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Preface

It has been a real pleasure to have taken part in organizing the 12th Interna-
tional Conference on Practice and Theory in Public Key Cryptography (PKC
2009). PKC 2009 was held March 18-20, 2009, on the campus of the Univer-
sity of California, Irvine (UCI). As usual, it was sponsored by the International
Association for Cryptologic Research (IACR) in cooperation with:

— UCI Secure Computing and Networking Center (SCONCE)

— UCIT Donald Bren School of Information and Computer Sciences (DBSICS)

— California Institute for Telecommunications and Information Technology
(CallT?2)

The PKC 2008 Program Committee (PC) consisted of 33 internationally rec-
ognized researchers with combined expertise covering the entire scope of the
conference.

Recent growth in the number of cryptography venues has resulted in stiff
competition for high-quality papers. Nonetheless, PKC’s continued success is
evident from both the number and the quality of submissions. PKC 2009 re-
ceived a total of 112 submissions. They were reviewed by the PC members and
a highly qualified team of external reviewers. Each submission was refereed by
at least three reviewers. After deliberations by the PC, 28 submissions were
accepted for presentation. Based on extensive discussions, the PKC 2009 best
paper award was given to Alexander May and Maike Ritzenhofen for their paper
“Implicit Factoring: On Polynomial Time Factoring Given Only an Implicit
Hint”. The conference program also included two invited talks, by Anna Lysyan-
skaya (Brown University) and Amit Sahai (UCLA).

A number of people selflessly contributed to the success of PKC 2009. First
and foremost, we thank the authors of all submissions. They are the backbone of
this conference and their confidence and support are highly appreciated. We are
similarly grateful to the dedicated, knowledgeable and hard-working PC mem-
bers who provided excellent reviews (on time and on a tight schedule!) and
took part in post-review discussions. Their altruistic dedication and commu-
nity service spirit are commendable. We are also indebted to the PKC Steering
Committee members for their guidance as well as to Shai Halevi and Christian
Cachin for valuable technical assistance with revewing and organizational as-
pects. A special word of thanks to Moti Yung for his encouragement and help in
the planning stage. Last, but surely not least, we greatefully acknowledge extra-
mural financial support (especially appreciated in these tough economic times)
by Microsoft Research, Google and Qualcomm.

March 2009 Stanistaw Jarecki
Gene Tsudik
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Implicit Factoring: On Polynomial Time
Factoring Given Only an Implicit Hint*

Alexander May and Maike Ritzenhofen

Horst Gortz Institute for IT-security
Faculty of Mathematics
Ruhr-University of Bochum, 44780 Bochum, Germany
alex.may@ruhr-uni-bochum.de,
maike.ritzenhofen@ruhr-uni-bochum.de

Abstract. We address the problem of polynomial time factoring RSA
moduli N1 = pi¢q: with the help of an oracle. As opposed to other ap-
proaches that require an oracle that explicitly outputs bits of p1, we use
an oracle that gives only implicit information about pi. Namely, our or-
acle outputs a different No = p2q2 such that p1 and p2 share the t least
significant bits. Surprisingly, this implicit information is already suffi-
cient to efficiently factor Ni, N2 provided that ¢ is large enough. We
then generalize this approach to more than one oracle query.

Keywords: Factoring with an oracle, lattices.

1 Introduction

Factoring large integers is one of the most fundamental problems in algorith-
mic number theory and lies at the heart of RSA’s security. Consequently, since
the invention of RSA in 1977 [L8] there have been enormous efforts for finding
efficient factorization algorithms. The Quadratic Sieve [L6], the Elliptic Curve
Method [§] and eventually the Number Field Sieve [I0] have led to a steady
progress in improving the factorization complexity. However, since 1993 there is
little progress from the complexity theoretic point of view when using classical
Turing machines as the model of computation.

Shor’s algorithm from 1994 [19] demonstrates that the factorization problem
is polynomial time solvable on quantum Turing machines. Nowadays, it seems
to be highly unclear whether these machines can ever be realized in practice.

The so-called oracle complexity of the factorization problem was first studied
at Eurocrypt 1985 by Rivest and Shamir [I7], who showed that N = pg can be
factored given an oracle that provides an attacker with bits of one of the prime

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

* The research leading to these results was supported by the German Research Foun-
dation (DFG) as part of the project MA 2536/3-1 and has received funding from
the European Community’s Seventh Framework Programme (FP7,/2007-2013) un-
der grant agreement number ICT-2007-216646 - European Network of Excellence in
Cryptology II (ECRYPT II).
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factors. The task is to factor in polynomial time by asking as few as possible
queries to the oracle. Rivest and Shamir showed that glog p queries suffice in
order to factor efficiently.

At Eurocrypt 1992, Maurer [12] allowed for an oracle that is able to answer
any type of questions by YES/NO answers. Using this powerful oracle, he showed
that elog p oracle queries are sufficient for any € > 0 in order to factor efficiently.
At Eurocrypt 1996, Coppersmith [2] in turn improved the Rivest-Shamir oracle
complexity for most significant bits to élog p queries. Coppersmith used this
result to break the Vanstone-Zuccherato ID-based cryptosytem [21] that leaks
half of the most significant bits.

In this work, we highly restrict the power of the oracle. Namely, we allow for
an oracle that on input an RSA modulus N; = p1¢; outputs another different
RSA modulus No = pogo such that p;, ps share their ¢ least significant bits.
Moreover, we assume for notational simplicity that the bit-sizes of ps, o are
equal to the bit-sizes of p1, q1, respectively.

Thus, as opposed to an oracle that explicitly outputs bits of the prime factor
p1, we only have an oracle that implicitly gives information about the bits of p;.
Intuitively, since N» is a hard to factor RSA modulus, it should not be possible
to extract this implicit information. We show that this intuition is false. Namely,
we show that the link of the factorization problems N; and Ns gives rise to an
efficient factorization algorithm provided that ¢ is large enough.

More precisely, let g1 and ¢2 be a-bit numbers. Then our lattice-based al-
gorithm provably factors N, No with N; # N, in quadratic time whenever
t > 2(a+ 1). In order to give a numerical example: Let Ny, No have 750-bit
p1,p2 and 250-bit ¢1,g2. Then the factorization of N, Ny can be efficiently
found provided that p1, p2 share more than 502 least significant bits. The bound
t > 2(a+1) implies that our first result works only for imbalanced RSA moduli.
Namely, the prime factors p; have to have bit-sizes larger than twice the bit-sizes
of the qi.

Using more than one oracle query, we can further improve upon the bound
on t. In the case of k—1 queries, we obtain Ny, ..., Ny different RSA moduli such
that all p; share the least ¢ significant bits. This gives rise to a lattice attack with
a k-dimensional lattice L having a short vector q = (q1, ..., qx) that immediately
yields the factorization of all Ny, ..., Ni. For constant k, our algorithm runs in
time polynomial in the bit-size of the RSA moduli. As opposed to our first result,
in the general case we are not able to prove that our target vector q is a shortest
vector in the lattice L. Thus, we leave this as a heuristic assumption. This
heuristic is supported by a counting argument and by experimental results that
demonstrate that we are almost always able to efliciently find the factorization.

Moreover, when asking k& — 1 queries for RSA moduli with a-bit ¢; that share
t least significant bits of the p;, we improve our bound to t > kf 1. Hence
for a larger number k of queries our bound converges to ¢ > «, which means
that the p; should at least coincide on « bits, where « is the bit-size of the
¢;- In the case of RSA primes of the same bit-size, this result tells us that
Ny =p1qq, ..., Ny = p1gx with the same p; can efficiently be factored, which is
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trivially true by greatest common divisor computations. On the other hand, our
result is highly non-trivial whenever the bit-sizes are not balanced.

If we do not restrict ourselves to polynomial running time, then we can easily
adapt our method to also factor balanced RSA moduli. All that we have to do
is to determine a small quantity of the bits of ¢; by brute force search. Using
these bits we can apply the previous method in order to determine at least half
of the bits of all g;. The complete factorization of all RSA moduli N; is then
retrieved by the aforementioned lattice-based algorithm of Coppersmith [3].

Currently, we are not aware of an RSA key generation that uses primes sharing
least significant bits. The Steinfeld-Zheng system [20] uses moduli N = pq such
that p,q itself share least significant bits, for which our algorithm does not
apply. Naturally, one application of our result is malicious key generation of
RSA moduli, i.e. the construction of backdoored RSA moduli [522].

Another application is a novel kind of attack on a public key generator. Sup-
pose an attacker succeeds to manipulate those t registers of an RSA public key
generator that hold the least significant bits of one prime factor such that these
registers are stuck to some unknown value. E.g., take an attacker that simply
destroys the registers with the help of a laser beam such that he has no control
on the register’s values. If the RSA key parameters are within our bounds, the
attacker can easily collect sufficiently many RSA moduli that allow him to factor
all of them. Thus, he uses the RSA key generator as an oracle. Notice that the
RSA generator will usually not even notice such an attack since the RSA moduli
look innocent.

Moreover, we feel that our algorithm will be useful for constructive crypto-
graphic applications as well. Consider the task that our oracle has to solve, which
we call the one more RSA modulus problem, i.e one has to produce on input an
RSA modulus N = pq other moduli N; = p;q; whose factors p; share their least
significant bits.

Our construction shows that this problem is for many parameter settings
equivalent to the factorization problem. So the one more RSA modulus problem
might serve as a basis for various cryptographic primitives, whose security is
then in turn directly based on factoring (imbalanced) integers.

In addition to potential applications, we feel that our result is of strong the-
oretical interest, since we show for the first time that quite surprisingly implicit
information is sufficient in order to factor efficiently. In turn, this implies that
already a really weak form of an oracle suffices for achieving a polynomial time
factorization process. In the oracle-based line of research, reducing the number
of queries and diminishing the power of the oracles is the path that leads to a
better understanding of the complexity of the underlying factorization problem.

We organize our paper as follows. In Section 2, we give the necessary facts
about lattices. In Section 3, we introduce our rigorous construction with one ora-
cle query, i.e. with two RSA moduli. In Section 4, we generalize our construction
to an arbitrary fixed number of queries. This makes our construction heuristic.
In Section 5, we adapt our heuristic construction to the case of balanced RSA
moduli. In Section 6, we experimentally confirm the validity of our heuristics.
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2 Preliminaries

An integer lattice L is a discrete additive subgroup of Z™. An alternative equiv-
alent definition of an integer lattice can be given via a basis.

Let d,n € N, d < n. Let by,...,bg € Z" be linearly independent vectors.
Then the set of all integer linear combinations of the b; spans an integer lattice

L,i.e.
d
L= {Zaibi | a; EZ}.
i=1
by
We call B = : a basis of the lattice, the value d denotes the dimension
ba

or rank of the basis. The lattice is said to have full rank if d = n. The determi-
nant det(L) of a lattice is the volume of the parallelepiped spanned by the basis
vectors. The determinant det(L) is invariant under unimodular basis transfor-
mations of B. In case of a full rank lattice det(L) is equal to the absolute value
of the Gramian determinant of the basis B.

Let us denote by ||v|| the Euclidean fs-norm of a vector v. Hadamard’s in-
equality [I3] relates the length of the basis vectors to the determinant.

by
Lemma 1 (Hadamard). Let B = € 2"", n € N, be an arbitrary

bn
non-singular matriz. Then

det(B) < [ IIbsll-
1=1

The successive minima A;(L) of the lattice L are defined as the minimal radius of
a ball containing ¢ linearly independent lattice vectors of L. In a two-dimensional
lattice L, basis vectors vi, ve with lengths ||v1]| = A1(L) and ||vz|| = A2(L) are
efficiently computable via Gaussian reduction.

Theorem 1. Let by,bs € Z™ be basis vectors of a two-dimensional lattice L.
Then the Gauss-reduced lattice basis vectors vi,va can be determined in time
O(log®(max{||v1]|, |[va||}). Furthermore,

IVall = M(L) and ||va]| = A2(L).

Information on Gaussian reduction and its running time can be found in [I3].
A shortest vector of a lattice satisfies the Minkowski bound, which relates the
length of a shortest vector to the determinant and dimension of the lattice.

Theorem 2 (Minkowski [14]). Let L C Z™*™ be an integer lattice. Then L
contains a non-zero vector v with

V]| = A(L) < V/ndet(L)n.
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Vectors with short norm can be computed by the LLL algorithm of Lenstra,
Lenstra, and Lovasz [I1].

Theorem 3 (LLL). Let L be a d-dimensional lattice with basis by,...,bg €
Z"™. Then the LLL algorithm outputs a reduced basis vy, ...,vq with the following
property:
d—1 1
[[vi|| <2 « det(L)<.

The running time of this algorithm is O(d*n(d-+10g byax ) 10g buax ), Where byax €
N denotes the largest entry in the basis matriz.

For a proof of the upper bound of a shortest LLL vector compare [II]. The
running time is the running time of the so-called L2-algorithm, an efficient LLL
version due to Nguyen and Stehlé [15].

The LLL algorithm can be used for factoring integers with partly known
factors as Coppersmith showed in [3].

Theorem 4 ([3] Theorem 5). Let N be an n-bit composite number. Then we
can find the factorization of N = pq in polynomial time if we know the low order
% bits of p.

3 Implicit Factoring of Two RSA Moduli

Assume that we are given two different RSA moduli N1 = p1q1, No = paga, where
p1, p2 coincide on the t least significant bits. Le., p; = p+2'p; and ps = p+ 2P,
for some common p that is unknown to us. Can we use the information that the
prime factors of N7 and Ns share their ¢ least significant bits without knowing
these bits explicitly? l.e., can we factor Ny, No given only implicit information
about one of the factors?

In this section, we will answer this question in the affirmative. Namely, we
will show that there is an algorithm that recovers the factorization of N7 and
Ny in quadratic time provided that ¢ is sufficiently large.

We start with

(p+2"p1)q1 = N1
(p+2'P2)ga = No.

These two equations contain five unknowns p, p1, p2, g1 and g2. By reducing both
equations modulo 2¢, we can eliminate the two unknowns pi, po and get

pg1 = N7 mod 2
pg2 = No mod 2!,

Since ¢, g2 are odd, we can solve both equations for p. This leaves us with
];rl 1= 1;[;‘ mod 2¢, which we write in form of the linear equation

(N7 N2)g1 — g2 = 0 mod 2°. (1)
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The set of solutions
L ={(zx1,22) € Z* | (N] ' No)x1 — 3 = 0 mod 2}

forms an additive, discrete subgroup of Z2. Thus, L is a 2-dimensional integer
lattice. L is spanned by the row vectors of the basis matrix

-1
Br= ((1) Nl2tN2> :

Let us briefly check that the integer span of By, denoted by span(By), is indeed

equal to L. First, by = (1, Ny ' Ny) and by = (0, 2) are solutions of (N; * Na)z; —

2o = 0 mod 2¢. Thus, every integer linear combination of by and by is a solution

which implies that span(By) C L.

Conversely, let (z1,22) € L, i.e. (Nleg)xl — 129 = k- 2t for some k € Z.
Then (z1,—k)Br, = (x1,x2) € span(By,) and thus L C span(By,).

Notice that by Eq. (@), we have (g1, ¢2) € L. If we were able to find this vector
in L then we could factor Ny, Ny easily. Let us first provide some intuition under
which condition the vector q = (q1,¢2) is a short vector in L. We know that
the length of the shortest vector is upper bounded by the Minkowski bound
V2det(L)2 = /222,

Since we assumed that q1, g are a-bit primes, we have ¢,q2 < 2°. If « is
sufficiently small, then ||q|| is smaller than the Minkowski bound and, therefore,
we can expect that q is among the shortest vectors in L. This happens if

lal] < V2-2* < V222,

So if ¢ > 2a we expect that q is a short vector in L. We can find a shortest
vector in L using Gaussian reduction on the lattice basis B in time O(log?(2!)) =
O(log?(min{ Ny, N2})). Hence, under the heuristic assumption that q = (g1, ¢2)
is a shortest vector in L we can factor N1, Na in quadratic time. Under a slightly
more restrictive condition, we can completely remove the heuristic assumption.

Theorem 5. Let N1 = p1q1, No = page be two different RSA moduli with «-
bit q;. Suppose that p1,pa share at least t > 2(a + 1) bits. Then Ny, No can be

factored in quadratic time.
(1NN,
Br = (0 2!

be the lattice basis defined as before.
By, spans a lattice L with shortest vector v that satisfies

Let

t+1
2

Iv]| < V2det(L)?> =2

. . . . . b
Performing Gaussian reduction on By, we get an equivalent basis B = (bl)
2

such that
[ba]| = Ai(L) and [[ba|| = A2(L).
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Our goal is to show that by = +q = +(q1, ¢2) which is sufficient for factoring
N1 and NQ.
As L is of full rank, by Hadamard’s inequality we have

[[ba [ |[bz]] > det(L).

This implies
det(L)  det(L)
baf]  A(L)°

Substituting det(L) = 2¢ and using A (L) < 2°%" leads to

|[bz|| >

2t t—1
HbZH > 2t+1 =22z,
2

This implies for any lattice vector v = aiby + asbs with ||v|| < 2"2" that
as = 0, as otherwise \y(L) < ||v|| < [|bz]|| which contradicts the optimality of
by from Theorem [l Thus, every v with |[v|| <22 is a multiple of by. Notice
that q = (q1,q2) € L fulfills ||q] = v2-2* = 2°%"". Consequently, we have
lall < [fbs] i

2°% <2 e 2a+1) <t

Therefore, we get q = aby for some a € Z — {0}. Let by = (b11,b12), then
gcd(q1,q2) = ged(abii, abia) > a. But ¢1, g2 are primes and wlog ¢1 # go, since
otherwise we can factor Ny, No by computing gcd(Ny, No). Therefore, |a| = 1
and we obtain q = by, which completes the factorization.

The running time of the factorization is determined by the running time of the
Caussian reduction, which can be performed in O(t?) = O(log®(min{ N1, Ny }))
steps. U

4 Implicit Factoring of k RSA Moduli

The approach from the previous section can be generalized to an arbitrary fixed
number k — 1 of oracle queries. This gives us k different RSA moduli

N1 = (p+2'p1)qr (2)

Ni. = (p+ 2'Pr) g

with a-bit g;.
We transform the system of equations into a system of k equations modulo 2¢

pg1 — Ni =0 (mod 2%)

Pk — Nk =0 (mod Qt)

in k + 1 variables.
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Analogous to the two equation case, we solve each equation for p. This can be
done because all the ¢; are odd. Thus, we get ];711 = J;’L (mod 2%) fori=2,... k.
Writing this as & — 1 linear equations gives us:

N Nogi —ga =0 (mod 2%)

N 'Nigi — g =0 (mod 2%).
With the same arguments as in the preceding section the set
L={(zx1,...,2) €ZF | NT'Nizy —2; =0 (mod 2°) for all i = 2,...,k}

forms a lattice. This lattice L is spanned by the row vectors of the following
basis matrix

IN'Ny -+ NN

0 28 0. 0
Br=|0 o0

: o 0

o 0 -0 2

Note that q = (q1,...,qx) € L has norm ||q|| < vk2% We would like to
have ||q|| = A1 (L) as in Section Bl The length A;(L) of a shortest vector in L is
bounded by

A (L) < VE(det(L))+ = VE@IED) k.

Thus, if q is indeed a shortest vector then

lal| = VE2* < VK- 285" (3)

k

w10 We make the following heuristic

This implies the condition ¢ >
assumption.

Assumption 6. Let Ny,..., Ny be as defined in Eq. @) witht > kfla. Further,
let by be a shortest vector in L. Then by = +(q1, ..., qk)-

Theorem 7. Let Ny,...,Ng be as defined in Eq. @) with t > kfla. Under
Assuz%ption, we can find the factorization of all Ny, ..., Ny in time polynomial
in (k2,max;{log N;}).

We show the validity of Assumption [6] experimentally in Section

The running time is determined by the time to compute a shortest vec-
tor in L [8I7]. This implies that for any lattice L of rank k such that ks =
poly(max;{log N;}), i.e. especially for lattices with fixed rank k, we can com-
pute the factorization of all N; in time polynomial in their bit-size.

For large k, our bound converges to ¢ > «. This means that the amount ¢
of common least significant bits has to be at least as large as the bit-size of



Implicit Factoring 9

the ¢;. In turn, this implies that our result only applies to RSA moduli with
different bit-sizes of p; and ¢;. On the other hand, this is the best result that we
could hope for in our algorithm. Notice that we construct the values of the g; by
solving equations modulo 2¢. Thus, we can fully recover the g; only if their bit-
size « is smaller than . In the subsequent section, we will overcome this problem
by avoiding the full recovery of all ¢;, which in turn leads to an algorithm for
balanced RSA moduli.

Remark: All of our results still hold if 2* is replaced by an arbitrary modulus
M > 2t We used a power of two only to illustrate our results in terms of bits.

5 Implicit Factoring of Balanced RSA Moduli

We slightly adapt the method from Section [l in order to factor balanced n-bit
integers, i.e. N; = p;q; such that p; and ¢; have bitsize  each. The modification
mainly incorporates a small brute force search on the most significant bits.

Assume that we are given k& RSA moduli as in (). From these moduli we
derive k — 1 linear equations in k variables:

N Nogi — g2 =0 (mod 2%)

Nl_lNk(h —qx =0 (mod 2°)

The bitsize of the ¢; is now fixed to a = 7 which is equal to the bitsize of the
Pi, 1. €. now the number ¢ of bits on which the p; coincide has to satisfy ¢t < a.. In
the trivial case of t = o = I, we can directly factor the IV; via greatest common
divisor computations as then p; =p fori=1,... k.

Thus, we only consider ¢ < 7. With a slight modification of the method
in Section B, we compute all ¢; (mod 2'). Since ¢ < 1, this does not give us
the ¢; directly, but only their t least significant bits. But if ¢ > "/, we can use

Theorem M for finding the full factorization of each N; in polyno4mial time. In
order to minimize the time complexity, we assume ¢ =} throughout this section.
To apply Theorem [7 of Section [] the bit-size of the ¢; has to be smaller than
kglt. Thus, we have to guess roughly ,16 -t = .. bits for each g;. Since we
consider £ moduli, we have to guess a total number of | bits. Notice that this is
the same amount of bits as for guessing one half of the bits of one g;, which in
turn allows to efficiently find this ¢; using Theorem El With a total amount of
’} bits however, our algorithm will allow us to efficiently find all ¢;, 1 = 1,... k.
Let us describe our modification more precisely. We split ¢; (mod 2%) into
26G; +x; (mod 21). The number 3 depends on the number of oracle calls k — 1
such that the condition g < (}?1) - "} holds. We therefore choose 3 to be the
largest integer smaller than (kzz)". This implies that the z; < 27 are small
enough to be determined analogous to Sectiond provided that the §; are known.
As discussed before, in practice we can guess an amount of ;; bits for determining
each §;, or we can find these bits by other means, e.g. by side-channel attacks.
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Suppose now that the ¢; are given for each i. We obtain the following set of
equations

Ny 'Nozy — 29 = 2°(go — Ny 'Nogi)  (mod 27%)

- (4)
N 'Npzy — 2 = 2°(G — Ny 'Nipgi)  (mod 27%).

Let ¢; = 28(g; — NleZ-qH)7 i =2,...,k, denote the known right-hand terms.
In contrast to Section Ml the equations (@) that we have to solve are inhomoge-
nous. Let us first consider the lattice L that consists of the homogenous solutions

L={(x1,...,2) €Z" | N{'Njz1y —2; =0 (mod 2%),i=2,...,k}.

L is spanned by the rows of the following basis matrix

IN'Ny -+ NN

0 2% 0 --- 0
Br=10 0

: R 0

0 0 e 0 2%

Let I; € Z such that N1N; ‘a1 + ;2 = 2; + ¢;. Then we let
/
dq = (z1,lo,...,lg)Br = (x1,22 + 2, ..., 2k + ¢i) € L.

Moreover, if we define the target vector ¢ := (0,ca,...,ck), then the distance
between q’ and c is

(k—1)n

la' —c|| = [|(z1,...,2z)|| < VK2 < VE-2

This is the same bound that we achieved in Section [ for the length of a shortest
vector in Eq. (@) when ¢ = j. So instead of solving a shortest vector problem, we
have to solve a closest vector problem in L with target vector c. Closest vectors
can be found in polynomial time for fixed lattice dimension k (see Blomer [I]).
We make the heuristic assumption that q’ is indeed a closest vector to ¢ in L.

Assumption 8. Let Ny,..., Ny be as defined in Eq. {@l) with 8 < (k;,i)". Fupr-
ther, let by be a closest vector to ¢ in L. Then by = +dj.

Theorem 9. Let Ni,..., Ny be as defined in Eq. @) with § < (kzli)". Un-
der Assumption 8, we can find the factorization of all Ni,..., Ny in time 24 -
poly(k!, max;{log N;}).

The running time is determined by the time for guessing each ¢; and the time
for finding a closest vector in L.
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6 About Our Heuristic Assumptions

In this section we have a closer look at the two heuristics from the previous
sections, Assumption Bl and Assumption B We first give a counting argument
that supports our heuristics and then demonstrate experimentally that our con-
structions work very well in practice.

6.1 A Counting Argument That Supports Our Assumptions

Recall that in Section[d] the lattice L consists of all solutions q = (g1, ..., qx) of
the system of equations

Ny 'Nogi = g2 (mod 2°) (5)

Nlekql =q, (mod 2")

As ged(N; 1N, 2t) = 1 for any i, the mapping fi : © — N; "Nz (mod 2%)
is bijective. Therefore, the value of ¢; uniquely determines the values of ¢;,
i=2,...,k.

In total the system of equations has as many solutions as there are values to
choose ¢ from, which is 2¢. Now suppose q; < 2" How many vect(ors)q do
k'—kl t ?

we have such that ¢; < 2“3 for all i = 1,...,k and thus [|q|| < VE2
Assume for each i = 2,...,k that the value ¢; is uniformly distributed in
{0,...,2" — 1} and that the distributions of ¢; and ¢; are independent if i # j.

k—1)t

Then the probability that ¢; < 2( DI T

Pr (qi < 2““1”") 2 gt

Furthermore, the probability that ¢; < 2 “ for all 4 = 2,...,kis

& - k—1 _
Pr (q2 = 2(kkl)t7"'vq]f < 2<kkl)t> - (27’2) = 27<kkl)t

Consequently, for a given value of ¢; < 2% the expected number of vectors

q such that ¢; < 2% for all i = 1,...,kis PR SR Therefore,

we expect that only one lattice vector, namely q, is short enough to satisfy the

Minkowski bound. Hence, we expect that +q is ? ur)lique shortest vector in L if
kE—1)t

its length is significantly below the bound VA2 » . This counting argument
strongly supports our Assumption

Remark: In order to analyze Assumption [§ we can argue in a completely analo-
gous manner. The inhomogenous character of the equations does not influence
the fact that the ¢; are uniquely determined by ¢ .
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6.2 Experiments

We verified our assumptions in practice by running experiments on a Core2
Duo 1.66GHz notebook. The attacks were implemented using Magm Version
2.11. Instead of taking a lattice reduction algorithm which provably returns a
basis with a shortest vector as first basis vector we have used the LLL algo-
rithm [I1], more precisely its L? version of Nguyen and Stehlé [I5] which is
implemented in Magma. Although by LLL reduction the first basis vector only
approximates a shortest vector in a lattice, for our lattice bases with dimensions
up to 100 LLL-reduction was sufficient. In nearly all cases the first basis vec-
tor was equal to the vector +q = +(q1, ..., qx), when we chose suitable attack
parameters.

First, we considered the cased of imbalanced RSA moduli from Theorem [7
We chose N; = (p + 2'p;)qi, i = 1,...,k, of bit-size n = 1000 with varying
bitsizes of ¢;. For fixed bitsize « of g; and fixed number k of moduli, we slightly
played with the parameter ¢ of common bits close to the bound ¢t > kfla in
order to determine the minimal ¢ for which our heuristic is valid.

Table 1. Attack for imbalanced RSA moduli

bitsize a no. of bound number of success

of the ¢; moduli k& k (« shared bits ¢ rate
250 3 375 377 0%
250 3 375 378 97%
350 10 389 390 0%
350 10 389 391 100%
400 100 405 409 0%
400 100 405 410 100%
440 50 449 452 16%
440 50 449 453 97%
480 100 485 491 38%
480 100 485 492 98%

The running time of all experiments was below 10 seconds.

In Table [[l we called an experiment successful if the first basis vector by in
our LLL reduced basis was of the form by = +q = +(q1, ..., ¢x), i.e. it satisfied
Assumption[@l There were some cases, where other basis vectors were of the form
+q, but we did not consider these cases.

As one can see by the experimental results, Assumption [flonly works smoothly
when our instances were a few extra bits beyond the bound of Theorem [l This
is not surprising since the counting argument from Section [G.1] tells us that we
loose uniqueness of the shortest vector as we approach the theoretical bound.
In practice, one could either slightly increase the number ¢ of shared bits or the
number k of oracle calls for making the attack work.

! http://magma.maths.usyd.edu.au/magma/
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Analogously, we made experiments with balanced RSA moduli to verify As-
sumption[§ Instead of computing closest vectors directly, we used the well-known
standard embedding of a d-dimensional closest vector problem into an (d 4 1)-
dimensional shortest vector problem ([6], Chapter 4.1), where the shortest vector
is of the form by = (q' — ¢, '), ¢ constant. Since ¢ and ¢’ are known, this di-
rectly yields q' and therefore the factorization of all RSA moduli. For solving
the shortest vector problem, we again used the LLL algorithm.

As before we called an experiment successful, if by was of the desired form,
i.e. if Assumption[§held. In our experiments we used 1000 bit N; with a common
share p of t = 250 bits.

Table 2. Attack for balanced 1000-bit N; with 250 bits shared

no. of bound bits known success
moduli £ [,;] from g  rate

3 84 85 4%
3 84 86 99%
10 25 26 20%
10 25 27 100%
50 5 8 46%
50 5 9 100%

All of our experiments ran in less than 10 seconds. Here, we assumed that
we know the required bits of each ¢;, i.e. the running time does not include the
factor for a brute-force search.

Similar to the experimental results for the imbalanced RSA case, our heuristic
Assumption B works well in the balanced case, provided that we spend a few extra
bits to the theoretical bound in order to enforce uniqueness of the closest vector.
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Abstract. The relation between list decoding and hard-core predicates
has provided a clean and easy methodology to prove the hardness of
certain predicates. So far this methodology has only been used to prove
that the O(loglog N) least and most significant bits of any function with
multiplicative access —which include the most common number theo-
retic trapdoor permutations— are secure. In this paper we show that
the method applies to all bits of any function defined on a cyclic group
of order N with multiplicative access for cryptographically interesting N.
As a result, in this paper we reprove the security of all bits of RSA, the
discrete logarithm in a group of prime order or the Paillier encryption
scheme.

Keywords: bit security, list decoding, one-way function.

1 Introduction

One-way functions are one of the most fundamental cryptographic primitives
and it is not an overstatement to say that they are behind most of modern
cryptography. If some reasonable computational assumptions hold, a one-way
function is easy to compute but hard to invert. In some cases, this security
requirement may not be enough: in particular, the definition of one-way function
does not say anything about how much information it can leak. A predicate of
the preimage, P, is a hard-core of f if f does not give away any information
about P, that is, if there exists a polynomial time reduction from guessing P to
inverting f.

The study of hard-core predicates is of interest for various reasons, not only
because it strengthens our understanding of the real hardness of the considered
one-way function, but also because of its applications, which include the con-
struction of secure bit commitment schemes or cryptographically strong pseu-
dorandom generators. Further, the study of bit security has led to important
techniques and insights which have found other applications. For instance, the
study of the security of the least significant bit of RSA led to the two-point
based sampling technique introduced in [2], later used to prove the well known
result of the Goldreich and Levin bit — GL from now on — which states that
every one-way function has a hard-core bit. We emphasize that the importance
The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 15-33, 2009.
© Springer-Verlag Berlin Heidelberg 2009


http://dx.doi.org/10.1007/978-3-642-00468-1_29

16 P. Morillo and C. Rafols

of the GL result reaches far beyond the domain of bit security, and many works
in other lines of research are in some way indebted to it, for instance in learning
theory [41,[7].

Many bit security results have very technical and sophisticated proofs. Al-
though many proofs for different one-way functions have a similar structure,
they have to be adapted to each particular case. In contrast, Akavia, Gold-
wasser and Safra [I] give a very elegant and general methodology to prove bit
security results. In particular, they show how this methodology applies to prove
the security of O(loglog N) least and most significant bits of any function with
multiplicative access - such as RSA and DL, for instance.

Akavia et al. raised the question whether this methodology applies to prove
the security of internal bits, a question which we answer in the affirmative in
this paper. Since the existing security proofs for the hardness of internal bits of
RSA and DL are particularly technical and cumbersome to follow in all detail —
we refer the reader to [§] for an example— , we feel that a more readable proof
should contribute much to the public discussion of the results and thus also to
their credit and diffusion.

1.1 Previous Work

The GL result, which gives a hard-core predicate for any one-way function,
can be reinterpreted as a list decoding algorithm for the Hadamard code. This
suggested the possibility of a general methodology to prove bit security results.
This methodology was formalized by Akavia et al. in 2003, where it was used to
prove (or often reprove known results) the hardness of certain predicates for one
way functions defined on a cyclic group G of order N and having the property
of multiplicative access, that is, functions f for which given f(z), f(z-y) can be
computed for any known y in almost all of the cases.

The most common number theoretic trapdoor permutations in cryptography,
such as RSAN (z) = 2° mod N, Rabin(z) = 2> mod N, EXP, (z) = ¢*
mod p and ECLy, 5 ¢0(z) = @ — exponentiation in the group of F,- rational
points of an elliptic curve E, ,(IF,) — have this property.

A part from the formalization of the list decoding methodology, one of the
key contributions of Akavia et al. is to give a learning algorithm for functions
f :Zyn — C, which is a necessary piece to provide the aforementioned results.

The security of the internal bits had already been proved for some one-way
functions with multiplicative access such as RSA and the discrete logarithm in
[8] and the Paillier encryption scheme in [3].

1.2 Organization

Sections 2, 3 and 4 are introductory: in section 2l we define the concept of hard-
core predicate and give some of the results of Akavia et al. Sections 3 and 4
are devoted to basics of Fourier analysis and list decodable codes and to the
relation between hard-core predicates and list decoding. We stress that many
of the results and definitions given in these sections are taken from the work of
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Akavia et al. but are necessary to introduce our contributions. In section [l we
prove one of our main results concerning the security of all bits of any one-way
function with multiplicative access for special N, while in section [0l we prove it
for all N of cryptographic interest. Next, in section [f] we prove the security of
all bits of the Paillier encryption scheme. Possible extensions of these results are
discussed in section Bl In section [@l we summarize our contribution.

2 Parts That Are as Hard as the Whole

Informally, a hard-core bit for a one-way function f : D — R is a boolean
predicate P : D — {+£1} which does not leak from f. Obviously, we cannot
prevent an adversary from taking a random guess, but the point is that there
should not be any strategy to predict P which works significantly better than
the random one. Define

Definition 1. majp = maxbe{il}Pr(P(a:) =b:x « D) and minorp =
1 —majp.

We write z < D to indicate that we choose an element = in D according to the
uniform distribution.

Definition 2. A function v(-) is negligible if for any constant ¢ > 0 there exists
ng € Z, s.t v(n) < n=¢ for all integers n > nyg.

This definition of hard-core predicate is taken from [IJ.

Definition 3. For each n € N, let I, be a countable index set, and set I =
(In)nen - Let F = (f; : D; — R;)ier be a family of one-way functions and
P =(P;: D; — {£1})icr a family of Boolean predicates, where w.l.o.g. if i € I,
D; C {0,1}". We will say that P is a family of hard-core predicates for F if
and only if, for alln € N and i € I,:

— P, can be computed by means of a Monte-Carlo algorithm A; (i, x).
— P;(x) is not computable by means of any efficient algorithm from f;(x); that
is, for any PPT algorithm As,

Pr(Ax(i, fi(z)) = Pi(z) : x — D;) < majp, +v(n),
where v(+) is a negligible function.

While there are predicates which are a hard-core of any one-way function, like
the GL bit [6] or all the bits of az+b mod p [9], there are also many results con-
cerning the security of a certain bit of the binary representation of the preimage
for a specific one-way function (e.g. the least significant bit of RSA or Rabin,
see for instance [2]).

Given an element = € Zy, define [z] as the representative of the class of z in
[0,N) and absy(x) = min{[z], N — [z]}. The i-th bit of an element x € Zy is
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defined as B;(x) = 1 if the i-th bit of the binary representation of [z] is 0 and
as —1 otherwise.

Akavia et al. prove the security of any basic t-segment predicate, ¢ € poly(n),
for any one-way function with multiplicative access having domain in Zy, where

n %f llog N|.

Definition 4. A predicate Py : Zny — {£1} is said to be a basic t-segment
predicate if there are at most t values of x € Zy for which Py(x + 1) # Py(x).

In particular, their result implies that the predicate B,,_;, where i € poly(logn),
is a hard-core of any one-way function with multiplicative access, since trivially
B,,_; is a basic t-segment predicate, where ¢ = 2¢+1.

Further, there is a correspondence between B;, where i € O(logn) and some
t-basic segment predicate with ¢ € poly(n). For instance, it is easy to verify that
Isbn(x) = halfn(5), where hal fn(x) is a basic 2-segment predicate which is
equal to 1if [z] < N/2 and is —1 otherwise. This correspondence allows to prove
that the predicates B;, where ¢ € O(logn) are also hard-core of any one-way
function with multiplicative access when N is odd (see [I] for details).

3 Preliminaries

Before sketching the list decoding methodology of [, we begin with some basic
concepts.

3.1 Fourier Analysis in Zy

In the space of functions from Zy to C it is possible to define the inner product

(.0 Y gah(a)

TELN

For each a € Zy, the a-character is defined as a function x,, : Zy — C such that

Xo(z) = W, where wy def 2V Tt is easy to check that B, def {Xa:a€Zn}
is an orthonormal basis of the space of functions going from Zy to C.
If I' is a subset of Zy, it is natural to consider the projection of g in the set
of I characters, that is,
gir =Y 9(a)Xa
acl’
where g/(g) = (9, Xa) are the Fourier coefficients. Observe that, if h(y) = g(ay)

for some a € Z%, then h(a) = g(a/a).
Because B, is an orthonormal basis,

gl =D lg(@)” and |lgirll3 =D lg(e)l*.

a€LN acl’

Finally, define
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Definition 5. (Fourier Concentrated) A function g : Zy — C is Fourier con-
centrated if for every e > 0 there exists a set I' consisting of poly(n/e) characters,

so that -
lg—grlls=>_ lg(a)f <e
ag¢gll
In the following, this condition will be referred to as g is e-concentrated on the
set I'.
The heavy characters of g are the characters for which the projection of g has
a greater modulus, that is, given 7 > 0 and g : Zy — C, define

def -
Heavy,(9) = {Xa : lg(@)]* > 7}

3.2 Codes

A binary code is a subset of {£1}*. To encode the elements of Zx we will limit
ourselves to codewords of length N, in this case the code is a subset C C {1}
Each codeword C, can be seen as a function C, : Zy — {+1}, expressed as

(Cz(0),Cx(1),...,Cx(N —1)).

Definition 6. The normalized Hamming distance between two functions g, h :
Zy — {1} is A(g, h) = Pr(g(z) # h(z) : @ — Zn).

The next definition is a natural extension of the concept of error correcting codes.

Definition 7. A code C = {C, : Zny — {£1}} is list decodable if there exists a
PPT algorithm which given access to a corrupted codeword w and inputs d,¢,1™
returns a list L O {x : A(Cy,w) < minorc, — e} with probability 1 — 6.

Remark 1. In this definition it says “given access to w” because in our examples
it will be computationally infeasible to read the whole word w due to its size.

3.3 List Decodable Codes

In this section we give sufficient conditions for a code to be list decodable, for a
detailed explanation we refer the reader to [I].

Definition 8. A code C is concentrated if each of its codewords C, is Fourier
concentrated.

Definition 9. A code C is recoverable, if there exists a recovery algorithm,
namely, a polynomial time algorithm that, given a character x. (for a # 0),
a threshold T and 1™, where n = |log N | returns a list Lo, containing

{x €ZNn : xXo € Heavy.(Cy)}.

One of the main contributions of Akavia et al. is to prove that on input a
threshold 7 and given access to any function g : G — C where G is any abelian
group with known generators of known orders, it is computationally feasible to
obtain a list of all the Fourier coefficients in Heavy,(g). In particular, in the Zy
case — which is enough for our purposes — they prove that
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Theorem 1. There is an algorithm which, given query access to g : Zny —
{£1}, 0 < 7 and 0 < § < 1, outputs a list L, of O(1/7) characters s.t.
Heavy,(g) C L with probability at least 1 — §; and the running time of the
algorithm is O(n - In(1/8)/75), where the O() notation indicates that terms
with complezity polynomial in log(1/7),logn or Inln(1/6) have been eliminated.

Another algorithm to the same purpose was given by Strauss and Mutukrishnan
[5], resulting in a running time with improved dependence in 1/7.
This theorem is used in [I] to prove the following

Theorem 2. Let C = {C, : Zn — {£1}} be a concentrated and recoverable
code, then C is list decodable.

The intuition behind the theorem is the following. Suppose that we have access
to a corrupted word w which is close enough to a codeword C,,, then:

— Because of the concentration of the code and the closeness of w and C,
there exists an explicit threshold 7 — non-negligible in n— such that xz is a
7-heavy coefficient of both w and C,, that is, there exists a 3 € Zy, 8 # 0,
such that

Xxg € Heavy,(w) N Heavy,(Cy).

This is proven in the Concentration and agreement lemma of [I].

— Because of theorem [, on input this threshold 7, we can recover a list L with
all the Fourier coefficients in Heavy, (w) with probability 1—J. We emphasize
that if ¢ is non-negligible in n, both the running time of the algorithm and
the length of the list — which is 1/7— is polynomial in n.

— For each of these coefficients x 3 the recovery algorithm will output a list of
codewords and C, will be in at least one of those lists.

4 The Relation between List Decoding and Hard-Core
Predicates

In this section we summarize the connection between list decoding and hard-core
predicates from [1].

Suppose we want to prove that P : Zy — {£1} is a hard-core of f : Zy — R.
As it is standard in cryptography, the security of P is proved by a reduction
argument. The proof consists in trying to invert f (recover z) given a challenge
f(x) and assuming we have access to an oracle predicting P(y) from f(y) with
non-negligible advantage over a random guess.

When f has multiplicative access, the connection between list decoding and
hard-core predicates comes from encoding each element x € Zy as C’f =
(CF(0),CEP(1),...,CP(N — 1)), where CF(j) = P(jz). This is the so-called
multiplication code. An oracle predicting P(y) from f(y) without errors would
give us access to CL', but since the oracle gives incorrect answers we have access
to a corrupted codeword w instead. If the code is list decodable we can find a

list of codewords containing CF, thus inverting f.



The Security of All Bits Using List Decoding 21

Now, in general, for any function f — not necessarily with multiplicative
access— to prove that P is a hard-core predicate of f following the list decoding
methodology, it would suffice to somehow encode the elements of Zy in such a
way that,

— The code is concentrated and recoverable (that is, list decodable).
— Given the challenge f(x) and an oracle predicting P we can devise access to
a corrupted codeword w close enough to the encoding of x.

This is formalized in Theorem 2 (List Decoding Approach) of [I],

Theorem 3. Assume a collection of codes C¥ = {CFi}ier s.t. Vi € I, (1) CP
is list decodable, and (2) C* accessible with respect to f;. Then P is hard-core
of F.

The definition of accessible code is:

Definition 10. Let P be a collection of predicates and F a family of one-way
functions. The code C is accessible with respect to F' if there exists a PPT access
algorithm A, such that for alli € I,,, CT is accessible with respect to fi, namely

1. Code access: Vx,j € D;, A(i, fi(x),7) returns fi(z') such that CFi(j) =
Pi(x’)

2. Well spread: For uniformly distributed CL € CP and j € D;, the distribu-
tion of «' satisfying fi(z') = A(i, f;(x), ) is statistically close to the uniform
distribution on D;

3. Bias preserving: For every codeword CFi € CFi,

\Pr(C’fi(j) =1:j«D;) — Pr(Pi(z) =1:z < D;)| < v(n),
where v is a negligible function.

Lemma 3 of [I] proves that if C* is accessible with respect to F and an algorithm
B that predicts P from F with probability at least majp + € is given, then, for
a non-negligible fraction of the codewords CF € CF, given f(z) we have access
to a corrupted codeword w, close enough to CF.

Akavia et al. prove that the multiplication code C* is accessible with respect
to RSA and EXP, ; and they state that it also holds for Rabin and ECL. In
section [0 we prove that C* is accessible with respect to the Paillier one-way
function.

Once the accessibility of the code with respect to a one-way function f is
stablished, to prove that P is a hard-core of f it suffices to see that the multipli-
cation code CF is concentrated and recoverable. Concerning the concentration,
observe that if € Zj};, from the definition of multiplication code, there is a

—

simple relation between the Fourier coefficients of L and P, CI'(8) = P(f/z).
As a consequence,

Lemma 1. For all € > 0, if P is e-concentrated in I" then CE is e-concentrated
in I'" ={xg:08=ax mod N,x, € I'}.



22 P. Morillo and C. Rafols

5 The Security of All Bits for Special N

The purpose of this section is to prove that the predicate P(x) = B;(z), defined
in section [Z is a hard-core predicate of any one-way function defined over Zy
for which the multiplication code is accessible, for N of special form. Because of
theorem [J it suffices to prove that the multiplication code CPi is concentrated
and recoverable.

The organization of this section is the following: to prove that P is concen-
trated, we begin giving an explicit formula for the Fourier coefficients of the
ith bit in subsection m/’[llis formula is used in subsection to study the
asymptotic behavior of |P(«a)|?.

In subsection [£.3] we prove that P is concentrated for all N of a special form.
Theorem [@] of subsection [(.4] proves one of the main results of the paper namely
that the predicate ith bit is hard-core of any one-way function defined over Zy
for which the multiplication code is accessible, for N of special form. To do this
we prove the recoverability of the code CP# in theorem [l It turns out that these
partial results are enough to reprove the hardness of O(logn) most and least
significant bits.

5.1 The Fourier Representation of the ith Bit

Let P(z) = Bi(z) be the ith bit as defined in section Pl and N = r2ttl £ m,
P(z+2") + P(x)
. 2 '

Recall that wy = ¢’¥ . From the definitions given in section [3.1] and using
some properties of the Fourier coefficients, we have the following relation

where 0 < m < 2%, Define the function g(z) =

g(/g) _ (wN”;+ I)P/(E).

We consider two different situations:

— Case 1 N = r2/*! — m. In this case g(x) = 1 if and only if x € I oef
[(r —1)20F1 428 —m, (r — 1)20F + 28 — 1], else g(z) = 0.

— Case 2 N = 72! + m. In this case g(z) = 1 if and only if z € I, def
[r20F1 r2iHl 4m — 1], else g(z) = 0.

In either of the two cases it is easy to compute the Fourier coefficients of P
explicitly. Indeed, it suffices to find g(a) since w3* + 1 # 0 because m # 0. Note
that in both Case 1 and Case 2, g(z) is only different from 0 in an interval of

—

length m. As a result the non-zero summands in the expression of g(«) form a

geometric progression with exactly m terms and g(«) can be computed explicitly.
If a # 0, in Case 1:

— 1 1 —a((r—1)21+1 421 _m) (w&am _ 1)
gl@)= Y xal) = , wy Loy
N ey (= 1)
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704(7‘2“'1) (w]:rocm_ )

Analogously, in Case 2, g( ) = . Moreover, in both

N (wy — 1)
cases, g(0) =
Taking the modulus, we obtain that in both cases, for any a # 0
o 1 Sin2(ma7r)
9P = o
sin”(y)

Using the fact that |w?3 ot 1)? = 4 cos? (213”) we obtain

— — 1 1 sinz(ma”)
P(a)|? = |g(a)? ; = N 1

Remark. There is an alternative trick to compute |P(a)|?

the function G(z) = P(z+1) - P(x)

, it suffices to consider

. In this case,

. 2
sin2(aj“\7,r) 2)

Define Case 1 and Case 2 as above. Note that in either one of the cases the
function takes values in {£1} whenever z = k2" — 1, for k € Z. Additionally, in

Case 1, G(N —1) = 1. As a consequence, in both cases the function takes exactly
2r non-zero values. This remark will be useful in subsections and .3

5.2 Asymptotic Behaviour of the Fourier Coefficients of the ith Bit

We have just seen how to compute the coefficients P(«). In this section we use
basic calculus techniques to study its asymptotic behavior.

Proposition 1

—

Far-o(,, et

<absN(a)2absN(2ia — N/2)?
The proof essentially follows from the following lemma.
Lemma 2. 72(1 — ’IT;)(abs]\;(y))2 < NZsin?(%)) < 72 (absn(y))?

Proof. We use the fact that 22 — "’% < sin®z < 22, for any z € [, 7], then:

— Left inequality: Let j be the only integer such that |y — jN| < N , then

N2Sin?(37) = NS (5 — ) 2 N5 — gm0 = (5 —g)) 2
721~ 73)(absy () |

— Right inequality: Similarly, N? sin2(y7r

<N297T
)< N

N jm)? = w*(absn (y))*.0
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To prove proposition [, we first define j as the unique odd integer in [—2¢,27]
such that |2a — j 5| < & Since 3)5\2( 21](\’;”) = sinQ(TﬁTr — j %), proposition [II
is derived from expression () of |P(«)|? and lemma 2 for y = a, y = ma and
y=2'a— N/2.

Summarizing, we have proven proposition [Tl and the constants implied in the
symbol O() can be found explicitly, indeed,

absy (ma)? — absy (ma)?
- , L Ny SIP(@P < K- ) N
absy(a)?absy(2ia — %) absy(a)?absy(2ia — %)
def , | 1 def 1
where K7 = — and Ky = .
b gy
Finally, if K3 def ) 2. We prove
w2 (1 — 12)
—_— m2 4,,,2
Lemma 3. |P(a)|? < K3- min , , .
|P(a)]* < K3 {absN(ZZa _ 1;7)2 abSN(a)Q}

Proof. The function g is equal to 0 in all but m elements of the domain and
2

— m
therefore |g(a)|? < N since each coefficient is the sum of m terms in the unit

27
circle. The inequalities of lemma 2] and expression () imply that |P(a)*> <
2 2
m — 4r
,- To prove the other bound observe that IG(a)|? <

absy (2t — J;’) = N2

and use expression [2)) and lemma 2
(]

5.3 The Concentration of the ith Bit for Certain N

In the previous section we found an expression of the asymptotic behavior of the
coeflicients of P which is hard to interpret. It is clear that the heavy coefficients
of P will be around the points that annihilate the denominator, but otherwise
it is not trivial to show that there exists a set I" of size poly(n/e) such that
IP—Prll3 <e

In this section we prove that if N = r2¢*! & m and either » € poly(n) or
m € poly(n) then P is concentrated. The result is a consequence of the two
following lemmas.

Lemma 4. For any e >0, ||P — P, 13 <€, where

2

e s absy(2ia — N/2) < 0(”2 )}

Fzz‘ -
Proof. Let I'{ def {Xa : absy(2'a — N/2) > k} then, using one of the bounds of
lemma

Z ‘@‘Zgo(mz) Z absN(2ia1—N/2)2 <O(WZ )

Xa €1 Xa €T
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Taking k € O(""), [|[P — Pir, |3 <. O
Similarly, using the other bound of lemma [Bl

Lemma 5. For any e >0, ||P — P, |3 <€, where

Iy def {Xa 1 absn(a) < O(T:)}

That is, P is concentrated in I’ N Iy and in case either r € poly(n) or
m € poly(n), the cardinal of this set is poly(n/e). Because of lemma [l we have
proven the following theorem.

Theorem 4. The code CBi is concentrated for all N = r2t1 £ m, 0 < m < 2¢,
with either r € poly(n) or m € poly(n).

5.4 The Hardness of the ith Bit for Certain N

We study the recoverability of C”. The recovery algorithm is adapted from
lemma 5 of [I] which proved that if B is a t-segment predicate, CP is recov-
erable. Combined with the concentration proven in theorem [ the recoverability
of C will prove the main result about the hardness of the ith bit for certain N.

Theorem 5. The code CBi is recoverable for all N = r27+1 £ m with either
r € poly(n) or m € poly(n) for N a prime or an RSA modulus.

Proof. We first consider the case r € poly(n). In this case, because of lemma [I]

and lemma [ CF is 7-concentrated in I} def {xp: 8 =ax mod N,absn(a) <
2

o)},

rfhe inputs of the recovery algorithm are a character xg and a threshold
parameter 7 (where 1/7 € poly(n)). The output is a list containing = € Zy such
that x5 € Heavy,(CF).

Since, CF is r-concentrated in I}, x5 € Heavy,(CF) implies x5 € I} and
thus § = ax mod N for absy(a) < poly(n/7). The algorithm outputs the union
of the lists L, such that L, contains all « so that x = §/a mod N . If a € Z}
there is a single solution to this equation. If ged(N, ) = d # 1, the solution of
a

d

N
x = mod d is either empty or a list

L, = {x +1- ];] mod N}i:O,...,dfl'

The union of the lists L, (over all a such that abs(a) < O(T:)) contains
all x such that Heavy,(CF) > xg. For the length of the lists and the time of
constructing them be poly(n/7), it must be that d € poly(n), since L, has length
d. This condition is trivially satisfied if N is a prime. If N is an RSA modulus,
ged(N, a) # 1 implies factoring N. So, for an RSA modulus N = 721 +m with
7 € poly(n), either the code CP is recoverable or P is concentrated in a known
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set Iy of polynomial size which contains some element which allows to factorize
N, contradicting the unfeasibility of factoring RSA modulus.

The case m € poly(n) is proven in a similar way but now taking into account
C? is 7-concentrated in I}, ef {xs : B = axr mod N,absy(2'a — N/2) <

2

o)}, a
Theorem [2 states that, as a consequence of theorems @] and [3, the code CP¢ is
list decodable for all N = 727! + m with either 7 € poly(n) or m € poly(n) and
N a prime or an RSA modulus.

Finally, we conclude

Theorem 6. The predicate B;, ith bit, is a hard-core predicate for any one-way
function defined over Zy for which the multiplication code CBi is accessible, for
all N = r2"*1 &+ m prime or RSA modulus such that either v € poly(n) or

m € poly(n).

This theorem is a consequence of the list decodability of the code CP¢ and
theorem [3l

This proves the hardness of all bits for N with a special binary representation,
but it also reproves the hardness of the O(logn) most and least significant bits
for all N of cryptographic interest.

— Most significant bits If n — ¢ € O(logn), then r € poly(n). Theorem
proves the security of the first O(logn) most significant bits for all N prime
or RSA modulus for any one-way function defined over Zy for which the
multiplication code CPi is accessible.

— Least significant bits If i € O(logn) then m € poly(n). Theorem [B] proves
the security of the first O(logn) most significant bits for all N prime or RSA
modulus for any one-way function defined over Zy for which the multiplica-
tion code CP is accessible.

6 The Security of All Bits for All N

This section is devoted to prove the hardness of all bits for all cryptographically
relevant N. First of all in subsection [6.1] we study the bounds given in section (5.2
more accurately. In subsection we proceed to prove that P is concentrated
for N prime or RSA modulus. This result, together with the recovery algorithm
given in subsection B3] and the accessibility of C*, implies the security of the
internal bits for all N of cryptographic interest. This is summarized in theorem [Q

6.1 A Closer Look at the Asymptotic Behavior of |1?(E)|2

The bounds of section are not enough to prove the concentration in the
general case. Therefore, in this section we will study the asymptotic behavior of

o~

|P(a)]? in more detail.
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As it was proven in proposition [I]

‘P/)(E)‘Q -0 CleN(ma)Q ) .

<absN(a)2absN(2ia — N/2)?

We introduce some notation to express the elements o € Zy as a function of
some parameters useful to describe absy(a) and absy (2°ac — N/2). Recall that
N = r2+1 £ m, where 0 < m < 2°.

Some parameters. We define some parameters depending on a > 0 or a < 0.
First consider the case o € [0, ¥, ']. Denote 6, = a2' — V' mod N, where
6o € [N, N1 and let A, be the integer in [0,2:~1 — 1] such that
Let « be an integer in [— N2_1,0). Denote 6, = a2’ + Ng'l mod N, where §, €
[ N1, N1 and let Ao be the integer in [0,2¢~! — 1] such that

a2l = —(N+1)/2+ 0 — AaN. (4)
Finally, for any o € [— N2_1, N2_1} we define u, € [0,7] as the only integer such
that absy (2 — (N — 1)/2) = pa2' + §, with 6, € [0,2° — 1].

From equations Bl and @] if o > 0,

a=((N—1)/2+ 04+ AaN) /2%, (5)
and if o < 0,
a=(—(N+1)/2+ 0, — AaN)/2" (6)

We emphasize that equations Bl [ B and [@ are integer equalities.

The parameters p, and ga are determined by J,. Indeed,
Lemma 6. For all a € Zn, pa2' + 5~a = |0ql.

Proof. We will prove that absy (2 — (N — 1)/2) = |4|. This is obvious when
a >0, since a2' — (N —1)/2 =5, mod N and J,, € [—N2’1, N2’1]. When o < 0,
note that

a2’ — (N -1)/2=a2"+ (N +1)/2=6, mod N.

Since 6, € [N, 1, N1, absn (a2 — (N —1)/2) = |64 by definition of absolute
value. (]

Note that lemmas @l and [l in section 53] imply that ||P — P, p, 15 < €. That
is, if there exists a set I" where P is concentrated, then I C Iy N I5:. The choice
of these parameters is motivated by the remark that points a € I'y N I'y: should
be close to small odd multiples of N/2¢*1  that is, observing that N/2+! ~ r,
we will have that absy () = (2A\s + 1)r + o, with A, and p,, small. Indeed,
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Lemma 7. For all o € Zy, absy(a) = (2Aq + 1)r & po + R, with |R| < A,.

Proof. First of all we consider the case o € [0, ¥, *]. In this case absy(a) = a.
Suppose d, € [0, V5 '] and N = 727+t —m (i.e., Case 1 of section [51]). Since
do > 0, lemma [ implies 6o = 6o + f1a2’. Substituting in equation [, we get

—(2Aa + 1)m + 264 — 1

absy () = (2Mo + )7 + o + it

Similarly for the rest of cases, that is: (1) do € [—=~51,0) and N = r2i+1 —m,
(2) 00 € [0,V and N = r2i+1 +m and (3) 6, € [, 1,0) and N = r2¢+1 +m,
we obtain

+(2Ag 4 1)m £ 26, — 1

absy () = (2Mo + 1)1 + po + i1

On the other hand, in the case a < 0, absy(a) = —a. Considering all the

possible combinations for the sign of é, and Case 1 and Case 2, as above, and
substituting in equation [6, we obtain

+(2A 4+ 1)m £ 264 + 1
2i+1 :

If Ao = 0 it is easy to see that R = 0 and the lemma is true. Indeed, A\, =0
implies m+26,+1 =0 mod 2°"! due to the fact that equations 3 and @ were
integer equalities. Because of the range of definition of m and d, this congruence
is equivalent to the equality £m + 26, 1 = 0 and therefore R = 0. Now, to
prove the lemma proceed by induction over A,,. (I

Corollary 1. For all a € Zn, absy(a) > Ao (2r — 1).

absy () = (2Mo + 1)1 + po +

Proof. Simply note that u, € [0,7] and |R| < Ay. Then,
absy(a) = (2 o + D)r £ o + R>2X\ar+ R > Ao (2r — 1). O

From these lemmas we can easily prove the following:

. . 1
Lemma 8. absy (a)?absy (2'a — ¥571)2 > N3 pugr?222

Proof. As we have seen in corollary [l absy(«) > A (2r — 1), therefore
absy(a)?absy (2o — No1)2> A2 (2r — 1) (pa2' + 60)2> A2 (2r — 1)2(pa20)2 >

(2T 1)2 2 i\ 2 22,2924 1
2 /l,a2l > A M 24 2 . O
(QT)Q ( T) ( ) Z AaMaT A

Now it is easy to characterize the asymptotic behavior of |P(«)|? in terms of A,
and fq.

2
> AL

Proposition 2. For all a € Zy such that Ao, > 0 and s >0

1

PP <0(y, 5):
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Proof. Since absy(ma) < N/2, from proposition [[l and the lemma[§ if A, > 0
and pq > 0,

— absy (ma)? N? 1
P(a)]? <0 : <0 ) <O a
[P(a)l (absN(a)QabsN(Ta — N/2)? ()\3#37322”2) ()\iui)
Before proceeding to prove our main theorem, we note that elements in Zy have

a convenient representation in these parameters.

Lemma 9. The following map is injective

m [N N — (0,207 — 1] x[0, 7] x {£1} x {£1}
Q — ( Aoy Moy S 55 )

where s, = 1 if « > 0 and —1 otherwise and ss = 1 if 6o > 0 and —1 otherwise.

Proof. Reducing equations [l and [ modulo 2 it is clear that A\, and ss deter-
mine §, modulo 2* and therefore d,. Then « can be computed from 7(«) using
equations [Bl or O

6.2 The Concentration of the ith Bit for All N

As a result of lemma [d] of the above section, we can describe the elements of Z
as regions in [0,2°71 — 1] x [0,7] x {£1} x {£1}. Now we can present our result
about the concentration of the ith bit.

Theorem 7. P is c-concentrated in I' % {Xa 1 Aa <O(}), pa <O(H)}.

Proof. Let I, def {Xa : Aa <k, o <k}, we will prove that

—_— 1
> P(a) <0(k).
Xa¢rk
Note that ZN\Ik = {Xa : Aa = 0,0 > k} U {Xa : Aa >k, ptia = 0} U {xa :
Aa > ko > 11U {xa : Ao > 1, > k}.

—

To bound the sum of |P(a)|? over the two first sets, the bounds of lemma [3]
of section will suffice, while we will need proposition for the other bounds.
Indeed, when A\, = 0, using one of the bounds of lemma [3]

- 1
> IP@P =00 3T e (v =12 <

Aa=0,p0>k Aa=0,p0>k

< O(m?) 1

Aa =0 pia >k (0 + pa2")?

<om?) Y 1

. <
Aa=0,p0>k (“0‘21)2

<o) Y ! <O(]1).

2
Aa=0,10>k Ha

<



30 P. Morillo and C. Rafols

On the other hand, when u, = 0, using the other bound of lemma [3]

— 1
S P@P<oe? Y absy(0)?

>\a>k’///a:O )\a>k’ll/a:O

1
<O D ey

)\a>k’ll/a:O
1 1
<o) Y 2 <O()
Ao >k, pa=0 @

To conclude the proof we need to show that

S P@P+ Y PP <o)

Xa>kopia>1 Xa>1,pa>k

From proposition [(.2]
1

P@)P <0(y, )

As a consequence,

Y Fare ¥ \?@\QS Y et X e

_1 . Ao, 1)\a>k,y021 aba ST sk “ata
= Z 2)+ Z A2 Z 2) <

fa>1 ,U,a Ao a w>1 a o>k Ha
) > 1P(a)
Xa¢r

0(]1).

We conclude that if k € O 2 < ¢ as stated in theorem [

6.3 The Hardness of the ith Bit for All N

In the previous section we proved the concentration of the predicate B;. To
complete the proof of the main theorem concerning its hardness, in this section
we prove the recoverability of the code CF:.

Theorem 8. The code CBi is recoverable for all N prime or RSA modulus.

Proof. This recovery algorithm is almost identical to the one given in .

Because of theorem [7] and lemmaIIL CPF is T-concentrated in e { Xg:fB=
ax mod N, x, € I'}, where I de {Xa A < O(T),ua < O(T)}.

The inputs of the recovery algorithm are a character xg and a threshold
parameter 7, where 1/7 € poly(n). The output is a list containing x € Zy such
that x5 € Heavy,(CF).

Since, CF is 7-concentrated in I, x5 € Heavy,(CF) implies x5 € I'" and
thus 8 = ax mod N for Ao < poly(n/7) and p < poly(n/7). The algorithm
outputs the list I % {m x = f/a mod N, x, € I'}. The length of the list and
the time of constructing it is poly(n/T). O
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Theorem [ states that, as a consequence of theorems [7] and B the code CP: is
list decodable for all N prime or RSA modulus. We conclude

Theorem 9. If N is prime or is an RSA modulus, the predicate B; is hard-core
for any one-way function defined over Zy for which the multiplication code is
accesstble.

7 All Bits of the Paillier Encryption Scheme Are Secure

Let N = p-q be an RSA modulus, given an element g € Z},» such that N divides
the order of g, the Paillier trapdoor permutation, introduced in [I0] is the map:

(rm) = rTg

Taking r to be a random element and m the plaintext, the Paillier probabilistic
encryption scheme encrypts m as 4(r, m) and is semantically secure under the
Decisional Composite N-th residuosity assumption.

In this section we will sketch the proof of the security of any bit P of the
message. We stress that by security of P we mean that we relate the ability of
an adversary in predicting P(m) from £,(r,m) to the ability of recovering m
from &, (r,m), and not to the ability of inverting &,.

The concentration and recoverability of the multiplication code C¥, where
P :Zn — {£1} is the predicate ith bit of the message, follows from our results
of section Then, the code C* is list decodable.

The one-way function £; has domain in Z} X Zy, while the predicate has
domain in Zy, so we need to slightly change the definition of accessibility to
fit this situation. We will first give the access algorithm, then we will give the
new definition of accessible code and argue that this new definition is enough to
apply the list decoding methodology.

The access algorithm A, on input (N, g, & (r, z), j), chooses a random element
¢ € Z, and outputs (£,(r,x))? - ¢V. Note that

(Ey(ryx))? - ¢N = Ey(r7 - £,25) mod N2.

It is not hard to see that for this access algorithm A the code satisfies the
following properties:

1. Code access: Vz,j € Zn, A(N,g,E(r,x),j) returns E;(r',z") such that
C2™?(j) = Pyg(a’)

2. Well spread: For uniformly distributed CiNe e PN and j € Zy, the
distribution of (',2") € Z% x Zy satisfying E,(r’, ") = A(N, g,&y(r, ), 7)
is statistically close to the uniform distribution on Z} x Zy

3. Bias preserving: For every codeword CiNe e CPra,

\Pr(C’fN‘g(j) =1:5« ZN) - Pr(PMg(z) =1:2z+« ZN)| <wv(n),

where v is a negligible function.
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Compare these properties with the ones that an accessible code must verify
(see definition [I0] of section ). Both definitions are almost identical but now the
property that the code is well spread is for (r',2’) € Z§ x Zn and not on the
domain of the definition of the code.

Lemmas 2 and 3 of [I] prove that if the code C¥ is accessible with respect
to F, an oracle B predicting P from F with probability exceeding majp + €
implies access to a corrupted codeword w such that A(C,,w) < minorc, — €.
The property that the code is well spread is used in the proofs of these lemmas.
It is immediate to see that to do the same reasoning in the Paillier case we need
to require precisely the second condition above.

Summarizing, the definition we gave above is exactly the one we need to
prove that an oracle predicting P(z) from &,(r’, z) gives access to a corrupted
codeword w sufficiently close to x. But to prove theorem [3] which states that
list decodability of C¥ plus accessibility implies that P is a hard-core of F,
accessibility was only necessary to prove access to a corrupted codeword w.
Therefore, the argument we gave in this section with the concentration and
recoverability of the multiplication code CP~:s of section [6.3 implies the security
of all bits of the message of the Paillier trapdoor permutation.

We emphasize that the security of all bits of the Paillier encryption scheme
was only known based on a non-standard computational assumption [3].

8 Other Predicates

We note that theorem [Glis enough to reprove the hardness of segment predicates.
Recall from section [2 that a t-segment predicate is a predicate which changes
value t € poly(n) number of times. Define G as

P(x+1)— P(x)

G(lf) = 9 )
and note that G(z) # 0 for exactly ¢ values of z. Although in this case we
cannot compute G(«) explicitly as before, we still have |G(a)|?> < t2/N2. The

. . . def
same arguments as in lemma [l prove that P is concentrated up to € in I =

{Xa : absn(a) < O(t:)} - this corresponds to claim 4.1 of [1].

In the last section we proved the security of all bits in the binary representation
of the preimage for any one-way function defined over Zy with multiplicative
access provided that N is odd. Note that the same proof would do for any other
“almost periodic” predicate. Indeed, for any d € N define Py : Zy — {£1} as 1
if [x] € [kd, (k 4+ 1)d — 1], k even, and —1 otherwise. Write N = r2d + m, with
0 < m < d. Then all the results proven in the last section are also valid for Py
just writing d instead of 2°.

9 Conclusion

In our opinion the list decoding methodology formalized in [I] has not received
enough attention. Because of the elegance and generality of the method and the
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power of the different tools it uses it should be considered the starting point of
any bit security proof. In this paper we have extended the number of predicates
to which the list decoding methodology applies. As a result we prove the security
of all bits of any of the usual cryptographic one-way functions with multiplicative
access defined on a cyclic group of order N.
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Abstract. In this paper we present a new lattice construction for a lat-
tice based partial key exposure attack for the RSA cryptography. We
consider the situation that the RSA secret key d is small and a suffi-
cient amount of the LSBs (least significant bits) of d are known by the
attacker. We show that our lattice construction is theoretically more ef-
ficient than known attacks proposed in [2/7].

Keywords: RSA, cryptanalysis, partial key exposure attack, lattice ba-
sis reduction, the Coppersmith technique.

1 Introduction

In this paper we present a new lattice construction for a lattice based partial
key exposure attack for the RSA cryptography in the situation that the secret
key d is small and its LSBs (least significant bits) are exposed.

Boneh and Durfee [2] proposed the lattice based attack for the RSA cryptog-
raphy. Its basic idea is to reduce the RSA key finding problem to problems of
finding small roots of a modular equation such as f(z1,...,z,) =0 (mod W),
which are solved by the Coppersmith technique [6], the technique that solves
a given modular equation by converting it to an algebraic equation by using
a lattice basis reduction algorithm such as the LLL algorithm [IT]. Boneh and
Durfee [2] showed that the secret key d can be computed from a public key pair
e and N in polynomial time in log N when d < N?-292,

Since Boneh and Durfee’s work, many of its variants have been proposed [4]7].
Blomer and May [4] extended the technique for a partial key exposure attack,
i.e., a problem of computing d from e, N and some partial information on d.
This approach has been further extended by Ernst et al. [7] for several partial
key exposure situations. In this paper we consider one of those situations where
the secret key d is small and a sufficient amount of d is given (besides e and
N), and we show an improvement over the algorithm by Ernst et al.[7], thereby
solving an open problem raised in their paper.

In order to state our improvement we need some notations; see the next section
for the precise definition. Let (e, N) be an RSA public key pair and let d be its
corresponding secret key. Here as usual we use £y = (the bit-length of N) as

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-00468-1_29

S. Jarecki and G. Tsudik (Eds.): PKC 2009, LNCS 5443, pp. 34-53, 2009.
© Springer-Verlag Berlin Heidelberg 2009
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19) 0.284 T
0.292

Fig. 1. Our recoverable range. The limit of Boneh and Durfee () and that of Ernst
et al. @) are corresponding to the left/above of the line 8 = 0.292 and the line
Ernst et al. @ respectively. Our new improvement area (3)) is the left side of the
dashed line Ours (@ in the area left of line 1 — 48 + 2§ = 0.

a security parameter. We consider the situation that £; = (the bit length of
d) is relatively small compared with ¢y, and some ¢, least significant bits of d
are known. Let 8 = £4/¢y and § = (€q — £p)/{n; that is, they are respectively
the ratios of the bit-length of d and its unknown part. Now the asymptotic
performance of the algorithms in [27] can be summarized in Figure [[l (This is
a rough image, not accurate.)

The algorithm of [2] works asymptotically when the parameters take values
in the left of a vertical line labelled “8 = 0.292”. That is, it obtains the secret
key for

1
B<1-— V2 = 0.292... and any J. (1)
The algorithm of [7] works when
5 1
6<6—3\/1+6ﬁ. (2)

That is it works when (3 and 6 take values in the left/above of a curve labelled
Ernst et al. (. As shown in the Figure[I] the algorithm of [7] improves the solv-
able parameter range when ¢ is small; it has been however left open [7] to develop
an algorithm that has a better solvable parameter range than both [2] and [7].

In this paper we propose an algorithm that can work asymptotically when the
parameters take values in the left/above of the dashed line of Figure [II More
precisely, it works when
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1—48+425>0if 2,/2(1 =28)(B—0)(0 —B) =262 +36+6—-1<0 (3)

and 5
1—4ﬁ+26§01f6<6—3\/1+6ﬂ. (4)

Note that the range (@) is our new improvement area which is the left/above
of the dashed line Ours @O in Figure Il while the range () is already given
by [7]. Consider the situation that we do not have any information on d, i.e.,
§ = [3. Substituting this to (@) and (@), we have 8 < 1 — v/2/2 ~ 0.292 and
B < 7/6 —\/7/3 ~ 0.284 respectively. This means our range covers [7]’s range
when § ~ (.

This paper is organized as follows. In Section 2] we introduce some nota-
tions and lemmas about the lattice based partial key exposure attack. Section [3]
provides the overview of the lattice based partial key exposure attack. In Sec-
tion [ we describe the construction and the performance of our lattice. Section [
provides the results of our computer experiments. The analysis of Section [ is
explained in Section

2 Preliminaries

We introduce some notations and state some known facts used in the following
discussions. Then we review some key technical lemmas used in the lattice based
attack.

We use standard RSA notations throughout this paper. A given RSA instance
is defined by p, ¢, e, and d, where p and ¢ are large primes, e is a public key, and
d is a secret key. Let N = p X ¢, and let (V) be the Euler’s function; here we
will simplify assume that ¢(N) = (p — 1)(¢ — 1). The key relation is

ed =1 (mod ¢(N)). (5)

The partial key exposure attack is to compute the secret key d from partial
information on d, and the public key (e, N). In this paper, we consider the
situation that some LSBs of d are exposed, that is, recovering d from LSBs of d
(together with e and N). We use dg to denote the exposed part and d to denote
the non-exposed part. That is, we assume that

d=d-M + dy, (6)

where M = 2% and k = 1g(dy . We will use M for denoting this number through-
out this paper. Define 8 = logy d and § = logy d. That is, 8 and § are the rough
ratios of the bit-length of d and d relative to that of N respectively.

In the algorithm, we need to solve a modular equation such as f(z,y) =
0 (mod W) for a polynomial f(x,y). Furthermore, we want to obtain a solution

in a certain range. In general, this task is not easy. However there are some cases

1 'We use lg(x) to denote the length of the binary representation of x.
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where we may be able to use the standard numerical method for solving modular
equations. The Howgrave-Graham lemma [9] provides us with one of such cases.

In order to state the Howgrave-Graham Lemma, we introduce the following
notation.

Definition 1 XY-norm. Let X and Y be natural numbers and f(x,y) =
> ij QigT iyl be a polynomial with integral coefficient.
We denote the length of a coefficient vector of f(Xx,Yy) by ||f(x,y)||lxv,

1.€.,
1F ()l xv ¢Z a2, XY

We call this the XY -norm of f(x,y).

Lemma 1 (Howgrave-Graham [9]). For any positive integers X,Y and W,
let f(z,y) be a bivariate polynomial consisting of w terms with integral coeffi-
cient. We suppose that the following holds

I1f @ w)llxy < jfu

Then we have
flz,y) =0 (mod W) & f(x,y) =0

within the range of |x| < X and |y| < Y.

Note that f(x,y) = 0 clearly implies f(z,y) =0 (mod W). What is important
is its converse. This lemma guarantees that the solution of f(x,y) =0 (mod W)
in the target range can be found (if they exist) from the solutions of f(z,y) = 0,
which can be obtained by the standard numerical method.

In order to use the lemma, we need to obtain a polynomial with a small XY-
norm. The key idea of the lattice based attack is to formulate this task as the
shortest vector problem and use approximate solutions computed by a polyno-
mial time lattice basis reduction algorithm for the shortest vector problem.

We introduce some definitions and some lemmas about the lattice. Con-
sider linearly independent vectors by,...,b, € R", then the lattice with basis
by, ..., b, is defined by

L(by,...,by,) = {Zaib
=1

That is, the lattice is the set of integral linear combinations of its basis vectors.
We denote by n a number of vectors, which is usually called lattice dimension,
and denote by 7 a number of component of vector in basis, which we call lattice
component size. Note that the lattice is a additive subgroup of R™.

The shortest vector problem, for given basis by, ..., by, is to find a vector v
such that v € L(b1,...,b,) \ {0} and |v| < |v/| for v/ € L(b1,...,b,) \ {0}.

iaiGZforizl,...7n}. (7)
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That is, this problem is to find a non-zero vector having the minimum length in
L(by,...,by).

In order to obtain polynomials with small XY -norms, we need to compute
short vectors as approximate solutions of this problem. We will use a polynomial
time algorithm, named LLL, proposed in [II]. Some improvements have been
proposed [13[14], but as shown later, these improvements are not essential for
our application.

The approximation ratio of the LLL algorithm is exponential, it is however
enough for our propose. The following theorem guarantees the upper bounds
of the length of the computed vectors. The LLL algorithm computes a special
basis vy, ..., v,, named reduced basis, from given basis by, ..., b,,. Our interest
is short vectors in the reduced basis in the following theorem.

Theorem 1. [Z, Fact 3.3] Let by, ..., b, be a given linearly independent basis.
Then we can find linearly independent lattice vectors vy and vo such that

[vi| < 2=D/4| det(L)[*/™, and (8)
|vo| < 27/2| det(L)|Y/ (1),

Here, L is the lattice with basis b1,...,b,, and det(L) is the determinant of
the lattice defined by using their Gram-Schmidt orthogonal basis by, ..., b} as

follows

det(L) = H b} (9)
i=1
We will use (@) to evaluate the determinant of our lattice in the later section.
Note that the shortest vector problem is defined on vectors, while our targets
are polynomials. Thus we consider a way to map polynomials to vectors. For
example, the polynomial f(z,y) = —3z3 + 422y — 22y + Try? is mapped to the
vector (—3X3,4X2Y, —2XY? 7XY?) by some natural numbers X and Y. To
state this correspondence formally, we first need to fix some linear ordering on
pairs (%, j) of nonnegative integers. With respect to this ordering let (i(t),j(t))
denote the t-th pair. Then our correspondence between polynomials and vectors
is defined as follows.

Definition 2 Polynomials < vectors. Let J be a sequence of pairs of non-
negative integers, where we assume some linear order on J, let it be fized, and
let n denote |.J|, the length of the sequence. We also fix some positive integers X
and Y. W.r.t. these X and Y, for any f(z,y) = 3 cpcn tGigr), i)z Dy @, the
following vector b is the vectorisation of f(z,y) with parameter X and Y, and
it is denoted by V;(f; X,Y).

On the other hand, for any b of size 0, a polynomial f(x,y) defined from b
by interpreting it as below is called the functionalisation of b and it is denoted
by Fi(b; X,Y).

) = a0 Py ® + ai @z @@ o+ aigone Dy

! ! !
b = (aimX VY'Y i) @X Y a0 X DYDY,
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Remark. When J is clear from the context, we often omit J and write as
V(f; X,Y) and F(b; X,Y). Then from the definition, the following relationships

are immediate.
I1f(z, 9)llxy = [V(f; X,Y)], and
[[F(b; X, Y)||xvy = |b].

That is, these are equivalent to the length of a coefficient vector of f(Xz,Yy).

(10)

3 Overview of the Partial Key Exposure Attack

We give an overview of the lattice based partial key exposure attack in the
situation that LSBs of d are exposed. The goal of the attack is to compute
the secret key d from dy, least significant bits of d, and a given public key pair.
The lattice based attack achieves this goal by using a lattice reduction algorithm
and the Howgrave-Graham lemma. It is said in [7] (and some papers) that the
attack is effective if

(i) d, and unknown part of d are short,

(ii) e and N are of similar bit length, and

(iii) p and ¢ are of similar bit length.

In order to be precede, we consider in this paper, the following conditions.

(a) § = logy d is smaller than 0.5,

(b) 1g(e) =1g(N), and

(c) lg(p) = 1g(q)

In the following, we assume all parameters satisfy these conditions. More
precisely, we will use the following inequalities in the later.

e < o(N) and p+ ¢ < 3VN. (11)

Our objective is to compute d from a public key pair (e, N) and dy. As explained
in Introduction, the key relation is the modular equation (&), from which it is
easy to derive ed =1 — xp(N) =1 — z(y + N) for some z,y € Z. Also by using
(@), we can deduce from the above that e(d- M + do) = 1 — z(y + N) and hence
we have
(N +y)+ (edp — 1) =0 (mod eM). (12)
We show here that it is relatively easy to enumerate all solutions (z,y) of
([@I2)). First note that a solution (x,y) exists if for integer y,

<N+y eM
ged ;

g g ) =1 where g = gcd(N +y,eM, edy — 1).

-1
In fact in this case, we can compute = by x = (lfgedo) : ((N;'y> mod e2/[>.

But clearly what we need is some specific solution of (I2). Among solutions (z, y)

of (I2), we say that (zo, yo) is useful if it indeed satisfies the following equation,

from which we can recover the secret key.

_ 1—x (N + yo)
e

d (13)
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Thus, our task is not computing some solutions (x,y), but computing this
useful solution among (x,y) satisfying (I2). Below we use (zg, yo) to denote this
useful solution. Let us consider a size of the useful solution (xg, o). We have the
following upper bounds. Here, we use ([I]) and the fact that ¢(N) = N + yg if
(z0, o) is the useful solution.

ed —1 ed

< <d= NP, and
N+y0’ @(N) s
lyol =[N — o(N)|=p+q—1< 3N,

|zo| =

(14)

Now let X = [N®] and Y = [3N°®]. Then, the useful solution (z¢,%0) is a
solution of ([I2)) satisfying |zo| < X and |yo| < Y.

Conversely, we consider some heuristic condition on ¢ for a solution satisfying
|| < X and |y| < Y is useful. We assume that solutions of (I2)) are random
numbers on {0,...,eM — 1}2. Since the number of solution pairs of ([I2)) is
smaller than eM, we expe