials with state,
and showed how to combine these credentials with Oblivious Transfer to permit
oblivious access to a database enforcing a variety of non-trivial access control
policies. The flexibility of our approach makes it relatively straightforward to
apply to a diverse set of anonymous and oblivious protocols. For example, our
stateful anonymous credentials can be used to control which messages are signed
with several blind signature schemes, including those of Waters [35], Boneh and
Boyen [4], and Camenisch and Lysyanskaya [11,12], without ever revealing the
message to the signer. Other interesting applications include augmenting obliv-
ious versions of Identity-Based key extraction [28] and keyword search proto-
cols [31] with strong access controls.

Acknowledgments

The authors thank Zachary Crisler for helpful comments on a prior draft. The
work of Scott Coull was supported in part by the U.S. Department of Home-
land Security Science & Technology Directorate under Contract No. FA8750-
08-2-0147. Matthew Green and Susan Hohenberger gratefully acknowledge the
support of NSF grant CNS-0716142 and a Microsoft New Faculty Fellowship.

References

1. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001)

2. Elliot Bell, D., Elliot Bell, D., LaPadula, L.J.: Secure Computer System: Unified
Exposition and Multics Interpretation. Comm. of the ACM 1, 271–280 (1988)

3. Blake, I.F., Kolesnikov, V.: Strong Conditional Oblivious Transfer and Computing
on Intervals. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 515–529.
Springer, Heidelberg (2004)

4. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Ca-
menisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 382–400. Springer,
Heidelberg (2004)

5. Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Preneel,
B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg
(2000)

516 S. Coull, M. Green, and S. Hohenberger

6. Brands, S.: Rapid demonstration of linear relations connected by boolean oper-
ators. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 318–333.
Springer, Heidelberg (1997)

7. Brewer, D.F.C., Nash, M.J.: The Chinese Wall Security Policy. In: IEEE Sympo-
sium on Security and Privacy, pp. 206–214 (1989)

8. Camenisch, J., Hohenberger, S., Kohlweiss, M., Lysyanskaya, A., Meyerovich, M.:
How to win the clonewars: Efficient periodic n-times anonymous authentication.
In: ACM CCS 2006, pp. 201–210 (2006)

9. Camenisch, J.L., Hohenberger, S., Lysyanskaya, A.: Balancing Accountability and
Privacy Using E-Cash (Extended Abstract). In: De Prisco, R., Yung, M. (eds.)
SCN 2006. LNCS, vol. 4116, pp. 141–155. Springer, Heidelberg (2006)

10. Camenisch, J., Lysyanskaya, A.: Efficient non-transferable anonymous multi-show
credential system with optional anonymity revocation. In: Pfitzmann, B. (ed.) EU-
ROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

11. Camenisch, J.L., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003)

12. Camenisch, J.L., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials
from Bilinear Maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

13. Camenisch, J., Michels, M.: Proving in zero-knowledge that a number n is the
product of two safe primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 107–122. Springer, Heidelberg (1999)

14. Camenisch, J., Michels, M.: Separability and efficiency for generic group signa-
ture schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 413–430.
Springer, Heidelberg (1999)

15. Camenisch, J.L., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer,
Heidelberg (2007)

16. Camenisch, J.L.: Group Signature Schemes and Payment Systems Based on the
Discrete Logarithm Problem. PhD thesis, ETH Zürich (1998)

17. Chan, A., Frankel, Y., Tsiounis, Y.: Easy come – easy go divisible cash. In:Nyberg,K.
(ed.) EUROCRYPT1998. LNCS, vol. 1403, pp. 561–575. Springer,Heidelberg (1998)

18. Chaum, D.: Security without identification: Transaction systems to make big
brother obsolete. Communications of the ACM 28(10), 1030–1044 (1985)

19. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

20. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

21. Coull, S., Green, M., Hohenberger, S.: Controlling access to an oblivious database
using stateful anonymous credentials. Cryptology ePrint Archive, Report 2008/474
(2008), http://eprint.iacr.org/

22. Cramer, R., Damg̊ard, I.B., Schoenmakers, B.: Proof of partial knowledge and
simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

23. Di Crescenzo, G., Ostrovsky, R., Rajagopalan, S.: Conditional oblivious trans-
fer and timed-release encryption. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 74–89. Springer, Heidelberg (1999)

24. Damg̊ard, I.B., Fujisaki, E.: A statistically-hiding integer commitment scheme
based on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS,
vol. 2501, pp. 125–142. Springer, Heidelberg (2002)

http://eprint.iacr.org/

Controlling Access to an Oblivious Database 517

25. Dodis, Y., Yampolskiy, A.: A Verifiable Random Function with Short Proofs an
Keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Heidelberg (2005)

26. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 16–30. Springer, Heidelberg (1997)

27. Google. Google Health (2008),
http://www.google.com/intl/en-US/health/about/index.html

28. Green, M., Hohenberger, S.: Blind identity-based encryption and simulatable obliv-
ious transfer. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
265–282. Springer, Heidelberg (2007)

29. Lysyanskaya, A.: Signature schemes and applications to cryptographic protocol
design. PhD thesis, MIT, Cambridge, Massachusetts (September 2002)

30. Naor, M., Pinkas, B.: Oblivious transfer with adaptive queries. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 573–590. Springer, Heidelberg (1999)

31. Ogata, W., Kurosawa, K.: Oblivious keyword search. Special issue on coding and
cryptography J. of Complexity 20(2-3), 356–371 (2004)

32. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

33. Schnorr, C.-P.: Efficient signature generation for smart cards. J. of Cryptology 4(3),
239–252 (1991)

34. Teranishi,I.,Furukawa,J.,Sako,K.:k-TimesAnonymousAuthentication.In:Lee,P.J.
(ed.) ASIACRYPT2004. LNCS, vol. 3329, pp. 308–322. Springer, Heidelberg (2004)

35. Waters, B.: Efficient Identity-Based Encryption without random oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

A Security Definition for an Oblivious Database

Definition 1 (Security for Oblivious Databases with Access Controls).
Security is defined according to the following experiments, which are based on
those of Camenisch et al. [15]. Although we do not explicitly specify auxiliary
input to the parties, we note that this information can be provided in order to
achieve sequential composition.

Real experiment. The real-world experiment RealD̂,Û1,...,Ûη
(η,N, k,Π1, . . . ,

Πη, M1, . . . ,MN , Σ) is modeled as k rounds of communication between a
possibly cheating database D̂ and a collection of η possibly cheating users
{Û1, . . . , Ûη}. In this experiment, D̂ is given the policy graph for each user
Π1, . . . , Πη, a message database M1, . . . ,MN and the users are given an adaptive
strategy Σ that, on input of the user’s identity and current graph state, outputs
the next action to be taken by the user.

At the beginning of the experiment, the database and users conduct the Setup
and OTObtainCred protocols. At the end of this step, D̂ outputs an initial state
D1, and each user Ûi output state U1,i. For each subsequent round j ∈ [2, k],
each user may interact with D̂ to request an item i ∈ [1, N + 1] as required
by the strategy Σ. Following each round, D̂ outputs Dj, and the users output

http://www.google.com/intl/en-US/health/about/index.html

518 S. Coull, M. Green, and S. Hohenberger

(U1,j , . . . , Uη,j). At the end of the kth round the output of the experiment is
(Dk, U1,k, . . . , Uj,k).

We will define the honest database D as one that honestly runs its portion
of Setup in the first round, honestly runs its side of the OTObtainCred and
OTAccessAndUpdate protocols when requested by a user at round j > 1, and
outputs Dk = params . Similarly, an honest user Ui runs the Setup protocol
honestly in the first round, and executes the user’s side of the OTObtainCred,
OTAccessAndUpdate protocols, and eventually outputs the received value Cred
along with all database items received.

Ideal experiment. In experiment IdealD̂′,Û ′
1,...,Û ′

η
(η,N, k, Π1, . . . , Πη, M1, . . . ,

MN , Σ) the possibly cheating database D̂′ generates messages (M∗
1 , . . . ,M

∗
N)

and sends these, along with the policy graphs to the trusted party T (each
policy graph specifies its initial state). In each round j ∈ [1, k], every user Û ′

(following strategy Σ) selects a message index i ∈ [1, N +1] and sends a message
containing the user’s identity and (i, S, T) to T . T then checks the policy graph
corresponding to that user to determine if Û ′ is in state S and a transition to
T is permitted, sending D̂′ a bit b1 indicating the outcome of this test. D̂′ then
returns a bit b2 determining whether the transaction should succeed. If b1 ∧ b2,
then T returns M∗

i (or ⊥ if i = N + 1) to Û ′
i , otherwise it returns ⊥. Following

each round, D̂′ outputs Dj , and the users output (U1,j , . . . , Uη,j). At the end of
the kth round the output of the experiment is (Dk, U1,k, . . . , Uη,k).

We will define the honest database D as one that sends M1, . . . ,MN in the
first round, returns b2 = 1 in all rounds, and outputs Dk = ε. Similarly, an honest
user U ′

i runs the Setup protocol honestly in the first round, makes queries and
transitions according to the selection policy, and eventually outputs all received
database items as its output.

Let �(·), c(·), d(·) be polynomials. We now define database and user security in
terms of the experiments above.

Database Security. A stateful anonymous credential scheme is database-secure
if for every collection of (possibly corrupted) real-world p.p.t. receivers Û1, . . . , Ûη

there exists a collection of p.p.t. ideal-world receivers Û ′
1, . . . , Û ′

η such that ∀N =
�(κ), η = d(κ), k ∈ c(κ), Σ, and every p.p.t. distinguisher:

RealD,Û1,...,Ûη
(η,N, k,Π1, . . . , Πη,M1, . . . ,MN , Σ)

c≈
IdealD,Û ′

1,...,Û ′
η
(η,N, k,Π1, . . . , Πη,M1, . . . ,MN , Σ)

User Security. A stateful anonymous credential scheme provides Receiver secu-
rity if for every real-world (possibly corrupted) p.p.t. database D̂ and collection
of (possibly corrupted) users Û1, . . . , Ûη, there exists a p.p.t. ideal-world sender
D̂′ and ideal (possibly corrupted) users Û ′

1, . . . , Û ′
η such that ∀N = �(κ), η = d(κ),

k ∈ c(κ), Σ, and every p.p.t. distinguisher:

RealD̂,Û1,...,Ûη
(η,N, k,Π1, . . . , Πη,M1, . . . ,MN , Σ)

c≈
IdealD̂′,Û ′

1,...,Û ′
η
(η,N, k,Π1, . . . , Πη,M1, . . . ,MN , Σ)

Controlling Access to an Oblivious Database 519

B Proof Sketch of Theorem 2

We now sketch a proof of Theorem 2, arguing security for the oblivious database
protocol of §5.2. Our sketch will refer substantially to the original proof of the un-
derlying adaptive oblivious transfer protocol, which is due to Camenisch, Neven
and shelat [15]. Our proof will consider two components: (1) the security of the
underlying OT scheme (which is based on the proof of [15]), and a separate proof
of the anonymous credential scheme.

Proof outline. We separately consider User and Database security.

User Security. Let us assume that an adversary has corrupted a database
D and some subset of the users Û1, . . . , ÛN . In this model, corruptions will be
static. We show that for every such adversary, we can construct a simulator such
that the output of the ideal experiment conducted with the simulator will be
indistinguishable from the output of the real experiment.

Our simulator operates as follows. First, D outputs the parameters for the
credential system, the cryptographic representation of each graph, and the values
pk , C1, . . . , CN . If these parameters are incorrectly formed, the simulator aborts.
The simulator next generates a credential key for each uncorrupted user and
negotiates with D to join the system under an appropriate policy. When D
executes the proof of knowledge that H = e(g, h) with some uncorrupted user,
our simulator rewinds to extract the value h (this extraction succeeds with all
but negligible probability). For i = 1 to N , the simulator decrypts Ci using h to
obtain Mi. This collection of plaintexts is sent to the trusted party T .

When a corrupted user Û queries the database, we pass its communications
along to D̂ unmodified. Whenever an uncorrupted user U queries T to obtain
message i (according to a state transition defined in their policy), T verifies
that this request is permitted by policy and updates its view of the user’s state.
Next, it notifies our simulator which runs the OTAccessAndUpdate protocol on an
arbitrary (uncorrupted) user’s policy under index N + 1 (this is the “dummy”
transition and is always permitted by the credential system). If this protocol
succeeds, the simulator sends a bit 1 to T which returns Mi to the user.

Claim. The transcript produced by this simulator is indistinguishable from the
transcript produced by the real experiment. This is true for following reasons:

1. The probability that the simulator incorrectly extracts h (or fails to extract
it) is negligible.

2. The probability that the adversary distinguishes a protocol executed on an
arbitrary user/dummy index is negligible: this is due to (a) the fact that the
element V transmitted to D during OTAccessAndUpdate is randomly dis-
tributed, and (b) the attached proof-of-knowledge is witness indistinguish-
able and therefore does not reveal the value of i or the user’s identity.

We do not need to argue the unforgeability of the anonymous credential
scheme here, since we consider only actions taken by the uncorrupted user.

520 S. Coull, M. Green, and S. Hohenberger

Database Security. Let us assume that an adversary has corrupted some sub-
set of the users Û1, . . . , ÛN (corruptions are static). We show that for every such
adversary, we can construct a simulator such that the output of the ideal exper-
iment conducted with the simulator will be indistinguishable from the output of
the real experiment.

Our simulator operates as follows. First, it generates the public and privacy
parameters for the credential scheme along with the cryptographic represen-
tation of the policies provided by T . It generates the parameters for the OT
scheme pk , sk as normal, but sets the plaintext for each database element to
a dummy value (the identity element) and produces ciphertexts C1, . . . , CN

(and generates the dummy message C(N+1) as normal). It sends these parameters
to each corrupted user, and to each user proves that H = e(g, h).

Whenever a corrupted user initiates the OTAccessAndUpdate protocol with
D, the simulator verifies that the user’s request (including ZK proofs) verifies,
and that neither Nu or Ns has been seen before. If so, it rewinds and uses
the extractors for the ZK proofs to learn the user’s identity, the index of the
message i being requested, the blinding factor v, and the user’s current and
previous credential state S, T . The server transmits the user’s identity values
(i, S, T) to T which verifies that they satisfy the policy (updating the policy
state in the process). If T returns ⊥, then D aborts the protocol with the user.
Otherwise if T returns Mi, then the simulator parses Ci = (Ai, Bi) and returns
U = (Bv

i)/Mi. The simulator uses rewinding to simulate the proof and convince
the user that U has been correctly formed.

Claim. The transcript produced by this simulator is indistinguishable from one
produced by the real experiment. This claim rests on the following points:

1. The false message collection C1, . . . , C(N+1) is indistinguishable from the
real message by the semantic security of the encryption scheme, which holds
under the q-PDDH assumption (see [15] for the full argument).

2. The simulated proof of U ’s structure is indistinguishable from a real proof.
3. The simulator never queries T on a tuple (i, S, T) that violates the user’s

policy. This reduces to the unforgeability of the CL signature (which is in
turn based on Strong RSA). Specifically, to violate policy, a user must satisfy
one of the following conditions:
(a) Prove knowledge of a signature σδ that it was not given, or
(b) Prove knowledge of a signature σS→T that it was not given. In either

case, the simulator can use the extractor for the proof system to obtain
the forged signature and win the CL signature forgery game.

(c) Misuse the CL signing protocol such that it receives a signature that is
not equivalent to a signature on the commitment A (or mispresent the
structure of A).

Erratum to: Public Key Cryptography –
PKC 2009

Stanis�law Jarecki and Gene Tsudik

University of California, Irvine, Computer Science Department,
Irvine, CA 92697-3435, USA
{stasio,gts}@ics.uci.edu

Erratum to:

S. Jarecki and G. Tsudik (Eds.)

Public Key Cryptography – PKC 2009

DOI: 10.1007/978-3-642-00468-1

The book was inadvertently published with an incorrect name of the copyright
holder. The name of the copyright holder for this book is: c© Springer-Verlag
Berlin Heidelberg. The book has been updated with the changes.

The updated original online version for this book can be found at
DOI: 10.1007/978-3-642-00468-1

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, p. E1, 2009.
c© Springer-Verlag Berlin Heidelberg 2017

http://dx.doi.org/10.1007/978-3-642-00468-1
http://dx.doi.org/10.1007/978-3-642-00468-1

Author Index

Abdalla, Michel 139
Abe, Masayuki 377
Akiyama, Koichiro 425
Aono, Yoshinori 34

Boneh, Dan 68
Boyd, Colin 105
Boyen, Xavier 139
Brzuska, Christina 317

Camenisch, Jan 196, 481
Cao, Zhenfu 357
Cheon, Jung Hee 54
Chevalier, Céline 139
Chow, Sherman S.M. 256
Coull, Scott 501

Damg̊ard, Ivan 160, 277
de Hoogh, Sebastiaan 393

Fischlin, Marc 297, 317
Freeman, David 68
Freudenreich, Tobias 317
Fujii, Hiroki 463
Funabiki, Nobuo 463

Gebotys, Catherine 443
Geisler, Martin 160
Ghodosi, Hossein 180
González Nieto, Juan Manuel 105
Gorantla, M. Choudary 105
Goto, Yasuhiro 425
Green, Matthew 501

Herrmann, Mathias 411
Hira, Yuta 463
Hohenberger, Susan 501
Hong, Jin 54

Junod, Pascal 88

Karlov, Alexandre 88
Katz, Jonathan 68
Kiayias, Aggelos 124
Kiltz, Eike 377
Kim, Minkyu 54
Kobayashi, Tetsutaro 215

Kohlweiss, Markulf 196, 481
Krøigaard, Mikkel 160

Leander, Gregor 411
Lehmann, Anja 317
Lenstra, Arjen K. 88
Libert, Benôıt 235
Longa, Patrick 443

Matt, Brian J. 337
May, Alexander 1
Mikkelsen, Gert Læssøe 277
Miyake, Hideyuki 425
Morillo, Paz 15

Nakanishi, Toru 463
Nielsen, Jesper Buus 160

Ohkubo, Miyako 215
Okamoto, Tatsuaki 377

Page, Marcus 317
Pieprzyk, Josef 180
Pointcheval, David 139

Ràfols, Carla 15
Rial, Alfredo 196
Ritzenhofen, Maike 1

Schelbert, Jakob 317
Schoenmakers, Berry 393
Schröder, Dominique 297, 317
Seo, Jae Hong 215
Shao, Jun 357
Sheedy, Caroline 196
Škorić, Boris 393
Soriente, Claudio 481
Suzuki, Koutarou 215

Vergnaud, Damien 235
Villegas, José 393
Volk, Florian 317

Waters, Brent 68

Zhou, Hong-Sheng 124

	Title Page
	Preface
	Organization
	Table of Contents
	Number Theory
	Implicit Factoring: On Polynomial Time Factoring Given Only an Implicit Hint
	Introduction
	Preliminaries
	Implicit Factoring of Two RSA Moduli
	Implicit Factoring of k RSA Moduli
	Implicit Factoring of Balanced RSA Moduli
	About Our Heuristic Assumptions
	A Counting Argument That Supports Our Assumptions
	Experiments

	References

	The Security of All Bits Using List Decoding
	Introduction
	Previous Work
	Organization

	Parts That Are as Hard as the Whole
	Preliminaries
	Fourier Analysis in \mathbb{Z}_N
	Codes
	List Decodable Codes

	The Relation between List Decoding and Hard-Core Predicates
	The Security of All Bits for Special N
	The Fourier Representation of the ith Bit
	Asymptotic Behaviour of the Fourier Coefficients of the ith Bit
	The Concentration of the ith Bit for Certain N
	The Hardness of the ith Bit for Certain N

	The Security of All Bits for All N
	A Closer Look at the Asymptotic Behavior of $|\widehat{P(\alpha)}|^2$
	The Concentration of the ith Bit for All N
	The Hardness of the ith Bit for All N

	All Bits of the Paillier Encryption Scheme Are Secure
	Other Predicates
	Conclusion
	References

	A New Lattice Construction for Partial Key Exposure Attack for RSA
	Introduction
	Preliminaries
	Overview of the Partial Key Exposure Attack
	Our Construction
	Computer Experiments
	Analysis
	Approximating the Evaluator
	Some Calculations on eval(I)

	Conclusion
	References

	Subset-Restricted Random Walks for Pollard rho Method on F_{p}^{m}
	Introduction
	Pollard rho Algorithm
	Iterating Functions
	Collision Detection

	Random Walk Restriction
	Solving DLP with an Iterating Function of Small Image Size

	Application to Finite Extension Fields
	Application to Pairing Based Cryptosystem
	Conclusion
	References
	Appendix: Tag Tracing Method with Normal Basis

	Applications and Protocols
	Signing a Linear Subspace: Signature Schemes for Network Coding
	Introduction
	Background
	Linear Network Coding
	Dealing with Adversarial Behavior
	Our Contributions

	Definitions and Preliminaries
	Signing a Linear Subspace
	Bilinear Groups and Complexity Assumptions

	A Homomorphic Network Coding Signature Scheme
	Network Coding Signatures without Random Oracles
	A Lower Bound on Signature Size
	Conclusion and Extensions
	References

	Improving the Boneh-Franklin Traitor Tracing Scheme
	Introduction
	Related Work
	Our Contributions

	Boneh-Franklin Scheme
	Encryption/Decryption
	Codewords Generation
	Tracing Procedure

	Revisiting the Tracing Mechanism
	Generalized Reed-Solomon Codes
	More Efficient Codewords
	An Efficient Tracing Procedure

	Above-Threshold Tracing
	Guruswami-Sudan Algorithm for Reed-Solomon Codes
	List Decoding and Traitor Tracing

	Beyond-Threshold Security
	Conclusion
	References

	Modeling Key Compromise Impersonation Attacks on Group Key Exchange Protocols
	Introduction
	Model
	AKE Security
	Mutual Authentication
	Contributiveness

	KCI Attacks on Existing Protocols
	Boyd and Gonz´alez Nieto’s Protocol [13]
	Al-Riyami and Paterson’s Protocol [12]
	Bresson et al.’s Protocol [10]

	An Insider Secure GKE Protocol
	Conclusion
	References

	Zero-Knowledge Proofs with Witness Elimination
	Introduction
	Preliminaries
	Zero-Knowledge with Witness Elimination
	Functionality $\mathcal{F}_{\mathrm{ZKWE}}$
	Generic Construction Based on Smooth Projective Hashing
	Illustrative Efficient Construction

	References

	Multi-Party Protocols
	Distributed Public-Key Cryptography from Weak Secrets
	Introduction
	Security Model
	Protocol Description
	Discussion and Conclusion
	References

	Asynchronous Multiparty Computation: Theory and Implementation
	Introduction
	Preliminaries
	Overview and Security Model
	Overview of the Protocol
	Security Model

	Protocol for Preprocessing
	Preprocessing Based on Hyperinvertible Matrices
	Preprocessing Based on Pseudorandom Secret-Sharing

	VIFF
	Implementing VIFF

	BenchmarkResults
	Conclusion
	References
	A Multiplication in VIFF

	Multi-Party Computation with Omnipresent Adversary
	Introduction
	Preliminaries
	Background
	Motivation

	An Overview of MPC with Omnipresent Adversary
	Proactive Secret Sharing Scheme

	Disqualification in MPC with Honest Majority
	Decomposition of $t-resilient$ Protocols
	Perfectly Secure MPC with Omnipresent Adversary
	Security Discussion

	Honest Majority MPC with Omnipresent Adversary
	Security Discussion

	Conclusions
	References

	Identity-Based Encryption
	Blind and Anonymous Identity-Based Encryption and Authorised Private Searches on Public Key Encrypted Data
	Introduction
	Technical Preliminaries
	Definitions of Committed Blind Anonymous IBE and PEOKS
	Anonymous Identity-Based Encryption
	Committed Blind Anonymous IBE
	Public Key Encryption with Oblivious Keyword Search

	Construction of a Committed Blind Anonymous IBE Scheme and a Transformation to PEOKS
	The Underlying Anonymous IBE Scheme
	Blind Extraction Protocol
	Two-Party Protocol for Modulo Arithmetics
	Transformation to PEOKS

	Authorised Private Searches on Public Key Encrypted Data
	Conclusion and Future Work
	References
	A Proofs of Knowledge of Correct Key Derivation

	Anonymous Hierarchical Identity-Based Encryption with Constant Size Ciphertexts
	Introduction
	Related Works: ID-Based Encryption Algorithms
	Our Results

	Background
	Security Models
	Bilinear Groups of Composite Order
	Complexity Assumptions

	Anonymous HIBE with Constant Size Ciphertexts
	Construction
	Proof of Security

	Comparison
	Conclusion
	References

	Towards Black-Box Accountable Authority IBE with Short Ciphertexts and Private Keys
	Introduction
	Background and Definitions
	The Basic Scheme
	Description
	Security

	Weak Black-Box Traceability
	Conclusion
	References
	A A Variant with White-Box FindKey-CCA Security
	B Authenticated Symmetric Encryption
	C Proof of Theorem 7

	Removing Escrow from Identity-Based Encryption
	Introduction
	Review of Identity-Based Encryption
	Attempts in Reducing Trust in the KGC

	Definitions
	Notations and Complexity Assumptions
	Identity Based Encryption

	Anonymity and Indistinguishability against the KGC
	Anonymity against User Attack
	Anonymous Ciphertext Indistinguishability
	Comparison of User Anonymity and KGC One-Wayness

	Analysis
	Schemes That Are Not $\mathcal{OW-KGC}$-Secure
	Schemes That Are $\mathcal{ACI-KGC}$-Secure

	“Escrow-Free” IBE in the Standard Model
	Modification
	Security
	$\mathcal{ACI-KGC}$-Security without User-Anonymity
	Comparisons with Accountability, Anonymity with Respect to the KGC, and ID-Based Non-malleability

	Anonymous Private Key Issuing
	General Framework
	Security Requirements
	AKI Protocol for Modified Gentry-IBE
	Related Work

	Conclusions
	References

	Signatures
	On the Theory and Practice of Personal Digital Signatures
	Introduction
	Related Work

	Security Model
	Protocol Securely Realizing $\mathcal{F}_{\text{M-SIG}}$
	Protocol π$_{M-SIG}$, for Computationally Limited M

	Protocol π_${M-SIG}$ UC-realizes \mathcal{F}_{M-SIG}
	Proactive Security
	Proactive Definition of Security
	Protocol $\pi_{\mathcal{P}\text{-M-SIG}}$, a Proactive Version of $π_{M-SIG}$
	Security of $\pi_{\mathcal{P}\text{-M-SIG}}$

	Blinding Messages
	Implementing a Prototype
	Conclusion, Future Work and Acknowledgement
	References

	Security of Blind Signatures under Aborts
	Introduction
	Blind Signatures
	Selective-Failure Blindness
	Definition
	Relation to Regular Blindness
	Selective-Failure Blindness for Multiple Executions
	Relation to A-Posteriori Blindness

	From Blindness to Selective-Failure Blindness
	Unforgeability and User Aborts
	Selective Failures and Adaptive Oblivious Transfer
	Simulatable Adaptive Oblivious Transfer
	Construction

	References

	Security of Sanitizable Signatures Revisited
	Introduction
	Preliminaries
	Security Requirements
	Unforgeability
	Immutability
	Privacy
	Transparency
	Accountability

	Relationships of the Security Requirements
	Sanitizable Signatures Based on Chameleon Hashes
	Construction
	Security

	References
	A General Message Modifications

	Identification of Multiple Invalid Signatures in Pairing-Based Batched Signatures
	Introduction
	Notation
	Background
	Identifying Invalid Signatures

	An Alternate Approach to Divide-and-Conquer Methods
	Single Pruning Search (SPS) Method
	Paired Single Pruning Search Method

	Performance
	Cost of the New Methods When $W \geq 1$
	Number of Product of Pairings Computations of SPS and PSPS
	Number of Multiplications in F_q

	Conclusion
	References
	A Auxiliary Algorithms for SPS and PSPS
	B |PT$_{(2)}$ | < 2w − 1|

	Encryption
	CCA-Secure Proxy Re-encryption without Pairings
	Introduction
	Our Contribution
	Organization

	Preliminaries
	Public Key Encryption
	Unidirectional Proxy Re-encryption
	Signature of Knowledge
	Complexity Assumption
	The Public Key Encryption with Double Trapdoors

	New Unidirectional Proxy Re-encryption Scheme without Pairings
	Scheme \mathfrak{U} with Single-Use

	Scheme \mathfrak{U}_T with Temporary Delegation
	Comparison
	Conclusions
	References
	A Analysis on Ivan-Dodis Construction
	A.1 Ivan-Dodis Construction
	A.2 Chosen Ciphertext Attacks on the Ivan-Dodis Construction

	B Definitions of Unidirectional PRE Schemes with Temporary Delegation

	Compact CCA-Secure Encryption for Messages of Arbitrary Length
	Introduction
	Our Contribution
	Related Work
	Technical Overview

	Definitions
	Compact CCA-Secure Encryption
	Building Blocks
	The Basic Scheme
	Security
	The Twin Scheme: Security from Standard Diffie-Hellman
	Efficiency

	Proof of Theorem 1
	References

	Verifiable Rotation of Homomorphic Encryptions
	Introduction
	Our Contributions

	Preliminaries
	Discrete Log Setting
	Zero-Knowledge Proofs of Knowledge

	DFT-BasedSolution
	Discrete Fourier Transform
	DFT-Based Protocol

	General Solution
	Rotation of Known Committed Values
	General Rotation

	Comparison and Concluding Remarks
	References

	New Cryptosystems and Optimizations
	A Practical Key Recovery Attack on Basic TCHo
	Introduction
	TheTCHo Cipher
	Encryption
	Decryption
	Security Considerations

	The Attack
	Recovering k_0
	Recovering All Key Bits

	Analysis of the Attack
	$n \neq 0$ mod 128
	$n = 0$ mod 128
	Experimental Results

	References

	An Algebraic Surface Cryptosystem
	Introduction
	Preliminaries
	Algebraic Surfaces and the Section Finding Problem
	Original Version (ASC04)

	Attacks on ASC04
	Reduction Attack by Uchiyama and Tokunaga
	A Refinement by Iwami
	Conditions to Avoid the Reduction Attack
	An Attack by Voloch
	Ideas to Avoid Voloch’s Attack

	New Algorithm (Algebraic Surface Cryptosystem)
	Keys
	Encryption/Decryption
	Key Generation

	Security Analysis
	Reduction to a Multivariate Equation System
	Reduction by the Defining Equation
	Reduction by Substituting Various Curves
	Reduction to a Function Field F$_p(t)$ by the Trace Map
	Voloch’s New Attack

	Key Size Estimation
	Conclusion
	References
	A ToyExample
	A.1 Key Generation
	A.2 Encryption
	A.3 Decryption

	Fast Multibase Methods and Other Several Optimizations for Elliptic Curve Scalar Multiplication
	Introduction
	Elliptic Curve Cryptography
	Multibase Non-adjacent Form Methods
	Multibase NAF (mbNAF) and Window-w Multibase NAF (wmbNAF)

	The Fractional Window-w Multibase Non-adjacent Form (Frac-wmbNAF)
	The Refined Multibase Non-adjacent Form (RefinedmbNAF)
	Performance Comparison
	Conclusion
	References
	A Derivation of Composite Operations of Form dP
	B Proof of the Average Zero and Nonzero Densities of $(w)mb$NAF Using Bases {2,3} and {2,3,5}
	C Proof of the Average Zero and Nonzero Densities of Fractional wmbNAF Using Bases {2,3}

	Group Signatures and Anonymous Credentials
	Revocable Group Signature Schemes with Constant Costs for Signing and Verifying
	Introduction
	Model and Security Definitions
	Traceability
	Anonymity
	Non-frameability

	Preliminaries
	Bilinear Groups
	Assumptions
	BB Signatures
	BBS+ Signatures
	Proving Relations on Representations

	Proposed Scheme
	Idea
	Proposed Algorithms

	Security
	Extension
	Idea
	Extended Algorithms

	Efficiency
	Conclusion
	References

	An Accumulator Based on Bilinear Maps and Efficient Revocation for Anonymous Credentials
	Introduction
	Preliminaries
	Known Discrete-Logarithm-Based, Zero-Knowledge Proofs
	Signature Scheme with Efficient Protocols

	A Pairing Based Dynamic Accumulator with Efficient Updates
	Definition of Dynamic Accumulators
	Construction
	Efficient Proof That a Hidden Value Was Accumulated

	Efficient Revocation of Private Certificates
	Adapted Signature Scheme for Accumulated Values
	Construction

	Conclusion and Discussion
	References
	A Proofs
	A.1 Proof of Theorem 1
	A.2 Proof of Theorem 2

	Controlling Access to an Oblivious Database Using Stateful Anonymous Credentials
	Introduction
	Stateful Credentials: Model and Definitions
	Protocol Descriptions and Definitions for Stateful Credentials

	Technical Preliminaries
	Stateful Anonymous Credentials
	Basic Construction

	Oblivious Database Access Control
	Protocol Descriptions and Security Definitions for Oblivious Databases
	The Construction
	Extensions to Compact Access Policies in Practice

	Conclusion
	References
	A Security Definition for an Oblivious Database
	B Proof Sketch of Theorem 2

	Erratum to: Public Key Cryptography –PKC 2009
	Author Index

